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Abstract 

Neelkamal Paresh Shah 

Entropy Maximisation and Queues With or Without Balking 

An investigation into the impact of generalised maximum entropy solutions 

on the study of queues with or without arrival balking and their applications to 

congestion management in communication networks 

Keywords: Queues, Balking, Maximum Entropy (ME) Principle, Global 

Balance (GB), Queue Length Distribution (QLD), Generalised Geometric 

(GGeo), Generalised Exponential (GE), Generalised Discrete Half Normal 

(GdHN), Congestion Management, Packet Dropping Policy (PDP) 

Generalisations to links between discrete least biased (i.e. maximum entropy 

(ME)) distribution inferences and Markov chains are conjectured towards the 

performance modelling, analysis and prediction of general, single server 

queues with or without arrival balking.  New ME solutions, namely the 

generalised discrete Half Normal (GdHN) and truncated GdHN (GdHNT) 

distributions are characterised, subject to appropriate mean value 

constraints, for inferences of stationary discrete state probability distributions.  

Moreover, a closed form global balance (GB) solution is derived for the 

queue length distribution (QLD) of the M/GE/1/K queue subject to extended 

Morse balking, characterised by a Poisson prospective arrival process, i.i.d. 

generalised exponential (GE) service times and finite capacity, K.  In this 

context, based on comprehensive numerical experimentation, the latter GB 

solution is conjectured to be a special case of the GdHNT ME distribution.  
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Owing to the appropriate operational properties of the M/GE/1/K queue 

subject to extended Morse balking, this queueing system is applied as an ME 

performance model of Internet Protocol (IP)-based communication network 

nodes featuring static or dynamic packet dropping congestion management 

schemes.  A performance evaluation study in terms of the model’s delay is 

carried out.  Subsequently, the QLD’s of the GE/GE/1/K censored queue 

subject to extended Morse balking under three different composite batch 

balking and batch blocking policies are solved via the technique of GB.  

Following comprehensive numerical experimentation, the latter QLD’s are 

also conjectured to be special cases of the GdHNT.  Limitations of this work 

and open problems which have arisen are included after the conclusions. 
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1. Introduction 

Queueing models with or without arrival balking constitute fundamental 

investigative tools for the performance modelling, analysis and prediction of 

discrete flow systems such as business and production systems and 

transport and communication networks.  However, derivation of exact 

performance distributions for complex queueing systems, such as infinite or 

finite capacity G/G/1 queues with or without balking, is often an infeasible 

task.  To this end, in this thesis, generalised least biased (i.e. maximum 

entropy (ME)) queue length distribution (QLD) inferences are devised based 

on knowledge of limited prior queue length moment information.  These least 

biased QLD inferences are subsequently conjectured to characterise new 

queueing models with balking, which are applied as ME performance models 

of network congestion management. 

Balking, a customer impatience phenomenon, is the immediate rejection of 

service by customers arriving to a queue and anticipating an unacceptably 

long queueing time and/or their service is not required urgently (Haight 

1957).  Customers which decide to balk do not join the queue and in this 

thesis are considered to not return afterwards.  As such, customers which 

balk are deemed to be lost from the point of view of the queue.  Queueing 

models with balking have been successfully applied to evaluate multiple real 

life systems such as: 

 Telephone call centres and business service systems where 

customers gain information about anticipated delay and traffic-flow 
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control in transport networks (Mendelson et al. 1999; Whitt 1999; 

Whitt 2005; Guo and Zipkin 2007; Liu 2007; Jouini et al. 2011) and 

 Customer acceptance/rejection policies dependent on workload 

thresholds as administered for example in admission control 

mechanisms in communication networks (Baccelli et al. 1984; Liu 

2007; Boxma and Prabhu 2009). 

The ME principle, attributable to Jaynes (Jaynes 1957; Jaynes 1978), is a 

method of statistical inference by which a least biased probability distribution 

of a random quantity of any general system can be characterised based on 

limited prior information.  In this context of ME distribution inferences, ‘bias’ 

can be defined as commitment to unknown information (Jaynes 1957).  The 

least biased distribution inference is obtained by maximising the uncertainty 

with respect to what is not known about the random quantity, while satisfying 

the known partial prior information.  The measure of uncertainty maximised 

in the principle of ME is that proposed by Shannon, who also referred to it as 

the entropy of the distribution (Shannon 1948). 

The ME principle has been employed in the modelling of systems in a vast 

range of areas from economics and finance to operational research, 

queueing, statistical mechanics and thermodynamics (Shore and Johnson 

1980; Fang et al. 1997).  Within the queueing context, ME solutions have 

been derived for various performance distributions of, among others, single 

server queues at equilibrium (Shore 1982; El-Affendi and Kouvatsos 1983; 

Kouvatsos 1986a; Kouvatsos 1986b; Kouvatsos 1988), multiserver queues 

(Kouvatsos and Almond 1988; Wu and Chan 1989; Arizono et al. 1991), 
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multiple class queues under priority scheduling disciplines (Kouvatsos and 

Tabet-Aouel 1989; Kouvatsos and Tabet-Aouel 1994), queues with vacation 

(Skianis 1997; Ke and Lin 2008), queueing network models (QNM’s) 

(Walstra 1985; Cantor et al. 1986; Kouvatsos and Almond 1988; Kouvatsos 

1994; Kouvatsos and Awan 2003) and queues subject to balking (Kemp 

2008; Shah et al. 2010). 

The technical contributions of this thesis are founded largely on the following 

works (Morse 1958; El-Affendi and Kouvatsos 1983; Kouvatsos 1986a; 

Kouvatsos 1986b; Kouvatsos 1988; Kemp 2005; Kemp 2008).  They analyse 

single server infinite and finite - capacity queues at equilibrium, with or 

without balking under the first come first served (FCFS) scheduling 

discipline.  The approaches used comprise Markov chain models, the global 

balance (GB) Markov chain steady state probability solution technique and/or 

the ME principle. 

To model customer impatience at queues, Morse (Morse 1958) studied a 

stable M/M/1 queue with Poisson prospective arrivals subject to balking 

characterised by an exponential function and independent and identically 

distributed (i.i.d.) exponential service times.  This was solved via the Markov 

chain model of its equivalent stable M(n)/M/1 queue with state-dependent 

Poisson arrival rates which accounted for the balking.  Kemp, on the other 

hand, employing the ME principle, subject to the prior information constraints 

of first moment, variance and the normalisation condition derived the discrete 

Half Normal (dHN) ME stationary state probability distribution.  By means of 

a Markov chain model, it was shown that the GB solution derived earlier by 
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Morse was a special case of the dHN (Morse 1958; Kemp 2005; Kemp 

2008). 

The generalised geometric (GGeo) ME solution for the QLD of a stable, 

FCFS, ordinary (i.e. without balking) M/G/1 queue, characterised by Poisson 

arrivals and i.i.d. general (G) service times, was devised in (El-Affendi and 

Kouvatsos 1983).  The GGeo explicitly incorporated the queue stability (or 

conservation of flow) condition in addition to the queue length mean (MQL) 

and normalisation prior information constraints.  The service-time distribution 

of the M/G/1 queue possessing the GGeo ME QLD was discovered to be 

satisfied exactly by the bursty (i.e. variable) generalised exponential (GE) 

service-time distribution (El-Affendi and Kouvatsos 1983).  Following this, 

Kouvatsos (Kouvatsos 1986a; Kouvatsos 1986b; Kouvatsos 1988) found that 

the QLD’s of both the infinite and finite capacity GE/GE/1 queues are ME 

distributions each derived from prior knowledge of the MQL and appropriate 

queue stability and normalisation conditions.  The GE/GE/1 queue is 

characterised by a bursty compound Poisson arrival process with 

geometrically distributed batch sizes (and thus underlying i.i.d. GE inter-

arrival times) and i.i.d. GE service times. 

In this work, motivated by the performance modelling of complex queueing 

systems, the ME principle is employed in the discrete domain to derive 

generalised least biased distribution inferences.  These generalisations arise 

from the inclusion of additional prior information to that assumed known in 

their corresponding subclass distributions.  The generalised discrete half 
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normal1 (GdHN) and truncated GdHN (GdHNT) stationary ME distributions 

are devised, based on knowledge of the first moment, variance, boundary 

state probabilities of the infinite or finite support cases, 𝑝0
∞ (henceforth 

symbolised simply by 𝑝0) or 𝑝0
𝐾 and 𝑝𝐾

𝐾 respectively, and the normalising 

condition. 

Subsequently, a closed-form QLD of the FCFS M/GE/1/K queue subject to 

extended Morse balking is derived via the technique of GB.  Based on 

comprehensive numerical experimentation, a conjecture is proposed that the 

latter GB solution is a special case of the GdHNT ME distribution. 

Owing to the appropriate operational properties of the M/GE/1/K queue 

subject to extended Morse balking, the queueing system is applied as an ME 

performance model of Internet Protocol (IP)-based communication network 

nodes featuring static or dynamic packet dropping congestion management 

schemes of the instantaneous, random, early-drop type.  A performance 

evaluation study in terms of the model’s delay is conducted. 

Furthermore, GB analysis is carried out to derive the QLD’s of the FCFS 

GE/GE/1/K censored queue subject to extended Morse balking under three 

different composite batch balking and batch blocking (batch balk-block) 

policies.  The term ‘censored’ implies that the prospective arrival process 

continues irrespective of whether or not the queue has reached its full 

capacity.  A customer which finds all waiting positions occupied upon its 

                                                           
1
 In the interest of maintaining consistency with existing results in the literature in the context of 

naming the new ME solutions, the convention used earlier in the case of the GGeo and GE 
distributions has been adopted here.  Therefore, the new ME solution based on the prior 
information constraints of 𝑝0, in addition to those used in the derivation of the dHN ME distribution, 
is referred to as the generalised dHN (GdHN). 
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arrival is either forced to leave the system (i.e. it is lost) or it experiences 

extra delay at an upstream network queueing station (i.e. it is blocked).  

Supported by extensive numerical experimentation, the latter GB solutions 

are conjectured to be special cases of the GdHNT ME distribution. 

The performance evaluation of the GE/GE/1/K queue subject to the above 

three batch balk-block policies is left as future work.  In relation to the 

characterisation of the performance of the GE/GE/1/K queue subject to 

balking in comparison to that of equivalent two-phase exponential queues 

with balking, a fourth batch balk-block policy is introduced and analysed in 

the Appendix.  Moreover, in the interest of the ME approximate analysis of 

arbitrary, non-exponential QNM’s with balking or packet dropping congestion 

management schemes, preliminary analysis is presented in the Appendix by 

which an approximation of the departure process from the M/GE/1/K queue 

subject to extended Morse balking can be computed.  The accuracy of this 

approximation has yet to be assessed. 

In this thesis, unless stated otherwise, queueing systems are considered 

under the following conditions: 

 steady state (i.e. statistical equilibrium), 

 FCFS scheduling discipline, 

 Independent inter-arrival times of prospective customers, 

 Independent service durations, 

 Independence between inter-arrival times of prospective customers and 

service times, 
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 Censored rather than restricted2 prospective arrival process and 

 Prospective customers which balk or those which are blocked are 

considered to not return to the queue at a later time and are therefore 

deemed to be lost from the point of view of the queue. 

 

1.1. Motivation 

The derivation of exact performance distributions of complex queueing 

systems, such as infinite or finite capacity G/G/1 queues with or without 

balking, via classical queueing theoretic analysis is often an infeasible task.  

However, prior queue length moment information can be obtained either 

analytically in terms of basic system parameters (which are assumed to be 

known) or numerically via measurement, without knowledge of the 

distributions themselves (Kouvatsos 1986a; Kouvatsos and Tabet-Aouel 

1994). 

Hence one of the main aims of this work was to provide justified estimates of 

complex queueing system performance distributions when only partial prior 

queue length moment information (including appropriate boundary queue 

length state probabilities3) is known.  The novelty lies in generalising existing 

least biased QLD inferences in the literature by assuming knowledge of 

additional prior queue length moment information, resulting in the 

characterisations of the GdHN and GdHNT ME solutions.  These generalised 

                                                           
2
 In the ‘restricted’ prospective arrival process, prospective customers cease to arrive while the 

queue is full.  The prospective arrival process resumes on availability of queue capacity. 
3
 Boundary queue length state probabilities can be interpreted as moments and in Section 2.2 it is 

shown how they can be represented as prior information constraints. 
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solutions were expected to provide more accurate inferences for a larger set 

of actual distributions than their corresponding subclass distributions (Guiasu 

1986). 

Furthermore, the motivation for analysing the queueing systems with balking 

was the mathematical intractability posed by the problem of determining the 

inter-arrival and service time distributions of the infinite and finite capacity 

ordinary M/G/1 or G/G/1 queues bearing the GdHN and GdHNT ME QLD’s 

respectively. 

 

1.2. Contributions 

The contributions of this thesis to the body of knowledge are regarded to be 

the following: 

 Characterisation of generalised ME solutions, namely the generalised 

discrete Half Normal (GdHN) and truncated GdHN (GdHNT) for 

inferences of stationary probability distributions of discrete random 

variables (RV’s) (Chapter 3). 

 Extended Morse Balking: 

- Population-dependent Morse balking has been considered in the 

more general contexts of a general batch prospective arrival 

process (comprising a general inter-batch time distribution and 

general batch size distribution) and/or i.i.d. general service times.  

Analysis has been carried out for the specific cases of the 

compound Poisson prospective arrival process with geometrically 
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distributed batch sizes4 (characterised by underlying i.i.d. GE 

prospective inter-arrival times) and/or i.i.d. GE service times 

(Sections 4.1 and 5.1). 

- New mathematical definitions of the Morse average measure of 

impatience, 𝛼, have been derived in the contexts of a general 

batch prospective arrival process and/or i.i.d. general service times 

(Appendix B). 

 The aforementioned generalised ME solutions are conjectured to have as 

special cases the QLD’s, respectively, of the novel infinite and finite-

capacity M/GE/1 queues subject to extended Morse balking (Chapter 4). 

- A performance evaluation study in terms of the delay of the 

M/GE/1/K queue subject to extended Morse balking (Section 4.3). 

 The aforementioned generalised ME solutions are conjectured to have as 

special cases the QLD’s, respectively, of the new infinite and finite-

capacity GE/GE/1 queues subject to extended Morse balking under three 

different batch balk-block policies5 (Chapter 5). 

 

Minor contributions of this thesis to the body of knowledge are viewed as the 

following: 

 A new characterisation of the GGeo discrete distribution (Section 2.2.1 

and Appendix A). 

                                                           
4
 In Section 5.1 it is described how the analysis can easily be extended to model the case of a 

compound Poisson prospective arrival process with generally distributed batch sizes subject to 
population dependent balking under the three policies. 
5
 To the best of the author’s knowledge, independent batch balking with population-dependent 

balking probabilities has not been analysed previously in the literature except by the author of this 
thesis in (Shah and Kouvatsos 2011; Shah and Kouvatsos 2013). 
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 An approximation of the departure process from the M/G/1/K queue 

subject to population-dependent balking including an exact analysis of the 

queueing system’s inter-departure time distribution (Section 6.2 and 

Appendix D). 

 

1.3. Thesis Structure 

The ME principle, ME solutions of queueing system performance 

distributions and queues subject to balking are reviewed in Chapter 2.  The 

GdHN and GdHNT ME distributions are characterised in Chapter 3.  In 

Chapter 4, the QLD of the M/GE/1/K queue subject to extended Morse 

balking is derived and its equivalence to the GdHNT is conjectured.  

Subsequently, the latter queueing model is applied as an ME performance 

model of IP-based communication nodes featuring congestion management 

and a performance evaluation study of the model in terms of its delay is 

carried out.  In Chapter 5, the QLD’s of the GE/GE/1/K queue subject to 

extended Morse balking under the three different batch balk-block policies 

are solved and these are conjectured to be special cases of the GdHNT.  

Conclusions are drawn, limitations are identified and open problems arising 

from this research work are presented in Chapter 6. 

An alternative characterisation of the GGeo discrete distribution is proven in 

Appendix A.  Novel definitions of the Morse average measure of impatience, 

𝛼 are derived in Appendix B.  The GE/GE/1/K queue subject to balking under 

Policy IV is studied in Appendix C.  Moreover, an approximation of the 
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departure process from the M/G/1/K queue subject to population-dependent 

balking is derived in Appendix D. 
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2. Literature Review 

This chapter presents the material which is foundational to the contributions 

of this thesis commencing with an introduction to the ME principle including 

the derivation of discrete ME distributions.  This is followed by an overview of 

ME solutions of queueing system performance distributions in the second 

section with a particular focus on the GGeo and truncated GGeo (GGeoT) 

ME solutions.  The third section introduces different types of balking models 

and reviews in depth the M/M/1 queue subject to Morse balking and its ME 

re-interpretation. 

 

2.1. The Maximum Entropy Principle 

The ME principle, devised by Jaynes (Jaynes 1957; Jaynes 1978), is a 

method of statistical inference, addressing the problem of assignment of 

probabilities to system states or a probability distribution to a random 

quantity of a system or process, when only limited prior information is 

available. 

The two main approaches to statistical inference occur via the ‘frequentist’ or 

‘Bayesian’ methods, with the latter usually involving a more general notion of 

probability (Cox 2006).  The Bayesian approach can be further classified into 

subjective (personalistic) or objective Bayesianism.  Under subjective 

Bayesianism, probabilities are viewed as representations of degrees of 

personal belief of (rational) individuals.  Whereas in objective Bayesianism, 

probabilities are regarded as encapsulations of a state of knowledge, 
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independent of the personality or feelings of the individual.  Under the 

frequentist view, probabilities are regarded as measurable and verifiable 

frequencies in a random experiment (Jaynes 2003). 

In the ME principle, since the prior information is incorporated and probability 

assignments are proposed independently of the personality and feelings of 

individuals and independently of experiment, this inference technique can be 

classed as objective Bayesian. 

The frequentist approach to statistical inference is based on sampling theory 

and is concerned with concepts such as parameter estimation (including the 

method of moments and maximum likelihood estimate), estimators, 

goodness of fit and hypothesis testing among others. 

The roots of inference and the ME principle can be traced at least as far back 

as Bernoulli’s 1713 principle of insufficient reason.  That principle advocates 

assigning equal probabilities to events when the available evidence provides 

no reason to consider otherwise. 

The latter principle however fails when an event has an infinite number of 

equally possible outcomes.  To overcome this limitation, Bernoulli devised a 

method, in the Binomial distribution, to infer the frequency of successes of an 

event (repeated independently) from its theoretical probability. 

Following this, Bayes, in 1763, submitted an inverse solution to the Binomial 

distribution by which the theoretical probability of an event could be inferred 

from its observed frequency. 

Subsequently in 1774, Laplace (independently) generalised Bayes’ solution 

(which inferred a population parameter value from an observed frequency) in 

the following way: the conditional probability of a cause given the observed 
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event (or a population parameter value) can be inferred from the conditional 

probabilities of the observed event given each (equally likely) cause (or 

multiple sample frequencies) according to a simple mathematical 

relationship.  This method proposes a posterior probability from uniform prior 

probabilities and it can be repeated in turn for each conditional causal 

probability.  Laplace later generalised this latter result by incorporating 

unequal causal probabilities which were conditional on some prior 

information and it is this result that is customarily referred to as ‘Bayes’ 

theorem’ in the literature. 

The ME principle on the other hand proposes a probability distribution 

inference of a random quantity based on prior information, which is often 

taken to be in the form of moments of the random quantity.  Usually a large 

number of distributions satisfy prior moment and normalisation information.  

So which one of these distributions is to be chosen to provide the most 

justified or best inference?  The distribution which satisfies the known 

information while avoiding bias.  In this context, the ‘unbiased’ (or ‘least 

biased’) distribution has been defined as the one which is ‘maximally non-

committal to unknown information’ (Jaynes 1957).  In other words bias 

assigns certainty to unknown information.  This use of the term ‘bias’ is to be 

distinguished from its meaning in the sampling context, where it refers to a 

persistent (or average) difference between the experimental estimate and 

corresponding population parameter value. 

Any distribution which satisfies the prior moment and normalisation 

information other than the one with maximum entropy is biased.  Selecting a 

biased distribution estimate amounts to making arbitrary assumptions about 
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the system information.  The least biased inference is therefore derived by 

maximising the uncertainty regarding what is unknown about the random 

quantity while satisfying the known partial prior information (Jaynes 1957). 

Shannon proposed a measure of the uncertainty in predicting the outcomes 

of a random event or values realised by a random quantity (Shannon 1948), 

defined by 

 

𝐻(…𝑝−2, 𝑝−1, 𝑝0, 𝑝1, 𝑝2…) = − ∑ 𝑝𝑛𝑙𝑛𝑝𝑛

∞

𝑛=−∞

, 𝑛 =. . . , −2, −1,0,1,2… (2.1) 

 

where the 𝑝𝑛’s are the stationary event or state probabilities.  Shannon 

referred to 𝐻 as the entropy of the distribution, 𝑝𝑛, 𝑛 ∈ ℤ. 

The credibility of Shannon’s entropy as an information measure is supported 

by its satisfaction of numerous postulates which are listed for example in 

(Csiszár 2008) with references therein giving the corresponding proofs. 

In order to ascertain whether the least biased inference satisfies the prior 

information, it is necessary that the latter is precise enough to enable the 

explicit verification of its agreement with the inferred distribution.  Examples 

of such prior information are moments and bounds.  An example of 

inadmissible information would be ‘the first moment of the RV is probably 

less than 0.6’.  Mathematically, the prior information is incorporated into the 

ME formalism as an optimisation constraint(s) on the distribution. 

According to the ME principle, the least biased estimate of a probability 

distribution which is unknown but known to exist, is determined by 
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maximising Shannon’s entropy functional, subject to verifiable prior 

information constraints and the normalisation condition. 

Based on the satisfaction of four consistency axioms of inference6, 

maximising Shannon’s entropy7 subject to prior moment information has 

been shown to be a ‘uniquely8 consistent’ method of inference of probability 

distributions.  ‘Uniquely consistent’ in this context means that solely the 

principle of ME gives congruous inferences when the same prior moment 

information is incorporated in the formalism in different ways.  Furthermore, 

given prior moment information, the ME principle yields only one distribution 

inference (Shore and Johnson 1980). 

By definition, inferences cannot predict the outcome of an experiment 

exactly.  Nonetheless, irrespective of whether or not the ME inference agrees 

with the observed results, it still provides the ‘best’ model in the following 

sense: 

 It is the least biased model given the prior information and 

 The maximum entropy frequency distribution derived from certain 

constraints can be shown to be ‘overwhelmingly the most likely one to 

be observed in a real experiment, provided that the physical 

                                                           
6
 In (Shore and Johnson 1980), the term ‘inductive inference’ is used.  This latter term is not used 

there in the Fisher sense i.e. a logical process of making sense about population statistics from 
sample ones (Fisher 1935).  Rather, the term refers to the estimation of an underlying distribution, 
characterising for example the probabilities of states of an arbitrary system, based on available prior 
information. 
7
 Any function that produces identical maxima to Shannon’s entropy can be used instead, for 

example any monotonic function of Shannon’s entropy (Shore and Johnson 1980). 
8
 Both the ME principle and Kullback’s more general principle of minimum cross-entropy (or 

minimum directed divergence or minimum relative entropy) have been shown to be uniquely 
consistent methods of inference when the prior information given is in the form of moments (Shore 
and Johnson 1980). 
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constraints operative in the experiment are exactly those incorporated 

in the formalism’ (Jaynes 1978). 

Persistent discrepancies between the inferred distribution and observed 

probabilities indicate an ill-constrained ME problem formulation i.e. all the 

relevant information has not been accounted for or false information has 

been incorporated in the constraints (Jaynes 1968). 

The ME principle has been employed to provide solutions to problems in a 

vast range of areas not limited to business, economics and finance, decision 

making, group behaviour, linear and nonlinear programming, nonlinear 

spectral analysis, parameter estimation, pattern recognition, queueing 

systems, reliability estimation, statistical mechanics and thermodynamics, 

system modularity, transportation and urban and regional planning (Shore 

and Johnson 1980; Fang et al. 1997). 

 

2.1.1. Discrete ME Distributions 

Discrete ME distributions are derived below, as that is the context of utility of 

the ME principle in this thesis.  Following the derivation in (Jaynes 1957), 

consider a RV, 𝑁, modelling a discrete quantity of a system or process.  𝑁 

takes integer values over some sample space, 𝑆 where for example 𝑆 =

ℤ but the probabilities 𝑝𝑛 = 𝑃(𝑁 = 𝑛), 𝑛 =. . . , −2,−1,0,1,2… are unknown and 

to be determined.  Assume that the limited prior information known about 𝑁 

is in the form of its moments, 𝐸[𝑓𝑖(𝑛)], 𝑖 = 1,2,3…𝑚 and the normalising 

condition. 
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Moments of the distribution inferences, 𝐸[𝑓𝑖(𝑛)], may either be probability 

averages or sample moments, each set producing valid least biased 

distribution inferences of the RV or sample respectively.  The validity of using 

sample moments has been demonstrated using hypothesis testing and the 

Bayesian and likelihood criteria in (Jaynes 1978).  Maximising Shannon’s 

entropy functional (2.1) subject to the following prior moment information 

constraints 

 

∑ 𝑓𝑖(𝑛)𝑝𝑛 = 𝐸[𝑓𝑖(𝑛)],

∞

𝑛=−∞

𝑛 =. . . , −2, −1,0,1,2… , 𝑖 = 1,2,3…𝑚 (2.2) 

 

and normalising condition expressed as 

 

 
∑ 𝑝𝑛 = 1.0

∞

𝑛=−∞

 (2.3) 

 

is a constrained nonlinear optimisation problem soluble by the Lagrange 

multiplier technique.  In the latter method, the extrema of a constrained 

objective function are obtained via an unconstrained Lagrange function, 

𝐿(…𝑝−2, 𝑝−1, 𝑝0, 𝑝1, 𝑝2…), defined in terms of the original objective function, 

the constraints and scalar variables (Lagrangian multipliers).  In the case of 

entropy maximisation subject to prior moment information, the Lagrange 

function can be defined as 

 

𝐿(…𝑝−2, 𝑝−1, 𝑝0, 𝑝1, 𝑝2…) (2.4) 
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= − ∑ 𝑝𝑛𝑙𝑛𝑝𝑛

∞

𝑛=−∞

+∑𝛽𝑖 ( ∑ 𝑓𝑖(𝑛)𝑝𝑛 − 𝐸[𝑓𝑖(𝑛)]

∞

𝑛=−∞

)

𝑚

𝑖=0

, 

𝑛 =. . . , −2,−1,0,1,2, … ; 𝑖 = 0,1,2…𝑚 

 

where 𝛽𝑖, 𝑖 = 1,2…𝑚 are the Lagrangian multipliers corresponding to each of 

the 𝑚 prior moment constraints and 𝛽0 is the Lagrangian multiplier 

associated with the normalising condition.  Hence, 𝑓0(𝑛) = 1, ∀𝑛.  The state 

probabilities, 𝑝𝑛’s at which entropy is maximised are obtained by setting 

𝜕𝐿/(𝜕𝑝𝑛 ) = 0, 𝑛 =. . . , −2, −1,0,1,2,…, resulting in the general discrete ME 

probability distribution in standard form given by 

 

𝑝𝑛 = 𝑒
−∑ 𝛽𝑖𝑓𝑖(𝑛)

𝑚
𝑖=0 , 𝑛 =. . . , −2,−1,0,1,2… , 𝑖 = 0,1,2…𝑚 . (2.5) 

 

Equation (2.5) can then be represented in terms of its normalising constant, 

(1/𝑍), as 

 

𝑝𝑛 =
1

𝑍
𝑒−∑ 𝛽𝑖𝑓𝑖(𝑛)

𝑚
𝑖=1 , 𝑛 =. . . , −2, −1,0,1,2… , 𝑖 = 1,2,3…𝑚 (2.6) 

 

where the inverse of the normalising constant, 𝑍 is given by 

 

𝑍 = ∑ 𝑒−∑ 𝛽𝑖𝑓𝑖(𝑛)
𝑚
𝑖=1

∞

𝑛=−∞

, 𝑛 =. . . , −2, −1,0,1,2… , 𝑖 = 1,2,3…𝑚. (2.7) 

 

The Lagrangian multipliers, 𝛽𝑖, 𝑖 = 1,2,3…𝑚 can be determined in terms of 

the moments via the following partial derivative 
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−
𝜕𝛽0
𝜕𝛽𝑖

= 𝐸[𝑓𝑖(𝑛)], 𝑖 = 1,2,3…𝑚 (2.8) 

 

where 𝛽0 = ln𝑍. 

 

Without loss of generality, the Lagrangian coefficients, 𝑥𝑖 = 𝑒
−𝛽𝑖 , 𝑖 =

1,2,3…𝑚, can be introduced.  Making the latter substitutions in (2.6) yields 

the following general product-form discrete ME distribution 

 

𝑝𝑛 =
1

𝑍
∏𝑥𝑖

𝑓𝑖(𝑛), 𝑛 =. . . , −2, −1,0,1,2… , 𝑖 = 1,2,3…𝑚

𝑚

𝑖=1

 (2.9) 

 

where 𝑍 = ∑ (∏ 𝑥𝑖
𝑓𝑖(𝑛)𝑚

𝑖=1 )∞
𝑛=−∞  . 

 

As an example, consider the case when the first moment of 𝑁, 𝐸[𝑁] is 

known, represented as an information constraint by 

 

 
∑𝑛𝑝𝑛

∞

𝑛=0

= 𝐸[𝑁], 𝑛 = 0,1,2… (2.10) 

 

and the domain of 𝑁 is known to be the set of non-negative integers, 

represented as an information constraint by the normalising condition 
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∑𝑝𝑛 = 1.0

∞

𝑛=0

 . (2.11) 

 

Then, the least biased inference of the probability distribution of 𝑁 can be 

derived by incorporating the prior information constraint of the first moment 

(2.10) in the general discrete product form ME solution (2.9) resulting in the 

following discrete ME distribution 

 

 
𝑝𝑛 =

1

𝑍
𝑥1
𝑛, 𝑛 = 0,1,2 … . (2.12) 

 

Applying the normalising condition (2.11), (2.12) can be re-formulated to 

 

 𝑝𝑛 = (1 − 𝑥1)𝑥1
𝑛, 𝑛 = 0,1,2… (2.13) 

 

which is the familiar modified geometric.  Moreover, applying the first 

moment formula, (2.13) becomes 

 

 
𝑝𝑛 = (

1

1 + 𝐸[𝑁]
) (

𝐸[𝑁]

1 + 𝐸[𝑁]
)

𝑛

, 𝑛 = 0,1,2… . (2.14) 

 

It is to be noted that in general, the Lagrangian multipliers and consequently 

the ME distribution parameters 𝑥𝑖, 𝑖 = 1,2,3…𝑚 and the inverse of the 

normalising constant, 𝑍, cannot be expressed explicitly in terms of the 

moments, 𝐸[𝑓𝑖(𝑛)], however they can be approximated numerically from the 

latter. 
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2.2. ME Solutions of Queueing System Performance 

Distributions 

ME solutions have been devised for inferring distributions of various 

queueing system performance measures such as the queue length, number 

served in a busy period, busy period length and residence and waiting times.  

Examples of sets of prior information constraints (excluding the normalisation 

condition) used in the derivation of ME solutions of queueing system 

performance distributions are given below. 

Equation (2.13) above is noticeable as the QLD of the M/M/1 queue, where 

𝑥1 = 𝜆/𝜇 and 𝜆 and 𝜇 are the average arrival and service rates of the queue.  

Therefore, given prior information of solely the MQL, 𝐸[𝑁] (either as a 

numerical value or as an analytic expression in terms of the basic queueing 

parameters 𝜆 and 𝜇) and normalisation condition over the set of non-negative 

integers, the ME principle prescribes the least biased QLD as being that of 

the M/M/1 queue (Beneš 1965; Cantor et al. 1986). 

In (Shore 1982), the MQL, 𝑝0, successive ordinary queue length moments, 

mean residence time and/or other exact moments of performance measures 

(as appropriate) were used in ME solutions approximating all the afore-

mentioned performance distributions of the M/G/1 queue.  Some of these 

latter ME solutions turn out to become exact in the case of the M/M/1 queue.  

First moment and first and second ordinary moments were incorporated in 

two ME solutions both approximating the distribution of number of customers 

served during the busy period in an M/G/1 retrial queue in (Lopez-Herrero 

2002). 
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Approximate marginal MQL’s and marginal server utilisations were included 

in an ME solution approximating the joint population distribution of a closed 

QNM of single server queues with non-exponential service times in (Walstra 

1985).  On the other hand, marginal server utilisations, marginal MQL’s and 

joint first moment (to capture correlation between the individual queueing 

subsystems) were employed in an ME solution approximating the joint 

population distribution of two queues in tandem in (Cantor et al. 1986).  In 

(Kouvatsos and Awan 2003), approximate marginal MQL’s, marginal server 

utilisations, marginal queue occupation probabilities and marginal full buffer 

state probabilities were utilised in ME solutions of G/G/1/K priority queues 

under the pre-emptive resume (PR) or head-of-the-line (HOL) scheduling 

disciplines combined with buffer sharing schemes.  These latter queueing 

systems were utilised as building block queues, in the ME approximate 

analysis by decomposition, of non-exponential open QNM’s with space and 

service priorities under the repetitive service with random destination 

blocking mechanism. 

The MQL and set of state probabilities {𝑝0, 𝑝1, … 𝑝𝑐−1} were incorporated in an 

ME solution of the QLD’s of M/G/c, G/M/c and G/G/c queues in (Wu and 

Chan 1989).  The ME solution was found to provide an exact inference of the 

QLD of the G/M/c queue.  On the other hand, in (Arizono et al. 1991), the 

MQL, mean buffer length and 𝑃(𝑎𝑙𝑙 𝑐 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 𝑏𝑢𝑠𝑦) were used in an ME 

solution modelling exactly the QLD of the M/M/c queue.  Approximate 

marginal MQL’s and the probabilities of having a minimum of 𝑗 jobs of class 𝑖 

in service were utilised in ME solutions approximating the QLD’s of multiple 
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class G/G/c queues under the PR scheduling discipline in (Kouvatsos and 

Tabet-Aouel 1994). 

The MQL and server utilisation were used in ME solutions approximating the 

marginal QLD’s of the N-policy M/G/1 queue with removable server in (Wang 

et al. 2002).  Moreover, the MQL, server utilisation, 𝑃(𝑠𝑒𝑟𝑣𝑒𝑟 𝑜𝑛 𝑣𝑎𝑐𝑎𝑡𝑖𝑜𝑛) 

and 𝑃(𝑠𝑒𝑟𝑣𝑒𝑟 𝑏𝑟𝑜𝑘𝑒𝑛 𝑑𝑜𝑤𝑛) comprised the prior information constraints in 

ME solutions approximating the marginal QLD’s of the N-policy MX/G/1 

queue with server vacation and breakdown in (Ke and Lin 2008).  In (Yang et 

al. 2011), the MQL or second moment of queue length and marginal server 

utilisation prior information constraints yielded ME solutions approximating 

the QLD of M/G/1 queues with second optional service and server 

breakdowns. 

The derivations of ME solutions of the QLD’s of infinite and finite capacity 

ordinary queues and properties of these queues pertinent to the contributions 

of this thesis are detailed below. 

 

2.2.1. ME Solutions of the QLD’s of Ordinary Infinite-Capacity 

Queues 

ME solutions have been proposed for the QLD of the ordinary M/G/1 queue 

in (Shore 1982; El-Affendi and Kouvatsos 1983; Guiasu 1986).  The ordinary 

M/G/1 queue is characterised by a homogeneous Poisson arrival process 

(with mean rate 𝜆) and i.i.d. general service times (with mean rate 𝜇 and 
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squared coefficient of variation (SCOV), 𝐶𝑠
2).  In these ME solutions 𝜆, 𝜇 and 

𝐶𝑠
2 comprise a basic set of known queueing parameters. 

In (El-Affendi and Kouvatsos 1983), an ME solution for the QLD of a stable 

M/G/1 queue, the generalised geometric (GGeo) ME QLD, was devised.  

The GGeo explicitly incorporates the queue stability (or conservation of flow) 

condition (satisfied implicitly by definition) in addition to the MQL and 

normalisation prior information constraints.  Queue stability exists when the 

average effective arrival rate to a queue coincides with that departing from it, 

expressed by 

 

𝜆 = 𝜇(1 − 𝑝0) (2.15) 

 

where 𝑝0 is the probability of the queue being empty.  Instability occurs when 

the average input rate exceeds the average rate of output from the queue.  

The queue stability condition can be included as a prior moment information 

constraint as follows9 

 

                                                           
9
 The ‘𝑝0’ prior information constraint can be replaced by the server utilisation constraint, (1 − 𝑝0), 

as they are equivalent prior information constraints both leading to the same ME inference.  This 
assertion is justified by the ME principle’s implicit satisfaction of the uniqueness axiom of inference.  
The uniqueness axiom implies that maximising Shannon’s entropy subject to a particular set of prior 
moment information constraints results in a unique ME distribution inference.  Therefore, the same 
(unique) ME inference obtained twice by entropy maximisation subject to either one of two sets of 
prior information constraints can only be achieved if the prior information is the same (i.e. if both 
sets of prior information constraints are equivalent) (Shore and Johnson 1980). 
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∑𝑢′(𝑛)𝑝𝑛 = 𝑝0 = 1 −

𝜆

𝜇

∞

𝑛=0

,     𝑢′(𝑛) = {
1, 𝑛 = 0

0, 𝑛 = 1,2,3…
 . (2.16) 

 

Inclusion of the queue stability condition as a prior information constraint 

assumes knowledge of the values of 𝜆, 𝜇 and 𝑝0 (which inherently satisfy the 

queue stability condition).  The ‘𝑝0’ prior information supplies additional, non-

redundant prior information above the MQL and normalising condition thus 

yielding a more general ME solution than that derived from solely the latter 

two. 

Within the context of general system modelling, the discrete ME distribution 

constrained by the prior information of first moment, 𝐸[𝑁] (2.10), lower 

boundary state probability, 𝑝0 (2.16), and normalisation condition over the set 

of non-negative integers, (2.11), is the GGeo (El-Affendi and Kouvatsos 

1983) and it is derived below10. 

Incorporating the first moment and 𝑝0 prior information constraints in the 

general product form discrete ME solution (2.9) yields the GGeo with form 

 

 

𝑝𝑛 =

{
 
 

 
 

1

𝑍
(
1

𝑦
) , 𝑛 = 0

1

𝑍
𝑥𝑛, 𝑛 = 1,2,3…

 (2.17) 

 

                                                           
10

 An alternative characterisation of the GGeo is presented in Appendix A. 
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where 𝑥 and (1/𝑦) are the Lagrangian coefficients associated with the prior 

moment constraints, 𝐸[𝑁] and 𝑝0, respectively.  The Lagrangian coefficient, 

(1/𝑦), is defined in this inverted manner purely for the convenience of 

avoiding parameters of this form in the more familiar definition of the GGeo 

given by 

 

 

𝑝𝑛 = {

𝑝0, 𝑛 = 0

𝑝0𝑦𝑥
𝑛, 𝑛 = 1,2,3…

 (2.18) 

 

where 𝑝0 = 1 ∕ (𝑍𝑦).  By applying the first moment formula (2.10) and 

normalising condition (2.11), both parameters 𝑥 and 𝑦 can be determined in 

terms of the constraints 𝐸[𝑁] and 𝑝0, yielding the following re-parameterised 

GGeo (Kouvatsos 1988) 

 

 

𝑝𝑛 =

{
 

 
𝑝0, 𝑛 = 0

(
(1 − 𝑝0)

2

𝐸[𝑁] − (1 − 𝑝0)
)(
𝐸[𝑁] − (1 − 𝑝0)

𝐸[𝑁]
)

𝑛

, 𝑛 = 1,2,3…
. (2.19) 

 

When the first moment prior information constraint is set to the MQL of the 

M/G/1 queue under consideration and 𝑝0 is specified as (1 − (𝜆/𝜇)), then the 

resulting ME inference, referred to here as the GGeo ME QLD, comprises a 

subset of all GGeo ME solutions. 
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The service-time distribution of the M/G/1 queue possessing the GGeo ME 

QLD was discovered to be satisfied exactly by the GE cumulative distribution 

function (CDF) (El-Affendi and Kouvatsos 1983).  The GE CDF is a two 

parameter mixed distribution comprising a continuous exponential 

component and a discrete component at the origin and it can be completely 

defined in terms of its first two moments as follows 

 

 
𝐹𝑡 = 1 −

2

𝐶2 + 1
𝑒
−

2
𝐶2+1

𝜇𝑡
, 𝑡 ≥ 0, 𝜇 > 0 (2.20) 

 

where (1/𝜇) is its mean and 𝐶2 is its SCOV.  Example profiles of the GE 

CDF are illustrated in Fig. 1 below over the parameter ranges 𝜇 = {0.1, 0.5} 

and 𝐶2 = [1, 200]. 

 

Fig. 1.  Example profiles of the generalised exponential (GE) cumulative 

distribution function with mean rate, 𝜇 = 0.1 (left) and 𝜇 = 0.5 (right) and 

squared coefficient of variation, 𝐶2 = [1, 200]. 
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The GGeo was also submitted as an ME solution for the QLD’s of G/G/1 and 

G/M/1 queues, characterised by i.i.d. general inter-arrival times (with known 

mean rate, 𝜆 and SCOV, 𝐶𝑎
2) and, respectively, i.i.d. general or exponential 

service times (with known mean rate, 𝜇 and SCOV, 𝐶𝑠
2 or solely known mean 

rate, 𝜇).  In both these latter two cases, the GGeo ME QLD was again found 

to be satisfied exactly when the general inter-event time distribution, ‘G’ was 

specified as the GE (Kouvatsos 1988). 

For 𝐶2 > 1.0, the GE CDF has also been interpreted as either (Kouvatsos 

1988; Kouvatsos 1994)11: 

 the inter-event time distribution of a compound Poisson process with 

geometrically distributed batch sizes with mean, (1/𝜈), or 

 an extremal case of a family of two-phase exponential distributions 

(e.g. the Hyper-exponential-2 (H2) distribution) with matching first and 

second moments, where one of the two phases has zero duration 

(illustrated in Fig. 2 below). 

It has been established experimentally that for 𝐶𝑎
2, 𝐶𝑠

2 > 1.0, the GE/GE/1 

queue gives pessimistic performance bounds over a large class of equivalent 

queues characterised by two-phase exponential inter-arrival and service time 

distributions, such as the H2 or Coxian-2, with matching first two moments 

(Kouvatsos 1988; Kouvatsos and Tabet-Aouel 1994). 

 

                                                           
11

 Interpretations and comparative performance bounds involving the GE distribution when 𝐶2 < 1 
are given in (Kouvatsos 1988; Kouvatsos 1994) 
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Fig. 2.  An illustration of the two-phase GE distribution interpretation (for 

𝐶2 > 1.0). 

 

 

 

 

  

 

Thus the GE inter-event time distribution provides a justifiable, useful and 

cost-effective means of analytically modelling burstiness in arrival and/or 

service processes of queues via the 𝐶2 term. 

 

2.2.2. ME Solutions for the QLD’s of Ordinary Finite-Capacity 

Queues 

Analysis based on the ME principle has also been carried out for the QLD’s 

of stable, finite capacity G/M/1/K, M/G/1/K and G/G/1/K queues (Kouvatsos 

1986b; Kouvatsos 1986a).  For the G/G/1/K queue, the stability condition is 

expressed as 

 

 𝜆(1 − 𝑝𝐾
𝐾) = 𝜇(1 − 𝑝0

𝐾)  (2.21) 

 

 

𝜈 =
2

(𝐶2 + 1)
 

(1 − 𝜈) =
(𝐶2 − 1)

(𝐶2 + 1)
 

𝑒𝑥𝑝(𝜈𝜇) 
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where 𝑝𝐾
𝐾 and  𝑝0

𝐾 are the fractions of time that the finite-capacity queue is full 

and empty respectively, 𝜆 is the prospective arrival rate (a fraction of which is 

lost when the queue is full) and 𝜇 maintains its former interpretation.  

Therefore explicit inclusion of the finite-capacity queue stability condition as 

prior information requires knowledge of both boundary state probabilities,  𝑝0
𝐾 

and 𝑝𝐾
𝐾, in addition to 𝜆 and 𝜇.  The boundary state probabilities, 𝑝0

𝐾 and 𝑝𝐾
𝐾, 

can be represented as prior moment information constraints12 as follows: 

 

∑𝑢𝐾
′ (𝑛)𝑝𝑛

𝐾 = 𝑝0
𝐾 =

𝜇 − 𝜆 + 𝜆𝑝𝐾
𝐾

𝜇

𝐾

𝑛=0

, 𝑢𝐾
′ (𝑛) = {

1, 𝑛 = 0
0, 𝑛 = 1,2…𝐾

  (2.22) 

 

and 

 

∑𝑓𝐾(𝑛)𝑝𝑛
𝐾 = 𝑝𝐾

𝐾 =
𝜇𝑝0

𝐾 + 𝜆 − 𝜇

𝜆

𝐾

𝑛=0

, 𝑓𝐾(𝑛) = {
0, 𝑛 = 0,1…𝐾 − 1

1, 𝑛 = 𝐾
  (2.23) 

 

respectively. 

The discrete distribution having maximum entropy subject to the prior 

information constraints of the first moment, 𝐸[𝑁𝐾], boundary state 

probabilities 𝑝0
𝐾 and 𝑝𝐾

𝐾 and normalisation condition over finite non-negative 

integer support, [0, 𝐾] is the GGeoT (2.24) i.e. the GGeo right-truncated 

                                                           
12

 Analogous to the infinite capacity case, the 𝑝0
𝐾  prior information constraint is equivalent to the 

server utilisation constraint, (1 − 𝑝0
𝐾). 
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above 𝐾 and constrained additionally by the upper boundary state 

probability, 𝑝𝐾
𝐾 (Kouvatsos 1986a; Kouvatsos 1986b).  The GGeoT can be 

defined by 

 

 

𝑝𝑛
𝐾 =

{
 
 

 
 

𝑝0
𝐾 ,                                        𝑛 = 0

𝑝0
𝐾𝑦𝐾(𝑥𝐾)

𝑛, 𝑛 = 1,2,3…𝐾 − 1

𝑝0
𝐾𝑧𝐾𝑦𝐾(𝑥𝐾)

𝐾,                          𝑛 = 𝐾

 (2.24) 

 

where the parameters 𝑥𝐾, 𝑦𝐾 and 𝑧𝐾 correspond to the Lagrangian 

coefficients associated with the prior moment constraints 𝐸[𝑁𝐾], 𝑝0
𝐾 and 𝑝𝐾

𝐾 

respectively.  Note that unlike the GGeo, the parameters of the GGeoT 

cannot be expressed explicitly in terms of the prior moment information; 

however they can be approximated numerically from the latter as follows.  By 

equating the analytic expressions of appropriate moments, ∑ 𝑓𝐾𝑖(𝑛)𝑝𝑛
𝐾𝐾

𝑛=0 , of 

the GGeoT distribution (2.24) to their values represented by, 𝐸[𝑁𝐾], 𝑝0
𝐾 and 

𝑝𝐾
𝐾, the following system of nonlinear equations arises 

 

(1 − 𝑝0
𝐾 − 𝑝𝐾

𝐾)(1 − 𝑥𝐾)

(1 − (𝑥𝐾)
𝐾−1)

 (
1 − (𝑥𝐾)

𝐾+1

(1 − 𝑥𝐾)
2
−
(𝐾 + 1)(𝑥𝐾)

𝐾

(1 − 𝑥𝐾)
− 𝐾(𝑥𝐾)

𝐾−1) + 𝐾𝑝𝐾
𝐾 − 𝐸[𝑁𝐾] = 0, (2.25) 

 

 
𝑦𝐾 =

(1 − 𝑝
0
𝐾 − 𝑝

𝐾
𝐾)(1 − 𝑥𝐾)

𝑝
0
𝐾𝑥𝐾(1 − (𝑥𝐾)𝐾−1)

 (2.26) 

and 
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𝑧𝐾 =

𝑝
𝐾
𝐾

𝑝
0
𝐾𝑦𝐾(𝑥𝐾)𝐾

 (2.27) 

 

which can be solved simultaneously to give values of the parameters 𝑥𝐾, 𝑦𝐾 

and 𝑧𝐾.  In (Kouvatsos 1986b; Kouvatsos 1986a), it was proposed that the 

parameters, 𝑥𝐾 and 𝑦𝐾, be approximated by the analytic expressions for the 

corresponding parameters of the infinite capacity case, 𝑥 and 𝑦 (cf., (2.18) 

and (2.19)).  An asymptotic approximation for the parameter 𝑧𝐾 can in turn 

be determined from the expression for 𝑝0
𝐾 and the stability constraint (2.21) 

(Kouvatsos 1986b).  These asymptotic approximations are employed in 

subsequent works where complex queueing systems are analysed 

approximately via the ME principle, cf., (Kouvatsos and Almond 1988; 

Kouvatsos and Denazis 1993; Kouvatsos and Awan 2003; Kouvatsos et al. 

2003). 

Analogous to the corresponding infinite capacity queues, the G/M/1/K, 

M/G/1/K and G/G/1/K queues bear the GGeoT ME QLD when the general 

inter-event time distribution, ‘G’ is specified as the GE (Kouvatsos 1986a; 

Kouvatsos 1986b). 
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2.3. Queues with Balking 

In queueing systems, the balking operation as well as reneging and retrials 

comprise models of customer impatience (Wang et al. 2010).  Queues with 

balking have been successfully applied to evaluate multiple real life systems 

(such as those listed in the Introduction). 

Following the categorisation of impatience models by (Wang et al. 2010), 

balking models are classed as wait-based, individual equilibrium and socially 

optimal or others. 

 

Wait-based balking 

In wait-based balking, a customer becomes aware of the queue's delay and 

either joins or balks based on his/her delay tolerance.  Delay information is 

available at different degrees of precision such as the exact instantaneous 

workload, average instantaneous workload or long-run average delay (Liu 

2007).  The effects of the availability of two different approximations of delay 

information have been compared in (Guo and Zipkin 2009).  Wait-based 

balking may be subdivided into three types: pure threshold, delay function 

and conditional probability function.  Examples of works analysing each of 

these types are given below. 

In (Haight 1957), various discrete customer threshold distributions (called 

balking distributions) are analysed in the context of the M/M/1 queue subject 

to balking.  Whereas in (Liu 2007), the M/G/1 queue subject to deterministic 

pure threshold balking was analysed assuming that the exact instantaneous 
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workload was known.  The analysis employed the level crossing theory of 

stochastic processes.  Lu and Mark (Lu and Mark 2004) model an optical 

burst switch employing fibre delay lines using an M/M/c queue subject to 

deterministic pure threshold balking.  This is analysed via the Markov chain 

model of queue’s equivalent probabilistic balking model.  In (Ward and Glynn 

2005), customers balk from the GI/GI/1 queue if the conditional average 

waiting time exceeds the customer’s (generally-distributed) threshold.  This 

latter queueing system is analysed via the diffusion approximation method. 

The M/M/1 queue subject to balking governed by a reward-cost structure 

which is dependent on the delay information is analysed in (Guo and Zipkin 

2007).  In that analysis balking under the above three different precision 

levels of delay information is studied. 

The third type of wait-based balking, namely the conditional probability 

function, comprises the constant balking probability model since the latter 

can be interpreted as a balking probability function dependent on the long-

run average delay.  In (Blackburn 1972), the M/G/1 queue subject to balking 

and reneging is analysed under a reward-cost structure.  The balking 

probability is fixed and independent of the reward-cost structure.  On the 

other hand, the constant balking probability model is used in the steady state 

analysis of Markovian queues subject to balking in (Al-Seedy 1995; Al-Seedy 

1996).  In (Whitt 1999), analysis is carried out for the M/M/c/K queue subject 

to balking characterised by a probability functional dependent on the 

probability that the prospective arrival’s delay tolerance is greater than the 

virtual queueing time.  Despite being based on approximations of the 

instantaneous delay, population-dependent balking probability functions as 
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analysed in (Ancker and Gafarian 1963; Gupta 1995; Zhen et al. 2010) are 

included under this type of wait-based balking. 

 

Individual equilibrium and socially optimal solutions 

This avenue of modelling is widely regarded to go back at least to the 

pioneering works of Naor (Naor 1969; Economou et al. 2011).  Naor studied 

the M/M/1 queue subject to balking where the decision of prospective arrivals 

to join (or balk) is guided by the net gains from a reward-cost structure 

dependent on the observed instantaneous queue size.  In that work, 

individual equilibrium (where payoff for individual customers is maximum) 

and socially optimal (where overall welfare of the customer population is 

maximum) solutions were determined (Naor 1969).  This framework lends 

itself to game theoretic analysis since it involves customers (indistinguishable 

in this case) potentially gaining payoffs through making strategic, informed 

decisions and taking associated actions. 

The unobservable case, where customers are unaware of the queue size, 

has also been studied.  For example in (Hassin and Haviv 1995), the M/M/1 

queue subject to balking and deadline-based reneging under a reward-cost 

structure was considered in the unobservable case.  In this latter work, both 

individual equilibrium and socially optimal solutions were defined.  

Furthermore, general service time distributions have also been considered 

within this framework.  In (Economou et al. 2011) for example, individual 

equilibrium and socially optimal strategies were identified for the M/G/1 
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queue subject to balking and general server vacation times in the 

unobservable or partially observable (server status information) cases. 

A comprehensive review of balking models of this nature is presented in 

(Hassin and Haviv 2003). 

 

Other balking models 

Balking probability sequences as utilised in (Rao and Jaiswal 1969; Zhang et 

al. 2005; Yue et al. 2006) are included in this category.  On the other hand, 

fuzzy set theory is used to analyse the M/M/1/K queue subject to three 

balking models characterised by uncertain distributions in (de La Fuente and 

Pardo 2009). 

 

2.3.1. The Morse Balking Paradigm 

Morse (Morse 1958) considered the M/M/1 queue subject to wait-based 

balking characterised by a conditional probability function.  This model is 

characterised by a single server, infinite capacity queue with a homogenous 

Poisson prospective arrival process with mean intensity, 𝜆 and i.i.d. 

exponential service times with mean rate, 𝜇.  Customers join the queue with 

conditional probability governed by the Morse joining function defined by 

 

 𝑞(𝑡) = 𝑒−𝛼𝑡, 𝛼, 𝑡 ≥ 0 (2.28) 
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where 𝑡 is the instantaneous workload (or instantaneous virtual queueing 

time i.e. the queueing delay from the point of view of a prospective arrival 

that joins the queue) and 𝛼 was interpreted by Morse as a measure of the 

average customer impatience (unwillingness to wait in line) (Morse 1958).  

The Morse joining function is seen to satisfy two fundamental properties of 

impatience models namely the non-increasing property (as 𝑡 increases) and 

the bounding condition 𝑞(0) = 1.0. 

The ‘balking function’ refers to the conditional probability with which 

customers refrain from entering the queue.  The Morse balking function 

defined by 

 

 1 − 𝑞(𝑡) = (1 − 𝑒−𝛼𝑡) (2.29) 

 

is strictly increasing (for 𝛼 > 0).  Owing to Haight’s balking paradigm (Haight 

1957), the parameter (1/𝛼) can be interpreted qualitatively as an average 

measure of customers’ need for or importance assigned to receiving service. 

The qualitative parameter, 𝛼, is associated with the overall stance of a 

customer population towards queueing.  In contrast to the pure threshold-

based balking models, 𝛼 enables more varied balking behaviour to be 

modelled.  Whereas in pure threshold-based balking models all customers 

would balk when the workload exceeds the pre-set threshold, under the 

Morse balking paradigm, customers from patient populations (or those 
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having a strong urgency for service) may join, even with relatively large 

probability at that same or higher workload levels. 

The converse would be true for low workloads.  In the pure threshold models, 

all prospective arrivals would join the queue when the instantaneous 

workload falls below the pre-set threshold.  However, the Morse balking 

model permits customers from a very impatient population (or those 

indifferent to service) to balk with large probability at the same (low) 

instantaneous workload. 

In most cases in reality 𝑡 is not known, however a useful estimate of 𝑡 is 𝑡𝑎𝑣, 

the average instantaneous workload conditional on the instantaneous queue 

length, 𝑛.  This is because 𝑛 can usually be obtained as advocated by, 

among others, the observable queue model reviewed in depth in (Hassin and 

Haviv 2003).  Owing to the memoryless property of the exponential service-

time distribution, the average instantaneous workload conditional on 𝑛 is 

given by 

 

 𝑡𝑎𝑣 = 𝑛𝐸[𝑠] =
𝑛

𝜇
, 𝑛 = 0,1,2… (2.30) 

 

where 𝐸[𝑠] is the average service time (per customer). 

Substituting 𝑡 in the Morse joining function (2.28) by 𝑡𝑎𝑣 (2.30) results in the 

population - dependent Morse joining function given by 
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𝑞(𝑛) = 𝑒

−𝛼
𝑛
𝜇, 𝑛 = 0,1,2… . (2.31) 

 

An equivalent re-parameterised variant of this latter population-dependent 

joining function (2.31) has been described as a ‘very natural’ balking model 

‘that should be appropriate in many applications’ (Mendelson et al. 1999). 

The QLD of the M/M/1 queue subject to Morse balking defined as 

 

𝑝𝑛 = 𝑝0 (
𝜆

𝜇
)
𝑛

𝑒
−
𝛼
𝜇
𝑛(𝑛−1)

2 , 𝑛 = 0,1,2… (2.32) 

 

was derived in (Morse 1958).  This was achieved by solving the GB 

equations of the queueing system’s birth-death (B-D) chain model, where the 

effective arrival rates to each state accounted for the fraction of customers 

which balked. 

In (Morse 1958), a graphical method was submitted to obtain an approximate 

value of the parameter, 𝛼.  Alternatively, an approximate value of 𝛼, for a 

particular customer population can be obtained numerically by equating the 

analytic expression of a suitable metric (which is in terms of 𝛼), such as the 

average balking rate (𝐵𝑅), MQL or average waiting time, to its value.  For 

example, given the values of 𝜆, 𝜇 and 𝐵𝑅, solving 
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𝜆∑𝑞(𝑛)𝑝𝑛

∞

𝑛=0

− (𝜆 − 𝐵𝑅) = 0 (2.33) 

 

for 𝛼 provides the desired estimate, where 𝑞(𝑛) and 𝑝𝑛 are given by (2.31) 

and (2.32) respectively.  Other suitable metrics would result in analogous 

nonlinear equations.  A mathematical definition of the parameter, 𝛼, owing to 

equivalence between the Morse and Haight balking paradigms, is derived in 

Appendix B. 

 

2.3.2. The QLD of the Stable M/M/1 Queue Subject to Balking 

Consider a stable M/M/1 queue characterised by a homogeneous Poisson 

prospective arrival process with rate, 𝜆, subject to balking with population-

dependent function (1 − 𝑞(𝑛)), 𝑛 = 0,1,2, … and i.i.d. exponential service 

times with mean rate, 𝜇. 

It is well known that a homogeneous Poisson arrival process with rate, 𝜆 

subject to decomposition into 𝑆 sub-processes by routing arrivals to path 𝑗 

with fixed and independent probabilities, 𝑞𝑗 , 𝑗 = 1,2…𝑆, results in 𝑗 Poisson 

sub-processes each with diminished rates, 𝜆𝑞𝑗 , 𝑗 = 1,2…𝑆 (Kleinrock 1975; 

Kuehn 1979). 

In the above queueing system, since customers behave independently of 

each other with respect to balking, at each state, 𝑛 = 0,1,2, …, the joining 

probability, 𝑞(𝑛), and balking probability, (1 − 𝑞(𝑛)), are fixed and 
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independent of each other.  Therefore, the effective arrival process to the 

queue is Poisson with state/population - dependent rates given by 

 

𝜆𝑛 = 𝜆𝑞(𝑛), 𝑛 = 0,1,2… . (2.34) 

 

As a consequence, the queueing system with balking has an equivalent 

transformation in the M(n)/M/1 queue without balking but with a population-

dependent Poisson arrival process with rates given by (2.34) (Haight 1957).  

The QLD of the stable M/M/1 queue subject to population-dependent balking 

can be derived by solving the steady state probability distribution of the B-D 

chain of its equivalent M(n)/M/1 queue illustrated by 

 

 

Fig. 3.  Birth-Death chain of the M(n)/M/1 with state-dependent arrival rates, 

𝜆𝑛 = 𝜆𝑞(𝑛). 

 

and is given by (Haight 1957) 

 

λq(0)) 

μ μ μ μ μ μ μ 

λq(n) λq(n-1) λq(n-2) λq(2) λq(1) 

0 1 n-1 2 n n+1 

λq(n+1) 
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𝑝𝑛 = (
𝜆

𝜇
)
𝑛

(∏𝑞(𝑖)

𝑛−1

𝑖=0

)𝑝0, 𝑛 = 0,1,2… . (2.35) 

 

The variable rate Poisson arrival process, as well as modelling the effective 

arrival process to queues with balking, models the arrival process to 

queueing systems with finite customer populations such as the machine 

interference system and queues with finite capacity (Courtois and Georges 

1971; Gupta and Rao 1996). 

 

2.3.3. An ME Re-Interpretation of the Morse Balking Queueing 

Solution 

The discrete Half Normal (dHN) has been characterised as that unique 

discrete distribution having maximum entropy constrained by the first 

moment, variance and normalisation condition over non-negative integer 

support.  It has been defined in (Kemp 2008) as 

 

𝑝𝑛 =
𝜃𝑛𝑞

𝑛(𝑛−1)
2

∑ 𝜃𝑛𝑞
𝑛(𝑛−1)

2∞
𝑛=0

= 𝑝0𝜃
𝑛𝑞

𝑛(𝑛−1)
2 , 𝑛 = 0,1,2… , 𝜃 > 0,0 < 𝑞 < 1 . (2.36) 

 

The justification for this ME distribution being called the ‘discrete Half 

Normal’ is that it is the discrete analogue of the unique continuous 
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distribution on the non-negative half-line having maximum entropy for given 

mean and variance, the continuous Half-Normal (Kemp 2008). 

Notably, ordinary moment (from the second upward) prior information 

constraints yield the same ME solutions to those obtained when 

corresponding central moments are used, provided that the first moment 

information constraint is explicitly incorporated in both ME formulations.  This 

latter requirement is necessary because the first moment information is 

inherently contained within central moments. 

Kemp discovered specific state-transition probabilities of a Markov chain 

model which result in the dHN stationary state probability distribution (2.36).  

Furthermore, Kemp also observed that the dHN state probability distribution 

has as a special case, the QLD of the M/M/1 queue subject to Morse balking 

(2.32) when 𝜃 = 𝜆/𝜇 and 𝑞 = 𝑒−𝛼/𝜇 (Morse 1958; Kemp 2005; Kemp 2008).  

Relating to this observation, Haight had decades earlier discovered the close 

approximation of the QLD of the M/M/1 queue subject to balking 

characterised by the modified geometric balking distribution (which is 

equivalent to the QLD of the M/M/1 queue subject to Morse balking (cf., 

Appendix B)) to Normal ordinates considered solely at non-negative integer 

abscissae (Haight 1957). 

It is to be recalled that the ME solution of the QLD of a single server queue, 

derived from the prior information constraints of solely the MQL and 

normalising condition is the QLD of the ordinary M/M/1 queue.  Hence, 

Kemp’s aforementioned observation implies that including the variance of 

queue length (VQL) prior information constraint in the ME solution of the 
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QLD of a single server queue is equivalent to maximising the uncertainty 

arising from the selective behavior (or choice) of prospective arrivals which 

may either join the queue or balk according to the respective Morse joining or 

balking functions.  
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3. Generalised Maximum 

Entropy Solutions 

In this chapter, new ME solutions namely the generalised discrete half 

normal (GdHN) and truncated GdHN (GdHNT) are characterised.  

Subsequently the effect of different prior moment information on the profiles 

of corresponding ME inferences is observed. 

The GdHN and GdHNT comprise least biased stationary probability 

assignments for discrete values realised by random quantities or for discrete 

states of any general system or process. 

Motivated by the provision of more accurate inferences of queueing system 

performance distributions, existing ME solutions, namely the GGeo and 

GGeoT (cf., Section 2.2) and dHN (cf., Section 2.3.3), are generalised by 

combining, as appropriate, the prior queue length moment information 

assumed known in each of the three cases.  As a consequence, the GdHN 

and GdHNT ME state probability distributions are suited to least biased 

inferences of the stationary QLD’s of, respectively, infinite and finite-capacity 

ordinary G/G/1 queues, G/G/1 queues subject to extended Morse balking 

(based on the implication of Kemp’s observation) or ordinary G/G/1 queues 

subject to population-dependent arrivals rates governed by the extended 

Morse joining function (based on the equivalence between balking and state-

dependent arrival rates). 



47 
 

In this context, prior queue length moment constraint information may be 

known numerically via measurements over a finite observation period or may 

be derived analytically, in terms of basic system parameters (whose values 

are assumed to be known), via operational or stochastic properties and/or 

assumptions (Kouvatsos 1986a). 

 

3.1. The Generalised Discrete Half Normal 

The GdHN is characterised as that unique discrete distribution having 

maximum entropy, given the prior information of the first moment, variance 

and lower boundary state probability, over non-negative integer support.  The 

respective ME optimisation prior moment constraints, 𝐸[𝑁], 𝐸[(𝑁 − 𝐸[𝑁])2] 

and 𝑝0 are represented as 

 

 
∑𝑛𝑝𝑛

∞

𝑛=0

= 𝐸[𝑁], 𝑛 = 0,1,2… (3.1) 

 

 
∑(𝑛 − 𝐸[𝑁])2𝑝𝑛

∞

𝑛=0

= 𝐸[(𝑁 − 𝐸[𝑁])2], 𝑛 = 0,1,2… , (3.2) 

 

and 
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∑𝑢′(𝑛)𝑝𝑛 = 𝑝0,

∞

𝑛=0

     𝑢′(𝑛) = {
1, 𝑛 = 0

0, 𝑛 = 1,2,3…
 . (3.3) 

 

Incorporating the prior moment information constraints (3.1) - (3.3) and the 

following normalising condition 

 

 
∑𝑝𝑛 = 1.0

∞

𝑛=0

 (3.4) 

 

directly in the general product-form discrete ME solution defined by 

 

 
𝑝𝑛 =

1

𝑍
∏𝑥𝑖

𝑓𝑖(𝑛), 𝑛 =. . . , −2,−1,0,1,2… , 𝑖 = 1,2,3…𝑚

𝑚

𝑖=1

 (3.5) 

 

where 𝑍 = ∑ (∏ 𝑥𝑖
𝑓𝑖(𝑛)𝑚

𝑖=1 )∞
𝑛=−∞ , yields the GdHN expressed as 

 

 
𝑝𝑛 =

1

𝑍
𝑥1
𝑛𝑥2

(𝑛−𝐸[𝑁])2𝑥3
𝑢′(𝑛), 𝑛 = 0,1,2,3… (3.6) 

 

where 𝑍 = ∑ (𝑥1
𝑛𝑥2

(𝑛−𝐸[𝑁])2𝑥3
𝑢′(𝑛))∞

𝑛=0  and 𝑥1, 𝑥2 and 𝑥3 are the Lagrangian 

coefficients corresponding to the first moment, variance and 𝑝0 prior moment 

information constraints respectively.  Equation (3.6) can be written 

equivalently as 
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𝑝𝑛 =

{
 
 

 
 

1

𝑍
𝑥2
(𝐸[𝑁])2𝑥3, 𝑛 = 0

1

𝑍
𝑥1
𝑛𝑥2

(𝑛−𝐸[𝑁])2 , 𝑛 = 1,2,3…

. (3.7) 

 

For the purpose of comparing the GdHN to its subclass distributions, the 

distributional form of the GdHN in (3.7) is manipulated to resemble as closely 

as possible, the forms of both the GGeo (2.18) and dHN (2.36) ME 

distributions, concurrently as follows.  Expanding the product (𝑛 − 𝐸[𝑁])2 

and introducing the term (2𝐸[𝑁] − 1)𝑛 in the power of 𝑥2 in (3.7) yields 

 

 

𝑝𝑛 =

{
 
 

 
 

1

𝑍
𝑥2
(𝐸[𝑁])2𝑥3, 𝑛 = 0

1

𝑍
𝑥2
(𝐸[𝑁])2 (𝑥1𝑥2

−(2𝐸[𝑁]−1))
𝑛

𝑥2
(𝑛2−𝑛)

, 𝑛 = 1,2,3…

 (3.8) 

 

where the term 
1

𝑍
𝑥2
(𝐸[𝑁])2𝑥3 is clearly the zero state probability, 𝑝0. 

Without loss of generality, the parameters 𝛾, 𝜙 and 𝑟 are introduced.  The 

substitutions, (𝑥3)
−1 = 𝛾, (𝑥1𝑥2

−(2𝐸[𝑁]−1)) = 𝜙 and 𝑥2 = 𝑟
1

2 in (3.8) yield the re-

parameterised GdHN defined as 
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𝑝𝑛 = {

𝑝0, 𝑛 = 0

𝑝0𝛾𝜙
𝑛𝑟

𝑛(𝑛−1)
2 , 𝑛 = 1,2,3…

, 𝛾, 𝜙, 𝑟 > 0 (3.9) 

 

where despite being known a priori, for the sake of completeness, 𝑝0 can be 

expressed as 

 

 

𝑝0 = (1 +∑𝛾𝜙𝑛𝑟
𝑛(𝑛−1)

2

∞

𝑛=1

)

−1

 . (3.10) 

 

Contrary to the case of the GGeo, the parameters of the GdHN distribution, 

𝛾, 𝜙 and 𝑟, cannot be derived explicitly in terms of the constraint information, 

however, they can be obtained numerically from the latter information. 

 

3.1.1. Properties of the Generalised Discrete Half Normal 

The GdHN is observed to reduce to the GGeo (2.18) or the dHN (2.36) 

discrete ME distributions by setting 𝑟 = 1 or 𝛾 = 1 respectively.  Furthermore, 

setting both 𝑟 = 1 and 𝛾 = 1 yields the modified geometric discrete ME 

distribution (2.13).  Thus, the GdHN is seen to be a generalisation of the 

GGeo, dHN and modified geometric discrete ME distributions. 

When the aforementioned prior moment information constraints (3.1) - (3.3) 

are specified as infinite capacity queueing system attributes of the MQL, VQL 
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and empty queue state probability, 𝑝0, then the resulting set of ME solutions, 

namely the GdHN ME QLD’s, comprise a subset of the GdHN ME solutions. 

The probability generating function (PGF), 𝑃(𝑧), first moment, 𝐸[𝑁] and 

variance, 𝐸[(𝑁 − 𝐸[𝑁])2] of the GdHN can be defined as 

 

 
𝑃(𝑧) = 𝑝0 +∑𝛾(𝜙𝑧)𝑛𝑟

𝑛(𝑛−1)
2 𝑝0

∞

𝑛=1

, (3.11) 

 

 
𝐸[𝑁] = ∑𝑛𝛾𝜙𝑛

∞

𝑛=1

𝑟
𝑛(𝑛−1)

2 𝑝0 (3.12) 

and 

𝐸[(𝑁 − 𝐸[𝑁])2] = ∑𝑛2𝛾𝜙𝑛
∞

𝑛=1

𝑟
𝑛(𝑛−1)

2 𝑝0 − (∑𝑛𝛾𝜙𝑛
∞

𝑛=1

𝑟
𝑛(𝑛−1)

2 𝑝0)

2

 (3.13) 

 

respectively, where in the latter three cases (3.11) - (3.13), 𝑝0 is given by 

(3.10). 
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3.2. The Truncated Generalised Discrete Half Normal 

The GdHNT is that unique discrete ME distribution constrained by the prior 

information of the first moment, variance and lower and upper boundary state 

probabilities, over finite, non-negative integer support.  The corresponding 

ME optimisation prior information constraints, 𝐸[𝑁𝐾], 𝐸[(𝑁𝐾 − 𝐸[𝑁𝐾])
2], 𝑝0

𝐾, 

𝑝𝐾
𝐾 and the normalising condition are defined as 

 

 
∑𝑛𝑝𝑛

𝐾

𝐾

𝑛=0

= 𝐸[𝑁𝐾], 𝑛 = 0,1,2…𝐾, (3.14) 

 

 
∑(𝑛 − 𝐸[𝑁𝐾])

2𝑝𝑛
𝐾

𝐾

𝑛=0

= 𝐸[(𝑁𝐾 − 𝐸[𝑁𝐾])
2], 𝑛 = 0,1,2…𝐾, (3.15) 

 

∑𝑢𝐾
′ (𝑛)𝑝𝑛

𝐾 = 𝑝0
𝐾

𝐾

𝑛=0

, 𝑢𝐾
′ (𝑛) = {

1, 𝑛 = 0
0, 𝑛 = 1,2,3…𝐾

,  (3.16) 

 

∑𝑓𝐾(𝑛)𝑝𝑛
𝐾 = 𝑝𝐾

𝐾

𝐾

𝑛=0

, 𝑓𝐾(𝑛) = {
0, 𝑛 = 0,1,2…𝐾 − 1

1, 𝑛 = 𝐾
  (3.17) 

 

and 

 

 
∑𝑝𝑛 = 1.0

𝐾

𝑛=0

 . (3.18) 
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Incorporating the prior moment information constraints (3.14) - (3.17) and the 

normalising condition (3.18) directly in the general product form discrete ME 

solution given by 

 

 
𝑝𝑛 =

1

𝑍
∏𝑥𝐾𝑖

𝑓𝐾𝑖(𝑛), 𝑛 =. . . , −2,−1,0,1,2… , 𝑖 = 1,2,3…𝑚

𝑚

𝑖=1

 (3.19) 

 

where 𝑍 = ∑ (∏ 𝑥𝐾𝑖
𝑓𝐾𝑖(𝑛)𝑚

𝑖=1 )∞
𝑛=−∞ , yields the GdHNT expressed as 

 

 
𝑝𝑛 =

1

𝑍
𝑥𝐾1
𝑛 𝑥𝐾2

(𝑛−𝐸[𝑁𝐾])
2

𝑥𝐾3
𝑢𝐾
′ (𝑛)

𝑥𝐾4
𝑓𝐾(𝑛), 𝑛 = 0,1,2, …𝐾 (3.20) 

 

where 𝑍 = ∑ (𝑥𝐾1
𝑛 𝑥𝐾2

(𝑛−𝐸[𝑁𝐾])
2

𝑥𝐾3
𝑢𝐾
′ (𝑛)

𝑥𝐾4
𝑓𝐾(𝑛))𝐾

𝑛=0  and the 𝑥𝐾𝑖 , 𝑖 = 1,2,3,4 are the 

Lagrangian coefficients corresponding to the first moment, variance, 𝑝0
𝐾 and 

𝑝𝐾
𝐾 prior moment information constraints respectively.  Equation (3.20) can 

be written equivalently as 
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𝑝𝑛
𝐾 =

{
 
 
 

 
 
 
1

𝑍
𝑥𝐾2
(𝐸[𝑁𝐾])

2

𝑥𝐾3,                                       𝑛 = 0

1

𝑍
𝑥𝐾1
𝑛 𝑥𝐾2

(𝑛−𝐸[𝑁𝐾])
2

,            𝑛 = 1,2,3…𝐾 − 1

1

𝑍
𝑥𝐾1
𝐾 𝑥𝐾2

(𝐾−𝐸[𝑁𝐾])
2

𝑥𝐾4,                           𝑛 = 𝐾

 . (3.21) 

 

For the purpose of comparing the GdHNT to its subclass distributions, its 

distributional form expressed in (3.21) is manipulated in an analogous 

manner to the case of the GdHN.  The aim is that the resulting distributional 

form concurrently resembles, as closely as possible, the forms of both the 

GGeoT (2.24) and the truncated dHN (dHNT)13 ME distributions.  Expanding 

the product (𝑛 − 𝐸[𝑁𝐾])
2 and introducing the term (2𝐸[𝑁𝐾] − 1)𝑛 in the 

power of 𝑥𝐾2 in (3.21) yields 

 

𝑝𝑛
𝐾 =

{
 
 
 

 
 
 
1

𝑍
𝑥𝐾2
(𝐸[𝑁𝐾])

2

𝑥𝐾3,                                                                             𝑛 = 0

1

𝑍
𝑥𝐾2
(𝐸[𝑁𝐾])

2

(𝑥𝐾1𝑥𝐾2
−(2𝐸[𝑁𝐾]−1))

𝑛

𝑥𝐾2
(𝑛2−𝑛)

, 𝑛 = 1,2,3…𝐾 − 1

1

𝑍
𝑥𝐾2
(𝐸[𝑁𝐾])

2

𝑥𝐾4 (𝑥𝐾1𝑥𝐾2
−(2𝐸[𝑁𝐾]−1))

𝐾

𝑥𝐾2
(𝐾2−𝐾)

,                       𝑛 = 𝐾

 (3.22) 

 

where the term 
1

𝑍
𝑥𝐾2
(𝐸[𝑁𝐾])

2

𝑥𝐾3 is clearly the zero state probability, 𝑝0
𝐾.  Without 

loss of generality, the parameters, 𝛾𝐾, 𝜙𝐾, 𝑟𝐾 and 𝜁𝐾 are introduced.  Making 

                                                           
13

 i.e. the dHN right-truncated above 𝐾, whose distributional form is identical to that of the dHN 
defined in (2.36). 
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the substitutions, (𝑥𝐾3)
−1 = 𝛾𝐾, (𝑥𝐾1𝑥𝐾2

−(2𝐸[𝑁𝐾]−1)) = 𝜙𝐾, 𝑥𝐾2 = 𝑟𝐾

1

2 and 

𝑥𝐾4 = 𝜁𝐾 in (3.22), results in the re-parameterised GdHNT defined by 

 

𝑝𝑛
𝐾 =

{
 
 

 
 
𝑝0
𝐾,                                                            𝑛 = 0

𝑝0
𝐾𝛾𝐾(𝜙𝐾)

𝑛(𝑟𝐾)
𝑛(𝑛−1)

2 ,   𝑛 = 1,2,3…𝐾 − 1,

𝑝0
𝐾𝜁𝐾𝛾𝐾(𝜙𝐾)

𝐾(𝑟𝐾)
𝐾(𝐾−1)

2 ,                    𝑛 = 𝐾

 𝜁𝐾 , 𝛾𝐾, 𝜙𝐾, 𝑟𝐾 > 0 (3.23) 

 

where despite being known a priori, for the sake of completeness 𝑝0
𝐾 is 

defined as 

 

𝑝0
𝐾 = (1 +∑ 𝛾𝐾(𝜙𝐾)

𝑛(𝑟𝐾)
𝑛(𝑛−1)

2

𝐾−1

𝑛=1

+ 𝜁𝐾𝛾𝐾(𝜙𝐾)
𝐾(𝑟𝐾)

𝐾(𝐾−1)
2 )

−1

 . (3.24) 

 

The parameters of the GdHNT distribution, 𝛾𝐾, 𝜙𝐾, 𝑟𝐾 and 𝜁𝐾, cannot be 

expressed explicitly in terms of the prior moment constraints, however, they 

can be obtained numerically from the latter. 
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3.2.1. Properties of the Truncated Generalised Discrete Half 

Normal 

The GdHN arises as a special case of the GdHNT when 𝐾 → ∞.  The special 

case 𝑟𝐾 = 1 retrieves the GGeoT (2.24) and setting both 𝛾𝐾 = 1 and 𝜁𝐾 = 1 in 

(3.23) yields the dHNT.  Furthermore setting 𝑟𝐾, 𝛾𝐾 and 𝜁𝐾 to one in (3.23) 

results in the truncated modified geometric i.e. the modified geometric (2.13) 

right-truncated above 𝐾.  Hence the GdHNT generalises the GGeoT, dHNT 

and the truncated modified geometric discrete ME distributions, as well as 

their corresponding infinite-support counterparts. 

When the aforementioned prior information constraints (3.14) - (3.17) are 

specified as finite queueing system attributes of MQL, VQL and queue length 

boundary state probabilities, 𝑝0
𝐾 and 𝑝𝐾

𝐾, then the set of ME solutions derived, 

namely the GdHNT ME QLD’s, comprise a subset of the GdHNT solutions. 

The first moment, 𝐸[𝑁𝐾] and variance, 𝐸[(𝑁𝐾 − 𝐸[𝑁𝐾])
2] of the GdHNT can 

be defined as 

 

𝐸[𝑁𝐾] = (∑ 𝑛𝛾𝐾(𝜙𝐾)
𝑛(𝑟𝐾)

𝑛(𝑛−1)
2 𝑝0

𝐾

𝐾−1

𝑛=1

) + 𝐾𝜁𝐾𝛾𝐾(𝜙𝐾)
𝐾(𝑟𝐾)

𝐾(𝐾−1)
2 𝑝0

𝐾 (3.25) 

 

and 
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𝐸[(𝑁𝐾 − 𝐸[𝑁𝐾])
2] = (∑ 𝑛2𝛾𝐾(𝜙𝐾)

𝑛(𝑟𝐾)
𝑛(𝑛−1)

2 𝑝0
𝐾

𝐾−1

𝑛=1

) 

+𝐾2𝜁𝐾𝛾𝐾(𝜙𝐾)
𝐾(𝑟𝐾)

𝐾(𝐾−1)
2 𝑝0

𝐾 

−((∑ 𝑛𝛾𝐾(𝜙𝐾)
𝑛(𝑟𝐾)

𝑛(𝑛−1)
2 𝑝0

𝐾

𝐾−1

𝑛=1

) + 𝐾𝜁𝐾𝛾𝐾(𝜙𝐾)
𝐾(𝑟𝐾)

𝐾(𝐾−1)
2 𝑝0

𝐾)

2

 

(3.26) 

 

respectively, where in the above two cases (3.25) - (3.26), 𝑝0
𝐾 is given by 

(3.24). 

 

3.3. The Effect of Different Prior Moment Information 

The effect of knowledge of additional or different prior moment information on 

the profiles of resulting ME distribution inferences is observed in Fig. 4 and 

Fig 5 below.  Specifically, the GdHNT, dHNT, GGeoT and truncated modified 

geometric (Trunc Mod Geom) ME distribution inferences are generated from 

appropriate prior moment information, which in turn is obtained from an 

arbitrary distribution, 𝑥𝑖, 𝑖 = 1,2. 
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Fig. 4.  Effect of different prior moment information on the profiles of ME 

distribution estimates of an arbitrary distribution, 𝑥1. 

 

Fig 5.  Effect of different prior moment information on the profiles of ME 

distribution estimates of an arbitrary distribution, 𝑥2. 
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The prior moments assumed known, in addition to the normalising condition, 

in the generation of the different ME distribution inferences in Fig. 4 and Fig 

5 above are listed in Table 1 below. 

Table 1.  Prior moment information associated with corresponding ME 

distribution inferences. 

 𝐸[𝑁𝐾] 𝐸[(𝑁𝐾 − 𝐸[𝑁𝐾])
2] 𝑝0

𝐾 𝑝𝐾
𝐾 

GdHNT     

dHNT   - - 

GGeoT  -   

Trunc Mod Geom  - - - 
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4. The M/GE/1/K Queue 

Subject to Balking 

In this chapter, the QLD of the M/GE/1/K queue subject to extended Morse 

balking is derived and subsequently conjectured to be a special case of the 

GdHNT ME distribution.  Following this, the aforementioned queueing system 

is applied as an ME performance model of IP network nodes featuring static 

or dynamic packet dropping congestion management schemes.  In the latter 

context, a performance evaluation study in terms of the model’s delay is 

carried out. 

Employing the celebrated Pollaczek-Khinchin (P-K) transform formula, the 

service-time distribution of the M/G/1 queue bearing the GGeo ME QLD was 

discovered to be satisfied exactly by the GE CDF (El-Affendi and Kouvatsos 

1983).  The P-K transform formula encapsulates a relationship between the 

QLD and service-time distribution of an M/G/1 queue.  The irrational PGF of 

the GdHN (3.11) renders the latter approach intractable to determine the 

unique service time distribution of the ordinary M/G/1 queue with GdHN ME 

QLD and thus solve its QLD in terms of basic queueing system parameters. 

By analogy with existing results, it is expected that the GdHN or GdHNT ME 

QLD’s, which are generalisations of the GGeo and GGeoT ME QLD’s, would 

characterise, respectively, infinite or finite capacity ordinary M/G/1 and G/G/1 

queues, where ‘G’ is satisfied exactly by a generalisation of the GE.  Due to 
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the dependence of the VQL of an M/G/1 queue upon the first three moments 

of the service time distribution, it is proposed that the latter generalisation of 

the GE would be completely defined by its first three moments.  Nonetheless, 

despite the analytic intractability posed by this latter problem, least biased 

QLD’s can be inferred numerically by maximising Shannon’s entropy subject 

to prior queue length moment values and these in turn can be utilised for 

performance prediction. 

As stated in Chapter 3, two subclass distributions of the GdHNT are the 

GGeoT and dHNT (and hence the dHN).  These have been characterised as 

QLD’s of queueing systems marked respectively by GE service times 

(Kouvatsos 1986b) and Morse balking (Morse 1958; Kemp 2005; Kemp 

2008).  In light of this, the queueing system bearing the GdHNT ME QLD was 

sought by employing these two operational characteristics in a single 

queueing system.  Hence the M/GE/1/K queue subject to extended Morse 

balking is analysed below. 

 

4.1. The QLD of the M/GE/1/K Queue Subject to Extended 

Morse Balking 

In this section, the stationary QLD (from a random observer’s point of view) 

of the M/GE/1/K queue subject to extended Morse balking, characterised by 

a Poisson prospective arrival process (with mean rate, 𝜆), i.i.d. GE service 

times (with mean rate, 𝜇 and SCOV, 𝐶𝑠
2) and finite capacity, K, is derived.  
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This is carried out by applying the GB principle at each individual state of the 

Markov chain model of the equivalent M(n)/GE/1/K queue illustrated below. 

Fig. 6.  Markov Chain Model of the M(n)/GE/1/K Queue. 

 

In Fig. 6, the 𝑅𝑖𝑗 ’s are the state transition rates and the effective arrival rates 

at each state account for the fraction of customers which balk according to 

the relationship (2.34).  The upward state-transition rates are derived as 

 

𝑅01 = (
𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒

) × 𝑃 (

𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑗𝑜𝑖𝑛𝑠 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 0 𝑎𝑛𝑑 
𝑡𝑎𝑘𝑒𝑠 𝑡ℎ𝑒 𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑟𝑎𝑛𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒
𝑡𝑤𝑜 − 𝑝ℎ𝑎𝑠𝑒 𝐺𝐸 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑚𝑜𝑑𝑒𝑙

) 

= 𝜆𝜏𝑞(0) 

(4.1) 

 

where 𝑞(𝑛) is the joining probability of an arriving customer, conditional on 

the instantaneous queue length, 𝑛 and 𝜏, the probability of taking the 

exponential branch in the two-phase GE interpretation (cf., Fig. 2), is given 

by (Kouvatsos 1994) 
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𝜏 =

2

1 + 𝐶𝑠2
 (4.2) 

 

and 

 

𝑅𝑖,𝑖+1 = (
𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒

) × 𝑃 (
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑗𝑜𝑖𝑛𝑠 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒

 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖
) , 𝑖 = 1,2,3…𝐾 − 1, 

= 𝜆𝑞(𝑖) 

(4.3) 

 

and downward state transition rates are derived as 

 

𝑅𝑖𝑗 = (
𝑏𝑎𝑡𝑐ℎ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 
) × 𝑃(

𝑏𝑎𝑡𝑐ℎ 𝑤ℎ𝑖𝑐ℎ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑠 𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑖𝑠 𝑜𝑓 𝑠𝑖𝑧𝑒 (𝑖 − 𝑗) 𝑎𝑛𝑑 
𝑞𝑢𝑒𝑢𝑒 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦

), 

𝑖 = 2,3,4…𝐾, 𝑗 = 1,2,3… 𝑖 − 1 

= (𝜏𝜇)𝜏(1 − 𝜏)𝑖−𝑗−1 

(4.4) 

 

and 

 

𝑅𝑖0 = (
𝑏𝑎𝑡𝑐ℎ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 
) × 𝑃 (

𝑏𝑎𝑡𝑐ℎ 𝑤ℎ𝑖𝑐ℎ 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑠 𝑠𝑒𝑟𝑣𝑖𝑐𝑒
𝑖𝑠 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑖 𝑎𝑛𝑑 
𝑞𝑢𝑒𝑢𝑒 𝑒𝑚𝑝𝑡𝑖𝑒𝑠

), 

𝑖 = 1,2,3…𝐾 

(4.5) 
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= (𝜏𝜇) × (1 −∑𝜏(1 − 𝜏)𝑖−𝑘−1
𝑖−1

𝑘=1

) 

= (𝜏𝜇)(1 − 𝜏)𝑖−1 

 

respectively.  𝑅𝑖𝑗 = 0 otherwise.  Applying the GB principle to each individual 

state in the queue’s Markov chain yields the following system of (𝐾 + 1) 

linear GB equations 

 

 
∑𝑅𝑖𝑛 𝑝𝑖

𝐾

𝐾

𝑖=0,
𝑖≠𝑛

= 𝑝𝑛
𝐾∑𝑅𝑛𝑗

𝐾

𝑗=0,
𝑗≠𝑛

, 𝑛 = 0,1,2…𝐾, (4.6) 

 

one of which is redundant.  Replacing any one of these equations with the 

normalising condition and solving the system yields the following QLD of the 

M(n)/GE/1/K queue marked by population-dependent arrival rates, 𝜆𝑞(𝑛), 𝑛 =

0,1,2…𝐾 − 1, 

 

𝑝𝑛
𝐾 =

{
 
 
 
 

 
 
 
 

𝑝0
𝐾, 𝑛 = 0

𝑝0
𝐾𝜏∏(

𝜆𝑞(𝑖)

𝜆𝑞(𝑖 + 1)(1 − 𝜏) + 𝜏𝜇
) , 𝑛 = 1,2,3…𝐾 − 1

𝑛−1

𝑖=0

𝑝0
𝐾𝜏 (

𝜆𝑞(𝐾 − 1)

𝜏𝜇
)∏(

𝜆𝑞(𝑖)

𝜆𝑞(𝑖 + 1)(1 − 𝜏) + 𝜏𝜇
) , 𝑛 = 𝐾

𝐾−2

𝑖=0

 (4.7) 
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where 𝜆, 𝑞(𝑛), 𝜇 and 𝜏 are as interpreted above and 𝑝0
𝐾 can be obtained by 

applying the normalising condition. 

For the purpose of estimating the instantaneous workload, 𝑡 in the Morse 

joining function (2.28), it is assumed that prospective arrivals become aware 

of the instantaneous queue length, 𝑛, 𝜇 and 𝐶𝑠
2 either before or on arrival.  

When the service durations are i.i.d., satisfying any general distribution 

(including the GE CDF), the conditional average instantaneous workload is 

given by 

 

 

𝑡𝑎𝑣 = {

0.0, 𝑛 = 0

(𝑛 − 1)

𝜇
+
1 + 𝐶𝑠

2

2𝜇
, 𝑛 = 1,2,3…

. (4.8) 

 

Substituting 𝑡 in the Morse joining function (2.28) by 𝑡𝑎𝑣 (4.8) yields the 

extended Morse population-dependent joining function given by 

 

 

𝑞(𝑛) = {

1.0, 𝑛 = 0

𝑒
−
𝛼𝑛
𝜇 𝑒

−
𝛼
𝜇
(
𝐶𝑠
2−1
2

)
, 𝑛 = 1,2,3…

 (4.9) 

 

where 𝛼 is the Morse average measure of impatience in the context of i.i.d. 

general service times.  Making the substitution 𝑞 = 𝑒−𝛼/𝜇 in (4.9) and 

restricting the support to below 𝐾, the extended Morse joining function 

becomes 
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𝑞(𝑛) =

{
 
 

 
 

1.0, 𝑛 = 0

𝑞
(
𝐶𝑠
2−1
2

)
𝑞𝑛, 𝑛 = 1,2,3…𝐾 − 1

0.0, 𝑛 = 𝐾

 . (4.10) 

 

Substitution of 𝑞(𝑛) in the QLD (4.7) by the extended Morse joining function 

defined in (4.10) above yields the following closed form QLD of the M/GE/1/K 

queue subject to extended Morse balking 

 

𝑝𝑛
𝐾 =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

𝑝0
𝐾 , 𝑛 = 0

𝑝0
𝐾

(𝜏𝑞
−(
𝐶𝑠
2−1
2

)
)(𝜆𝑞

(
𝐶𝑠
2−1
2

)
)

𝑛

𝑞
𝑛(𝑛−1)

2

∏ (𝜆𝑞
(
𝐶𝑠
2−1
2

)
𝑞𝑖+1(1 − 𝜏) + 𝜏𝜇)𝑛−1

𝑖=0

, 𝑛 = 1,2,3…𝐾 − 1

𝑝0
𝐾

(𝜏𝑞
−(
𝐶𝑠
2−1
2

)
)(𝜆𝑞

(
𝐶𝑠
2−1
2

)
)

𝐾

𝑞
𝐾(𝐾−1)

2

𝜏𝜇∏ (𝜆𝑞
(
𝐶𝑠
2−1
2

)
𝑞𝑖+1(1 − 𝜏) + 𝜏𝜇)𝐾−2

𝑖=0

, 𝑛 = 𝐾

 (4.11) 

 

where 𝑞 = 𝑒𝑥𝑝(−𝛼/𝜇), 𝜆, 𝛼, 𝜇 and 𝜏 are as interpreted above and 𝑝0
𝐾 can be 

obtained via the normalising condition. 

In this case the parameter 𝛼 can be estimated in a similar manner to that for 

the exponential service case described in Section 2.3.1.  Assuming that the 
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overall loss (i.e. total balking and blocking) rate, 𝐿𝑅, 𝜆, 𝜇 and 𝐶𝑠
2 are known, 

solving 

 

 
𝜆∑ 𝑞(𝑛)𝑝𝑛

𝐾

𝐾−1

𝑛=0

− (𝜆 − 𝐿𝑅) = 0 (4.12) 

 

for 𝛼 yields the desired estimate, where 𝑞(𝑛) is now given by (4.10) and 𝑝𝑛
𝐾 is 

defined by (4.11).  Analogously, other appropriate queueing metrics such as 

those listed previously in Section 2.3.1 may be used to estimate the value of 

𝛼.  A mathematical definition of the parameter 𝛼 in the context of i.i.d. 

general service times is derived in Appendix B. 

 

4.2. Discussion of the Results 

The aim of the latter analysis was to determine a queueing system(s) bearing 

the GdHNT ME QLD, for the purpose of ME performance modelling and 

prediction. 

The expression for the QLD of the M/GE/1/K queue subject to extended 

Morse balking (4.11) though bearing some resemblance in form to that of the 

GdHNT ME distribution (3.23) cannot be judged solely by observation to be 

its special case (in contrast to the special case of the QLD of the M/M/1 

queue subject to Morse balking and the dHN ME distribution (cf., Section 

2.3.3)).  Furthermore, limitations were encountered in attempts at an analytic 

proof of equivalence in distribution between the latter two solutions, i.e. the 
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GB and ME solutions.  Hence validation of this equivalence was sought 

through other means. 

Equivalence in distribution between the QLD of the M/GE/1/K queue subject 

to extended Morse balking (4.11) and the corresponding GdHNT ME 

distribution inference (3.23) was therefore investigated numerically.  The 

QLD’s were first generated using input parameter values and from these the 

corresponding ME solutions were inferred.  Subsequently, absolute 

differences between corresponding state probabilities of the two solutions 

were obtained in order to investigate the statistical closeness between them.  

Absolute differences (and/or related measures) have been used in a similar 

vein in works such as (Chandy et al. 1975; Kouvatsos and Awan 2003).  

Details of the investigation are as follows. 

As part of the experimentation, numerical QLD probabilities of the M/GE/1/K 

queue subject to extended Morse balking, 𝑝𝑛
𝐾⋆, 𝑛 = 0,1,2, … , 𝐾, were 

generated from equation (4.11) and different combinations of queue input 

parameter values from Table 2 below. 
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Table 2.  Parameter values used in the investigation of ME characteristics of 

the QLD of the M/GE/1/K queue subject to extended Morse balking. 

Parameter Value(s) 

𝜆 [10 20 30 40] 

𝜇 20 

𝐶𝑠
2 [1 5 10 20 50 100 200 500] 

𝐾 [5 10 15 20] 

𝑞 [0.3 0.6 0.9] 

 

An ‘experiment’ here refers to the generation of a single set of numerical 

QLD probabilities, 𝑝𝑛
𝐾⋆, 𝑛 = 0,1,2,… , 𝐾, of the M/GE/1/K queue subject to 

extended Morse balking, from (4.11) and a particular combination of queue 

input parameter values.  It also includes the subsequent computation of the 

corresponding numerical GdHNT ME distribution inference, 𝑝𝑛
𝐾†, 𝑛 =

0,1,2, … , 𝐾.  By the fundamental principle of counting, there are a total of 384 

combinations of queue input parameter values and hence 384 experiments 

were conducted. 

From the numerical QLD’s, 𝑝𝑛
𝐾⋆, 𝑛 = 0,1,2, … , 𝐾, values of the MQL, VQL,  𝑝0

𝐾⋆ 

and 𝑝𝐾
𝐾⋆ were either calculated or obtained directly.  The latter values 

comprised the optimisation constraints, in addition to the normalisation 

condition, in the numerical constrained maximisation of Shannon’s entropy 

functional (2.1), yielding corresponding numerical GdHNT distribution 

inference probabilities, 𝑝𝑛
𝐾†, 𝑛 = 0,1,2, … , 𝐾.  Finally, for each experiment, the 

maximum absolute difference between corresponding state probabilities of 
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the two distributions, referred to here as the ‘error’, was computed.  Error is 

defined as 

 

𝑒𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥(|𝑝0
𝐾⋆ − 𝑝0

𝐾†|, |𝑝1
𝐾⋆ − 𝑝1

𝐾†|, … , |𝑝𝐾
𝐾⋆ − 𝑝𝐾

𝐾†|) . (4.13) 

 

The experiments were carried out in MATLAB version 7.10.0.499 (R2010a).  

Both the constraints and change in objective function were satisfied to within 

the default tolerance of 10−6.  Owing to the limitations of the software to 

produce the GdHNT inferences when the prior moment constraint, 𝑝𝐾
𝐾⋆ <

10−10, a special case of the GdHNT ME inference was used in those 

instances.  This special case excluded the 𝑝𝐾
𝐾 prior information constraint 

(but not the existence of the probability 𝑝𝐾
𝐾 itself) or equivalently set the 

parameter 𝜁𝐾 in (3.23) to one. 

Over all the 384 experiments, the maximum error encountered was 0.014 

with the overwhelming majority of errors being less than 0.01. 

Exact equivalence in distribution between the GB and ME solutions is 

conjectured based on the following two arguments: 

1. Errors of comparable magnitude were encountered between 

corresponding special cases which are known to be equivalent. 

Errors were computed for the following two cases whose exact 

equivalence (i.e. equivalence between the QLD’s and (special cases of) 

the GdHNT) has been proven in the literature: the M/M/1/K queue subject 
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to Morse balking (Shah et al. 2010) and the ordinary M/GE/1/K queue 

(Kouvatsos 1986b; Kouvatsos 1986a).  Over all the experiments 

conducted for the two queueing systems, maximum errors of 0.0114 and 

0.000688, respectively, were observed implying that these latter errors 

and therefore the former errors too can be attributed to numerical 

limitations of the software package.  Larger errors in the case of the 

M/GE/1/K queue subject to extended Morse balking and the GdHNT ME 

distribution inference may be attributed to the effect of MATLAB’s 

computational approximations on a larger set of optimisation constraints. 

2. Errors did not increase with increasing 𝐶𝑠
2. 

Earlier ME approximate analysis of ordinary queueing systems featuring 

i.i.d. GE inter-arrival and/or service times exhibited growing absolute 

differences between the ME approximations and simulation results as 𝐶𝑎
2 

and/or 𝐶𝑠
2 increased (cf., (Kouvatsos and Awan 2003)).  Such behaviour 

was not encountered in this research work but instead errors remained 

low over all experiments. 

Supported by the above experimental evidence and subsequent reasoning, 

the following conjecture is proposed. 

Conjecture I: The QLD of the M/GE/1/K queue subject to extended Morse 

balking (4.11) is a special case of the GdHNT ME distribution (3.23) 

constrained by the prior information of the queue’s MQL, VQL (or second 

moment of queue length), empty state probability, 𝑝0
𝐾 (or equivalently server 

utilisation), full buffer state probability, 𝑝𝐾
𝐾 and the normalisation condition 

over finite, non-negative integer support [0, 𝐾]. 
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4.2.1. The Infinite-Capacity Special Case 

Setting 𝐾 → ∞ retrieves the QLD of the infinite – capacity M/GE/1 queue 

subject to extended Morse balking defined by 

 

 

𝑝𝑛 =

{
 
 
 

 
 
 
𝑝0,                                                                              𝑛 = 0

𝑝0

(𝜏𝑞
−(
𝐶𝑠
2−1
2

)
)(𝜆𝑞

(
𝐶𝑠
2−1
2

)
)

𝑛

𝑞
𝑛(𝑛−1)

2

∏ (𝜆𝑞
(
𝐶𝑠
2−1
2

)
𝑞𝑖+1(1 − 𝜏) + 𝜏𝜇)𝑛−1

𝑖=0

, 𝑛 = 1,2,3…
 , (4.14) 

 

which is analogously conjectured to be a special case of the GdHN (3.9). 

 

4.2.2. The Exponential Service Special Case 

For exponential service, 𝐶𝑠
2 = 1.0, which implies 𝜏 = 1.0 from (4.2).  Applying 

this condition to the QLD (4.11) reduces it to that of the M/M/1/K queue 

subject to Morse balking, i.e. the dHNT ME QLD (Shah et al. 2010).  Setting 

𝐶𝑠
2 = 1.0 in (4.14) results in the QLD of the M/M/1 queue subject to Morse 

balking, i.e. the dHN ME QLD (2.32). 
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4.2.3. The Non-Balking Special Case 

Setting 𝑞(𝑛) = 1, ∀𝑛 implies no balking and the QLD (4.11) reduces to that of 

the ordinary M/GE/1/K queue, the GGeoT (2.24).  Similarly, applying the 

condition, 𝑞(𝑛) = 1, ∀𝑛 in (4.14) yields the GGeo ME QLD (2.19). 

 

4.3. Case Study: The Evaluation of an ME Performance 

Model of Congestion Management in Communication 

Networks 

In this section, the M/GE/1/K queue subject to extended Morse balking is 

exploited as an ME performance model of IP-based network nodes featuring 

static or dynamic packet dropping congestion management mechanisms. 

Queues subject to arrival balking are naturally seen to model 

admission/dropping policies at service centres including nodes (i.e. routers) 

in communication networks (Liu 2007; Boxma and Prabhu 2009).  In those 

models, the balking operation is re-interpreted as the node’s packet dropping 

mechanism whereby the scheduler/gateway decides, depending on the level 

of congestion, whether or not to drop a packet arrival.  On the other hand, 

the customer joining policy is re-interpreted as the node admission scheme. 

Congestion is the state of a network whose input traffic is greater than its 

capacity.  It is a network scenario characterised by heavily populated queues 

and long delays. 
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Packet dropping (also referred to as active queue management (AQM)) is 

the most common method by which network congestion management is 

conducted.  The two approaches of congestion management are congestion 

control and recovery (reactive) and congestion avoidance (pro-active).  

Rather than control congestion after its onset, congestion avoidance aims to 

circumvent this eventuality altogether by taking proactive steps to detect and 

combat congestion early.  It aims to keep packet-transfer delay low by 

maintaining queue lengths at suitable levels while enabling sufficient 

throughput to traverse the network i.e. it aims to achieve a desirable delay – 

throughput trade-off (Labrador and Banerjee 1999). 

In this thesis, packet dropping policies (PDP’s) in the IP networking context 

are studied. 

Based on the re-interpretation of the balking operation as packet dropping in 

communication network nodes, the extended Morse balking function is re-

interpreted as a PDP, namely the extended Morse PDP.  The extended 

Morse PDP can be derived from the extended Morse joining function (4.10) 

and is defined as 

 

1 − 𝑞(𝑛) =

{
 
 

 
 

0.0, 𝑛 = 0

1 − 𝑞
(
𝐶𝑠
2−1
2

)
𝑞𝑛, 𝑛 = 1,2,3…𝐾 − 1

1.0, 𝑛 = 𝐾

 (4.15) 
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where 𝑛 is the instantaneous node queue length, 𝐶𝑠
2 is the SCOV of node 

service durations, 𝐾 is the node capacity and 𝑞, 0 < 𝑞 < 1 is considered to be 

a performance tuning parameter set by the node scheduler to achieve 

desired delay-throughput trade-offs. 

As in the case of the joining probabilities defined by (4.10), packet dropping 

in the extended Morse PDP model (4.15) depends on the conditional 

average instantaneous workload of the queue in the following way: The node 

scheduler drops packets, on arrival, with probability, (1 − 𝑞(𝑛)), defined by 

the extended Morse packet dropping function (4.15) dependent on 𝑛, 𝐶𝑠
2 and 

𝑞.  Assuming that values of the average prospective arrival rate to the node, 

𝜆, the mean node service rate, 𝜇 and 𝐶𝑠
2 can be obtained, desired delay-

throughput trade-offs can be achieved by appropriately specifying 𝑞. 

The extended Morse PDP is proposed as a model of the class of 

instantaneous, random early drop PDP’s.  The properties, strengths and 

limitations of this class of PDP’s are discussed below. 

The dropping of packets is used as a congestion avoidance technique where 

(pure) packet marking is unsupported such as in the TCP transmission 

protocol.  In TCP, transmission sources infer existence of incipient 

congestion via the round-trip timeout mechanism and consequently reduce 

their transmission window size or transmission rate (as appropriate).  In pure 

packet marking on the other hand, the source is notified to reduce the 

window for that connection by setting a bit in a packet header.  Clearly, 

network resources are wasted in the packet dropping approach as opposed 

to packet marking however early dropping (a feature of the extended Morse 
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PDP), in the first instance, avoids the potentially greater packet loss that 

would otherwise be experienced under the standard droptail (DT) policy.  In 

the DT policy, all packets are dropped after the queue size reaches a set 

threshold value.  This causes synchronised reduction in sending rates 

among concurrent flows which in turn results in periods of inefficient link 

utilisation, a second effect avoided by early dropping.  Thus early dropping 

addresses network congestion preventatively rather than reactively (Floyd 

and Jacobson 1993). 

Random dropping, as occurs in the extended Morse PDP, facilitates a fairer 

admission policy by dropping more packets the heavier the user, thus 

inadvertently targeting senders proportionally to their bandwidth usage.  A 

positive side-effect of such inadvertent targeted dropping is the minimisation 

of node under-utilisation. 

Moreover, instantaneous queue length policies, such as the extended Morse 

PDP, avoid the overhead due to processing the average queue lengths for 

example the exponential weighted moving average (EWMA) used in some 

congestion avoidance mechanisms.  The EWMA is required to be updated 

after each arrival in the Random Early Detection (RED) congestion 

avoidance mechanism (Floyd and Jacobson 1993).  It is for this reason also 

that the instantaneous DT mechanism has been favoured as a PDP 

(Iannaccone et al. 2001).  On the other hand, instantaneous policies exhibit 

bias against bursty or temporal heavy traffic which motivated proposals of 

RED and related algorithms (Floyd and Jacobson 1993). 
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PDP’s with gentle slopes such as Gentle Random Early Detection - 

Instantaneous (GRED-I) (Iannaccone et al. 2001) and the extended Morse 

PDP (cf., Fig. 7 and Fig. 8) have advantages in terms of consecutive losses 

when contrasted with profiles that have large jumps such as DT and RED.  It 

is highly likely that the jump in the dropping profile results in packets being 

dropped from many different connections consecutively, causing the 

undesirable effect of network resource under-utilisation due to 

synchronisation.  Spreading the losses yields better performance as the 

latter effect is avoided. 

The following graphs (Fig. 7) illustrate profiles of the extended Morse packet 

dropping function for increasing 𝑛, 𝐶𝑠
2 and 𝑞 in the context of the M/G/1/K 

queue subject to packet dropping under the extended Morse PDP. 
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Fig. 7.  Profiles of the extended Morse packet dropping function in the 

context of the M/G/1/K queue subject to packet dropping under the extended 

Morse PDP. 

 

The above profiles immediately illustrate that under the extended Morse 

PDP, the probability with which prospective arrivals are dropped increases 

with the instantaneous queue length and/or values of 𝐶𝑠
2 and decreases with 

increasing 𝑞.  The variation of dropping probability with 𝐶𝑠
2 corresponds to the 

change in average delay (i.e. residence time) in the ordinary M/G/1/K queue, 

which in general increases with increasing 𝐶𝑠
2, as observed in the case of GE 

service times.  Therefore appropriately increasing packet drop probabilities 

with increasing 𝐶𝑠
2 in the M/G/1/K queue subject to packet dropping would 

have the desired effect of restricting the average delays to required levels.  
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The graphs also show that under the extended Morse PDP, arrivals to an 

empty queue are always admitted. 

In addition to the properties described above, the extended Morse PDP 

(4.15) satisfies other characteristics of practical PDP’s including those 

identified in (Labrador and Banerjee 1999), thus further establishing its 

usefulness as a PDP model.  The properties are summarised below 

collectively: 

 Monotonically increasing (i.e. different combinations of strictly increasing 

and non-decreasing). 

 Fairness – the extended Morse PDP is a fair policy which is unbiased 

towards particular connections due to its probabilistic nature however it is 

less accommodating of traffic bursts or temporal heavy traffic due to its 

use of instantaneous instead of moving average queue length. 

 Simplicity – the dropping probability in the extended Morse PDP requires 

less computation than the moving average queue length PDP’s and 

hence processing overheads are lower and its operational speed greater 

at the expense of bias against temporal heavy traffic. 

 Flexibility – the extended Morse PDP can be set up to behave in either a 

static or dynamic manner, the former being simpler but providing poorer 

overall performance results.  In the static context, a fixed criterion, for 

example anticipated hourly traffic loads from previous network 

measurements can be used to set the performance tuning parameter, 𝑞 in 

(4.15) to achieve an anticipated delay – throughput trade-off.  On the 
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other hand 𝑞 can be set dynamically depending on changes in 𝜆, 𝜇 and/or 

𝐶𝑠
2 to achieve a desired trade-off in real-time. 

 Global Synchronisation – the extended Morse PDP counters global 

synchronisation through connection-independent probabilistic dropping.  

In addition, due to its gentle dropping profile (cf., (4.15), Fig. 7 and Fig. 8), 

the global synchronisation associated with jumps present in some PDP’s 

is avoided. 

 Scalability – the absence of per-connection state information in the 

extended Morse PDP renders it superior, with respect to scalability, to 

PDP’s which store such information.  It is not limited by the consequential 

overheads or performance degradation when implemented across 

expanding networks. 

Thus correspondences have been identified between the extended Morse 

PDP and instantaneous, random early drop congestion avoidance 

mechanisms.  And other connections have been drawn between properties 

of the extended Morse PDP and those of practical PDP’s.  However, a 

limitation of the extended Morse PDP as a practical PDP is the absence of a 

lower threshold and consequently packet dropping from queue occupancy of 

one.  This would raise false alarms of incipient congestion resulting in 

reduced throughput through nodes than would otherwise be obtained.  

Nevertheless, adjusting 𝑞 enables average dropping rates and consequently 

average queue performance levels to be obtained that are comparable to the 

case when PDP’s comprising lower thresholds are used (as demonstrated 

below). 
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Hence the M/GE/1/K queue subject to extended Morse balking is submitted 

as a suitable ME performance model of network nodes featuring packet 

dropping of the instantaneous, random early drop type. 

Profiles resulting from the M/GE/1/K queue subject to different PDP’s are 

compared in Fig. 8 below.  Three instantaneous, random, early drop – type 

PDP’s and the DT policy are compared under common mean loss (i.e. total 

dropping and blocking) rate: GRED-I, Early Random Drop (ERD) (Floyd and 

Jacobson 1993), extended Morse and DT PDP’s.  Common values of 𝜆, 𝜇, 

𝐶𝑠
2 and K were used while each dropping function’s(’) parameter(s) 

was(were) sought by minimising the absolute difference between the loss 

rate experienced under GRED-I and that under each of the remaining PDP’s.  

The queue capacity, 𝐾 = 20 was chosen based on proposals for optimal 

buffer requirements in high speed routers (Wischik 2005). 

The GRED-I PDP parameter values given by 

 𝐿𝑜𝑤𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑇𝐿 = ‖0.15𝐾‖, (4.16) 

 

 𝑈𝑝𝑝𝑒𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑇𝑈 = ‖0.65𝐾‖, (4.17) 

 

 
𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 1 =

0.1

𝑇𝑈 − 𝑇𝐿
 (4.18) 

and 

 
𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 2 =

0.9

𝑇𝑈
 (4.19) 
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were derived from (Iannaccone et al. 2001). 

Fig. 8.  Comparison of dropping sequence and function profiles resulting 

from the M/GE/1/K queue subject to four different PDP’s under common loss 

(i.e. total dropping and blocking) rate. 

 

Below, a performance evaluation study is carried out on the M/GE/1/K queue 

subject to the extended Morse PDP.  To this end, three sets of experiments, 

namely Experiment Set I – III, (illustrated in Fig. 9 - Fig. 11) are conducted to 

study the variation of mean delay with 𝜆 and throughput, 𝜆𝐸[𝑞(𝑛)] under 

common 𝜇 and 𝐾 and increasing values of 𝜆, 𝜆𝐸[𝑞(𝑛)], 𝐶𝑠
2 and/or 𝑞. 

In Experiment Set I (Fig. 9), mean delay is observed as 𝜆 is increased for 

different values of 𝐶𝑠
2 and fixed 𝑞.  Each experiment is repeated for 

increasing values of 𝑞.  In the second set, Experiment Set II (Fig. 10), mean 
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delay is observed for different values of 𝐶𝑠
2, as 𝜆𝐸[𝑞(𝑛)] is increased.  

𝜆𝐸[𝑞(𝑛)] is increased by increasing 𝜆 while 𝑞 is fixed.  As in the first set, 

each experiment is repeated for increasing values of 𝑞.  Finally, Experiment 

Set III (Fig. 11) investigates the variation in mean delay, for different values 

of 𝐶𝑠
2 and increasing 𝜆𝐸[𝑞(𝑛)] by increasing 𝑞 while maintaining consistent 𝜆 

to the queue.  Each experiment in the last set is repeated for increasing 

values of 𝜆. 

Fig. 9.  Mean delay of the M/GE/1/K queue subject to the extended Morse 

PDP plotted against increasing 𝝀 for fixed 𝒒 (Experiment Set I). 
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As is expected, for fixed 𝐶𝑠
2 and 𝑞, the mean delay is larger for increasing 𝜆 

(𝜆 ≥ 0.1) as the mean throughput increases.  Secondly, the relatively larger 

delay for each successive experiment in the set is attributable to the larger 𝑞 

which corresponds to higher packet admission probabilities and 

consequently greater throughput. 

A third observation especially evident in the first and second experiments of 

Set I, namely the reduction in mean delay for increasing 𝐶𝑠
2, is in stark 

contrast to that for ordinary queues characterised by i.i.d. GE inter-arrival 

and/or service times.  In the ordinary GE queues, it was observed for the 

most part that increases in 𝐶2 resulted in degraded performance (Kouvatsos 

and Awan 2003).  This different behaviour exhibited in the current model is 

attributed to greater dropping probability for increasing 𝐶𝑠
2 under the 

extended Morse PDP (4.15), resulting in lower throughput and therefore 

lower delay.  This different behaviour is observed to occur, at least in part, 

over a large range of values of 𝑞, 𝑞 ≤ 0.95.  As expected, the variation in 

mean delay illustrated by the last two graphs, where 𝑞 → 1.0, conforms to 

that of the ordinary M/GE/1/K queue. 
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The performance of the ordinary M/GE/1/K queue can be explained as 

follows: A positive linear relationship exists between 𝐶𝑠
2 of the GE service-

time distribution and the corresponding mean size of batches completing 

service (Kouvatsos 1994).  Therefore, for the same overall departure rate, 

the larger the 𝐶𝑠
2, the larger the mean size of batches served.  Larger 

batches in turn require longer to form than smaller ones for the same arrival 

rate and thus, on the whole, customers will remain in the queue for a 

comparatively greater length of time. 

In the fourth experiment, for lower values of 𝐶𝑠
2, the different behaviour 

resumes when 𝜆 is greater than around 18.  This is because at these values 

of 𝑞 (i.e. 𝑞 ≈ 0.95) and 𝜆 (i.e. 𝜆 ≈ 18), throughput decreases as 𝐶𝑠
2 increases 

at a much greater rate than at lower values of 𝜆.  Hence, the significantly 

greater throughput associated with smaller 𝐶𝑠
2’s results in greater delay.  

Whereas at lower values of 𝜆, the longer times required to form larger batch 

sizes (marked by larger 𝐶𝑠
2’s) outweighs the delay-impact of slightly greater 

throughput for smaller 𝐶𝑠
2’s. 

However, further explanation for the different behaviour is required as 

illustrated by the results of Experiment Set II (Fig. 10).  These show that the 

behaviour persists even for the same throughput.  That is to say that the 

lower throughput as a result of greater packet dropping is an insufficient 

explanation in itself for reduced delay as 𝐶𝑠
2 increases. 
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Fig. 10.  Mean delay of the M/GE/1/K queue subject to the extended Morse 

PDP plotted against increasing throughput for fixed 𝒒 (Experiment Set II). 

 

 

In Experiment Set II the abscissae with common throughput are achieved by 

varying 𝜆.  The persistence of reduced mean delay for increasing 𝐶𝑠
2 is 

further explained by the relatively greater probabilities of lower queue 

occupancy levels, the higher the value of 𝐶𝑠
2 (for fixed 𝑞) owing to the profile 

of the extended Morse PDP.  This condition corresponds to the formation of 

relatively smaller departing batch sizes on the whole and therefore lower 

average delays experienced by individual customers.  This effect gradually 

decreases as the value of 𝑞 increases and the model’s performance 

approaches that of the ordinary M/GE/1/K queue as 𝑞 → 1.0. 
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Nevertheless the latter two sets of experiments illustrate the adverse impact 

on the mean delay of the congestion management model due to increases in 

𝜆, 𝜆𝐸[𝑞(𝑛)] and/or 𝑞.  For most values of 𝑞 however, delay improvements are 

experienced with increasing 𝐶𝑠
2 (while 𝑞 is fixed) at the expense of greater 

packet loss.  This implies that if the variability of packet lengths (and thus 𝐶𝑠
2) 

increased, then in order to maintain a constant throughput, the node 

scheduler would need to increase 𝑞. 

Fig. 11. Mean delay of the M/GE/1/K queue subject to the extended Morse 

PDP plotted against increasing throughput for fixed 𝝀 (Experiment Set III). 
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numerical solutions for the cases 𝐶𝑠
2 > 20.0 within the strict tolerance levels 

detailed in subsection 4.2.  Nonetheless, the pattern observed for this limited 

range continues for the cases 𝐶𝑠
2 > 20.0. 

The outcome bears similarities to that of the ordinary case i.e. increasing 

mean delays for increasing 𝐶𝑠
2.  This behaviour is attributed to the greater 

likelihood of larger queue occupancies due to the effect of increasing values 

of 𝑞 (cf., (4.15)).  The consequence of this is the formation of relatively larger 

departing batch sizes on average thus imposing longer average delays per 

customer.  Therefore from Experiment Sets II and III it can be deduced that 

the larger departing batches and implied greater range of queue occupancy 

levels are achieved more readily by increasing 𝑞 than by increasing 𝜆. 

In this latter set of experiments it is observed again that the effect of 

increasing 𝜆, 𝜆𝐸[𝑞(𝑛)] and/or 𝑞 is performance degradation in terms of the 

mean delay. 

Overall, the three sets of experiments demonstrate how varying the 

performance tuning parameter, 𝑞 enables different delay – throughput trade-

offs to be achieved for different values of 𝐶𝑠
2, 𝜆 and 𝜆𝐸[𝑞(𝑛)]. 
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5. The GE/GE/1/K Queue 

Subject to Balking 

In this chapter, the QLD’s of the GE/GE/1/K queue subject to population-

dependent balking under three different composite batch balking and batch 

blocking (batch balk-block) policies are solved.  Subsequently, the QLD’s of 

the latter systems under extended Morse balking are conjectured to be 

special cases of the GdHNT ME distribution. 

Following the derivation in Chapter 4 of the QLD of the M/GE/1/K queue 

subject to extended Morse balking and its conjectured equivalence to the 

GdHNT discrete ME distribution, it was decided to investigate the ME 

characteristics of a generalisation of this latter queueing system.  The 

generalisation is achieved via an enhancement from the Poisson prospective 

arrival process to the bursty compound Poisson prospective arrival process 

with geometrically distributed batch sizes (characterised by i.i.d. GE 

prospective inter-arrival times).  The Poisson process as a model for 

communication network traffic has been found to result in optimistic 

performance predictions.  In response to this, the bursty compound Poisson 

process with geometrically distributed batch sizes has been proposed as a 

more realistic traffic model through its representation of the variability of 

inter-event times in addition to their mean.  The latter traffic model has been 

found to yield more realistic queueing system performance predictions than 

the Poisson process (Kouvatsos 1986a; Kouvatsos 1988; Kouvatsos 1994). 
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5.1. The QLD of the GE/GE/1/K Queue Subject to 

Population-Dependent Balking 

In this section, the stationary QLD’s (from a random observer’s point of view) 

of the GE/GE/1/K queue subject to population-dependent balking under three 

different batch balk-block policies are derived via GB analysis of the queues’ 

Markov chain models.  The GE/GE/1/K queue subject to balking is 

characterised by a compound Poisson prospective arrival process with 

geometrically distributed batch sizes (and thus i.i.d. GE prospective inter-

arrival times with mean rate, 𝜆 and SCOV, 𝐶𝑎
2) subject to balking, i.i.d. GE 

service times (with mean rate, 𝜇 and SCOV, 𝐶𝑠
2) and finite capacity, K. 

With respect to batch prospective arrivals subject to balking, members of an 

arriving batch can behave either uniformly (Ke 2007) or autonomously 

(Artalejo et al. 2005).  When members of a batch behave uniformly, the 

entire batch joins or balks as a single entity (referred to in this thesis as 

complete batch balking).  Whereas in the second case, each member of a 

batch decides autonomously whether to join or balk from the queue (referred 

to in this thesis as independent batch balking).  In (Artalejo et al. 2005), 

independent batch balking with a constant balking probability for customers 

of all batches is used, irrespective of instantaneous queue size.  To the best 

of the author’s knowledge, independent batch balking with population-

dependent balking probabilities (studied below) has not been analysed 

previously in the literature except by the author of this thesis in (Shah and 

Kouvatsos 2011; Shah and Kouvatsos 2013). 
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Two batch blocking policies have been widely adopted in the literature, 

namely complete and partial batch blocking (Manfield and Tran-Gia 1982; 

Kaufman and Rege 1996).  In complete batch blocking, the whole arriving 

batch is rejected if the available queue capacity is insufficient to 

accommodate it entirely.  On the other hand in partial batch blocking, as 

many customers from a batch prospective arrival as can be accommodated 

fill the available queue capacity with the remaining customers being rejected. 

Combinations of the above batch balking and batch blocking policies have 

been studied in the past for example in (Choudhury et al. 1994).  They 

analysed the multiple class MG(n)/M/1/K resource-sharing model 

characterised by a compound Poisson arrival process with generally 

distributed batch sizes and with state-dependent arrival rates, i.i.d. 

exponential service times and finite capacity, K subject to either the complete 

or partial batch blocking policies.  State-dependent arrival rates were 

considered to be uniform between all the customers in a batch thus 

rendering the model equivalent to the MG/M/1/K queue subject to complete 

batch balking and either complete or partial batch blocking. 

The three batch balk-block policies analysed in this thesis are described 

below: 

 

1. Complete batch balking and complete batch blocking (Policy I) 

The joining/balking and blocking behaviour of each of the members of a 

batch is identical resulting in the batch behaving as a single entity.  The 
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entire batch either proceeds to join the queue or balks following a decision to 

join or balk respectively.  If there is insufficient capacity for the entire batch to 

join then the whole batch is rejected.  This policy can be interpreted as unity 

between members of a batch being preserved throughout the system 

operation regardless of the level of resource availability. 

2. Complete batch balking and partial batch blocking (Policy II) 

When there is sufficient capacity for the entire batch, the joining/balking 

behaviour of each of the members of a batch is identical.  However, when 

there is insufficient capacity for the entire batch, the uniform behaviour 

continues solely in the case of the decision to balk.  Following a join decision, 

as many customers as can be accommodated enter the queue successively 

from the head of the batch and the remaining customers are blocked. 

3. Independent batch balking and partial batch blocking (Policy III) 

Members of a batch behave independently with respect to joining/balking 

such that each successive member of a batch makes an autonomous 

decision to join or balk.  Individual batch members which decide 

(autonomously) to join the queue proceed to occupy successive positions in 

the queue until it becomes full.  After this, subsequent members are blocked.  

Under this policy, customer autonomy is upheld irrespective of the level of 

resource availability. 

The state transition rates, 𝑅𝑖𝑗 ’s of the Markov chain models of the GE/GE/1/K 

queue subject to population-dependent balking under the above three 

policies are presented below.  It is assumed that all the members of a batch 
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‘see’ the same instantaneous queue size, 𝑛.  Hence all the members of a 

batch which elect to join the queue, do so with the same conditional 

probability defined by the population-dependent joining function, 𝑞(𝑛), 𝑛 =

0,1,2…𝐾 − 1.  Customers which balk and those which are blocked are 

deemed to be lost from the viewpoint of the queue. 

The downward state transition rates of the Markov chain models associated 

with the GE/GE/1/K queue subject to population-dependent balking under 

each of the three batch balk-block policies above are identical to each other 

and to those associated with the M/GE/1/K queue subject to population-

dependent balking, and thus are given by (4.4) and (4.5). 

The corresponding upward state transition rates are derived below and 

notably, these can easily be extended to characterise the Markov chain 

models of the MG/GE/1/K queue subject to population-dependent balking 

under each of the above three batch balk-block policies.  The latter queueing 

system is marked by a compound Poisson prospective arrival process with 

generally distributed batch sizes, i.i.d. GE service times and finite capacity, 

K.  This can be achieved by simply replacing the geometric batch size 

distribution, 𝜎(1 − 𝜎)𝑖−1, 𝑖 = 1,2,3… with the desired one. 

1. Complete batch balking and complete batch blocking (Policy I) 

 

𝑅𝑖𝑗 = (
𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑏𝑎𝑡𝑐ℎ
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒

)  × 𝑃(
𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙
 𝑗𝑜𝑖𝑛𝑠 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒
𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖

)× 𝑃 (
𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑠
 𝑜𝑓 𝑠𝑖𝑧𝑒 (𝑗 − 𝑖)

), 

𝑖 = 1,2,3…𝐾 − 1, 𝑗 = 𝑖 + 1, 𝑖 + 2, 𝑖 + 3…𝐾 

(5.1) 
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= (𝜎𝜆)𝑞(𝑖)𝜎(1 − 𝜎)𝑗−𝑖−1 

 

where 𝜎 is the inverse of the mean of arriving batch sizes and it can be 

defined in terms of 𝐶𝑎
2 as (Kouvatsos 1994) 

 

 
𝜎 =

2

1 + 𝐶𝑎2
 . (5.2) 

 

𝑅0𝑗 = (
𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑏𝑎𝑡𝑐ℎ
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒

) × 𝑃 (
𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙
 𝑗𝑜𝑖𝑛𝑠 𝑡ℎ𝑒 𝑒𝑚𝑝𝑡𝑦

𝑞𝑢𝑒𝑢𝑒
)

× 𝑃(

𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑠 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑘, 𝑘 = 𝑗, 𝑗 + 1, 𝑗 + 2…𝐾,

𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡  (𝑘 − 𝑗) 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑒𝑥𝑖𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒 𝑣𝑖𝑎
𝑡ℎ𝑒 𝑧𝑒𝑟𝑜 𝑏𝑟𝑎𝑛𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒
𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑗 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑟𝑒𝑠𝑖𝑑𝑖𝑛𝑔 𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒

), 

𝑗 = 1,2,3…𝐾 − 1 

= (𝜎𝜆)𝑞(0)∑((1 − 𝜏)𝑘−𝑗𝜏𝜎(1 − 𝜎)𝑘−1)

𝐾

𝑘=𝑗

 

=
𝜎2𝜆𝜏𝑞(0)(1 − 𝜎)𝑗−1

1 − (1 − 𝜏)(1 − 𝜎)
(1 − ((1 − 𝜏)(1 − 𝜎))

(𝐾−𝑗+1)
) 

(5.3) 

 

𝑅0𝐾 = (
𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑏𝑎𝑡𝑐ℎ
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒

)  × 𝑃 (
𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙
 𝑗𝑜𝑖𝑛𝑠 𝑡ℎ𝑒 𝑒𝑚𝑝𝑡𝑦

𝑞𝑢𝑒𝑢𝑒
) × 𝑃 (

𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑠
𝑜𝑓 𝑠𝑖𝑧𝑒 𝐾

) 

= (𝜎𝜆)𝑞(0)𝜏𝜎(1 − 𝜎)𝐾−1 

(5.4) 
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2. Complete batch balking and partial batch blocking (Policy II) 

 

𝑅𝑖𝑗 = (
𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑏𝑎𝑡𝑐ℎ
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒

) × 𝑃 (
𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙
 𝑗𝑜𝑖𝑛𝑠 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒
𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖

) × 𝑃 (
𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑠
 𝑜𝑓 𝑠𝑖𝑧𝑒 (𝑗 − 𝑖)

), 

𝑖 = 1,2,3…𝐾 − 2, 𝑗 =  𝑖 + 1, 𝑖 + 2, 𝑖 + 3…𝐾 − 1 

= (𝜎𝜆)𝑞(𝑖)𝜎(1 − 𝜎)𝑗−𝑖−1 

(5.5) 

 

𝑅𝑖𝐾 = (
𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑏𝑎𝑡𝑐ℎ
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒

) × 𝑃 (
𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙
 𝑗𝑜𝑖𝑛𝑠 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒
𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖

)

× 𝑃 (
𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑠 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑘

𝑘 = 𝐾 − 𝑖, 𝐾 − 𝑖 + 1, 𝐾 − 𝑖 + 2,…∞
) , 𝑖 = 1,2,3…𝐾− 1 

= (𝜎𝜆)𝑞(𝑖) ∑ (𝜎(1 − 𝜎)𝑘−1)

∞

𝑘=𝐾−𝑖

 

= (𝜎𝜆)𝑞(𝑖)(1 − 𝜎)𝐾−𝑖−1 

(5.6) 

 

𝑅0𝑗 = (
𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑏𝑎𝑡𝑐ℎ
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒

) × 𝑃 (
𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙
 𝑗𝑜𝑖𝑛𝑠 𝑡ℎ𝑒 𝑒𝑚𝑝𝑡𝑦

𝑞𝑢𝑒𝑢𝑒
)

× 𝑃(

𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑠 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑘, 𝑘 = 𝑗, 𝑗 + 1, 𝑗 + 2…∞,

𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡  (𝑘 − 𝑗) 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑒𝑥𝑖𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒 𝑣𝑖𝑎
𝑡ℎ𝑒 𝑧𝑒𝑟𝑜 𝑏𝑟𝑎𝑛𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒
𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑗 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑟𝑒𝑠𝑖𝑑𝑖𝑛𝑔 𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒

), 

𝑗 = 1,2,3…𝐾 − 1 

= (𝜎𝜆)𝑞(0)∑((1 − 𝜏)𝑘−𝑗𝜏𝜎(1 − 𝜎)𝑘−1)

∞

𝑘=𝑗

 

=
(𝜎𝜆)𝑞(0)𝜏𝜎(1 − 𝜎)𝑗−1

1 − (1 − 𝜏)(1 − 𝜎)
 

(5.7) 

 



96 
 

𝑅0𝐾 = (
𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑏𝑎𝑡𝑐ℎ
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒

)  × 𝑃 (
𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙
 𝑗𝑜𝑖𝑛𝑠 𝑡ℎ𝑒 𝑒𝑚𝑝𝑡𝑦

𝑞𝑢𝑒𝑢𝑒
)

× 𝑃

(

 
 

𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑠 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑘, 𝑘 = 𝐾, 𝐾 + 1, 𝐾 + 2…∞,𝑤𝑖𝑡ℎ 

𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑗, 𝑗 = 0,1,2… (𝑘 − 𝐾) 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑒𝑥𝑖𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒
 𝑣𝑖𝑎 𝑡ℎ𝑒 𝑧𝑒𝑟𝑜 𝑏𝑟𝑎𝑛𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠,

𝐾 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑟𝑒𝑠𝑖𝑑𝑖𝑛𝑔 𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 

𝑚𝑒𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑡𝑐ℎ 𝑏𝑒𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘𝑒𝑑 )

 
 

 

=  (𝜎𝜆)𝑞(0)∑ (∑((1 − 𝜏)𝑗𝜏𝜎(1− 𝜎)𝑘−1)

𝑘−𝐾

𝑗=0

)

∞

𝑘=𝐾

 

=
(𝜎𝜆)𝑞(0)𝜏(1 − 𝜎)𝐾−1

1 − (1 − 𝜏)(1 − 𝜎)
 

(5.8) 

 

3. Independent batch balking and partial batch blocking (Policy III) 

 

𝑅𝑖𝑗 = (
𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑏𝑎𝑡𝑐ℎ

𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒
)  × 𝑃(

𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑠 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑘,

 𝑘 = 𝑗 − 𝑖, 𝑗 − 𝑖 + 1, 𝑗 − 𝑖 + 2, …∞

𝑎𝑛𝑑 (𝑗 − 𝑖) 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑘 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠
𝑗𝑜𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖

), 

𝑖 = 1,2,3…𝐾 − 1, 𝑗 =  𝑖 + 1, 𝑖 + 2, 𝑖 + 3…𝐾− 1 

= (𝜎𝜆) ∑ 𝜎(1 − 𝜎)𝑘−1 ((
𝑘

𝑗 − 𝑖
) 𝑞(𝑖)𝑗−𝑖(1 − 𝑞(𝑖))

𝑘−(𝑗−𝑖)
)

∞

𝑘=𝑗−𝑖

, 

0.0 < 𝑞(𝑖) < 1.0 

(5.9) 

 

𝑅𝑖𝐾 = (
𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑏𝑎𝑡𝑐ℎ
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒

)  × 𝑃

(

 
 
 

𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑠 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑘,
 𝑘 = 𝐾− 𝑖,𝐾− 𝑖+ 1,𝐾− 𝑖+ 2,…∞
𝑎𝑛𝑑 (𝐾− 𝑖) 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑘 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠
𝑗𝑜𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖,𝑤𝑖𝑡ℎ 𝑡ℎ𝑒
𝑟𝑒𝑠𝑡 𝑏𝑎𝑙𝑘𝑖𝑛𝑔 𝑜𝑟 𝑏𝑒𝑖𝑛𝑔 𝑏𝑙𝑜𝑐𝑘𝑒𝑑 )

 
 
 
, 

𝑖 = 1,2,3…𝐾 − 1 

= (𝜎𝜆) ((𝑞(𝑖))
𝐾−𝑖

) ∑ 𝜎(1 − 𝜎)𝑘−1 ∑ ((1 − 𝑞(𝑖))
𝑚𝑖+𝑚𝑖+1+⋯+𝑚𝐾−1

)
𝑚𝑖,𝑚𝑖+1…𝑚𝐾:

𝑚𝑖+𝑚𝑖+1+⋯+𝑚𝐾=𝑘−(𝐾−𝑖)

∞

𝑘=𝐾−𝑖

, 

(5.10) 
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0.0 < 𝑞(𝑖) < 1.0 

 

where the 𝑚𝑖 , 𝑚𝑖+1, … ,𝑚𝐾 ’s are the summands comprising compositions 

resulting from (𝑘 − (𝐾 − 𝑖)) into (𝐾 − 𝑖 + 1) parts.  In (Nijenhuis and Wilf 

1978), an algorithm, NEXCOM, is provided to efficiently generate 

compositions. 

 

𝑅0𝑗 = (
𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑏𝑎𝑡𝑐ℎ
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒

) × 𝑃

(

 
 

𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑠 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑘, 𝑘 = 𝑗, 𝑗 + 1, 𝑗 + 2…∞, 𝑜𝑓 𝑤ℎ𝑖𝑐ℎ 
(𝑗 + 𝑙), 𝑙 = 0,1,2… (𝑘 − 𝑗) 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑗𝑜𝑖𝑛 𝑎𝑛𝑑 (𝑘 − 𝑗 − 𝑙) 𝑏𝑎𝑙𝑘.

 𝑂𝑓 𝑡ℎ𝑜𝑠𝑒 (𝑗 + 𝑙) 𝑤ℎ𝑖𝑐ℎ 𝑗𝑜𝑖𝑛, 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑙 𝑒𝑥𝑖𝑡 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒 𝑣𝑖𝑎 𝑡ℎ𝑒  
𝑧𝑒𝑟𝑜 𝑏𝑟𝑎𝑛𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑗 

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑜𝑝𝑡 𝑡𝑜 𝑟𝑒𝑠𝑖𝑑𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒. )

 
 
, 

𝑗 = 1,2,3…𝐾 − 1 

= (𝜎𝜆)∑∑(1 − 𝜏)𝑙𝜏𝜎(1 − 𝜎)𝑘−1 ((
𝑘

𝑗 + 𝑙
) 𝑞(0)𝑗+𝑙(1 − 𝑞(0))

𝑘−𝑗−𝑙
) ,

𝑘−𝑗

𝑙=0

∞

𝑘=𝑗

 

 0.0 < 𝑞(0) < 1.0 

(5.11) 

 

𝑅0𝐾 = (
𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑏𝑎𝑡𝑐ℎ
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒

) × 𝑃

(

 
 

𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑠 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑘, 𝑘 = 𝐾,𝐾 + 1, 𝐾 + 2…∞, 𝑜𝑓 𝑤ℎ𝑖𝑐ℎ 
(𝐾 + 𝑙), 𝑙 = 0,1,2… (𝑘 − 𝐾) 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑗𝑜𝑖𝑛 𝑎𝑛𝑑 (𝑘 − 𝐾 − 𝑙) 𝑏𝑎𝑙𝑘 𝑜𝑟

𝑎𝑟𝑒 𝑏𝑙𝑜𝑐𝑘𝑒𝑑.  𝑂𝑓 𝑡ℎ𝑜𝑠𝑒 (𝐾 + 𝑙) 𝑤ℎ𝑖𝑐ℎ 𝑗𝑜𝑖𝑛, 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑙 𝑒𝑥𝑖𝑡 𝑡ℎ𝑒  
𝑞𝑢𝑒𝑢𝑒 𝑣𝑖𝑎 𝑡ℎ𝑒 𝑧𝑒𝑟𝑜 𝑏𝑟𝑎𝑛𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑎𝑛𝑑 
𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝐾 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑜𝑝𝑡 𝑡𝑜 𝑟𝑒𝑠𝑖𝑑𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒. )

 
 
, 

 

= (𝜎𝜆) ((𝑞(0))
𝐾+𝑙

)∑∑(1 − 𝜏)𝑙𝜏𝜎(1 − 𝜎)𝑘−1 ∑ ((1 − 𝑞(0))
𝑚0+𝑚1+⋯+𝑚𝐾−1

)
𝑚0,𝑚1…𝑚𝐾:

𝑚0+𝑚1+⋯+𝑚𝐾=𝑘−𝐾−𝑙

𝑘−𝐾

𝑙=0

∞

𝑘=𝐾

, 

 0.0 < 𝑞(0) < 1.0 

(5.12) 

 

where the 𝑚0, 𝑚1, … ,𝑚𝐾’s are the summands of compositions of (𝑘 − 𝐾 − 𝑙) 

into (𝐾 + 1) parts. 
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The system of GB equations (4.6) holds here and its solution in the context 

of the GE/GE/1/K queue subject to population-dependent balking under 

Policies I – III results in the following recursive (Policies I and III) and closed-

form (Policy II) QLD’s: 

1. QLD of the GE/GE/1/K queue subject to population-dependent balking 

under Policies I and III 

 

𝑝𝑛
𝐾 =

{
 
 
 
 
 

 
 
 
 
 

𝑝0
𝐾 , 𝑛 = 0

𝑝0
𝐾
(1 − 𝜏)𝑅01 + 𝜏∑ 𝑅0𝑗

𝐾
𝑗=1

𝜏𝜇 + (1 − 𝜏) ∑ 𝑅1𝑗
𝐾
𝑗=2

, 𝑛 = 1

(1 − 𝜏)∑ 𝑅𝑖𝑛𝑝𝑖
𝐾 + 𝑝𝑛−1

𝐾 (𝜏𝜇 + ∑ 𝑅𝑛−1,𝑗
𝐾
𝑗=𝑛 ) − ∑ 𝑅𝑖,𝑛−1𝑝𝑖

𝐾𝑛−2
𝑖=0

𝑛−1
𝑖=0

𝜏𝜇 + (1 − 𝜏) ∑ 𝑅𝑛𝑗
𝐾
𝑗=𝑛+1

, 𝑛 = 2,3,4…𝐾 − 1

∑ 𝑅𝑖𝐾𝑝𝑖
𝐾𝐾−1

𝑖=0

𝜏𝜇
, 𝑛 = 𝐾

 (5.13) 

 

where the 𝑅𝑖𝑗 ’s are given by (5.1) - (5.4) for Policy I and (5.9) - (5.12) for 

Policy III. 

2. QLD of the GE/GE/1/K queue subject to population-dependent balking 

under Policy II 

 

𝑝𝑛
𝐾 =

{
 
 
 
 

 
 
 
 

𝑝0
𝐾, 𝑛 = 0

𝑝0
𝐾

𝜎𝜆𝑞(0)𝜏

(𝜎𝜆𝑞(1)(1 − 𝜏) + 𝜏𝜇)
∏(

(1 − 𝜎)𝜏𝜇 + 𝜎𝜆𝑞(𝑖 − 1)

𝜎𝜆𝑞(𝑖)(1 − 𝜏) + 𝜏𝜇
) , 𝑛 = 1,2,3…𝐾 − 1

𝑛

𝑖=2

𝑝0
𝐾
1

𝜏𝜇
(
(1 − 𝜎)𝜏𝜇 + 𝜎𝜆𝑞(𝐾 − 1)

𝜎 + 𝜏(1 − 𝜎)
)(

𝜎𝜆𝑞(0)𝜏

𝜎𝜆𝑞(1)(1 − 𝜏) + 𝜏𝜇
)∏(

(1 − 𝜎)𝜏𝜇 + 𝜎𝜆𝑞(𝑖 − 1)

𝜎𝜆𝑞(𝑖)(1 − 𝜏) + 𝜏𝜇
) , 𝑛 = 𝐾

𝐾−1

𝑖=2

 (5.14) 
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5.1.1. Batch prospective arrivals subject to extended Morse 

balking 

In the Morse balking paradigm, the joining (and balking) probabilities are 

dependent on the (exact or average) instantaneous workload and average 

impatience of the customer population (cf., (2.28), (2.29) and (2.31)).  These 

probabilities are independent of the prospective arrival process.  Therefore, 

in the case of any prospective arrival process of single customers and i.i.d. 

general service times, the extended Morse joining probabilities are identical 

to those of the Poisson prospective arrival case defined by (4.9). 

Since the extended Morse joining probabilities are independent of the 

prospective arrival process, consider a general batch prospective arrival 

process, characterised by a general batch inter-arrival time distribution and 

general batch size distribution subject to extended Morse balking.  In the 

latter case under complete batch balking with complete or partial batch 

blocking (i.e. Policies I or II), based on the assumption that all members of a 

batch balk with identical probability (cf., Section 5.1), the parameter 𝛼 is re-

interpreted as the Morse average measure of impatience of customer 

batches, 𝛼𝐵.  The extended Morse joining function now becomes 

 

 

𝑞(𝑛) = {

1.0, 𝑛 = 0

𝑒
−
𝛼𝐵𝑛
𝜇 𝑒

−
𝛼𝐵
𝜇
(
𝐶𝑠
2−1
2

)
, 𝑛 = 1,2,3…

. (5.15) 
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In the case of batch prospective arrivals subject to extended Morse balking 

under independent batch balking with partial batch blocking (i.e. Policy III), 

since members of a batch elect to join or balk autonomously albeit with 

identical probabilities, the corresponding Morse average measure of 

impatience, 𝛼, applies to individual customers.  Hence in this case, the 

extended Morse joining function defined by (4.9) holds. 

Analogous to the estimation of 𝛼 in the context of single prospective arrivals 

(cf., Sections 2.3.1 and 4.1), the parameters 𝛼𝐵 and 𝛼 in the batch 

prospective arrival context may also be estimated numerically as shown 

below.  In the specific context of compound Poisson prospective arrivals with 

geometrically distributed batch sizes (characterised by i.i.d. GE prospective 

inter-arrival times) subject to extended Morse balking under Policies I, II or 

III, assuming knowledge of the loss (i.e. overall balking and blocking) rate of 

individual customers, 𝐿𝑅, 𝛼𝐵 (Policies I or II) or 𝛼 (Policy III) can be estimated 

by solving 

 

 
∑(∑ 𝑅𝑛,𝑛+𝑖

𝐾−𝑛

𝑖=1

)𝑝𝑛
𝐾

𝐾−1

𝑛=0

− (𝜆 − 𝐿𝑅) = 0 (5.16) 

 

for 𝛼𝐵 or 𝛼, where the upward state-transition rates, 𝑅𝑖𝑗 ’s are given by (5.1) - 

(5.12) (as appropriate for each of the policies) and the corresponding 𝑞(𝑛)’s 

are given by (5.15) (Policies I or II) or (4.9) (Policy III) respectively.  

Alternatively, 𝛼𝐵 or 𝛼 can be estimated by setting up analogous equations 

using other appropriate metrics. 
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Mathematical definitions of the parameters 𝛼𝐵 and 𝛼 in the context of batch 

prospective arrivals and i.i.d. general service times are presented in 

Appendix B. 

 

5.2. Discussion of the Results 

In this section, for the purpose of ME performance modelling and prediction 

of queueing systems, investigations are carried out to determine equivalence 

in distribution between the QLD’s of the GE/GE/1/K queue subject to 

extended Morse balking under the three different batch balk-block policies 

and their corresponding GdHNT ME inferences. 

Expressions for the QLD’s of the GE/GE/1/K queue subject to extended 

Morse balking under the three batch balk-block policies are obtained by 

substituting 𝑞(𝑛) with the extended Morse joining function (4.10), in (the 

appropriate upward state-transition rates of) (5.13), for Policies I and III, and 

(5.14), for Policy II, respectively.  As in the case of the M/GE/1/K queue 

subject to extended Morse balking (cf., Section 4.2), in this case too, 

equivalence in distribution between the QLD’s and corresponding ME 

distribution inferences cannot be concluded by observation alone.  Hence, 

equivalence in distribution was investigated numerically by an analogous 

procedure to that used for the M/GE/1/K queue subject to extended Morse 

balking (cf. Section 4.2).  Details of the investigation are as follows. 

For the experimentation, numerical QLD probabilities, 𝑝𝑛
𝐾⋆, 𝑛 = 0,1,2…𝐾, of 

the GE/GE/1/K queue subject to extended Morse balking under each of the 
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three batch balk-block policies were generated from the respective equations 

(5.13) and (5.14) with 𝑞(𝑛) specified as the extended Morse joining function 

(4.10) and different combinations of queue input parameter values from 

Table 3 below. 

 

Table 3.  Parameter values used in the validation of ME characteristics of the 

QLD’s of the GE/GE/1/K queue subject to extended Morse balking under 

Policies I – III. 

Parameter Value(s) 

𝜆 [10 20 30 40] 

𝜇 20 

𝐶𝑎
2,𝐶𝑠

2 [1 5 10 20 50 100 200 500] 

𝐾 [5 10 15 20] (Policies I & II) 

[5 10] (Policy III) 

𝑞 [0.3 0.6 0.9] 

 

Analogous to the earlier experimentation, an ‘experiment’ here refers to the 

generation of a single set of numerical QLD probabilities, 𝑝𝑛
𝐾⋆, 𝑛 = 0,1,2…𝐾, 

from a particular combination of queue input parameter values for the 

GE/GE/1/K queue subject to extended Morse balking under one of the batch 

balk-block policies.  It also includes the generation of the corresponding 

numerical GdHNT ME distribution inference, 𝑝𝑛
𝐾†, 𝑛 = 0,1,2, … , 𝐾.  By the 
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fundamental principle of counting, there are a total of 7680 combinations14 of 

queue input parameter values and hence a total of 7680 experiments were 

conducted.  From each of these numerical QLD’s, 𝑝𝑛
𝐾⋆, 𝑛 = 0,1,2…𝐾, values 

of the MQL, VQL,  𝑝0
𝐾⋆ and 𝑝𝐾

𝐾⋆ were either calculated or obtained directly.  

The latter values comprised the optimisation constraints, in addition to the 

normalisation condition, in the numerical constrained maximisation of 

Shannon’s entropy functional (2.1), yielding the corresponding numerical 

GdHNT distribution inference probabilities, 𝑝𝑛
𝐾†, 𝑛 = 0,1,2, … , 𝐾.  Finally, for 

each experiment the error, given by (4.13), was computed. 

The experiments were carried out in MATLAB version 7.10.0.499 (R2010a).  

The range of queue capacities used in the case of Policy III was smaller due 

to the memory and speed limitations of the PC used for the experiments.  

And therein lies the main weakness of the above solution of the QLD of the 

GE/GE/1/K queue subject to balking under Policy III, namely the high 

computational demands of its implementation.  Both the constraints and 

change in objective function were satisfied to within the default tolerance of 

10−6.  Owing to the limitations of the software to produce the GdHNT 

distribution inferences when the prior moment constraint information, 

𝑝𝐾
𝐾⋆ < 10−10, the special case of the GdHNT ME inference used in the earlier 

experimentation (cf. Section 4.2) was adopted in those instances. 

The largest error observed for the case of the GE/GE/1/K queue subject to 

extended Morse balking under Policy I was 0.018 with the overwhelming 

majority of errors less than 0.005.  For Policy II, the largest error observed 

                                                           
14

 The numbers of combinations of queue input parameter per policy are 3072, 3072 and 1536 
respectively, resulting in 7680 in total. 
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was 0.019 with the overwhelming majority of errors below 0.007.  Under the 

third policy, the maximum error encountered was 0.0277 with the 

overwhelming majority lying below 0.008. 

Exact equivalence in distribution between the above GB and ME solutions is 

conjectured based on the following arguments, which are analogous to those 

used in the earlier experimentation of the M/GE/1/K queue subject to 

extended Morse balking: 

1. Errors of comparable magnitude were encountered in analogous 

experiments conducted for special cases which are known to be 

equivalent. 

Errors were computed for the case of the ordinary GE/GE/1/K queue for 

which exact equivalence has been proven in (Kouvatsos 1986b).  Over all 

the experiments conducted for the latter queueing system, the largest 

error encountered was 0.000848 providing confirmation that these errors 

and by extension those of the GE/GE/1/K queue subject to extended 

Morse balking under the three policies can be attributed to numerical 

limitations of the software package.  The comparatively larger errors 

encountered for the GE/GE/1/K queue subject to extended Morse balking 

under the three policies may again be attributed to the effect of 

MATLAB’s computational approximations on a larger set of optimisation 

constraints. 

  



105 
 

2. Errors did not increase with increasing 𝐶𝑎
2 and 𝐶𝑠

2. 

Errors were not found to increase and remained low with increasing 𝐶𝑎
2 

and 𝐶𝑠
2 in contrast to certain existing ME approximations of ordinary 

queueing systems marked by i.i.d. GE inter-arrival and/or service times.  

In the latter case, absolute differences between the ME approximations 

and simulation results were found to grow with increasing 𝐶𝑎
2 and/or 𝐶𝑠

2 

(cf., (Kouvatsos and Awan 2003)). 

Supported by the above experimental evidence and subsequent reasoning, 

the following conjecture is proposed. 

 

Conjecture II. The QLD’s of the GE/GE/1/K queue subject to extended 

Morse balking under Policies I, II or III (5.13) and (5.14) are special cases of 

the GdHNT ME distribution (3.23) constrained by the prior information of the 

individual queues’ MQL, VQL (or second moment of queue length), empty 

state probability, 𝑝0
𝐾 (or equivalently server utilisation), full buffer state 

probability, 𝑝𝐾
𝐾 and the normalisation condition over finite, non-negative 

integer support [0, 𝐾]. 

 

5.2.1. The Infinite-Capacity Special Case 

Setting 𝐾 → ∞ in the above state-transition rates (5.1) – (5.12) and 

appropriate QLD’s (5.13) or (5.14) yields the QLD’s of the infinite-capacity 

GE/GE/1 queue subject to either complete batch balking (as a special case 

of both Policies I and II) or independent batch balking (as a special case of 
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Policy III).  When the joining function, 𝑞(𝑛) is specified as the extended 

Morse joining function, then the QLD’s of the latter infinite-capacity queues 

are conjectured to be special cases of the GdHN. 

 

5.2.2. The Poisson Prospective Arrival Special Case 

Putting 𝐶𝑎
2 = 1.0 implies 𝜎 = 1.0 (from (5.2)).  From the illustration of the GE 

two-phase interpretation (Fig. 2) it can be seen how the latter condition 

results in single prospective arrivals with exponential inter-arrival times i.e. 

Poisson prospective arrivals.  Applying this condition to the solutions of the 

GE/GE/1/K queue subject to balking under any of the three policies yields 

the QLD of the M/GE/1/K queue subject to population-dependent balking 

(4.7). 

 

5.2.3. The Exponential Service Special Case 

Setting 𝐶𝑠
2 = 1.0 implies 𝜏 = 1.0 from (4.2).  From the illustration of the GE 

two-phase interpretation (Fig. 2) it can be seen how the latter condition 

results in exponential service of single customers only.  Under this condition, 

the solutions of the GE/GE/1/K queue subject to balking under each of the 

three policies reduce to the corresponding QLD’s of the GE/M/1/K queue 

subject to balking under each of the three policies.  When 𝑞(𝑛) is specified 

as the Morse joining function, then the latter QLD’s are conjectured to be 

special cases of the GdHNT. 

 



107 
 

5.2.4. The Non-Balking Special Case 

Specifying 𝑞(𝑛) = 1.0, 𝑛 = 0,1,2…𝐾 − 1 in the state-transition rates of the 

GE/GE/1/K queue subject to balking under Policy I ((5.1) – (5.4)) and 

substituting these in (5.13) yields the QLD of the ordinary GE/GE/1/K queue 

subject to complete batch blocking. 

Moreover, the ordinary GE/GE/1/K queue under partial batch blocking 

(solved in (Kouvatsos et al. 1989)) arises as a special case of the GE/GE/1/K 

queue subject to balking under Policies II or III when the condition 𝑞(𝑛) =

1.0, 𝑛 = 0,1,2…𝐾 − 1 is specified. 

These special cases are useful in the case of extended Morse balking where 

𝑞(0) = 1.0. 
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6. Conclusions 

Novel generalised least biased inferences, namely the generalised discrete 

Half Normal (GdHN) and truncated GdHN (GdHNT) ME solutions have been 

characterised, subject to prior knowledge of the first moment, variance, 

boundary state probabilities, 𝑝0 (infinite support case) or  𝑝0
𝐾 and 𝑝𝐾

𝐾 (finite 

support case) and the normalising condition.  These latter ME solutions have 

been devised particularly for least biased inferences of the stationary QLD’s 

of infinite and finite-capacity, respectively, ordinary G/G/1 queues, G/G/1 

queues subject to extended Morse balking or ordinary G/G/1 queues subject 

to population-dependent arrival rates governed by the extended Morse 

joining function. 

Subsequently the closed-form QLD of the M/GE/1/K queue subject to 

population-dependent balking was derived via the technique of GB.  

Specifically under the population-dependent extended Morse balking regime, 

the latter QLD was conjectured, based on extensive numerical 

experimentation, to be a special case of the GdHNT ME distribution.  

Furthermore, owing to its appropriate operational properties, the extended 

Morse balking function (4.15) was applied as a model of the class of 

instantaneous, early random drop congestion management mechanisms.  As 

a consequence, the novel M/GE/1/K queue subject to extended Morse 

balking was submitted as a suitable ME performance model of IP-based 

communication network nodes featuring such congestion management 

mechanisms set up to run either statically or dynamically. 



109 
 

A performance evaluation study of the ME congestion management model 

was carried out by assessing the impact on its mean delay due to increasing 

the values of the squared coefficient of variation (SCOV) of node service 

durations, 𝐶𝑠
2, overall traffic arrival rate to the node, 𝜆, node throughput, 

𝜆𝐸[𝑞(𝑛)] and extended Morse packet dropping policy (PDP) performance 

tuning parameter, 𝑞.  On the whole, the consequence of these conditions 

was performance degradation with the exception of the variation in mean 

delay for increasing 𝐶𝑠
2 when 𝑞 was fixed.  Under the latter conditions, 

improvements in mean delay were experienced for increasing 𝐶𝑠
2 (while 𝑞 

was fixed).  This observation implies that if the variability of packet lengths 

(and thus 𝐶𝑠
2) were to increase, then in order to maintain a constant 

throughput, the node scheduler would need to increase the value of 𝑞.  The 

performance study demonstrated how varying the performance tuning 

parameter, 𝑞, enables different delay – throughput trade-offs to be achieved 

for different values of 𝐶𝑠
2, 𝜆 and/or 𝜆𝐸[𝑞(𝑛)]. 

Following this development, a generalisation from the Poisson to the 

compound Poisson prospective arrival process with geometrically distributed 

batch sizes (characterised by i.i.d. GE prospective inter-arrival times) was 

made.  This necessitated modelling combinations of batch balking and batch 

blocking (batch balk-block) policies.  Consequently, the QLD’s of the novel 

GE/GE/1/K queue subject to population-dependent balking under three batch 

balk-block policies were solved via GB analysis of the queues’ Markov chain 

models.  Based on extensive numerical experimentation, the QLD’s of the 

GE/GE/1/K queue, subject to extended Morse balking under the three batch 
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balk-block policies were conjectured to be special cases of the GdHNT ME 

distribution. 

In addition to the analysis of extended Morse balking in the context of the 

above GE queues, more general queues characterised by a general batch 

prospective arrival process, subject to extended Morse balking and/or i.i.d. 

general service times were considered.  Furthermore, in this latter context, 

new definitions of the Morse average measure of impatience, 𝛼, have been 

derived based on equivalence between the Morse and Haight balking 

paradigms. 

 

6.1. Limitations 

A future aim related to this research work is to eventually use the novel 

queueing models devised in this thesis as building blocks in the ME 

approximate analysis of non-exponential queueing network models (QNM’s) 

with arbitrary topology, network blocking mechanisms and balking (or packet 

dropping congestion management mechanisms).  In the latter context, the 

main limitation of this research work is the independence assumed between 

prospective arrivals to the queues whether Poisson or compound Poisson 

prospective arrivals with geometrically distributed batch sizes.  On the 

contrary, long range dependence (LRD) has been observed in real network 

and World Wide Web traffic (Garrett and Willinger 1994; Leland et al. 1994; 

Beran et al. 1995; Crovella and Bestavros 1997).  The independence 

assumption results in relatively optimistic queue performance predictions 
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compared to the case where incoming traffic is correlated (Fretwell and 

Kouvatsos 2002). 

Nonetheless, the new queueing systems solved in this thesis can be useful 

when modelling network queues with small buffers since under this condition, 

traffic correlation is limited and consequently the queue behaviour conforms 

more closely to one fed by a renewal process (Fretwell and Kouvatsos 

2002).  Furthermore, based on the results obtained for the discrete time 

queues in (Kouvatsos et al. 2000), it may be that under certain parameter 

values, in performance terms, a (continuous time) queue fed by short range 

dependent traffic can be approximated with tolerable accuracy by a 

corresponding queue with the compound Poisson prospective arrival process 

with geometrically distributed batch sizes (employed in this thesis). 

Notably, LRD input traffic results in heavy-tailed QLD’s (Norros 1994; 

Erramilli et al. 1996).  Whereas the ME principle, as employed in this thesis, 

generates inferences suited to modelling ‘extensive’ systems marked by 

subsystem independence.  Maximising more general, non-extensive entropy 

functions such as the Havrda-Charvát-Tsallis entropy function (Havrda and 

Charvát 1967; Tsallis 1988), subject to the commonly used queueing system 

prior information constraints, yields heavy-tailed ME solutions, which are 

applicable to modelling queueing systems fed by LRD input traffic.  Some 

initial results in this vein have been published in the literature, for example in 

(Assi 2000; Kouvatsos and Assi 2002; Karmeshu and Sharma 2005; 

Karmeshu and Sharma 2006c; Karmeshu and Sharma 2006a; Karmeshu 

and Sharma 2006b; Kouvatsos and Assi 2011a; Kouvatsos and Assi 2011b).  

An axiomatic characterisation of non-extensive entropy maximisation using 
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the Havrda-Charvát-Tsallis entropy function has been carried out in 

(Kouvatsos and Assi 2011a).  Since Shannon’s entropy arises as a special 

case of numerous non-extensive entropy functions, the new ME solutions 

and QLD’s devised in this thesis are special cases of the heavy-tailed 

solutions derived using the non-extensive entropies, subject to the same 

prior information constraints.  As such, the results of this thesis provide 

special cases which would be useful in testing and establishing new heavy-

tailed ME queueing solutions. 

 

6.2. Future Work 

Some open problems stemming from this research work are listed below: 

1. Proof of conjectures I (cf., Section 4.2) and II (cf., Section 5.2). 

2. It is to be recalled that experimentally, for 𝐶𝑎
2, 𝐶𝑠

2 > 1.0, the ordinary 

GE/GE/1 queue has been found to give pessimistic performance bounds 

over a large class of equivalent queues characterised by two-phase 

exponential inter-arrival and service time distributions, such as the H2 or 

Coxian-2, with matching first two moments (Kouvatsos 1988; Kouvatsos 

and Tabet-Aouel 1994). 

It is therefore proposed that an analogous investigation is carried out into 

the performance of the GE/GE/1/K queue, subject to balking, relative to 

that of equivalent two-phase queues, subject to balking.  Owing to such a 

performance comparison, a fourth batch balk-block policy, Policy IV, has 

been devised and it is introduced, described and analysed in Appendix C.  
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It still remains to be determined whether the QLD of the GE/GE/1/K 

queue, subject to extended Morse balking under Policy IV is a special 

case of the GdHNT ME distribution. 

3. A performance comparison of the GE/GE/1/K queue, subject to extended 

Morse balking under the four batch balk-block policies which lend 

themselves to modelling PDP’s of the instantaneous, random, early drop 

type at IP-based network nodes subject to bursty arrivals. 

4. Analyse how the variance of queue length (VQL) prior information 

constraint captures the uncertainty arising from the selective behaviour of 

prospective arrivals which join or balk according to the Morse and 

extended Morse balking policies. 

5. Assess the accuracy of the approximation of the departure process from 

the M/GE/1/K queue, subject to extended Morse balking presented in 

Appendix D.  Extend this approximation to include the compound Poisson 

prospective arrival process with geometrically distributed batch sizes (and 

thus i.i.d. GE prospective inter-arrival times), Whitt’s asymptotic 

approximation for the departure process and network blocking 

mechanisms. 

Following the approximate analysis of the departure process from the 

GE/GE/1/K queue, subject to population-dependent balking and utilising 

existing flow formulae for splitting and merging of GE-type traffic streams 

(cf., (Kouvatsos 1994; Kouvatsos et al. 2011)), the GE/GE/1/K queue, 

subject to extended Morse balking is envisaged to play the role of a 

building block model in the ME approximate analysis of non-exponential 

QNM’s with arbitrary topology, network blocking mechanisms and balking 
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(or packet dropping congestion management schemes) (Whitt 1982; 

Whitt 1984; Kouvatsos 1986b; Kouvatsos 1986a; Kouvatsos 1994; 

Kouvatsos and Awan 2003; Kouvatsos et al. 2011). 

6. Use non-extensive entropy functions, such as the Havrda-Charvát-Tsallis 

entropy function (Havrda and Charvát 1967; Tsallis 1988) to devise new 

heavy tail inferences of queueing system performance distributions. 

7. Determine the general inter-event time distribution characterising the 

infinite and finite capacity ordinary M/G/1 and G/G/1 queues bearing the 

GdHN and GdHNT ME QLD’s respectively.  At the outset, this inter-event 

time distribution, which is a generalisation of the GE distribution, is 

named the ‘Kouvatsos distribution’ in honour of my research supervisor 

Professor Demetres D. Kouvatsos. 
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Appendices 

Appendix A: An alternative characterisation of the GGeo 

discrete ME distribution 

In this section, the GGeo discrete ME distribution is characterised as a 

random sum and this result is applied to the solution of the QLD of the 

GE/M/1 queue. 

A1.  The GGeo as a random sum 

The GGeo is characterised as the random sum of i.i.d. geometric RV’s 

bounded by the modified geometric distribution.  This is demonstrated below. 

Let 𝐺 represent a geometric RV with probability mass function (pmf) given by 

 

𝑃(𝐺 = 𝑖) = (1 − 𝜎)𝑖−1𝜎, 𝑖 = 1,2,3… , (A1) 

 

let 𝐻 model a modified geometric RV with pmf defined by 

 

𝑃(𝐻 = 𝑗) = (1 − 𝜈)𝜈𝑗, 𝑗 = 0,1,2… (A2) 

 

and let the PGF, 𝐺𝑋(𝑧), of the RV, 𝑋, be given by 𝐺𝑋(𝑧) = ∑ 𝑧𝑛𝑃(𝑋 = 𝑛)∞
𝑛=0 . 
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Then, the RV, 𝑁, with pmf, 𝑃(𝑁 = 𝑛) = 𝑝𝑛, 𝑛 = 0,1,2…, resulting from the 

random sum of i.i.d. copies of the RV, 𝐺 bounded by the pmf of 𝐻 can be 

derived by applying the theorem of total generating functions as follows. 

The PGF of 𝑁 can be given by 

 

𝐺𝑁(𝑧) = ∑(𝐺𝐺(𝑧))
𝑛
𝑃(𝐻 = 𝑛)

∞

𝑛=0

=∑(
𝜎𝑧

1 − (1 − 𝜎)𝑧
)
𝑛

∞

𝑛=0

(1 − 𝜈)𝜈𝑛

=
(1 − 𝜐)(1 − (1 − 𝜎)𝑧)

1 − (𝜎𝜈 + (1 − 𝜎))𝑧

=
(1 − 𝜐)

1 − (𝜎𝜈 + (1 − 𝜎))𝑧

−
(1 − 𝜐)(1 − 𝜎)𝑧

1 − (𝜎𝜈 + (1 − 𝜎))𝑧
 . 

(A3) 

 

Inverting 𝐺𝑁(𝑧) (A3) yields the GGeo pmf defined as 

 

𝑝𝑛 = {

(1 − 𝜐), 𝑛 = 0

(1 − 𝜐) (
𝜎𝜐

𝜎𝜐 + (1 − 𝜎)
) (𝜎𝜐 + (1 − 𝜎))

𝑛
, 𝑛 = 1,2,3…

 . (A4) 

 

Furthermore, following the derivation of the first two moments of 𝑝𝑛 (A4), the 

GGeo pmf can be defined in terms of its mean 𝐸[𝑁] and SCOV, 𝐶𝑁
2 as 
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𝑝𝑛 =

{
 
 

 
 1 −

2𝐸[𝑁]

(𝐶𝑁
2 + 1)𝐸[𝑁] + 1

, 𝑛 = 0

2𝐸[𝑁]

(𝐶𝑁
2 + 1)𝐸[𝑁] + 1

(1 −
(𝐶𝑁

2 + 1)𝐸[𝑁] − 1

(𝐶𝑁
2 + 1)𝐸[𝑁] + 1

)(
(𝐶𝑁

2 + 1)𝐸[𝑁] − 1

(𝐶𝑁
2 + 1)𝐸[𝑁] + 1

)

𝑛−1

, 𝑛 = 1,2,3…

 . (A5) 

 

A2.  The stationary QLD of the GE/M/1 queue 

Consider a single server, infinite-capacity, ordinary queue with (single) 

Poisson arrivals and i.i.d. exponential service times (i.e. the M/M/1 queue).  

Its QLD is the modified geometric with pmf defined by 

 

𝑝𝑛 = (1 − 𝜌)𝜌
𝑛, 𝑛 = 0,1,2… (A6) 

 

where 𝜌 = 𝜆/𝜇 and 𝜆 and 𝜇 are the mean arrival and service rates of the 

queue respectively. 

Now consider that the arrivals come in independent batches of geometrically-

distributed sizes with pmf defined by (A1) (i.e. the GE/M/1 queue).  If 𝜆𝐵 is 

the mean batch arrival rate, then the mean arrival rate of (individual) 

customers to the queue, 𝜆𝑖𝑛𝑑 = 𝜆𝐵(1/𝜎). 

In this case, the effective service-time distribution per batch is the distribution 

characterised by the random sum of i.i.d. exponential RV’s, each with mean 

rate, 𝜇𝑖𝑛𝑑, bounded by the geometric RV, 𝐺.  This is known to be the 

exponential distribution with revised rate 𝜎𝜇𝑖𝑛𝑑 (Feller 1966).  Therefore the 

effective batch service rate, 𝜇𝐵 = 𝜎𝜇𝑖𝑛𝑑. 
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This latter queue has i.i.d. exponential inter-batch arrival times and i.i.d. 

exponential batch service times.  Therefore, the distribution of number of 

batches in the queue is equivalent to the QLD of the M/M/1 queue with pmf 

given by 

 

𝑃(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 𝑖𝑛 𝑞𝑢𝑒𝑢𝑒 = 𝑛) = (1 − 𝜐)𝜐𝑛, 𝑛 = 0,1,2… (A7) 

 

where 𝜐 = 𝜆𝐵/𝜇𝐵 = 𝜆𝑖𝑛𝑑/𝜇𝑖𝑛𝑑. 

At any given instant, the total number of individual customers in the latter 

queue is simply the sum of the total numbers of customers in each of the 

batches in the buffer and the residual number of customers of the batch in 

service.  Owing to the memoryless property of the geometric distribution, the 

distribution of the number of residual customers of the batch in service is 

also geometric with the same mean, (1/𝜎).  Therefore, the distribution of 

total number of individual customers in the GE/M/1 queue is the random sum 

of i.i.d. geometric RV’s, each with mean (1/𝜎), bounded by the modified 

geometric defined by (A7) and the result is the GGeo QLD defined by (A4).  

This corresponds to QLD of the GE/M/1 queue derived in (El-Affendi and 

Kouvatsos 1983) via the ME approach. 
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Appendix B: Definitions of the Morse average measure of 

impatience, 𝜶 

This section presents an alternative approach to determine the value of the 

Morse average measure of impatience, 𝛼 based on equivalence between the 

Morse and Haight balking paradigms. 

 

B1.  The Haight balking paradigm 

An aspect which affects the decision of a prospective arrival to join a queue 

or not is the importance of receiving service.  The level of importance falls 

within the range from minimal need for service (where a non-empty queue 

will not be joined) to extreme urgency for service (where queues of all 

occupancy levels are joined).  This concept was introduced in (Haight 1957) 

and was modelled as follows: Considering his/her desire for service prior to 

arrival, each customer selects a queue size, 𝐵, above which he/she will balk 

from the queue according to the balking distribution, 𝑃(𝐵 = 𝑛), 𝑛 = 0,1,2…. 

Within the context of the M/M/1 queue, Haight devised a method to derive 

the queue length-dependent joining function, 𝑞(𝑛), 𝑛 = 0,1,2… from the 

balking distribution as follows: By definition, a customer only joins the queue 

when his/her balking threshold is above the instantaneous queue length.  

This can be stated probabilistically as 
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𝑃(𝑎 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑗𝑜𝑖𝑛𝑠 𝑤ℎ𝑒𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑞𝑢𝑒𝑢𝑒 𝑙𝑒𝑛𝑔𝑡ℎ = 𝑛), 𝑛 = 0,1,2… 

= 𝑃(𝑡ℎ𝑒 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟′𝑠 𝑏𝑎𝑙𝑘𝑖𝑛𝑔 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≥ 𝑛 + 1) . 

(B1) 

 

Relationship (B1) can in turn be represented symbolically as 

 

 𝑞(𝑛) = 𝑃(𝐵 ≥ 𝑛 + 1), 𝑛 = 0,1,2… 

= 1 − 𝑃(𝐵 ≤ 𝑛) 

= 1 −∑𝑃(𝐵 = 𝑘)

𝑛

𝑘=0

 . 

(B2) 

 

Specifically, it can be shown that when the balking distribution is modified 

geometric with pmf given by 

 

 
𝑃(𝐵 = 𝑛) = (

𝐸[𝐵]

1 + 𝐸[𝐵]
)

𝑛

(1 −
𝐸[𝐵]

1 + 𝐸[𝐵]
) , 𝑛 = 0,1,2… (B3) 

 

where 𝐸[𝐵], the mean of the balking distribution, is the mean instantaneous 

queue size tolerated by a customer population above which customers will 

balk from the M/M/1 queue, then the corresponding joining function can be 

derived as (Haight 1957) 
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𝑞(𝑛) = 1 −∑(
𝐸[𝐵]

1 + 𝐸[𝐵]
)

𝑘

(1 −
𝐸[𝐵]

1 + 𝐸[𝐵]
)

𝑛

𝑘=0

, 𝑛 = 0,1,2… 

= (
𝐸[𝐵]

1 + 𝐸[𝐵]
)

𝑛

 . 

(B4) 

 

B2.  The relationship between the Haight and Morse balking 

paradigms 

The expressions for 𝑞(𝑛) in (B4) and (2.31) are observed to be of the same 

form implying equivalence between balking according to the modified 

geometric balking distribution and Morse balking.  Owing to this latter 

equivalence, 𝛼 in the context of the M/M/1 queue subject to Morse balking 

can be expressed as 

 

 
𝛼 = −𝜇 ln (

𝐸[𝐵]

1 + 𝐸[𝐵]
) (B5) 

 

where 𝜇 is the mean service rate.  Hence it is deduced that in general, 𝛼 can 

be determined quantitatively in terms of 𝜇 and appropriate moments of the 

balking distribution.  Indeed, in the case of Poisson arrivals subject to 

extended Morse balking at an infinite-capacity queue characterised by i.i.d. 

general (including GE) service times (i.e. the M/G/1 (including M/GE/1) 
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queue subject to extended Morse balking), the balking distribution 

generalises to the GGeo as follows. 

Haight (Haight 1957) devised a method to determine the balking distribution 

from the corresponding joining function as follows: 

 

 𝑃(𝐵 = 𝑛) = 𝑞(𝑛) − 𝑞(𝑛 + 1) . (B6) 

 

Applying (B6) to the extended Morse joining function (4.9), the corresponding 

balking distribution is found to be 

 

 

𝑃(𝐵 = 𝑛) =

{
 
 

 
 1 − 𝑒

−
𝛼
𝜇
(
𝐶𝑠
2+1
2

)
, 𝑛 = 0

𝑒
−
𝛼
𝜇
(
𝐶𝑠
2+1
2

)
(1 − 𝑒

−
𝛼
𝜇) 𝑒

−
𝛼
𝜇
(𝑛−1)

, 𝑛 = 1,2,3…

 (B7) 

 

where 𝐶𝑠
2 is the SCOV of the service time distribution.  (B7) is seen to be the 

GGeo pmf, which can equivalently be expressed in terms of its mean and 

SCOV by (A5).  By this latter equivalence, 𝛼 in the context of the M/G/1 

queue subject to extended Morse balking can be defined by 

 

 
𝛼 = −𝜇 ln (

(𝐶𝐵
2 + 1)𝐸[𝐵] − 1

(𝐶𝐵
2 + 1)𝐸[𝐵] + 1

) (B8) 
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where 𝐶𝐵
2 is the SCOV of the balking threshold values chosen by individual 

members of a customer population. 

The assumptions that the balking distribution has infinite support and is 

independent of finite queue capacity, 𝐾, render the formulae for 𝛼, (B5) and 

(B8), valid for finite-capacity queues. 

 

B3.  The batch prospective arrival case 

In the case of a general batch prospective arrival process subject to 

population-dependent balking, it is assumed that all the members of a batch 

join (or balk from) the queue with identical population-dependent probabilities 

due to each ‘seeing’ the same instantaneous queue size (cf., Section 5.1). 

Under complete batch balking with complete or partial batch blocking (i.e. 

Policies I or II), members of an arriving batch elect to either join or balk from 

the queue uniformly as a group.  As a consequence of the above 

assumption, the correspondence of this scenario in the Haight paradigm is 

that members of an arriving batch subject to population-dependent balking 

select their common balking threshold, 𝐵𝐵, after forming the batch.  𝐵𝐵 is the 

common queue size chosen collectively by all the members of a batch, 

above which the batch will balk.  The RV, 𝐵𝐵, is distributed according to the 

batch balking distribution, 𝑃(𝐵𝐵 = 𝑛), 𝑛 = 0,1,2…, with mean, 𝐸[𝐵𝐵] and 

SCOV, 𝐶𝐵𝐵
2 . 

Following the method used above to derive the balking distribution of the 

M/G/1 (including M/GE/1) queue subject to extended Morse balking (cf., (B6) 
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- (B8)), it is clear that the batch balking distribution associated with a general 

batch prospective arrival process subject to extended Morse balking under 

Policies I or II, is also the GGeo pmf.  However, in this latter context, the 

parameter 𝛼 is re-interpreted as the Morse average measure of impatience 

of customer batches, 𝛼𝐵 (cf., Section 5.1.1), defined by 

 

 
𝛼𝐵 = −𝜇 ln (

(𝐶𝐵𝐵
2 + 1)𝐸[𝐵𝐵] − 1

(𝐶𝐵𝐵
2 + 1)𝐸[𝐵𝐵] + 1

) . (B9) 

 

Under independent batch balking with partial batch blocking (i.e. Policy III), 

members of a batch prospective arrival elect to join or balk autonomously, 

albeit with the same joining or balking probabilities.  This balking operation 

can be seen to have correspondence in the Haight paradigm when each 

member of a batch choses his/her balking threshold, 𝐵, individually.  Bearing 

in mind the above assumption that all the members of a batch prospective 

arrival join (or balk from) the queue with identical probabilities, following from 

(B1), the following equality holds for a batch prospective arrival of size 

𝑘 = 1,2,3…: 
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𝑃(𝑗 𝑓𝑟𝑜𝑚 𝑘 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑗𝑜𝑖𝑛 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 𝑞𝑢𝑒𝑢𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

= 𝑛), 𝑛 = 0,1,2… 

= 𝑃 (
𝑗 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 ℎ𝑎𝑣𝑒 𝑏𝑎𝑙𝑘𝑖𝑛𝑔 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 ≥ (𝑛 + 1)

𝑎𝑛𝑑 (𝑘 − 𝑗) 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 ℎ𝑎𝑣𝑒 𝑏𝑎𝑙𝑘𝑖𝑛𝑔 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑠 ≤ n
) . 

(B10) 

 

Due to the independence between members of a batch, (B10) can be 

evaluated as 

 

(
𝑘

𝑗
)𝑞(𝑛)𝑗(1 − 𝑞(𝑛))

𝑘−𝑗
= (

𝑘

𝑗
) (𝑃(𝐵 ≥ (𝑛 + 1)))

𝑗
(1 − 𝑃(𝐵 ≥ (𝑛 + 1)))

𝑘−𝑗
 . (B11) 

 

Hence, 𝑞(𝑛) = 𝑃(𝐵 ≥ (𝑛 + 1)) and consequently in the context of a general 

batch prospective arrival process subject to extended Morse balking under 

Policy III and i.i.d. general service times, 𝛼 can be defined by (B8) above. 

The assumptions employed above, namely that the balking distribution has 

infinite support and is independent of finite queue capacity, 𝐾, render the 

formulae for 𝛼, in this context of general batch prospective arrival processes 

subject to extended Morse balking under Policies I, II or III and i.i.d. general 

service times, valid for finite-capacity queues. 
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Appendix C: The GE/GE/1/K queue subject to balking under 

Policy IV 

In this section a fourth batch balk-block policy, Policy IV is introduced and 

described.  Subsequently, the upward state transition rates of the Markov 

chain model of the GE/GE/1/K queue subject to population-dependent 

balking under Policy IV are presented. 

The definition of Policy IV is motivated by the proposed investigation into the 

performance of the GE/GE/1/K queue subject to balking, relative to that of 

equivalent queues with balking characterised by two-phase exponential 

distributions, such as the H2 or Coxian-2.  These two-phase distributions 

characterise inter-arrival times of bursty single arrivals or bursty service 

times of single customers. 

Consider a single server, finite-capacity queue subject to population-

dependent balking where the prospective arrival process is characterised by 

a two-phase exponential distribution.  In such a queueing system, each 

successive arrival, albeit part of a burst, could ‘see’ a greater instantaneous 

queue length due to the potential joining of preceding arrivals.  Therefore, in 

order to compare the performance of such a queueing system with that of an 

equivalent GE/GE/1/K queue subject to balking, Policy IV is devised. 

Coinciding with Policy III, under Policy IV, members of a batch behave 

independently with respect to joining/balking.  However, each successive 

member of a batch, from the head onwards, is assumed to ‘see’ the 

potentially updated instantaneous queue length following the potential joining 
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of preceding members of its batch.  Furthermore, as in Policy III, the blocking 

is of the partial batch type. 

The downward state transition rates of the Markov chain model of the 

GE/GE/1/K queue subject to population-dependent balking under Policy IV 

are given by equations (4.4) and (4.5).  The upward state transition rates, 

𝑅𝑖𝑗 ’s, are given by 

 

𝑅𝑖𝑗 = (
𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑏𝑎𝑡𝑐ℎ
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒

) × 𝑃(

𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑠 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑘,
 𝑘 = 𝑗 − 𝑖, 𝑗 − 𝑖 + 1, 𝑗 − 𝑖 + 2,…∞

𝑎𝑛𝑑 (𝑗 − 𝑖) 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑘 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠
𝑗𝑜𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖

), 

𝑖 = 1,2,3…𝐾 − 1, 𝑗 =  𝑖 + 1, 𝑖 + 2, 𝑖 + 3,…𝐾 

= (𝜎𝜆)(∏𝑞(𝑟)

𝑗−1

𝑟=𝑖

) ∑ 𝜎(1 − 𝜎)𝑘−1 ∑ (∏(1− 𝑞(𝑝))
𝑚𝑝

𝑗

𝑝=𝑖

)
𝑚𝑖,𝑚𝑖+1…𝑚𝑗:

𝑚𝑖+𝑚𝑖+1+⋯+𝑚𝑗=𝑘−(𝑗−𝑖)

∞

𝑘=𝑗−𝑖

, 

0.0 < 𝑞(𝑛) < 1.0 

(C1) 

 

where the 𝑚𝑖 , 𝑚𝑖+1, … ,𝑚𝑗 ’s are the summands comprising compositions 

resulting from (𝑘 − (𝑗 − 𝑖)) into (𝑗 − 𝑖 + 1) parts and 

 

𝑅0𝑗 = (
𝑝𝑟𝑜𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒 𝑏𝑎𝑡𝑐ℎ
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒

)  × 𝑃

(

 
 

𝑏𝑎𝑡𝑐ℎ 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑖𝑠 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑘, 𝑘 = 𝑗, 𝑗 + 1, 𝑗 + 2…∞, 𝑜𝑓 𝑤ℎ𝑖𝑐ℎ 
(𝑗 + 𝑙), 𝑙 = 0,1,2… (𝑘 − 𝑗) 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑗𝑜𝑖𝑛 𝑎𝑛𝑑 (𝑘 − 𝑗 − 𝑙) 𝑏𝑎𝑙𝑘.

 𝑂𝑓 𝑡ℎ𝑜𝑠𝑒 (𝑗 + 𝑙) 𝑤ℎ𝑖𝑐ℎ 𝑗𝑜𝑖𝑛, 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑙 𝑒𝑥𝑖𝑡 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒 𝑣𝑖𝑎 𝑡ℎ𝑒  
𝑧𝑒𝑟𝑜 𝑏𝑟𝑎𝑛𝑐ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑗 

𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑜𝑝𝑡 𝑡𝑜 𝑟𝑒𝑠𝑖𝑑𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒. )

 
 
, 

𝑗 = 1,2,3…𝐾 

(C2) 
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= (𝜎𝜆)((𝑞(0)𝑙)∏𝑞(𝑟)

𝑗−1

𝑟=0

)∑∑(1 − 𝜏)𝑙𝜏𝜎(1 − 𝜎)𝑘−1 ∑ (∏(1 − 𝑞(𝑝))
𝑚𝑝

𝑗

𝑝=0

)
𝑚0,𝑚1…𝑚𝑗:

𝑚0+𝑚1+⋯+𝑚𝑗=𝑘−𝑗−𝑙

𝑘−𝑗

𝑙=0

∞

𝑘=𝑗

, 

 0.0 < 𝑞(𝑛) < 1.0 

 

where the 𝑚0, 𝑚1, … ,𝑚𝑗 ’s are the summands of compositions of (𝑘 − 𝑗 − 𝑙) 

into (𝑗 + 1) parts. 

The above 𝑅𝑖𝑗 ’s of the GE/GE/1/K queue subject to population-dependent 

balking under Policy IV, (C1) and (C2), reduce to the following special cases 

(which correspond to those special cases considered for Policies I-III in 

Section 5.2): 

 Setting 𝐾 → ∞ yields the 𝑅𝑖𝑗 ’s of the infinite-capacity GE/GE/1 queue 

subject to independent batch balking of the Policy IV-type, where each 

successive member of a batch ‘sees’ a potentially updated instantaneous 

queue length. 

 Putting 𝐶𝑎
2 = 1.0 yields the 𝑅𝑖𝑗 ’s of the M/GE/1/K queue subject to 

population-dependent balking, 

 Setting 𝐶𝑠
2 = 1.0 results in the 𝑅𝑖𝑗 ’s of the GE/M/1/K queue subject to 

balking under Policy IV and 

 Specifying 𝑞(𝑛) = 1.0, 𝑛 = 0,1,2…𝐾 − 1 yields the 𝑅𝑖𝑗 ’s of the ordinary 

GE/GE/1/K queue subject to partial batch blocking. 

It is expected, in light of results from experiments carried out for the 

corresponding ordinary queues, cf., (Kouvatsos 1988; Kouvatsos and Tabet-

Aouel 1994), that for 𝐶𝑎
2, 𝐶𝑠

2 > 1.0, the GE/GE/1/K queue subject to balking 
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under Policy IV would give pessimistic performance bounds over the 

equivalent two-phase queueing systems. 

 

Appendix D: An approximation of the departure process from 

the M/G/1/K queue subject to balking 

In this section, an approximation of the departure process from the M/G/1/K 

queue subject to population-dependent balking is formulated.  This involves 

the exact analysis of the inter-departure time distribution of the queueing 

system. 

In queueing networks, the departures from one queue comprise the 

prospective arrivals to its downstream queue(s).  Hence, for the analysis of 

QNM’s it is necessary to study the departure process from queues.  It is well 

known that in general, departure processes of infinite and finite capacity 

M/G/1 queues are non-renewal point processes with correlated inter-

departure intervals, except in a few special cases such as the M/M/1, 

M/G/1/1 and M/D/1/2 queues.  Furthermore, the consequential dependence 

between inter-arrival times at downstream queues adversely affects their 

performance (Whitt 1984; Bertsimas and Nakazato 1990; Hu 1996; Takagi 

and Nishi 1998). 

The complicated analysis of departure processes has spurred the proposals 

of approximations such as modelling the (non-renewal) queue output 

processes with renewal ones with matching moments.  The choice of the 

renewal process interval distribution is motivated in part by analytic 
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tractability (Kuehn 1979; Whitt 1982).  In (Whitt 1982), two methods to 

determine the moments of the renewal interval are identified and applied, 

namely the stationary interval and asymptotic methods.  In the former 

method, the moments of a single stationary interval of the non-renewal 

process are used.  In the latter case, the moments of the renewal interval are 

obtained by matching the asymptotic behaviour of the moments of partial 

sums of successive intervals of both processes. 

The asymptotic method was proposed as a means to account for the 

underlying correlation between inter-departure intervals.  This correlation is 

not captured in the stationary interval method, nonetheless, this latter 

procedure is employed here as a preliminary step to approximating the 

departure process from the M/GE/1/K queue with balking.  Furthermore, 

network blocking mechanisms are not modelled at this early stage.  

However, these can be incorporated from works such as (Kouvatsos et al. 

2011) where arbitrary open QNM’s with network blocking mechanisms and 

GE-type flows have been analysed approximately within the ME framework. 

In (Takagi and Nishi 1998), the Laplace-Stieltjes transform (LST) of the inter-

departure time distribution of the ordinary M/G/1/K queue is presented.  It is 

seen to be comprised of the mixture of the general service time density and 

the convolution of the general service time density and the exponential inter-

arrival time density15 following the emptying of the system.  The inter-

departure time distribution of the M/G/1/K queue subject to population-

dependent balking can be seen to have the same form as that of the ordinary 

                                                           
15

 Due to the memoryless property of the exponential distribution, the density of residual inter-
arrival times (resulting from the emptying of the queue) is equal to the inter-arrival time density. 
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M/G/1/K queue, since, while the queue is occupied the service process is 

unaffected by the effective arrival process.  By definition, the service process 

is independent of the prospective arrival process.  Furthermore, if customers 

balk with a fixed probability when the queue is empty, then the effective 

arrival process during these periods is still Poisson, albeit with a revised rate. 

Consider an M/G/1/K queue characterised by Poisson prospective arrivals 

(with mean rate 𝜆) subject to state-dependent balking with probability 

(1 − 𝑞(𝑛)), 𝑛 = 0,1,2…𝐾 − 1, i.i.d. general service times (with mean rate, 𝜇 

and SCOV, 𝐶𝑠
2) and finite capacity, K.  Let the service time density, 𝑏(𝑡) have 

LST, 𝐵∗(𝑠), where 𝐵∗(𝑠) = ∫ 𝑒−𝑠𝑡𝑏(𝑡)𝑑𝑡
∞

0
.  Moreover, let the stationary inter-

departure time density function, 𝑑(𝑡) have LST, 𝐷∗(𝑠).  Following (Takagi 

and Nishi 1998), the LST of the stationary inter-departure time density can 

be defined by 

 

 
𝐷∗(𝑠) = 𝜋𝑜

𝐾−1 (
𝜆𝑞(0)

𝑠 + 𝜆𝑞(0)
)𝐵∗(𝑠) + (1 − 𝜋𝑜

𝐾−1)𝐵∗(𝑠) (D1) 

 

where 𝜋𝑜
𝐾−1 is the steady state probability that a (single) departing customer 

leaves behind an empty queue and can be computed from its derivation 

given in subsection D1 below.  For GE (batch) service, an equivalent H2 

distribution can be used to obtain 𝜋𝑜
𝐾−1 approximately.  Details of how such 

an equivalent H2 distribution can be generated are presented in the Appendix 

of (Kouvatsos 1988). 
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The mean, 𝐸[𝐷] and SCOV, 𝐶𝐷
2 of 𝑑(𝑡) are given by 

 

 
𝐸[𝐷] =

1

𝜇
+
𝜋𝑜
𝐾−1

𝜆𝑞(0)
 (D2) 

and 

𝐶𝐷
2 = (

(𝜆𝑞(0))
2
(𝐶𝑠

2 + 1) + 2𝜇2𝜋0
𝐾−1(1 + (𝜆𝑞(0)/𝜇))

𝜆𝑞(0) + 𝜇𝜋0
𝐾−1 ) − 1 . (D3) 

 

The ME approximate solution of arbitrary open QNM’s devised in (Kouvatsos 

1994; Kouvatsos et al. 2011) and references therein, advocates 

decomposing the QNM’s into individual queueing stations and analysing 

these in isolation with GE-type (overall and effective) inter-arrival and service 

times.  Furthermore, the stationary compound Poisson process with 

geometrically-distributed batch sizes (and thus underlying GE inter-event 

time distribution) is a renewal process (Kouvatsos 1994). 

Therefore, it is proposed that the above stationary departure interval 

moments (D2) and (D3) be used to characterise an appropriate GE 

prospective inter-arrival time distribution (2.20) to the downstream queue(s) 

and thus approximate the departure process with an appropriate renewal one 

towards the ME approximate analysis of QNM’s with balking. 

The accuracy of the above approximation may be assessed by comparing 

analytic performance results against simulation of a downstream queue in an 

appropriate tandem queueing system as carried out in (Whitt 1984) and 
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references therein.  Such a tandem system may comprise the infinite-

capacity M/GE/1 queue subject to extended Morse balking connected to a 

downstream infinite-capacity GE/GE/1 queue subject to extended Morse 

balking under either the complete or independent batch balking policies.  The 

infinite capacity cases can be modelled by setting 𝐾 to an appropriately large 

value.  Following the incorporation of network blocking mechanisms into the 

model, the accuracy of the approximation in the context of analogous finite-

capacity queues can be assessed. 

 

D1.  The QLD from the viewpoint of customers departing from the 

M/G/1/K queue subject to balking 

The stationary QLD from the point of view of departing customers from the 

M/G/1/K queue subject to population-dependent balking is derived below. 

The stochastic process with state description, 𝑁(𝑡), modelling the number of 

customers present at time 𝑡, in an M/G/1 (and more general) queueing 

system(s) is insufficient to summarise the complete past history of the 

system.  This renders the stochastic process 𝑁(𝑡) non-Markovian.  However, 

in such stochastic processes, epochs of the Markovian type (referred to in 

the literature as regeneration points) may occur.  A regeneration point 

possesses the beneficial characteristic that the knowledge of the past history 

of the process at that particular epoch has no predictive value.  Within the 

context of the M/G/1 queue, these regeneration points occur at the instants 

immediately after departures.  The instantaneous queue population at future 
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departure epochs can be derived from the current value and the number of 

arrivals which subsequently join the queue.  Values of the instantaneous 

queue population at past departure epochs are not required.  Thus, the 

progression of instantaneous queue population at these departure epochs 

comprises a discrete-parameter Markov chain embedded within the non-

Markovian process, 𝑁(𝑡).  Fortunately, the state probability distribution of this 

embedded Markov chain (EMC) is also the QLD of the M/G/1 queue from the 

point of view of departing customers (Kendall 1951). 

The stochastic process, 𝑁(𝑡), modelling the number of customers over time 

in the M/G/1/K queue subject to population-dependent balking, despite being 

non-Markovian, can also be seen to possess regeneration points at the 

instants immediately following departures.  The instantaneous queue 

population at future departure epochs can be derived from the value at the 

current departure epoch and the number of subsequent effective arrivals (i.e. 

the number of prospective arrivals which join the queue noting that some 

potentially balk or are blocked).  Therefore, the evolution of instantaneous 

queue length at the departure epochs can be modelled by a discrete-

parameter Markov chain.  The state probability distribution of the Markov 

chain embedded at the departure epochs, 𝜋𝑛
𝐾−1, 𝑛 = 0,1,2…𝐾 − 1 provides 

the QLD from the point of view of departures from the M/G/1/K queue subject 

to population-dependent balking.  A combinatorial approach is taken to 

determine the state-transition probabilities of the EMC, as carried out also in 

(Dick 1970).  In the latter work, the M/G[a,b]/1 queue with batch service and 

Poisson prospective arrivals subject to balking characterised by a constant 
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probability is analysed.  The population-dependent balking model analysed 

below therefore extends that of (Dick 1970). 

The stationary QLD from the point of view of departures from the equivalent 

M(n)/G/1/K queue with a state-dependent Poisson arrival process has been 

solved via the supplementary variable technique in (Gupta and Rao 1996).  

Furthermore, the stationary QLD from the point of view of departures from 

the M(n)/G(n)/1/K queue with state-dependent arrival and service rates and 

queue length–dependent service times has been analysed in (Courtois and 

Georges 1971).  In the latter work, the EMC approach is used with results 

from renewal theory.  Therefore, the analysis of 𝜋𝑛
𝐾−1 below presents an 

alternative solution to a resolved problem. 

Consider an M/G/1/K queue characterised by Poisson prospective arrivals 

(with mean rate 𝜆) subject to population-dependent balking with function 

(1 − 𝑞(𝑛)), 𝑛 = 0,1,2…𝐾 − 1, i.i.d. general service times (with density 𝑏(𝑡), 

mean rate, 𝜇 and SCOV, 𝐶𝑠
2) and finite capacity, 𝐾. 

Additional notation used in the derivation is defined at the outset: 

𝐶𝑟 denotes the 𝑟th customer to join the queue 

𝑥𝑟 represents the service duration of 𝐶𝑟 

𝑑𝑟 is the number of customers left behind by 𝐶𝑟 on departure from the queue 

𝜈𝑟 symbolises the number of prospective arrivals which join the queue during 

service of 𝐶𝑟  
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The state-transition probabilities, 𝑝𝑖𝑗’s, of the discrete-parameter Markov 

chain modelling the number of customers in the queue at departure epochs 

are one-step transition probabilities of the right stochastic matrix, 𝑷 given by 

 

𝑷 =

[
 
 
 
 
 
 
𝑝00 𝑝01
𝑝10 𝑝11

                          
𝑝0,𝐾−1
𝑝1,𝐾−1

⋱

0                           𝑝𝐾−2.𝐾−1
                     𝑝𝐾−1,𝐾−1]

 
 
 
 
 
 

 , 

 

where 

 

𝑝𝑖𝑗 =

{
 
 

 
 

𝑃(𝑑𝑟+1 = 𝑗/𝑑𝑟 = 𝑖), 𝑖 = 0, 𝑗 = 𝑖, 𝑖 + 1, 𝑖 + 2,… , 𝐾 − 1

𝑃(𝑑𝑟+1 = 𝑗/𝑑𝑟 = 𝑖), 𝑖 = 1,2,3…𝐾 − 1, 𝑗 = 𝑖 − 1, 𝑖, 𝑖 + 1,…𝐾 − 1

0, 𝑗 < 𝑖 − 1,   since only single departures occur

 . (D4) 

 

Immediately following the departure of 𝐶𝑟+1, the number of customers left 

behind in the queue, 𝑑𝑟+1, can be obtained from the number of customers 

left behind immediately following the departure of 𝐶𝑟 and the number of 

prospective arrivals which join the queue during the service of 𝐶𝑟+1, as 

follows: 
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𝑑𝑟+1 = {

𝜈𝑟+1, 𝑖 = 0

𝑑𝑟 + 𝜈𝑟+1 − 1, 𝑖 = 1,2,3…𝐾 − 1
 . (D5) 

 

Notably, when 𝐶𝑟 leaves behind an empty system, 𝐶𝑟+1 joins the queue next 

and proceeds straight to service.  The number of customers left behind by 

𝐶𝑟+1 is simply the number of customers which join the queue during its 

service i.e. 𝜈𝑟+1.  Therefore, it is seen that 𝐶𝑟+1 leaving behind 𝜈𝑟+1 

customers on departure from the queue occurs exclusively from either one of 

two preceding states: 𝑑𝑟 = 0 or 𝑑𝑟 = 1. 

Heeding the dependence of the 𝜈𝑟+1’s on 𝑖 due to population-dependent 

balking, and incorporating the expressions for 𝑑𝑟+1 in (D5), the 𝑝𝑖𝑗 ’s can be 

defined as 

 

𝑝𝑖𝑗 =

{
 
 

 
 

𝑃(𝜈𝑟+1 = 𝑗/𝑑𝑟 = 0), 𝑖 = 0, 𝑗 = 𝑖, 𝑖 + 1, 𝑖 + 2,… , 𝐾 − 1

𝑃(𝜈𝑟+1 = 𝑗 − 𝑖 + 1/𝑑𝑟 = 𝑖), 𝑖 = 1,2,3…𝐾 − 1, 𝑗 = 𝑖 − 1, 𝑖, 𝑖 + 1,…𝐾 − 1

0, 𝑗 < 𝑖 − 1,

 . (D6) 

 

The probability of a transition from either 𝑑𝑟 = 0 or 𝑑𝑟 = 1 to 𝑑𝑟+1 = 𝜈𝑟+1 is 

simply the probability that 𝜈𝑟+1 prospective arrivals join the queue during the 

service of 𝐶𝑟+1.  Therefore, the 𝑝0𝑗’s and corresponding 𝑝1𝑗’s are equal as 

expressed in (D6) above and consequently the derivations of 𝑝0𝑗 will be 

omitted henceforth. 
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Since all the customers are statistically identical, the 𝜈𝑟+1’s are identically 

distributed.  Hence, following the substitution (𝑗 − 𝑖 + 1) = 𝑘 in (D6), the 𝑝𝑖𝑗’s 

can be represented by the state transition probabilities 

 

𝛼𝑖,𝑘 = 𝑃(𝜈𝑟+1 = 𝑘/𝑑𝑟 = 𝑖), 𝑖 = 1,2,3…𝐾 − 1; 𝑘 = 0,1,2…𝐾 − 𝑖 . (D7) 

 

Now 𝑷 can equivalently be populated with the 𝛼𝑖.𝑘’s as follows: 

 

𝑷 =

[
 
 
 
 
 
 
 

 

𝛼1,0 𝛼1,1
𝛼1,0 𝛼1,1

                    …                      
𝛼1,𝐾−1
𝛼1,𝐾−1

0 𝛼2,0 𝛼2,1
0        𝛼3,0

⋱

                     0          
𝛼𝐾−2,0
0

  
𝛼𝐾−2,1
𝛼𝐾−1,0

𝛼𝐾−2.2
𝛼𝐾−1,1]

 
 
 
 
 
 
 

 . 

 

By definition, the Poisson prospective arrival process is independent of the 

customer number, 𝑟, the queue size (and hence 𝑑𝑟) and the service process.  

Moreover, the effective arrival process is also independent of the service 

process (Courtois and Georges 1971).  However, the number of prospective 

arrivals which join the queue, 𝜈𝑟+1, during the service of 𝐶𝑟+1 depends on the 

length of its service duration, 𝑥𝑟+1, and the number of customers left in the 

queue immediately following the departure of 𝐶𝑟.  The probability of 𝑘 

prospective arrivals joining the queue over a service-time duration, 𝑡, 



139 
 

conditional on 𝑖 customers left in the queue immediately following the last 

departure, can be derived by applying the theorem of total probability yielding 

 

𝛼𝑖,𝑘 = ∫ 𝑃(𝜈𝑟+1 = 𝑘/(𝑥𝑟+1 = 𝑡, 𝑑𝑟 = 𝑖))𝑏(𝑡)𝑑𝑡,
∞

0

 

𝑖 = 1,2,3…𝐾 − 1; 𝑘 = 0,1,2…𝐾 − 𝑖 . 

(D8) 

 

The conditional probability of 𝑘 joining from all the possible numbers of 𝑙 

prospective arrivals during the service duration, 𝑥𝑟+1 = 𝑡, given that the first 

prospective arrival during 𝑥𝑟+1 finds 𝑖 customers in the queue can be 

determined by applying again the theorem of total probability giving 

 

𝑃(𝜈𝑟+1 = 𝑘/(𝑥𝑟+1 = 𝑡, 𝑑𝑟 = 𝑖)) =∑𝑃(𝑘 𝑗𝑜𝑖𝑛 𝑓𝑟𝑜𝑚 𝑙 𝑑𝑢𝑟𝑖𝑛𝑔 𝑥𝑟+1/𝑑𝑟 = 𝑖)
𝜆𝑡𝑙

𝑙!
𝑒−𝜆𝑡

∞

𝑙=𝑘

, 

𝑖 = 1,2,3…𝐾 − 1; 𝑘 = 0,1,2…𝐾 − 𝑖 

(D9) 

 

where the conditional probability 𝑃(𝑘 𝑗𝑜𝑖𝑛 𝑓𝑟𝑜𝑚 𝑙 𝑑𝑢𝑟𝑖𝑛𝑔 𝑥𝑟+1/𝑑𝑟 = 𝑖), 𝑖 =

1,2,3…𝐾 − 1 models all the different permutations of 𝑘 joining and (𝑙 − 𝑘) 

balking from the 𝑙 prospective arrivals.  For illustrative purposes, the latter 

conditional probability is derived below for two examples. 
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  𝑃(1 𝑗𝑜𝑖𝑛𝑠 𝑓𝑟𝑜𝑚 3 𝑑𝑢𝑟𝑖𝑛𝑔 𝑥𝑟+1/𝑑𝑟 = 𝑖)

= 𝑞(𝑖)(1 − 𝑞(𝑖 + 1))
2
+ (1 − 𝑞(𝑖))𝑞(𝑖)(1 − 𝑞(𝑖 + 1))

+ (1 − 𝑞(𝑖))
2
𝑞(𝑖)

= 𝑞(𝑖) ((1 − 𝑞(𝑖 + 1))
2
+ (1 − 𝑞(𝑖))(1 − 𝑞(𝑖 + 1))

+ (1 − 𝑞(𝑖))
2
) 

(D10) 

 

and 

 

𝑃(2 𝑗𝑜𝑖𝑛 𝑓𝑟𝑜𝑚 4 𝑑𝑢𝑟𝑖𝑛𝑔 𝑥𝑟+1/𝑑𝑟 = 𝑖)

= 𝑞(𝑖)𝑞(𝑖 + 1)(1 − 𝑞(𝑖 + 2))
2

+ 𝑞(𝑖)(1 − 𝑞(𝑖 + 1))𝑞(𝑖 + 1)(1 − 𝑞(𝑖 + 2))

+ 𝑞(𝑖)(1 − 𝑞(𝑖 + 1))
2
𝑞(𝑖 + 1)

+ (1 − 𝑞(𝑖))𝑞(𝑖)𝑞(𝑖 + 1)(1 − 𝑞(𝑖 + 2))

+ (1 − 𝑞(𝑖))𝑞(𝑖)(1 − 𝑞(𝑖 + 1))𝑞(𝑖 + 1)

+ (1 − 𝑞(𝑖))
2
𝑞(𝑖)𝑞(𝑖 + 1)

= 𝑞(𝑖)𝑞(𝑖 + 1)

× ((1 − 𝑞(𝑖 + 2))
2
+ (1 − 𝑞(𝑖 + 1))(1 − 𝑞(𝑖 + 2))

+ (1 − 𝑞(𝑖 + 1))
2
+ (1 − 𝑞(𝑖))(1 − 𝑞(𝑖 + 2))

+ (1 − 𝑞(𝑖))(1 − 𝑞(𝑖 + 1)) + (1 − 𝑞(𝑖))
2
) . 

(D11) 
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These permutations can be represented collectively by the expression 

 

𝑃(𝑘 𝑗𝑜𝑖𝑛 𝑓𝑟𝑜𝑚 𝑙 𝑑𝑢𝑟𝑖𝑛𝑔 𝑥𝑟+1/𝑑𝑟 = 𝑖) = (∏ 𝑞(𝑛)

𝑖+𝑘−1

𝑛=𝑖

)

(

 ∑ (∏(1 − 𝑞(𝑝))
𝑚𝑝

𝑖+𝑘

𝑝=𝑖

)
𝑚𝑖,𝑚𝑖+1…𝑚𝑖+𝑘:

𝑚𝑖+𝑚𝑖+1+⋯+𝑚𝑖+𝑘=(𝑙−𝑘) )

 , 

𝑖 = 1,2,3…𝐾 − 1; 𝑘 = 0,1,2…𝐾 − 𝑖, 𝑞(𝐾) = 0.0 

(D12) 

 

where the 𝑚𝑖, 𝑚𝑖+1, … ,𝑚𝑖+𝑘’s are the summands comprising compositions 

resulting from (𝑙 − 𝑘) into (𝑘 + 1) parts.  When 𝑘 = 0, ∏ 𝑞(𝑛) = 1.0𝑖+𝑘−1
𝑛=𝑖 . 

Therefore, the state transition probabilities can be defined by 

 

𝛼𝑖,𝑘 = ∫∑(∏ 𝑞(𝑛)

𝑖+𝑘−1

𝑛=𝑖

)

(

 ∑ (∏(1 − 𝑞(𝑝))
𝑚𝑝

𝑖+𝑘

𝑝=𝑖

)
𝑚𝑖,𝑚𝑖+1…𝑚𝑖+𝑘:

𝑚𝑖+𝑚𝑖+1+⋯+𝑚𝑖+𝑘=(𝑙−𝑘) )

 
𝜆𝑡𝑙

𝑙!
𝑒−𝜆𝑡

∞

𝑙=𝑘

𝑏(𝑡)𝑑𝑡

∞

0

, 

𝑖 = 1,2,3…𝐾 − 1; 𝑘 = 0,1,2…𝐾 − 𝑖 . 

(D13) 

 

This completes the derivation of the 𝛼𝑖,𝑘’s and hence the population of the 

state transition probability matrix, 𝑷.  The QLD, 𝜋𝑛
𝐾−1, 𝑛 = 0,1,2…𝐾 − 1 can 

now be computed from both the vector equation 𝜋𝑛
𝐾−1(𝑷 − 𝑰) = 0, 𝑛 =

1,2,3…𝐾 − 1 and the normalisation condition. 
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D1.1.  Validation of Analysis 

In this subsection, the analysis of the QLD, 𝜋𝑛
𝐾−1, 𝑛 = 0,1,2…𝐾 − 1, is verified 

by comparing the results of experiments conducted for the M/G/1/K queue 

subject to population-dependent balking with analogous ones in (Gupta and 

Rao 1996).  In the latter work, the supplementary variable solution technique 

was applied to determine the stationary QLD, 𝑃𝑛
+, 𝑛 = 0,1,2…𝐾 − 1, from the 

point of view of departing customers from the equivalent M(n)/G/1/K queue 

(Gupta and Rao 1996). 

Two sets of experiments were conducted, one for the special case of the 

ordinary M/G/1/K queue and the second for a machine interference model 

represented by the M/G/1/K queue subject to balking characterised by the 

function 𝑞(𝑛) = (𝑁𝑠 − 𝑛), 𝑛 = 0,1,2…𝐾 − 1, where 𝑁𝑠 is the size of the 

source. 

The different service-time densities, 𝑏(𝑡), employed in the experiments and 

resulting state transition probabilities of the corresponding EMC’s, 𝛼𝑖,𝑘’s, are 

defined below in (D14) - (D25).  For all the 𝛼𝑖,𝑘’s below, 𝑖 = 1,2,3…𝐾 − 1 and 

𝑘 = 0,1,2…𝐾 − 𝑖 and when 𝑘 = 0, (∏ 𝑞(𝑛)𝑖+𝑘−1
𝑛=𝑖 ) = 1.0.  Furthermore, the 

𝑚𝑖, 𝑚𝑖+1, … ,𝑚𝑖+𝑘’s are the summands comprising compositions resulting 

from (𝑙 − 𝑘) into (𝑘 + 1) parts. 
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The Exponential Distribution 

 

𝑏(𝑡) = 𝜇𝑒−𝜇𝑡, 𝑡 > 0, 𝜇 > 0 (D14) 

 

𝛼𝑖,𝑘 = 𝜇∑(∏ 𝑞(𝑛)

𝑖+𝑘−1

𝑛=𝑖

)

(

 
 

∑ (∏(1 − 𝑞(𝑝))
𝑚𝑝

𝑖+𝑘

𝑝=𝑖

)
𝑚𝑖,𝑚𝑖+1…𝑚𝑖+𝑘:

𝑚𝑖+𝑚𝑖+1+⋯+𝑚𝑖+𝑘=(𝑙−𝑘) )

 
 
(

𝜆𝑙

(𝜆 + 𝜇)𝑙+1
)

∞

𝑙=𝑘

 (D15) 

 

The Erlang-r Distribution 

 

𝑏(𝑡) =
𝜇𝑟𝑡𝑟−1𝑒−𝜇𝑡

(𝑟 − 1)!
, 𝑡 > 0, 𝜇 > 0, 𝑟 = 1,2,3… (D16) 

 

𝛼𝑖,𝑘 = (
𝜇𝑟

(𝑟 − 1)!
)∑(∏ 𝑞(𝑛)

𝑖+𝑘−1

𝑛=𝑖

)

(

 ∑ (∏(1 − 𝑞(𝑝))
𝑚𝑝

𝑖+𝑘

𝑝=𝑖

)
𝑚𝑖,𝑚𝑖+1…𝑚𝑖+𝑘:

𝑚𝑖+𝑚𝑖+1+⋯+𝑚𝑖+𝑘=(𝑙−𝑘) )

 (
𝜆𝑙(𝑙 + 𝑟 − 1)!

(𝜆 + 𝜇)𝑙+𝑟
)

∞

𝑙=𝑘

 (D17) 

 

The Deterministic Distribution 

 

𝑏(𝑡) = {
1.0, 𝑡 = 1 𝜇⁄ , 𝜇 > 0
0,  otherwise

 (D18) 
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𝛼𝑖,𝑘 =∑(∏ 𝑞(𝑛)

𝑖+𝑘−1

𝑛=𝑖

)

(

 ∑ (∏(1− 𝑞(𝑝))
𝑚𝑝

𝑖+𝑘

𝑝=𝑖

)
𝑚𝑖,𝑚𝑖+1…𝑚𝑖+𝑘:

𝑚𝑖+𝑚𝑖+1+⋯+𝑚𝑖+𝑘=(𝑙−𝑘) )

 (
𝜆

𝜇
)
𝑙

(
𝑒
−
𝜆
𝜇

𝑙!
)

∞

𝑙=𝑘

 (D19) 

 

The r-Phase Hyper-exponential (Hr) Distribution 

 

𝑏(𝑡) = ∑ 𝛼𝑚𝜇𝑚𝑒
−𝜇𝑚𝑡

𝑟

𝑚=1

, 𝑡 > 0, 𝜇𝑚 > 0,0 < 𝛼𝑚 < 1,∑ 𝛼𝑚 = 1
𝑟

𝑚=1
 (D20) 

 

𝛼𝑖,𝑘 =∑(∏ 𝑞(𝑛)

𝑖+𝑘−1

𝑛=𝑖

)

(

 ∑ (∏(1 − 𝑞(𝑝))
𝑚𝑝

𝑖+𝑘

𝑝=𝑖

)
𝑚𝑖,𝑚𝑖+1…𝑚𝑖+𝑘:

𝑚𝑖+𝑚𝑖+1+⋯+𝑚𝑖+𝑘=(𝑙−𝑘) )

 𝜆𝑙 ∑ (
𝛼𝑚𝜇𝑚

(𝜆 + 𝜇𝑚)
𝑙+1
)

𝑟

𝑚=1

∞

𝑙=𝑘

 (D21) 

 

The r-Phase Hypo-exponential (hr) Distribution 

 

𝑏(𝑡) = ∑ 𝜇𝑚𝑒
−𝜇𝑚𝑡 (∏

𝜇𝑛
𝜇𝑛 − 𝜇𝑚

𝑟

𝑛=1,𝑛≠𝑚
)

𝑟

𝑚=1

, 𝑡 > 0, 𝜇𝑚, 𝜇𝑛 > 0 (D22) 

 

𝛼𝑖,𝑘 =∑(∏ 𝑞(𝑛)

𝑖+𝑘−1

𝑛=𝑖

)

(

 ∑ (∏(1 − 𝑞(𝑝))
𝑚𝑝

𝑖+𝑘

𝑝=𝑖

)
𝑚𝑖,𝑚𝑖+1…𝑚𝑖+𝑘:

𝑚𝑖+𝑚𝑖+1+⋯+𝑚𝑖+𝑘=(𝑙−𝑘) )

 𝜆𝑙 ∑
𝜇𝑚

(𝜆 + 𝜇𝑚)
𝑙+1
(∏

𝜇𝑛
𝜇𝑛 − 𝜇𝑚

𝑟

𝑛=1,𝑛≠𝑚
)

𝑟

𝑚=1

∞

𝑙=𝑘

 (D23) 
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The r-Phase Coxian (Cr) Distribution 

 

 

 

𝑏(𝑡) = ∑ (∏𝑞𝑛

𝑚−1

𝑛=1

) (1 − 𝑞𝑚)

𝑟

𝑚=1

∑𝜇𝑠𝑒
−𝜇𝑠𝑡 (∏

𝜇𝑢
𝜇𝑢 − 𝜇𝑠

𝑚

𝑢=1,𝑢≠𝑠
)

𝑚

𝑠=1

, 

𝑡 > 0, 𝜇𝑠, 𝜇𝑢 > 0,0 < 𝑞𝑚, 𝑞𝑛 < 1,∏ 𝑞𝑛
0

𝑛=1
= 1.0, (1 − 𝑞𝑟) = 1.0 

(D24) 

 

𝛼𝑖,𝑘 =∑(∏ 𝑞(𝑛)

𝑖+𝑘−1

𝑛=𝑖

)

(

 ∑ (∏(1 − 𝑞(𝑝))
𝑚𝑝

𝑖+𝑘

𝑝=𝑖

)
𝑚𝑖,𝑚𝑖+1…𝑚𝑖+𝑘:

𝑚𝑖+𝑚𝑖+1+⋯+𝑚𝑖+𝑘=(𝑙−𝑘) )

 𝜆𝑙 ∑ (∏𝑞𝑛

𝑚−1

𝑛=1

) (1 − 𝑞𝑚)∑
𝜇𝑠

(𝜆 + 𝜇𝑠)
𝑙+1

(∏
𝜇𝑢

𝜇𝑢 − 𝜇𝑠

𝑚

𝑢=1,𝑢≠𝑠
)

𝑚

𝑠=1

𝑟

𝑚=1

∞

𝑙=𝑘

 (D25) 

 

The experiments were carried out in MATLAB version 7.10.0.499 (R2010a).  

Due to the high computational demands, the maximum number of 

prospective Poisson arrivals permitted per service duration, in all the 

experiments, was set to 15 i.e. 𝑙 = 𝑘, 𝑘 + 1, 𝑘 + 2,…15.  The results of the 

experiments are presented in Table 4 and Table 5 below. 

(1-q
r-1

) 

q
3
 

(1-q
3
) (1-q

1
) (1-q

2
) 

q
r-1

 q
2
 q

1
 

𝑒𝑥𝑝(𝜇𝑟) 𝑒𝑥𝑝(𝜇3) 𝑒𝑥𝑝(𝜇2) 𝑒𝑥𝑝(𝜇1) 

1 2 3 r 



146 
 

Table 4.  Stationary QLD’s from the point of view of departing customers 

from the ordinary M/G/1/11 queue with the exponential, deterministic or H2 

service-time distributions, where 𝑞(𝑛) = 0.999999, 𝑛 = 0,1,2…10 to model 

the case of no balking. 

n Exponential Deterministic H2 

 𝜆 = 1.0 

𝜇 = 5.0 

𝜆 = 1.0 

𝜇 = 2.0 

𝜆 = 1.0 

𝜇1 = 0.8, 𝜇2 = 0.4  
𝛼1 = 0.4, 𝛼2 = 0.6 

 𝑃𝑛
+ 𝜋𝑛

10 𝑃𝑛
+ 𝜋𝑛

10 𝑃𝑛
+ 𝜋𝑛

10 

0 0.800000 0.800000 0.500001 0.500002 0.000787 0.000787 

1 0.160000 0.160000 0.324361 0.324361 0.001466 0.001466 

2 0.032000 0.032000 0.122600 0.122600 0.002772 0.002772 

3 0.006400 0.006400 0.037788 0.037788 0.005263 0.005263 

4 0.001280 0.001280 0.010909 0.010909 0.010007 0.010007 

5 0.000256 0.000256 0.003107 0.003107 0.019038 0.019038 

6 0.000051 0.000051 0.000884 0.000884 0.036223 0.036223 

7 0.000010 0.000010 0.000252 0.000252 0.068924 0.068924 

8 0.000002 0.000002 0.000072 0.000072 0.131147 0.131147 

9 0.000000 0.000000 0.000020 0.000020 0.249544 0.249544 

10 0.000000 0.000000 0.000006 0.000006 0.474830 0.474829 

 

Table 5.  Stationary QLD’s from the point of view of departing customers 

from the M/G/1/5 queue subject to balking according to the function 𝑞(𝑛) =

(𝑁𝑠 − 𝑛), 𝑛 = 0,1,2…4, where 𝑁𝑠 is the size of the source.  Service time 

distributions used are the exponential, Erlang-10, deterministic, H2, h4, C2 

and Erlang-15. 

𝑁𝑠 = 5 

n Exponential Erlang-10 Deterministic 

 𝜆 = 1.0 

𝜇 = 5.0 

𝜆 = 1.0 

𝜇 = 2.0 

𝜆 = 1.0 

𝜇 = 2.0 

 𝑃𝑛
+ 𝜋𝑛

4 𝑃𝑛
+ 𝜋𝑛

4 𝑃𝑛
+ 𝜋𝑛

4 

0 0.398343 0.398342 0.026605 0.026605 0.019762 0.019762 

1 0.318674 0.318674 0.138124 0.138124 0.126259 0.126259 

2 0.191205 0.191204 0.330395 0.330395 0.336035 0.336035 
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3 0.076482 0.076482 0.366209 0.366209 0.381139 0.381139 

4 0.015296 0.015298 0.138668 0.138668 0.136806 0.136806 

𝑁𝑠 = 5 

 H2 h4 C2 

 𝜆 = 1.0 

𝜇1 = 0.53, 𝜇2 = 1.97 

𝛼1 = 0.21, 𝛼2 = 0.79 

𝜆 = 4.0 

𝜇1 = 20, 𝜇2 = 40 

𝜇3 = 60, 𝜇4 = 120 

𝜆 = 0.65 

𝜇1 = 1.5, 𝜇2 = 2.0 

𝑞1 = 0.5 

 𝑃𝑛
+

 𝜋𝑛
4

 𝑃𝑛
+

 𝜋𝑛
4

 𝑃𝑛
+

 𝜋𝑛
4

 

0 0.050429 0.050512 0.090485 0.090484 0.048291 0.049217 

1 0.126482 0.126564 0.236853 0.236852 0.136739 0.138304 

2 0.245264 0.245111 0.334693 0.334691 0.272483 0.273456 

3 0.331082 0.330345 0.257343 0.257342 0.342539 0.341076 

4 0.246742 0.247469 0.080626 0.080631 0.199948 0.197948 

𝑁𝑠 = 40 

 Exponential Erlang-15 H2 

 𝜆 = 1.0 

𝜇 = 5.0 

𝜆 = 1.0 

𝜇 = 10.0 

𝜆 = 1.0 

𝜇1 = 0.37, 𝜇2 = 3.63 

𝛼1 = 0.09, 𝛼2 = 0.91 

 𝑃𝑛
+

 𝜋𝑛
4

 𝑃𝑛
+

 𝜋𝑛
4

 𝑃𝑛
+

 𝜋𝑛
4

 

0 0.000273 0.000273 0.000002 0.000002 0.000055 0.000055 

1 0.002128 0.002128 0.000067 0.000067 0.000649 0.000652 

2 0.016174 0.016174 0.001782 0.001782 0.007459 0.007475 

3 0.119686 0.119686 0.043128 0.043128 0.08344 0.083527 

4 0.861739 0.861739 0.955021 0.955021 0.908396 0.908291 

 

The results obtained from the stochastic analysis above are seen to closely 

match those of (Gupta and Rao 1996).  The largest error in terms of absolute 

difference between corresponding probabilities, |𝜋𝑛
𝐾−1 − 𝑃𝑛

+|, 𝑛 = 0,1,2…𝐾 −

1, was 0.002 and around 82% of the errors lay below 8 × 10−5. 

The discrepancies between the two QLD’s, 𝜋𝑛
𝐾−1 and 𝑃𝑛

+, may be attributed 

firstly to the restriction of a maximum of 15 Poisson prospective arrivals per 

service duration in the analysis of 𝜋𝑛
𝐾−1 above.  Secondly, errors may have 

arisen due to limitations of the software package in carrying out the matrix 

inversion to determine the QLD, 𝜋𝑛
𝐾−1. 
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And therein lies the main drawback of the above solution of 𝜋𝑛
𝐾−1, namely the 

high computational demands of its implementation.  This drawback can be 

overcome by using a different solution approach such as the supplementary 

variable technique. 

 

  



149 
 

References 

Al-Seedy, R. O. (1995). "The truncated queue: M/M/2/m/m + Y with balking 

spares, machine interference and an additional server for longer 

queues (Krishnamoorthi discipline)." Microelectronics Reliability 

35(11): 1423-1427. 

Al-Seedy, R. O. (1996). "Analytical solution of the state-dependent Erlangian 

queue: M/Ej/1/N with balking." Microelectronics Reliability 36(2): 203-

206. 

Ancker, C. J., Jr. and A. V. Gafarian (1963). "Some Queuing Problems with 

Balking and Reneging. I." Operations Research 11(1): 88-100. 

Arizono, I., Y. Cui, et al. (1991). "An Analysis of M/M/s Queueing Systems 

Based on the Maximum Entropy Principle." The Journal of the 

Operational Research Society 42(1): 69-73. 

Artalejo, J. R., I. Atencia, et al. (2005). "A discrete-time Geo[X]/G/1 retrial 

queue with control of admission." Applied Mathematical Modelling 

29(11): 1100-1120. 

Assi, S. A. (2000). An Investigation into Generalised Entropy Optimisation 

with Queueing Systems Applications. MSc Dissertation, Dept. of 

Computing, School of Informatics, University of Bradford. 

Baccelli, F., P. Boyer, et al. (1984). "Single-Server Queues with Impatient 

Customers." Advances in Applied Probability 16(4): 887-905. 

Beneš, V. E. (1965). Mathematical Theory of Connecting Networks and 

Telephone Traffic, Academic Press Inc. 



150 
 

Beran, J., R. Sherman, et al. (1995). "Long-range dependence in variable-bit-

rate video traffic." Communications, IEEE Transactions on 43(2/3/4): 

1566-1579. 

Bertsimas, D. J. and D. Nakazato (1990) "The Departure Process from a 

GI/G/1 Queue and its Applications to the Analysis of Tandem 

Queues", Research Report No. 3275-91, Sloan School of 

Management, Massachusetts Institute of Technology. 

Blackburn, J. D. (1972). "Optimal Control of a Single-Server Queue with 

Balking and Reneging." Management Science 19(3): 297-313. 

Boxma, O. J. and B. J. Prabhu (2009) "Analysis of an M/G/1 Queue with 

Customer Impatience and an Adaptive Arrival Process", Research 

Report No. 2009-028, EURANDOM, Eindhoven University of 

Technology. 

Cantor, J., A. Ephremides, et al. (1986). "Information theoretic analysis for a 

general queueing system at equilibrium with application to queues in 

tandem." Acta Informatica 23(6): 657-678. 

Chandy, K. M., U. Herzog, et al. (1975). "Approximate Analysis of General 

Queuing Networks." IBM Journal of Research and Development 19(1): 

43-49. 

Choudhury, G. L., K. K. Leung, et al. (1994). Resource-Sharing Models with 

State-Dependent Arrivals of Batches. Research Report, AT&T Bell 

Laboratories, New Jersey, USA. 

Courtois, P. J. and J. Georges (1971). "On a Single-Server Finite Queuing 

Model with State-Dependent Arrival and Service Processes." 

Operations Research 19(2): 424-435. 



151 
 

Cox, D. R. (2006). Principles of Statistical Inference, Cambridge University 

Press. 

Crovella, M. E. and A. Bestavros (1997). "Self-similarity in World Wide Web 

traffic: evidence and possible causes." Networking, IEEE/ACM 

Transactions on 5(6): 835-846. 

Csiszár, I. (2008). "Axiomatic Characterizations of Information Measures." 

Entropy 10(3): 261-273. 

de La Fuente, D. and M. J. Pardo (2009). Development of queueing models 

with balking and uncertain data using Fuzzy Set Theory. IEEE 

International Conference on Industrial Engineering and Engineering 

Management, 2009. 

Dick, R. S. (1970). "Some Theorems on a Single-Server Queue with 

Balking." Operations Research 18(6): 1193-1206. 

Economou, A., A. Gómez-Corral, et al. (2011). "Optimal balking strategies in 

single-server queues with general service and vacation times." 

Performance Evaluation 68(10): 967-982. 

El-Affendi, M. A. and D. D. Kouvatsos (1983). "A maximum entropy analysis 

of the M/G/1 and G/M/1 queueing systems at equilibrium." Acta 

Informatica 19(4): 339. 

Erramilli, A., O. Narayan, et al. (1996). "Experimental queueing analysis with 

long-range dependent packet traffic." IEEE/ACM Trans. Netw. 4(2): 

209-223. 

Fang, S.-C., J. R. Rajasekera, et al. (1997). Entropy optimization and 

mathematical programming, Kluwer Academic Publishers, Boston. 



152 
 

Feller, W. (1966). An Introduction to Probability Theory and Its Applications, 

John Wiley & Sons Inc. 

Fisher, R. A. (1935). "The Logic of Inductive Inference." Journal of the Royal 

Statistical Society 98(1): 39-82. 

Floyd, S. and V. Jacobson (1993). "Random early detection gateways for 

congestion avoidance." Networking, IEEE/ACM Transactions on 1(4): 

397-413. 

Fretwell, R. and D. Kouvatsos (2002). "LRD and SRD traffic: review of results 

and open issues for the batch renewal process." Performance 

Evaluation 48(1–4): 267-284. 

Garrett, M. W. and W. Willinger (1994). "Analysis, modeling and generation 

of self-similar VBR video traffic." SIGCOMM Comput. Commun. Rev. 

24(4): 269-280. 

Guiasu, S. (1986). "Maximum Entropy Condition in Queueing Theory." The 

Journal of the Operational Research Society 37(3): 293-301. 

Guo, P. and P. Zipkin (2007). "Analysis and Comparison of Queues with 

Different Levels of Delay Information." Management Science 53(6): 

962-970. 

Guo, P. and P. Zipkin (2009). "The effects of the availability of waiting-time 

information on a balking queue." European Journal of Operational 

Research 198(1): 199-209. 

Gupta, S. M. (1995). "Queueing model with state dependent balking and 

reneging: its complementary and equivalence." SIGMETRICS 

Perform. Eval. Rev. 22(2-4): 63-72. 



153 
 

Gupta, U. C. and T. S. S. S. Rao (1996). "Computing steady state 

probabilities in λ(n)/G/1/K queue." Performance Evaluation 24(4): 265-

275. 

Haight, F. A. (1957). "Queueing with Balking." Biometrika 44(3/4): 360-369. 

Hassin, R. and M. Haviv (1995). "Equilibrium strategies for queues with 

impatient customers." Operations Research Letters 17(1): 41-45. 

Hassin, R. and M. Haviv (2003). To Queue or Not to Queue: Equilibrium 

Behaviour in Queueing Systems, Kluwer Academic Publishers. 

Havrda, J. and F. Charvát (1967). "Quantification method of classification 

processes. Concept of structural α-entropy." Kybernetika 3(1): 30-35. 

Hu, J.-Q. (1996). "The Departure Process of the GI/G/1 Queue and Its 

MacLaurin Series." Operations Research 44(5): 810-815. 

Iannaccone, G., M. May, et al. (2001). "Aggregate traffic performance with 

active queue management and drop from tail." SIGCOMM Comput. 

Commun. Rev. 31(3): 4-13. 

Jaynes, E. T. (1957). "Information Theory and Statistical Mechanics." 

Physical Review 106(4): 620 - 630. 

Jaynes, E. T. (1968). "Prior Probabilities." Systems Science and Cybernetics, 

IEEE Transactions on 4(3): 227-241. 

Jaynes, E. T. (1978). Where do we Stand on Maximum Entropy? The 

Maximum Entropy Formalism Conference, M.I.T., USA, M.I.T. Press, 

Cambridge, MA, USA. 

Jaynes, E. T. (2003). Probability Theory : The Logic of Science. NY, USA, 

Cambridge University Press. 



154 
 

Jouini, O., Z. Akşin, et al. (2011). "Call Centers with Delay Information: 

Models and Insights." Manufacturing & Service Operations 

Management 13(4): 534-548. 

Karmeshu and S. Sharma. (2005). Long Tail Behaviour of Queue Lengths in 

Broadband Networks: Tsallis Entropy Framework. Technical Report, 

School of Computing and System Sciences, J. Nehru University, New 

Delhi, India. 

Karmeshu and S. Sharma (2006a). Power Law and Tsallis Entropy: Network 

Traffic and Applications. Chaos, Nonlinearity, Complexity. A. 

Sengupta, Ed., Springer Berlin Heidelberg. 206: 162-178. 

Karmeshu and S. Sharma (2006b). "q-Exponential product-form solution of 

packet distribution in queueing networks: maximization of Tsallis 

entropy." Communications Letters, IEEE 10(8): 585-587. 

Karmeshu and S. Sharma (2006c). "Queue length distribution of network 

packet traffic: Tsallis entropy maximization with fractional moments." 

Communications Letters, IEEE 10(1): 34-36. 

Kaufman, J. S. and K. M. Rege (1996). "Blocking in a shared resource 

environment with batched Poisson arrival processes." Performance 

Evaluation 24(4): 249-263. 

Ke, J.-C. (2007). "Operating characteristic analysis on the M[x]/G/1 system 

with a variant vacation policy and balking." Applied Mathematical 

Modelling 31(7): 1321-1337. 

Ke, J.-C. and C.-H. Lin (2008). "Maximum entropy approach for batch-arrival 

queue under N policy with an un-reliable server and single vacation." 

J. Comput. Appl. Math. 221(1): 1-15. 



155 
 

Kemp, A. W. (2005). "Steady-state Markov chain models for certain q-

confluent hypergeometric distributions." Journal of Statistical Planning 

and Inference 135(1): 107. 

Kemp, A. W. (2008). The Discrete Half-Normal Distribution. Advances in 

Mathematical and Statistical Modeling. B. C. Arnold, N. Balakrishnan, 

J. M. Sarabia and R. Minguez, Eds., Birkhäuser Boston: 353-360. 

Kendall, D. G. (1951). "Some Problems in the Theory of Queues." Journal of 

the Royal Statistical Society. Series B (Methodological) 13(2): 151-

185. 

Kleinrock, L. (1975). Queueing Systems Vol. 1:Theory, John Wiley & Sons. 

Kouvatsos, D. and S. Assi (2011a). Generalised Entropy Maximisation and 

Queues with Bursty and/or Heavy Tails. Network Performance 

Engineering. D. Kouvatsos, Ed., Springer Berlin / Heidelberg. 5233: 

357-392. 

Kouvatsos, D. and S. Assi (2011b). On the Analysis of Queues with Heavy 

Tails: A Non-Extensive Maximum Entropy Formalism and a 

Generalisation of the Zipf-Mandelbrot Distribution. Performance 

Evaluation of Computer and Communication Systems. Milestones and 

Future Challenges. K. Hummel, H. Hlavacs and W. Gansterer, Eds., 

Springer Berlin Heidelberg. 6821: 99-111. 

Kouvatsos, D. and I. Awan (2003). "Entropy maximisation and open 

queueing networks with priorities and blocking." Performance 

Evaluation 51(2-4): 191. 



156 
 

Kouvatsos, D., P. Georgatsos, et al. (1989) "GE-Type Stochastic Algebra for 

GE-Type Queues", Research Report No. RS-89-013, University of 

Bradford. 

Kouvatsos, D. and N. Tabet-Aouel (1994). "An ME-based approximation for 

multi-server queues with preemptive priority." European Journal of 

Operational Research 77(3): 496-515. 

Kouvatsos, D. D. (1986a). "Maximum entropy and the G/G/1/N queue." Acta 

Inf. 23(5): 545-565. 

Kouvatsos, D. D. (1986b). A maximum entropy queue length distribution for 

the G/G/1 finite capacity queue. Proceedings of the 1986 ACM 

SIGMETRICS joint international conference on Computer 

performance modelling, measurement and evaluation. Raleigh, North 

Carolina, USA, ACM: 224-236. 

Kouvatsos, D. D. (1988). "A Maximum Entropy Analysis of the G/G/1 Queue 

at Equilibrium." The Journal of the Operational Research Society 

39(2): 183-200. 

Kouvatsos, D. D. (1994). "Entropy maximisation and queueing network 

models." Annals of Operations Research 48(1): 63-126. 

Kouvatsos, D. D., J. S. Alanazi, et al. (2011). "A Unified ME Algorithm for 

Arbitrary Open QNM's with Mixed Blocking Mechanisms." Numerical 

Algebra, Control and Optimization 1(4): 781-816. 

Kouvatsos, D. D. and J. Almond (1988). "Maximum entropy two-station cyclic 

queues with multiple general servers." Acta Inf. 26(3): 241-267. 

Kouvatsos, D. D. and S. A. Assi (2002). An Investigation into Generalised 

Entropy Optimisation with Queueing Systems Applications. The 3rd 



157 
 

Annual Postgraduate Symposium on the Convergence of 

Telecommunications, Networking and Broadcasting (PGNet 2002), 

Liverpool, UK, The School of Computing and Mathematical Sciences, 

Liverpool John Moores University. 

Kouvatsos, D. D., I. Awan, et al. (2003). "Performance modelling of GPRS 

with bursty multiclass traffic." Computers and Digital Techniques, IEE 

Proceedings - 150(2): 75-85. 

Kouvatsos, D. D., I. U. Awan, et al. (2000). "A cost-effective approximation 

for SRD traffic in arbitrary multi-buffered networks." Computer 

Networks 34(1): 97-113. 

Kouvatsos, D. D. and S. G. Denazis (1993). "Entropy maximised queueing 

networks with blocking and multiple job classes." Performance 

Evaluation 17(3): 189-205. 

Kouvatsos, D. D. and N. Tabet-Aouel (1989). "A Maximum Entropy Priority 

Approximation for a Stable G/G/1 Queue." Acta Inf. 27(3): 247-286. 

Kuehn, P. (1979). "Approximate Analysis of General Queuing Networks by 

Decomposition." Communications, IEEE Transactions on 27(1): 113-

126. 

Labrador, M. A. and S. Banerjee (1999). "Packet dropping policies for ATM 

and IP networks." Communications Surveys & Tutorials, IEEE 2(3): 2-

14. 

Leland, W. E., M. S. Taqqu, et al. (1994). "On the self-similar nature of 

Ethernet traffic (extended version)." Networking, IEEE/ACM 

Transactions on 2(1): 1-15. 



158 
 

Liu, L. (2007). Service Systems with Balking Based on Queueing Time. PhD 

Thesis, Statistics and Operations Research, University of North 

Carolina at Chapel Hill. 

Lopez-Herrero, M. J. (2002). "On the number of customers served in the 

M/G/1 retrial queue: first moments and maximum entropy approach." 

Computers & Operations Research 29(12): 1739-1757. 

Lu, X. and B. L. Mark (2004). "Performance modeling of optical-burst 

switching with fiber delay lines." Communications, IEEE Transactions 

on 52(12): 2175-2183. 

Manfield, D. and P. Tran-Gia (1982). "Analysis of a Finite Storage System 

with Batch Input Arising out of Message Packetization." 

Communications, IEEE Transactions on 30(3): 456-463. 

Mendelson, H., R. R. Pillai, et al. (1999). "Inferring Balking Behavior From 

Transactional Data." Oper. Res. 47(5): 778-784. 

Morse, P. M. (1958). Queues, Inventories and Maintenance, The Analysis of 

Operational Systems with Variable Demand and Supply, John Wiley & 

Sons, Inc. 

Naor, P. (1969). "The Regulation of Queue Size by Levying Tolls." 

Econometrica 37(1): 15-24. 

Nijenhuis, A. and H. S. Wilf (1978). Combinatorial Algorithms for Computers 

and Calculators. New York, Academic Press, Inc. 

Norros, I. (1994). "A storage model with self-similar input." Queueing 

Systems 16(3): 387-396. 

Rao, S. S. and N. K. Jaiswal (1969). "On a Class of Queuing Problems and 

Discrete Transforms." Operations Research 17(6): 1062-1076. 



159 
 

Shah, N. and D. Kouvatsos (2011). A Queue Conjectured to Bear the 

Generalised Discrete Half Normal Maximum Entropy QLD. 27th 

Annual UK Performance Engineering Workshop, University of 

Bradford. 

Shah, N. and D. Kouvatsos (2013). The GE/GE/1/N Queue Subject to State-

Dependent Arrival Balking. Seventh International Working Conference 

on Performance & Security Modelling and Evaluation of Cooperative 

Heterogeneous Networks, Ilkley, UK. 

Shah, N., D. D. Kouvatsos, et al. (2010). An Analytic Generalisation of a 

Maximum Entropy Customer Impatience Queueing Solution and its 

Nonbalking G/M/1/N Equivalence. The 11th Annual Postgraduate 

Symposium on the Convergence of Telecommunications, Networking 

and Broadcasting, Liverpool, UK, The School of Computing and 

Mathematical Sciences, Liverpool John Moore's University. 

Shannon, C. E. (1948). "A Mathematical Theory of Communication." The Bell 

System Technical Journal 27: 379-423 and 623-656. 

Shore, J. and R. Johnson (1980). "Axiomatic derivation of the principle of 

maximum entropy and the principle of minimum cross-entropy." 

Information Theory, IEEE Transactions on 26(1): 26-37. 

Shore, J. E. (1982). "Information theoretic approximations for M/G/1 and 

G/G/1 queuing systems." Acta Informatica 17(1): 43. 

Skianis, C. (1997). Arbitrary queueing network models with blocking and 

server vacations: approximate analysis of queueing network models of 

manufacturing and computer communication systems with finite 

capacities, server vacation periods and different types of building 



160 
 

block queues using the principle of minimum relative entropy and the 

generalised exponential distribution. PhD Thesis, Department of 

Computing, University of Bradford. 

Takagi, H. and T. Nishi (1998). "Correlation of Interdeparture Times in M/G/1 

and M/G/1/K Queues." Journal of the Operations Research Society of 

Japan 41(1): 142-151. 

Tsallis, C. (1988). "Possible generalization of Boltzmann-Gibbs statistics." 

Journal of Statistical Physics 52(1-2): 479-487. 

Walstra, R. J. (1985). "Nonexponential networks of queues: a maximum 

entropy analysis." SIGMETRICS Perform. Eval. Rev. 13(2): 27-37. 

Wang, K.-H., S.-L. Chuang, et al. (2002). "Maximum entropy analysis to the 

N policy M/G/1 queueing system with a removable server." Applied 

Mathematical Modelling 26(12): 1151. 

Wang, K., N. Li, et al. (2010). Queueing System with Impatient Customers: A 

Review. 2010 IEEE International Conference on Service Operations 

and Logistics and Informatics (SOLI). 

Ward, A. and P. Glynn (2005). "A Diffusion Approximation for a GI/GI/1 

Queue with Balking or Reneging." Queueing Systems 50(4): 371-400. 

Whitt, W. (1982). "Approximating a Point Process by a Renewal Process, I: 

Two Basic Methods." Operations Research 30(1): 125-147. 

Whitt, W. (1984). "Approximations for departure processes and queues in 

series." Naval Research Logistics Quarterly 31(4): 499-521. 

Whitt, W. (1999). "Improving Service by Informing Customers About 

Anticipated Delays." Management Science 45(2): 192-207. 



161 
 

Whitt, W. (2005). "Engineering Solution of a Basic Call-Center Model." 

Management Science 51(2): 221-235. 

Wischik, D. (2005). Buffer requirements for high-speed routers. 31st 

European Conference on Optical Communication (ECOC 2005), 

Institution of Electrical Engineers. 

Wu, J.-S. and W. C. Chan (1989). "Maximum Entropy Analysis of Multiple-

server Queueing Systems." Journal of the Operational Research 

Society 40(9): 815-825. 

Yang, D. Y., K. H. Wang, et al. (2011). "First two moment entropy 

maximisation approach for M/G/1 queues with second optional service 

and server breakdowns." International Journal of Services Operations 

and Informatics 6(4): 310-331. 

Yue, D., W. Yue, et al. (2006). Performance Analysis of an M/M/c/N 

Queueing System with Balking, Reneging and Synchronous Vacations 

of Partial Servers. The Sixth International Symposium on Operations 

Research and its Applications (ISORA'06), Xinjiang, China. 

Zhang, Y., D. Yue, et al. (2005). Analysis of an M/M/1/N Queue with Balking, 

Reneging and Server Vacations. The Fifth International Symposium 

on OR and Its Applications 2005, Tibet, China. 

Zhen, Q., J. H. Leeuwaarden, et al. (2010). "On a processor sharing queue 

that models balking." Mathematical Methods of Operations Research 

72(3): 453-476. 

 


	cover_sheet_thesis.pdf
	University of Bradford eThesis


