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Abstract 

 

Advanced engineering polymers of the Polyaryletherketone (PAEK) family with carbon fibre reinforcement are finding 

application in engineering systems as tribological bearing surfaces under severe operating conditions that cyclically 

move the polymer into and beyond the glass transition temperature region.  To support such an application, the friction 

in high speed and low load PAEK-steel sliding contacts was investigated both unlubricated and lubricated with a tri-

nonyl trimellitate ester, a base fluid for high temperature industrial lubricants.  Four polymers in the PAEK family, 

PEEK, PEK, PEKEKK and PEKK, with 30%wt of carbon fibre whiskers were tested against an AISI 4140 steel disc.  

When unlubricated, low friction depended upon the formation of a PAEK transfer film on the steel disc and when this 

became unstable in the glass transition region the friction increased to much higher levels with associated polymer sur-

face damage.  Frictional heating due to the high sliding speed dominated the differences in glass transition behaviour 

between the four PAEKs.  When lubricated, the lubricant film controlled friction and there was no significant effect of 

the glass transition of any of the PAEKs.  The irreversible nature of the glass transition in PAEKs in such tribological 

applications, due to high surface damage at high temperature, means that it is essential to ensure effective lubrication in 

both fluid film and boundary lubrication. 

 

  



 

1 Introduction 

 

Polyaryletherketones (PAEKs) are semi-crystalline thermoplastic polymers that are finding increasing use across indus-

try. PEEK is the most commonly used of the PAEK family. However, efforts to develop the performance of these mate-

rials have resulted in the use of other polymers in the family. PAEK polymers are made by polymerising phenolic and 

benzaldehyde ring molecules in different proportions to give a family of materials whose structural unit consists of 

aromatic rings that are connected by ether and ketone linkages in varying proportions, Figure 1. The properties that 

differentiate their performance from other polymers are that they have high mechanical strength and are extremely re-

sistant to most chemicals. The melting points of PAEKs are also higher than many other engineering polymers and so 

PAEKs are often employed in systems at elevated temperatures.   

 

 

Figure 1: Example Monomers of Polyaryletherketones 

 

The main variation in properties between the various PAEKs is in their thermal behaviour. By varying the proportions 

of ether and ketone in the polymer, the melting point, Tm, and glass transition temperature, Tg, can be varied. The lower 

the ether to ketone ratio, the higher the Tg and Tm, Table 1. The glass transition is the temperature range through which 

the amorphous regions in the polymer increase sufficiently in energy to change the properties of the polymer from a 

brittle glass at low temperature to a softer, rubbery solid at high temperature. This change manifests itself as a change in 

many mechanical properties such as the storage modulus (elastic modulus under shear) [1, 2], the Young’s modulus 

(elastic modulus under extension) [3], yield stress [4] and the thermal expansion coefficient [4]. The glass transition has 

both thermodynamic and kinematic aspects and can occur over a range of approximately 50°C, the mid-point of which 

is termed the glass transition temperature, Tg. Whilst the transition in most of the properties is gradual, a more precise 

glass transition temperature can be established by measuring the viscoelastic response of the polymer. This can be 

achieved by Dynamic Mechanical Analysis (DMA) using ASTM D7028-07e1 [5] and ASTM E1640-13 [6], where the 

glass transition is marked by a clear peak in the Mechanical Loss Factor (tan δ) [1, 2].  

 



PAEK Ether : Ketone Tg (°C) Tm (°C) 

PEEK [4] 2 143 343 

PEK [4] 1 157 374 

PEKEKK [4] 0.67 162 387 

PEKK [7] 0.5 165 357 

 

Table 1: Glass Transition Temperatures and Melting Points for Various PAEKs 

 

PAEKs are finding use in an increasing number of tribological systems as metal substitutes. Their high mechanical 

strength, high melting temperatures, low density (relative to metals) and chemical resistance make them suitable for 

systems where these properties are not achievable using other thermoplastics, particularly in high temperature systems. 

In almost all tribological applications, PAEKs are used with fibre reinforcement to reduce friction and wear. Glaesser 

reported that a 30%wt fill of carbon fibres is optimal for this purpose under typical conditions [8]. Glass fibres are also 

found to be effective in reducing wear rates [9] whereas carbon fibres are more suitable for reducing friction [10] and 

wear [9-11] under some conditions. In many systems, PAEKs are used without a liquid lubricant and in such cases a 

solid lubricant is also often added to the polymer to further reduce friction e.g. graphite [11-17], PTFE [11-14, 16-21], 

molybdenum disulphide [16, 22], or a combination [11, 12, 17]. Some systems are also liquid lubricated [23-25] and, as 

may be expected, solid lubricants are not typically used in these situations. 

 

Typical tribological conditions where PAEKs find the most common use are low speed (0.1 – 1 ms-1) and low contact 

pressure (0.25 – 2 MPa). However, some systems use PAEKs in more extreme conditions, such as high speeds of up to 

10ms-1, which normally require liquid lubrication to function reliably. 

 

Some authors have reported that there is a significant difference in tribological behaviour below and above the glass 

transition temperature, Tg, of the particular PAEK used [11, 26-28]. As can be seen in Table 2, the nature of these 

changes depends upon the contact geometry and reinforcement of the PAEK matrix. Under all reported conditions, the 

wear rate increases above Tg and in most cases the friction coefficient decreases. These changes are attributed to the 

increased abrasive wear and reduced shear strength of the PEEK as it softens above Tg. Using an indenter, Briscoe et al 

[3] reported that the interfacial shear strength between PEEK and the counterface reduces significantly above Tg. The 

work of Friedrich et al, using a PEEK pin sliding on a steel disc [11, 29], is representative of the typically encountered 

tribological mechanisms.  He observed adhesion, abrasion and surface melting, that the friction coefficient was lower 

above Tg and that the wear rate was higher because of the lower shear strength of the PEEK above Tg. Under these con-

ditions, unreinforced PEEK, especially with solid lubricants added, had a lower wear rate. The influence of solid lubri-

cants in this study may have been the cause of this apparently counterintuitive result. Under most conditions, however, 

when shear strength has a significant influence, fibre reinforcement reduces wear rate significantly. 

 

In comparison, Hanchi and Eiss [27] used a steel ball on a PEEK disc and the wear rate below Tg was lower when car-

bon fibre reinforcement was used. However, above Tg, the friction coefficient for unreinforced PEEK was approximate-

ly a factor of 3 higher than below Tg. However, the friction coefficient above Tg was a factor of approximately 2.5 lower 

for carbon fibre reinforced PEEK than below Tg. Under these conditions, the ball ‘ploughed’ the PEEK disc surface, 



using the terminology of Hanchi and Eiss. Thus, above Tg, as the polymer softened and the shear strength reduced, the 

energy required to plough the reinforced disc surface decreased. Conversely, the increased wear depth of the unrein-

forced polymer increased the contact area between the ball and disc and, though the shear strength of the polymer had 

reduced, the greater contact area increased the work rate required to plough the disc, increasing the resistance to motion.  

These results are supported by those of Zhang et al [28], who considered unreinforced PEEK only. 

 

 

Reinforcement Material 
Contact 

Geometry 

Performance Above Tg versus Below 
Source 

Friction Coefficient Wear Rate  

Carbon Fibres 

PEEK and PEK 

with PTFE, 

Graphite 

PAEK 

Block on 

Steel Disc 

Lower Higher Friedrich et al [11] 

Carbon Fibres PEEK 
Steel Ball on 

PEEK Disc 
Lower Higher 

Hanchi and Eiss 

[27] 

Unreinforced 
PEEK with PTFE 

and Graphite 

PEEK Block 

on Steel 

Disc 

Lower Higher Friedrich et al [11] 

Unreinforced PEEK 

Steel Ball on 

PEEK and 

PEEK coat-

ed Disc 

Higher Higher 

Hanchi and Eiss 

[26] [27],  

Zhang et al [28] 

 

Table 2: Relative Tribological Performance of PAEKs Above and Below Glass Transition 

 

In a separate study, Briscoe et al, using a 6.5mm steel blade/wedge sliding on a PEEK disc at 0.45x10-3 ms-1 and 10N 

normal load, examined the variation of friction coefficient with gradually increasing system temperature [23]. A blade 

was chosen to reduce the effect of ploughing on the friction force, the authors having identified this as a factor when 

using a 6.5mm diameter steel ball. A decrease in friction coefficient at lower temperatures was observed and a large 

increase from 170 to 280°C. However, as it was the steel temperature which was measured, it was not possible to defini-

tively correlate this behaviour with a specific thermal transition in the polymer. When a model lubricant was used, a 

reduction in friction coefficient was seen under some conditions. However, other conditions and lubricants produced an 

increase in the coefficient of friction. 

 

In many reported studies of unlubricated PAEKs, transfer films of PAEK on typically steel counterfaces were shown to 

have a large effect on the friction and wear behaviour of the system [13, 30-32]. A stable transfer film can undoubtedly 

reduce friction and control wear [33] and is most effectively formed in unidirectional sliding as the polymer is predomi-

nantly transferred to one flank of the counterface asperities. Reciprocating sliding, on the other hand, does not produce 

such a thick transfer film [15]. Transfer film material is often highly aligned, which influences their friction and wear 

reduction [33, 34]. The presence of a liquid lubricant can inhibit the adhesion of wear particles to the counterface, pre-

venting transfer film formation [24, 33] and yielding extremely high wear rates, particularly at higher loads [20, 25].  



 

Some industrial systems use PAEKs at typical temperatures of 130 to 180°C and there is concern about the variation in 

tribological properties in the glass transition region itself, as well as above and below it. This study, therefore, consid-

ered the changes in the tribological properties of PAEKs in as well as around the glass transition region, including both 

lubricated and unlubricated conditions to identify any differences in frictional behaviour that may occur. 

 

 

2 Experimental Method 

 

The principal aim of the investigation was to observe and characterise the changes in the frictional response that oc-

curred from an initially stable tribological system, representative of high speed and high temperature industrial applica-

tions, as the system temperature was increased through the glass transition region. A pin-on-disc tribometer, Figure 2, 

was used with a 10mm diameter, flat faced PAEK pin loaded against an AISI 4140 steel disc with a controlled initial 

surface roughness of 0.6μm RA. PEEK, PEK, PEKEKK and PEKK were evaluated, all with 30%wt of carbon fibre 

whiskers approximately 200μm long were evaluated. Two features of this apparatus were designed to simulate a typical 

industrial system that uses PAEKs under such conditions.  First, the system temperature was controlled by heating the 

air in an insulated enclosure around the pin-on-disc contact. Second, when lubricated, the contact was not flooded but 

instead lubricant was fed onto the leading edge of the pin using a syringe pump at 0.20 ml/hr. Because of the low flow 

rate, the lubricant was reasonably assumed to be supplied to the contact at the enclosure air temperature without the 

need to heat it externally.  

 

 

Figure 2: Pin-on-Disc Tribometer 

 

The standard test procedure followed is shown schematically in Figure 3. The stationary machine was warmed up for an 

hour to allow the enclosure to reach 100°C. Then the lubricant feed (if used) and the disc drive motor were started, 

running in the samples for an hour at low sliding speed (3ms-1at the pin centre) and low contact pressure (0.25MPa) so 

that a stable friction coefficient was reached. The speed was then increased to 8ms-1 and the contact pressure to the test 

value. After an hour or after the friction and component temperatures had reached a steady-state, whichever was later, 

the enclosure temperature was set on a programmed linear ramp from 100 to 175°C over a 4 hour period. During this 

time, no other parameters were changed.  

 



 

 

Figure 3: Schematic of Test Procedure 

 

 

 

 

Figure 4: PAEK Test Pin Geometry 

 

The friction, the enclosure air temperature and the pin temperature were recorded throughout each test. The pin temper-

ature was measured using a thermocouple in a hole drilled to the centre of the pin 1.5mm from the running face, Figure 

4, giving a near-contact region temperature. The temperature of the disc was not recorded during this work as the most 

thermally critical component in this system was the polymer. Also, the wear of the pin and the disc were not quantified. 

As previously discussed, the wear rates of PAEKs vary significantly above and below Tg  and a test duration average 

would therefore have little meaning in these particular experiments. Also the formation of polymer transfer films on the 

disc complicates the quantification of wear. 

 

 

Trinonyl Trimellitate Ester 

Kinematic Viscosity @40°C (cSt) 91.9 

Kinematic Viscosity @100°C (cSt) 10.2 

Viscosity Index 90 

Density @20°C (g/cm3) 0.983 

TGA Onset of Oxidation 

(@10°C/min) (°C) 
258 

 

Table 3: Test Lubricant Data 



The lubricant used was a trinonyl trimellitate ester and the key data for this synthetic lubricant base fluid are shown in 

Table 3. This type of fluid is typically used in formulated products for high temperature industrial systems. In order to 

eliminate the effect of chemically or physically formed additive films on the surfaces, the base fluid alone was used. 

Because of the low but continuous supply of lubricant to the contact, there was no observed failure of the lubricant even 

though some decomposition of the lubricant in the contact was inevitable. 

 

 

3 Results 

 

3.1 Full Test Sequence 

 

A typical test sequence result for an unlubricated test is shown in Figure 5, in this case for PEK at 0.5 MPa. There are 

four distinct phases evident in the results: 

 

Phase 1. This period exhibited the typical behaviour expected of running-in in any engineering system, with an initially 

high coefficient of friction that quickly decreased as early life wear progressed and then stabilised. 

 

Phase 2. Subsequently the friction coefficient increased dramatically along with the pin temperature. This period of 

high friction persisted typically for one hour. In many tests, repeated sudden friction rises and subsequent falls were 

observed, each lasting around 20 to 60 seconds.  

 
So in effect there were two distinct stages of running-in behaviour, Phase 1 and 2.  However, their occurrence did not 

correlate with the two running-in sets of operating conditions shown in Figure 3, Run-in 1 and 2, as can be seen in Fig-

ure 5.  Furthermore, estimation of the energy dissipation through the contact area based on the measured friction did not 

identify a critical frictional energy for the onset of Phase 2 behaviour. To investigate further, an experiment was stopped 

a few minutes into this phase and the pin and disc surfaces are shown in Figure 6 and Figure 7. They show that a thin 

transfer film has formed across much of the wear track on the disc and there is also a large smear of polymer across a 

portion of the wear track. The pin surface shows a large quantity of pulled out fibres and an uneven surface that indi-

cates uncontrolled large-scale removal of material from the surface, which has then been smeared on to the counterface. 

This suggests the transfer film formation described by Stachowiak [35] as the wear mechanism occurring ‘at tempera-

tures slightly below the transition to continuous melting wear’, Figure 8. In this, the accumulation of frictional heat at 

the PAEK surface leads to accumulation of an increasingly large molten layer on the pin surface. This layer then fails 

under shear and is smeared onto the disc surface, as witnessed in Figure 6. This smear is then spread evenly across the 

wear track area by repeated passes of the pin. In short, this process, when repeated, is how the stable polymer transfer 

layers in these tests were formed. In a transfer film, an interface of molten polymer provides a low shear strength layer 

that provides effective lubrication between the surfaces. A stable transfer film is, therefore, a film of sufficient thickness 

that the molten layer does not form an interface with the steel surface, such that a polymer-polymer interface results.  

 
Cooling. When a stable transfer film had formed, the friction coefficient reduced dramatically and the cyclic large-scale 

wear described above apparently ceased.  As the frictional energy generated reduced, the pin cooled until thermal and 

tribological equilibrium was again achieved.  



 

Ambient Temperature Ramp. When equilibrium was reached, the enclosure temperature ramp was begun. During this 

phase, in the unlubricated case of Figure 5, the increase in enclosure and pin temperature resulted in an increase in fric-

tion coefficient. 

 

 

 

Figure 5: Full Test Sequence Result for Unlubricated PEK at 8ms-1 and 0.5 MPa 

 

 

 

Figure 6: PEKEKK Steel Disc and Pin Surfaces for Unlubricated Sequence Halted during Phase 2 

 



 

Figure 7: Detailed PEKEKK Pin Surface for for Unlubricated Sequence Halted during Phase 2:  

A) Optical Microscope; B) Scanning Electron Microscope (SEM) 

 

 

 

Figure 8: Mechanism of PAEK Wear and Transfer Film Formation, after Stachowiak [35] 

 

The nature of the friction and temperature rise in Phase 2 is not one that is tolerable, advisable or feasible in an industri-

al application. The formation of a stable transfer film would have to occur at lower load and speed over a longer dura-

tion. However, in the context of this work, this phenomenon was tolerated as it shortened the duration of the tests and 

was generally repeatable for the unlubricated tests.  

 

 

Figure 9: PEEK Pin after Failure During Phase 2 at 1MPa 

 

The exception to this pattern was the test for unlubricated PEEK at 1MPa, where under these conditions the wear during 

Phase 2 was catastrophic, Figure 9. This reflects the fact that the decrease in ether to ketone ratio decreases the melting 

point of the polymer and, by inference, the maximum frictional energy that can be dissipated through the PAEK before 

gross melting. Thus, considering that PEEK has the lowest melting temperature of the PAEKs here, it is clear that, un-

der these conditions, the temperature of the pin was sufficient to cause a critically large molten region around the con-



tact, leading to a catastrophic wear rate.  The frictional energy dissipated was therefore sufficient for PEEK to reach the 

regime of ‘continuous melting wear’ described by Stachowiak [35] but sufficiently low that the other PAEKs were kept 

in the discontinuous melting regime described above. As the frictional energy dissipation in Phase 2 was calculated to 

be approximately similar in all tests, this indicates that there is a significant difference in the maximum operating tem-

perature and maximum friction energy dissipation tolerable between the PAEKs tested.  

 

A typical lubricated test sequence, for PEKK at 1 MPa, is shown in Figure 10. Several differences are apparent between 

the profile of the lubricated test and the unlubricated equivalent, Figure 5. First, the dramatic Phase 2 of running-in is 

not present suggesting no transfer film was produced on the steel counterface. This was confirmed by the post-test con-

dition of the pin and the disc shown in Figure 11.  Thus, the run-in process simply constitutes the removal of the highest 

asperities from each surface until greater conformance and lower abrasive wear occurs, Phase 1 as described in the 

lubricated tests. Second, there is little variation in the friction coefficient as temperature increases during the ambient 

temperature ramp. The Scanning Electron Microsope (SEM) image in Figure 11 shows some evidence of plastic flow, 

indicating that local regions in contact with the steel surface initially flow plastically under the action of shear and heat.  

This yields a relatively uniform and stable polymer surface which allows an effective lubricant film to form, reducing 

the subsequent rate of PEKK deformation and wear. 

 

 

Figure 10: Full Test Sequence Result for Lubricated PEKK at 8ms-1 and 1 MPa 
 

 

 

 

Figure 11: Example Steel Disc (A) and PEKK Pin Surface, Optical (B) and SEM (C), after a Lubricated Test 

A

A 

B

C 



3.2 Variation in Friction Coefficient with Temperature 

 

During the ambient temperature ramp phase of the test sequence, all operating conditions except temperature were kept 

constant, so the relationship between friction and temperature can be examined directly for the different PAEKs. The 

resulting variations in friction coefficient with pin temperature for four lubricated and unlubricated PAEKs are shown in 

Figure 12 and Figure 13 at 0.5 MPa and 1 MPa respectively.   

 

In the unlubricated cases, there is a clear increase in friction coefficient as pin temperature increases and, above some 

upper critical temperature, the increase in friction coefficient either ceases or the rate of increase reduces. In several 

cases, below a lower critical temperature, a lower variation in friction coefficient with temperature was observed. Com-

paring these two regions of lower variation, the friction coefficient in the high temperature region is much greater than 

in the lower temperature region. Taking the example of PEK at 1 MPa, there is a factor of 5.3 difference in friction 

coefficient between these regions (120-200°C). The variation in friction coefficient between these regions is a largely 

linear increase with pin temperature and in all cases the Tg of the PAEK in question falls generally in the central region 

of this linear increase, as indicated in Figures 12 and 13.  It is therefore appears that this increase in friction coefficient 

with pin temperature results from the glass transition of the PAEK.  Interestingly, the reduction in yield stress of a 

PAEK through the glass transition follows a similar but inverse trend to the variation in friction [4] .  

 

 

 

Figure 12: Friction for Lubricated and Unlubricated PAEKs at 8ms-1 and 0.5 MPa  

(green lines indicate the crossover point of the two curves and the corresponding conditions at this point) 

 



 

 

 

 

Figure 13: Friction for Lubricated and Unlubricated PAEKs at 8ms-1 and 1 MPa.  

(green lines indicate the crossover point of the two curves and the corresponding conditions at this point) 

 

To explore the mechanisms that cause this transition more closely, two unlubricated tests were performed on PEK at a 

less severe 4ms-1 and 0.25MPa using the same test sequence as before. In one, instead of the imposing the ambient tem-

perature ramp after the cooling phase, the enclosure temperature was retained at 100°C. In the other, the temperature 

ramp proceeded as normal from 100 to 175°C.  The pin surfaces at the end of these tests are shown in Figure 14, with 

higher resolution images in Figure 15.  

 

The fixed temperature condition produced a highly polished surface with highly aligned fibres. The fibres were largely 

intact, aligned with the sliding direction and located parallel with the surface. The SEM image (C) of Figure 15 shows 

some fibres that have not been aligned in the sliding direction with evidence of surface PAEK flow around their edges. 

A large quantity of polymer matrix is present at the surface, yielding a smooth finish. This indicates that, under these 

stable transfer film conditions, there was little interaction between the polymer and steel surface. Instead, a molten layer 

of polymer between the transfer film on the disc and the pin surface provided a low shear strength interface. The contact 

under these conditions is, therefore, a polymer-on-polymer system which produced an extremely low coefficient of 

friction, typically 0.02 - 0.04. The aligned fibres at the surface resist the flow of molten and softened polymer under 

shear, which prevents catastrophic flow and wear. This allows the transfer film to remain stable under more extreme 

conditions than would be achievable with unreinforced PEK, where the flow of molten polymer is not resisted by the 



fibres [36]. Also, when reinforcement is present, frictional heat dissipation is increased compared to unreinforced 

PAEKs due to the increased thermal conductivity of carbon-fibre-reinforced composites [4], which reduces the build-up 

of heat at the interface and, thus, reduces the interfacial softening and melting of the PAEK for an equivalent thermal 

energy generation.  

 

 

 

Figure 14: Pin Surfaces of PEK at 4ms-1 and 0.25 MPa when A) Ambient Temperature Held at 100°C and B)  

Ambient Temperature Increased as per Figure 3 

 

 

 

Figure 15: Detailed Pin Surfaces of PEK at 4ms-1 and 0.25 MPa when Ambient Temperature Held at 100°C 

(Optical Microscope (A) and SEM (C)) and Ambient Temperature Increased (Optical Microscope (B)  

and SEM (D)) as Figure 3 

A B 



 

 

Under the high temperature condition of the ambient temperature ramp, the pin surface shows a high degree of abrasion 

and melting of the polymer, Figure 14.  The fibres are more extensively pulled out and there is more evidence of plastic 

flow of the PAEK at the sliding interface, Figure 15.  This indicates that a stable transfer film was not formed at the 

higher temperatures and so there was a higher degree of interaction between the steel disc and the polymer pin surfaces 

with abrasive wear.  Thus, at the high temperature condition, it is apparent that the molten or softened layer between the 

transfer film and pin surface had grown in size such that it is caused the whole transfer film on the disc surface to be 

molten or softened, producing a sliding interface between the steel disc and the PAEK. Thus, the more extensive flow 

of PAEK produced a polymer-on-steel contact. A PAEK-steel interface has a higher friction coefficient than a PAEK-

PAEK interface, hence the higher friction coefficients observed at high temperature.  

 

Several published mechanisms have been offered to explain thermal transitions in friction in this type of polymer. Bris-

coe et al [3, 23, 33] explained the increase in friction above a critical load or temperature as junction growth above the 

Tg.  In this mechanism, as the near-contact area softens at high temperature, the polymer hardness decreases and the 

contact area increases. Thus, although the softening of the polymer surface reduces its shear strength, the contact area 

increase dominates and the friction force increases.  This explanation was based upon lubricated tests and transfer film 

formation may not have been as extensive as the unlubricated tests in this study.  The impact of the junction growth 

relies on an initially low contact area and, therefore, low adhesive friction. The stable transfer films observed under the 

low temperature condition here indicate a relatively high contact area and a molten interface. Thus, it is proposed that 

the increase in frictional energy dissipation observed cannot be related to a significant increase in contact area through 

the glass transition. The research of Briscoe et al appears to correlate the thermal transition in friction with the break-

down of a boundary lubricant film. Therefore, whilst the phenomena observed here are linked to near-contact glass 

transition, this transition appears to correlate with a transition to PAEK-steel contact rather than an increase in contact 

area. The junction growth phenomenon is probably more indicative of the spikes in friction and temperature and the 

wear seen in Phase 2 of running-in. 

 

Rhee and Ludema tested a variety of polymers sliding on steel [37] and hypothesised that the a high polymer wear rate 

region was initiated when the cooling of the molten layer on the surface of the transfer film exiting the contact was 

insufficient to bring the temperature below the polymer melting/softening temperature before re-entering the contact. 

Under these conditions, the frictional energy causes melting of the pin surface only because the transfer film is already 

molten, producing a high wear rate. On the other hand, a stable transfer film occurs when the transfer film entering 

contact with the pin is sufficiently below the melting temperature and the frictional energy dissipated is sufficiently low 

that complete melting of the transfer film is not possible.  It is important to note that the wear rate observed above the 

thermal transition by Rhee and Ludema was catastrophic [37]. Whilst the wear rate was not measured in this study, it is 

clear that wear was not catastrophic, except in one case for PEEK. The mechanism Rhee and Ludema described was 

based on melting rather than softening in the glass transition. Thus, whilst there are similarities with their work in terms 

of the thermal behaviour of the transfer film, the mechanism observed here is not based on melting of the near-contact 

region. The mechanism they describe is more indicative of the wear transition seen in exceptional case of the run-in 

failure of PEEK under the high load condition, as described earlier. 



 

The transitions in friction coefficient with temperature in this study correlate best with the glass transition region rather 

than the melting temperature. This suggests that the transition observed here, whilst similar in outcome in some ways to 

Rhee and Ludema [37], is based on glass transition in the near contact region rather than melting.  Calculating the fric-

tional energy dissipated into the contact using the measured friction and imposed sliding velocity, the interface tempera-

ture can be estimated using the approach of Bhushan [38] under the ‘high contact stress’ condition. The theoretical 

interface temperature in these tests does not give a good correlation between the thermal transitions in friction and ei-

ther the glass transition temperature or the melting temperature of the polymer. For example, the transition from low to 

high friction for PEKEKK at 1MPa and 8ms-1 occurs between predicted interface temperatures of 120 and 260°C, a 

range that does not correlate with Tg or Tm regions. Thus, this phenomenon appears to be governed by near-contact 

phenomena rather than interface behaviour.   

 

So whilst the mechanism involves transfer films, where the relative extent of melting/softening and plastic shear/flow 

are uncertain, the melting temperature of the PAEKs do not correlate with the frictional transition phenomena observed 

here.  Also, the temperature range of the friction variation through the glass transition is greater than the glass transition 

temperature range for the corresponding PAEK.  This can be explained by considering the frictional change as the pro-

gression of a PAEK glass transition spatially through the near-contact region. 

 

Drawing on these observations, an alternative hypothesis is offered.  Due to frictional heating there is a temperature 

gradient from the interface through the near-contact region to the bulk of the pin and, similarly, through the transfer film 

on the steel counterface.  So a gradual increase in system temperature will cause an increasingly larger volume of the 

PAEK to soften during its glass transition.  As the extent of softening in the near-contact region grows, the shear 

strength of the transfer film, in particular, will reduce significantly and plastic shear and flow of PAEK in the transfer 

film will occur within a greater volume of the transfer film. It is proposed that this will increase the likelihood of slip at 

the PAEK-steel interface and, therefore, the extent of PAEK-steel sliding in the interface. Therefore, the transition in 

this system, in particular the near-contact region, through the glass transition is defined by a transition from a polymer-

on-polymer contact to a greater extent of polymer-on-steel contact with a consequent increase in friction.  

 

This hypothesis helps explain why even though there are clear differences between the glass transition temperatures of 

the PAEKs tested, there is no significant difference between any of the friction coefficient versus pin temperature traces 

under the same given test conditions.  As discussed, the reported glass transition temperatures of each of the PAEKs 

falls generally in the central region of the linear increase in friction coefficient.  However, the significant fact seems to 

be that the glass transition temperature is greatly exceeded in all cases due to the high sliding speed in the contact and it 

is the friction generated as a result which dominates all these experiments, much more than subtle property differences 

between the PAEKs.  Experiments at lower speeds may perhaps differentiate the PAEKs to a greater extent but this 

study was focused specifically on performance in industrial systems with high sliding speeds and low contact pressures. 

 

 

 



3.3 Variation in Tribological Behaviour in Lubricated and Unlubricated Systems 

 

The variations in friction coefficient with pin temperature, the near contact temperature, for the lubricated tests and their 

equivalent unlubricated tests are also shown in Figure 12 and Figure 13. The first and key observation is that there is no 

significant variation in friction coefficient with pin temperature for any of the PAEKs in lubricated tests under the same 

operating conditions. This implies stable tribological conditions and that the changes that transform the polymer 

through glass transition do not affect the friction coefficient as the near-contact temperature is increased. Therefore, at a 

given set of tribological conditions, the friction response is controlled by the action of the lubricant and the effective-

ness of the lubricant film.  As a logical extension to this, it would also appear that the variations in PAEK properties 

through the glass transition do not affect the lubricant nor the lubricant film significantly.  

 

The lack of significant variation in the coefficient of friction with temperature indicates that there is no substantial deg-

radation of the lubricant under these conditions, with a maximum ambient temperature of 170°C.  This is as expected 

for a trinonyl trimellitate ester with a stated temperature for the onset of oxidation of 258°C, Table 3.  More important-

ly, the lack of variation in friction coefficient with near contact temperature implies that variation in the viscosity of the 

lubricant is not a significant parameter. This along with the observed polishing of pin surfaces and lack of transfer films 

on the metal disc during these lubricated tests indicates that the contact was operating in the mixed lubrication regime.  

The friction coefficients for the lubricated tests in Figures 12 and 13 are consistent with mixed lubrication at the high 

sliding speed of these tests. 

 

That the presence of lubricant has suppressed the friction coefficient increase with rising temperature when the system 

is operating in the glass transition region has significant implications for industrial systems operating under such condi-

tions. This is in stark contrast to the unlubricated contact, where the friction coefficient increase with rising near-contact 

temperature due to the softening of the PAEK could produce thermal and tribological instability in dry and even mar-

ginally lubricated machinery.  Small variations in system temperature could then be expected to cause significant 

changes in friction power loss, wear, and frictional energy dissipation as heat. The worst case would occur if thermal 

management of a system was insufficient and a feedback loop was created whereby increases in friction result in further 

increases in temperature, which further increases friction.  Tribological conditions in such systems could rapidly be-

come unmanageable and potentially dangerous.  

 

When comparing the lubricated and unlubricated tests for different PAEKs under same conditions, there are several 

observations that can be made.  Under low temperature conditions, when a stable transfer film was formed in the unlu-

bricated contact, the friction coefficient of the unlubricated contact was lower than that of the lubricated contact.  In 

contrast under high temperature conditions, when there was no stable transfer film in the unlubricated contact, the fric-

tion coefficient of the unlubricated contact was greater than that of the lubricated contact.  Due to the nature of the 

trends with temperature, Figures 12 and 13, there is a point in the glass transition when the friction coefficients of both 

the unlubricated and lubricated systems are equal at a distinct crossover. The crossover temperature and the magnitude 

of the friction coefficient at this point are compared for each PAEK in Table 4, noting that unlubricated PEEK failed 

catastrophically at 1 MPa and so there is no crossover data for this case. There is generally no significant difference in 

either of these parameters for any of the PAEKs tested here at the same speed and load, with the possible exception of 



PEKEKK at 1 MPa.  This insensitivity to the precise PAEK is consistent with the previously discussed controlling in-

fluence of the high sliding speed in the unlubricated tests and the lubricant film in the lubricated tests. 

 

PAEK 

Sliding 

Speed 

(ms-1) 

Contact 

Pressure 

(MPa) 

Crossover 

Pin Temperature 

(°C) 

Standard 

Deviation 

(°C) 

Friction 

Coefficient  

Standard 

Deviation 

PEEK 

8 0.5 

170 ± 7 0.12 ± 0.01 

PEK 160 ± 8 0.10 ± 0.01 

PEKEKK 167 ± 5 0.11 ± 0.01 

PEKK 160 ± 11 0.11 ± 0.01 

PEK 

8 1.0 

158 ± 2 0.09 ± 0.01 

PEKEKK 149 ± 2 0.06 ± 0.01 

PEKK 155 ± 1 0.08 ± 0.01 

 

Table 4: Temperature and Friction Crossovers for Lubricated and Unlubricated Tests  

 

 

It is evident from Figure 11 that when the contact was lubricated a PAEK transfer film was not formed. As described, a 

transfer film is formed by the melting and then physical and mechanical adhesion of PAEK to the steel surface. When a 

polar lubricant such as the ester in this study is present, it will physically adhere to the steel surface and inhibit the ad-

hesion of PAEK as melt or wear particles to the steel surface.  So in this instance generated wear particles should be 

entrained in the lubricant flow through and around the contact. The presence of polymer wear particles in the lubricant 

that drained from the contact in these experiments, Figure 16, supports this argument.  Some authors report that, under 

such lubricated conditions, wear rates of PAEKs can be impractically high [23, 25]. However, this was observed partic-

ularly when the lubricant film broke down and was unable to prevent high wear [23, 25]. This was not the case in this 

study because the lubricant proved very effective in reducing friction.  Other studies have observed similar beneficial 

tribological behaviour with suitable lubricants [23]. 

 

 

Figure 16: Steel Disc after a Test but before Cleaning (PEK at 8ms-1 and 1MPa) 

showing Wear Debris removed from the Contact Area 



 

5 Consequences for Polymer Applications in Tribology 

 

Industrial systems utilise lubricated PAEK-steel sliding contacts where there is unavoidably boundary lubrication be-

tween the component surfaces in normal operation, for example during start-up or shut-down, or in the case of the 

breakdown of the fluid lubricant film, due to degradation or starvation. Under these conditions, the increase in friction, 

wear and temperature will be lower and less catastrophic with a PAEK-steel interface than for example with a steel-

steel interface.  

 

However, the frictional increase evident in an unlubricated PAEK-steel contact as the polymer passes through its glass 

transition and the protective transfer film is lost, will limit the effectiveness of this type of design as system perfor-

mance demands increase, unless satisfactory lubrication can be assured. 

 

Furthermore, generally the glass transition of a polymer is considered a reversible process where the material can alter-

nate between a brittle glass at low temperature and a soft rubbery solid at high temperature.  However, in tribology the 

damage that occurs to the surface at high temperature is retained at lower temperatures and so the behaviour can no 

longer be considered reversible, Figures 14 and 15. 

 

So the industrial challenge is optimise the polymer properties and the lubricant to minimise the impact of operation at 

temperatures into the glass transition of the polymer, even with the PAEK family of advanced engineering polymers 

that are generally considered appropriate for high temperature applications. 

 

 

5 Conclusions 

 

The tribology of various PAEK polymers, with 30%wt of carbon fibre whiskers, sliding against steel has been evaluated 

under high speed and low load conditions as they passed through their glass transition temperature region, both with and 

without an ester base fluid as a model lubricant.  This was to simulate a specific industrial application but has broader 

generic interest and implications. 

 

 Without additional lubrication at temperatures below the glass transition, a stable transfer film of PAEK on the 

steel counterface was formed for all the polymers, yielding a PAEK-PAEK contact with low coefficients of 

friction. 

 

 Without additional lubrication at temperatures into the glass transition region, the transfer film formed at lower 

temperatures became unstable and resulted in a larger degree of steel-PAEK contact and damage to the poly-

mer surface.  In this region the friction increased linearly with temperature, with friction coefficients at high 

temperature up to 5.3 times greater than those seen at low temperature with a stable transfer film.  Frictional 

heating due to the high sliding speed dominated the small differences in glass transition behaviour between the 

four PAEKs. 



 
 When the contact was lubricated with an ester base fluid, the lubricant film prevented the adherence of PAEK 

to the steel disc surface and no discernible PAEK transfer film was observed.  The lubricant film was therefore 

dominant in defining the frictional response of the system and there was no significant variation in friction co-

efficient with near-contact PAEK temperature.  The system response was characteristic of an interface operat-

ing in the mixed lubrication regime. 

 

 In tribology, the glass transition of a polymer is not a reversible process due to the surface damage that can oc-

cur at higher temperatures if lubrication is not effective.  The polymer and lubricant properties need to be op-

timised to ensure surface protection in fluid film and boundary lubrication in industrial systems that utilise 

such materials.  
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