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Abstract 

There is a need for improved reproductive toxicology assays that do not require large 

numbers of animals but are sensitive and informative. Therefore, Staput velocity-

sedimentation separation followed by culture of specific mouse testicular cells was used as 

such a system. The specificity of separation was assessed using immunocytochemistry to 

identify spermatids, spermatocytes and spermatogonia. The efficacy of the system to detect 

toxicity was then evaluated by analysing the effects of hydrogen peroxide (H2O2) by the 

terminal uridine-deoxynucleotide end-labelling (TUNEL) assay to show the rate of apoptosis 

induced among the different types of germ cells. We found that 2 h of treatment at both 1µM 

and 10µM induced increases of over ~10-fold in the percentage of apoptotic cells (p≤0.001), 

confirming that testicular germ cells are prone to apoptosis at very low concentrations of 

H2O2. It was  also demonstrated for the first time for this compound that spermatogonia are 

significantly more susceptible than spermatocytes, which are more affected than spermatids. 

This reflects the proportion of actively dividing cells in these cell types, suggesting a 

mechanism for the differential sensitivity. The approach should thus form the basis of a 

useful test system for reproductive and genetic toxicology in the future. 



 

1 Introduction  

Testing germline-genotoxicity in the male is generally undertaken in vivo, partly because of 

the difficulty of achieving full spermatogenesis in vitro and partly because mating studies are 

currently the only reliable way of testing heritable effects. The associated expense and ethical 

issues mean there is a constant need for the development of novel in vitro assays (cf the 

European REACH regulation [EU, 2007]).  This will require an in vitro test system that 

allows examination of individual germ cell types. It should also have high sensitivity and be 

suitable for the rapid screening of large numbers of chemicals. We propose that the use of 

Staput to separate highly enriched populations of spermatogonia, spermatocytes and 

spermatids, and their subsequent culture in the presence of putative genotoxins or 

reproductive toxins, coupled with the measurement of appropriate end-points of damage, has 

the potential to meet this need. These three germ cell categories contain the three major 

events occurring in spermatogenesis: mitotic proliferation (spermatogonia); meiosis 

(spermatocytes); and spermiogenic differentiation (spermatids). Therefore, even though each 

type contains a number of different sub-types, they make suitable groupings for toxicity 

analysis as all the parts of each process are covered within each cell population used. 

The ability to study specific germ cell types will also be useful in more fundamental studies 

of reproductive biology. During spermatogenesis the male germ cell undergoes complex 

morphological, biochemical, and physiological changes, resulting in the formation of a 

mature spermatozoon. This dynamic procedure depends upon Sertoli cells that supply 

nutrients, hormones and structural support to the germ cells through their development, and 

on Leydig cells that synthesise the steroid hormones necessary for germ cell differentiation 

(Cheng and Mruk, 2010, O'Shaughnessy et al., 2009). Even after decades of research in the 

field of male fertility, critical spermatogenic events, including Sertoli cell–germ cell 

interaction and mechanisms of androgen action, remain to be completely understood. A more 

in-depth understanding of these spermatogenic events will require, for example, the ability to 

study specific molecular signatures of individual testicular cells. That in turn will require the 

isolation of purified populations of spermatogenic cells as one of the crucial steps to address 

these important issues. Over the years, a range of approaches have been used to successfully 

isolate testicular cells, including elutriation. Velocity sedimentation separation using Staput 

chambers is another of the approaches used to isolate spermatogenic cells (Han et al., 2001) 

and has been more widely used, presumably because of the high purity of fractions that is 

possible and relatively low unit-cost of the experiments.  



 

Germ cell apoptosis is very common during the various stages of mammalian testicular 

development up to a point midway through spermatid development, when nuclear 

condensation has advanced too far to permit the de novo gene expression on which post-

meiotic DNA repair and presumably apoptosis depends (Leduc et al., 2008). However, 

understanding of the mechanisms underlying male germ cell apoptosis is still limited (Koji 

and Hishikawa, 2003) although its role in removing genetically damaged cells from the 

germline is well accepted. Testicular cells are prone to oxidation by H2O2 and other reactive 

oxygen species (ROS) (Peltola et al., 1994) which represent probably the commonest form of 

exposure to genotoxins that most cells encounter. Reactive oxygen species are chemically 

reactive molecules containing oxygen. They form as a natural by-product of the metabolism of 

oxygen and have a central role in sperm maturation as well as the acrosome reaction when 

expressed at low levels (Schulte et al., 2010). One of the main ROS forms during germ cells is 

Hydrogen Peroxide (H2O2) (Moustafa et al., 2004). H2O2 constitutes the main ROS form in 

sperm but its effective role as an endogenous inducer of germ cell apoptosis continues to be 

investigated (Aitken et al., 1998). H2O2 is also known to modulate a variety of cell functions. 

It is a potent ROS, but its lower biological activity compared with many other ROS, combined 

with its capacity to cross membranes and diffuse away from the site of generation, makes it an 

ideal molecule in signal transduction, and it is involved in inducing the acrosome reaction in 

sperm (Hampton and Orrenius, 1997). The plasma membrane of testicular cells is rich in 

polyunsaturated fatty acids, thus making it prone to oxidation by H2O2 and other ROS’s; 

oxidative stress is known to cause DNA damage (Agarwal and Saleh, 2002). H2O2 is the main 

form of ROS in sperm cells and previous studies determined male germ cells displayed a much 

higher sensitivity to H2O2 in comparison to other cells (Maheshwari et al., 2009).  

Enriched populations of germ cells in the mouse thus seem suitable for analysis of the effects 

of genotoxins using the TUNEL assay. Since similar mechanisms could operate in the 

generation of pathological states in the testis, the approach may also have utility in studies of 

infertility in the future. 

Abbreviations: Tp1 = transition protein 1; Scp3 = synaptonemal complex protein 3; GDNFR 

= glial cell line derived neurotrophic factor receptor. 

 

2 Materials and Methods  

2.1 Animals  



 

Sexually mature NMRI mice (National Medical Research Institute) weighing 25-30g (10-12 

weeks old) were used in this study. Animals were sacrificed by cervical dislocation under 

CO2 anaesthesia. Animals were obtained from the Institute of Cancer Therapeutics (ICT), 

University of Bradford, UK where they were maintained under standard conditions. All 

animal care procedures were carried out according to the National Research Council's Guide 

for the Care and Use of Laboratory Animals.  

2.2 Staput Isolation of Germ Cell Fractions  

Mixed testicular germ cells were separated using the velocity sedimentation technique 

(Staput) according to procedures developed for murine spermatogenic cells (Romrell et al., 

1976). Briefly, the testes were removed and decapsulated from four male adult (10-12 week-

old) NMRI mice. They were then placed into ice-cold Dulbecco’s modified Eagle’s medium 

(DMEM). The decapsulated testes were minced with a scalpel blade and suspended in 

Dulbecco's Minimum Eagle's Medium (DMEM) containing collagenase (5mg/ml) and 

DNAse (1μg/ml) (both from Sigma, Poole, UK), and the flask was incubated at 32°C for 20 

min in a water bath. After two washes in DMEM, the dispersed cells were washed twice with 

medium and filtered through an 80μm nylon mesh (Tetco Inc., Briarcliff Manor, NY), 

successively. The different types of germ cells were separated by sedimentation velocity at 

unit gravity at 4°C, by use of a 2-4% BSA gradient in DMEM. The cells were bottom-loaded 

into the chamber in a volume of 10ml, and a BSA gradient using 250ml of 2% w/v and 4% 

w/v BSA was generated. The cells were allowed to sediment for a standard period of 2.5h, 

and then 31 fractions each of 12ml volume were collected at 60s intervals. The cells in each 

fraction were examined under a phase contrast microscope, and fractions containing cells of 

similar size and morphology spun down by low-speed centrifugation and then resuspended in 

DMEM.  

2.3 Culture and Treatment 

The isolated testicular germ cells were seeded onto coverslips in 6-well plastic culture plates 

with DMEM containing 10% fetal bovine serum (FBS), 100 Unit/ml penicillin, and 100 

mg/ml streptomycin (5 x 10
6
 cells/ml; 1ml  per well) at 37ºC then the medium was changed 

and they were serum starved in DMEM (with antibiotics) for 16 h to allow the cells to attach 

to the coverslips. They were then incubated for 2h with or without H2O2. Incubations with 

H2O2 were made at final concentrations of 0, 1, and 10μM in triplicate. A temperature of 

37ºC would not be suitable for long-term cultures of spermatogenic cells, which thrive best at 



 

a temperature 1-2 degrees below core body temperature in humans. Attempts to recreate 

spermatogenesis in vitro typically use a culture temperature of 35°C, often maintained for 

several weeks (Reuter et al., 2013). Cells cultured for a single day at 37°C are healthy in 

appearance and only minimal numbers fail to survive, so these conditions were deemed 

suitable for the short-term experiments reported here. Treated and untreated cells were fixed 

with 4% formaldehyde for 10 min and washed twice, each for 5 min, in PBS containing 0.5% 

BSA and stored at in 70% (v/v) ethanol until further use. Approximately 80% cells were 

viable in the group exposed to 10μM H2O2. Some of the untreated cells were processed for 

immunohistochemistry to determine transition protein 1 (Tp1, spermatids), synaptonemal 

complex protein 3 (Scp3, spermatocytes) and Glial cell line derived neurotrophic factor 

receptor (GDNFR, spermatogonia). 

2.4 TUNEL Assay  

The TUNEL assay for apoptosis evaluation (Gavrieli et al., 1992; Lobascio et al., 2007) was 

performed on separate cell samples of the same cell populations as follows. Briefly, the slides 

were incubated with TUNEL reaction mixture (30mM Tris pH 7.4; 140mM sodium 

cacodylate; 1mM cobalt chloride; 5µM biotin-16-deoxyuridine triphosphate; 0.3U/µl 

terminal deoxynucleotidyl transferase [Tdt]; all from Sigma) for 60 min (humidity chamber, 

37°C) and then washed twice in PBS. (H2O2–blocking of endogenous peroxidases was not 

performed as the testis is low in peroxidases so it is rarely necessary.) After multiple washing 

steps, the cells were treated with extravidin peroxidase solution for 30 min (humidity 

chamber, 37°C), rinsed with PBS, and visualized by adding 3,3′-diaminobenzine (DAB) for 

10 min at room temperature. They were washed in phosphate buffer saline (PBS), 

counterstained using hematoxylin staining, and finally, mounted for light microscopic 

observation. For the negative controls, sections were incubated with the reaction mix without 

Tdt instead of the full TUNEL reaction mixture.  

2.5 Immunohistochemistry 

The fractions of cells used were grown on coverslips in 6-well plastic culture plates with 

DMEM containing 10% FBS, 100 Unit/ml penicillin, and 100mg/ml streptomycin. The cells 

were serum starved in DMEM (with the antibiotics) for 16h to allow the cells to attach to the 

coverslips, fixed with 4% formaldehyde for 10 min and washed twice, each for 5 min, in PBS 

containing 0.5% BSA. A 1 h block in PBS containing 0.1% BSA, 0.05% Triton X-100, and 

1% goat serum was performed. Anti-SCP3 rabbit polyclonal antibody (1:400; Abcam, 



 

Cambridge, UK), rabbit polyclonal anti-Tp1 antibody (1:50; Abcam, Cambridge, UK), rabbit 

polyclonal anti- GDNFR (1:100; Abcam, Cambridge, UK), were used as the primary 

antibodies. Briefly, the incubation was at 4°C overnight, followed by washing with PBS. The 

slides were incubated with secondary, biotinylated anti-rabbit-IgG antibody for 30 min at 

room temperature. Signals were developed with 3, 3’-diaminobenzine (DAB) for 10 min and 

counterstained with hematoxylin (Hsu et al. 1981; Khalfaoui et al. 2011) and mounted with 

Histomount (Fisher Scientific, Fair Lawn, NJ). Preparations of cells representing each 

fraction were scored for the presence of cells positive for each of the three  markers and their 

total number per fraction calculated. Only fractions showing suitable purity of a specific cell 

type were used to set up the cultures (see below). 

2.6  Cell Counting  

The isolated testicular germ cells were assessed for morphology and staining, The following 

findings were considered to represent apoptosis: marked condensation of chromatin and 

cytoplasm clearly staining strongly brown or brown/black; The TUNEL- positive cells were 

scored in several fields on each coverslip to yield a total of at least 100 cells under a 40X 

objective of an Olympus CKX31 microscope. Values represent percentages from at least 100 

cells from each culture. Using the one–way ANOVA test differences were considered as 

significant at p<0.001.  

 

2.7 Statistical analysis  

Data are expressed as mean ± S.D. of at least three independent experiments with three 

replicates per experimental group. Comparisons were made by one-way ANOVA; P values < 

0.05 were considered significant. 

3 Results  

3.1 Purification of germ cells  

Microscopic examination of each 12 ml fraction collected from the Staput chamber indicated 

that spermatids were concentrated in fractions 15–24, spermatocytes in the fractions 25–29, 

and spermatogonia in fractions 27–36, as shown in Figure 1. This confirmed that different 

types of germ cells could be separated from each other on the basis of their density and size 

using Staput. 



 

Immunocytochemistry analysis was used successfully in this study to identify the principal 

classes of male germ cells following separation via Staput: examples of cells labelled with the 

different antibodies are shown in Figure 2. 

It was critical to determine the purity of the fractions so cells from each of the fractions could 

be scored after binding to different antibodies. It was found that specific fractions contained 

high purities of the individual cell types: spermatids in fraction F19; spermatocytes in F27; 

spermatogonia in F30; (Figure 3) so only these fractions were used for cell culture. 

3.2 TUNEL assay   

The outcome of H2O2 treatment on mouse testis was evaluated by the TUNEL assay, and 

results, expressed as percentages of apoptotic cells, are shown in Figure 4. The TUNEL assay 

revealed that all cells types had undergone significant levels of apoptosis compared with the 

controls (p ≤ 0.001). Representative apoptotic cells from treated and non-treated samples are 

illustrated in Figure 5. 

The results of the induction of apoptosis by H2O2 treatment of different germ cell types are 

shown in Figure 4. After treatment with H2O2 (1 and 10μM) for 2 hours, a significant 

increase (p ≤ 0.001) in spermatogonial apoptosis to 47% was observed when cells were 

treated with 1μM H2O2. Moreover, the apoptosis of spermatogonial cells treated with 10μM 

H2O2 showed a further significant increase to 62% when compared with control (p ≤ 0.001). 

Following treatment with 1μM H2O2 spermatocytes cells showed an increase in cell apoptosis 

to 38%, which was statistically significant when compared with the corresponding controls (p 

≤ 0.001). A further increase to 51% in cell apoptosis was observed when cells were treated 

with 10μM H2O2. This increase was significant compared with controls (p≤0.001). Cell 

apoptosis was significantly increased to 29% when cells were treated with 1μM H2O2 (p ≤ 

0.001). The apoptosis of spermatids treated with 10μM H2O2 was significantly increased to 

40% compared to the corresponding controls (p ≤ 0.001). 

Figure 4 additionally shows that while the levels of spontaneous apoptosis are similar for all 

three germ cell types in the control group, the response of spermatids to both 1 and 10μM 

H2O2 was markedly lower than that of spermatogonia, with spermatocytes intermediate 

between them in both cases. That difference was statistically significant (p≤0.001) between 

the cell types. 

4 Discussion  



 

Despite recent advances in the study of male germ-line cells in terms of genetics and 

development, our understanding of the effect of toxins on specific cell types has been largely 

limited to what can be achieved by, often cumbersome, in vivo studies to make such 

distinctions. The results presented here demonstrate that a suspension of mouse germ cells 

can be obtained from testicular tissue and fractionated into large homogeneous populations of 

spermatogonia, spermatocytes, spermatids and spermatozoa using Staput. 

Validation of the system involved using immunohistochemistry to determine the purity of the 

cells populations isolated by Staput (Bellve et al., 1977), using antibodies against: Tp1 to 

detect spermatids; Scp3 to detect spermatocytes; and GDNFR to detect spermatogonia. Tp1 is 

an important nuclear protein in spermatids as histones are replaced by protamines during 

spermiogenesis. Its specificity to the haploid phase of spermatogenesis makes it a useful 

marker for spermatids (discussed in Meistrich and Hess, 2013). Spermatocytes can be located 

by the presence of Scp3. Synaptonemal complexes are structures formed between 

homologous chromosomes during meiotic prophase, thought to be involved in chromosome 

pairing and recombination. They comprise lateral and central elements and of the lateral 

elements, two components have been identified in rodents, one of which is the Scp3 (Dobson 

et al., 1994, Lammers et al., 1995). Spermatogonia can be labeled by GDNFR. Sertoli cells 

secrete a ligand to GDNFR called GFRα-1 (Viglietto et al., 2000) .The binding of this 

substrate-ligand complex activates the Ret receptor tyrosine kinase  (Tadokoro et al., 2002). 

This mediates an intracellular response that is linked to the proliferation of an 

undifferentiated type A spermatogonia and is therefore considered a good marker for these 

types of spermatogonia (Meng et al., 2000). 

Hydrogen peroxide (H2O2) has been found to induce apoptosis in a diversity of cells and 

although the sensitivity of germ line cells to H2O2 is not fully understood, DNA strand 

breakage by the production of free radicals is the trigger for the programmed cell death. The 

results of the present study show that H2O2, even at a low concentration of H2O2 of 1μM, has 

the ability to induce apoptosis in testicular germ cells in vitro. This is in line with what has 

been reported previously, demonstrating concordance between our approach to preparing 

testicular germ cells and previous methodologies (Maheshwari et al., 2009). In the present 

work, following 2 hours of treatment with 10μm H2O2, a tenfold increase in the proportion of 

apoptotic cells was found. There was a statistically significant induction of apoptosis in 

germline cells (p<0.001). The spermatogonia were significantly more affected by H2O2 than 

the spermatocytes, which were significantly more affected than spermatids. This correlates 



 

with the proportion of dividing cells expected to be present in these populations. Thus, if 

dividing cells are more susceptible to genetic damage than non-dividing cells, this could 

account for the lowest amount of apoptosis occurring in the latter population. Indeed, there 

are a number of different types of cells within spermatogonia, spermatocytes and spermatids, 

each of which could have different susceptibilities to genetic damage. Therefore, one 

challenge for the future will be to examine chemicals that react primarily with each germ cell 

type, and to refine the Staput separation so as to isolate more specific and well defined 

populations. Furthermore, such a clear difference in sensitivity may be highly important in 

the toxicity assessment of other chemicals but would be very difficult to demonstrate with in 

vivo studies. Therefore, we believe that our approach holds significant advantages for the 

development of sensitive and specific, in vitro reproductive and genetic toxicology assays. 

5 Conclusion  

Staput separation of specific germ cell types, coupled with short term in vitro culture shows 

potential for the rapid assessment of toxins in multiple germ cell types with high sensitivity. 

Notably, it allows the examination of high numbers of cells such as spermatogonia, which are 

normally present in relatively low amounts in vivo, compared with spermatocytes and 

spermatids. Overall, the present work shows that this in vitro system has potential to be a 

sensitive, rapid screen for reproductive toxins. 
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9 Figure legends 

Figure 1: Velocity sedimentation separation of germ cells of the mouse. Spermatids, 

characterised by TP1 antibody staining, sediment first, followed by spermatocytes (SCP3 

antibody staining), then spermatogonia (GDNFR antibody staining).  Microscopic 

examination of each fraction isolated by Staput showed that the maximum concentration of 

spermatids was in the fractions (15–24), followed by spermatocytes in the fractions (25–29 ), 

spermatogina in the fractions (37–36 ). 

Figure 2: Immunohistochemistry  staining was performed on Staput purified mouse testicular 

cells were stained with antibodies for specific proteins. Spermatids were detected with anti- 

Tp1 (Panel A); spermatocytes were detected anti-SCP3 (Panel B) and spermatogonia were 

detected with anti-GDNFR (panel C). Viewing magnification X400. 

Figure 3: Assessment of the purity of the fractions. Cultured cells from all fractions were 

stained for each of the three antibodies and scored to determine their relative proportion in 

each fraction. The results for the three fractions showing the highest purity for each cell type 

are shown.The numbers are for total numbers of each cell type per fraction. 

Figure 4: Effect of H2O2 treatment on germ cells evaluated in the TUNEL assay. Columns 

represent the mean percentages +/- SD of apoptotic cells for each of the three concentrations 

of hydrogen peroxide used (0, 1.0, 10µM). Data were obtained from three independent 

experiments. Each dose level within a cell type has been compared with the  respective 0µM 

group. *** = p < 0.001. 

Figure 5: Effect of H2O2 treatment on germ cells of the mouse evaluated by the TUNEL 

assay. The treated cells with H2O2 (A) were compared with untreated cells (A1). Arrows 

indicate representative TUNEL-positive (apoptotic) cells in each case. Viewing magnification 

X400. 

 

 



 

10 Figures 

All figures to be reproduced in color on the web and in black-and-white in print. 

 

 

Figure 1(S)  

 

 

 

 

 

 

 

 

 



 

Figure 2 

 

 

 

 

 

 



 

 

 

 

Figure 3 
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Figure 4 
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Figure 5 

 

 


