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ABSTRACT 
 

 

Wanting Liu 

 

AN INTEGRATED BIOINFORMATICS APPROACH FOR THE IDENTIFICATION 

OF MELANOMA-ASSOCIATED BIOMARKER GENES 

A ranking and stratification approach as a new meta-analysis methodology for 

the detection of robust gene biomarker signatures of cancers 

Keywords: 

Melanoma, Microarray, Meta-analysis, Biomarker, Integrated Analysis 

 

Genome-wide microarray technology has facilitated the systematic discovery of 

diagnostic biomarkers of cancers and other pathologies. However, meta-

analyses of published arrays using melanoma as a test cancer has uncovered 

significant inconsistences that hinder advances in clinical practice. In this study 

a computational model for the integrated analysis of microarray datasets is 

proposed in order to provide a robust ranking of genes in terms of their relative 

significance; both genome-wide relative significance (GWRS) and genome-wide 

global significance (GWGS).  

 

When applied to five melanoma microarray datasets published between 2000 

and 2011, a new 12-gene diagnostic biomarker signature for melanoma was 

defined (i.e., EGFR, FGFR2, FGFR3, IL8, PTPRF, TNC, CXCL13, COL11A1, 

CHP2, SHC4, PPP2R2C, and WNT4). Of these, CXCL13, COL11A1, PTPRF 
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and SHC4 are components of the MAPK pathway and were validated by 

immunocyto- and immunohisto-chemistry. These proteins were found to be 

overexpressed in metastatic and primary melanoma cells in vitro and in 

melanoma tissue in situ compared to melanocytes cultured from healthy skin 

epidermis and normal healthy human skin.  

 

 

One challenge for the integrated analysis of microarray data is that the 

microarray data are produced using different platforms and bio-samples, e.g. 

including both cell line- and biopsy-based microarray datasets. In order to 

address these challenges, the computational model was further enhanced the 

stratification of datasets into either biopsy or cell line derived datasets, and via 

the weighting of microarray data based on quality criteria of data. The methods 

enhancement was applied to 14 microarray datasets of three cancers (breast, 

prostate, and melanoma) based on classification accuracy and on the capability 

to identify predictive biomarkers. Four novel measures for evaluating the 

capability to identify predictive biomarkers are proposed: (1) classifying 

independent testing data using wrapper feature selection with machine leaning, 

(2) assessing the number of common genes with the genes retrieved in 

independent testing data, (3) assessing the number of common genes with the 

genes retrieved in across multiple training datasets, (4) assessing the number 

of common genes with the genes validated in the literature. 

 

This enhancement of computational approach (i) achieved reliable classification 

performance across multiple datasets, (ii) recognized more significant genes 

into the top-ranked genes as compared to the genes detected by the 

independent test data, and (iii) detected more meaningful genes than were 

validated in previous melanoma studies in the literature.  
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1. INTRODUCTION 

This chapter provides background and review on the subject areas of this 

thesis. This study was focused on the development of an integrated 

bioinformatics approach for the discovery of diagnostic biomarkers of 

melanoma, based on microarray genome-wide expression data. In this chapter I 

will introduce the topic of melanoma, including its definition and characteristics, 

how it develops, its related staging, genetic organization and other relevant 

information. To evaluate the effectiveness of bioinformatics method, developed 

in this project an enhancement of this method also to other microarray datasets 

including breast cancer and prostate cancer was applied (Chapter 2), and so 

provide a brief review of breast and prostate cancer here too. At the end of this 

chapter, I discuss to topics of DNA microarray and meta-analysis. 

 

1.1. Skin and Melanoma 
 

1.1.1. Human skin structure and function  

Many people do not immediately think of skin as a functional organ like the 

heart or the liver, instead believing that skin simply protects them from different 

external stimuli, like excessive heat or cold (Poole & Guerry IV, 2005). 

 

Actually, human skin is considered to be the largest organ in the body (Tobin, 

2006) and plays a unique role in not only providing the main barrier between the  
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internal and external environment, but also maintains our internal homeostasis 

(Slominski & Wortsman, 2000) by exhibiting all the requirements of a classic 

endocrine organ. It is proposed to be an independent peripheral endocrine 

organ (Slominski & Mihm, 1996). The barrier effect of skin is not only evident by 

the physical function of its epidermis, but skin also has a chemical or 

biochemical role through its array of lipids, enzymes, defense-related cells and 

so on (Proksch et al, 2008). The structure of skin is shown in Figure 1 below.  

 

 

 

 

 

As shown in above figure, human skin includes two main layers; the epidermis 

(outer layer) and dermis (inner layer). The epidermis can be further divided to 

two layers: the outer „dead‟ but biochemically-active keratinized layer (stratum 

corneum) and the inner living layer „nucleated epidermis‟ (Proksch et al, 2008; 

Fig.1: Anatomy of human skin (Sherwood, 2007) 
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Sherwood, 2007). The keratinized layer is made from dead or peeling cells, and 

is the main barrier to prevent ingress by microbes, as well as chemical and 

mechanical stress (Madison, 2003). 

 

The living layer of the epidermis is further stratified and consists of four cell 

types; keratinocytes, melanocytes, Langerhans cells and Merkel cells 

(Sherwood, 2007). The function of nucleated epidermis is to contribute to 

forming the main barrier, which is present to prevent loss of water and invasion 

of noxious substances and materials (Honari, 2004). If trauma causes damage 

of the epidermis, the barrier function will be severely disturbed (Elias et al, 

1977). And repair of the barrier needs increased DNA synthesis (for cell 

proliferation) and lipid synthesis (Proksch et al, 1993). 

 

The dermis can also be separated into two parts: the upper papillary dermis and 

the lower reticular dermis (Poole & Guerry IV, 2005). The dermis contains hair 

follicles, exocrine glands like sweat glands and sebaceous glands (holocrine) 

and various cell types including adipocytes, monocytes, mast cells, and 

fibroblasts (Sherwood, 2007). The skin is both the source and target of various 

hormones, growth factors and binding proteins, steroid hormones and vitamin D 

etc. (Zouboulis, 2000).  

 

Most skin cancers originate in the epidermis (Poole &Guerry IV, 2005). For 

melanoma, the originating cell is the melanocyte or its precursor cell the 

melanoblast, which is located mainly in the epidermis layer (see below) and the 

upper hair follicle.  
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1.1.2. Melanocytes 

 

 

1.1.2.1. Melanocytes and Melanoblasts 

 

A significant component of a functional skin barrier is its complement of pigment 

(i.e., melanin)-producing cells (Lin & Fisher, 2007). The term „melanocyte‟ was 

first introduced by Meyerson in 1889 (Westerhof, 2006), and represents a 

dendritic cell which originates from the neural crest. They exist as a minor cell 

subpopulation in the basal layer of skin‟s epidermis, mucous membranes, 

striavascularis of ear, hair matrix, various locations in the eye, and central 

nervous system (Sulaimon & Kitchell, 2003). The distribution of melanocytes in 

skin epidermis is shown in Figure 2. 

 

 

 

 

 

Fig. 2: Melanocytes in the epidermis of human skin (Robins, 1991) 
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Melanoblasts are precursors of the melanocytes and may contain pre-melanin 

granules (Westerhof, 2006). After melanoblasts are formed, they proliferate, 

differentiate, migrate, and finally arrive in the correct destinations including hair 

follicles and the base of the epidermis (Lin & Fisher, 2007). 

 

Melanocytes exist in very close proximity to keratinocytes, so that they have 

ability to easily deliver their produced melanin to keratinocytes. The delivered 

melanin accomplishes a primary function of melanocytes, i.e., to provide skin 

pigmentation (Poole & Guerry IV, 2005; Sulaimon & Kitchell, 2003).  

 

While pigment cells of the retina originate in the optic cup of the forebrain, all 

other melanocytes are neuroectodermal in origin (LaBonne & Bronner-Fraser, 

1998). During human embryogenesis, melanocyte development begins when 

the melanoblasts migrate from the neural crest. The melanoblasts are induced 

to migrate by other neural crest cells and travel to various body sites, and finally 

form mature melanocytes (Sulaimon & Kitchell, 2003). Melanoblasts are 

generated at the second month of intra-uterine life in humans (Costin & 

Hearing, 2007). The earliest skin-homing melanoblasts are found in the dermis 

at the 10th to 12th week of gestation, and then about 2 weeks late, they leave the 

dermis to enter the epidermis. After approximately 50 days gestation, 

melanocytes can be detected in the epidermis (Westerhof, 2006; Costin & 

Hearing, 2007). When melanoblasts reach their terminal destinations, most will 

differentiate into melanocytes. The whole process is completed by month 6 of 

human intra-uterine life. In parallel there is a gradual decrease in the number of 

melanocytes in dermis, such that when the baby is born most melanoblasts / 
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melanocytes have disappeared from the dermis. The mature melanocyte 

locates in the basal layer of the epidermis and produce melanin (Costin & 

Hearing, 2007).  

 

1.1.2.2. Melanosomes and melanin 

 

Once the mature melanocyte is formed, it starts to produce its unique organelle, 

the melanosome. Melanosomes are generated from the endoplasmic reticulum 

of the melanocyte and are of lysosomal origin (Westerhof, 2006). Melanosome 

are the place where melanin is produced, and prepared for ultimate transfer into 

keratinocytes, where they play an important role in skin photo-protection 

(Meyskens et al, 2001). 

 

A wide range of colours in skin and hair is possible, and is due to tonal 

variations in the pigment melanin, which is synthesized as a high density, 

insoluble biopolymeric pigment produced via a complex tyrosine redox reaction 

pathway (Costin & Hearing, 2007). However, the visual effect of melanin is seen 

on the surface of skin or in the hair fiber. It is separated into two broad types 

called eumelanin and pheomelanin according to colour, shape, and size of 

granules and item subsequent packaging and processing in skin (Sulaimon & 

Kitchell, 2003; Lin & Fisher, 2007). Brown/black eumelanin is a high density, 

insoluble and dark pigment, and is contained in the eumelanosome and is the 

major source of pigmentation of skin. Pheomelanin is yellow or red in colour, is 

soluble in alkali. The synthesis of this latter type of pigment is influenced by the 

intercellular concentration of cysteine (Potterf et al, 1998). Eumelanin is more 

photoprotective than pheomelanin, due to the latter‟s greater photo-instability 
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associated with its chemical structure, and also relate to eumelanin‟s 

preferential binding of cations, anions, chemicals and so on (Costin & Hearing, 

2007). 

 

 

1.1.2.3. Melanogenesis 

 

Melanogenesis is a biochemical pathway that synthesizes melanin (either 

eumelanin or pheomelanin) in the melanosome. The balance of variable 

enzyme expression and other pigment genes can influence the ratio of these 

two melanin types. During melanogenesis, at least 3 kinds of enzymes are 

needed to synthesis different melanins. Tyrosinase is produced by ribosomes 

before being transported into maturing melanosomes (Westerhof, 2006) and is 

the rate-limiting enzyme in melanogenesis for eumelanin or pheomelanin (Lin & 

Fisher, 2007; Sulaimon & Kitchell, 2003). Melanocytes with lower levels of 

active tyrosinase produce (eu)melanin more slowly than do melanocytes with 

low tyrosinase activity (Lin & Fisher, 2007). 

 

Eumelanin synthesis also involves tyrosinase-related proteins-1 and -2 (TRP1 

and TRP2/DCT). These two enzymes have 40-45% homology with tyrosinase 

(Lin & Fisher, 2007; Sulaimon & Kitchell, 2003) and can contribute to tonal 

variations in brown vs black melanin production. Pheomelanin appears to be 

more photo- and chemically- unstable, for example to sources of radiation 

exposure and oxidative stress. The formation of pheomelanin requires a 

cysteine and/or glutathione supply (Lin & Fisher, 2007). 
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Human evolution only success has depended on the ability of melanocytes to 

transfer their melanin product efficiently to neighboring keratinocytes and so 

protect the skin from harmful ultraviolet radiation (UVR). In humans, one 

melanocyte can make intimate contact with 37 viable keratinocytes to form, so 

called „epidermal melanin unit‟ (Fitzpatrick & Breathnach, 1963; Eisenger & 

Marko, 1982).  The correlate in the hair follicle has been termed the „follicular 

melanin unit‟ (Tobin, 2008). The synergistic relationship of the melanocyte and 

keratinocyte helps protect skin from outside-in damage, e.g. UVR (Sulaimon & 

Kitchell, 2003). Melanin pigment transfer ensures melanin is distributed 

throughout the epidermis including its upper layers (Agar & Young, 2005), 

though the melanin granule itself is largely degraded in the keratinocyte during 

this upward movement differentiation of cells. While individual melanin granule 

can be seen in the stratum corneum of African skin, melanin is largely degraded 

in the upper layers of Caucasian skin (Sulaimon & Kitchell, 2003). Table 1 

outlines the melanocyte life history.  
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The process of melanin synthesis can itself result in the production of 

intermediates of hydrogen peroxide and quinine (Meyskens et al, 2001). Thus, 

deficient handling of melanin intermediates could cause epidermal melanocytes 

damage (Sulaimon & Kitchell, 2003). 

 

 

Step I Melanoblasts migrate from the neural crest 

Step II Melanoblast differentiates to melanocyte. Clonal population of skin by melanocytes 

Step III Melanosome organelle biogenesis and matrix formation 

Step IV Melanogenic genes for tyrosinase, tyrosinase-related proteins and melanosomal 

matrix components are induced 

Step IV Tyrosinase and related melanogenic proteins are synthesized 

Step V  Post-translational processing and glycosylation of tyrosinase 

Step VI Fusion of vesicles to form melanosomes and initiation of melanogenesis 

Step VII Control of tyrosinase activity 

Step VIII  Control of the activity of tyrosinase-related protein 

Step IX Post-tyrosinase modification of biosynthesis 

Step X Modification of melanin 

Step XI Melanosome transfer to keratinocytes 

Step XII Melanosome degradation 

Step XIII Melanin removal with loss of cornified cell (i.e., stratum corneum) 

Table 1: Steps in melanogenesis (Sulaimon & Kitchell, 2003). 
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1.1.2.4. Melanocyte response to UVR and melanogenesis 

 

In 1917, Bloch reported on role of 3, 4-dihydroxyphenylalanine (DOPA) in 

melanocytes, and indicated that DOPA was a special substrate for the DOPA-

oxidase activity of tyrosinase. Then, his co-worker Lutz found that the activity of 

DOPA-oxidase was increased in pigment cells by UVR, and concluded that 

increased melanin production would offer protection against UVR (Westerhof, 

2006). 

 

While pigmentation gene expression can decide the constitutive pigmentation of 

skin and hair; this level of pigment production can be increased further (i.e., 

facultative) by a range of stimuli including UVR exposure (i.e. tanning), 

hormones, and growth factors etc. (Sulaimon & Kitchell, 2003). However, 

exposure to UVR can cause both inflammation and pigmentation (Heenen et al, 

2001; Gledhill et al, 2010). Stimulated or facultative pigmentation exhibits both 

„immediate‟ and „delayed‟ subphases (Costin & Hearing, 2007; Sulaimon & 

Kitchell, 2003).  

 

Immediate „tanning‟ pigmentation develops within seconds and minutes of UVA 

exposure, inducing pre-existing melanosomes to darken and their movement 

from the perinuclear area to the dendritic area in melanocytes. However, the 

number of the melanosomes is not increased. Immediate tanning peaks 1-2 

hours after UVR (Costin & Hearing, 2007; Sulaimon & Kitchell, 2003).  

 

By contrast, delayed pigmentation begins 2 to 3 days after UVB exposure (and 

to a minor extent by UVA and visible light) (Costin & Hearing, 2007). Maximum 
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tanning is reached approximately three weeks later. Remarkably, delayed 

pigmentation can take up to ten months to return back to original pigmentation 

level. Delayed pigmentation depends on the changing of melanocytes in quality 

(i.e. more eumelanin, more melanosomes) and to a limisted extent in quantity 

(via some very limited cell proliferation) (Costin & Hearing, 2007; Sulaimon & 

Kitchell, 2003).  

 

Both immediate and delayed tanning can produce pigment that can protect the 

skin against further damage and also against skin cancer, as UVR exposure 

can induce DNA damage (Fitzpatrick, 1988; Ortonne & Prota, 1993). UVR 

exposure of normal skin can increase melanin levels 10 to 15 fold even in the 

darkest individuals. However, melanin levels can be increased to 500 to 1000 

fold in paler skin, including those as risk of skin cancer induction (Kaidbey et al, 

1979). 

 

1.1.3. Melanoma 

 

In 1996, the American Academy of Dermatology reported that one melanoma 

patient dies each hour in the United States (Poole & Guerry IV, 2005). In the 

USA, human malignant melanoma has the second highest mortality rate of all 

cancers, second only to lung cancer. Rates of malignant melanoma are also 

increasing rapidly in other countries, like the UK, Germany, Canada, and 

Australia (Sulaimon & Kitchell, 2003).  Indeed, since the middle of 1960s, the 

incidence of melanoma has increased by 3% to 8% per year in many countries 

(Lens, 2008). However, thankfully the survival rate has also increased from 11% 

to 39%. This increased survival ratio depends however on early detection and 
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atypical nevi removal (Gremel et al, 2009). 

 

Melanoma appears to be produced in two ways. In one melanocytes are 

activated and subsequently transformed by UVR after unprotected sunlight 

exposure; the other way is via transformation of benign nevi when benign nevi 

including after unprotected sun exposure (Lejeune, 1997). 

 

1.1.3.1. Melanoma from a historical perspective 

 

Melanoma was mentioned as a „black pigmented human tumour‟ at the time of 

Hippocrates (460-370 B.C.E.) (Balch et al, 2003). John Hunter, an English 

physician, published the first report of melanoma in Western medical literature 

in 1787, describing it as “soft and black” and as a “cancerous fungous 

excrescence”. He removed a melanoma tumour from the lower jaw of a 35y old 

man and preserved it. In 1968, the specimen was confirmed as a melanoma 

(Balch et al, 2003). 

 

1.1.3.2. Definition of melanoma 

 

Melanoma is a cancer that arises from the genetic transformation and 

uncontrolled growth of the melanocyte or melanoblast (i.e., melanocyte stem 

cell) (Miller & Mihm, 2006). Melanoma may form in skin, mucosa, uvea of eye, 

and leptomeningitis (Eigentler & Garbe, 2006). The most common type is 

cutaneous melanoma, and once melanoma cells have reached the dermis they 

have the potential to enter blood and lymph vessels and then to spread to other 

areas of the body (Poole & Guerry IV, 2005). Even though melanoma only 
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accounts for less than 5% of all skin diseases, it induces nearly 80% of skin 

disease mortality. Only 14% of patients with metastatic melanoma can expect to 

gain 5 years survival. The cure rate depends on early detection and removal by 

surgery. Some reports showed more than a 90% cure rate if the tumour is 

removed when it is less than 1mm in depth (Bolognia et al, 2003). 

 

Cutaneous melanoma can be classified into four types: superficial spreading 

melanoma, nodular melanoma, lentigo maligna melanoma, and acral 

lentiginous melanoma (Porras & Cockerell, 1997). 

 

The most common melanoma subtype is the superficial spreading type, which 

occurs in 70-80% of the all melanoma (Poole & Guerry IV, 2005). It can appear 

anywhere on the body and is commonly found on the upper arms, thigh and 

back of body, even though this skin is somewhat paradoxically not routinely 

exposed to the sun. The melanoma may begin from an abnormal nevus with 

irregular contour and various colours (Brannon, 2004). An existing nevus 

usually is the starting point of the development of a superficial spreading 

melanoma. However, melanoma can also develop from apparently unblemished 

skin. The diameter of nevus is commonly more than half a centimeter, it is more 

likely to be at risk of becoming a melanoma (Poole & Guerry IV, 2005). 

 

About 15% to 20% of the all melanoma occur as the nodular form. This type can 

appear on any part of the body, and locates at the same body sites as seen with 

superficial spreading melanoma (Brannon, 2004). Like superficial spreading 

melanoma, nodular melanoma often arises from existing nevi. It is slightly more 
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common in men than in women, is commonly dome-shaped and sometimes it 

looks like a blood blister (Poole & Guerry IV, 2005).  

 

The least frequent type of melanoma is lentigo maligna melanoma, which 

accounts for only 5% of all melanoma. It develops from a small abnormal patch 

on sun exposed skin in older people, usually on the regions of head and neck 

(Brannon, 2004). This melanoma results from many years of intense 

unprotected sun exposure, and does not arise from pre-exisiting nevi. The 

melanoma first appears on the skin as a dark irregular stain (Poole & Guerry IV, 

2005).  

 

The above three types of melanoma appear most frequently in Caucasians. 

However, another type of melanoma called acral lentiginous melanoma has 

lower frequency for white people and is the most common subtype in people 

with darker skins, e.g., xanthoderm (Poole & Guerry IV, 2005). The acral 

lentiginous melanoma is less than 5% of all melanomas, and is often on the 

palmar-plantar surface of hands, feet and the fingers or toes and under the nails 

(Brannon, 2004). When under the nails, the melanoma will appear on the base 

of the nails as a streak then reaches out to the tip. It most often appears on 

thumbs and great toes. The frequency of acral lentiginous melanoma is also 

reported to be associated with extent of sun exposure (Poole & Guerry IV, 

2005). 

 

Mucosal melanoma has been found on the mucous membranes inside the 

mouth and on the anal-genital region. The carcinogen involved is unknown, as 
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this type of melanoma is unlikely to be related to sun exposure (Poole & Guerry 

IV, 2005). Rarely, melanoma can present without melanin pigment, are pink or 

red, and so these melanomas can be very difficult to detect. (Poole & Guerry IV, 

2005). 

 

1.1.3.3. Melanoma risk factors 

 

Sun-sensitive skin has greater risk of all skin cancers than darker skin types 

because the photosensitive skin usually produces lower levels of the protective 

pigment eumelanin (Lin & Fisher, 2007; Mille & Mihm, 2006). A suppressed skin 

immune response and excess UVR exposure are enhancer risk factors of 

melanoma (Mile & Mihm, 2006). It is thought that a single risk factor is not on its 

own sufficient to develop melanoma, but that multiple risk factors together in the 

same individuals can markedly increase the risk for melanoma (Poole & Guerry 

IV, 2005), e.g. certain MCIR variants (Healy et al, 2014). 

 

 

 Ultraviolet Radiation 
 
Three kinds of electromagnetic radiation from sunlight can influence us 

physiologically including visible, infrared and ultraviolet light/irradiation (UVR). 

The greatest potential comes from the invisible UVR. UVR can be divided into 

UV-A (320-400 nm), UV-B (290-320 nm) and UV-C (200-290 nm). Only UV-A 

and UV-B reach the surface of the earth. They are carcinogens and play a role 

as both promoters and enhancers of melanoma (Setlow et al, 1993). UV-B is 

described as the main carcinogenic factor at the formation stage of melanoma 

and other skin cancers. UV-A and UV-B both induce skin damage, e.g., sunburn 
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and skin aging. Melanin pigment plays an important protective role in absorbing 

UVR and via a detoxifying function (Mile & Mihm, 2006). Actually, the sunburn 

sensitivity of different skin phototypes is related to the packaging and 

distribution of the melanin in the skin cells. Melanin type is under genetic 

control, and is the major factor to determine type and colour of the skin (Poole & 

Guerry IV, 2005). 

 

White Caucasian skin is the most susceptible skin type for melanoma, except 

for acral lentiginous melanoma. Even a brief strong sun exposure episode on 

sensitive skin can cause it to become inflamed and red. Commonly, this kind of 

individual has red(-ish) hair, freckles and porcelain white skin (e.g., Celtic 

people) (Poole & Guerry IV, 2005), a phenotype associated with a small number 

of MCIR variants (Healy et al, 2014). 

 

Is all sun exposure bad? 
 

For most people, mild sun exposure is not deleterious. In fact, mild sun 

exposure can be beneficial e.g., for the production of vitamin D. It has also been 

reported some tanning (without burning) may actually aid melanoma prevention 

(Poole & Guerry IV, 2005; Zouboulis, 2000). While excessive exposure to UVR 

has been indicated as the main etiological factor in melanoma, except is rare 

hereditary cases (Sulaimon & Kitchell, 2003; Halaban, 1996), the precise 

relationship is complex. For example, primary melanoma commonly appears 

first on non-exposed body sites (Tronov et al, 2010). Still, many in vitro studies 

have demonstrated that UV radiation induces DNA damage, gene mutations, 

induction of reactive species oxygen, inhibition of the skin immune system and 
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increasing growth factor production (Halaban, 1996). All these changes can 

lower the resistance of skin to protect itself from the ill-effects of UVR (Tronov et 

al, 2010).  

 

Nevi (moles) 
 

The average number of nevi or moles on their body surface of a white 

Caucasian adult is about 25. Most children appear to be born without nevi. 

However, these children develop nevi by approximately 3 years old (Gallagher 

& Mclean, 1995). It has shown that sun exposure induces moles. Commonly, 

when a mole is produced on a child‟s skin, it is a flat dark brown and pinhead 

size dot. Then, the mole will slowly grow to a round or oval shape, flat or 

domed. Some moles are not influenced by sun exposure. For example, 1% of 

newborn babies have a dark brown, flat or shortly domed single moles, and 

some of these moles may be more that 1 centimetre diameter. Some doctors 

may advise to remove these moles to prevent melanoma. However, the chance 

of evolution to melanoma is rare (Pools & Guerry IV, 2005). Almost all people 

have some normal round and small moles. However, in 15% of white skinned 

persons these can show dysplastic features. Dysplastic moles are larger than 

normal mole (>5mm in diameter), and have domed centres. They appear more 

or less on sun-exposed parts of the body (Pools & Guerry IV, 2005).  

 

Both dysplastic moles and normal moles deserve attention, because people 

with large numbers of moles are at relatively higher risk of melanoma than 

those without. The presence of numerous on normal moles and a few dysplastic 

moles can also help to warn individuals that they may have 2-10 times greater 



 
Chapter 1: Introduction 

 

18 
 

risk to develop melanoma during their lives than people who have few or no 

moles (Pools & Guerry IV, 2005). Still, the prevention of melanoma by removing 

all dysplastic moles and ordinary moles may be viewed as an extreme 

precaution. The key is to know the moles which are dysplastic and to watch out 

for changes to them (Pools & Guerry IV, 2005). For example, if a person has an 

isolated dysplastic mole and has already had melanoma, the mole should be 

removed. Similarly, if someone‟s mole is changing in phenotype, the mole 

should be removed.  

 

Melanoma genetics— Inherited and mutated genes 
 

Only approximate 10% of melanoma patients have familial disease with family 

members expressing relevant and associated gene mutations. From 1976, the 

National Cancer Institute and the University of Pennsylvania‟s Pigmented 

Lesion Clinic have detected gene mutation frequency in 23 suspicious families. 

Strikingly, their results show that 90% of close blood relatives did not express 

these genes. However, if two or more melanoma patients exist in the same 

family, doctors would hypothesize that these patients will have inherited similar 

melanoma-associated genes (Pools & Guerry IV, 2005). Though the number of 

these patients still constitutes only 10% of the total, a family history of 

melanoma is a strong risk factor of melanoma. The members of a family with 

atypical nevi or previous melanoma should also be assessed for possible 

positive melanoma family history, even though these changes have not yet 

developed to malignant melanoma (Miller & Mihm, 2006). 

 

The cell growth regulator p16 or CDKN2A have been identified as a relevant 
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mutant gene on chromosome 9. Multiple studies have determined that mutation 

of CDKN2A plays a key role for the development of melanoma (Miler & Mihm, 

2006). Experimental findings have shown that the loss of CDKN2A expression 

and function increases the chances of transformation of dysplastic nevi to 

melanoma, or increases the probability to develop melanoma (Miler & Mihm, 

2006). CDKN2A mutations were detected in the GenoMEL (Melanoma Genetics 

Consortium) and found that relatively low mutation detection rate of CDKN2A is 

not based on a failure to detect rather it implies other high penetrance 

melanoma genes exist (Harland et al., 2008). BRAF is a second dominant gene 

associated with melanoma that encodes for a protein called B-Raf that can 

activate MEK. BRAF mutations are the most common mutations found in 

melanoma to date. BRAF mutations induce the melanocyte population to 

become senescent by inhibiting proliferation; it also cooperates with p16 

mutations to induce high penetrance and short latency of melanoma (Delmas et 

al., 2007). 

 

1.1.4. From melanocyte to melanoma 

 

 

 Fig.3: The evolution of melanoma (Gremel et al, 2009). 
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 As shown in Figure 3, the melanocytes are located in the basal layer of the 

epidermis, where malignant transformation of an affected melanocyte starts to 

develop melanoma (Bittener et al., 2000). However, the melanoma is not only 

transformed from epidermis-associated melanocytes, it also can be from cells in 

the dermis. Studies have proposed that melanoma may also originate via the 

transformation of melanocyte stem cells in the epidermis (Grichnik et al., 2006) 

and dermis-derived stem cells (Zabierowski et al., 2011). 

 

The commonest methods used in clinical practice to classify melanoma for 

diagnosis rely on the histologic thickness of melanoma, the degree of invasion, 

and melanoma with or without ulcerations (Balch et al., 2001). These are 

discussed in the following section.  

 

1.1.4.1. The transition of melanocytes to melanoma: five phases 

 

 

The transition of melanocytes to melanoma could be separated into five steps 

(Shown as the above Figure 3). 

 

1. Melanocytes in normal skin or benign nevi (Gremel et al, 2009). 

 

2. Dysplastic and atypical nevi: These dysplastic and atypical nevi are formed 

from normal nevi, which may mean melanoma changes have begun (Gremel 

et al, 2009).  
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3. Radial growth phase: Atypical cells emerge to form the radial growth phase 

(RGP), which is the initial stage of melanoma. The newly-formed melanoma 

does not spread to other organs of the body, until it moves to successive 

growth phases (Pool & Gerry IV, 2005). The radial growth phase melanoma 

invades the epidermis and metastasizes to the upper dermis. However, it 

may not be easy to detect using a diagnostic test at this stage (Gremel et al, 

2009). The radial growth phase consists of two steps: The first is where the 

melanoma cells are still in situ i.e., still in the epidermis. The second is 

where the melanoma cells have ability to invade to the dermis. However, the 

number of melanoma cells still remains low. From the second step, the 

melanoma cells break free of their epidermis in situ containment. During the 

radial growth phase, the melanoma cells cannot yet spread to other parts of 

the body. Moreover, if the melanoma cells are not detected and removed, 

they will proceed to the vertical growth phase (Poole & Gerry IV, 2005).  

 
 

4. Vertical growth phases: When the growing RGP melanoma invades into the 

dermis and subcutaneous fat layer, the stage is called vertical growth phase 

(VGP) (Gremel et al, 2009). It is also called the tumourigenic phase. The 

melanoma exists as a group of spreading abnormal melanocytes that move 

to the dermis where they start to form a tumour mass. In this phase, the 

melanoma has a chance to expand to other parts of body. Removing the 

melanoma at the radical growth stage i.e., before the beginning of the 

vertical growth phase, can stop the tumour from becoming potentially fatal 

(Poole & Gerry IV, 2005). 
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5. Metastatic melanoma: After the vertical growth phases of melanoma, the 

tumour cells metastasize to the blood vessels, lymph nodes, lung, liver, brain 

and others parts of the body. This stage is metastatic melanoma (Gremel et 

al, 2009).   

 

 

1.1.4.2. Other schemes for the classification of melanoma 

 

 

Other methods have been used to describe the stages of melanoma, like the 

„Clark‟ and „Breslow‟ staging. The Clark model describes the development 

process of melanoma from dysplastic nevus to metastatic melanoma (Clark et 

al, 1984). The details of the different measure methods are shown on the Table 

2. 
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Malignant melanoma: staging 

 

Clark staging (Clark et al, 1984) 

 Level I: all tumour cells are in the epidermis above basement 

membrane (i.e., in situ) 

 Level II: tumour extends to the upper papillary dermis 

 Level III: tumour extends to interface between the papillary and 

reticular dermis 

 Level IV: tumour extends between bundles of collagen in the reticular 

dermis 

 Level V: tumour invasion of subcutaneous tissue 

Breslow staging (Breslow, 1970) 

 Thin: < 0.75 mm depth of invasion 

 Intermediate: 0.76-3.99 mm depth of invasion 

 Thick: >4 mm depth of invasion 

 

 

Clark level I is melanoma in situ as classified by WHO (Leboit et al, 2006). At is 

first level, abnormal cells of dysplastic nevi appear with a reduced ability of DNA 

repair. However, the cells cannot produce colonies in agar (Tronov et al, 2010). 

Clark level II is microinvasive melanoma within the upper papillary dermis, 

which corresponds to the radial growth melanoma. Clark level III to level V and 

the Breslow staging are equivalent to histological features from the vertical 

Table 2: Staging of malignant melanoma http://chorus.rad.mcw.edu/doc/00955.html, (Kahn,   

2006) 

http://chorus.rad.mcw.edu/doc/00955.html
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growth phase of melanoma to metastasis melanoma (Leboit et al, 2006; Tronov 

et al, 2010). At these stages, the malignant melanocytes have the ability to grow 

in a relatively unrestrictive way, and can form colonies on agar (Tronov et al, 

2010). The histopathological appearance of the 5 steps of the Clark model is 

presented in Figure 4. 
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Figure 4: The 5 steps of melanoma development (Clark model) (taken from Miller & 

Mihm, 2006) 
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1.1.4.3. Melanoma tumour invasion and metastasis 

 

The extent of local invasion and metastasis of tumour cells directly influence the 

morbidity and mortality of melanoma, which mainly occur in the melanoma‟s 

vertical growth phase (Miller & Mihm, 2006). The tumour is said to be metastatic 

when it spreads and invades to blood vessels, lymph, and some surrounding 

stroma (Haass et al, 2005). Some studies have demonstrated that melanoma 

invasion is related to changes in cell adhesion (Miller & Mihm, 2006). Normally, 

cell adhesion controls cell migration, and also organizes tissue and 

organogenesis. Once cell adhesion is disturbed, the tumour cell can respond to 

stimulate different tumour-associated signaling pathways to establish new 

relationships between tumour and stroma that assists the tumour cells to invade 

(Miller & Mihm, 2006). 

 

 

1.1.5. Pathogenesis  

 

The role of genetics in melanoma development has been demonstrated by 

several epidemiology studies, like gene changes that are associated with a 

disturbed cell cycle mechanism and via other transcriptional mechanisms 

(Halachmi & Gilchrest, 2001). A major gene that is considered to be implicated 

in melanoma is CDKN2A, which locates on chromosome 9p21, and it also is 

known as INK4a. The exons 1α, 2, and 3 of CDKN2A are used for encoding the 

protein p16. The protein p14ARF is transcribed from exon 1β and the shared 

exons 2 and 3. Both gene products play an important role as negative 

regulators in cell cycle progression, and Daniel et al determined that the p14ARF 
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is more commonly inactivated than p16 by genetic and epigenetic analyses 

(Freedberg et al, 2008). A view of the CDKN2A locus is shown as Fig. 5. 

 

 

 

 

 

As shown in Figure 5 above, p16 protein competitively inhibits of CDK4 (cyclin-

dependent kinase 4). CDK4 and cyclin D can activate Rb (retinoblastoma 

protein) by phosphorylation, and the phosphorylated Rb can arrest cell cycle S 

phase, cell division and proliferation. A  CDKN2A mutation leads to loss of the 

p16 protein function, and the functional loss of the p16 influences the mutagenic 

DNA repair before cell division. The incidence of an abnormal p16 protein in 

melanoma is between 30-50% in familial melanoma and between 25-40% in 

sporadic melanoma (Nestle & Kerl, 2003).  

Figure 5: CDKN2A locus (Lin et al, 2008) 
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The p14ARF gene interacts with MDM2 to regulate melanocyte growth via the 

p53 pathway (Piepkorn, 2000). The activated p53 pathway inhibits the cell cycle 

and regulates the apoptosis. So loss of p14ARF function, due to the mutation of 

CDKN2A, can increase cell growth or survival (Nestle & Kerl, 2003).  

 

Many studies indicate advocate that melanoma development involves several 

additional genes located in chromosome regions 1p, 6q, 7p, 11q, 9p, 10q. 

These high mutation regions can be analyzed by new mutation analyses 

techniques, like cDNA and tissue microarrays (Pollock & Trent, 2000). 
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1.2. Breast cancer 
 

In the current study, microarray datasets for other cancers were used for the 

evaluation of the proposed bioinformatics approach and included Breast Cancer 

and Prostate Cancer. 

 

Breast cancer is generated in breast tissue, and commonly occurs in the 

associated ducts and lobules, called ductal carcinomas and lobular carcinomas 

respectively. The incidence of breast cancer is 100 times higher in females than 

males. (Sariego, 2010), Breast cancer occupies 22.9% of all female cancer 

(excludes non-melanoma skin cancers), and around 13.7% cancer deaths in 

women in 2008 (Buchholz, 2009). 

 

Risk factors of breast cancer include smoking, high levels of estrogen hormone, 

diet and obesity. Negative risk factors include young age and breastfeeding. 

However, whether breastfeeding has a relationship with breast cancer is still an 

open question, some studies found the positive associations between them, but 

others did not (Yang & Jacobsen, 2008). Smoking increases the risk of breast 

cancer especially for heavy smokers who started smoking at a young age, or for 

those with a long term smoking habit (Johnson et al., 2011). Higher hormone 

levels have been associated with breast cancer e.g. estrogen-related drugs 

increased the risk of breast cancer (Johansen et al., 2010) as do high fat diets 

and obesity (Blackburn & Wang, 2007). 
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Mutations in BRCA1 and BRCA2 are significant biomarkers for breast cancer. 

Mutations in these two gene mutations have been found in up to 90% of breast 

cancers with a demonstrated genetic influence. Other significant gene 

associations with breast cancer include p53, PTEN, STK11, CHEK2, ATM, 

BRIP1 and PAL2 (Gage et al, 2012).  

 

Staging of breast cancer is based on the Tumour, Node, Metastases (TNM) 

system, i.e. the size of the tumour, whether the tumour spreads to the lymph 

nodes in the armpits, and whether the tumour starts to metastasize. The stage 

has been classified from 0 to 4, viz. stage 0 is carcinoma in situ (including 

ductal or lobular carcinoma); stage 1 – 3 represent a tumour that is still within 

the breast or within the regional lymph nodes; and stage 4 exhibits tumour 

metastases outside the breast (Johansen et al., 2010). 

 

Survival rates for breast cancer depend on several factors: type, stage, 

treatment and location of the patient. The major treatment methods are surgery 

(the physical removal of the tumour, surrounding tissue and sentinel lymph 

node), medications including hormonal therapy (drugs have been used for 

blocking the estrogen receptors or production of estrogen), chemotherapy 

(causing DNA damage to proliferating cancer cells), radiotherapy (usually given 

after surgery to reduce the risk of recurrence) and immunotherapy (Florescu et 

al., 2010).   
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1.3. Prostate cancer 
 

 

This tumour originates in the prostate, a gland of the male reproductive system, 

and grows as a classical adenocarcinoma and glandular cancer. Although it 

develops relatively slowly, some prostate cancers can come aggressive. 

Metastatic prostate cancer spreads to other parts of body, especially to the 

lymph nodes and bones (Lister, 2009). This cancer most commonly affect men 

over fifty years old (Siegel, 2011), and ranks sixth in cancer deaths in men 

(Baade et al., 2009). 

 

As with breast cancer, the stages of prostate cancer are also measured by the 

four stages TNM system, viz. based on tumour size, nodal involvement and 

metastases. Stage I and II of prostate cancer means the tumour is limited to the 

prostate. When the cancer cells spread to lymph nodes and other organs the 

cancer is graded stage III and IV (Makarov et al., 2012). Mortality of prostate 

cancer has not decreased over the last 10 years, due largely to unawareness of 

disease, even though prostate-specific antigen (PSA) testing has increased 

cancer detection (Djulbegovic et al., 2010). Like breast cancer, treatment of 

prostate cancer includes surgery, radiation therapy, hormonal therapy and 

chemotherapy (Dimitropoulou et al., 2009). 

 

Obesity, age and family history are the main risk factors of prostate cancer. 

Whether diet is associated with prostate cancer is still unclear; with some 

studies reporting that meat intake has little relationship with higher risk of 
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prostate cancer (Alexander et al., 2010), and that fruit or vegetable also have 

little positive effect (Key, 2011). An elevated testosterone level in blood may 

increase prostate cancer risk (Gann et al., 1996). Age is a well-reported risk 

factor, and the cancer is very unusual in men who are younger than forty five. 

The average age of diagnosis is seventy (Hankey et al., 1999). Family history 

also is a key, as first-degree relatives of prostate cancer patient have twice the 

background risk. If two or more prostate cancer patients exist in one family, 

other first-degree relatives have a five-fold risk than men with family history 

(Steinberg et al, 1990). Some other factors influence prostate cancer risk. 

Statins (cholesterol lowering drug) decrease the risk of prostate cancer 

(Shannon et al., 2005), while infection or inflammation in prostate may increase 

risk (Dennis et al., 2002).  

 

At the gene mutation level, BRCA1 and BRCA2 are biomarkers (like in breast 

cancer) for prostate cancer (Struewing et al., 1997). Hereditary prostate cancer 

gene 1 (HPC1), the androgen receptor and vitamin D receptor have also been 

reported as genes linked to prostate cancer (Gallagher & Fleshner, 1998). 

Mutations in P53, PTEN and KAI1 based on loss of the corresponding 

suppressor genes also play a role in prostate cancer (Beuzeboc et al., 2009). 
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1.4. DNA MICROARRAY AND ANALYSIS 
 

1.4.1. Introduction to DNA microarray 

 
 

While the Human Genome Project has reported the location of all known human 

genes (Wren, 2009), the function of each gene has not yet been determined. 

While the functions of some of genes are frequently reported in the literature, 

still 37% of human genes have no published functional information (Wren, 

2009). Conversely, protein domain analysis could help us to speculate on the 

corresponding functions of some genes. For example, a DNA binding function 

can be inferred when the gene‟s encoded protein contains zinc finger domains, 

and a protein-protein interaction can be inferred when the protein contains 

coiled-coil domains (Cahan et al., 2007). Similarly, the cellular location of an 

unknown, cytosolic or membranous protein can be inferred if the protein 

contains trans-membrane domains. This „guesstimating‟ should however be 

done in a biological context, because most gene expression is highly regulated 

by context and circumstance (Wren, 2009).  

 

To deal with these challenges, the microarray technique has gained popularity 

in many biomedical areas, such as cancer, inflammation, cardiovascular 

disease, alcohol consumption, and stem cell differentiation and so on (Cahan et 

al, 2007). 

 

DNA microarray is a high throughout technique, which has application in 

detecting and quantifying mRNA (gene) expression (Gremel et al., 2009). 
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Although the microarray technique was first devised in 1975 (Mlakar & Glavac, 

2007), the mature Microarray was built only in the early 1990‟s, and has rapidly 

developed since then. The technique was first used for measurement of DNA 

fragments, so it is named as DNA microarray (Kunz, 2008). The technique 

involves small pieces of discrete single strand DNA fragments with inherent 

properties as probes, which are used for binding their complementary and 

unique gene sequences (Gremel et al., 2009). So the quantified amount of the 

detected gene sequences should be measureable with high accuracy due to 

complementary binding (Kunz, 2008). 

 
 

Microarray technology has been used as an advanced high-throughput strategy 

for the discovery of diagnostic gene signatures of human diseases on a 

genome-wide scale. The genome-wide discovery of signatures enables one to 

gain important insights into the underlying biological mechanisms driving 

tumourigenesis. A significant amount of microarray data has been deposited in 

publically-available data repositories over the past decade, e.g., the Gene 

Expression Omnibus (GEO) (Barrett et al., 2011), the ArrayExpress Archive 

(Parkinson et al., 2011), CIBEX (Kodama et al., 2010), and SMD (Hubble et al., 

2009). These repositories enable scientists to advance the discovery of 

diagnostic and prognostic gene signatures by means of data integration and 

integrated bioinformatics analysis. For example, one group constructed a global 

map of human gene expression by integrating microarray data from 5,372 human 

samples representing 369 different cell and tissue types, disease states and cell 

lines (Lukk et al., 2010).  
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Although the microarray experiments are performed on different platforms, all 

platforms include a step of hybridization. Hybridization is used for binding the 

DNA probe to the solid support and then binding the probe to the fluorescent 

dyed target nucleotides of the samples (Mlakar & Glavac, 2007). The basic 

steps of microarray are shown on Fig. 6. 

 

 

 

 

 

 

 

 

 

Figure 6: Basic steps of microarray analysis (Mlakar & Glavac, 2007) 
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1.4.2. DNA microarray experiments 

 

 

There exist currently two main techniques for DNA microarray:  Oligonucleotide 

DNA microarray and cDNA microarray (Gremel et al, 2009). An oligonucleotide 

DNA microarray can detect 25 to 70 base length short DNA or RNA sequences. 

cDNA microarray is used to detect 200 to 2000 base length sequences. 

Normally, standard PCR is used for the amplification step (Mlakar & Glavac, 

2007). 

 

Total RNA is extracted from tissue samples or cell lines. Usually, the target 

mRNA sequences are amplified by PCR. The total RNA are reverse transcribed 

into cDNA and stained with a fluorescent dye, and then hybridized to probes of 

microarray (Kunz et al., 2004; Yang et al., 2002).  

 

DNA microarrays have been used to detect the gene expression of different 

disease phases, e.g., from normal skin or normal cells to metastatic tumour 

(Smith et al., 2005). Researchers have noticed that the analysis of disease 

phase diversity can offer insights into how these genes are associated with 

enhanced melanoma cell survival (Smith et al., 2005; Jaeger et al., 2007).  

 

 

1.4.3.  Microarray databases 

 

There are four of main repositories for microarray data including; GEO (Gene 

Expression Omnibus), ArrayExpress, and CIBEX (Center for Information 
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Biology gene EXpression database) and SMD (Stanford Microarray database). 

The first three have been recommended by the Microarray Gene Expression 

Data (MGED) Society for storing public available microarray datasets 

(Parkinson et al, 2005). 

 

1.4.3.1. GEO (http://www.ncbi.nlm.nih.gov/geo/) 

 

The Gene Expression Omnibus (GEO) of the National Center for Biotechnology 

Information (NCBI) was built in 2000, which provides free access to the 

published gene expression data sources. The GEO project provides the 

simplest procedure and free-download mechanisms of high-throughput gene 

expression data (Barrett et al., 2008). At Sept 2013 the database contained 

microarray datasets of over 300,000 samples of over 10,000 experiments from 

around the world. 

 

The GEO includes three types of submission entity; „platform‟ (a record for a 

summary of array-based platform, e.g., Agilent, Affymetrix), „series‟ (a record for 

linking a group of related samples), and „sample‟ (a record for conditions of 

each individual sample). The „platform‟ is the parent platform which should be 

defined first (Edgar et al., 2002). The „platform‟ set contains a microarray data 

table and a brief introduction of these data to present the main features of the 

array e.g. cDNA microarray, oligonucleotides microarray and so on. Every 

platform begins with „GPL (GEO Platform)‟ followed by a unique GEO accession 

number (Barrett et al., 2008). A „sample‟ record contains a data table with the 

experimental material and method protocols. Each „sample‟ matches one 
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„platform‟; however, the sample should be contained in multiple „series‟ (Barrett 

et al., 2008). Every sample record begins with „GSM (GEO Soft format Sample 

file)‟ followed by a unique GEO accession number (Barrett et al., 2008). A 

„series‟ record is a group of related „samples‟; it may include one or more tables. 

Every „series‟ begins with „GSE (GEO Series format file)‟, followed by a unique 

GEO accession number (Barrett et al., 2008).  

 

The GEO deposit options and formats were shown on below table. 

 

 

Option Formation Key features 

Web deposit Web forms Deposit of individual records. 

Simple step-by-step interactive web forms. 

GEO archive Spreadsheets  

(e.g. Excel) 

Batch deposit. 

Good choice for most users who have many 

samples to submit. 

SOFT (Simple Omnibus Format 

in Text) 

Plain text 

 

Batch deposit. 

A simple, line-based, tab-delimited format 

that can be readily generated, particularly if 

the data are already in a database. 

MINiML (MIAME notation in 

Markup Language) 

XML Batch deposit. 

Basically an XML rendering of SOFT format, 

and similarly suitable if data are already in a 

database. The XML schema definition is 

available at the GEO website. 

 

Table 3: GEO deposit options and formats (Barrett et al., 2008) 
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1.4.3.2. ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) 

 

The ArrayExpress database is available as an international microarray data 

repository of the European Bioinformatics Institute (EBI) since 2002 (Brazma et 

al, 2003). The ArrayExpress database contains gene names, gene function and 

other information related to the gene (Parkinson et al, 2005). The data comes 

from two sources: one is users‟ submission, the other one is mapping from the 

NCBI Gene Expression Omnibus. GXA (Gene Expression Atlas) is a separate 

database available from the ArrayExpress interface (Parkinson et al, 2011). The 

ArrayExpress and GEO have an agreement for data exchange that is 

ArrayExpress connects to GEO to import all GDS and GES data. Therefore all 

of the submitted high-throughput and HTP sequencing data in GEO will appear 

in ArrayExpress (Parkinson et al., 2011). 

 

1.4.3.3. CIBEX (Center for Information Biology gene EXpression 

database) (http://cibex.nig.ac.jp/) 

 

CIBEX is a public microarray expression database constructed for organizing 

MIAME (Minimum Information about Microarray Experiment), and began storing 

microarray data in 2004. The CIBEX is one of the primary databases run by the 

Center for Information Biology and DNA Data Bank of Japan (CIB-DDBJ) and 

this database is now organized by the Microarray Gene Expression Data 

Society (MGED) (Kodama et al., 2010). Most of submitted data comes from 

Japan, and is automatically presented in the related tables (Ikeo et al., 2003). 

The submitted data contains its own CIBEX accession number, started with 
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“CBX”. CIBEX has links to other databases, like PubMed (Ikeo et al., 2003). 

From 2009, the CIB-DDBJ exchanges GEO and ArrayExpress data to join the 

International Database Plan (Kodama et al., 2010). 

 

1.4.3.4. SMD: Stanford microarray database (http://smd.stanford.edu) 

 

The SMD provides a platform for biological researchers to analyze, share, view 

and annotate microarray data of more than 60 organisms. Over 70,000 

microarrays have been stored in the SMD by Sept 2013. There are about 9,000 

sets of Homo sapiens-specific data and have been used in over 400 published 

research articles. The SMD stores microarray data generated by multiple 

platforms, like spotted cDNA microarray, oligonucleotide microarrays, Affymetrix, 

Agilent (Hubble et al., 2009). SMD provides a biological annotation of genes 

and sequences in each organism, and also has some annotation tools for users 

dealing with their own data. For example, MAGE-ML files writing tools 

(Parkinson et al., 2007), directly with the ArrayExpress and Gene Expression 

Omnibus (Wheeler et al., 2007). Registration is required to use of these tools for 

selected, downloaded, analyzed data etc. (Hubble et al., 2009). 
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1.4.4. Microarray data analysis 

 

1.4.4.1.  Data pre-processing 

 

Two kinds of microarray techniques have been used widely for comparative 

studies in order to detect changes in gene expression, including the spotted 

complementary DNA (cDNA) and the oligonucleotide microarray. Each single 

microarray experiment can detect the expression level of thousands of genes. 

There exist experimental noise and systematic errors in the raw data, which can 

greatly influence understanding of the true biological information (Bilban et al, 

2002). Pre-processing and normalization is thus always necessary in microarray 

data analysis. 

 

Data pre-processing of microarrays is done by the following steps: gene 

mapping, gene filtering, and data normalization. For gene mapping, the 

relationship between probe-sets (unique and identifiable set of individual 

probes) and genes is arranged. When multiple probe-sets map to one gene in 

the dataset, the expression value of that gene should be extracted from the 

associated probe-sets. Otherwise, when one probe-set is mapped to multiple 

genes, these genes will be assigned with the same expression value. Details 

are shown in section 2.2. 

 

Gene filtering focuses on the genes that have significant expression changes 

across samples and on the availability of gene controlling DNA sequences (Yue 

et al, 2001). Several factors are frequently used for gene filtering, including 

standard deviation (SD) and p-value. Genes with associated large SD indicate 

that their expression difference between, for example, normal and disease 
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condition is significant, whereas genes with a relatively smaller SD will be 

filtered out. Furthermore, there often exists missing values in experiments. If 

this involves missing values in considerably large number of samples, it will be 

excluded in the analysis. The ratio of missing value for a gene determines the 

gene filter using a predefined threshold value (Hackstadt & Hess, 2009). For a 

gene with a small number of missing values, a non-parametric method called 

“KNN” (k-nearest neighbors algorithm), which is a type of instance-based 

learning approach, is applied to fill the missing values of genes (Altman, 1992). 

The „knn‟ „R package‟ was used in this study. K is a user-defined parameter for 

counting the numbers of neighbors to be applied to estimate the expression of 

the missing one, i.e. the values of k nearer neighbors are used to estimate the 

missing value, by weighting the associated neighbors as 1/d, where d is the 

distance of the neighbor (Altman, 1992).  

 

Normalization of microarray data is done by fitting (filtering or smoothing) the 

raw data in order to enable the microarray data is comparable. The classical 

approaches for normalizing of expression data include linear regression 

analysis (Chatterjee & Price, 1991), rank invariant methods (Tseng et al, 2001), 

log centering and so on. But, none of these can deal adequately with the 

possible systematic bias caused by microarray noise. To address this, some 

studies suggested that the log2 (ratio) values should be applied to microarray 

analysis, which a dependence relationship with intensity value in microarray. 

LOWESS (Locally Weighted Scatterplot Smoothening) analysis was proposed 

and applied to remove the effect of intensity dependence in a binary logarithm 

ratio (Yang et al., 2002). Non-linear normalization is adopted for high-density-
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oligonucleotides (Affymetrix) and cDNA microarrays. Normalization factors (like 

median value or mean value) are used to process the expression value of 

genes (Welsh et al., 2001).  

 

Comparative analysis of microarray data 

 

1. Fold change: 

 

The comparison of expression levels of genes across samples is one of the 

main steps in microarray studies. It is intended to determine differences in 

expression between genes in various biological samples. For example, fold 

change, widely used in microarray analysis, is defined by: 

 

𝑇𝑖 =
𝑅𝑖
𝐺𝑖

 

 

where Ti is the ratio of ith gene, and Ri and Gi represent the expression levels of 

the associated gene.  

 

The formula is not limited to any microarray platform, the measurement of R 

and G can be taken from either one array or two arrays (Quackenbush, 2002). 

 

 

2. Statistical tests:   

 

Microarray studies can identify differentially-expressed genes across different 

samples to reveal biomarker genes. To make project with this aim, statistical 
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tests are widely used, including three main statistical tests as described below. 

 

 

2.1. t-test 

 

The t-statistic measures the distance between the two samples in units of 

standard deviation, based on comparing the between- or within-group 

differences (Cui & Churchill, 2003). The calculation shows the significant 

difference of a gene from the mean expression level of group A and group B:  

 

𝑡 =
𝑋𝐴̅̅ ̅ − 𝑋𝐵̅̅̅̅

𝑆
 

 

      where  𝑥𝐴̅̅ ̅ =
∑ 𝑥𝑘
𝑛𝐴
𝑘=1

𝑛𝐴
  ;              𝑥𝐵̅̅ ̅ =

∑ 𝑥𝑘
𝑛𝐴+ 𝑛𝐵
𝑘=𝑛𝐴+1

𝑛𝐵
;                𝑆 = √

𝑆𝐴
2

𝑛𝐴
+

𝑆𝐵
2

𝑛𝐵
; 

 𝑆𝐴 =  √
∑ (𝑋𝑘−�̅�𝐴)

2𝑛𝐴
𝑘=1

𝑛𝐴−1
;                     𝑆𝐵 = √

∑ (𝑋𝑘−�̅�𝐵)
2𝑛𝐴+𝑛𝐵

𝑘=𝑛𝐴+1

𝑛𝐵−1
   

𝑥𝑘, k=1~nA+nB, is the kth expression value of a gene in the independent study. 

 

 

2.2. Analysis of Variance (ANOVA) 

 

ANOVA is used for microarray analysis of variance where multiple groups 

(e.g. normal group, disease group…) are involved. The significant genes 

retrieved by ANOVA (F-statistics) between two groups should be the same 

as genes retrieved by t-statistics, because two group-ANOVA is formally 
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equivalent to the t-test.  The ANOVA test is based on calculating the Sum of 

squared residuals within (SSw) or between (SSB) groups and should be 

calculated separately (Hinkelmann & Kempthorne, 2008). 

 

𝑆𝑆𝑤 = ∑ ∑ (𝑋𝑖𝑗 − �̅�𝑗)
2𝑛𝑗

𝑖=1
𝑚
𝑗=1         (1) 

𝑆𝑆𝐵 = ∑ 𝑛𝑗(�̅�𝑗 − �̅�)
2𝑚

𝑗=1              (2)      

F𝑚−1,𝑁−𝑚 =
𝑀𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑀𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛
=
𝑆𝑆𝑤/(𝑚 − 1)

𝑆𝑆𝐵/(𝑁 −𝑚)
   (3) 

 

where 𝑋𝑖𝑗, i=1~n, is the jth independent study. m is the number of groups; N 

is     the total number of cases. �̅�: Ground mean=sum of all values/N.m-1or 

N-m: the degrees of freedom. 

 

2.3. Significance analysis of microarrays (SAM) 

 

The SAM is a statistical technique for microarray data analysis for 

measuring the changes in gene expression as statistic d (Tusher et al, 

2001). The SAM analysis is defined by the difference between two groups 

and the standard deviation adjusted by an exchangeability factor s0 which is 

as denominator of test statistic, default is automatic choice (Tusher et al, 

2001). 

𝒅 =  
𝒓

𝒔 + 𝒔𝒐
 

where, 𝑠 = √(
1

𝑛𝐴
+

1

𝑛𝐵
)
∑ (𝑋𝑘−�̅�𝐴)

2𝑛𝐴
𝑘=1 +∑ (𝑋𝑘−�̅�𝐵)

2𝑛𝐴+𝑛𝐵
𝑘=𝑛𝐴+1

𝑛𝐴+𝑛𝐵−2
;   𝑟 = �̅�𝐴 − �̅�𝐵 ;                      
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𝑥𝑘, k=1~nA+nB, is the kth expression value of a gene in an independent study, s0 

is the exchangeability factor, and can be any percentile of the s value. When 

s0=0, the d-statistic is equal to t-statistic. 

 

1.5. Meta-analysis of Microarray Data 

 
 

1.5.1. Introduction of meta-analysis 

 

The definition of meta-analysis was first given by Glass in 1976 as “the 

statistical analysis of a large collection of analysis results for the purpose of 

integrating the findings” (Glass, 1976). Meta-analysis is a systematic approach 

and combines results of multiple studies using a set of statistical techniques, in 

order to increase the reliability of results (Ramasamy et al., 2008; Hong & 

Breitling, 2008). It has been demonstrated that meta-analysis has the ability to 

increase the effect of statistics by amending the false negative rate of an 

individual study (Choi et al, 2003). Meta-analysis is a useful tool not only for 

individual primary studies the may contain inconsistent results, but also for 

extracting valuable information from individual primary studies with inadequate 

sample sizes (Cochran, 2007). Meta-analysis to analyse microarray data 

involves 7 steps, shown in below Table 4 (Ramasamy et al., 2008).  
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Steps Meta-analysis 

1 Identify suitable microarray studies 

2 Extract the data  

3 Prepare individual datasets 

4 Annotate individual datasets 

5 Resolve the many-to-many relationship between probes and genes (like one gene 
contains multiple probe-sets, or one probe-set represents more than one gene)  

6 Combine the study-specific estimates 

7 Analyze, present and interpret results 

 
 
 
 

1.5.2. A review on meta-analysis of microarray data 

 

Published microarray studies have been produced for the same biological topic, 

e.g., they focus on the same disease or biological phase. Integrated analysis 

across multiple microarray datasets was hoped to yield more robust research 

interpretations than would individual studies. To integrate multiple microarray 

datasets and enhance the reproducibility of research findings, two approaches 

have been applied:  

1. Merging multiple studies: through the combination of raw data of primary 

studies. The merits and complications of such primary datasets are reviewed, 

here, different meta-analysis methods in different disease datasets have been 

reported (Larsson et al, 2006).  

Table 4: The seven steps of meta-analysis (Ramasamy et al, 2008) 
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2. Comparing and analysing the results of different published studies.   

Microarray data may contain some level of „noise‟ („unreal‟ data produced in 

experimental process, e.g., the background noise) (Cahan et al, 2007). The 

quality of meta-analysis depends on the quality of each individual microarray 

dataset. It is known that not all of microarray raw data deposited in public 

databases have equally quality thus contain unequally meaningful information 

(Larsson & Sandberg, 2006).  The accuracy and reproducibility of microarray 

data have therefore, presented a big challenge (Severgnini et al, 2006), not 

least when different microarray datasets are produced by different platforms, 

backgrounds, and with different samples types (e.g., cell lines vs. biopsy). 

 

While special care is needed when processing raw microarray data, 

researchers have successfully gained much valuable information from 

microarray studies. For example, a cross-species comparable analysis of yeast 

and human has determined a common transcriptional profile in aging (McCarroll 

et al., 2004), and a common host transcriptional response to pathogens (Janner 

& Young, 2005). Wennmalm et al found the similarity between the expression 

pattern of aging and cellular senescence in mice (Wennmalm et al., 2005). An 

aging database was built for collecting data of microarray studies (Pan et al., 

2007). A smaller robust gene signature for acute myeloid leukemia diagnoses 

has been revealed by comparing potential diagnostic genes reported in multiple 

studies (Cahan et al, 2005). 

 

As alluded to above, enhanced insights can be gained by merging data from 
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multiple studies. In 1999, researchers realized that discoveries could be made 

through the synthesis of related but individual experiment microarray studies 

(Khan et al., 1999; Normand, 1999). It is hard to compare directly microarray 

datasets obtained in different array experiments (Kuo et al., 2002). However, 

using this approach, Rhodes and his colleagues identified differentially-

expressed genes between benign and localized prostate cancer tissue by meta-

analysis of four prostate cancer datasets (Rhode et al., 2002). As discussed in 

Choi et al study, meta-analysis is able to reduce false negatives of individual 

analysis and thus increased the effectiveness of the statistical analysis of 

microarray data (Choi et al., 2003). When comparing results of meta-analysis 

with that of independent studies, the reproducibility was significantly improved in 

meta-analysis studies (Hong et al., 2006). Similarly, Park and Stegall 

investigated gene expression level of cytokines through the combination of data 

from open source and their own microarray datasets (Park & Stegall, 2007).  

 

However, two contradictory results were showed on two recent meta-analyses 

of melanoma microarray studies (Tímár et al. 2010, Schramm et al. 2011). The 

first compared gene signatures derived from 4 microarray datasets of human 

melanoma tissues, and found very little overlap between these signatures 

(Tímár et al. 2010). They considered this lack of congruence, (which is also 

discussed in this study, see 1.5.4 section) may be induced by sample 

heterogeneity (like different platforms, different types of samples etc.). By 

adding 5 additional studies, another team demonstrated some significantly over-

represented functions among the melanoma-associated gene signatures 

(Schramm et al. 2011). For example, most of the genes signatures were related 
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to the immune response. Moreover, a „leave-one-out‟ cross validation of the 

data showed that a low average error rate (28%) was achieved across all 

validation expression data of the gene signature (Mann et al. 2010). A gene 

signature proposed by Jönsson et al. (2010) reported an error rate of 45%. 

 

To deal with the heterogeneity of datasets (including various types biological 

sample, platforms, and quality of datasets), a new methodology is needed. In 

this study, a new method is proposed which takes into considerations of two 

factors („stratification‟ and „weighting‟) (see section 2.2). 

 

 

1.5.3. Methods used for microarray meta-analysis 

 

 

Typically, three typical methodologies have been applied in the meta-analysis of 

integrated analysis of multiple studies, including t-test, ranking and Fisher‟s 

inverse Chi-square approaches. The t-test based approach was adopted in 

Choi et al, 2003, and is implemented in the GeneMeta package of Bioconductor 

(R package).  The ranking based approach (a non-parametric statistic method), 

first applied for the analysis a single dataset (Breitling et al., 2004) was then 

applied to measure each gene in combined multiple studies as implemented in 

the Rank Prod Bioconductor package (Hong et al., 2006). Finally, Fisher‟s 

inverse method is based on an improved Fisher‟s inverse X2 test to combine the 

individual studies (Zaykin et al., 2002) based on their p-values. The p-values 

can be calculated by the t-test or ranking-based approaches (Hong & Breitling, 

2008).  
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The three approaches above were compared using two datasets, and evaluated 

for their advantages and disadvantages (Hong & Breitiling, 2006). As Fisher‟s 

product is based on p-values, which can be obtained from both t-test-based and 

ranking-based approaches, the authors excluded it and instead focused on 

comparing the t-test-based approach and the Ranking-based approach. The t-

test based approach, which was improved from Student‟s t-test, directly 

compares the magnitude of gene expression under different biological 

conditions. The ranking based approach provides the relative importance of a 

gene compared to other genes. When studies have a small sample size (large 

sample size in biological experiments is uncommon), the ranking based 

approach has its important advantage compared to the t-test based approach.  

The latter can suffer unreliable error estimates when sample sizes are small 

(Hong & Breitling, 2008).  

 

1.5.4. The challenges of meta-analysis on microarray datasets 

 

One of the main issues affecting individual microarray studies is that the testing 

power is often weakened by a large number of hypotheses being applied to a 

small sample size database. Thus, when the false positive rate is 0.05, in 

24,000 transcripts of a microarray study, there are 1,200 genes (i.e., 0.05 × 

24,000) that could be random fluctuations i.e., false positive genes. Meta-

analysis has the potential of reducing these false positives, such that the truly 

significant genes will be determined by combining different studies. Similarly, 
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meta-analysis also can reduce the influence of different experimental conditions 

(Cahan et al., 2007). 

 

Another important issue related to microarray study is the poor congruence 

between gene signatures identified by different individual microarray-based 

studies, e.g., non-overlapping melanoma signatures (John et al., 2008; Bittner 

et al., 2000; Tímár et al., 2010). Microarray technology has also been applied to 

the comparative analyses of different melanoma stages and has identified 

various gene signatures (Hoek, 2007). However, microarray-based melanoma 

gene markers have thus far had less than optimal translation to the clinical 

situation, and the diagnosis of melanoma is still largely based on the clinical and 

histopathological features of the tumour (Schramm et al., 2011). 

 

In order to explore this poor congruence issue, the current project conducted a 

comparison on 16 independent microarray-based signatures of metastatic 

melanoma published from 2000 to 2011. These 16 studies of melanoma only 

reported a metastatic melanoma gene signature in all melanoma published 

microarray studies. The start year is 2000, which was the earliest melanoma 

microarray study in the literature. These gene signatures involved various 

numbers of genes ranged from 5 to 589 genes. Remarkably pair-wise 

comparison showed that the microarray-based gene signatures shared very few 

common genes (Table 5). For example, only 84 genes were common to two of 

the signatures (Scatolini et al., 2010, Jaeger et al., 2007), 14 to three studies 

(Scatolini et al., 2010, Jaeger et al., 2007 and Riker et al., 2008), and strikingly 

only 2 common genes (KRT15, RORA) appeared in four of the 16 studies 
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(Scatolini et al., 2007, Jaeger et al., 2007, Riker et al., 2008 and Smith et al., 

2005). Remarkably no gene was found to be common in five or more of the 

independent studies (Table 6). This finding suggests that some fundamental 

issues exist, for either the individual microarray studies designed, or the 

suitability of direct comparison meta-analyses. 

 

 

 

 

  

Table 5: The 16 individual studies from 2000 to 2011 used in this study 
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The aims of the study: 

The aim of this study is to develop a robust model for meta-analysis of multiple 

microarray data, including: 

1. Develop a bioinformatics approach to identify robust gene biomarker 

signature from multiple microarray data. 

2. Identify a gene signature for melanoma, and validate them by 

computational and laboratory-based studies. 

 

In this study, I propose a new model that measures the genome-wide relative 

significance (GWRS) and genome-wide global significance (GWGS) of gene 

expression. As will be described in this thesis, this new model provides an 

important advantage for the integrative analysis of microarray datasets 

produced by different platforms and protocols. Using this method, 200 top 

genes of melanoma were identified based on the integrated analysis of five 

melanoma data. Based on the relationship of those 200 genes with melanoma 

driver genes, 12 genes were defined as a metastatic melanoma biomarker. 4 

genes were validated by wet-lab experiments, showing clearly differential 

expression in melanoma cells than normal cells. 

 

To enhance the computational model further, and to make the method suitable 

to the datasets of other diseases, I later take into account the concept of 

„Stratification‟ (classify microarray datasets by different features, e.g., types of 

platforms, types of samples etc.) and Dataset quality (ω) to deal with the 

datasets in the integrated analysis, and call it the „Stratification with weighting‟ 

method. Extensive evaluations on this new integrated analysis approach were 
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performed.  

 

Computational experimental results, on melanoma, breast cancer and prostate 

cancer, demonstrated the enhanced of performance of this method which could 

generate more robustly associated genes. As shown in the evaluation against of 

180 known metastatic melanoma biomarkers, the ranking positions of robust 

genes were higher than the genes identified by previous method. This indicates 

that the enhanced method could identify more „stable‟ and „reliable‟ gene 

associations (i.e., the genes may be considered as biomarker).   
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2. MATERIAL AND METHODS 

2.1. Microarray data 

 
 

Fourteen datasets were used for this project across in three kinds of cancers 

(i.e. melanoma, breast and prostate) for research on gene association.  

 

Five melanoma microarray datasets were selected (see table 7, melanoma part) 

to investigate a robust biomarker of genes using GWRS (Genome-wide relative 

significance) which investigates the signature within individual microarray 

dataset, and GWGS (Genome-wide global significance) which investigates the 

signature across multiple microarray datasets. These five datasets were 

selected as they containing gene expression values of normal skin and/or 

benign nevi, and metastatic melanoma. Four of them were contained in the 16 

metastatic melanoma studies published between 2000 and 2011 (see table 5) 

and included open access databases as shown on table 8. The microarray data 

were extracted from the GEO database (GEO access number: GSE7553, 

GSE4587, GSE4579, and GSE12391). An additional GSE22301 dataset was 

extracted from Rose et al. (2011). Rose et al. did not provide the gene signature 

of metastatic melanoma in the paper, thus it was not included in the meta-

analysis of 16 studies. However, it does include 14 samples of metastatic 

melanoma data and so the microarray data was included in our integrative 

analysis. As a result a total of five microarray datasets of normal and/or benign 

nevi and metastatic melanoma were used in this study (Table 7 - the melanoma 



 
Chapter 2: Material and Methods 

 

58 
 

datasets).  

 

A further aim was to enhance the computational method beyond melanoma for 

generalized use by including two groups of datasets (i.e., breast and prostate 

cancer) to evaluate the effectiveness of the methods overall. Details of the three 

groups of datasets are shown on table 7 and described in the following 

sections. 

 

 

 

 

 

 

 

 

 

Data number 

in our study
Study

Microarray 

data access 

number

Platform
Sample size 

of control

Sample size of 

disease

Data1 Mecham et al , 2004 GSE1299 Affymetrix Human Genome U133A Array 2 4

Data2 Richardson et al , 2006 GSE3744 Affymetrix Human Genome U133 Plus 2.0 Array 7 40

Data3 Casey et al , 2009 GSE10797 Affymetrix Human Genome U133A 2.0 Array 10 56

Data4 Turashvili et al,  2007 GSE5764 Affymetrix Human Genome U133 Plus 2.0 Array 20 10

Data5 Liu et al , 2007 GSE6883 Affymetrix Human Genome U133A Array 3 9

Data1 Tomlins et al , 2007 GSE6099 Chinnaiyan Human 20K Hs6 34 52

Data2 Chandran et al , 2007 GSE6919 Affymetrix Human Genome U95B Array 17 91

Data3 Nanni et al , 2006 GSE3868 Affymetrix Human Genome U133A Array 4 20

Data4 Varambally et al , 2005 GSE3325 Affymetrix Human Genome U133 Plus 2.0 Array 6 14

Data1 Hoek et al , 2004 GSE4570 Affymetrix Human Genome U133A Array 2 5

Data2 Smith et al , 2005 GSE4587 Affymetrix Human Genome U133 Plus 2.0 Array 2 5

Data3 Riker et al , 2008 GSE7553 Affymetrix Human Genome U133 Plus 2.0 Array 5 40

Data4 Scatolini et al , 2010 GSE12391 Agilent-012391 Whole Human Genome Oligo Microarray G4112A 18 5

Data5 Rose et al,  2011 GSE22301 Affymetrix Human Genome U133A 2.0 Array 2 14

Breast Cancer

Prostate Cancer

Melanoma

Table 7: Details of the 3 groups of datasets used in the project 
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Table 8: Publically available microarray datasets of metastatic melanoma 2000-
2011 used in this study 

 

 

 

 

2.1.1. Melanoma microarray datasets used in this project 

 

2.1.1.1. Hoek Data (GSE4570, 2004) 

 

Hoek Data (GSE4570) 

Number of 
samples 

Normal 
melanocyte 

Primary 
melanoma 

Metastatic 
melanoma 

8 2 1 5 

 

 

The Hoek dataset was obtained using Affymetrix U133A. It contains 8 samples: 

2 from normal melanocyte, a primary melanoma and 5 metastatic melanoma. In 

the original study of Hoek et al (2004), 589 genes were identified to be 

significantly differentially-expressed between normal melanocytes and 

melanoma (>2.5 fold change). Of these genes, 315 were up-regulated and 274 
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were down-regulated. They reported some novel pathways in melanoma cells, 

including NOTCH activation, as well as an altered expression in embryonic 

development and epidermal transcriptional regulators, activation of cancer 

antigens, and down-regulation of growth suppressors (e.g. NECDIN).  

 

2.1.1.2. Smith data (GSE4587, 2005) 

 

Smith data (GSE4587) 

Number of 
samples 

Normal benign nevus 
atypical 
nevus 

primary 
melanoma 

metastatic 
melanoma 

18 4 2 2 4 6 
 

 

The Smith dataset (GSE4587) is a mixed sample type dataset and was derived 

from 15 frozen tissues and 3 cell lines, RNA was extracted from 2 normal 

biopsies, 2 benign nevi, 2 atypical nevi, 2 melanoma in situ, 2 vertical growth 

phased melanoma, 2 metastatic growth phase melanoma, 3 lymph node 

metastasis melanoma tissues, 2 normal epidermal cell lines, and 1 metastatic 

melanoma cell line. These authors conducted a comprehensive study on the 

different stages of malignant melanoma development, based on whole genome 

expression profiles, and investigated the top 50 up-regulated and 50 down-

regulated genes in advanced-stage melanoma compared to early-stage 

melanoma.  
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2.1.1.3. Riker data (GSE7553, 2008) 

 

 
 
 
 

The Riker dataset (GSE7553) contains 87 samples. In addition to 15 basal cell 

carcinoma samples and 11 squamous cell carcinoma samples, the sample set 

also included 56 melanoma samples, 2 samples of melanoma in situ, 14 

primary melanoma, 40 metastatic melanoma samples, and 4 normal skin and 

one from melanocytes. The authors compared 40 metastatic melanoma (MM) 

samples to 16 primary melanoma samples (14 primary melanoma samples plus 

2 melanoma in situ samples). They identified that the expression of SPRR/A/B, 

KRT16/17, CD24, LOR, GATA3, MUC15, and TMPRSS4 were dramatically 

higher in primary basal cell carcinomas, squamous cell carcinomas and thin 

melanomas compared to metastatic melanoma. Conversely, expression of 

MAGE, GPR19, BCL2A1, MMP14, SOX5, BUB1, and RGS20 was higher in 

metastatic melanoma than in the other sample types. They also identified 65 

differentially-expressed genes by comparing normal human epidermal 

melanocytes to thin primary cutaneous and metastatic melanoma samples. 

 

2.1.1.4. Scatolini data (GSE12391, 2010) 

 

Scatolini data (GSE12391) 

Number of 
samples 

benign 
nevus 

atypical nevus 
primary 
melanoma 

metastatic 
melanoma 

57 18 11 23 5 
 
 

Number of 

samples
Normal melanocytes

melanoma in 

situ

primary 

melanoma

metastatic 

melanoma

basal cell 

carcinoma

squamous cell 

carcinoma

87 4 1 2 14 40 15 11

Riker Data (GSE7553)
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The Scatolini data (GSE12391) used RNA isolated from a total of 57 freshly-

harvested patient tissues from 5 stages of progression from normal to 

metastatic melanoma were involved. Agilent oligonucleotide glass arrays were 

used for hybridization, and the data were presented by 10 base logarithms after 

processing and normalization using the Agilent Human Whole Genome 

platform-specific error model. The log ratio value of gene expression was 

treated using the LIMMA package, involving different functions of LIMMA incl. 

“backgroundcorrect”, “normalizeWithinArrays” and “normalizeBetwwenArrays”. 

The authors determined the 5 different stages from normal to melanoma by pair 

comparisons. They found 36 annotated transcripts were differently expressed 

between benign nevi and primary radial growth phase melanomas, including 

GDF15, AMICA1, and GLA.  

 

2.1.1.5. Rose data (GSE22301, 2011) 

 

Rose data (GSE22301) 

Number of 
samples 

melanocytes primary melanoma 
metastatic 
melanoma 

22 4 4 14 
 
 
 

Here, there are 22 samples separated into three types. Four samples represent 

normal melanocyte controls, 4 primary melanoma and 14 metastatic melanoma 

cell lines. By investigating the differences between superficial spreading 

melanoma and nodular melanoma, Rose et al identified 8 significant genes (i.e., 

DIS3, FGFR1OP, G3BP2, GALNT7, MTAP, SED23IP, USO1 and ZNF668) that 

were differentially expressed. 
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2.1.2. Breast cancer microarray datasets using in this project 

 

2.1.2.1. Mecham data (GSE1299, 2004) 

 

Mecham data (GSE1299) 

Number of samples normal breast epithelium breast cancer cells 

6 2 4 
 

 

This microarray dataset was derived from 6 samples including 4 human breast 

tumour cell lines and 2 human mammary epithelial cells cell lines (HMEC). The 

authors assessed gene expression in these samples across 4 platforms (i.e. 

Affymetrix U133A, U133B, U95 Version 2 Arrays, and Agilent Human 1 cDNA 

microarray [G4100A] array). They introduced RNA aliquots to a cross-platform 

analysis, and found they could significantly improve the consistency of 

platforms. They concluded that their cross-platform analysis strategy yielded 

more efficient results from different cDNA microarray and Affymetrix gene-chip 

platforms than single platform of one.  

 

2.1.2.2. Richardson data (GSE3744, 2006) 

 

Richardson data (GSE3744) 

Number of 
samples 

Normal  Non-BLC BLC 
BTCA1 associated 
cancer  

47 7 20 18 2 

 

This dataset contains 47 samples, including 7 normal breast samples, 20 non-

basal like cancer samples (non-BLC), 2 BRCA1-associated cancer samples, 

and 18 basal-like cancer (BLC) samples. Analysis of the microarray data 

revealed that the active X chromosome had been duplicated and the inactive X 
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chromosome had been lost in almost half of BLC samples. While the 

abnormalities of the X chromosome did not change the global X chromosome 

transcription, it was associated with overexpression of a small group genes 

located on this chromosome. Because the association between abnormal X 

chromosome and gene changes did not show in the non-BLC samples, these 

results suggest that the X chromosome abnormalities may have been 

contributed in BLC. 

 

2.1.2.3. Casey data (GSE10797, 2009) 

 

Casey data (GSE10797) 

Number of samples normal invasive breast cancer tissues 

33 5 28 
 
 

Here, gene expression was assessed using total RNA of epithelial and stromal 

cells from 5 normal breast specimens and 28 invasive breast cancer tissues by 

Affymetrix U133A 2.0 GeneChips. According to comparisons of gene expression 

of different cell types (epithelial or stromal) and diagnosis (normal or cancer), 

the researchers determined that the transcriptome of epithelial cancer was 

enriched for proliferative, motility and ECM gene ontologies when compared 

with normal epithelial tissue. The transcriptomes also showed that genes were 

overexpressed in ECM and proteolytic ontologies in invasive breast cancer 

compared to epithelial and stromal cancer tissues. 
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2.1.2.4. Turashvili data (GSE5764, 2007) 

 

 

Turashvili data (GSE5764) 

Number of 
samples 

normal 
ductal cells 

normal 
lobular cells 

invasive 
ductal 
carcinomas 

invasive 
lobular 
carcinomas 

30 10 10 5 5 
 
 
 

In this database, Turashvili et al. focused on invasive ductal and lobular 

carcinomas; the two most common histological types of breast cancers. They 

examined 30 samples including 10 normal ductal cells, 10 normal lobular cells, 

5 invasive ductal carcinomas (IDC) cells and 5 invasive lobular carcinomas 

(ILC) cells. When comparing the different samples via algorithm and rank 

products, they identified 84 significantly differentially-expressed genes between 

ILC and normal cells, 74 significant genes between IDC and normal cells, 78 

significant genes between normal ductal and lobular cells, and 28 differentially 

expressed genes between IDC and ILC. When these changes were combined, 

the authors extracted seven differentially-expressed genes (i.e., CDH1, EMP1, 

DDR1, DVL1, KRT5, KRT6, and KRT17) as novel biomarkers of breast cancer, 

and validated these by PCR and immunohistochemistry on tissue microarrays. 
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2.1.2.5. Liu data (GSE6883, 2007) 

 

 

Liu data (GSE6883) 

Number of 
samples 

normal 
breast 
epithelium 

non-
tumourigenic 
breast cancer 

tumourigenic 
breast cancer 

12 3 3 6 
 
 
 

This microarray dataset was compiled from samples of tumourigenic breast 

cancer cells and normal breast epithelium cells. The samples set included 3 

normal breast epithelium cells, 3 non-tumourigenic breast cancer cells and 6 

tumourigenic breast cancer cells. The authors compared gene expressions in 

the 12 samples, and generated 186 genes as a signature for invasiveness. 

They found that these 186 genes were significantly associated with overall 

survival and metastasis-free survival in breast cancer patients. When they 

compared the 186 genes with the prognostic criteria of the National Institutes of 

Health, the invasiveness gene signature could be used to separate high-risk 

from early breast cancer, and also for prognosis in medulloblastoma, lung 

cancer, and prostate cancer.  
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2.1.3. Prostate cancer microarray datasets using in this project 

 

2.1.3.1. Tomlins data (GSE6099, 2007) 

 

Tomlins data (GSE6099) 

Number of 
samples 

benign 
epithelia 

atrophic 
lesions 

localized 
prostate cancer 

prostatic 
intraepithelial 
neoplasia 

metastatic prostate 
cancer 

101 34 5 32 13 17 

 

 

Total RNA was isolated from 101 specific cell populations of 44 individuals to 

examine genes associated with the progression of prostate cancer. These 

included 34 benign epithelia, 5 atrophic lesions, 32 localized prostate cancers, 

13 prostatic intraepithelial neoplasia, and 17 metastatic prostate cancers. 

Through analyzing the gene signatures of over 14,000 resultant probe-sets, the 

authors generated a model of prostate cancer progression that included protein 

biosynthesis, E26 transformation-specific family transcriptional targets, 

androgen signaling, and cell proliferation. From the model, the signature of 

androgen signaling was found to be similar in high-grade prostate cancer and 

metastatic prostate cancer relative to the low-grad prostate cancer. This may 

explain the clinical grade of the tumour with its prognosis. In this study, the 

researchers emphasized that the integrative analysis of gene expression 

signatures is a useful tool to understand cancer biology. 
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2.1.3.2. Chandran data (GSE6919, 2007) 

 

Chandran data (GSE6919) 

Number of 
samples 

normal 
normal 
adjacent to 
tumour 

primary 
prostate tumour 

metastatic 
prostate tumour 

152 23 41 64 24 
 
 
 

This database included 152 human samples of normal prostate tissue, normal 

prostate tissue adjacent to tumour, and primary and metastatic prostate cancer 

tissues. Gene expression profiles of 24 androgen ablation-resistant metastatic 

samples (4 patients) and 64 primary prostate tumour samples were analyzed to 

investigate differences between primary and metastatic prostate tumours. The 

authors found at least a 2 fold over-expression change in 415 genes, 364 of 

which were down-regulated in metastasis samples. These genes were 

associated with some androgen ablation pathways and other networks (e.g. cell 

adhesion, bone remodeling and cell cycle), including transcription factor 

Forkhead Box M1 (FOXM1) and cell adhesion molecule Osteopontin (SPP1). 

 

2.1.3.3. Nanni data (GSE3868, 2006) 

 

Nanni data (GSE3868) 

Number of 
samples 

normal benign basaloid tissue 
primary 
tumour 

metastatic tumour 

30 2 2 3 22 1 

 

This in vitro-based dataset includes 30 samples representing cell lines 

established from 2 normal tissue, 2 benign hyperplasia tissues, 3 basaloid 

tissues, and 1 metastatic tumour sample, and from 22 primary prostate tumour 

samples and 1 metastatic prostate tumour sample. The goal of this study was to 
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generate a model with signatures of tumours based on gene expression 

profiling. The authors examined the model and suggest that it can be used for 

studying primary prostate cancer biology and also could characterize tumours 

for prognostic and predictive purposes. 

 

2.1.3.4. Varambally data (GSE3325, 2005) 

 

Varambally data (GSE3325) 

Number of 
samples 

benign 
primary 
tumour 

metastatic 
tumour 

19 6 7 6 
 
 
 

This dataset includes 19 samples representing 6 benign prostate, 7 primary and 

6 metastatic prostate cancers. During the analysis of cancer progression, which 

included comparing different stages of disease via high-throughput immuno-

blotting, and also integrated analysis with transcriptomic data (i.e., gene 

microarray), the authors identified 64 proteins that were altered relative to 

benign prostate, and 156 proteins which were altered relative to metastatic 

prostate cancer. These differential alterations of protein expression were 

considered by the authors as possible predictors of clinical outcome in prostate 

cancer.  
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2.2. Data preparation 

 

One important pre-processing step for microarray data is to extract the 

expression value for each individual gene from the associated probe-sets using 

a gene mapping approach. When a probe-set is mapped to multiple genes, all 

the genes are assigned with the same expression value.  For example, 

„209994_s_at‟ associated to two genes „ABCB1 / ABCB4‟ in GSE4570, both 

genes are given the expression value of the „209994_s_at‟ probe-set. However, 

in many cases, a gene is associated with multiple probe-sets. In this case the 

expression value achieving the highest significance in differentially expression 

sample classes (e.g., normal vs. disease) is assigned to this gene. For 

example, for a gene associated with probe-sets 1, 2, 3, if the probe-set 1 has 

achieved the highest p-value in a statistical test in the comparative study then 

the expression value of probe-set 1 is assigned as the expression value of the 

gene in this study. The impact of selecting the expression value of a probe-set 

that has the mean-, or median-value in statistical testing was also tested in this 

study. I found that using the highest differentially-expressed probe-set (maxim-

based method), it was possible to retrieve the most significant probe-set of a 

gene. Thus, the aim of this study to extract the most differentially-expressed 

genes across multiple studies was attempted.  

 

As a result of the above approach, a list of genes (G) from each datasets was 

retrieved. The number of datasets was denoted by n. For n datasets, the total 

genes across n datasets were retrieved by taking all the gene sets together (G). 

Thus, the number of genes of these n datasets is denoted by m, i.e. m=|G|. The 

value „NA‟ was applied in cases where a gene is absent from an individual 
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study. A gene is also removed from G where NA is greater than a pre-defined 

value δ (δ=2 in this study, i.e., keeping the genes which were included in more 

or equal to 3 of 5 datasets). This means a gene was removed for further 

analysis if it is absent for more than two of five datasets. This resulted in a total 

of m=24,097 genes and n=5 of datasets for this study. 

 

2.3. Melanoma biomarker detection 
 

 

2.3.1. The application of melanoma datasets 

 

This study focused on investigating the differential gene expression between 

normal skin and/or benign nevi and metastatic melanoma. The melanoma 

datasets was described in section 2.1 and table 7. Figure 7 shows the 

experimental protocol for melanoma biomarker detection and validation.   
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Figure 7: Experimental protocol for Melanoma Biomarker Detection and 
Validation 
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2.3.2. Genome-wide relative significance (GWRS) and Genome-wide 

global significance (GWGS) for integrated analysis of cross-

laboratory (between independent studies) microarray data 

 

A relatively simple method of integrative meta-analysis was proposed by 

Rhodes et al in 2002. This method recognizes the significance of each 

individual gene, based on the p-value of the corresponding gene, in each 

individual microarray data: 

 

where pi, i=1~n, is the p-value of a gene in the i-th independent study. This 

method has at least two significant limitations in its application to microarray 

data: (1) many microarray studies contain a small number of samples, for which 

the p-value can therefore be problematic, and (2) the p-values of a gene across 

different studies may have large variation. Thus, the smallest p-value may 

determine the outcome of Sp (effective significance of p-value). 

 

A new approach is proposed here to overcome these limitations based on 

measuring the genome-wide relative significance (GWRS) and genome-wide 

global significance (GWGS) of genes (Liu et al. 2013). The GWRS measures 

the significance of a gene based on its ranking position on a genome-wide scale 

(r value) (Jurman et al, 2008). The ranking position of genes can be determined 

based on a differential expression measure, such as fold change, t-test p-value, 

SAM (Significance Analysis of Microarray data) p-value etc. Most meta-analysis 

methods in the literature focus on the top-k (k is the number of genes) genes 

(e.g. Jurman et al, 2008).  In contrast to these, the method proposed here 

instead counts the ranking at the genome-wide scale. Compared to the model 
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of Rhodes et al this new approach has two important enhancements: (1) it can 

apply multiple different methods for measuring the degree of differential 

expression of a gene (e.g. fold change, t-test, Anova or SAM p-values) and (2) it 

uses a ranking r value instead of the test statistic (i.e., fold change, or p-value) 

to avoid the influence of a high variation of test statistics. The details are shown 

in the following 2.3.3 section.   

 

2.3.3. Measuring the GWRS of genes in each single microarray database 

 

For each gene in the gene list (G), the degree of differential expression can be 

measured by the commonly used methods such as fold-change, t-test (p-value), 

ANOVA, SAM or other statistical test. These four methods were used for this 

study to test the suitability of method to be used in the GWRS. However, the 

numbers of samples in individual datasets of this study are quite different: some 

datasets contained very small number of samples, for which the p-value based 

method may not suitable. For this reason, the fold-change is chosen and used 

in this study. The computational evaluation indicated that the use of fold-change 

produced more reliable results, likely due to the limited number of samples in 

some of the datasets. Each gene in the gene list G is assigned a rank number 

(in descending order starting from 1 to m) according to their corresponding 

degree of differential expression. Thus, a gene with a high degree of differential 

expression is ranked more highly and so on with a smaller ranking number. An 

m*n matrix (R) was created for m genes across n datasets, in which rij is the 

ranking number of the i-th gene in the j-th dataset. Thus, the GWRS of the i-th 

gene in the j-th dataset is measured by: 
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where rij, i=1~m, j=1~n, is the rank number of the i-th gene in the j-th study. The 

range of GWRS value (sij ) is between 0 and -2log(1/m). For a gene with „NA‟ 

value the sij is set to be „NA‟. 

 

As an example, GSE3189 and GSE12391 were applied to these two different 

methodologies. The gene association with a small p value is considered as 

being an expressed gene. The r values of a gene in different studies are 

relevant to the p values. The smallest p value leads to the smallest r value, and 

the biggest sr value. Thus, genes with large sr values are considered to be 

significant genes in meta-analysis. The top 50 genes sorted by decreasing sr 

value have been displayed below. 

 

Table 9: The Sr values of combined two microarray datasets 

Sort Gene r(GSE3189) r(GSE12391) sr 

1 AHNAK 0.003596491 0.001008772 25.05364 

2 ABLIM1 8.77E-05 0.043640351 24.94628 

3 HLF 0.000614035 0.008508772 24.32423 

4 ALDH2 0.000701754 0.012807018 23.23938 

5 GLA 0.224298246 8.77E-05 21.67229 

6 RPL30 0.079780702 0.000307018 21.23416 

7 CYP4F12 0.002982456 0.009912281 20.85798 

8 TMEM30B 0.003903509 0.008070175 20.73092 

9 NFIB 0.000789474 0.040350877 20.70857 

10 KIAA1305 0.000526316 0.063070175 20.62623 
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11 KRT15 0.000877193 0.041315789 20.45059 

12 PHACTR1 0.029342105 0.001710526 19.79937 

13 RPL10A 0.004342105 0.011842105 19.75098 

14 MAOA 0.000175439 0.301578947 19.69389 

15 PHYHIP 0.001403509 0.046578947 19.27077 

16 ARF1 0.017763158 0.003903509 19.15302 

17 RPL34 0.073070175 0.001008772 19.03071 

18 PTPRF 0.004561404 0.01622807 19.02228 

19 CHST6 0.020263158 0.004254386 18.71751 

20 CTSB 0.001754386 0.049210526 18.71457 

21 NACA 0.000394737 0.222105263 18.68379 

22 LCP2 0.091929825 0.001008772 18.5715 

23 GSTO1 0.02627193 0.003684211 18.48591 

24 PGRMC2 0.002192982 0.044649123 18.46283 

25 CYP4B1 0.046403509 0.002192982 18.38575 

26 DNAJC15 0.101754386 0.001008772 18.36843 

27 ARMC9 0.102807018 0.001008772 18.34785 

28 LRRC1 0.002587719 0.043245614 18.19568 

29 NUDT11 0.112982456 0.001008772 18.15909 

30 CHST11 0.041798246 0.002894737 18.03952 

31 TIMP2 0.018026316 0.007149123 17.91338 

32 IFITM2 0.739649123 0.000175439 17.8996 

33 ITM2B 0.055657895 0.002412281 17.83143 

34 EPHX2 0.00122807 0.109473684 17.82876 

35 GDF15 0.081973684 0.001710526 17.74462 

36 PDZD2 0.021666667 0.006491228 17.73857 

37 RBM35B 0.036929825 0.003903509 17.68923 

38 HYOU1 0.002587719 0.059736842 17.54957 
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39 GATM 0.156491228 0.001008772 17.50755 

40 IL11RA 0.000394737 0.403421053 17.49013 

41 ACADL 0.004342105 0.036710526 17.48818 

42 LDOC1 0.000263158 0.61745614 17.44981 

43 NEBL 0.002017544 0.082982456 17.39 

44 CTDSPL 0.009561404 0.017850877 17.35145 

45 IFITM3 0.595526316 0.000307018 17.21383 

46 MICAL1 0.092719298 0.002017544 17.16811 

47 RPS6 0.002982456 0.066447368 17.05271 

48 AP3D1 0.00754386 0.026666667 17.02272 

49 MRCL3 0.212017544 0.001008772 16.90022 

50 KLK1 0.001140351 0.191140351 16.86233 

 

 

The sp value formula is referred to the meta-analysis method proposed by 

Rhodes et al (Rhoders et al, 2002), which applies the p-values to calculate sp 

value. The top 50 genes were selected by sp value and are shown on below 

table. 

 

Table 10: The Sp values of combined two microarray datasets 

Sort Gene P (GSE3189) P (GSE12391) sp 

1 ABLIM1 1.35E-25 0.040286149 120.9525406 

2 MAOA 4.73E-19 0.260988884 87.07693805 

3 HLF 2.18E-17 0.010400721 85.8610037 

4 LDOC1 6.36E-19 0.573431223 84.91041133 

5 ALDH2 4.32E-17 0.016320781 83.59201451 

6 KIAA1305 1.77E-17 0.057930257 82.84296498 
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7 NFIB 5.06E-17 0.038033905 81.58371476 

8 NACA 1.02E-17 0.194366519 81.52430717 

9 KRT15 5.77E-17 0.039293992 81.25591629 

10 IL11RA 1.02E-17 0.355474641 80.31689064 

11 PHYHIP 1.44E-16 0.043497529 79.22353904 

12 EPHX2 1.11E-16 0.094551745 78.191219 

13 CTSB 2.74E-16 0.046175334 77.81742617 

14 KLK1 9.63E-17 0.166285548 77.34622431 

15 AHNAK 4.67E-15 0.003824143 77.12807642 

16 CYP4F12 2.63E-15 0.012688143 75.87775978 

17 EMP2 1.90E-16 0.190351823 75.71677764 

18 PGRMC2 9.65E-16 0.04141238 75.51715796 

19 NET1 7.94E-17 0.621639439 75.09485668 

20 TMEM30B 5.20E-15 0.010151958 74.96041291 

21 NEBL 8.41E-16 0.073364552 74.64850883 

22 PLOD3 7.99E-17 0.896441924 74.35015518 

23 LRRC1 2.25E-15 0.040206057 73.8831676 

24 PALMD 1.20E-16 0.754188741 73.88230511 

25 EFS 9.43E-16 0.097825304 73.84407479 

26 KLHDC2 1.57E-16 0.615120104 73.75244722 

27 RPL10A 7.30E-15 0.015301682 73.46138914 

28 HYOU1 2.25E-15 0.055514925 73.23789911 

29 NDRG2 6.78E-16 0.188237382 73.19487166 

30 AZGP1 1.57E-16 0.834299864 73.14289652 

31 PTPRF 7.71E-15 0.017745281 73.05578773 

32 IL22RA1 1.69E-15 0.093503497 72.76760862 

33 RPS6 2.63E-15 0.060770378 72.74489072 

34 ACADL 7.30E-15 0.034017829 71.86354511 
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35 TMEM16A 2.87E-15 0.09115912 71.75922619 

36 ACOT7 5.41E-15 0.051465837 71.63472871 

37 GLRX2 3.76E-15 0.076989495 71.55688747 

38 SATB1 2.63E-15 0.122586759 71.34145762 

39 RNF43 6.78E-16 0.523433661 71.14945873 

40 MAPKBP1 5.20E-15 0.10459419 70.29557009 

41 EPS8L2 2.25E-15 0.242105326 70.29245719 

42 ATP5C1 2.25E-15 0.247238885 70.25049289 

43 CNIH3 1.16E-14 0.058623632 69.84877737 

44 PSD3 2.35E-15 0.307256738 69.72886534 

45 KRT1 1.10E-15 0.884100805 69.13330081 

46 KCNK7 4.67E-15 0.23615853 68.88173857 

47 PKM2 1.67E-14 0.081697968 68.45618765 

48 ABCA5 1.84E-14 0.077299144 68.37299625 

49 RP6-213H19.1 2.20E-14 0.067266132 68.2936647 

50 GATA3 4.16E-15 0.40217291 68.04826896 

 

The reason for using the sr value, instead of the sp value, is because the sr 

value is relevant to the p-value but not dominated by the smaller p-value. The 

sp values, unlike sr values, always incline to the smallest one of p-value groups. 

As shown in above sp value table (Table 10), the order of sp values is largely 

controlled by the p-values of GSE3189, because the p-values of GSE3189 are 

much lower than the p-values of GSE12391. For example, for gene no.19 

(NETI), the p-value in GSE12391 is 0.621639439. This is many fold greater 

than the p-values of its above or below genes (gene no.18 and gene no.20) in 

GSE12391. Comparing the p-value (7.94E-17) of NETI in GSE3189 with its 

above and below genes (sr value table), there are not much difference. This 
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imbalance is caused by the huge gap of the order of magnitudes existing in the 

two datasets. The use of the sr value, however, is able to copy with this issue. 

As shown in the sr value table (Table 9), no such difference exists in the sr 

value formula by rank number of p-values. 

 

 

2.3.4. Measuring the GWGS of a gene across multiple microarray datasets  

 

We estimated the GWGS (genome-wide global significance ) of a gene 

based on its GWRS (genome-wide relative significance) across n datasets, by 

 

where represents the relative importance/weight of the j-th dataset, and

. The value of weight ( ) can normally be assigned based on the 

data quality of the j-th datasets. However, it is important to note that the value of 

 can also be used to reflect the differential importance of biopsy-derived 

versus cell line-derived samples, which biological scientists may wish to take 

into account. In this study, all the datasets are treated as equally important, thus 

the weight of each datasets is set equally to be 1/n for j=1~n. The top 200 

genes were selected from the full gene list G for further analysis (i.e. selected 

genes with the greatest sr value). To determinate the number of top genes, an 

empirical evaluation of the classification performance (accuracy ratio) was 

performed. This was performed using the „wrapper-feature selection‟ after 

multiple rounds of gene addition to the classification performance model 
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(ranging from 20 genes up to 500 genes). This was done in order to achieve the 

maximum accuracy in distinguishing melanoma from normal skin/benign nevus. 

Using more than 200 genes did not improve further this classification. Thus, 200 

genes have been considered as the optimal gene set i.e., the smallest number 

of genes that can achieve the highest level of classification performance. 

 

 

2.3.5. Pathway analysis: functional relevance of 200 gene set  

 

A pathway analysis was performed to assess the functional relevance of the 

new 200 gene signature based on the DAVID database (Hosack et al. 2003). 

DAVID provides a useful tool to analyze large gene lists, including via gene 

ontology and pathway analysis. The top 200 genes were applied to the DAVID 

database in order to detect potentially over-represented KEGG pathways. 

Before inputting into the DAVID database, the corresponding probe-sets of the 

200 genes were extracted from each corresponding dataset. In order to 

compare the 200 genes to the original gene signatures of 16 studies, the probe-

sets of these original gene signatures were also extracted. Thirty-one KEGG 

pathways were retrieved. Twelve genes (i.e., EGFR, FGFR2, FGFR3, IL8, 

PTPRF, TNC, CXCL13, COL11A1, CHP2, SHC4, PPP2R2C, and WNT4) from 

this 200-gene signature were identified and were found to closely interact with 4 

melanoma driver genes (see Results section).  
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2.3.6. Immunocytochemistry (ICC) 

 

A primary epidermal melanocyte (EM) culture (donor-Female 44y), moderately 

pigmented human melanoma cells (FM55), and highly pigmented human 

melanoma cells (FM94) (melanoma cells were a gift of Dr Janis Ancans, 

University of Latvia) were cultured as previously described (Gledhill, 2010). The 

cells were fixed in ice-cold methanol (Sigma, Poole, Dorset, UK) for 10 min 

before air drying and rehydration in PBS. The cells were blocked with 10% 

donkey serum (DS) for 1 h, washed with PBS before incubation with their 

respective primary antibodies to four test antigens taken from this 12-gene 

signature. These antibodies included: COL11A1 (Abcam, ab64883), CXCL13 

(R&D Systems, AF801), PTPRF (NeuroMab, 75-193), SHC4 (Proteintech, 

12641-1-AP), and were incubated overnight at 4 oC followed by secondary 

antibody (1:300) for 1h (donkey anti-goat (Invitrogen, A11055), donkey anti-

mouse (Invitrogen, A21202), donkey anti-rabbit (Invitrogen, A21206), Alexa 

green). The optimal dilutions of antibodies were selected after titration (i.e.  

dilution tests). Following manufacturers‟ data sheets, the highest and lowest 

dilutions of these antibodies were tested respectively. According the results (i.e. 

most specific signal with least background) the optimal dilutions were applied. 

 

The slides were cover-slipped by VECTASHIELD mounting medium with DAPI 

and viewed using a Nikon Eclipse 80i fluorescence microscope and 

photographed with a Nikon Digital Sight DS-U1 camera. A full assessment of all 

12 proteins in our melanoma signature was beyond the scope of the current 

study, but will be assessed in detail in a follow-up studies. 
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2.3.7. Double immunohistochemistry (IHC) 

 

Paraffin-embedded primary melanoma in situ (nose) and metastatic melanoma 

(lower leg), obtained from the Bradford university ethical tissue bank (ethical 

tissue.org), deparaffinized and boiled 10 mins in sodium citrate buffer (10 mM, 

0.05% Tween 20, pH 6.0) for antigen retrieval. Acetone-fixed cryosections of 

normal human facial skin (donar-Female 52yrs) were used as control samples. 

All tissues were blocked with 10% donkey serum (DS) for 1h, washed with PBS 

before 2h incubation with NKi/beteb antibody raised against the melanocyte 

lineage-specific marker gp100 as a positive pigment cell control (Monosan; 

Mon7006-1) (1:15) which were used for many laboratory (including ours) and 

were validated that it is effective for gp100 antigen, followed by analysis by 

each of the 4 test antibodies as previously described (Gledhill, 2010). 
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2.4. A ‘Stratification-based’ Enhanced Method for Microarray 

Data Integration   

 
 

Two important factors, „stratification‟ and „weighting‟, were considered in order to 

improve the previous method using in this study. „Stratification‟ is the process to 

stratify individual datasets based on defined conditions (like platform, sample 

type, number of genes…), and then processed by GWGS and GWRS. 

„Weighting‟ is used to measure the quality of each individual dataset (see 

section 2.4.2). In the previously described method each microarray data was 

treated equally. This may not always reflect the need of analysis. For example, it 

may be useful to take into account differences in microarray datasets (e.g. 

different platforms, different types of samples). This diversity of dataset should 

be analysed by using appropriate values of ω in the GWGS model.  

 
 

2.4.1. The enhanced integrated analysis approach for microarray datasets 

 

The enhanced analysis method developed in this study is shown in Figure 8, 

and involves 4 different methods (i.e. non-stratification, non-stratification with 

weighting, stratification, and stratification with weighting).  
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Microarray datasets of one disease 
(D1…Dn)

Training datasets e.g. 
D1…Dn-1

Datasets are grouped by

 ‘leave-one-out’ method

 Evaluations:

 3.The number of common genes across different variation of 
training datasets

 4.The number of common genes with 180 known metastatic     
melanoma markers

Testing 
dataset e.g. Dn

Stratification
Non-

stratification 
with ω

Stratification 
with ω

Non-
stratification

Group 1 Group 2

GWRS &GWGS

GWGS

Gene list

Sub-group datasets based on 
features (like differences of 
sample type, platform etc.)

 1.classification performance of selected genes with SVM  ( Support 
vector machine)
2.The number of common genes training datasets against the        
testing dataset

GWRS &GWGS

 

 

 

 

The entire process (figure 8) can be described as follows: 

 

Assume there are n microarray datasets concerning one specific disease, and 

the datasets are named D1…Dn. For each dataset the ranking value of each 

Figure 8: Procedures of stratification /non-stratification analysis 
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gene in one dataset is calculated by GWRS, and the data quality is measured 

based on Hoeffding‟s D-statistic (ω) (Kauffmann et al, 2009). The top ranked 

genes for D1…Dn are denoted by L1…Ln. 

 

Step 1: Apply „Leave-one-out‟ to divide the data into two groups: n-1 datasets 

for „training‟ and the remaining one as „testing‟ data. For example D1…Dn-1 for 

training while Dn for testing. 

 

Step 2: Apply the four different methods on the training dataset (D1…Dn-1) („non-

stratification‟, „non-stratification with ω‟, „stratification‟, and „stratification with ω‟) 

to calculate the significance of expression of a gene across multiple microarray 

studies respectively. 

 

Step 3: For the two „stratification‟ methods, the datasets are sub-grouped based 

on the features of datasets (e.g. different platforms, different type of samples 

etc.). In this study, the different sample types are cell line and biopsy. 

 

Step 4: Apply GWRS and GWGS to calculate the significance of expression of 

genes across multiple microarray studies. 

 

Step 5: Evaluate the methods on testing data (Dn), across the multiple studies 

and the 180 metastatic melanoma biomarkers (table s3 in appendix) were 

picked up from PubMed (based on conditions as follows: metastatic, melanoma, 

biomarkers) published to March of 2013.   
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2.4.2. Determination of the weights (  ) of microarray datasets  

 

The quality of microarray data can be directly influenced by the experimental 

set-up of obtaining microarray, which brings inherent quality instability to the 

next level of analysis of the experimental procedure. The assessment of 

microarray dataset quality becomes a very important factor in the analysis of 

microarray datasets and particularly for the combination of multiple microarray 

datasets (Schuchhardt et al, 2000). In this study, an R software package called 

„arrayQualityMetrics‟ was applied to assess the quality of microarray data for all 

arrays and platforms (Kauffmann et al, 2009).  The assessment is based on the 

MA plot [present an M (log rations) and A (mean) average scale for visual 

representation of two channel DNA microarray gene expressions] with 

Hoeffding‟s D-statistic. The formula for Hoeffding‟s D is: 

 = 3 
(𝑛 −  )(𝑛 − 3) 1 +  2 −  (𝑛 −  ) 3
𝑛(𝑛 − 1)(𝑛 −  )(𝑛 − 3)(𝑛 −  )

 

 1 =∑ ( 𝑖
𝑖

− 1)( 𝑖 −  ) 

 2 =∑ (𝑅𝑖 − 1)(𝑅𝑖 −  )(𝑆𝑖 − 1)(𝑆𝑖 −  )
𝑖

 

 3 =∑ (𝑅𝑖 −  )(𝑆𝑖 −  )( 𝑖 − 1)
𝑖

 

where Ri and Si are the rank of X and Y, which are the two sets of values.  𝑖 is 

the bivariate rank as 1 plus the number of points with all arrays less than the ith 

point (SAS institute, 2012). The D values of arrays in every individual dataset 

were assessed. The mean D values is used for describing the quality of each 

dataset. Based on the mean D values of a dataset, in this improved method 

step, the ω of GWGS formula (section 2.3.4) was instead by the ratio of D 

j
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values which is calculated as relative weighting. The sum of relative weighting 

(ω) is 1 as the above formula. For example, there are n datasets, thus for 

dataset 1 the corresponding D value is D1 and the ratio of dataset 1 is D1 / (D1 + 

D2 + D3…Dn). 

 

2.4.3. Validation and selection of top genes by ‘wrapper feature selection’ 

method and machine learning for classification  

 

Machine learning and data-mining techniques have been successfully applied in 

various biomedical domains. In this study, the „wrapper-based feature selection 

method‟ was used (Peng et al. 2010), which applies SVM (Support vector 

machine) and selects significant genes that achieve the best classification 

performance (Figure 9). SVM is a machine learning approach based on Kernel 

techniques for classification or regression (Ivanciuc, 2007). The advantage of 

SVM is its capability to deal with high-dimensionality (larger than classical 

multivariate) of „training‟ data (Peng, 2006), and so has been widely applied in 

microarray classification. It can produce the largest separation between the 

decision function values for instances that are located at the borderline between 

classes. The advantage of wrapper approaches with SVM is that they provide a 

high probability of identifying the feature subset (situation), and so producing 

better classification performances as they take into account the feature 

dependencies and their collective contribution to model generation (Peng, 2006).  
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In this study, the R package for SVM “e1071” was employed. Extract from the 

ranked gene lists produced by the Stratification or Non-Stratification procedure 

is the „feature‟ for training SVM. The SVM was then applied on the testing 

dataset for the feature selection using the wrapper function, which determines 

which genes achieve the best predictive power in classifying the condition of the 

samples. 

 

 

 

 

Genes of dataset (g) corresponding with x 
values 

gk = rank(x) , K=|gk| 

SVM classification 

(gk) 

 

 

Output:  g|best|= gk 

 

Reach the stable 

Accuracy ratio 

 

K=k+1, search for 

g* No 

gk = g* 

 

Figure 9: The wrapper feature selection method based on SVM that was used for robust 

signature attainment between control and disease states 
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2.5. Access to the associated microarray data 

 

The microarray data used in the study were retrieved from Gene Expression 

Omnibus (GEO) with the access numbers shown on table 6. The 16 gene 

signatures of melanoma reported in the literature between 2000 and 2011 were 

extracted from the associated publications and are presented in SI – Table s, 

data as excel file stored in attached CD). 
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3. RESULTS 

3.1. The discovery of new biomarkers of melanoma 
 

 

3.1.1. A new melanoma gene signature revealed by an integrated analysis 

of cross-laboratory microarray datasets  

 

A new approach has been applied here for the integrated analysis of five 

independent microarray studies (Hoek et al., 2004, Smith et al., 2005, Riker et 

al., 2008, Scatolini et al., 2010, Rose et al., 2011) (see Methods) in order to 

determine gene associations in melanoma, rather than to look for associated 

gene mutations. The genome-wide „global significance‟ of a gene (i.e., across 

multiple datasets) was measured by the GWGS (sr) function (see Methods). A 

gene with a large sr value is considered to be significant across multiple 

independent studies (i.e., globally significant). The 200 genes with the largest sr 

values were selected as the starting point for the new proposed gene signature 

of melanoma, as listed in Table 11 and Table s2 of appendix. This set of 200 

signature genes was empirically determined, based on classification accuracy 

ratios after various rounds of gene additions (using the „wrapper feature 

selection‟ approach) in order to distinguish melanoma from normal skin cells 

and/or benign nevus. The classification accuracy ratio was improved very little 

by adding more than 200 genes, and so 200 genes achieved, computationally, 

the highest classification accuracy with the smallest number of genes. 
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Table 11: The 200 genes with largest sr values selected as the proposed starting point 

for a gene signature of melanoma 
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3.1.2. Validation of a new 200-gene signature based on experimental 

studies reported in the literature 

 

 

The 200 genes found to have genome-wide global significance (GWGS) in this 

study were compared with the gene signatures identified in previously-published 

reports (see appendix – Table s2).  

 

The new 200-gene signature was first validated by (i) comparing it with 16 

signatures in the referred set of microarray studies (Table 6), and (ii) by 

checking if any existing experimental validation for the gene associations in 

question has been published in the literature (PubMed, last access: 16 April 

2013). This analysis revealed that (a) 85 genes in our 200-gene signature were 

reported in at least one of the 16 microarray studies, and (b) 21 genes of the 

200-gene signature were reported in both microarray studies and biological 

experimental-based studies (Table 12, labeled yellow background). While 38 

genes of this 200-gene signature were not reported in any of the 16 reference 

studies, they had in fact been previously validated in independent wet-lab 

studies (Table 12 and discussion section). These 38 genes, including EGFR 

and MIA, can be considered as “validated novel genes” as they were not 

identified in the previous microarray studies but validated by biological 

experiments. 

 

On the other hand, the new gene signature reported an additional 77 genes that 

were not previously reported anywhere in the literature in association with 

melanoma (Figure 13). The ranking positions of these 77 genes show that 39% 
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of these appear in the top 100 and 34% in bottom 50 of the 200 gene set (table 

11). These genes may represent „novel genes‟ as they were not previously 

identified in any previous microarray studies.  

 

We further investigated the characteristics of the 85 genes reported in at least 1 

of the 16 reference microarray studies (see Appendix - Table s2). Forty-four 

were reported in ≥2 studies, while 17 genes have been reported in ≥3 of the 16 

studies (Appendix - Table s2). KRT15, MAGEA6, RORA and SULF1 were most 

frequently reported, appearing in 4 of the 16 studies. It is noted that, using the 

method proposed in this study, we identified 4 of the 7 most frequently reported 

genes in the 16 studies. This suggests that the methodology used to select the 

top 200 genes provides a more powerful signature than these previously 

reported 16 published signatures (Table 6). 
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Table 12: Novel genes identified by the proposed method were validated by 

independent wet-lab experimental studies 

 

 

gene symbol

ALDH1A3
Luo et al. 2012. Stem Cellls

30:2100-2113

COL1A1
Lin et al. 2005. Arch Pathol Lab

Med 129:884-92

COL17A1
Krenacs et al. 2012. Histochem

cell Biol . 138:653-667

CSAG2
Feller et al. 2000. Anticancer Res

20:4147-4151

Janjic et al. 2006. J Immunol

177:2717-2727

CTAG2
Lethe et al. 1998. Int J Cancer

76:903-908

Usener et al. 2003. Br J

Dermatol 149:282-288

Svobodova et al. 2011. Eur

J Cancer 47:460-469

CYP3A5
Zhang et al. 2006. J Pathol

209:213-219

DCD
Rieg et al. 2004. Br J Dermatol

151:534-539

Huang et al. 1996. Anticancer Res

16:3557-3563

Scholes et al. 2001. Arch

Ophthalmol 119:373-377

Mallikarjuna et al. 2007.

Curr Eye Res 32:281-290

Ueno et al. 2008. Int J Cancer

123:340-347

Boone & Brochez. 2009.Verh K

Acad Geneeskd Belg 71:251-

294

Diaz et al. 2009. Front

Biosci 14:159-166

Topcu-Yilmaz. 2010. Melanoma

Res 20:126-132

Boone et al. 2011. J Cutan

Pathol. 38:492-502

EPHA3
Balakrishnan et al. 2007. Cancer

Res  67:3545-3550

Mosch et al. 2012. Cell Adh

Migr 6:113-125

Lisabethe et al. 2012.

Biochemistry  51:1464-1475

FCRLA
Inozume et al. 2007. J Invest

Dermatol  127: 2818-2822

FGFR2
Gartside et al. 2009. Mol Cancer

Res 7:41-54

FGFR3
Cheng et al. 2006. Bio Pharm Bull

29:655-669

Yadav et al. 2012. J Biol Chem

287:28087-98

GAGE family
Bazhin et al. 2007. Cancer Lett

251:258-267

GBP5
Fellenberg et al. 2004. J Invest

Dermatol 122:1510-1517

HLA-DQB1
Lee et al. 1994. Int J Cancer

59:510-513

Lee et al. 1996. Cancer

78:758-763

Kageshita et al. 1997.

Tissue Antigens 49:466-470

Bateman et al. 1998. Tissue

Antigens  52:67-73

HMGA2
Murakami et al. 2010. Mol Biol

Rep 37:1279-86.

IGF2/INS-IGF2
Soares et al. 2010. Growth Horm

IGF Res  20 :295-297

IL8
Zhang et al. 2011. Int J Mol Sci

12:1505-1518

LEP
Brandon et al. 2009. Cancer Biol

Ther 8:1871-1879

Ellerhorst et al. 2010. Oncol

Rep  23:901-907

Amjadi et al. 2011. J Exp

Clin Cancer Res  30:21.

Lawrence et al. 2012. Neurol Res

Int  2012:870807: Epub 2012 Jan 4

LUM
Vuillermoz et al. 2004. Exp Cell

Res  296:294-306

Sifaki et al. 2006. IUBMB Life

58:606-610

Radwanska et al. 2008. Life
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The correlations between melanoma and the genes shown in table 12 are 

provided below: 

ALDH1A3 

Luo et al 2012 detected the relationship between ALDH1A3 and melanoma 

cells by Aldefluor Assay and FACS, mRNA copy number analysis and 

microarray analysis, and found that ALDH1A3 isozyme is a key molecule to 

regulate the function of melanoma cells. 

COL1A1 

Lin et al 2005 determined that COL1A1 was significantly increased in 

expression in melanoma compared with poorly invasive non-pattern–forming 

cells though real time PCR, and suggested COL1A1 may be synthesized by 

melanoma cells. 

COL17A1 

Krenacs et al 2012 tested expression of COL17A1 in benign and malignant 

melanoma by endodomain- and ectodomain-selective antibodies, and found it 

may be a potential biomarker or target for melanoma. 

CSAG2 

The expression of CSAG2 was compared in several melanoma cell lines by real 

time PCR in Feller et al study in 2000, and also in Janjic et al. study of 2006.  

Both of these two studies suggest CSAG2 as a novel antigen with application 

for melanoma vaccines. 

 



 
Chapter 3: Results 

 

97 
 

CTAG2 

The CTAG2 protein was determined to be significantly expressed in melanoma 

by three studies, Lethe et al 1998 suggested the expression may be induced by 

demethylation, Usener et al 2003 evaluated CTAG2 and suggested it could be a 

new antigen in immunogenic response, and Svobodova et al 2011 investigated 

the expression by IHC and showed that it could be as potential therapeutic 

target of melanoma. 

CYP3A5 

CYP3A5 protein is as metabolism enzyme expressed in melanoma tissues and 

was determined by tissue microarray to indicate which drug pathway is 

dependent in melanoma, and then selected f or its potential in cancer therapy 

(Zhang et al, 2006). 

DCD 

The mRNA expression of DCD was detected in melanoma cells, but not in other 

kinds of epidermal cells (like keratinocytes, fibroblasts, and melanocytes). Thus, 

Rieg et al 2004 suggested that DCD may play an important role in preventing 

local and systemic pathogens invasion. 

EGFR 

Some studies reported EGFR expression in melanoma at DNA, RNA and 

protein levels in melanoma.  Huang et al. 1996 detected overexpression of 

EFGR in a melanoma cell line. Scholes et al. 2001 found that 23% of melanoma 

samples contained EGFR immunoreactivity, and ta imilar result was reported by 

Mallikarjuna et al. 2007, who found that EGFR was expressed in 30% of 60 
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uveal melanomas. Boone and Brochez 2009 found that the immunoreactivity of 

EFGR was more frequently present in melanoma patients with a positive 

sentinel lymph node. Next, EGFR gene and protein expression were 

established by Fluorescence in situ hybridizaiton (FISH) and 

immunohistochemistry (IHC) by Boone et al 2011 in a further study with positive 

sentinel lymph node patients. Targeting EFGR is as a therapeutic option in 

melanoma. Diaz et al 2009 suggested that the immune system in melanoma 

patients could downregulate the increased expression level of EFGR. Ueno et 

al 2008 inhibited the tyrosine kinase activity of EGFR using PD153035 to show 

the promoter role of EGFR in tumour growth and metastasis melanoma. Topcu-

Yilmaz et al. detected the expression of EGFR and suggested that it plays a 

role in uveal melanoma development and progression. 

EPHA3 

EPHA3 is highly mutated in melanoma as reported by Balakrishnan et al 2007, 

and Lisabeth et al 2012. Both studies suggested that the tyrosine kinase 

EPHA3 is a tumor suppressor gene and that the mutation of this gene could be 

caused by somatic cancer predisposition. The up-regulated of EPHA3 in X-ray 

irradiation-induced metastatic property of melanoma was detected by Mosch et 

al 2012. 

FCRLA 

FCRLA was reported by Inozume et al 2007as an antigen that was specifically 

expressed in melanoma cells, and also was recognized by IgG antibodies from 

melanoma. 
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FGFR2 

FGFR2 gene was reported to be mutated in 10% melanoma tumours and cell 

lines with loss of function in the receptor.  Gartside et al 2009 suggested that 

FGFR2 may play context-dependent opposing roles in melanoma. 

FGFR3 

FGFR3 was detected to be down-regulated by DNA microarray analysis by 

Cheng et al 2006, to suppress the biological processes of cell cycle in 

melanoma. The opposite result was detected by Yadav et al 2012, they found 

that FGFR3 was up-regulated by microarray, and this enhanced activation 

corresponding to Ras and MAPK activation. 

GAGE family 

GAGE family proteins were up-regulated in melanoma tissues by 

immunohistochemical analysis, and Bazhin et al 2007 first demonstrated that 

GAGE family proteins might be immunotherapy targets of melanoma. 

GBP5 

The expression of GBP5 protein was detected by western blotting in melanoma 

cell lines, and Fellenberg et al. suggested that GBP5 plays an important role in 

proliferation and differentiation which may relate to caner functions. 

HLA-DQB1 

Bateman et al 1998 reported that HLA-DQB1 expression is significantly 

increased in malignant melanoma in the UK population, when compared to 

control samples by PCR, and suggested HLA-DQB1 plays an important role in 
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the risk of development and prognosis of malignant melanoma in UK population. 

The similar results were detected by three other studies: the increased HLA-

DQB1 was detected by PCR-RFLP when comparing with control samples in 

Kageshita et al study 1997, Lee et al 1994 and Lee et al 1996 determined HLA-

DQB1 was highly expressed in melanoma samples, and found this gene may 

influence the progression or incidence of melanoma.  

HMGA2 

HMGA2 was reported to be related to TGF-beta/activin, and it also was down-

regulated E-cadherin by up-regulated zinc-finger transcription factors and which 

showed HMGA2 may be susceptible to metastasis melanoma by Murakami et al 

2010. 

IGF2 

Soares et al 2010 investigated IGF2 in a 100 healthy individuals and in 21 

patients with hereditary melanoma by Chi-square, Fisher‟s exact tests and 

RegRNA software, and found IGF2 was associated with progression of 

melanoma. 

IL8 

IL8 level was significantly increased by immunological tests with a special buffer 

which can eliminate the interference of serum, Zhang et al 2011 suggested IL8 

is as a prognosis serum marker for melanoma mortality. 
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LEP 

High protein expression of LEP was detected in melanoma blood samples by 

Brandon et al 2009 and Amjadi et al 2011, and they suggested that melanoma 

tumour growth rate is increased by LEP. A similar increased expression level of 

LEP also was determined by Ellerhorst et al 2010 and Lawrence et al 2012, by 

western blotting, indirect immunofluorescence and real time PCR. They 

concluded LEP is a growth factor to contribute uncontrolled melanoma cells 

proliferation. 

LUM 

The mRNA and protein levels of LUM were investigated by many ways  (e.g. 

Immunocytochemistry, confocal microscopy, western immunoblotting, Real-time 

Reverse Transcription-PCR) in four studies (Sifaki et al 2006, Vuillermoz et al 

2004, Radwanska et al 2008, and Brezillon et al 2009.) They detected that the 

mRNA level of LUM was overexpressed in melanoma cells, and that the LUM 

protein was expressed in melanoma cell lines but not be expressed in normal 

melanocytes. They suggested that LUM may induce apoptosis of melanoma 

cells to control of melanoma growth and invasion. 

MAGEA-1/ -2/ -3/ -6/ -12 

The expression of MAGEA1, MAGEA2 and MAGEA3 were analysed by RT-

PCR in three types of melanomas. Brasseur et al 1995 reported that the 

expression of these three genes was greater in thick  cutaneous melanoma, 

Chen et al 1997 examined these increased expressions in cultured ocular 

melanoma cells, and Luyten et al 1998 evaluated these expression in uveal 

melanoma cell lines. Three studies all found that the expression of MAGEA-1,-2 
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and -3 were significantly increased. Other studies also reported  similar results 

of gene expressions, which were detected by RT-PCR: The expression of 

MAGEA1 in metastatic uveal melanoma was determined in Mulcahy et al study 

1996, Vourc‟h-Jourdain et al 2009 determined that MAGEA3 was significantly 

expressed in melanoma, and Gibbs et al 2000 detected the significant 

expressions of MAGEA6 and MAGEA12 in 47 melanoma biopsies and 11 

melanoma cell lines. Except these mRNA level expressions, Errington et al 

2012 assessed that protein expressions of MAGEA-1, -3, and -6 by CT antigens 

in ocular melanoma cells. The mutations of MAGEA1 and MAGEA2 genes were 

determined in 111 fresh melanoma samples by Caballero et al 2010. 

MIA  

The mRNA level of MIA was indicated by RT-PCR in four studies: Bosserhoff et 

al 2001, Guba et al 2000 and Garbe et al 2003 these three studies determined 

the higher expression levels in melanoma stage III and IV (metastatic 

melanoma) than control samples or stage I and II melanoma, and suggested 

that MIA plays an important role in metastatic melanoma. Hochberg et al 2002 

ompared mRNA expressions of MIA between sentinel lymph nodes of 

melanoma and control nodes, and found that higher level is in sentinel lymph 

nodes melanoma, so they suggested MIA could help detect metastatic 

melanoma cells in sentinel lymph nodes to survival patients. 

The serum levels of MIA protein were quantitated by ELISA in quite a few 

studies: Bosserhoff and his colleagues published four studies about MIA serum 

level in 1997, 1998, 1999, and 2001, they detected the higher MIA serum levels 

were existed in stage I or II of melanoma in 32 patients and 350 patients, and 
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stage II to IV of melanoma in 84 patients, they suggested MIA is a novel serum 

marker for malignant melanoma and used to detect metastatic melanoma 

disease. Then they analysed the relationship between enhanced MIA 

expression and progression of melanoma, suggested that MIA play a role in 

promoting melanoma metastasis. Similar results and suggestions were 

generated by Schmitz et al 2000, Juergensen et al 2001, Tas et al 2004, 

Lugovic et al 2007, and Stahlecker et al 2000, they detected the MIA serum 

levels in 87, 50, 48, 50 and 326 melanoma patients respectively, and found that 

the increased MIA serum levels in stage III/IV melanoma comparing to stage I/II 

melanoma, and suggested MIA is specificity and sensitivity to detect 

progression of metastatic melanoma. Three studies of uveal melanoma were 

reported by Schaller et al 2002, Barak et al 2007, and Reiniger et al 2005, they 

applied the similar experiments to detect 139, 18 and 285 patients‟ serum 

samples of uveal melanoma, and found the significantly higher level of MIA in 

metastatic uveal melanoma, and suggested MIA is as a serum marker for 

monitoring uveal melanoma for metastasis. The MIA serum levels were 

detected in melanoma with positive and negative sentinel lymph nodes  by 

Vucetic et al 2008 and Hofmann et al 2011, Both teams found that there are 

much higher mean MIA values in positive lymph nodes melanoma than other 

groups with negative lymph nodes. Thus, they suggested that MIA serum level 

can be helpful in screening the tumour spread to sentinel lymph nodes. The MIA 

serum levels before or after therapy (e.g., surgical excision, radiotherapy, 

immunotherapy or chemotherapy) also are analysed by three studies (Meral et 

al 2001, Faries et al 2004, and Cao et al 2007), they all investigated that MIA 

levels significantly increased when melanoma progressed, and the MIA levels 
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significantly decreased when patients responded to systemic treatment. Thus, 

MIA levels play an important role in prognosis marker for survival. Comparisons 

between MIA and S100B these two serum markers have been done by Faries 

et al 2007, Diaz-Lagares et al 2011, Dumitrascu et al 2009, and Essler et al 

2011 in 75, 110, 123, and 125 patients and health samples, they found that MIA 

and S100B both significantly increased in progressions, and suggested 

combined MIA and S100B serum levels together showed a better prognostic 

value to indicate the evolution of melanoma.  

The protein levels of MIA in plasma were detected by ELISA in Kluger et al 

2011 study, they compared the MIA levels of 108 metastatic melanoma patients 

with 108 patients with melanoma stage I or II, and found the MIA levels are 

much higher in metastatic melanoma samples. They suggested the levels of 

MIA in plasma can be applied for monitoring disease recurrence. 

Except applied RT-PCR and ELISA respectively, some other techniques were 

applied to detect MIA. Receiver operating characteristic (ROC) analysis with 

ELISA was applied for analysis of MIA serum levels, and showed that MIA 

levels significantly higher in metastatic melanoma patients than other stages of 

melanoma patients by Klingenstein et al 2011. RT-PCR and 

immunohistochemistry were used to assay 23 melanoma and 25 nonmelanoma 

specimens by Perez et al 2000, MIA was over-expressed in most melanoma 

specimens. Schmidt et al discovered that the relationship between dimerization 

of MIA and functional activity, and also suggested that dodecapeptide AR71 as 

a MIA inhibitor to prevent MIA dimerization in melanoma therapy. 
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PRAME 

Significant expression of PRAME protein was detected in melanoma samples 

by immunohistochemistry in Westekemper et al 2010 study, they applied 

receiver operating characteristics (ROC) analysis to assess the value of 

PRAME as diagnostic markers, and suggested that PRAME is marker to 

discriminate cutaneous melanoma and conjunctival nevi. Asimilar result also 

was detected by Soikkeli et al 2007, they combined immunohistochemistry and 

RT-PCR to test PRAME in 160 melanoma patients, and determined that 

PRAME was a melanoma marker to distinguish melanoma from benign nevi in 

the sentinel lymph nodes. 

SERPINA3 

SERPINA3 was determined to be significantly down-regulated in malignant 

melanoma by ELISA, Dimberg et al 2011 suggested that SERPINA3 could be a 

potential biomarker and the concentration of SERPINA3 was related to systemic 

inflammation. 

SHC4 

The expression of SHC4 was revealed at  high protein in primary and metastatic 

melanomas, however, low levels of the protein were detected in normal 

melanocytes and benign nevi. Thus, Fagiani et al 2007 and Pasini et al 2009 

indicated SHC4 is a specific biomarker for metastatic melanoma, and could be 

a potential drugable target for melanoma therapeutic strategies. 
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TF 

The TF protein was investigated in blood samples of human melanoma patients 

by electron paramagnetic resonance (EPR) by Krzyminiewski et al 2011, and 

found that the TF saturation is correlated to the total iron ion complexes 

concentration.  

TFR12 

The increased hypermethylation of TFR12 in a melanoma cell line and in 

melanoma frozen samples was determined by quantitative methylation-specific 

PCR in Liu et al 2008, and Tanemura et al 2009 studies. Both suggested 

TFR12 might play an important role in malignant melanoma progression. 

TNC 

The protein level of TNC was strongly up-regulated in melanoma cells growth 

by detecting 3D spheres in Fukunaga-Kalabis et al 2010 study. They suggested 

that TNC may mediate protective signals in melanoma progression. Then, 

Grahovac and his colleagues 2012 found that up-regulated TNC is associated 

with EGFL domains of THC (TNCEGFL), which is expressed in melanoma cells. 

The authors suggested TNCEGFL may play a role in melanoma invasion 

through modulating ROCK signalling and cell migration. 

XAGE1 

XAGE1 is reported to overexpressed in metastatic melanoma by RT-PCR in 

Zendman et al 2002 study. The expressed protein level of XAGE1 was detected 

by cancer testis (CT) antigen in Egland et al 2002 study, they suggested that 
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XAGE1 may play a role as a potential target for melanoma and other cancers 

immunotherapies. 

 

 

 

 

Figure 10: Validation of the proposed 200-gene signature.  
 
The 200 signature gene set taken from the full list of genes associated with melanoma 
was selected for further analysis based on their classification accuracy ratio (i.e. genes 
with the greatest sr value). 
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Table 13: The Sr values and ranking position of the 77 „new‟ genes not previously 

reported in the association with melanoma 
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3.1.3. Pathway analysis of the new melanoma gene signature 

 

 

To validate whether the new melanoma gene signature provides a more robust 

association with melanoma biology, the difference in pathways associated with 

the new signature compared to pathways of previously-published signatures 

was investigated using the KEGG pathway database (Kanehisa et al. 2012). 

The proposed new melanoma gene signature was found to be focused largely 

on four clusters of pathways: (i) steroid hormone biosynthesis (Table 14, 

yellow), (ii) diabetes, asthma and cytochrome P450 (Table 14, blue), (iii) 

immune, allograft and graft versus host (Table 14, red), and (iv) cell adhesion 

(Table 14, amber). However, compared to the pathways of the new proposed 

melanoma gene signature, previously-reported gene signatures were distributed 

in a remarkably large number of pathways and were not significantly over-

presented in any pathways of Table 14. This suggests that the new signature 

reveal more biological meaningful functions than previously-published 

signatures. 
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Table 14:  KEGG pathways associated with the proposed new melanoma gene 

signature 
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Recently published studies have confirmed these functional associations with 

melanoma. For example, Morrison et al. (Morrison et al., 2011) and Norval 

(Norval, 2011) reported that type I diabetes mellitus, cytochrome P450 and 

asthma have all been related to vitamin D status, which is thought to play an 

important role in melanoma. Carretero et al. reported that immune rejection 

mediated the regression of metastatic melanoma (Carretero et al., 2011). A 

recent study by Miyamoto et al. reported that steroid hormone biosynthesis is 

associated with the emergence of nevi, they also showed that the increased 

steroid levels will increase the rate of indoor tanning, which is a risk for 

melanoma (Miyamoto et al., 2012). Koh and his colleagues (Koh et al., 2012) 

have reported recently that some genes differentially expressed in sentinel 

lymph node metastases are involved in cell adhesion, though melanoma may 

not mention specifically in this study. 

 

 

3.1.4. Interaction of a new 200-gene signature with melanoma ‘driver’ 

genes informs a new signaling network in melanoma 

 

The interactions between genes within this 200-gene signature and the four 

known melanoma „driver‟ genes (i.e., NRAS, BRAF, MITF and cKIT) in the 

corresponding pathways were investigated. Of these driver genes, NRAS is 

mutated in up to 25% of melanoma cases (Goel et al., 2006; Schubbert et al., 

2007), while BRAF (located downstream of NRAS) is mutated in up to 45% of 

malignant melanomas (Hocker & Tsao, 2007; Flaherty & McArthur, 2010). MITF, 

a master transcription factor in melanocyte function, cooperates when mutated 

with BRAF in melanomagenesis (Garraway et al. 2005; Taylor et al. 2011), and 
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recent studies show that mutant cKIT can activate the Ras/Raf/Mek/Erk 

pathway as well as MITF (Monsel et al., 2009; Phung et al., 2011). While these 

four well-known melanoma driver genes do not appear on the 200 gene list as 

identified in microarray studies, this is most likely because these four driver 

genes are associated with melanoma at the gene mutation level, rather than at 

the gene expression level.   

 

It is interesting to note, however, that 12 of the 200 genes closely interact with 

the above 4 melanoma driver genes. These 12 genes are engaged in 31 

pathways retrieved from the KEGG database that connect with the MAPK, Ca2+ 

and WNT signaling pathways (Table 15), and included EGFR, FGFR2, FGFR3, 

IL8, PTPRF, TNC, CXCL13, COL11A1, CHP2, SHC4, PPP2R2C, and WNT4. 

The differential expression (i.e., fold change) of these 12 genes in each of the 

five original studies is shown Figure 11.  
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Table 15: KEGG Pathways where the 12 genes closely interact with melanoma driver 
genes (BRAF, NRAS, c-KIT and MITF) 
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Figure 11: Differential expression (y-Axis) of genes in corresponding microarray data. 

The numbers in the bracket show how many wet-lab studies report on the 

association of these 12 genes with melanoma.  
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Based on the complex interactions of the 12 signature genes (labeled in red) 

and the 4 melanoma driver genes (BRAF, cKit, NRAS, MITF) in 3 signaling 

pathways (MAPK, Ca2+ and WNT), a new signaling network for melanoma is 

proposed, which may provide insight into melanoma development and 

progression (Figure 12). This new signaling network is created based on the 

relationship between the signature genes retrieved from the 31 KEGG pathways 

(shown in table 15). Most genes of the network are known and have been 

validated by wet-lab studies, only four genes in the network (see speculative 

gene pathway location with light purple hexagon background) were not reported 

by any previous studies. The speculated location of these four genes in the 

pathway below is based on where other members of their gene families are 

reported to be located. That being said, the 4 genes have appeared in previous 

pathways (e.g., WNT family was shown in WNT pathway of KEGG database, 

but WNT4 in particular was). Thus, the involvement of these genes in this 

pathway needs formal investigation.  
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Figure 12：A proposed new signaling network for melanoma.  

The signaling network is based on the complex interactions of the 12 signature genes 

(labeled in red) and the 4 melanoma driver genes (BRAF, cKit, NRAS, MITF) 

represented in 3 major signaling pathways (MAPK, Ca2+ and WNT). Nine of these 12 

genes (i.e., EGFR, FGFR2, FGFR3, IL8, PTPRF, CXCL13, TNC, COL11A1, and SHC4) 

closely interact with three melanoma driver genes (i.e., NRAS, BRAF, and MITF) in the 

MAPK signaling pathway: The remaining 3 genes include WNT4, PPP2R2C and 

CHP2, which also play important roles in WNT and Ca2+ signaling pathways. 
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It is interesting to note that nine of these 12 genes (i.e., EGFR, FGFR2, FGFR3, 

IL8, PTPRF, CXCL13, TNC, COL11A1, and SHC4) closely interact with three 

driver genes (NRAS, BRAF, and MITF) in the MAPK signaling pathway as 

follows:  

 

 EGFR/FGFR2/FGFR3 Epidermal growth factor receptor and Fibroblast 

growth receptor: These cell surface receptors are activated by multiple 

ligands with multiple signaling trajectories.  

 PTPRF: Protein tyrosine phosphatase receptor type F membrane receptor 

can regulate cell growth, differentiation, mitotic cycle, and oncogenic 

transformation. It can inhibit FAK (Focal adhesion kinase) by tyrosine-

phosphorylation to process MAPK signaling (Medley et al, 2003), and can 

interact with β-catenin in melanoma (Bonvini et al. 2001).  

 CXCL13: A „novel‟ melanoma-associated gene detected in this study - is a 

small cytokine belonging to the CXC chemokine family and is selectively 

chemotactic for B cells of both B-1 and B-2 subsets. 

 IL8: A „novel‟ melanoma-associated gene detected in this study - also 

known as interferon-γ inducing factor- is a proinflammatory cytokine.  

 COL11A1: This gene encodes one of the two α chains of type XI collagen, a 

minor fibrillar collagen.  

 TNC: Encodes for Tenascin C, an extracellular matrix glycoprotein with anti-

adhesive properties by binding to fibronectin and so blocking fibronectin's 

interactions with specific syndecans. The expression of tenascin-C in the 

stroma of certain tumours is associated with a poor prognosis. Tenascin-C 

is highly expressed in melanoma and promotes tumour progression 
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(Fukunaga-Kalabis et al. 2010).  

 SHC4: A novel melanoma-associated gene detected in this study - forms a 

hub to connect EGFR/FGFR2/FGFR3, PTPRF, CXCL13, COLL1A, and 

TNC directly or indirectly, to work with NRAS, BRAF, MITF driver genes in 

the MAPK pathway.  

 

The remaining 3 of these 12 genes in this proposed new melanoma signature 

included WNT4, PPP2R2C and CHP2, which also play important roles in WNT 

and Ca2+ signaling pathway as follows: 

 

 WNT4 binds to Frizzled receptor on the cell surface to promote the WNT 

signaling pathway. 

 WNT4 and PPP2R2C interact with MITF in the WNT signaling pathway. The 

deregulation or activation of the WNT pathway may lead to melanoma 

formation (Larue and Delmas 2006).  

 A complex is formed by β-catenin with PPP2R2c and APC (adenomatosis 

polyposis coli protein) to inhibit the degradation of β-catenin.  

 CHP2 is activated by calcium ions in a Ca2+ signaling pathway and has a 

role in the immune response.  

 

Seven genes of our 200 signature including EGFR, FGFR2, IL8, IGF2, 

TACSTD2, PPP1R14C (KEPI) and LEP are reported to be associated with 

PTEN (Phosphatase and Tensin Homolog). PTEN is a tumour suppressor gene 

that is mutated in many cancers including in many cases of melanoma (Guntur 

et al., 2011). The loss of PTEN protein function was found in melanoma cell 
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spreading, migration as well as in growth factor-stimulated MAPK signaling. 

PTEN loss has been reported as a late event in melanoma (Guntur et al., 2011). 

Indeed, this has been confirmed for 3 of these 7 genes (IL8, IGF2, LEP) in 

independent melanoma studies.  The other four genes (EGFR, FGFR2, 

TACSTD2, PPP1R14C) have not been previously reported to be associated to 

PTEN in melanoma. 

 

3.1.5. Experimental validation of a MAPK pathway-associated subset in 

our 12-gene melanoma signature 

 

Based on the expression values of the 12 genes (figure 11), it was clearly seen 

that the expression of TNC, PRPTF, SHC4, COL11A1, IL8, EGFR, CXCL13 

were up-regulated to a high ratio between nevi and melanoma in 5 melanoma 

datasets. However, PTPRF, COL11A1 and CXCL13 have not yet been reported 

to be associated with melanoma (Figure 11). SHC4 plays an important role as a 

hub in the MAPK pathway (Figure 12). As COL11A1, CXCL13, PTPRF and 

SHC4 appear in the MAPK signaling pathway (KEGG pathway), I further 

attempted to validate their expression via wet-lab analysis, including in human 

melanoma cell lines and melanoma tissues.  Using this approach, COL11A1, 

CXCL13, PTPRF, and SHC4 were found to be over-expressed in two human 

melanoma cell lines (i.e., FM55 and FM94) compared to normal human 

epidermal melanocytes in vitro (Figure 13). A significant degree of heterogeneity 

in the expression pattern for these markers was observed. For example, 

COL11A1, a secreted collagen protein, was observed at low levels in the 

cytoplasm of normal melanocytes, but much more intensely in the perikayon of 

moderately-pigmented FM55 melanoma cells, and unexpectedly exhibited a 
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nuclear/nuclear membrane association in the pigmented FM94 melanoma cells. 

Similarly, a weak cytoplasmic localization of CXCL13 in normal melanocytes 

appeared to shift towards the perikayon and nucleus of FM55 and FM94 

melanoma cells respectively, as evidenced by co-localization with DAPI 

staining. Low level PTPRF expression in normal epidermal melanocytes 

contrasted with higher expression (both cytoplasmic and nuclear) in melanoma 

cells. Finally, SHC4 expression was membranous in normal melanocytes, 

contrasting with some punctuate nuclear membrane expression in melanoma 

cells (Figure 13).  
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Figure 13: Immunocytochemical analysis of human epidermal melanocytes and 
melanoma cells in vitro.  
 
The expression of COL11A1, CXCL13, PTPRF and SHC4 proteins was upregulated 
(green fluorescence) in melanoma cells. Inserts show higher power views of 
expression, including when associated with the perinuclear region of the cell.  
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The expression of these proteins encoded for by these four genes in the 

proposed 12-gene signature for melanoma was also assessed in normal human 

healthy skin and in melanoma patient tissue (both primary and metastatic 

melanoma). Using double immunofluorescence with a melanocyte lineage 

marker gp100, is expression profile of these four test proteins in melanocytes or 

melanoma cells within these tumour biopsy tissues was assessed. We included 

primary melanoma in addition to metastatic melanoma in a 

immunohistochemistry-based validation study because the expression levels for 

the 12 genes in the gene signature exhibited a several fold change between 

primary melanoma and normal skin/benign nevi across five microarray datasets 

(Table 16). 

 

Table 16: Fold change in the expression of 12 genes between normal skin/benign nevi 

and primary melanoma in five microarray datasets 

 

 

 

This experiment showed that COL11A1, CXCL13 and PTPRF were not 

expressed in normal human epidermal melanocytes in situ (Figure 14a), while 
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some low level expression of SHC4 was detected in normal pigment cells. By 

contrast, COL11A1 was expressed intensely by melanoma cells located in the 

dermis of both primary and metastatic melanoma (Figure 14b and 14c). 

CXCL13 was strongly expressed in a minor subpopulation of tumour cells in 

primary melanoma, while a greater fraction of cells in metastatic melanoma 

tissue expressed this protein. By contrast, PTPRF was intensely expressed in 

the majority of tumour cells of both primary and metastatic melanoma cells. 

Finally, SHC4 was found to be expressed in only a minor fraction of gp100-

positive primary melanoma, but in most gp100-positive metastatic melanoma 

cells. 

 

Figure 14:  
(a) Immunohistochemical analaysis of COL11A1, CXCL13, PTPRF and SHC4 in 

normal human skin epidermis (frozen donor-Female 52yrs sections). 
 
Melanocytes were detected using an antibody (NKi/beteb) raised against the 
melanocyte-specific marker gp100 (red, arrows). COL11A1, CXCL13, PTPRF (green) 
were not detected in normal epidermal melanocytes. SHC4 was expressed sronglty in 
proliferating keratinocytes in the basal layer on the epidermis, but only very weakly in 
melanocytes (i.e. double positive cells in orange-yellow).  
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Figure 14: 

(b) Immunohistochemical analaysis of COL11A1, CXCL13, PTPRF and SHC4 in primary 
melanoma. Double staining of test protein (shown in green) and pigment cell lineage-
specific marker gp100 (in red, arrows). Both immunoreactivites were merged with 
yellow/orange fluorescence indicating co-localization of these protiens in melanoma 
cells. 
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Figure 14: 

(c) Immunohistochemical analaysis of COL11A1, CXCL13, PTPRF and SHC4 in 
metastatic melanoma. Double staining of test protein (shown in green) and pigment 
cell lineage-specific marker gp100 (in red, arrows). Both immunoreactivites were 
merged with yellow/orange fluorescence indicating co-localization of these protiens in 
melanoma cells. 
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3.1.6. Computational evaluation of the robustness of a proposed 12-gene 

biomarker signature to distinguish melanoma from normal skin and/or 

benign nevi 

 

 

A computational evaluation of the robustness of the proposed 12-gene 

signature was performed with the aim of distinguishing melanoma from normal 

skin and/or benign nevi using cross-laboratory published microarray data. This 

data evaluation to assess the robustness of a new biomarker may yield 

information that may have potential diagnostic application and/or possible 

therapeutic development. The Support Vector Machine classification model 

(known as the SVM model) (Brown et al. 2000) and the „leave-one-out method‟ 

were used to classify the microarray datasets in this project (Hoek et al. 2004, 

Smith et al. 2005, Riker et al. 2008, Scatolini et al. 2010, and Rose et al. 2011). 

Results showed that these 12 genes achieved excellent classification accuracy 

ratios across all five datasets (i.e., averaging at 99.1%, Table 17). It is noted 

that the new 12-gene biomarker signature achieved a much better performance, 

on average, than the signatures of Smith et al. 2005, Riker et al. 2008, and 

Scatolini et al. 2010, and only very slightly less (0.44% less) classification 

accuracy than the signature of Hoek et al. 2004. It should be noted that the 

signature of Hoek et al. (2004) consisted of 589 genes, while this project‟s 

biomarker signature is very much shorter at just 12 genes. Thus, the 12-gene 

biomarker achieved the best classification accuracy, compared to the original 

signature of the individual studies, with a much smaller number of genes. 
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Table 17：Classification accuracy of four original signatures and our proposed 

12-gene signature using across-laboratory data 
 

 

 

 

3.2. Improvement of the computational method 
 

One of the potential weaknesses of the above method of generating the 12-

gene signature was the inclusion of data from both melanoma cell line and skin 

biopsy material. It was considered therefore move appropriated to attempt to 

„stratify‟ these data to analyse separately by sample type. Thus, the method for 

integrated analysis of microarray data was further improved to consider the 

gene differences on each individual dataset by platform, sample types etc. to 

make the method more biological meaningful. The improved method was called 

the “stratification based method”. 

 

In order to evaluate the performance of the “Stratification based method” on the 

integrated analysis of multiple microarray datasets, the method was applied on 

a broader set of 14 datasets (table 6) covering three distinct diseases (i.e., 

Breast cancer, prostate cancer, as well as melanoma).  
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For each disease, the microarray datasets were prepared for the „leave-one-out‟ 

validation. This involved separating the microarray datasets into two groups: 

one group was for „training‟ to generate the ranked gene list, while the other 

group was for „independent testing‟ (see methods). In order to understand how 

two main factors may lead to performance enhancement (i.e., influencing 

dataset quality, and the sub-grouping of datasets), results obtained by using 

four different methods (see Figure 8 and methods) were compared. These 4 

methods included: (1) datasets treated equally (non-stratification); (2) 

datasets treated with appropriate weighting (non-stratification with weighting). 

(3) datasets first sub-grouped and then treated equally (stratification), (4)  

datasets sub-grouped, but then each dataset treated with corresponding 

weighting (stratification with weighting). To evaluate the performance of the 

above four methods, the associated classification accuracy ratios were 

compared. The data emerging from these gene ranking analyses above were 

further evaluated to determine whether this stratification procedure, for 

detecting significantly-ranked and disease-associated genes, was more robust 

than those previously published. In brief, I checked whether there were good 

classification accuracy ratios across different test data, or whether more 

common genes occurred between the „training‟ studies and the „independent 

testing‟ dataset in the following ways:  

a) Classification accuracy of genes using „Wrapper feature selection’ and 

Machine Learning (SVM method): This is a computational measurement 

performed by both the „support vector machine classification‟ model and the 

„leave-one-out‟ method with Wrapper feature (e.g., Peng et al., 2010) and 

previously described earlier in this thesis (see Section 2.2.5; Liu et al., 2013). 
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The validation method was applied to detect the classification accuracy ratio 

between these top-gene ranking lists derived after combining multiple „training‟ 

datasets and the „individual testing‟ dataset. 

b) Evaluation of the number of common genes between the training 

datasets and the independent test study: This was an analysis of the genes 

common between the top-gene lists by combining „training‟ datasets and the top 

gene lists from the corresponding „individual testing‟ study. 

c) Evaluation of the number of common genes across different gene 

ranking lists of combined ‘training’ studies: This was an analysis of the 

common genes between these gene ranking lists that were derived from 

different „training‟ datasets combinations.  

d) Evaluation of the number of common genes between the combined 

melanoma studies and 180 known metastatic melanoma biomarkers: This 

was an analysis of the common genes between the gene lists were derived 

from different melanoma „training‟ datasets combinations and the 180 known 

metastatic melanoma biomarkers (the 180 biomarkers were picked up from 

PubMed based on conditions as follows: metastatic, melanoma, biomarkers 

published to March of 2013, Appendix-table s3).   
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3.2.1. Classification performance validated by wrapper feature selection 

and machine learning 

 

 

A top 500 gene list was generated using each of the above methods (i.e., 1-4) 

for each disease. These lists were further analysed with the „Wrapper feature 

selection‟ method by a one-gene incremental addition approach (figure 15). 

 

  
Figure 15a: Performance curve of the four methods when applied to Breast cancer 

data. 

 

Horizontal axis: Number of genes between 10 and 500. Vertical axis: Accuracy ratio 

in % of SVM. The different line colors indicate the four different methods as indicated 

in the embedded key. The data number (e.g., Data4) shows which dataset was applied 

as the test data in the ‘leave one out’ study. (See table 7 datasets for the 

corresponding disease datasets). 

Note: Data 1, cell line-type data only and so was not used for testing data.  
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Figure 15b: Performance curve of the four methods when applied to Prostate cancer 

data. 

 

Horizontal axis: Number of genes between 10 and 500. Vertical axis: Accuracy ratio 

in % of SVM. The different line colors indicate the four different methods as indicated 

in the embedded key. The data number (e.g., Data4) shows which dataset was applied 

as the test data in the ‘leave one out’ study (See table 7 datasets for the corresponding 

disease datasets). 

Note: Data 1, cell line-type data only and so was not used for testing data.  
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Figure 15c: Performance curve of the four methods when applied to Melanoma data. 

 

Horizontal axis: Number of genes between 10 and 500. Vertical axis: Accuracy ratio 

in % of SVM. The different line colors indicate the four different methods as indicated 

in the embedded key. The data number (e.g., Data4) shows which dataset was applied 

as the test data in the ‘leave one out’ study (See table 7 datasets for the corresponding 

disease datasets). 

 



 
Chapter 3: Results 

 

133 
 

 

In Breast Cancer, the accuracy ratios of „stratification with weighting‟ method 

(purple lines) were highest in data2 and data5 independent test studies, and 

second highest in data3 and data4 independent test studies. The next best 

accuracy ratios for breast cancer data was generated using the „non-

stratification with weighting‟ method (red lines), the ratios showed the second 

highest position in data3 and data5 independent test studies. The other two 

methods did not generate good ratios in this disease (figure 15a). 

 

In Prostate Cancer, the highest ratios were produced by „non-stratification with 

weighting‟ method (red lines) in data2 independent test studies, followed by 

„stratification with weighting‟, „non-stratification‟, and „stratification‟ for this 

dataset. In data3 and data4 independent test studies, the „stratification with 

weighting‟ method produced the highest ratios (purple lines), but the accuracy 

ratio of „non-stratification with weighting‟ was not good in data3 (red lines). The 

other two methods always produced middle level ratios; however, that said the 

ratios of „stratification‟ method (green lines) were always higher than the ratios 

of „non-stratification‟ method (blue lines) (Figure 15b). 

 

In Melanoma, the ratios are good for 3 of 5 total independent test studies. In 

data1, the accuracy ratios of „non-stratification‟ with or without „weighting‟ 

methods (purple lines) were higher than the ratios of two „stratification‟ with or 

without „weighting‟ methods (orange lines). However, the two highest ratios in 

data5 were generated by „stratification with weighting‟ method (green lines) and 

„stratification‟ method (blue lines) (Figure 15c). 
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When the accuracy ratios of all three diseases were combined, the best 

accuracy ratios were obtained with the „stratification with weighting‟ method 

(purple lines mostly; green lines in melanoma data5). This method yielded good 

results regardless of whether the other 3 methods did or did not individually, e.g. 

ratios in testing data2 of breast cancer or ratios in testing data1 of melanoma. 

The next best method was the „non stratification with weighting‟ method. Thus, 

these two methods showed that the „weighting‟ plays an important role, 

reflecting the benefit of measurement of each dataset, with qualities adjusted by 

D values calculated by the arrayQualityMetrics‟ R package (see section 2.4.2). 

Comparison of the method with or without „stratification‟ showed that the 

separation of data derived from „biopsy‟ or „cell line‟ produced more robust data, 

compared to applying the non-stratified combined cell line plus biopsy datasets. 

Thus, the two factors „stratification‟ and „weighting‟ were valuable method 

enhancements. 
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3.2.2. Evaluation of the number of common genes between the combined 

training studies and the independent test study 

 

 

In this study, the numbers of common genes between the combined „training‟ 

studies and the „independent test‟ study were detected 50 times (or 50 rounds), 

starting from applying 10 genes of top-gene lists up to the maximum 500 genes 

(using a 10 gene incremental addition approach). As gene numbers were 

increased, the numbers of common genes would be expected to increase 

(Figure 16). Figure 15 and figure 16 include results in breast cancer, prostate 

cancer and melanoma respectively. 

 

Clearly, the stronger will be to enhance that those common genes are truly 

associated with the disease state. Thus, under one method, if the top genes are 

retrieved regardless of the datasets used, the more robust that gene selection is 

likely to be (Figure 16). 
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Figure 16a: Common genes between combined studies and individual test study for 

breast cancer 

Horizontal axis: Number of genes between 10 and 500. Vertical axis: the number of 

common genes. The different color symbols indicate the four different methods. The 

data number (e.g., Data4) shows which dataset was applied as the test data in the 

‘leave one out’ study. The datasets are showed on table 7 for the corresponding 

disease. 
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Figure 16b: Common genes between combined studies and individual test study for 

prostate cancer. 

Horizontal axis: Number of genes between 10 and 500. Vertical axis: the number of 

common genes. The different color symbols indicate the four different methods. The 

data number (e.g., Data4) shows which dataset was applied as the test data in the 

‘leave one out’ study. The datasets are showed on table 7 for the corresponding 

disease. 
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Figure 16c: Common genes between combined studies and individual test study for 

melanoma. 

Horizontal axis: Number of genes between 10 and 500. Vertical axis: the number of 

common genes. The different color symbols indicate the four different methods. The 

data number (e.g., Data4) shows which dataset was applied as the test data in the ‘leave 

one out’ study. The datasets are showed on table 7 for the corresponding disease. 
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For Breast Cancer, the best two methods were „stratification‟ and „stratification 

with weighting‟ methods, even though they did not generate a good number of 

common genes for data2 and data3 respectively; these methods yield good 

results for the other individual datasets, i.e., „stratification‟ method in data4 and 

data5, and „stratification with weighting‟ method in data2 and data4. Thereafter, 

„non-stratification with weighting‟ generated the best results in data2 and date 3, 

but also produced the poorest results for data4 and data5. The worst method 

was „non-stratification‟, which yielded a middle range for common genes (figure 

16a). 

 

For Prostate Cancer, more common genes were obtained by the „stratification 

with weighting‟ method, although this method was poor for data2. The next best 

method was „non-stratification with weighting‟, with more common genes 

generated using this method for data2 and data3 (Figure 16b). 

 

For Melanoma, the best method was „stratification with weighting‟ method, 

which generated the highest number of common genes in 4 of 5 individual 

studies. The next best was the „non stratification with weighting‟ method, 

followed by „stratification‟ method and then the „non-stratification‟ method 

(Figure 16c). 

 

When combined the three disease results together, the „stratification with 

weighting‟ method yielded the highest number of common genes for all three 
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diseases (shown as purple cross). Only in data3 of melanoma was there a large 

difference between the number of common genes of „stratification with 

weighting‟ method and common genes of the other three methods. The reason 

is the large difference may be induced by the weighting (ω) (i.e., the quality of 

datasets). The „non-Stratification with weighting‟ method also gave good results 

on most of datasets (green triangle), but the linear trend of numbers of common 

genes in this method was quite different from the trends of other three methods. 

And the numbers of common genes of this method also were not stable when 

applied it to different „training studies‟, e.g. especially in breast cancer and 

prostate cancer (Figure 16).  

 

 

 

 

 

 

 

 

 

 

 



 
Chapter 3: Results 

 

141 
 

3.2.3. Evaluation of the number of common genes across different gene 

ranking lists of the combined training studies 

 
 
 

In order to identify the stability of each method, method stability is defined as 

the ability to retrieve similar significant genes regardless of changes in different 

combined datasets in each test time. Thus, the number of common genes 

detected across different gene ranking lists of combined studies was a 

measurement standard. The higher number of common genes means the more 

stable method. Like the above evaluation approach, the numbers of common 

genes were detected via 50 rounds, staring by applying the top 10 genes to the 

maximum top 500 genes, with 10 genes incrementally added approach each 

time. The best method should generate the highest number of common genes, 

and the linear trend of common genes in the figure 17 should reflect increasing 

stability of the method.  

 

The results obtained by the „non-Stratification‟ method (blue diamond) indicated 

that this method performed least well compared to the others, followed by 

„Stratification‟ method (green triangle). The trends in results of „non-Stratification 

with weighting‟ (red square) and „stratification with weighting‟ (purple cross) 

methods were similar, the former one was lower in prostate cancer, and the 

latter was lower in melanoma, while the „stratification with weighting‟ method 

was the best method in both breast and prostate cancer. This indicates that this 

method is relatively more stable than the others (Figure 17). 
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Figure 17: Common genes across different top gene ranking lists of combined studies. 

Horizontal axis: Number of genes between 10 and 500. Vertical axis: the number of common 

genes. The different embedded color symbols indicate the four different methods.  
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3.2.4. Evaluation of the number of common genes between the combined 

melanoma studies and 180 known metastatic melanoma biomarkers  

 

 

The enhanced method was then checked to determine whether it could retrieve 

more gene biomarkers for melanoma than had been identified so far in the 

literature. A PubMed search (query: metastasis, melanoma, biomarkers, last 

accessed March 2013) retrieved 180 metastatic melanoma biomarkers (see 

table s3 in appendix). These 180 genes are defined here as „true biomarkers‟ 

for melanoma, and were compared with the different top gene ranking lists that 

were selected based on the different methods using the 5 melanoma datasets 

(Hoek et al., 2004, Smith et al., 2005, Riker et al., 2008, Scatolini et al., 2010, 

Rose et al., 2011), four of the 5 studies were combined as „training‟ studies at 

each stage of analysis. Similar to the above approach, the 10 genes 

incremental addition approach was applied between 10 and 500 genes. The 

number of common genes was used to measure the effectiveness of the 

method in identifying true biomarkers. The „more common genes‟ outcome 

means that the method was able to identify true melanoma biomarkers (i.e., true 

positives). With results shown in figure 18, it was clearly seen that the „non-

stratification with weight‟ method (red square) revealed the greatest number of 

the 180 metastatic melanoma biomarkers, while the next best method is 

„stratification with weight values‟ (purple cross). 
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Figure 18: Common genes between the top gene ranking lists of combined studies and 

the 180 metastatic melanoma biomarkers 

Horizontal axis: Number of genes between 10 and 500. Vertical axis: the number of 

common genes. The different color symbols indicate the four different methods. The 

data number (e.g., M1234) shows which four datasets were applied as combined 

studies in the ‘leave one out’ study. 
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Summarizing all four above evaluations, it was seen that the „stratification with 

weighting‟ method produced more reliable results than did the other three 

methods. In order to forward validate this viewpoint, a top gene list were derived 

from all 5 datasets of melanoma, and then compared with the known 180 

metastatic melanoma biomarkers (five datasets shown on table 6).  It was found 

that the combined all 5 datasets together could generated the most common 

gene outcome when it compared to the other outcomes of „stratification with 

weighting‟ in Figure 18 (purple cross). The final number of common genes was 

18 (figure 19). However, in figure 18, the highest numbers in each common 

gene outcome by „stratification with weighting method‟ were approximate 14 or 

16. The improved number may provide an evidence for the more microarray 

datasets using in integrated analysis the higher number of reliable true 

biomarker can be identified (Figure 19). 

 

 

 

Figure 19: Common gene numbers between top gene ranking lists of all 5 melanoma 

datasets and 180 metastatic melanoma biomarkers 
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3.2.5. A new 200 gene signature of melanoma derived from the application 

of ‘stratification with weighting’ method 

 

In order to check if „stratification‟ and „weighting‟ are two factors which are able 

to enhance the biomarker discovery, I applied the „stratification with weighting‟ 

method to reanalyze the original 5 microarray melanoma datasets to produce 

the new ranking gene list. Table 18 shows the top 200 genes of the new list.  

 

 

 

Table 18:  The 200 genes with highest ranking position after selection by ‘stratification 

with weighting’ method. Source dataset (Hoek et al., 2004, Smith et al., 2005, Riker et al., 

2008, Scatolini et al., 2010, Rose et al., 2011) 
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3.2.6. Re-analysis of the previous 200 gene significant with the enhanced 

‘stratification with weighting’ gene list  

 

 

The new 200 genes list (table 18) generated by the „stratification with weighting‟ 

method was compared with the old 200 genes list generated by modified 

method GWGS + GWRS (table 11, section 3.1.1), 91% of the genes were 

similar between the 2 lists. Thus, only 18 genes (or 9%) were found that were 

not common between the old and the enhanced lists. These 18 genes are 

displayed with green background on table 18. Interestingly, these 18 genes 

were all located in the lower ranks of the gene list. The genes with yellow 

background were transcription factors (table 18). The 18 genes of the old 200 

gene list (table 19) have not been reported by any microarray or wet-lab studies 

to be associated with melanoma. Of the 18 new genes (see table 18 with green 

background) in the enhanced list, 6 were reported by at least one of the 16 

microarray studies referred to previously (see table 21), and 7 were reported by 

wet-lab studies (table 22). A further four genes (i.e., LUM, HLA-DRB1, CXCL1 

and NGFR) have been validated in both microarray and wet-lab studies and are 

shown with yellow background in table 22. Another worthy of attention was that 

17 of 18 new genes were located in the top 300 genes of previous ranking list, 

however, only 12 of 18 old genes were in the top 300 of new ranking list (Table 

19 and 20). These illustrated that new genes derived from the „stratification with 

weighting‟ method were still in higher positions of old list, but the old genes did 

not have the similar situation in the new list. 
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No. OLD genes
old ranking 

position

new ranking 

position

1 HLA-DRB2 75 279

2 LOC100133484 76 250

3 LOC100133661 77 251

4 LOC100133811 78 252

5 LOC730415 79 253

6 ZNF749 80 254

7 AKR1C2 93 300

8 IGL@ 106 465

9 IGHV4-31 162 651

10 TP63 163 532

11 CYP4B1 169 203

12 KLK11 173 207

13 CHP2 174 907

14 LOC100126583 187 769

15 CYP4F8 188 206

16 SCGB1D2 190 230

17 RORA 191 221

18 LGALS7 192 1259

No. NEW genes
new ranking 

position

old ranking 

position

1 COL1A1 145 247

2 HTN1 171 208

3 ACER1 173 205

4 RDH12 174 206

5 OLFM3 175 207

6 HS6ST2 176 209

7 SPINK6 177 211

8 LCP2 180 230

9 LUM 183 239

10 SPRR2G 184 220

11 CXCL1 189 331

12 HLA-DRB1 190 254

13 XG 191 237

14 KIAA1881 192 240

15 KIAA1199 193 227

16 LOXL3 195 243

17 NGFR 196 222

18 DSCR8 198 245

Table 19: The 18 genes present in the previous 200 gene list that are not 

included on the enhanced gene list 

Table 20: The positions of new 18 genes in previous and enhanced 

200 gene lists 
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The relative ranking positions of genes in these two gene lists was investigated 

using two comparisons. The first assessed the ranking position of common 

genes of the 2 gene lists, the second assessed the ranking position of the 12 

melanoma significant genes in the new signaling network. The ranking positions 

of 18 common genes (at the enhanced list) that were reported by both 

microarray and wet-lab studies are shown in table 23. Table 24 shows the 

ranking position of 12 proposed biomarkers of melanoma in both gene lists. 

 

Table 23 shows that there was no significant change in gene ranking position for 

7 of the 18 common genes. Indeed there were identical ranking positions for 3 

Genes

KIAA1199 Hoek et al , 2004

NGFR Hoek et al , 2004

LCP2 Hoek et al , 2004 Koh et al , 2009

HLA-DRB1 Hoek et al , 2004 Mandruzzato et al , 2006

LUM Hoek et al, 2004 Haqq et al , 2005 Alonso et al , 2007

CXCL1 Hoek et al , 2004 Haqq et al , 2005 Bogunovic et al , 2009

In 16 Microarray  Studies

Genes

LUM Vuillermoz et al , 2004 Sifaki et al , 2006 Radwanska et al , 2008 Brezillon et al , 2009

COL1A1 Lin et al , 2005

HLA-DRB1 Luongo et al , 2004

CXCL1 Dhawan & Richmond, 2002 Di Cesare et al , 2007 Botton et al , 2011 Sapoznik et al , 2012

NGFR Radfar et al , 2006 Chan & Tahan, 2010

LOXL3 Kirschmann et al , 2002

MMA1 de Wit et al , 2002 de Wit et al , 2005

Studies

Table 21: The new genes validated by 16 independent microarray studies 

Table 22: The new genes validated by independent wet-lab experimental studies 
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genes (DCD, HMGA2, and TFPI2), and 4 genes (MAGEA2, MAGEA3, MIA, and 

ALDH1A3) exhibited a slightly changed ranking position. Interestingly, 11 genes 

(>60% of total genes) were ranked at higher positions in the new list, 

suggesting the positions of meaningful genes were pushed up by „stratification 

with weighting‟ method. 

 

The similar situation was observed with genes of the 12 biomarkers for 

melanoma (Table 24), except that CHP2 did not appear at all in new 200 genes 

list. While nine genes (75%) were ranked higher in the new 200 genes list. three 

genes (EGFR, FGFR2, COL11A1) were ranked slightly lower in the new gene 

list (2 to 4 positions lower). Importantly, of the four wet-lab validated genes (i.e., 

SHC4, CXCL13, PTPRF, and COL11A1), three of them were ranked higher by 

at least 8 positions. Thus, the melanoma network represented in Figure 12 was 

not changed by the substituted of these new 18 genes in the new list. 

 

When combining the results of table 23 and 24, it was clear that these changes 

in ranking positions allowed us to see that the new „stratification with weighting‟ 

method ranked the meaningful pathway genes at higher positions than 

previously. In this sense the new method appears to be more robustly able to 

detect reliable biomarkers of melanoma. 
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Table 23: Ranking position for the 18 substituted genes in the two 200 gene lists 

for melanoma 

Table 24: Ranking position of 12 melanoma biomarker genes in two 200 

gene lists  
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4. DISCUSSION 

This study first of all attempted to develop a new integrated bioinformatics 

approach for the identification of gene biomarkers based on multiple microarray 

data. The main contributions of this study to my original aim are summarized as 

follows: 

1. I developed a new bioinformatics approach by applying ranking of gene 

significance to increase the application range.  

2. I defined a new signature of 200 genes in human melanoma, and 

through the associations with melanoma driver genes, 12 melanoma 

biomarkers were identified. 4 of them were validated by laboratory 

experiments.   

3. I developed a general framework approach to enhance the integrated 

analysis method by adding two factors („stratification‟ and „weighting‟). 

The computational evaluation showed that the framework approach can 

identify a more meaningful signature than other methods.  

 

The following sections describe the main discovery of this study. 

 

4.1. Discovery and validation of a 12-genes biomarker of 

melanoma 
 

 

A review of the literature reveals poor congruence between gene signatures 

generated by different microarray-based melanoma studies (John et al. 2008; 

Bittner et al. 2000; Tímár et al. 2010). Unsurprisingly therefore, microarray-
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based melanoma gene biomarkers have had poor translation to clinical practice, 

and melanoma diagnosis is still based on clinical and histopathological features 

of the tumour (Schramm et al. 2011). To perform a meta-analysis on microarray 

gene expression data, Rhodes et al. (2002) introduced a model for combination 

of differentially-expressed genes based on their p-value in a statistical test 

(Rhodes et al. 2002). However, there are two significant limitations in its 

application to microarray data: (1) many microarray studies can contain small 

numbers of samples, for which the p-value can therefore be problematic, and 

(2) the p-values of a gene across different studies may have large variations. 

Thus, the smallest p-value may determine the outcome of Sp (effective 

significance of p-value). Here a new and universally-applicable method has 

been proposed to overcome some limitations of the Rhodes model. The core 

mathematic model proposed in this study measures firstly the significant gene 

ranking list in an individual dataset by the „genome-wide relative significance‟ 

(GWRS), and then assesses the significant gene ranking list across multiple 

datasets by the „genome-wide global significance‟ (GWGS).  

 

In the GWRS, fold-change was used for this study.  This can  be changed to 

different test methods when datasets are suitable for the using situation. In this 

study, T-test, ANOVA, SAM, fold-change (formulas were showed in section 

1.4.4) were considered as the methods for use in GWRS. After testing in five 

melanoma microarray studies, only fold-change is suitable for the microarray 

datasets situation. The other three methods depend on p-values, and so the 

smaller samples could not generate reliable p-values. However, fold-change 

relies on either fold-change increase or decrease, and because this method 
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does not request the smallest sample numbers it can be used for solving the 

limitation of using small number samples. 

 

A comparison of my GWRS with the Rhodes et al method was conducted by 

applying it to two datasets (GSE3189 and GSE12391) (section 2.3.2). From the 

Sr values and Sp values of the corresponding top 50 genes, it was clear that Sp 

values could be controlled by the smallest p value group, risking  so data 

imbalance can  be easily produced. However, GWRS depends on ranking 

positions of genes and so avoids the imbalance problem and treats the two 

datasets more equally. Another advantage of GWRS is that applying „fold-

change‟ and ranking position instead p-value could avoid the influences of 

sample number limitation. For example the sample number limitation also 

appeared in this study; only two control samples are in someone dataset. Key to 

this situation, „fold-change‟ was applied instead of p-values to show differences 

of gene expressions, and then ranking them to get sr values. Thus, comparing 

to previous p-value-dependent methods, GWGS and GWRS could be applied 

more widely.  

 

The comparison between metastatic melanoma and normal skin was done to 

reveal the significant associated gene expression in melanoma to define the 

biomarker of metastatic melanoma. The effectiveness of this new approach can 

be supported by several lines of evidence and validation.  
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First, a considerable number of novel genes (e.g., GTAG1A/1B/2, GAGE1-

8/12B-J, XAGE1A-E, IL8, IGF2/INS-IGF2, SHC4, LEP, TF, CYP3A5, TP63 and 

GBP5) revealed by our method were not identified as significant genes in the 

set of previous 16 melanoma microarray studies published between 2000-2011 

used in this study, but none the less have still been confirmed as being 

melanoma-associated by independent „wet-lab‟ studies in the literature (table 

11).  

 

Second, the new method identified a core signature of 12 genes (i.e., EGFR, 

FGFR2, FGFR3, IL8, PTPRF, TNC, CXCL13, COL11A1, SHC4, CHP2, 

PPP2R2C and WNT4) that are closely associated with known melanoma driver 

genes. Of note, however, six of these signature genes (i.e., IL8, SHC4, 

COL11A1, CHP2, PPP2R2C and WNT4) were not reported previously by 

microarray-based melanoma studies, although two (i.e. IL8 and SHC4) have 

been identified in independent wet-lab studies (Zhang et al. 2011, Fagiani et al. 

2007 and Pasini et al. 2009). This leaves WNT4, CHP2, PPP2R2C and 

COL11A1 as genes which have not been previously reported to be associated 

with melanoma either via microarray or wet-lab studies. However, Fedida-

Metula recently suggested a relationship between Ca2+ signaling members and 

PP2A and melanoma tumour growth (Fedida-Metula et al. 2012). Moreover 

CHP2 (full name „calcineurin-like EF hand protein‟) is involved in calcium 

signaling, while PPP2R2C is a member of the PP2A family.  

 

Third, the expression of gene encoding the MAPK-associated members (i.e., 

COL11A1, CXCL13, PTPRF, SHC4) of the 12-gene biomarkers have been 
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validated in a comparative analysis of normal melanocytes and melanoma cells 

in vitro and in primary versus metastatic melanoma biopsy tissue in situ in this 

project. All four markers were found to be preferentially associated with 

melanoma, being differentially expressed in primary and metastatic melanoma. 

Strikingly, COL11A1, CXCL13, and PTPRF were not detectable in epidermal 

melanocytes of normal healthy human skin epidermis. SHC4 was expressed at 

only very low levels in normal epidermal melanocytes, as previously shown 

(Fagiani et al, 2007). 

 

The over-expression of COL11A1, CXCL13, PTPRF, and SHC4 in melanoma 

cells in vitro and in situ may reflect the observed over-expression of the 

associated genes in our microarray meta-analysis results. The considerably 

higher level of SHC4 expression in the perikaryon of melanoma cells is of note, 

and concurs with other studies showing restricted expression in melanomas, 

while only weak expression in normal melanocytes and benign nevi (Fagiani et 

al, 2007). There is evidence that SHC4 is highly expressed at the transition from 

radial growth phase to vertical growth phase and metastatic melanomas, 

contemporaneous with the acquisition of melanoma migratory competence and 

invasive potential (Fagiani et al. 2007; Pasini et al. 2009). This protein tyrosine 

phosphatase acts as a signaling molecule to regulate cell growth, differentiation, 

mitotic cycle, and oncogenic transformation (Junta et al. 2008). PTPRF is 

usually expressed in the cell membrane (i.e. is a receptor-type protein tyrosine 

phosphatase) where it interacts with β-catenin. Like β-catenin, it may be 

translocated to the nucleus upon activation. The over-expression of COL11A1, 

CXCL13, PTPRF and SHC4 in our melanoma cell lines and primary and 



 
Chapter 4: Discussion 

 

157 
 

metastatic tissue, and their potential association with MAPK signalling suggests 

these could be biomarkers for melanoma and so potential therapeutic targets. 

Based on the limitation of melanoma tissue samples, only these 4 genes were 

validated. The role of the others in the signature will be the focus of follow-on 

work from this thesis.  

 

The computational evaluation conducted in this project also indicates that this 

new 12-gene biomarker signature achieved excellent diagnostic power in 

distinguishing primary and metastatic melanoma from normal skin. The 

integrated analysis of these five microarray datasets has identified a robust 12-

gene biomarker signature that includes six previously-unreported genes in 

melanoma. Further experimental validation of the role of these 12 signature 

genes in a revised signaling network (Figure 12) may provide new insights into 

the underlying biological mechanisms driving the progression of melanoma. 

Moreover, given that the source „original signatures‟ in this meta-analysis 

involved much larger numbers of genes (e.g., 589, 100, 65, 455 genes per 

signature), the excellent classification accuracy ratio performance achieved by 

our melanoma biomarker signature with just 12 genes is of note. This supports 

the view that our integrated approach extracts more informative genes than do 

the original signatures. From a clinical perspective our 12-gene signature could 

therefore be a more valuable biomarker for melanoma in the clinical setting. 

This will need to be followed up in further studies. 

 

The method developed in this study was focused on gene expression 

association research, and was not directed to detecting gene mutations. It is 
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noted that BRAF, as one of main mutated gene for melanoma, was not shown 

in the list of differential expressed genes. This project focused on gene 

association not the gene mutation. 

Five melanoma microarray datasets were applied in this study, as they all 

contain benign nevi/normal skin and metastatic melanoma samples (including 

cell line and biopsy). Because of the sample limitation, some datasets do not to 

contain normal skin or benign nevi sample. The normal skin and benign nevi 

samples were pooled together and considered as control group. Some 

microarray studies in the literature also investigated the relationship between 

benign nevi/normal skin and metastatic melanoma, e.g., some articles 

determined that significantly-different gene expression occurs between benign 

nevi and metastatic melanoma and so can define diagnosis biomarkers of 

metastatic melanoma (Kashani-Sabet et al., 2009; Smith et al., 2005). Others 

determined that metastasis and survival correlate with genes based on 

comparing combined benign nevi/normal skin with melanoma samples 

(Mandruzzato et al, 2006). 

 

Table 25: The fold-change of 12 genes in five melanoma microarray datasets 

 

Gene GSE4570 GSE4587 GSE7553 GSE12391 GSE22301

1 EGFR -2.80597 -25.6657 -4.75 -1.54833 22.34352

2 FGFR2 3.168142 -1068.81 -6.01 -1.82438 1.90731

3 FGFR3 -1.39801 -232.953 -6.73 -1.55501 17.9909

4 CXCL13 -1.05814 60.14563 18.98 1.435844 2.721906

5 COL11A1 -37.162 4.71954 10.98 2.036713 1.29632

6 WNT4 -36.1569 -39.4524 -5.31 -1.98495 1.103384

7 PTPRF 3.810742 -3.44544 -3.01 -1.87123 32.91988

8 PPP2R2C NA -14.1279 -11.34 -1.20658 NA

9 TNC 191.1111 4.232415 8.74 4.000489 41.61225

10 IL8 -1.74774 130.9839 13.57 7.148044 527.4839

11 CHP2 1.658228 -352.38 -8.34 NA 1.7495

12 SHC4 NA 26.42012 2.24 2.237992 NA
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The table 25 shows the fold change in expression for 12 marker genes between 

benign nevi/normal skin with metastatic melanoma in five individual microarray 

studies (green and yellow show the significant fold each gene). No one 

individual fold value could influence the finial meta-analysis result, no matter 

whether control sample is nevi or normal skin. This demonstrates that 

combining the significance of genes between benign nevi /normal skin with 

metastasis melanoma across multiple studies lead to the identification of gene 

biomarker of metastasis melanoma. 

 

 

4.2. Enhancement for the computational method  

 
 

As the microarray technique becomes increasingly popular, meta-analysis is 

been frequently applied to extract more information. However, meta-analysis 

still faces a critical concern i.e., that not all microarray data are of the same 

quality due to their use of various platforms and experimental set-ups. The 

quality of meta-analyses mainly depends on the quality of each individual 

microarray dataset (Larsson & Sandberg, 2006). Thus, the accuracy and 

reproducibility of microarray datasets have been a subject of some debate 

(Severgnini et al., 2006). 

 

To address this challenge, four meta-analysis methods were assessed in this 

study to investigate the potential impact of some of these intrinsic microarray 

weaknesses. Experimental results revealed that: 
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 (1). The genes selected using the „stratification with weighting‟ method (i.e., 

separating biopsy data from cell line data, and measuring the quality of datasets 

by D value, the ratio of each dataset‟s D value is as weighting of this dataset 

when calculated by GWRS across multiple datasets, see section 2.4.2) always 

achieved the good classification accuracy. This method also yielded the 

greatest number of common genes versus the other methods. 

(2). The second next most effective enhancement method was „non-

stratification with weighting‟ method. This method also can retrieve relatively 

good classification accuracy and a high number of common genes. 

(3). When one compares the results of „stratification‟ and „non-stratification‟ 

methods without weighting, it is clear that the results of „stratification‟ method 

were much better than after „non-stratification‟. 

(4). The new 200 ranked gene list which was detected by the „stratification with 

weighting‟ method was also more meaningful. Although there were only 18 (of 

200) genes that were different compared with the previous list, the new list 

generated by „stratification with weighting‟ method did not lose any meaningful 

genes of the previous gene list, and also added some new validated genes into 

the gene list. The old 18 genes of previous list that did not appear in the new list 

furthermore have never been reported in any melanoma studies. However, 

some genes of newly added 18 genes have been reported in microarray studies 

or wet-lab studies or both melanoma studies. The other advantage of the 

improved method is that the ranking positions of the most meaningful genes 

were increased comparing with the previous positions.  
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In conclusion, the GWRS and GWGS methodologies could help deal with  the 

limitation of sample numbers of datasets, and also merging individual datasets 

together to retrieve the higher relevant melanoma signature. However, the 

method is limited by that they did not fully recognize the influence of differences 

in datasets, like different type of platform, type of samples, quality of dataset etc. 

Based on these, the new stratification-based methodology provided a more 

robust set of gene associations in this integrated microarray analysis. In 

addition, combining either „stratification‟ or „non-stratification‟, with „weighting‟ 

i.e., ω, always yielded better results versus the unweighted methodology. This 

means that it is very important to treat microarrays differently according to their 

data quality (the ratio of D value, see section 2.4.2). Both „weighting‟ and 

„stratification‟ are two important factors for enhancing the robustness of meta-

analysis of microarray data. Combining the strengths of GWRS, GWGS, 

„stratification‟ and „weighting‟, a new framework for others in the field to consider 

was proposed, which combines these two useful factors together in an 

integrated analysis of microarray studies (Figure 20). In the new framework, the 

„stratification with weighting‟ method was applied to a combined multi-study 

scenario, and when the gene list was screened by wrapper feature selection 

method with machine learning (figure 20) for getting robust genes. These 

proposed algorithm is defined in Fig.20 below with associated test following. 
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The proposed new framework was applied for integrated analysis of microarray 

datasets. When applied to datasets of one disease, firstly each individual 

dataset should be measured for quality based its D-values, the quality value is 

used for distributing the importance ratios of all datasets. Then the datasets are 

grouped based on one or more different features, like sample type, microarray 

technique, number of genes or samples. After grouping, each individual study of 

Selected studies on one kind of disease with corresponding microarray 

datasets 

GWRS of genes on individual study of each group 

GWGS of genes across multiple studies of each group with ω 

Figure 20: The proposed procedure of microarray meta-analysis to yield robust significant gene 

associations. This consists of two steps for characterizing the genome-wild global significance of 

genes, and an additional step for integrating the gene significance from biopsy and cell line 

samples, followed by a machine learning approach for the searching of robust genes. 

Microarray Datasets are grouped by one or more defined features 

Each individual Meta-Significance of each group (e.g.Sr1, Sr2 …) 

  

Combined-Meta-Significance (Sr) 

 

 

 

 

 

Machine learning (SVM) for greedy search of genes with most 

robustness in classification of control and disease 

Wrapper approach method was applied for the robust signature. 

 

Microarray Datasets are measured the quality by D-value (ω). 
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each group is calculated by GWRS, and combined by GWGS with weighting to 

generate the significant gene list of each group. Applying GWGS again to 

combine the significant gene lists of all groups, allows them to generate a final 

gene list for the disease. Wrapper feature selection with SVM method is then 

applied to detect the disease signature from the final list. The genes are 

inputted based on the in ranking order of the list and using a one-gene 

incremental addition approach. When the most robustness classification 

accuracy ratios are generated, the inputted genes are considered as the robust 

signature of the disease. 

 

In summary, this study suggests that: 

1. The proposed method combining individual studies together is able to 

reduce the false negatives comparing to individual analysis, and increase 

the effectiveness of statistical analysis of microarray datasets. 

2. A proposed new signaling network for melanoma, which involve 12 new 

biomarker genes. 4 of them were validated in this study. 

3. The new method adding stratification and wighting shows to be able to 

suit general applications of integrated analysis of microarray data.  

 

It is, however, noted that this study is limited by two factors: 

1. The number of samples of microarray datasets used in this study were 

small, which might have impact to the discovery of robust biomarkers . 

2. 4 of 12 genes were validated in the biological experiments. Further 

experiments are needed for the validation of the remaining 8 genes.  
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5. CONCLUSION AND FUTURE WORK 

Two significant contributions on the integrated analysis of microarray data were 

made in this thesis.  

First, a new method to address the limitations of Rhodes‟ meta-analysis method 

was proposed. This new method was applied to the integrated analysis of five 

melanoma datasets and generated a new signature of melanoma containing 

200 genes. Based on their interactions with four melanoma driver genes 

(NRAS, BRAF, c-Kit, and MITF), a new signaling network based on pathway 

analysis was created. This new signaling network includes 12 core genes from 

the 200 gene signature (i.e., EGFR, FGFR2, FGFR3, IL8, PTPRF, TNC, 

CXCL13, COL11A1, SHC4, CHP2, PPP2R2C and WNT4). These genes belong 

to three main signaling pathways (MAPK pathway, WNT pathway and Ca2+ 

pathway). Four of the 12 genes (i.e., SHC4, CXCL13, COL11A1, and PTPRF) 

link to the MAPK pathway and have been validated in wet-lab validations. In this 

study, the four genes all showed having strong relationship in biopsy and cell 

with melanoma, the other 8 genes will be focused in future work. 

 

Second, the computational method was enhanced integrating the two factors, 

these factor are „stratification‟ by sample type and „weighting‟ by data quality to 

provide more flexibility in treating microarray data based on the biological nature 

of the samples and on the quality of dataset.  
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Stratification was the improved integrated analysis, and differences between 

each individual dataset in terms of platform, sample types, number of genes or 

probe-sets etc. were considered by this factor.  

 

Weighting, which is the ratio of the D value of one dataset to the sum of D 

values for all datasets, improved the analysis as represented the quality of 

individual microarray datasets. The assessment of microarray dataset quality is 

very important part in combined analysis of multiple microarray datasets, 

because the quality of microarray data influences microarray experimental 

procedure directly, and will bring instability for the next level of the analysis. 

 

The evaluations performed in this thesis clearly showed that the method 

including „stratification‟ and „weighting‟ together produces more robust results in 

biomarker discovery. It is noted that the „stratification with weighting‟ method 

has produced different results than the „non-stratification‟ or „without weighting‟ 

method: 

 

(1) The best accuracy ratios were obtained by „stratification with weighting‟ 

method in Wrapper Feature selection with SVM evaluation. The next best 

method is „Non-stratification with weighting‟. It clearly showed that 

„weighting‟ (the quality of dataset) is as the important factor in combined 

multiple datasets analysis. 

 

(2) When evaluated the number of common genes between top gene lists of 

training datasets and the top gene list of individual testing dataset, the 
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„stratification with weighting‟ method was also the best method. It means 

that whatever the combined multiple datasets were changed, the method 

still can retrieve the same top genes, and these genes were more reliable 

genes in corresponding disease. 

 

(3) When evaluated the number of common genes across different variations of 

combined training studies, the higher number of common genes also 

represented how stable the method and the top genes are.  The 

„stratification with weighting‟ method is still the best method in this 

evaluation. 

 
(4) When applied the top gene lists which generated across multiple melanoma 

microarray datasets by the four methods to compare with 180 known 

metastatic melanoma biomarkers, found that „stratification with weighting‟ 

was the second best method. 

 
(5) Apply the „stratification with weighting‟ method to combine the all five 

original melanoma datasets, and then the generated gene list compared to 

180 metastatic melanoma biomarker, the number of common genes was the 

highest in the comparisons of the other gene lists with the 180 biomarkers. It 

also evidenced that more microarray datasets were integrated in the 

analysis more reliable biomarker can be identified.  

 
(6) The „stratification with weighting‟ method identified 18 new genes when 

compared the new 200 genes with the previous 200 gene list, and brought 

more validation genes into the new 200 gene list. The old 18 genes in 

previous gene list were never reported by any study, however, in the 
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enhanced list, 6 genes were reported by at least one microarray studies, 

and 7 genes were reported by wet-lab studies. Four genes were validated in 

both microarray and wet-lab studies. 

 

(7) The most meaningful genes are ranked at higher positions. There were 18 

common genes between previous and new gene list which were reported by 

both microarray and wet-lab studies. >60% of them (11 genes) presented 

higher positions in new list, and other 7 of them had identical or slightly 

changed ranking positions. 

 
(8) Even though the 200 genes were changed, the network of melanoma was 

not influenced. The 11 of proposed 12 biomarkers based on the previous 

method were still in the top 200 genes list of the „stratification with weighting‟ 

method.  Of them, 9 genes (75%) were increased the positions. And the 

three of four wet-lab validated genes (SHC4, CXCL13, PTPRF, and 

COL11A1) were higher at least 8 positions than previous. 

 

The results demonstrated that the „stratification with weighting‟ method is able to 

increase the detection of true biomarker (true positives) more effectively. 

 

Future work 

 

In the future, the validation of 12 biomarkers of melanoma in wet-lab is in 

process, based on only 4 of them in MAPK pathway were validated by IHC and 

ICC and the limitations of samples, the four genes only were validated in 

normal, primary and metastatic samples, and the sample number was a few, the 
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gene progression have been not done. The next plans about the 12 biomarkers 

are: 

 

(1) Before wet-lab validation, simulation of pathway for the 12 biomarkers would 

be done for computational validation. The method also be applied for the 

enhanced gene list. 

 

(2) Continually validate the 12 biomarkers of melanoma in vitro studies, exam 

the progression of melanoma (normal → benign nevi → primary melanoma 

→ metastatic melanoma) based on one donor ideally, but from mixed donor 

also possible if the number is large. 

 

(3) The significance of the 12 genes based on the differential expression, no 

matter the expression is up or down. Especially for the down-regulated 

genes, the IHC and ICC may not help in validation. Based on that, knock 

down each gene of 12 biomarkers should be important validation. Through 

knock down each of them one by one to analysis whether the gene may 

influence others and how the gene works in the whole network. 

 

 
 

For the new „stratification with weighting‟ method and new proposed approach, 

future works could include the following. 

 

(1) In this study, the datasets were stratified and analyzed based on differences 

in sample types (cell line vs. biopsy). The method still can be evaluated by 
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other types of stratification, for example, based on differences in platforms, 

differences in number of genes or probe-sets etc. And the stratification could 

be improved, like combined multiple stratified factors together, i.e., consider 

the differences of platform and sample types at the same time. The multiple 

factors combination could derive more elaborative classification and could 

improve robustness of microarray outcomes. 

 

(2) The „weighting‟ could be measured by different measurements. In this study, 

the D-value was applied to assess the quality of dataset, and it may be 

beneficial to include instead by other algorithms to represent different quality 

of datasets. 

 
(3) The new 200 gene list will be analyzed more deeply, not only to compare 

with the previous 200 gene lists and the literature based 180 biomarkers. 

They will be analyzed in other ways (like pathway analysis) to indicate 

whether meaningful genes exist in the new list. 

 
(4) ChIP-on-chip analysis should be considered for the biomarkers of melanoma 

in further research, based on this enhanced meta-analysis microarray 

method. ChiP-on-chip is a technique that can detect the interactions of 

proteins and DNA by combining chromatin immunoprecipitation (ChIP) and 

microarray technology (chip).   
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Appendix:  

This appendix includes the literature search I conducted with the terms 

„microarray datasets; and melanoma‟ in PubMed published for the years 2000-

2011. Of these 22 studies, 16 reported data on gene signatures that shared little 

commonality or overlap between studies. 

 

2000 

Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, 

M., Simon, R., Yakhini, Z., Den-Dor, A., Sampas, N., Dougherty, E., Wang, E., 

Marincola, F., Gooden, C., Lueders, J., Glatfelter, A., Pollock, P., Carpten, J., 

Gillanders, E., Leja, D., Dietrich, K., Beaudry, C., Berens, M., Alberts, D., 

Sondak, V., Hayward, N., Trent, J. (2000). Molecular classification of cutaneous 

malignant melanoma by gene expression profiling. Nature 406, 536-540. 

Bittner et al. (2000) used 38 samples (7 controls and 31 melanomas) to 

detect gene expressions using an 8,150 cDNA microarray. They identified 19 

melanomas as a major cluster and found the down-regulated genes of the 

major cluster related to cell migration, especially decreased expressions in 

integrin β1, β3 or α1, syndecan 4 and vinculin. Over-expressed genes were 

outside of the major gene cluster and were relevant to fibronectin. 

   

2003: 

Zuidervaart, W., van der Velden, P.A., Hurks, M.H., van Nieuwpoort, F.A., Out-

Luiting, C.J.J., Singh, A.D., Frants, R.R., Jager, M.J., Gruis, N.A. (2003). Gene 

expression profiling identifies tumour markers potentially playing a role in uveal 
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melanoma development. British Journal of Cancer 89, 1914-1919. 

Zuidervaart et al. (2003) detected 15 highly differentially expressed genes 

(>1.5 fold higher) in a microarray comparing 12 human uveal melanoma cell 

lines with 3 uveal melanocyte cultures. Four candidate genes were selected 

as tumour markers to discriminate 19 primary uveal melanoma samples into 

two classes. This may indicate differential uveal melanoma development 

processes. 

 

Dooley, T.P., Curto, E.V., Davis, R.L., Grammatico, P., Robinson, E.S., Wilborn, 

T.W. (2003). DNA microarray and likelihood ratio bioinformatics methods: 

discovery of human melanocyte biomarkers. Pigment Cell Res 16, 245-253. 

Dooley et al. (2003) investigated 25 significant biomarkers of normal 

melanocytes by comparing normal human epidermal melanocytes with one 

primary melanoma cell line (MS7) and one metastatic melanoma cell line 

(SKMel-28). They advised some biomarkers could be potential molecular 

targets for diagnostics and drug discovery in melanoma. 

 

2004: 

Hoek, K., Rimm, D.L., Williams, K.R., Zhao, H., Ariyan, S., Lin, A., Kluger, H.M., 

Berger, A.J., Cheng, E., Trombetta, E.S., Wu, T., Niinobe, M., Yoshikawa, K., 

Hannigan, G.E. (2004). Expression profiling reveals novel pathways in the 

transformation of melanocytes to melanomas. Cancer Res 64, 5270-5282. 

Hoek et al, 2004 detected 589 significantly expressed genes by Affymetrix 

U133A dataset based on a 2.5 fold change in melanoma. Of these, 315 were 

up-regulated and 274 were down-regulated between normal melanocytes 
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and melanoma cells. They reported some novel pathways and expression in 

melanoma cells, like NOTCH pathway activation, altered expression in 

embryonic development and epidermal transition transcriptional regulators, 

activation of cancer antigens, and down-regulated growth suppressors 

including NECDIN.  

 

Mirmahammadsadegh, A., Baer, A., Nambiar, S., Bardenheuer, W., Hengge, 

U.R. (2004). Rapid identification of dysregulated genes in cutaneous malignant 

melanoma metastases using cDNA technology. Cell Tissues Organs 117, 119-

123. 

Mirmohammadsadegh et al, 2004 detected a series of differential gene 

expressions through comparing total RNA of melanoma metastases and 

primary human melanocytes from 10 patients. They selected five genes 

(including GRB10, BAX, BAD, GSTT1, GSR) as examples and suggested 

that the significant genes may be used as targets to provide therapeutic 

guidance.  

 

McDonald, S.L., Edington, H.D., Kirkwood, J.M., Becker, D. (2004). Expression 

analysis of genes identified by molecular profiling of VGP melanomas and MGP 

melanoma-positive lymph nodes. Cancer Biology & Therapy 3, 110-120. 

McDonald et al., 2004 identified 5 known genes (ST13, CST-8, DKC1, 

NESP55, and NP-C2) and 1 unknown gene (16.7 kD) which could play 

important roles in advanced stage melanoma by examining gene expression 

patterns between primary melanoma and melanoma-positive lymph node 

specimens. 
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      Smith et al, 2005 and Haqq et al. (2005) conducted a comprehensive study 

on different stages of malignant melanoma development based on whole 

genome expression profiles. Smith et al, 2005 investigated the top 50 up-

regulated and 50 down-regulated genes in advanced-stage melanoma in 

order to see the main expression changes between early-stage and 

advanced-stage melanoma.  Haqq et al. (2005) reported 19 gene signatures 

between nevi and metastases. A major finding of the study of Haqq et al. 

(2005) was the identification of two different gene patterns found in 

metastases reflecting those in the vertical or radial growth phase cells of 

primary melanomas.  
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associated with oncogenic gene expression in malignant melanoma. Neoplasia 

7, 303-311. 

Okamoto et al, 2005 have identified 20 over-expressed genes which were 

located in tumour-related regions of chromosomes by Affymetrix U133A gene 

chip using five malignant melanoma cell lines. These included AKT1, BMI1, 

CDK6, CTNNB1, E2F1, GPNMB, GPRK7, KBRAS2, LDB2, LIMK1, MAPK1, 

MEL, MP1, MUC18, NRCAM, PBX3, RAB22A, RAB38, SNK and STK4. They 

also indicated that the down-regulated CDK6 expression can dramatically 

reduce the growth of all five cell lines. 
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Natl Cancer Inst 98, 472-482. 

Winnipennickx et al, 2006 attempted to detect the significantly-expressed 

genes related to the progression and prognosis of melanoma. Based on 

gene expression the patterns in primary tumours differed between patients 

with a 4-year distant metastasis-free survival from those who developed 

metastases within this time. 254 genes associated with metastasis-free 

survival primary melanoma were identified. 
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F.M., Zanovello, P. (2006). A gene expression signature associated with survival 

in metastatic melanoma. J Transl Med 4, 1-11. 

The study by Mandruzzato et al. (2006) is based on the expression profiles of 

17,500 probes of 43 stage III and IV metastatic melanoma tissues in 38 

patients. 80 probes corresponding to 70 genes (45 and 35 probes relevant to 

longer and shorter survival times respectively) were identified by significance 

analysis of microarrays (SAM). In further analysis, they used a survival 

prediction model to predict 30 relevant survival probes from the 80 probes by 

supervised principal components (SPC) and cross-validation. 
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throughput study in melanoma identifies epithelial-mesenchymal transition as a 

major determinant of metastasis. Cancer Research 67, 3450-3460. 

The study by Alonso et al. (2007), is based on gene-expression profiles of 34 

vertical growth phase (VGP) melanoma patients (21 developed nodal 

metastatic disease, and all had the minimum follow-up 36 months), and 

identified 243 genes (206 over-expressions and 37 down-expressions). All 

showed comparisons with >2 fold ratio and a false discovery rate is <0.2.  
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Cancer Res 13, 806-815. 

Jaeger et al. (2007) analyzed the 22,283 probe expression profiles of 41 

primary melanomas and metastatic melanoma using oligonucleotide 

microarrays, 389 probe sets corresponding to 308 genes were identified with 

significant differential expression (Jaeger, 2007). A predictive diagnostic 

model (Support vector machine, SVM) was applied to discriminate these two 

stages of melanoma, and it achieved >85% correct classifications in cross-

validation. 
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John, T., Black, M.A., Toro, T.T., Leader, D., Gedye, C.A., Davis, I.D., GUilford, 

P.J., Cebon, J.S. (2008). Predicting clinical outcome through molecular profiling 

in stage III melanoma. Clin Cancer Res 14, 5173-5180. 

John et al. (2008) used oligonucleotide arrays (30,888 probe sets) to 

examine 29 Patients with melanoma metastases to lymph nodes (stage IIIB 

and stage IIIC) that were grouped as 16 ‘poor-prognosis’ and 13 ‘good-

prognosis’ cases by tumour progression time. 21 genes that were with highly 

differentially expressed between these two groups were identified, and then 

were validated in training data by quantitative PRC. Of the 21 genes, 15 

genes exhibited the highest correlation (90% and 95% predictive scores) 

between two independent validation sets containing 10 and 14 stage III 

tumour samples respectively. 
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A., Ju, J., Matta, J. (2008). The gene expression profiles of primary and 

metastatic melanoma yields a transition point of tumour progression and 

metastasis. BMC Med Genomics 1:13. 

Riker et al. (2008) compared 40 metastatic melanoma (MM) samples with 42 

primary cutaneous cancers using microarray. Of the 42 primary samples, 16 

were primary melanoma. They found that many genes (including SPRR/A/B, 

KRT16/17, CD24, LOR, GATA3, MUC15, and TMPRSS4) were expressed 

dramatically higher in primary basal cell carcinomas, squamous cell 

carcinomas and thin melanomas compared to metastatic melanoma. By 

contrast, some genes were up-regulated in metastatic melanoma such as 

MAGE, GPR19, BCL2A1, MMP14, SOX5, BUB1, and RGS20. 65 

significantly expressed genes were detected by comparing normal human 

epithelial melanocytes to thin primary cutaneous and metastatic melanoma 

samples.  
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Osman, I., Bhardwaj, N. (2009). Immune profile and mitotic index of metastatic 

melanoma lesions enhance clinical staging in prodicting patient survival. Proc 

Nati Acad Sci 106, 20429-20434. 

Bogunovic et al. (2009) analysed 44 metastatic melanoma tissue samples 

from 38 patients with the approximately 20 month’s clinical observation and 

identified 266 genes which were strongly associated with post-recurrence 
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survival. Among these some over expressed genes were associated with the 

immune response (e.g. ICOS, CD3d, ZAP70, TARP, GZMK, LCK, CD2, 

CXCL13, CCL19, CCR7, and VCAM1), and some down-regulated genes 

were associated with cell proliferation (e.g. PDE4D, CDK2, GREF1, 

NUSAP1, SPC24). The mitotic index (MI) was recognized as the most 

significant predictor of outcome (hazard ratio=2.13, p=0.0008), and it has 

now been included as an important prognostic factor in the AJCC melanoma 

staging and classification system. 

 

Kashani-Sabet, M., Venna, S., Nosrati, M., Rangel, J., Sucker, A., Egberts, F., 

Baehner, F.L., Simko, J., Leong, S.P., Haqq, C., Hauschild, A., Schadendorf, D., 

Miller, J.R. 3rd (2009). A multimarker prognostic assay for primary cutaneous 

melanoma. Clin Cancer Res 15, 6987-6992. 

Kashani-Sabet et al, 2009 identified 5 overexpressed markers of melanoma 

(ARPC2, FN1, RGS1, SPP1 and WNT2), based on which a diagnostic 

algorithm was built, which achieved 95% specificity and 91% sensitivity in 

testing (n=534) diagnosis, and 95% specificity and 97% sensitivity in nevus-

derived melanoma (n=75). 

 

Koh, S.S., Opel, M.L., Wei, J.P., Yau, K., Shah, R., Gorre, M.E., Whitman, E., 

Shitabata, P.K., Tao, Y., Cochran, A.J., Abrishami, P., Binder, S.W. (2009). 

Molecular classification of melanomas and nevi using gene expression 

microarray signatures and formalin-fixed and paraffin-embedded tissue. Mod 

Pathol 22, 538-546. 

Koh et al. (2009), a study based on 120 samples, and identified 36 significant 
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differentially-expressed genes between melanomas and nevi and generated 

a gene expression classifier that was capable of distinguishing between 

melanomas and nevi. Genes involved signal transduction, transcription, and 

cell growth were identified as high expressing genes in melanomas 

compared with nevi. By contrast, L1CAM expression decreased in 

melanomas. 

 

Jeffs, A.R., Glover, A.C., Slobbe, L.J., Wang, L., He, S., Hazlett, J.A., Awasthi, 

A., Woolley, A.G., Marshall, E.S., Joseph, W.R., Print, C.G., Baguley, B.C., 

Eccles, M.R. (2009). A gene expression signatures of invasive potential in 

metastatic melanoma cells. PLoS One 4, e8461. 

Jeffs et al. (2009) investigated molecular genomic characteristics to identify 

new prognostic and therapeutic markers in melanoma cell lines that may aid 

melanoma diagnosis. Expression of MITF, EDNRB, DCT and TYR were 

decreased and PLAUR, VCAN, and HIF1a were increased in melanoma 

cells. The result validated the hypothesis that differential gene expression 

may drive invasive metastatic melanoma and melanoma heterogeneity, like 

decreased specific lineage genes in the melanoma tumour 

microenvironment. 
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melanocytic lesions. Int J Cancer 126, 1869-1881. 

This study by Scatolini et al, 2010 was based on the comparison of gene 
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expression in 18 common nevi, 11 dysplastic nevi, 8 radial growth phase 

melanoma (RGPM), 15 vertical growth phase melanoma (VGPM) and 5 

metastasis melanoma. They found that transition from RGPM to VGPM was 

related to apoptosis alteration (GO function). However, the transition from 

common nevi to RGPM corresponded to changes in intracellular junctions.  

 

Kabbarah, O., Nogueira, C., Feng, B., Nazarian, R.M., Bosenberg, M., Wu, M., 

Scott, K.L., Kwong, L.N., Xiao, Y., Cordon-Cardo, C., Granter, S.R., 

Ramaswamy, S., Golub, T., Duncan, L.M., Wagner, S.N., Brennan, C., Chin, L. 

(2010). Integrative genome comparison of primary and metastatic melanomas. 

PLoS One 5, e10770. 

Kabbarah et al. (2010) performed a global genome analysis between primary 

and metastatic melanomas to examine genes related to metastatic 

progression. They identified 32 genomic regions that were significantly up-

regulated in metastatic melanoma and 30 genes that were significantly down-

regulated. In human melanoma cell lines, MET, ASPM, AKAP9, IMP3, 

PRKCA, RPA3, and SCAP2 were validated to encode for pro-invasion 

activities.  

 

2011: 

Rose, A.E., Poliseno, L., Wang, J., Clark, M., Pearlman, A., Wang, G., Vega Y 

Saenz de Miera, E.C., Medicherla, R., Christos, P.J., Shapiro, R., Pavlick, A., 

Darvishian, F., Zavadil, J., Polsky, D., Hernando, E., Ostrer, H., Osman, I (2011). 

Integrative genomics identifies molecular alterations that challenge the linear 

model of melanoma progression. Cancer Res 71, 2561-2571. 
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Rose et al, (2011) detected differences between superficial spreading 

melanoma and nodular melanoma and they defined 8 significant genes 

(DIS3, FGFR1OP, G3BP2, GALNT7, MTAP, SED23IP, USO1 and ZNF668). 

However, this study did not provide a signature for metastatic melanoma.   

 

 

 

 

 

 

 

Appendix table s1-s3 were stored as excel files in CD. 

 

Appendix table s1: Melanoma signatures of 16 original studies. 

Appendix table s2: the genes were validated by independent 16 original 

microarray studies 

Appendix table s3: 180 known metastatic melanoma biomarkers. 
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