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Review
Glossary

Agonist: a ligand that exerts a physiological response when combined with a

protein target.

Allosteric site: a ligand interaction site distant from the primary binding site of

a protein; as opposed to orthosteric site, the primary ligand-binding site.

Antagonist: a substance that interferes with the actions of a ligand.

Atherosclerosis: the accumulation of cholesterol-rich plaques on artery walls.

cAMP: cyclic form of adenosine monophosphate, which plays a major role in

controlling many physiological process in cells in response to hormonal

stimulation.

Cardiomyocytes: muscle cells found in the heart.

Chronotropy: an effect that causes a change in the rate of heart contractions.

Cytokines: intracellular protein mediators of the immune response.

Emesis: the action of vomiting.

Exchange protein activated by cAMP (EPAC): a GEF that activates the small

GTPase Rap1 in response to orthosteric binding of cAMP.

GTPase: a family of enzymes that can bind and hydrolyse GTP.

Guanine nucleotide exchange factor (GEF): an enzyme that activates GTPases

by stimulating the binding of GTP in place of GDP.

Inflammation: the physiological response to injury or infection, resulting in

swelling, pain, and loss of function.

Inotropy: an effect on the force of muscular contraction.

Interleukin-6 (IL-6): a cytokine that is involved in the acute phase response, B

cell maturation, and chronic inflammation.

Intima: the innermost layer of a blood vessel.

Isoforms: proteins that have a similar, but not identical, amino acid sequences.

Janus kinase (JAK)/signal transducer and activator of transcription (STAT):

gene regulator signalling components that are activated by cytokine receptors.

Ligand: a small molecule that forms a complex with a protein.

Myocardial infarction: injury to the heart resulting from impaired blood flow.

Pancreatic b cell: a type of cell in the pancreas that produces and secretes

insulin.

Percutaneous coronary intervention (PCI): nonsurgical widening of the

coronary artery using a balloon catheter; usually involves the deployment of

a stent to keep the vessel open.

Protein kinase: an enzyme that modifies other proteins through the addition of

a phosphate group.

Protein kinase A (PKA): a serine/threonine protein kinase whose activity is

dependent on intracellular levels of cAMP.

Rap1: a small GTPase activated by EPAC proteins.

Restenosis: reoccurrence of the narrowing of occluded arteries.

Sarcoplasmic reticulum: calcium-containing, membrane-bound tubules sur-
Pharmaceutical manipulation of cAMP levels exerts ben-
eficial effects through the regulation of the exchange
protein activated by cAMP (EPAC) and protein kinase A
(PKA) signalling routes. Recent attention has turned to
the specific regulation of EPAC isoforms (EPAC1 and
EPAC2) as a more targeted approach to cAMP-based
therapies. For example, EPAC2-selective agonists could
promote insulin secretion from pancreatic b cells,
whereas EPAC1-selective agonists may be useful in
the treatment of vascular inflammation. By contrast,
EPAC1 and EPAC2 antagonists could both be useful in
the treatment of heart failure. Here we discuss whether
the best way forward is to design EPAC-selective ago-
nists or antagonists and the current strategies being
used to develop isoform-selective, small-molecule reg-
ulators of EPAC1 and EPAC2 activity.

cAMP signalling as a therapeutic target
Synthesis of cAMP (see Glossary) in cells is regulated by
G protein-coupled receptors (GPCRs), which can either
activate or inhibit adenylate cyclase (AC) through the
actions of stimulatory (Gs) or inhibitory (Gi) heterotrimeric
G proteins. Active AC catalyses the conversion of ATP into
cAMP and pyrophosphate, a process that is terminated
through the actions of the cAMP phosphodiesterase (PDE)
family, which catalyse the hydrolysis of cAMP into 50-AMP.
This ensures that the cAMP signal is transient, thereby
allowing precise control over the localisation, intensity,
and duration of the cAMP signal. Elevations in intracellu-
lar cAMP lead to the activation of a select range of
intracellular effector proteins containing cyclic nucleotide-
binding domains (CNBDs), including EPAC enzymes, 1 and
2 [1,2], PKA isoforms [3], cAMP-responsive ion channels [4],
and Popeye domain-containing proteins [5].

Drugs that target the cAMP system are currently pre-
scribed for a range of medical conditions, including b2-
adrenoceptor agonists such as salbutamol and formoterol,
which form the basis of bronchodilators for the treatment
of asthma [6,7], and selective PDE4 inhibitors such as
roflumilast [8], which have shown promise in the treat-
ment of inflammatory diseases such as chronic obstructive
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pulmonary disorder. The challenge now is to specifically
target cAMP signalling in a pathway-specific manner to
reduce the side effects associated with these treatments.
For example, PDE4 inhibitor treatment is associated with
nausea and emesis and cAMP elevation in the heart pro-
duces cardiac inotropy and chronotropy. Recent research
has therefore been directed at limiting off-target effects by
specifically regulating the actions of the EPAC enzymes
rounding muscle fibrils.

Stent: a mesh tube used to support narrowed arteries.

Stroke: sudden, localised death of neurons due to restricted blood flow.

Suppressor of cytokine signalling 3 (SOCS3): a negative-feedback inhibitor

protein induced by IL-6 and JAK–STAT signalling.

Type 2 diabetes (T2D): a metabolic disorder characterised by elevated plasma

glucose and lack of tissue responsiveness to insulin.
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independently of PKA and cyclic nucleotide-gated ion
channels. This review focuses on the cellular actions of
EPAC enzymes in health and disease and the various
strategies being used to identify EPAC-directed small-
molecule regulators. We discuss whether the development
of EPAC agonists or antagonists is the best way forward for
the development of EPAC-centred pharmaceuticals with
true clinical efficacy.

Structure and function of EPAC isoforms
EPACs are guanine nucleotide exchange factors (GEFs) for
the Ras-like GTPases Rap1 and Rap2 [9]. There are two
mammalian EPAC isoforms, EPAC1 and EPAC2 [1,2]
(Figure 1). Whereas EPAC1 displays a wide tissue distribu-
tion, the expression of EPAC2 is more restricted and
appears to be limited to the brain, pancreas, testes, and
other secretory cells [2]. The biggest structural difference
between EPAC1 and EPAC2 is the presence of an additional
CNBD within the N terminus of EPAC2 (CNBD1) [9]
(Figure 1). CNBD1 exhibits a reduced affinity for cAMP
and is unable to induce GEF activity following cAMP bind-
ing. Despite this difference, EPAC1 and EPAC2 share
structural motifs throughout their regulatory and catalytic
domains, with the dishevelled–EGL–pleckstrin homology
domain (DEP), principal CNBD, Ras exchange motif (REM),
Ras association domain (RA), and catalytic CDC25 homolo-
gy domain (CDC25-HD) being heavily conserved between
the two isoforms. Regulation of EPAC activity is governed by
intermolecular interactions between the regulatory CNBD
and catalytic CDC25-HD domains. The ‘closed’ form of the
enzyme is stabilised by a hinge helix and an ionic latch (IL),
which lock the CNBD over the CDC25-HD domain; these
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Figure 1. Schematic representation of exchange protein activated by cAMP (EPAC) 1 an

EPAC1 and EPAC2 is shown. Individual domains indicated: DEP, dishevelled–EGL–pl

exchange motif; RA, Ras association domain; CDC25-HD, CDC25 homology domain. Inte

Ezrin has been shown to interact with the N-terminal 50 amino acids of EPAC1 [115].

interactions with the DEP [116]. EPAC1 can interact with the microtubule accessory pro

(RAN) has been shown to bind within the RA of EPAC1 and regulate guanine nucleotide

is a component of the nuclear pore complex and is able to sequester EPAC1 to the nucl

bind to residues 650–689 of the EPAC2 RA, thereby regulating the intracellular distribu
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interactions inhibit GEF activity by limiting substrate ac-
cess to the CDC25-HD [10,11]. Binding of cAMP releases
salt bridges formed with the IL and unwinds the hinge helix,
thereby allowing the CNBD to rotate away, creating an
‘open’ form where the CDC25-HD is exposed for interaction
with GDP-bound Rap1 and Rap2 [12–17]; this triggers GDP
release and subsequent GTP binding and activation, leading
to downstream signalling.

Physiological roles of EPAC isoforms: insulin secretion
EPAC2 is involved in the potentiation of insulin secretion
from pancreatic b cells [18] in response to incretin hormones
such as glucagon-like peptide-1 (GLP-1) (Figure 2). The role
of EPAC2 in these processes is to promote mobilisation of
Ca2+ from intracellular Ca2+ stores [19], which in turn
triggers Ca2+-induced Ca2+ release (CICR) [20,21]. The abil-
ity of EPAC2 to promote Ca2+ mobilisation may occur
through several mechanisms, including activation of phos-
pholipase Ce (PLCe) [22,23], interactions with the SERCA
Ca2+ ATPase in the endoplasmic reticulum [24], or activa-
tion of the type 2 ryanodine receptor [25]. EPAC2-promoted
Ca2+ release promotes activation of mitochondrial dehydro-
genases, leading to an increase in cellular [ATP]/[ADP]. The
resulting increase in cytoplasmic ATP promotes closure of
ATP-sensitive K+ (KATP) channels, leading to membrane
depolarisation and an influx of extracellular Ca2+ through
voltage-gated ion channels [19]. This influx promotes exo-
cytosis and membrane fusion of insulin-containing secretory
vesicles [19] (Figure 2).

EPAC1 is present at low levels within pancreatic b cells
[26] but has also been implicated in insulin secretion and b

cell function and metabolism [27,28]. EPAC1-null mice
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d 2 with known binding sites and interacting partners. The domain organisation of

eckstrin homology domain; CNBD, cyclic nucleotide-binding domain; REM, Ras

racting partners are shown with their binding sites in the EPAC proteins indicated.

 Phosphatidic acid (PA) facilitates EPAC1 plasma membrane localisation through

tein LC2 within the CNBD, which regulates its affinity for cAMP [117]. Ran GTPase

 exchange factor (GEF) activity towards Rap1 [118]. Ran-binding protein 2 (RanBP2)

ear membrane and inhibit EPAC1 GEF activity [119]. Ras (RAS) has been shown to

tion of EPAC2 and promoting recruitment to the plasma membrane [120].
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Figure 2. The role of exchange protein activated by cAMP 2 (EPAC2) in promoting insulin secretion from pancreatic b cells. Secretion of glucagon-like peptide (GLP) and

gastric inhibitory peptide (GIP) from the gut is stimulated by feeding. Interaction with G protein-coupled receptors on pancreatic b cells activates adenylate cyclase, leading

to production of cAMP and activation of EPAC2. Simultaneously, metabolism of glucose within the mitochondria yields an increase in ATP within the cell, leading to the

closure of ATP-sensitive potassium (KATP) channels and promoting membrane depolarisation. Depolarisation causes glucose-stimulated calcium influx (GICR), which in

turn stimulates calcium-induced calcium release (CICR) and promotes fusion of insulin-containing vesicles with the cell membrane. EPAC2 is able to enhance insulin

secretion through three pathways (indicated in yellow). Direct interaction of EPAC2 with sulfonylurea (SU) receptor 1 (SUR1) increases the sensitivity of KATP channels to

ATP and thus stimulates GICR [121]. SUs are able to produce similar effects by targeting SUR1 and part of the action of SUs has been attributed to direct activation of EPAC2

[93]. Additionally, EPAC2–Rap1 signalling can regulate endoplasmic reticulum (ER) calcium store release (CICR) through stimulation of phospholipase Ce (PLCe) [122], the

ryanodine receptor (RyR) [25], and the sarcoendoplasmic calcium transport ATPase (SERCA) [122]. A range of protein interactions also appear to be important for EPAC2-

driven insulin secretion. For example, interactions between EPAC2 and the b cell SU receptor SUR1 may lead to the recruitment of EPAC2 to secretory granules, where it

promotes vesicle priming through acidification by the v-type H+-ATPase [121]. Moreover, the ability of EPAC2 to promote rapid Ca2+-dependent exocytosis may depend on

interactions with Rim2, a Rab3A GTPase binding partner, and Piccolo, both of which are essential for Ca2+-dependent exocytosis, and Munc 13-1, a diacylglycerol-binding

protein required for vesicle priming [123,124]. Abbreviation: VDCC, voltage-dependent calcium channel.
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show blunted glucose-stimulated insulin release (GIR)
when injected with glucose [27], suggesting a specific role
for EPAC1 in GIR at basal cAMP levels. However, when
glucose is introduced by feeding, no deficiencies in GIR are
observed, suggesting that EPAC2 may be the dominant
isoform responsible for incretin-potentiated GIR [29]. This
is supported by the observation that insulin secretion from
mouse islets, following EPAC activation, is blocked by the
EPAC2-selective inhibitor ESI-05 (Table 1) [30]. Given the
importance of EPAC2 in insulin secretion, a small-mole-
cule EPAC2 agonist may be an effective tool in promoting
insulin secretion in type 2 diabetes (T2D). Direct activation
of EPAC1 may also upregulate insulin secretion; however,
evidence suggests that selective activation of EPAC1 may
have deleterious effects. For example, analogues of GLP-1
are commonly used medicinally to promote glucose-medi-
ated insulin secretion from pancreatic b cells as a treat-
ment for T2D. The actions of GLP-1 appear to be mediated
by EPAC since the nonselective EPAC1/EPAC2 inhibitor
ESI-09 (Table 1) is able to block the promotion of insulin
secretion by GLP-1 in pancreatic b cells [31]. However, the
long-term use of GLP-1 analogues may trigger pancreatitis
or even pancreatic cancer [32]. This may be a result of GLP-
1 activating both EPAC1 and EPAC2 isoforms; whereas
EPAC2 activation in response to GLP-1 stimulation is
clearly linked to insulin secretion, EPAC1 activation
may be linked to an increased risk of pancreatic disease,
including pancreatic cancer. In addition, both EPAC1 and
205



Table 1. Antagonists and agonists of EPAC activity

Antagonist Chemical name Isoform

targeted

In vitro data In vivo data Additional

information

Refs

CE3F4 5,7-Dibromo-6-fluoro-2-

methyl-1,2,3,4-

tetrahydroquinoline-1-

carbaldehyde

EPAC1 Inhibits recombinant

EPAC1 GEF activity

Inhibits EPAC1 GEF

activity towards RAP in

HEK293T cells

Inhibits autophagy in

cardiomyocytes

Preferentially

binds open,

cAMP-bound

EPAC1

Allosteric

[103]

ESI-05 4-Methyl-2,4,6-

trimethylphenylsulfone

EPAC2 Inhibits recombinant

EPAC2 GEF activity

Inhibits EPAC2-FRET

reporters and Rap1-GTP

pull down

CNBD1 required

for EPAC2

inhibition

[99,101]

ESI-07 Undisclosed EPAC2 Inhibits recombinant

EPAC2 GEF activity

Inhibits EPAC2-FRET

reporters and Rap1-GTP

pull down

Allosteric binding

site at interface

between CNBDs

[99]

ESI-08 and

analogues

HJC0197/

HJC0198

5-Cyano-6-oxo-1,6-dihydro-

pyrimidinea

EPAC1 and

EPAC2

Competes with 8-NBD-

cAMP for binding to

EPAC2

Inhibits recombinant

EPAC1 and EPAC2 GEF

activity

Inhibits EPAC1/EPAC2-

induced phosphorylation

of AKT S304/T574 in

HEK293T cells

[100,101]

ESI-09 3-(5-Tert-butyl-isoxazol-3-

yl)-2-[(3-chloro-phenyl)-

hydrazno]-3-oxo-

propionitrile

EPAC1 and

EPAC2

Competes with 8-NBD-

cAMP for binding to

EPAC2

Inhibits recombinant

EPAC1 and EPAC2 GEF

activity

Inhibits T cell

proliferation and

cytokine production

Inhibits pancreatic cell

migration line and insulin

secretion

[95,125]

5225554 and

5376753

Undisclosed (barbituric/

thiobarbituric acid)

EPAC1 Inhibits a BRETb-based

EPAC1 construct

Inhibits migration of

cardiac fibroblasts

Allosteric

inhibitors

targeting CNBD

hinge region

[84,106]

Agonist Chemical name Isoform

targeted

In vitro data In vivo data Additional

information

Refs

8-cpt-20-o-me-

camp (007)

8-(4-Chlorophenylthio)-20-O-

methyladenosine-30,50-cyclic

monophosphate

EPAC1 and

EPAC2

Activates recombinant

EPAC1

Widely used in numerous

cell systems

Super activator of

EPAC1

[83,85]

SUs Tolbutamide

Glibenclamide

Gliclazide

EPAC2 Unable to stimulate GEF

activity in vitro

Binding is not detectable

by isothermal

calorimetry (ITC)

Able to activate EPAC2

FRET sensors

Able to induce EPAC2-

dependent insulin

secretion in mouse

b cells

Proposed to bind

to CNBD1 of

EPAC2 and

synergise with

cAMP to

upregulate

cellular effects

[93,95,

126,127]

Scottish

Biomedical (SB)

compounds

Undisclosed EPAC1 and

EPAC2

Able to compete for 3H

cAMP-binding to CNBDs

Not validated for

inhibition of EPAC GEF

activity

[128]

aPyrimidine: cyclohexyl (ESI-08), cyclopentyl (HJC0197), or cyclopropyl (HJC0198).

bBioluminescence resonance energy transfer.
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EPAC2 have been linked to reduced cardiac function [33–
35]. There are therefore risks in developing drugs that are
not able to selectively activate either EPAC1 or EPAC2;
however, it would seem that drugs that selectively activate
EPAC2 in pancreatic b cells may display antidiabetic
properties, but with reduced side effects currently associ-
ated with GLP-1-based therapies.

Physiological roles for EPAC isoforms: vascular function
The effects of cAMP on limiting vascular endothelial cell
(VEC) inflammation and vascular smooth muscle cell
(VSMC) proliferation have been well documented [36–38].
However, recent work has demonstrated that several key
206
effects of cAMP in both cell types require EPAC1. One of the
most important relates to the ability of cAMP to limit
proinflammatory signalling from specific cytokines involved
in propagating vascular inflammation, particularly inter-
leukin-6 (IL-6).

Sustained IL-6 production appears to drive chronic, low-
level vascular inflammation that leads to neointimal thick-
ening [39], vascular dysfunction [40], hypertension [41],
and increased risk of myocardial infarction [42]. An early
step in the development of the vascular dysfunction
that ultimately leads to the formation of atherosclerotic
plaques is the conversion of VECs from an anticoagulant/
anti-inflammatory to a prothrombotic/proinflammatory
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phenotype. Ultimately plaques may become sufficiently
large that they occlude vessels and block blood flow. Alter-
natively, if they are unstable, they may rupture and
trigger the formation of thrombi responsible for myocardial
infarction or ischaemic stroke. Surgical treatment for
atherosclerosis typically involves percutaneous coronary
intervention (PCI), a revascularisation procedure involv-
ing implantation of a stent into the narrowed coronary
artery to physically open the previously narrowed blood
vessel lumen and restore blood flow. However, it can also
trigger neointimal hyperplasia (NH) characterised by local-
ised inflammation and VSMC proliferation and migration
(Figure 3), leading to in-stent restenosis and stent failure
[43]. The increased inflammatory activity associated with
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atherosclerosis and in-stent restenosis is partially brought
about by increased levels of proinflammatory cytokines, par-
ticularly IL-6 [42,44]. IL-6 has been detected in atheroscle-
rotic plaques [45] and increases in IL-6 affect VECs by
triggering counterproductive angiogenesis through vascular
endothelial growth factor (VEGF) production [46] and in-
creasing the secretion of chemokines including monocyte
chemoattractant protein 1 (MCP-1)/CCL2 [47], which recruit
monocytes to the inflamed endothelium (Figure 4).

Signalling by IL-6 occurs through an IL-6 receptor (IL-6R)
complex comprising an IL-6-binding a chain (IL-6Ra) and
gp130, which interacts with IL-6Ra [48] (Figure 4). IL-6
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scular endothelium. (A) Inflammatory signalling promotes vascular endothelial

xacerbating vascular inflammation. This occurs due to impaired adherens junction

) Elevations in intracellular cAMP promote cortical actin bundling and AJ stability

ddition, EPAC1 promotes anti-inflammatory gene expression in the same cells [67].

sponse to inflammatory stimuli, which can promote neointimal hyperplasia [77].

OCS3) expression in vascular endothelial cells (VECs) in response to C/EBP and c-

able to stabilise integrin binding at cell–cell contacts, thereby promoting barrier

 on the cell cytoskeleton and AJ stability. EPAC1 has been shown to downregulate

g to decreased cell contractility and stabilisation of vascular endothelial cadherin

Rap1 signalling to the RAC-guanine nucleotide exchange factors (GEFs) VAV and

 cell–cell contacts [70]. (E) VSMC proliferation is synergistically inhibited by protein

and actin polymerisation in VSMCs [75]. This leads to upregulation of the cell cycle

ip1) [77]. Additionally, cAMP signalling is able to inhibit cell growth regulators such

K) 1/2 [76].

207



Monocyte

IL-6 binds and sIL-
6R / GP130 / JAK /

STAT complex forms

STAT phosphoryla�on,
dimerisa�on and

nuclear transloca�on

MCP-1 and SOCS-3
gene expression

Further SOCS-3
gene expression

C-Jun, C/EBP

SOCS-3 nega�ve
feedback a�enuates
JAK/STAT signalling

MCP-1 ac�vates
monocytes and

s�mulates rolling
adhesion

Inflammatory signalling Resolu�on of signalling

MCP-1 SOCS-3

EPAC1

IL-6

GP130sIL-6R

STAT

TRENDS in Pharmacological Sciences 

Figure 4. Interleukin-6 (IL-6) signalling in vascular endothelial cells (VECs). IL-6 binding to the soluble IL-6 receptor (sIL-6R) promotes complex formation with gp130 on the

surface of vascular endothelial cells (VECs), leading to Janus kinase (JAK) activation and tyrosine phosphorylation, dimerisation, and activation of signal transducer and

activator of transcription (STAT) transcription factors. Phosphorylated STAT dimers translocate to the nucleus where they regulate proinflammatory gene expression,

including production of monocyte chemoattractant protein (MCP-1), which is able to activate monocytes and promote their adhesion to the inflamed endothelium. IL-6 also

promotes activation of the suppressor of cytokine 3 (SOCS3) gene, which inhibits JAK–STAT signalling through competition with JAK-phosphorylated receptors and

targeting JAKs for proteolytic degradation.
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(SNP), Asp358Ala, has been identified in the IL-6R to reduce
inflammation  and the risk of developing coronary heart dis-
ease (CHD) [50,51], although the mechanisms for this remain
unclear [52]. It is IL-6 receptor ‘trans-signalling’ [53] that is
thought to underlie the proinflammatory actions of IL-6 in
various diseases, including atherosclerosis [54]. During trans-
signalling, IL-6 binds to soluble forms of IL-6Ra (sIL-6Ra),
allowing activation of gp130 in cells that do not normally
express IL-6Ra such as VECs [53] (Figure 4). Consequently,
binding of the sIL-6Ra/IL-6 complex to gp130 on VECs leads
to receptor clustering and activation of the Janus kinase
(JAK)–signal transducer and activator of transcription
(STAT) and extracellular signal-regulated  kinase (ERK) mi-
togen-activated protein kinase (MAPK) and phosphoinositide
3-kinase (PI3K) signalling pathways. Activated Tyr705-phos-
phorylated STAT3 then homodimerises and translocates to
the nucleus, where it acts as a transcription factor to induce
multiple IL-6-responsive genes [47,55] (Figure 4).

An important mechanism for downregulating JAK–
STAT signalling is via the suppressor of cytokine signal-
ling (SOCS) family of proteins [56], which are directly
induced by the same JAK–STAT pathway that they inhib-
it, forming a classical negative feedback loop [57]
(Figure 4). For example, SOCS3 binds to JAK-phosphory-
lated receptors via the SOCS3 SH2 domain, thereby inhi-
biting JAK activity and activation of downstream
signalling [58]. SOCS3 also targets multiple SH2-bound
proteins for proteasomal degradation [58], with proteolytic
targets including gp130 and JAK2 [59]. Consistent with its
role as a negative regulator of inflammatory signalling,
SOCS3 expression is localised to atherosclerotic plaques
[60,61] and SOCS3 knockdown in apoE�/� mice increases
STAT activation and proinflammatory gene expression in
208
aorta leading to enhanced atherogenesis [61]. Moreover,
IL-6 has been reported to promote acute and chronic
inflammatory disease in the absence of SOCS3 [62] and
conditional deletion of SOCS3 in VECs results in patho-
logical angiogenesis [63]. By contrast, either overexpres-
sion of SOCS3 or introduction of SOCS-derived peptides
has been shown to suppress JAK–STAT signalling, acute
inflammation, and the development of atherosclerosis and
NH, illustrating the important protective role of SOCS3
[64–66].

EPAC1 induces SOCS3 gene expression in VECs, result-
ing in suppression of the JAK–STAT activation initiated by
the sIL-6Ra/IL-6 trans-signalling complex [67]. EPAC1
regulates SOCS3 gene induction through the activation
of C/EBP and c-Jun transcription factors, which interact
directly with the SOCS3 promoter [68,69] (Figure 3). The
pathway leading to SOCS3 induction requires Rap1
GTPase and occurs independently of PKA [67]. Another
key role of EPAC1 in VECs is the stabilisation of vascular
endothelial cadherin (VE-cadherin) complexes between
adjacent cells to maintain barrier function [70,71]
(Figure 3). EPAC1-mediated barrier protection involves
reciprocal regulation of the Rho GTPase family members
Rac and RhoA, which exert opposing effects on endothelial
barrier function. Rac activation by EPAC1 promotes junc-
tion stability [72], whereas RhoA activation disrupts
VE-cadherin junctions through microtubule destabilisa-
tion [73]. The importance of EPAC-activated Rac in these
processes has been demonstrated by the use of the EPAC
inhibitor ESI-09 (Table 1), which inhibits Rac activation
and prevents the recovery of endothelial barrier function in
response to thrombin treatment [74]. Intriguingly, altera-
tions in cytoskeletal stability are also thought to underlie
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the effects of EPAC1 in VSMCs, where EPAC1 has been
shown to synergise with PKA to suppress the VSMC prolif-
eration that is normally associated with NH [75]. In this case
EPAC1 is thought to suppress Rac activity, leading to cyto-
skeletal remodelling, nuclear export of ERK1/2, and inhibi-
tion of the transcription factor Egr1 [76]. Rac activation
normally promotes VSMC proliferation and neointima for-
mation, whereas inhibition of Rac by PKA and EPAC1 leads
to upregulation of the cell cycle inhibitor p27(KIP1) through
suppression of Skp2, an F-box protein component of the Skp–
Cullin–F-box(Skp2) ubiquitin ligase, which normally targets
p27(KIP1) for proteolytic degradation during S phase [77]
(Figure 3). Clearly, small-molecule activators of EPAC1 have
the ability to induce SOCS3 and inhibit proinflammatory IL-6
signalling in VECs and suppress the proliferation of VSMCs,
an event normally associated with neointima formation, and
therefore may form the basis of novel therapeutic agents to
combat the localised inflammation associated with athero-
sclerosis and NH. Also related to vascular function is recent
work demonstrating that knockout or pharmacological inhi-
bition of EPAC1 blocks adhesion to, and subsequent invasion
of, endothelial cells by Rickettsia bacteria, demonstrating
that EPAC1 may be a promising target for the treatment
of rickettsioses [78].

Caution should be taken, however, particularly in light of
the study conducted by Yokoyama et al. demonstrating that
EPAC1 levels are upregulated during neointima formation
and EPAC activation promotes VSMC migration, indepen-
dently of PKA [79]. Moreover, while EPAC can negatively
regulate proinflammatory JAK–STAT signalling in VECs, it
has also been reported to promote the exocytosis of Weibel–
Palade bodies, which contain inflammatory mediators, from
endothelial cells [80]. Furthermore, while EPAC1 expres-
sion appears to be elevated, expression of the EPAC1 target
gene SOCS3 within proliferating VSMCs in the neointima
may be reduced [81]. In vitro studies suggest that this is due
to DNA methyltransferase-I-mediated hypermethylation of
the CpG island within the SOCS3 promoter, which blocks
gene induction [82]. As a result, it would be anticipated that
the capacity of EPAC1 to limit proinflammatory responses is
compromised, which would aggravate the pathological
effects of EPAC1 activation in VSMCs. Clearly, further
genetic and pharmacological studies will help to further
define the contribution of EPAC1 to atherosclerosis and
vascular remodelling.

EPAC-selective cAMP analogues
The role of EPAC in the regulation of multiple physiologi-
cal processes highlights how manipulation of EPAC iso-
forms could be exploited for treatment of diseases like T2D
(EPAC2) and atherosclerosis and NH (both EPAC1). Initial
attempts to develop EPAC-selective regulators focused on
attempts to produce analogues of cGMP, which is a known
antagonist of EPAC [15,83,84]. Despite this, there are no
cyclic nucleotide inhibitors of EPAC in current use. Rather,
work has focused on the development of cAMP analogues
able to activate EPACs independently of PKA (Table 1). In
particular, the addition of a methyl group to the oxygen of
the second carbon of the ribose moiety was observed to
promote EPAC1 and 2 activation while greatly reducing
the affinity of the 007 cAMP analogue for PKA [85]. This
specificity arose due to a single amino acid difference within
the cAMP-binding pocket of the otherwise highly conserved
CNBD of PKA and EPAC (Figure 5). The substitution of a
bulky glutamic acid residue within PKA for glutamine or
lysine, in EPAC1 and EPAC2 respectively, allowed the
EPACs, but not PKA, to accept the 20O-methylated cAMP
analogue [85] (Figure 5). 007, along with its improved, cell-
permeable analogue 007-AM (Figure 5) [86], has greatly
facilitated the study of the cellular actions of EPAC, by
allowing the PKA-independent effects of cAMP signalling
to be observed directly [70,85,87]. However, in vivo use has
been limited by its high effective dose and low cell perme-
ability and the induction of cardiac arrhythmia, fibrosis, and
hypertrophy [88]. Furthermore, various off-target effects
limit its specificity, such as its inhibitory effect over PDEs
[89] and off-target activation of the P2Y12 purinergic recep-
tors present in platelets [90].

Non-cyclic nucleotide EPAC regulators
Despite the success of 007 as a tool molecule, few studies to
date have led to the identification of further EPAC-selec-
tive agonists. The most studied and controversial group of
small-molecule EPAC regulators are the sulfonylurea (SU)
family. SUs (Table 1) such as tolbutamide were originally
characterised as antidiabetic drugs capable of binding and
regulating SUR1, a regulatory component of the KATP

channel present on pancreatic b cell membranes [91]
(Figure 2). Activation of SUR1 is able to potentiate insulin
secretion through the opening of KATP channels, causing
potassium-regulated calcium release and increased insulin
vesicle exocytosis [91]. Most SU effects within pancreatic b

cells are attributed to regulation of this pathway; however,
various additional low-affinity SU receptors have also been
postulated [92].

The impaired response of b cells isolated from EPAC2�/�

mice to SUs led to the suggestion that EPAC2 may also be a
low-affinity SU receptor [93]. To test this hypothesis, a range
of SUs were screened in a cell-based fluorescence resonance
energy transfer (FRET) assay for their ability to produce
conformational changes in the EPAC2 molecule. Using this
assay it was discovered that various SUs promoted a de-
crease in FRET detected in MIN6 b cells expressing an
EPAC2 FRET sensor [93]. Moreover, introduction of EPAC2
into EPAC2�/� mice restored the ability of cAMP and the
SUs glibenclamide and tolbutamide to produce significant
increases in the cellular levels of GTP-bound active Rap1.
Controversially, a separate study [94] pointed to earlier
reports that SUs promote increases in intracellular cAMP,
which may also explain the observed FRET effects [93]. This
highlights the limitations of FRET-based EPAC activation
assays; namely, reduced FRET activity is related to confor-
mational changes, which may not necessarily be associated
with changes in GEF activity. Definitive evidence for
EPAC2 agonism by SUs therefore remains to be shown.
However, it is clear from existing data that a proportion of
SU activity can be attributed to EPAC2 in vivo [95].

EPAC antagonists
The fluorescent properties of the fluorescent cAMP analogue
8-[2-[(7-nitro-4-benzofurazanyl)aminoethyl]thio]-cAMP
(8-NBD-cAMP) have been used to identify EPAC-selective
209
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Figure 5. Development of exchange protein activated by cAMP (EPAC)-selective cAMP analogues. (A) cAMP. (B) cAMP methylated at the ribose 20oxygen (20O) yields 20-O-
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acetoxymethyl ester (8-pCPT-20O-Me-cAMP-AM) improves membrane permeability (intracellular esterases remove this to allow binding to cAMP-binding domains [86]).

(E) The cAMP-binding site of EPAC2 (pink, crystal structure 3CF6 [10]) bound to cAMP (yellow) is shown. The highly conserved cyclic nucleotide-binding domain (CNBD) of

the protein kinase A (PKA) regulatory subunit (1RGS [132]) has been aligned to the EPAC2 CNBD. The position of glutamic acid-238 (E238, red) of the PKA regulatory subunit

is shown with a red broken line indicating hydrogen bonding between PKA E238 and cAMP at the 20O moiety. Substitution of this conserved glutamic acid to glutamine and

lysine in EPAC1 and EPAC2, respectively, is the key structural difference within the CNBD that accommodates the 20O methylated cAMP analogue and imparts EPAC

specificity to 007. Position 8 of the base (N8) is shown, which can be modified (e.g., with pCPT in 007) to increase the affinity of cAMP for CNBDs.
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inhibitors. For example, Tsalkova and colleagues tested the
ability of 14 400 diverse small molecules to compete with
8-NBD-cAMP for binding to EPAC2 [96]. This screen iden-
tified several EPAC-specific inhibitors (ESIs) with the abili-
ty to specifically inhibit EPAC activity in vitro and in vivo
independently of PKA [97–99].

ESI-08 was the first inhibitor to be characterised and
was observed to inhibit both EPAC1 and EPAC2 activity at
25 mM in the presence of equimolar cAMP [100]. Chemical
modification of the R2 cyclohexyl group to cyclopropyl and
cyclopentyl moieties yielded further analogues, HJC0198
and HJC0197, respectively, which display improved IC50

values in 8-NBD-cAMP competition assays compared with
the unmodified ESI-08 [100]. Furthermore, both analogues
were able to inhibit 007-induced protein kinase B (PKB/
AKT) phosphorylation in HEK293T cells expressing
EPAC1 or EPAC2 [100]. Confusingly, despite the ability
of HJC0198 to block EPAC2-mediated AKT phosphoryla-
tion in vivo, it was unable to affect EPAC GEF activity
in vitro, suggesting potential off-target effects [101].
210
ESI-09 was identified as a further compound capable of
regulating both EPAC1 and EPAC2 GEF activity
[97]. EPAC1 expression levels are higher in cancerous
pancreatic cells [102]. Consistent with this, targeted
siRNA knock down of EPAC1 within these cells inhibited
both their migration and their ability to adhere to glass
coverslips in response to 007-AM stimulation. This sug-
gests that EPAC1 may play an important role in the
invasive characteristics of pancreatic cancer that can re-
sult in metastasis [102]. Interestingly, preincubation with
ESI-09 was able to mimic the effects of targeted knock
down of EPAC1 on cell migration, wound healing, and cell
adhesion, indicative of a bona fide effect of ESI-09 on EPAC
function and a potential avenue in the treatment of pan-
creatic cancer [97].

In addition to the ESIs identified that target both
EPAC1 and EPAC2, ESI-05 and ESI-07 were identified
as compounds that selectively antagonise EPAC2, display-
ing almost no inhibition of EPAC1 at concentrations up to
100 mM [99]. Both compounds were effective inhibitors



Box 1. Outstanding questions

Given the diverse range of physiological responses regulated by

cAMP, it is perhaps unsurprising that this signalling pathway has

proved to be highly tractable for targeted drug development.

Unfortunately, pharmaceutical manipulation of cAMP levels can

also have side effects, including emesis and cardiac dysfunction.

Recent research has been directed at limiting these off-target effects

by specifically regulating the actions of EPAC enzymes, which are

activated by cAMP, independently of the classical PKA route. The

idea is that, by bypassing the effects of PKA, many therapeutic

benefits may be achieved independent of the side effects associated

with global cAMP elevation and dual PKA/EPAC activation. With this

in mind, the main outstanding questions now are as follows.

� What are the specific roles of the structurally distinct EPAC

isoforms, EPAC1 and EPAC2, in the control of health and disease?

� Given that EPAC1 and EPAC2 exert different actions in different

tissues, how do we devise truly selective small-molecule regula-

tors for each isoform?

� How do we separate the positive actions of EPAC1 and EPAC2 on

inflammation and T2D, respectively, from negative actions on

cardiac function?

� Consequently, is the development of EPAC agonists or antago-

nists the best way forward to finally produce EPAC-centred

pharmaceuticals with true clinical efficacy?
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EPAC2 GEF activity towards Rap1 both in vitro and in
HEK293 cells, displaying maximal inhibition between
1 and 10 mM [99]. The mechanisms of the antagonist
selectivity of these compounds are ascribed to the presence
of the characteristic second CNBD of EPAC2. Deuterium-
exchange mass spectrometry revealed a decrease in
solvent exposure on ESI-07 binding at two sites within
EPAC2. The regions identified encompassed a potential
binding site found at the interface between the first and
second CNBDs of EPAC2. ESI-07 binding may lock EPAC2
in the closed inactive form, inhibiting both its cAMP bind-
ing and GEF functions [99].

Despite the apparent success of these molecules in the
targeted inhibition of EPAC isoforms, doubts concerning
their modes of action have been raised due to the reported
denaturing properties of HJC0197 in vitro [101]. These
observations suggest that the inhibitory effects of ESI-09,
ESI-08, and their derivatives are potentially nonspecific
and may be linked to protein denaturation. However,
docking experiments and in vivo data support a specific
interaction between ESI-09 and ESI-08 with EPAC
[97–99]. The denaturing properties of these compounds
may therefore be exacerbated by in vitro analysis or may
be concentration dependent. For example, the nonspecific
effects reported could be due to poor aqueous solubility of
the test compounds and the fact that they were used in the
study at concentrations (50–100 mM) that were much
higher than the effective pharmacological concentrations
(<10 mM) [101]. Despite the concerns raised over ESI-08
and ESI-09, ESI-05 was confirmed to inhibit EPAC2
activity specifically without disrupting protein stability
[101].

Recently, an EPAC1 inhibitor was identified using high-
throughput screening (HTS) aimed at identifying an spe-
cific inhibitor for EPAC1 to counter the hypertrophic
effects attributed to EPAC1 within the heart [34]. The
EPAC1 inhibitor CE3F4 (Table 1) was identified by direct-
ly probing GEF activity towards Rap1 in vitro
[1,103,104]. Importantly, 3ECF4 was shown to act without
directly disrupting the EPAC1–Rap1 interaction or cAMP
binding. Although the mode of action was not disclosed,
CE3F4 was observed to preferentially bind to the cAMP-
bound, open conformation of EPAC1, suggesting an allo-
steric inhibitory mechanism [103]. A follow-on publication
described the development of the R enantiomer of CE3F4,
which displays tenfold selectivity for EPAC1 over EPAC2
when compared with racemic CE3F4 [105]. Further allo-
steric EPAC inhibitors have subsequently been discovered
(Table 1) [84,106].

Overall, the development of EPAC-selective antagonists
has proved extremely useful for determining the biological
role of EPAC in diverse biological systems. For example,
the antagonist ESI-09, which inhibits EPAC2, has been
shown to block myelin formation and the differentiation of
Schwann cells following EPAC activation by 007
[107]. Moreover, ESI-09 and ESI-05, which inhibit EPAC1
and EPAC2, were both found to inhibit osteoclast differen-
tiation [108], whereas ESI-09, but not ESI-05, inhibits
increases in cytosolic calcium in Plasmodium falciparum
merozoites [109]. EPAC-selective antagonists therefore
serve as effective tool molecules that identify not only
EPAC-specific effects in cells, but also which EPAC iso-
forms are dedicated to their control.

Concluding remarks
The significance of unresolved inflammatory and immune
responses in various pathologies, including T2D, rheuma-
toid arthritis, Crohn’s disease, myeloproliferative disorders,
and multiple cardiovascular diseases, is now well estab-
lished. Exploiting the various inhibitory mechanisms in-
voked to limit these pathways therapeutically, with the aim
of generating small molecules capable of either arresting or
reversing disease progression, is now an important goal.
Progress in understanding the role of EPAC proteins will
undoubtedly help inform these approaches (Box 1).

For example, within the context of cardiovascular dis-
eases, what makes cAMP of particular interest therapeu-
tically is its capacity to control multiple intracellular
targets involved in VSMC and VEC dysfunction. Thus,
potential applications of EPAC activators include acute
vascular injury scenarios resulting from coronary artery
bypass grafting and PCI procedures. Regarding the latter,
despite improvements in polymer technology and the in-
troduction of drug-eluting stents, stent deployment inevi-
tably disrupts atherosclerotic plaque architecture and
causes localised damage to the endothelial and intimal
layers of the arterial wall. The ensuing restenosis of the
vessel means that associated symptoms can recur; this
necessitates additional treatment and exposure to the
associated risks.

EPAC activation in VSMCs and ECs reverses several
processes involved in the development of in-stent resteno-
sis. Of particular relevance is the ability of EPAC1 to
induce SOCS3 gene expression, as SOCS3 exerts multiple
protective effects in both cell types, while immunohisto-
chemical studies have shown that neointimal lesions from
a pig coronary artery injury model have significantly lower
SOCS3 expression levels within proliferating neointimal
smooth muscle cells versus those in normal media [81].
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Thus, SOCS3 can inhibit VSMC migration, via inhibition
of IL-6-mediated induction of matrix metalloproteinase
(MMP)-2 and -9 [110,111], and proliferation in vitro, via
inhibition of STAT3-mediated induction of cyclin D1 [112]
and NH in vivo [61,66]. In addition, SOCS3 overexpression
can inhibit VSMC inflammation in vitro by inhibiting
STAT3 activation [66], while multiple studies have dem-
onstrated that EPAC1-inducible SOCS3 can limit
proinflammatory JAK–STAT and ERK1/2 signalling by IL-
6 trans-signalling complexes and leptin in VECs [67,113].
Coupled with the well-described ability of EPAC1 to en-
hance endothelial barrier function [114], localised activa-
tion of EPAC1 would be anticipated to suppress NH via
inhibition of endothelial inflammation, VSMC prolifera-
tion and migration, and remodelling.

The ongoing development of drug-eluting and bioab-
sorbable polymer-eluting stents for PCI also provides an
obvious route through which strategies to activate EPAC1
locally at the site of stent deployment could be achieved,
thereby minimising any adverse effects of EPAC1 activa-
tion in non-damaged tissue. Testing these types of ap-
proach in additional disease models, coupled with the
development of EPAC1-selective small molecules, would
also allow an informed assessment of whether the potential
for such approaches can be realised in a range of therapeu-
tic indications.
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