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The Analysis of Concrete Fracture by the Numerical
Method

The Mohr-Coulomb versus the Kupfer-Hilsdorf-Rusch Failure Criteria

Han Ay Lie
Civil Engineering Department
Diponegoro University
Semarang, Indonesia
ayliehan@indosat.net.id

Sukamta

Structural and Material Laboratory
Diponegoro University
Semarang, Indonesia
kamt_id@yahoo.com

Abstract—Concrete is a heterogeneous material consisting of
aggregates embedded in a cement-sand matrix (mortar). The
compression behavior of the aggregate is linear up till failure and
the mortar is a brittle-linear material, with a reversible
deformation up to its limit, followed by a sudden failure. The
resulting concrete demonstrates a quasi-ductile behavior with a
progressive decrease in load bearing capacity under incremental
monotonic loading. The fracture mechanism of plain concrete on
the other hand, is highly influenced by the bond strength in the
interface and the tensile strength of the mortar. A Finite Element
Model (FEM) was developed for analyzing the fracture
characteristic of concrete in flexure. Two failure criteria were
evaluated, the Méhr-Coulomb envelope and the Kupfer-Hilsdorf-
Rusch criteria. The program was validated by experimentally
tested specimens, and proven to be accurate. Further, this
program served as tool to analyze the fracture response of a
range of concrete strengths. This research work was conducted at
the Structural and Material Laboratory, Diponegoro University in
Semarang, Indonesia.

Keywords-component; fracture, tensile strength, FEM, failure
criteria

L. INTRODUCTION

The failure mechanism of concrete is distinguished as either
by crushing or cracking, depending on the principal stresses
and strains acting on the element under consideration. Crushing
occur when both principal stresses are in compression, while
cracking or fracture is a tension phenomenon. Two
combinations of tension failure are considered, the first when
both principal strains are in tension, and the second when the
element undergoes a combination of tension and compression
strains. The later will, at the end, result in crushing of the
material in the direction perpendicular to the principal
compression strains.

Bobby Rio Indriyantho

Master Program in Civil Engineering
Diponegoro University
Semarang, Indonesia
bobbyrio77@yahoo.com

A failure envelope defines the boundaries at which the
concrete is considered to fail. Most failure envelopes are
developed based on the results of laboratory tested specimens,
and are approach numerically, to construct the boundaries of
the envelope. The various formulation for these failure
envelope was extensively studied, and resulted in a range of
approaches, such as among others; the criteria developed by
von Mises, Mohr-Coulomb, Drucker-Prager, Bresler-Pister,
Willam-Warnke and Kupfer-Hilsdorf-Rusch. This study is
based on the criteria of Méhr-Coulomb and Kupfer-Hilsdorf-
Rusch.

The fracture mechanism of concrete is highly influenced by
the bond strength of the interface between the aggregate and
mortar, and the tensile strength of the mortar. The
determination of its magnitude is based on the measurement of
their fracture parameters such as the fracture energy and
toughness. Fig. 1 shows the visualization of crack propagation
based on the approach of Hillerborg et al. [5] and Bazant and
Oh [10].

crack length
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T
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Figure 1. Crack propagation process in concrete



Although it is generally assumed that the stress-strain
behavior of plain concrete in tension is linear, as early as in
1968 it was shown that the behavior is highly non-linear, and
that a post-peak curve exist. The assumption of linearity is thus
incorrect and will lead to a deviation in the outcome of
advanced stress analysis in concrete. This study is aimed to
construct a mathematical model based on the finite element
analysis (FEA) that can generate the stress-strain fracture
behavior of plain concrete up till failure. A program written in
the Visual Basic (Microsoft VB) language was constructed,
generating the load-displacement response of a plain concrete
structure under pure bending. This load-displacement response
was validated by identical laboratory tested specimens, having
the exact same material properties and geometric dimensions.

The test model is a plain concrete beam sized 100 x 176
mm with a length of 1 meter. The beam is loaded
longitudinally with a two-point loading system 640 mm apart
to ensure a pure bending behavior. The beam was simply
supported and supports were located at a distance of 40 mm
from the beam end (Fig. 2).

Figure 2. Beam fracture testing at the laboratory

As the developed FEM program was proven to be accurate
and correct, it further served as a versatile tool to obtain the
concrete fracture versus compression strength relationship (fyz
- ') for a range of cylindrical compression strengths f'c. The
acquired program was also used to evaluate the exactitude of
the both failure criteria under consideration.

II.  CONCRETE BEHAVIOR AND THE FAILURE CRITERIA

A.  Material Behavior

Since the non-linear FEA is based on the adjustment of the
stiffness matrix, the material matrix [C] is up-dated as a
function of increasing load. Since tensile behavior is highly
sensitive, assuming an isotropic behavior resulted in a
substantial divergence from the actual test results. The
orthotropic approach therefore offers a more accurate
approximation to represent the material under bi-axial stresses.
The material constitutive matrix as proposed by Chen and
Saleeb [1] was then incorporated into the model. The
formulations of which is as following:
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E; and E, are respectively the modulus of elasticity in the
major and minor principal strain direction for a given Gauss
point under consideration. This model has the advantage that
post peak behavior can be accommodated, since the model
facilitates a negative stiffness modulus. This characteristic is
particularly useful when the tangent stiffness, rather than the
secant stiffness method is accessed. The lower-right-hand term
of the matrix represents the shear behavior which is, in lieu of
the lack in experimental evident, obtained such that the 1/G
factor remains invariant with respect to the rotation of
coordinate axes 0. The material matrix [C] is transformed to the
global coordinate system for stiffness matrix assembling
purpose, using a transformation matrix.

The initial tangent stiffness E, is calculated from the first
derivative of the material stress-strain diagram in uni-axial

compression, E, = % for ¢ =0. At early loading stages the

material is considered as isotropic, since E; = E, = E,. At
advanced loading stages, non-linearity is introduced by the use
of a non-linearity index f (Ottosen, [8]). The values for £ and v
are expressed as a function of the actual state and level of strain
and stress.

The stress-strain relationship of the material is based on the
CEB-FIB 2010 Code [2] for programming purposes (Fig. 3).
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Figure 3. Stress - strain constitutive relationship

B. Failure Criteria

The concrete is evaluated based on the state of principal
stresses and strains at Gauss points. Two criteria are
considered, the Kupfer-Hilsdorf-Rusch’s [7] failure envelope
and the Mohr-Coulomb failure criteria.
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In the Kupfer-Hilsdorf-Rusch failure envelope (Fig. 4)
crushing will occur in the third quadrant, when all principal
stresses are in compression. The first quadrant is fracture due
to tension, while the remaining quadrants characterize the
tension-compression failure. In this area the principal tensile
strain will initiate cracking of the material, and at further
stages, the material in compression will undergo a strain
increase, terminating in crushing. This approach is adopted by
the CEB-FIB 2008 Code [9]. Fracture of a Gauss point under a
certain loading increment, will influence the stiffness of its
element through the [C] matrix, and a reduction in the
structural stiffness matrix will be resulted. Progressive loading
will lead to failure of one or more Gauss point up till collapse
of the element as a whole.

The compression-tension bi-axial condition is the most
sensitive in the analysis. Due to the shape of the failure
envelope, cracking in the principal tensile direction is initiated
at levels lower than the tensile strength. Cracking of concrete in
the principal tensile direction under combined tensile and
compression strains, becomes the most prominent failure
mode.
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Figure 4. Kupfer-Hilsdorf-Rusch failure envelope

Within the limits of the envelope, the assumption that the
material behavior is isotropic can still be sustained, especially
since stress and strain levels in this region are very low. The
isotropic constitutive material model with the initial tangent
stiffness modulus E,, therefore gives a good representation to
the actual behavior. When cracks start to propagate, this occurs
as soon as the bi-axial stress combination exceeds the failure
envelope boundaries, the orthotropic model is accessed. The
major principal tensile strain ¢; has a positive sign convention,
and the minor principal strain &, has a negative sign. The
concrete in the direction of the compression strain can sustain a
much higher stress level. When stress levels increase, the
compression boundaries will be exceeded, and concrete in the
principal compression strain direction starts to fail due to
crushing of the material.

Méhr-Coulomb failure criterion was formally developed to
explain the brittle fracture of rocks, but was proven to be
ultimately suitable to picture the failure boundaries of concrete.
Coulomb (1736-1806) found a criterion that forms the
boundary for the states of stress at which a given rock under
loading is at the verge of failure. More in-depth details can be
found in the reference by Fossen [3]. The stresses at this state

are called the critical stresses. Three centuries later Mohr
introduces the circles in the Méhr-space, the Coulomb criterion
could now be easily interpreted as a straight line in this space
(Fig. 5). The formulation of the Méhr-Coulomb failure criteria
is written as:

[Cl=C+a,tang = C+a,u 3)

as
Mohr-Coulomb e
criterion 2

compressidg
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Figure 5. Méhr-Coulomb failure envelope

Where o, and o, are the critical normal and shear stresses
respectively, and ¢ is the angle of internal friction.

This study attempts to compare the effectiveness and
accuracy of the both failure envelopes in predicting the fracture
behavior of concrete. The principal stresses at each loading
stages were analyzed based on the two criteria, and the
resulting strain levels were used to adjust the material stiffness
matrix [C] for the next loading increment.

III. PROGRAMMING AND VALIDATION

A. Non-linear FEM Program

The Non-linear Finite Element program is constructed as a
Main Program and multiple subroutines. The Main Program
operates the analysis of the displacement due to incremental
loading; calculates the stresses and strains at Gauss points,
performs the required matrix calculations for the Finite
Element analysis, and produces the load-displacement data of
the structure, at every convergent loading stage. The program
also enables visual displaying of the failed Gauss points (Fig.
6).
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Figure 6. Program main-window

The subroutines are: the subroutine that handles the
material non-linear behavior and failure analysis based on the
failure criteria, the subroutine that operates geometric



parameters and boundary conditions and shear deformation,
and the subroutine for the non-linear arc-length iterations. The
program accommodates various options and is design in
standard Visual Basic Window format.

The load-displacement response is presented graphically
(Fig. 7) and can be exported to spreadsheet format.

Force vs Displacement
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Figure 7. Program out-put window

The basic isoparametric quadrilateral element, having two
by two Gauss points, was chosen. Upon reaching failure of
any particular Gauss point, the material stiffness matrix [C]
for this point is set to a very small value, approaching zero.
However, the corresponding nodes of this element remain in
the structural matrix, since the other surrounding Gauss points
will contribute to the stiffness matrix of that specific element.
Upon loading increase, the number of failed Gauss points will
accumulate. The operation of the structural stiffness matrix,
however, will still be operable due to the assignment of a very
small value for the stiffness modulus at failure, to ensure a
non-zero determinant (Han and Purnomo, [4]). The model is
constructed two-dimensional.

The failed Gauss point propagation will give a picture of
the element state, when loading progresses. When all four
Gauss point within a particular element exceeded the failure
envelope, the element has failed. This element will physically
leave a gap in the structure. The subroutine memorizes the
Gauss points that failed and send an indicator to the Main
Program. With finer meshing, the failure progress of Gauss
points and elements can be observed closely. To produce a
smooth load-displacement curve, the load increments should
be adjusted to the current stiffness of the structure.

B.  Experimental Testing

The compression behavior of the concrete was obtained
from cylindrical specimens size 150 x 300 mm in accordance
to ASTM C469 / C469M - 10 Standard Test Method for Static
Modulus of Elasticity and Poisson's Ratio of Concrete in
Compression. All specimens were casted and vibrated to
obtain a good compression density. The specimens were de-
molded after 24 hours and submerged in water to cure. The
cylinders were tested at the age of 28 days.

To measure the Poisson’s Ratio of concrete, cross plane lead
wire - integrated polyester resin-backing, type PLC-60-11
strain gauges with a length and width of 60 by 1 mm were
used. The gauge has a backing length and width of 74 mm and

a resistance of 120 Q. The two gauges were placed
perpendicular to each other at the centre of the specimen.

The modulus of elasticity was measured using a load cell
type CLC-500 kNA with a capacity of 500 kN and a sensitivity
of 1.5mv/v and three LVDT’s type CDP-25M having a rated
output of 10000x10° strain and a sensitivity of 2000x10°
strain/mm. All strain gauges, LVDT’s and the load cell were
connected to the data logger type TDS-303. Incremental load
and displacements were measured using the TDS-7130
software. All measuring equipments are products of 7okyo
Sokki Kenkyujo, Japan.

The stress—strain behavior of specimens was recorded by
the Hung Ta, HT-8391PC Computer-Controlled Servo
Hydraulic compression apparatus with a capacity of 2000 kN.
To diminish the restraining effect between the compression
apparatus loading plates and the specimens, a double layer of
100 um Teflon (PFTE or polytetrafluorethylene) separated
with a layer of bearing greased, was placed on the top and
bottom of the cylinders. The loading rate was set to 0.25
MPa/s in accordance to ASTM 339/ C 39M-05. The strain
response of the Teflon sheets were measured separately, and
used to correct the strain response of concrete specimens.

The test specimens for validating purpose, were
constructed to compare the load-displacement curves obtained
from these specimens, to the FEM results. These specimens
are identical to the structural model in the finite element
analysis. The mold was constructed from teak wood (jati) and
made leak proof using a sealant at the seams. Further, the cast
was covered with a thin layer of bearing grease to ensure
waterproofing and to prevent the concrete from attaching to
the mold. The specimens were taken out of the mold after 24
hours, and cured by submerging in water.

Before testing, the specimens were dried and leveled to
obtain a smooth, flat and leveled surface using a spirit/bubble
level. The load — displacement response was recorded by the
Hung Ta, HT-8391PC Computer-Controlled Servo Hydraulic
compression apparatus (Fig. 8). Two identical specimens Al
and A2 were prepared and tested in accordance to ASTM C78-
02. The material properties and dimensions and boundary
conditions were used as input for the FEM.

Hydraulic Jack
Load Ce
Transfor Beam

VDT

Spaciman Test
6
A

40 640 B40 640 40

Figure 8. Test set-up for validation specimens Al and A2
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C. Validation

The developed FEM Program is validated to ensure its
accuracy and correctness. Whenever possible, the subroutine
programs are validated indirectly by evaluation of the results to
the outcome of spreadsheet calculation. This technique was
made possible since the algorithms for the material are
mathematically straight forward and can be hand-calculated
with the help of spreadsheets. The subroutines were proven to
be accurate even to the tenth digit. However, due to its
complexity, direct calculation of stresses and strains at Gauss
point were not only time consuming but also very difficult.
Therefore, the comparison technique to validate the Main
Program is chosen. For this purpose, load-displacement curves
generated by the FEM program with identical structural
dimension and material properties are compared to their
laboratory experimental specimens. The validation process is
conducted in stages, to avoid accumulation of errors in the
algorithms and programming (Indriyanto and Pamungkas, [6]).

Fig. 9a and 9b show the proposed FE model, and its
complimentary tested specimen. The tested concrete has a
cylindrical compressive strength of 38 MPa.
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a. FE beam under incremental loading

b. Laboratory specimen after testing

Figure 9. Validation specimen and FE model

The load-displacement curves produced by the FEM
program using the two different failure criteria are compared to
the experimental data, the result of which can be seen in Fig.
10.

500 ¢

%

400 a

Load (kN)
]
S
o

3.00 F

'!_UU U.
K e Mohr-Coulomb Criteria
Lo0 b y —e— Kupfer-Hilsdorf-Rusch Criteria
Specimen Al
000 3 ° .Spcc.-'mcm‘ll.? )

0.00 0.50 1.00 1.50
Dispacement (mm)

Figure 10. Load-displacement response in fracture

The recorded data from the experimental beams Al and A2
are scattered in the close vicinity of the load-displacement
curves generated by the program. It is shown that the
developed program can accurately predict the fracture response
of plain concrete. The experimental data are closely
approached by the response as predicted by the model. It is also
demonstrated that the Mohr-Coulomb and the Kupfer-Hilsdorf-
Rusch failure envelopes yield in an identical curves. This
proved that both the criteria are highly suitable to model the
fracture behavior of concrete.

Since the program can also trace the crack propagation of
nodes, the cracking pattern predicted by the FEM was
compared to the resulting crack formation of the laboratory
tested beams. It was found that cracking started at the most
extreme fibers in tension, and procreated along a line
perpendicular to the principal tensile stresses (Fig. 11).
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Figure 11. Cracking propagation comparisson

IV. FRACTURE STRENGTH

The FE program was further utilized to analyze the
modulus of rupture (fyz) as a function of the cylindrical
compression strength (f'c). For this purpose the program was
run for a set of compression concrete strengths ranging from
20 MPa to 100 MPa. The ultimate load obtained by the
program was converted to the modulus of rupture by simple
mechanical analysis, and the data recorded (Fig. 12).
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Figure 12. Modulus of rupture fy relationship to f’c
It can be seen that the modulus of rupture increases as a

function of the concrete compression strength. The
relationship is closely represented by quadratic function to the
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second degree. It is interesting to see, however, that for higher
strength concretes, the Kupfer-Hilsdorf-Rusch failure envelope
predicts a slightly higher value, when compared to the Méhr-
Coulomb failure criteria. The reason for this could be
originated from the fact that the Kupfer-Hilsdorf-Rusch
envelope accommodates the confinement under bi-axial
compression up till a 20%. For high strength concrete, this
could substantially increase the point at which the beam starts
to fail, since the beam part in compression itself will provide
additional confinement to the structure.

Evaluating the program, it can be seen that the post-peak
of the load-displacement curve was not constructed. This is
caused due to the use of a uniform load increment, leading to a
less accurate outcome of the ultimate load. Reaching the
ultimate point, the increment should be refined as a function of
the deceasing structural stiffness, and additional algorithms to
construct the post-peak behavior, should be implemented.
However, the work conducted at The Structural and Material
Laboratory of The Diponegoro University, in Semarang
resulted in a sophisticated tool that can be expanded and will
serve as a useful instrument for predicting the fracture
behavior of concrete.
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