
C-Sheep: Controlling Entities in a 3D Virtual World as a Tool

for Computer Science Education

Eike Falk Anderson and Leigh McLoughlin

The National Centre for Computer Animation

Bournemouth University, Talbot Campus

Fern Barrow, Poole, Dorset BH12 5BB, UK

The National Centre for

Computer Animation

ABSTRACT

One of the challenges in teaching computer science in general and computer
programming in particular is to maintain the interest of students, who often
perceive the subject as difficult and tedious. To this end, we introduce C-Sheep,
a mini-language-like system for computer science education, using a state of the
art rendering engine, usually found in entertainment systems. The intention is
to motivate students to spend more time programming, which can be achieved
by providing an enjoyable experience. In the C-Sheep system this is aided by the
visual gimmickry of modern computer games, which allows programs to provide
instant visualisation of algorithms. This visual feedback is invaluable to the un-
derstanding of how the algorithm works, and - if there are unintended results -
how errors in the program can be debugged.

The C-Sheep System

Figure 1: Sheep entity on ”The Meadow”

Introduction and Problem

Recent studies suggest that computer science education is fast approaching

a crisis - enrolment numbers to degree courses have fallen to extremely low

levels [4]. One of the reasons why that may be is a general misconception of

computer science and programming among prospective students. A lack of

knowledge of the subject area may well be the underlying reason for the bias

against computer science. Computer science and related subjects are wrongly

conceived as difficult and boring (non-creative) and computer programming

especially is often regarded as a monotonous and uninteresting task. Computer

programming is an essential skill for software developers and as such is always

an integral part of every computer science curriculum. However, even if

students are pursuing a computer science related degree, it can be very difficult

to interest them in the act of computer programming, the writing of software,

itself.

It is generally understood that programming cannot be learned from reading

books on the subject but only by practicing it, yet therein lies the problem:

”how can students be motivated to practice programming?”

Rationale for Educational Programming Languages

It has been suggested that one way to achieve a greater uptake of computer
science would be to make programming ”more fun” [4]. Using a mini-language
[3] as the introductory programming language partially fulfils this requirement.
These mini-languages usually provide a task-specific set of instructions and (sen-
sor) queries which allow users to take control of virtual entities, acting within a
micro world (see figure 1). This micro world provides a graphical representation
of the algorithms used in the programs controlling the virtual entities. Their po-
sition and orientation within the virtual world visualise the current state of the
program which is especially useful as many problems faced by novice program-
mers can possibly be traced back to an inadequate understanding of program
state [6].
The mini-language system ”Karel the Robot” for example [9] (using a ’toy-
language’ based on the syntax of the Pascal programming language) is one
of the best known computer science teaching tools and has had considerable
success. The aim for all of these systems is to motivate students to take up
programming and to provide them with an enjoyable experience at the same
time. This is achieved by providing a game-like setting for the task of computer
programming.
Until now, most mini-language systems used in teaching have employed a strictly
2D top-down representation, some use pseudo 3D graphics (using isometric pro-
jection) with - surprisingly - only a few examples, such as Alice [5], using true
3D graphics. Dann et al state that a 3D representation of the program state is
”intrinsic in the natural way to view the data itself” [6]. It is therefore especially
important to aim for a 3D game-like representation in mini-languages to interest
the ”Plug&Play generation” in computer programming.

C-Sheep Programming Language

The C-Sheep programming language is a subset of the ANSI C programming
language [7] (see figure 2). Apart from just being a tool for learning the basics
of the C programming language, C-Sheep implements the C control structures
that are required for teaching the basic computer science principles encountered
in structured programming. These control structures are the (unconditional) se-
quence, conditional statements and loops [2]. C-Sheep also allows the definition
of sub-routines (functions) which can be called recursively. Unlike other teaching
languages which have minimal syntax and which are variable free to provide an
environment with minimal complexity, C-Sheep allows the declaration and use
of variables.
To access library functions, C-Sheep programs must include header files (sup-
posedly) containing function prototypes. This is done only to introduce novice
programmers to the concept of code modularisation and libraries, while internally
the C-Sheep library functions are actually intrinsic to the system. The C-Sheep
standard libraries (see table 1) provide a number of general purpose functions,
as well as functions for controlling sheep entities in the virtual environment.
Some of the latter allow the querying of changes in the virtual world (e.g. the
current state of the weather - see figure 3). These changes can be instigated
interactively by the user (while programs are running).
To execute native C-Sheep programs they must be compiled with the C-Sheep
compiler which translates from the C-Sheep subset of the C programming lan-
guage to virtual machine bytecode.

C-Sheep Standard Libraries
stdlib.h (subset of ANSI C stdlib.h)

abort
exit
rand

math.h (subset of ANSI C math.h)
sqrt

sheep.h (sheep entity control functions)
pause
initialise
step
backstep
turn left
turn right
blocked
found
query

Table 1: Functions of the C-Sheep standard libraries

C-Sheep Syntax

Figure 2: Syntax Diagrams for the C-Sheep Programming Language

program:

preprocessor
directive NEWLINE

variable
declaration

function
declaration

preprocessor-directive:

#include < Filename >

#define Ident Number

variable-declaration:

int

float

Ident

= Number

,Ident

=Number

;

function-declaration:

int

float

void

Ident (parameters) block

parameters:

void

int

float

Ident

,int

float

Ident

block:

{

variable
declaration

statement

return
statement

}

statement:

Ident = condition

call

;

alternative

loop

block

return-statement:

return

condition

call

;

call:

Ident (

condition

,condition

)

alternative:

if (condition) statement

else statement

loop:

while (condition) statement

do statement while (condition) ;

condition:

relation

&&

||

relation

relation:

!

expression

==

!=

<

>

<=

>=

!

expression

expression:

+

-

term

+

-

term

term:

factor

*

/

%

factor

factor:

call

Ident

Number

(condition)

”The Meadow” Virtual Environment

”The Meadow” virtual environment is the virtual world in which entities con-
trolled by C-Sheep programs exist. It is based on our proprietary ”Crossbow”
game engine which incorporates a virtual machine for executing C-Sheep pro-
grams.
The Crossbow Engine is a compact game engine designed specifically for ”The
Meadow”, yet it is flexible in design and offers a number of features common to
more complex engines [8].
The Crossbow Virtual Machine is a module of the Crossbow Engine. It is an
improvement on the ZBL/0 virtual machine [1] The instructions of the virtual
machine include the use of pointers as well as facilities for the creation of aggre-
gate data types (arrays and record structures). The virtual machine is targetable
by compilers for different languages, i.e. a Java based J-Sheep or Pascal based
P-Sheep could be created with relatively little effort.

Weather in ”The Meadow”

Figure 3: ”The Meadow” is alive with the sound of sheep

Lua

C-Sheep C Library

As recommended by Untch [10], C-Sheep provides a counterpart library for C,
mirroring the C-Sheep library functions of the virtual machine. This allows C-
Sheep programs to be compiled into an executable using a normal off-the-shelf
C/C++ compiler. This executable can then be run from within the native
working environment of the operating system. The purpose of this library is
to simplify the migration from the educational mini-language to real-world sys-
tems by allowing novice programmers to make an easy transition from using the
C-Sheep system to using the C programming language.

Sample C-Sheep Program

#include <sheep.h>

#define FALSE 0
#define TRUE 1

void turn round(void)
{

turn left();
turn left();

}

void go(void)
{

if(found(BALL)==FALSE)
{

if(blocked(RIGHT)==TRUE)
{

if(blocked(FRONT)==FALSE)
{

step();
go();
step();

}
else

{
turn left();
go();
turn right();

}
}
else

{
turn right();
step();
go();
step();
turn left();

}
}
else

{
turn round();

}
}

int main(void)
{

initialise(43,11); /* start at entrance to maze */
go();
/* end the program when the original position has been reached */
turn round();
return 0;

}

A sheep running this program will traverse a maze, looking for a ball. Once a ball is found,
the sheep will stop looking and retrace its steps until it reaches its starting point (achieved by
recursion). The strategy used for traversing the maze is to always follow the right wall.

Summary and Future Work

We have presented C-Sheep, a system for the teaching of computer science
principles using a subset of the C programming language within a 3D computer
game-like virtual environment. We believe that our system is suitable for the
task it was designed for, but conclusive proof will only be available after we have
collected data from a trial run of the C-sheep system. For this we are currently
planning to introduce the C-Sheep system as a teaching tool for the first term of
the first year computer programming unit at the National Centre for Computer
Animation (Bournemouth University).

Acknowledgements

First and foremost we would like to express our gratitude towards our supervisor,

Prof. Peter Comninos. Without his support this project would not have been

possible. We would also like to thank our colleagues, especially Olusola Aina,

for their comments and suggestions that have contributed to this project.

Finally we need to mention Dominic Halford. It is his ”fault” that our programs

control sheep instead of other animals.

Lua Logo design by Alexandre Nakonechnyj (nako@openlink.com.br).

No Sheep were harmed during the creation of this poster.

References

[1] E. F. Anderson. A npc behaviour definition system for use by programmers and
designers. In Proceedings of CGAIDE 2004, pages 203–207, 2004.

[2] C. Böhm and G. Jacopini. Flow diagrams, turing machines and languages with
only two formation rules. Communications of the ACM, 9(5):366–371, 1966.

[3] P. Brusilovsky, E. Calabrese, J. Hvorecky, A. Kouchnirenko, and P. Miller. Mini-
languages: A way to learn programming principles. Education and Information
Technologies, 2(1):65–83, 1997.

[4] L. Carter. Why students with an apparent aptitude for computer science don’t
choose to major in computer science. ACM SIGCSE Bulletin, 38(1):27–31, 2006.

[5] S. Cooper, W. Dann, and R. Pausch. Alice: A 3-d tool for introductory pro-
gramming concepts. Journal of Computing Sciences in Colleges, 15(5):107–116,
2000.

[6] W. Dann, S. Cooper, and R. Pausch. Making the connection: Programming with
animated small world. In Proceedings of the 5th annual SIGCSE/SIGCUE ITiCSE
conference on Innovation and technology in computer science education, pages
41–44, 2000.

[7] B. W. Kerninghan and D. M. Ritchie. The C Programming Language. Prentice
Hall, 1988.

[8] L. McLoughlin and E. F. Anderson. I see sheep: A practical application of game
rendering techniques for computer science education. In Poster at Future Play,
2006.

[9] R. E. Pattis. Karel the Robot, a Gentle Introduction to the Art of Programming.
John Wiley and Sons, 1981.

[10] R. H. Untch. Teaching programming using the karel the robot
paradigm realized with a conventional language. On-line at:
http://www.mtsu.edu/˜untch/karel/karel90.pdf, 1990.

URL: http://ncca.bournemouth.ac.uk/eanderson/C-Sheep/

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bournemouth University Research Online

https://core.ac.uk/display/76937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

