PROCEEDING BOOK I

bio energy chemicals materials BIOENCHE 2013

 International Seminar on Chemical Engineering In conjunction with
 Seminar Teknik Kimia Soehadi Reksowardojo (STKSR)2013

"Biorenewable Resources Utilization for Energy, Chemicals, and Materials"

Bandung, Indonesia 10-11 October 2013

ISSN-2354-5917

Organized by : Department of Chemical Engineering Faculty of Industrial Technology Institut Teknologi Bandung

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

PREFACE

This BioEnChe-STKSR2013 proceeding contains of the collections of research works presented in International Conference of Bio Energy Chemicals and Materials 2013 (BioEnChe 2013) that was held in Institut Teknologi Bandung. The conference is in conjunction with annual Chemical Engineering Seminar of Soehadi Reksowardjojo (Seminar Teknik Kimia Soehadi Reksowardojo, STKSR 2013).

The international conference provides an opportunity to publicize research works which done or in ongoing ones in many research institution. As the use of fossil base energy and other derivate become harmful for human life, the uses of renewable resource become more interest in our daily life. Therefore, the science and technology for utilization of those resources become enhanced to get more effective and efficient process to produce their products.

We have expectation in this occasion is not only a good place to exchange and discuss the progress of their research in bioenergy, biochemical and biomaterials, but also a venue to collect and to disseminate the most updated technologies and the researches of regional issue and public interest in order to contribute to the community and to draw support from the industrial and the governmental sectors. As this conference has main theme of biorenewable resources utilization for bioenergy, biochemical and material, hopefully this conference will contribute to enhance the utilization of renewable resources for many uses.

We would like to grateful to all participants and sponsors who has contributed to the conference, to the organizing committee for their commitment in their busy days so that the conference is possible to be held and conducted successfully.

Thank you,

moleraro

Dr. Tirto Prakoso, MEng. Conference Chairman

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

TABLE OF CONTENT

PREFACEi
TABLE OF CONTENTSii
COMMITTEEx
PROGRAMxi
KEYNOTE PRESENTATION1
• The Bioethanol Perspective as Fuel and its Production from the Lignocellulosic Biomass
by Hyung Keun Song1
The Challenges of Bioenergy Development in Indonesia
by Tatang H. Soerawidjaja11
Combustion Characteristic of Envo-Diesel in Oil Burner
by Prof. Dr. Mohammad Nazri Bin Mohd Jaafar17
• Innovative Japanese Waste-to-Green Product Technologies: Viable Options for Fuel Cost Reduction and Sustainable Waste Management
by Prof. Kunio Yoshikawa32
QUESTION AND ANSWER47
PAPERS49

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

BOOK I

BIODIESEL

CODE	TITLE	AUTHORS	
BD.03	The Effect of Pre-Washing Step Using CaO in Biodiesel Dry Washing using Rice Husk Ash Adsorbent	Ade Kurniawan, Indra Perdana, Arief Budiman	51
BD.04	Kinetic Study Of Ultrasound Assisted Transesterification From Waste Cooking Oil	Haris Nu'man Aulia, Widayat, Setia Budi Sasongko	63
BD.05	Synthesis of biodiesel using carbon based-solid catalyst	Febri Raharningrum, Yano Suryapradana, Arif Hidayat, Arief Budiman	77
BD.07	Biodiesel from Low-cost Feedstock and Renewable Resource	Putri Restu Dewati, Dyah Retno Sawitri, Ade Kurniawan, Arief Budiman	85
BD.09	A Kinetics Study of Fatty Acid Esterification over Sulfated Zeolite-Zirconium Catalyst for Biodiesel Production	Ratna Dewi Kusumaningtyas, Masduki, Arif Hidayat, Rochmadi, Suryo Purwono, Arief Budiman	97
BD.13	Kinetics of Palm Oil Transesterificataion Using Double Promoted Catalyst CaO/KI/g- Al2O3 in Refluxed Methanol	Nyoman Puspa Asri, Kusno Budikaryono, Suprapto, Achmad Roesyadi	113
BD.17	Studies of FAME Production and Fractionation from Coconut Oil	J.P. Sitompul, R. Muhtadi, Rinjani, H. Shudri, D. Lestari, Dinarti, R.W. Kurnianto, H.W. Lee, T.H. Soerawidjaja	129
BD.19	Utilization of Palm Oil Mill Effluent for <i>Chlorella vulgaris</i> Cultivation Medium under Mixotrophic Condition as Feedstock of Biofuel	M. M. Azimatun-Nur, and H. Hadiyanto	141
BD.20	Biodiesel Production From Rubber Seeds (Hevea brasiliensis) with In Situ and Acid Catalyst Method by Using Ultrasonic Assisted	Widayat, Agam Duma Kalista Wibowo, M Sigit Samsena, Louis Adi Wiguno	153
BD.21	EN14105 Modification Mothod for Determination of Free Glycerol and Mono-Di-Triglyceride Content in Biodiesel	Joelianingsih, Imansyah Indra, and Is Sulistyati	169

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

CODE	TITLE	AUTHORS	
BD.23	Experiment on Hydroxy (HHO) Gas Addition on Performance and Exhaust Gas Emissions of a Compression Ignition Engine Fuelled with Rubber Seed Methyl Ester	Iman K. Reksowardojo, Ratnak Sok, Tirto Prakoso, Toshio Shudo, Wiranto Arismunandar, Sovanna Pan	181

BIOETHANOL

CODE	TITLE	AUTHORS	
BE.02	Bioethanol Production Comparison of Elephant Grass and Liquid Waste Plant Wheat Boga Sari	Ni Ketut Sari, C. Pujiastuti, I Nyoman Abdi	191
BEP.01	Analysis on Chemical Components of Woods to Predict Ethanol Production Values	Wahyu Dwianto, Fitria, Ika Wahyuni, Danang Sudarwoko Adi, Rumi Kaida, Takahisa Hayashi	209

BIOMASS GASIFICATION

CODE	TITLE	AUTHORS	
BMG.01/ BMGP.01	IMPLEMENTATION OF BIOMASS GASIFICATION TECHNOLOGY IN NATURAL RUBBER PROCESSING SECTOR	Didin Suwardin	217
BMG.04	Design, Simulation and Experiments of Circulating Fluidized Bed Reactor for Biomass Gasification	Dr. Haifa Wahyu, Ir. Imam Djunaedi, Ir. M. Affendi, Ir. Sugiyatno, MT	227
BMG.05	Scaling-up and Implementation of Circulating Fluidized Bed Gasifier for Biomass Gasification in Siak Region	Dr. Haifa Wahyu	243

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

BIOHYDROGEN

CODE	TITLE	AUTHORS	
BH.01	Effect of Agitation Condition on BioHydrogen Production in Stirred Tank Reactor	Tantular Nurtono, Christina Wahyu Kartikowati, Wa Ode Cakranirwana, Widiyastuti, Sugeng Winardi	255
BH.02	Dynamic Separation of Hydrogen from Producer Gas Using Pd-Ag Membrane	Yogi Wibisono Budhi, Rusdi, Irwan Noezar, Allan A.B. Padama, and Hideaki Kasai	265

BIOHYROCARBON

CODE	TITLE	AUTHORS	
BHC.02	Synthesis Bioaviation Turbine Jet Fuel from Ozonolysis of Jathropha curcas Oil Methyl Ester	Irwan Kurnia, and Tirto Prakoso	281
BHC.03	Electrochemical Hydrogenation of Terpene Hydrocarbons	Tedi Hudaya, Antonius Rionardi, Tatang Hernas Soerawidjaja	293

BIOMASS TO LIQUIFACTION

CODE	TITLE	AUTHORS	
BL.02	Preparation of fermentable sugars from coconut coir dust lignocelluloses by pretreatment of ionic liquid 1,3- methylmethylimidazolium dimethyl phosphate	Hanny F. Sangian, Junaidy Kristian, Sukma Rahma, Silvya Yusnica Agnesty, Setyo Gunawan, Arief Widjaja	303
BL.03	Degradation of Chitosan by Ultrasonication and Hydrothermal in The Presence of Acetic Acid as Degradation Agent	S.R.Juliastuti, E.Savitri, F.Kurniawansyah, Sumarno and A. Roesyadi	325
BL.04	Effect of oxalic acid catalyst on hydrolysis of cellulose in NaCl ionic liquid	N.E. Mayangsari and Sumarno	337
BL.05	PRETREATMENT OF SEAWEED WASTE BIOMASS USING IONIC LIQUIDS TO ENHANCE ENZYMATIC SACCHARIFICATION	Uju, Masahiro Goto and Noriho Kamiya	347

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

BOOK II

CODE	TITLE	AUTHORS	
BM.04	Microbial Nanomagnetic Particle Production: Effects of Carbon and Iron Sources	M.T.A.P. Kresnowati, Andy Wiranata Wijaya, and Andry	353
BM.05	Production of Natural Composite with Alkaline Treatment Using Empty Fruit Bunch Ash Extract Solution	Helena Rouhillahi, Zulfansyah, Hari Rionaldo, Warman Fatra	363
BM.06	Binderless Molded Pulp from Cornstalk as Degradable Packaging	Muhammad Shiddiq Abdul Aziz, Zulfansyah, Hari Rionaldo, Warman Fatra	373
BM.07	Alkaline Treatment of Oil Palm Frond Fiber by Using Extract of Oil Palm Empty Fruit Bunch Ash for Use in Natural Fiber Reinforced Composite	Randi Sanjaya, Zulfansyah, Hari Rionaldo, Warman Fatra	391
BM.08	The crystallinity behaviour of composite polylactid acid based reinforced by bamboo fiber which is treated using different chemical treatment	Laili Novita Sari, Lisman Suryanegara, Mochamad Chalid	401
BM.09	The Effect of Diethylene Glycol Dibenzoate and Triacetine to The Thermal Properties and Crystallinity of Polylactic Acid	Lisman Suryanegara, Adam Febriyanto Nugraha, Mochamad Chalid	411
BM.10	ACROLEIN SYNTHESIS FROM GLYCEROL	Akhmad Zainal Abidin, Rani Guslianti Afandi	425
BM.11	Utilization of Cassava Starch in Manufacturing of Superabsorbent Polymer Composite to Reduce Cost and Time of Production	T. Puspasari and A.Z. Abidin	435
BM.12	Direct Polycondensation of Biodegradable PLA Synthesis over Al2O3 and ZnO Catalyst	H. W. Lee, R. Insyani, D. Prasetyo, H. Prajitno, C.B. Rasrendra, J. P. Sitompul	445
BMP.01	Preparation of Natural Rubber / Ionic Liquid Composites for Polymer Electrolytes	Edy Marwanta and Ahmad Fauzantoro	455

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

BIOCHI SIMULA	EMICAL PROCESS ATION		
CODE	TITLE	AUTHORS	
BPS.02	Process Modeling of b- galactosidase Enzyme Plant by <i>Kluyveromyces Lactis</i> Using Superpro Designer	Enrico Gianino, Tan Mellisa, Andry	463
BPS.03	Kinetic Modeling of Volatile Fatty Acids Feeding by Batch Culture on Polyhydroxyalkanoate Production	Martha Aznury, Azis Trianto, Tjandra Setiadi, Adi Pancoro,	475
BPS.04	Determination of Model Kinetics for Forced Unsteady State Operation of Catalytic CH4 Oxidation	Mohammad Effendy, Yogi Wibisono Budhi, Yazid Bindar, Subagjo	491

BIOREFINERY

CODE	TITLE	AUTHORS	
BR.02	The Effect of Carbon dioxide Gas As Blowing Agent in Polyurethane Foam Based Castor Oil	Sumarno, S. Anisah, Y.M. Sakti and P.N. Trisanti	509
BR.03	Microbial Production of Xylitol from Palm Oil Empty Fruit Bunches: Effects of Innoculum Size and Initial pH	M.T.A.P. Kresnowati, Tjandra Setiadi, Tan Mellisa Tantra, and David	517
BR.07/ BRP.02	SYNTHESIS OF BIOSURFACTANTS BY Pseudomonas aeruginosa USING OZONIZED CHEESE WHEY FOR ENHANCED OIL RECOVERY	Miftahul Jannah, Misri Gozan, Cut Nanda Sari	529
BR.08/ BRP.03	Production of Biosurfactant from Pseudomonas aeruginosa using Ozonized Biodiesel Waste as Substrate for Enhanced Oil Recovery	Izzah Nur Fatimah, Misri Gozan, Abdul Haris	541
BRP.04	The Utilization of Sorghum Bagasse (Shorgum Bicolor) as Pulp and Paper Raw Materials Using Kraft Pulping	Widya Fatriasari, Supriyanto, Apri Heri Iswanto	553

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

FUEL CELL			
CODE	TITLE	AUTHORS	
FC.01	The Influence of Oxygen Flow Rate and Current Collector Types in the Hydrogen Fuell Cell Performance	Harita N Chamidy, Riniati	571
FC.03	Preparation of Mixed Matrix Polysulfone-Based Anion Exchange Membranes with Silica Loading	Khoiruddin, I. G. Wenten	583
FC.04	Characterization of Electrochemical Impedance Spectroscopy Approach Based on Equivalent Circuit for Molten Carbonate Fuel Cell (MCFC)	Rein Nasution and Hary Devianto	597
FC.05	Electrochemical Characterization Of Cathode For Molten Carbonate Fuel Cell (MCFC) Produced By Dry Casting	Hary Devianto Ph.D, Muhammad Ardian Nur, and Ribka Priscilla Sinaga	607
FC.06	Microbial Fuel Cell for Desalination Application without External Energy using Saccharomycess cerevisiae	Bagas Muhamad Kartiko, Tania Surya Utami, Albert Santoso, Dita Amalia Wijanarko	615
FCP.01	ACTIVE NATURAL ZEOLITE UTILIZATION FOR MICROBIAL FUEL CELL MEMBRANE MODIFICATION	Agusta Samodra Putra, Sri Handayani, Wahyudin, Ismojo	625
FCP.02	INFLUENCE OF CLAY/SULFONATED POLYETHER-ETHER KETONE AS POLYMER ELECTROLYTE MEMBRANE FOR MICROBIAL FUEL CELL	Sri Handayani, Wahyudin, Ismojo, Agusta Samodra Putra	631

OTHERS

CODE	TITLE	AUTHORS	
OT.03	Characterization of Sweet Potato Flour Dough and Its Baking Performances for Daily Bread Food	Yazid Bindar, Enriko P.T. Siregar dan Jhon P. S. L. S. Sinaga	641

CODE	TITLE	AUTHORS	
OT.04	Effectiveness of Tannin as Corrosion Inhibitor for Carbon Steel in Sulphuric Acid Solution	Fahmi Atriadi, Dr. Ir. Isdiriayani Nurdin	655
OT.06	The Effect of Preparation Method on the Inclusion of Ketoprofen- Cyclodextrin by Using Supercritical Fluid	Sumarno, P.N Trisanti, and R. Tetrisyanda	671
OT.07	Calcined Kaolin Phases as Precursor Synthesis NaY Zeolite	Endang Sri Rahayu, Subagjo, Tjokorde Walmiki Samadhi, Melia Laniwati Gunawan	679
OT.08	Evaluation of Flare Gas and Flue Gas Injection for EOR	Tjokorde Walmiki Samadhi, Stephanie L.U. Sutoko, Utjok W.R. Siagian	691
OT.11	Forced Unsteady State Operation of Catalytic CO Oxidation during Cold Start-up Period	Yogi Wibisono Budhi, Sri Baardianti A.M., Wiwin Lukman F., Subagjo	701
OT.14	Sol-Gel synthesis of Titanium Dioxide Nanoparticles	Bram Dwijaya, Yoshiaki Uchida, Egashira Yasuyuki, and Norikazu Nishiyama	715
OT.15	Synthesis and Characterization of Geopolymer from Paiton Fly Ash	Tjokorde Walmiki Samadhi, I Dewa Gede Arsa Putrawan, Nurhidayati Muan, and Pambudi P. Pratama	719
OT.16	Effect Of High Concentrated PEG Addition On PVC Ultrafiltration Membrane Performance	Ritha Yustiana & I Gede Wenten	729
OT.18	The Utilization of Mature Coconut Water for Packaged Drink Using Ultrafiltration Membrane	Dr. Lienda Aliwarga Handojo, Muhamad Faris Firmansyah, and Made Ian Maheswara Supriyatna	741
OT.20	Evaluation of Lean Gas Effect to Demethanizer Column Performance	Arfianto A, Devianto H, Sasongko D	757
OT.21	The Effect of High Additive Concentration to Membrane Performace During Peat Water Filtration	P.T.P. Aryanti, S.R. Joscarita, A. K. Wardani and I G. Wenten	773
OT.22	Energy Conservation by Optimization in PT Badak NGL CO2 Removal Plant	Mohammad Arief Setiawan, Akbar Surya Laksamana	787

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

COMMITTEE

Organizing committee:

Chairman	: Dr. Tirto Prakoso
Secretary	: Dr. MTAP Kresnowati
	Helen Julian ST,MT
Treasury	: Dr. Dendy Adityawarman
	Dr. Hary Devianto
Program and Papers	: Dr. Isdiriayani
	Dr. Dianika Lestari
	Dr. Ardiyan Harimawan
Information and Publication	: Dr. Antonius Indarto
	Dr. CB. Rasrendra
Logistic	: Dr. Johnner Sitompul
	Pri Januar Gusnawan, ST, MT

Steering Committee	International Advisory Committee:	
Prof. Dr. Herri Susanto	Prof. Dr. Herri Susanto (ITB)	
Dr. Tatang Hernas Soerawidjaja	Dr. Tatang Hernas Soerawidjaja (ITB)	
Dr. T.W. Samadhi	Dr. Dadan Kusdiana (Dir BioEnergi-ESDM)	
Dr. Yogi W. Budhi	Prof. Yoshikawa (TIT, Japan)	
Dr. Subagjo	Prof. Dr. Nazri (UTM, Malaysia)	
Dr. Irwan Noezar	Dr. Iman K Reksowardojo (ITB)	
	Prof. Dr. Erick Herres (Groningen)	

No Time Program Thread-or: 2013 Thread-or: 2013 Thread-or: 2013 Thread-or: 2013 Thread-or: 2013 Thread-or: 2013 1 1015-00: 2013 Registration 2 0800:00:416 Registration 3 0900:00:416 Regione Speech: Port. Hyung Kan Song - Korea Institut fur Mikrotechnik Mairz, Germany. 4 1004-10.10 Company Profile Presentation: Flash Presentation: The Roody (ITB). Inchonesia 7 1140-11.30 Lunch Break (ISHOMA) + Poster Flash Presentation: It 136-11.1 Roond IN 7 1140-11.30 Lunch Break (ISHOMA) + Poster Flash Presentation: It 136-11.1 Roond IN Roond IN 8 10045-11.30 Lunch Break (ISHOMA) + Poster Flash Presentation: It 136-11.1 Roond IN Roond IN 1130-11.41 Sonsort Roond IN Roond IN Roond IN 1130-11.41 Invited Speaker: Invited Speaker: Invited Speaker: Invited Speaker: 1130-11.41 Cortal Roond IN Roond IN Roond IN Roond IN 1143-1545 Fec.04 BD04 01.16 </th <th></th> <th></th> <th></th> <th></th> <th>PROGRAM</th> <th>ßRAM</th> <th></th> <th></th>					PROGRAM	ßRAM		
13 13 13 15 15 15 15 15 15 15 15 15 15								
13 Speech: Prof. Dr. Gunther Kolb - Institut fur Mikrotechnik Mairz, Germany eak Speech: Dr. Hyung Keun Song - Korea Institut fur Mikrotechnik Mairz, Germany eak Speech: Dr. Hyung Keun Song - Korea Institut of Korea Speech: Dr. Hyung Keun Song - Korea Institut of Korea Speech: Dr. Hyung Keun Song - Korea Institut of Korea Speech: Dr. Hyung Keun Song - Korea Institut of Korea Speech: Dr. Hyung Keun Song - Korea Institut of Korea Speech: Dr. Hyung Keun Song - Korea Institut of Korea Speech: Dr. Hyung Keun Song - Korea Institut of Korea Speech: Dr. Hyung Keun Song - Korea Institut of Korea Speech: Dr. Hyung Keun Song - Korea Institut of Korea Speech: Dr. Hyung For Norikazu Nishiyama Estin Invited Speaker: Invited Speaker: Invited Speaker: Invited Speaker: Angelo Moreno: Prof. Dr. Shigsyukt Uemya Prof. Norikazu Nishiyama Estin Invited Speaker: Invited Speaker: Estin Invited Speaker: Estin Invited Speaker: Invited Speaker: Estin Invited Speaker: Estin Invited Speaker: Invited Speaker: Estin Invited Speaker: Invited Speaker: Estin Invited Speaker: In	No.		Pro	gram				
Of 39-063.00 Registration 06330-003.01 Definition 08300-003.45 Keynote Speech: Prof. Dr. Gunther Kolb - Institut <i>Iut Mikrotechnik Mainz</i> , Germany. 0300-093.45 Keynote Speech: Prof. Dr. Gunther Kolb - Institut <i>Iut Mikrotechnik Mainz</i> , Germany. 1010-110.45 Keynote Speech: Prof. Dr. Gunther Kolb - Institut <i>Iut Mikrotechnik Mainz</i> , Germany. 1010-110.45 Keynote Speech: Prof. Dr. Fupuk Indonesia. 1101-111.40 Sponsor Company Profile Fresentation: Pr. Pupuk Indonesia. 1101-47-1300 Lunch Break (ISHOMA) + Poster Flash Presentation. 1101-47-130 Lunch Break (ISHOMA) + Poster Flash Presentation. 1101-47-130 Lunch Break (ISHOMA) + Poster Flash Presentation. 1101-47-150 Lunch Break (ISHOMA) + Poster Flash Presentation. 1101-47-150 Lunch Break (ISHOMA) + Poster Flash Presentation. 1101-411-40 Port. On viazu Nishiyama 1101-111.40 Port. On viazu Nishiyama 1111-111.40 Port. On viazu Nishiyama 11111.40 Porter 11111.41 Invited Speaker: 1111.41 Invited Speaker: 11111.41 Invited Speaker: 1111.41 Invited	Thu	Irsday, 10 Oc	ctobe					
08:30-09:00 Opening 08:30-09:00 Opening 09:00-00:45 feyrore Speech: Prof. Dr. Hyung Keun Song - Korea Institut fur Mikrotechnik Mainz, Germany 09:45-10:00 Confee Break. 10:45-11:00 Company Profile Presentation. PT. Pupuk Monesia 10:45-11:01 Keyrore Speech: Prof. Dr. Hyung Keun Song - Korea Institut Teknology IKIST), Republic of Korea 10:45-11:01 Keyrore Speech: Prof. Dr. Tatang Hermas - Chemical Ergipreering, Institut Teknology IKIST), Republic of Korea 11:40-11:40 Keyrore Speech: Prof. Dr. Tatang Hermas - Chemical Ergipreering, Institut Teknology Bandung (ITB), Indonesia 11:40-11:40 Lundh Break (ISHM)+ Poster Flash Presentation (10) 2:2 Paper No 11:40-11:40 Densin Prof. Norikazu Nishiyama 2:2 Paper No Norited Speaker: 11:40-11:40 Densin Prof. Norikazu Nishiyama E.G. 2:2 Depter Norited Speaker: Norited Speaker: E.G. 2:2 Depter Norited Speaker: Norited Speaker: E.G. 2:2 Depter Norited Speaker: Norit.16 E.G.	-	07.30-08.30) Reg	listration				
0000-003.45 Keynote Speech: Prof. Di. Gurther Kolb - Institut <i>fur Mikracechnik Mainz</i> , Germany 003-045-10.05 Confree Break 1000-1016 Keynote Speech: Prof. Di. Talang Hernas - Chemical Ergineering, Institut Teknologi Bandurg (ITB), Indonesia 1130-11.40 Sponsor Company Profile Presentation: PT. Pupuk Indonesia 1130-11.40 Sponsor Company Profile Presentation: IT. Pupuk Indonesia 1140-13.00 Lunch Break (SHOM) + Poster Flash Presentation: (10) 20014 D 2130-14.45 Ortical Speaker: 2144.51 Invited Speaker: 2144.51 Soften Break 21 Horied Speaker: 2144.51 Cod 21 I Invited Speaker: 21 I Invited Speaker: 21 I Invited Speaker:	2) Ope	aning				
00445-10.00 Coffee Break. 10100-10.45 Keynote Speech: Dr. Hyung Keun Song - Korea Institut of Solence and Technology (KIST), Republic of Korea 101401-13.00 Lunch Break (SHOMA) + Poster Flash Presentation. PT. Pupuk Indonesia 11140-13.00 Lunch Break (SHOMA) + Poster Flash Presentation. PT. Pupuk Indonesia 1140-13.00 Lunch Break (SHOMA) + Poster Flash Presentation. PT. Pupuk Indonesia 1140-13.00 Lunch Break (SHOMA) + Poster Flash Presentation. PT. Pupuk Indonesia 1140-13.00 Lunch Break (SHOMA) + Poster Flash Presentation. PT. Pupuk Indonesia 1140-13.00 Lunch Break (SHOMA) + Poster Flash Presentation. PT. Pupuk Indonesia 1140-13.00 Lunch Break (SHOMA) + Poster Flash Presentation. PT. Pupuk Indonesia 1140-13.00 Lunch Break (SHOMA) + Poster Flash Presentation. PT. Pupuk Indonesia 1140-13.00 Innvited Speaker: Invited Speaker: 1140-13.00 Innvited Speaker: Invited Speaker: 1140-13.00 Invited Speaker: Invited Speaker: 1140-13.00 Invited Speaker: Invited Speaker: 1140-13.00 Invited Speaker: Invited Speaker: 1140-13.01 Invited Speaker: Invited Speaker: 1140-14.56	ო	09.00-09.45	5 Keyı	note Speech: Prof. Dr. Gu	unther Kolb - Institut fur Mikrote	echnik Mainz, Germany		
1000-10.45 Keynote Speech: Dr. Hyung Keun Song - Korea Institute of Science and Technology (KIST), Republic of Korea 10.45-11.30 Keynote Speech: Dr. T. Puguk Monesia 11.40-13.01 Dunch Break (EHOMA) + Poster Flash Presentation (10) 11.40-13.01 Lunch Break (EHOMA) + Poster Flash Presentation (10) 12.20 Lunch Break (EHOMA) + Poster Flash Presentation (10) 22.paper N inited 1 Involt Speaker: 21.00 Involt Speaker: 21.01.43.00 From Reading (ITB), Indonesia 13.00/14.30 Parallel Session I 22.paper N invited Speaker: 2 Dr. Angelo Moreno 1 Dr. Angelo Moreno <td>4</td> <td></td> <td>) Coff</td> <td>fee Break</td> <td></td> <td></td> <td></td> <td></td>	4) Coff	fee Break				
10.45-11.30 Keynote Speech: Prof. Dr. Tatang Hemas - Chemical Engineering, Institut Teknologi Bandung (ITB), Indonesia 11.30-11.40 Sponsor Company Profile Presentation. PT. Pupuk Indonesia 11.30-11.40 Sponsor Company Profile Presentation. T. Pupuk Indonesia 11.30-11.40 Sponsor Company Profile Presentation. T. Teupuk Indonesia 11.30-11.40 Sponsor Company Profile Presentation. T. Pupuk Indonesia 13.00-14.30 Parallel Session I Room I Room I Room I Room I 2 Dr. Angelo Moreno Prof. Dr. Shigeyuki Uemiya Invited Speaker: Invited Speaker: BE.01 BE.02 3 FC.04 BH.01 OT.07 BE.03 BE.03 BE.03 14.45-15.45 Prarallel Session II C.04 BH.03 OT.14 BC.04 BE.04 2.0 Prof. Scient Room I Room II Room II Room IV Room IV 3 FC.04 BH.01 OT.07 BE.04 BE.04 BE.04 14.45-15.45 Prarallel Session II C.04 BH.03 OT.14 BR.04 2 OT.14 <td>Ŋ</td> <td>10.00-10.45</td> <td>5 Keyı</td> <td>note Speech: Dr. Hyung F</td> <td>Keun Song - Korea Institute of</td> <td>Science and Technology (KIST),</td> <td>Republic of Korea</td> <td></td>	Ŋ	10.00-10.45	5 Keyı	note Speech: Dr. Hyung F	Keun Song - Korea Institute of	Science and Technology (KIST),	Republic of Korea	
11.30-11.40 Sponser Company Profile Presentation: PT. Pupuk Indonesia 11.30-11.40 Darallel Session I Room IV Room IV 11.40-13.00 Lunch Break (ISHOMA) + Poster Flash Presentation (10) Room IV Room IV 22 paper Narallel Session I Room IV Room IV Room IV 3 invited 1 Invited Speaker: Invited Speaker: BE.03 3 invited 2 Pr. Angelo Moreno Prof. Dr. Shigeyuki Uemiya Prof. Dr. Shigeyuki Uemiya 4 3 FC.01 BH.03 OT.07 BE.03 BE.03 5 FC.03 BH.03 OT.07 BE.03 BE.03 BE.03 14.30-14.45 Coffee Break Room II Room II Room II BE.03 14.45-15.45 Prailel Session I Stanal Session I Stanal Session I Stanal Session I 2.0 1 FC.06 BL.01 BM.01 BR.01 BR.01 14.45-15.45 Prailel Session I Stanal Session I Stanal Session I Stanal Session I Stanal Session I	9	10.45-11.30) Keyi	note Speech: Prof. Dr. Ta	atang Hernas - Chemical Engin	neering, Institut Teknologi Banduri	ng (ITB), Indonesia	
1140-13.00 Iunch Break (SHOMA) + Poster Flash Presentation (10) 13.00-14.30 Barallel Session I Room I Room IV		11.30-11.40) Spoi	insor Company Profile Pre	esentation: PT. Pupuk Indonesi	ia		
13:00-14.30 Parallel Session I Room II Room II Room II Room IV P 22 paper No Room I Prof. Locid Speaker: Invited Speaker: Invited Speaker: BE:01	7	11.40-13.00) Lunc	ch Break (ISHOMA) + Po:	ster Flash Presentation (10)			
22 paper No Room I Room I <td>8</td> <td>13.00-14.30</td> <td>) Paré</td> <td>allel Session I</td> <td></td> <td></td> <td></td> <td></td>	8	13.00-14.30) Paré	allel Session I				
3 invited 1 Invited Speaker: Invited Speaker: BE:01 E:01 E:03 E:01		22 paper	۶	Room I	Room II	Room III	Room IV	Room V
Image Image <th< td=""><td></td><td>3 invited</td><td>-</td><td>Invited Speaker:</td><td>Invited Speaker:</td><td>Invited Speaker:</td><td>BE.01</td><td>BD.01</td></th<>		3 invited	-	Invited Speaker:	Invited Speaker:	Invited Speaker:	BE.01	BD.01
3 FC.01 BH.01 OT.07 BE.03 BE.03 4 FC.02 BH.03 OT.16 BE.04 BE.04 6 FC.03 BH.03 OT.16 BE.05 BE.05 14.30-14.45 Coffee Break C.1.18 BE.04 BE.04 BE.04 14.30-14.45 Coffee Break C.04 D.07.21 BE.04 BE.04 14.45-15.45 Paralel Session I C.07.18 BE.04 BR.01 20 paper No OT.21 B.0.01 BR.01 BR.01 20 paper No OT.14 BL.02 BM.01 BR.03 BR.03 21 545-16.15 Bread BL.03 BM.01 BR.01 BR.03 BR.03 21 545-16.15 Dread BL.03 BM.03 BR.03 BR.03 BR.03 21 545-16.15 Dread BL.04 BM.03 BR.03 BR.03 BR.03 15.45-16.15 Bread BL.04 BM.03 BR.03 BR.03 15.45-			2	Dr. Angelo Moreno	Prof. Dr. Shigeyuki Uemiya	Prof. Norikazu Nishiyama	BE.02	BD.02
4 FC.02 BH.02 OT.16 BE.04 BE.04 5 FC.03 BH.03 OT.18 BE.05 BE.05 6 FC.04 D.121 BE.05 BE.05 BE.05 14.30-14.45 Coffee Break OT.21 BE.07 BE.07 14.45-15.45 Parallel Session I O.07.21 BR.01 BR.01 20 paper No BU.01 BM.01 BR.01 BR.01 20 paper V D.01.14 BM.01 BR.01 BR.01 20 paper V D.01.14 BL.02 BM.02 BR.03 15.45-16.15 Bre.04 BM.01 BM.02 BR.03 BR.03 15.45-16.15 Bre.04 BM.03 BR.03 BR.03 BR.03 15.45-16.15 Bre.04 BM.03 BR.03 BR.03 BR.03 15.45-16.15 Break BM.03 BR.03 BR.03 BR.03 15.45-16.15 Break BM.04 BM.04 BR.03 BR.04			З	FC.01	BH.01	OT.07	BE.03	BD.03
5 FC.03 BH.03 OT.18 BE.05 BE.05 14.30-14.45 FC.04 0.01.21 BE.05 BE.01 BE.02 BE.02 BE.03 BE.03 <td< td=""><td></td><td></td><td>4</td><td>FC.02</td><td>BH.02</td><td>OT.16</td><td>BE.04</td><td>BD.04</td></td<>			4	FC.02	BH.02	OT.16	BE.04	BD.04
6 FC.04 01.21 01.21 14.30-14.45 Coffee Break 01.21 01.21 14.45-15.45 Parallel Session II Room II Room II 20 paper No Room II Room II Room II 20 paper No Room II Room II Room II 20 paper No Room II Room II Room II 20 paper No Room II Room II Room II 20 paper No BL.04 BM.03 BR.03 BR.03 15.45-16.15 Break BL.04 BM.03 BR.04 R.04 16.45-17.15 Paralel Session II A.144 BR.03 BR.04 R.04 16.45-17.15 Paralel Session II A.144 BR.04 R.04 A.044 19 paper No BOM BM.05 BR.04 R.04 A.044 16.15-17.15 Paralel Session II A.144 B.045 B.044 A.044 19 paper No B.040 BM.05<			5	FC.03	BH.03	OT.18	BE.05	BD.05
14.30-14.45 Coffee Break 14.30-14.45 Coffee Break 14.45-15.45 Parallel Session I Room I R			9	FC.04		OT.21		BD.06
14.45-15.45 Parallel Session II 20 paper No Room I Room IV BR.01 BR.02 BR.02 BR.02 BR.02 BR.02 BR.02 BR.03 BR.03 BR.03 BR.04 Provide Provide <th< td=""><td>ი</td><td>14.30-14.45</td><td>5 Coff</td><td>fee Break</td><td></td><td></td><td></td><td></td></th<>	ი	14.30-14.45	5 Coff	fee Break				
20 paper No Room IV Ro	10		5 Paré	allel Session II				
1 FC.05 BL.01 BM.01 BR.01 BR.01 2 FC.06 BL.02 BM.02 BM.02 BR.02 BR.02 3 0T.14 BL.03 BM.03 BR.03 BR.03 BR.03 15.45-16.15 Break BM.04 BM.04 BR.04 BR.04 16.15-17.15 Parallel Session III Room I Room I Room I Room I 19 paper No Room I Room I Room I Room IV Room IV 19 paper No Room I Room II Room IV Room IV Room IV 19 paper No Room II Room III Room IV Room IV Room IV 19 paper No BG.01 BHC.01 BM.05 BR.05 BR.05 1 BG.02 BHC.01 BM.05 BR.06 BR.07 It.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		20 paper	R	Room I	Room II	Room III	Room IV	Room V
2 FC.06 BL.02 BM.02 BR.02 BR.02 BR.02 BR.02 BR.02 BR.03 BR.04 D.01.15 D.01.15 D.01.15 BR.04 BR.04 BR.04 D.01 D.01 <thd.01< th=""> <thd.01< th=""> <thd.01< th=""></thd.01<></thd.01<></thd.01<>			-	FC.05	BL.01	BM.01	BR.01	BD.07
3 0T.14 BL.03 BM.03 BR.03 BR.03 BR.03 BR.03 BR.03 BR.03 BR.03 BR.03 BR.04 BR.05 BR.05 BR.05 BR.05 BR.05 BR.05 BR.05 BR.06 BR.06 BR.07 BR.			2	FC.06	BL.02	BM.02	BR.02	BD.08
4 01.15 BL.04 BM.04 BR.04 BR.04 15.45-16.15 Break 16.15-17.15 Braulel Session III Room IV Ro			ო	OT.14	BL.03	BM.03	BR.03	BD.09
15.45-16.15 Break 16.15-17.15 Parallel Session III 10.paper No Room I Room II Room IV Parallel Session III 19.paper No Room I Room II Room IV BR.05 BR.05 BR.05 19.paper 1 BG.01 BHC.01 BM.05 BR.05 BR.06 BR.05 1 2 BG.02 BHC.02 BM.06 BR.06 BR.06 BR.07 Intercondance Intercondance <td></td> <td></td> <td>4</td> <td>OT.15</td> <td>BL.04</td> <td>BM.04</td> <td>BR.04</td> <td>BD.10</td>			4	OT.15	BL.04	BM.04	BR.04	BD.10
16.15-17.15 Parallel Session III Room II Room IV Room I	1		5 Brea	ak				
19 paper No Room II Room II Room II Room IV P 1 BG.01 BHC.01 BHC.01 BM.05 BR.05 BR.05 BR.05 2 BG.02 BHC.02 BHC.02 BM.06 BR.06 BR.06 BR.06 3 BG.03 BHC.03 BM.07 BR.07 BR.07 BR.07 4 BMG.01 BM.07 BM.08 BR.07 BR.07 BR.07 17.15-19.00 Brak BM.08 BM.08 BR.08 BR.08 BR.08	12		5 Pare	allel Session III				
1 BG.01 BHC.01 BM.05 BR.05 BR.05 2 BG.02 BHC.02 BHC.02 BM.06 BR.06 BR.06 3 BG.03 BHC.03 BHC.03 BM.07 BR.07 BR.07 4 BMG.01 BM.08 BM.08 BR.08 BR.08 17.15-19.00 Break BM.08 BR.08 BR.08 BR.08		19 paper	R	Room	Room II	Room III	Room IV	Room V
2 BG.02 BHC.02 BM.06 BR.06 BR.06 BR.06 BR.06 BR.07 BR.08 BR			-	BG.01	BHC.01	BM.05	BR.05	BD.11
3 BG.03 BHC.03 BHC.03 BM.07 BR.07 BR.07 4 BMG.01 BM.08 BM.08 BR.08 Investor 17.15-19.00 Break BM.08 BR.08 Investor Investor 19.00-21.00 Cala Dinner Investor Inves			2	BG.02	BHC.02	BM.06	BR.06	BD.12
4 BMG.01 BM.08 BR.08 17.15-19.00 Break 17.15-19.00 Gala Dinner 10.00-21.00 Cala Dinner 10.00-21.00 10.00-21.00 Cala Dinner 10.00-21.00 Cala Di			ო	BG.03	BHC.03	BM.07	BR.07	BD.13
17.15-19.00 Break 19.00-21.00 Gala Dinr			4	BMG.01		BM.08	BR.08	BD.14
19.00-21.00 Gala Dinr	13) Brea	ak				
	14	-) Gala	a Dinner				

No.		Time Program					
Fric	Friday, 11 October 2013	er 2013					
-	07.30-08.30	07.30-08.30 Registration					
2		Keynote Spe	sech: Prof. Dr. Kunio	08.30-09.15 Keynote Speech: Prof. Dr. Kunio Yoshikawa - Tokyo Institute of Technology (TIT), Japan	Technology (TIT), Japan		
e		Keynote Spe	sech: Prof. Dr. Mohan	09.15-10.00 [Keynote Speech: Prof. Dr. Mohammad Nazri bin Mohd Ja'afar - Faculty of Mechanical Engineering, Universiti Teknologi Malaysia (UTM), Malaysia	Faculty of Mechanical Engine	∋ering, Universiti Teknologi I	Valaysia (UTM), Malaysia
4		10.00-10.15 Coffee Break	¥				
S	10.15-11.15	10.15-11.15 Parallel Session IV	sion IV				
	20 paper	No	Room I	Room II	Room III	Room IV	V moon
		۲	BEL.01	BPS.01	BM.09	BD.23	BD.15
		2	BMG.02	BPS.02	BM.10	BL.05	BD.16
		3	BMG.03	BPS.03	BM.11	BPS.05	21.08
		4	BMG.04	BPS.04	BM.12	BMG.05	BD.18
9		11.15-13.00 Lunch Break (ISHON	k (ISHOMA) + Poster I	VA) + Poster Flash Presentation			
7	13.00-14.00	13.00-14.00 Parallel Session V	sion V				
	20 paper	No N	Room I	Room II	Room III	Room IV	V moon
		1	OT.01	OT.05	OT.10	OT.17	BD.19
		2	OT.02	OT.06	OT.11	OT.19	BD.20
		3	OT.03	OT.08	OT.12	OT.20	BD.21
		4	OT.04	OT.09	OT.13	OT.22	BD.22
8		14.00-14.30 Awards + Closing	losing				
6		14.30-end Cultural Visit: Saung	t: Saung Angklung Udjo	oji			

BIODIESEL BD.19

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

Utilization of Palm Oil Mill Effluent for *Chlorella vulgaris* Cultivation Medium under Mixotrophic Condition as Feedstock of Biofuel

M.M. Azimatun-Nur^{1,2} & H.Hadiyanto¹

¹ Center of Biomass and Renewable Energy Diponegoro University Jl.Prof Soedarto S.H. Tembalang, Semarang 50275 Indonesia ²Master Degree of Chemical Engineering Diponegoro University Jl. Prof Soedarto, S.H Tembalang Semarang Email: hady.hadiyanto@gmail.com

Abstract. Indonesia is largest palm oil producer in the world. Increasing of palm oil influence palm oil mill effluent (POME) production. Several researcher reported that POME is a potential medium for microalgae to grow. Microalgae cultivated in mixotrophic condition has received attention as according to higher biomass and lipid productivity to provide biofuel feedstock. The aim of this research is to study growth of *Chlorella vulgaris* cultured in POME medium using different organic carbon source under mixotrophic condition. Carbon source (glucose, glycerol, and acetic acid) was added in 0-1.2gr/l concentration in 40% and 100% POME. Biomass was harvested using autoflocculation method, and dry biomass was extracted using ultrasound method to obtain lipid content. Our result revealed that *C. vulgaris* could grow on mixotrophic condition in POME medium and produce higher biomass and lipid content rather than autotrophic condition. Concentration of organic source also influenced in growth rate and biomass production. This provides a promising process to utilize POME and produce biomass as feedstock of biofuel from microalgae.

Keywords: biofuel feedstock; Chlorella vulgaris; Mixotrophic cultivation; POME.

1 Introduction

Indonesia is the largest producer of coconut palm in the world. In 2008, Indonesia produced 44% coconut palm of shared demand from around the world and from 2005 to 2008 the production rose up to 8.88% [1]. Moreover, the production is still increasing as predicted from 2010 to 2014, it will grow in about 5.22% per annum (Table 1).

BIODIESEL BD.19

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

Table 1 Commodities of Indonesia agriculture 2010-2014 [2]							
Commodities		Growth					
Commountes	2011	2012	2013	/annum			
Coconut Palm	24.429	25.046	27.046	5.22%			
Rubber	2.711	2.741	2.771	1.10%			
Coconut	3.290	3.317	3.348	0.86%			

About 1 ton fresh fruit bunch (FFB) can be converted to 0.66 ton as palm oil mill effluent [3]. Almost of POME in Indonesia is treated by using open anaerobic pond to reduce COD and BOD content.

One of potential source of biofuel is microalgae [4]. Several kind of microalgae can produce high biomass and accumulate high lipid in rapid time, and grow in non-arable land, even in wastewater.

Digested POME contains rich nutrient such as nitrogen and phosphorus that highly potential fertilizer for microalgae growth [5,6,7]. This medium could decrease fertilizer cost for microalgae cultivation, since cost of nitrogen and phosphorus fertilizer have almost doubled every year [8]. However, POME has high turbidity and dark color. This could be potential to inhibit light intensity and form mixotrophic condition.

Several microalgae can grow well in autotrophic condition, while the others grow in heterotrophic condition. Autotrophic condition is occured when microalgae utilize inorganic carbon source and light in photosynthetic reaction. In heterotrophic condition, microalgae utilize organic carbon source as energy source to form biomass, without light energy. However a mixing of these condition is called mixotrophic, when microalgae utilize organic and inorganic carbon source and light as energy to grow in a complex reaction [9,10]. Microalgae cultivated under mixotrophic condition utilize lower energy but accumulate higher biomass productivity [9,10,11].

Heredia-Arroyo et al. [12] cultivated *C. vulgaris* under mixotrophic condition using different glucose, glycerol, acetate, and mixture of those organic carbon, and revealed that lipid productivity was high by adding glucose and glycerol. But it still utilize synthetic fertilizer to grow. The purposes of this research is to investigate growth, biomass and lipid accumulation of *Chlorella vulgaris* in Palm Oil Mill Effluent (POME) under mixotrophic condition.

BIODIESEL BD.19

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

2 Experimental Method

2.1 Cultivation Medium

Medium for cultivation is POME collected from PTPN VII 4th aerobic lagoon before released to environment. POME was filtered by using filter cloth to reduce total suspended solid. Medium was cooled for temperature 28^oC. POME in this research contained COD 1620 ppm and N total 284 ppm.

2.2 Culture Chlorella vulgaris

Chlorella vulgaris was purchased from BBPAP Jepara and cultivated in modified medium [13] consist of 40ppm urea, 20ppm TSP, 10ppm ZA, 1ppm FeCl₃ and 25 μ g/l vitamin B12. Medium was used as control variable in autotrophic condition.

2.3 Cultivation Condition

Chlorella vulgaris was cultivated in different carbon source: D-glucose, crude glycerol, and NaHCO₃ with concentration (0,200,400,600,800,1000,1200 g/l). NaHCO₃ is used as sole inorganic carbon source to compare with other organic carbon source. In experiment, microalgae 10% v/v (0,7 OD₆₈₀) and 40% v/v POME wastewater was mixed and diluted using distilled water in 1L glass flask. Medium was conditioned in 3000 lux intensity, pH 6.8-7.2, 26-28^oC temperature, 2ppt salinity, and aerated using aquarium air pump to mix the medium.

2.4 Measurement

The concentration of biomass was measured using spectrophotometer Optima sp-300 at 680nm wavelength for 6 days. The optical density was plotted in dry biomass to make regression between optical density (y) and dry biomass (gr/l) (x).

Specific growth rate (μ) was calculated using equation from Putri et al. [6] in logaritmic growth phase (Eq 1).

$$\mu = \frac{\ln(OD_1) - \ln(OD_0)}{t - t_0} \tag{1}$$

 OD_1 is optical density at last day of cultivation, OD_0 is optical density at first

day of cultivation, t is end time of cultivation (day), and t_0 is beginning time of cultivation (day).

BIODIESEL BD.19

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

2.5 Harvestment

Medium was harvested using flocculation method. NaOH 0.5 M was used to increase the pH until reach 10.5, then the microalgal suspension was intensively mixed (1000 rpm) for 10 min followed by gentler mixing (250 rpm) for an additional 20 min. Subsequently, the suspension was settled for 30 min [14]. Biomass was dried at 55° C tray dryer for 2 hours and the total biomass product was weighed as (X).

2.6 Lipid Extraction

Lipid extraction was applied using ultrasound extraction method [15]. Dry Biomass was extracted using n-hexane (1:10 gr/ml). Mix of dry biomass and n-hexane was placed in ultrasound assisted Branson 2510-DTH 40 kHz for 30 minutes and temperature 35^{0} C. N-hexane containing lipid was separated using whatman filter paper. Solvent was removed by distillation method until no more solvent collected. Dry residue was then extracted again for three replication. Total Lipid was weighed (W_2). Lipid content was calculated as equation 2.

$$L = \frac{W_2}{W_1} \cdot 100\%$$
 (2)

L is lipid content (%), W_1 is total biomas product in dry basis (mg/l), W_2 is total lipid content (mg/l). Lipid productivity (Y,mg/l/day) was calculated using equation 3.

$$Y = \mu . L . W \tag{3}$$

Where Y is lipid productivity in mg/l/day, μ is specific growth rate of cultivation in d⁻¹, L is lipid content (%), and W is total dry biomass content (gr/l).

3 Result and Discussion

3.1 Biomass vs Optical Density

Relationship between DW (dry weight) and OD (optical density) in this research was described in Figure 1. The result was plotted in linear equation y=1.481x + 0.0071 (R²=0.9983).

BIODIESEL BD.19

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

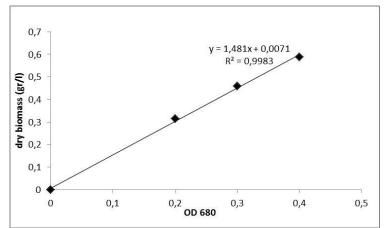


Figure 1 Relationship between OD680 vs dry biomass Chlorella vulgaris

This result was used to simplify measurement of dry biomass in cultivation.

3.2 Growth Rate and Biomass Production

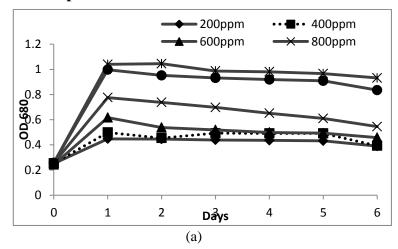
3.2.1 Growth Rate

In D-glucose addition, highest growth rate was recorded from 1000 ppm. In glycerol addition, highest growth rate was recorded from 600 ppm. And by using NaHCO₃, highest growth rate was reached in 200 ppm addition. According to kind of carbon source, higher growth rate was obtained from glucose, followed by glycerol, and NaHCO₃ (Table 1).

				ing annerene	eare on soure	addition	
Courses	Carbon concentration (ppm)						
Source	200	400	600	800	1000	1200	
D-glucose	0.572	0.679	0.935	1.106	1.406	1.356	
Glycerol	0.188	0.251	0.328	0.230	0.181	0.161	
NaHCO ₃	0.317	0.261	0.178	0.146	0.110	0.074	

 Table 2 Growth rate (d-1) in 40% POME using different carbon source addition

Due to different carbon and nitrogen ratio in medium, growth rate of microalgae was changed. Lack of carbon ratio seems to inhibit microalgae to grow. Moreover, 40% POME contains 648 ppm, it provides 243 ppm carbon (taken from 12/32 COD) and gave 2.15 C/N ratio. However optimum microalgae composition approximately 6.22 C/N ratio. It needs more carbon to grow. When more organic carbon source was added, (i.e. glucose 1000 ppm), it seems that medium meet the optimum required C/N ratio, and influenced growth rate.


BIODIESEL BD.19

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

However in NaHCO₃ addition, growth rate was lower than other organic source. Microalgae seems not suitable to consume inorganic carbon source in mixotrophic condition. By adding 200 ppm and 400 ppm concentration, growth rate was slightly increased but drop when > 600 ppm was added. It seems that residual organic content in POME (i.e. acetic) was limiting growth of *C.vulgaris* rather than inorganic. When inorganic carbon was added, growth rate became lower due to inhibition factor. In addition, if the condition was changed to autotrophic, control medium, growth rate was recorded up to 0.354/ day, higher than in mixotrophic. This result revealed that inorganic condition is suitable for photosinthetic reaction.

When 1200 ppm of D-glucose was added, growth rate of *C. vulgaris* also decreased. Several researched informed that glucose could inhibit growth of microalgae in high concentration because excess carbon source could become toxic and C/N factor that far from microalgae demand 56/9 ratio [16].

However in glycerol addition, highest growth rate was recorded in 600 ppm. It seems that toxic matter in crude glycerol (i.e. residual methanol, FFA, etc) could inhibit growth of *C. vulgaris*.

3.2.2 Biomass production

BIODIESEL BD.19

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

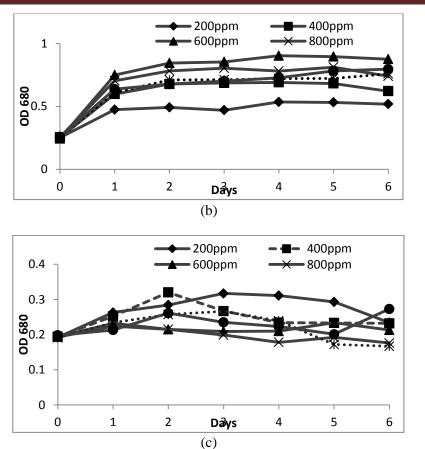


Figure 2 Growth phase of C. vulgaris in 40% POME (a) D-glucose

Microalgae cultivated in D-glucose addition gave high biomass product in day one, and decresase slowly (Figure 2). Highest biomass was produced from 1000 ppm D-glucose addition, in about 1.4 gr/l dry weight, followed by 1200 ppm. While by using glycerol, highest biomass production was recorded from 600 ppm, in about 0,98 gr/l dry weight at 2^{nd} day and drop in 3^{rd} day. This phenomena revealed that D-glucose is easily to be utilized as organic carbon source rather than glycerol in mixotrophic condition [17].

When we use NaHCO₃ as source of carbon in mixotrophic condition, the biomass production is lower in average 0.39 gr/l due to limitation as mentioned in section 3.2.1. However when we use NaHCO₃ in autotrophic condition, biomass production reach 0.7 gr/l dry weight in 5th day due to photosynthetic reaction.

BIODIESEL BD.19

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

3.3 Lipid Content and Lipid Productivity

Highest growth rate from each organic carbon source was extracted. Higher lipid content obtained in D-glucose is higher than glycerol. Medium cointained 1000 ppm D-glucose gave 9,7% lipid content, while medium with 600 ppm glycerol gave 7,2% lipid content.

D-glucose 1000 ppm gave higher carbon content than 600 ppm glycerol. Higher C/N ratio in medium influence lipid content [18]. When nitrogen in medium tend to low, Microalgae tend to accumulate higher lipid due to stress environment. Nitrogen is needed to synthesize protein content in biomass. Lack of ratio of C/N will interupt metabolic reaction of cell, and tend to store energy, forming more lipid.

Medium	Growth rate (d ⁻¹)	Biomass content (g/L)	Lipid content (%)	Lipid productivity (mg/L/d)	Source
Digested Dairy Manure	0.474	1.7	14	11.3	[19]
MSG Wastewater	1.803	1.6	14	44	[20]
Artificial Wastewater	0.663	1.7	33	40	[21]
2 nd Municipal WW	0.458	0.67	31	22.9	[22]
40%POME + D-glu	1.406	1.43	9.7	195.02	This study
40%POME + Gly	0.328	0.98	7.3	23.46	This study

Table 3 Comparison of lipid productivity result

Lipid productivity was also calculated. By using 1000 ppm D-glucose and 600 ppm glycerol, lipid productivity reached 29.33 mg/l/day and 13.48 mg/l/day, respectively.

Several researchers also investigated growth of *Chlorella* under mixotrophic condition (Table 2). Highest lipid productivity was recorded from 40% POME + 1000 ppm D-glucose, followed by MSG wastewater.

Due to high price of D-glucose, it is not preferable to commercial production. By cultivate microalgae in POME wastewater, nitrogen content also decreased due to biomass forming. According to Phang & Ong [23], a theoretical microalgae needs 9% nitrogen to form dry biomass. When POME medium contains 113,4 mg/l total nitrogen, 1,4 gr/l *C. vulgaris* aproximately needs about 126 mg/l taken from medium.

BIODIESEL BD.19

International Seminar on Biorenewable Resources Utilization for Energy and Chemicals 2013 In conjunction with Chemical Engineering Seminar of Soehadi Reksowardojo 2013

4 Conclusion

Research was done by cultivating C.*vulgaris* in 40% POME and use different carbon source. Carbon concentration and kind of carbon source influenced in biomass, growth rate, and lipid accumulation. Addition of 1000 ppm D-glucose in medium gave 195.02 mg/l/day, while by using 600 ppm glycerol gave 23.46 mg/l/day lipid productivity. Mixotrophic condition of microalgae cultivation in POME medium could be alternative method to utilize POME and produce biofuel as renewable energy.

Acknowledgements

This research was part of project utilization of POME for microalgae cultivation to produce bioenergy and feed. This work was partially supported by Sobat Bumi Pertamina foundation.

References

- [1] Rupani, P.F., Singh, R.P., Ibrahim, M.H., & Esa Norizan., *Review of Current Palm Oil Mill Effluent (POME) Treatment Methods:Vermicomposting as a Sustainable Practice,* World Applied Sciences Journal, **11**, pp.70-81, 2010.
- [2] Deptan, *Rancangan Rencana Strategis Kementrian Pertanian Tahun* 2010-2014, Departemen Pertanian. <u>www.deptan.go.id</u>., (2 Januari 2012).
- [3] Indriyati., *Potensi Limbah Industri Kelapa Sawit di Indonesia*.M.Tek.Ling.**4**(1),pp.93-103,2008.
- [4] Chisti, Y., *Biodiesel from microalgae. Biotechnol. Adv.* 25, pp.294–306, 2007.
- [5] Habib, M.A.B., Yusoff, F.M., Phang, S.M., Kamarudin, M.S. & Mohamed, S., Growth and Nutritional Values of Moina micrura Fed on Chlorella vulgaris Grown in Digested Palm Oil Mill Effluent, Asi. Fisher. Scie., 16, pp. 107-119, 2003.
- [6] Putri, E.V., Din, M.F.M., Ahmed, Z., Jamaluddin, H., & Chelliapan, S., Investigation of Microalgae for High Lipid Content using Palm Oil Mill effluent (POME) as Carbon Source, International Conference on Environment and Industrial Innovation, in IPCBEE, vol 12.,2011.
- [7] Hadiyanto, & Nur, M.M.Azimatun., *Potential of Palm Oil Mill Effluent* (*POME*) as medium growth of Chlorella sp for bioenergy production, Int.J.Env.Bioenerg, **3**(2), 67-74, 2012.
- [8] USDA. US fertilizer use and price, USDA, http://www.ers.usda.gov/Data/FertilizerUse, (1 March 2010)

BIODIESEL BD.19

- [9] Liang, Y., Sarkany, N., & Cui, Y., Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic, and mixotrophic growth condition. Biotechnol. Lett., 31, 1043-1049, 2009.
- [10] Abreu, A.P., Fernandes, B., Antonio, A., Vicente, J.T., & Dragone, G., *Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source*, Bioresour Technol, **118**, pp.61-66, 2012.
- [11] Cheirsilp, B., & Torpee, S., Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation, Bioresour. Technol,110, pp. 510-516, 2010.
- [12] Heredia-Arroyo T, Wei W, Ruan R, & Hu B., *Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials.* Biomass Bioenergi., **35**(22),45-53, 2011.
- [13] Gusrina, Budidaya Ikan untuk Sekolah Menengah Kejuruan, Ed 3, Depdiknas, 2008.
- [14] Vandamme, D., Fourbert, I., Fraeye, I., & Muylaert, K., *Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation*, Bioresour.Technol, **124**,pp. 508-51, 2012.
- [15] Wiyarno, Budi., Yunus, Rosli Mohd., & Mel, Maizirwan., Ultrasound Extraction Assisted (UEA) of oil from Microalgae (Nannochloropsis sp). Int. J. Sci. Eng. 3 (1), pp.55-59,2010.
- [16] Wan, M., Liu, P., Xia, J., et al. *The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana.* Appl Microbiol Biotechnol, **91**, p. 835-844, 2011.
- [17] Tamarys Heredia-Arroyo, Wei Wei, & Bo Hu, *Oil accumulation via heterotrophic/ mixotrophic Chlorella protothecoides*. Applied Biochem and Biotechnol, **162** (7), pp.1978-1995, 2010.
- [18] Widjaja, Arief., Chien, Chou-Chang, & Ju, Yi-Hsu., Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Institute of Chem Eng. 40, 13–20, 2009.
- [19] Wang, L., Li, Y., Chen, P., Min, M., Chen, Y., Zhu, J., Ruan, R.R., 2010. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol. 101, 2623–2628.
- [20] Xue, F., Miao, J., Zhang, X., Tan, T., A new strategy for lipid production by mix cultivation of Spirulina plantensis and Rhodotorula glutinis. Appl. Biochem. Biotechnol. 160, pp.498–503, 2010.
- [21] Yujie, F., Li, C., Zhang, D., Lipid production of Chlorella vulgaris cultured in artificial wastewater medium, Bioresour. Technol., 102, pp.101–105, 2011.

BIODIESEL BD.19

- [22] Cho, S., Luong, T.T., Lee, D., Oh, Y.K., & Lee, T., *Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production.* Bioresour. Technol. pp.1-7,2011.
- [23] Phang, S.M., & Ong, K.C., *Algal biomass production in digested palm oil mill effluent*, Biological Wastes, **25**, pp.177-191, 1988.

BIODIESEL BD.19

BIOENCHE 2013

CERTIFICATE

is hereby presented to

Muhammad Maulana Azimatun Nur

as

Paper Presenter

International Seminar on Chemical Engineering in conjunction with Seminar Teknik Kimia Soehadi Reksowardojo 2013 "Biorenewable Resources Utilization for Energy, Chemicals, and Materials" 10-11 October 2013 Aula Timur Institut Teknologi Bandung Indonesia

920

Dr. Tjokorde Walmiki Samadhi Chemical Engineering Undergraduate Program Chairman

Dr. Tirto Prakoso(MEn) 13 Conference Chairman chargy cho

