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ABSTRACT 

 

The autoimmune regulator (AIRE), a key player in negative selection of developing 

thymocytes, acts as a transcriptional regulator, inducing the expression of tissue 

restricted antigens (TRA) within medullary thymic epithelial cells in a process known 

as promiscuous gene expression (PGE).  Here we demonstrate how AIRE influences 

PGE through a direct impact on post-translational modifications of core histones 

which are associated with the regulation of transcription.  Through native chromatin 

immunoprecipitation on thymic epithelial cells transfected with AIRE, we show how in 

vitro, TRA are enriched in active acetylation and methylation of core histones, yet 

retain silencing modifications.  Furthermore, across a cluster of AIRE-regulated 

genes, histone modifications were deposited across the entire domain, dependent 

upon the expression profile of each gene, suggesting a role for domain-wide 

epigenetic regulation by AIRE.  Extension of these studies in vivo, utilising the 

recently developed carrier ChIP technique, allowed examination of the epigenetic 

status of TRA throughout the thymic developmental pathway.  We report how poised 

TRA are marked with combinations of active and silent modifications early in thymic 

development and that the chromatin signatures re-organise as the cells differentiate.  

The epigenetic patterning differs on a gene-by-gene basis, however their significance 

is implied upon disruption to normal development as the predictive pattern of 

modifications is lost. 



 

 

 

 

 

 

For my fantastic parents, to whom I owe so much. 

Without you I wouldn’t be who I am today. 

 

For Vicky, my wonderful sister, my greatest friend. 

Thank you for always making me smile. 

 

And for Ben. 

Words are not enough. 

 

 

I love you all past the sky. 



ACKNOWLEDGEMENTS 
 

I would like to express my eternal gratitude to my two fantastic PhD supervisors Dr 

Laura O’Neill and Prof. Graham Anderson whose continued support, both 

academically and emotionally, has kept me going through the past three years.  I am 

especially indebted to Laura for all the guidance you have given me.  Without your 

technical and theoretical brilliance, and friendship, none of this would have been 

possible. 

 

I would also like to thank all members of the Anderson Lab, University of 

Birmingham, in particular Dr Andrea White for the isolation of primary cell populations 

from foetal thymic organ cultures, and Sonia Parnell for all your help with quantitative 

PCR.  I am constantly amazed by your selflessness and willingness to lend a hand 

and for this I am truly grateful. 

 

Thank you also to members of the Chromatin and Gene Expression Group, 

University of Birmingham, both past and present.  I would never have survived 

without the daily assistance and encouragement from all of you. 



 

TABLE OF CONTENTS 

 

1. INTRODUCTION ..................................................................................................... 1 

1.1. T-Lymphocytes: the Main Players in Adaptive Immunity ............................ 1 

1.2. T-Lymphocyte Development and Central Tolerance .................................. 2 

1.3. Promiscuous Gene Expression in the Thymus and Negative 

Selection ..................................................................................................... 7 

1.4. Molecular Regulation of Promiscuous Gene Expression by AIRE .............. 9 

1.5. The Many Domains of AIRE: Linking Structure to Function ...................... 10 

1.6. AIRE-Regulated Genes: Clustering on Chromosomes ............................. 19 

1.7. Protein Partners of AIRE .......................................................................... 23 

1.8. Epigenetics and the Control of Gene Expression ..................................... 26 

1.9. Structure of the Core Histone Proteins ..................................................... 30 

1.10. Post-Translational Histone Modifications .................................................. 32 

1.11. Acetylation and Deacetylation of Histones ............................................... 34 

1.12. Histone Methylation and Demethylation ................................................... 38 

1.13. The Role of Post-Translational Histone Modifications in 

Transcriptional Regulation ........................................................................ 42 

1.14. Marks of Gene Activation ......................................................................... 46 

1.15. Marks of Gene Repression ....................................................................... 50 

1.16. Chromatin Complexities and the Histone Code ........................................ 52 

1.17. Histone Modifications in the Control of Development ............................... 57 

1.18. Histone Modifications in the Control of Central Tolerance ........................ 59 

1.19. The Pathway of Thymic Epithelial Development ...................................... 60 

1.20. Aims ......................................................................................................... 66 

2. MATERIALS AND METHODS ............................................................................... 68 

2.1. Cell Culture and Preparation of Primary Cell Populations ........................ 68 

2.1.1. Mus musculus Thymic Epithelial Cell Culture .............................. 68 

2.1.2. Mus musculus 3T3 Fibroblast Cell Culture .................................. 68 

2.1.3. Drosophila melanogaster SL2 Cell Culture .................................. 69 

2.1.4. Mouse Husbandry and Breeding ................................................. 69 

2.1.5. Foetal Thymic Organ Culture (FTOC) .......................................... 69 



 

2.1.5.1. Isolation of Primary Cell Populations ............................. 69 

2.1.5.2. Flow Cytometric High Speed Sorting ............................ 70 

2.1.6. Snap Freezing of Cell Populations ............................................... 71 

2.2. Analysis of the Integrity of the TEP and 3T3 Model Systems ................... 73 

2.2.1. Immunofluorescence Labelling .................................................... 73 

2.2.2. Fluorescence-Activated Cell Sorting (FACS) Analysis for 

GFP Levels .................................................................................. 73 

2.2.3. Analysis of the Expression Levels of Promiscuous Genes .......... 74 

2.2.3.1. High Purity cDNA Extraction ......................................... 74 

2.2.3.2. Quantitative Real-Time Polymerase Chain 

Reaction (qPCR) Analysis of Expression ...................... 75 

2.3. Analysis of Histone Proteins ..................................................................... 78 

2.3.1. Affinity-Purified Antibodies ........................................................... 78 

2.3.2. Histone Acid Extraction from Cultured Thymic Epithelial 

Cells ............................................................................................. 79 

2.3.3. Sodium Dodecyl Sulphate (SDS) Polyacrylamide Gel 

Electrophoresis (PAGE) ............................................................... 79 

2.3.4. Analysis of Global Levels of Histone Modifications by 

Western Blot ................................................................................ 80 

2.3.5. Immunofluorescence Labelling of Metaphase 

Chromosomes from Thymic Epithelial Cells ................................ 82 

2.4. Chromatin Immunoprecipitation ................................................................ 83 

2.4.1. Chromatin Isolation ...................................................................... 83 

2.4.1.1. Preparation of Unfixed Chromatin from Cultured 

Thymic Epithelial Cells for Native Chromatin 

Immunoprecipitation ...................................................... 83 

2.4.1.2. Preparation of Unfixed Chromatin from Primary 

Thymic Epithelial Cells for Carrier Chromatin 

Immunoprecipitation ...................................................... 84 

2.4.1.3. Preparation of Fixed Chromatin from Cultured 

Thymic Epithelial Cells for Cross-linked 

Chromatin Immunoprecipitation .................................... 85 



 

2.4.2. Immunoprecipitation..................................................................... 86 

2.4.2.1. Immunoprecipitation from Unfixed Chromatin 

(NChIP and CChIP) ....................................................... 86 

2.4.2.2. Immunoprecipitation from Fixed Chromatin 

(XChIP) ......................................................................... 88 

2.4.3. PicoGreen Assay of ChIP DNA .................................................... 89 

2.4.4. Quantitative Real-Time Polymerase Chain Reaction 

(qPCR) Analysis of NChIP and XChIP DNA ................................ 89 

2.4.5. Radioactive Polymerase Chain Reaction (PCR) Analysis 

of CChIP DNA .............................................................................. 94 

3. RESULTS .............................................................................................................. 95 

3.1. Characterisation of the Thymic Epithelial Cell Model System ................... 95 

3.1.1. Localisation and Expression of AIRE and Tissue-

Restricted Antigens in the Thymic Epithelial Cell Line ................. 96 

3.1.2. Global Analysis of the Relative Levels of Post-translational 

Histone Modifications in AIRE-Positive and AIRE-Negative 

Thymic Epithelial Cells ................................................................. 99 

3.2. Analysis of the Effects of AIRE in a Non-Thymic Cell Line ..................... 104 

3.2.1. Localisation and Expression of AIRE and Tissue-

Restricted Antigens in a Non-Thymic 3T3 Fibroblast Cell 

Line ............................................................................................ 104 

3.3. Patterns of Histone Modifications across Tissue-Restricted 

Antigens in the Thymic Epithelial Cell Model System as Revealed 

by Native Chromatin Immunoprecipitation .............................................. 106 

3.3.1. Pattern of Histone Modifications at the Casein-α Promoter 

Region and the Glyceraldehyde-3-phosphate 

Dehydrogenase Locus in the Thymic Epithelial Cell Model 

System ....................................................................................... 112 

3.3.2. Analysis of the Effects of AIRE upon the Salivary Protein 

Genes on Mus musculus Chromosome 15 in the Thymic 

Epithelial Cell Model System ..................................................... 115 



 

3.3.3. Analysis of the Effects of AIRE upon a Cluster of AIRE-

Regulated Genes; the Keratin Cluster on Mus musculus 

Chromosome 15 in the Thymic Epithelial Cell Model 

System ....................................................................................... 119 

3.3.3.1. Levels of Methylation at Histone H3 Lysine 4 

across the Keratin Cluster in the Thymic 

Epithelial Cell Model System ....................................... 122 

3.3.3.2. Levels of Acetylation at Histones H3 and H4 

across the Keratin Cluster in the Thymic 

Epithelial Cell Model System ....................................... 126 

3.3.3.3. Levels of Methylation at Histone H3 Lysine 9 and 

Lysine 27 across the Keratin Cluster in the 

Thymic Epithelial Cell Model System .......................... 129 

3.3.4. Analysis of the Binding Status of AIRE, RNA Polymerase 

II and Histone Methyltransferases within AIRE-Regulated 

Gene Regions in the Thymic Epithelial Cell Model System ....... 132 

3.4. Elucidation of AIRE’s Control of Promiscuous Gene Expression 

within the Thymus in vivo ....................................................................... 135 

3.4.1. Analysis of the Effects of AIRE upon Tissue-Restricted 

Antigens in vivo .......................................................................... 138 

3.4.1.1. Pattern of Histone Modifications for Salivary 

Protein-1 in vivo .......................................................... 144 

3.4.1.2. Pattern of Histone Modifications at the Salivary 

Protein-2 Promoter Region in vivo .............................. 151 

3.4.1.3. Pattern of Histone Modifications at the Casein-α 

Promoter Region in vivo .............................................. 153 

3.4.1.4. Pattern of Histone Modifications at the 

Glyceraldehyde-3-phosphate Dehydrogenase 

Locus in vivo ............................................................... 155 

3.4.1.5. Pattern of Histone Modifications at the Selection 

and Upkeep of Intraepithelial T-cells 1 Promoter 

Region in vivo ............................................................. 157 



 

3.4.1.6. Pattern of Histone Modifications at the 

Proteasome Subunit β-Type 11 Promoter Region 

in vivo .......................................................................... 159 

3.5. Examination of the Distribution of Histone Modifications across 

Tissue-Restricted Antigens within FoxN1-Deficient Nude Thymic 

Epithelial Cells ........................................................................................ 162 

3.5.1. Pattern of Histone Modifications for Salivary Protein-1, 

Salivary Protein-2 and Casein-α within FoxN1-Deficient 

Nude Thymic Epithelial Cells ..................................................... 163 

3.5.2. Pattern of Histone Modifications for Glyceraldehyde-3-

phosphate, Selection and Upkeep of Intraepithelial T-cells 

1 and Proteasome Subunit β-Type 11 within FoxN1-

Deficient Nude Thymic Epithelial Cells ...................................... 168 

4. DISCUSSION ...................................................................................................... 172 

4.1. AIRE Functions as a Transcriptional Regulator in Retrovirally-

Transfected TEP and 3T3 Cells ............................................................. 172 

4.2. AIRE Induces the Enrichment of Active Histone Modifications 

across Individual Tissue-Restricted Antigens ......................................... 174 

4.3. AIRE’s Transcriptional Control of a Cluster of Genes Involves 

Domain-Wide Alterations to Histone Modifications ................................. 181 

4.4. Tissue-Restricted Antigens are Marked with Dynamic Histone 

Modifications Which Rapidly Rearrange Upon Differentiation 

Throughout the TEC Developmental Pathway ....................................... 188 

4.5. The Epigenetic Priming of AIRE-Regulated Genes is Lost Upon 

Disruption to the Pathway of TEC Development .................................... 197 

4.6. Conclusion .............................................................................................. 202 

5. REFERENCES .................................................................................................... 205 

 



 

LIST OF FIGURES 

 

Figure 1.1 - The Development of T-Lymphocytes ................................................... 4 

Figure 1.2 - Structure of the Autoimmune Regulator Protein ................................. 12 

Figure 1.3 - Autoimmune Regulator Protein in the Control of Promiscuous 

Gene Expression and the Induction of Central Tolerance .................. 14 

Figure 1.4 - Chromosomal Clustering of Genes under the Transcriptional 

Control of the Autoimmune Regulator ................................................ 21 

Figure 1.5 - Autoimmune Regulator Binding Partners ........................................... 24 

Figure 1.6 - Structure of the Nucleosome Core Particle and Higher-Order 

Packaging of Chromatin ..................................................................... 29 

Figure 1.7 - The Conserved Location of Key Post-Translational Histone 

Modifications ...................................................................................... 33 

Figure 1.8 - Post-Translational Histone Modifications in the Regulation of 

Gene Expression ................................................................................ 47 

Figure 1.9 - Epigenetic Crosstalk .......................................................................... 55 

Figure 1.10 - The Pathway of Embryonic Thymic Development .............................. 62 

Figure 3.1 - Characterisation of Thymic Epithelial Cell Lines: Transfection 

Efficiency ............................................................................................ 97 

Figure 3.2 - Characterisation of Thymic Epithelial Cell Lines: Subcellular 

Distribution and Expression of the Autoimmune Regulator and 

Tissue-Restricted Antigens ................................................................ 98 

Figure 3.3 - Characterisation of Thymic Epithelial Cell Lines: Global Levels 

of Post-Translational Histone Modifications ..................................... 100 

Figure 3.4 - Characterisation of Thymic Epithelial Cell Lines: Acetylation 

and Methylation Levels across Metaphase Chromosomes .............. 103 

Figure 3.5 - Analysis of the Effects of AIRE in a Non-Thymic Cell Line: 

Transfection Efficiency, Subcellular Distribution and 

Expression of the Autoimmune Regulator and Tissue-

Restricted Antigens .......................................................................... 105 

Figure 3.6 - Analysis of the Transcriptional Effects of AIRE: Comparative 

Expression Levels of the Autoimmune Regulator and Tissue-



 

Restricted Antigens within Thymic and Non-Thymic 

Backgrounds .................................................................................... 107 

Figure 3.7 - Native Chromatin Immunoprecipitation: Isolation and 

Micrococcal Nuclease Digestion of Chromatin from Unfixed 

Thymic Epithelial Cells ..................................................................... 110 

Figure 3.8 - Quantitation of the Relative Levels of Histone Modifications 

across the Promoter Region of Casein-α and Glyceraldehyde-

3-phosphate Dehydrogenase by Native Chromatin 

Immunoprecipitation ......................................................................... 113 

Figure 3.9 - Quantitation of the Relative Levels of Histone Modifications 

across Salivary Protein-1 and Salivary Protein-2 by Native 

Chromatin Immunoprecipitation ....................................................... 117 

Figure 3.10 - Impact of AIRE on a Cluster of Genes: Expression Levels 

across the Keratin Gene Cluster ...................................................... 121 

Figure 3.11 - Impact of AIRE on a Cluster of Genes: Quantitation of the 

Relative Levels of Histone H3 Lysine 4 Methylation across the 

Keratin Cluster by Native Chromatin Immunoprecipitation ............... 123 

Figure 3.12 - Impact of AIRE on a Cluster of Genes: Quantitation of the 

Relative Levels of Histone Acetylation across the Keratin 

Cluster by Native Chromatin Immunoprecipitation ........................... 127 

Figure 3.13 - Impact of AIRE on a Cluster of Genes: Quantitation of the 

Relative Levels of Histone H3 Lysine 9 and Histone H3 Lysine 

27 Methylation across the Keratin Cluster by Native Chromatin 

Immunoprecipitation ......................................................................... 130 

Figure 3.14 - The Epigenetic Binding Status of Genes under the 

Transcriptional Control of the Autoimmune Regulator: 

Quantitation of the Relative Levels of AIRE, RNA Polymerase 

II and Chromatin-Modifying Enzymes by Cross-Linked 

Chromatin Immunoprecipitation ....................................................... 133 

Figure 3.15 - Carrier Chromatin Immunoprecipitation ........................................... 139 



 

Figure 3.16 - Verification of the Species Specificity of Primer Sets Utilised 

for the Analysis of DNA from Carrier Chromatin 

Immunoprecipitation ......................................................................... 140 

Figure 3.17 - Comparison of Quantitative Real-Time Polymerase Chain 

Reaction with DNA from Native and Carrier Chromatin 

Immunoprecipitation ......................................................................... 143 

Figure 3.18 - Analysis of DNA from Carrier Chromatin Immunoprecipitation: 

Radioactive Polymerase Chain Reaction ......................................... 145 

Figure 3.19 - Analysis of AIRE’s Role in vivo: Expression of the 

Autoimmune Regulator and Tissue-Restricted Antigens 

throughout the TEC Developmental Pathway .................................. 146 

Figure 3.20 - Analysis of AIRE’s Role in vivo: Quantitation of the Relative 

Levels of Histone Modifications across Salivary Protein-1 

throughout the TEC Developmental Pathway .................................. 147 

Figure 3.21 - Analysis of AIRE’s Role in vivo: Quantitation of the Relative 

Levels of Histone Modifications across Salivary Protein-2 

throughout the TEC Developmental Pathway .................................. 152 

Figure 3.22 - Analysis of AIRE’s Role in vivo: Quantitation of the Relative 

Levels of Histone Modifications across Casein-α throughout 

the TEC Developmental Pathway .................................................... 154 

Figure 3.23 - Analysis of AIRE’s Role in vivo: Quantitation of the Relative 

Levels of Histone Modifications across Glyceraldehyde-3-

phosphate Dehydrogenase throughout the TEC 

Developmental Pathway .................................................................. 156 

Figure 3.24 - Analysis of AIRE’s Role in vivo: Quantitation of Expression 

Levels and the Relative Levels of Histone Modifications across 

Selection and Upkeep of Intraepithelial T-Cells 1 throughout 

the TEC Developmental Pathway .................................................... 158 

Figure 3.25 - Analysis of AIRE’s Role in vivo: Quantitation of Expression 

Levels and the Relative Levels of Histone Modifications across 

Proteasome Subunit β-Type 11 throughout the TEC 

Developmental Pathway .................................................................. 160 



 

Figure 3.26 - The Epigenetic Patterning of FoxN1-Deficient Nude Thymic 

Epithelial Cells: Expression of the Autoimmune Regulator and 

Tissue-Restricted Antigens upon Disruption of Normal TEC 

Development .................................................................................... 164 

Figure 3.27 - The Epigenetic Patterning of FoxN1-Deficient Nude Thymic 

Epithelial Cells: Quantitation of the Relative Levels of Histone 

Modifications across Tissue-Restricted Antigens upon 

Disruption of Normal TEC Development .......................................... 166 

Figure 3.28 - The Epigenetic Patterning of FoxN1-Deficient Nude Thymic 

Epithelial Cells: Quantitation of the Relative Levels of Histone 

Modifications across Glyceraldehyde-3-phosphate 

Dehydrogenase, Selection and Upkeep of Intraepithelial T-

Cells 1 and Proteasome Subunit β-Type 11 Upon Disruption of 

Normal TEC Development ............................................................... 169 

Figure 4.1 - Model for the Epigenetic Patterning of Tissue-Restricted 

Antigens under the Transcriptional Control of AIRE in Thymic 

Epithelial Cell Lines .......................................................................... 176 

Figure 4.2 - Model for the Domain-Wide Epigenetic Patterning of a Cluster 

of AIRE-Regulated Genes in Thymic Epithelial Cell Lines ............... 184 

Figure 4.3 - Model for the Epigenetic Patterning of Tissue-Restricted 

Antigens under the Transcriptional Control of AIRE throughout 

the TEC Developmental Pathway .................................................... 191 

Figure 4.4 - Model for the Epigenetic Patterning of Tissue-Restricted 

Antigens under the Transcriptional Control of AIRE upon 

Disruption to the TEC Developmental Pathway ............................... 199 

 



 

LIST OF TABLES 

 

Table 1.1 - Summary of Common Histone Acetyltransferase Enzymes ............... 37 

Table 1.2 - Summary of Known Histone Deacetylase Enzymes .......................... 39 

Table 1.3 - Summary of Known Protein Arginine Methyltransferase 

Enzymes ............................................................................................ 41 

Table 1.4 - Summary of Common Histone Lysine Methyltransferase 

Enzymes ............................................................................................ 43 

Table 1.5 - Summary of Common Histone Demethylase Enzymes ...................... 44 

Table 2.1 - Antibodies for Isolation of Primary Cell Populations ........................... 72 

Table 2.2 - Sequences of the Mus musculus Expression Primer Sets for 

Tissue-Restricted Antigens Used in Quantitative Real-Time 

Polymerase Chain Reaction (PCR) with cDNA .................................. 76 

Table 2.3 - Sequences of the Mus musculus Expression Primer Sets for 

the Keratin Cluster Used in Quantitative Real-Time 

Polymerase Chain Reaction (PCR) with cDNA .................................. 77 

Table 2.4 - Primary and Secondary Antibodies Used for Western Blot and 

Immunofluorescence Analysis of the Global Levels of Histone 

Modifications ...................................................................................... 81 

Table 2.5 - Affinity Purified Antibodies Used for Chromatin 

Immunoprecipitation ........................................................................... 87 

Table 2.6 - Sequences of Mus musculus Genomic DNA Tissue-Restricted 

Antigen Primer Sets Used in Quantitative Real-Time 

Polymerase Chain Reaction (PCR) with ChIP DNA ........................... 91 

Table 2.7 - Sequences of Mus musculus Genomic DNA Keratin Cluster 

Primer Sets Used in Quantitative Real-Time Polymerase 

Chain Reaction (PCR) with ChIP DNA ............................................... 92 

Table 2.8 - Sequences of Mus musculus Genomic DNA Keratin Cluster 

Intergenic Region Primer Sets Used in Quantitative Real-Time 

Polymerase Chain Reaction (PCR) with ChIP DNA ........................... 93 

Table 3.1 - Typical Functions of the Histone Modifications Investigated 

Through Native and Carrier Chromatin Immunoprecipitation ........... 101 



 

Table 3.2 - Efficiency of Pull-Down for Each Histone Modification 

Following Native Chromatin Immunoprecipitation ............................ 111 

Table 3.3 - The Fluorescent Activated Cell Sorting Parameters Used to 

Isolate Primary Cell Populations from Mus musculus Foetal 

Thymic Organ Cultures .................................................................... 137 

Table 3.4 - Efficiency of Pull-Down for Each Histone Modification 

Following Carrier Chromatin Immunoprecipitation ........................... 142 



 1

1. INTRODUCTION 

 

As human beings, we are under relentless attack from our environment; constantly in 

danger of infection and disease caused by pathogenic organisms.  On occasion, 

these invasions are successful, however they are dealt with swiftly and effectively by 

our immune system; a highly complex arrangement of cells and molecules, with a 

series of sophisticated mechanisms in place to identify and eradicate invaders.  

There are two major types of immune responses; innate immunity which provides an 

immediate reaction to tissue damage and infection by a wide range of potentially 

infectious agents; and adaptive immunity which is activated should innate immunity 

fail.  The adaptive immune system is organised around two basic branches; humoural 

and cell-mediated responses, carried out by B-lymphocytes (B-cells) and T-

lymphocytes (T-cells) respectively (Beck and Habicht 1996; Walker and Abbas 2002).  

It is predicted that the T-cell repertoire alone can provide protection against a vast 

number of foreign pathogens, with a capacity to recognise around 25 million antigen 

specificities (Walker and Abbas 2002).  This is achieved through a combination of 

plasticity of antigen recognition and random somatic gene mutation of the T-cell 

receptor (TCR) genes, during the development of T-cells within the thymus. 

 

1.1. T-LYMPHOCYTES: THE MAIN PLAYERS IN ADAPTIVE IMMUNITY 

 

Each day, approximately two million new T-cells are released from the thymus into 

the circulation, generated from an average of 10-100 entering haematopoietic 

precursors (Kyewski and Klein 2006; Nedjic et al. 2008).  However, these two million 
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mature T-cells are the lucky ones; for at its peak, an average of 50 million thymocytes 

are produced within the thymus from the minimal number of precursor cells, all of 

which must go through an intense selection process, ultimately resulting in the death 

of 96% of developing cells daily (Nedjic et al. 2008).  Each individual T-cell is 

encoded for a certain antigen-specificity on its TCR, thus the generation of such a 

large number of novel thymocytes requires great flexibility in TCR genes and random 

gene rearrangement.  However, this extremely stochastic process unavoidably 

results in the generation of either inert or potentially damaging T-cells.  Inert T-cells 

are simply of no use to the immune system as, although capable of recognising 

foreign antigens, they are unable to bind to them when presented via self-major 

histocompatibility complex (MHC) on the surface of antigen-presenting cells (Nedjic 

et al. 2008).  The alternative; T-cells capable of binding self-MHC, but in combination 

with self-antigens originating from our body’s own proteins, have the potential to 

cause much damage should they be released, and many autoimmune diseases 

result from a failure of the selection processes within the thymus allowing these self-

reactive T-cells to slip through the net.  Fortunately, healthy individuals are able to 

purge the system of these T-cells before they can do harm in a process known as 

tolerance, which can take place within the thymus and the periphery. 

 

1.2. T-LYMPHOCYTE DEVELOPMENT AND CENTRAL TOLERANCE 

 

The process of central tolerance is an integral part of T-cell development within the 

thymus and is therefore crucial for the generation of an effective immune system.  

The thymus represents a specialised microenvironment whose primary function is to 
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generate a repertoire of diverse but safe T-cells.  Stringent selection processes are 

orchestrated by thymic stromal cells and other accessory cells, which communicate 

with the developing T-cells as they pass through the thymus.  The thymic cells signal 

through chemokines, cytokines, selectins and transcription factors, influencing 

thymocyte migration, proliferation and differentiation during the complex stages of T-

cell development (Figure 1.1) (Rodewald 2006; Takahama 2006; Wu 2006).  In 

addition, it is not only the maturing thymocytes that benefit from these interactions as 

it has been shown that during late thymic organogenesis, the development of the 

thymic stromal cells, specifically maintenance of specialised thymic epithelial 

lineages, relies on thymocyte-derived signals in a process termed thymic crosstalk 

(Anderson et al. 1993; Anderson and Jenkinson 1995; Hollander et al. 1995; Nehls et 

al. 1996; Manley 2000; Klug et al. 2002; Jenkinson et al. 2005; Rothenberg et al. 

2008; White et al. 2008; Palmer and Naeher 2009; Shakib et al. 2009). 

 

Anatomically, the thymus can be compartmentalised into cortical and medullary 

regions, both of which are responsible for separate phases of T-cell development 

(Shakib et al. 2009).  The main processes in T-cell development can be divided into a 

number of key events, with the initial stages taking place in the outer cortex of the 

thymus following the influx of bone-marrow-derived lymphoid progenitor cells, which 

transmigrate across the cortico-medullary junction to the thymic parenchyma from the 

blood (Figure 1.1) (Takahama 2006).  These immature cells then begin the process 

of development, aided by Notch-mediated and interleukin-7 (IL-7) signals from 

cortical stromal cells (Takahama 2006).  Thymocyte progression through this stage is 

exemplified by the expression profiles of cell surface markers CD25, CD44 and c-kit 



The main stages in T-lymphocyte development. (a) Transmigration of immature 
lymphoid progenitor cells into the thymus across the cortico-medullary junction to 
the thymic parenchyma from the blood (b) development of these cells, aided by 
Notch-mediated and interleukin-7 (IL-7) signals from cortical thymic epithelial cells 
(cTECs) results in the generation of CD4-CD8- double negative (DN) thymocytes 
and then (c) CD4+CD8+ double positive (DP) thymocytes, which occurs in the 
outer cortex of the thymus.  Massive expansion of DP thymocytes occurs and 
the cells subsequently migrate to the inner cortex for (d) positive selection, a 
process brought about by cTECs and macrophages (MФ).  The DP cells then 
transfer to the medulla for negative selection, aided by signals from medullary 
thymic epithelial cells (mTECs), B-lymphocytes (B-cells) and dendritic cells (DCs), 
generating single positive (SP) CD4+ or CD8+ T-cells, which are finally (e) exported 
to the periphery as mature T-cells (Iwasaki and Akashi 2006; Rodewald 2006; Wu 
2006).  Figure adapted from (Kyewski and Klein 2006; Takahama 2006).

Figure 1.1 - The Development of T-Lymphocytes

4
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(Iwasaki and Akashi 2006; Takahama 2006; Wu 2006).  The cells alter their 

expression of these molecules as they differentiate and proliferate, passing from 

CD4-CD8-CD25-CD44+c-kit+ double negative (DN) 1 thymocytes to CD4-CD8-

CD25+CD44+c-kit+ DN2, and eventually to CD4-CD8-CD25+CD44-c-kit- DN3 

thymocytes (Iwasaki and Akashi 2006; Takahama 2006; Wu 2006). 

 

For progression along the developmental pathway, DN3 cells must successfully 

complete in-frame rearrangement of VDJ TCRβ-chain and pre-TCRα genes, thus 

allowing formation of a cell-surface pre-TCR complex (Iwasaki and Akashi 2006; 

Takahama 2006).  The thymocytes are then able to migrate through the cortex 

towards the subcapsular zone where expression of CD4 and CD8 can occur, 

generating double positive (DP) thymocytes, a process which is negatively regulated 

by high levels of transforming growth factor-β 1 (TGFβ1) (Figure 1.1) (Rubtsov and 

Rudensky 2007). 

 

It is at this point that the first blueprint of central tolerance is imprinted into the 

developing T-cell repertoire.  The first major checkpoint ensures a useful T-cell 

repertoire in a process termed positive selection (Figure 1.1).  Through presentation 

of peptide/MHC ligands on the surface of cortical thymic stromal cells and dendritic 

cells (DCs), and subsequent interactions with TCRαβ complexes on the developing 

DP thymocytes, only those capable of recognising and binding to self-MHC, receive 

positive signals to survive and continue differentiation (Kyewski and Klein 2006; 

Shakib et al. 2009). 
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For progression along the pathway of differentiation, positively-selected DP 

thymocytes must lose expression of either CD4 or CD8 to become single positive 

(SP) thymocytes.  These cells are then able to migrate towards the medulla, where 

maturation can occur, along with the final phase of tolerance induction; negative 

selection (Figure 1.1) (Takahama 2006).  Negative selection occurs mainly, although 

not exclusively, within the thymic medulla, and results in the clonal deletion of highly 

auto-reactive thymocytes, or commitment of mildly self-reactive T-cells to the 

forkhead box P3 (Foxp3)-expressing regulatory T-cell (Treg) lineage, before the 

release of mature T-cells into the circulation (Kyewski and Klein 2006; 

Aschenbrenner et al. 2007; Hamazaki et al. 2007; Rubtsov and Rudensky 2007; 

Venanzi et al. 2007; Lars-Oliver Tykocinski 2008; McCaughtry et al. 2008; Shakib et 

al. 2009). 

 

The three-dimensional meshwork of thymic epithelial cells (TECs) provide a constant 

input to all stages of T-cell development, and the impact these cells have in moulding 

the T-cell repertoire has been well documented (Anderson et al. 1993; Anderson and 

Jenkinson 1995; Hollander et al. 1995; Nehls et al. 1996; Manley 2000; Jenkinson et 

al. 2005).  This is highlighted by the fact that TEC frequency is directly proportional to 

the efficacy of thymic T-cell output and that age-related thymic atrophy leads to a 

decline in T-cell production, to the extent that by 40-50 years thymic output has fallen 

to less than 10% of its maximum potential, a process again attributed to a decline in 

TEC frequency and/or function (Chidgey et al. 2007; Jenkinson et al. 2007; Shakib et 

al. 2009). 
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1.3. PROMISCUOUS GENE EXPRESSION IN THE THYMUS AND NEGATIVE SELECTION 

 

For decades, immunologists have debated the relative importance of central versus 

peripheral tolerance, an enduring argument being that the majority of the body’s 

proteome would not be visible to developing T-cells within the sterile thymic 

microenvironment, hence central tolerance to self would be practically impossible.  

Added to this the re-emergence of the concept of T-cell subsets with regulatory 

characteristics, peripheral tolerance mechanisms have dominated the field (Walker 

and Abbas 2002; Mathis and Benoist 2004).  Within the periphery, a large number of 

systems are in place to prevent the activation of mature autoimmune T-cells and 

induce peripheral tolerance including T-cell-intrinsic mechanisms; clonal ignorance, 

anergy, phenotypic skewing and apoptosis, and T-cell-extrinsic mechanisms; which 

rely on auxiliary cells such as Treg and tolerogenic dendritic cells (Walker and Abbas 

2002; Siggs et al. 2006; Aschenbrenner et al. 2007).  Yet despite this, there was no 

denying the fact that such large numbers of immature T-cells are produced and then 

immediately deleted within the thymus.  Furthermore, the importance of TECs upon 

the prevention of self-reactive T-cell specificities is evidenced by the resulting 

development of autoimmune deficiencies when the TEC developmental pathway is 

disrupted (Shakib et al. 2009).  This challenged the classic views of a dominant role 

for peripheral tolerance mechanisms and fuelled further investigation into central 

tolerance (Mathis and Benoist 2004; Kyewski and Klein 2006).  The first major 

insight into how intra-thymic tolerance to self could realistically be achieved, 

revealed that a number of diverse tissues were represented at the RNA level in 

distinct areas of the thymus including the pancreas (insulin), and the central nervous 
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system (myelin basic protein and proteolipid protein) (Gotter et al. 2004; Mathis and 

Benoist 2004; Kyewski and Klein 2006).  Numerous reports followed in support of 

this, and with the development of a meticulous purification protocol for thymic 

stromal cell populations, the theory of intra-thymic expression of self-antigens, and 

the significance of the central tolerance concept, was again brought to the forefront, 

challenging the general rules of cell-type-specific patterns of gene expression 

(Jolicoeur et al. 1994; Klein et al. 1998; Mathis and Benoist 2004; Kyewski and Klein 

2006). 

 

Further studies into this phenomenon have built upon these findings, showing that 

essentially all organs, including genes thought to be restricted in their spatial, 

developmental, sex-dependent and temporal expression are represented in the 

thymic microenvironment (Mathis and Benoist 2009).  A predicted pool of up to 3000 

tissue-restricted antigens (TRA) are expressed; representing a significant portion of 

the genome, which include transcripts for, among others; structural proteins, 

hormones, secreted proteins and transcription factors (Anderson et al. 2002; Kyewski 

and Derbinski 2004; Kyewski and Klein 2006; Mathis and Benoist 2009).  These self-

antigens can be generated in a number of ways including; expression within bone-

marrow derived antigen presenting cells (APC) of the circulatory system (dendritic 

cells, macrophages and B-cells); import of a limited number of antigens to the thymus 

via APCs from the periphery, or directly through the bloodstream; however the 

principal way in which these TRA are produced was found to be from the proteome of 

resident thymic stromal cells (Koble and Kyewski 2009).  This process, termed 

promiscuous gene expression (PGE), was found to be predominantly restricted to a 
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very select subset of thymic epithelial cells, primarily located in the medulla and 

cortico-medullary junction; medullary thymic epithelial cells (mTECs) (Anderson and 

Jenkinson 2001; Derbinski et al. 2001; Kyewski and Derbinski 2004; Mathis and 

Benoist 2004; McCaughtry et al. 2008).  This small fraction of cells make up only 

approximately 0.005% of the whole thymus, however their role is crucial for 

preventing autoimmunity, highlighted by the fact that the majority of autoantigens, 

either known or suspected to cause specific autoimmune diseases, can be detected 

in murine mTECs including, but not limited to; thyroglobulin and thyroid peroxidise 

(TPO), causative autoantigens of Hashimoto’s thyroiditis; insulin, glutamic acid 

decarboylase-67 (GAD67) and IA-2, major autoantigens of type I diabetes; and the 

rheumatoid arthritis antigen, collagen II (Gotter et al. 2004).  In addition, mTECs 

displayed many cancer-germline group antigens such as members of the melanoma 

antigen (MAGE)-A group or NY-ESO-1, along with differentiation antigens including 

tyrosinase and MART-1 (melanoma antigen recognized by T-cells), known targets of 

circulating T-cells (Gotter et al. 2004).  Thus, PGE within mTECs acts to expose 

developing T-cells to an extensive array of TRA, imprinting them with tolerance to 

self. 

 

1.4. MOLECULAR REGULATION OF PROMISCUOUS GENE EXPRESSION BY AIRE 

 

The cellular and molecular intricacy of central tolerance, although not thoroughly 

understood, was brought one step closer to comprehension through the discovery of 

a molecular determinant of PGE, following studies into a relatively rare autoimmune 

disease.  Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy 
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(APECED), also known as Autoimmune Polyendocrinopathy Syndrome Type 1 

(APS1), is a devastating primary autoimmune disease which manifests itself as 

organ-specific autoimmunity to multiple organs due to the presence of circulating 

tissue-specific auto-antibodies, which target and attack various organs (Aaltonen et 

al. 1994; Liston 2006; Devoss and Anderson 2007; Hubert et al. 2008).  Sufferers 

classically had to present with at least two of the three characteristic features; chronic 

mucocutaneous candidiasis, hypoparathyroidism, and primary adrenal insufficiency, 

however, more recently, diagnosis extends to more atypical symptoms, following 

identification of the causal genetic lesion, including; chronic diarrhoea, keratitis, 

autoimmune hepatitis, vitiligo, alopecia, periodic rash with fever, severe constipation 

and enamel hypoplasia (Husebye et al. 2009; Mathis and Benoist 2009).  Unlike the 

majority of autoimmune diseases, APECED is curiously uncomplicated in its genetic 

cause; found in its most common form to be an autosomal-recessive disorder 

(Aaltonen et al. 1994; Nagamine et al. 1997; Heino et al. 2001; Liston et al. 2003; 

Halonen et al. 2004; Liston 2006; Devoss and Anderson 2007; Mathis and Benoist 

2009).  It was therefore possible to map the disease locus to a single chromosomal 

location; human chromosome 21q22.3 which was found to encode a novel 2027 

base pair (bp) gene; the Autoimmune Regulator (AIRE) (Aaltonen et al. 1994; 

Nagamine et al. 1997; Heino et al. 2001; Mathis and Benoist 2009). 

 

1.5. THE MANY DOMAINS OF AIRE: LINKING STRUCTURE TO FUNCTION 

 

The AIRE gene encodes a large 545 amino acid (aa) protein, with a molecular weight 

of approximately 58kDa, whose structure is characteristic of known transcription 
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factors and contains regions well-conserved across vertebrates (Figure 1.2) 

(Aaltonen et al. 1994; Nagamine et al. 1997; Uchida et al. 2004; Saltis et al. 2008; 

Mathis and Benoist 2009).  To date, more than 60 APECED-causing mutations have 

been uncovered across the AIRE gene, distributed throughout the locus and 

therefore present within all structural domains of the protein, highlighting the 

importance of each of these regions for AIRE’s function (Heino et al. 2001; Halonen 

et al. 2004; Mathis and Benoist 2009).  The most common, however, are a cytosine 

to tyrosine transition at position 769bp, and a 13bp deletion in exon 8 (967-979bp), 

with either of these two mutations occurring in approximately 95% of patients 

(Husebye et al. 2009).  The key domains of the AIRE protein, represented in Figure 

1.2 include; a SAND (Sp100, AIRE, NucP41/75, and DEAF-1) domain; found within 

many transcriptional modifiers and with predicted DNA-binding properties; two plant 

homeodomain (PHD)-zinc fingers, essential for AIRE’s function; four LXXLL motifs 

(where L is leucine and X is any amino acid), thought to mediate protein-protein 

interactions; a homogeneously staining region which has recently been identified as 

a caspase recruitment domain (CARD), the site of many mutations in APECED 

patients and a potential impetus for AIRE homo- or hetero-dimerisation, or 

alternatively interactions with other proteins with roles in transcriptional control 

(Gibson et al. 1998; Heino et al. 2001; Kumar et al. 2001; Bottomley et al. 2005; 

Goldrath and Hedrick 2005; Ferguson et al. 2007; Meloni et al. 2008; Mathis and 

Benoist 2009).  The protein also contains two functional nuclear localisation signals 

(NLS); a classical importin-α and –β pathway import signal; and a CRM1-dependent 



Schematic representation of the functional domains of the 545 amino acid (aa) 
human autoimmune regulator (AIRE) protein and their identified roles.  The 
N-terminal caspase recruitment domain (CARD) is believed to be required 
for homo-oligomerisation and for the formation of AIRE nuclear bodies.  This 
domain is known to interact with protein inhibitor of activated STAT-1 (PIAS1); a 
transcriptional co-regulator known to associate with the nuclear matrix (Ilmarinen 
et al. 2008).  AIRE has four LXXLL motifs (aa7-11, aa63-67, aa414-418 and 
aa516-520) which are putative sites for nuclear receptor binding, and a conserved 
bipartite nuclear localisation signal (NLS), present in the N-terminal, has been 
implicated in nuclear import.  AIRE’s unconfirmed DNA-binding properties are 
thought to be co-ordinated through the SAND (Sp100, AIRE, NucP41/75, and 
DEAF-1) domain (Gibson et al. 1998; Kumar et al. 2001).  DNA-dependent 
protein kinase (DNA-PK) is able to phosphorylate AIRE and aids in transcriptional 
transactivation (Liiv et al. 2008).  This interaction occurs via the first of AIRE’s 
two cysteine-rich plant homeodomain (PHD)-zinc finger domains.  PHD1 also 
displays E3-ubiquitin ligase activity in vitro, although this result in controversial 
(Uchida et al. 2004).  The CARD and SAND domain, PHD1 and 2, and the 
C-terminal region are all essential for AIRE’s ability to influence transcription, 
and mutations in any of these domains disrupt this functional property (Heino 
et al. 2001; Halonen et al. 2004).  AIRE has also demonstrated associations 
with; the transcriptional co-activator CREB-binding protein (CBP); with positive 
transcription elongation factor-b (P-TEFb), a key player in transcription elongation; 
and also with the nuclear matrix, although to date the regions required for 
these activities are not well defined (Pitkanen et al. 2000; Akiyoshi et al. 2004; 
Pitkanen et al. 2005; Ferguson et al. 2007; Oven et al. 2007; Peterson et al. 
2008).  Figure adapted from (Su and Anderson 2004; Peterson et al. 2008).

Figure 1.2 - Structure of the Autoimmune Regulator Protein

12
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export signal, located in the amino terminal region of AIRE (Pitkanen et al. 2001; 

Ilmarinen et al. 2006).  These features give important clues to AIRE’s molecular role, 

however there is still controversy over AIRE’s true function. 

 

The expression of AIRE is detected most prominently within the lymphoid organs, 

primarily localised to the thymic medulla and correlating significantly with the 

promiscuous expression of self-antigens within mTECs (Figure 1.3) (Nagamine et al. 

1997; Heino et al. 1999; Liston et al. 2004; Klamp et al. 2006; Mathis and Benoist 

2009).  The protein has been detected in the nucleus of mTECs, where staining with 

anti-AIRE antibodies reveals a punctate, perinuclear speckled pattern similar to 

promyelocytic leukaemia (PML) nuclear bodies, in which the AIRE homologues 

Sp100, Sp140 and Lysp100 can be found (Bjorses et al. 1999; Heino et al. 1999; 

Pitkanen et al. 2000; Halonen et al. 2001; Pitkanen et al. 2001; Akiyoshi et al. 2004; 

Cavadini et al. 2005; Hubert et al. 2008).  However, from co-immunofluorescence 

staining, it has been shown that AIRE does not co-localise with these PML 

structures, but in fact resides within unique subnuclear structures (Akiyoshi et al. 

2004).  AIRE nuclear bodies are distinct from, but located adjacent to nuclear 

speckles, in which pre-mRNA splicing components, factors required for 3` end RNA 

processing and proteins involved in transcription are found (Su et al. 2008).  The 

formation of AIRE nuclear bodies is dependent upon structurally sound AIRE protein, 

as mutations have demonstrated a block in their formation (Pitkanen et al. 2001; 

Halonen et al. 2004; Ferguson et al. 2007; Peterson et al. 2008; Su et al. 2008).  

These AIRE complexes were shown to be excluded from nucleoli and to have an 

association with the nuclear matrix, thus indicating a possible interaction with 



Diagrammatic representation of the role of autoimmune regulator (AIRE) in 
promiscuous gene expression (PGE) and central tolerance.  AIRE controls the 
expression of a catalogue of self-proteins characteristic of peripheral organs 
termed tissue-restricted antigens (TRA).  Exclusively within medullary thymic 
epithelial cells (mTECs), TRA are then processed and loaded onto cell-surface-
displayed MHC molecules for direct antigen presentation.  The rapid turnover 
rate of mTECs, upon AIRE activation, results in uptake of TRA for indirect antigen 
presentation by thymic dendritic cells (DCs) (Gray et al. 2007).  Developing CD4+ 
or CD8+ single-positive thymocytes migrate through the medulla and interactions 
between self-peptide-MHC complexes and T-cell receptors (TCRs) dictate their 
fate.  TCRs capable of recognising these TRA-MHC within a given affinity / avidity, 
would primarily be removed by clonal deletion, although an alternative suggestion 
is that some potentially auto-reactive T-cells may survive by clonal deviation to 
a more regulatory role (Walker et al. 2003; Anderson et al. 2005; Kuroda et al. 
2005).  Figure adapted from (Mathis and Benoist 2009).

Figure 1.3 - Autoimmune Regulator Protein in the Control of Promiscuous 
Gene Expression and the Induction of Central Tolerance

14
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transcriptional machinery (Pitkanen et al. 2001; Devoss and Anderson 2007; Hubert 

et al. 2008).  At a molecular level, the AIRE protein displays characteristics of a 

transcriptional regulator (Pitkanen et al. 2000; Meloni et al. 2008).  It is capable of 

transcriptional transactivation of numerous reporter and endogenous promoters, has 

demonstrated the potential to directly bind DNA and has been shown to co-localise 

with a number of protein partners, resulting in the integration of AIRE into large 

biological complexes greater than 650kDa in vitro (Pitkanen et al. 2000; Halonen et 

al. 2004; Pitkanen et al. 2005; Purohit et al. 2005; Oven et al. 2007; Ruan et al. 2007; 

Liiv et al. 2008; Mathis and Benoist 2009). 

 

Shortly after the identification of the AIRE gene, investigators were eager to generate 

a knockout mouse model, to further study AIRE’s function (Venanzi et al. 2004).  The 

AIRE-knockout mice displayed an autoimmune syndrome, comparable to APECED in 

humans, with auto-antibodies directed against multiple organ systems (Kyewski 

2008).  However, rather than the whole organ being targeted, it was individual and 

highly unique regions within, to which the damage was directed, for example; the 

photoreceptor layer of the retina in the eye; parietal cells of the stomach; and oocytes 

in the ovaries (Anderson et al. 2002).  Through isolation and gene expression 

profiling of mTECs from AIRE-deficient mice, it was revealed that the promiscuous 

expression of TRA genes was significantly depressed, which provided the first real 

clues as to AIRE’s role; in preventing autoimmunity (Figure 1.3) (Su and Anderson 

2004; Venanzi et al. 2004).  Studies into this phenomenon revealed the importance 

of this promiscuous gene expression with regards to autoimmune disease 

susceptibility, however, it wasn’t until more recently that the breakdown of thymic 
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expression of individual self-antigens was demonstrated to be sufficient for the 

development of selective organ-specific autoimmunity (Klein et al. 2000; Derbinski et 

al. 2001; Avichezer et al. 2003; Gotter et al. 2004; DeVoss et al. 2006; Gavanescu et 

al. 2007).  Through the use of AIRE-deficient mice, DeVoss et al (2006) found that 

spontaneous eye-specific autoimmune disease occurred as a direct result of the loss 

of expression of a highly specific eye antigen; interphotoreceptor retinoid-binding 

protein (IRBP), within the thymus, due to the absence of AIRE (DeVoss et al. 2006).  

Following this, Gavanescu et al (2007) reported an analogous result; with an 

absence of the AIRE-regulated stomach antigen mucin 6, triggering gastritis 

(Gavanescu et al. 2007).  Thus AIRE appeared to play an essential role in central 

tolerance, as a transcriptional regulator promoting the expression of TRA within 

mTECs for subsequent direct antigen presentation to developing thymocytes (Figure 

1.3).  However, given the very low numbers of AIRE-positive mTECs, in relation to 

the millions of developing thymocytes, it would seem unlikely that the entire T-cell 

repertoire could be checked for self-reactivity (Kyewski and Derbinski 2004).  Thus, 

the finding that thymocytes spend up to 5 days in the medulla and are highly motile 

may counteract this problem (Kyewski and Derbinski 2004).  Added to this, AIRE-

positive mTECs have demonstrated very high turnover rates, surviving only a few 

days after the induction of AIRE expression, which therefore may also alleviate the 

question of how so few mTECs could process and present such a massive catalogue 

of AIRE-regulated TRA (Gray et al. 2007).  Through rapid death and renewal of the 

mTEC subset, the gamut of TRAs on display to developing T-cells would be 

constantly updated, and could even be maximised through uptake of apoptotic 

mTECs by thymic dendritic cells for indirect presentation of TRA leading to the 
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deletion of self-reactive thymocytes (Figure 1.3) (Gray et al. 2007; Ferguson et al. 

2008).  An alternative mechanism is that AIRE may be involved in the positive 

selection of Treg cells, although this is not believed to be AIRE’s major role as the 

numbers of CD4+CD25+ Treg cells are comparable to wild type in AIRE-deficient mice 

(Walker et al. 2003; Anderson et al. 2005; Kuroda et al. 2005). 

 

Interestingly, AIRE’s role does not seem to be limited to central tolerance 

mechanisms as numerous groups detected AIRE mRNA within a wide range of 

peripheral tissues including kidneys, testis, ovaries, adrenal glands, pancreas and 

liver (Halonen et al. 2001; Adamson et al. 2004).  However it would appear that these 

small quantities of mRNA are not sufficient for translation to occur as 

immunofluorescence and in situ hybridisation revealed peripheral AIRE protein 

restricted to immunologically relevant sites, such as the spleen, lymph nodes and 

bone marrow, although one group, using a novel monoclonal antibody specific for 

murine AIRE, recently demonstrated the presence of AIRE+ cells in the thymic 

medulla only (Heino et al. 1999; Maarit Heino 2000; Halonen et al. 2001; Anderson et 

al. 2002; Adamson et al. 2004; Klamp et al. 2006; Lee et al. 2007).  Peripheral AIRE 

has been predicted to be required for the maintenance of tolerance, for antigen 

presentation and even for T-cell-independent B-cell responses, and indeed, the 

finding that AIRE expression is restricted to cells of the haematopoietic lineage and 

peripheral AIRE+ stromal cells certainly supports these theories (Sillanpaa et al. 

2004; Lee et al. 2007; Gardner et al. 2008; Lindh et al. 2008; Pontynen et al. 2008; 

Mathis and Benoist 2009).  An array of dendritic cell types, macrophages and 

monocytes were found to express AIRE and that loss of this expression disrupted the 
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antigen-presenting capabilities and transcriptional programmes of the cells (Sillanpaa 

et al. 2004; Pontynen et al. 2008).  However, the transcript levels of AIRE observed, 

were always at considerably lower levels than those within mTECs and the protein 

was undetectable by flow cytometry, yet it may be possible that AIRE expression in 

peripheral haematopoietic cells, could have a role to play in antigen presentation, 

particularly under inflammatory conditions (Anderson et al. 2002; Hubert et al. 2008; 

Mathis and Benoist 2009).  More recently, two groups have identified populations of 

lymph node stromal cells analogous to mTECs, able to express AIRE and a limited 

range of TRAs (Lee et al. 2007; Gardner et al. 2008).  Lee et al (2007) showed that 

CD45- cortical lymph node stromal cells which constitutively expressed certain TRAs 

were able to present these self-antigens to naive CD8+ T-cells, resulting in their 

primary activation and subsequent tolerance (Lee et al. 2007).  Gardner et al (2008) 

then went on to describe a separate population of stromal cells also capable of 

deleting auto-reactive T-cells, residing ubiquitously in lymphoid organs including the 

mesenteric lymph nodes, Peyer’s patches and tertiary lymphoid structures, which 

were CD45-MHC II+EpCAM1+ and expressed TRAs, but displayed no co-stimulatory 

molecules (CD80 or CD86) unlike mTECs (Gardner et al. 2008).  It is essential that 

self-tolerance be maintained once T-cells leave the thymus, thus the finding of AIRE 

expression outside the thymus may point to a more secondary role for AIRE-

regulated peripheral tolerance, as a back-up to central tolerance.  This hypothesis is 

strengthened by the finding that the repertoire of TRA generated by AIRE+ stromal 

cells is much more limited than those within mTECs, and that there was little overlap 

between the two expression profiles, meaning that any peripheral self-antigens not 

displayed to the developing thymocytes within the thymus could theoretically be 
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present within the lymph nodes or the spleen, ensuring deletion of any escaped auto-

reactive cells (Lee et al. 2007; Gardner et al. 2008; Kyewski 2008).  In addition, 

transplantation of AIRE-deficient thymi into wild-type recipient mice still results in 

autoimmune manifestations, highlighting the fact that AIRE and TRA expression 

within the periphery is unable to prevent autoimmune attack, although it may still play 

a role (Anderson et al. 2002; Liston et al. 2003; Kuroda et al. 2005). 

 

1.6. AIRE-REGULATED GENES: CLUSTERING ON CHROMOSOMES 

 

This work also illustrated the scope of promiscuously expressed genes under the 

control of AIRE; the fact that AIRE’s target genes extended far beyond the pool of 

autoantigens in APECED (Anderson et al. 2002; Gotter et al. 2004).  It was noted 

that these genes did not have any obvious association in terms of structure or 

function, and even more strikingly, the usual constraints of sex-specific or 

developmental-specific patterns of gene expression appeared to be over-ridden by 

AIRE (Gotter et al. 2004).  The mammary gland casein proteins, normally restricted 

to expression in late-pregnancy, along with the testis-specific antigen sperm-

associated antigen 6 (SPAG6) and the placental hormone placental lactogen (PL), 

showed equal levels of expression in male and female mTECs, which offered a 

potential explanation for the enigma of how tolerance to self-antigens, which only 

arise in adulthood, was brought about during the development of the immune system, 

when these proteins would not be visible to the developing T-cell repertoire (Gotter et 

al. 2004; Derbinski et al. 2005; Johnnidis et al. 2005).  AIRE-regulated genes showed 

a broad diversity, thus, in order to elucidate any common features regarding the 
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localisation of these genes throughout the genome, comprehensive analysis of their 

expression was undertaken, which revealed a global distribution throughout the 

genome, with no significant under- or over-representation of particular chromosomes 

(Figure 1.4) (Gotter et al. 2004; Johnnidis et al. 2005).  Instead, across individual 

chromosomes, a considerable clustering of co-regulated genes was revealed, with 53 

of 200 AIRE-regulated genes analysed occurring alongside a similarly AIRE-

activated neighbour within a region of up to 200kbp, which led to the proposal that 

AIRE could direct gene expression through a broad activity on chromatin 

conformation (Figure 1.4) (Johnnidis et al. 2005).  Gene clustering is a feature with a 

number of evolutionary advantages, including co-ordinated gene expression in single 

cells and sharing of enhancer or locus-control regions, with clustered genes generally 

switched on en masse, a highly efficient process as the transcriptional machinery 

would be able to access and induce the expression of co-expressed genes more 

easily if they were neighbours, than if they were distributed randomly across the 

chromosomes (Caron et al. 2001; Boutanaev et al. 2002; Roy et al. 2002; Gotter et 

al. 2004; Gierman et al. 2007; Soshnikova and Duboule 2009). 

 

For a number of AIRE-regulated clusters, this did in fact appear to be the case 

(Johnnidis et al. 2005).  For example, the two strict TRA salivary proteins-1 and -2, 

found on Mus musculus chromosome 15, are located within 130kbp of each other 

and both are switched on in the presence of AIRE (Johnnidis et al. 2005).  Similarly, 

gephyrin (Gphn), eukaryotic translation initiation factor 2, subunit 1α (Eif2s1) and 

arginase type II (Arg2), clustered on Mus musculus chromosome 12 are also affected 

by AIRE en masse, although instead of an increase in expression, all three genes 



Genomic distribution of gene targets of the Mus musculus autoimmune regulator 
(AIRE).  A, AIRE-regulated genes appear to distribute evenly throughout all 
chromosomes.  The top 200 AIRE-activated genes are represented in red, the top 
200 AIRE-repressed genes are in blue.  B, The impact of AIRE upon expression 
from each cluster can vary; with AIRE targets either being located adjacent to each 
other, or interspersed with AIRE-independent genes.  Certain clusters also show 
divergent regulation, with adjacent loci showing opposing levels of expression in 
the presence of AIRE.  Data taken from (Johnnidis et al. 2005).

Figure 1.4 – Chromosomal Clustering of Genes under the Transcriptional 
Control of the Autoimmune Regulator
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were shown to be negatively regulated by AIRE, suggesting that AIRE’s role as a 

transcriptional regulator is decidedly more complex (Figure 1.4) (Johnnidis et al. 

2005).  Interestingly, however, the impact of AIRE on the control of transcription 

within its target clusters was not a uniform on / off switch as a significant number of 

clusters showed a rather punctate expression profile; with the induction in expression 

of only two or three AIRE-dependent genes, while neighbouring genes in the same 

loci were not induced, or more surprisingly, their expression decreased (Figure 1.4) 

(Johnnidis et al. 2005).  The epidermal differentiation complex on Mus musculus 

chromosome 3, had previously been mapped following studies into the development 

of epidermal tissue, yet this cluster of genes was also found to be expressed in 

mTECs, under the transcriptional control of AIRE, with some loci being repressed 

including; synaptosomal-associated protein 25bp (Snap25bp); S100 calcium binding 

protein (S100) A 13; S100a3; S100a4; and S100a6, and others being activated 

(S100a8) (Johnnidis et al. 2005).  A number of clusters were also identified which 

contained members of the keratin family (Johnnidis et al. 2005).  These proteins have 

been shown to be specific to certain cortical and medullary stromal cell subsets, and 

may therefore be required for the development of the thymic architecture (Klug et al. 

1998).  The revelation that the expression of keratin 4, located on Mus musculus 

chromosome 5, increased in the presence of AIRE and that keratin 18, downstream 

of keratin 4, showed lower transcript levels in the presence of AIRE, may explain the 

differential expression patterns of these structural proteins in the thymus (Johnnidis 

et al. 2005). 
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In their thorough analysis of PGE within different subsets of thymic stromal cells 

(DCs, cTECs and mature and immature mTECs), Derbinski et al (2005) 

demonstrated four distinct pools of TRA; (i) those that show equal levels of 

expression in the TEC lineage; (ii) genes restricted to mTECs; (iii) AIRE-regulated 

genes only expressed in mature mTECs; and (iv) those that are switched on upon 

mTEC maturation, but that are in-dependent of AIRE (Derbinski et al. 2005).  This 

group chose to focus on the casein cluster on Mus musculus chromosome 5 which 

was found to house genes from a number of these different gene categories, with 

casein-β and -κ showing AIRE-independent expression; being up-regulated in mature 

mTECs in both wild-type and AIRE-deficient mice, yet all other genes in the cluster; 

casein-α, -γ and –δ, highly dependent on AIRE in mature mTECs (Figure 1.4) 

(Derbinski et al. 2005).  However, the distribution of these genes is such that AIRE-

independent and AIRE-dependent genes are interspersed along the 1Mbp cluster, 

often lying directly adjacent to each other (Derbinski et al. 2005).  Thus an alternative 

mode for AIRE’s control of promiscuous gene expression may involve two possible 

levels of regulation; a large-scale control of whole gene clusters indicative of 

epigenetic mechanisms, and a more specific targeting of individual genes (Derbinski 

et al. 2005; Johnnidis et al. 2005). 

 

1.7. PROTEIN PARTNERS OF AIRE 

 

The interaction of AIRE with other highly active proteins complements this theory, 

suggesting a role for AIRE as a co-activator in large transcriptional complexes 

(Figure 1.5).  CREB-binding protein (KAT3A/CBP), a common transcriptional co-



A model of autoimmune regulator (AIRE)-containing complexes in the control of 
promiscuous gene expression.  AIRE has been shown to interact with several 
protein partners with defined functions, suggesting a role in AIRE’s transcriptional 
regulation.  DNA-dependent protein kinase (DNA-PK), a protein involved in non-
homologous end joining, may aid in AIRE recruitment to the nucleus through 
tethering to nuclear matrix (Liiv et al. 2008).  DNA-PK is able to phosphorylate 
two sites in AIRE, which enhances AIRE’s transcriptional activity (Liiv et al. 2008).  
Protein inhibitor of activated STAT-1 (PIAS1); an inhibitor of STAT (signal transducer 
and activator of transcription)-mediated cytokine signalling, which functions as a 
transcriptional co-regulator, is also implicated in the recruitment of AIRE to the 
nuclear matrix (Ilmarinen et al. 2008).  CREB-binding protein (KAT3A/CBP), a 
common transcriptional co-activator, co-localises with AIRE in nuclear bodies 
(Pitkanen et al. 2000; Akiyoshi et al. 2004; Pitkanen et al. 2005; Ferguson et al. 
2007).  With intrinsic histone acetyltransferase activity, KAT3A/CBP may facilitate 
AIRE-mediated expression through acetylation (Ac) of histone tail residues.  AIRE 
has been found to bind positive transcription elongation factor-b (P-TEFb), a key 
player in transcription elongation (Oven et al. 2007).  P-TEFb can phosphorylate 
the serine residues of RNA polymerase II (RNA pol II), converting stalled RNA 
pol II to the elongating form, triggering active expression (Oven et al. 2007).  The 
formation of these large nuclear complexes may contribute to AIRE’s control of 
promiscuous gene expression.  Figure adapted from (Peterson et al. 2008).

Figure 1.5 – Autoimmune Regulator Binding Partners
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activator with intrinsic histone acetyltransferase activity for a wide range of 

transcription factors, has been shown to co-localise with AIRE in nuclear bodies and 

together can bring about the activation of a number of genes within cultured cells 

(Pitkanen et al. 2000; Akiyoshi et al. 2004; Pitkanen et al. 2005; Ferguson et al. 

2007).  Protein inhibitor of activated STAT-1 (PIAS1); an inhibitor of STAT (signal 

transducer and activator of transcription)-mediated cytokine signalling, functions as a 

transcriptional co-regulator and is also located in nuclear bodies and known to 

associate with the nuclear matrix (Ilmarinen et al. 2008).  However, AIRE nuclear 

bodies do not co-localise but are instead found neighbouring PIAS1, indicating that 

the binding of AIRE and PIAS1 may be through additional nuclear matrix components 

(Ilmarinen et al. 2008).  Another partner of AIRE; DNA-dependent protein kinase 

(DNA-PK) is a protein shown to be involved in non-homologous end joining and also 

to be linked to nuclear matrix (Liiv et al. 2008).  This protein has demonstrated a key 

role in AIRE’s function as it phosphorylates two sites in the AIRE protein, mutation of 

which has a negative impact on AIRE’s transcriptional activity (Liiv et al. 2008).  In 

addition, AIRE has been found to bind positive transcription elongation factor-b (P-

TEFb), a key player in transcription elongation, resulting in recruitment to RNA 

polymerase II (RNA pol II) found at the promoters of AIRE-target genes (Oven et al. 

2007; Peterson et al. 2008).  Thus it is possible that AIRE, along with its many 

protein partners may control PGE via an influence on the organisation of DNA 

indirectly; recruiting members of a transcriptional regulation complex to AIRE-

dependent gene clusters scattered throughout the genome.  Through interactions 

with the nuclear matrix, AIRE may then be able to recruit factors required for 
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transcriptional elongation, thus resulting in the induction of PGE (Peterson et al. 

2008). 

 

1.8. EPIGENETICS AND THE CONTROL OF GENE EXPRESSION 

 

Transcriptional regulators, including AIRE, with influence over multiple gene 

expression programmes, are all faced with a number of complexities.  Once 

transported through the nuclear envelope, these proteins encounter the initial 

problem of locating their target genes.  The nucleus is a highly heterogeneous 

structure, consisting of many sub-compartments and components, with the DNA 

molecule making up only approximately 6% of the total nuclear volume, and of this 

only 1-2% represents functional genes in humans (Lander et al. 2001).  The DNA 

itself is highly dynamic and is divided up into large functional units called 

chromosomes, the distribution of which is far from random within the nucleus, with 

particular chromosomes localising to preferred sites, referred to as chromosome 

territories, which correlate with gene activity (Kurz et al. 1996; Mahy et al. 2002; 

Parada and Misteli 2002; Simonis et al. 2006; Dostie et al. 2007; van Berkum and 

Dekker 2009).  However, the DNA within these territories is not a static structure as 

the spatial distribution of certain genes with respect to their chromosome territory has 

been shown to correlate with their activity (Kurz et al. 1996; Mahy et al. 2002; Fraser 

and Bickmore 2007; Sexton et al. 2007).  In some cases their position ensures 

maximal expression and alternatively it can result in repression (Gierman et al. 2007; 

Sexton et al. 2007). 
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In mammalian nuclei, active transcription was found to occur at meta-stable foci, 

distributed throughout the nucleus and containing high concentrations of RNA pol II, 

called transcription factories (Jackson et al. 1993; Wansink et al. 1993; Iborra et al. 

1996; Pombo et al. 1999; Osborne et al. 2004).  In contrast, silenced genes mapped 

to discrete and more dynamic nuclear sub-compartments known as Polycomb bodies 

due to the presence of Polycomb group proteins (PcG); originally shown to be 

essential for switching off the developmental homeobox (Hox) genes in Drosophila 

melanogaster (Saurin et al. 1998; Boyer et al. 2006; Grimaud et al. 2006; Lee et al. 

2006; Sexton et al. 2007).  The number of both PcG bodies and transcription 

factories within a single cell is limiting and hence silenced and active genes 

respectively are thought to share these sites, allowing co-ordinated control of multiple 

genes (Osborne et al. 2004; Schwartz et al. 2006; Osborne et al. 2007; Sexton et al. 

2007).  These transcriptions factories may in fact aid transcriptional regulators such 

as AIRE in not only locating and inducing expression of target genes, but also in co-

ordinating the expression of multiple genes, distributed throughout the genome 

across multiple chromosomes, as it has been revealed that not only genes separated 

by tens of Mbps on the same chromosome, but also those located on different 

chromosomes can associate and share these sites (Osborne et al. 2004; Osborne et 

al. 2007; Sexton et al. 2007). 

 

However, once the initial trial of locating individual target genes from the vast network 

of DNA has been overcome, regulatory proteins and transcription factors will then be 

confronted with the next challenge; gaining access to their recognition sequence, 

since all DNA in the nucleus is packaged into chromatin; a complex of proteins and 
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DNA.  It was initially believed that these proteins, referred to as histones, around 

which the DNA is tightly bound, acted as a simple, inert scaffold, there to aid in the 

compaction of DNA, however it was found that histones are subject to a plethora of 

modifications that correlated with gene activity.  This led to the idea that histones are 

dynamic players in essential DNA-based processes including DNA replication, repair, 

recombination and transcription.  In order to initiate gene expression, transcriptional 

regulators, including AIRE, will need to interact either directly or indirectly with their 

specific DNA binding sites.  However, most of these sequences will be buried inside 

the compact chromatin and therefore activation of a gene requires selective 

disruption of the folded structures and exposure of naked DNA. 

 

The principal packaging element of DNA is the nucleosome; a disc-shaped octamer 

containing two copies of each histone H2A, H2B, H3 and H4, which form four histone 

fold heterodimers of H3-H4 and H2A-H2B, around which 147bp of DNA are wrapped 

1.67 times and stabilised by linker histone H1 (Figure 1.6) (Davie 1997; Luger et al. 

1997; Barski et al. 2007; Turner 2007; Li and Shogren-Knaak 2008; Probst et al. 

2009).  Nucleosomes tend to position themselves on the DNA at fixed intervals, a 

process known as phasing, with short stretches of linker DNA (typically 30-60bp) 

connecting adjacent nucleosomes, the length of which can differ considerably 

depending on the organism and the compaction state of the DNA (Tremethick 2007; 

Bassett et al. 2009; Jiang and Pugh 2009).  The repeating nucleosomal ‘beads on a 

string’ array is however the primary structure of chromatin, which can further 

assemble into higher-order secondary and even tertiary structures of increasing 



A, The basic building block of chromatin is the nucleosome; a histone octamer 
comprising two H2A-H2B and two H3-H4 heterodimers, around which 147 base 
pairs (bp) of double-stranded DNA (dsDNA) are wrapped 1.67 times and stabilised 
by linker histone H1 (inset) (Luger et al. 1997).  Each histone is composed of a 
globular domain and amino- (NH2) and carboxyl- (COOH) terminal tails which 
are all subject to multiple post-translational modifications.  B, Compaction of 
the 10nm nucleosomal array generates a two-start double helical 30nm fibre, 
which is then looped and further compacted into heterochromatic higher order 
structures (Tremethick 2007).  These eventually form the most compact structure 
of chromatin; the mitotic chromosomes.  Figure adapted from (Schones and Zhao 
2008; Probst et al. 2009).

Figure 1.6 – Structure of the Nucleosome Core Particle and Higher-Order 
Packaging of Chromatin
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complexity, the extreme being condensed metaphase chromosomes (Figure 1.6) 

(Sterner and Berger 2000). 

 

In non-replicating cells, generally chromatin is compartmentalised into defined 

domains, distributed throughout the nuclear environment in more condensed regions 

(heterochromatin) and more open or decondensed regions (euchromatin) (Figure 

1.6).  Euchromatic regions of chromosomes are generally more flexible and open, 

due to irregular spacing of nucleosomes (Henikoff 2008; Schones et al. 2008; Jiang 

and Pugh 2009).  This therefore increases the accessibility for transcriptional 

regulators and DNA repair and replication complexes, meaning genes in euchromatic 

areas are generally considered active, and that these stretches of DNA are replicated 

early in S-phase (Kouzarides 2007).  In contrast, heterochromatin has few genes and 

is rich in repeating units of certain nucleotide bases.  It is frequently transcriptionally 

silent and replicates late in S-phase as regularly spaced nucleosomes decrease the 

accessibility of the DNA (Richards and Elgin 2002).  It is therefore the nucleosome 

that shapes the DNA molecule, from the atomic level; bending the DNA strand 

around the histone core, through to the large-scale influence on whole genes; 

compacting the DNA into higher-order helices (Luger et al. 1997). 

 

1.9. STRUCTURE OF THE CORE HISTONE PROTEINS 

 

Core histone proteins are one of the most highly conserved amongst eukaryotes 

(Felsenfeld and Groudine 2003).  From the determination of a high resolution crystal 

structure in 1997, Luger et al revealed in detail the numerous histone-DNA and 
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histone-histone interactions within the nucleosome (Luger et al. 1997).  Individual 

histones are composed of a structural α-helical globular domain, forming the scaffold 

for the DNA, however, each histone also possesses highly basic, flexible amino 

(NH2-) and carboxyl (COOH-) terminal tail sequences which make up approximately 

28% of their mass (Luger et al. 1997).  These histone tails contribute significantly to 

the structure and function of the nucleosome as they pass through the gyres of DNA 

into the nuclear space (Luger et al. 1997).  In particular, amino acids 16-25 of the H4 

tail interact with the exposed face of the H2A-H2B dimer of the adjacent nucleosome 

(Luger et al. 1997).  The histone tails, along with the globular core domains, are 

subject to a vast array of covalent and non-covalent post-translational modifications 

including; acetylation of lysine residues; methylation of lysines and arginines; 

phosphorylation of serines and threonines; ubiquitylation of lysines; sumoylation of 

lysines; and ADP ribosylation of glutamic acid residues, which can all influence the 

way in which the underlying DNA is controlled (Santos-Rosa et al. 2002; Kouzarides 

2007). 

 

Research into the vast range of post-translational histone modifications highlighted 

how these marks impact upon the identity of each cell in a variety of ways.  This 

diversity of modifications, coupled with the finding that several correlated with the 

expression level of the corresponding genes, indicated an enormous potential for 

these histone modifications to act as gateways, regulating access to DNA through 

complex combinations of post-translational codes, and it is for this reason that much 

work has focused on mapping of these marks, with the hope to unveil their specific 

roles in regulation of gene expression and chromatin structure. 
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1.10. POST-TRANSLATIONAL HISTONE MODIFICATIONS 

 

The first clues into a role for post-translational modification of histone side chains 

came in 1964, when Allfrey and Mirsky noted that when histones were acetylated, the 

rate of RNA synthesis increased, however, as investigation into the replication and 

transcription of DNA then took centre stage, it was not until much later that the key 

link between histone modifications and control of transcription was again brought to 

the forefront (Allfrey et al. 1964; Allfrey 1966; Fuchs et al. 2009).  Two significant 

reports; the finding that a human homologue of yeast KAT2/Gcn5 (general control 

nonderepressible 5), a well-characterised enzyme known to be involved in 

transcriptional activation, was able to acetylate histones directly; and the discovery of 

a human protein capable of removing acetylation groups from histones, linking this 

activity to transcriptional repression, provided the first real biological interpretation for 

Allfrey and Mirsky’s observations in the 1960’s (Brownell et al. 1996; Taunton et al. 

1996; Nagy and Tora 2007; Fuchs et al. 2009).  These works kick-started an 

extensive body of research, resulting in the identification of numerous post-

translational modifications occurring at specific residues both along the histone tails 

and within the globular cores (Figure 1.7), the majority of which have been found to 

exert considerable influence over the control of DNA-based processes.  Since the 

advancement of antibodies specific to individual histone marks, techniques which 

capture a snapshot of chromatin have enabled the study of the levels of these 

modifications across specific gene regions.  Chromatin immunoprecipitation (ChIP); a 

technique used to analyse the genomic location of chromatin-associated proteins or 

modified histones, has been combined with DNA microarrays (ChIP-chip), SAGE 



The four histone proteins, H2A, H2B, H3 and H4, all contain a structural globular 
core domain and flexible N- and C-terminal tail regions, which protrude through 
the gyres of DNA on the surface of the nucleosome.  A highly diverse array of 
covalent post-translational histone modifications can be deposited on specific, 
conserved residues across all histone domains.  These modifications include 
acetylation (Ac) of lysine residues, methylation (Me) of lysines and arginines and 
phosphorylation (P) of serines and threonines, ubiquitylation (Ub) of lysines and 
glutamic acid residues, along with sumoylation of lysines and ADP ribosylation 
of glutamic acid residues (not displayed).  The positions of a range of histone 
modifications are indicated across the flexible tails and globular cores of all four 
histones (Zhang and Reinberg 2001; Kouzarides 2007).  Figure adapted from 
(Cosgrove 2007).

Figure 1.7 – The Conserved Location of Key Post-Translational Histone 
Modifications
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(ChIP-SAGE), and more recently with massively parallel sequencing (ChIP-Seq), 

thus allowing the profiling of multiple global histone modifications (O'Neill and Turner 

2003; Kouzarides 2007; Schones and Zhao 2008).  The results are often varied, 

highlighting their dynamic nature and non-uniform distribution, however, certain key 

commonalities have arisen, particularly with regards to acetylation and methylation, 

the two most extensively studied modifications (Kouzarides 2007). 

 

1.11. ACETYLATION AND DEACETYLATION OF HISTONES 

 

Histone acetylation is one of the most prevalent post-translational histone 

modifications, yet it is restricted to conserved lysine (K) residues across the core 

histones (Figure 1.7).  The addition of an acetyl moiety to the ε-amino group of lysine 

from the coenzyme acetyl-CoA has a significant effect upon the amino acid chemical 

properties, neutralising the basic charge and generating ε-N-acetyllysine (Fuchs et al. 

2009).  This has been predicted to affect the structure of the nucleosome and its 

interaction with the DNA, as unmodified, positively-charged lysines bind and 

therefore stabilise negatively-charged DNA.  Disruption of the positive charge may 

directly influence the compaction of chromatin fibres through alterations to the way in 

which the DNA molecule is wrapped around the nucleosome core, making the DNA 

more accessible to ATP-dependent nucleosome remodelling factors and DNA-

binding proteins involved in transcription, DNA repair and replication (Krajewski and 

Becker 1998; Akhtar and Becker 2000; Sterner and Berger 2000; Carrozza et al. 

2003; Nagy and Tora 2007; Bassett et al. 2009).  Acetylated lysines themselves can 

also facilitate this process as many remodelling factors possess bromodomains, 
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which recognise and bind to this modification (Fuchs et al. 2009).  In addition, the 

more recent discovery that the core histone globular domains are also subject to an 

array of modifications, supports these theories.  Several of these modified residues 

are positioned on the lateral surface of the nucleosome and therefore able to disturb 

histone-DNA interactions [reviewed in Cosgrove (2007)].  One such example involves 

acetylation of lysine 56, a residue found in the globular domain of histone H3 

(H3K56ac).  As one of the key positively-charged amino acids electrostatically bound 

to the DNA, mutation of this residue to prevent acetylation results in decreased gene 

accessibility through a reduction in nucleosome mobility (Masumoto et al. 2005; 

Chen et al. 2008).  Nucleosome-nucleosome contacts are also affected greatly by 

acetylation.  Specifically, H4K16ac has been shown to impact directly on the 

formation of higher-order structures, through the disruption of the interaction between 

this residue with the acidic patch of the H2A-H2B dimer on the adjacent nucleosome 

(Luger et al. 1997; Shogren-Knaak et al. 2006).  In this regard, acetylation is 

generally considered a mark of open, active chromatin domains and in line with this, 

actively-transcribed genes are typically enriched within promoter regions and at the 

5`end of their coding regions with high levels of acetylation (Kouzarides 2007).  

However, it would appear that this cannot be explained through a bulk acetylation of 

the histone proteins, but instead by acetylation of specific lysine residues, which, on 

the N-terminal tail of H4 for example, have been shown to be acetylated preferentially 

in a defined order, with H4K16 being the first to be modified, followed by K12, K8 and 

finally K5 (Turner and Fellows 1989; Turner et al. 1989).  In a study by Roh et al, 

whole-genome mapping of histone tail modifications H3K9ac and H3K14ac in human 

T-cells revealed more than 46,000 sites across the genome which carried these 
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marks (Roh et al. 2005).  These ‘acetylation islands’ were found to correlate with 

transcriptional start sites (TSS) of active genes, CpG islands and functional 

regulatory elements, particularly within gene-rich regions and interestingly, upon T-

cell activation and TCR signalling, 4045 additional acetylation loci were induced, 

reflecting the increase in gene activation (Roh et al. 2005).  However, acetylation of 

H4K16, K12, K8 and K5 within euchromatic genes in a lymphoblastoid cell line, has 

also been shown to bear no influence on actual levels of expression, but instead 

defines chromatin states; distinguishing enriched euchromatic regions from 

depleted heterochromatin (O'Neill and Turner 1995; Johnson et al. 1998). 

 

Histone acetylation is a highly dynamic process, with a very rapid turnover rate and a 

half-life of just minutes, therefore its influence on the DNA is transient (de Ruijter et 

al. 2003; Liu et al. 2005).  The overall levels of acetylation across chromatin are 

determined by histone acetyltransferases (HATs), which catalyse the addition of 

acetyl moieties to lysine residues and histone deacetylase (HDAC) enzymes, which 

counteract this by removing the acetyl group.  Many HATs and HDACs have been 

identified to date, the majority of which have demonstrated the ability to act on 

multiple lysine residues across all four histones, and also on non-histone proteins 

(Nagy and Tora 2007; Haberland et al. 2009).  HATs can be classified into five 

families, which include; the GCN5-related N-acetyltransferases (GNATs); p300/CBP 

HATs; the MYST (MOZ, Ybf2/Sas3, Sas2 and Tip60)-related HATs; the general 

transcription factor HATs; and the nuclear hormone-related HATs (Table 1.1) (Nagy 

and Tora 2007).  Members of each of these groups have demonstrated numerous 

activities, however, the common theme that arises is of a clear and direct connection 
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Table 1.1 – Summary of Common Histone Acetyltransferase Enzymes 

HAT ORGANISM HISTONE SPECIFICITY 

GNAT SUPERFAMILY 

KAT1/HAT1 Various (yeast to humans) H4 (K5, K12) 

KAT2/GCN5 Various (yeast to humans) H3 (K9, K14, K18) / H2B 

KAT2B/PCAF Humans / Mice H3 (K9, K14, K18) / H2B 

KAT9/ELP3 Various (yeast to humans) H3 

KAT10/Hap2 Yeast H3 (K14) / H4 

P300/CBP HATS 

KAT3A/CBP Various (multicellular) H2A / H2B / H3 / H4 

KAT3B/p300 Various (multicellular) H2A / H2B / H3 / H4 

MYST-RELATED HATS 

KAT5/TIP60 Various (yeast to humans) H2A (yeast K4, K7; chicken K5, K9, K13, 
K15) / H4 (K5, K8, K12, K16) 

KAT6/Sas3 Yeast H3 (K14, K23) 

KAT6A/MOZ Various (yeast to humans) H3 (K14) 

KAT6B/MORF Humans H3 (K14) 

KAT7/HBO1 Various (yeast to humans) H4 (K5, K8, K12) > H3 

KAT8/HMOF Various (yeast to humans) H4 (K16) 

GENERAL TRANSCRIPTION FACTOR HATS 

KAT4/TAF Various (yeast to humans) H3 > H4 

KAT12/TFIIIC90 Humans H3 (K9, K14, K18) 

NUCLEAR HORMONE-RELATED HATS 

KAT13A/SRC1 Humans / Mice H3 / H4 

KAT13B/ACTR Humans / Mice H3 / H4 

KAT13C/P160 Humans / Mice H3 / H4 

 
 
A selection of common histone acetyltransferases (HATs), divided into their 
appropriate family, the typical organisms in which they are found, and the 
specific histone residues upon which they act.  Novel nomenclature is displayed 
prior to original names.  Devised from (Sterner and Berger 2000; Allis et al. 
2007; Kouzarides 2007). 
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between acetylation and transcriptional activation (Sterner and Berger 2000).  

Currently, 11 classical HDACs have been identified in humans (Table 1.2), which can 

be separated into four major families according to sequence similarity; class I HDACs 

(HDAC1, 2, 3, 8); class IIa (HDAC4, 5, 7, 9); class IIb (HDAC6, 10); and class IV 

(HDAC11) (Haberland et al. 2009).  In addition, a further group of non-classical NAD-

dependent HDACs, the sirtuins, are often referred to as class III HDACs (Gallinari et 

al. 2007; Haberland et al. 2009).  Consistent with the role of acetylation in 

transcriptional activation, deacetylation, particularly at gene promoter regions, is 

generally associated with gene silencing, nucleosome stabilisation and diminished 

nucleosome-remodelling (Fuchs et al. 2009; Haberland et al. 2009). 

 

1.12. HISTONE METHYLATION AND DEMETHYLATION 

 

In contrast to acetylation, methylation of histones is significantly more intricate.  

Firstly, methylation can occur both on conserved lysine residues, and arginines (R) 

across all four histone proteins, and secondly, as an added layer of complexity, up to 

three methyl moieties can be applied to the lysine ε-amino group (mono-, di- and tri-

methylation), while arginines can be mono- or di-methylated, with the latter being 

either symmetric or asymmetric in its distribution (Zhang and Reinberg 2001; Fuchs 

et al. 2009).  Each degree of methylation can potentially represent a different 

biological outcome, depending on the specific lysine or arginine methylated, and its 

location in a gene (Zhang and Reinberg 2001; Fuchs et al. 2009).  The role histone 

methylation plays in the control of DNA-based processes is extensive, however, this 

is presumably orchestrated solely through recruitment of additional regulatory factors, 
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Table 1.2 – Summary of Known Histone Deacetylase Enzymes 

HDAC LOCALISATION TISSUE DISTRIBUTION 

CLASS I 

HDAC1 Nucleus Ubiquitous 

HDAC2 Nucleus Ubiquitous 

HDAC3 Nucleus Ubiquitous 

HDAC8 Nucleus Ubiquitous?  Smooth muscle differentiation 

CLASS IIA 

HDAC4 Nucleus / Cytoplasm Heart / Skeletal Muscle / Brain 

HDAC5 Nucleus / Cytoplasm Heart / Skeletal Muscle / Brain 

HDAC7 Nucleus / Cytoplasm Heart / Placenta / Pancreas / Skeletal Muscle 

HDAC9 Nucleus / Cytoplasm Heart / Skeletal Muscle / Brain 

CLASS IIB 

HDAC6 Mostly cytoplasm Heart / Liver / Kidney /Pancreas 

HDAC10 Mostly cytoplasm Liver / Spleen /Kidney 

CLASS IV 

HDAC11 Nucleus / Cytoplasm Brain / Heart / Smooth Muscle / Kidney 

SIRTUINS (CLASS III) 

SIRT1 Nucleus  H4K16 specific Brain / Smooth Muscle / Kidney / Heart 

SIRT2 Cytoplasm  H4K16 specific Brain / Smooth Muscle / Kidney / Heart / Liver 

SIRT3 Mitochondria Ubiquitous 

SIRT5 Mitochondria Ubiquitous 

 
 
A representation of all histone deacetylase (HDAC) enzymes known to date, 
which can act upon multiple histone residues.  HDACs are divided into their 
appropriate class, and their typical localisation within cells and tissue 
distribution are displayed.  Devised from (Michishita et al. 2005; Haigis and 
Guarente 2006; Dokmanovic et al. 2007). 
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since methylation of lysines and arginines does not affect the charge of the residue 

and thus has no direct impact on histone-histone or histone-DNA binding (Fuchs et 

al. 2009).  Yet histone methylation is still believed to play a role in the formation and 

maintenance of higher-order chromatin structures, with a plethora of methylation 

marks being reported as essential for establishment of euchromatic or 

heterochromatic regions of the genome, for example the requirement of tri-

methylation (me3) of H3K9 in the formation of silent heterochromatin (Noma et al. 

2001; Barski et al. 2007; Kouzarides 2007). 

 

Histone methyltransferases (HMTs) are enzymes responsible for the addition of 

methyl groups to either lysine or arginine residues.  Methylation of arginines is 

catalysed by a family of protein arginine methyltransferases (PRMTs), of which at 

least 11 are known to exist in mammals, some of which show great specificity, 

however, only relatively little is known about this modification (Smith and Denu 2009; 

Wolf 2009).  PRMTs can be allocated into two main groups; those which generate 

asymmetric di-methylation (type I PRMTs), and those which bring about symmetric 

di-methylation (type II PRMTs) (Table 1.3) (Zhang and Reinberg 2001; Smith and 

Denu 2009; Wolf 2009).  In contrast, histone lysine methylation is very well 

characterised with regards to both its roles in regulating DNA-based processes and 

the enzymes responsible for addition and removal of this moiety.  Lysine HMTs can 

be divided into two main groups; those containing a SET domain; and those with a 

DOT1 domain, which frequently show exclusivity; preferentially methylating a limited 

number, or often only one specific lysine residue, to only one particular degree 
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Table 1.3 – Summary of Known Protein Arginine Methyltransferase 
Enzymes 

PRMT LOCALISATION HISTONE SPECIFICITY 

TYPE I 

PRMT1 Nucleus / Cytoplasm H4 (R3) 

PRMT4 Nucleus H3 (R2, R17, R26) / H4 (R3) 

PRMT6 Nucleus H3 

PRMT8 Plasma Membrane H4 

TYPE II 

PRMT5 Cytoplasm H2A / H3 (R8) / H4 (R3) 

PRMT7 Nucleus / Cytoplasm H2A / H4 

PRMT9 Nucleus / Cytoplasm H2A / H4 

 
 

A representation of all protein arginine methyltransferase (PRMT) enzymes 
known to date, divided into their appropriate types, their typical localisation 
within cells and the specific histone residues upon which they act.  Devised 
from (Pahlich et al. 2006; Wolf 2009). 
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(mono-, di- or tri-), and also within a restricted genomic location (Table 1.4) (Thomas 

et al. 2008; Smith and Denu 2009). 

 

Originally it was believed that methylation represented a more stable, permanent 

histone modification, as the global turnover rate of this mark was low in comparison 

to acetylation (Ng et al. 2009).  However, the relatively recent discovery of families of 

enzymes capable of removing methyl groups from histones has since shown that this 

mark is equally as dynamic.  These fall into a number of different groups, of which 

there are two major classes; those typified by lysine specific demethylase (LSD1, 

recently re-named KDM1), which can only remove mono- and di-methyl marks; and a 

family of Jumonji-C (JmjC) domain-containing histone demethylases (JHDMs), which 

can de-methylate all three levels of histone lysine methylation (Table 1.5) (Cloos et 

al. 2008; Ng et al. 2009). 

 

1.13. THE ROLE OF POST-TRANSLATIONAL HISTONE MODIFICATIONS IN TRANSCRIPTIONAL 

REGULATION 

 

Even in its most uncondensed form, nucleosomal DNA is essentially repressive for 

transcription, hence nucleosomes must be moved and it has been shown that 

histones are able to cis-translocate or slide along the DNA fragment considerable 

distances and also trans-displace, being entirely removed from the DNA (Pennings et 

al. 1991; Whitehouse et al. 1999).  This process requires considerable energy input 

as the DNA molecule is tightly bound to the core histone proteins, with more than 120 

direct atomic interactions (Pennings et al. 1991; Whitehouse et al. 1999).  It is 
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Table 1.4 – Summary of Common Histone Lysine Methyltransferase 
Enzymes 

KMT ORGANISM HISTONE SPECIFICITY 

SET DOMAIN KMTS 

KMT1/Su(Var)3–9 Flies / Yeast H3K9 

KMT1A/SUV39H1 Humans / Mice H3 (K9me3) 

KMT1B/SUV39H1 Humans / Mice H3 (K9me3) 

KMT1C/G9a Humans H3 (K9me1, me2) 

KMT1E/ESET/SETDB1 Humans H3 (K9me3) 

KMT2/Set1/COMPASS Yeast H3 (K4me1, me2, me3) 

KMT2A/MLL1/Trx Humans / Flies H3 (K4me1, me2, me3) 

KMT2B/MLL2/Trx Humans / Flies H3 (K4me1, me2, me3) 

KMT2C/MLL3/Trr Humans / Flies H3 (K4me1, me2, me3) 

KMT2D/MLL4/Trr Humans / Flies H3 (K4me1, me2, me3) 

KMT2E/MLL5 Humans H3 (K4me1, me2, me3) 

KMT2F/hSET1A Humans H3 (K4me1, me2, me3) 

KMT2G/hSET1B Humans H3 (K4me1, me2, me3) 

KMT3A/SET2 Humans H3 (K36) 

KMT5/Set9 Yeast H4 (K20) 

KMT6/Ezh2/E(Z) Humans / Flies H3 (K27) 

DOT DOMAIN KMTS 

KMT4/DOT1L/Dot1 Humans / Yeast H3 (K79) 

 
 

A selection of common histone lysine methyltransferases (KMTs), divided into 
their appropriate groups, the typical organisms in which they are found, and the 
specific histone residues upon which they act.  Novel nomenclature is displayed 
prior to original names.  Devised from (Zhang and Reinberg 2001; Allis et al. 
2007; Shilatifard 2008; Thomas et al. 2008; Smith and Denu 2009). 
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Table 1.5 – Summary of Common Histone Demethylase Enzymes 

HDM ORGANISM HISTONE SPECIFICITY 

LSD1 KDMS 

KDM1/LSD1/BHC110 Various (yeast to humans) H3 (K4me1, me2, K9me1, me2) 

JHDM1 KDMS 

KDM2/Jhd1 Yeast H3 (K36me1, me2) 

KDM2A/JHDM1a/FBXL11 Humans H3 (K36me1, me2) 

JHDM2 KDMS 

KDM3A/JHDM2a Humans H3 (K9me1, me2) 

KDM3B/JHDM2b Humans H3 (K9) 

JMJD2 KDMS 

KDM4/Rph1 Yeast H3 (K9, K36me2, me3) 

KDM4C/JMJD2C/GASC1 Humans H3 (K9, K36me2, me3) 

KDM4D/JMJD2D Humans H3 (K9me2, me3) 

JARID1 KDMS 

KDM5/Lid/Jhd2/Jmj2 Flies / Yeast H3 (K4me2, me3) 

KDM5A/JARID1A/RBP2 Humans H3 (K4me2, me3) 

KDM5B/JARID1B/PLU-1 Humans H3 (K4me1, me2, me3) 

KDM5C/JARID1C/SMCX Humans H3 (K4me2, me3) 

KDM5D/JARID1D/SMCY Humans H3 (K4me2, me3) 

UTX/JMJD3 KDMs 

KDM6A/UTX Humans H3 (K27me2, me3) 

KDM6B/JMJD3 Humans H3 (K27me2, me3) 

ARGININE-SPECIFIC HDM 

JMJD6 Multicellular H3 (R2me2) / H4 (R3me2) 

 
 

A selection of common histone lysine demethylases (KDMs) and the recently 
discovered arginine-specific methyltransferase.  Demethylases are divided into 
their appropriate groups, and displayed are the typical organisms in which they 
are found, and the specific histone residues upon which they act.  Novel 
nomenclature is displayed prior to original names.  Devised from (Allis et al. 
2007; Chang et al. 2007; Cloos et al. 2008; Smith and Denu 2009; Wolf 2009). 
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therefore catalysed by a group of molecules containing intrinsic ATP-ase activity; 

ATP-dependent nucleosome remodelling complexes, which work in combination with 

the modification of histone proteins to allow displacement of the nucleosome and 

exposure of the raw DNA (Pennings et al. 1991; Whitehouse et al. 1999; Soutoglou 

and Talianidis 2002).  Through the development of genome-wide nucleosomal maps, 

coupled with DNA sequencing and microarray hybridisation, the position of every 

nucleosome across a genome could be determined (Barski et al. 2007; Mavrich et al. 

2008; Schones et al. 2008; Jiang and Pugh 2009).  These works showed that the 

majority of genes conformed to a common, stable theme of organisation, with long 

stretches of raw DNA at the 3` and 5` ends of genes, referred to as the nucleosome 

free region (NFR) (Barski et al. 2007; Mavrich et al. 2008; Schones et al. 2008; Jiang 

and Pugh 2009).  The discovery of these NFR challenged the view that the promoter 

regions of silenced genes would be occluded by nucleosomes, thus preventing 

random transcription as RNA pol II is unable to bind nucleosomal DNA (Bondarenko 

et al. 2006; Jiang and Pugh 2009).  However, the finding that these open promoter 

states occur even in genes with very low transcription rates, which could essentially 

be classed as turned off, suggests that these NFR are not sufficient to induce 

transcription (Jiang and Pugh 2009). 

 

The regulation of euchromatin gene expression therefore requires the recruitment of 

DNA-bound transcription factors to gene promoters.  The array of specific post-

translational histone modifications of core histones, present on the nucleosome 

surface, can serve as recruitment signals for protein effectors able to exert functional 
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effects.  This in turn brings about alterations to the patterns of modifications across 

the locus and ultimately leads to either transcriptional activation or repression. 

 

1.14. MARKS OF GENE ACTIVATION 

 

Many histone modifications have been implicated in the activation of gene expression 

programmes, due to their presence within transcribed loci (Figure 1.8).  In general, 

acetylation of lysine residues is considered a mark of active expression, and many 

transcriptional regulators and transcription factors such as KAT3A/CBP and the basal 

transcription factor TFIID, possess intrinsic HAT activity (Sterner and Berger 2000).  

However, many HATs have been shown to associate preferentially to defined gene 

regions, leading to the deposition of specific acetylation marks in different locations 

(Wang et al. 2008).  For example, the area surrounding transcriptional start sites 

(TSS) has been shown to be enriched for H2AK9ac, H2BK5ac, H3K9ac, H3K36ac 

and H4K91ac, whereas the promoter and coding regions demonstrated H2BK20ac, 

H3K4ac, H4K8ac and H4K16ac, among others (Wang et al. 2008). 

 

In contrast, histone methylation is not as straightforward, with certain methyl marks 

having the potential to influence gene expression in opposing ways, dependent on 

different conditions.  One of the most extensively defined activating modification is 

H3K4me3, which has been shown to be present at the 5` end of open reading frames 

(ORFs) along with the serine 5 phosphorylated, initiating form of RNA pol II, as genes 

are induced, it is known to promote transcription elongation, and also plays a role in 

the regulation of RNA processing, which may be due in part to the recruitment of 





Figure 1.8 - Post-Translational Histone Modifications in the Regulation of 
Gene Expression
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protein effectors known to positively influence transcription (Santos-Rosa et al. 2002; 

Bernstein et al. 2005; Bernstein et al. 2006; Berger 2007; Sims et al. 2007; Shilatifard 

2008).  Proteins can interact with the H3K4me3 mark through the presence of one of 

a number of binding modules which include; PHD domains, like those found in AIRE; 

WD40 domains; and proteins with Royal family domains (chromo-, Tudor- and MBT-

domains) (Berger 2007).  For example, a PHD finger of BPTF (bromodomain and 

PHD finger transcription factor); a subunit within the ATP-dependent chromatin 

remodelling complex NURF, has been shown to bind H3K4me3, leading to targeting 

of the locus for activation (Wysocka et al. 2006).  A direct interaction has also been 

demonstrated between H3K4me3 and the PHD-domain of TAFIII, a subunit of TFIID, 

which enhances gene expression (Vermeulen et al. 2007; van Ingen et al. 2008).  

Within the gene body, active loci are typically marked with H2BK5me1, H3K4me1 

and me2, H3K9me1, H3K27me1 and H4K20me1, levels of which decrease the 

further you move from the TSS (Barski et al. 2007; Li et al. 2007; Schones and Zhao 

2008; Wang et al. 2008).  In addition, the coding regions of active genes also show 

H3K36me3, however, its distribution contrasts with the previous modifications; 

peaking instead at the 3` end (Figure 1.8) (Carrozza et al. 2005; Joshi and Struhl 

2005; Keogh et al. 2005).  This is thought to be due to an interaction with the 

elongating form of RNA pol II, phosphorylated at serine 2, within the 3` end of active 

genes, which, through H3K36me3-induced recruitment of Eaf3, a component of the 

yeast HDAC Rpd3(S), can lead to preferential removal of any acetylation deposited 

within the coding region during transcription, thus re-stabilising nucleosomes, 

restoring the chromatin to its repressive state to prevent aberrant intragenic 
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transcription (Carrozza et al. 2005; Joshi and Struhl 2005; Keogh et al. 2005; Berger 

2007; Kouzarides 2007). 

 

However, as investigation continues, these general classifications of histone 

modifications as strictly activating are constantly being challenged by the finding that 

often, marks which were originally believed to be ‘active’, can be detected within 

silent genes (Berger 2007).  For instance, certain protein complexes associated with 

transcriptional repression have been shown to bind to the classically activating 

modification H3K4me3 including a factor found in the Sin3-HDAC1 deacetylation 

complex, thus removing acetyl marks and shutting down transcription (Shi et al. 

2006).  In addition, H3K4me3 has been shown to act as a recognition site for the 

H3K9me3 and H3K36me3-sepcific demethylase KDM4A/JMJD2A, which is found in 

repressor complexes such as N-CoR (nuclear hormone co-repressor complex) and 

thus implicates H3K4me3 in gene silencing (Huang et al. 2006; Shi et al. 2006; 

Berger 2007).  Together, these two interactions present evidence for a link between 

H3K4me3 and active gene repression, a function which could be dictated by both the 

timing and location of this mark; with the recruitment of positive-acting effector 

complexes during transcriptional initiation or elongation, immediately proceeded by 

binding of negative-acting factors to terminate expression (Berger 2007).  

Interestingly, the impact H3K36me3 has on gene activity also adheres to no strict 

rules and has been shown to be highly dependent on its precise distribution pattern.  

When found at the 3` end of genes, active expression is observed, however, if 

deposited at promoter regions, H3K36me3 exerts a negative effect upon transcription 
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(Strahl et al. 2002; Bannister et al. 2005; Barski et al. 2007; Berger 2007; Kouzarides 

2007). 

 

1.15. MARKS OF GENE REPRESSION 

 

Transcriptional repression has always believed to be brought about by H3K9me2 and 

me3, H3K27me3 and H4K20me3, for example (Barski et al. 2007).  H3K9me2 and 

me3 have been detected in the promoter regions of inactive genes and is found 

associated with heterochromatin protein 1 (HP1), linking this modification with the 

formation of heterochromatic domains (Noma et al. 2001; Barski et al. 2007; 

Motamedi et al. 2008).  H3K27me3 is also implicated in gene silencing, via unique 

interactions with Polycomb group proteins (PcG); originally shown to be essential for 

switching off the developmental homeobox (Hox) genes in Drosophila melanogaster 

(Breiling et al. 2004; Schwartz and Pirrotta 2007; Henikoff 2008).  The PcG system is 

an extensively studied example of maintenance of gene silencing throughout 

development, which work alongside trithorax-group proteins (trxG), to counteract the 

repression, should gene expression be required (Breiling et al. 2004; 

Schuettengruber et al. 2009).  The mammalian Polycomb repressive complex 2 

(PRC2) contains a H3K27-specific methyltransferase KMT6/Ezh2, which, in 

combination with its co-factors Eed (embryonic ectoderm development), Suz12 

(Suppressor of zeste 12), and MTF2 (metal response element-binding transcription 

factor), acts together with PRC1 and Pleiohomeotic (PHO) complexes at Polycomb 

response elements (PREs), to deposit the silencing modification H3K27me3, thus 

keeping genes off during development, even after the PRC and PHO complexes are 
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removed (Breiling et al. 2004; Cao and Zhang 2004; Dellino et al. 2004; Schwartz 

and Pirrotta 2007; Henikoff 2008; Kondo et al. 2008). 

 

The classification of these modifications has also been questioned.  For example, the 

typically silent methylation of H3K9 can also be detected in the coding regions of 

active genes (Vakoc et al. 2005; Squazzo et al. 2006; Vakoc et al. 2006; Kouzarides 

2007).  Although this seemingly contradictory distribution may relate to the level of 

methylation; H3K9me2 and me3 limited to heterochromatic regions and H3K9me1 

restricted to active domains, a trend that was confirmed following the profiling of 

histone methylation across the human genome, instead Vakoc et al (2005) 

demonstrated H3K9me2 and me3 mapping specifically to the transcribed regions of 

active mammalian genes, including the housekeeping gene glyceraldehyde-3-

phosphate dehydrogenase (Gapdh), suggesting that the presence of these marks 

reflected steady-state transcription rates (Vakoc et al. 2005).  These modifications 

were detected in combination with RNA pol II and the γ form of HP1, which had 

previously been found localised to both heterochromatin and euchromatic areas 

(Vakoc et al. 2005; Vakoc et al. 2006).  This scenario may, in a similar way to 

H3K36me3, be due to the recruitment of negative-acting factors to transcribed genes 

leading to the re-formation of chromatin, preventing irregular transcription, thus 

H3K9me2 / me3 could be acting as a safety feature to ensure genes are switched off 

following expression. 
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1.16. CHROMATIN COMPLEXITIES AND THE HISTONE CODE 

 

In addition to these histone modifications, a number of alternative mechanisms are in 

place to contribute to the management of the genome, and it is these combined 

forces that generate the great diversity of cell types that make up a multicellular 

organism; of which the vast majority share identical genotypes yet have well-defined, 

individual and stable profiles of gene expression (Goldberg et al. 2007).  One of the 

best characterised mechanisms is DNA methylation and its role in the regulation of 

genes and of chromatin organisation is well defined, particularly during 

embryogenesis and gametogenesis (Goll and Bestor 2005; Goldberg et al. 2007).  

Methylation of cytosine residues is a common feature of large-genome eukaryotes, 

occurring mainly in regions of DNA rich in CpG islands; where cytosine nucleotides 

neighbour guanines along the DNA, linked by a phosphate group (Goll and Bestor 

2005).  Methyl groups are put in place on the DNA by a group of highly conserved 

proteins called DNA (cytosine-5) methyltransferases (DNMTs), of which two general 

classes exist (Freitag and Selker 2005; Goll and Bestor 2005).  De novo DNMTs act 

after DNA replication to set up methylation patterns early in development, and 

maintenance DNMTs preserve these patterns throughout cell division and semi-

conservative DNA replication by the addition of methyl groups to hemi-methylated 

CpG dinucleotides (Goll and Bestor 2005; Goldberg et al. 2007).  DNA methylation 

influences a number of different cellular processes including silencing of regions of 

repetitive DNA and centromeric sequences, the inactivation of the second X 

chromosome in females, mammalian imprinting, where genes are expressed either 

from the allele inherited from the mother or from the father, and transcriptional 
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regulation (Reik and Walter 2001; Goldberg et al. 2007; Li and Shogren-Knaak 

2008).  Approximately 76% of human promoters contain high concentrations of CpG 

islands, and the methylation of these regions correlates significantly with 

transcriptional repression (Goll and Bestor 2005; Goldberg et al. 2007).  Non-coding 

RNAs such as repeat-associated small-interfering (si)RNAs, small RNAs in yeast, 

micro RNAs and Xist RNA also contribute to variation in the chromatin template 

through the introduction of stable silencing of genes and repetitive DNA sequences, 

that can be inherited during cell division (Goldberg et al. 2007; Marks et al. 2009). 

 

DNA methylation, in combination with non-coding RNAs and post-translational 

histone modifications, which have evolved to alter the phenotype of a cell without any 

alteration to the underlying DNA sequence, are collectively known as epigenetics.  

Often, these mechanisms do not act alone to alter the chromatin landscape, and 

significant ‘crosstalk’ between epigenetic pathways has been observed (Goldberg et 

al. 2007).  One prominent example is X chromosome inactivation, where non-coding 

Xist RNA coating the inactive X, DNA methylation imprinting, and histone 

modification alterations, act in concert to shut down the inactive X (Okamoto et al. 

2004; Goldberg et al. 2007; Marks et al. 2009).  High-density genomic tiling arrays 

have also recently been employed to show that imprinted gene clusters in mice are 

marked with high levels of DNA methylation, in combination with overlapping 

H3K4me3 and H3K9me3 domains (Dindot et al. 2009).  Epigenetic crosstalk 

frequently occurs between DNMTs and chromatin-modifying enzymes which deposit 

or remove histone tail modifications (Goldberg et al. 2007).  The DNMT-like protein 

DNMT3L is one such example of a protein able to amalgamate epigenetic signals 
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(Deplus et al. 2002; Freitag and Selker 2005; Goldberg et al. 2007).  DNMT3L is an 

accessory protein essential to the germline de novo DNMTs, which through 

interaction with HDAC1, brings about gene repression (Deplus et al. 2002; Freitag 

and Selker 2005; Goldberg et al. 2007). 

 

The traditional view of epigenetic histone modifications as static on/off switches in the 

control of gene expression is also now being replaced with the idea that these marks 

are more dynamic, acting in concert to direct gene expression through organisation 

of the chromatin structure and recruitment of key effector complexes, a fundamental 

concept of the histone code hypothesis.  In support of this, certain modifications are 

also able to crosstalk; with one mark influencing the deposition or removal of another, 

or modulating the binding of effector proteins (Nightingale et al. 2006; Kouzarides 

2007; Suganuma and Workman 2008).  This could be achieved through a number of 

different ways (Figure 1.9).  The simplest form of crosstalk is the antagonism 

between differing modification states on lysine and arginine residues, where addition 

of one moiety can block further modification, which is the case for methylation and 

acetylation, and also for the mutually exclusive mono-, di- and tri-methylation states, 

thus if a lysine residue is methylated, it cannot also be acetylated, and similarly, only 

one level of methylation can be present; either me1, me2 or me3 (Latham and Dent 

2007).  The next level of crosstalk involves recruitment or removal of a protein 

complex by an adjacent modification, as is the case for phosphorylation of serine 10 

on H3 which is necessary for the displacement of H3K9me3-bound HP1 during M-

phase of the cell cycle (Figure 1.9) (Fischle et al. 2005).  Alternatively, one enzyme 

complex can be affected by multiple histone modifications, which has been shown to 



Broad arrays of epigenetic marks are able to act in concert to influence the 
deposition or removal of separate modifications or of effector proteins in a 
process termed ‘crosstalk’.  A, Different modification states on the same lysine 
(K) residue can antagonise each other thereby addition of an acetyl mark (Ac) 
can block methylation (Me), furthermore only one level of methylation can be 
present; either mono- (me1), di- (me2) or tri- (me3) (Latham and Dent 2007).  B, 
Adjacent histone modifications can affect the recruitment or removal of a protein 
complex in cis, for example phosphorylation (P) of serine S10 on histone H3 
disrupts the binding of heterochromatin protein 1 (HP1) to H3K9me3 (Fischle 
et al. 2005).  C, Alternatively, one enzyme complex can be affected by multiple 
histone modifications, for example H3K9ac and H3K14ac enhance the binding of 
the general transcription factor TFIID to H3K4me3, but asymmetric di-methylation 
of H3 arginine R2 prevents it (Vermeulen et al. 2007).  D, Crosstalk can also 
occur in trans, for example mono-ubiquitylation (Ub) of H2BK120 is required for 
H3K4me2 and H3K4me3 deposition (Li et al. 2007; Shilatifard 2008).

Figure 1.9 – Epigenetic Crosstalk

55



 56

be the case for the binding of TFIID to H3K4me3; with asymmetric di-methylation of 

arginine 2 on histone H3 (H3R2me2a) impacting negatively on this interaction, but 

H3K9ac and H3K14ac enhancing it (Figure 1.9) (Johnson et al. 1998).  Interestingly, 

H3R2me2a has been shown to prevent tri-methylation of H3K4 through inhibition of 

the HMT KMT2/Set1p required to add methyl groups to H3K4, which may explain the 

negative effect on H3K4me3 binding to the general transcription factor (Allis et al. 

2007; Guccione et al. 2007; Kirmizis et al. 2007; Vermeulen et al. 2007).  Crosstalk 

can even involve trans-histone effects, where modifications on different histone 

proteins can regulate each other, such as mono-ubiquitylation of K120 of histone 

H2B (H2BK120ub1) which is required for di- and tri-methylation of H3K4 (Li et al. 

2007; Shilatifard 2008).  These new insights into the cross-regulation of histone 

modifications, coupled with the identification of novel marks, challenge the paradigms 

of known modifications and highlight their enormous regulatory potential, both 

individually and in combination with each other.  Genome-wide analysis of histone 

modifications has allowed the study of a large number of marks and has revealed 

some emerging themes with respect to particular genes or gene regions.  For 

example, in a study by Wang et al (2008), a panel of 16 modifications were found to 

preferentially co-localise across the human genome at the level of individual 

nucleosomes, and that the promoters harbouring this ‘backbone’ of marks, which 

represent 25% of human promoters, usually displayed higher levels of gene 

expression (Wang et al. 2008).  Of these 16 modifications, acetylation was the most 

prominent (H2BK5ac, H2BK12ac, H2BK20ac, H2BK120ac, H3K4ac, H3K9ac, 

H3K18ac, H3K27ac, H3K36ac, H4K5ac, H4K8ac and H4K91ac), with methylation 

also playing a role (H3K4me1, H3K4me2, H3K4me3 and H3K9me1) (Wang et al. 
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2008).  However, as this pattern was only reflected in a quarter of genes, it is likely 

that alternative combinations exist, and that the modifications will fluctuate 

throughout the course of development to direct transcriptional events. 

 

1.17. HISTONE MODIFICATIONS IN THE CONTROL OF DEVELOPMENT 

 

A prominent demonstration of how histone modifications are able to impact on 

developmental gene expression was revealed following investigations into the 

epigenome of mouse embryonic stem (ES) cells and pluripotent cell populations 

(Bernstein et al. 2005; Azuara et al. 2006; Bernstein et al. 2006; Bernstein et al. 

2007; Kouzarides 2007).  It was found that the chromatin of these undifferentiated 

cells harbours domains of the classical silencing modification H3K27me3, coinciding 

with more punctate regions of H3K4me3, a mark which at the time, was considered 

to be present only within active genes (Azuara et al. 2006; Bernstein et al. 2006).  

These regions, aptly named ‘bivalent domains’ due to the occurrence of opposing 

histone modifications at the some locus on the same chromosome, were mainly 

found at genes encoding transcription factors essential for development.  Within the 

pluripotent ES cells, these genes were essentially silent, showing only very low levels 

of ‘leaky’ gene expression, yet they assumed an early-replicating open chromatin 

structure, usually indicative of highly expressed euchromatic loci, thus it was 

anticipated that these genes, although silenced in the undifferentiated state, were 

poised for future gene expression upon development (Azuara et al. 2006; Bernstein 

et al. 2006).  This was confirmed through induced differentiation of the cells, showing 

that genes which switched on retained the active H3K4me3 mark and lost the 
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silencing H3K27me3, and for genes which remained off, the reverse was seen, 

leaving relatively few loci with the bivalent characteristic (Bernstein et al. 2006).  One 

issue that these studies did not address referred to how the fate of each bivalent 

gene was decided upon commitment of the cells to a particular lineage, however, a 

recent study has shed further light on this.  By monitoring genome-wide alterations to 

histone modifications throughout development of hematopoietic stem cells (HSC) into 

erythrocyte precursors, Cui et al (2009) found that those genes which subsequently 

lose the H3K27me3 mark to become active were associated with high levels of 

H3K4me1, H3K9me1, H4K20me1 and RNA pol II within the undifferentiated state, 

and that those which remained silent and lost H3K4me3, displayed none of these 

additional chromatin marks within the HSCs (Cui et al. 2009).  Thus it would appear 

that once again, it is the signature of combinatorial histone marks across genomic 

loci that determine the outcomes of individual genes during development.  Yet even 

this bivalent domain concept has been questioned, with a recent report by 

Golebiewska et al (2009) suggesting a more dominant role for H3K9me2 in the 

silencing of certain bivalent genes in human ES cells, rather than H3K27me3 

(Golebiewska et al. 2009).  It was not until the first stages of lineage commitment that 

the H3K27me3 mark was seen to increase, suggesting that H3K9me2 may be 

required for initiation of silencing for some lineage-specific genes (Golebiewska et al. 

2009). 

 

Clearly, the true nature of every modification is not yet known, although many 

common patterns are emerging; from the relative simplicity of bivalent domains, to 

the vast array of modifications marking promoters (Figure 1.8) (Bernstein et al. 2006; 
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Wang et al. 2008).  What is becoming most apparent however, is the importance of 

context; different combinations of modifications working together with other 

epigenetic phenomena and protein complexes such as chromatin-modifying enzymes 

and transcriptional regulators, to orchestrate transcription and the management of 

the genome.  Undeniably, histone modifications have a major role to play in these 

processes, which is why investigation into their distribution, not only on a genome-

wide scale, but also at a localised gene-specific level is crucial to develop our 

understanding of these fundamentally significant chemical marks. 

 

1.18. HISTONE MODIFICATIONS IN THE CONTROL OF CENTRAL TOLERANCE 

 

In line with this, investigation into the patterns of histone modifications across 

promiscuously expressed genes under the transcriptional control of AIRE may 

provide insight not only into the way AIRE controls their expression, but also into the 

modifications themselves and how they distribute across these highly specific loci 

when expressed outside of their target organ within medullary thymic epithelial cells.  

Transcriptional regulators such as AIRE, often have the capacity to distinguish 

between, and bind to individual histone modification states, providing a direct readout 

of the activity of the gene, and it has been suggested that the first PHD finger of 

AIRE may mediate an association with un-modified H3K4 (me0) (Koh et al. 2008; 

Org et al. 2008; Chignola et al. 2009).  The presence of this un-methylated residue is 

typically a sign of silent or low levels of expression, thus AIRE may be able to 

recognise its target genes through their modification patterning, bind to them through 

H3K4me0-PHD1 interactions and either induce or suppress transcription (Matsumoto 
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2009).  Thus, this novel role for AIRE as a histone-binding effector protein may 

suggest the involvement of epigenetic mechanisms for the regulation of so many 

thousands of AIRE-regulated target genes (Koh et al. 2008; Org et al. 2008; 

Matsumoto 2009). 

 

1.19. THE PATHWAY OF THYMIC EPITHELIAL DEVELOPMENT 

 

The recent categorization of the sequential phases in the embryonic TEC 

developmental pathway has uncovered some interesting and distinct sub-populations 

of cells, and provides an opportunity to investigate how AIRE may function as a 

transcriptional regulator of promiscuous gene expression as mTECs mature in vivo.  

In the early embryo, at embryonic day (E) 12, the murine thymic rudiment consists 

simply of undifferentiated epithelial cells and a mesenchyme capsule (Manley 2000).  

Isolation and culture of these undeveloped structures revealed a capacity for the 

generation of normal thymic structures including cortical and medullary regions, 

suggesting the pre-programmed nature of the undifferentiated cells even at such 

early stages (Rossi et al. 2006).  This scenario was clarified by Rossi et al (2006), 

who, through attempts to isolate sub-populations of epithelial progenitor cells at E12, 

discovered that the thymic rudiment at this stage is phenotypically homogeneous; 

expressing the cell surface markers EpCAM1, cytokeratins 5 and 8, and MTS24 

(Rossi et al. 2006).  Using individually isolated enhanced yellow fluorescent protein 

(eYFP)-positive E12 thymic precursor cells, transferred to wild-type thymic lobes and 

grafted to the kidney capsule, this group were able to demonstrate the development 

of normal thymic architecture (Rossi et al. 2006).  Furthermore, after sufficient 
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growth, it was revealed that both cortical and medullary regions of the newly formed 

thymic lobes exhibited eYFP signals, which led to the conclusion that a single 

bipotent TEC progenitor cell can generate both cortical and medullary lineages 

(Figure 1.10) (Rossi et al. 2006).  This group then went on to further characterise the 

developmental pathway of mTECs, showing that the two known sub-populations of 

Ly51-EpCAM1+ mTECs which are either CD80-AIRE- or CD80+AIRE+, represent 

different maturational states rather than distinct lineages, with mature CD80+AIRE+ 

mTECs developing from an immature CD80-AIRE- mTEC progenitor population 

(Figure 1.10) (Rossi et al. 2007).  In this same report, the signal responsible for this 

maturation was also examined, which was found to emanate from CD4+CD3− 

lymphoid tissue inducer cells (LTi) (Rossi et al. 2007).  Receptor activator of NF-κB 

(RANK), a cell surface marker expressed at high levels by CD80-AIRE- mTECs, 

responds to LTi-derived RANK ligand (RANKL), or alternatively to CD4+-derived 

signals, and these RANK-RANKL signals, in addition to other molecular interactions 

such as CD40-CD40L, are the trigger for the up-regulation of AIRE and subsequent 

promiscuous gene expression (Rossi et al. 2007; Akiyama et al. 2008; White et al. 

2008; Zhu and Fu 2008). 

 

Two alternative models have arisen following investigation into the role of AIRE in 

thymic embryogenesis, proposed to explain the high levels of PGE within the thymus.  

The developmental / progressive restriction model suggests that immature mTEC 

progenitors exhibit a wide catalogue of TRA, but that as differentiation occurs, 



Within the developing embryo, thymic organogenesis involves a well defined 
pathway of thymic epithelial cell (TEC) differentiation.  The two distinct lineages 
of TECs; medullary (mTECs) and cortical (cTECs), are derived from a common 
bipotent TEC progenitor present in the murine thymus at embryonic day E12 
(Rossi et al. 2006; Rossi et al. 2007).  These progenitor cells do not express 
AIRE or tissue-restricted antigens (TRA), however, these genes will be poised for 
activation should the cells develop into mTECs.  An immature CD80-AIRE- mTEC 
progenitor population exists, which do not express AIRE or TRA but produce a 
cell surface receptor; RANK (Rossi et al. 2007; Akiyama et al. 2008; White et 
al. 2008; Zhu and Fu 2008).  Stimulation from RANK ligand induces AIRE up-
regulation and promiscuous gene expression, generating mature CD80+AIRE+ 
mTECs (Rossi et al. 2007; Akiyama et al. 2008; White et al. 2008; Zhu and Fu 
2008).  Bipotent TEC progenitors can also differentiate into mature cTECs, which 
will never express AIRE or TRA (Rossi et al. 2006; Rossi et al. 2007).  The four 
main subpopulations of cells are displayed.

Figure 1.10 – The Pathway of Embryonic Thymic Development
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transcriptional promiscuity is progressively restricted (Farr and Rudensky 1998; Farr 

et al. 2002).  This would ultimately generate a mosaic of fully mature mTECs 

throughout the medulla which display only a limited number of related TRAs, thus 

masquerading as terminally differentiated peripheral tissue cells such as hepatocytes 

or oligodendrocytes, hence the medulla would resemble a patchwork of different 

tissues (Farr et al. 2002; Kyewski and Derbinski 2004; Kyewski and Klein 2006).  

Alternatively, the terminal differentiation model assumes PGE to be an autonomous 

trait of TECs, and that a random de-repression or dysregulation of transcriptional 

control occurs as mTECs continuously differentiate and turnover, allowing the 

expression of genes only typically expressed in terminally differentiated cells (Farr et 

al. 2002; Kyewski et al. 2002; Gotter and Kyewski 2004; Devoss and Anderson 

2007).  Therefore, the discovery of an immature CD80-AIRE- mTEC population, from 

which CD80+AIRE+ mature mTECs develop provides evidence in favour of the 

terminal differentiation model, and the recent finding that AIRE+ mTECs only acquire 

the machinery for PGE upon maturation, with AIRE controlling the differentiation 

programme of these cells, also supports this theory (Rossi et al. 2007; Yano et al. 

2008). 

 

The breakdown of the mTEC developmental pathway provides an obvious foundation 

for the analysis of the epigenetic control of AIRE-regulated PGE.  Bipotent TEC 

progenitors, although AIRE- and TRA-negative themselves, have the potential to 

develop into either fully mature cTECs, which will never express AIRE or its target 

genes, or alternatively into mTECs that will ultimately become AIRE-positive and 

therefore switch on TRA (Figure 1.10).  Hence, could TRAs within the bipotent TEC 
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progenitors be marked in some way for future gene expression, possibly by poised 

bivalent domains?  The more recent discovery of the intermediate population of 

immature mTECs adds to this story, allowing observation of any changes to the 

distributions of histone modifications as the cells progress through the developmental 

programme.  As AIRE is switched on, which in turn leads to the expression of TRAs, 

the distribution of histone modifications may alter to reflect the imminent up-

regulation of the AIRE-regulated genes.  Due to the large number of AIRE target 

genes, and their significant clustering across chromosomes, it could be possible that 

alteration to chromatin on a domain-wide or global scale could allow for the up-

regulation of so many TRA.  As already discussed, acetylation is typically a mark of 

active gene expression, however it is also often a pre-requisite, allowing protein 

effectors access to their target promoters or binding sites prior to transcriptional 

activation (Ferguson et al. 2008).  Histone acetylation across AIRE target genes, 

particularly those located in clusters could therefore be required to relax and open up 

the chromatin structure in either immature or newly formed mature mTECs.  The 

interaction between AIRE and the histone acetyltransferase KAT3A/CBP is 

consistent with this hypothesis (Ferguson et al. 2008).  Although these large-scale 

changes to chromatin have been shown to result in cellular stress, which can lead to 

DNA damage and ultimately apoptosis, this could potentially explain the finding that 

AIRE+ mTECs have very rapid turnover rates, representing a short-lived fraction of 

stromal cells which are destined to die (Konishi et al. 2003; Gray et al. 2007; 

Ferguson et al. 2008).  Furthermore, given that PGE is a feature of a terminally 

differentiated cell population, the formation of a permissive chromatin background 

would potentially facilitate transcriptional regulation by AIRE, and being inherently 
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cytotoxic would simply allow for the development of the next generation of mTECs 

and hence a new array of TRA, or promote cross-presentation of TRA by thymic 

antigen-presenting cells (Figure 1.3) (Gray et al. 2007; Ferguson et al. 2008). 

 

Modelling of mature AIRE+ mTECs and AIRE- TECs can be accomplished through 

application of a thymic epithelial (TEP) cell line stably transfected with a MIg virus 

construct containing AIRE and GFP, in parallel with a negative control cell line 

transformed with MIg-GFP alone, verified for both wild-type AIRE expression and 

PGE.  Investigation into the epigenetic status of TRA requires the use of native 

chromatin immunoprecipitation (NChIP), a procedure which utilises unfixed 

chromatin, prepared by nuclease digestion.  This process maintains the strong 

associations between histone proteins and DNA, yet allows greater resolution across 

defined DNA domains and higher levels of immunoprecipitation when antibodies to 

individual histone modifications are applied (O'Neill and Turner 2003).  Large cell 

numbers can be generated through culture systems and greater amounts of 

chromatin can be isolated and analysed with unlimited numbers of antibodies, and 

hence NChIP offers an important insight into the regulation of PGE, restricted to the 

comparison of fully differentiated cell lines; those expressing AIRE and those not.  To 

truly understand the role of AIRE in PGE and its impact throughout development, it 

would be invaluable to be able to examine the distribution of histone modifications 

across TRA within each step of the TEC developmental pathway. 

 

A technique that has been used successfully to study the individual cell populations 

within the developing thymus and tease apart the T-cell developmental programme 
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in full; foetal thymic organ cultures (FTOC) allows maintenance of the in vivo 

characteristics of the embryonic thymus (Jenkinson and Anderson 1994).  The 

complex three-dimensional architecture of the developing thymus, and phenotype of 

thymic stromal cells are preserved through this technique and therefore the defined 

programmes of cell development, in particular that of TECs, can occur as normal 

(Jenkinson and Anderson 1994; Anderson and Jenkinson 1995; Anderson and 

Jenkinson 2008).  Through FTOC and FACS sorting based upon specific cell 

surface markers, the four cell subsets in the TEC developmental pathway can be 

isolated and pure populations of the EpCAM1+ bipotent TEC progenitor, immature 

CD45-EpCAM1+Ly51-CD80-, and mature CD45-EpCAM1+Ly51-CD80+ mTECs, and 

mature CD45-EpCAM1+Ly51+ cTECs can be obtained and individually investigated 

(Rossi et al. 2007). 

 

Chromatin immunoprecipitation on cultured thymic epithelial cells in vitro and on cells 

isolated from the TEC developmental pathway in vivo should give insight into how 

AIRE may impact on post-translational modifications of core histones across its target 

genes.  Thus, the influence of epigenetics upon promiscuous expression of tissue-

restricted antigens and the co-ordination of central tolerance processes can be 

examined. 

 

1.20. AIMS 

 

• To reproduce AIRE in vitro in a thymic cellular environment, ensuring wild-type 

AIRE localisation and function.  A Mus musculus thymic epithelial (TEP) cell 
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line transfected with MIg virus bicistronic constructs containing either AIRE-

GFP (TEP-AIRE), or MIg-GFP alone (TEP-GFP) will be employed for 

modelling mature AIRE+ mTECs and AIRE- TECs. 

• An investigation into whether promiscuous gene expression is associated with 

any epigenetic changes, through examining a panel of activating and 

repressive post-translational histone modifications and the binding status of 

certain histone-modifying enzymes, across a catalogue of AIRE-regulated 

target loci and AIRE-independent control genes. 

• To further these studies and establish the role histone modifications play 

throughout the TEC developmental pathway in vivo, the distribution of these 

marks across TRA within each step of TEC development will be examined 

through carrier chromatin immunoprecipitation (CChIP) with small numbers of 

FACS sorted primary Mus musculus thymic stromal cells, generated through 

foetal thymic organ cultures (FTOC). 

• To assay and compare the epigenetic status of TRA in TEC from athymic 

FoxN1-deficient nude mice, within which normal TEC development is 

disrupted, with wild-type primary Mus musculus TEC, to highlight the 

importance these modifications have in the establishment of promiscuous 

gene expression in vivo. 
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2. MATERIALS AND METHODS 

 

2.1. CELL CULTURE AND PREPARATION OF PRIMARY CELL POPULATIONS 

 

2.1.1. Mus musculus Thymic Epithelial Cell Culture 

Mus musculus thymic epithelial (TEP) cells were a gift from Dr D. Kioussis of the 

National Institute of Medical Research.  TEP cells, retrovirally transfected with the 

MIg virus, containing either GFP and AIRE, (TEP-AIRE cells), or GFP alone as a 

control line (TEP-GFP cells), were maintained in monolayers at 37°C in a 5% CO2 

humidified atmosphere.  Cells were grown in 1xDulbecco’s Modified Eagle’s Medium 

(DMEM, Gibco) supplemented with 10% heat inactivated foetal bovine serum (FBS, 

Gibco), 1xMEM non-essential amino acids (without glutamine) (Gibco), 10mM Hepes 

(Sigma), 5x10-5M mercaptoethanol (Gibco), 4mM L-glutamine, 5000 IV/ml Penicillin 

(Gibco) and 5000μg/ml Streptomycin (Gibco).  Cells were cultured in T75 (Sarstedt) 

tissue culture flasks.  Passage by trypsinisation (0.05% trypsin-EDTA, Gibco) was 

performed once cells reached 70% confluence.  Cells were harvested by 

trypsinisation at 37oC and washed three times in ice-cold Ca2 / Mg2-free 1xphosphate 

buffered saline (1xPBS) containing 5mM sodium butyrate and centrifuged at 

1200rpm (MSE 3000) for 5 minutes. 

 

2.1.2. Mus musculus 3T3 Fibroblast Cell Culture 

Mus musculus fibroblast cells (3T3s) were also transfected with MIg-GFP-AIRE (3T3-

AIRE) or MIg-GFP (3T3-GFP) and grown following the same protocol as for TEP cell 

lines. 



 69

2.1.3. Drosophila melanogaster SL2 Cell Culture 

Drosophila melanogaster SL2 cells were grown anaerobically in suspension at 26oC 

in Schneider’s medium (Gibco) supplemented with 8% FBS and antibiotics (50 

units/ml Penicillin and 50μg/ml Streptomycin). 

 

2.1.4. Mouse Husbandry and Breeding 

Wild-type BALB/c (haplotype H-2d) and FoxN1-deficient BALB/c nude (nu/nu) mice 

used in this study were housed and maintained in the Biomedical Sciences Unit 

(BMSU), University of Birmingham, in accordance to home office regulations. 

 

2.1.5. Foetal Thymic Organ Culture (FTOC) 

FTOC preparation and the sorting of thymic epithelial subsets were performed by Dr 

A. White (Anderson lab, University of Birmingham) (Jenkinson et al. 1992; Anderson 

et al. 1993).  For reference, protocols for these methods are given below. 

 

Thymic lobes were removed from mice embryos at the required stage of gestation 

(typically embryonic day E15) and placed on 0.8µm sterile nucleopore filters 

(Millipore) on sterile artiwrap sponges (Medipost Ltd) in DMEM in 90mm, single vent 

sterile Petri dishes (Sterilin).  Organ cultures were grown in DMEM containing 10% 

FBS for seven days at 37°C, 10% CO2. 

 

2.1.5.1. Isolation of Primary Cell Populations 

Cultured embryonic thymic lobes were washed three times in Ca2 / Mg2-free 

1xphosphate buffered saline (1xPBS) (Sigma) and incubated in 600µl 0.25% trypsin, 
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0.02% EDTA (Sigma) for 15-20 minutes, 37°C (precise timing depends on the stage 

of thymus development and days in organ culture).  Trypsinisation was stopped by 

the addition of RPMI-1640 Hepes (RF10-H), and stromal cell suspensions were 

generated from disaggregated lobes through gentle pipetting.  An equal volume of 

RF10-H medium was added and cells were centrifuged for 10 minutes at 1000rpm 

and the supernatant removed.  The cell pellet was resuspended in 1ml RF10-H and 

the cells counted in a haemocytometer.   

 

An immunomagnetic separation technique was employed using Dynabeads (Dynal) 

for the depletion of any residual haematopoietic cells.  Anti-rat IgG magnetic beads 

(Dynal), coated with anti-mouse CD45 (clone M1-9; ATCC) were added to cell 

suspensions in 200μl RF10-H at an approximate ratio of 10:1.  Cells and beads were 

centrifuged for 10 minutes at 1000rpm, 4°C and allowed to bind.  Once positive 

binding was detected, unbound cells were isolated from cell-bound beads using an 

Eppendorf (1.5ml) Dynal Magnetic Particle Concentrator (Dynal).  Supernatants 

contained thymic stromal cell populations that were used for sorting of thymic 

epithelial subsets. 

 

2.1.5.2. Flow Cytometric High Speed Sorting 

EpCAM1+ E12 bipotent TEC progenitors and EpCAM1+ E12 FoxN1-deficient nude 

TEC were isolated from suspensions of E12 thymus lobes on the basis of expression 

of EpCAM1, as described (Rossi et al. 2006).  To isolate TEC subsets, we used the 

following phenotypes: immature CD45-EpCAM1+Ly51-CD80- mTECs, mature CD45-

EpCAM1+Ly51-CD80+ mTECs, and mature CD45-EpCAM1+Ly51+ cTECs (Derbinski 
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et al. 2001; Rossi et al. 2007).  In brief, cell lymphocyte-depleted suspensions were 

immunolabelled with the appropriate antibodies.  Cells were resuspended in 50µl of 

the relevant primary antibody (Table 2.1) and incubated for 30 minutes on ice.  

Appropriate single colour controls and negative controls (secondary antibody only) 

were also set up.  Cells were washed in 1ml 1xPBS and centrifuged.  Where primary 

antibodies were not directly conjugated to a fluorochrome, relevant secondary 

antibodies (Table 2.1) were added to cells and incubated for 30 minutes on ice.  

Following immunolabelling, cells were washed and resuspended in RF10-H.  Single 

colour controls, of approximately 100,000 cells, were resuspended in 200μl RF10-H.  

Experimental samples of no less than 1x106 cells were resuspended in 1ml RF10-H.  

Sorting was performed on a MoFlo high speed sorter (Dako Cytomations) with 

forward and side scatter gates set to exclude nonviable cells.  Sorted cells were 

counted and snap frozen for storage at -80°C until use.  Sorting performed by Dr R. 

Bird (University of Birmingham). 

 

2.1.6. Snap Freezing of Cell Populations 

Cell populations were transferred into 1.5ml RNase-free microcentrifuge tubes and 

centrifuged at 1000rpm (MSE 3000) for 10 minutes.  Supernatants were removed to 

leave a dry pellet before immersion in liquid nitrogen and storage at -80°C. 
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Table 2.1 – Antibodies for Isolation of Primary Cell Populations 

ANTIBODY SPECIFICITY ORIGIN 

PRIMARY ANTIBODIES 

Anti-CD45 biotin (clone 30F11) eBioscience 

Anti-EpCAM1 (G8.8) conjugated to Alexa 647 Gift from Andy Farr 

Anti-Ly51 (clone BP-1) PE eBioscience 

Anti-CD80 (clone 16-10A1) FITC eBioscience 

SECONDARY ANTIBODIES 

Streptavidin PeCy7 eBioscience 

Streptavidin APC BD 

Streptavidin PE eBioscience 

 
 

Foetal thymic organ culture was employed for the investigation of the epigenetic 
status of tissue-restricted antigens across the embryonic thymic epithelial 
developmental pathway.  Fluorescent Activated Cell Sorting (FACS) was used 
to isolate four cell populations; EpCAM1+ bipotent TEC progenitors, immature 
CD45-EpCAM1+Ly51-CD80-, and mature CD45-EpCAM1+Ly51-CD80+ mTECs, 
and mature CD45-EpCAM1+Ly51+ cTECs.  Primary and secondary antibodies 
used in FACS along with their origin are displayed. 
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2.2. ANALYSIS OF THE INTEGRITY OF THE TEP AND 3T3 MODEL SYSTEMS 

 

2.2.1. Immunofluorescence Labelling 

TEP-GFP, TEP-AIRE, 3T3-GFP and 3T3-AIRE cells were grown to 70% confluence 

on sterile 22mm x 22mm glass coverslips in 6-well plates, each well containing 2ml 

DMEM.  Coverslips were transferred to fresh acetone for a 6 minute fixation then 

dried and washed for 5 minutes in 1xPBS with 0.1% Tween20 (Sigma) (PBST).  To 

each coverslip, 50µl fluorescein isothiocyanate (FITC)-conjugated primary anti-AIRE 

antibody (rat anti-Aire (B1/02-5H12-2), a gift from H. Scott), diluted 1:100 in PBST, 

was added, and incubated for 1hr at room temperature in the dark.  Following 

incubation, coverslips were washed for 5 minutes in PBST.  Slides were prepared 

with 10µl mounting medium with 4',6-diamidino-2-phenylindole (DAPI) (Vectashield).  

Coverslips were dried, placed cell-side down onto the mounting medium and sealed.  

Images were captured using a Zeiss Axioplan microscope and SmartCaptureX 

Software (Digital Scientific). 

 

2.2.2. Fluorescence-Activated Cell Sorting (FACS) Analysis for GFP Levels 

For analysis of the efficiency of retroviral transfection, harvested TEP and 3T3 lines 

were washed in 1xPBS and transferred to 12.5ml polystyrene FACS tubes (Becton 

Dickinson) for FACS analysis.  Acquisition was performed using a Becton Dickinson 

LSR flow cytometer and subsequent analysis was carried out using FloJo software.  

Freshly isolated thymocytes were used as negative control sample in order to set 

negative peaks for GFP.  Where possible at least 100,000 events were recorded per 

experimental sample, with forward and side scatter gates to exclude non-viable cells. 
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2.2.3. Analysis of the Expression Levels of Promiscuous Genes 

 

2.2.3.1. High Purity cDNA Extraction 

For the analysis of promiscuous gene expression within cultured TEP and 3T3 lines 

or MoFlo-sorted primary cell populations, high purity cDNA was obtained from 

purified mRNA using the μMACs™ mRNA Isolation Kit (Miltenyi Biotec) and 

μMACs™ cDNA Synthesis Module (Miltenyi Biotec) according to the manufacturers 

instructions.  The whole procedure was carried out in a laminar flow cabinet.  

Lysis/binding and wash buffers were allowed to equilibrate to room temperature prior 

to use.  Frozen primary cell populations obtained from MoFlo cell sorting were 

suspended in 900μl lysis/binding buffer and vigorously vortexed for 3 minutes to 

ensure total cell lysis.  Cultured TEP and 3T3 cells were snap frozen (section 2.1.6.), 

suspended in 900μl lysis/binding buffer and lysed using 21-gauge needles. 

 

Cell lysates were then centrifuged at 13000rpm (MSE microcentaur) for 3 minutes in 

LysateClear columns.  To each lysate, 50μl oligo microbeads were added and gently 

mixed.  Lysates were transferred to μMACS™ columns; previously primed with 100μl 

lysis/binding buffer.  Magnetically labelled mRNA remains bound to the column.  

Columns were rinsed twice with 200μl lysis/binding buffer to remove proteins and 

DNA, followed by four 100μl rinses with wash buffer to remove ribosomal RNA and 

DNA.  For direct cDNA synthesis, bound mRNA was not eluted from the column.  

Instead, columns were washed twice with 100μl equilibration/wash buffer.  

Lyophilised enzyme mix was dissolved in 20μl resuspension buffer and applied on 

top of the column followed by 1μl of sealing solution, applied directly to the top of the 
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column to prevent evaporation.  The thermoMACSTM Separator was then turned on 

to 42°C and left for 1 hour 15 minutes for reverse transcription to take place.  

Columns were rinsed twice with 100μl equilibration/wash buffer.  To release cDNA, 

20μl release solution was added and incubated for 30 minutes at 42°C.  Synthesised 

cDNA was eluted with 50μl elution buffer, collected into 1.5ml RNase-free 

microcentrifuge tubes and stored at -20°C.  High purity cDNA extraction and 

expression analysis of primary cell populations performed by S. Parnell (Anderson 

Lab, University of Birmingham). 

 

2.2.3.2. Quantitative Real-Time Polymerase Chain Reaction (qPCR) Analysis of 

Expression 

Quantitative real-time PCR (qPCR) was performed on the Rotor-Gene™ RG-3000 

(Corbett Research) using SYBR Green with expression primers specific for various 

genes of interest (Table 2.2 and 2.3).  For sample normalisation prior to amplifying 

target genes, β-actin was used as the housekeeping gene.  Primers were made by 

Invitrogen and primer pairs were designed using the aid of Primer3 software 

(http://frodo.wi.mit.edu/primer3/). 

 

PCR reactions were performed as described previously (Shakib et al. 2009).  

Reactions were carried out in triplicates or duplicates in 15μl volumes in 2xSensiMix 

(Quantace) reaction buffer containing 50xSYBR© Green1 Solution (Quantace) and 

200nM forward and reverse primers.  After an initial denaturation step (95°C, 10 

minutes), cycling was performed at 95°C for 15 seconds, 59-62°C (depending on 

primer pair) for 20 seconds and 72°C for 5 seconds (39 cycles).  The fluorescent 

http://frodo.wi.mit.edu/primer3/�
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Table 2.2 – Sequences of the Mus musculus Expression Primer Sets for 
Tissue-Restricted Antigens Used in Quantitative Real-Time Polymerase 
Chain Reaction (PCR) with cDNA 

PRIMER NAME NCBI 
REFERENCE 

AMPLICON 
LENGTH Tm 

Beta-Actin [Actb] NM_007393 100bp 60°C 

Forward: 5` -CGTGAAAAGATGACCCAGATCA- 3` 

Reverse: 5` -TGGTACGACCAGAGGCATACAG- 3` 

Autoimmune Regulator [AIRE] NM_009646 186bp 62°C 

Forward: 5` -TGCATAGCATCCTGGACGGCTTCC- 3` 

Reverse: 5` -CCTGGGCTGGAGACGCTCTTTGAG- 3` 

Casein-Alpha [Csn1s1] NM_007784 190bp 60°C 

Forward: 5` -CATCATCCAAGACTGAGCCAG- 3` 

Reverse: 5` -CCTGTGGAAAGTAAGCCCAAAG- 3` 

Salivary Protein-1 [Spt1] NM_009267 116bp 59°C 

Forward: 5` -AGCAGTGTTGGTATCATCAGTG- 3` 

Reverse: 5` -CTGGTGAAAATACTGGCTCTGAA- 3` 
Salivary Protein-2 [Spt2] (Renamed Mucin-like 1 
[Mucl1] 14.04.09) NM_009268 122bp 60°C 

Forward: 5` -TCAGACCAAAGTGGGTGACA- 3` 

Reverse: 5` -CCTCTTGTTTCTCATTGGAGGT- 3` 
Selection and Upkeep of Intraepithelial T-cells 1 
[Skint1] NM_001102662 143bp 60°C 

Forward: 5` -TTCAGATGGTCACAGCAAGC- 3` 

Reverse: 5` -GAACCAGCGAATCTCCATGT- 3` 

Proteasome Subunit Beta-Type 11 [Psmβ11] NM_175204 231bp 60°C 

Forward: 5` -ATCGCTGCGGCTGATACTC- 3` 

Reverse: 5` -GCAGGACATCATAGCTGCCAA- 3` 
 
 

For the analysis of promiscuous gene expression within cultured TEP and 3T3 
lines or FACS-sorted primary cell populations, high purity cDNA was obtained 
from purified mRNA and quantitative real-time PCR (qPCR) performed with 
expression primers specific for AIRE and the AIRE-regulated tissue-restricted 
antigens (Csn1s1, Spt1, Spt2) and control genes (Skint1, Psmβ11) listed.  For 
sample normalisation prior to amplifying target genes, β-actin was used as the 
housekeeping gene.  Illustrated are the NCBI reference code, the length of 
amplicon generated and the annealing temperature (Tm) of each primer set. 
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Table 2.3 – Sequences of the Mus musculus Expression Primer Sets for 
the Keratin Cluster Used in Quantitative Real-Time Polymerase Chain 
Reaction (PCR) with cDNA 

PRIMER NAME NCBI 
REFERENCE 

AMPLICON 
LENGTH Tm 

Keratin 4 [Krt4] NM_008475 188bp 60°C

Forward: 5` -GAGCATCTCGGTAGTTGGCG- 3` 

Reverse: 5` -GAGCACCAGGAAGACTGGAG- 3` 

Keratin 79 [Krt79] NM_146063 166bp 60°C

Forward: 5` -GGAGCTGAGGAACGTACAGG- 3` 

Reverse: 5` -TGTCAAGCTGTCCACTTTGC- 3` 

Keratin 78 [Krt78] NM_212487 228bp 60°C

Forward: 5` -GCCTCAGGAAGCAGAATGAC- 3` 

Reverse: 5` -CCTCACTCTCCAGCAACCTC- 3` 

Keratin 8 [Krt8] NM_031170 151bp 62°C

Forward: 5` -ATCGAGATCACCACCTACCG- 3` 

Reverse: 5` -TGAAGCCAGGGCTAGTGAGT- 3` 

Keratin 18 [Krt18] NM_010664 161bp 60°C

Forward: 5` -TCCTTCTGCATCTGGAG- 3` 

Reverse: 5` -ATCGTTGAGACTGAAATC- 3` 

Eukaryotic Translation Initiation Factor 4b [Eif4b] NM_145625 222bp 60°C

Forward: 5` -GTTGCTGATCAAGCACAGGA- 3` 

Reverse: 5` -GTCCCGATATCCGTCCCTAT- 3` 
Tensin like C1 Domain-containing Phosphatase 
[Tenc1] NM_153533 199bp 60°C

Forward: 5` -CAGGACCCTTGGCTTCTACA- 3` 

Reverse: 5` -GGAGACCTGGTGGTGTCTTG- 3` 

SPRY Domain-containing 3 [Spryd3] NM_001033277 240bp 60°C

Forward: 5` -GCCCAGATCTTCTTCACCAA- 3` 

Reverse: 5` -CTTCCCCAAATACTCCAGCA- 3` 
 
 

For the analysis of gene expression across the keratin cluster within cultured 
TEP lines, cDNA was obtained from purified mRNA and quantitative real-time 
PCR (qPCR) performed with expression primers specific for the genes listed.  
For sample normalisation prior to amplifying target genes, β-actin was used as 
the housekeeping gene.  Illustrated are the NCBI reference code, the length of 
amplicon generated and the annealing temperature (Tm) of each primer set. 
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signal produced from the amplicon was acquired at the end of each polymerisation 

step.  Specific amplification of target genes was verified by melt curve analysis (72-

99°C, hold 30 seconds on 1st step then 5 seconds on next steps) and by fractionation 

of PCR products on a 2% agarose gels, which were identified by their fragment size.  

Reaction amplification efficiency and Ct values were obtained using Rotor-GeneTM 

6.0 software (Corbett Research).  Standard curves with reaction efficiencies no 

greater than 1 and R2 values no less than 0.98 were generated for each primer set 

using serial dilutions of cDNA from E15 BALB/c foetal thymic organ cultures 

(FTOCs), mammary gland cells and salivary gland cells.  For calculation of the 

relative expression values for samples normalised to β-actin, the Pfaffl model that 

takes gene-dependent differences in the amplification efficiency into account was 

employed (Pfaffl 2001). 

 

2.3. ANALYSIS OF HISTONE PROTEINS 

 

2.3.1. Affinity-Purified Antibodies 

Rabbit polyclonal antisera to H3K4me1, H3K4me2, H3K4me3, H3K9ac, H4K8ac and 

H4K16ac were raised by immunization with synthetic peptides conjugated to 

ovalbumin as previously described (Turner et al. 1989; O'Neill and Turner 1995; 

White et al. 1999).  Rabbit anti-H3K27me3 (07-449) and anti-H3K9me2 (07-212) 

were purchased from Millipore.  Specificity was assayed by inhibition ELISA for all in-

house and commercial antisera used and checked by Western blotting.  For all 

antisera, cross-reaction with epitopes other than that against which the antiserum 

was raised was insignificant (O'Neill et al. 2006). 
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2.3.2. Histone Acid Extraction from Cultured Thymic Epithelial Cells 

For the analysis of histone proteins in the two cell lines, TEP-GFP and TEP-AIRE 

cells were harvested, washed in ice-cold 1xPBS and cell numbers determined using 

an Improved Neybauer Haemocytometer Counting Chamber.  Cells were 

resuspended at 1x107 cells/ml in Triton extraction buffer (TEB; 10% Triton X-100, 

0.1M PMSF, 2% Na azide in 1xPBS/5mM Na butyrate), incubated on ice for 10 

minutes and pelleted at 1200rpm (MSE 3000) for 10 minutes at 4°C.  Histones were 

extracted in 0.4N HCl (2x106 cells / 50μl) at 4°C overnight.  Histones were isolated by 

centrifugation at 13000rpm (MSE microcentaur) for 1 minute, and histone-containing 

supernatants removed and stored at 4°C.  Protein concentration of histone samples 

was determined using the Pierce assay.  Samples were diluted 50x in Pierce-3 Agent 

(ThermoScientific) and left on ice for the colour change to develop.  The absorbance 

(595nm) of histones was then compared against a standard curve generated using a 

dilution series of bovine serum antigen (1-0.2mg/ml) to determine their 

concentrations. 

 

2.3.3. Sodium Dodecyl Sulphate (SDS) Polyacrylamide Gel Electrophoresis 

(PAGE) 

SDS-PAGE was performed as described in Laemmli (1970) with the isolated histone 

fractions (Laemmli 1970).  For histone separation, resolving gels were prepared 

(15% acrylamide, 0.4% NN’bisacrylamide, 375mM Tris-HCl pH 8.8, 0.1% SDS 

polymerised with 300μl 10% w/v ammonium persulphate and 30μl TEMED per 30ml 

gel solution).  These were overlaid with iso-butanol during polymerisation to prevent 

evaporation which was then washed off before addition of the stacking gel (3% 
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acrylamide, 0.16% N,N’bisacrylamide, 125mM Tris-HCl pH 6.9, 0.1% SDS, 

polymerised with 100μl 10% w/v ammonium persulphate and 10μl TEMED per 10ml 

of gel solution). 

 

Samples were prepared in 100µl volumes with 10µg histone proteins, 50% glycerol, 

0.02% bromophenol blue and 10x standard dissociating buffer (SDB; 1M Tris-HCl pH 

7.2, 10mM Na2EDTA, 10% SDS, 1.432M 2-mercaptoethanol).  Proteins were 

denatured for 10 minutes at 95°C and incubated on ice for 5 minutes prior to being 

loaded onto the gel.  Electrophoresis was performed at 400 volts, 30 mA for at least 2 

hours in Mini Protean II™ (BIO-RAD) apparatus and 1xSDS running buffer (50mM 

Tris base, 380mM Glycine, 0.1% SDS). 

 

2.3.4. Analysis of Global Levels of Histone Modifications by Western Blot 

Histone proteins were transferred onto Hybond C-Extra nitrocellulose paper 

(Amersham) as described (Towbin et al. 1979).  Briefly, Hybond C, pre-soaked in 

transfer buffer (25M Tris-HCl, 192mM Glycine, 20% Methanol) was overlaid on top of 

the SDS-PAGE gel.  Gels were sandwiched between Whatman No1 filter paper and 

Scotch brite sponge pads.  All air bubbles were removed and the gel, plus pads, 

placed in a cassette and slotted into Trans Blot Cell apparatus (BIO-RAD).  Protein 

transfer was carried out for 3 hours (180V, 300mA, 20w).  Staining with Ponceau Red 

prior to antibody binding ensured an equal transfer of histones.  Membranes were 

incubated for 1 hour at room temperature in blocking solution (5% milk in 1xPBS with 

0.1% Tween20 (PBST)) in order to prevent non-specific antibody binding.  Primary 

antibody (diluted in blocker; Table 2.4) was added and incubated at room 
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Table 2.4 – Primary and Secondary Antibodies Used for Western Blot and 
Immunofluorescence Analysis of the Global Levels of Histone 
Modifications 

ANTIBODY SPECIFICITY ORIGIN DILUTION (IN PBST) 

PRIMARY ANTIBODIES 

Rabbit anti-H3K4me1 In-house R204 1:200 

Rabbit anti-H3K4me2 In-house R148 1:400 

Rabbit anti-H3K4me3 In-house R614 1:400 

Rabbit anti-H3K9ac In-house R609 1:100 

Rabbit anti-H4K8ac In-house R404 1:1000 

Rabbit anti-H4K16ac In-house R252 1:400 

Rabbit anti-H3K9me2 In-house R616 1:400 

Rabbit anti-H3K27me3 Millipore (07-449) 1:800 

SECONDARY ANTIBODIES 

Peroxidase Goat anti-Rabbit IgG Sigma 1:1500 

 
 

For the analysis of global levels of histone modifications in cultured TEP lines, 
Western blot analysis of bulk histones and immunofluorescence staining of 
metaphase chromosomes was performed.  The names and specificities of 
primary and secondary antibodies used in these procedures are displayed 
along with their origin and the dilution factor in 1xPBS with 0.1% Tween20 
(PBST). 
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temperature for 1 hour, followed by washing of the membranes three times in PBST.  

Secondary antibody peroxidase goat anti-rabbit IgG was applied and the filters left for 

a further hour at room temperature.  After washing the filters three times with PBST, 

antibody binding was detected using enhanced chemiluminescence (ECL) Detection 

Reagents (Amersham) as per the manufacturers instruction. 

 

2.3.5. Immunofluorescence Labelling of Metaphase Chromosomes from Thymic 

Epithelial Cells 

For visualisation of the effects of AIRE upon the global distribution of histone 

modifications across metaphase chromosomes, TEP-GFP and TEP-AIRE cells were 

cultured with 10μl/ml Colcemid for 3 hours, and then harvested and washed twice in 

1xPBS.  A cell count was performed and samples diluted to 2x105 cells/ml in 0.1M 

KCl and incubated for 10 minutes at room temperature.  Cytospins were performed 

with 200µl/chamber (4x104 cells/slide) in a Shandon cytospin® cytocentrifuge 

(ThermoFisher Scientific) at 1800rpm for 10 minutes.  Cell areas were marked with a 

diamond pen and immediately immersed in KCM buffer (120mM KCl, 20mM NaCl, 

10mM Tris-HCl pH 8.0, 0.5mM EDTA, 0.1% v/v Triton X-100) for 8 minutes at room 

temperature.  Primary antibodies (Table 2.4) were diluted in KCM buffer with 0.1% 

BSA, then 40μl were applied to each slide, covered with parafilm and left at 4oC for 1 

hour in humid chamber.  Slides were washed twice in KCM, 10 minutes each wash, 

then incubated with 40μl FITC-conjugated secondary antibody (Table 2.4) for 1 hour, 

4oC.  Slides were again washed twice in KCM, 10 minutes each wash, then fixed in 

4% formaldehyde in KCM for 10 minutes, and finally washed in distilled water then 

mounted in 7.5μl DAPI.  Performed by R. Muraleedharan. 
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2.4. CHROMATIN IMMUNOPRECIPITATION 

 

2.4.1. Chromatin Isolation 

 

2.4.1.1. Preparation of Unfixed Chromatin from Cultured Thymic Epithelial Cells 

for Native Chromatin Immunoprecipitation 

Extraction and subsequent digestion of chromatin was performed as previously 

described (O'Neill and Turner 1995).  TEP-GFP and TEP-AIRE cultures were 

trypsinised and washed in ice-cold 1xPBS/5mM Na butyrate (PBS-NaB) three times.  

Cell counts were performed then cells were resuspended in 1xTBS (15mM NaCl, 

10mM Tris-HCl pH 7.5, 3mM CaCl2, 2mM MgCl2, 5mM Na butyrate) to a density of 

2x107 cells/ml.  An equal volume of 1% Tween40/TBS and 1/200th volume 0.1M 

PMSF was added to the suspension and the cells were stirred on ice for 1 hour in 

order to puncture the cell membranes for release of the nuclei.  Nuclei were released 

by homogenisation, on ice, using 10 strokes with a Dounce all-glass homogeniser 

with a “tight” pestle, which resulted in a 75-80% yield of intact nuclei, verified by 

microscopy.  The nuclei suspension was then centrifuged (2000rpm, MSE 3000, 4°C, 

10 minutes) and pellets were resuspended in 5ml 5% sucrose/TBS.  After 

centrifugation (3000rpm, MSE 3000, 4°C, 10 minutes), nuclei pellets were 

resuspended in 5ml digestion buffer (0.32M Sucrose, 50mM Tris-HCl pH 7.5, 4mM 

MgCl2, 1mM CaCl2, 0.1mM PMSF, 5mM Na butyrate) and a rough estimate of 

concentration determined using A260/280 absorbance.  Samples were then centrifuged 

(2000rpm, MSE 3000, 4°C, 10 minutes) and pellets were resuspended in digestion 

buffer to a concentration of 0.5mg/ml. 
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For analysis of chromatin, a chromatin ladder rich in mono-, di-, tri-, tetra-, and penta-

nucleosomes is required.  Chromatin was released from the nuclear preparations by 

digestion at 37°C for 5 minutes with 50U micrococcal nuclease (Amersham) per 

0.5mg chromatin.  Digestion was terminated by addition of 0.5M EDTA to a final 

concentration of 5mM and placed on ice for 5 minutes.  The samples were 

centrifuged at 13000rpm (MSE microcentaur) and the first supernatant (S1) was 

removed and stored at 4oC.  Pellets were resuspended in 500μl lysis buffer (1mM 

Tris-HCl pH 7.4, 0.2mM Na2EDTA, 0.2mM PMSF, 5mM Na butyrate) and dialysed 

overnight against 2l lysis buffer at 4oC.  Samples were centrifuged (2000rpm, MSE 

3000, 4oC, 10 minutes) and the second supernatant (S2) collected and the insoluble 

pelleted material (P) resuspended in 200μl lysis buffer before the concentration 

(A260/280) of DNA within S1, S2 and P samples determined.  For each sample, 2µg 

(with 0.3% SDS), were loaded onto 1.2% agarose gels for agarose gel 

electrophoresis (AGE), followed by ethidium bromide staining to determine the extent 

of micrococcal nuclease digestion.  S1 and S2 fractions were routinely combined, 

representing approximately 90% total chromatin, and the DNA concentration (A260/280) 

determined. 

 

2.4.1.2. Preparation of Unfixed Chromatin from Primary Thymic Epithelial Cells 

for Carrier Chromatin Immunoprecipitation 

For the CChIP procedure, extraction and subsequent digestion of chromatin was 

performed as previously described (O'Neill et al. 2006).  Drosophila melanogaster 

SL2 cells were pelleted and washed three times in ice-cold PBS-NaB.  Cells were 

resuspended to 5x107 cells in 1ml ice-cold NB buffer (15mM Tris-HCL pH 7.4, 60mM 
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KCl, 15mM NaCl, 5mM MgCl2, 0.1mM EGTA, 0.5mM 2-mercaptoethanol, 0.1mM 

PMSF, 5mM Na butyrate) then snap frozen and stored at -80oC.  For the CChIP 

procedure, SL2 cells were resuspended in 400μl ice-cold NB buffer.  Small numbers 

of Mus musculus thymic epithelial cell populations obtained from MoFlo cell sorting 

(section 2.1.5.2.), which had previously been frozen, were resuspended in 100μl ice-

cold NB buffer, transferred to each aliquot of 5x107 SL2 cells and an equal volume 

1% Tween40/NB buffer/0.1mM PMSF added, bringing the final volume to 1ml.  For a 

75-80% yield of intact nuclei, homogenisation was performed on ice with seven 

strokes using a Dounce all-glass homogeniser with a “tight” pestle.  Nuclei were 

pelleted (2000rpm, MSE 3000, 4oC, 10 minutes), resuspended in 5ml NB buffer, 5% 

(v/v) sucrose and pelleted (2000rpm, MSE 3000, 4oC, 10 minutes).  Nuclei were 

resuspended in 2ml digestion buffer and the DNA concentration determined, samples 

were centrifuged (2000rpm, MSE 3000, 4oC, 10 minutes) then routinely resuspended 

in 500μl digestion buffer.  Micrococcal nuclease (25U) was added to each aliquot and 

incubated for 7 minutes 30 seconds at 28oC.  The S1, S2 and P fractions were 

isolated and the DNA concentration (A260/280) determined followed by analysis on 

1.2% AGE.  S1 and S2 fractions were routinely combined. 

 

2.4.1.3. Preparation of Fixed Chromatin from Cultured Thymic Epithelial Cells 

for Cross-linked Chromatin Immunoprecipitation 

Formaldehyde cross-linked chromatin was prepared essentially by the method 

outlined previously (Orlando and Paro 1993).  Essentially, TEP cells were harvested, 

washed three times in PBS-NaB and resuspended at a concentration of 1x106 

cells/ml.  Cells were cross-linked in 1% paraformaldehyde for 8 minutes at room 
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temperature.  The reaction was stopped by addition of glycine to a final concentration 

of 150mM.  Cross-linked cells were washed twice with PBS-NaB and resuspended in 

130μl XChIP lysis buffer (50mM Tris-HCl, 10mM EDTA, 1% SDS, 5mM Na butyrate).  

Cells were sonicated using the Diagnode Biorupter for 10 minutes on medium at 4oC.  

An aliquot of cross-linked chromatin was taken for reversal of the cross-links by 

proteinase K digestion at a concentration of 50μg/ml at 68oC, 300rpm for 2 hours in 

an Eppendorf Thermomixer.  DNA was extracted by two phenol/chloroform 

extractions and one chloroform extraction.  DNA was precipitated by centrifuging at 

13000rpm (MSE microcentaur) and resuspended in water.  DNA was ran out on a 

1% agarose gel to check the size of the fragments.  Fragments were typically 

between 300 and 600bp. 

 

2.4.2. Immunoprecipitation 

 

2.4.2.1. Immunoprecipitation from Unfixed Chromatin (NChIP and CChIP) 

From this point onwards, the use of siliconised microcentrifuge tubes, Pasteur 

pipettes and 15ml centrifuge tubes maximised DNA recovery throughout the 

immunoprecipitation.  To 100-200μg freshly prepared, unfixed chromatin, 100-200μl 

(50-100μg Ig) affinity purified antibody (Table 2.5) was added in fresh pre-lubricated 

siliconised 1.5ml centrifuge tubes, and the volume adjusted to 1ml with incubation 

buffer (50mM NaCl, 20mM Tris–HCl pH 7.5, 20mM Na butyrate, 5mM, Na2EDTA, 

0.1mM PMSF).  After overnight incubation on a slowly rotating platform at 4°C, 200μl 

protein A-sepharose (50% w/v, Pharmacia) was added and the incubation continued 

at room temperature for a further 3 hours on a fast rotating turntable.  After 
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Table 2.5 – Affinity Purified Antibodies Used for Chromatin 
Immunoprecipitation 

ANTIBODY SPECIFICITY ORIGIN 

NCHIP / CCHIP ANTIBODIES 

Rabbit anti-H3K4me1 In-house R204 

Rabbit anti-H3K4me2 In-house R149 

Rabbit anti-H3K4me3 In-house R612 

Rabbit anti-H3K9ac In-house R607 

Rabbit anti-H4K8ac In-house R403 

Rabbit anti-H4K16ac In-house R252/R232 

Rabbit anti-H3K9me2 Millipore (07-212) 

Rabbit anti-H3K27me3 Millipore (07-449) 

Rabbit Pre-immune In-house 

XCHIP ANTIBODIES 

Rat anti-AIRE (B1/02-5H12-2) A gift from H. Scott 

Rabbit anti-RNA Polymerase II Abcam (ab26721) 

Rabbit anti-KMT2A/MLL1 Abcam (ab25735) 

Rabbit anti-KMT6/Ezh2 Abcam (ab3748) 

Rabbit anti-Eed Abcam (ab4469) 

 
 

For the quantitation of levels of histone modifications across AIRE-regulated 
genes, native chromatin immunoprecipitation (NChIP), carrier CChIP and 
formaldehyde-fixed XChIP were employed.  Immunoprecipitation was 
performed with the affinity-purified antibodies listed.  The origin of each is also 
displayed. 
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centrifugation (13000rpm, MSE microcentaur, 10 minutes) the supernatant was 

removed and stored on ice (unbound fraction, UB) and the protein A-sepharose pellet 

was washed three times in 10ml wash buffer (50mM Tris-HCl pH 7.5, 10mM EDTA, 

5mM sodium butyrate, 150mM NaCl), with centrifugation at 2000rpm (MSE 3000, 

4°C, 7 minutes).  For the elution of the immunoprecipitated (bound, B) material from 

the protein A-sepharose, pellets were resuspended in 250μl 1% SDS/incubation 

buffer and incubated for 15 minutes on a fast rotating turntable at room temperature.  

After centrifugation (13000rpm, MSE microcentaur, 10 minutes) the supernatant (B) 

was removed and stored on ice.  This was then repeated with a further 250μl 1% 

SDS/incubation buffer.  The two extracts were combined and an equal volume of 

incubation buffer added to reduce the concentration of SDS to 0.5% (B). 

 

For the isolation of DNA, both the B and UB fractions were treated to two 

phenol/chloroform washes and one chloroform extraction.  DNA was ethanol 

precipitated with 1/10th volume (100μl) 4M LiCl, 50μg glycogen as a carrier, and 4x 

volume of ice-cold ethanol.  The samples were vortexed thoroughly and allowed to 

precipitate overnight at -80°C.  Precipitated DNA was centrifuged (3000rpm, MSE 

3000, 4°C, 25 minutes) then pellets were re-dissolved in 300μl UltraPure d.H2O 

(NChIP samples) or 40-80μl UltraPure d.H2O (CChIP samples). 

 

2.4.2.2. Immunoprecipitation from Fixed Chromatin (XChIP) 

Antibody-bead complexes were formed by first washing Dynabeads protein A 

(Invitrogen) four times in RIPA buffer (10mM Tris-HCl pH 7.5, 1mM EDTA, 0.5mM 

EGTA, 1% Triton, 0.1% SDS, 0.1% Na deoxycholate, 150mM NaCl) and then 
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incubating with 2.5μg antibody (Table 2.5) overnight at 4oC.  To each antibody/bead 

complex, 25μg cross-linked chromatin was added and rotated at room temperature 

for 2 hours on a fast turntable.  Beads were washed with 200μl RIPA buffer five times 

before washing once with TE (1mM EDTA, 10mM Tris).  Antibody-bound DNA was 

eluted by addition of Elution buffer (20mM Tris-Hcl pH 7.5, 5mM EDTA, 5mM Na 

butyrate, 50mM NaCl, 1% SDS).  Cross-links were reversed by proteinase K 

digestion at a concentration of 50μg/ml at 68oC, 300rpm for 2 hours in an Eppendorf 

Thermomixer.  DNA was ethanol precipitated following two phenol/chloroform 

extractions and one chloroform extraction.  DNA was recovered by centrifuging at 

13000rpm (MSE microcentaur) and resuspended in 20μl UltraPure d.H2O. 

 

2.4.3. PicoGreen Assay of ChIP DNA 

For the determination of the yield of DNA in both the B and UB samples following 

immunoprecipitation, 2μl DNA was diluted 1:100 in Quant-iT PicoGreen reagent 

(Invitrogen).  The percentage pull down (B/UBx100) for each antibody was then 

calculated and NChIP UB samples were diluted in d.H2O to the concentration of the 

appropriate B sample concentration, to ensure that equal amounts of DNA were 

analysed.  CChIP UB samples were diluted 1:2 in UltraPure d.H2O. 

 

2.4.4. Quantitative Real-Time Polymerase Chain Reaction (qPCR) Analysis of 

NChIP and XChIP DNA 

For the analysis of the relative levels of histone modifications across specific 

promiscuously-expressed genes following NChIP or XChIP, quantitative real-time 

PCR (qPCR) was performed on the Rotor-Gene™ RG-3000 (Corbett Research) or 
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ABI 7900HT (Applied Biosystems) using SYBR Green with primers specific for 

various genes of interest (Table 2.6, 2.7 and 2.8).  Primers were made by Invitrogen 

and primer pairs were designed using the aid of Primer3 software 

(http://frodo.wi.mit.edu/primer3/). 

 

PCR reactions were carried out in triplicates in 10-15μl volumes in 1xQuantiTect 

SYBR Green PCR Master Mix (Qiagen) and 500nM forward and reverse primers, 

with equal concentrations of either B or UB or input ChIP DNA.  After an initial 

denaturation step (95°C, 15 minutes), cycling was performed at 94°C for 15 seconds, 

57-60°C (depending on primer pair) for 30 seconds and 68-72°C for 15 seconds (44 

cycles).  The fluorescent signal produced from the amplicon was acquired at the end 

of each polymerisation step.  Specific amplification of target genes was verified by 

melt curve analysis (72-99°C, hold 30 seconds on 1st step then 5 seconds on next 

steps) and by fractionation of PCR products on 2% agarose gels, which were 

identified by their fragment size.  Reaction amplification efficiency and Ct values were 

obtained using Rotor-Gene™ 6.0 software (Corbett Research).  Standard curves with 

reaction efficiencies no greater than 1 and R2 values no less than 0.98 were 

generated for each primer set using serial dilutions of Mus musculus genomic DNA 

(gDNA), and used to generate concentrations for each PCR product.  B:UB ratios 

were then calculated.  XChIP data was a ratio of B:input and was normalised to 

results for glyceraldehyde-3-phosphate dehydrogenase (Gapdh). 

http://frodo.wi.mit.edu/primer3/�
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Table 2.6 – Sequences of Mus musculus Genomic DNA Tissue-Restricted 
Antigen Primer Sets Used in Quantitative Real-Time Polymerase Chain 
Reaction (PCR) with ChIP DNA 

PRIMER NAME NCBI 
REFERENCE 

AMPLICON 
LENGTH Tm 

Glyceraldehyde-3-phosphate Dehydrogenase 
Pseudogene (Gm12033) [Gapdh] 100042746 149bp 60°C 

Promoter Region Forward: 5` -TGTGGCCAAGCACTTGTATAAC- 3` 
Promoter Region Reverse: 5` -TATGTCTGACCAGAGGAGAGCA- 3` 
Casein-Alpha [Csn1s1] (Extension at 68°C) NM_007784 150bp 57°C 
Promoter Region Forward: 5` -CCCTACTCTTGGGTTCAAGG- 3` 
Promoter Region Reverse: 5` -GCTCTTAGCGTACTGGAACAAA- 3` 
Salivary Protein-1 [Spt1] NM_009267 120bp 60°C 
Promoter Region Forward: 5` -TGGCTGTGTGGTTGATTCTC- 3` 
Promoter Region Reverse: 5` -CAGGGTTCCACATCAAGGAC- 3` 
Salivary Protein-1 [Spt1] NM_009267 108bp 60°C 
Coding Region Forward: 5` -GGTGGGACCAATAACATTCC- 3` 
Coding Region Reverse: 5` -GCCTGAGTTTCAGAGCCAGT- 3` 
Salivary Protein-2 [Spt2] (Renamed Mucin-like 1 
[Mucl1] 14.04.09) NM_009268 140bp 60°C 

Promoter Region Forward: 5` -TAATTGGCCTCTGGCTGTGT- 3` 
Promoter Region Reverse: 5` -TCTTGACACCAGGGTTCCAC- 3` 
Salivary Protein-2 [Spt2] (Renamed Mucin-like 1 
[Mucl1] 14.04.09) NM_009268 200bp 60°C 

Coding Region Forward: 5` -GGTGGGACCAATAACATTCC- 3` 
Coding Region Reverse: 5` -GCCTGAGTTTCAGAGCCAGT- 3` 
Recombination Activating Gene 1 [Rag1]  NM_009019 154bp 60°C 
Coding Region Forward: 5` -AACTCAGGCTAGGGTCAGCA- 3` 
Coding Region Reverse: 5` -GGGATCAGCCAGAATGTGTT- 3` 
Selection and Upkeep of Intraepithelial T-cells 1 
[Skint1] NM_001102662 143bp 60°C 

Promoter Region Forward: 5` -CAATGGGATCCACAGGACTA- 3` 
Promoter Region Reverse: 5` -TGCTCCTAACTATTCCCAACAAA- 3` 
Proteasome Subunit Beta-Type 11 [Psmβ11] NM_175204 197bp 60°C 
Promoter Region Forward: 5` -GTTCTCTGAGGTGGGTGGAG- 3` 
Promoter Region Reverse: 5` -GCTGAGTGAGAATCGGAAGG- 3` 

 
 

For the quantitation of levels of histone modifications across AIRE-regulated 
and control genes following chromatin immunoprecipitation, quantitative real-
time PCR (qPCR) was performed with primers specific for the genes listed.  
Illustrated are the NCBI reference code, the length of amplicon generated and 
the annealing temperature (Tm) of each primer set. 
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Table 2.7 – Sequences of Mus musculus Genomic DNA Keratin Cluster 
Primer Sets Used in Quantitative Real-Time Polymerase Chain Reaction 
(PCR) with ChIP DNA 

PRIMER NAME NCBI 
REFERENCE 

AMPLICON 
LENGTH Tm 

Keratin 4 [Krt4] NM_008475 181bp 60°C 

Promoter Region Forward: 5` -AGCTCCCATCCAAGATCACA- 3` 

Promoter Region Reverse: 5` -CAGACCCTGGAACCTGAGAG- 3` 

Keratin 79 [Krt79] NM_146063 173bp 60°C 

Coding Region Forward: 5` -GTGGTGGCAGCTGCTCTTAT- 3` 

Coding Region Reverse: 5` -GGTACCAGGACTCAGCCTCA- 3` 

Keratin 78 [Krt78] NM_212487 225bp 60°C 

Promoter Region Forward: 5` -CAGCAAGTGGCAGACACAGT- 3` 

Promoter Region Reverse: 5` -AAAGGCAGAACACGCTGAGT- 3` 

Keratin 8 [Krt8] NM_031170 187bp 60°C 

Promoter Region Forward: 5` -GTTAGGCCCTGCCCTCTAGT- 3` 

Promoter Region Reverse: 5` -TGGACATGGTGAAGTCTGGA- 3` 

Keratin 18 [Krt18] NM_010664 169bp 60°C 

Promoter Region Forward: 5` -CTCCCAAGTGCTGGGATAAA- 3` 

Promoter Region Reverse: 5` -AGCATACCTGCCATCCTCAC- 3` 

Eukaryotic Translation Initiation Factor 4b [Eif4b] NM_145625 134bp 60°C 

Promoter Region Forward: 5` -AAAAGCCCATGGTTCAAATG- 3` 

Promoter Region Reverse: 5` -GGGTGTGCCACAATTGATTT- 3` 
Tensin like C1 Domain-containing Phosphatase 
[Tenc1] NM_153533 206bp 60°C 

Promoter Region Forward: 5` -CCTGCACTTCCCTCCACTT- 3` 

Promoter Region Reverse: 5` -GCTCTGAGCAACCTTTCCAC- 3` 

SPRY Domain-containing 3 [Spryd3] NM_001033277 226bp 60°C 

Promoter Region Forward: 5` -GCTGAGAGGCCTATGGATGA- 3` 

Promoter Region Reverse: 5` -ACCTGTCAATGAGGCTACGC- 3` 
 
 

For the quantitation of levels of histone modifications across AIRE-regulated 
genes of the keratin cluster following chromatin immunoprecipitation, 
quantitative real-time PCR (qPCR) was performed with primers specific for the 
genes listed.  Illustrated are the NCBI reference code, the length of amplicon 
generated and the annealing temperature (Tm) of each primer set. 
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Table 2.8 – Sequences of Mus musculus Genomic DNA Keratin Cluster 
Intergenic Region Primer Sets Used in Quantitative Real-Time Polymerase 
Chain Reaction (PCR) with ChIP DNA 

PRIMER NAME AMPLICON 
LENGTH Tm 

Krt4 Krt79 Intergenic Region [INT1] 166bp 60°C 
Forward: 5` -CCCTAGCTCCCAGGGTAGAG- 3` 
Reverse: 5` -ATGTCAGGCAGTGCTGTGAG- 3` 
Krt79 Krt78 Intergenic Region [INT2] 234bp 60°C 
Forward: 5` -TTGGGCTTAATTCCTGAACG- 3` 
Reverse: 5` -CAAAATATCCCCCACCACAG- 3` 
Krt78 Krt8 Intergenic Region A [INT3A] 187bp 60°C 
Forward: 5` -TCTTTTCAGGACTGGGGATG- 3` 
Reverse: 5` -CCAATTCCAGGGATCGAGTA- 3` 
Krt78 Krt8 Intergenic Region B [INT3B] 179bp 60°C 
Forward: 5` -CATGCTCCGTGCAAACTAGA- 3` 
Reverse: 5` -CCTCCACACAGACCTGGAAT- 3` 
Krt78 Krt8 Intergenic Region C [INT3C] 196bp 60°C 
Forward: 5` -GTGGCTTTGGATTTGAGAGC- 3` 
Reverse: 5` -AATGGTGACCTGAGGCAAAC- 3` 
Krt8 Krt18 Intergenic Region [INT4] 234bp 60°C 
Forward: 5` -CTGATGATGGTGACCTGGTG- 3` 
Reverse: 5` -TGCCTCCTAGCCGCTATTTA- 3` 
Krt18 Eif4b Intergenic Region A [INT5A] 206bp 60°C 
Forward: 5` -TGCTGGGGTGGTATTGTGTA- 3` 
Reverse: 5` -GGCCTGCCTCTTAGGATCTC- 3` 
Krt18 Eif4b Intergenic Region B [INT5B] 192bp 60°C 
Forward: 5` -CCAGACCCTGTCTCAGGAAA- 3` 
Reverse: 5` -TCACCACATGGAGGTCAGAA- 3` 
Krt18 Eif4b Intergenic Region C [INT5C] 188bp 60°C 
Forward: 5` -GTGGTCAGGCTGAAAACCAT- 3` 
Reverse: 5` -TCACCGTGCTTGGTAGATTG- 3` 
Eif4b  Tenc1 Intergenic Region [INT6] 243bp 60°C 
Forward: 5` -CCTAGCCTTTGCCAGAACAG- 3` 
Reverse: 5` -CAGCGTTCCTTAGCAGATCC- 3` 
Tenc1  Spryd3 Intergenic Region [INT7] 118bp 60°C 
Forward: 5` -GCCGCCGAGTGTTAGGTA- 3` 
Reverse: 5` -CCGCTAAATCTGACCAATCC- 3` 

 
For the quantitation of levels of histone modifications across AIRE-regulated 
genes of the keratin cluster following chromatin immunoprecipitation, 
quantitative real-time PCR (qPCR) was performed with primers specific for the 
genes listed.  Illustrated are the length of amplicon generated and the annealing 
temperature (Tm) of each primer set. 
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2.4.5. Radioactive Polymerase Chain Reaction (PCR) Analysis of CChIP DNA 

To assay histone modifications in primary cell populations following CChIP, 

radioactive PCR was performed with B and UB CChIP DNA, alongside Mus 

musculus and Drosophila melanogaster gDNA controls to monitor cross-

hybridization, using primers specific for various genes of interest (Table 2.6).  Primers 

were made by Invitrogen and primer pairs were designed using the aid of Primer3 

software (http://frodo.wi.mit.edu/primer3/). 

 

PCR reactions were carried out in 50μl volumes in Reddy Mix PCR Master Mix (AB 

Gene) and 500nM forward and reverse primers, with 2μl neat B and 2μl 1:2 diluted 

UB DNA.  To each reaction, 0.1µCi of dCTP radiolabelled with α-32P (Perkin Elmer) 

was added.  Cycling was performed at 94°C for 60 seconds, 57-60°C (depending on 

primer pair) for 60 seconds and 68-72°C for 90 seconds (41 cycles). 

 

As standard, 7μl aliquots were removed after 38 and 41 cycles, loaded onto 5% 

polyacrylamide gels and electrophoresed at 250 volts, 120 mA for 30 minutes.  Gels 

were dried onto filter paper (SpeedGel System, Thermo Savant) for a minimum of 2 

hours.  Filters were exposed to a phosphor screen overnight and scanned with a 

PhosphorImager (Typhoon 9200, Amersham).  Intensity values for each PCR product 

were analysed with ‘Image Quant TL’ software (Molecular Dynamics), the ratio of B to 

UB signal was calculated from the percentage pull-down values of each 

immunoprecipitation. 

http://frodo.wi.mit.edu/primer3/�
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3. RESULTS 

 

3.1. CHARACTERISATION OF THE THYMIC EPITHELIAL CELL MODEL SYSTEM 

 

To date, promiscuous gene expression (PGE) of tissue-restricted antigens (TRA) 

within the thymus is very well characterised in terms of the panel of TRA regulated 

by AIRE, the timing of AIRE expression in vivo, and the specific cell type in which 

this process occurs.  However, many questions remain unanswered about this 

phenomenon (Derbinski et al. 2001; Anderson et al. 2002; Rossi et al. 2007).  

Although AIRE has demonstrated transcriptional transactivational properties, is 

found within large multi-protein complexes at distinct foci throughout the nucleus, 

along with the histone acetyltransferase CREB-binding protein (KAT3A/CBP) and is 

able to bind unmethylated histone H3 lysine 4, the fundamental aspects of how this 

protein functions as a transcriptional regulator remain unknown (Pitkanen et al. 

2000; Pitkanen et al. 2005; Ruan et al. 2007; Koh et al. 2008; Org et al. 2008).  To 

decipher the molecular complexities of AIRE’s control of PGE, we undertook an 

analysis of the epigenetic status of TRA under the transcriptional control of AIRE.  

Investigating the role AIRE plays in vivo is particularly challenging as the number of 

mature CD80+AIRE+ mTECs is extremely low, thus a Mus musculus thymic epithelial 

(TEP) cell model system was employed, in order to replicate AIRE function in vivo.  

The TEP cell line, which normally lacks AIRE, was transfected with MIg virus 

bicistronic constructs containing both AIRE and GFP (TEP-AIRE), or GFP alone as a 

control (TEP-GFP).  Both parent lines were FACS sorted based on GFP expression, 

and purified populations clonally expanded prior to experimental analysis to ensure 
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GFP+AIRE+ cells were expressing AIRE at 100% efficiency which was verified by 

flow cytometric analysis (Figure 3.1). 

 

3.1.1. Localisation and Expression of AIRE and Tissue-Restricted Antigens in 

the Thymic Epithelial Cell Line 

The up-regulation of AIRE upon RANK-RANKL stimulation is known to result in the 

induced expression of a wide range of TRA within mature CD80+AIRE+ mTECs, and 

this event has been successfully modelled in mammalian cell culture previously, by 

numerous groups (Pitkanen et al. 2001; Halonen et al. 2004; Pitkanen et al. 2005; 

Org et al. 2008).  Correct localisation and activity of AIRE within the TEP cell line 

was verified through immunofluorescence microscopy and expression analysis 

(Figure 3.2). 

 

AIRE displays a predominantly nuclear localisation pattern, forming distinct, punctate 

nuclear speckles in vivo, although associations with microtubular structures within 

the cytoplasm have also been observed in transfected cell lines (Pitkanen et al. 

2001; Hubert et al. 2008).  Cultured TEP-AIRE and TEP-GFP cells were 

immunostained for AIRE and counterstained with DAPI for DNA, which revealed a 

speckled pattern of AIRE, limited to the nucleus, in the majority of AIRE-positive 

cells, not seen in control TEP-GFP cells (Figure 3.2 A).  Comparison to AIRE in wild-

type BALB/c (haplotype H-2d) mTEC in vivo, revealed an analogous distribution 

(Figure 3.2 B).  Quantitative real-time PCR (qPCR) with cDNA, prepared from TEP-

AIRE and TEP-GFP mRNA, was performed for AIRE and three known TRA, 

positively influenced by AIRE; casein-α (Csn1s1), salivary protein-1 (Spt1) and 



Mus musculus thymic epithelial (TEP) cell lines were transfected with MIg virus 
bicistronic constructs containing either AIRE-GFP (TEP-AIRE), or GFP alone 
(TEP-GFP) as a control.  Transfected populations were clonally expanded and 
purified.  For verification of the efficiency of transfection, flow cytometric analysis 
was carried out, gated on GFP, with freshly isolated thymocytes as a negative 
control.  TEP-AIRE and TEP-GFP lines were seen to express GFP at greater 
than 96% efficiency.

Figure 3.1 – Characterisation of Thymic Epithelial Cell Lines: Transfection 
Efficiency
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A, Immunofluorescence of Mus musculus thymic epithelial (TEP) cell lines, revealed 
a subcellular nuclear localisation of AIRE equivalent to AIRE in mTECs in vivo.  
TEP cells transfected with either MIg-AIRE-GFP (TEP-AIRE), or MIg-GFP (TEP-
GFP), were cultured and stained with FITC anti-AIRE antibody (green) and DNA 
counterstained with DAPI (blue).  Punctate AIRE nuclear bodies were observed in 
TEP-AIRE cells (i, ii), but not in TEP-GFP (iii).  B, Subcellular localisation of AIRE 
(green) within thymic medulla (i, ii), for comparison.  Medullary TECs denoted 
by cytokeratins 5 staining (red).  Punctate AIRE nuclear staining of individual 
mTECs shown in (ii).  C, Real-time quantitative PCR was used to compare the 
relative mRNA expression levels of AIRE and three tissue-restricted antigens; 
casein-α (Csn1s1); salivary protein-1 (Spt1); and salivary protein-2 (Spt2), as 
indicated, showing active expression of AIRE and its target genes.  Turquoise 
columns represent data from TEP-GFP cells and pink columns represent results 
from TEP-AIRE cells.  Data was normalised to β-actin expression levels as 
standard.  Data are the mean ±SEM from technical triplicate reactions, and are 
representative of at least two distinct cDNA preparations.

Figure 3.2 – Characterisation of Thymic Epithelial Cell Lines: Subcellular 
Distribution and Expression of the Autoimmune Regulator and Tissue-
Restricted Antigens
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salivary protein-2 (Spt2), and as standard expression levels were normalised to β-

actin, which remained constant for the two cell populations.  High levels of AIRE, 

Csn1s1, Spt1 and Spt2 transcript were detected in TEP-AIRE cells, which were not 

observed for TEP-GFP cells (Figure 3.2 C).  In conclusion, these findings indicate 

that the TEP cell line expresses AIRE in the appropriate sub-cellular compartment, 

leading to AIRE-dependent TRA expression.  On this basis, this system was used in 

initial experiments to study the epigenetic status of AIRE-dependent genes in the 

presence and absence of AIRE. 

 

3.1.2. Global Analysis of the Relative Levels of Post-translational Histone 

Modifications in AIRE-Positive and AIRE-Negative Thymic Epithelial Cells 

Since AIRE has been reported to complex with the transcriptional co-activator 

KAT3A/CBP, a known histone acetyltransferase, and given that AIRE has been 

shown to directly regulate expression of a large number of genes found within 

clusters along chromosomes of mature mTECs, we wanted to investigate whether 

alterations to the global levels of histone modifications could account for PGE.  

Histones were extracted from TEP-AIRE and TEP-GFP cells and equal 

concentrations of protein were separated by SDS-PAGE, Western blotted and 

labelled with antibodies specific to acetylation (H3K9ac, H4K8ac and H4K16ac) and 

methylation (H3K4me1, me2 and me3, H3K9me2 and H3K27me3) post-translational 

histone modifications (Figure 3.3).  The functional relevance of these histone 

modifications is displayed in Table 3.1.  This revealed an equal distribution of all 

eight marks across the two TEP populations, suggesting that, at the protein level, 

AIRE does not impact on histone modifications on a global scale.  However, this 



SDS-PAGE and Western blot analysis of global post-translational histone 
modifications in Mus musculus thymic epithelial (TEP) cell lines revealed no 
change in the presence and absence of AIRE.  Core histones were acid extracted 
from cultured TEP-AIRE and TEP-GFP populations, resolved by SDS-PAGE and 
transferred to membranes for Western blot analysis.  Equivalent loading was 
determined by Ponceau red staining of bulk histones (control).  Blots were probed 
with antibodies directed against acetylation and methylation of specific lysine 
residues on histones H3 and H4 (H3K4me1, H3K4me2, H3K4me3, H3K9ac, 
H4K8ac, H4K16ac, H3K9me2 and H3K27me3).  Immunocomplexes were 
detected following secondary antibody peroxidase goat anti-rabbit IgG binding, 
by enhanced chemiluminescence.

Figure 3.3 – Characterisation of Thymic Epithelial Cell Lines: Global Levels 
of Post-Translational Histone Modifications
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Table 3.1 – Typical Functions of the Histone Modifications Investigated 
Through Native and Carrier Chromatin Immunoprecipitation 

ChIP ANTIBODIES AND THEIR FUNCTIONS 

ANTIBODY SPECIFICITY FUNCTION 

R204 H3K4me1 ACTIVE 

R149 H3K4me2 ACTIVE 

R612 H3K4me3 ACTIVE 

R607 H3K9ac ACTIVE 

R403 H4K8ac ACTIVE 

R252 H4K16ac ACTIVE 

07-212 H3K9me2 INACTIVE 

07-449 H3K27me3 INACTIVE 

PI Pre-immune CONTROL 

 
 

The name of each antibody used in native chromatin immunoprecipitation with 
cultured AIRE-negative and AIRE-positive thymic epithelial cell lines is 
displayed along with the histone modification against which they act.  For 
reference, the general role these marks play in the control of transcription is 
represented.  Pre-immune is a no antibody control. 
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procedure does not fully address the issue of whether AIRE imparts its function 

through a genome-wide effect on epigenetic marks.  We therefore employed a 

technique which has been used frequently to assess the global distribution of 

histone modifications across metaphase chromosome spreads, revealing highly 

defined banding patterns along the individual chromosome arms, and thus making 

any large-scale changes easily identifiable (O'Neill et al. 1999; O'Neill et al. 2003).  

Unfixed metaphase chromosomes from TEP-AIRE and TEP-GFP cells were 

immunolabelled with antibodies to an acetylation mark H3K9ac, an active methyl 

mark H3K4me3 and a silent methyl mark H3K27me3, and counterstained with DAPI 

for DNA (Figure 3.4). 

 

The spread and intensity of acetylation and methylation was consistently 

comparable to the control cells across the genome in the presence of AIRE, with no 

loss of the characteristic banding patterns.  It should be noted that the TEP cell line 

is tetraploid, with double the expected number of chromosomes, however, this trait is 

common to both the TEP-AIRE and TEP-GFP cells.  These data suggest that AIRE 

does not impart its function through any detectable genome-wide alterations to 

acetylation or methylation levels on the histone protein tails, despite the global 

distribution of its thousands of target genes, and given its known association with a 

histone acetyltransferase and localisation within PML-like bodies within the nucleus. 



Metaphase chromosome spreads were prepared from Mus musculus thymic 
epithelial (TEP) cells transfected with either MIg-AIRE-GFP (TEP-AIRE), or MIg-
GFP (TEP-GFP).  Chromosomes were immunostained with primary antibodies 
(green) to H3K9ac, H3K4me3 and H3K27me3, with FITC goat anti-rabbit 
secondary antibody, as indicated.  DNA was counterstained with DAPI (false 
coloured red).  Spreads were captured at a high magnification (x100 objective) 
and show equivalent banding patterns characteristic of each modification, in both 
the presence and absence of AIRE.  Both cell populations also present with a 
tetraploid genome.

Figure 3.4 – Characterisation of Thymic Epithelial Cell Lines: Acetylation 
and Methylation Levels across Metaphase Chromosomes
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3.2. ANALYSIS OF THE EFFECTS OF AIRE IN A NON-THYMIC CELL LINE 

 

3.2.1. Localisation and Expression of AIRE and Tissue-Restricted Antigens in a 

Non-Thymic 3T3 Fibroblast Cell Line 

In a thymic epithelial cell background, we have demonstrated that AIRE is able to 

assemble and localise to nuclear sub-structures and exert its transcriptional activity, 

mirroring its behaviour in vivo.  However, in order to determine whether AIRE alone is 

sufficient for promiscuous gene expression, or whether factors unique to thymic-

derived cells are required for correct functioning, a Mus musculus fibroblast 3T3 line 

was stably transfected with either MIg-GFP-AIRE (3T3-AIRE), or MIg-GFP alone 

(3T3-GFP) as a control.  As for the TEP model system, both 3T3 populations were 

FACS sorted to ensure 100% transfection efficiency, verified through flow cytometric 

analysis (Figure 3.5 A).  Immunofluorescence staining with anti-AIRE antibody 

revealed a sub-cellular localisation similar to that shown for AIRE in the thymic 

epithelial cell background, with AIRE-positive 3T3 cells displaying a punctate nuclear 

localisation of AIRE not observed in the 3T3-GFP control cells (Figure 3.5 B). 

 

We next sought to determine whether the presence of AIRE within these cells was 

sufficient to trigger promiscuous gene expression.  The degree of expression of 

AIRE and the three TRA Csn1s1, Spt1 and Spt2 was analysed with 3T3-AIRE and 

3T3-GFP cDNA, and compared to β-actin, levels of which were equal for both 3T3 

populations.  Transcript levels of AIRE, Csn1s1, Spt1 and Spt2 were detected at 

elevated levels in 3T3-AIRE cells, while the 3T3-GFP control cells showed little or no 



A, Mus musculus 3T3 fibroblast (3T3) cell lines were transfected with MIg virus 
bicistronic constructs containing either AIRE-GFP (3T3-AIRE), or GFP alone (3T3-
GFP) as a control.  Transfected populations were clonally expanded and purified.  
For verification of the efficiency of transfection, flow cytometric analysis was 
carried out, gated on GFP, with freshly isolated thymocytes as a negative control.  
3T3-AIRE and 3T3-GFP lines were seen to express GFP at 100% efficiency.  B, 
Immunofluorescence of 3T3 cells, staining with FITC anti-AIRE antibody (green) 
and DNA counterstained with DAPI (blue).  Punctate AIRE nuclear bodies were 
observed in 3T3-AIRE cells (i, ii), but not in 3T3-GFP (iii).  C, Real-time quantitative 
PCR was used to compare the relative mRNA expression levels of AIRE and 
three tissue-restricted antigens; casein-α (Csn1s1); salivary protein-1 (Spt1); and 
salivary protein-2 (Spt2), as indicated, showing active expression of AIRE and 
its target genes.  Yellow columns represent data from 3T3-GFP cells and blue 
columns represent results from 3T3-AIRE cells.  Data was normalised to β-actin 
expression levels as standard.  Data are the mean ±SEM from technical triplicate 
reactions, and are representative of at least two distinct cDNA preparations.

Figure 3.5 – Analysis of the Effects of AIRE in a Non-Thymic Cell Line: 
Transfection Efficiency, Subcellular Distribution and Expression of the 
Autoimmune Regulator and Tissue-Restricted Antigens
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amount of these genes (Figure 3.5 C).  These results clearly illustrate that AIRE is 

able to exert its function independently of a thymic cell environment; localising to 

nuclear speckles and inducing the expression of TRA, in a manner directly 

comparable to that within wild-type mTECs and the TEP model cell line.  These 

findings also confirm that AIRE is capable of up-regulating TRA without additional 

molecular requirements and that the presence of AIRE is itself sufficient for the 

initiation of promiscuous gene expression.  However, the absolute transcript levels 

detected for AIRE, Spt1 and Spt2 in the 3T3-AIRE cells were considerably lower 

compared to the levels within TEP-AIRE cells (Figure 3.6).  This was not a result of 

transfection efficiency since both parent lines were FACS sorted and purified prior to 

experimental analysis and frequent analysis of AIRE expression confirmed the 

maintenance of this transfection.  Therefore this decreased expression level of AIRE 

and the two salivary proteins in the 3T3-AIRE cells may imply that AIRE requires 

certain unidentified thymic factors to function optimally. 

 

3.3. PATTERNS OF HISTONE MODIFICATIONS ACROSS TISSUE-RESTRICTED ANTIGENS IN 

THE THYMIC EPITHELIAL CELL MODEL SYSTEM AS REVEALED BY NATIVE CHROMATIN 

IMMUNOPRECIPITATION 

 

AIRE, with its SAND domain, two PHD-zinc fingers and LXXLL motifs, shows 

transcriptional transactivating properties and is predicted to be a transcriptional 

regulator, contributing to central tolerance through the control of promiscuous gene 

expression within the thymus (Pitkanen et al. 2000; Kumar et al. 2001; Su and 

Anderson 2004; Devoss and Anderson 2007).  Current technologies enable the 



Real-time quantitative PCR was used to compare the relative mRNA expression 
levels of AIRE and three tissue-restricted antigens in Mus musculus thymic 
epithelial (TEP) and 3T3 fibroblast (3T3) cell lines, transfected with MIg virus 
bicistronic constructs containing either AIRE-GFP (TEP-AIRE / 3T3-AIRE), or 
GFP alone (TEP-GFP / 3T3-GFP) as a control.  Data displayed is a comparison 
of the levels of AIRE expression, and its three target genes; casein-α (Csn1s1); 
salivary protein-1 (Spt1); and salivary protein-2 (Spt2), as indicated.  Although 
AIRE-positive populations were sorted to ensure 100% transfection efficiency, 
expression of AIRE, Spt1 and Spt2 was more efficient in the thymic background.  
Csn1s1 levels appear unaffected.  Turquoise columns represent data from TEP-
GFP cells, pink columns; results from TEP-AIRE cells, yellow columns; from 3T3-
GFP cells and blue columns; from 3T3-AIRE cells.  Data was normalised to β-actin 
expression levels as standard and all expression levels were set relative to those 
of TEP-AIRE for comparison.  Data are the mean ±SEM from technical triplicate 
reactions, and are representative of at least two distinct cDNA preparations.

Figure 3.6 - Analysis of the Transcriptional Effects of AIRE: Comparative 
Expression Levels of the Autoimmune Regulator and Tissue-Restricted 
Antigens within Thymic and Non-Thymic Backgrounds
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comprehensive study of gene expression, and with the advance of knowledge 

regarding the role nucleosomal histone proteins play in these processes, the 

function of effector molecules involved in transcriptional activation, such as AIRE, 

can be examined more thoroughly. 

 

Post-translational modifications to the tails of histone proteins, such as acetylation 

and methylation, are important epigenetic marks, playing a role in the control of 

eukaryotic gene expression programmes by influencing chromatin structure 

(Kouzarides 2007).  Whilst immunofluorescence microscopy and Western blotting 

have proved invaluable for investigating the distribution of histone modifications on a 

genome-wide scale, they are unable to directly address the epigenetic status of 

chromatin at the single gene level.  Through the development of native chromatin 

immunoprecipitation (NChIP), investigation into the relative levels of a variety of 

histone tail modifications at specific gene regions has been made possible (O'Neill 

and Turner 2003). 

 

Given AIRE’s ability to switch on so many TRA, we sought to analyse the histone 

modifications associated with these AIRE-regulated genes through NChIP.  Cultured 

TEP-AIRE and TEP-GFP cells were harvested in the absence of a cross-linker and 

chromatin was isolated and prepared through mild micrococcal nuclease digestion.  

Subsequent analysis on 1.2% agarose gels consistently revealed classical 

oligonucleosomal ladders, with the first supernatant (S1) fractions showing a high 

proportion of mononucleosomes, the S2 fractions displaying the di-, tri-, tetra- and 

pentanucleosomes, and the pellet (P) samples showing the higher molecular 
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insoluble material.  For immunoprecipitation, an input sample representative of the 

starting material was required and therefore supernatants S1 and S2 were routinely 

combined, which together approximate to 90% of the DNA.  Input chromatin was 

then incubated with antibodies directed against a panel of activating and silencing 

histone modifications (Table 3.1), global levels of which were previously shown to be 

unaffected by AIRE (Figures 3.3 and 3.4).  Immunocomplexes were then isolated 

through addition of protein A-sepharose, generating bound (B) and unbound (UB) 

fractions following elution.  The success of each IP was routinely monitored by 

calculation of the percentage pull-down of DNA in the bound fraction and visually by 

1.2% AGE (Figure 3.7), and typically antibody pull-downs were in the range of 1 to 

28% (Table 3.2). 

 

For the determination of the relative amounts of histone modification across specific 

promiscuous gene regions, qPCR was employed.  To ensure accurate measurement 

and interpretation of the data generated for each gene region, a standard curve was 

generated for each primer set with a range of Mus musculus genomic DNA 

standards, to which comparisons were made following each qPCR run.  Equal 

concentrations of bound and unbound NChIP DNA were used for qPCR analysis, 

and the ratio of bound to unbound signal was calculated.  For each histone 

modification, a bound:unbound ratio less than 1 suggests a depletion of that specific 

mark, whereas a ratio greater than 1 equates to enrichment over that specific gene 

region. 



Outline of the native chromatin immunoprecipitation (NChIP) protocol.  A, 
Diagrammatic representation of the NChIP procedure.  Chromatin from cultured 
cell nuclei is isolated and digested with micrococcal nuclease (Mic Nuc) then 
immunoprecipitated with antibodies directed against post-translational histone 
modifications.  DNA from antibody-bound and –unbound fractions is then purified 
for analysis of the relative levels of each modification.  B, Routine analysis of 
chromatin fractions by 1.2% agarose gel electrophoresis.  Chromatin from a 
minimum of 1x107 unfixed AIRE-positive and AIRE-negative Mus musculus 
thymic epithelial (TEP) cells was isolated and digested with micrococcal nuclease, 
generating a ladder rich in mono-, di-, tri-, tetra-, and pentanucleosomes.  Equal 
amounts of the first supernatant (S1), soluble (S2) and insoluble (P) fractions 
were analysed by electrophoresis and visualised with ethidium bromide.  Size 
was determined by reference to a 100 base pair molecular marker (Invitrogen).  
Mono-, di- and tri-nucleosomes are indicated.

Figure 3.7 – Native Chromatin Immunoprecipitation: Isolation and Micrococcal 
Nuclease Digestion of Chromatin from Unfixed Thymic Epithelial Cells
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Table 3.2 – Efficiency of Pull-Down for Each Histone Modification 
Following Native Chromatin Immunoprecipitation 

NChIP PERCENTAGE PULL-DOWNS 

ANTIBODY SPECIFICITY TEP-GFP TEP-AIRE REPLICATES 

R204 H3K4me1 0.70-6.06% 1.17-10.68% 3 

R149 H3K4me2 0.76-5.15% 0.90-10.34% 3 

R612 H3K4me3 1.28-5.05% 5.19-12.38% 3 

R607 H3K9ac 6.86-9.53% 0.49-6.92% 3 

R403 H4K8ac 0.70-12.55% 1.49-28.15% 4 

R252 H4K16ac 0.65-4.25% 1.56-28.67% 4 

07-212 H3K9me2 1.64-1.77% 1.08-1.18% 3 

07-449 H3K27me3 3.18-7.53% 2.19-15.24% 3 

PI Pre-immune 0.46-0.61% 0.23-0.61% 4 

 
 

Native chromatin immunoprecipitation was performed with cultured AIRE-
negative (TEP-GFP) and AIRE-positive (TEP-AIRE) thymic epithelial cell lines, 
using antibodies directed against the post-translational histone modifications 
displayed above.  DNA from antibody-bound (B) and –unbound (UB) fractions 
was purified and the percentage pull down (B/UBx100) for each antibody was 
then calculated.  Pre-immune no antibody controls were included which show 
comparatively low pull-down efficiencies.  The number of biological replicates 
for each modification is displayed. 
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3.3.1. Pattern of Histone Modifications at the Casein-α Promoter Region and the 

Glyceraldehyde-3-phosphate Dehydrogenase Locus in the Thymic Epithelial 

Cell Model System 

The expression of the TRA Csn1s1 has been reliably demonstrated to be heavily 

dependent on AIRE, both within the thymic medulla, and in the presence of AIRE 

within our TEP model system and thus represents an ideal candidate gene 

(Anderson et al. 2002; Derbinski et al. 2005; Derbinski et al. 2008).  The panel of 

histone modifications examined reflects a diversity of potential functional outcomes, 

with three acetylation marks; H3K9ac, H4K8ac and H4K16ac, which are generally 

associated with active euchromatic genes, and three active methylation marks; 

H3K4me1, me2, me3, and two silent methylation marks H3K9me2 and H3K27me3 

(Table 3.1) (Kouzarides 2007).  Verification that the global levels of these 

modifications were unaffected by AIRE means that any changes observed on a 

gene-by-gene basis can be attributed to AIRE’s control of PGE. 

 

For TEP-AIRE cells, in which Csn1s1 is actively expressed, the promoter region of 

this gene is marked by significantly elevated levels of H3 and H4 acetylation, 

modifications usually indicative of active gene expression (Figure 3.8 A) (Fuchs et al. 

2009).  All three forms of H3K4 methylation are also enriched, in particular, high 

levels of H3K4me3 (bound:unbound ratio 4.68) were detected.  H3K4 methylation is 

generally considered to be associated with active euchromatic genes, as revealed by 

whole-genome ChIP-Seq approaches (Barski et al. 2007; Kouzarides 2007).  

H3K4me3 is often found localised to the promoter region of transcriptionally active 

genes, whereas me1 and me2 can occur in a more widespread pattern downstream 



Quantitation by native chromatin immunoprecipitation (NChIP) of levels of histone 
modifications at the promoter regions of casein-α (Csn1s1, A) and glyceraldehyde-
3-phosphate dehydrogenase (Gapdh, B) in cultured Mus musculus thymic 
epithelial (TEP) cell lines.  Turquoise columns represent results from AIRE-
negative TEP-GFP cells.  Purple columns are from TEP cells transfected with AIRE.  
Immunoprecipitation performed with affinity-purified antibodies to H3K4me1, 
H3K4me2, H3K4me3, H3K9ac, H4K8ac, H4K16ac, H3K9me2 and H3K27me3, 
as indicated.  Relative levels (bound:unbound) of histone modifications were 
calculated from immunoprecipitated (bound) and unprecipitated (unbound) 
DNA by quantitative real-time PCR.  Data are the mean ±SEM from at least two 
separate NChIP experiments.

Figure 3.8 - Quantitation of the Relative Levels of Histone Modifications 
across the Promoter Region of Casein-α and Glyceraldehyde-3-phosphate 
Dehydrogenase by Native Chromatin Immunoprecipitation
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of transcriptional start sites (TSS), with the marks becoming progressively more 

restricted to the TSS as the degree of methylation increases from me1 to me2 to me3 

(Barski et al. 2007).  In contrast, lower levels of H3K9me2 and H3K27me3 were seen 

in the presence of AIRE, with H3K9me2 showing a very low bound:unbound ratio of 

0.40, yet H3K27me3 was not depleted, with a bound:unbound ratio of 2.69.  For 

control TEP-GFP cells, the promoter region of Csn1s1 is marked by a contrasting 

pattern of modifications with a general depletion of active marks including H3K4me1, 

H3K4me3, H3K9ac and H4K8ac.  However, the promoter of this silent gene was not 

devoid of active modifications as H3K4me2 and H4K16ac were detected, although 

these levels were matched by enrichment of silencing modifications H3K9me2 and 

H3K27me3 (bound:unbound ratio 1.31 and 1.96 respectively).  The presence of 

these marks at the promoter of a non-expressed gene is typical as these histone 

modifications are frequently associated with transcriptional repression; H3K9me2 

through recruitment of heterochromatin protein 1 (HP1); and H3K27me3 via 

interactions with PcG proteins such as PRC1 (Cao and Zhang 2004; Dellino et al. 

2004; Kondo et al. 2008).  Overall, we see how the presence of AIRE leads to 

heightened levels of active marks, a loss of H3K9me2 but a maintenance of 

H3K27me3. 

 

Changes to the levels of histone modifications at the housekeeping gene 

glyceraldehyde-3-phosphate dehydrogenase (Gapdh) were notably more moderate 

across the two cell populations in comparison to those seen for Csn1s1 (Figure 3.8 

B).  It should be noted that normalisation to Gapdh, or any other gene, was not 

carried out as this would assume maintenance of a constant epigenetic state, which 
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is not always the case (Valls et al. 2005; O'Neill et al. 2006).  Most importantly, this 

analysis showed a depletion of the marks characteristic of silent promoters, 

H3K9me2 and H3K27me3 in TEP-AIRE and TEP-GFP cells for this actively-

expressed gene, with both cell populations displaying similar levels of the two 

modifications.  Noticeably, there appears to be an overall depletion in all histone 

modifications for TEP-GFP, with only H4K8ac and H3K4me2 detected at levels 

greater than H3K9me2 and H3K27me3.  In addition, H3K9 acetylation, which is 

frequently enriched in active genes, is approximately 3-fold greater at Gapdh when 

compared to the Csn1s1 promoter (Roh et al. 2005).  However, AIRE does appear 

to influence the distribution of marks across this housekeeping gene, as TEP-AIRE 

cells show an enrichment of the active methylation and acetylation marks on 

histones H3 and H4, while TEP-GFP cells show a general depletion of these marks. 

 

3.3.2. Analysis of the Effects of AIRE upon the Salivary Protein Genes on Mus 

musculus Chromosome 15 in the Thymic Epithelial Cell Model System 

The TRA Spt1 and Spt2 have been well documented in terms of their AIRE-

dependence by numerous groups, and showed induced expression in the presence 

of AIRE within our TEP model system (Anderson et al. 2002; Rossi et al. 2007; Kont 

et al. 2008).  These genes are located adjacent to each other on Mus musculus 

chromosome 15 and we therefore wanted to investigate the pattern of histone 

modifications across the promoter (p) and coding (c) regions of both salivary 

proteins to determine AIRE’s affect on neighbouring genes. 
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The distribution of modifications for both salivary proteins essentially reflected those 

seen for Csn1s1, however, in general, all eight modifications were less enriched in 

both cell populations across the two salivary proteins, when compared to the levels 

seen for Csn1s1.  When we compare the pattern of modifications across Csn1s1 

and the two salivary proteins it would appear that a common theme is arising for 

TEP-GFP cells, with an overall depletion of H3 and H4 acetylation and mono-, di- 

and tri-methylation at histone H3K4; levels consistently showing me3 < me1 < me2 

preference (Figures 3.8 and 3.9).  For the salivary proteins, TEP-GFP cells show a 

depletion of all but H3K27me3, levels of which are maintained across the promoter 

and coding regions of both Spt1 and Spt2 at around a bound:unbound ratio of 2.00 

(Figure 3.9).  In contrast, H3K9me2 appears to show a preferential localisation at the 

3` end of both salivary proteins (Spt1(c) 1.04, Spt2(c) 0.74), with comparatively 

lower levels at the promoters (Spt1(p) 0.38, Spt2(p) 0.54).  Although the levels of 

H3K9me2 are surprisingly low, given this marks recognised localisation in silenced 

genes, they are consistently higher than the archetypal active modifications including 

H3K4me3 and H3K9ac in the TEP-GFP cells (Barski et al. 2007).  Therefore the 

dominance of H3K27me3 and H3K9me2 at these silent gene regions in the control 

cells may dictate the silencing of these genes.  TEP-AIRE cells also show some 

commonalities across all three TRA Csn1s1, Spt1 and Spt2 including 

hyperacetylation of histone H4, elevated levels of methylation of histone H3K4, and 

a depletion of H3K9me2, yet detectable levels of H3K27me3, often equalling the 

background TEP-GFP levels (Figures 3.8 and 3.9).  As for Csn1s1, the trend 

observed for the salivary proteins in the presence of AIRE is that of enriched levels 



Quantitation by native chromatin immunoprecipitation (NChIP) of levels of histone 
modifications at the promoter and coding regions of salivary protein-1 (Spt1, 
A) and salivary protein-2 (Spt2, B) in cultured Mus musculus thymic epithelial 
(TEP) cell lines.  Turquoise columns represent results from AIRE-negative 
TEP-GFP cells.  Purple columns are from TEP cells transfected with AIRE.  
Immunoprecipitation performed with affinity-purified antibodies to H3K4me1, 
H3K4me2, H3K4me3, H3K9ac, H4K8ac, H4K16ac, H3K9me2 and H3K27me3, 
as indicated.  Relative levels (bound:unbound) of histone modifications were 
calculated from immunoprecipitated (bound) and unprecipitated (unbound) 
DNA by quantitative real-time PCR.  Data are the mean ±SEM from at least two 
separate NChIP experiments.

Figure 3.9 - Quantitation of the Relative Levels of Histone Modifications 
across Salivary Protein-1 and Salivary Protein-2 by Native Chromatin 
Immunoprecipitation
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of active marks, most noticeably for H3K9ac and H3K4me3, with little change to the 

silencing modifications. 

 

Distinct differences not only present themselves between the two salivary proteins 

themselves, but also between the promoter and coding regions.  TEP-AIRE cells 

display subtly diverse patterns of histone modifications which fluctuate as you move 

from the 5` to the 3` of both Spt1 and Spt2.  Acetylation, for example, appears to be 

generally constant across both loci, with H4K8ac levels remaining relatively constant 

at a bound:unbound ratio of around 1.50, as does H3K9ac (≈1.00).  H4K16ac also 

shows a domain-wide enrichment, starting at a ratio of 1.40 in Spt1(p) then 

increasing to around 3.00 in the coding regions, a level which is then maintained 

across Spt2.  Methylation however, shows a less consistent distribution.  For 

Spt1(p), the highest level of enrichment is for H3K4me3, however, as you move to 

the coding region of this gene, H3K4me2 levels peak, whereas the reverse is seen 

for Spt2. 

 

Analysis and comparison of histone modifications across three TRA under the 

transcriptional control of AIRE; Csn1s1, Spt1 and Spt2, has revealed some 

interesting and distinct differences.  The arrangement of epigenetic marks in TEP-

AIRE cells varies greatly from what appears to be a set pattern for these three genes 

within the TEP-GFP control population, particularly with regards to H3K4 

methylation, which shows significant enrichment in the presence of AIRE.  This 

investigation has also highlighted the specificity of histone modifications, with unique 

arrangements occurring even when two genes are adjacent to each other on a 
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chromosome, possibly suggesting individual regulation of each gene.  These 

distinctions become even more apparent when comparisons are made between 

genes located on different chromosomes (Spt1 / Spt2; Mus musculus chromosome 

15, Csn1s1; Mus musculus chromosome 5).  However, some of our findings do 

suggest that the regulation of these genes may occur through a domain-wide 

deposition of histone modifications, as evidenced by the high levels of H4K8 and 

H4K16 acetylation across both salivary proteins. 

 

3.3.3. Analysis of the Effects of AIRE upon a Cluster of AIRE-Regulated Genes; 

the Keratin Cluster on Mus musculus Chromosome 15 in the Thymic Epithelial 

Cell Model System 

Genome-wide analysis of genes under the control of AIRE highlighted the significant 

impact this molecule has on transcriptional programmes within mTECs (Anderson et 

al. 2002; Gotter et al. 2004).  The many thousands of TRAs influenced by AIRE were 

found to cluster along individual chromosomes and currently the issue of how AIRE 

controls the expression of each individual gene remains elusive (Gotter et al. 2004; 

Derbinski et al. 2005; Johnnidis et al. 2005).  AIRE is not believed to induce gene 

expression on a gene-by-gene basis, but instead is thought to regulate transcription 

through a domain-wide process (Gotter et al. 2004; Derbinski et al. 2005; Johnnidis 

et al. 2005).  Interestingly however, the impact of AIRE on each gene within a cluster 

is not a simple on or off switch of all loci, but rather disperse; some genes increasing 

in expression, while neighbouring genes were either unaffected or their expression 

decreased (Gotter et al. 2004; Derbinski et al. 2005; Johnnidis et al. 2005).  This 

punctate expression pattern of certain AIRE-regulated clusters tends to argue 
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against a domain-wide control such as deposition of activating histone modifications 

across the whole locus, but instead may suggest that individual genes within the 

cluster are affected in distinct ways. 

 

The keratin cluster is one such example of an AIRE-regulated gene cluster 

(Johnnidis et al. 2005).  This cluster, located on Mus musculus chromosome 15, 

contains five keratin genes (Krt4, Krt79, Krt78, Krt8 and Krt18) at its 5` end, and 

eukaryotic translation initiation factor 4b (Eif4b), tensin-like C1 domain-containing 

phosphatase (Tenc1) and SPRY domain-containing 3 (Spryd3) further downstream.  

Expression profiling had been performed with a number of the genes in this cluster, 

revealing differential expression levels in the presence of AIRE, however, Krt79, 

Krt78, Krt8, Tenc1 and Spryd3 had not been investigated (Johnnidis et al. 2005).  

We therefore completed this analysis within our TEP model system for all genes 

across the cluster.  Interestingly, transcript levels of all genes showed up-regulation 

in the presence of AIRE (Figure 3.10).  We observed particularly strong signals for 

keratin 4, in agreement with published expression data, but also for keratin 79 and 

78, with little or no detection in TEP-GFP cells when normalised to β-actin.  We 

found that the next gene in the cluster, keratin 8 was expressed in the control cells, 

however, TEP-AIRE cells displayed an approximate 4-fold up-regulation.  In 

addition, keratin 18, which had shown to be negatively-regulated by AIRE, displayed 

a consistent level of expression in both cell populations, suggesting that this gene is 

not under the transcriptional control of AIRE (Johnnidis et al. 2005).  We found that 

for Eif4b, which had previously shown decreased transcription in the presence of 

AIRE, expression levels were instead positively influenced by AIRE in our system, 
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increasing approximately 4-fold in TEP-AIRE cells (Johnnidis et al. 2005).  Transcript 

levels of Tenc1 and Spryd3 were consistently 2-fold higher in the presence of AIRE, 

however, robust expression was occurring in the TEP-GFP cells for all three 3` 

genes.  Collectively, this confirms that the keratin cluster represents a true AIRE-

regulated cluster, with AIRE acting on a gene-by-gene basis to either induce 

transcription or, as is the case for keratin 18, exert no influence. 

 

3.3.3.1. Levels of Methylation at Histone H3 Lysine 4 across the Keratin Cluster 

in the Thymic Epithelial Cell Model System 

NChIP was used to assay levels of mono-, di- and tri-methylation of histone H3K4 

across the promoter or coding regions of the genes in the keratin cluster, in addition 

to intergenic (INT) regions, in the TEP model system (Figure 3.11).  The most 

striking observation was that all three forms of methylation at this residue were 

enriched in the presence of AIRE, while TEP-GFP cells showed markedly lower 

levels.  Across the entire cluster, the degree of methylation progressively increased 

in TEP-AIRE cells, the lowest amounts being for H3K4me1 and the highest for 

H3K4me3, which may be expected as expression of all genes is high in the 

presence of AIRE, and the three forms of methylation are known to compete with 

each other for the same lysine (Zhang and Reinberg 2001; Fuchs et al. 2009).  

Despite these initial similarities, some well defined differences do emerge between 

H3K4 methylation levels.  For example, TEP-AIRE H3K4me1 (Figure 3.11 A) rises 

and falls in waves along the cluster, with peaks at the intergenic regions INT2, 3C, 4 

and 5B and finally at Spryd3.  In contrast, TEP-GFP cells show depletion of 

H3K4me1 at the promoter regions of keratins 4, 79 and 78 which are silent, with 





Figure 3.11 - Impact of AIRE on a Cluster of Genes: Quantitation of the 
Relative Levels of Histone H3 Lysine 4 Methylation across the Keratin 
Cluster by Native Chromatin Immunoprecipitation
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correspondingly higher levels at the intergenic regions.  However, this trend is lost at 

keratin 8, a gene actively expressed by these cells (albeit at a level 4–fold lower than 

in the presence of AIRE), when there is an obvious peak of H3K4me1, enrichment 

rising to a bound:unbound ratio of 1.95, equalling that of TEP-AIRE for this locus.  

TEP-GFP H3K4me1 levels then fall and remain low, with minor peaks occurring at 

Tenc1 and Spryd3 promoter regions, which correspond with the active expression of 

these genes in the control population. 

 

The levels of H3K4me2 (Figure 3.11 B) displayed an overall increase across the 

cluster when compared to H3K4me1.  TEP-AIRE H3K4me2 showed a similar 

distribution to me1 in the first half of the cluster, with waves of enrichment peaking at 

the intergenic regions INT2, 3C and 4.  However, at the 3` end of the cluster, unlike 

the mono-methyl mark, H3K4me2 appears to show a domain of higher levels of 

enrichment, from Tenc1 (ratio 6.78) and remaining high until the end of the cluster.  

TEP-GFP cells show an overall depletion of H3K4me2, similar to the mono-methyl 

mark, however, on a gene-by-gene basis some subtle contrasts were observed.  For 

example, in general there was little distinction between TEP-GFP H3K4me2 levels at 

genes and intergenic regions in the 5` end of the cluster, whereas H3K4me1 showed 

more distinct peaks in the 5` intergenic regions.  However, at the 3` end of the 

cluster, H3K4me2 peaks do appear in the intergenic regions, with correspondingly 

lower levels in the gene regions of Eif4b, Tenc1 and Spryd3 which show active 

transcription in the TEP-GFP cells, again a reversal of the pattern of H3K4me1 for 

TEP-GFP cells, which marked the 3` gene promoter regions preferentially. 
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The distribution of H3K4me3 (Figure 3.11 C) in TEP-AIRE cells, showed a more 

uniform pattern, especially in the first half of the cluster, in comparison to the waves 

of H3K4me1 and me2.  H3K4me3 remained consistently high across all gene and 

intergenic regions, with particularly increased levels at the extreme 3` end of the 

cluster at Tenc1 (bound:unbound ratio 6.42) and Spryd3 (bound:unbound ratio 8.84).  

However, it is in the control population where the most distinctive pattern is 

observed, which appears to contrast with those of H3K4me1 and me2 for these 

cells.  An almost total depletion of H3K4me3 occurred across the first half of the 

cluster until keratin 18 when levels start to rise.  This corresponds directly with the 

TEP-GFP expression profile; transcription not taking place at significantly high levels 

until keratin 18.  Interestingly, for keratin 8 where we do detect low levels of 

transcript in the control cells, H3K4me3 remains depleted.  A definite domain of 

H3K4me3 is then identified in the downstream region, with peaks occurring 

specifically at the promoter regions of Eif4b, Tenc1 and Spryd3 at levels equal to 

those detected in the presence of AIRE, which again correlates well with the active 

transcription of these genes in the control cells.  Taken together, the variations 

between the arrangements of H3K4 methylation across the cluster are particularly 

interesting and suggest a complex regulation of these genes, although each level of 

H3K4 methylation does appear to be affected by AIRE in a distinct way.  Further 

analysis of alternative histone modifications is needed however, to clarify the role 

AIRE is playing in the regulation of the genes. 
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3.3.3.2. Levels of Acetylation at Histones H3 and H4 across the Keratin Cluster 

in the Thymic Epithelial Cell Model System 

Three acetylation marks were analysed across the keratin cluster; H3K9, H4K8 and 

H4K16 (Figure 3.12).  On first inspection, the patterns of acetylation vary widely for 

both TEP-AIRE and TEP-GFP cells, and between the three acetylation marks 

themselves, with a prominently defined domain of H3K9 acetylation detected 

downstream of the cluster for both cell lines, yet a more widespread distribution of 

H4 acetylation across all loci. 

 

The pronounced domain of H3K9 acetylation (Figure 3.12 A) in the latter half of the 

cluster mirrors that observed for the other classically activating histone mark 

H3K4me3.  This resemblance is particularly significant as these two modifications 

have been shown to be associated with active transcription (Barski et al. 2007).  

Both TEP-AIRE and TEP-GFP cells show a similar trend for H3K9ac, with a 

pronounced hyperacetylated domain in the 3` region of the cluster.  Peaks of this 

modification occur mainly in the gene regions for both cell populations and correlate 

with the expression profile.  TEP-AIRE cells show enrichment of H3K9ac at all genes 

across the cluster which is indicative of their active status.  For TEP-GFP cells 

however, active expression is not detected in the first half of the cluster, where levels 

of H3K9ac remain very low, however from INT3C, levels of acetylation increase; 

correlating with the up-regulation of the 3` genes.  By keratin 18; a gene whose 

expression is equally high in both the presence and absence of AIRE, we observed 

a high level of H3K9ac in the TEP-GFP cells (bound:unbound ratio 4.45); equalling 

the levels seen for this gene in the TEP-AIRE cells.  As you continue along the 





Figure 3.12 - Impact of AIRE on a Cluster of Genes: Quantitation of the 
Relative Levels of Histone Acetylation across the Keratin Cluster by Native 
Chromatin Immunoprecipitation
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cluster, H3K9ac levels briefly fall in the intergenic INT5 region of TEP-GFP cells, but 

then increase dramatically for the final three genes, with enrichment matching or 

surpassing the values observed for TEP-AIRE cells; in particular for Eif4b (1.34-fold 

higher) and Tenc1 (2.44-fold higher), despite the increased levels of expression in 

the presence of AIRE. 

 

For acetylation of H4K8, an analogous distribution to H3K9ac is seen for the TEP-

AIRE cells, with peaks at Tenc1 and Spryd3, although H4K8ac is less dynamic, 

showing a more even distribution across the cluster (Figure 3.12 B).  However, for 

the control TEP-GFP population, a striking contrast between H3K9 and H4K8 

acetylation is observed with no indication of a 3` domain of H4K8 hyperacetylation.  

Instead, TEP-GFP H4K8ac shows a small domain of enrichment spreading from 

INT3A onwards, remaining relatively unchanged despite the altering levels of gene 

expression.  INT3A is the intergenic region proceeding keratin 8, which is the first 

gene in the cluster to show expression in TEP-GFP cells, though at a very low level.  

Unlike for H3K9ac, this spread of H4K8ac does not show dramatic gene-specific 

peaks at Eif4b, Tenc1 and Spryd3 in the control cells, instead marking both 

promoters and intergenic regions equally, whereas H3K9ac shows a more specific 

preference for actively expressed genes. 

 

The pattern of H4K16 acetylation, in stark contrast to the previous marks, differs 

greatly for the TEP-AIRE and TEP-GFP populations (Figure 3.12 C).  AIRE seems to 

induce a blanket of H4K16 hyperacetylation across the entire cluster, while the 

control cells present with very low levels of this modification, regardless of 
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transcriptional activity.  This is particularly significant for keratin 18, whose 

expression is equal in both cell populations.  Hence, this modification shows no 

specification for actively-transcribed genes, unlike the other acetylation marks.  

Lysine 16 of histone H4 is the first residue to be post-translationally modified and the 

addition of an acetyl moiety is known to disrupt the bridges between neighbouring 

nucleosomes (Luger et al. 1997; Shogren-Knaak et al. 2006).  This mark may 

therefore represent a domain-wide opening of the chromatin, orchestrated by AIRE, 

thus facilitating the higher levels of gene expression across the cluster in the 

presence of AIRE. 

 

3.3.3.3. Levels of Methylation at Histone H3 Lysine 9 and Lysine 27 across the 

Keratin Cluster in the Thymic Epithelial Cell Model System 

Given the fluctuating levels of expression across the keratin cluster, analysis of two 

marks; H3K9me2 and H3K27me3, whose presence within a gene is usually 

indicative of repression was carried out (Figure 3.13) (Barski et al. 2007).  The most 

striking observation is the strong enrichment of these two histone modifications at 

the 5` end of the cluster; an almost perfect reversal of the trend observed for the 

archetypal active histone modifications H3K4me3 and H3K9ac.  Levels of the two 

silent marks correlated significantly with transcription levels in the control TEP-GFP 

population, with the highest levels present in the genes for which no transcription 

was detected.  It should be noted that levels of H3K9me2 were much lower than 

those of H3K27me3, however it is clear that this modification still plays a role in the 

silencing of the genes in TEP-GFP cells (Figure 3.13 A).  In the TEP-GFP control 

population, the four initial genes in the cluster (keratin 4, 79, 78 and 8) are either not 



Quantitation by native chromatin immunoprecipitation (NChIP) of levels of histone 
modifications across the keratin cluster on Mus musculus chromosome 15 in 
cultured thymic epithelial (TEP) cell lines.  Turquoise columns represent results 
from AIRE-negative TEP-GFP cells.  Purple columns are from TEP cells transfected 
with AIRE.  Immunoprecipitation performed with affinity-purified antibodies to; A, 
H3K9me2; and B, H3K27me3, as indicated.  Relative levels (bound:unbound) 
of histone modifications were calculated from immunoprecipitated (bound) and 
unprecipitated (unbound) DNA by quantitative real-time PCR.  Data are the mean 
±SEM from at least two separate NChIP experiments.

Figure 3.13 - Impact of AIRE on a Cluster of Genes: Quantitation of the 
Relative Levels of Histone H3 Lysine 9 and Histone H3 Lysine 27 Methylation 
across the Keratin Cluster by Native Chromatin Immunoprecipitation
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expressed, or expressed at a very low level and therefore increased levels of both 

inactive histone modifications within these gene regions echoes their silent nature.  

Further along the cluster, both modifications become dramatically depleted, 

H3K9me2 from keratin 18 onwards and H3K27me3 from INT3A as gene expression 

begins in the TEP-GFP cells.  Although TEP-AIRE H3K9me2 levels were similarly 

very low, the specific 5` domain-wide enrichment was not detected to as great a 

level than in the control population.  Peaks were seen at keratin 8 in the middle of 

the cluster and at Eif4b and Spryd3 in the 3` end, which are all expressed 

approximately 4-fold higher in the presence of AIRE.  For H3K27me3 however, 

these downstream peaks were not seen and a more well-defined distribution of this 

silent mark was observed for both TEP-AIRE and TEP-GFP populations, with a 

region of H3K27 hypermethylation at the first three genes (keratin 4, 79 and 78), 

followed by a depletion of this mark for the remainder of the cluster. 

 

As a further control we wanted to analyse a gene silent in both TEP populations, for 

which recombination activating gene-1 (Rag1) was chosen.  Rag1, in combination 

with Rag2, controls the assembly and rearrangement of antigen receptor genes 

during the early stages of B- and T-cell development in a process known as V(D)J 

recombination.  They are highly lymphoid-specific and hence permanently silenced 

within thymic epithelial cells.  We were unable to detect signal in either the bound or 

unbound material for Rag1, thus highlighting this gene’s inactive status within these 

cells.  The aberrant expression of this gene within thymic stromal cells may result in 

serious consequences, thus the absence of active histone modifications may reflect 

a more permanent silencing of Rag1, possibly suggesting a heterochromatic 
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compaction of this gene leading to its retention in the insoluble pellet following 

chromatin isolation. 

 

3.3.4. Analysis of the Binding Status of AIRE, RNA Polymerase II and Histone 

Methyltransferases within AIRE-Regulated Gene Regions in the Thymic 

Epithelial Cell Model System 

Given that AIRE has demonstrated putative associations with DNA, mediated 

through its SAND domain, and can bind un-modified H3K4 via its first PHD-zinc 

finger, we wanted to determine whether AIRE was able to interact directly with its 

target genes (Gibson et al. 1998; Kumar et al. 2001; Koh et al. 2008; Org et al. 2008; 

Chignola et al. 2009).  AIRE has also been shown to associate with positive 

transcription elongation factor-b (P-TEFb) at the promoters of TRA, where Oven et al 

(2007) found RNA pol II already engaged, thus we also sought to establish the 

binding status of RNA pol II (Oven et al. 2007).  Consequently, we performed 

conventional cross-linked chromatin immunoprecipitation (XChIP) with cultured TEP-

AIRE and TEP-GFP lines.  Cells were fixed with 1% paraformaldehyde, and 

chromatin was isolated and prepared through sonication, generating 300-600bp 

fragments.  Input chromatin was then immunoprecipitated with antibodies directed 

against AIRE and RNA pol II.  Relative amounts of these complexes across the 

promoter regions of the TRA Spt1 and Spt2 were determined by qPCR, through 

normalisation to the levels across Gapdh.  This analysis revealed the presence of 

AIRE at the Spt1 and Spt2 promoter regions, which was absent or negligible in the 

TEP-GFP cells, suggesting that AIRE exerts its action through a direct association at 

each of its target genes (Figure 3.14 A and B).  We also found increased levels of 



Quantitation by cross-linked chromatin immunoprecipitation (XChIP) of levels 
of AIRE, RNA polymerase II, KMT2A/MLL1, H3K4me3, KMT6/Ezh2, Eed and 
H3K27me3 across the promoter regions (p) of the tissue-restricted antigens 
salivary protein-1 (Spt1, A) and salivary protein-2 (Spt2, B) in cultured Mus 
musculus thymic epithelial (TEP) cell lines.  Turquoise columns represent 
results from AIRE-negative TEP-GFP cells.  Purple columns are from TEP cells 
transfected with AIRE.  Immunoprecipitation performed with affinity-purified 
antibodies to AIRE, RNA polymerase II, KMT2A/MLL1, H3K4me3, KMT6/Ezh2, 
Eed and H3K27me3, as indicated.  Relative levels (enrichment) of each protein/
modification were calculated from immunoprecipitated (bound) and input DNA by 
quantitative real-time PCR.  Data was normalised to relative levels of enrichment 
at glyceraldehydes-3-phosphade dehydrogenase (Gapdh) as standard.  Data are 
the mean ±SEM from at least two separate XChIP experiments.

Figure 3.14 – The Epigenetic Binding Status of Genes under the Transcriptional 
Control of the Autoimmune Regulator: Quantitation of the Relative Levels 
of AIRE, RNA Polymerase II and Chromatin-Modifying Enzymes by Cross-
Linked Chromatin Immunoprecipitation

133



 134

RNA pol II in the presence of AIRE, with only low levels in the control cells.  This 

seems to contrast with the findings of Oven et al (2007), who reported the presence 

of stalled RNA pol II at TRA in the absence of AIRE, however in a report by Org et al 

(2009), RNA pol II was only detectable on approximately 4% of AIRE target 

promoters in the absence of AIRE, thus our data clearly supports their findings (Org 

et al. 2009).  In its role as a transcriptional regulator, AIRE may also recruit additional 

protein complexes to the local chromatin environment to facilitate the reading and 

transcribing of each locus.  Our results thus far have indicated that AIRE is able to 

modulate certain histone modifications both on a gene-by-gene basis and on a 

greater scale.  For example, we have shown increases in H3K4me3 and 

maintenance of H3K27me3 levels across many AIRE-regulated genes, modifications 

which are put in place by very well-defined histone methyltransferases and we 

therefore wanted to determine the binding status of these enzymes in the presence 

and absence of AIRE.  We again employed XChIP to ascertain whether the H3K4 

methylation-specific methyltransferase KMT2A/MLL1, and the two PcG proteins; 

KMT6/Ezh2, an H3K27 methylation-specific methyltransferase; and its co-factor Eed, 

were present at the promoters of TRA (Figure 3.14 A and B).  We also verified our 

findings from unfixed NChIP analysis, using antibodies directed against H3K4me3 

and H3K27me3 (Figure 3.14 A and B).  This showed that in the control cells, levels of 

KMT2A/MLL1 are very low at AIRE-regulated TRA, along with its product H3K4me3, 

which confirmed our previous observations.  In the presence of AIRE, higher levels of 

KMT2A/MLL1 were seen, however levels of H3K4me3 increased dramatically.  This 

could suggest that AIRE engagement at the locus results in the recruitment of 

KMT2A/MLL1 for the deposition of H3K4me3.  At the Spt1 promoter (Figure 3.14 A), 
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moderate levels of KMT6/Ezh2 were detected in the TEP-GFP population, along with 

H3K27me3, with low amounts of Eed, however levels of these were higher in the 

control cells for Spt2 (Figure 3.14 B).  Interestingly, levels of all three increased in the 

presence of AIRE, which may account for the maintained or heightened levels of 

H3K27me3 revealed within the TEP-AIRE population through NChIP.  Taken 

together, this implies that AIRE is able to bind chromatin at its individual target 

genes, leading to the recruitment of RNA pol II and KMT2A/MLL1 for deposition of 

positive-acting H3K4 methylation, but also of negative-acting PcG proteins 

KMT6/Ezh2 and Eed, which results in a maintenance or increase in H3K27me3. 

 

In conclusion, it would appear that AIRE is able to interact directly with TRA and 

influence histone modifications not only on a gene-by-gene basis, as demonstrated 

by the distinct differences between individual TRA; Csn1s1 (Figure 3.8) and the two 

salivary proteins (Figure 3.9), but also on a more large-scale, seen for the domain-

wide hyperacetylation at H4K16 (Figure 3.12). 

 

3.4. ELUCIDATION OF AIRE’S CONTROL OF PROMISCUOUS GENE EXPRESSION WITHIN THE 

THYMUS IN VIVO 

 

Within the thymus, AIRE is expressed exclusively within stromal cells of the medulla; 

the site of PGE, generating TRA which promote the self-tolerance of developing 

thymocytes (Anderson et al. 2002).  However, AIRE expression is only carried out by 

fully differentiated mTECs and recently a complex developmental network of thymic 

epithelial cells has been elucidated, revealing four main subpopulations of cells 
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(Rossi et al. 2006; Rossi et al. 2007).  It was found that the two distinct medullary 

and cortical lineages of thymic stromal cells, are derived from a common bipotent 

TEC progenitor present in the embryonic murine thymus (Rossi et al. 2006; Rossi et 

al. 2007).  Additionally, an immature CD80-AIRE- mTEC progenitor population exists, 

which do not express AIRE but produce a cell surface receptor; RANK (Rossi et al. 

2007; Akiyama et al. 2008; White et al. 2008; Zhu and Fu 2008).  Upon stimulation 

from lymphoid tissue inducer cell-derived RANK ligand, these immature mTECs 

switch on AIRE and promiscuous gene expression begins, giving rise to mature 

CD80+AIRE+ mTECs (Rossi et al. 2007; Akiyama et al. 2008; White et al. 2008; Zhu 

and Fu 2008).  Through foetal thymic organ culture and FACS sorting based upon 

specific cell surface markers (Table 3.3), the four cell subsets in the TEC 

developmental pathway (bipotent TEC progenitors, immature and mature mTECs 

and mature cTECs) can be isolated and pure populations obtained. 

 

Although clearly successful for elucidation of AIRE’s effects upon histone 

modifications associated with key TRA within a thymic epithelial cell background, 

NChIP is limited in its application as it requires a minimum of 1x107 cells.  This is 

easily achievable with cultured cell systems, however these are often not a true 

reflection of the in vivo situation.  Typically the number of cells in each population of 

the TEC developmental pathway following FACS are very low; in the range of 103-

104 cells and for this reason investigation into histone modifications associated with 

the activation or silencing of TRA across the TEP developmental pathway has until 

now not been possible.  It is therefore necessary to employ a technique recently 

developed in our laboratory termed carrier chromatin immunoprecipitation (CChIP)
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Table 3.3 – The Fluorescent Activated Cell Sorting Parameters Used to 
Isolate Primary Cell Populations from Mus musculus Foetal Thymic Organ 
Cultures 

Mus musculus EMBRYONIC THYMIC CELL POPULATIONS 

POPULATION FACS PARAMETERS CELL NUMBERS PER IP 

E12 Bipotent TEC Progenitors EpCAM1+ 3.4X104 

E15 Immature CD80-AIRE- mTEC 
 
 
 
 
 
 

CD45- 2.5X103 
 
 
 
 
 
 

EpCAM1+ 

Ly51- 

CD80- 

E15 Mature CD80+AIRE+ mTEC 
 
 
 
 
 
 

CD45- 2.5X103 
 
 
 
 
 
 

EpCAM1+ 

Ly51- 

CD80+ 

E15 Mature cTEC 
 
 
 
 

CD45- 2.5X104 
 
 
 
 

EpCAM1+ 

Ly51+ 

E12 FoxN1-Deficient Nude TEC EpCAM1+ 5X103 

 
 

Foetal thymic organ culture was employed for the investigation of the epigenetic 
status of tissue-restricted antigens across the embryonic thymic epithelial 
developmental pathway.  Fluorescent Activated Cell Sorting (FACS) was used 
to isolate four cell populations; EpCAM1+ bipotent TEC progenitors, immature 
CD45-EpCAM1+Ly51-CD80-, and mature CD45-EpCAM1+Ly51-CD80+ mTECs, 
and mature CD45-EpCAM1+Ly51+ cTECs, with the parameters displayed.  
Typical cell numbers following FACS, used subsequently for each individual 
immunoprecipitation (IP) by carrier chromatin IP, are also illustrated. 
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(O'Neill et al. 2006).  The CChIP method is an adaptation of the more conventional 

NChIP procedure, drawing on the same basic principles and methodology, and 

published data shows a close correlation between CChIP and NChIP results (O'Neill 

et al. 2006).  The CChIP technique involves mixing of the very low numbers of target 

Mus musculus cells with a ‘carrier’ Drosophila melanogaster cell line (SL2) and in 

doing so protects the target cells from the harsh isolation conditions required to 

obtain clean chromatin (Figure 3.15).  Preparation of nuclei and chromatin is then 

performed as for NChIP, however due to the very low numbers of target cells, the 

volumes are kept low to minimise losses.  Standard immunoprecipitation is then 

carried out but strict species-specific PCR is required for detection of target Mus 

musculus DNA.  All primers were tested to ensure species specificity, as cross-

reactivity with SL2 DNA would result in an over-representation of the signal (Figure 

3.16). 

 

3.4.1. Analysis of the Effects of AIRE upon Tissue-Restricted Antigens in vivo 

In order to elucidate the distribution of histone modifications throughout the TEC 

developmental pathway, purified bipotent TEC progenitors, immature and mature 

mTECs and mature cTECs were mixed separately with SL2 cells for CChIP analysis.  

Due to the limited number of target FACS sorted cells, a restricted number of histone 

modifications could be analysed.  We therefore chose to investigate four 

modifications (H4K8ac, H3K4me3, H3K27me3 and H3K9me2) which, in the TEP 

model system, were shown to be heavily influenced by AIRE.  The presence of the 

functionally opposing modifications H3K4me3 and H3K27me3 have been shown to 

co-localise across key developmental genes, priming them for future transcription



Diagrammatic representation of the carrier chromatin immunoprecipitation (CChIP) 
protocol.  The CChIP technique involves mixing of small numbers of primary cell 
populations; Mus musculus cells from the thymic epithelial cell developmental 
pathway in this case, with Drosophila melanogaster cells (SL2) which act as a 
‘carrier’, protecting the target cells throughout the procedure.  Chromatin is isolated 
from the target cell/SL2 combination and digested with micrococcal nuclease (Mic 
Nuc) then immunoprecipitated with antibodies directed against post-translational 
histone modifications.  DNA from antibody-bound and –unbound fractions is 
then purified for analysis of the relative levels of each modification, through strict 
species-specific PCR.

Figure 3.15 - Carrier Chromatin Immunoprecipitation
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For the verification of strict Mus musculus species specificity of primers, ensuring 
no cross-reactivity with Drosophila melanogaster (SL2) DNA, fixed point 
polymerase chain reaction (PCR) was carried out with Mus musculus (Mus) and 
Drosophila melanogaster (SL2) genomic DNA, along with d.H2O no template 
controls (NTC), with each primer set.  Primer sets were targeted to the promoter 
(p) and coding (c) region of salivary protein-1 (Spt1), and the promoter regions 
of salivary protein-2 (Spt2), casein-α (Csn1s1), glyceraldehyde-3-phosphate 
dehydrogenase (Gapdh), selection and upkeep of intraepithelial T-cells 1 (Skint1) 
and proteasome subunit β-type 11 (Psmβ11), as indicated.  Size was determined 
by reference to a 100 base pair molecular marker (Invitrogen).

Figure 3.16 – Verification of the Species Specificity of Primer Sets Utilised 
for the Analysis of DNA from Carrier Chromatin Immunoprecipitation
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(Azuara et al. 2006; Bernstein et al. 2006).  We wanted to monitor whether genes 

regulated by AIRE carried these bivalent modifications in the bipotent progenitor 

which changed upon activation of gene transcription as the cells differentiated.  In 

addition, we investigated H3K9me2, whose presence within euchromatic genes has 

been linked to their silencing, although the reported association with active genes is 

intriguing, and from our analysis in the TEP model system, this mark clearly has a 

role to play (Vakoc et al. 2005; Squazzo et al. 2006; Vakoc et al. 2006; Gierman et 

al. 2007).  Following CChIP, the concentration of DNA within antibody-bound and 

unbound fractions was analysed and the percentage pull-down of each 

immunoprecipitation calculated (Table 3.4).  For the determination of levels of 

enrichment of histone modifications across TRA within the precipitated Mus 

musculus DNA, we initially attempted quantitative real-time PCR (qPCR), using the 

same analysis technique as for NChIP with the TEP cell line.  Unfortunately, we 

were met with numerous technical difficulties.  The samples presented with a 

background noise of SYBR Green signal (Figure 3.17) which may have been due to 

the large concentration of SL2 DNA within each sample, quenching the signal.  

Attempts to reduce the concentration of SL2 DNA through dilution of the samples did 

not alleviate the problem, making accurate analysis through qPCR impossible, 

especially considering the limited sample sizes (typically bound samples were 

resuspended in 40µl, unbound in 80µl to avoid over-dilution of the Mus musculus 

signal).  Amplification curves were unreliable and we therefore turned to the analysis 

technique adopted in the original CChIP method (O'Neill et al. 2006).  Radioactive 

PCR incorporating α-32P dCTP into the reaction which, although more time 

consuming, reliably produced specific mouse products without quenching from the 
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Table 3.4 – Efficiency of Pull-Down for Each Histone Modification 
Following Carrier Chromatin Immunoprecipitation 

CChIP PERCENTAGE PULL-DOWNS 

POPULATION ANTIBODY SPECIFICITY PULL-DOWN REPLICATES 

E12 Bipotent TEC 
Progenitors 
 
 
 
 
 

R232 H4K8ac 1.85-4.83% 2 

R612 H3K4me3 2.23-5.88% 2 

07-449 H3K27me3 7.36-7.74% 2 

07-212 H3K9me2 3.67-4.93% 2 

PI Pre-immune 0.62-2.61% 2 

E15 Immature CD80-AIRE- 
mTEC 
 
 
 
 
 

R232 H4K8ac 7.96-12.50% 2 

R612 H3K4me3 5.16-5.94% 2 

07-449 H3K27me3 6.49-28.17% 2 

07-212 H3K9me2 8.39-24.78% 2 

PI Pre-immune 1.44-2.55% 2 

E15 Mature CD80+AIRE+ 
mTEC 
 
 
 
 
 

R232 H4K8ac 7.21-16.63% 2 

R612 H3K4me3 6.90-8.45% 2 

07-449 H3K27me3 10.80-14.88% 2 

07-212 H3K9me2 5.10-14.89% 2 

PI Pre-immune 0.24-4.90% 2 

E15 Mature cTEC 
 
 
 
 
 
 

R232 H4K8ac 2.06-2.67% 2 

R612 H3K4me3 3.61-7.75% 2 

07-449 H3K27me3 4.50-5.66% 2 

07-212 H3K9me2 1.12-1.86% 2 

PI Pre-immune 0.34-1.47% 2 

E12 FoxN1-Deficient Nude 
TEC 
 
 
 
 
 

R232 H4K8ac 4.10-5.75% 2 

R612 H3K4me3 5.91-20.70% 2 

07-449 H3K27me3 16.21-24.27% 2 

07-212 H3K9me2 7.67-11.99% 2 

PI Pre-immune 2.03-2.04% 2 

 
 

Carrier chromatin immunoprecipitation was performed with Mus musculus 
embryonic thymic cell populations, using antibodies directed against the post-
translational histone modifications displayed above.  DNA from antibody-bound 
(B) and –unbound (UB) fractions was purified and the percentage pull down 
(B/UBx100) for each antibody was then calculated.  Pre-immune no antibody 
controls were included which show comparatively low pull-down efficiencies.  
The number of biological replicates for each modification is displayed. 



Quantitative real-time polymerase chain reaction (qPCR) on DNA isolated from 
antibody-bound (B) and –unbound (UB) fractions following native chromatin 
immunoprecipitation (NChIP) with cultured Mus musculus thymic epithelial (TEP) 
cell lines or carrier chromatin immunoprecipitation (CChIP) with Drosophila 
melanogaster and primary Mus musculus target cells.  Immunoprecipitation with 
anti-H3K27me3 antibody and qPCR with primer set salivary protein-2 promoter 
are displayed as an example.  Mus musculus (Mus) and Drosophila melanogaster 
(SL2) genomic DNA were included as controls.  Raw data (fluorescence per 
cycle), quantitation data (log fluorescence per cycle) and melt data (dF/dT per 
degree) are illustrated to show efficiency and specificity of primers.

Figure 3.17 – Comparison of Quantitative Real-Time Polymerase 
Chain Reaction with DNA from Native and Carrier Chromatin 
Immunoprecipitation
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carrier SL2 DNA, and was therefore used in all subsequent analysis.  Through 

polyacrylamide gel electrophoresis (PAGE) and phosphorimaging, the specificity of 

each amplification can be monitored routinely, and levels of bound and unbound 

signal be determined.  Figure 3.18 shows a typical radioactive PAGE gel (using 

Spt2(p) primer set), highlighting the specificity of primers through the absence of 

signal in SL2 negative controls. 

 

Examination of the three TRA; Csn1s1, Spt1, Spt2 and genes of the keratin cluster 

in the TEP cell line, indicated that AIRE is able to induce alterations to the 

distribution of histone modifications, forming clear and distinct patterns, unique to 

each mark.  Positively-regulated TRAs have a very well-defined expression profile 

throughout the TEC developmental pathway.  In the bipotent TEC progenitor cells 

TRAs are silent and remain so in the immature mTECs, however, following 

stimulation by RANK ligand and subsequent AIRE up-regulation in mature mTECs, 

these genes are turned on.  Differentiation into mature cTECs however, means the 

genes will never be expressed (Figure 3.19).  To determine whether TRA are 

marked with specific epigenetic patterns throughout development, we chose to 

assay the four histone modifications at each stage of the pathway through CChIP. 

 

3.4.1.1. Pattern of Histone Modifications for Salivary Protein-1 in vivo 

Bipotent TEC progenitors are an undifferentiated population of cells within which all 

TRA such as Spt1 are silenced.  Our observation of silencing modifications in this 

population at the Spt1 promoter supports this with the presence of enriched 

H3K27me3 and H3K9me2 (Figure 3.20 B).  However, we also detect equally high 



Radioactive PCR incorporating α-32P dCTP was employed for quantitation of relative 
levels of histone modifications following carrier chromatin immunoprecipitation 
(CChIP).  Immunoprecipitation was with affinity-purified antibodies to H4K8ac, 
H3K4me3, H3K27me3 and H3K9me2, as indicated.  Radioactive PCR reactions 
were carried out with 2μl neat bound (B) and 2μl 1:2 diluted unbound (UB) 
DNA.  Samples were taken after 38 and 41 cycles and visualised through 5% 
polyacrylamide gel electrophoresis and phosphorimaging.  Relative levels of 
histone modifications (bound:unbound) were generated from intensity values for 
each PCR product and calculated from the percentage pull-down values of each 
immunoprecipitation.  Specificity of each amplification was monitored through 
inclusion of Mus musculus (Mus) and Drosophila melanogaster (SL2) genomic 
DNA, and d.H2O no template controls (NTC).  Data displayed is from radioactive 
PCR with primer set salivary protein-2 promoter as an example.

Figure 3.18 – Analysis of DNA from Carrier Chromatin Immunoprecipitation: 
Radioactive Polymerase Chain Reaction
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AIRE-regulated promiscuous gene expression of tissue-restricted antigens 
throughout the developmental pathway of thymic epithelial cells (TECs).  Foetal 
thymic organ culture was employed, followed by FACS to isolate the four Mus 
musculus cell populations indicated, based on surface EpCAM1, CD45, Ly51 
and CD80 expression.  Real-time quantitative PCR was used to compare the 
relative mRNA expression levels of AIRE and three tissue-restricted antigens; 
casein-α (Csn1s1), salivary protein-1 (Spt1) and salivary protein-2 (Spt2), as 
indicated, for each cell type.  Data was normalised to β-actin expression levels 
as standard.  Data are the mean ±SEM from technical triplicate reactions, and are 
representative of at least two distinct cDNA preparations.

Figure 3.19 - Analysis of AIRE’s Role in vivo: Expression of the Autoimmune 
Regulator and Tissue-Restricted Antigens throughout the TEC Developmental 
Pathway
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levels of the active mark H3K4me3, which is interesting as the status of the Spt1 

gene within these progenitors is essentially in a poised state awaiting the correct 

signals to be either silenced or up-regulated depending on whether the bipotent 

population commit to mTECs where Spt1 will be switched on, or cTECs in which 

Spt1 expression will never occur.  Hence, H3K4me3 within the progenitor cells may 

be acting as a predictive mark for future expression of this gene within the mTEC 

lineage, with H3K27me3 and H3K9me2 keeping Spt1 silent in the progenitors.  As 

development continues through to the immature mTEC stage, the cells move one 

step closer towards the imminent expression of Spt1 and this saw a dramatic 

depression of all four histone modifications.  Upon AIRE activation in the mature 

mTEC population, where Spt1 becomes active, we saw an increase in the active 

marks H4K8ac and H3K4me3 at the promoter, compared to the immature mTECs, 

correlating with the active transcriptional status of this gene.  Levels of H3K27me3 

remained stable and an increase in the levels of H3K9me2 was also observed, their 

presence possibly representing a safety feature for this gene, allowing for tight 

regulation of its expression.  This cell population is represented in our TEP model 

system by TEP-AIRE cells, which are permanently expressing AIRE.  Comparisons 

with the results from the AIRE-positive cell line highlighted some differences, for 

example; in the cell line the Spt1 promoter is marked predominantly by active 

histone modifications such as H3K4me3 and H4K8ac (Figure 3.9).  Interestingly, of 

the two silent modifications investigated, higher levels of H3K27me3 were frequently 

present in the TEP line, whereas in the primary mature mTECs this was not the case 

for the Spt1(p).  Analysis of the distribution of histone modifications in the reverse 

scenario whereby bipotent TEC progenitors differentiate to mature cTECs reveals a 
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contrasting re-organisation of chromatin to that seen in the mTEC lineage.  Mature 

cTECs, which will never express AIRE or Spt1, show a decrease in H3K4me3 and 

H3K27me3 along with a small increase in H4K8ac, however, the most striking 

change is the dramatic increase in H3K9me2 from a bound:unbound ratio of 10.69 

within the bipotent TEC progenitors, to a ratio of 26.50 within the mature cTECs.  

This possibly signifies the more permanent silencing of this gene within these 

cortical cells.  The mature cTECs could be compared to TEP-GFP control cells, 

where again we observed contrasting results.  While the cultured cell line displayed 

very high levels of H3K27me3, this is not observed in vivo.  These differences 

between the two model systems may possibly point to a more strict H3K9me2-

mediated regulation of the genes under the transcriptional control of AIRE in vivo as 

their expression within an incorrect cell type or at an inappropriate stage may be 

detrimental to the development of a functional, self-tolerant T-cell repertoire. 

 

Analysis of an area within the coding region of Spt1 shows a similar pattern to the 

promoter region of this gene, in particular for the distribution of H3K4me3 which 

follows the same trend throughout the four cell populations (Figure 3.20 B).  

However, comparisons between the promoter region and the gene body do show 

some differences.  For example, in the bipotent TEC progenitor cells, there appears 

to be a switch in the silencing modifications, with the promoter showing higher 

H3K27me3 but in the coding regions H3K9me2 predominates.  In addition, these 

progenitor cells display particularly high levels of H4K8ac in the gene body, which 

were not seen at the promoter.  Thus, although the classical H3K4me3 / H3K27me3 

bivalency was not observed in the Spt1 coding region, it is clear that this locus does 
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display a poised chromatin signature with the presence of equally high levels of 

active and silent marks.  Within the immature mTECs, again we saw a dramatic 

reduction in the histone modifications, similar to the promoter region, the only 

change being an approximate 3-fold increase in H3K27me3 from the 5` to the 3` 

region of Spt1.  As the mTECs mature, we again found a re-organisation of the 

epigenetic marks with levels of H4K8ac and H3K27me3 increasing from the 

immature mTECs.  In comparison to the Spt1 promoter region in mature mTECs, the 

coding region displays very high H4K8ac, however there is a reversal of the 

silencing modifications, with H3K27me3 predominating in the exonic region.  A 

significant finding for the coding region of Spt1 is the almost identical distribution of 

modifications within the mature cTEC population when compared to the promoter 

region, with the low levels of H3K4me3 and H3K27me3, slightly higher enrichments 

of H4K8ac, but most importantly, a dramatic increase in H3K9me2; to a 

bound:unbound ratio of 26.5 at the promoter region and 46.2 in the coding region, 

thus confirming our observations. 

 

These results give a good indication of how AIRE-regulated genes are controlled 

throughout thymic development.  TRA within the bipotent TEC progenitor cells are 

marked with a combination of active and silent modifications, keeping them in a 

poised but ‘off’ state.  Chromatin is then reorganised as the cells differentiate, with a 

fall in all four marks in immature mTECs.  As Spt1 is up-regulated, elevated levels of 

the activating acetylation and methylation marks are induced, in combination with 

high levels of H3K9me2 and H3K27me3, potentially regulating expression.  However 

as the bipotent progenitor cells differentiate to mature cTECs, a strong pattern of 
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modifications is displayed, with strikingly high levels of H3K9me2 possibly keeping 

Spt1 more permanently silenced. 

 

3.4.1.2. Pattern of Histone Modifications at the Salivary Protein-2 Promoter 

Region in vivo 

Histone modifications across the promoter region of the second salivary protein 

show a distribution distinct from Spt1 (Figure 3.21 B).  Although the classical 

H3K4me3 / H3K27me3 bivalent chromatin structure is not observed at Spt2, the 

bipotent TEC progenitors do present with a bivalency of sorts; with predominance 

instead of acetylation at H4K8, which may be acting as an alternative predictive 

mark, in combination with H3K9me2, which may aid in the silencing of this gene 

within the progenitor population.  Similar to findings for this subset at Spt1, we 

detected a general depression in all modifications as the cells develop into immature 

mTECs, with the exception of H3K27me3, levels of which rise from the bipotent TEC 

progenitors for Spt2 thus shifting the balance of silencing modifications from 

H3K9me2 to H3K27me3.  Maturation of the mTECs and subsequent AIRE-induced 

up-regulation of Spt2, brought about only a minor alteration to histone modifications 

from the immature mTECs; maintenance of H4K8ac, H3K4me3 and H3K27me3 and 

a 1.8-fold increase in H3K9me2, whereas for Spt1 dramatic changes to the 

epigenetic markings were observed as maturity was reached, particularly in the 

coding regions.  Most striking is the distribution of marks within the cTECs, where 

Spt2 is silenced, results for which mirror those seen at both the promoter and coding 

regions of Spt1.  The lowest levels being H3K4me3 and H3K27me3, minimal 

amounts of H4K8ac and a prominent enrichment of H3K9me2; increasing 3.4-fold 
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from the bipotent TEC progenitors at Spt2.  This distribution of marks within cTECs 

across both salivary proteins is particularly intriguing, especially considering the 

variation observed between the bipotent TEC progenitors for these genes, and may 

suggest that this arrangement of chromatin is essential for their silencing within the 

cortical cells. 

 

3.4.1.3. Pattern of Histone Modifications at the Casein-α Promoter Region in 

vivo 

The epigenetic status of the promoter region of Csn1s1 contrasts remarkably with 

the data for the two salivary proteins, which may be suggestive of alternative modes 

of regulation for these genes (Figure 3.22 B).  The histone modifications assayed 

fluctuate dramatically as the cells progress through development, for example the 

levels of H4K8ac show an inverse correlation with gene expression.  A clear pattern 

is seen throughout the developmental pathway, marking the progenitors with high 

levels, which fall as the cells mature to mTECs, but increase in the cTEC population, 

resulting in a cTEC > progenitors > immature mTECs > mature mTECs distribution.  

For Csn1s1, the bipotent TEC progenitors again displayed a mix of active and silent 

modifications, however the precise combination of modifications at this locus was 

unique, with enrichment of H3K27me3 and H4K8ac, and correspondingly low levels 

of H3K4me3 and H3K9me2, reflecting the poised nature of this gene, but a pattern 

not observed in the salivary proteins.  Progression down the mTEC lineage to the 

immature mTECs again shows a unique pattern of histone marks.  In addition to the 

decline in H4K8ac, we observed increased H3K9me2 and H3K4me3 in combination 

with a dramatic 5.3-fold decrease in H3K27me3 from the progenitor cells.  Maturity 
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of the mTECs and subsequent up-regulation of Csn1s1 again reveals a unique re-

distribution of modifications, ultimately leading to an almost total loss of H3K9me2 

and H4K8ac (bound:unbound ratio 4.22 and 3.45 respectively).  Yet, high levels of 

H3K4me3 and H3K27me3 (bound:unbound ratio 14.63 and 21.63 respectively) are 

maintained.  However, it is the development through to mature cTECs where the 

most interesting differences were observed, which have until now displayed an 

almost identical pattern across both salivary proteins.  Whereas for the salivary 

proteins, the predominant mark was H3K9me2, for Csn1s1 the cTEC population 

displays very high levels of H4K8ac, with correspondingly lower amounts of the 

three methylation marks.  The dramatic and characteristic peak in H3K9me2 was not 

seen, however there was a 2.0-fold increase of this mark from the progenitor cells.  

Thus it would seem that the distribution of modifications across the TEC 

developmental pathway differs dramatically on a gene-by-gene basis. 

 

3.4.1.4. Pattern of Histone Modifications at the Glyceraldehyde-3-phosphate 

Dehydrogenase Locus in vivo 

As a control, we chose to assay the housekeeping gene Gapdh which is ubiquitously 

expressed throughout the TEC developmental pathway.  The profile of histone 

modifications across each of the four stages of thymic development, does reflect this 

(Figure 3.23 B), a common theme being the dominance of the active histone 

modifications H4K8ac and H3K4me3.  However, some variations between cell 

populations are observed.  While the bipotent progenitors and mature cTECs are 

marked by high H4K8ac and H3K9me2, mTECs display low levels of these 

modifications.  Thus, although these results confirm the active status of this gene 
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across the TEC developmental pathway, they also highlight the complexities of 

epigenetic modifications, with no single defined combination of marks signifying the 

activity of a given gene. 

 

3.4.1.5. Pattern of Histone Modifications at the Selection and Upkeep of 

Intraepithelial T-cells 1 Promoter Region in vivo 

As a further control we wanted to analyse the distribution of histone modifications 

across a gene not under the transcriptional control of AIRE, whose expression 

pattern correlates with TRAs.  Selection and upkeep of intraepithelial T-cells 1 

(Skint1) is a newly identified gene whose expression within the thymus has been 

shown to be involved in the previously undefined selection of γδ T-cells, in particular, 

those which express the Vγ5Vδ1 T-cell receptor (Boyden et al. 2008).  Expression 

analysis of Skint1 (Figure 3.24 A), demonstrated the presence of this gene within the 

mature mTEC population, but not within the bipotent TEC progenitors, the immature 

mTECs or the mature cTEC lineage.  Despite this pattern of regulation akin to an 

AIRE-regulated gene, Skint1 is not under the transcriptional control of AIRE, as its 

expression is undetected in both the presence and absence of AIRE in the TEP cell 

line (Figure 3.24 A). 

 

Bipotent TEC progenitors are marked with an enrichment of H3K4me3, which is 

matched by equal levels of H3K9me2 indicating the poised nature of Skint1 (Figure 

3.24 C).  Increases in both active marks H4K8ac and H3K4me3 are observed in the 

immature mTEC population, along with maintenance of H3K9me2 and a 2.5–fold 

increase in H3K27me3.  For the mature mTECs, where Skint1 is switched on, we 
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observed a domain-wide blanket of all marks, with comparatively high levels of 

active and repressive modifications.  The cTEC lineage, where Skint1 is not 

expressed, displays a significant enrichment of H3K9me2; at least 3.9 times greater 

than the other three marks, resulting in a pattern equivalent to those seen for the 

cTECs across the AIRE-regulated genes.  This reflects the more permanent silent 

nature of this gene within the cTEC population.  Comparisons between the findings 

for the Skint1 promoter region and TRA, showed a divergent pattern of histone 

modifications at this non-AIRE-regulated gene and this may reflect the fact that this 

gene is mTEC-specific, unlike the TRA whose native expression is within peripheral 

tissues outside of the thymus. 

 

3.4.1.6. Pattern of Histone Modifications at the Proteasome Subunit β-Type 11 

Promoter Region in vivo 

For a final control, we wanted to analyse the epigenetic status of a gene whose 

expression is limited to the cTEC lineage, and therefore not influenced by AIRE in 

any way.  The discovery of a previously unrecognised catalytic subunit of the 

proteasome, a structure responsible for cleaving polypeptides into smaller fragments 

for presentation by the class I MHC, provided us with a useful gene for this analysis.  

Proteasome subunit β-type 11 (Psmβ11) was found to be essential for the positive 

selection of MHC class I-restricted CD8+ T-cell repertoire, and is therefore 

exclusively expressed by cortical thymic epithelial cells (Murata et al. 2007).  This 

was further confirmed when expression analysis was carried out (Figure 3.25 A) 

showing high levels of expression in cTECs and low or no expression in the 

immature and mature mTECs and progenitor cells.  Psmβ11 was also shown to be 
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unaffected by AIRE as its expression within the TEP model system is not detected in 

both cell populations (Figure 3.25 A).  What was instantly evident following CChIP 

analysis for Psmβ11 was the significant enrichment of acetylation in the bipotent 

TEC progenitors, coupled with lower levels of methylation.  This acetylation mark is 

not however balanced by the presence of a silencing mark, yet it could signify a 

mark within the bipotent cells for future expression of Psmβ11 in cTECs (Figure 3.25 

C). 

 

For the immature mTECs, there was little change to the three methyl marks, yet a 

dramatic 16.7-fold fall in H4K8ac at the Psmβ11 promoter resulting in a distribution 

of marks akin to those seen for Spt1, which is surprising as this gene is silent within 

the mTEC lineage.  Continuation to fully mature mTECs again reveals unexpected 

results for Psmβ11, with a prevalence of H3K4me3, a mark usually associated with 

active gene transcription, resulting in a distribution of marks similar to that seen in 

this cell population for the ubiquitously-expressed Gapdh.  Finally, for mature 

cTECs, where Psmβ11 is expressed exclusively, a high level of H4K8ac was 

observed which, although lower than the level of this mark in the progenitor 

population, represents one of the highest of the modifications in the cTECs, matched 

only by H3K9me2.  This predominance of H4K8ac is not observed in the mTECs 

and may therefore be responsible for the active status of this gene in cTECs.  

Interestingly, there was also an enrichment of H3K9me2, as observed for the genes 

which are silent within mature cTECs, however, for the TRA, with the exception of 

Csn1s1, the level of H3K9me2 is significantly higher than all other marks, whereas 
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for Psmβ11, this is not the case due to the elevated amounts of the active 

acetylation mark. 

 

3.5. EXAMINATION OF THE DISTRIBUTION OF HISTONE MODIFICATIONS ACROSS TISSUE-

RESTRICTED ANTIGENS WITHIN FOXN1-DEFICIENT NUDE THYMIC EPITHELIAL CELLS 

 

To more thoroughly assess the role histone modifications play in PGE, we used 

CChIP to analyse the epigenetic status of TRA when thymus embryogenesis is 

disrupted.  For this we turned to the athymic nude mouse model which is deficient in 

the forkhead transcription factor FoxN1.  FoxN1 is required in a cell-autonomous 

fashion for initial TEC differentiation (Jenkinson et al. 2008; Chen et al. 2009).  These 

mice present with a non-functional cystic thymic rudiment due to the block in normal 

TEC development at an early stage (Blackburn et al. 1996; Anderson and Jenkinson 

2001; Jenkinson et al. 2008).  Interestingly however, FoxN1 does not appear to be 

required for the preliminary stages of thymic organogenesis, in particular the initial 

colonisation and growth of bipotent thymic epithelial progenitors (Anderson and 

Jenkinson 2001; Jenkinson et al. 2008).  It is the subsequent differentiation of these 

progenitor cells into cortical or medullary lineages that is stalled due to the lack of 

FoxN1 (Anderson et al. 2007; Jenkinson et al. 2008).  We therefore sought to 

analyse the pattern of histone modifications across Spt1, Spt2 and Csn1s1 within 

these TEC progenitors from foetal FoxN1-deficient BALB/c nude (Nu/Nu) mice.  The 

development of these FoxN1-deficient nude TEC is blocked and hence expression of 

these genes will not occur.  Comparisons back to the results already obtained in 

bipotent TEC progenitor cells from normal mice, would highlight whether the nude 
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TEC progenitor equivalents lose the predictive pattern of histone modifications.  We 

also chose to examine the housekeeping gene Gapdh, whose expression is 

ubiquitous in the nude cell populations, the non-AIRE-regulated gene Skint1 whose 

expression pattern correlates with TRA, and the cTEC-specific Psmβ11.  The silent 

nature of Spt1, Spt2, Csn1s1, Skint1 and Psmβ11 within the FoxN1-deficient nude 

TEC was first confirmed through expression analysis from FACS sorted nude cells 

(Figure 3.26).  Again, the cell yields following FACS of FoxN1-deficient nude TEC are 

very low and therefore in order to assay histone modifications in this rare population 

of cells, CChIP was required. 

 

3.5.1. Pattern of Histone Modifications for Salivary Protein-1, Salivary Protein-2 

and Casein-α within FoxN1-Deficient Nude Thymic Epithelial Cells 

To allow for comparisons with the distribution of modifications in the equivalent wild-

type bipotent TEC progenitors and also mature cTECs, where these genes are 

silenced, FoxN1-deficient nude TEC results are displayed alongside those from the 

wild-type cells in Figures 3.27 and 3.28.  FoxN1-deficient nude TEC, which lack the 

capacity to express TRA, are marked by divergent histone modifications that differ 

greatly from the equivalent wild-type cells.  Also evident are the distinct variations 

between the gene regions analysed, with each gene responding in an individual way 

to the change in cell fate.  However, some commonalities do present themselves 

such as the predominance of H4K8ac within the nude cells and the correspondingly 

lower levels of H3K4me3 and H3K27me3. 



Expression profile of AIRE-regulated tissue-restricted antigens and control 
genes in athymic FoxN1-deficient nude mice.  Foetal thymic organ culture was 
employed, followed by FACS to isolate Mus musculus EpCAM1+ FoxN1-deficient 
TEC and real-time quantitative PCR was used to compare the relative mRNA 
expression levels of AIRE and three tissue-restricted antigens; casein-α (Csn1s1); 
salivary protein-1 (Spt1); and salivary protein-2 (Spt2), in addition to the mTEC-
specific selection and upkeep of intraepithelial T-cells 1 (Skint1) and the cTEC-
specific proteasome subunit β-type 11 (Psmβ11) as indicated.  For comparison, 
expression levels of these genes within normal bipotent TEC progenitors, mTECs 
and cTECs are displayed.  Data was normalised to β-actin expression levels as 
standard.  Data are the mean ±SEM from technical triplicate reactions, and are 
representative of at least two distinct cDNA preparations.

Figure 3.26 – The Epigenetic Patterning of FoxN1-Deficient Nude Thymic 
Epithelial Cells: Expression of the Autoimmune Regulator and Tissue-
Restricted Antigens upon Disruption of Normal TEC Development
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Comparisons between the bipotent TEC progenitors and the equivalent cells within 

the nude mice across Spt1, revealed an exciting shift in the histone modifications.  

Where the wild-type bipotent TEC progenitors showed a clear bivalency at the 

promoter region of Spt1 (Figure 3.27 B), with equally high levels of H3K4me3 and 

H3K27me3, enrichment of these modifications was much lower in the nude 

population.  Instead, these cells displayed a predominance of H4K8ac and the 

silencing modification H3K9me2.  For the Spt1 coding region (Figure 3.27 C), a 

different pattern of histone marks was seen for the nude mouse cells, with a very 

high level of acetylation at H4K8; at an intensity approximately 2-fold greater than 

the normal progenitors, along with an almost total loss of H3K4me3 and low levels of 

H3K27me3 and H3K9me2.  However, what was common for both the promoter and 

coding region of Spt1 was the subordinance of the bivalent marks in the nude cells.  

These alterations to the histone modifications across Spt1, a gene which could 

potentially be up-regulated in the wild-type cells, but whose expression will never 

occur within the nude mice, were especially exciting as they were more akin to those 

seen in wild-type mature cTECs, where Spt1 is also off (displayed in Figure 3.27 as 

indicated).  This trend is possibly indicative of the fact that Spt1 is more permanently 

silenced in the nude mice due to their halted differentiation.  However, one 

noticeable discrepancy is that the significant enrichment of H3K9me2 seen for the 

mature cTECs is not observed to the same extent in the nude mice, and this may be 

a result of the stunted developmental programme of these cells.  FoxN1-deficient 

nude TEC are fundamentally representative of the undifferentiated bipotent TEC 

progenitors, however, they are effectively ‘in limbo’ as no further differentiation will 





Figure 3.27 – The Epigenetic Patterning of FoxN1-Deficient Nude Thymic 
Epithelial Cells: Quantitation of the Relative Levels of Histone Modifications 
across Tissue-Restricted Antigens upon Disruption of Normal TEC 
Development
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occur.  These cells may therefore retain the acetylation mark, keeping the chromatin 

open at these gene regions, should the developmental pathway continue. 

 

For the promoter region of Spt2 (Figure 3.27 D), the nude bipotent TEC progenitor 

cells again show an altered distribution of marks to the wild-type progenitor cells.  In 

comparison to the normal progenitors, nude cells displayed a reduction of the active 

histone modification H3K4me3, an approximate 3–fold decrease in H4K8ac and 

H3K9me2, but maintenance of the level of H3K27me3.  Thus when the TEC 

developmental pathway is disrupted, a locus-wide depression of acetylation and 

methylation was observed, which, unlike for Spt1, does not reflect the epigenetic 

status of mature cTECs. 

 

The pattern of histone modifications for Csn1s1 (Figure 3.27 E) in the FoxN1-

deficient population, also varied from that seen in the wild-type progenitors.  Despite 

no change to the overall amounts of the active marks H4K8ac and H3K4me3, the 

level of H3K27me3 was 4.6-fold lower in the nude cells, coupled with a small 

increase in the level of H3K9me2.  This resulted in a distribution of histone 

modifications similar to those seen across Spt1 in the nude TEC population (Figure 

3.27 B and C), and also within the mature cTECs for other TRA.  This pattern was 

not however, observed for the mature cTECs at the Csn1s1 promoter region, which 

in fact more closely resembles the pattern at the coding region of Spt1 (Figure 3.27 

C) for the nude mice cells, with high H4K8ac and low methylation. 

 



 168

The observed differences between the histone modifications across wild-type 

bipotent and FoxN1-deficient TEC progenitors for three genes under the 

transcriptional control of AIRE, shows how significant these marks are as indicators 

of future transcription.  With the loss of FoxN1, the TEC developmental pathway is 

blocked prior to the critical lineage choice of the progenitor cells into either AIRE- 

cortical or AIRE+ medullary TECs and thus the programme of transcription of these 

TRA is also halted.  These genes will never be expressed, as the nude cells cannot 

progress through to mature mTECs.  From our results it would appear that the future 

of these genes is reflected in the chromatin, with the alterations to the histone marks 

within the nude mice often showing similarities to mature cTECs where the genes 

are most definitely off.  Yet despite this, nude cells do not mirror cTECs entirely, 

showing instead consistently high H4K8ac levels.  This retention of acetylation is 

interesting and possibly suggests a ‘memory’ of the normal programme of 

development, marking these genes for potential expression should normal 

differentiation resume, even though it never will.  The genes are therefore not shut 

down totally, as in the mature cTECs, hence the differences observed between the 

two populations. 

 

3.5.2. Pattern of Histone Modifications for Glyceraldehyde-3-phosphate, 

Selection and Upkeep of Intraepithelial T-cells 1 and Proteasome Subunit β-

Type 11 within FoxN1-Deficient Nude Thymic Epithelial Cells 

When the histone modifications across the three control genes Gapdh, Skint1 and 

Psmβ11 were analysed, we again observed divergence from the wild-type (Figure 

3.28).  This was particularly interesting considering the unchanged active status of 





Figure 3.28 – The Epigenetic Patterning of FoxN1-Deficient Nude Thymic 
Epithelial Cells: Quantitation of the Relative Levels of Histone Modifications 
across Glyceraldehyde-3-phosphate Dehydrogenase, Selection and 
Upkeep of Intraepithelial T-Cells 1 and Proteasome Subunit β-Type 11 Upon 
Disruption of Normal TEC Development
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Gapdh within the nude cells.  In addition, noticeable contrasts between the findings 

for the TRA Spt1, Spt2 and Csn1s1 and the control genes arose.  For Gapdh, (Figure 

3.28 B) we observed a shift in the histone modifications in the nude cells in 

comparison to the equivalent bipotent TEC progenitors, however the predominance 

of H3K4me3 points to the active status of this gene within the nude cells.  Thus it is 

clear that even the epigenetic status of a ubiquitously-expressed gene is affected by 

the loss of FoxN1. 

 

For the promoter region of the non-AIRE-regulated Skint1 (Figure 3.28 C), the nude 

bipotent TEC progenitor population again showed a remarkable re-distribution of 

marks from the equivalent wild-type cells.  The most obvious change was the 

significant gain in acetylation at H4K8; a trend which has been consistent for the 

majority of genes analysed thus far in the nude cells.  The overall arrangement of 

the three methylation marks (H3K4me3, H3K27me3 and H3K9me2) for Skint1 in the 

nude progenitor cells does not differ greatly from the wild-type, thus the resultant 

distribution of all four modifications surprisingly reflects those seen for Spt1(c) and 

Csn1s1 in nude cells (Figure 3.27 C and E).  Comparisons between Skint1 in nude 

cells and normal mature cTECs showed little correlation, with the significant 

enrichment of H3K9me2 detected in the cTECs, not observed in the nude 

population. 

 

For the FoxN1-deficient nude TEC, the cTEC-specific Psmβ11 promoter (Figure 

3.28 D) is marked with much lower levels of H4K8ac when compared to the wild-

type progenitor population, which was surprising as for the majority of genes 
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analysed, levels of acetylation have generally shown an increase in the nude cells.  

What is also apparent is the almost total loss of H3K4me3 and H3K27me3, resulting 

in an arrangement of modifications similar to that seen for the nude cells at the 

promoter region of Spt1 (Figure 3.27 B), where low levels of these marks were 

detected along with comparatively higher levels of H4K8ac and H3K9me2.  In 

comparison with the mature cTECs, where Psmβ11 is switched on, we observed 

lower levels of the two active marks H4K8ac and H3K4me3, however the patterns 

seemed to resemble each other, despite the contrasting activities of this gene within 

these two populations. 

 

Together, these findings seem to indicate a default epigenetic patterning in the 

FoxN1-deficient nude TECs, with a predominance of acetylation coupled with a 

depletion of H3K4me3 and H3K27me3, which may reflect the blocked differentiation 

programme in these cells. 
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4. DISCUSSION 

 

The discovery of the transcriptional regulator, AIRE, arguably represents one of the 

most significant milestones in T-cell biology in the past decade.  Its finding 

reintroduced the concept of central tolerance as a major force in the education of the 

T-cell repertoire, highlighting this protein’s essential role in the prevention of 

autoimmunity.  Since the identification of AIRE, many groups set out to characterise 

this protein and its importance in T-cell development, and to date much is known; 

about AIRE’s pattern of expression within thymic stromal cells of the medulla; of the 

ever-increasing list of pathological mutations; genes under the transcriptional control 

of AIRE; and the proteins with which AIRE has shown an interaction with in the 

nucleus (Pitkanen et al. 2000; Derbinski et al. 2001; Anderson et al. 2002; Pitkanen 

et al. 2005; Rossi et al. 2007; Ruan et al. 2007; Koh et al. 2008; Org et al. 2008).  

However, the way in which AIRE functions at a molecular level in the control of 

promiscuous gene expression remains elusive.  We have now demonstrated that 

AIRE is able to bind its individual target genes, triggering a cascade of post-

translational histone modifications, leading to the up-regulation of the loci. 

 

4.1. AIRE FUNCTIONS AS A TRANSCRIPTIONAL REGULATOR IN RETROVIRALLY-

TRANSFECTED TEP AND 3T3 CELLS 

 

Within the thymus, AIRE is limited to a small subset of CD80+ mTECs, making large-

scale analysis of the epigenetic status of tissue-restricted antigens under the 

transcriptional control of AIRE particularly challenging.  Thus, in order to mimic the in 
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vivo situation, we employed a Mus musculus thymic epithelial (TEP) cell model 

system, transfected with MIg virus bicistronic constructs containing both AIRE and 

GFP (TEP-AIRE), or GFP alone as a control (TEP-GFP).  Although induction of AIRE 

in mTECs and its over-expression within a primary mTEC-derived 1C6 cell line is 

reported to lead to apoptosis, we were able to maintain our TEP lines indefinitely, 

with no loss of either AIRE or TRA expression (Gray et al. 2007).  Our data revealed 

that AIRE was able to up-regulate a number of previously identified TRA; casein-α 

(Csn1s1), and salivary protein-1 and -2 (Spt1, Spt2), whose expression was either 

not detected or at a very low level in the control line, with no corresponding impact on 

housekeeping genes (Anderson et al. 2002).  Stable transfection of a non-thymic 3T3 

fibroblast line with MIg-AIRE-GFP also reliably reproduced PGE, suggesting that 

AIRE is able to exert its action regardless of the cellular environment, which has 

been demonstrated in a number of alternative cell lines previously, such as African 

Green Monkey SV40-transfected kidney fibroblast (COS7) cells, human embryonic 

kidney (HEK293) cells, pancreatic islet β cells, rhabdomyosarcoma (RD) cells and 

human leukemic monocyte lymphoma (U937) cells (Halonen et al. 2001; Pitkanen et 

al. 2001; Halonen et al. 2004; Pitkanen et al. 2005; Guerau-de-Arellano et al. 2008; 

Org et al. 2008; Org et al. 2009).  However, what we did find was that the expression 

of TRA within the 3T3 line was at a much lower intensity than that within the TEP 

line, thus it would appear that, although the presence of AIRE alone is sufficient for 

the initiation of PGE, its optimum transcriptional potential is only reached within a 

thymic epithelial background.  This observation could also be due to an alternative 

repertoire of genes under the transcriptional control of AIRE within different cell 

populations, which has been previously reported (Gardner et al. 2008; Guerau-de-
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Arellano et al. 2008; Org et al. 2009).  Guerau-de-Arellano et al (2008) showed 

through transfection of a non-thymic, unrelated epithelial cell line; pancreatic islet β 

cells, that AIRE’s general mode of transcriptional regulation can be replicated in 

tissues other than mTECs, as we saw with the 3T3 line, but that the cellular 

environment and underlying programme of gene expression ultimately defines which 

genes will be influenced by AIRE (Guerau-de-Arellano et al. 2008).  Gardner et al 

(2008) then went on to show that the same is true in vivo, with mTECs and extra-

thymic AIRE-expressing cells within secondary lymphoid organs expressing distinct 

catalogues of TRA (Gardner et al. 2008).  However, this group noted that both the 

total number of genes and fold-change of expression were much greater in mTECs 

than in the periphery (Gardner et al. 2008).  Thus it would appear that cellular 

environmental cues have a major impact upon the plethora of genes regulated by 

AIRE.  Our TEP line efficiently expressed the TRA; Csn1s1, Spt1 and Spt2, all of 

which are also detected in CD80+AIRE+ mTECs in the thymus and was therefore an 

ideal system for modelling AIRE’s mechanism of action within mTECs in vivo 

(Anderson et al. 2002). 

 

4.2. AIRE INDUCES THE ENRICHMENT OF ACTIVE HISTONE MODIFICATIONS ACROSS 

INDIVIDUAL TISSUE-RESTRICTED ANTIGENS 

 

The development of native chromatin immunoprecipitation (NChIP), which takes 

advantage of unfixed chromatin to maximise the efficiency and resolution of analysis, 

has allowed thorough investigation into the distribution of post-translational histone 

modifications across the genome (O'Neill and Turner 2003).  Through the application 
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of NChIP to the TEP model system, we have assayed eight key histone 

modifications, which have demonstrated dynamic roles in transcriptional activation 

and repression.  We found that in the absence of AIRE, individual TRA; Csn1s1, Spt1 

and Spt2, were marked with a relatively consistent pattern of modifications (Figure 

4.1).  In general, the TEP-GFP cells displayed low levels of the archetypal active 

marks, and correspondingly higher levels of silent marks across these non-expressed 

TRA.  In particular, a set pattern of H3K4 methylation was observed in the TEP-GFP 

population, which conformed to a preferential me2 > me1 > me3 distribution, the very 

low levels of H3K4me3 reflecting the silent nature of these genes.  Although 

H3K4me1 and H3K4me3 were depleted in the TEP-GFP cells at TRA, marks which 

are typically found in active genes, H3K4me2 was often enriched, however the 

relationship between H3K4me2 levels and transcription is less well defined and its 

presence within silenced genes has been noted (Orford, et al. 2008).   We 

observed a depletion of H3K9 acetylation across all TRA in the absence of AIRE 

(Figure 4.1), again correlating with their inactive status, and this modification has 

been found specifically within active genes at ‘acetylation islands’, in combination 

with H3K14ac (Roh et al. 2005).  Yet acetylation was not absent in the TEP-GFP 

population at these loci, with fluctuating levels of enrichment detected for acetyl H4 

(Figure 4.1), which is in agreement with previous studies showing that the impact of 

H4K16 and K8 acetylation on the genome is not linked to the control of ongoing 

transcription, but may instead define euchromatic genes as a mark of potential 

expression (O'Neill and Turner 1995; Johnson et al. 1998).  In nucleosomal arrays, 

H4K16ac has been shown to relax the chromatin structure and hence may prime the 

genes for transcription (Luger et al. 1997; Shogren-Knaak et al. 2006).  This may be 



Establishment of the typical epigenetic marking of AIRE-regulated tissue-restricted 
antigens (TRA) in Mus musculus thymic epithelial (TEP) cell lines.  Through 
native chromatin immunoprecipitation, levels of histone modifications at the TRA 
casein-α and salivary protein-1 and -2 were determined.  A relatively stable pattern 
of modifications was observed in the absence of AIRE (TEP-GFP) where these 
genes are silent, with low levels of the archetypal active marks H3K4me3 and 
H3K9ac in combination with higher levels of the silencing marks H3K9me2 and 
H3K27me3.  In the presence of AIRE (TEP-AIRE), TRA were actively transcribed, 
thus concordant rises in the active marks; H3K4 methylation, H3K9ac were 
observed along with a maintenance of H3K27me3, possibly allowing for shut 
down of the genes after transcription.  Although H4 acetylation was present in 
the control cells, upon AIRE-induced gene activation these marks were seen to 
increase.

Figure 4.1 – Model for the Epigenetic Patterning of Tissue-Restricted 
Antigens under the Transcriptional Control of AIRE in Thymic Epithelial 
Cell Lines
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a feature of the TEP background as these genes would never ordinarily be 

expressed outside of their tissue-restricted niche, however within the thymus, they 

have the potential to be transcribed in the presence of AIRE.  The predominant mark 

within TEP-GFP cells was the archetypal silencing modification H3K27me3 (Figure 

4.1), which has been shown to be essential in the repression of developmental 

homeobox (Hox) genes in Drosophila melanogaster, through interactions with 

Polycomb group proteins (PcG), thus its localisation at TRA is indicative of their off 

state and possibly implicates PcG complexes in the silencing of these genes (Breiling 

et al. 2004; Schwartz and Pirrotta 2007; Henikoff 2008).  This was further confirmed 

through our analysis of the binding status of PcG proteins; the H3K27me-specific 

methyltransferase KMT6/Ezh2 and its co-factor Eed at the Spt1 and Spt2 promoters, 

via conventional formaldehyde cross-linked XChIP, showing detectable levels of 

these proteins in TEP-GFP cells.  We also identified the presence of the alternative 

silencing modification H3K9me2 (Figure 4.1), albeit at lower levels that those of 

H3K27me3, suggesting a dominance of PcG-mediated silencing mechanisms in the 

TEP cell line. 

 

The observed distributions of histone modifications in the control TEP-GFP 

population reflect the silent nature of TRA in these cells, and their relatively static 

levels are indicative of a locus-specific chromatin signature, patterning each gene 

with a background of epigenetic signals which could denote these tissue-specific 

genes, acting as a post-code, facilitating the recruitment of AIRE.  Recently, the first 

PHD finger of AIRE has demonstrated the potential to interact with un-modified H3K4 

(me0), an association which was lost upon methylation of this residue (Koh et al. 
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2008; Org et al. 2008; Chignola et al. 2009).  However, from our results, we can 

conclude that the presence of methylation at H3K4 at TRA does not impede AIRE’s 

actions, as detectable levels of me1, me2 and me3 are found across Csn1s1, Spt1 

and Spt2 in the absence of AIRE and that despite this, AIRE is still recruited and 

these genes are switched on, although this does result in substantial increases in 

methylation at this residue.  One possible explanation for these contrasting findings 

could be the different cell lines and techniques utilised for each study, the majority of 

previous work being carried out in HEK293 cells and through in vitro biochemical 

analysis (Koh et al. 2008; Org et al. 2008; Chignola et al. 2009).  Given our 

observation that AIRE’s function is influenced significantly by the cellular background 

within which it is operating, it may be that the different model systems employed 

could account for the discrepancies.  HEK293 cells are an epithelial line derived from 

human embryonic kidney and their continued use as a model system, enabling the 

study of AIRE’s mechanism of action, has provided valuable insight into how AIRE 

functions, however many inconsistencies have also arisen in terms of AIRE’s 

localisation, showing cytoplasmic distributions alongside the in vivo punctate nuclear 

staining, and to the catalogue of genes AIRE influences (Halonen et al. 2001; 

Pitkanen et al. 2005; Org et al. 2008; Org et al. 2009).  We observed similar 

differences with our 3T3 line which, although sorted for 100% transfection efficiency, 

expressed AIRE and the two salivary proteins at a much lower efficiency that the 

TEP line.  Thus as a representation of AIRE activity within its primary niche, 

retrovirally transfected TEP cells are more reliable for the epigenetic analysis of TRA.  

Alternatively, AIRE may require the combinational patterns of histone modifications 

we observed for its recruitment, reading the chromatin environment at its target 
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genes and identifying where in the genome it should bind.  Due to the regular 

spacing of nucleosomes, there will be many copies of each histone protein across a 

single gene and therefore H3K4me0 may serve as a docking site for AIRE, but could 

function in combination with the modified histones we observed to facilitate AIRE’s 

transcriptional activity.  Un-modified H3K4 could be located adjacent to methylated 

H3K4 on a neighbouring histone or nucleosome, providing a crosstalk.  In support of 

this hypothesis, one group noted, through the use of in vitro peptide binding assays, 

that di-methylation of H3R2 abrogated AIRE’s potential to bind H3K4me0 (Chignola 

et al. 2009).  However, the complex language of chromatin, including the enormous 

plethora of post-translational histone modifications and the vast network of histone-

modifying enzymes, is difficult to replicate with in vitro arrays, hence the true impact 

of histone modifications on AIRE-regulated expression can only really be modelled 

through native ChIP analysis of unfixed chromatin in a TEC-like cell line. 

 

In the presence of AIRE we observed highly dynamic chromatin reorganisation with 

dramatic changes to the distribution of histone modifications across the TRA Csn1s1, 

Spt1 and Spt2, signifying the change in transcriptional status of each loci (Figure 

4.1).  The most striking transformations were to the active histone marks, always 

resulting in significantly higher levels of enrichment in the TEP-AIRE cells.  For the 

majority of loci we observed a shift in the balance of H3K4 methylation for the TEP-

AIRE population.  While the background levels of H3K4 methylation were 

predominantly di-methyl, in the TEP-AIRE cells tri-methylation dominated; a mark 

which is found to peak at the promoters of active genes (Barski et al. 2007).  All three 

forms of H3K4 methylation were shown to increase in the presence of AIRE, linking 
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their enrichment to the induction of active transcription.  Through XChIP analysis, we 

observed heightened levels of the H3K4 methyltransferase KMT2A/MLL1 bound to 

the promoters of Spt1 and Spt2 in the presence of AIRE, which could account for the 

increases in H3K4 methylation across TRA.  AIRE also impacts considerably on 

histone acetylation.  Given the near depletion of H3K9ac in the control cells, AIRE-

induced up-regulation of the loci leads to its enrichment in TEP-AIRE cells, in line 

with work showing heightened levels of this modification upon gene activation (Roh 

et al. 2005; Wang et al. 2008).  Furthermore, despite the presence of H4K8ac and 

H4K16ac in the TEP-GFP population, these marks also intensify in the presence of 

AIRE and these modifications are frequently found localised to active loci (Barski et 

al. 2007; Kouzarides 2007).  Interestingly, the activation of the loci did not result in 

dramatic reductions in the silencing modifications H3K27me3 and H3K9me2 from the 

control TEP-GFP cells (Figure 4.1).  However, from our XChIP analysis of the binding 

status of PcG proteins at Spt1 and Spt2, enrichments of KMT6/Ezh2 and Eed were 

observed in the presence of AIRE, which may account for the maintenance of 

H3K27me3 in the TEP-AIRE cells.  The presence of inactive modifications in active 

gene regions has regularly been reported and may point to a system put in place to 

regulate expression, allowing for the shutdown of the loci after transcription (Vakoc et 

al. 2005; Squazzo et al. 2006; Vakoc et al. 2006; Barski et al. 2007; Kouzarides 

2007; Shilatifard 2008).  The marks may also prevent over-expression by AIRE due 

to a lack of normal cellular signalling pathways which would ordinarily operate to 

regulate transcription within each TRA’s natural peripheral environment. 
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Together, these results show that AIRE is able to induce major alterations to the 

distribution of histone modifications across individual TRA.  Active acetylation and 

methylation marks increase significantly from the background signature of 

modifications patterning these genes in the absence of AIRE, whereas silent marks 

often remain unchanged.  Yet these changes are subtly different between TRA, 

which may account for the altering levels of expression of these genes. 

 

4.3. AIRE’S TRANSCRIPTIONAL CONTROL OF A CLUSTER OF GENES INVOLVES DOMAIN-

WIDE ALTERATIONS TO HISTONE MODIFICATIONS 

 

As a transcriptional regulator, AIRE must presumably bind each target gene, or a 

regulatory region of DNA to either activate or repress the loci.  Yet AIRE is faced with 

a number of complexities as it not only controls the expression of many thousands of 

target genes, they are distributed randomly across all chromosomes (Gotter et al. 

2004).  However, the finding that many of these loci are clustered along the 

chromosome arms, points to a more domain-wide regulation by AIRE (Derbinski et al. 

2005; Johnnidis et al. 2005).  Although our Western blot analysis and 

immunofluorescence of metaphase chromosome spreads indicated that AIRE does 

not exert its transcriptional activity through genome-wide acetylation or methylation, 

our observation of AIRE-induced increases in H3K4 methylation and H3 and H4 

acetylation across the housekeeping gene glyceraldehyde-3-phosphate 

dehydrogenase (Gapdh), with no change to the transcription levels, may support this 

theory; suggesting a general deposition of H3K4 methylation, mediated by AIRE.  

Our analysis of a cluster of genes which show differential expression profiles in the 
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presence and absence of AIRE, does however suggest that AIRE may influence the 

distribution of certain histone modifications in a domain-wide manner. 

 

Previous analysis into AIRE’s control of transcription showed fluctuating levels of 

output from each target gene and that those located in clusters did not respond 

equally, often with neighbouring genes acting in opposing ways (Gotter et al. 2004; 

Derbinski et al. 2005; Johnnidis et al. 2005).  Preliminary studies by Johnnidis et al 

(2005) into the clustering of AIRE-regulated genes, demonstrated that one such 

cluster on Mus musculus chromosome 15 contained three genes which were 

differentially regulated by AIRE (Johnnidis et al. 2005).  They found that keratin 4 

increased in expression, while keratin 18 and eukaryotic translation initiation factor 

4b (Eif4b) showed a decrease in the presence of AIRE (Johnnidis et al. 2005).  We 

extended these studies, to cover the entire keratin cluster, which actually 

encompasses five keratin genes (Krt4, Krt79, Krt78, Krt8 and Krt18), and three 

further genes (Eif4b, tensin-like C1 domain-containing phosphatase (Tenc1) and 

SPRY domain-containing 3 (Spryd3)) within a 217kbp region.  We instead found that 

AIRE exerted a positive influence over all genes, with the exception of keratin 18, 

which did not appear to be affected by AIRE as approximately equal transcript levels 

were detected in TEP-AIRE and TEP-GFP cells.  Our method of analysis and model 

system differed from those of the original study, which may explain the observed 

discrepancies.  While Johnnidis et al (2005) opted for a large-scale bioinformatic 

analysis of published microarray data on medullary RNA transcripts from AIRE-

deficient versus wild-type mice, we performed quantitative real-time PCR (qPCR) 

with our TEP cell lines (Johnnidis et al. 2005).  Validation of the expression of each 
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individual gene following microarray is an arduous and unrealistic task, however, 

qPCR is often a more reliable representation of the true situation, which is why we 

chose to analyse the transcriptional profile across the entire cluster using this 

technique.  The ectopic expression of AIRE-regulated genes within the thymus is 

known to occur at considerably lower levels when compared to their expression in 

the relevant peripheral tissues, hence any fluctuations in transcript levels will also be 

small, and could be lost or misinterpreted following genome-wide analyses (Johnnidis 

et al. 2005).  In addition, as mentioned previously, certain variation can arise 

between different cell types, we therefore wanted to verify the situation in our TEP 

model system. 

 

Through the use of NChIP we were able to, for the first time, assay the distribution of 

histone modifications across each of the genes in the AIRE-regulated keratin cluster, 

in addition to the intergenic regions between the loci.  This gave us a thorough 

analysis of how AIRE influences transcription on a broader scale.  Our results 

provide a direct demonstration that AIRE is able to modulate histone modifications, 

impacting on each individual mark in a distinct way (Figure 4.2).  In general, AIRE-

induced up-regulation of the keratin cluster genes resulted in heightened levels of 

active methylation and acetylation marks, with broad domains of these modifications 

occurring across all genetic regions of the cluster, often irrespective of the ultimate 

level of expression when compared to the basal levels in TEP-GFP cells (Figure 4.2 

A, B).  However, we also observed domains of certain modifications in the control 

cells, reflecting the expression profile of the genes, particularly in the 3` end of the 

cluster where active transcription is occurring.  In particular, TEP-GFP cells harbour 



The impact of AIRE on domain-wide distributions of histone modifications across a 
cluster of AIRE-regulated genes in Mus musculus thymic epithelial (TEP) cell lines.  
Through native chromatin immunoprecipitation, levels of histone modifications 
across the keratin cluster on Mus musculus chromosome 15 were determined.  
Histone modifications investigated included; A, H3K4 methylation (me1, me2, 
me3), B, H3K9, H4K8 and H4K16 acetylation, and C, silencing modifications 
H3K9me2 and H3K27me3.  In the absence of AIRE, genes in the keratin cluster 
showing active expression in TEP-GFP cells were typically marked with peaks 
of the archetypal active modifications H3K4me3 and H3K9ac.  This pattern was 
mirrored in the presence of AIRE, suggesting AIRE has limited influence over 
these marks.  Mono-and di-methylation of H4 however were consistently higher 
in TEP-AIRE cells.  In the presence of AIRE, H4 acetylation occurred in a blanket 
across the cluster, not seen in the active genes in the TEP-GFP cells, suggestive 
of a role for AIRE in the enrichment of these marks.  Silencing modifications were 
seen to peak across silent genes in TEP-GFP cells, however, this patterning was 
not lost in the presence of AIRE despite active gene expression, although overall 
levels were reduced.  Peaks of H3K9me2 were introduced in the TEP-AIRE cells 
at active genes across the cluster and AIRE may play a role in their deposition.

Figure 4.2 – Model for the Domain-Wide Epigenetic Patterning of a Cluster 
of AIRE-Regulated Genes in Thymic Epithelial Cell Lines
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increased levels of the two classical active marks H3K4me3 and H3K9ac at the 

promoters of active genes (Figure 4.2 A, B) (Roh et al. 2005; Shilatifard 2008).  

Interestingly, the enrichment levels of these two histone modifications, show little 

change at these genes in the presence of AIRE, when active expression is occurring 

in both cell populations, despite the approximate 4-fold increases in expression in the 

TEP-AIRE cells.  This may suggest that AIRE does not impact significantly on these 

modifications, and that their presence within the transcriptionally active genes merely 

reflects their active status in both the presence and absence of AIRE.  In contrast, 

some modifications show major changes in response to AIRE (Figure 4.2).  For 

example, AIRE appears to modulate acetylation of H4K8 and H4K16, which both 

appear to show little correlation with transcriptional activity in the control cells in that 

only minor enrichments were observed in the active 3` genes.  Although a small 

domain-wide increase in H4K8ac was observed for the actively-expressed genes and 

their corresponding intergenic regions in TEP-GFP cells, the intensity at each active 

region is heightened in the presence of AIRE.  This may account for the increased 

levels of transcription for the majority of genes in the TEP-AIRE cells.  The same is 

seen for H4K16ac yet to an even greater extent (Figure 4.2 B).  In the control cells, 

there was no correlation between this modification and the expression profile across 

the cluster, with a consistently low level in both the silent and active loci in TEP-GFP 

cells, however a broad domain of acetylation spread across the entire cluster in the 

presence of AIRE.  This observation is in agreement with the seminal report by 

O’Neill and Turner (1995), who discovered that euchromatic coding regions showing 

ongoing transcriptional activity, did not coincide with induced hyperacetylation, but 

instead H4 acetylation marked large euchromatic domains, distinguishing them from 



 186

the hypoacetylated heterochromatin (O'Neill and Turner 1995).  With this in mind, our 

demonstration of constant background levels of H4 acetylation in TEP-GFP cells and 

AIRE-induced H4 hyperacetylation may suggest a role for AIRE in the direct or 

indirect deposition of these marks.  This may allow an opening of the locus, 

facilitating higher levels of expression across the keratin cluster mediated by AIRE.  

This is particularly interesting considering the co-localisation of AIRE and 

KAT3A/CBP, a ubiquitous transcriptional activator with intrinsic histone and non-

histone acetyltransferase activity, an association shown to enhance AIRE’s 

transactivating potential (Pitkanen et al. 2000; Akiyoshi et al. 2004; Pitkanen et al. 

2005; Ferguson et al. 2007).  Although KAT3A/CBP participates in hundreds of 

different transcriptional programmes, binding transcription factors including members 

of the general transcription machinery such as TFIID, TFIIB and RNA polymerase II, 

its nuclear co-localisation within mTECs has been shown to be specifically 

dependent upon AIRE (Bannister and Kouzarides 1996; Vo and Goodman 2001; 

Ferguson et al. 2007).  Through synchronous AIRE induction by anti-RANK 

stimulation of foetal thymic organ cultures, Ferguson et al (2007) showed that prior to 

the up-regulation of AIRE, KAT3A/CBP remained cytoplasmic, only to translocate to 

the nucleus upon AIRE production, leading to the co-accumulation of AIRE and 

KAT3A/CBP within focal nuclear puncta (Ferguson et al. 2007).  The heightened 

levels of H4 acetylation we see in TEP-AIRE cells across the entire keratin cluster 

may be brought about as a result of this interaction.  Given that depletion of 

KAT3A/CBP suppresses the rate of transcription, as demonstrated for IFNβ gene 

expression, the interaction between AIRE and KAT3A/CBP may facilitate the 



 187

enhanced levels of transcription across the majority of the genes in the cluster (Yie et 

al. 1999). 

 

Our results also imply that AIRE influences the modifications typically associated with 

silent genes; H3K9me2 and H3K27me3 (Figure 4.2 C).  Both of these marks are 

concentrated towards the 5` end of the cluster and are then lost further downstream 

which, in the control cells, correlates perfectly with the expression profile across the 

cluster.  Interestingly, TEP-AIRE cells also show this domain of silencing 

modifications, despite active expression occurring for every gene.  However, while 

TEP-GFP cells show peaks in silent promoters, TEP-AIRE cells show higher levels in 

the 5` intergenic regions.  Further along the cluster, peaks of H3K9me2 do occur, but 

only in the TEP-AIRE cells, specifically at promoter regions thus, whereas the levels 

of H3K9me2 correlate perfectly with the expression profile in the TEP-GFP cells, in 

the presence of AIRE we see a deposition of this mark at actively expressed genes, 

hence it would appear that AIRE is able to manipulate the levels of H3K9me2.  The 

presence of silent marks in active genes is in agreement with our findings for the 

TRA Csn1s1, Spt1 and Spt2 and also with published data, strengthening the idea 

that these marks could be indicative of an internal safety feature for AIRE-regulated 

transcription; preventing aberrant expression (Vakoc et al. 2005; Squazzo et al. 

2006; Vakoc et al. 2006; Kouzarides 2007; Shilatifard 2008).  The fact that the levels 

of these marks fluctuate frequently in the presence and absence of AIRE shows how 

there is no strict rule for the functional outcome of each individual modification, but 

that it is the overall combination of marks that dictates a genes activity. 
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Collectively, these results show that, in its role as a transcriptional regulator, AIRE is 

able to command both subtle and domain-wide changes in the epigenetic status of its 

target genes.  Our data also highlight the significant bearing post-translational 

histone modifications impart upon the control of gene expression and of chromatin in 

general. 

 

4.4. TISSUE-RESTRICTED ANTIGENS ARE MARKED WITH DYNAMIC HISTONE MODIFICATIONS 

WHICH RAPIDLY REARRANGE UPON DIFFERENTIATION THROUGHOUT THE TEC 

DEVELOPMENTAL PATHWAY 

 

The use of cultured cell lines as model systems of the in vivo situation are however 

limited in their application.  In the case of the TEP line, the transfected cells ultimately 

represent the end points of a well established developmental pathway which begins 

in the embryo and continues throughout adulthood, with mature CD80+AIRE+ mTECs 

constantly turning over and replenishing the population (Gray et al. 2007; Ferguson 

et al. 2008).  Although our TEP system replicated AIRE’s role with regards to its 

expression, subcellular localisation, and its control of PGE, we have already 

demonstrated AIRE’s requirement for a thymic cell background to function optimally.  

The perfect scenario would therefore be to look within the embryonic thymus, in the 

cells in which AIRE is expressed in vivo, ideally immediately following AIRE’s up-

regulation, thus giving a snapshot into the epigenetic state of the cells prior to the 

onset of AIRE-induced replicative cell death.  The major steps in the pathway of TEC 

development have recently been uncovered in two influential reports by Rossi et al 

(2006, 2007), showing that cortical and medullary TECs stem from a common 
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bipotent TEC progenitor (Rossi et al. 2006; Rossi et al. 2007).  They also defined an 

additional layer of differentiation, which exists for the mTEC lineage, with mature 

CD80+AIRE+ mTECs passing through an immature CD80-AIRE- phase, only 

completing development upon stimulation with RANK ligand (Rossi et al. 2007).  

These important findings provided an insight into how thymic development is 

controlled; finally resolving the long-standing issue of whether cortical and medullary 

TECs derive from individual stem cell lineages or a single progenitor.  However, this 

work also clarified how and when AIRE is switched on in the thymus, thus offering 

evidence in support of the terminal differentiation model; assuming PGE to be an 

autonomous trait of mTECs, with the number and complexity of genes expressed 

increasing as the cells mature (Farr et al. 2002; Kyewski et al. 2002; Gotter and 

Kyewski 2004; Devoss and Anderson 2007). 

 

Foetal thymic organ culture preserves the three-dimensional architecture of the 

developing thymus, and the phenotype of each stromal cell subset (Jenkinson and 

Anderson 1994).  Thus regular programmes of cell development, in particular that of 

TECs, can occur as normal (Jenkinson and Anderson 1994; Anderson and Jenkinson 

1995; Anderson and Jenkinson 2008).  Through FACS sorting, pure populations of 

each of the four phases in the TEC developmental pathway (bipotent TEC 

progenitors, immature and mature mTECs and mature cTECs) can be isolated.  Due 

to the limited cell numbers in each population, we were unable to analyse the 

distribution of histone modifications across TRA by native ChIP, which requires a 

minimum of 1x107 cells, thus we turned to the novel technique of carrier ChIP, 

developed within our lab for the detailed analysis of small numbers of cells (O'Neill et 
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al. 2006).  This procedure takes advantage of the high efficiency of native ChIP with 

unfixed chromatin and, by reducing wash volumes and keeping losses at each stage 

to a minimum, results in immunoprecipitation recoveries of up to 28%, although the 

number of possible PCR assays is severely limited. 

 

We have successfully employed CChIP to assess the patterns of four histone 

modifications (H4K8ac, H3K4me3, H3K27me3 and H3K9me2) across TRA and 

control genes throughout the four main stages of the embryonic TEC developmental 

pathway (Figure 4.3).  Within the TEC developmental pathway, bipotent TEC 

progenitors essentially represent an undifferentiated population and we therefore 

chose to analyse the bivalent modifications H3K4me3 and H3K27me3, which have 

been shown to prime key developmental genes in pluripotent embryonic stem cells 

for future transcription (Azuara et al. 2006; Bernstein et al. 2006).  Although we 

repeatedly saw a co-localisation of active and silent marks for TRA in the 

undifferentiated cells, this was not always the traditional H3K4me3 / H3K27me3 

bivalency (Figure 4.3).  For example, across Spt1 we observed conventional 

bivalency at the promoter region, however the Spt2 promoter showed a 

predominance of H4K8ac and H3K9me2 and the Csn1s1 promoter displayed an 

H4K8ac / H3K27me3 patterning.  Thus it would appear that the established 

H3K4me3 / H3K27me3 bivalency does not always play an essential role in the 

priming of TRA throughout the TEC developmental pathway, which may be due to 

the more developed nature of these progenitor cells, being bipotent rather than 

pluripotent embryonic stem cells.  However, what is apparent is that these TRA are 

marked with a poised patterning of histone modifications, frequently displaying a 
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combination of an active and a silent mark (Figure 4.3).  The presence of an active 

mark such as H4K8ac or H3K4me3 marking the genes for expression should these 

bipotent TEC progenitors receive signals to differentiate into mTECs, would maintain 

a relaxed chromatin structure to allow for future transcription, whilst the silent marks 

present keep the genes off during development and would enable rapid shutdown of 

the loci upon differentiation into cTECs.  This epigenetic priming is highlighted when 

the distribution of marks are evaluated across the entire developmental pathway, 

particularly when comparisons are made to the mature cTEC population where TRA 

expression is switched off more permanently.  Typically mature cTEC TRA were 

marked with very high levels of H3K9me2, signifying the silent nature of these genes 

in the cortex.  Interestingly, even when H3K27me3 was the predominant silencing 

mark in the bipotent TEC progenitor population, cTECs still presented with higher 

H3K9me2 than H3K27me3, suggesting that H3K9me2 is possibly a stronger 

silencing signal on these genes.  Mature cTECs also showed low levels of H3K4me3 

and H3K27me3 along with moderate H4K8ac and this pattern of modifications was 

repeated in the majority of TRA.  This distribution was also mirrored in the cTECs at 

the mTEC-specific, but AIRE-independent selection and upkeep of intraepithelial T-

cells 1 (Skint1), whose expression profile matches that of the AIRE-regulated TRA.  

This may suggest that this combination of marks is essential for the more permanent 

silencing of these genes in the mature cTECs, possibly reflecting a default or stable 

chromatin state, as opposed to the poised nature of these genes throughout the 

mTEC lineage, hence their more dynamic histone modifications.  This pattern did not 

always follow however, as Csn1s1 was instead marked with high levels of H4K8ac in 

the mature cTEC population (Figure 4.3).  This was interesting given our observation 
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of AIRE-induced domain-wide H4 hyperacetylation and the presence of H4 

acetylation across TRA within the control TEP-GFP cells, indicating that these marks 

show little correlation with active, on-going transcription.  This high H4 acetylation 

could be due to an alternative repertoire of histone acetyltransferases or 

deacetylases at the different loci, leading to diverse turnover rates of acetylation.  

However, what is obvious is that this high H4K8ac is not able to override the 

silencing signals.  This is also reflected in the mTEC lineage where again large and 

highly dynamic chromatin re-organisations are observed as the cells develop (Figure 

4.3).  Typically, upon lineage commitment to immature mTECs, we saw a fall in the 

levels of all four modifications.  But again this was not ubiquitous as Csn1s1 showed 

higher levels of H4K8ac, H3K4me3 and H3K9me2.  This re-distribution of marks 

within the immature mTECs reflects the change in phenotype and development, with 

the TRA epigenetic patterning altering as these genes move one step closer to their 

ultimate expression, despite remaining in a poised state.  Maturation of the cells and 

the initiation of AIRE-induced TRA expression sees further interesting shifts in 

histone modifications, which again are unique for each gene region analysed.  In 

general however, we often recorded increases or maintenance of the levels of the 

active marks H4K8ac and H3K4me3 from the immature mTECs, with only Csn1s1 

showing a decrease in H4K8ac.  We frequently observed increases in H3K27me3 

and H3K9me2, again with the exception of Csn1s1 where H3K9me2 levels fell in the 

mature mTECs.  The presence of the silencing marks within the mTEC lineage and 

bipotent progenitors, and frequent predominance of H3K9me2, may imply a more 

strict regulation of gene expression within the embryo, maintaining a high level of the 

mark across the progenitors and immature mTECs to prevent aberrant gene 
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expression, and within the mature mTECs to allow for rapid shut down of the locus 

when required.  Alternatively, H3K9me2 could be acting as a signal for the 

recruitment of AIRE, marking its target genes as transcriptionally silent and working 

in combination with the active marks present across the loci to permit transcription.  

These findings emphasize how individual genes respond in different ways throughout 

a developmental pathway, supporting the hypothesis that combinations of marks act 

in synergy to direct transcriptional programmes.  Our results have also highlighted 

the importance of in vivo investigations, which could not have been possible without 

the development of the CChIP technique.  We often observed contrasting findings 

between the primary TEC developmental pathway and the TEP model system, for 

example, the clear cut and recurring enrichment of active marks in combination with 

lower levels of silent marks seen in the TEP line, were less obvious across the four 

TEC populations.  Instead, high levels of silencing marks, in particular H3K9me2 

were observed for the majority of TRA across all four cell populations in vivo, often 

predominating over the active marks even when gene expression was occurring.  

Although enrichment of silencing modifications was also seen in the TEP lines in 

active loci, the dominant mark was typically H3K27me3, which may imply a less strict 

regulation of expression within the cell lines. 

 

Interestingly, the control gene Gapdh exhibited fluctuating levels of histone 

modifications, although the common theme throughout each stage of the 

developmental pathway for this gene was the enrichment of active modifications.  

However these were frequently matched by equally high levels of silencing marks as 

observed for the TRA.  In the study by Vakoc et al (2005), which showed H3K9me2 
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and me3, along with HP1γ, within the transcribed regions of active mammalian 

genes, Gapdh was also found to display these marks (Vakoc et al. 2005).  The 

authors concluded that the presence of these silencing modifications at the 

ubiquitously expressed Gapdh, in addition to the increases they observed within 

genes which were up-regulated in their model system, reflected more steady-state 

transcription rates, rather than genes undergoing dynamic fluctuations in expression 

(Vakoc et al. 2005).  They proposed that the specific location of H3K9 methylation 

may determine its functional outcome; associating with transcriptional repressors at 

the promoter region, yet aiding transcriptional elongation within transcribed regions 

(Vakoc et al. 2005).  Our results however, do not support this theory as we observed 

high levels at both the promoter and coding regions of Spt1 throughout all stages of 

the developmental pathway when the gene is both on and off.  Instead our findings 

substantiate this group’s alternative theory of H3K9 methylation, in combination with 

HP1γ, exerting an attenuating effect on elongation by RNA pol II, thus preventing 

aberrant expression (Vakoc et al. 2005). 

 

Analysis of the distribution of modifications across each stage of the TEC 

developmental pathway has allowed an insight into how these marks contribute to 

PGE prior to, and immediately following AIRE’s up-regulation.  In a recent report by 

Org et al (2009), cross-linked ChIP was used to analyse H3K4me3, bulk acetylated 

(Ac)H3 and H3K27me3 in AIRE-transfected and control HEK293 cells, and in CD80-

AIRE- and CD80+AIRE+ mTEC populations (Org et al. 2009).  This group, who also 

reported on AIRE’s ability to bind H3K4me0, showed that in the absence of AIRE 

within cultured cells, the TRA GHR and LPL showed low levels of active marks 
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H3K4me3 and AcH3, which increased in the AIRE-transfected cells, from which they 

concluded that the absence of these marks is a signal for AIRE-recruitment and 

binding to H3K4me0 (Org et al. 2009).  This was not always the case however as 

they also found high levels of H3K4me3 in the AIRE-regulated TRA INV, INS and 

S100A8 in their AIRE-negative control line, which were maintained when AIRE was 

present (Org et al. 2009).  When they looked in vivo in the mouse, they saw low 

levels of H3K4me3 in CD80-AIRE- mTECs across S100a8 and Ins2 in comparison to 

the levels of this mark in the corresponding peripheral tissues, which contrasted with 

their cell line data for these genes (Org et al. 2009).  Upon maturation of the cells to 

CD80+AIRE+ mTECs, levels of H3K4me3 increased for S100a8, but remained low for 

Ins2, again contrasting with the high levels of this mark seen in their HEK293 lines for 

this gene (Org et al. 2009).  They do not address these discrepancies in their report, 

however this is in agreement with our data, showing that histone modifications can 

fluctuate between model systems and between individual genes.  Given that their 

data is generated from non-thymic HEK293 cells, this may account for their 

contrasting findings.  In our observations the two salivary proteins for example 

displayed a substantial decrease in all four modifications we assayed as the cells 

progressed from bipotent TEC progenitors to immature CD80-AIRE- mTECs, levels of 

which then rose as the cells matured.  However, for Csn1s1, we observed a 

contrasting scenario, with high levels of enrichment of H4K8ac, H3K4me3 and 

H3K9me2 in the immature cells, that were either maintained (H3K4me3), or fell 

(H4K8ac and H3K9me2) as AIRE was switched on.  These dynamic fluctuations 

throughout each stage of the TEC developmental pathway were not addressed by 

Org et al (2009) as their analysis did not stretch to the four definable TEC 



 197

populations and their range of marks assayed was limited, therefore our findings offer 

a more comprehensive view of the role of histone modifications in the control of 

promiscuous gene expression in vivo. 

 

Throughout the TEC developmental pathway, we observed considerable changes to 

the distribution of histone modifications at each phase of differentiation that varied for 

every gene analysed, highlighting the dynamic nature of these epigenetic 

phenomena.  Our data suggest that instead of individual marks working as static 

on/off switches, histone modifications act in concert to direct gene expression and 

that combinatorial patterns dictate whether a gene is on or off. 

 

4.5. THE EPIGENETIC PRIMING OF AIRE-REGULATED GENES IS LOST UPON DISRUPTION TO 

THE PATHWAY OF TEC DEVELOPMENT 

 

For the first time, a comprehensive analysis of histone modifications throughout a 

cellular developmental pathway, covering a population of bipotent progenitors, along 

with their two end points of differentiation, has been made possible through the 

application of the novel and complex CChIP technique.  This has allowed an insight 

into the roles these modifications play in priming genes for future expression, in 

addition to the ultimate outcomes when the genes are either expressed or silenced.  

Yet it does not answer the question of whether these marks are essential for 

development.  The only way to address this is to disrupt or block the pathway of 

development and then analyse the distribution of modifications once normal 

differentiation is prevented.  To this end, the athymic nude mouse model which is 
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deficient in the forkhead transcription factor FoxN1, provides an invaluable tool for 

these investigations.  The lack of FoxN1 leads to the generation of a non-functional 

cystic thymic rudiment due to an early block in normal TEC development (Blackburn 

et al. 1996; Anderson and Jenkinson 2001; Jenkinson et al. 2008).  Both medullary 

and cortical lineages cannot develop, however the preliminary stages of thymic 

organogenesis in which bipotent TEC progenitors are generated, does occur 

(Anderson and Jenkinson 2001; Anderson et al. 2007; Chen et al. 2008; Jenkinson et 

al. 2008).  These small numbers of FoxN1-deficient nude TEC, representing the wild-

type bipotent TEC population, were FACS sorted and used subsequently in CChIP to 

analyse the epigenetic status of TRA when normal thymus embryogenesis is 

blocked. 

 

Our investigation into the patterns of histone modifications across the TRA Spt1, 

Spt2 and Csn1s1 within these TEC progenitors from foetal FoxN1-deficient nude 

mice has provided direct evidence for their importance in the establishment of future 

gene expression profiles.  Due to the disruption to FoxN1-deficient nude TEC 

development, these genes lose the potential to be expressed within mature mTECs, 

and this was reflected in the chromatin, with often major shifts in the distribution of 

modifications (Figure 4.4).  While the normal bipotent TEC progenitors occasionally 

displayed a bivalent chromatin signature, not necessarily with the classic bivalent 

marks H3K4me3 and H3K27me3, but a mixture of active and silent marks, the 

FoxN1-deficient nude TEC displayed particularly low levels of H3K4me3 and 

H3K27me3.  Thus it would appear that the nude TEC progenitor equivalents lose the 

pattern of histone modifications set up in the wild-type bipotent TEC population to 



Model of the typical epigenetic marking of AIRE-regulated tissue-restricted 
antigens (TRA) within Mus musculus FoxN1-deficient nude thymic epithelial 
cells (TEC), following disruption to normal TEC development.  The nude mouse 
model, athymic due to a deficiency in the forkhead transcription factor FoxN1, 
can generate FoxN1-deficient TEC progenitors, but medullary and cortical 
TECs cannot develop (Blackburn et al. 1996; Anderson and Jenkinson 2001; 
Anderson et al. 2007; Chen et al. 2008; Jenkinson et al. 2008).  Through carrier 
chromatin immunoprecipitation of FACS sorted primary cell populations from 
foetal thymic organ culture, levels of histone modifications at the TRA casein-α 
and salivary protein-1 and -2 were determined.  Although FoxN1-deficient nude 
TEC represent bipotent TEC progenitors, the poised status of TRA within these 
cells is lost as mTECs can never develop and this was reflected in the chromatin.  
FoxN1-deficient nude TEC were instead marked with a relatively stable pattern of 
modifications, typically with low H3K4me3 and H3K27me3, moderate H3K9me2 
keeping the loci silent and very high H4K8ac, possible representing a ‘memory’ 
of normal development.  This pattern was similar to that seen in mature cTECs 
where the loci are permanently silenced, however the level of H3K9me2 was 
not as high in the nude cells, indicating that the loci may not be switched off as 
strictly.

Figure 4.4 – Model for the Epigenetic Patterning of Tissue-Restricted 
Antigens under the Transcriptional Control of AIRE upon Disruption to the 
TEC Developmental Pathway
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prime the genes for future transcription.  Instead, these cells were marked 

predominantly with high levels of H4K8ac, along with modest H3K9me2 for the 

majority of TRA and control genes (Figure 4.4).  Although subtle differences did 

present themselves between individual genes, what was consistent was the 

significant divergence between the patterns seen in the nude cells when compared to 

the equivalent wild-type cells, suggesting that because of the halt in development, 

these genes are instead marked for an alternative fate of permanent silencing.  In 

support of this, the patterns observed in the FoxN1-deficient nude TEC often 

reflected those seen in mature cTECs, where these genes are off (Figure 4.4).  

However, one major difference distinguishing the nude cells from the cTECs is the 

dominance of H4K8ac over H3K9me2; the mark which was pronounced in the 

cTECs, denoting the silencing of the TRA in these cells.  The retention of a mark of 

active transcription in the nude TEC may represent the preservation of an open 

chromatin structure, as a ‘memory’ of the developmental pathway.  Prior to the block 

in differentiation, these cells could have been ‘unaware’ of their fate, hence beginning 

the process of establishing the epigenetic status of the TRA.  Of the four 

modifications we investigated, H4K8ac may be deposited across these genes early in 

development as a predictive mark, allowing an opening of the domain and preventing 

the formation of repressive heterochromatin across the TRA that would ordinarily be 

expressed further along the differentiation pathway.  It is known that the presence of 

H3K4me3 and H3K27me3 across certain genes in pluripotent embryonic stem cells 

renders them in a poised state (Azuara et al. 2006; Bernstein et al. 2006).  Cui et al 

(2009) have added to this story, showing that those genes which go on to become 

active, losing the repressive H3K27me3 mark, uniquely carried high levels of 
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H3K4me1, H3K9me1, H4K20me1 and RNA pol II in the undifferentiated cells, not 

observed in the genes which subsequently remained silent (Cui et al. 2009).  

Alternatively, Golebiewska et al (2009) have demonstrated that, rather than 

H3K27me3, H3K9me2 in combination with H3K4me3, could play a more dominant 

role in the poising of certain embryonic stem cell genes (Golebiewska et al. 2009).  

They did observe heightened H3K27me3, but not until the first stages of lineage 

commitment had been completed (Golebiewska et al. 2009).  Thus some genes are 

often ‘conscious’ of their futures, which is reflected in their chromatin.  Our findings, 

showing a default epigenetic patterning in the FoxN1-deficient nude TECs with 

enrichment of H4K8ac and low H3K4me3 and H3K27me3 across TRA and the 

control genes Skint1 and proteasome subunit β-type 11 (Psmβ11), may also 

represent a ‘knowledge’ of the destiny of these genes.  They will never be expressed, 

however, the retention of acetylation keeps the chromatin in an open and accessible 

form, so that should AIRE and other transcriptional regulators be switched on, the 

genes would be prepared and not completely shut down as is the case for TRA within 

the cTEC lineage.  In support of Golebiewska et al (2009), we observed higher levels 

of H3K9me2 than H3K27me3, however, this was matched with consistently low 

levels of H3K4me3 (Golebiewska et al. 2009).  This could suggest that the active 

mark H3K4me3, which is known to peak at active gene promoters, may be a more 

dynamic modification, being rapidly removed in response to the block in the 

developmental pathway, thus preventing aberrant expression due to the loss of 

developmental cues for either silencing or activation of these genes (Vermeulen et al. 

2007). 
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4.6. CONCLUSION 

 

Histone modifications are notoriously complicated in both their regulation and their 

functional outcomes.  The preliminary data that we have demonstrated here gives an 

insight into the role these marks play in the control of PGE, and how AIRE may be 

able to manipulate their positioning and intensity.  We have shown how simply the 

introduction of AIRE into an AIRE-negative background is sufficient for the onset of 

PGE, suggesting that AIRE is able to function as a transcriptional regulator without 

the need for additional mTEC-specific factors, but that this activity is dependent upon 

the cellular environment.  Our results indicate that AIRE is recruited to the loci of TRA 

along with RNA pol II and chromatin modifying complexes including KMT2A/MLL1 

and KMT6/Ezh2 with its co-factor Eed, which leads to the redistribution of histone 

modification and the induction of expression.  We saw how AIRE was able to 

increase the levels of active acetylation and methylation marks, in particular gene-

specific H3K4 methylation, yet silencing modifications were often maintained as a 

theoretical safety net, preventing unnecessary or un-regulated expression.  AIRE 

was also able to mediate domain-wide changes to histone modifications across the 

keratin cluster to allow for the heightened levels of expression seen for the majority of 

loci, with hyperacetylated H4 potentially relaxing the chromatin structure, facilitating 

AIRE’s actions.  Through FTOC and CChIP we have been able to track the 

epigenetic control of PGE throughout the recently defined TEC developmental 

pathway in vivo which has provided further clues into the function of post-

translational histone modifications in the management of developmental programmes 

of gene expression.  This has revealed how AIRE-regulated TRA are marked or 
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primed for future transcription with both active and silent modifications co-existing 

throughout TEC development in bipotent TEC progenitors and immature mTECs, 

although typically not the traditional H3K4me3 / H3K27me3 bivalent marks.  

Furthermore the pattern of modifications changes dramatically as the cells progress 

through differentiation, highlighting the dynamic nature of post-translational histone 

marks.  However, a more stable epigenetic signature is required for the permanent 

silencing of the loci in mature cTECs, where expression would be detrimental.  The 

importance of these unique, gene-specific patterns of modifications were confirmed 

through disruption to normal TEC development, when the alternative transcriptional 

fate of the TRA was reflected in the chromatin. 

 

Collectively our results show how significant epigenetic patterning is to the control of 

expression of individual genes throughout a developmental pathway, and how these 

patterns can differ between model systems both on a gene-by-gene basis and on a 

more broad domain-wide scale.  CChIP has made the investigation of post-

translational histone modifications finally applicable to small numbers of primary cells, 

however because of this the scope of analysis is always restricted.  We chose to 

study four key histone modifications throughout TEC development which has given 

invaluable insight onto the control of PGE in vivo, yet from our preliminary results in 

cultured TEP cells it is clear that a great plethora of modifications act in concert to 

direct transcriptional programmes.  Thus, determining the definitive contribution 

epigenetic marks have in the regulation of PGE will require further analysis with 

additional modifications.  Clarification of the direct impact of AIRE and chromatin-

modifying complexes on the expression of these genes in vivo would provide insight 
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into how PGE is directed on an epigenetic level, however at present a protocol for 

miniaturised XChIP has not been developed.  Alternatively, a model system in which 

AIRE expression is inducible, such as a thymic epithelial line stably transfected with 

RANK whereby anti-RANK stimulation would switch on biologically relevant levels of 

AIRE, could allow a more accurate reproduction of the mTEC lineage.  Through 

inhibition of certain histone modifying enzymes such as histone deacetylase 

enzymes, the significance of the chromatin signature of each TRA could be 

determined, bringing us one step closer to a clarification of the roles of the various 

histone modifications both individually and in combination. 
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