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Mode Dispersion and Delay Characteristics of Optical
Waveguides Using Equivalent TL Circuits

Anthony C. Boucouvalas, Fellow, IEEE and Xin Qian, Student Member, IEEE

Abstract—A new analysis leading to an exact and efficient algo-
rithm is presented for calculating directly and without numerical
differentiation the mode dispersion characteristics of cylindrical
dielectric waveguides of arbitrary refractive-index profile. The new
algorithm is based on the equivalent transmission-line (T-L) tech-
nique. From Maxwell’s equations, we derive an equivalent T-L cir-
cuit for a cylindrical dielectric waveguide. Based on the TL-circuit
model we derive exact analytic formulas for a recursive algorithm
which allows direct calculation of mode delay and dispersion. We
demonstrate this technique by calculating the fundamental mode
dispersion for step, triangular, and linear chirp optical fiber re-
fractive index profiles. The accuracy of the numerical results is
also examined. The proposed algorithm computes dispersion di-
rectly from the propagation constant without the need for curve
fitting and subsequent successive numerical differentiation. It is
exact, rapidly convergent, and it results in savings for both storage
memory and computing time.

Index Terms—Fiber-optic mode dispersion, optical communica-
tions, optical waveguides, transmission-line (T-L) techniques.

I. INTRODUCTION

ALCULATION of waveguide mode propagation con-
C stants as a function of wavelength for optical fibers is a
well-established problem and many different solution methods
have been proposed, studied, and implemented. For long dis-
tance high capacity transmission applications, an important
metric of optical fibers is pulse dispersion in picoseconds per
nanometers per kilometers. Understanding and controlling the
variation of dispersion against wavelength is essential for the
design of optical fiber systems and fibers with more sophisti-
cated refractive-index profiles, and of more suitable dispersion
characteristics such as dispersion-shifted and dispersion flat-
tened fibers have been extensively studied and installed in the
field [1]. Numerical techniques for fast calculation of total
mode dispersion from the mode propagation constant ideally
should be as direct as possible. The methods must be theoret-
ically exact hence correct prediction of even small values of
mode dispersion would be possible and they must allow for the
inclusion of material dispersion component. Analytical direct
techniques are preferred in order to avoid high order curve
fitting and subsequent numerical differentiation of data.
The definition of dispersion involves the use of first (delay)
and second (dispersion) derivatives of mode propagation con-
stant with respect to wavelength, thus theoretical evaluation
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of dispersion requires the determination of such derivatives
in the first instance. However, direct numerical calculation
of the first and second derivatives from data points of mode
propagation constants versus wavelength based on simple
finite differences can result in errors due to approximations
[2]. Different improved procedures have then been proposed,
aiming at obtaining good accuracy in calculation of the disper-
sion coefficient [3]-[5]. Mammel and Cohen [3] proposed the
Rayleigh quotient to obtain the first derivative of the propaga-
tion constant, but they used direct numerical differentiation in
the calculation of the second derivative. E. K. Sharma et al. [4]
avoided numerical differentiations by solving three differential
equations for the propagation constant and its first and second
derivatives, respectively. Recently, A. Sharma and Banerjee [5]
reported another method based on a matrix perturbation theory
and showed that computational effort can be reduced compared
to the method of E. K. Sharma et al. [4].

We have shown that equivalent transmission-line (T-L) cir-
cuit techniques are most powerful and can be easily applied to
optical fibers in order to determine exactly the mode propaga-
tion constants [6].

In this paper we extend the theory and present a novel
method based on the T-L circuit technique for calculating the
dispersion of optical fibers of known but arbitrary refractive-
index profiles. First, we derive the equations for the derivatives
of the propagation constant with respect to the wavelength
analytically. By using a recursive formula, we show that for a
given wavelength, the first derivative can be expressed in terms
of equivalent circuit impedances at the wavelength of interest
and the second derivative can be expressed in terms of circuit
impedances and the first derivative. Second, by calculating the
derived equivalent circuit formulas, we are able to work out the
impedances at the specified wavelength using the T-L technique.
Once these along with the material dispersion information are
given, the total dispersion can be accurately calculated from
its definition. Numerical results on convergence speed for our
method as compared with the methods [1], [7], [8] will be
given. The following section describes the basic theory our
technique is based upon.

II. TRANSMISSION LINE THEORY

Our modeling divides a cylindrical symmetric optical fiber
into a large number of concentric homogeneous cylindrical
layers of thickness 67, permittivity e, permeability u, and
conductivity o in Fig. 1.
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Fig. 1. Homogeneous optical fiber thin cylindrical layer.

Using Maxwell’s equations for the £ and H fields we drive
the following equations for any such layer [9]

OrEy —Ez = wurH,

[Hz — frHy = (ve — jo)rE,
O(wprH,) ; N
= —jwu(lHg + BrHz)
a 1 ET . )
% = —(0 + jwe)(IEy + frEz)
H H ’
OHy+rs) | 7y o, L,
or Jwl " (2)
I(1Eg + BrEz) 7 '
- _ - (wg — ]O’)TE’I‘
or o+ jwe
l
+0Ez — —Eq )

where v2 = 32 + (I/7)? — w?ue + jwpuo, B is the propagation
constant, [ is the azimuthal mode number (integer), and w is the
mode frequency. For the case where o = 0, it = o, e = n2eo,
with n, the refractive index of the layer at distance r from the
axis.

After some algebra similarly to [9], (1) and (2) can be trans-
formed into

or  jweonF ° 3)
o1 .
= —jweonF'Vy
or
oVy 4
- =—"=l
ar JwegnF (4)
oI,
2= —jweont'Vy
or

where v, = (24 ((1/r))2 = n2k3F (2nkoB1) /((Br)? + 12) (-
for HE, + for EH modes), F' = ((8r)? 4 1?)/(r). Equations
(3) and (4) represent two independent transmission lines with
voltages Vs, V; and currents I, I;. The corresponding charac-
teristic impedances are

—_ s
. jw%)an ' (5)
"~ jwegnF

Equations (3) and (4) are recognized as T-L equations the
solution of which can be represented by the following equivalent
electric circuit, Fig. 2.
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Fig. 2. Equivalent circuit of a dielectric waveguide layer.

The transmission line impedances are given by
or >
2
(6)

where 7 is the length of the transmission line (the thickness of
cylindrical layers)

ZB = st tanh (’}/ds
Zys

Zp=——
P sinh(ygs67)

Zp = sinh(4:67) tanh ('yds 6;) Zp
Yas 2o . @)
Zp = a
jnrkg (ﬂQ + (%) ) sinh(yg4: 67)

Since 67 is infinitesimal, (6)/(r) < 1, from (7) we can have

ZB = %(57")2’}/35Zp
Zy . 8)
jnrérkg (52 + (%)2)

An optical fiber can be represented as a cascade of TL circuits
connected in tandem. The mode propagation constants can be
determined when the optical energy is trapped inside the optical
waveguide, and this is equivalent to the resonance conditions
(Ziotal = 0) of the equivalent TL circuits [10]. The series is ter-
minated with the characteristic impedance of the medium at the
axis (r = 0) of the fiber, and the characteristic impedance of the
outer cladding (r = o0). We can find Z;, the total impedance
from r = 0 up to the core-cladding boundary and similarly, Z
the total impedance to that boundary by using circuit theory
starting from large r(r = o0) in the cladding

Zp =

Z in :ZB(a:izl)
1
+

i &)

L+
Zp(atl) U Zp(axl)+Zp(at2)+ —TLT——

where Zpv is the characteristic impedance at 7 = oo when the
positive sign is used or it becomes the characteristic impedance
at 7 = 0 when the negative sign is used, a is the core-cladding
interface radius. The total circuit resonates when Z;, and Z,
are equal and opposite, hence Ziotal = Zin + Zout = 0, at
the propagation constant of any mode. Following this technique,
we can obtain the unknown mode propagation constant (3 using
the root searching method which locates the roots of the total
impedance of the TL circuits.
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The equivalent TL circuit impedances (7) or (8) are func-
tions of wavelength and the propagation constant, so the first
and second derivatives of the propagation constant can be ex-
tended as follows:

o5 %5 lss,

s oZn (10)
9B |x=x,
2Zn 9B 3% Zn
82_5 3/3 aaf? B ﬁgﬁgx (11)
N2 8)\ E)) 9Zn

where [y is the propagation constant at the wavelength of in-
terest Ao [10]. Zn can be calculated recurrently from Z

Zp + (D/(Zs + Zu) + (D/(Zp) L (n = 1,2...N),
which is the nth characteristic impedance of cylindrical layers.
N is the total number of cylindrical layers.

Equations (10) and (11) are equations related to derivatives of
the impedances in each transmission line. The recursive equa-
tions allow us to determine delay and dispersion directly from
equivalent TL circuit characteristic impedances.

III. SOLUTION PROCEDURE

It is well known that the total dispersion in the single-mode
regime is composed of two components, material and waveguide
dispersion. The concept of zero total dispersion by cancellation
of the material and waveguide dispersions was proposed as
long ago as 1970 by Dyott and Stern [11]. The waveguide
dispersion arises from the variation in group velocity. It de-
pends not only on the core radius and the refractive index
difference between the core and the cladding of optical fibers,
but also on the shape of the refractive index profile. The ma-
terial contribution results from the wavelength dependence of
the refractive index. Our algorithm allows calculation of both
material and waveguide dispersions. The material refractive
index dependence on wavelength [8] is included in our cal-
culations and it is given by:

Cs3
A) = Cot O\ +Cot g —— 3
n1(A) 0+ C1A” + (0 +/\2_0.035
c Cs
12
e o052 T w0057 2
where Cyp = 1.4508554,C; = —0.0031268,Cy =

—0.0000381,C5 = 0.0030270,Cy = —0.0000779,C5 =
0.000001 8.

The following steps detail our solution procedure for the
mode delay and dispersion.

From (10) and (11), delay and dispersion equations are given
by [12]

X208

= 2rc oN (13
Lor _ 1 ()0 1,0
TN 2me <2 o TN o 14

where 7 is the delay, D is the dispersion, L is the optical fiber
length, and c is the velocity of light in free space.
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We next derive equations for
(0Zn)/(0N), (0ZN)[(9B), (9°Zn) [ (9N?), (82 Zn) [ (OBON)
analytically which are to be used in the recursive algorithm
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The first derivatives of the impedance equations (8) as a function
of the fiber optic layer physical and optical parameters are given
by

oZp —97003
- 2

9p nrorkg (,32 (L)2>

YA A on an

P 0 N

- 2,2

X kg (/32 + (%)2) !

0Zp 612 (942 ,0Zp

=5 _~ (Zl gz it

B - 2 <8ﬁ Pt 55 s

8ZB o ﬁ 87 Z + 26Zp

ax 2 \ oA T Tox



954

where
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For the second derivatives of the impedance equations (8)
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To test the accuracy of (17)—(20) derived from the ap-
proximate impedance equations (8), we have also worked
out the exact first and second derivatives from the exact
impedance equations (7), in Appendix A. We have found
that (17)—(20) are accurate for our purposes. Approximations
are not however essential in this analysis and if the exact
equivalent equations are preferred they can be used and we
have included them in Appendix A. In this solution procedure,
almost all the computation time is spent in calculating (15)
and (16). The derivatives (0Zy)/(0A),(0Zn)/(083) and
(02ZN)/(0X?),(0?Zn)/(9BOA) can now be obtained very
efficiently. Therefore, delay and dispersion can be calculated
accurately and recursively.

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 41, NO. 7, JULY 2005

1.4803
————— Approximate [Eqn.8] 600 layers
—--—- Exact [EqQn.7] 600 layers
1.4802 | — — — — Approximate [Eqn.8] 1000 layers
------- Exact [Eqn.7] 1000 layers
3
E 1.4802 |
2
& 14802}
]
1.4801 |
1.4801
1.24 1.29 1.35 1.40 1.45 1.51 1.56
Wavelength (um)
Fig. 3. Effective mode index versus wavelength curves for step index single

mode optical fiber with core radius a; = 2.2 gmand A = 0.012.

IV. NUMERICAL RESULTS AND DISCUSSION

For our numerical results we consider an optical fiber with the
well known refractive-index profile radial dependence as fol-

lows [13]:
n (1—A(f) ) L1
n(F) = a a 1)
na, ->1
a
where A = (ny — ng)/n1,n; is the maximal refractive index,

ng is the refractive index of the outer and uniform cladding, «
controls the decay or growth of the profile envelope, a is the
normalized core radius, and 7 is the normalized cylindrical layer
radius. A variety of refractive index profiles can be generated
by varying o (o = 1 triangular profile, @ = 2 parabolic profile,
a = oo step profile).

Furthermore, in order to introduce refractive index wave-
length dependence, since (21) is proportional to 7, it scales as
function of wavelength according to (12).

Convergence and accuracy are important factors for any nu-
merical technique. We have chosen the typical standard step,
triangular, and linear chirp index fiber profiles since the results
are well known. For all our computations, we have chosen the
thickness of the cylindrical layers, inside and outside the core,
to be 67/7 = 0.02, and using 600 and 1000 layers are in general
sufficient for this 67/ ratio.

We calculate the delay and then dispersion characteristics for
step index optical fibers by applying our technique and using
delay and dispersion equations, (13) and (14), within the wave-
length range used in optical communications. The step index
profile optical fiber used has typical values of core radius a; =
2.2 pm and A = 0.012 [1]. In Fig. 3, we plot and compare the
exact normalized propagation constant (effective mode index)
for the step index fiber calculated using Bessel functions, with
the results obtained with our T-L technique. We present our T-L
results in two curves, one using the exact impedance equations
(7) and the other plot using the approximate impedance equa-
tions (8). We also present curves by varying as a parameter the
number of layers set to 600 and 1000 for our algorithm. The
numerical results show 67/7 = 0.02 offers good homogeneity
to the cylindrical layers we use and we obtain accurate results.
With 1000 layers, the algorithm using either (7) or (8) gives
us accurate results in agreement to the exact (Bessel functions)
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TABLE 1 ~
ACCURACY OF THE T-L METHOD FOR CALCULATING 3 FOR A STEP
INDEX OPTICAL FIBER AT Ay 3 = 1.30103 pm

_ _ (B~ )
ﬂat /11.3 A = _ bessel (%)
bessel
Bessel Function ( mael ) 1.48020635 0.0
Exact [Eqn.7] | 46050794 1.0742x10*
600 layers
Approximate
[Eqn.8] 1.48020795 1.0809x10*
T-L 600 layers
Method | Exact [Eqn.7] | 40050644 6.0802x10°
1000 layers
Approximate
[Eqn.8] 1.48020645 6.7558x10°
1000 layers
23
— — — — Approximate [Eqn.8] 600 layers
------- Exact [Eqn.7] 600 layers
18 — - — - — Approximate [Eqn.8] 1000 layers
Exact [Eqn.7] 1000 layers S

—— Bessel

-
w

Dispersion (ps/nm/km)
-]

1.32 1.38 1.43

Wavelength (pm)

1.48 1.54 1.59

Fig. 4. Dispersion versus wavelength curves of step index optical fiber with
core radius a; = 2.2 umand A = 0.012.

while maintaining efficient computation speed. Therefore, we
choose it for the dispersion calculation. In Table I, we demon-
strate the accuracy of the T-L method in calculating the effec-
tive mode index at the wavelength 1.301 03 xm using (7) and
(8). Both compare very well to the exact Bessel function solu-
tion. Results based on (7) are slightly closer to the result from
Bessel functions. Both (7) and (8) however offer excellent ac-
curacy. Fig. 4 compares dispersion results using our algorithm
for the range 1.2-1.6 pm. It includes a dispersion curve gen-
erated using Bessel functions for the effective index and dis-
persion plots using effective index obtained by T-L method, (7)
and (8). As expected, for the step index optical fiber the zero
dispersion point is at 1.301 03 pm. Table II shows a compar-
ison of some numerical results of calculated zero dispersion
wavelengths. The results of T-L method agree very well with
the result from Bessel functions. As expected, using (7) gives
slightly more accurate results than (8), however, for 1000 layers
this difference is not significant. The two dispersion curves in
Fig. 5 are derived using Bessel functions for the exact effective
mode index. One dispersion plot uses numerical differentiation
and the other uses our dispersion algorithm. The zero dispersion
wavelength obtained using our algorithm is Ag = 1.30103 pm
and \p = 1.308 35 um based on numerical differentiation, re-
spectively. The result demonstrates the accuracy of our algo-
rithm (exact Ao = 1.301 03 pm).

To allow further comparison with a recent publication on the
dispersion calculation [7], we also make use of triangular refrac-
tive index profile fibers. Fig. 6 shows dispersion curves plotted
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Bessel derived effective index--
Dispersion using our algorithm

-
w

------- Bessel derived effective index--
Dispersion using numerical
differentiation

@

Dispersion (ps/nm/km)
w

0

S A

1.27 1.32 1.38 1.43 1.48 1.54 1.59
Wavelength (um)

Fig. 5. Dispersion of fundamental mode of a step index optical fiber using
our algorithm compared to the result using numerical differentiation for a core
radius ¢; = 2.2 pmand A = 0.012.

TABLE 1I
ACCURACY OF THE T-L. METHOD FOR CALCULATING THE ZERO DISPERSION
WAVELENGTH A¢ FOR A STEP INDEX OPTICAL FIBER

Ay —4,3)
A, (10 A =——"1
A 1.3
Bessel Function (4, ;) 1.30103 0.0
Exact [Eqn.7]
600 layers 1.30183 0.06149
Approximate
[Eqn.8] 1.30218 0.08839
T-L 600 layers
Method Exact [Eqn.7]
1000 layers 1.30133 0.02306
Approximate
[Eqn.8] 1.30168 0.04996
1000 layers

Approximate [Eqn.8] 1000 layers--1.92um
6 — — — —Exact [Egn.7] 1000 layers--1.92um

4 || —*— Approximate [Eqn.8] 1000 layers--3.29um
------- Exact [Eqn.7] 1000 layers--3.29um

VAN

1.50 1.53 1.57 1.60
Wavelength  (ym)

Dispersion (ps/km/nm)
o

Fig. 6. Variation of dispersion versus wavelength curves for the triangular
refractive index profile optical fiber with A = 0.01 at the two values of core
radius which make zero dispersion point at 1.55 pem.

against wavelength for the two values of core radius a1, namely,
1.92 pym and 3.29 pym, and A = 0.01, with zero dispersion
wavelengths at 1.55 pm. Fig. 6 shows the excellent agreement
in the calculated dispersion for triangular optical fibers using the
different methods with different core radii. In this case there is
negligible difference between the results using (7) and (8). The
results match perfectly with those given in [7].

It is well known that the dispersion flattened char acteris-
tics of an optical fiber is very important for wavelength division
multiplexing (WDM) optical systems. There have been many
attempts to design dispersion flattened optical fibers [12], [14].
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Fig. 8. Dispersion versus wavelength curves for the linear chirp refractive

index profile of Fig. 7 over a wavelength range from 1.35 to 1.6 um.

We demonstrate that our T-L circuit method can be used in the
design of dispersion flattened optical fibers quite efficiently. We
consider the optical fiber with linear chirp refractive index pro-
file, of core radius a; = 7.2 pm and A = 0.0102, as shown
in Fig. 7, and studied in [12]. Fig. 8 shows the calculated dis-
persion as a function of wavelength using our method. It can be
seen that the dispersion magnitude is less than 2 ps/nm/km over
the entire range of 1.35-1.6 um wavelength. There is no signifi-
cant difference using the T-L method with (7) or (8). The results
in Fig. 8 also agree very well with the results in [12].

V. CONCLUSION

In this paper, a new, efficient, and accurate algorithm for
calculating the mode dispersion of cylindrical dielectric wave-
guides has been developed from first principles. This method
uses T-L representation of cylindrical dielectric waveguides and
relies on the modeling of a thin uniform concentric cylindrical
layer of an optical fiber to a T-L circuit. The method requires
knowledge of only the mode propagation constant and the
refractive index profile. It is direct and exact, and avoids the
use of numerical differentiation twice. It may be especially
useful for designing and predicting complex refractive index
profile optical fibers where the earlier reported approximate
methods are quite slow. We have demonstrated the performance
of this technique by evaluating dispersion versus wavelength
for step, triangular and linear chirp index profile optical fibers.
The results support the claim that this algorithm provides direct
calculation of dispersion with very good accuracy.
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APPENDIX A

To shorten the equations, we make the following definitions:

2
A=p+ (%) , B =sinh(yér), C = cosh(vyor),

D= cosh(w%) , E= tanh(v%) .

The first derivatives of the exact impedance equations (7)
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The second derivatives of the exact impedance equations (7)
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