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ABSTRACT 
 

The effect of the chemoattractant bourgeonal on [Ca2+]i and chemotaxis in human sperm 

was investigated. Burgeonal induced a dose-dependent, slowly-developing tonic 

elevation in [Ca2+]i, The response was dependent on capacitation.  In low-Ca2+ or 

EGTA-buffered saline the response to bourgeonal was inhibited. Pretreating 

spermatozoa with bis-phenol (20µM) to release stored Ca2+ did not alter the response. 

Thus bourgeonal acts primarily by inducing Ca2+ influx. Treatment of sperm with 

bourgeonal caused an increase in [cAMP].  

 

When cells were pretreted with bourgeonal in low-Ca2+ saline, subsequent introduction 

of Ca2+ resulted in a single, large [Ca2+]i transient in >75% of the cells, indicating that 

sudden influx of Ca2+ caused closure of the bourgeonal-sensitive Ca2+-channel. This 

negative feedback was not modulated by IBMX (1mM) or  dbcAMP (1mM), indicating 

that cAMP was not involved and that a direct action Ca2+
 was more likely. Both Ni2+ 

(10µM) and La3+ (100µM) inhibited the action of bourgeonal on [Ca2+]i, suggesting a 

possible role of CNG channels. Exposing sperm to a temporal bourgeonal gradient  

caused a series of transient [Ca2+]i elevations in >20% of the cells. A gradient of 

progesterone (another characterised chemoattractant for human sperm) induced similar 

Ca2+ oscillations (in >20% of the cells), which increased in amplitude and frequency in 

response to the increasing progesterone concentration. 
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Human spermatozoa responded chemotactically to a 1nM bourgeonal gradient, 

Chemotaxis was dependent on capacitation. The response was inhibited in low [Ca2+]o 

but was unaltered by TMB-8 (an inhibitor of  stored Ca2+ store release), thus showing a 

dependence on Ca2+ influx similar to the [Ca2+]i signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iii 

ACKNOWLEDGEMENTS 

 

How to start? Initially I would like to thank my supervisor, Dr Stephen J. Publicover, 

for EVERYTHNG you have done for me, you have been more than a supervisor, you 

have been a friend. Thank you, for your support, for your time and for just being 

“Yourself”. It has been more than a pleasure working for you and absorbing the great 

knowledge you possess. “Steve I hope I can always count on you, because you can 

always count on me”.  I must thank my internal examiner, Frank M., for all his advice, 

help, support and all his great ideas. Many thanks for Dr Kirkman-Brown for his 

support and his intlectual contributions.  

 

I must also thank everyone in the Bioscience Department, for their friendship, for their 

smiles and the support, “Everything is possible with smiles”. Many thanks to everyone 

in the 8th Floor and former members: Jarrat S., Mike T., Andrew W., Sarah F., Josh R., 

Klaus F., all of the members of the Machesky group & everyone throughout the 

department. Many thanks for the members of Stores in the Bioscience Tower Building 

(basement), Rich, Alan, Ray”It has been a great honour meeting you all and enjoying 

great laughing moments”. “I am still waiting for my free stuff” ☺   

 

I must thank all of the members of the Publicover Group, for their support, for their 

friendship and our never ending smiles, “I will miss every moment and I will always 

cherish them”. Thank you Dr Gisela O., Dr Linda L., Sarah C., Dr.Ruben P (Locote), 

Kate N., Antonio A. & all of my colleagues in the Medical School. 



 iv

 “Gisela don’t you ever forget,”falaxo di papayo”, “only God know what that means”.  

 

Most important of all, I must thank my loving and supporting family (La Familia 

Morales y Gracía), nothing is possible and I mean NOTHING is possible without their 

love, their happiness and all the smiles they share with me. I thank God every day for 

their unconditional love, for their hugs and for all those moments that made me realise 

that I was NEVER alone. “My life is a living dream with everything they do”.  

I Must thank my Mother, Eva García García, you have always shown me that there is no 

reward in the absence of hard work, no honour in the absence of a person’s word and I 

must thank you for all your great knowledge and loving support. Thank you for all the 

sacrifices you have made to provide me with the best of everything throughout my life.  

 “Mamá sé que con palabras no podré agradecerte todo lo que has hecho por este hijo 

que te quiere con locura, solo espero que estés orgullosa y nunca olvides que todo lo 

logrado en esta vida ha sido gracias a ti”. “Te quiero más que a mi propia vida, espero 

tenerte a mi lado hasta el día que mis ojos no vuelvan a ver el amanecer de mi 

despertar”. “Nunca olvides que con tu amor y tu apoyo no hay metas inalcanzables” 

“He tenido que superar mil obstáculos; mira hasta donde he llegado mamá, todo gracias 

a ti”. 

Thank you Dad, Andrés Morales Tejera, you have always shown me that hard work is 

necessary in life if we really want to achieve any goal. “Gracias por hacerme el hombre 

que soy, por demostrarme que el respeto, el honor y la palabra son indispensables en 

esta vida, para lograr todas las metas que me proponga”. “Me has demostrado que un 

hombre se forja con las constancia y el trabajo, te quiero”. “No he olvidado nuestras 



 v

constantes salidas de buena mañana al campo, en su momento me quejaba y lo odiaba, 

pero ahora entiendo todo papá, gracias”. “Tampoco he olvidado cuando rezabamos 

juntos antes de irme a dormir, te quiero”.  

I must also thank my brother and sister, Misael Morales García (My Heart) & Lucia 

Morales Garcia (My Soul) , I would cease to breath and wakeup without their love, their 

smiles, their hugs, their never ending silly arguments, all the things they do to make me 

feel safe and happy. “Hermanitos no sé como poner en el papel la felicidad que me 

hacen sentir al saber que están a mi lado, os quiero mucho y espero que nunca lo 

olvidéis”. “Mi mundo deja de tener vida si ustedes no están en él”. “Siento haber estado 

tan lejos tanto tiempo, pero nunca olvidéis que siempre os llevo en mi corazón y en mi 

mente”,   

 

Many thanks to all my family, for their unconditional love and support, for the craziness 

and their understanding. Special thanks and my apologies to my little counsins (Samuel  

S.G. y David S.G.) for understanding that their older cousin was out of home for a 

reason. “Primitos ya estoy de camino a casa, yo también os echo de menos”. Grandma, 

Teresa, “how could Ilive in a world without you”. Gracias a toda la Familia Morales y 

García, “gracias por todo lo que me dais sin daros cuenta, le doy gracias a Dios por 

teneros a mi lado”.  

 

Alex R.B., you are my best friend, you are like family and you have always been there 

for me, even when you knew Iwas wrong. Dr Joao Facucho., youre like family, many 

years of craziness have marked our time in Birmingham.  Many thanks to all the great 



 vi

friends I have met in Birmingham, Mohamed M. K, M. Saleh. L., Sahand C., Habbib, 

thanks for everything. 

 

I must express my gratitude to all my friends around the world,  I dont even know where 

I would be without your support and power to overcome any obstacle in my life. 

“Muchas gracias a todos mis amigos, por el apoyo y las sonrisas que me dan, hacen que 

pueda luchar cada día más”.  

 

Many thanks to the great friends and great scientists in Cordoba (Argentina), Dr Diego  

U. “Culero”, Dr Eugenia T. “La Flaca”, Alejandro G. “Gido”, Agustín A “La 

Chancha”., Nico “El Carnicero”, Juan Pablo “Juampi”, Ricardo “El Flaco”, Belén 

“Belu”, Laura M., Laurita G. “Gatica”, Cecilia “La Ceci”, Victoria “La Vicky”.  

Many thanks for Dr Giojalas, for her intellectual support, for our lab colaboration and 

for everything she has done for this thesis. Special thanks for everyone in Argentina and 

the University of Cordoba. “Gracias todos y especialmente a Dr Diego U.,  y Dr 

Eugenia T., espero teneros en mi vida siempre, ha sido un gran honor y placer 

conoceros”. 

 

To conclude with this long list of acknowledgements I must thank all the institutions in 

Spain & The United Kingdom: EL Cabildo de Lanzarote, El Ayuntamiento de San 

Bartolomé, El Ministerio de Educación Ciencia y Cultura, The Spanish Government and 

the Birmingham Women’s Hospital. 

 



 vii

I must thank you God for everything you have provided me with, for the family I have, 

my friends, for all the great things I have been able to enjoy, especially the life I have 

been granted with!  

 

 

 

 

 

 

                           

 

 

 

 

 

 

 

 

 

Thank You, for reading this! 

 

 



 viii 

For those that make my life a never ending dream, 

 
El tesoro más valioso de la vida es el amor incondicional de la familia, 

 

Os quiero. 

 

 

 



 ix

CONTENTS 
 

CHAPTER ONE: SIGNAL TRANSDUCTION 

PATHWAY IN HUMAN SPERMATOZOA 
 

FOREWORD TO CHAPTER ONE..........................................................3 
1.0 The sperm during mammalian fertilization .......................................4 
1.1 The male reproductive system..............................................................7 
1.2 Human Spermatogenesis......................................................................9 

1.3 Sperm Structure..................................................................................15 
              1.3.1 The sperm flagellum ............................................................20 
1.4 Sperm Motility.....................................................................................23 
              1.4.1 Hyperactivation....................................................................23 
              1.4.2 Chemotaxis...........................................................................26 
1.5 Spermatozoa Capacitation..................................................................31 
1.6 Acrosome Reaction (AR) ...................................................................36 

1.7 Calcium [Ca
2+

] ions and Cellular Regulation...................................42 
   1.7.1 Calcium Signalling in Mammalian Spermatozoa ......................44 
   1.7.2 Ca

2+
 channels at the Plasmalemma..............................................45 

         1.7.2.1 Voltage-Operated Ca2+ Channels...........................................45 
         1.7.2.2 Calcium (Ca2+) Store-operated Channels...............................47 
         1.7.2.3 Cyclic Nucleotide-gated Channels (CNG).............................49 
         1.7.2.4 CatSper ion Channels ............................................................50 
         1.7.3 Calcium (Ca

2+
) Clearance Mechanisms in sperm.................53 

              1.7.3.1 Ca2+ pumps in Spermatozoa .............................................53 
              1.7.3.2 Plasma Membrane Calcium (Ca2+) ATPase (PMCA).......54 
              1.7.3.3 Sarcoplasmic-endoplasmic Ca2+ ATPase (SERCA) ….....55 
              1.7.3.4 Secretory pathway Ca2+ ATPase.......................................56 
              1.7.3.5 The Sodium/Calcium (Na+-Ca2+) Exchanger ...................57 
              1.7.3.6 Mitochondrial Calcium (Ca2+) uptake...............................59 
          1.7.4 Mobilization of stored Ca

2+
 in spermatozoa ........................60 

              1.7.4.1 IP3 Receptors (IP3R) .........................................................60 
              1.7.4.2 Ryanodine Receptor (RyR) in Sperm................................63  
1.8 Guidance mechanisms for mammalian sperm in vivo ....................65 
           1.8.1 In vivo Chemoattractant Source(s) .........................................66 
           1.8.2 Human sperm chemoattractants..............................................67 
1.9 Sperm olfactory receptor proteins (ORs) .........................................77 



 x

           1.9.1 Olfactory receptors........................ .........................................78 
           1.9.2 Olfactory receptor ligands and sperm motility .......................80 
 
Aims............................................................................................................83 

 

 
 

 

CHAPTER TWO: MATERIAL & METHODS 

 
2.1 Materials...............................................................................................86 
2.2 Spermatozoa preparation, Capacitated and Non-Capacitated.......87 
     2.2.1 Swim-up........................................................................................87 
     2.2.2 Percoll ...........................................................................................88 
2.3 Acrosome Reaction..............................................................................89 
2.4 Single cell imaging...............................................................................90 
     2.4.1 Imaging Data Processing...............................................................92 
     2.4.2 Imaging Equipment & Software....................................................94 
     2.4.3 Imaging Software..........................................................................96 
2.5 Sperm chemotaxis and motility determination.................................97 
     2.5.1 Chemotaxis Software..................................................................101 
2.6 cAMP measurement..........................................................................103 
2.7 Statistical Analysis.............................................................................104 

 

 
 

 
 

 
 

 
 



 xi

CHAPTER THREE: HUMAN SPERMATOZOA Ca
2+

 

SIGNAL RESPONSE TO BOURGEONAL & HOMOLOG 

3,4,CPEE 

 
3.1 Introduction.......................................................................................107 
3.2 Results.................................................................................................111 
3.2.1 Capacitated human spermatozoa respond to Bourgeonal 
 in Ca2+ containing media..........................................................................111 
3.2.2 The effect of bourgeonal is reversible..............................................115 
3.2.3 Dose-dependence of the effect of bourgeonal..................................117 
3.2.4 Dependence of the action of bourgeonal on [Ca2+]o.........................119 
3.2.5 Ca2+ stores and the action of bourgeonal..........................................123 
3.2.6 Action of bourgeonal in non-capacitated human sperm...................126 
3.2.7 Acrosomal Reaction and Bourgeonal...............................................129 
3.2.8 Human sperm response to 3,4,CPEE................................................131 
3.3 Discussion...........................................................................................137 

 
 

 
 

 

CHAPTER FOUR: HUMAN SPERMATOZOA [Ca
2+

]i 

ELEVATION AS A RESULT OF AN INCREASE IN   cAMP 

(3'-5'-CYCLIC ADENOSINE MONOPHOSPHATE) 

 
 
4.1Introduction........................................................................................146 
4.2 Results.................................................................................................148 
4.2.1 Response to bourgeonal is enhanced by ‘pretreatment’ under low  
Ca2+ conditions..........................................................................................148 
4.2.2 [3,4,]CPEE induces a transient Ca2+ response similarly to   
bourgeonal.................................................................................................156 
4.2.3 Does cAMP shape the bourgeonal-induced Ca2+ transient?.............159 
4.2.4 dbcAMP induces elevation of [Ca2+]i...............................................165 
4.2.5 Pretreatment with dbcAMP occludes the response to bourgeonal...168 



 xii

4.2.6  Human spermatozoa synthesise cAMP in response to  
bourgeonal (20µM)....................................................................................170 
4.2.7 Ni2+ (10µM) and La3+ (100µM) inhibit the [Ca2+]i response to 
bourgeonal.................................................................................................172 
4.2.8 Calmodulin inhibition by trifluoperazine (30µM) and the [Ca2+]i 
response to bourgeonal..............................................................................176 
4.3 Discussion...........................................................................................181 
 
 
 
 
 
 
 

CHAPTER FIVE: CHEMOTACTIC RESPONSE TO 

BOURGEONAL 

 
5.1Introduction........................................................................................188 
5.2 Results.................................................................................................192 
5.2.1 Chemotaxis assay with capacitated spermatozoa.............................192 
5.2.2 Chemotaxis assay with non-capacitated spermatozoa......................194 
5.2.3 Chemotaxis assay in low-Ca2+(<5µM/L Ca2+) ................................195 
5.2.4 Ca2+ Store Mobilization in response to chemoattractant  gradient  
bourgeonal-induced chemotaxis................................................................198 
5.2.5 Plasma Membrane Ca2+ channels and spermatozoa                     
chemotaxis.................................................................................................201 
5.2.6 Acrosomal Reaction and Bourgeonal (1nM)....................................202 
5.2.7 Human spermatozoa cAMP synthesis in response to 
 bourgeonal  (1nM) and progesterone (10pM)..........................................204 
5.2.8 Human spermatozoa [Ca2+]i responses of cells exposed to                            
a bourgeonal concentration gradient steps (fM – mM).............................207 
5.3 Discussion...........................................................................................215 
 

 

 

 

 



 xiii 

CHAPTER SIX 
 
GENERAL DISCUSSION......................................................................223 
Future Research.......................................................................................235 
APPENDIX (I).........................................................................................237 
Media….....................................................................................................237 
APPENDIX (II)........................................................................................240 
Publications & presentation of research.........................................................240 
Conference posters & Abstracts................................................................240 
References.................................................................................................242 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xiv

LIST OF ABBREVIATIONS 
 
8-bromo cGMP - 8-bromoguanosine-3’-5’-cyclophosphate sodium salt 

BSA - Bovine serum albumin 

Bourgeonal- 4-t-Butylbenzenepropionaldehyde 

3,4CPE- 3-(4’-Carboxyphenyl)-Propionaldehyde Ethyl Ester 

Ca
2+

 - Calcium ions 

cADPR - Cyclic adenosine diphosphate-ribose 

[Ca
2+

]i - Intracellular calcium concentration 

[Ca
2+

]e - Extracellular calcium concentration 

[Ca
2+

]o - Extracellular calcium concentration 

CaM - Calmodulin 

cAMP - Cyclic adenosine monophosphate 

CASA - Computer-assisted semen analysis 

NcF-sEBSS - Ca2+-free or low-Ca2+ supplemented Earle’s balanced salt solution 

cGMP - Cyclic guanosine monophosphate 

CICR - Ca2+-induced Ca2+ release 

Cl- - Chloride ions 

CNG - Cyclic nucleotide-gated 

COC - Cumulus oocyte complex 

cAMP -3'-5'-cyclic adenosine monophosphate 

cGMP- Cyclic guanosine monophosphate 

DAG – Diacylglycerol 

(d) cAMP - N6,2'-O-Dibutyryladenosine-3',5'-cyclic monophosphate 

DMSO - Dimethyl sulfoxide 

EGTA - Ethylene glycol-bis (_-amino-ethylether)-N,N,N’N’-tetraacetic acid 

FAD - Flavin adenine dinucleotide 

FMN - Flavin mononucleotide 

FS - Fibrous sheath 

FSH - Follicle stimulating hormone 

GABAA - Gamma-aminobutyric acid type A 



 xv

GlyR - Glycine receptor/Cl- channel 

GnRH - Gonadotropin releasing hormone 

GSH - Glutathione 

GSNO - S-Nitrosoglutathione 

H
+
 - Hydrogen ions 

hCG - Human chorionic gonadotrophin 

Hepes - 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HFEA - Human Fertilization and Embriology Authority 

H2O2 - Hydrogen peroxide 

HSA- Human Serum Albumin  

Hyp - Hyperactive 

ICSI - Intracytoplasmic sperm injection 

InsP3 - Inositol-1,4,5-triphosphate 

InsP3R - Inositol-1,4,5-triphosphate receptor 

IVF - In vitro fertilization 

K
+
-Potassium Ions 

LH - Luteinizing hormone 

mAC - Membrane-associated adenylyl cyclase 

MAPK - Mitogen-activated protein kinases 

mPR - Membrane progesterone receptor 

MS - Mitochondrial sheath 

Na
+
 - Sodium ions 

NADPH - Nicotinamide adenine dinucleotide phosphate 

NO - Nitric oxide 

O2•- - Superoxide anion 

ODFs - Outer dense fibers 

OGB-1AM - Oregon green 488 BAPTA 1-acetoxymethyl 

OR17-4 and OR23 - Olfactory receptors 

P- Progesterone 

PBS - Phosphate buffered saline 



 xvi

PDL - Poly-D-lysine 

PGCs- Primordial germ cells 

PGRMC1 - Progesterone membrane receptor component 1 

PGRMC2 - Progesterone membrane receptor component 2 

PIP2 - Phosphatidylinositol 4,5-biphosphate 

PKA - Protein kinase A 

PKC - Protein kinase C 

PKG - Protein kinase G 

PLC - Phospholipase C 

PMCA - Plasma membrane Ca2+-ATPase 

R2 - Coefficient of determination 

RNE - Redundant nuclear envelope 

ROS - Reactive oxygen species 

RyRs - Ryanodine receptors 

sAC - Soluble adenylyl cyclase 

sEBSS - Supplemented Earle’s balanced salt solution 

SERCA - Sarcoplasmic-endoplasmic Ca2+-ATPase 

sGC - Soluble guanylyl cyclase 

SNARE - Soluble N-ethylmaleimide-sensitive factor-attachment protein receptor 

SOC - Store-operated Ca2+ channel 

SPCA - Secretory pathway Ca2+-ATPase 

tmACs - Transmembrane adenylyl cyclases 

TRP - Transient receptor potential 

TRPC - Transient receptor potential-canonical 

VAP - Average path velocity 

VCL - Curvilinear velocity 

VOCCs - Voltage-operated Ca2+ channels 

VSL - Straight-line velocity 

WHO - World Health Organization 

ZP- Zona Pellucida  



 xvii

(
+ 

ve)-Control-Positive Experimental control  

(
- 
ve)-Control- Negative Experimental control 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(Image from: http://www.naturalsciences.be) 

 

 

 

 



 xviii 

 

I 
 

 

 

CHAPTER ~ONE~ 
 

 

 

 

 

 

 

 

 

 

 

 

 

Overcome anything with your everything! Aduén 2009. 

 



  - 1 - 

Chapter One 
 

Signal Transduction Pathway in Human Spermatozoa 
 

 
FOREWORD TO CHAPTER ONE..........................................................3 

1.0 The sperm during mammalian fertilization .......................................4 

1.1 The male reproductive system..............................................................7 

1.2 Human Spermatogenesis......................................................................9 

1.3 Sperm Structure..................................................................................15 

                1.3.1 The sperm flagellum ..........................................................20 

1.4 Sperm Motility.....................................................................................23 

              1.4.1 Hyperactivation....................................................................23 

             1.4.2 Chemotaxis............................................................................26 

1.5 Spermatozoa Capacitation..................................................................31 

1.6 Acrosome Reaction (AR) ...................................................................36 

1.7 Calcium [Ca
2+

] ions and Cellular Regulation...................................42 

   1.7.1 Calcium Signalling in Mammalian Spermatozoa ......................44 

   1.7.2 Ca
2+

 channels at the Plasmalemma..............................................45         

1.7.2.1 Voltage-Operated Ca2+ Channels....................................................45 

         1.7.2.2 Calcium (Ca2+) Store-operated Channels...............................47 



 - 2 -

         1.7.2.3 Cyclic Nucleotide-gated Channels (CNG).............................49 

         1.7.2.4 CatSper ion Channels ............................................................50 

  1.7.3 Calcium (Ca
2+

) Clearance Mechanisms in sperm........................53 

              1.7.3.1 Ca2+ pumps in Spermatozoa .............................................53 

              1.7.3.2 Plasma Membrane Calcium (Ca2+) ATPase (PMCA)…...54 

              1.7.3.3 Sarcoplasmic-endoplasmic Ca2+ ATPase (SERCA)….....55 

              1.7.3.4 Secretory pathway Ca2+ ATPase.......................................56 

              1.7.3.5 The Sodium/Calcium (Na+-Ca2+) Exchanger ...................57 

              1.7.3.6 Mitochondrial Calcium (Ca2+) uptake...............................59 

          1.7.4 Mobilization of stored Ca
2+

 in spermatozoa .......................60 

              1.7.4.1 IP3 Receptors (IP3R) .........................................................60 

              1.7.4.2 Ryanodine Receptor (RyR) in Sperm................................63  

1.8 Guidance mechanisms for mammalian sperm in vivo ....................65 

              1.8.1 In vivo Chemoattractant Source(s) ......................................66 

             1.8.2 Human sperm chemoattractants............................................67 

1.9 Sperm olfactory receptor proteins (ORs) .........................................77 

             1.9.1 Olfactory receptors................................................................78 

             1.9.2 Olfactory receptor ligands and sperm motility .....................80 

Aims............................................................................................................83 
 



 - 3 -

FOREWORD TO CHAPTER ONE 

 
The role of this chapter is to clarify and summarise the recent progress  that has been 

made in understanding the mechanism that control sperm capacitation, AR, sperm 

motility ( specially in chemotaxis) and fertilization.  

Emphasis is placed on role of ORs and its role in mammalian sperm chemotaxis in 

response to cues of chemoattractants and regulatory action of calcium ions (Ca2+) in this 

process.  
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1.0 The sperm during mammalian fertilization  

The formation of new life by sexual reproduction is dependent on fusion of the haploid 

gametes. This process normally requires appropriate and often sophisticated 

communication between mature and competent male and female gametes (Darszon et 

al., 2005). Fusion of haploid (N) gametes results in the formation of the normal diploid 

(2N) embryo (Darszon et al., 2005).  

 

The mammalian male gamete (sperm) is a highly polarised cell, which, after 

biochemical and functional ‘maturation’ is stored in an inactive state (immotile, unable 

to fuse with the oocyte) in the cauda epididymis [ Figure.2. ] (Wassarman et. al., 1997). 

During coitus the sperm are ejaculated as semen, composed of a mixture of spermatozoa 

suspended in secretions from the testis and epididymis, which are mixed at the time of 

ejaculation, together with secretions from the prostate seminal vesicles  and 

bulbourethral gland and Cowper's gland (Bar-Chama et al., 1994; WHO, 1999) [ 

Figure.2. ]  The ejaculate is a viscous fluid with a typical volume of 2-6 ml (Griffin et 

al., 2000) and pH of 7.0-8.3 (WHO, 1999). Semen contains fructose (oxidative substrate 

for spermatozoa) and prostaglandins, which may be involved in the stimulation of 

smooth muscle contraction of the female reproductive organs, required for sperm 

transportation in vivo (Berne et al., 2000). In the ejaculate >60% of spermatozoa show 

forward progressive motility and >60% should have normal morphology (Griffin et al., 

2000).  The sperm count is normally >20 million/ml with a total sperm per ejaculate of 

more than 60 million (Griffin et al, 2000). Sperm density below normal values 
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(20million/ml) can be considered as subfertile; however fertilization is still possible 

(Ademnan & Cahill, 1989). 

Once ejaculated into the female reproductive tract in order to fertilise the egg it must 

travel a long and difficult journey (from vagina to ovum). With a relative small size (60 

µm), sperm must cross the uterus (70-80mm); here they induce a host reaction 

(Publicover et al., 2007). Through the uterus, leukocytes eliminate normal and abnormal 

spermatozoa (Publicover et al., 2007). Once passed through the uterus they reach the 

opening of the fallopian tube (diameter 0.2-0.5mm) and 1 out of 105 sperm successfully 

reach this site (Harper et al., 1982; Williams et al., 1993; Eisenbach et al., 1999; Jaiswal 

et al., 2002) (Bartram et al., 2003). After this, sperm must travel another 50-80 mm to 

reach the fertilisation site (Eisenbach et al., 1999; 2004).  

 

During residence in the female tract, in addition to migrating to the right location, the 

sperm must undergo further physical and biochemical maturation (termed capacitation – 

Section 1.5) in order to be able to fertilize the oocyte (Darszon et al., 1996, Visconti and 

Kopf, 1998). Capacitated spermatozoa are capable of acquiring hyperactivated motility. 

This is necessary both to penetrate viscous fluids such as mucus (enabling sperm to 

reach the egg) and also to penetrate through the cumulus oophorus and zona pellucida, 

which surround the oocyte [ Figure.1. ]  (Ho and Suarez, 2001), reducing still further 

the proportion of sperm that may fertilise the oocyte. Within the oviduct, mammalian 

sperm may locate the oocyte by ‘following’ a chemical gradient (chemotaxis) generated 

by the cumulus cells and/or the oocyte (Sun et al., 2005; Eisenbach and Giojalas, 2006) 

(Section 1.8 & 1.8.1 ). It has been proposed that sperm may also encounter and follow a 
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temperature gradient (thermotaxis) (Bahat et al., 2003; Eisenbach & Giojalas, 2006). 

After penetrating the cumulus, sperm bind to the extracellular coat of the oocyte and 

undergo acrosome reaction. Acrosome reaction and hyperactivated motility enable 

penetration of the ZP. Once in the perivitelline space, spermatozoa bind and fuse with 

the oocyte plasma membrane, which activates oocyte mechnisms to prevent polyspermy 

(fertilization by more than one sperm) (Wassarman et al., 2001).  

 

Figure.1. Diagramatic representation of events that led to the formation of a new 
individual (fertilization). 
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1.1 The male reproductive system 
 
In humans and in most mammalian species, the male external reproductive organs are 

the scrotum and the penis (Campbell & Reece, 2002). The male testes are composed of 

many highly coiled tubes where spermatozoa are formed, the seminiferous tubules, and 

these are surrounded by several layers of connective tissue (Campbell & Reece, 2002). 

Within the seminiferous tubule, the Leydig cells are responsible for the production of 

testosterone and other androgens (Campbell & Reece, 2002) [ Figure.2. ].  Once 

through the seminiferous tubules of a testis, spematozoa reach the coiled tubules of the 

epididymis (6 m long tubules, in human male), during the sperm transportation through 

this tubules they become motile.  Following this, during ejaculation, spermatozoa travel 

from the epididymis through the vas deferens (Campbell & Reece, 2002). The pair of 

vasa deferentia (from each epididymis) run from the scrotum around and the posterior 

section of the bladder, where these joins a duct from the seminal vesicle, forming a 

ejaculatory duct (Campbell & Reece, 2002), and openining into the urethra [ Figure.2. 

]. This tube acts both as excretory system and reproductive system, passing through the 

penis where it reaches the exterior at the tip of the penis (Campbell and Reece, 2002).   

 

Spermatogenesis is influenced by hormones such as gonadotrophins and testosterone. In 

addition to hormonal control, spermatogenesis is also influenced by temperature. If the 

testes reach core body (37˚C) temperature, spermatogenesis is impaired. The 

temperature of the gonads (the scrotum) is kept at 2 ºC lower than the standard body 
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temperature, due to the fact that the lie outside the body, moving freely in the scrotal 

sac, [ Figure.2 ].    

 

 

 

 

Figure.2. Anatomical structure of male reproductive organ and all the components that 
form it. Image from www.getceusnow.com. 

 

 

 



 - 9 -

1.2 Human Spermatogenesis    

Spermatogenesis, the production of spermatozoa from male germ cells, is initiated after 

puberty (Adolf-Friedrich et al., 2003). It consists of mitotic proliferation, meiotic 

division and extensive cell modelling (Nussey & Whitehead, 2001; Ergün et al., 1994). 

Meiotic division is regulated differently, and involves different processes in male and 

female gameteogenesis (Handel & Eppig 1998). Differences in the process and in 

regulation of gamete production between male and female mammals are summarised in 

[ Table.1 ] 

 

Oogenesis Spermatogenesis 
• Meiosis initiated once in a finite 

population of cells 
• Meiosis initiated continuously in a 

mitotically dividing stem cell 
population 

• One gamete produced per meiosis • Four gametes produced per meiosis 

• Completion of meiosis delayed for 
months or years 

• Meiosis completed in days or weeks 

• Meiosis arrested at first meiotic 
prophase and reinitiated in a smaller 
population of cells 

• Meiosis and differentiation proceed 
continuously without cell cycle arrest 

• Differentiation of gamete occurs 
while diploid, in first meiotic 
prophase 

• Differentiation of gamete occurs 
while haploid, after meiosis ends 

• All chromosomes exhibit equivalent 
transcription and recombination 
during meiotic prophase 

• Sex chromosomes excluded from 
recombination and transcription 
during first meiotic prophase 

Table.1 Outlined differences between female and male production of gametes. Table 
from: Handel & Eppig 1998. 
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Spermatogenesis takes place within the germinal epithelium of the seminiferous tubules. 

When primordial germ cells (PGCs) (Handel & Eppig 1998), reach the genital ridge of 

the male embryo, they are introduced into the sex cords (Handel & Eppig 1998). Here 

they are stored until maturity is reached, then the sex cords hollow out forming the 

seminiferous tubules, and the epithelium of the tubules differentiates into the Sertoli 

cells (Handel & Eppig 1998), [ Figure.3 ].  

The PGCs divide to form spermatogonia; which are smaller in size and are composed of 

an ovoid shaped nucleus containing chromatin associated within the nuclear membrane 

(Handel & Eppig 1998). The spermatogonia are stem cells capable of regenerating 

themselves or producing different type of cells (Handel & Eppig 1998). In effect the 

spermatogonium has three possible fates: it can divide further to form new 

spermatogonia, it may undergo apoptosis (cell death) or it may differentiate into the first 

committed stem cell type, the intermediate spermatogonium (Handel & Eppig 1998). 

These cells undergo mitotic divisions to develop other forms of spermatogonia. Then 

they will further divide producing the primary spermatocytes before undergoing meiosis 

(Dym et. al., 1994). At this stage of development, the cytoplasm of neighbouring germ 

cells is connected via cytoplasmic bridges of ≈1 µm in diameter (Dym & Fawcet, 1971). 

Each primary spermatocyte goes through the initial meiotic division to produce two 

secondary spermatocytes, which then complete the second division of meiosis. The 

resulting haploid cells, called spermatids, are still able to communicate with their 

neighbours via the cytoplasmic bridges (Dym & Fawcett 1971). During the series of cell 

divisions from spermatogonium to spermatid, the cells move further away from the 
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basement membrane of the seminiferous tubule and close to its lumen. Different cells, at 

different stages can be identified and localized in different areas of the tubule (Handel & 

Eppig 1998); [ Figure.3. ]. 

 As spermatids approach the border of the lumen they lose their cytoplasmic 

connections and differentiate into spermatozoa (Dym & Fawcett 1971) [ Figure.3 ]. The 

entire process is dependent on the endogenous environment provided by the somatic 

cells of the testis (Sertoli & Leydig cells) and it is also dependent on endocrine and 

para-autocrine regulation as well as well as direct cell to cell interaction (Dym & 

Fawcett 1971). The spermatogenic germ cells are linked to the Sertoli cells by N-

cadherin molecules on the surfaces of both cells and by galactosyltransferase molecules 

on the spermatogenic cells that bind a carbohydrate receptor on the Sertoli cells 

(Newton et al. 1993; Pratt et al. 1993). The Sertoli cells provide the developing sperm 

cells with the nutrients and protection they require (spermatogenesis occurs in the 

recesses of the Sertoli cells). 
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Figure.3. Diagrammatic representation of the physiological environment in the testis; 
where sperm formation and maturation take place. Furthermore exhibits the relationship 
with the cells present in the physiological environment where sperm formation and 
maturation take place (section of the seminiferous tubule). As cells mature, the germ 
cells migrate toward the lumen of the seminiferous tubule. Sinauer Associates, 2000. 
Diagram from: The Male Reproductive System, Dym, 1977. 

 

After release into the lumen of the spermatogenic tubule, [ Figure.3. ], the sperm passes 

to the epididymis, which is made up of a single convoluted tubule divided into three 

regions: the proximal (caput), the medial (corpus), and the distal (cauda) epididymis 

(Handel & Eppig 1998). During the sperm’s journey through epididymal duct, it 

undergoes significant changes, including modification of many intra-acrosomal and 
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sperm plasma membrane molecules (Handel & Eppig 1998), a process known as 

epididymal maturation (Handel & Eppig 1998). These modifications are essential for 

the maturation process; leading to the production of a self-propelled functionally 

competent spermatozoon [ Figure.4. ]. The region in the epididymis where spermatozoa 

become functionally mature may vary between species, but the distal region of the 

corpus appears to play this role in a number of species (Handel & Eppig 1998). 



 - 14 -

 

 
 

 
Figure.4. Diagramatic 
representation of sequence of 
events that lead to the 
formation of male gamete 
(sperm) threw the modification 
of a germ cell. The flagellum in 
the posterior end of the sperm 
is a product of the centriole and 
the acrosomal vesicle (anterior 
section) is a product of the 
Golgi apparatus The 
Mitochondria (chemical 
energy) conglomerates around 
the flagellum adjacent to base 
of the haploid nucleus and then 
placed into the midpiece of the 
sperm. The nucleus condenses 
(highly condensed) and the 
remaining cytoplams is 
eliminated (Clermont and 
Leblond 1955). Image sequence 
from: Dym, 1977. 
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1.3 Sperm Structure 

It is only within the past century that the sperm’s role in fertilization has been known 

(Gilbert, 2000) In 1678 a Dutch microscopist, Anton van Leeuwenhoek (sperm’s co-

discoverer) identified sperm in semen and initially believed that these were parasitic 

animals living within the semen (spermatozoa, meaning “sperm animals”) (Gilbert, 

2000).  

 

The end product of sperm biogenenesis (spermatogenesis and spermiogenesis) is a 

highly polarized cell, which is stored within the cauda epididymis, [ Figure.3. ] 

(Wassarman et al., 1997).  Most mammalian spermatozoa share the same basic 

structure,  comprising a head and a tail (propulsion system) composed of a midpiece, 

principal piece and end piece (Mortimer et al., 1997), [ Figure.5. ]. These components 

are surrounded by a continuous plasma membrane (Mortimer et  al., 1997). Sperm lack 

cytoplasmic organelles such as ER, ribosomes, Golgi apparatus, which seem to be 

unnecessary for sperm’s task (Handel & Eppig 1998). However,  mitochondria are 

present,  located in sperm’s midpiece, to supply the sperm with chemical energy, a key 

requirement being supply of  ATP to the flagellum to enable transit though the upper 

regions of the female reproductive tract and penetration of the zona pellucida (ZP).  

The sperm head contains the nucleus (≥65% of the sperm head) and a single large 

secretory vesicle, the acrosome (Evans, 2004; 2005), [ Figure.5. ]. The DNA present in 

the nucleus is tightly packed in order to facilitate its transport. The chromosomes of 
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sperm are packed with highly positively charged proteins called protamine; rich in 

arginine and cysteine (Alberts et. al., 2001). The nucleus is covered by a reduced 

nuclear envelope. Nuclear pore complexes (NPC) are removed during spermiogenesis 

(De Jonge & Barratt, 2006) and accumulate in the redundant nuclear envelopes (RNE) 

at the base of the sperm nucleus in the region of the sperm neck (Ho and Suarez, 2003). 

The sperm nucleus is protected by the perinuclear theca (PT), also reffered as the 

“perinuclear matrix”, a rigid shell composed of disulfide bond-stabilized structural 

proteins united with various other proteins (Oko, 1995).  

The anterior portion of the sperm head includes the acrosome, an exocytotic vesicle 

derived from the Golgi during spermatogenesis. This forms a cap which lies just 

beneath the plasmalemma and tightly encloses the anterior portion of the nucleus 

[Figure.5. ]. The inner and the outer acrosomal membrane encloses a dense acrosomal 

matrix, including enzymes (proteases) involved in the digestion and formation of a 

opening in the ZP (reviewed by Gerton, 2002; Yoshinaga and Toshimori, 2003) and 

receptors required for the sperm interaction and penetration of the ZP (De Jonge & 

Barratt, 2006; Section 1.6). The subacrosomal layer of the PT, underlying the 

acrosomal, functions to anchor this vesicle. The equatorial segment is a folded-over 

complex of the perinuclear, inner and outer acosomal membranes, which carries 

receptors involved in the initial binding of the sperm to the egg plasma membrane, once 

fertilizing sperm cells penetrate through the ZP and reaches the perivitelline space, 

[Figure.2. ] (De Jonge & Barratt, 2006). The postacrosomal part of the PT is believed to 

include a complex of signalling proteins all combinedly referred as SOAF, or sperm 
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borne, oocyte acting factor that are released by PT dissolution into the oocyte cytoplasm 

at fertilization (reviewed by Sutovsky et al., 2003).  

The mechanism of sperm motility varies according to how the species has adapted to the 

environmental conditions (Gilbert, 2000). In some parasitic species such as the 

roundworm, Ascaris, the sperm move by the amoeboid motion of lamelliopdial 

extensions of the cell membrane (Gilbert, 2000). In most species, sperm is capable of 

travelling long distances by beating of a flagellum (Gilbert, 2000). The energy source 

(chemical energy, ATP) for this process is provided, at least in part, by the ring of 

mitochondria located in the midpiece of the sperm, [ Figure.5. ], (Gilbert, 2000). In 

mammals, a layer of dense fibers has interposed itself between the mitochondria sheath 

and the axoneme. 
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Figure.5. (A) Diagrammatic view of human mature spermatozoa structural components 
(image from: Machado-Oliveira, 2008),  (B) Transmission electron microscopy (TEM) 
side image of mammalian spermatozoa head and midpiece (image from: Costello et al., 
2008) (C) TEM images of spermatozoon midpiece and neck region composed of 
mitochondria (chemical energy in the form of ATP for  motility)and the RNE. Images 
from: Han-Chen Ho & Suarez, 2001. 
 

 

 

 

 

A 
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Figure.6. (1) Diagrammatic representation of components that form the mammalian 
sperm flagellum and the division of the flagellum into three areas (midpiece, principal 
piece and end piece). Additionally it shows the cross-section of the four components 
(Turner et al., 2003). The midpiece shows the plasma membrane and the mitochondrial 
sheath (MS) surrounding the 9 outer dense fibers (ODFs). In the ODFs are the 
components of the axoneme: the 9 outer microtubule doublets of the axoneme (OMDA) 
with associated dynein arms (DA) and radial spokes (RS) and the central pair of 
microtubule doublets (CP). The principal piece show the PM surrounding 7 ODFs, 
whilst the ODFs 3 and 8 are replaced by two longitudinal columns of the fibrous sheath 
(LC), connected by transverse ribs (TR). Here the axonemal components are not 
modified. The end piece show that the ODFs and the FS gradually lessens when the 
principal piece ends and they are not present in the end piece, leaving the PM 
surrounding the axoneme (Turner et al., 2003) (2) (A) Electron microscopic image of 
the cross-section of Ciona flagellum; (B����D) Electron microscopic images of the 
components that form the human mature sperm flagellum (B: end piece, C: principal 
piece & D: mid piece). 
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1.3.1 The sperm flagellum  
 

Structure of the flagellum. The ultrastructure within the mammalian flagellum is highly 

conserved and is composed of the contractile axoneme, surrounded by the outer dense 

fibres (ODF). The axoneme is composed of central two microtubules, connected by 

linkages (Pedersen, 1970), surrounded by nine microtubule doublets (in a 9 + 2 pattern) 

(Fawcett, 1965), [ Figure.6. ]. 

The two central microtubules are surrounded by a central sheath composed of a spiral of 

two fibres (Pedersen, 1970). The outer doublets are made of an A subunit creating a 

complete microtubule, and a B subunit (C-shaped) with an attached end to the A 

subunit. Adhered to each of the A subunits are the dynein arms (Afzelius, 1956; 

Gibbons & Grimstone, 1960; Gibbons, 1961). These multi-subunit ATPase complexes 

are responsible for the transformation of chemical energy (ATP) into kinetic energy. 

This is possible by permitting adjacent microtubule doublets to slide relative to one 

another, leading to axonemal bending and creating flagellar movement. Nexin links 

connect the microtubule doublets (Gibbons, 1965; Stephens, 1970); between the A and 

the B subunits (Baccetti et al., 1985). It has been suggested that nexin links may have 

elastic properties that allow the control and elastic retention of shear forces during 

doublet sliding. It has also been hypothesised that these may also be involved in the 

retention of flagellar bending and axonemal symmetry during sliding (Linck, 1979; 

Brokaw, 1980). 
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In organism that are involved in internal fertilization, the 9 + 2 axonemal structure is 

further surrounded by auxiliary dense fibres (ODFs) which are attached to the distal end 

of the segmented columns in the connecting piece (Fawcett, 1975; Baccetti et al., 1976) 

and a fibrous sheath (Pedersen, 1970). Each ODF is associated with the axonemal 

microtubule doublet (AMD), and numbered according to the doublet with which is 

associated. These fibres each contain a cortex and a medulla and are composed of a 

keratin-like protein (Baccetti et al, 1973).  

 

Regions of the flagellum.  The connecting piece links the flagellum to the sperm head. 

This is made of segmented columns possibly articulated, which would enable the neck 

region to bend without straining the link between the tail and the sperm head (between 

the capitellum and the basal plate) (Curry & Watson, 1995). The sperm midpiece 

extends from the distal end of the connecting piece to the annulus (Mortimer, 1997). 

The midpiece is the area where mitochondria are located (arranged in a helical-like form 

around the proximal portion of the axoneme), these are involved in production of ATP; 

required for flagellar movement (Curry & Watson, 1995). The flagellar principal piece 

extends from the annulus to the terminal piece and contains the fibrous sheath. This is a 

cytoskeletalcomponent that surrounds the axoneme and the ODFs. It is composed of 

two peripheral longitudinal columns in the plane of the central pair of microtubules, 

linked by semicircular circumferential ribs; that form a tubular-like connection 

(anastomose) (Fawcett, 1965). The two columns of the fibrous sheath have been shown 

to overlie, and be fused with, the two shortest ODFs and continue an attachment with 

their associated microtubule doubles following the distal termination of these ODFs 
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(Mortimer, 1997).The constituent proteins of the fibrous sheath are linked by disulphide 

bonds, making the structure very stable (Oko, 1988; Brito et al., 1989), suggesting that 

this structure may assist the flagellar motility by providing support of the flagellar beat. 

The terminal piece (or end piece) of sperm tail extends beyond the fibrous sheath. This 

section of the sperm tail is uniquely composed of the 9 + 2 axoneme covered by plasma 

membrane. The components forming the flagellar axonemal are terminated successively 

with the disappearance of the dynein arms, then the central pair of the microtubule 

subunits (Wolley & Nickels, 1985). 

 

Flagellar bending.  The creating of flagellar movement is through an attachment-

detachment cycle between the dynein arms and the adjacent doublet (Marchese-Ragona 

& Johnson, 1990). The exact nature of the interaction between the dynein and tubulin is 

still unclear, however the dynein-tubulin binding enables active sliding, which involves 

the B subunits of the nearby MTD, and is regulated by ATP (Gagnon, 1995). Projecting 

from the A subunit microtubule doublet and towards the central sheath (As-MTD) are 

the so-called “Radial Spokes” (RS) (Afzelius, 1959; Gibbons & Grimstone, 1960; 

Hopkins, 1970). These are composed of 17 proteins, in the stalk region (adhered to the 

subfibre A of the microtubule doublet) and 5 on the globular head region, which 

projects towards the central pair (Gagnon, 1995). During the microtubule doublet 

sliding cycle, the RS attach and detach (Mortimer, 1997) [ Figure.7. ]. 
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Figure.7. Diagrammatic representation of the 
mechanism of microtubule sliding under the action 
of dynein arms, in order to provide the sperm 
flagellar beat (Gagnon & Lamirande, 2006). For 
simplicity purposes in this diagram, only two outer 
microtube doublets of the axoneme are present and 
each of the numbered arms represents a pair of 
inner and outer arms (Gagnon & Lamirande, 
2006). There is no flagellar bend when the dynein 
arms are inactive state. (A) Here the first dynein 
arm encounter the adjacent microtube (B) creating 
a downward stroke, the sliding force is turned into 
a bend in the axoneme (C) and then the second 

dynein arm encounters the adjacent microtubule doublet. The flagellar beat generated is 
spread with the relaxation of the first dynein arm, the second generating the downward 
stroke (D) and the third engaging into action (E). A similar sequence is constantly 
repeated and occurs at the same time on the nine microtubule doublets in an 
asynchronous but coordinated manner all along the flagellum and around the 
circumference enabling for swimming in three dimensions (Gagnon & Lamirande, 
2006) Diagram from: Turner, 2003. 
 

 

 

 

1.4 Sperm Motility 
 
  

1.4.1 Hyperactivation 

Motility is perhaps the most easily observed function of sperm, and is yet arguably the 

least well understood (Darszon et al., 2006). Mammalian sperm show two forms of 

motility, activated motility, when they are initially exposed to the female reproductive 

tract and hyperactivated motility, which is observed in capacitated sperm in the vicinity 

of the oocyte. It has been well established, that Ca2+ contributes to the regulation of 

sperm activated motility (Tash & Means, 1987), and it may also be the primary factor 
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that leads to hyperactivated motility (Suarez et al., 1987; Lindemann & Goltz, 1988; 

White & Aitken, 1989; Brokaw, 1991; Yanagimachi, 1994; Ho et al., 2002). 

The two forms of sperm motility can be identified by the difference in amplitude of the 

flagellar beat. When sperm is introduced in the female reproductive tract, they show a 

relatively low low-amplitude flagellar beat. Capacitated motility is stimulated by 

Ser/Thr and Tyr phosphorylation of the flagellar proteins (Turner, 2006). This 

phosphorylation cascade is influenced by: cAMP and a soluble form of adenylyl cyclase 

(sAC). The cAMP regulates this process by its activation on protein kinase A (PKA), 

and this may be activated by the stimulation of sAC. The activity of this enzyme is 

influenced by the presence of bicarbonate ions (HCO-3) and Ca2+ (Livin et al., 2003, 

Esposito et al., 2004).  In hyperactivated sperm, in the upper regions of the female 

reproductive tract, the sperm flagellar beat is characterised by large amplitude. This 

high amplitude causes sperm to swim in a “figure-of-eight” formation, in areas of low 

viscosity. On the other hand, in areas of high viscosity, hyperactivated motility is more 

progressive (Suarez & Ho, 2003), allowing the sperm to ascend the oviduct and 

penetrate the egg cumulus (Suarez & Ho, 2003). Calcium plays a key role in the 

initiation and maintenance of hyperactivated motility, [ Figure.8. ], by directly 

influencing the components of the axoneme (Darszon et al., 2006; Suarez ,2001).  

 

Recently a novel class of Ca2+ channels known as the “CatSper” have been identified 

and localized in the testes. Four members of this family have been identified; two of 

them have been localized to the principal piece of the flagellum, CatSper 1 & CatSper 2 

(Quill et al., 2001, Ren et al., 2001, Lobley et al., 2003, Jin et al., 2005). Sperm from 
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mice null for any of the four CatSper genes result in a dysfunction of the CatSper 

channels and consequently the loss of hyperactivated motility (Publicover et al., 2007; 

Qi et al., 2007).  The plasma membrane Ca2+ ATPase 4 (PMCA4) is also restricted to 

the flagellum. Furthermore, sperm of PMCA4-null mice are immotile under conditions 

that lead to hyperactivated motility, consequently leading to an inappropriate Ca2+ 

regulation in the flagellum (Publicover et al., 2007; Okude et al., 2004; Schuh et al., 

2004; Wennemuth et al., 2003). 

 

 

 

Figure.8. (A) Mammalian active motility with symmetrical flagellar bend and (B) & 
(C) Hyperactivated motility. Diagram from: Han-Chen Ho & Suarez, 2001. 
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1.4.2 Chemotaxis 

Echinoderms. Sperm chemotaxis may occur throughout the Metazoans, from marine 

species such as sea urchins and corals, to humans (Miller, 1985; Cosson, 1990; 

Eisenbach & Tur-Kaspa, 1994; Eisenbach et al., 1999, 2004). The occurrence of sperm 

chemotaxis in externally fertilising organsisms (mostly marine) is well established. 

Echinoderms have been particularly useful for the study of mechanisms underlying 

sperm chemotaxis since these cells tend to swim with a planar circular trajectory 

(Christofer et al., 2005). In the presence of a concentration gradient of chemoattractant 

sperm undergo a series of sharp turns, each followed by a period of straighter 

swimming, that direct them towards the source of the stimulus (Kaupp et al., 2003, 

2008), [ Figure.9. ]. These brief turns are promoted by concise increases in flagellar 

asymmetry, enabled by an elevation in the acute angle between the long axes of the 

head and of the flagellum (Miller & Brokaw, 1970).  

 

Ca2+ is a key factor in sperm chemotaxis; this process of sperm guidance is dependent 

on an external supply of Ca2+; suggesting that Ca2+-permeant pathways maybe involved 

in this process (Darszon et al., 2006).  The initial response to stimulus is a short increase 

in cyclic guanosine monophosphate (cGMP) (Kaupp et al., 2003, 2008). Changes in 

cAMP lead to a biphasic elevation of [Ca2+]i, with an initial fast component followed by 

a slow decaying plateau phase (Christopher et al., 2005). Sperm flagellar asymmetry is 

regulated via the entrance of an external source of Ca2+ (Ishikawa et al., 2004). In 

demembranated sea urchin sperm the Ca2+ concentration is proportionally related to the 
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degree of flagellar asymmetry (Brokaw et al., 1979); although this has not been 

demonstrated with intact flagella (Christopher et al., 2005).  

 

 

Figure.9. Diagrammatic view of the two different kinds of spermatozoa responses to a 
chemoattractant source. The lines with arrows represent the spermatozoa’s swimming 
pattern with/out the presence of a chemoattractant source. (A) Shows non-stimulated 
spermatozoa (no chemoattractant) swimming pattern, linear or semi-linear swimming. 
In the presence of a chemoattractant gradient the direction of the swimming patterns 
changes dramatically towards the chemoattractant source (Based on Human 
spermatozoa, (Ralt et al., 1994; Jaiswal et al., 1999). (B) Shows non-stimulated 
spermatozoa (no chemoattractant) swimming pattern, circular motion. In the presence of 
a chemoattractant gradient the swimming pattern changes into loop forms towards the 
chemoattractant source (Based on ascidian’s & sea-urchin spermatozoa, (Kaupp et al., 
2003; Solzin et al., 2004). Diagram Modified from: Eisenbach & Giojalas, 2006.  
 

Chemoattractant      

Source 

Non-stimulated 
Stimulated 

A 

B 
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The swimming patterns observed in mammalian species, either ‘straight’ or curved, are 

dependent on flagellar movement (Ishijima et al., 1990). It has been demonstrated that 

when human spermatozoa are swimming towards an ascending chemical gradient their 

flagellar beat is symmetrical and they appear to reach the chemoattractant source 

without changes in their swimming direction (Spehr et al., 2003, 2004). In addition 

there is an increase in speed, this effect is known as chemokinesis (Ralt et al., 1994). 

This increase is possible due an elevation in frequency of the flagellar beat (↑ beats = ↑ 

speed) [Spehr et al., 2003, 2004]. Additionally, when human spermatozoa are 

swimming away from the chemoattractant source (e.g. bourgeonal) the cells are 

reported to turn and swim towards the source. This change in direction is due to an 

asymmetrical flagellar beat (Spehr et al., 2003, 2004). 

 

 

Mammals. The occurrence of sperm chemotaxis in mammals was initially doubted due 

to the fact that a very large quantity of sperm (107-109) is ejaculated directly into the 

female reproductive tract, where many reach the egg by chance (Eisenbach et al., 1999, 

2004). However, only small numbers of sperm may reach the fertilisation site (Section 

1.81) and the physical complexity of the female tract is such that the probability of 

mammalian sperm reaching the egg without chemical guidance (possibly thermal 

guidance too, thermotaxis) is probably very low (Eisenbach et al., 1999, 2004; 

Eisenbach & Giojalas, 2006).  
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However, establishing the occurrence of mammalian sperm chemotaxis has proved very 

difficult. An important difference between internal and external fertilisers is that in 

marine invertebrates most spermatozoa are capable of responding to a chemoattractant 

but in mammals only a small percentage of capacitated spermatozoa (10-15%) are 

responsive (Cohen-Dayag et al., 1994, 1995; Fabro et al., 2002; Villanueva et al., 1998; 

Coheng-Dayang et al., 1994; Ralt et al., 1991 Giojalas et al., 2004). This was first  

identified by the finding that both capacitation (see below) and chemotactically 

responsive sperm had similar life spans (equally short) and they are continuously 

replaced (Eisenbach & Giojalas, 2006). In addition, depletion of capacitated 

spermatozoa results in the loss of the cells that respond to a chemoattractant and the 

depletion of chemotactic spermatozoa leads to loss of the capacitated spermatozoa 

(Coheng-Dayag et al., 1995; Giojalas et al., 2004; Jaiswal et al., 2002; Oliveira et al., 

1999). The restriction of capacitation (and chemosensitivity) to a small, changing, 

proportion of cells is thought to ensure the presence of capacitated and chemotactically 

responsive spermatozoa in the female reproductive tract over an extended period 

(Coheng-Dayag et al., 1995). This is important in species such as humans, where 

ovulation is periodic (Eisenbach & Giojalas, 2006).  Thus assays of mammalian sperm 

chemotaxis must be carried out in the context of a low signal-to-noise ratio (Eisenbach 

et al., 1999; 2004). However, good evidence for the occurrence of mammalian sperm 

chemotaxis became apparent when the behaviour of mammalian sperm was analysed 

according to parameters that distinguish chemotaxis from chemokinesis (Eisenbach et 

al., 1999, 2004).  
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The molecular mechanism involved in mammalian sperm chemotaxis is still an enigma; 

we still lack the knowledge completely to understand the molecular events (Eisenbach 

& Giojalas, 2006). What we do know about the molecular mechanism of sperm 

chemotaxis in mammals is the identity of some of the receptors involved and the 

chemoattractant-induced [Ca2+]i changes (Eisenbach & Giojalas, 2006, Kaupp et al., 

2008; see below section 1.8). The identification and localization of the G-protein-

coupled olfactory receptors (Parmentier et al., 1992; Branscomb et al., 2000; 

Vanderhaeghen et al, 1993; Vanderhaeghen et al., 1997; Walensky et al., 1995; 

Walesky et al., 1998; Defer et al., 1998) in the midpiece of the tail of mature 

mammalian spermatozoa (Walensky et al., 1995; Spehr et al., 2003, 2004, 2006) suggest 

that these proteins could play a physiological role as receptors in mature sperm  in 

mammalian sperm chemotaxis (Parmentier et al., 1992;Vanderhaeghen et al., 1997).   
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1.5 Spermatozoa Capacitation 

Mammalian spermatozoa once fully differentiated then acquire their motile ability when 

these reside and mature in the epididymis (Darszon et al., 2005, 2006). When a sperm is 

initially introduced into the female reproductive tract it is unable to fertilize the oocyte. 

Here, as consequence of interaction with epithelial tubual cells and actions of the 

microenvironment within the female tract, it undergoes further maturation and acquires 

the ability to fertilize the egg during the sperms journey to reach the fertilization site 

(Yanagimachi R., 1994). The functional biochemical and biophysical changes that 

occur, which include a series of plasma membrane changes and changes in intracellular 

metabolism (Brucker et al., 1995), are known collectively as “Capacitation” (Austin, 

1952; Chang, 1951; Yanagimachi R., 1994). Spermatozoa are exposed to significant 

changes in ion concentrations, osmolarity and different environment during its journey 

in the female reproductive tract (Darszon et al., 2005, 2006). Functional coupling of the 

signal transduction pathways that regulate the initiation of the acrosome reaction (see 

below, Section 1.6) is known to be a key outcome of capacitation. An increased 

response of mammalian sperm to ZP3 (Evans et al., 2004; Florman et al., 1994), 

progesterone (Baldi et al., 1998) and other inducers of the acrosomal reaction (AR) is a 

commonly used indicator that capacitation has occurred (Baldi et al., 2000). Many 

aspects of capacitation will contribute to this change, one of which is membrane 

potential hyperpolarisation, which occurs during capacitation, partly due to activation of  

potassium (K+) channels (Zeng et al., 1995). Hyperpolarisation releases T-type calcium 

channels from voltage dependent inactivation, allowing them to participate in ZP3 

signal transduction (Baldi et al, 2000). Hyperpolarisation is caused, at least in part, by 
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an increased contribution of potassium channels (K-channels) in setting membrane 

potential.  

Spermatozoa can be capacitated in vitro when spermatozoa are incubated in a defined 

medium containing all the components at the correct concentrations in order for this 

process to take place (similar to oviductal fluid). This defined medium must contain 

three key elements: Ca2+ , HCO3
- ,and serum albumin (BSA, HSA) (Visconti et al., 

1995; Yanagimachi, 1994). In mouse spermatozoa extracellular calcium must be at a 

range of 100-200µM in order for these cells to capacitate (Fraser, 1987; Marin-Biggiler 

et al., 2003; Darszon et al., 2005). Furthermore, in vitro studies have demonstrated that 

spermatozoa plasma membrane fluidity is modified as a consequence of cholesterol 

removal by albumin present in the female reproductive tract (Cross, 2003; Travis and 

Kopf, 2002; Visconti et al., 2002). Moreover, the coapplication of cholesterol with 

albumin consequently will unable spermatozoa to undergo in vitro capacitation 

(Osheroff et al, 1999; Visconti et al., 1999). 

 

When spermatozoa contact seminal fluid at ejaculation they aquire decapitating factors 

(DF), which bind the sperm surface and suppress capacitation. These are gradually 

released from the surface of spermatozoa as they capacitate (Baldi et al., 2000). It has 

been suggested that the DFs activate an intracellular Ca2+-ATPase keeping the 

intracellular calcium level low [Ca2+]i (Luconi et al., 2000) and release from the sperm 

surface permits an increase in intracellular calcium [Ca2+]i (Baldi et al., 2000). Two 

potential DF candidates are uteroglobin and transglutaminase, inhibitors of sperm 

capacitation and motility; additionally these are shown to be present within the seminal 
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plasma (Luconi et al., 2000). Another inhibitory component found in the seminal 

plasma is cholesterol (Cross et al., 1996; Khorasani et al., 2000). Within the female tract 

cholesterol efflux from sperm membrane is mediated by sterol-binding proteins (high-

density lipoproteins) and initiates many aspects of capacitation. Sperm membrane 

reorganization is one of the initial steps in the process of sperm capacitation, after 

cholesterol removal from the plasma membrane of spermatozoa (Cross, 2004; Travis 

and Kopf, 2002, Visconti et al., 2002) [ Figure.10. ]. On the other hand there are also 

stimulatory molecules, which bind to sperm within the female tract and stimulate the 

fertilising ability of sperm. These are known as fertilization-promoting peptide (FPP) 

These small peptides stimulate sperm capacitation (Funahashi et al, 2000) and inhibit 

spontaneous loss of the acrosome before the spermatozoa reach the fertilization site 

(Baldi et al., 2000). 

 

In addition to acquiring competence to undergo AR, another key marker of capacitation 

is the tyrosine phosphorylation of proteins through a cAMP-dependent mechanism. This 

phosphorylation event may be controlled by a bicarbonate-sensitive, soluble form of 

adenylyl cyclase (sAC); which reflects the strong requirement for extracellular 

bicarbonate (HCO-3) in the capacitation process. Bicarbonate is present at low levels in 

epididymis and at high concentrations in seminal plasma and in the oviduct (Brooks et 

al., 1988) and is thus apparently critical in the inhibition of capacitation in the 

epididymis and the stimulation of capacitation in the female reproductive tract (Purohit 

et al., 2004). The mechanism by which activation of sAC and generation of cAMP leads 

to tyrosine phosphorylation is still not fully resolved. Elevation of intracellular pH and 
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bicarbonate (HCO-3) levels, with the associated stimulation of cAMP production, may 

activate the cyclic nucleotide-gated and pH-gated channels that are present in sperm 

flagella and are linked to the control of flagellar motility (Navarro et al, 2008; Baldi et 

al., 2000).  

 

In summary, capacitation is a complex ‘suite’ of changes that is believed to influence 

metabolism, membrane biophysical characteristics, protein phosphorylation state, 

intracellular pH (pHi) (Uguz et al., 1994; Cross et al., 1997; Neill et al., 1987), Ca2+ 

levels, hyperpolarisation of membrane potential (Baldi et al., 2000) and probably other 

aspects of the sperm’s biochemistru and physiology [ Figure.10. ]. 
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Figure.10. Diagram representing the possible chemical and physical changes that result 
in the capaciation of mammalian spermatozoa (Diagram and literature from: Abou-
Haila et al.,  2009 and from literature reporting experimental research from other 
groups). 
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1.6 Acrosome Reaction (AR) 

The Acrosome reaction (AR) has been studied in great detail in many mammalian 

species (including humans); although our understanding of the events that take place 

during this process is greater in mice (Jimenez-Gonzalez et al., 2006). 

The mammalian oocyte is surrounded by a thick glycoprotein coat, the zona pellucida 

(ZP) and at the time of ovulation the ZP is surrounded by the granulosa cells 

(Yanagimachi, 1994). Prior to the egg fertilisation, a spermatozoon must penetrate the 

ZP, and before this takes place, the spermatozoon must undergo the acrosome reaction. 

Binding to the ZP triggers extrusion fusion, at multiple points, between the outer 

acrosomal membrane and the overlying plasma membrane, often referred to as 

“acrosomal exocytosis” (Gerton et al.,  2002). As a result of this membrane fusion, the 

acrosomal content including a great array of hydrolysing enzymes, is exposed 

[Figure.11 ]. This, in combination with hyperactivated motility, permits the penetration 

of the zona pellucida (Baldi et al., 2002; Breitbart and Spungin, 1997; Cross et al., 1988; 

Flesch and Gadella, 2000; Wassarman et al., 2004; Yanagimachi & Usuf, 1974). 

The sperm, with its nucleus covered by the inner acrosomal membrane, passes through 

the ZP and across the perivitelline space to fuse with the oolemma of the oocyte (Baldi 

et al., 2000). 

 

 In the mouse the main biological promoter of sperm AR is the zona pellucida (ZP). 

Experimental studies, in mouse have led to the conclusion that ZP contains proteins 

(ZP1, ZP2, and ZP3) [Lefièvre et al., 2004]. Thus alternative nomenclature was 

proposed based on the gene size, ZPA (ZP2), ZPB (ZP1) and ZPC (ZP3) (Harris et al., 



 - 37 -

2004; Lefièvre et al., 2004). However it was later shown that ZP1 and ZPB genes in 

human are paralogues (Hughes and Barratt, 1999), suggesting that the human contained 

four ZP genes and not three (Lefièvre et al., 2004), correlating with the identification of 

both ZP1 and ZPB genes in chicken (Bausek et al., 2000) and rat (Lefièvre et al., 2004). 

Additionally, Lefièvre et al. (2004) were the first to experimentally demonstrate the 

existence of the four glycoproteins in human (ZP1, ZP2, ZP3 and ZPB), also identified 

in rats. The ZPB gene identified in mouse spermatozoa, has acquired a series of 

modifications resulting in its unlikely expression (Lefièvre et al., 2004). ZP3 (83kDa) 

exhibits most of the sperm binding and AR-inducing activity (Florman  et al., 1989). 

Furthermore, ZP2 is a secondary ligand that binds to the spermatozoa that have 

undergone AR and stimulates a cascade of events that result in the prevention of 

polyspermy (Bleil and Wassarman, 1980; Bleil et al., 1981). The remaining 

glycoprotein ZP1, has been proposed to play a role in maintaining the structural 

intergrity of the ZP matrix (Greve & Wassarman, 1985; Green, 1997; Wassarman, 

1997; Lefièvre et al., 2004) and does not have a direct effect in spermatozoa binding 

(Lefièvre et al., 2004; Rankin et al., 1999).  

 There are other agonists that may act in vivo that could potential induce AR: Serum 

album, epidermal growth factor, ANP, platelet-activating factor, progesterone (17βOH-

progesterone), ATP and prostaglandin E1 (Yanagimachi et al., 1994; Baldi et al., 1998, 

2000).  ZP3 is able to bind readily to sperm and it is also capable of functioning as a 

competitive inhibitor of adhesion (Evans et al., 2004). The nature of the adhesion to the 

zona pellucida is based on the protein-carbohydrate recognition process, through the 

association of O-linked oligosaccharides (carbohydrate chains attached to polypeptide 
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by serine/threoninyl: N-acetylgalactosaminyl linkages) from ZP3 with a cognate 

receptor on sperm (Florman et al., 1985; Wassarman et al., 2001).   

 

ZP3 binding of mouse sperm leads to a cascade of events which ultimately cause an 

increase in [Ca2+]i, which triggers AR. Initial events in the response of mouse sperm to 

ZP3 include the opening of T-type, low voltage-activated calcium channels, that results 

in a transient calcium influx and the activation of the heterotrimetic G proteins, Gi1 and 

Gi2 (Florman et al., 1998; Arnoult et al., 1996). These initial responses are believed to 

activate phospholipase C (PLC) (Tomes et al., 1996; Fukami et al., 2001; Roldan et al., 

1994) and cause an increase in intracellular pH (Arnoult et al., 1996; Florman et al., 

1989), resulting in a sustained calcium influx that directly drives exocytosis (Florman et 

al., 1989; Florman et al., 1994). A variety of studies have tried to identify the channel(s) 

that lead to the sustained phase of ZP3-evoked Ca2+ entry (Evans et al., 2004). The main 

candidate subunit of the PLC-dependent calcium entry channels are canonical TRP 

family (Jimenez-Gonzalez et al., 2006; Minke et al., 2002). The gating mechanism that 

links PLC action to the opening of TRPC channels is still unknown and there are 

hypotheses based both on lipid products or PLC hydrolysis and also on the generation of 

inositol-1,4,5-trisphosphate (InsP3) and the activation of a calcium-store depletion-

operated pathway (Mike et al., 2002). Various TRPC genes are expressed in the 

mammalian germ lineage (Wissenbach et al., 1998; Jungnickel et al., 2001) and TRPC2 

has been shown to be a subunit of the sustained calcium entry channel in mouse sperm 

that is activated by ZP3 (Jungnickel et al., 2001). Furthermore, InsP3 receptors are 

present in the sperm acrosome (Walensky et al., 1995), acting as an IP3-mobilised Ca2+ 
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store (Jimenez-Gonzalez et al., 2006) and may play a role in the stimulation of the 

TRPC2 channels by the action of ZP3 (Jimenez-Gonzalez et al., 2006). Additionally it 

has been recently identified that the TRPC channels can be stimulated by a variety of 

mechanisms (Padinjat & Andrews, 2004) and the mechanism that lead to the sustained 

Ca2+-influx is still uncertain (Evans & Florman, 2002).  

 

In humans TRPC2 is apparently a psueudogene (Wes et al., 1995; Vannier et al., 1994) 

and possibly in bovine systems too (Wissenbach et al., 1998). Thus in other species the 

identity of the channels involved, and possibly the nature of their activation, may be 

different. Our knowledge of the ZP-induced intracellular calcium signal in humans cells 

is relatively limited (Serres et al., 2000), possibly another member of the TRPC family 

plays the role that TRPC2 plays on mouse sperm (Jimenez-Gonzalez et al., 2006).  

 

Various SNARE proteins (soluble N-ethylmaleimide-sensitive factor-attachment protein 

receptor) have been identified in the acrosomal region of mammalian and sea urchin 

sperm  and these have been propose to play a role in membrane fusion resulting in  

exocytosis (Darszon et al., 2005).  
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Figure.11. (A) & (B) Image and diagrammatic representation of acrosome reacted and 
acrosome intact spermatozoa, resulting in the release of hydrolytic enzymes (acrosomal 
content). (1) Acrosome intact sperm with a distinct apical ridge, (2) An acrosome-
reacted sperm has a prominent equatorial segment (white arrowhead). Image (A) 
modified from  Han-Chen Ho & Suarez, 2001; diagram (B) from Publicover et al., 
2007. 
 
 
 
In many species, spermatozoa that undergo acrosome reaction prematurely display 

reduced fertilization potential due to a failure to penetrate the cumulus oophorus, an 

increased propensity for binding to the cells comprising the cumulus oophorus (thus 

excluding them from interaction with the ZP), and an inability to adhere to the ZP 
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(Kopf, 2002).  This premature response AR response, which is normally not a common 

process (Yanagimachi et al., 1994); may occur as a result of self-aggregation of the 

sperm receptor for the zona pellucida (Sailing et al., 1989). Additionally this could also 

be as a result of a reduction the pumping efficiency of the Na+ and/or Ca2+ pumps, 

consequently leading to a increase in intracellular Ca2+ and pH (Yanagimachi et al., 

1994). 
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1.7 Calcium [Ca
2+

] ions and Cellular Regulation 

Calcium (Ca2+) signal transduction regulates a great array of cellular functions in the 

eukaryotic kingdom (Quill et al, 2001). Unlike many other second messenger 

molecules, Ca2+ is vital, yet the prolonged high intracellular Ca2+ levels lead to cell 

death. Calcium (Ca2+) cannot be metabolized like other second messenger molecules so 

cells tightly regulate intracellular levels through a great array of binding and specialized 

extrusion proteins (Cheek & Hazon, 1993), [ Figure.12. ]. The standard intracellular 

calcium [Ca2+]i levels are at ~100 nM; which is approximately  20,000 fold lower than 

the 2mM extracellular concentration. Scores of cellular proteins have been adapted to 

tightly bind calcium (Ca2+), in some cases just to buffer or lower free Ca2+ levels, and in 

others to trigger second messenger pathways. In ejaculated spermatozoa [Ca2+]i plays an 

important role in many physiological processes. In spermatozoa, intracellular calcium, 

[Ca2+]i  modulates a great array of physiological process, which include the acrosome 

reaction (Publicover et al., 2007; Evans et al., 2002, Kirkman-Brown et al., 2002) 

flagellar beat mode; including hyperactivated motility (Publicover et al., 2007; Harper 

et al., 2004; Suarez and Ho, 2003), chemotaxis (Kaupp et al., 2006; Eisenbach, 1999; 

Spehr et al., 2003), and is an important component in the spermatozoa’s capacitation 

(Publicover et al., 2007; Breitbart 2002). Furthermore all the above processes are 

necessary in order to successfully achieve spermatozoon’s goal, which is to successfully 

reach the fertilization site and fuse with the oocyte. Consequently sperm must strictly 

ensure that all of these physiological processes are initiated at their required times 

(Jimenez-Gonzalez et al., 2006).  
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Figure. 12. Diagrammatic representation of calcium-signalling dynamics and calcium 
homeostasis. Diagram from: Berridge et al., 2003.  
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1.7.1 Calcium Signalling in Mammalian Spermatozoa 

During spermiogenesis much of the cytoplasm is shed from the male germ cell, such 

that the structure of the mammalian sperm, compared to somatic cells, appears very 

simple. However, the remaining plasma and intracellular membranes are rich in Ca2+ 

channels and pumps, allowing the mature sperm to regulate [Ca2+]i and to generate 

complex and (apparently) localized [Ca2+]i signals [ Figure.13. ]. In this section the 

Ca2+-signalling apparatus of mammalian sperm is reviewed. 

 

 

 
Figure.13. Diagrammatic illustration of the classes and location of pumps, channels and 
intracellular storage organelles located in mammalian sperm, potentially involved in the 
regulation of intracellular calcium  (Publicover et al., 2008). Channels are illustrated as 
rectangles ( █ ) and the pumps as circles (●). The arrows illustrate the normal direction 
of calcium. The question mark next to SERCAs illustrates the presence  and/or its 
functional significance is under dispute (Publicover et al., 2008). Mitochondria located 
in the sperm midpiece of mammalian sperm, are involved in the accumulation of 
calcium (into matrix space) via a uniporter on the inner membrane (driven by e- 
transport), hence resulting in intracellular calcium buffering (not illustrated) (Publicover 
et al., 2008). Diagram from: Publicover et al., 2008.  
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1.7.2 Ca
2+

 channels at the Plasmalemma 
 

1.7.2.1 Voltage-Operated Ca
2+

 Channels  

Voltage operated Ca2+ channels (VOCCs) are a family of trans-membrane, channel-

forming proteins, with strong structural similarities to each other and to the voltage 

operated Na+ channels (Catterall, 2000 and Ertel et al., 2000).  The VOCC pore-forming 

unit is the α1 subunit, which comprises four homologous domains (I-IV) linked via 

cytoplasmic linker regions (Jimenez-Gonzales et al., 2006). Ten α1 genes have been 

identified, α1A- α1I and α1S. Each domain of the α1 subunit is composed of (6) six 

transmembrane helices (S1-S6). Between S5 and S6 segments there is a non-helical 

region (P-loop) (Jimenez-Gonzalez et al., 2006). These components (S5-P loop-S6) line 

the channel pore and are important in the determination of ion conductance and 

selectivity (Jimenez-Gonzalez et al-. 2006; Catterall et al., 2003).  

 

The VOCCs include  3 or 4 other subunits, in addition to the α1 subunit, which 

contribute to the channel’s characterization, regulation and location (Jimenez-Gonzales 

et al., 2006). The VOCCs are a “family” of great diversity in biophysical characteristics 

such as voltage dependence, kinetics of activation and inactivation and also in 

pharmacological sensitivity (Jimenez-Gonzales et al., 2006). Recent nomenclature 

identifies 3 sub-families (Cav1, Cav2 and Cav3). Cav1 and Cav2 types form high 

voltage activated channels. Cav3 (a1G(Cav3.1), a1H(Cav3.2) and a1I(Cav3.3)) all 

encode T-type channels which activate in response to low levels of  depolarisation 

(Caterall et al., 2003).  
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VOCCs have been identifies in both mature and immature sperm cells (Arnoult et al., 

1996a, 1996b) [ Figure.13. ]. Patch clamping of the VOCCS in immature male germ 

cells (human and rodent) has demonstrated that these cells express low-voltage 

activated (LVA), fast inactivating (T-type) currents (Hagiwara and Kawa, 1984; Arnoult 

et al., 1996a; Lievano et al., 1996). However, patch clamping has been unable to 

identify high-voltage-activated currents (Jimenez-Gonzales et al., 2006). 

Electrophysiological recording from immature male germ cells of α1G (Cav3.1 newer 

nomenclature) knockout mice demonstrated that the absence of the T-type channel had 

no considerable effects on the currents. The results obtained suggested that the α1H 

(Cav3.2) is the main functional VOCC in wild-type germ cells (Stamboulian et al., 

2004).  Immunolocalisation suggests that the distribution of the three different T-type 

channels varies within human sperm.  α1H(Cav3.2) is located in the principal piece of 

the tail and in the back of the sperm head and α1I(Cav3.3) is present in the sperm 

midpiece (Serrano et al., 2004). A number of groups have attempted  detection and 

quantification of different mRNA  for CaV subunits in preparations of motile sperm 

(Park et al., 2003). mRNAs for α1c(Cav1.2) and α1I(Cav3.3) were present, consistent 

with the hypothesis that T-type (especially α1H(Cav3.2) and α1G(Cav3.1)) and possibly 

non-L-type (α1E(Cav2.3) and α1B(Cav2.2)) Ca2+ channels  are involved in the 

acrosome reaction as the primary Ca2+ entry pathways (Jimenez-Gonzales et al., 2006). 
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1.7.2.2 Calcium (Ca
2+

) Store-operated Channels  

Calcium (Ca2+) efflux from intracellular stores is believed to activate Ca2+-permeable 

ion channels (store-operated channels-SOCs) in the plasmalemma, [ Figure.13. ], a 

process called capacitative Ca2+ entry (CCE) [Putney, 1990]. This physiological process 

is believed to occur in both non-excitable (Parekh and Penner, 1998) and excitable cells 

(Zhu et al., 1996; Garcia and Schilling, 1997; Philipps et al., 1998; Fomina and 

Nowycky, 1999; Li et al., 1999; Liman et al., 1999). It has been hypothesised that the 

canonical transient receptor potential channel (TRPC), [ Figure.13. ],  are involved in 

the formation of SOCs (Padinjat and Andrews, 2004).  Castellano et al. (2003) 

demonstrated that the distribution of these (TRPCs) are not only located in the sperm 

head but also in the flagellum, suggesting a potential role in sperm motility, [ Figure.14. 

], (Jimenez-Gonzales et al., 2006). 
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Figure.14.  Diagramatic illustration TRP channel structure; each TRP channel subunit 
are composed of six transmembrane-spanning segments (1-6). The pore region of the 
channel is located between the 5 and 6 segments (Krannich, 2008). The TRP N- and C-
terminus are located in the cytoplasmic side of the membrane, ankryrin-like repeats (A) 
are present in  the N-terminus. The C-terminus contains a region (CIRB) that binds 
CaM and IP3R, as well as a conserved region of unknown function called the TRP-box. 
Diagram from Krannich, 2008.  

 

 

A variety studies involving the mobilisation of stored Ca2+ capacitative Ca2+ influx have 

demonstrated the occurrence of CCE in  non-capacitated human sperm (Blackmore, 

1993), spermatogenic and sperm cells of mouse, bull and ram (Santi et al., 1998; 

Dragileva et al., 1999; O´Toole et al., 2000; Rossato et al., 2001). The signal (gating 

signal) that leads to the opening of the  SOC in the plasma membrane, is achieved by 

the stimulation of calcium (Ca2+) efflux from the intracellular stores. Ca2+ entry through 

SOCs, producing a sustained elevation in intracellular calcium [Ca2+]i, may be 

responsible for the stimulation of the acrosome reaction  of spermatozoa in mammalian 

sperm and non-mammalian sperm (Section 1.6) (O´Toole et al., 2000; Gonzalez-
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Martinez et al., 2001; Hirohashi and Vacquier, 2003). CCE  has also been implicated in 

the regulation of the chemotactic behaviour of ascidian sperm (Yoshida et al., 2003).  

 

 

1.7.2.3 Cyclic Nucleotide-gated Channels (CNG) 

Cyclic nucleotide signalling plays a critical role in the physiological mechanisms in 

mammalian and invertebrate spermatozoa (Jimenez-Gonzalez et al., 2006; Kaupp et al., 

2003, 2008) [ Figure.13. ]. The cyclic nucleotide-gated channels are composed of two 

subunits (α and β), or subunit A and B; these assemble and form a heteroligomeric 

complex, where the α-subunit forms the channel (Darszon et al., 1999,2005; Molday, 

1996). CNG channels show poor selectivity between sodium (Na+) and potassium (K+), 

are blocked by magnesium (Mg2+), and show permeability to calcium (Ca2+). The CNG 

channels are more sensitive to cyclic guanosine monophosphate (cGMP) than to cyclic 

adenosine monophosphate (cAMP) (Darszon et al., 1999). [ Figure.15. ]. The activity of 

the CNG channels is modulated by CaM (calmodulin), a Ca2+-binding protein; with  

half-maximum modulatory action occuring at calcium concentrations of ≈4µM 

(Molday, 1996). In olfactory CNG channels, the affinity of the CNG for cAMP 

decreases ˜20 fold in the presence of Ca2+/CaM (Chen et al., 1994). In human sperm an 

olfactory receptor (hOR17-4) is believed to activate a cyclic nucleotide-medicated Ca2+ 

influx and control sperm chemotaxis (Spehr et al., 2003, 2004, 2006; Jimenez-Gonzales 

et al., 2006). 
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Figure.15.  Diagramatic structure of CNG channels located in the plasma membrane of  
mammalian spermatozoa (Krannich, 2008). CaM in the diagram represents the 
calmodulin modulatory binding domain, the CNBD represents the cylic nucleotide 
binding domain. Diagram obtained and modified from: Krannich, 2008. 
 
 
 
 
1.7.2.4 CatSper ion Channels  

The CatSpers proteins CatSper1 (Ren et al., 2001), CatSper2 (Quill et al., 2001) and 

CatSper3 and 4 (Lobley et al., 2003) are subunits that combine to form  sperm-specific 

ion channels [ Figure.13. ]. They are subunits, each subunit including 6 transmembrane 

segments, such that the complete channel has a structure similar to a VOCC. Each 

subunit has a putative voltage-sensor in the S4 domain (Jimenez-Gonzales et al., 2006). 

The pore region of these channels is Ca2+-permeable and its transmembrane sequence 

resembles that of voltage-gated calcium and sodium channels (Jimenez-Gonzales et al., 

2006). It is still uncertain if the CatSpers are homo- or heteroterrameric, however the 

expression of only one subunit does not result in the formation of functional channels 
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(Quill et al., 2001; Ren et al., 2001).  It has been proposed that  in order to obtained a 

functional  tetrameric channel, the CatSper proteins require further subunits  (or factors) 

(Qill & Ren, 2001; Jimenez-Gonzalez et al., 2006). 

 

 

 

Figure.16. Diagrammatic representation of the CatSper ion channel ultrastructure. 
Diagram from: Lobley et al. Reproductive Biology and Endocrinology 2003. 
 

 

CatSper were initially identified and localised in the testis during spermatogenesis, 

when round spermatids are formed during this process (Ren et al., 2001; Nikpoor et al., 

2004). CatSper2 proteins are localized in the flagellum of mature sperm, [ Figure.17. ], 

(Quill et al., 2001) and CatSper1 to the principal piece of the tail (Ren et al., 2001), 

suggesting that CatSper channels may be involved in regulation of sperm motility 

(Jimenez-Gonzales et al., 2006). CatSper expression is apparently reduced in some 

cases of  human sperm that lack motility (Nikpoor et al., 2004).  
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Figure.17. The image represents the immunostaining of mature mouse sperm. This 
enabling to localize and identify the CatSper ion channels in the principal piece of the 
flagellum.  
 
 
 
CatSper knockout mice were unable to fertilize the egg, due to a decrease in sperm 

motility (Ren et al., 2001). CatSper1 and CatSper2 play a critical role in sperm 

hyperactivated motility (involved in zona penetration) (Carlson et al., 2003; Quill et al., 

2003).  Furthermore all four CatSper proteins are required for the alkalinization-

activated ICatSper necessary for the stimulation of hyperativation in spermatozoa (Qi et 

al., 2006). When spermatozoa travel from the vagina, experiencing a pH of 5 to the 

cervical mucus, to a pH of  8, during this journey spermatozoa experience intracellular 

alkalinization  (Qi et al., 2006). In normal spermatozoa when the internal pH is acidic 

and the resting membrane potential is of -40mV, the ICatSper show little activity, hence 

little Ca2+ is introduced into the cell. Consequently the conductance of the CatSper is 

drastically elevated when alkalinization takes place, hence stimulating Ca2+-influx 

mediated by ICatSper (Kirichok et al., 2006), this drastic Ca2+ entry results in an increase 
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in flagellar bending (Qi et al., 2006). Although, little is known on the mechanism by 

which intracellular Ca2+ modifies the flagellar bend in spermatozoa (Qi et al., 2006).  

 

 

1.7.3 Calcium (Ca
2+

) Clearance Mechanisms in sperm 

In most of the cells Ca2+clearance is performed mainly by ATP Ca2+pumps (Ca2+-

ATPase) or by a Na+-Ca2+ exchanger (NCX) [ Figure.13. ]. These exclude Ca2+  from 

the cell or into intracellular membranous  Ca2+ stores  A variety of experiments carried 

out on mouse sperm emphasise the importance of the Ca2+ pumps and Ca2+ exchangers 

in Ca2+ clearance in mammalian sperm (Wennemuth et al; 2000; Jimenez-Gonzales et 

al., 2006). Membrane Ca2+ ATPase pumps are the fastest Ca2+ extrusion mechanism in 

sperm, while Na+-Ca2+ exchanger and MCU (mitochondrial Ca2+ uniporter) are about a 

third as fast (Wennemuth et al; 2000; Jimenez-Gonzales et al., 2006) 

 

1.7.3.1 Ca
2+

 pumps in Spermatozoa  

There are three types of ATP-utilising Ca2+ pumps: the plasma membrane Ca2+ ATPase 

(PMCA); the sarcoplasmic-endoplasmic Ca2+ ATPase (SERCA) and the secretory 

pathway Ca2+ ATPase (SPCA) (Michelangeli et al., 2005) [ Figure.13. ]. All of the 

three types demonstrate approximately 30% sequence similarity to each other (Guteski-

Hamblin et al., 1992) suggesting that these have similar structures and similar 

mechanism of action (Jimenez-Gonzales et al., 2006). The Ca2+ pumps in sperm are all 
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part of the P-type family of ATPase, which become temporarily phosphorylated 

enabling the transportation of the ions across the membrane via an E1 to E2 

conformational change, as proposed by De Meis and Vianna (1979).  

The SERCA 1a isoforms and all other types of Ca2+ ATPase, are composed of three 

large  cytoplasmic domains: ATP binding; phosphorylation and an actuator domain 

which contributes to the rearrangement of the transmembrane helices, allowing Ca2+ to 

move from one side of the membrane to the other (Toyoshima and Inesi, 2004). 

 

 

1.7.3.2 Plasma Membrane Calcium (Ca
2+

) ATPase (PMCA)  

With a molecular weight of 130-140kD, PMCAs represent the largest of the three types 

of Ca2+ ATPase. Their large size correlates with the presence of an additional 

calmodulin-binding region located at the C-terminus of the protein; involved in the 

regulation of ATPase activity (Carafoli and Brini, 2000). PMCA has four isoforms 

(PMCA 1 – 4) and around a dozen splice variants (Carafoli and Brini, 2000). Isoforms 

PMCA1 and PMCA4 are identified in most mammalian tissues, suggesting a role in cell 

Ca2+ homeostasis.  

PMCA proteins have been identified in germ cells, in rat spermatids and mouse 

spermatozoa (Berrios et al., 1998; Wennemuth et al., 2003) [ Figure.13. ]. PMCA in 

mouse sperm has been localized and identified in the principal piece of sperm flagellum 

and PMCA4 located in the principal piece (Okunade et al., 2004; Schuh et al., 2004). 

Absence of the sperm’s PMCA (in flagellum) (PMCA4-Null mice) resulted in 
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inmotility in spermatozoa incubated under conditions that would normally lead to 

hyperactivated motility. This apparently reflects failure of Ca2+ regulation in the sperm 

flagellum (Publicover et al., 2007; Schuh et al., 2004; Okunade et al., 2004).  

 

 

1.7.3.3 Sarcoplasmic-endoplasmic Ca
2+

 ATPase (SERCA)  

The presence and role of SERCA in mature sperm is still a matter of controversy. 

Quantitative studies suggest that Ca2+ clearance in mature mouse sperm is unlikely to 

involve activity of SERCA (Wennenmuth et al., 2003). SERCA has been 

identified/localized (involving BODIPY-FL-thapsigargin, fluorescent analogue) in the 

acrosome and midpiece of spermatozoa (Rossato et al., 2001), [ Figure.13. ]. However, 

attempts to detect SERCA in sperm by Western blotting have produced varying results 

(Harper et al., 2005; Lawson et al, 2008). 

 

Rossato et al. (2001) reported that, ion mature human sperm, both Ca2+ mobilization and 

acrosome reaction could be induced by a SERCA-specific inhibitor thapsigargin (10-

100nM). However,  application of very high (non-specific conc. to inhibit SERCA) 

concentrations (1-10µM)  of thapsigargin were required to induced Ca2+-mobilization 

and disruption of Ca2+-signaling in sperm (Wictome et al., 1992, Brown et al., 1994; 

Harper et al., 2005) lower (more specific) concentrations having no effect (Jimenez-

Gonzales et al., 2006). 
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mRNA from two SERCA isoforms (SERCA 2 & SERCA 3) has been demonstrated to 

be expressed in mouse spermatids (Hughes et al., 2000). Additionally in rat spermatids 

it was able to identify a specific SERCA interaction (applying thapsigargin <100nM) 

(Berrios et al., 1998). These findings suggest that sperm SERCA may only be required 

during spermatogenesis and once the sperm matures this is not further expressed or 

degraded (still unclear why this occurs) (Jimenez-Gonzales et al., 2006). 

 

 

1.7.3.4 Secretory pathway Ca
2+

 ATPase  

In somatic cells the SPCAs are located on the Golgi apparatus or secretory vesicles 

(Wuytack et al., 2003; Wootton et al., 2004). Within the Golgi the SPCAs might control 

the levels of Ca2+ and Mn2+ in order to regulate its physiological functions (Missiaen et 

al., 2004; Michelangeli et al., 2005). Two isoforms, SPCA 1 and SPCA 2, have been 

identified. These show 60% sequence similarity to each other (Gunteski-Hamblin et al., 

1992). The mRNA for SPCA1 has been identified in rat spermatids (Wootton et al., 

2004) and the protein has been detected in mature human sperm (Harper et al, 2005). 

Immunolocalisation showed the protein in the anterior midpiece and the back of the 

sperm head, [ Figure.18. ], (Harper et al., 2005), possibly suggesting expression in the 

putative Ca2+ store of the redundant nuclear envelope (RNE) (Ho and Suarez, 2003).  
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Figure.18. Image representation of the localization of the SPCAs in mature human 
sperm, present in the anterior region in the anterior midpiece and further extending to 
the back of the head, the neck region (Jimenez-Gonzalez et al., 2006). Image from: 
Jimenez-Gonzalez et al., 2006. 
 
 
 
 
 

1.7.3.5 The Sodium/Calcium (Na
+
-Ca

2+
) Exchanger  

The Sodium/Calcium (Na+-Ca2+) exchanger exports calcium ions (Ca2+) using the 

energy from the sodium gradient (Na+) at the cell membrane [ Figure.13. ]. These 

exchangers have been located in various tissues, such as the cardiac, smooth and 

skeletal muscle, nervous system and the retina rod cells strongly suggesting their crucial 

role in homeostasis of calcium (Shiba et al., 2006; Blaustein and Lederer, 1999). 

Confocal microscopic studies by Krasznai et al. (2006), showed a heterogeneous 

distribution of the NCX, where binding of antibody was more remarkable in the 

acrosomal region and midpiece of spermatozoa (Krasznai et al., 2006) [ Figure.19. ].  

The ATP in these exchanger, is used indirectly through activity of the Na+, K+-ATPase 

(Blaustein and lederer, 1999; Philipson and Nicoll, 2000). NCX is capable of working in 
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reverse mode, exporting Na+ and importing Ca2+, the direction of the transport is 

dependent on the electrochemical gradients of the substrate ions (Philipson et al., 2002: 

Iwamoto, 2004). There are two groups of Na/Ca exchanger, the Na/Ca (NCX) 

exchanger and K+-dependent Na/Ca exchanger (NCKX) (Jimenez-Gonzales et al., 

2006). The Na+/Ca2+ exchanger present in the plasma membrane of mammalian 

spermatozoa are thought to play a crucial role in the tight regulation of Ca2+ 

homeostasis (Reddy et al., 2001; Su and Vacquier, 2002). Krasznai et al. (2006) showed 

that an elevation in intracellular Ca2+ activates NCX, resulting in a decrease in 

intracellular Ca2+, simultaneously elevating intracellular Na+, later removed (the 

excessive sodium) by other energy-required active transport mechanisms (Márián et al., 

2005). Furthermore the inhibition of NCX with various blockers of sperm motility was 

also inhibited, suggesting that NCX might participate in human sperm motility 

(Krasznai et al., 2006). Vines et al. (2001) showed that the motility initiation of herring 

spermatozoa is controlled by a reverse NCX (Krasznai et al., 2006) In spermatozoa of 

invertebrates, sea urchin, a flagellar K+-dependent NCX maintains low calcium levels, 

demonstrated by Su and Vacquier (2002).  
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Figure.19. Image of human spermatozoa labeled with NCX anti-body and visualized 
with Alexa 488 conjugated secondary antibody (Kraszanai et al., 2006). Image sequence 
from: Kraszanai et al., 2006.  
 

 

 

1.7.3.6 Mitochondrial Calcium (Ca
2+

) uptake 

Calcium (Ca2+) uptake by mitochondria is a well recognized and studied physiological 

process in somatic cells; acting as a regulator of mitochondrial function and in the 

majority of the cells contributing to the generation and the shaping of the calcium 

[Ca2+]i signals  (Bianchi et al., 2004). In spermatozoa the mitochondria are only located 

in the midpiece and potentially have an important Ca2+-buffering effect within this 

location.  

Various studies have shown that the mitochondria area able to accumulate calcium 

(Ca2+) in situ (Storey & Keyhani, 1973; 1974; Babcock et al., 1976). Additional 

experimentation involving sperm of various mammalian species (at various stages of 

maturation) suggest that the nature of mitochondrial accumulation may vary and may be 

regulated (Jimenez-Gonzalez et al., 2006). Furthermore it has been proposed that in 
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human spermatozoa, mitochondria might be involved in the maintenance of stable 

[Ca2+]i levels (Jimenez-Gonzales et al., 2006). 

 

 

 

1.7.4 Mobilization of stored Ca
2+

 in spermatozoa  

1.7.4.1 IP3 Receptors (IP3R)  

The physiological role and nature of inositol 1,4,5-trisphosphate-sensitive Ca2+ channels 

(IP3 receptor or IP3R) has been studied extensively. These are present in somatic cell as 

well as germ cells (Vermassen et al., 2004). These channels are activated by the binding 

of IP3 (inositol triphosphate) second messenger, resulting in an increase in intracellular 

calcium concentration [Ca2+]i (Michelangeli et al., 1995). IP3 is produced by the 

activation of phospholipase C which leads to hydrolysis of phospatidylinositol 4,5-

bisphosphate (PIP2) to diacylglycerol (DAG) and IP3.  In mammalian organisms three 

isoforms of these channels have been identified (identified as IP3R1,2 and 3) and in 

humans these show more than 74% sequence similarity with each other (Taylor et al., 

1999).  

The IP3R genes encode a single polypeptide composed of approximately 2500 amino 

acid residues, which can be subdivided into three major domains. IP3 binding domain is 

the region closest to the amino-terminus; the location of the membrane-spanning 

spanning channel domain is the region closest to the C-terminus (Jimenez-Gonzales et 

al., 2006). In between these regions there is a great array of phosphorylation sites, ATP 



 - 61 -

binding sites and other regulatory sites, referred to as modulatory or coupling domains 

(Bultynck et al., 2003). The IP3R has a tetramer conformation in its native state (Da 

Fonseca et al., 2003). It has been demonstrated that mammalian sperm express the G-

protein Gq and PLCβ and are therefore capable of agonist-stimulated production of IP3 

(Walensky & Snyder 1995; Kuroda et al., 1999).  

 

IP3Rs were identified in the acrosomal region within the sperm head, suggesting that 

the acrosome may contain stored Ca2+ ready to be mobilized (Walensky & Snyder 

1995). Furthermore, the type 1 isoform has been located in the same region (isoform-

specific IP3R antibodies) in human and bovine sperm (Kuroda et al., 1999; Ho & Suarez 

2003). The IP3R labeling in this site was reduced or lost when sperm acrosome reacted 

(AR), suggesting their presence in the outer acrosomal membrane (Walensky & Snyder 

1995 and Kuroda et al., 1999). Labeling of human sperm with IP3R3-specific antibodies 

was also detected in the sperm neck and midpiece. IP3R2 was not detected (Jimenez-

Gonzalez et al., 2006). In other mammalian sperm such as bull sperm, labeling using 

IP3R1-specific antibodies showed that the region at the back of the head, identified as 

the redundant nuclear envelope (RNE), was labeled (Ho & Suarez, 2003),[ Figure.20. ].   

In human spermatozoa anti-IP3R also localizes to the nuclear envelope in 50% of 

spermatozoa, although it was more intense in the acrosomal region (>90% of the cells) 

(Naaby-Hansen et al., 2001).  
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Figure.20. Images of  bovine spermatozoa representing immunolocalisation of InsP3Rs, 
in green, and the nuclear pore complex proteins, in red, indicating the location of the 
RNE (Costello et al., 2008). The InsP3 receptors are located over the acrosomal region 
and the neck of the spermatozoa (yellow arrow indicating location). Image from 
Constello et al.., 2008.  

 

 

Two classes of binding sites have been identified in IP3R isoforms located within sperm, 

a high affinity (Kd of 20-30nM) and a lower affinity binding site (Kd of 1-2 uM) 

(Walensky & Snyder 1995; Kurida et al 1999). The difference in binding site is possible 

due to the presence of the two IP3R isoforms present in sperm, IP3R1 and IP3R3;  which 

have been shown to have  different IP3R binding affinities (Wojcikiewicz & Luo 1998) 

and different IP3 sensitivities for Ca2+ release (Dyer and Michelangeli, 200) (Jimenez-

Gonzalez et al., 2006). The physiological role of IP3R has been demonstrated in sperm 

(Herrick et al., 2005), by the stimulation of the AR with thimerosal (IP3R activator) 

(assessor of Ca2+ mobilization from IP3R containing Ca2+ stores in sperm) (Bootman et 

al 1992; Sayers et al 1993). Calreticulum (a low affinity, high capacity Ca2+ buffering 

protein), which is associated with IP3R containing Ca2+ stores in somatic cells, is also 

present in the acrosomal and sperm neck, consistent with the presence of Ca2+ stores in 
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these regions (Naaby-Hansen et al., 2001, Ho & Suarez , 2003). In human spermatozoa 

the Ca2+ stored in the RNE was shown to be mobilized upon progesterone stimulation 

by Ca2+-induced Ca2+ release, in an IP3-independent manner (Harper et al., 2004).  

 

 

 

1.7.4.2 Ryanodine Receptor (RyR) in Sperm  

Ryanodine receptors (RyRs) were initially identified in the sarcoplasmic reticulum 

membrane of skeletal muscle (Jimenez-Gonzales et al., 2006). RyRs in the skeletal 

muscle sarcoplasmic reticulum function as a Ca2+-induced Ca2+ release channel, which 

play an important role in excitation-contraction coupling of striated muscle (Fill & 

Copello, 2002). The genes for the three mammalian isoforms of RyR code a large 

protein composed of 500 amino acids and show a high degree of sequence homology 

with each other (approx. 70% overall) (Brini, 2004). The different RyR isoforms are 

located in different areas, RyR1 located in skeletal muscle, RyR2 located in cardiac 

muscle and RyR3 in the brain, although this is further distributed (Brini, 2004). The 

RyRs are composed of two major domains: the amino-terminal region, which forms a 

large cytoplasmic structure (possibly containing ligand and modulatory protein binding 

sites), and the C-terminal region forming the transmembrane channel domain (possibly 

composed of 4 membrane helices) (Brini, 2004). In addition to variations in [Ca2+]i, 

RyRs are potentially activated by changes in cyclic adenosine diphosphate-ribose 

(cADPR) (a putative second messenger), and via conformational-coupling with other 

associated proteins (Zucchi & Ronca-Testoni, 1997; Jimenez-Gonzalez et al., 2006).  
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In mouse sperm the developing spermatocytes and spermatids express RyR1 and RyR3 

(Trevino et al., 1998 & Chiarella et al., 2004). Only the RyR3 isoform was detected in 

mature sperm and was present in both intact and acrosome-reacted sperm (Trevino et 

al., 1998) [ Figure.13. ]. Human sperm, show progesterone-induced intracellular (Ca2+) 

oscillations that are IP3-independent but are influenced by ryanodine with low doses 

increasing the frequency of the intracellular (Ca2+) oscillation and higher doses reducing 

the frequency (Harper et al., 2004). Human sperm specifically labeled with fluorescent 

analogue of ryanodine (BODIPY-FL-X-ryanodine) showed staining mainly focused 

around the sperm neck., co-localising with SPCA1 and with oscillations of [Ca2+]i that 

occur in response to progesterone stimulation (Jimenez-Gonzales et al., 2006). 

Additionally low levels of labeling were observed in the acrosome, [ Figure.21. ] 

(Harper et al., 2004). 

 

 
 
 
 
 
Figure.21. Image showing the localization of the RyR in human spermatozoa by 
fluorescent analogue of ryanodine (BIDIPY-FL-X-ryanodine). Image modified from: 
Jimenez-Gonzalez et al., 2006. 
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1.8 Guidance mechanisms for mammalian sperm in vivo  
 

 

 

 
                                                                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

During their passage through the female tract (Section 1.8.1 &1.8.2 ) sperm, at least in 

some mammals, are ‘stored’ in the region of the isthmus. At the time of ovulation a 

temperature gradient occurs between this storage site and the fertilization site (Smith & 

Yanagimachi, 1991; Lefebvre & Suarez, 1996; Eisenbach & Ralt, 1999; Suarez, 1998) 

Ejaculation  

A
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B
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Figure.22. (A) Diagrammatic representation of physiological route 
human sperm must travel in order to reach and successfully fertilise the 
oocyte. Additionally exposing the potential mechanisms involved in 
order to facilitate the sperm’s transportation through the female genital 
tract, to increase the possibilities of a successful fertilization of the egg 
(B) Image representation of the egg covered by hundreds of cumulus 
cells (Eisenbach & Giojalas, 2006). Diagram modified from Eisenbach 
& Giojalas, 2006.  
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which may act to guide the sperm to the oocyte by thermotaxis  (Bahat et al., 2005; 

David et al., 1972; Hunter et al.,1986; Eisenbach et al., 2006) [ Figure.22. ]. Sperm at 

the storage site are maintained with low [Ca2+]i, which maintains longevity and 

function; detachment is associated with an increase in [Ca2+]i leading to vigorous 

motility (Publicover et al., 2007). Spermatozoa may also encounter chemoattractants 

secreted along the oviduct (Eisenbach & Giojalas, 2006), potentially providing a series 

of short-range chemotactic cues which guide the sperm to the fertilisation site 

(Eisenbach et al., 1999; 2004;Eisenbach & Giojalas, 2006). As sperm approach the 

vicinity of the fertilization site they may sense a chemoattractant gradient originating 

from the cumulus cells (Sun et al., 2005), which guides them to the egg-cumulus 

complex (Sun et al., 2005; Eisenbach & Giojalas, 2006). Finally, a chemoattractant 

gradient established within the cumulus matrix, originating at the egg may guide 

spermatozoa to the egg (Sun et al., 2005) [ Figure.22. ]. 

 
 
 
 
1.8.1 In vivo Chemoattractant Source(s) 
 

Follicular fluid (FF), which is composed of pre-ovulatory secretions of the egg and its 

surrounding cells, was the first physiological substance to be investigated (for 

chemotaxis) and hypothesised to be a chemoattractant source in vivo (Eisenbach, 1999, 

2004, 2006). Follicular fluid and oviductal fluids are mixtures of different molecule 

types (peptides, steroids, heparin, adrenaline, oxytocin, calcitonin and acetylcholine) 

(Tevez et al., 2006).   In mammalian spermatozoa  follicular fluid has been shown to 
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have a chemotactic effect (Ralt et al., 1994) and in human spermatozoa this correlates 

with the chance of fertilizing an egg (Ralt et al., 1994) (Eisenbach et al., 1999, 2004, 

2006). However, sperm chemotaxis to FF in vivo is very unlikely (Sun et al., 2005) 

since follicular fluid is only released as a single event at ovulation (Eisenbach & 

Giojalas, 2006), whereas the chemoattractant gradient in the oviduct should be 

maintained throughout the period of residence of the oocyte in the female tract, in 

humans this would be approximately 24 hours post-ovulation (Harper et al., 1982). Thus 

the chemoattractants must be secreted not only prior to ovulation (into the fluid within 

the follicle) but also after egg maturation outside the follicle (Sun et al., 2005; 

Eisenbach & Giojalas, 2006). This was demonstrated with chemotactic responsiveness 

of sperm towards media containing mature eggs (human) and the cumulus cells (Sun et 

al., 2005). These observations suggest that oocyte and the cells of the surrounding 

cumulus oophorus independently secrete sperm chemoattractants (Sun et al., 2005).  

 

 

1.8.2 Human sperm chemoattractants 

 
Spermatozoa accumulation in response to a chemical gradient may be due to processes 

other than chemotaxis, such as chemokinesis and sperm trapping (Eisenbach et al., 

1999, 2004; Eisenbach & Giojalas, 2006). Sperm trapping is the net effect on 

spermatozoa  that result in cell accumulation in a particular location due to a reduction 

in sperm speed. This is possibly due to a negative effect of a stimulus on motility, from 

a gradient-independent change in swimming behavior in response to a specific 

concentration, as a result of mechanical effects such as sperm interaction with glass or 
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capillary, or possibly due to a combination of all of these (Eisenbach et al., 2004, 

Eisenbach & Giojalas, 2006). On the other hand, chemokinesis is an increase in sperm 

cell motility in response to a stimulus (Eisenbach et al., 1999, 2004; Eisenbach & 

Giojalas, 2006).  Studies involving the identification of putative chemoattractants 

should have a clear-cut criterion for distinguishing between these processes (Eisenbach, 

1999, 2004, 2006) To date, only a small number of putative chemoattractants satisfy the 

criteria for acceptance as true chemoattractants. Their physiological significance, if any, 

is still unclear (Eisenbach et al., 1999, 2006).  

 

Identified sperm chemoattractants in non-mammalian animals are primarily peptides or 

proteins with a low molecular mass (MM) (1-20kDa), heat stable and sensitive to 

proteases (Miller, 1985; Cosson, 1990). Exceptions to the above include sperm 

chemoattractants of corals, lipid-based substances (140-250 Da) (Coll and Miller, 

1992), and the attractants of ascidians ciona, which are nonproteinaceous small 

molecules (Yoshida et al., 1993). Identified sperm attractants for plants, such as ferns 

are aremalic acids (partially ionized) and a great array of unsaturated four-carbon cis-

dicarboxylic acids (Cosson et al., 1990). Sperm chemoattractants for algae are 

pheromones of low molecular mass (Maier & Müller, 1986; Cosson, 1990).  

In mammals, the identity of the chemoattractant produced by the egg is still unknown, 

but there are a number of candidates including progesterone, which has been reported to 

be a chemoattractant secreted by the cumulus cells (Eisenbach et al., 2004, 2006; Teves  

et al., 2006, 2009).  

 



 - 69 -

Progesterone is the main steroid hormone present in the egg and has been assayed for 

human sperm chemotaxis by different groups, giving rise to contradictory results (Sliwa 

et al., 1995; Villanueva-Diaz et al., 1995; Wang et al., 2001; Jeon et al., 2001; Jaiswal et 

al., 1999). Initially it was demonstrated that at nM to mM concentration progesterone 

lead to sperm accumulation and this was inhibited by a specific progesterone receptor 

antagonist (Sliwa et al., 1995; Villanueva-Diaz et al., 1995; Wang et al., 2000). 

However, it was later shown that this was due to sperm trapping as a result of 

hyperactivated motility induced by progesterone (Jaiswal et al., 1999). 

Teves 2006, demonstrated that at pM concentration range progesterone is a true 

chemoattractant for human and rabbit spermatozoa (Teves et al., 2006). Futhermore, it 

has also has been demonstrated that within the cumulus cell mass there is a gradient of 

progesterone production which will result in a progesterone concentration gradient from 

the centre to the periphery of the cumulus cellular mass (Teves et al., 2006).  

 

Post-ovulation, the cumulus cells synthesise and secrete progesterone (Yamashita et al., 

2003) and its carrier proteins (Baltes et al., 1998). Secreted progesterone becomes 

soluble (Sun et al., 2005). It has been proposed that the role of progesterone in vivo 

could be the following: In the vicinity of the cumulus the low concentration of 

progesterone could activate the high-affinity progesterone receptors, resulting in the 

attraction of sperm toward the cumulus mass via chemotaxis (Teves et al., 2006). When 

the sperm reaches the cumulus cells the levels of progesterone are much higher, leading 

to the activation of the low-affinity progesterone receptors and the stimulation of 

hyperactivated motility, enabling them to pass across the cumulus mass and the zona 
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pellucida (ZP) (Teves et al., 2006). Furthermore, the secretion of an unknown 

chemoattractant by the egg would result in the sperm guidance to the egg surface (Sun 

et al., 2005; Teves et al., 2006). Teves et al. (2009) propose that when progesterone 

binds to a surface receptor, it stimulates tmAC elevating cAMP and possibly activating 

PKA. This might result in the mediation of protein phosphorylation in sperm equatorial 

segment and tail region [ Figure.23. ]. They also propose a cascade of other signals 

including activation of  PLC, producing DAG and IP3, release of  stored Ca2+ and CCE 

(Teves et al., 2009).  

 

 

 

Figure.23. Proposed model of chemotactic siganaling when human spermatozoa sense a 
concentration gradient (ascending) of progesterone. Diagram from: Teves et al., 2009. 
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Nitric oxide (NO) a highly reactive free radical, synthesized from L-arginine by 

NADPH-dependent NO synthases (Wink et al., 1998; Miraglia et al., 2007), plays an 

important role in various biological processes, such as vasodilatation, 

neurotransmission, immune response, and apoptosis and recently in mammalian sperm 

chemotaxis (Miraglia et al., 2007). The exposure of spermatozoa to low concentrations 

of NO has shown to enhance the motility of mouse, hamster, and human spermatozoa, 

and the ability of  mouse, bull and human spermatozoa to acrosome react, together with 

the stimulation of the binding ability of human spermatozoa to ZP (Herrero et al., 2001; 

Revelli et al., 2002). Moreover, high concentration of this free radical impairs the 

motility of human spermatozoa and has negative effects on the viability (cytotoxic), and 

metabolism of human spermatozoa in vitro (Revelli et al., 2002; Rosselli et al., 1995). 

Miraglia et al. (2007) demonstrated that human sperm chemotaxis by  NO, using a NO 

donor GSNO (100nmol/L), may involve a NO/cGMP-signalling pathways, with an 

experimental assay capable of discriminating between chemotaxis and other processes 

that result in sperm accumulation. Furthermore, with different NO donor (sodium 

nitroprusside) it has been reported that mouse spermatozoa show a chemotactic 

response to NO at a lower concentration, 50nmol/L (Sliwa et al., 2000). These 

difference in concentration response may be attributed to a difference is NO donors, 

time of incubation and/or the different sample species investigated (Miraglia et al., 

2007). Furthermore mammalian spermatozoa encounter cues of NO concentrations 

whilst approaching the oocyte (Machado-Oliveira et al., 2008) [ Figure.24. ]. Like 

progesterone (Teves et al., 2006, 2009) synthesized by occyte and cummulus cells (Sun 
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et al., 2005), NO might represent another important candidate for in vivo sperm 

chemotaxis (Miraglia et al., 2007).  

 

 

Figure.24. Images demonstrating the detection of NOS and NO synthesis in the 
cummulus cells of human female. (A) Human cumulus fragment sample stained for the 
detection of eNOS, (Machado-Oliveira et al., 2008), (B) Cumulus cells (same sample) 
stained with SYTOX Grenn to identify and locate all the cells (C) Phase image of 
cumulus cells. (D) DAF-FM diacetate staining (green fluorescence) of the human 
cumulus cells. Images from: Machado-Oliveira et al., 2008. 
 

 

The chemokine RANTES  is a potent chemoattractant for eosinophils, monocytes and T 

lymphocytes (Fukuda et al., 2004; Alam et al., 1993). RANTES is a 68-amino acid 

peptide of 8kDa (Nelson et al., 1993; Schall et al., 1990) is a member of the CC 

subfamily of chemokines (Wells et al., 1999). Human spermatozoa are exposed to this 

in the female and male genital tract before they reach the fertilization site (Naz & 

Leislie, 2000). RANTES is present in seminal plasma (Naz & Leslie, 2000), uterine 
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fluid (Hornung et al., 1997) and peritoneal fluid (Khorram et al., 1993; Hornung et al., 

2001) as well as FF. The mRNA for its receptor has also been identified in human 

spermatozoa (Isobe et al., 2002). This chemokine is produced in the follicle in the 

ovaries by the granulosa cells, prior to ovulation (Eisenbach et al., 2006). Furthermore 

the production of RANTES is upregulated in some diseases that are associated with 

infertility, such as endometriosis (Khorram et al., 1993; Hormung et al., 2001) and male 

genital tract infection (Naz & Leslie, 2000). However the human chemotactic role of 

RANTES in vivo has not been demonstrated, it is also unknown if RANTES is also 

secreted in the female reproductive tract after ovulatory process (Eisenbach et al., 

2006). Isobe et al. (2000) demonstrated that RANTES had a dose-dependent 

chemotactic effect on human spermatozoa. In FF the average concentration of RANTES 

in a “healthy” woman is 174 pg/ml (Machelon et al., 2000), in a patient affected by 

endometriosis this concentration was elevated to 530.2 pg/ml (Khorram et al., 1993). 

Isobe et al. (2000) examined the chemotactic effects of RANTES using a physiological 

concentration 234 pg/ml, demonstrating its chemotactic effect on human spermatozoa. 

Furtheremore, the same group demonstrated that the chemotactic effect of RANTES 

was neutralised by anti-RANTES rabbit IgG, simultaneously the anti-RANTES 

antibody inhibited the chemotactic effect observed with FF (Isobe et al., 2000). Further 

demonstrating the in vitro effect of RANTES on human spermatozoa chemotaxis.  

 

ANP (polypeptide hormone) is secreted in large quantities by the atrial section of the 

heart; although it can also be secreted by a variety of mammalian cell types. The effect 

of ANP is dependent on the activation of particulate cyclase (Brenner et al., 1990; 
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Ruskoaho, 1992). ANP has been identified as a component of human follicular fluid 

(Sundfjord et al., 1989) and specific ANP receptors have been identified on human 

spermatozoa (Silvestroni et al., 1992).  Sperm accumulation as a result of chemotaxis 

was demonstrated in vitro with ANP, in capillaries with ascending (Anderson et al., 

1995) and descending (Zamir et al, 1993) gradient and by choice assays (Zamir et al., 

1993). Chemotaxis to ANP at physiological concentrations is only possible with the 

presence of a neutral endopeptidase inhibitor such as phosphoramidon  (Anderson et al., 

1995; Zamir et al., 1993). ANP hormone has been demonstrated to be able to activate 

particulate guanylyl cyclase; the same way to the physiological attractant in vivo 

(Brenner et al., 1990; Rukohoaho et al., 1992; Anderson et al., 1995). However is 

uncertain whether ANP plays a physiological role in sperm chemotaxis in vivo (Zamir 

et al., 1993). 

 

Heparin is present in follicular fluid and induces capacitation of bull spermatozoa 

(Eisenbach et al., 1999). In human spermatozoa heparin induces the acrosome reaction 

(AR) (Silwa et al, 1993). Heparin leads to leads to sperm accumulation via the 

stimulation of hyperactivated motility which leads to sperm trapping; chemotaxis to this 

substance has not yet been reported (Eisenbach, 1999, 2006). In vitro studies have 

demonstrated that hyaluronic acid (HA) a glycoaminoglycan present in human 

oviductal fluid has an influence in sperm motility and causes accumulation in the wells 

containing HA (Sliwa et al., 1999). Although, the absence of FF post-ovulation would 

consequently suggest that HA does not play a chemotactic role post-ovulation.  
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Antithrombin III, a component of follicular fluid that is not synthesised in the follicles, 

has been demonstrated to accumulate boar sperm (Lee et al., 1994). Further assays to 

distinguish the accumulation from other processes other than chemotaxis have not been 

carried out. Anitithrombin III has been demonstrated to enhance sperm motility, 

suggesting that chemokinesis is the process that leads to the accumulation of sperm.  

 

Small synthetic N-formulated peptides, such as N-formyl-Met-Leu-Phe (fMLP) are 

derived from bacteria (Ralt et al., 1994) and are attractants for neutrophils and 

macrophages (Schiffmann et al., 1975). The binding of these peptides to specific sites 

on human spermatozoa (Gnessi et al., 1986; Ballesteros et al., 1988) result in 

accumulation of human sperm (Gnessi et al., 1985). This effect has also has also been 

observed in bull sperm (Iqbal et al., 1980). However, further assays investigation lead to 

the conclusion that the accumulation was not due to sperm chemotaxis (Miller et al., 

1982).  

 

Other potential sperm chemoattractants include heparin and  hyaluronic acid for 

human sperm (Sliwa et al, 1993, 1995 & 1999) and mouse sperm accumulation occurs 

with adrenalin, heparin, oxytocin, calcitonin and acetylcholine (Eisenbach, 1999). The 

importance of some of these observations with respect to chemotaxis is still an enigma, 

due to the fact that no distinction was made between the other processes that might 

cause sperm accumulation (Eisenbach, 1999; see above).  
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Bourgeonal (4-t-Butylbenzenepropionaldehyde) is colourless oil-like substance, [ 

Figure.25. ], an aromatic aldehyde used in fragrances to mimic the aroma of the Lily of 

the Valley (Spehr et al., 2004, 2006). Spehr at al. (2003) showed that spermatozoa 

accumulate at the tip of the microcapillary pipette (the chemoattractant source), in an 

ascending bourgeonal gradient.  

The expression of the α7 nicotinic acetylcholine receptors (AChR) subunit in the 

midpiece of human spermatozoa (Meizel et al.; 2005; Bray et al., 2005) and stimulation 

of these by acetylcholine leads to a stimulation initiated in the midpiece and later 

spread to the sperm head; similar to the sperm response to bourgeonal (agonist of 

hOR17-4) (Spehr et al., 2003). Suggests that acetylcholine might be involved in the 

regulation of sperm motility. Furthermore mice lacking the α7 nicotinic acetylcholine 

receptors (AChR) subunit show some deficiencies in their motility and poor 

hyperactivated motility (Bray et al., 2005). However, no distinction has been made to 

identify if acetylcholine as a chemoattractant effect on human spermatozoa or its 

physiological significance, if any, in the female reproductive tract. 

 
Figure.25. Structural image of bourgeonal (C13H18O, Molecular Mass: 190.28) an 
aromatic aldehyde, a potent agonist of the hOR17-4 located in the midpiece of human 
spermatozoa (Spehr et al., 2003). 
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1.9 Sperm olfactory receptor proteins (ORs) 

 
A small number of substances have been identified that apparently act as sperm 

chemoattractants but are probably not produced or present in vivo. However, the 

identification of receptors for these compounds and the downstream signalling events 

might lead to the identification of the natural ligand and understanding of the signalling 

mechanisms involved in mammalian sperm chemotaxis (Eisenbach et al., 2006). 

Bourgeonal and its derivative (4-t-Butylbenzenepropionaldehyde) have been identified 

to cause human sperm accumulation by chemotaxis (Spehr et al., 2003,2004). The 

action of these agents on sperm is apparently through olfactory receptors, of the type 

expressed in the olfactory epithelium. Various receptors, enzymes, and ion channel 

proteins initially thought to be neuron-specific have been identified in sperm (Darszon 

et al., 1999; Meizel, 2004; Spehr et al., 2006). These include members of both visual 

and olfactory GPCR-mediated (G-Proteins) signal transduction pathways (Baxendele 

and Fraser, 2003a), G protein receptor kinase 3 (GRK3) and β-arrestin2 (Walensky and 

Snyder, 1995), cone photoreceptor CNG channels (Weyand et al., 1994; Wiesber et al., 

1998), particulate adelylate cyclases (Defer et al., 1998; Gautier-Courteille et al., 1998; 

Baxendale and Fraser, 2003b; Spehr et al., 2006). 
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1.9.1 Olfactory receptors (ORs) 

The members of the odorant receptors family are usually found on cilliary membranes 

of nasal olfactory sensory neurons (OSNs), these are coupled to complex signal 

transduction pathways (Spehr et al., 2004, 2006). The binding of a ligand to the ORs 

leads to a modification of the heptahelical OR conformation consequently activating a 

membrane-bound type III adenylate cyclase (mAC III) via Alpha olf (Gαolf) (Spehr et 

al., 2006). cAMP-dependent opening of cyclic nucleotide-gated (CNG) channels 

followed by the activation of Ca2+-gated Cl- channels, results in an increase of the 

intracellular calcium (Ca2+) and sodium (Na+) concentration and membrane 

depolarisation (Parmentier et al., 1992; Spehr et al., 2004, 2006).  

 

The odor receptors present in vertebrate organisms are members of the class I G protein-

coupled receptors (GPCRs); which share many features with other G protein-coupled 

receptors (GPCRs) (Mashukova, 2006). These features include a coding region that 

lacks introns, structural features that predicts seven α-helical membrane-spanning 

domains linked by intracellular and extracellular loops of variable lengths, and various 

conserved short sequences (Mashukova, 2006).  However, the ORs also have further 

specific, characteristic features including a long second extracellular loop which 

contains an additional set of cysteines and also other short characteristic sequences 

(Mombaerts, 1999). 
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Figure.26. Diagrammatic representation of the three-dimensional (3D) structure of the 
G-protein coupled receptor (Palczewski et al., 2000; Firestein, 2001). Diagram from: 
Mashukova, 2006.  
 

Sequence similarity within the members of the ORs family ranges from <40% to over 

90% identity (Mashukova, 2006). However, the third, fourth and fifth transmembrane 

region shows strong divergence (Mashukova, 2006). Three-dimensional (3D) studies of 

the GPCRs have demonstrated that the three α-helical barrels are parallel to one another 

and form a pocket, which extends approximately one third of the way into the 

membrane (Pipel & Lancet, 1999; Mashukova, 2006). Various studies involving other 

class I GPCRs, have lead to the conclusion that the pocket-forming region represents the 

binding site of the ligands (Mashukova et al., 2006) [ Figure.26. ]. The variability 

observed among the ORs in this region provides the first molecular basis for 

understanding the range, diversity and large number of olfactory ligands that can be 

detected and discriminated (Firestein et al.,2001; Mashukova, 2006).  
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1.9.2 Olfactory receptor ligands and sperm motility  
 

The presence and the function of the olfactory receptors in sperm have been known for 

some time (Spehr et al., 2003). Some of the human ORs are mainly expressed in or 

restricted to the spermatozoon (Parmentier et al., 1992; Vanderhaeghern et al., 1993; 

Vanderhaeghern et al., 1997). The identification together with the characterization of 

ORs in human (Spehr et al, 2003) and mouse sperm (Fukuda et al., 2004) has provided a 

major template for the understanding of the role of these receptors in mammalian sperm 

(Spehr et al., 2006). The hOR17-4 sperm receptors (protein receptors) reside in the 

flagellar midpiece (Spehr et al, 2003). hOR17-4 has the capability of accommodating 

aldehydes of relatively small size such as bourgeonal, demonstrated to be a potent 

ligand in these receptors (Spehr et al., 2006). Bourgeonal is a synthetic additive used in 

perfumes in order to mimic the scent of lilies of the valley (Spehr et al., 2003). The 

effects of bourgeonal can be inhibited by undecanal (antagonist), an aliphatic aldehyde 

(Spehr et al., 2003). Undecanal binds to the receptor active site without activation of the 

hOR17-4 (Spehr et al., 2006).  

 

Both of the olfactory receptors, hOR17-4, in human spermatozoa (OR1D2) and mOR23 

in mice (mOR267-13) mediate robust calcium (Ca2+) signals in mature spermatozoa and 

modulation of motility (Spehr et al., 2006). Single cell Ca2+ imaging recordings and 

radiofluorometric population screening showed that the effect of bourgeonal is dose-

dependent and leads to Ca2+ flux over the plasma membrane (Spehr et al., 2003, 2004, 

2006). Elevation of [Ca2+]i is theory initiated at the spermatozoa midpiece, where the 
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hOR17-4 is located (Neuhaus et al., 2006). This propagates to the sperm head (with an 

average latency of >2S) (Jimenez-Gonzalez et al., 2006; Spehr et al., 2004).The changes 

in intracellular calcium (Ca2+) and spermatozoa swimming behaviour as a result of the 

activation of the hOR17-4 (in human sperm) seems to be dependent on a cAMP-

regulated pathway (Spehr et al., 2003). Bourgeonal probably lead to the activation of 

membrane adenylate cyclase (mACIII), [ Figure.28. ], activated via Galpha olfactory 

(Gαolf) (identified in sperm flagellum & midpiece), [ Figure.28. ], resulting in a Ca2+ 

influx through cAMP regulated channels (Spehr et al., 2003, 2004, 2006), [ Figure.27. 

]. However, the identities and properties of the AC(s) in human sperm is still matter of 

controversy (Spehr et al., 2004). 

 

 

Figure.27. Images representing the identification and location of potential components 
of the sperm’s olfactory signal transduction (Spehr et al., 2004). (A) Identification and 
localization (anti-mACIII) of mACIII in mature spermatozoa identified in the head and 
midpiece. (B) Identification and localization (anti-mACVIII) of mACVIII in mature 
spermatozoa identified in the flagellum. (C) Identification and localization of G-
olfactory receptor protein (Golf) in mature spermatozoa identified in the midpiece and 
the flagellum (Spehr et al., 2004). Image from Spehr et al., 2004. 
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Figure.28. Diagrammatic representation of the proposed mechanism in response to 
bourgeonal. Binding to the receptor (hOR17.4; yellow circle) stimulates a membrane 
adenylate cyclase (probably mAC III, purple oval) through Golf (red circle). The 
consequent rise in cAMP concentration opens a Ca2+-permeable channel, either directly 
or by activation of PKA allowing influx of Ca2+ across the plasmalemma (Publicover et 
al, 2007). Image modified from: Publicover et al., 2007. 
 

When spermatozoa are placed in an ascending gradient of bourgeonal, this leads to 

chemotaxis, chemokinesis and hyperactivation in a dose-dependent manner and 

inhibited by undecanal (Spehr et al., 2006). In the ascending gradient the spermatozoa 

tend to have a direct swimming patters, towards the chemoattractant source (Spehr et 

al., 2003, 2004). This further supports the hypothesis that the hOR17-4 might play a role 

in the sperm-egg communication in vivo (Spehr et al., 2003, 2004, 2006). 

 

 

Flagellum Midpiece Head 

How does the Ca2+ 
mobilization at the 
midpiece control the 
flagellar [Ca2+]I  and 
consequently modulate 

the flagellar beat? 

Bourgeonal. Colorless oil 
( C13H18O). M.W. 190.28 
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RESEARCH AIMS 

To: 

Study the effect of bourgeonal on [Ca2+]i and AR in capacitated and non-capacitated 

mammalian sperm and to compared the effects of bourgeonal with the response to  a 

structural homolog  (3,4,CPEE). 

 

Examine the roles of Ca2+ and cAMP in determining the kinetics of the [Ca2+]i response 

to bourgeonal. Additionally to investigating generation of cAMP in capacitated human 

spermatozoa exposed to bourgeonal.   

 

Investigate the chemotactic effect of bourgeonal in both capacitated and non-capacitated 

human spermatozoa. Furthermore, to attempt to demonstrate the crucial role of [Ca2+]o 

in response to bourgeonal and if the intracellular stores play a role in the response to the 

ligand.  

 

Study the response of capacitated spermatozoa to application of a temporal bourgeonal 

gradient (fM to mM) and progesterone gradient (fm to µM) in order to attempt to study 

the [Ca2+]i response.  
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2.1 Materials 
 
Bourgeonal (4-t-Butylbenzenepropionaldehyde), (>99% pure, 5 M stock), acquired 

from  BIOMOL, UK. 

3,4,CPEE;  (3-(4’-Carboxyphenyl)-Propionaldehyde Ethyl Ester), (>99% pure, 5 M 

stock), acquired from Fluorochem, UK. DMSO (Dimethyl Sulfoxide) Percoll, 

Formaldehyde, Progesterone  were acquired  from SIGMA-Aldrich (USA). IBMX 

IBMX (3-isobutyl-1-methylxanthine), dbcAMP (dibutyryl cyclic adenosine 

monophosphate) and Trifluoperazine (2HCL, Stelazone) acquired from ENZO Life 

Sciences (UK). Oregon Green 488 BAPTA 1-acetoxymethyl (OGB-1AM) and 4-amino-

5-methylamino-2’,7’-difluorofluorescein (DAF-FM) diacetate were obtained from 

Invitrogen Molecular Probes (Paisley, UK). Poly-D-lysine (PDL) was acquired from 

BD Biosciences (Oxford, UK). Earls Balanced Salt Solution (sEBSS), HEPES-buffered 

media,  Low Calcium Earls Balance Salt Solution (referred as Calcium Free media), all 

were made in the lab (Apendix.1,  for composition). HAM F-10 medium (Apendix.1,  

for composition) with glutamine were acquired from Invitrogen, USA. BSA (Bovine 

Serum Albumin) was acquired form SAFC, UK.  HSA (Human Serum Albumin) was 

acquired from UNC, Argentina. All chemicals were cell culture-tested grade where 

available.  
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2.2 Spermatozoa preparation, Capacitated and Non-

Capacitated 

 
2.2.1 Swim-up  
 
Donors were recruited at the Birmingham Women’s Hospital (HFEA Centre 0119), in 

accordance with the Human Embryology Authority Code of Practice. All donors gave 

informed consent. Semen was donated by healthy donors by masturbation. After semen 

liquefaction for approximately 30 minutes, motile sperm were harvested by swim-up 

(Mortimer, 1994). 1 ml of sEBSS + 0.3% BSA, pH adjusted to 7.3-7.4, was 

underlayered with 0.3 ml of liquefied sample in polystyrene Falcon round-bottom tubes 

(Becton Dickinson, USA). After 1 hour incubation at 37°C, 5% CO2 and at an angle of 

45° (to maximize yield), the top layer of each tube, containing the motile cells, was 

collected into a 15 ml polystyrene Falcon tube (Becton Dickinson, USA) [ Figure.1. ]. 

Sperm concentration was determined using a Neubauer counting chamber, in 

accordance with the World Health Organization methods (WHO, 1999) and adjusted to 

6 million cells/ ml with sEBSS + 0.3% BSA (Kirkman-Brown et al., 2000). Sperm 

suspension was incubated for approximately 4-6 hours, at 37°C and 5% CO2, for 

imaging and AR experiments.  To reduce or suppress spermatozoa capacitation (non-

capacitated spermatozoa) the albumin (BSA or HSA) was suppressed from the media 

and the incubation period is drastically reduced (5 hours to <1hour). Once swumup, 

spermatozoa are not allowed to undergo the capacitation time period (4-6 hours), these 

are directly used in any experimental technique.  
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Figure.1. Schematic illustration of swimup technique, (1) 250-300µL of  semen  
pipetted into the bottom of a 15 mL Falcon  (polystyrene) containing 1mL medium, (2) 
consecutively the Falcons containing the semen and medium are incubated for 1hour at 
37ºC, 5% CO2, (3) spermatozoa swimup and the top layer (cloudy equatorial region) 
containing highly motile spermatozoa are introduced into 15 mL Falcon and 
concentration is adjusted to 6 million cells/mL to capacitate in BSA.  
 

 
 
2.2.2 Percoll  
 
Spermatozoa from healthy donors were separated from the seminal plasma using 

(95%,47%) Percoll gradient in HAM F-10 culture medium (Teves et al., 2009; 

Guidobaldi et al., 2008). Consecutively spermatozoa exhibiting high motility were 

adjusted to 7x106 cells/ml in HAM F-10 supplemented with 1% HSA (for capacitation) 

or without the albumin; in assays with non-capaciated spermatozoa; followed by 

incubation at 37°C in 5% CO2 on air for 4-6hrs (Chen et al., 2000).  All the experiments 
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were carried out with cells incubated under capacitating conditions unless otherwise 

specified. 

 

 

 
 

2.3 Acrosome Reaction 
 
Following spermatozoa separation and capacitation as described above (Section 2.2.2) , 

32µL aliquots of spermatozoa (35µL for quantification of spontaneous AR) were treated 

with bourgeonal (20µM), DMSO (0.02%) and Ca2+  ionophore (8µM) and incubated for 

30 minutes at 37°C in 5% CO2.  Consecutively each tube containing cells and testing 

substances were treated with formaldehyde (200 µL at 2%) and later incubated for 20 

minutes at room temperature. Following this, 300µL of ammonium acetate (100mM) 

was added to each tube containing cells and then centrifuged for 7 minutes at 1800 

rpms. Once concluded, the  supernatant was removed and the whole process repeated.  

Following the centrifugation process the cells were vortexed for resuspension and 15µL 

of each tube was spread on  each slide (with surface previously marked with permanent 

marker) and left to air dry. Once dry, the cells were stained with freshly made 

Coomassie stain (0.22% Coomassie Blue G-250, 50% methanol, 10% glacial acetic 

acid, 40% water) for  7-10 minutes, followed by wash with abundant distilled water 

H2O and left to air dry. With 7µL glycerol (90% in PBS) 18x18 mm coverslips placed 

on slides, covering area with stained spermatozoa and sealed with nail varnish. Once 

sealed and dry, a total of two hundred cells were scored for each treatment under light 

microscope (x100 mag.) and % AR was calculated (equation in following page). 
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Spontaneous and induced acrosome reaction was calculated using the following 

equations: 

 

 
             N

o 
AR Sperm.       x 100   

                                                         =%  AR  
            Nº Counted sperm. 
 

 

 

* Nº AR Sperm=  Is the number of  acrosome reacted spermatozoa (both induncef and 

spontaneous). 

 

* Nº Counted sperm= The number of counted sperm. 

 

 

 

2.4 Single cell imaging 

 
Sperm density was reduced to 3.5-4 million cells/ ml, using the same medium, 

immediately before cell labeling and chamber preparation. 200 µl aliquots of cells were 

then loaded with 1.2 µL of Oregon Green BAPTA-1 AM ester (OGB, 488), with a Kd 

(Ca2+) of 0.17µM, (0.6% DMSO, 0.12% pluronic F-127) for 20 minutes. This resulted 

in the removal of any potential residues e.g. vacuum grease, excessive poly-d lysine or 
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unknowns. Following this, the entire aliquot was transferred to a perfusable imaging 

chamber (200 µl volume) for 40 minutes, at 37°C and 5% CO2 . The chamber lower 

surface was a 0.01% PDL coated coverslip, allowing cells to adhere, [ Figure.5. ]. The 

imaging chamber was connected to the imaging system and fresh medium (25°C) was 

washed through to eliminate excess dye and unattached spermatozoa. All experiments 

were performed at 25±0.5°C, in a constant flow of medium, with a perfusion rate of 

approximately 0.4 ml/minute. Cells were imaged with a Nikon TE200, [ Figure.3. (A) ], 

inverted fluorescence microscope, fitted with a Cairn 75W xenon source and an 

epifluorescence accessory (excitation=485 DF 15, emission=535 DF 35). Images were 

captured every 10 seconds using a X 40 objective and a Rolera XR cooled CCD camera 

controlled by iQ software (Andor Technology, Belfast, UK). 

In all experiments, OGB-1AM loaded sperm were superfused with sEBSS (or 

NCFsEBSS) +0.3% BSA for an initial control period before application of agonists.  

 

Control experiments consisted in cell superfusion either with sEBSS + 0.3% BSA or 

NCFsEBSS + 0.3% BSA. DMSO controls were performed with spermatozoa bathed in 

sEBSS supplemented with solvent. This did not stimulate a significant elevation in 

OGB fluorescence above control levels  (P>0.05%) [ Figure.2. ]. 
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Figure.2. Capacitated human spermatozoa exposed to solvent vehicle, DSMO (0.02%) 
in sEBSS; resulting in no significant elevation in OGB fluorescence. Human 
spermatozoa were incubated for >5 hours in sEBSS, followed superfusion with sEBSS 
(Dark-blue bar) for 6 minutes and introduced to DMSO (Light-pink bar) in the same 
bathing media (sEBSS). Traces show 7 single cell responses and thicker black trace 
indicate the Rtot of one experiment [>100 cells].  
 

 

2.4.1 Imaging Data Processing 

 
Data were processed offline using iQ software[ Figure.6. ], a lasso was drawn around 

the posterior region of the head of each cell in the selected field, considering as many 

cells as possible. Each cell was directly observed to ensure that only cells, where the 

region of interest remained inside the lasso, were used in the analysis. Cells that moved 

excessively and showed lack of adhesion to the glass surface were excluded from the 
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analysis (head is impossible to select, due to their excessive movement, due to bad 

adhesion). Dying cells or dead cells were not included in the analysis, these were easy 

to identify because they do not retain dye and gradual loss of fluorescence was visible 

during the control period (Tesarik et al., 1996). The majority of cells showed vigorous 

flagellar motility. A small subpopulation of cells showed a clear upward drift of 

fluorescence, during control period or, in some cells, spontaneous oscillation of [Ca2+]i. 

This may reflect loss of [Ca2+]i homeostasis or ‘over-capacitation’. These cells were also 

excluded from the analysis.  

The average fluorescence intensity within the selected area in each spermatozoon was 

acquired for every image. 

 

 Raw intensity values were imported into Microsoft Excel and normalized to pre-

stimulus values with the equation: 

 

R = [ (F – Frest) / Frest ] x 100% 

 

R is normalized fluorescence intensity, F is fluorescence intensity at a time t and Frest is 

the mean of at least 10 determinations of F acquired during the control period. The 

mean value of R for all cells in the experiment (Rtot) was calculated for each time point 

and the total series of Rtot were plotted to give the mean normalized response of head 

fluorescent intensity for that experiment. Cell responses were observed from time-

fluorescence intensity plots. Consequently the cells were visually sorted into those 
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showing increase, decrease or no change in fluorescence after treatment. Data from 

series of experiments were meaned to calculate the frequency of each type of response, 

which is stated in the text as mean ± SEM. 

 

 
2.4.2 Imaging Equipment & Software 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure.3. (A) Images of microscope 
used for live imaging experiments;  
Nikon TE200 (B) Imaging camara 
used with the Nikon TE200 (Rolera 
XR, Qimaging). 
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Figure.5. Image of imaging chamber used during the experiments, where the cells are 
adhered to slide with poly-d-lysine. The cells are introduced into the chambers and are 
attached to the slide, with poly-d-lysine.  A net positive charge in culture media is 
formed at the end of the lysine, created by the amino group, making it hydrophylic, 
which makes it good for cell attachment (Poly-lysine structure & literature from 
http://www.corning.com ). 
 
 
 

 

A B 

Figure.4. (A) Perfusion system used for the introduction of bathing 
media (control) and/or media supplemented with agonist(s), (B) 
Voltage controler of motor involved in perffusion system (standard 
voltage, 1.1 V, 0.8-1 amps) 
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2.4.3 Imaging Software 

 

 

 
 

 
Figure.6. Imaging software (Andor iQ, advance imaging, updated version 2007), cell 
are selected, enabling to investigate cell responses, raw values are imported into Excel 
(Microsoft Office 2003),  these are analyzed and appropriately interpreted.  
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2.5 Sperm chemotaxis and motility determination 
 

Chemotaxis assays were performed in a chemotaxis chamber [ Figure.7. (A) ] 

composed of two wells separated by a 2 mm wall, one of the cells filled with media 

(HAM F-10) with or without attractants and the other well composed of spermatozoa 

(Teves et al., 2006, 2009). The chemotaxis chamber was sealed with a glass coverslip, 

forming a capillary space (called bridge) formed between both wells and over the wall 

separating well with cells and well with tested substance. Across the bridge, a one 

dimension attractant concentration gradient was formed in the direction of the well 

containing spermatozoa, which in turn, swamup over the bridge (Teves et al., 2006, 

2009). Consecutively following the sealing of the chamber, the cells were incubated for  

fifteen minute (≈15 minutes) at 37ºC in order to stabilize the distribution of spermatozoa 

and the chemoattractant gradient. Subsequently after the incubation period spermatozoa 

movement was recorded along the fields in the middle of the bridge [ Figure.7. (A) ].  

Following this the sperm tracks were analyzed by video-microscopy and computer 

image analysis to evaluate the percentage (%) chemotactic responding cells. For each of 

the sperm tracks the distance travelled along the X axes, (representing the attractant 

gradient; DX) and the Y axes (representing the absence of the attractant gradien, DY) 

were calculated (Teves et al., 2006, 2009). Assuming that a chemotactic responsive 

spermatozoon travel a longer distance along the X axes than in the Y axes, the 

directionality of spermatozoa was calculated by the quotient DX/|DY| [ Figure.7. (B) ]. 

When this values was >1, the spermatozoon was considered oriented towards the cell 

containing the attractant under investigation. As a negative control, the well  containing 
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the attractant was replaced by culture medium (HAM F-10); removing the attractant 

from the well, where ≈25% of spermatozoa swimming at random are expected to be 

oriented towards the well containing the experimental media (HAM F-10), in 

replacement of the attractant. The chemotactic responding subpopulation was 

considered as the difference in the percentage of “oriented spermatozoa” between the 

attractant solution and the negative control (well with attractant replaced with media, 

HAM F-10). Spermatozoa chemotactic response is strongly dependent on the attractant 

concentration, several doses of the attractant tested solution are assayed. Thus, a bell-

shaped curve, typical of any chemotactive cell is observed, where at low concentration 

there is not sufficient receptor stimulation, although the receptors are saturated at higher 

attractant concentrations (Teves et al., 2006, 2008; Gidobaldi et al., 2008) [ Figure.7. 

(C) ]. Hence as a consequence in both extremes the chemotaxis response is abolished 

and the levels of “oriented spermatozoa” show no significantly difference to the basal 

negative control (≈25%). On the other hand, at a optimum attractant concentration the 

cells are able to detect the gradient and respond with a chemotactic movement 

orientation, resulting in a level of “oriented spermatozoa” statistically higher than basal 

negative control (>25%) (Teves et al., 2006, 2008; Gidobaldi et al., 2008). In 

mammalian spermatozoa such difference is ≈10%, a higher number of spermatozoa per 

treatment must be analyzed (minimum 150 cells), in at least 2 experiments.  
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Figure.7. Detection system for spermatozoa chemotaxis. (A) Plane view of zigmoond 
chamber composed of  two wells separated by a 1 mm wall, (well on right-side) filled 
with medium (HAM F-10) supplemented with or without attractants and the other well 
(well on left-side) with capacitated or non-capaciated mammalian spermatozoa (Teves 
et al., 2006, 2008; Gidobaldi et al., 2008). (B) The tracks of spermatozoa are analyzed 
by computer imaging to calculate chemotatixis, sperm velocity and pattern of movement 
(Teves et al., 2006, 2008; Gidobaldi et al., 2008).The distance traveled along the X axes 
(representing the attractant gradient; ∆X) and the Y axes (representing the absence of 
attractant gradient; ∆Y) are calculated for each sperm track. Assuming that a 
chemotactic spermatozoon travel a longer distance along the X axes than in the Y axes, 
sperm directionality is calculated by the quotient ∆X/|∆Y| (Teves et al., 2006, 2008; 
Gidobaldi et al., 2008). (C) Spermatozoa chemotactic response is dependent on the 
concentration of the attractant; therefore, an array of doses of tested attractant solution is 
assayed. Hence resulting in a typical bell-shaped curve in response to the array of 
concentrations of chemoattractant.  
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Human spermatozoa were diluted at 4x106 cells/ml for the chemotaxis assay and 

exposed to HAM F-10 culture medium (negative control), or medium supplemented 

with an array of doses of bourgeonal; for positive control progesterone was used at 

10pM in all of the experiments.  Chemotaxis assays involving inhibitors involved 

incubation with these for 1-15 minutes, depending on inhibitor; prior to chemotaxis 

assays.  

Images were recorded at 6Hz with the VirtualDub software (ver. 1.6.16, Avery Lee; 

http://www.virtualdub.org/). 

The sperm directionality and motility were analyzed with the ImageJ software (ver. 

1.38, NIH, USA) and the MtrackJ plugin (ver.1.1.0, Eric Meijering) [ Figure.8. ]. The 

percentage of “oriented spermatozoa” was calculated with the SpermTrack software 

(ver. 4.0, UNC, Argentina); designed by Dr A. Gidobaldy [ Figure.9. ].  
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2.5.1 Chemotaxis Software  

 

 
 
Figure.8.  Image illustration of  ImageJ software (ver.1.38, NIH, USA) with MtrackJ 
plugin (ver.1.1.0, Eric Meijering) designed to analyse sperm directionality and motility. 
The coordinates obtained here are imported into SpermTrack software (By Dr A. 
Gidobaldy, Argentina).  
 

 
 
Figure.9. Image illustration of SpermTrack software (ver. 4.0, UNC, designed by Dr A. 
Gidobaldy, Argentina) designed to calculate the percentage “oriented spermatozoa”.  



 - 102 -

 
 

 
Figure.10. Image illustration of document obtained from SpermTrack software (PDF 
format), illustrating an array of parameters obtained from the software designed by Dr 
A. Gidobaldi (Argentina). 
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2.6 cAMP measurement 

 Aliquots of human capaciated spermatozoa in HAM F-10 at 15 x 106 cells/ml, were 

incubated for 20 minutes at 37ºC with 100 µM IBMX (phosphodiesterase inhibitor), in 

the absence or presence of bourgeonal (20µM and 1nM) or progesterone (10pM).  Cells 

were then fixed with 1% formaldehyde for 20 minutes and washed twice with PBS. 

Subsequently the cells were centrifuged at 2000xg for 15 minutes at 4ºC. (pellets are 

stored at -20ºC. When required the pellet were resuspended in 300µL lysis reagent 

(from cAMP or cGMP EIA Kit) and sonicated at a frequency of 70Hz  (two times, 30 

seconds), the tubes were kept in ice until the end of the sonication process (critical that 

all the reagents are kept at room temperature and used within 1hour of preparation). 

When the multiwell were marked and loaded with reagents, these were mixed (shaken 

gently) for 2 hrs at 3-5ºC (critical that temperature does not exceed 5ºC). cAMP-

peroxidase conjugate is added to all of the wells except the blank well, then mixed and 

incubated for 1h at 3-5ºC. Subsequently the solutions in the wells are removed and 

washed (4 times) with buffering solution (washing buffer) and dried removing (lab 

tissue) all residues. Immediately after substrate enzyme was added to all the wells, 

which must be kept at room temperature (mix gently for 60 minutes at room 

temperature 15-30ºC). Following the mixing period, 1M sulphuric acid (H2SO4) was 

introduced into all  of the wells and mixed gently. The reactions were read at 450nm 

within 30 minutes after the application of the acid. Once reading were obtained, cAMP 

was quantified following manufacturer’s instructions (cAMP Biotrak 

Enzymeimmunoassay System, Amersham Biosciences).  
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2.7 Statistical Analysis 

Microsoft Excel (2003) and SigmaStat software (SPSS, Inc, USA) was used to perform 

F-test (analysis or variance), t-tests (equal/unequal variance) for unpaired data (paired if 

necessary). Statistical significance was set at P<0.05 (*) (not significant, P>0.05). 

Statistical differences between treatments were determined by means of one-way 

ANOVA and the Tukey-Kramer tests with the SigmaStat software (SPSS, Inc, USA). 
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3.1 Introduction  

Ca2+ and Ca2+ binding proteins are crucial for a great array of biochemical processes in 

all living cells, as such, calcium homeostasis is a prerequisite for the effective 

functioning of all living organisms (Cheek et al., 1993). Calcium’s high versatility 

enables it to regulate many cellular functions (Berridge, 2003). An incresase in 

intracellular calcium ions from a resting level of approximately 0.1 µmol l-1 to a 

stimulated level of 1-10 µmol l-1 initiates many physiological processes such as 

fertilization, exocystosis secretion, muscle contraction and cell division (in many 

animals) (Cheek et al., 1993). In spermatozoa calcium plays a critical role in all the 

major processes preceding fertilization (Publicover et al., 2008). Sperm possess the 

equipment (membrane calcium channels and pumps, stores, calcium binding proteins) to 

generate, control and respond to changes in Ca2+ concentration and Ca2+ signalling plays 

a vital role in the functioning of male gametes (Publicover et al., 2008; Darszon et al., 

1999, Publicover et al., 1999). Ca2+  plays a vital role in capacitation (cellular 

adaptation) (Darszon et al., 2006), hyperactivated motility (high amplitude flagellar 

beat), active motility (low amplitude flagellar beat) (Suarez et al., 1993, Carlson et al., 

2003), AR (exocytotic process) (Yanagimachi et al., 1974) and sperm chemotaxis 

(mechanism of guidance; Teves et al., 2009).  

 

Mammalian spermatozoa cannot fertilize eggs immediately after ejaculation (Darszon et 

al., 2006) but must undergo a series of intra- and extra-sperm modifications that will 

enable sperm to become functionally competent “capacitated” (Abou-Haila & Tulsiani, 
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2009).  It is now clear that sperm becomes “competent” or capacitated after residing for 

a time period in the female reproductive tract (in vivo). During this period  albumin 

present in the female environment removes cholesterol from the mammalian  sperm 

altering its plasma membrane organization and permeability (Darszon et al, 2006). 

Capacitation can be induced in vitro with the appropriate medium (Abou-Haila & 

Tulsiani, 2009), which must contain energy substances (pyruvate, glucose) electrolytes 

(including Ca2+), bicarbonate ions, and a cholesterol acceptor.   

 

Cholesterol located in the sperm membrane has been demonstrated to limit ion 

permeability, protein insertion and mobility in phospholipid biolayers (Beddu-Addo, 

2006), as well as to rigidity and stabilize membranes, consequently unabling some of 

the events associated with sperm capacitation (de Lamirande et al., 1997). The 

incubation of sperm in a supplemented medium with a cholesterol remover (BSA, 

HSA), for a period of 3-5 hours (WHO, 1999), 37°C, 5% CO2 will provide the means 

for sperm capacitation in vitro (WHO, 1999). It has been postulated that cholesterol 

efflux consequently leads to the changes in the membrane structure and fluidity that 

results in sperm capacitation. All of these intra and extra- cellular changes may be 

reversible (Laglais & Roberts, 1985; Bedu-Addo et al, 2006). This “maturation process” 

is inhibited by the application of cholesterol and/or cholesterol analogues to the 

capacitating media (Visconti et al., 1999).  An array of studies have shown that 

cholesterol influx may reduce the rate of spontaneous AR (Davis, 1980; Flemming and 

Yanagimachi, 1981) and may also inhibit or delay capacitation in an array of species 

including human spermatozoa (Moubasher and Wolf, 1986).  



 - 109 -

 

Mammalian sperm chemotaxis is a well established process, though the signalling 

involved has not been elucidated (Muciaccia et al., 2005). After incubation in 

capacitating medium, approximately 10-15% of cells would be capacitated at any time 

point (Eisenbach & Giojalas, 2006). This subpopulation of cells is capable of 

responding to an ascending gradient of any attractant molecule i.e. 10 pM progesterone 

(Teves et al., 2006, 2009) or even to the artificial odorant Bourgeonal (Spehr et al., 

2003, 2004; see below). This has been demonstrated by the suppression of the 

capacitated cells, in vitro, resulting in the loss of the chemotactively responsive cells 

and vice versa (Eisenbach et al., 1999).  

 

Olfactory receptor proteins (ORs) are usually expressed in  the cilliary compartments of 

nasal olfactory sensory neurons. The stimulation of these results in the stimulation of 

mAC III and finally resulting in an increase in Ca2+ and Na+ concentration, resulting in 

membrane depolarization (Firestein, 2001). Several olfactory receptor protein (ORs) are 

expressed  primarily or exclusively in mammalian sperm cells (Firestein, 2001; 

Vanderhaeghen et al., 1997). The G-protein coupled) receptors (hOR17-4), present in 

the flagellar midpiece of human sperm, is believed to act as chemosensory receptor that 

mediates chemotaxis (Spehr et al. 2003). Bourgeonal a synthetic odorant, used in 

perfumes to mimic the scent of lily of the valley was identified as potent agonist of 

hOR17-4 and in human spermatozoa, exerts a strong chemoattractant effect (Spehr et 

al., 2003, 2004). It has recently been reported that the bathing medium must contain 

more than 10-4M Ca2+ in order to obtain a significant chemotactic response to 
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bourgeonal (Gakamsky et al., 2009). Exposure of human sperm to bourgeonal, results in 

a results in a dose-pendent elevation in [Ca2+]i which is dependent on [Ca2+]e. (Spehr et 

al, 2003, 2004). The response initiates in the midpiece, where the receptor is located, 

and spreads to the head (Spehr et al, 2003, 2004). Binding of hOR17-4 is believed to 

stimulate membrane adenylate cyclase (mACIII) through Golf, the resulting rise in 

cAMP concentration and activation of a Ca2+ -permeable channel, either directly or by 

the activation of PKA enabling the influx of Ca2+ across the plasmalemma (Publicover 

et al., 2007).   However, it’s still unclear how the Ca2+ mobilisation in the midpiece 

regulates flagellar [Ca2+]i, and the consequent beat and/or probable change in direction 

(towards source, in ascending gradient).  

 

 

 

Chapter Aims 

The aim of this chapter was to examine the effect of bourgeonal on [Ca2+]i and AR in 

capacitated (incubated with sEBSS media +0.3% BSA, >5hours incubation) and non-

capacitated human sperm. Additionally, the effect of bourgeonal was compared with the 

response to  a structural homolog  (3,4,CPEE), both in Ca2+ and in the absence of Ca2+. 
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3.2 Results  
 
 
3.2.1 Capacitated human spermatozoa respond to Bourgeonal  

 

Following the incubation for >5hours in sEBSS, (0.3% BSA), the capacitated human 

spermatozoa were initially bathed in sEBSS for 3 minutes (control period), following 

this, the cells were superfused in sEBSS supplemented with bourgeonal (20µM). A 

significant [Ca2+]i elevation (P<0.05%, contol levels against agonist levels ) was 

detected in the Rtot of the experiments, elevating OGB fluorescence 14.87% (±1.35% 

S.E.M), [ Figure.1. (D) ],  above control levels, within 2-5 minutes [ Figure.1. (A) ].   

Visual examination of individual cells  showed that 46% (±6.2 S.E.M) of the cells 

responded with a distictive rise in OGB fluorescence (fifteen experiments, >1200 cells 

examined) [ Figure.1. (B) ]. Within the individually examined spermatozoa,  38.10% 

(±3.87 S.E.M)  showed a clear significant sustained elevation in OGB fluorescence 21% 

above control levels, and 8.9% (±2.3% S.E.M.) generating a significant single transient 

elevation, peaking within ≈0.66 minutes [ Figure.1. (C). ].  A subpopulation of 

responding cells showed a gradual and modest decrease in [Ca2+]i during exposure to 

bourgeonal. 

 

 Visual examination of individual cells showed that a small subgroup of cells within 

each experiment showed high resting OGB fluorescent levels. This might be due to 

over-staining of the cells or elevated resting levels of [Ca2+]i,. When superfused with 

bourgeonal (20µM) these cells did not show a significant [Ca2+]i elevation.  The small 
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proportion of cells showing spontaneous activity [ see methods section 2.2.4.1 ] were 

excluded from analysis. In these cells application of bourgeonal either had no effect on 

frequency of the oscillations but appeared to increase their magnitude in some cells. 
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Figure.1. (A) Effect of bourgeonal (Light-red bar)on capacitated human spermatozoa 
bathed in sEBSS (Dark-blue bar) (incubated for >5hours in sEBSS). Capacitated human 
spermatozoa were bathed in sEBSS for 3 minutes (control period), followed by the 
superfusion of the cells with bourgeonal (20µM) in the same medium.Traces showing 
individual cell responses of 4 cells.  
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Figure.1. (B). Pseudocolour image series (warm colours indicate high [Ca2+]i) of 
capacitated human spermatozoa response to bourgeonal, with an sustained elevation in 
OGB fluorescence. Numbers in red (top left) indicates time course in seconds. Human 
spermatozoa incubated under capacitating conditions for >5hours were bathed in sEBSS 
(+BSA) (post labeling with OREGON GREEN*488 BAPTA-1, AM, see Methods, 
Chapter 2) during control period, and later exposed to bourgeonal (20µM) stimulating 
an elevation in OGB fluorescence.   
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Figure.1. (C). Transient elevation in OGB fluorescence identified in subpopulation 
(≈8%) of  capaciated human spermatozoa stimulated with bourgeonal (20µM) in sEBSS 
(cells incubated in sEBSS for >5hours). Traces show 4 single cell responses.  
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Figure.1. (D).  Bar graph illustrating the mean normalized increase in fluorescence post 
stimulation of capacitated human spermatozoa with 20µM in sEBSS and over control 
period (cells bathed in sEBSS media prior to stimulation with bourgeonal). The error 
bars indicates the standard error of the mean (S.E.M.) and the number of experimental 
replicates is indicated within each of the bars (N). Asterisk (*) indicates the significance 
difference (P<0.05%). 
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3.2.2 The effect of bourgeonal is reversible 

 
Following the identification and quantification of human sperm response to bourgeonal, 

the next step was to investigate whether the response to bourgeonal was reversible. 

Spermatozoa were incubated in capacitating media for >5 hours (sEBSS), later bathed 

in the same medium for 5 minutes (control period). Consequently the cells were 

exposed to sEBSS supplemented with bourgeonal (20 µM), followed by a wash-off 

period, were there was a clear  reversal of the effect of bourgeonal on [Ca2+]i [ Figure.2. 

].   Upon washout fluorescence decreased to below stimulating levels. When bourgeonal 

(20µM) is reintroduced into the bathing media, the cells were capable of once again 

responding to the stimulus, with an elevation in OGB in fluorescence >15% above 

control levels, significantly higher than resting levels and higher than washout levels.  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 



 - 116 -

Bourgeonal (sEBSS)

-20

0

20

40

60

-1 1 3 5 7 9 11 13 15 17 19 21 23 25 27

Time (Min)

 ∆
 F

lu
o

re
sc

en
ce

 (
%

) 
  

sEBSS

Bourgeonal (20µM) Bourgeonal (20µM)

 
 
Figure.2. Effect of bourgeonal washout on capacitated human sperm bathed in sEBSS 
(were incubated in sEBSS for >5 hours). Human spermatozoa were superfused with 
sEBSS for 5 minutes (Dark-blue bar), and subsequently bathed with 20 µM bourgeonal 
(Light-red bar) in sEBSS for 10 minutes. This was followed by the superfusion of the 
cells with sEBSS; finally bourgeonal was reintroduced in the same media and at the 
same dose. Traces show 6 single cell responses.  
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3.2.3 Dose-dependence of the effect of bourgeonal 

Previous research suggest that human spermatozoa respond to bourgeonal in a dose-

response manner (Spehr et al., 2004, 2006). After control superfusion with sEBSS for 4 

minutes, capacitated spermatozoa were exposed to 2 µM bourgeonal, then 20 µM and 

finally 200 µM bourgeonal. Bourgeonal (2 µM) induced a significant sustained 

elevation in [Ca2+]i, in <30% of the cells, maximum elevation reaches 9.23 (±0.3% 

S.E.M) above control levels (one experiment, >20 cells examined), significantly greater 

than basal control levels (P<0.05%). Subsequent exposure to 20 µM bourgeonal caused 

a significant sustained elevation in OGB fluorescence. In >30% of the cells, amplitude 

of response was 21.76 (±1.3% S.E.M) above control levels, within 2-5 minutes 

(P<0.05% compared to 2 µM and to control period) [ Figure.3. ].    Furtheremore, 200 

µM bourgeonal then induced an additional significant single transient elevation in 

[Ca2+]i, in >65% of the cells, maximum amplitude >34.13 (±0.2% S.E.M) (P<0.05% 

compared to control and other doses) above control levels, which peaked at ≈1.5 

minutes.  
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Figure.3. (A). Effect of stepped increase in bourgeonal concentration (2µM, 20µM, 
200µM) on capacitated human spermatozoa bathed in sEBSS  (incubated for >5hours in 
sEBSS). Cells were bathed in sEBSS (Dark-blue bar) for 4 minutes (control period), 
followed by the introduction of 2µM bourgeonal (Yellow bar) for 4 minutes, 
subsequently 20µM bourgeonal (Orange bar) was introduced for 4.5 minutes and finally 
200µM (Red bar) was applied to the cells in the same media. Traces show 4 single cell 
responses. Insert: Bar chart indicates the mean normalized increase in fluorescence in 
one experiment (N=1, >20cells); illustrating the elevation in OGB fluorescence post 
stimulation with 2µM, 20µM, 200µM bourgeonal in sEBSS and over control period 
(cells bathed in sEBSS media prior to stimulation with agonist). The error bars indicates 
the standard error of the mean (S.E.M.) and different symbols in each bar ($,∞,+, #) 
indicate the significance between samples tested (P<0.05%). 
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3.2.4 Dependence of the action of bourgeonal on [Ca
2+

]o 

To investigate the importance of extracellular Ca2+ in the response of human sperm to 

bourgeonal, cells were incubated for >5hours in capacitating media (sEBSS, +0.3% 

BSA, pH 7.25-7.4) and later bathed in NCFsEBSS (<5µM/L Ca2+) (+0.3% BSA) for 3 

minutes. Consecutively the cells were superfused in NCFsEBSS supplemented with 

bourgeonal (20µM) were no significant change in OGB fluorescence was detected in the 

Rtot of the experiments (six experiments; P>0.05%), [ Figure.4. (A) ].  Strongly 

suggesting the crucial role of Ca2+ in the response to bourgeonal [ Figure.4. (B) ]. 

Individual cell examination revealed that 11% (±2% S.E.M) showed a clear significant 

sustained elevation in OGB fluorescence, with a maximum elevation 10.4% (0.9% 

S.E.M) above control levels, after a period of  2-5 minutes (six experiments, >300 cells 

examined).  
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Figure.4. (A). Effect of bourgeonal in capacitated human spermatozoa bathed in low-
Ca2+ (incubated for >5hours in sEBSS). Capacitated human spermatozoa were bathed in 
NCFsEBSS (Light-blue bar) for 3 minutes (control period), followed by introduction of  
bourgeonal (20µM) in the same media. Trances of 10 cells showing no significant 
response to bourgeonal (Light-red bar) in NCFsEBSS. Dotted (●) line in graph indicates 
Rtot of experiments (average response of >30 cells).  
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Figure.4. (B). Bar chart indicates the mean normalized increase in fluorescence post 
stimulation of human capacitated spermatozoa with bourgeonal (20µM) in sEBSS; 
against capacitated spermatozoa bathed in NCFsEBSS supplemented with bourgeonal at 
the same dose (20µM). The error bars indicates the standard error of the mean (S.E.M.) 
and the number of experimental replicates is indicated within each of the bars (N). 
Asterisk (*) indicates the significance (P<0.05%). 
 
 
 

In order to further reduce [Ca2+]o; EGTA-buffered NCFsEBSS was used (3mM EGTA). 

Capacitated human spermatozoa were first superfused with NCFsEBSS then exposed to 

EGTA-buffered NCFsEBSS for 5 min. This caused a decrease in OGB fluorescence of 

>20%; bellow resting control levels. Subsequently the application of bourgeonal 

(20µM) under these conditions  caused no discernible response (two experiments, >100 

cells examined) [ Figure.5. ].    
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Figure.5. (A). Response of EGTA (low-Ca2+) pretreated capacitated human 
spermatozoa in NCFsEBSS to bourgeonal (20µM) in EGTA-buffered NCFsEBSS 
(incubated for >5hours in sEBSS). Human spermatozoa were bathed for 5 minutes in 
NCFsEBSS (light-blue bar), followed by superfusion of the cells with EGTA-buffered 
NCFsEBSS for 8 minutes (Light-green bar), and finally bathed with bourgeonal (light-
red bar) in the same EGTA-buffered media. Traces show 10 single cell responses. 
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3.2.5 Ca
2+

 stores and the action of bourgeonal 

Though the response to bourgeonal was completely inhibited by EGTA, it is possible 

that strong buffering of [Ca2+]o was acting to deplete Ca2+ stores before application of 

bourgeonal. In order to distinguish whether stored Ca2+ was involved in the response to 

bourgeonal, the cells were pre-treatmented with bis-phenol (20µM) [ Figure.7. (A) ]. 

Bis-phenol inhibits both SERCAs and SPCA Ca2+-pumps at doses ranging from 10 to 

40µM and evacuates Ca2+ stores (Brown et al., 2004). Superfusion of cells bathed in 

sEBSS with bis-phenol (20µM) resulted in a rapid elevation in [Ca2+]i in ≥85% of the 

cells, (mean increase in OGB fluorescence = 28.0±3.60%; six experiments, >500 cells 

examined), a significant increase above control levels (P<0.05%). Subsequent 

application of  bourgeonal (20µM) caused a  significant elevation in OGB fluorescence 

15% above non-treated levels (P<0.05%), [ Figure.7. (B) ], within 2-5 minutes. Visual 

examination showed that 43.3±6.5 of the bis-phenol pretreated  cells showed a clear rise 

in OGB fluorescence upon application of bourgeonal. Within these cells 

37%(±3.7%S.E.M) responded with a sustained elevation in [Ca2+]i,, and a small 

proportion (≈6%) of the responding cells showed a single transient response in [Ca2+]i 

(as previously reported with cells bathed in sEBBS supplemented with bourgeonal) and 

the remaining cells ≥57% showed no significant response when stimulated with 

bourgeonal, hence no elevation in [Ca2+]i was detected. Additionally when the above 

experiment performed in NCFsEBSS, under these low-Ca2+ too, spermatozoa did not 

respond to bourgeonal.  
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Figure.7. (A). Effect of bourgeonal (20µM) in bis-phenol (20µM) pretreated capacitated 
human spermatozoa bathed in sEBSS (incubated for >5hours in sEBSS). Spermatozoa 
were bathed in sEBSS (Dark-blue bar) for 5 minutes (control period), followed by the 
superfusion of  bis-phenol (20µM) in the same media (light-green bar) for 7 minutes, 
and finally bathed in sEBSS supplemented with bis-phenol and (20µM) bourgeonal 
(Light-red bar) (20µM). Traces show 5 single cell responses.  
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Figure.7. (B). Bar chart indicates the mean normalized increase in fluorescence post 
stimulation of bis-phenol pretreated cells with bourgeonal (20µM) in sEBSS; and over 
control period (non-treated cells), cells bathed in sEBSS media prior to the application 
of  any stimulation. The error bars indicates the standard error of the mean (S.E.M.) and 
the number of experimental replicates is indicated within each of the bars (N). Asterisk 
(*) indicates the significance between samples tested (P<0.05%).[ Bourgeonal + Bis-
phenol = Bis-phenol (20µM) pretreated cells bathed in sEBSS supplemented with 
bourgeonal (20µM) and bis-phenol]. 
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3.2.6 Action of bourgeonal in non-capacitated human sperm 

The next step was to examine if non-capacitated spermatozoa respond to bourgeonal in 

sEBSS. For these experiments the spermatozoa incubation period was significantly 

reduced, (from > 5 hours to ≤1.5hours) and the incubation medium albumin was not 

added, a vital factor for capacitation (see Introduction section 3.1). After swim-up into 

sEBSS lacking albumin, cells were stained straight away (see Methods section 2.2.1). 

The uncapacitated spermatozoa were initially superfused with albumin-free sEBSS 

during the control imaging period, then exposed to bourgeonal (20µM). The 

uncapacitated spermatozoa failed to show a significant increase in OGB fluorescence 

(P>0.05%, against resting control period), in response to bourgeonal (two experiments, 

>100 cells examined), [ Figure.8. (A) ].    In parallel experiments (same day with same 

donor/s) with cells that were swum up in sEBSS in the presence of albumin (BSA) and 

incubated under capacitating conditions (sEBSS + 0.3% BSA, pH 7.25-7.4, 5% CO2, 

>5hour Incubation), bourgeonal  reinduced a significant elevation in [Ca2+]i (OGB 

fluorescence) in  >35% of the cells (as previously reported) [ Figure.8. (C) ]. In three 

further experiments (with no cell controls, with capacitated spermatozoa) with 

uncapacitated spermatozoa no significant elevation in OGB fluorescence was detected 

in the Rtot of the experiments (control levels compared to treated levels, P>0.05%).  
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Figure.8. (A). Bourgeonal effect in non-capacitated human spermatozoa bathed in 
sEBSS. (incubated for ≤1.5hours in sEBSS, no albumin). Human spermatozoa 
incubated under non-capacitating conditions were bathed in sEBSS for 3 minutes 
followed by the superfusion with sEBSS supplemented with 20µM bourgeonal. Single 
trace illustrates the Rtot  of one experiment (for 60 cells).Insert: 10 superimposed single 
cell records of non-capacitated human spermatozoa. (B) Pseudocolour image series 
(light colours show low [Ca2+]i) of non-capacitated spermatozoa showing no response to 
bourgeonal in sEBSS. Numbers in red (top left) indicate time course in seconds.  
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Figure.8. (C). Effect of bourgeonal in capaciated and non-capacitated human sperm. 
Bar chart indicates the mean normalized increase in fluorescence post stimulation of 
capaciated spermatozoa and non-capacitated spermatozoa with bourgeonal (20µM) in 
sEBSS. Capacitated spermatozoa were incubated for >5hours in sEBSS supplemented 
with BSA (0.3%) and non-capacitated were in sEBSS (during swimup process with no 
BSA, see Methods) for ±1.5 hour with no albumin. The error bars indicates the standard 
error of the mean (S.E.M.) and the number of experimental replicates is indicated within 
each of the bars (N). Asterisk (*) indicates the significance between samples tested 
(P<0.05%). [Bour+Cap.= Capaciated spermatozoa treated with bourgeonal in sEBSS; 
Bour+No-Cap.= Non-capacitated spermatozoa treated with bourgeonal, in the same 
media]. 
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3.2.7 Acrosomal Reaction and Bourgeonal  

Capacitation is apparently required for cells to respond to bourgeonal with an elevation 

of [Ca2+]i (see above, Section 3.3.3).  AR, which is induced by elevation of [Ca2+]e 

(Publicover et al., 2007, 2008), is also dependent upon capacitation. To investigate 

whether treatment of capacitated human spermatozoa with bourgeonal (20µM) leads to 

AR, the cells were incubated with Ca2+ ionophore (8µM +ve control), bourgeonal (20 

µM) and DMSO (0.02%, in the absence of bourgeonal) for 30 minutes, then processed 

for assessment of acrosomal status (see Methods section 2.2.3). When the cells were 

incubated with Ca2+ ionphore (8µM) for 30minutes in HAM F-10 media,  13.93% 

(±1.46 S.E.M) of cells were stained as acrosomal reacted [ Figure.9. (B) ], (positive 

control), this was significantly higher than the % spontaneous acrosome reacted 

spermatozoa (-ve control, cells incubate in HAM F-10 alone; Appendix One for 

composition) (P<0.05%; positive control against spontaneous AR) [ Figure.9. ]. When 

capacitated spermatozoa were incubated with HAM F-10 supplemented with 

bourgeonal (20µM) no percentage (%) increase in AR above control levels was detected 

(5.33±1.63% S.E.M) [N=3, >600 cells examined]. The % AR values were significantly 

lower than  Ca2+ ionophore (Positive control, P<0.05%); and showed no significant 

difference compared to solvent vehicle DMSO (P>0.05%). The results clearly indicate 

that capacitated human spermatozoa incubated with 20µM bourgeonal (in HAM F-10) 

does not significantly induce AR. 
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Figure.9.  Effect of bourgeonal on the acrosomal status of capacitated human 
spermatozoa. (A) Bar chart indicates the mean percentage (%) induced AR, in 
spermatozoa incubated with Ca2+-ionophore (8µM) and cells incubated with bourgeonal 
(20µM) in Ca2+-containing media (HAM-F10). Asterisk (*) indicates the significant 
difference (P<0.05%). (B) Images of capacitated human spermatozoa incubated in 
HAM-F10 supplemented with ionophore (8µM) and bourgeonal (20µM). (B.1.) 
Capacitated spermatozoa incubated HAM-F10 (+HSA) supplemented with bourgeonal 
(20µM). (B.2.) Capacitated human spermatozoa incubated with HAM-F10 
supplemented with Ca2+ Ionophore (8µM), (positive control). Red (����) arrow indicates a 
acrosome reacted spermatozoa.  
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3.2.8 Human sperm response to 3,4,CPEE  

When capacitated cells, bathed in sEBSS for >5hours, were superfused with 3,4,CPEE 

(20µM), there was a clear and significant elevation of OGB fluorescence. Similarly to 

the effect of bourgeonal, 3,4,CPEE led to a elevation in OGB fluorescence 14.57 

(±0.85% S.E.M) above control levels, within 2-5 minutes [ Figure.10. (A)].  Visual 

examination of individual cells showed that, like bourgeonal, [ Figure.10. (C)], 

39.4±5.0% (S.E.M)  of cells responded with a significant sustained elevation in OGB 

fluorescence, 22% above resting levels (four experiments, >200 cells examined) and 

≈14% of cells responded with a significant single transient elevation in [Ca2+]i, peaking 

within ≈0.66 minutes [ Figure.10. (B)], and >50% of the cells showed no distictive 

elevation.  
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Figure.10. (A). Effect of 3,4,CPEE (20µM) in capacitated human spermatozoa bathed 
in sEBSS (incubated for >5hours in sEBSS). The cells were bathed with sEBSS  (Dark-
blue bar) for 4 minutes (control period), followed by the superfusion with sEBSS 
supplemented with 3,4 CPEE (20µM), for 8 minutes (Light-grey). Traces show 6 single 
cell responses. Insert: Mean normalized increase in [Ca2+]i (fluorescence) after 
exposure to 3,4,CPEE (20µM) in sEBSS. The error bars represent the SEM, and the 
number (N) of experimental replicates is indicated in each bar. ). Asterisk (*) indicates 
the signifincance between samples tested (P<0.05%).  
 

 

 

 

 

 

 

-

-10

0

10

20

30

40

50

-1 1 3 5 7 9 11 13

Time (Min)

∆
 F

lu
o

re
sc

en
ce

 (
%

)

sEBSS

3,4, CPEE

N=3
N=3

0

5

10

15

20

Control 3,4CPEE

∆
 F

lu
or

es
ce

nc
e 

(%
) *



 - 133 -

 

 

-

-20

-10

0

10

20

30

40

50

0 2 4 6 8 10 12 14 16 18

Time (Min)

 ∆
 F

lu
o

re
sc

en
ce

 (
%

)

sEBBSS

3,4,CPEE (20µM)

 

Figure.10. (B).  Transient response to 3,4,CPEE in sEBSS obtained in ≈14% of 
capacitated spermatozoa. Following >5hour incubation, spermatozoa were bathed in 
sEBSS (Dark-blue bar) for 5 minutes and subsequently superfused with sEBSS 
supplemented with 3,4,CPEE (Light-grey bar). Traces show 3 single cell responses. 
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Figure.10. (C). Mean normalised increase in [Ca2+]i (fluorescence) to bourgeonal (20µM) in 
sEBSS and 3,4,CPEE (20µM) in the same media. The error bars represent the SEM, and the 
number (N) of experimental replicates is indicated in each bar. The use of identical symbols 
above graphs (†) indicates no significant difference (P>0.05%).  
 

 

Similarly to experiments with bourgeonal, the response of capacitated human 

spermatozoa bathed in NCFsEBSS (nominal calcium free media) was examined (<5µM 

Ca2+; Harper et al., 2004) to 3,4,CPEE. Capacitated cells were superfused with 

NCFsEBSS (0.3% BSA) for >2 minutes, then exposed to 3,4,CPEE (20µM) in the same 

media. This did not elicit a significant elevation in OGB fluorescence above resting 

levels in the Rtot of the experiments (P>0.05%, control levels against treated levels) 

(three experiments, >300 cells examined) [Figure.11. ]. Visual examination of 

individual cells showed that  a sustained increase in OGB fluorescence occurred  in 

11.6±1.88% (S.E.M) of the cells, reaching maximum elevation of 12.0±0.55% (S.E.M) 

above control levels (three experiments, ≥ 300 cells examined). The remaining 88.45% 

(±1.88% S.E.M) of the cells showed no distinctive elevation in [Ca2+]i. The peak 
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amplitude of response was similar to that for cells bathed in NCFsEBSS exposed to 

bourgeonal (20µM)  (P>0.05 %, t test, Bourgeonal vs. 3,4,CPEE in sEBSS) [Figure.11. 

(B) ]. 

 

 

Figure.11. (A). Effect of 3,4,CPEE (20µM) in capacitated spermatozoa bathed in 
NCFsEBSS (incubated for >5hours in sEBSS). Capacitated human spermatozoa were 
bathed for 4 minutes in NCFsEBSS (Light-blue bar) (control period). Traces showing 8 
single cell responses. Insert: Bar graph illustrating the mean normalized increase in 
fluorescence response to 3,4,CPEE (20µM) in NCFsEBSS. The error bars represent the 
SEM, and the number (N=3) of experimental replicates is indicated in each bar. The 
same symbol above graph (†) indicates no significant difference (P>0.05%).  
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Figure.11. (B). Mean normalized increase in fluorescence response to 3,4,CPEE 
(20µM) in NCFsEBSS (Low-Ca2+); against response of human capaciated spermatozoa 
to bourgeonal (20µM) in the same media (Low-Ca2+). The error bars represent the SEM, 
and the number (N) of experimental replicates is indicated in each bar. The same 
symbol above graph (+) indicates no significant difference (P>0.05%).  
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3.3 Discussion  

Intracellular calcium [Ca2+]i signalling is crucial to sperm function (Jimenez-Gonzalez 

et al., 2006). Calcium signalling is achieved by enabling Ca2+  entry to the cytoplasm 

(here concentration is kept very low) from the extracellular space and/or from 

intracellular organelles (stores), where Ca2+ concentration is up to four orders of 

magnitude higher (Costello et al., 2009). The presence and crucial role of Ca2+ channels 

in mammalian spermatozoa plasma membrane is well established in many physiological 

processes including capacitation, hyperactivation, chemotaxis and acrosome reaction 

(Costello et al., 2009). Identification of the steroid hormone, progesterone (together 

with the chemotactic dose 10pM) as a chemoattractant compound produced in vivo by 

oocyte and cumulus cells emphasized that chemotaxis and its associated signalling 

cascade in mammalian sperm is a puzzle that must be solved (Teves et al., 2006, 2009; 

Sun et al., 2005). The identification of the hOR17-4 in the flagellar midpiece (G-protein 

olfactory receptor), and its respective agonist (bourgeonal being the most potent) also 

shed light on the importance of human sperm chemotaxis (Spehr et al., 2003, 2004, 

2006). Ca2+ signalling induced by bourgeonal, a potent agonist of hOR-17.4 (Spehr et 

al., 2003) was examined in this chapter - specifically: 

 

 (1) Do human spermatozoa respond to bourgeonal with elevation of [Ca2+]i ? 

(2) Is the response dependent on extra- or intra- cellular calcium ?  

(3) Is the response reversible ?  

(4) Does bourgeonal stimulate AR like progesterone (Publicover et al., 2007) ? 
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(5) Is there any response in uncapacitated spermatozoa ?  

 

When capacitated  human spermatozoa were exposed to bourgeonal (20µM) 38% 

responded with a sustained elevation in [Ca2+]i, and  ≈8% responded with a single 

transient elevation [Ca2+]i. When a series of ‘stepped’ concentrations were introduced 

(2, 20, 200µM), there was, at each dose, a significant elevation both of the amplitude of 

the Ca2+ signal and of the percentage responding cells in [Ca2+]i. This is in agreement 

with previous studies that the response of human sperm to bourgeonal shows dose-

dependence (Spehr et al., 2003, 2004). The response to bourgeonal was dependent on 

[Ca2+]e.. In NCFsEBSS (<5 µM Ca2+; Harper et al.,  2004) no significant response was 

detected in the Rtot of the experiments, as previously reported, (Spehr et al., 2003, 2004, 

2006; Gakamsky et al., 2009).  However, visual examination showed a significantly 

modest elevation in [Ca2+]i occurred in <10% of the cells and when NCFsEBSS media 

was buffered with EGTA (3 mM) the response to bourgeonal was abolished.  Though 

data obtained using EGTA must be treated cautiously due to the effects on intracellular 

stored – these results suggest that the response to bourgeonal involved Ca2+-influx. 

Consistent with this conclusion, pretreatment with bis-phenol (20µM), an inhibitor for 

both SERCA and SPCA Ca2+-pumps to mobilise Ca2+ stores  (Brown et al., 2004; 

Harper et al, 2005),  did not prevent cells responding to bourgeonal. More than 35% of 

the cells showed a clear response to, similar to that seen in non-pretreated cells. 

Therefore it’s possible to conclude that Ca2+-influx is the primary sources of the 

elevation of [Ca2+]i induced by bourgenal. 
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The sustained elevation of [Ca2+]i seen in bourgeonal-treated human sperm clearly 

suggests that, when the receptor (hOR17-4) is occupied by bourgeonal, the downstream 

signal (possibly stimulation of mACIII; Spehr et al, 2004) is tonically activated causes 

prolonged opening of a membrane Ca2+-permeable channel (unknown). When 

bourgeonal was applied to capacitated cells and then removed (washed-off) the level of 

[Ca2+]i returned to pre-stimulus values within 2-3 min, indicating that, upon removal of 

the ligand, the signalling events that cause opening of the Ca2+ permeable channel are 

switched off and the channel  closes. However, a small subpopulation (<8%), respond 

with a transient response that terminated despite the continued application of 

bourgeonal. With 200µM bourgeonal >60% of the responsive cells showed this pattern 

of response – peaking rapidly and then ‘switching off’’. Thus the cells are apparently 

capable of ‘inactivating’ their response to bourgeonal a feature that may be crucial for 

chemotactic responses, which will require the ability to discriminate temporal 

differences in chemoattractant concentration. This is addressed in subsequent chapters 

(see Chapter 3). 

 

Additionally, in every experiment a small subpopulation of cells showed showed high 

resting OGB fluorescent levels; possibly due to over-staining of the cells or elevated 

resting levels of [Ca2+]i,. When these were bathed in bourgeonal no response was 

detected. The fluorescence from these bright cells showed little (or no) variance over the 

course of the experiment. These cells may be spermatozoa that have lost their capacity 

to regulate [Ca2+]i, maybe through an abnormal interaction with the polylysine-treated 
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glass coverslip as has been proposed for polylysine bound echinoderm spermatozoa 

(Wood et al., 2003).  

 

Suspension of human sperm in albumin-free medium results in a significant reduction in 

capacitation (>15% to <3%) and a significant reduction in swiming behaviour 

(Gakamsky et al., 2009). When the cells were exposed to 20 µM bourgeonal without 

capacitation (No BSA, no incubation time <1.5 hours), no significant elevation in 

[Ca2+]i,, occurred. Parallel experiments with capacitated spermatozoa (sEBSS, +0.3% 

BSA), showed the normal significant elevation in [Ca2+]i   in >35% of the cells. These 

results strongly suggest that human sperm response to bourgeonal is dependent on 

capacitation (incubation of cells under capacitating conditions). This is in contrast to the 

work of Spehr et al (2003) who observed Ca2+ responses in uncapacitated cells. 

However the higher doses used in previous studies  (200 µM – 500 µM, used by other - 

the signalling pathway involved in uncapacitated spermatozoa may differ from the 

responses of capacitated mammalian spermatozoa to lower doses of bourgeonal.. 

Significantly, progesterone acts as a chemoattractant for human sperm at pM 

concentrations (Teves et al., 2006, 2009), but when spermatozoa are exposed to 

progesterone (nM to µM) there is an immediate  elevation in [Ca2+]i in both capacitated 

and non-capacitated spermatozoa (Thomas and Meizel, 1989, Blackmore et al., 1990, 

1991; Baldi et al., 1991; Bedu-Addo et al., 2005).  

 

Following the study of the intracellular cell response to bourgeonal, it was then 

examined if the ligand stimulated AR. Once capacitation of mammalian spermatozoa is 
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completed, spermatozoa are able to acrosome react in response to a physiological 

stimulus, such as progesterone  (Marin-Briggiler et al., 1999).  This steriod hormone is 

capable of stimulating mammalian AR both in vitro and in vivo, in addition to 

stimulation of sperm chemotaxis at lower doses (pM; Teves et al., 2006, 2009), both 

dependent in Ca2+ (Publicover et al., 2007, 2008).  Bourgeonal (20µM) failed to increase 

the rate of acrosome reaction above control level. Spehr (2004, 2006), showed that 

higher doses of bourgeonal (>50µM) also failed to stimulate AR.  

 

 

A given olfactory receptor (OR) in theory responds to an extensive range of stimulus 

(Spehr et al., 2003). The molecular receptive field of  hOR17-4 was determined using 

cyclamal as a template (Spehr et al., 2003). Spehr et al. (2003) concluded that 

stimulating compounds included an aldehyde group connected to an aromatic ring via 

carbon chain of a defined length (2-4 carbons) in order to effectively stimulate the 

hOR17-4 receptor (Spehr et al., 2003). Here the [Ca2+]i  response of capacitated human 

spermatozoa to both bourgeonal [C13H18O] and 3,4,CPEE [C12H14O3] were examined 

and compared, these two are aromatic compounds of similar structure.            
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Figure.12.  Structural homology between the ligands. (A) Structure of bourgeonal (4-t 
Butylbenzenepropionaldehyde), [C13H18O] (B) 3,4,CPEE, 3-(4´-Carboxyphenyl)-
Propionaldehyde Ethyl Ester) [C12H14O3]. Red arrows indicate the structural similarities 
between both compounds. 
 

The nature (kinetics and amplitude) of the Ca2+ responses and the proportion of the 

responsive cells were similar for the two compounds, as was the modification of the 

stimulatory action by omission of Ca2+ from the bathing medium (NCFsEBSS). All of 

the above suggests that human spermatozoa respond to the two both bourgeonal and 

3,4,CPEE through the activation of the same receptor (hOR17-4 ?) and signal 

transduction pathway. 3,4,CPEE [C12H14O3], includes all of the components that are 

thought necessary for the stimulation of the hOR17-04, an aldehyde group connected to 

an aromatic ring via a carbon chain of >4 carbons (key determinant for an effective 

stimulation of the OR (Spehr et al., 2003).  
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A small number of  experiments in this chapter were performed in laboratory 
collaboration with Dr Teves, Dr Giojalas, Dr Gidobaldi and Dr Uñates from the 
Cebicem, University of Cordoba, Argentina and another proportion in collaboration 
with the Department of Chemistry, University of Birmingham, UK. All of these 
experiments, both in Argentina and Birmingham were performed by Aduén Andrés 
Morales García, author of this thesis (U. Birmingham, 2009). Most of the data provided 
will be used for grant applications and for an upcoming paper(s), in collaboration with 
Dr Giojalas, Dr Uñates, Dr Teves and Dr Publicover as head of the research group 
(University of Birmingham).   
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4.1 Introduction  

Ca2+  is a universal intracellular messenger encoding information by temporal and 

spatial patterns of concentration (Jimenez-Gonzalez et al., 2006; see introduction). In 

mammalian spermatozoa [Ca2+]i  plays a pivotal role in capacitation (Jimenez-Gonzalez 

et al., 2006) and after capacitation, controls acrosome reaction (Kirkman-Brown et al., 

2002) motility and hyperactivation (Carlson et al., 2003, Suarez & Ho, 2003) and 

chemotaxis (Eisenbach and Giojalas, 2006; Spehr et al., 2003; Teves et al., 2006, 2009). 

The [Ca2+]i response of human sperm exposed to bourgeonal  is small and prolonged 

(Chapter 3). However, in some cells the [Ca2+]i response is transient or decays slowly, 

despite the continued presence of the agonist. Thus some cells may have the ability to 

terminate or down-regulate the response to the agonist, which is likely to be important 

in chemotactic signaling pathway (Kaupp et al., 2003, 2008; Eisenbach & Giojalas, 

2006). 

 

Like Ca2+, cAMP plays an important role in the regulation of many physiological 

processes in sperm and it is likely that these two second messengers interact. It has been 

suggested that activation of ORs in mammalian spermatozoa leads to elevation of 

[Ca2+]i through a pathway involving Golf, membrane AC and generation of cAMP 

(Spehr et al., 2004, 2006). Cyclic nucleotide-gated channels (CNG) have been identified 

and localized in mammalian spermatozoa (Publicover et al., 2008).  
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Chapter Aims 

This chapter attempts to examine and understand the role of Ca2+ and cAMP in 

determining the kinetics of the [Ca2+]i response to bourgeonal, particularly the 

termination of the Ca2+ signal, which may be crucial for regulation of chemotaxis 

(Kaupp et al., 2003). This has been addressed  by i) examining the response of 

spermatozoa exposed to bourgeonal in low-Ca2+ saline followed by readmission of Ca2+, 

where any feedback effects of elevated [Ca2+]i will be ‘delayed’ (prior to Ca2+-

readmission), ii) investigating the effects of manipulation of [cAMP] on the Ca2+ 

response and iii) investigating generation of cAMP in capacitated human spermatozoa 

exposed to bourgeonal in Ca2+.   
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4.2 Results  

 
 
4.2.1 Response to bourgeonal is enhanced by ‘pretreatment’ under low 

Ca
2+

 conditions 

 
After incubation in capacitating medium (sEBSS, +0.3% BSA, for >5 hrs) spermatozoa 

were superfused in NCFsEBSS for 4 minutes, followed by the superfusion with 

NCFsEBSS supplemented with bourgeonal, conditions under which the agonist has 

little effect on [Ca2+]i (see Chapter 3). After 3 minutes, Ca2+ was returned to the 

medium (sEBSS supplemented with 20µM bourgeonal), upon which a single rapid 

[Ca2+]i transient occurred detected in the Rtot of the experiment, individual cell 

examination showed that >70% of the cells (four experiments, > 300 cells examined) 

responded in this way. Mean increase in fluorescence of OGB was 41.45% (±2.7% 

S.E.M), significantly higher than control levels (P<0.05%, against control levels), 

reaching maximum elevation (Tmax;) within ±0.66 minutes (six experiments, >200 cells 

examined) [ Figure.1. (A) ]. This response to readmission of Ca2+ in the presence of 

bourgeonal could be repeated if Ca2+ and bourgeonal were washed out of the chamber 

and then reapplied   [ Figure.2. ].  Here more than >75% of the cells responded with a 

transient elevation in OGB fluorescence, and out of the responding cells >96.5% of  

bourgeonal pretreated cells in NCFsEBSS responded to both first Ca2+-readmission and 

post washout to the second  readmission. The rest of the cells, 3.4%,  responded 

exclusively to the second Ca2+ readmission.  
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The response was dose-dependent [ Figure.4. ]. When Ca2+-readmission was carried out 

but in the presence of 100µM bourgeonal a significant single transient elevation in OGB 

fluorescence of 89.8% (±5.82% S.E.M)  above control (<0.05%– significantly bigger 

than with 20 µM), [ Figure.4. ],  reaching maximum elevation within ±0.6 minutes, was 

detected in >90% of cells (two experiments, >140 cells examined) [ Figure.3. ].  
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Figure.1. (A) Response of capacitated human spermatozoa pretreated with bourgeonal 
(20µM) in low-Ca2+  (NCFsEBSS) to the introduction of sEBSS (Ca2+-high) 
supplemented with bourgeonal [cells incubated in sEBSS for >5hours]. Capacitated 
human spermatozoa were bathed in NCFsEBSS (Light-blue bar) for 4 minutes, followed 
by the superfusion with bourgeonal (Light-red bar) in the same media for 3 minutes, 
consecutively the capacitated human spermatozoa were bathed in sEBSS (Dark-blue 
bar) supplemented with bourgeonal (20µM). Traces showing 4 single cell responses and 
black-dotted single trace (●) indicating the Rtot of one experiment (>30 cells). (B).  

Pseudocolour image series (warm colours show high [Ca2+]i) of capacitated human 
spermatozoa responding to Ca2+ readmission with  single transient elevation in OGB 
fluorescence. Numbers in red indicates time course in seconds. 
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Figure.2. Response to readmission of Ca2+ in the presence of bourgeonal (20µM) could 
be repeated if Ca2+ and bourgeonal washed out of the chamber and then reapplied [cells 
previously incubated in sEBSS for >5hours]. Capacitated spermatozoa were bathed in 
NCFsEBSS (Light-blue bar) for 4 minutes, followed by the superfusion with bourgeonal 
(Light-red bar) in the same media for 8 minutes, and subsequently bathed in sEBSS 
(Dark-blue bar) supplemented with bourgeonal (20µM). Bourgeonal and Ca2+ were 
washed out with NCFsEBSS and were reintroduced at minute 27.7, to the cells in the 
imaging chamber. Traces of 3 single cell responses. 
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 Figure.3. Response of capacitated human spermatozoa pretreated with bourgeonal 
(100µM) in low-Ca2+  (NCFsEBSS) to the introduction sEBSS supplemented with 
100µM bourgeonal (Ca2+-high) [cells incubated in sEBSS for >5hours]. Capacitated 
human spermatozoa were bathed in NCFsEBSS (Light-blue bar) for 7 minutes (Control 
period), followed by the superfusion with 100µ M bourgeonal (Light-red bar) in the 
same media for 6 minutes, and finally bathed in sEBSS (Dark-blue bar) supplemented 
with bourgeonal (100µM). Traces showing 7 single cell responses.  
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Figure.4. Response to bourgeonal is enhanced by ‘pretreatment’ under low Ca2+ 
conditions. Bar graph of the mean normalised fluorescence upon Ca2+ introduction to 
the bourgeonal pretreated cells at  20µM; against cells pretreated with 100µM 
bourgeonal under the same experimental conditions. The error bars represent the SEM, 
and the number (N) of experimental replicates is indicated in each bar. Asterisks (*) 
show differences in significance (P<0.05%). 
 
 

To assess the significance of the action of bourgeonal in the observations described 

above (response to readmission of Ca2+ to the incubation chamber), the response of the 

same cells to readmission of Ca2+ (switch from NCFsEBSS to sEBSS) both under 

control conditions and in the presence of bourgeonal (20µM), was then examined.   

When capacitated spermatozoa were bathed in NCFsEBSS for 4 minutes, followed by 

the superfusion with sEBSS there was a sustained elevation in OGB fluorescence in 

>75% of the cells, which stabilized ≈20 % above control levels (P<0.05%, against 
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control levels), within >2 minutes. Consecutively NCFsEBSS was re-applied into 

imaging chamber (4 minute wash), significantly decreasing OGB fluorescence to resting 

levels,  followed by bathing of the cells with NCFsEBSS supplemented with bourgeonal 

(20µM), for 4 minutes. Subsequent application of sEBSS supplemented with bourgeonal 

(20 µM) resulting in a single transient elevation in OGB fluorescence,  >40% above 

control levels (as previously described), significantly greater than the response of non-

bourgeonal-pretreated cells (P<0.05%, bourgeonal response against non-bourgeonal 

pretreated) [ Figure.5. ]. In addition, both the kinetics of the response in bourgeonal-

pretreated cells (time to peak fluorescence) and the nature of the response   (>75% 

transient response with bourgeonal, >75% sustained response in controls) were 

significantly different. These data strongly suggest that the transient response seen upon 

readmission of Ca2+ to the saline is due to the presence of bourgeonal. Plasma 

membrane channels opened by bourgeonal in NCFsEBSS remain open, Ca2+ is 

readmitted to the saline and [Ca2+]i rises, at which point they are apparently ‘switched 

off’.  
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Figure.5. Effect of non-treated-bourgeonal cells, bathed in NCFsEBSS and exposed to 
sEBSS (NCFsEBSS�sEBSS); compared to the response of bourgeonal-treated 
spermatozoa in NCFsEBSS introduced to sEBSS (NCFsEBSS + bourgeonal � sEBSS 
+ bourgeonal), in one experiment. Capacitated human spermatozoa were bathed in 
NCFsEBSS (Light-blue bar) for 4 minutes, followed by the superfusion with sEBSS 
(Dark-blue bar) for 3 minutes, subsequently the cells were bathed in NCFsEBSS for 4 
minutes (Ca2+ wash out). The cells were then superfused with 20µM bourgeonal in the 
same media (NCFsEBSS) for 6 minutes with the introduction of  sEBSS supplemented 
with 20µM bourgeonal (Light-red bar). Insert: Effect of non-treated cells, bathed in 
NCFsEBSS and exposed to sEBSS (NCFsEBSS�sEBSS); compared to the response of 
bourgeonal-treated spermatozoa in NCFsEBSS introduced to sEBSS supplemented with 
bourgeonal (NCFsEBSS + bourgeonal � sEBSS + bourgeonal). The error bars 
represent the SEM, and the number (N) of experimental replicates is indicated in each 
bar. Asterisks (*) show differences in significance (P<0.05%). [Light-blue vertical bar 
on graph represent cells bathed in NCFsEBSS introduced to sEBSS; and dark-red 
vertical bar bourgeonal pretreated cells exposed to bourgeonal in sEBSS ]. 
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4.2.2 - 3,4,CPEE induces a transient Ca
2+

 response similarly to 

bourgeonal 

 
Capacitated cells (incubated for >5 hours in sEBSS (0.3% BSA)) were bathed in 

NCFsEBSS  for 3 minutes, followed by 3,4,CPEE (20µM) in NCFsEBSS. When Ca2+ 

(sEBSS supplemented with 20µM 3,4,CPEE) was readmitted to the chamber there was a 

significant transient elevation  in OGB fluorescence detected in the Rtot of the 

experiments (peaking within ±0.90 minutes), with a mean elevation in OGB 

fluorescence 44.8 ±2.9% S.E.M above control levels (P<0.05%, against resting levels; 

three experiments, >200 cells examined), as previously reported with bourgeonal at the 

same dose [ Figure.6. ]. Visual examination of individual cells revealed that >75% of 

the cells responded with a transient response. No significant difference was detected 

between the effects of readmission of Ca2+ in the presence of 3,4,CPEE and in the 

presence of  bourgeonal (mean normalized fluorescence of both drugs at 20 µM; 

P>0.05%) [ Figure.7. ]. 
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Figure.6. Response of capacitated human spermatozoa pretreated with 3,4,CPEE 
(20µM) in low-Ca2+  (NCFsEBSS) to the introduction of Ca2+. [cells incubated in sEBSS 
for >5hours]. Capacitated human spermatozoa were bathed in NCFsEBSS (Light-blue 
bar) for 3 minutes, followed by the superfusion with 3,4,CPEE (Light-grey bar) in the 
same media for 4 minutes, and finally bathed in sEBSS (Dark-blue bar) supplemented 
with 3,4,CPEE (20µM). Traces showing 5 single cell  responses.  
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Figure.7. Response to bourgeonal and 3,4,CPEE is enhanced by ‘pretreatment’ under 
low Ca2+ conditions. Bar chart represents the mean normalised fluorescence response to 
3,4,CPEE upon reintroduction of Ca2+ in 3,4,CPEE (20µM) pretreated cells bathed in 
NCFsEBSS; against bourgeonal (20µM)  under the same experimental conditions 
(NCFsEBSS + 3,4,CPEE � 3,4,CPEE + sEBSS Vs. NCFsEBSS + Bourgeonal� 
sEBSS + Bourgeonal). The error bars represent the SEM, and the number (N) of 
experimental replicates is indicated in each bar. The use of the identical symbols  (+) to 
show no significant differences (P>0.05%). 
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4.2.3  Does cAMP shape the bourgeonal-induced Ca
2+

 transient? 

 
In the experiments described above (see section 4.2.2) it was shown that, if bourgeonal 

is applied to human sperm in NCFsEBSS, readmission of Ca2+ causes a large increase in 

[Ca2+]i, This response is transient, suggesting that when [Ca2+]i rises significantly 

(and/or rapidly), the bourgeonal-activated channels switched off. Spehr et al., (2003, 

2004) hypothesized that the opening of the membrane Ca2+-permeable channel by 

bourgeonal is due to an elevation of cAMP and/or activation of PKA. In this section the 

potential role of cAMP was examined, if any, in shaping the transient nature of the 

response that occurs when Ca2+ is readmitted. 

The cells were exposed to the same protocol as described above (see Sections 4.2.1, 

4.2.2) but in this case an inhibitor of cyclic nucleotide phosphodiesterases (PDE), 

IBMX 3-isobutyl-1-methylxanthine (1mM) was included in the NCFsEBSS to 

potentiate the cGMP/cAMP signaling pathways (Wood et al., 2003).  Upon application 

of IBMX there was a rapid elevation in OGB fluorescence in >90% of cells (maximum 

increase ≈15% above control levels). After a further 2 minutes bourgeonal (20µM) was 

applied to the cells. When Ca2+ was readmitted to the imaging chamber there was a 

single transient elevation in OGB fluorescence detected in the Rtot of the experiments, 

(40.8 ±3.16% S.E.M; P<0.05%) which peaked within ±0.64 minutes (six experiments, 

>300 cells examined [ Figure.8. ]. Furthermore, the magnitude and kinetics of the 

response showed no significant difference compared with cells under the same bathing 

conditions in the absence of IBMX (1mM) [ Figure.10. ]. 
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Figure.8.  OGB fluorescence response of  capacitated human spermatozoa pretreated 
with bourgeonal (20µM) and IBMX (1mM) in low-Ca2+  (NCFsEBSS) introduced to 
sEBSS (Ca2+-high) supplemented with IBMX (1mM) and bourgeonal (20µM) [cells 
incubated in sEBSS for >5hours]. Capacitated spermatozoa were bathed in NCFsEBSS 
(Light-blue bar) for 5 minutes (Control period), followed by the superfusion with IBMX 
(1mM) (Orange bar) in the same media for 5 minutes. Subsequently the cells were 
bathed in NCFsEBSS supplemented with bourgeonal (Light-red bar) and IBMX (1mM) 
(Orange bar). This was finally followed by the bathing of the cells in sEBSS (Dark-blue 
bar) supplemented with bourgeonal (20µM) and IBMX (1mM). Traces showing 5 single 
cell responses and black-dotted single trace (●) indicating the Rtot of one experiment 
(100 cells).  
 
 
 
The failure of IBMX to modify the transient response to Ca2+  indicates that kinetics of 

(cAMP) do not determine kinetics of the Ca2+ response. Another possibility is that 

cAMP is responsible only for the activation of the response, termination being regulated 

separately. To investigate this, 1mM N6,2'-O-Dibutyryladenosine-3',5'-cyclic 
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monophosphate (dbcAMP) was used, the membrane permeable  form of cyclic AMP  

(Meyer and Miller, 1974; Heit et al., 1991). Following >5 hours incubation in 

capacitating media, spermatozoa were bathed in a low-Ca2+ media (NCFsEBSS, <5µM 

Ca2+) for >2 minutes.  Subsequently  the cells were bathed in NCFsEBSS with dbcAMP 

(1mM), followed by superfusion with sEBSS supplemented with dbcAMP (1mM), 

resulting in a significant single transient elevation in [Ca2+]i , in >77% of the cells, 

reaching maximum increase in OGB fluorescence of 38.8±1.32% (SEM; P<0.05%) 

within ±0.70 minutes (four experiments, >240 cells examined) [ Figure.9. ]. Showing 

no significant difference in magnitude [ Figure.10. ] and  Tmax. (time to reach maximum 

elevation in OGB fluorescence) [ Figure.11. ], compared with the response obtained 

with IBMX (under the same conditions) and bourgeonal pretreated cells introduced to 

Ca2+ . 

 

When capacitated human spermatozoa pretreated with dbcAMP (1mM) and 20µM 

bourgeonal in NCFsEBSS, were introduced to Ca2+, under these conditions too the cells 

responded with a single transient elevation in OGB fluorescence. However this data is 

not significant, due to the excessive variables (treatments) in the experiment.  
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Figure.9. Response of capacitated human spermatozoa pretreated with dbcAMP (1mM) 
in low-Ca2+  (NCFsEBSS) to the introduction Ca2+. [cells incubated in sEBSS for 
>5hours]. Capacitated human spermatozoa were bathed in NCFsEBSS (Light-blue bar) 
for 7 minutes, followed by the superfusion with dbcAMP (Light-beige bar) in the same 
medium for 4 minutes, and finally bathed in sEBSS (Dark-blue bar) supplemented with 
dbcAMP (1mM). Traces showing 7 single cells response and black dotted single trace 
(●) indicating the Rtot of one experiment (70 cells).  
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Figure.10. Mean normalized increase OGB fluorescence response to Ca2+ readmission 
in capacitated human  spermatozoa pretreated in NCFsEBSS supplemented bourgeonal, 
dbcAMP (1mM) and (1mM) IBMX coapplied with bourgeonal (20µM). The error bars 
represent the SEM, and the number (N) of experimental replicates is indicated in each 
bar. The use of the same symbols (+) above bar graph indicates no significant 
differences (P>0.05%). 
 



 - 164 -

0

0.2

0.4

0.6

0.8

1

Bourgeonal (Ca2+-

Readmission)

 db cAMP (Ca2+-

Readmission)

IBMX + Bourgeonal

(Ca2+-Readmission

M
a

x
 O

G
B

 F
lu

o
re

sc
en

ce
 T

im
e 

(M
in

)

N=6 N=4 N=6

+ + +

 
 
Figure.11. Bar graph illustrating the mean latency time for the response to peak 
(minutes) for each treatment. The error bars represent the SEM, and the number (N) of 
experimental replicates is indicated in each bar. Identical symbols indicate (+) no 
significant differences (>P0.05%).  
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4.2.4 dbcAMP induces elevation of [Ca
2+

]i 

Since exposure to dbcAMP was able to induce a [Ca2+]i transient (upon readmission of 

Ca2+ to the imaging chamber) indistinguishable from that seen with bourgeonal, the 

response to dbcAMP of cells superfused with sEBSS was investigated, to allow 

comparison with the effect of bourgeonal. Spermatozoa were incubated in capacitating 

medium (sEBSS +0.3% BSA) for >5hours (WHO, 1999). After imaging OGB 

fluorescence in SEBSS for >2 minutes (control period), cells were exposed to dbcAMP 

(1mM) in the same medium and resulting in a significant, sustained elevation in OGB 

fluorescence 15.22% (±1.16% S.E.M) above control levels (P<0.05%, against resting 

control levels), within ≈3 minutes [ Figure.12. ]. Individual cell examination revealed 

that 41.6% of the cells responded with clear elevation in OGB fluorescence (mean 

=20.1±2.6% S.E.M) above control levels (five experiments, >300 cells examined). 

Additionally as previously reported with bourgeonal (20µM) in sEBSS,  a small 

proportion of cells (<7%) responded with a significant single transient response in OGB 

fluorescence, peaking within 0.6-0.8 minutes at ≈20% above control levels (P<0.05%, 

against resting control levels). The remaining cells showed no significant response.   
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Figure.12.  Effect of dbcAMP (1mM) on OGB fluorescence in capacitated spermatozoa 
bathed in sEBSS (cells incubated for >5 hours in sEBSS). The cells were initially 
bathed in sEBSS (Dark-blue bar) for 4 minutes, and subsequently superfused with 
dbcAMP (Light-beige bar) in the same media (sEBSS). Traces show 6 single cell 
responses;  black dotted (●) single trace indicating Rtot of experiment (>30 cells). 
 

 

When capacitated human spermatozoa were superfused with NCFsEBSS for >2minutes 

(control period), followed by the superfusion with dbcAMP in NCFsEBSS. Human 

spermatozoa failed to show a significant increase in OGB fluorescence (P>0.05%, 

against resting control period), in the Rtot of the experiment, in response to dbcAMP in 

low-Ca2+ (four experiments, >200 cells examined) [ Figure.13. ]. Visual examination of 

individual cells showed that 10.5% showed a clear sustained elevation in OGB 

fluorescence ≈12% above control levels (P<0.05%, against resting control levels), the 

remaining cells showing no distinctive elevation in OGB fluorescence. As previously 
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reported with bourgeonal in NCFsEBSS (low-Ca2+), no transient response were 

observed in cells exposed to dbcAMP in low-Ca2+ containing. 

 

 

 

 
 
Figure.13. Effects of dbcAMP (1mM) on OGB fluorescence in capacitated human 
spermatozoa bathed in NCFsEBSS (incubated in sEBSS for >5 hours). Capacitated 
spermatozoa where bathed in NCFsEBSS for 6 minutes (light-blue bar) and then 
introduced to dbcAMP (Light-beige bar) in the same media. Trances of 6 single cell 
responses. Insert: Bar graph illustrating mean normalized fluorescence post stimulation 
of 1mM dbcAMP in NCFsEBSS. The error bars represent the SEM, and the number (N) 
of experimental replicates is indicated in each bar. Same symbols (*) above graphs 
indicates no significant differneces (P>0.05%). In bar graph Free + cAMP = dbcAMP in 
Low-Ca2+ containing media.  
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Figure.14.  Response of human capacitated spermatozoa exposed to 1mM dbcAMP in 
sEBSS; against cells treated with 1mM dbcAMP in NCFsEBSS. The error bars 
represent the SEM, and the number (N) of experimental replicates is indicated in each 
bar. Asterisks (*) show differences in significance (P<0.05%). 
 

 

4.2.5 Pretreatment with dbcAMP occludes the response to bourgeonal 

Capacitated cells (>5 hours in sEBSS) superfused  with sEBSS were imaged for >2 

minutes then exposed to dbcAMP (1mM) for 2 minutes causing a significant elevation 

in OGB fluorescence . When bourgeonal (20µM) was then applied to the cells in sEBSS 

(in the continued presence of dbcAMP) no significant elevation in the OGB 

fluorescence above non-treated levels was detected in the Rtot of experiments. (four 
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experiments, >300 cells examined); [ Figure.15. ]. Examination of individual cell 

records showed that where spermatozoa responded  to dbcAMP (1mM) in sEBSS with a 

transient response, when subsequent exposure to bourgenal (20µM) caused a further 

transient elevation in OGB fluorescence.  

 

 

 

Figure.15. Pretreatment with dbcAMP occludes the response to bourgeonal (Cells 
incubated in sEBSS for >5 hours). Single trace (Dark-blue line) indicating Rtot of one 
experiment. Capacitated human spermatozoa were bathed in sEBSS for 4 minutes 
(Dark-blue bar), followed by superfusion with dbcAMP (Light-beige bar ) in the same 
media. Subsequently the cells were bathed in sEBSS supplemented with 1mM dbcAMP 
and 20µM bourgeonal (Light red bar). Insert: Bar graph illustrating mean normalized 
fluorescence post stimulation of 1mM dbcAMP pretreated cells with bourgeonal 
(20µM). The error bars represent the SEM, and the number (N) of experimental 
replicates is indicated in each bar. Same symbols (†) above graphs indicates no 
significant differences (P>0.05%).  
 

-

-10

0

10

20

30

40

50

-1 1 3 5 7 9 11 13

Time (Min)

∆
 F

lu
o
re

sc
en

c
es

 (
%

)

sEBSS

Bourgoenal (20µM)

dbcAMP (1mM) 

0

2

4

6

C o n t ro l  ( 2 0 µM )

B o u r g e o n a l

+  ( 1m M)

d b c AMP

( s EB S S )

 ∆
 F

lu
o

r
es

c
en

ce
 (

%
)

N =4
N =4

†

†



 - 170 -

4.2.6 Human spermatozoa synthesise cAMP in response to bourgeonal 

(20µM) 
 

Using a cAMP EIA kit to assess production of cAMP, spermatozoa were incubated for 

20 min in HAM F-10 (pH 7.25-7.4, +HSA, >5mM Ca2+) under control conditions, with 

the phosphodiesterase inhibitor IBMX (100µM) [positive control] and with IBMX + 

bourgeonal (20µM). In both positive control, cell incubated in HAM F-10 (+HSA) 

supplemented with IBMX, and in the tested sample, HAM F-10 supplemented with 

bourgeonal (20µM) and IBMX (100µM), there was an significant elevation in cAMP 

(both compared to negative control, cells in HAM F-10 medium) (P<0.05%, against 

negative control). Bourgeonal (20µM) caused a significant elevation in cAMP 

(1.56±0.16% S.E.M pm/ 10mill) compared both with IBMX alone (1.05±0.04% S.E.M 

pm/10mill.) (P<0.05% against positive control) and to untreated control (0.51±0.03% 

S.E.M pm/ 10mill)  (3 experiments; P<0.05% against untreated control) [ Figure.16. ]. 

Stimulation of capacitated human spermatozoa with bourgeonal increases the 

production of cAMP in vitro. 
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Figure.16. Stimulation of cAMP synthesis in response to bourgeonal in Ca2+  in 
capacitated spermatozoa incubated in HAM F-10 medium. Capacitated human 
spermatozoa were incubated with HAM F-10 medium supplemented with IBMX 
(100µM, positive control), bourgeonal (20µM) and IBMX (100µM, tested sample) and 
HAM F-10 media alone. The error bars represent the SEM, and the number (N) of 
experimental replicates is indicated in each bar. Different symbols (¶,‡,∞) indicate 
significant differences (P<0.05%). 
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4.2.7 Ni
2+

 (10µM) and La
3+

 (100µM) inhibit the [Ca
2+

]i response to 

bourgeonal  
 

The effect of La3+ (100µM) and Ni2+  (10µM) ions on the membrane channel(s) 

involved in the cell response to bourgeonal was examined. Lanthanum a non-specific 

inhibitor of Ca2+-permeable cation channels (Krannich et al., 2008) and Ni2+ (10 µM) an 

inhibitor for olfactory cyclic nucleotide channels (Sharona et al., 1995), were applied to 

capacitated spermatozoa to further understand the nature of the ion channel(s) involved 

in response to bourgeonal. After capacitation (in sEBSS) the cells were bathed in 

HEPES-buffered media for 3 minutes (0.3% BSA). Spermatozoa were then superfused 

with HEPES-buffered media supplemented with La3+ (100µM) which caused a 

significant transient decrease in OGB fluorescence, with a maximum drop of ≈14%  

below control levels within ±1.5 minutes (<0.05%, against control levels) in >80% of 

cells. OGB fluorescence recovered to control levels within ±4 minutes. When the cells 

were superfused with HEPES-buffered media supplemented with La3+ (100µM) and 

bourgeonal (20µM), no significant elevation in OGB fluorescence above control levels 

was detected Rtot of the experiments (three experiments, >150 cells examined) 

(P>0.05% against control levels)   [ Figure.17. ]. Furthermore, at higher doses of La3+ 

(1mM) (one experiments, >100 cells examined) a greater drop was detected in the Rtot 

and no significant elevation in OGB fluorescence  was detected with the application of 

HEPES-buffered media supplemented with bourgeonal (20µM) and La3+  (1mM) 

(P>0.05%, against control levels).  
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When sperm were superfused with HEPES-buffered media (0.3% BSA) supplemented 

with Ni2+ (10µM) there again was a transient decrease in OGB fluorescence, with a 

maximum fall of 15% below control levels within ±1.6 minutes (two experiments, >100 

cells examined), followed by a gradual recovery to control levels. Subsequent exposure 

to bourgeonal (20µM) caused no significant elevation in OGB fluorescence in the Rtot of 

the experiments (P>0.05% against control levels) [ Figure.18. ]. Additionally at higher 

doses (100µM) Ni2+ showed a greater drop in basal level. No recovery of fluorescence 

occurred at this concentration of Ni2+ and no elevation in OGB fluorescence was 

detected upon exposure to bourgeonal (20µM) (two experiments, >100 cells examined). 
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Figure.17. Inhibitory effect of La3+ (100µM) on the response of capacitated human 
spermatozoa to bourgeonal in Ca2+-containing media (HEPES-buffered media). 
Following the incubation of the cells in sEBSS for >5hours, the cells were bathed in 
HEPES-buffered media (Dark-grey bar) for 3 minutes. Consecutively the cells were 
superfused with the same media supplemented with La3+ (Bright-green bar) for 5 
minutes, followed by superfusion with HEPES-buffered media supplemented with La3+ 
and bourgeonal (Light-red bar) (20µM). Trances show 4 single cell responses.  
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Figure.18. Ni2+ inhibit the [Ca2+]i response to bourgeonal. Following the incubation of 
the cells in sEBSS for >5hours, the cells were bathed in HEPES-buffered medium 
(Dark-grey bar) for 3 minutes and consecutively superfused with Ni2+ (Light-yellow 
bar) (10µM) in the same medium for 4 minutes. Subsequently the cells were bathed in 
same media supplemented with bourgeonal (Light-red bar) (20µM) in with Ni2+ 
(10µM). Traces show 4 single cell responses. Insert: Rtot of one experiment (50 cells); 
were capacitated spermatozoa pretreated with 100µM Ni2+ introduced to bourgeonal 
bathed in HEPES-buffered medium containing Ni2+. 
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4.2.8 Calmodulin inhibition by trifluoperazine (30µM) and the [Ca
2+

]i 

response to bourgeonal 

 
The data described above (see Section 4.2.7), are consistent with the model that plasma 

membrane channels opened by bourgeonal in NCFsEBSS remain open until Ca2+ is 

readmitted to the saline and [Ca2+]i rises, at which point they are apparently ‘switched 

off’. CNG channels show such sensitivity to Ca2+, which is exerted through Ca2+-

calmodulin, which binds the channel (Song et al., 2008, Molday et al., 1996). 

Trifluoperazine (30µM) a calmodulin antagonist was used to investigate the possible 

role of calmodulin in shaping the response to bourgeonal. Spermatozoa were capacitated 

in sEBSS (+0.3% BSA), followed by the superfusion with NCFsEBSS for >2 minutes. 

Cells were then exposed to trifluoperazine (30µM) for >2 minutes prior to the 

application of bourgeonal (20µM) and then readmission of Ca2+. Under these conditions 

the increase in fluorescence was >40% above control levels, followed by a plateau that 

showed only a moderate and gradual decay in fluorescence (≈8%; 2 experiments, >150 

cells examined) [ Figure.19. ]. Examination of single cell responses showed that ≈75% 

of the responsive cells behaved in this way, ≈25% of the cells giving a transient 

elevation in OGB fluorescence. Thus the effects of pretreatment with trifluoperazine are 

consistent with a role for calmodulin in termination of the response to bourgeonal. 
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Figure.19.  Response of capacitated human spermatozoa pretreated with trifluoperazine 
to Ca2+ readmission when treated with bourgeonal in NCFsEBSS. Spermatozoa were 
incubated for >5 hours in capacitating media and then bathed in NCFsEBSS for 4 
minutes followed by the introduction of trifluoperazine in the same media for 3 minutes. 
Consecutively the cells were bathed in NCFsEBSS supplemented with bourgeonal (20 µ 
M) and trifluoperazine (30 µM) for 3 minutes and finally bathed in sEBSS 
supplemented with 20 µM bourgeonal and 30 µM trifluoperazine. Traces show 4 single 
cell responses.  
 
 

In addition to possible non-specific effects of trifluoperazine (Luthra et al., 1982), 

inhibition of calmodulin activity may have effects on [Ca2+]i unrelated to regulation of 

CNG channels, such as reduction of ion activity of PMCAs. To assess this, the effect of 

trifluoperazine was examined on the transient response to progesterone (3µM). Under 

control conditions  progesterone induced a bi-phasic response, a transient elevation in 
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OGB fluorescence, peaking with 1 minute and dropping with the same time-course, 

followed by a smaller, sustained elevation in OGB fluorescence (one experiment) [ 

Figure.20. ]. When progesterone was applied to cells pretreated with trifluoperazine 

there was a rapid elevation in OGB fluorescence in all of the cell (39% above control 

levels) within ≈1 minutes, but fluorescence then fell only partially (10.5%) over the 

following 4 minutes (two experiments, >150 cells examined), [ Figure.21.].  
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Figure.20. Control experiment. Human capacitated spermatozoa response to 3µM 
progesterone in sEBSS. The cells were bathed in sEBSS (dark-blue bar) for 4 minutes 
followed by the introduction of P (pink-bar) in the same media. Traces show 3 single 
cell responses.  
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Figure.21. Control experiment with trifluoperazine pretreated cells exposed to 3µM 
progesterone in sEBSS. Inhibitory effect of trifluoperazine (30µM) (light-purple bar) on 
response of capacitated spermatozoa to progesterone (3µM) (light-pink bar) in sEBSS. 
The cells were bathed in sEBSS (dark-blue bar) for 3 minutes and then introduced to 
trifluoperazine in the same media  for 4 minutes; consecutively the cells were 
superfused with sEBSS supplemented with progesterone (3µM) and 30µM 
trifluoperazine. Traces show 6 single cell responses. Insert: Control experiment with 
capacitated spermatozoa treated with 3µM progesterone in sEBSS. Showing clear 
differences in kinetics of response when trifluoperazine is present. Traces of 3 single 
cell responses. 
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4.3 Discussion  

In this chapter the role of cAMP was examined in the response to bourgeonal and 

assessed elevation in cAMP in response to the ligand. Due to the nature of spermatozoa, 

highly differentiated non-transcriptionally active cells (Teves et al., 2009), most of the 

molecular approach cannot be applied in this cell (Teves et al., 2009). A 

pharmacological approach was therefore used, exposing sperm to inhibitors (IBMX, 

Trifluoperazine) and analogues (dbcAMP); widely used in this area of research. Spehr 

et al. (2003, 2004) proposed a central role for cAMP in the response to  bourgeonal; but 

did not directly assess elevation in cAMP in response to the ligand.   

 

To investigate the possible existence of a feedback mechanism, controlling the elevation 

of [Ca2+]i by bourgeonal, a strategy was used in which cells were first exposed to 

bourgeonal in saline lacking Ca2+ (NCFsEBSS), so that transduction mechanisms were 

activated without elevation of [Ca2+]i, then Ca2+ was readmitted to the imaging chamber.  

This led to the surprising discovery that, in contrast to the slowly developing effect seen 

when bourgeonal is simply applied to the cells, using this protocol, nearly all 

spermatozoa responded with a single large transient elevation of [Ca2+]i. When the 

protocol was followed without application of bourgeonal the effect of Ca2+ readmission 

was minimal and showed very different kinetics. At a higher dose of bourgeonal 

(100µM) the cells responded once again with a single transient elevation in OGB 

fluorescence, with a significantly higher elevation in OGB fluorescence compared to 

that observed with 20µM bourgeonal. Furthermore, identical results were obtained when 
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3,4, CPEE was applied using this protocol, confirming that the structural homology of 

3,4, CPEE is sufficient to exert an effect on the hOR17-4 receptor on human sperm 

(Spehr et al., 2003, 2004).  

 

These observations, both with bourgeonal and 3,4, CPEE, are consistent with the 

existence of a negative feedback mechanism that responds to elevation of [Ca2+]i by 

inhibition of receptor or signal transduction, truncating the Ca2+ signal. When 

spermatozoa are pretreated with bourgeonal in NCFsEBSS this may ‘prime’ the cells, 

activating a transduction cascade and opening of the membrane channels, but in the 

absence of significant Ca2+ influx. When Ca2+ is readmitted to the imaging chamber (in 

the presence of bourgeonal) there is an abrupt influx of Ca2+, followed by the rapid 

closure of the membrane channel; resulting in a rapid single transient elevation in OGB 

fluorescence in most cells. This Ca2+ spike strongly correlates with the response 

observed in spermatozoa of invertebrate species when responding to cues of  

chemoattractant.  In the sea urchin Arbacia punctulata, chemotactic responses to the 

peptide resact involve activation of receptor guannylyl cyclase, which induces a rapid 

and transient elevation in [Ca2+]i, (Böhmer et al., 2005). The Ca2+ ‘spike’ causes a 

transient increase in flagellar asymmetry and re-orientation of sperm towards the 

chemoattractant source (Kaupp et al., 2003, 2008). The single transient elevation in Ca2+ 

observed when bourgeonal is applied using the protocol described here, apparently the 

result of negative feedback may reflect activation of mechanisms by which bourgeonal 

can cause directed turns in human sperm. 
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To investigate the involvement of cAMP in the cascade of events that results in this 

rapid signal response, spermatozoa were pretreated with modulators of cAMP signaling.  

IBMX did not significantly alter the kinetics, the percentage responding cells nor the 

amplitude and nature of the response. IBMX will prolong (and probably enhance) any 

effects of bourgeonal on [cAMP] concentration. Since the rapid termination of the 

[Ca2+]i signal was not affected it appears most unlikely that (cAMP) alone gates the Ca2+ 

channel opened by bourgeonal. Furthermore, when bourgeonal was replaced by 

dbcAMP in the Ca2+ readmission protocol (here the [cAMP] will remain elevated 

regardless of the activities of adenyl cyclase or phosphodiesterase) the [Ca2+]i response 

was again a transient elevation. Thus it is clear that while cAMP may be responsible for 

activation of the bourgeonal-activated Ca2+ influx, closing of the channel is regulated by 

a different mechanism. In agreement with such a conclusion, when spermatozoa were 

treated with dbcAMP (1mM) in sEBSS there was a sustained elevation of [Ca2+]i, in 

>35% of the cells and a small subpopulation of cells responded with a transient 

elevation in OGB fluorescence, as previously reported with cells exposed to high doses 

of bourgeonal. 

 

The data described above are consistent with the suggestion that the channel involved in 

response to bourgeonal was activated by cAMP  (Spehr et al. 2004, 2006). Assessment 

of  cAMP production demonstrated that cells incubated bourgeonal (20µM) generated 

cAMP at a significantly higher rate than in parallel controls, though accurate assessment 

of (cAMP) kinetics (as has been done for cGMP in sea urchin sperm [Kaupp et al., 

2003, 2008]) will be necessary to show that chemotactic responses could be regulated in 
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this way. Closure of the channel  occurred only when Ca2+ influx was permitted (by 

readmission of Ca2+ to the imaging chamber). Such negative feedback through Ca2+ is 

characteristic of CNG channels, which are modulated by the Ca2+-binding protein 

calmodulin. To investigate this further two known inhibitors of CNG channels were 

used, Ni2+ (10µM) La3+ (100µM). Both significantly inhibited the [Ca2+]i response of 

spermatozoa to bourgeonal. To further investigate this trifluoperazine (30µM) was used 

in the experiments, a calmodulin inhibitor. When cells were treated with the drug, 

readmission of Ca2+ caused a much more sustained elevation in OGB fluorescence, as 

might be expected if  feedback regulation of the channels was prevented. However, a 

control experiment using progesterone (3µM) showed a similar extension of the Ca2+ 

transient. There is no evidence that progesterone activates a CNG channel and thus it is 

likely that this effect of trifluoperazine was through another mechanism, such as 

inhibition of the calmodulin-dependent plasma membrane Ca2+ ATPase.   

 

The data presented here and in the previous chapter (see Chapter 3) strongly suggest 

the existence of a feedback mechanism which regulates the response to bourgeonal, 

terminating the response to the ligand through a Ca2+ dependent mechanism. In rod and 

cone photoreceptors a Ca2+ feedback mechanism, involving calmodulin, has been 

identified involving nucleotide-gated channels (Kaupp et al., 2002). The data reported 

here are not inconsistent with the existence of a similar mechanism in human sperm, but 

it is not yet possible to draw conclusions regarding the nature of the channel involved.  
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A small number of  these experiments were performed in laboratory collaboration with 
Dr Teves, Dr Giojalas, Dr Gidobaldi and Dr Uñates from the Cebicem (University of 
Cordoba).  Additionally another small proportion of experiments were performed in 
collaboration for the Department of Chemistry, University of Birmingham, UK. All of 
these experiments, both in Argentina and Birmingham were done by Aduén Andrés 
Morales García, author of this thesis. Most of the data provided will be used for grant 
applications (Chemistry Department; University of Birmingham) and for an upcoming 
paper(s), in collaboration with Dr Giojalas, Dr Uñates, Dr Teves and Dr Publicover 
as head of the research group (University of Birmingham).  Additionally a few sections 
of this Chapter were about to be published (with Dr Teves as main author). 
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5.1 Introduction 

Out of the millions of spermatozoa ejaculated into the female reproductive tract only ≈1 

of every million succeed in the entering of the Fallopian tubes (Harper et al., 1982; 

William et al., 1993; Eisenbach et al., 1999; Eisenbach & Giojalas, 2006). Out of this 

subpopulation only capacitated spermatozoa (≈10% in humans) (Cohen-Dayag et al., 

1995) are capable of fertilizing the egg. If location of the oocyte by the sperm were left 

to chance, which was the initially thought to be the case, the probability that such small 

numbers of spermatozoa would successfully achieve fertilization is very slim 

(Eisenbach & Giojalas, 2006). It has been recently accepted that the spermatozoa’s 

journey is not just a blind race towards the egg, spermatozoa are guided by chemotaxis.  

 

Sperm chemotaxis is the movement of cells up a concentration gradient of a 

chemoattractant (Eisenbach, 2004; Eisenbach & Giojalas, 2006). In marine 

invertebrates, a well studied model, most spermatozoa are chemotactically responsive 

(Kaupp et al., 2003,  2008). In mammalian spermatozoa a small fraction (≈10%,), which 

is believed to be the capacitated sub-population, are responsive, (Jaiswal et al., 2002; 

Coheng-Dayag et al., 1995; Giojalas et al., 2004, Eisenbach & Giojalas, 2006). This was 

discovered by the observations that: 

(i) capacitated and chemotactically responsive spermatozoa had an equally short life 

span; both being continuously replaced from the rest of the population to ensure the 

constant presence of these cells in vivo (Coheng-Dayag et al., 1995; Eisenbach & 

Giojalas, 2006); (ii) depletion of capacitated spermatozoa results in the loss of 
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chemotacticly responsive cells and vice versa (Cohen-Dayag et al., 1995; Giojalas et al., 

2004; Jaiswal et al., 2002; Oliveira et al., 1999).  

 Mammalian sperm guidance in vivo might involve more than one attractant including 

the role of sperm temperature guidance, known as thermotaxis (Bahat et al., 2003; 

Kaupp et al., 2008). It seems likely that, after guidance to the fertilization site possibly, 

the cells sense a chemoattractant gradient origintated from the cumulus cells or the 

oocyte itself (Sun et al., 2005); guiding spermatozoa to the egg-cumulus complex (Sun 

et al., 2005; Eisenbach & Giojalas, 2006). This would enable spermatozoa to enter the 

cumulus and consequently encounter the oocyte (Bedford et al, 1993). However, the 

timing and location of chemotaxis in vivo are still largely uncertain (Eisenbach et al., 

1999; Eisenbach & Giojalas, 2006). 

 

Follicular fluid (FF) composed of pre-ovulatory secretions of the egg and surrounding 

cells (Eisenbach et al., 1999; Eisenbach & Giojalas, 2006) was the first natural source of 

sperm chemoattractants to be identified (Eisenbach et al., 2004; Eisenbach & Giojalas, 

2006). Thus FF might act as an attractant in vivo, although it was observed that this was 

unlikely to be the case (see Chapter 1). It has been recently demonstrated by Teves et 

al. (2006) that the steroid hormone progesterone (P), a product of the cumulus cells, 

exerts a chemotatic effect on human spermatozoa. Furthermore, it was also 

demonstrated that a progesterone gradient is likely to exist within the cumulus cell mass 

due to variation in the density of progesterone-secreting cells (Teves et al., 2006). 

Additionally when the chemotaxis assay was performed with non-capaciated human 

spermatozoa no significant response was detected (Teves et al., 2006).  
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The ORs are expressed ectopically in a great array of tissues other than the olfactory 

epithelium (Kaupp et al., 2008; Spehr et al., 2003, 2004); these were indentified in the 

midpiece of human spermatozoa (hOR17-4) also located in olfactory epithelium (Kaupp 

et al., 2008). Spehr et al. (2003, 2004) demonstrated that the odorant bourgeonal acts as 

an agonist for the G-protein coupled receptor located in the midpiece of human 

spermatozoa (hOR-17-4) and a chemoattractant of human sperm. Human spermatozoa 

stimulation with bourgeonal results in a Ca2+ response in >35% of the cell population 

(Spehr et al., 2003, 2004). However, the assay used primarily assessed accumulation of 

cells at the chemoattractant source rather than directly assessing a directional response 

of sperm to the gradient.  

 

The mechanism and signal cascade that results in chemotaxis of mammalian 

spermatozoa is still unclear, although it’s beyond doubt that Ca2+ signalling plays a key 

role in this process (Publicover et al., 2008).  In vitro chemotaxis assays with 

progesterone (10pM) performed by Teves et al. (2009) demonstrated that the removal of 

Ca2+ from the experimental media significantly suppressed the cell response to the 

attractant. Furthermore, Gakamsky et al., (2009) and Spehr et al. (2003, 2004) also 

demonstrated the crucial role of [Ca2+]o  in the cell response to bourgeonal, when the 

bathing media was buffered with EGTA.  
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Chapter Aims 

This chapter attempts to demonstrate the chemotactic effect of bourgeonal, if any, in 

both capacitated and non-capacitated human spermatozoa, with the use of an assay 

capable of discriminating between other processes that result in spermatozoa 

accumulation. Furtheremore, the potential data acquired in this chapter will try to 

demonstrate the crucial role of [Ca2+]o in response to bourgeonal and if the intracellular 

stores play a role in the response to the ligand. Additionally, by means of fluorescence 

video microscopy and computer image analysis the response of capaciated spermatozoa 

to application of a temporal bourgeonal gradient (fM to mM) and progesterone gradient 

(fm to µM) was examined, in an attempt to study the [Ca2+]i response.  
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5.2 Results  

5.2.1 Chemotaxis assay with capacitated spermatozoa 
 

Capacitated spermatozoa (incubated for >5 hours in HAM F-10 medium +HSA), were 

incubated in Zigmond chambers in HAM F-10 medium alone or supplemented with 

bourgeonal (doses from 10-5 to 10-14 M). After allowing ≈15 minute for stabilization of 

chemotactic gradient (Teves et al., 2006, 2009; Gidobaldi et al., 2008), directional 

responses of the sperm were assessed as described in the methods section. Plotting of 

the dose-dependence of directional responses gave a bell-shaped response curve; typical 

of responses in all cellular models (Adler et al., 1973, Teves et al., 2006). With a 

significant response detected between 10-9 and 10-10 M bourgeonal. Where the 

maximum chemotactic response detected at 10-9 M bourgeonal (1nM), (32.4±1.5% of 

cells directed up gradient), significantly higher than negative control  27.4% (±1.8% 

S.E.M) (P<0.05%) and similar to the 10pM progesterone positive control (31.3±1.1 

S.E.M; P>0.05%); [ Figure.1. ]. 

 

Directional responses for the bourgeonal analog, 3,4,CPEE in sEBSS were carried out 

with capacitated human spermatozoa; however no conclusive data has been obtained 

(Experiment in early stage).  
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Figure.1. Chemotactic response of capacitated human spermatozoa towards a  
bourgeonal gradient in Ca2+ (HAM F-10 media, +HSA). Bar graph illustrating the 
percentage oriented spermatozoa (%OS) towards bourgeonal. Capaciated human 
spermatozoa were confronted with  a series of bourgeonal concentration (10-5 to 10-14 
M) in HAM F-10 media containing albumin (+HSA). The error bars indicates the 
standard error of the mean (S.E.M.). Same symbol on top of bars (†) indicate no 
significant difference (P>0.05%). [HAM F-10 media, light-blue, negative control; 10pM 
Progesterone, light-pink, positive control, tested bourgeonal concentrations, dark-blue]. 
In bar graph (X-axis) values -14 to -5 its equivalent is 10-14 to 10-5 M bourgeonal 
respectively. Bourgeonal in Ca2+ - These experiments were done in Ca2+ containing 
medium, in this case HAM F-10. 
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5.2.2 Chemotaxis assay with non-capacitated spermatozoa 

 
In human spermatozoa the capacitated cells (≈10%)  are the chemotactically responding 

cells (Cohen-Dayag et al., 1995). To examine the role of capacitation in the response of 

sperm to a 1nM bourgeonal gradient; the proportion of capacitated spermatozoa were 

depleted by significantly reducing the incubation time (>5 hours to <30 minutes), prior 

to experimentation, and also omitting albumin from the medium (no HSA). Assessment 

of  the chemotactic response in cells prepared in this way showed no orientation up 

gradient, (25.1%), similar to  non-capacitated spermatozoa exposed to HAM F-10 

medium alone (negative control; 24.6% P>0.05% t test) [ Figure.2. ]. Furthermore, 

spermatozoa that had been capacitated (>5 hour incubation in HAM F-10, +HSA) 

showed a clear chemotactic response, 33.1%, which was significantly higher than 

capacitated spermatozoa exposed to HAM F-10 medium (+HSA) alone (P<0.05%) and 

significantly higher than non-capacitated spermatozoa exposed to a 1nM bourgeonal 

gradient (P<0.05%).  
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Figure.2. Chemotactic response of non-capacitated human spermatozoa towards a 1nM  
bourgeonal gradient in Ca2+ (HAM F-10 media). Capacitated and non-capacitated 
spermatozoa were confronted with 1nM bourgeonal gradient in HAM F-10 media. Bar 
graph illustrating the percentage oriented spermatozoa (%OS) towards bourgeonal in 
HAM F-10 media (with for capacitated spermatozoa and without albumin for non-
capacitated spermatozoa); and the (%OS).  The error bars indicates the standard error of 
the mean (S.E.M.). Different symbols (‡,Ω) indicate significant differences (P<0.05%); 
the use of identical ones is to indicate no significant differences (P>0.05%). [HAM 
F10+Cap. =Capacitated spermatozoa in HAM F-10 media alone; HAM F-10+Non-
Cap= Non-capacitated spermatozoa in HAM F-10 media; 1nM Bo.+Cap.= capacitated 
spermatozoa confronted with a 1nM bourgeonal gradient and 1nM Bo.+No-Cap= No-
capacitated cells confronted with 1nM bourgeonal bourgeonal gradient]. 
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5.2.3 Chemotaxis in low-Ca
2+

(<5µM/L Ca
2+

)  

Having characterized the dose-response and capacitation dependence of bourgeonal-

induced chemotaxis, the role of Ca2+ was examined, when reduced from the 

experimental medium. When spermatozoa swimming in low-Ca2+ medium (<5µM/L 

Ca2+; Harper et al., 2004) were confronted with a 1nM bourgeonal gradient  the 

proportion of cells oriented in the up-gradient quadrant (26.3±0.9% S.E.M) was similar 

to that in untreated (negative control) cells in low-Ca2+ (23.1±1.9%; P>0.05%, treated + 

1nM bourgeonal Vs untreated cells). Furthermore, when the cells were exposed to a 

1nM bourgeonal gradient in standard sEBSS (Ca2+ containing medium) there was a 

clear chemotactic response (30.6±0.6% of cells oriented up-gradient), significantly 

higher than in spermatozoa in low-Ca2+ alone and spermatozoa exposed to a 1nM 

bourgeonal gradient in low-Ca2+ (P<0.05%, untreated/treated cells in low-Ca2+ and 

untreated cells in high-Ca2+ Vs treated cells in high-Ca2+) [ Figure.3. ]. When 

spermatozoa were exposed to a 10 pM progesterone gradient in low-Ca2+ this resulted 

once again in suppression of  the chemotactic response. 25.6% (±1.0% S.E.M) were 

oriented in the up-gradient quadrant, not significantly different to untreated cells in low-

Ca2+ saline (23.1±1.9%; P>0.05%), whereas cells exposed to a 10pM progesterone 

gradient in standard sEBSS gave a normal chemotactic response (32.9±0.8% S.E.M), 

significantly higher than both controls (cells in low-Ca2+ , 24.3% and high-Ca2+ alone, 

23.1%) and cells exposed to a 10pM progesterone gradient in low-Ca2+ (P<0.05%). 

There was no significant difference between the responses to 1 nM bourgeonal and 100 

pM progesterone in cells swimming in standard sEBSS (P>0.05; t test).  
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Figure.3. Chemotactic response of capacitated human spermatozoa towards a  
bourgeonal gradient and 10pM P gradient with or without Ca2+ (NCFsEBSS). Bar graph 
illustrating the percentage oriented spermatozoa (%OS) towards 1nM bourgeonal in 
NCFsEBSS media (+HSA) and in sEBSS as well as P in both sEBSS and NCFsEBSS. 
The error bars indicates the standard error of the mean (S.E.M.). Different symbols (†,¶) 
indicate significant differences (P<0.05%); the use of identical ones  indicate no 
significant differences (P>0.05%) [1nM Bo.(sEBSS)= 1nM bourgeonal in sEBSS; 
10pM P (sEBSS)= 10pM progesterone in sEBSS; 1nM Bo.(NCFsEBSS)=1nM 
Bourgeonal in NCFsEBSS]. 
 
 
 
 
 
 

20

25

30

35

sE
B

S
S

1
n

M
 B

o
. 
(s

E
B

S
S

)

1
0
p

M
 P

 -
sE

B
S

S
-

1
n

M
 B

o
.

(N
C

F
sE

B
S

S
)

1
0
p

M
 P

 -

N
C

F
sE

B
S

S
-

N
C

F
sE

B
S

S

(%
O

E
)

 ¶

  †

 ¶

 ¶

 ¶

†

(%
O

S
) 



 - 198 -

5.2.4 Ca
2+

 Store mobilization in bourgeonal-induced chemotaxis 

The next step was to examine the role of the intracellular Ca2+ stores, if any, in response 

to a bourgeonal (1nM) gradient in HAM F-10 media. The cells were incubated in HAM 

F-10 media for >5 hours; and then pretreated with 100 µM TMB-8 (in the same 

medium), an inhibitor of Ca2+ store mobilization in somatic cells (Shimizu et al., 2008). 

Teves et al. (2009) demonstrated that TMB-8 causes a dose-dependent inhibition of 

progesterone-induced chemotaxis in human sperm and had no effect on cell motility. 

Capacitated human spermatozoa were exposed to TMB-8 (100µM) in HAM F-10 

medium 30 minutes. When chemotaxis was assessed, a clear chemotactic response was 

detected in the  TMB-8 pretreated cells exposed to a 1 nM bourgeonal gradient (31.3%; 

five experiments). The response was significantly higher than the negative control 

(untreated cells, HAM F-10 alone; 26.2%; P<0.05%) and was significantly similar to 

the response obtained with 1nM bourgeonal (31.61%, P>0.05%) and 10pM 

progesterone in HAM F-10 media (Positive controls, 32.3%, P>0.05%) [ Figure.4. (A)]. 

In contrast, TMB-8 (100µM) pretreatment resulted in a clear inhibition of the 

chemotactic response to 10 pM progesterone (P) (26.2%, five experiments).  This was 

significantly different to the response of non-pretreated cells exposed to P in HAM- F10 

(32.3%;  Positive control; P<0.05%, 10pM P+TMB-8 vs 10pM P in HAM F-10) and 

was similar to the  negative control (HAM F-10 medium alone), 26.20% (P>0.05%; 

10pM P+TMB-8 vs HAM F-10 media). Clearly suppressing the chemotactic response of 

capacitated human spermatozoa to 10 pM P in HAM F-10 media [ Figure.4. (B) ].. 
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Figure.4. (A). Chemotactic response of TMB-8 pretreated capacitated human 
spermatozoa towards a 1nM bourgeonal gradient in Ca2+ (HAM F-10 media). Bar graph 
illustrating the percentage oriented spermatozoa (%OS) towards 1nM bourgeonal in 
HAM F-10 media, HAM F-10 media alone (untreated cells), 10pM P and the response 
of TMB-8 pretreated cells towards 1nM bourgeonal. The error bars indicates the 
standard error of the mean (S.E.M.). The use of different symbols (∞, ‡) indicate 
significant differences between samples (P<0.05%) and the same symbols indicate no 
significant differences (P>0.05%). 
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Figure.4. (B). Chemotactic response of TMB-8 pretreated capacitated human 
spermatozoa towards a 10pM P gradient in Ca2+ (HAM F-10 media). Bar graph 
illustrating the percentage oriented spermatozoa (%OS) towards 10pM P in HAM F-10 
media, HAM F-10 media alone and the response of TMB-8 pretreated cells towards 
10pM P  in HAM F-10. The error bars indicates the standard error of the mean (S.E.M.). 
The use of different symbols (*,‡) indicate significant difference between samples 
(P<0.05%) and the same symbol no significant differences (P>0.05%).  
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5.2.5 Plasma membrane Ca
2+ 

channels and chemotaxis 

 
Following the previous procedures examining the role of the Ca2+ stores in response to 

1nM bourgeonal gradient and 10pM progesterone gradient. Here the role of L-type 

(Cav1) and T-type (Cav3) channels were examined, in response to a 1nM bourgeonal 

gradient. These channels are believed to be expressed in mammalian spermatozoa and 

might play an important physiological role (Felix et al., 2005; Teves et al., 2009). As 

previously reported by Teves et al. (2009), these channels play an important role in 

mammalian chemotaxis in response to a 10pM progesterone gradient. Capacitated cells 

were treated with an array of doses of nifedipine (1, 10, 100 µM) for 16 minutes. The 

nifedipine pretreated cells were then exposed to a 1nM bourgeonal gradient. The data 

showed that at 100µM, the chemotactic response was fully inhibited, 24%, similar to the 

control value, (cells were exposed to HAM F-10 medium alone, 24.8%) whereas in the 

positive control, (1nM bourgeonal gradient in HAM F-10 medium) 39% of cells were 

oriented in the up-gradient quadrant. At lower (more L-channel specific) doses of 

nifedipine the effect was weaker but still discernible. At 10 µM 27.4% were oriented in 

the up-gradient quadrant and at 1µM nifedipine the chemotactic response this was 28%. 

These data suggest that the inhibition of membrane ion channels results in the loss of 

the chemotactic response.  
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5.2.6 Acrosomal Reaction and Bourgeonal (1nM) 

The chemotactic response to both gradients of 1nM bourgeonal and 10pM progesterone 

(Teves et al., 2006, 2009) are dependent on capacitation of spermatozoa (Cohen-Dayag 

et al., 1995). AR, which is induced by elevation of [Ca2+]e (Publicover et al., 2007), is 

also dependent upon capacitation. To investigate whether treatment of capacitated cells 

with bourgeonal (1nM) stimulated AR, capacitated, spermatozoa were incubated with 

Ca2+ ionophore (8µM +ve control), bourgeonal (1 nM) and DMSO (0.02%, in the 

absence of 1nM bourgeonal) for ≈30 minutes, then processed for assessment of 

acrosomal status (see Methods). Ca2+ ionphore (8µM) treatment resulted in 13.9% (±3.1 

S.E.M) of cells being stained as acrosomal reacted, (positive control), significantly 

higher than the % spontaneous acrosome reaction observed in cells bathed in HAM F-

10 alone (6.4±2.1% S.E.M; P<0.05%). When capacitated spermatozoa were incubated 

with HAM F-10 supplemented with bourgeonal (1 nM) no increase in AR above control 

levels was detected (P<0.05% t test). Similar values were acquired using treatment with 

solvent vehicle (0.02% DMSO). The percentage induced AR was significantly lower 

than positive control (Ca2+ ionophore, 8 µM).  These results show that bourgeonal (1 

nM) does not significantly induce AR in human sperm. 
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Figure.5.  Effect of 1nM bourgeonal on the acrosomal status of capacitated human 
spermatozoa. (A) Bar chart indicates the mean percentage (%) induced AR, in 
spermatozoa incubated with Ca2+-ionophore (8µM) and cells incubated with bourgeonal 
(1nM) in Ca2+-containing media (HAM-F10). Asterisk (*) indicates the significant 
difference between samples (P<0.05%). (B) Images of capacitated human spermatozoa 
stained for the assessment of  acromal status. (B.1). Capacitated spermatozoa incubated 
HAM-F10 (+HSA) supplemented with bourgeonal (1nM). (B.2.) Capacitated human 
spermatozoa incubated with HAM-F10 supplemented with Ca2+ Ionophore (8µM), 
(positive control).  
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5.2.7 Human spermatozoa cAMP synthesis in response to bourgeonal  

(1nM) and progesterone (10pM) 
 

As previously demonstrated in Chapter 4, the stimulation of capacitated spermatozoa 

with bourgeonal (20µM) results in the production of cAMP. This section examines 

whether the bourgeonal (1nM) concentration that results in mammalian sperm 

chemotaxis of capacitated spermatozoa, stimulates cAMP elevation. Furthermore it was 

examined whether 10pM progesterone, the peak chemotactic concentration for human 

spermatozoa (Teves et al., 2006), results in the stimulation of cAMP production. 

Spermatozoa were incubated in HAM F-10 (+HSA) supplemented with IBMX (positive  

control), HAM F-10 supplemented with bourgeonal (1nM) and IBMX (100µM) or 

HAM F-10 supplemented with progesterone (10pM) and IBMX (100µM). Incubation 

with bourgeonal (1nM) led to significant elevation in cAMP (1.65±0.08% S.E.M 

pmoles/ 10 million cells), significantly higher with respect to cells incubated with 

IBMX (100µM) alone (1.05±0.04% S.E.M pmoles/10 million cells; P<0.05%); and 

significantly greater than the negative control of cells incubated in HAM F-10 media 

alone  (0.51±0.03% S.E.M pmoles/10 million cells; P<0.05%, N=3) [ Figure.6. (A).]. 

Additionally when capacitated spermatozoa were incubated in HAM F-10 (+HSA) 

supplemented with progesterone (10pM) and IBMX (100µM) this resulted in a 

significant elevation in cAMP (1.81±0.25% S.E.M pmoles/10 million cells), 

significantly greater than HAM F-10 medium (P<0.05%)  and cells incubated with 

IBMX alone [ Figure.6. (B). ]. 
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Figure.6. (A) Stimulation of cAMP synthesis in response to incubation of capacitated 
human spermatozoa with bourgeonal (1nM) in Ca2+  (HAM F-10 media). Capacitated 
human spermatozoa were incubated with HAM F-10 media supplemented with IBMX 
(100µM, positive control), bourgeonal (1nM) and IBMX (100µM, tested sample) and 
HAM F-10 media alone (negative control). The error bars represent the SEM, and the 
number (N) of experimental replicates is indicated in each bar Different symbols 
(¶,∞,‡)above each bar indicates significant difference between treatments (P<0.05%). 
 
 
 
 
 
 
 
 
 
 
 
 



 - 206 -

N=3 N=3N=3

0

0.5

1

1.5

2

2.5

Sperm (-ve) IBMX (+ve) 10pm Progesterone

 c
A

M
P

 p
m

/1
0

 m
il

l 

‡

∞

¶

 
Figure.6. (B). Stimulation of cAMP synthesis in response to incubation of capacitated 
human spermatozoa with 10pM P in Ca2+  (HAM F-10 media). Capacitated human 
spermatozoa were incubated with HAM F-10 media supplemented with IBMX (100µM, 
positive control), 10pM P and IBMX (100µM, tested sample) and HAM F-10 media 
alone (negative control). The error bars represent the SEM, and the number (N) of 
experimental replicates is indicated in each bar. Different symbols (¶,∞,‡)above each 
bar indicates significant difference between treatments (P<0.05%). 
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5.2.8 [Ca

2+
]i responses of cells exposed to a bourgeonal concentration 

steps (fM – mM) 

 
Sperm loaded with OGB were exposed to a series of step applications of bourgeonal  to 

investigate responses to the type of stimuli that may be of significance in vivo when 

turning within a chemoattractant gradient. Cells were initially capacitated (>5 hours in 

sEBSS), superfused for >2 minutes in sEBSS, then exposed to a series of bourgeonal 

concentration (1fM to 1µM). Visual examination of individual cell records 

demonstrated that >15% of the cells responded with a series of moderate transient 

elevations in OGB fluorescence and >20% respond with a series of sustained elevations 

(wave-like elevations), [ Figure.7. (B).],   when  exposed to the increasing bourgeonal 

concentrations. The mean  (population) response to 1 fM bourgeonal was a 21.% 

elevation in OGB fluorescence s which peaked after ≈1.1 minutes. Exposure to higher 

doses of bourgeonal resulted in increases of  18.2% (pM) 22.0%.(nM) and at 34.6%  

(µM) (one experiment, >50 cells examined). Time to peak response was slow at low 

concentrations but cells responded faster to the higher doses. In some cells it appeared 

that desensitization occurred, such that there was no clear response to pM bourgeonal 

after exposure to fM [ Figure.7. (A).]  
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Figure.7. (A) Capacitated human spermatozoa confronted with a bourgeonal gradient in 
sEBSS (fM to mM), responding with a series of peaks to the increasing bourgeonal. 
Spermatozoa were incubated in sEBSS for >5hours in sEBSS and bathed in sEBSS 
(dark-blue box) prior to the stimulation with an ascending bourgeonal concentration 
gradient. Colored boxes indicate time point and duration that spermatozoa would 
experience each dose. Light-green = bourgeonal at fM; light-pink at pM; light-orange at 
nM and dark-red at µM and light-purple= mM). Traces show 2 single cell responses.  
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Figure.7. (B) Capacitated human spermatozoa confronted with a bourgeonal gradient in 
sEBSS (fM to mM). Spermatozoa were incubated in sEBSS for >5hours in sEBSS and 
bathed in sEBSS (dark-blue box) prior to the introduction of the bourgeonal gradient in 
the same medium. Colored boxes indicate time point and duration that spermatozoa 
would experience of each dose. Light-green = bourgeonal at fM; light-pink at pM; light-
orange at nM and dark-red at µM and light-purple= mM). Traces show 2 single cell 
responses.  
 

 

 

For comparison, similar experiments were carried out with a series of progesterone 

concentrations (1fM to 1mM; Figure.8. (B)). Progesterone induced repetitive calcium 

oscillations in 22% (±6% S.E.M) of the cells, which increased in amplitude and 

frequency as a function of P concentration, starting at the fM progesterone range. When 

initially exposed to 1 fM progesterone the amplitude of the oscillation were 76.4% 

above control levels (0.27 oscillations/minute); a subpopulation of spermatozoa 

responded with a transient transient elevation followed by a decrease in OGB 
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fluorescence significantly below control levels (indicated with red arrow on P graph, [ 

Figure.8. (A) ] ) despite the continued presence of P. At 1 pM progesterone the mean 

amplitude of the response was 96% (0.40 oscillations/minute); at 1nM 103% (0.57 

oscillations/minute) and at 1uM 135.% above control levels (0.89 oscillations/minute) 

[Figure.8. (C) ]. At µM concentration the amplitude of oscillations were significantly 

higher than previous doses and the frequency of oscillations too were significantly 

higher (P<0.05% t test) [Figure.8. (D) ]. 
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Figure.8. (A). Capacitated human spermatozoa confronted with a P gradient in sEBSS 
(Dark-blue box) (fM to µM).  Prior to the encountering of the cells with a P gradient, 
capacitated spermatozoa were bathed in sEBSS for >3 minutes. Coloured boxes indicate 
time point and duration that spermatozoa would experience of each dose. Light-green = 
Progesterone at fM; Yellow-box at pM; light-purple at nM and bright-pink at µM. Red 
arrow indicates area of interest (see section 5.28). Traces show 4 single cell responses.  
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Figure.8. (B). Pseudocolour image series (warm colours show high [Ca2+]i) of : (1) 
untreated capacitated human spermatozoa during resting control period and (2)  
capacitated human spermatozoa confronted with a P gradient resulting in a single [Ca2+]i 
oscillation. Numbers in grey indicates time course in seconds. 
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Figure.8. (C). Mean normalized fluorescence response of capacitated human 
spermatozoa response to  P gradient in sEBSS (cells were first incubated in sEBSS for 
>5hour). The error bars represent the SEM, and the number (N) of experimental 
replicates is indicated in each bar. Asterisks (*) show differences in significance 
(P<0.05%). 
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Figure.8. (D).  Bar graph indicating the frequency of stimulated oscillations in 
capacitated spermatozoa confronted with a P gradient in sEBSS (>5 hour incubation on 
sEBSS). The error bars represent the SEM, and the number (N) of experimental 
replicates is indicated in each bar. Asterisks (*) show differences in significance 
(P<0.05%). 
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5.3 Discussion  

In the work described in this chapter attempts to address the following questions: 

i) Does bourgeonal exert a chemotactic effect in capacitated and non-capacitated 

spermatozoa? 

ii) If so, does  the chemotactic response depend on [Ca2+]o ? 

iii) Are intracellular Ca2+ stores involved in the chemotactic response to bourgeonal? 

iv) Do Cav play a role in chemotaxis response to bourgeonal ? 

v) Does the concentration of bourgeonal that result in chemotaxis stimulate cAMP 

production or AR?  

vi) Do human spermatozoa show clear [Ca2+]i  elevations when exposed to series of 

steps of bourgeonal (1fM to 1mM) or progesterone (1fM to 1µM) ? 

 

When capacitated human spermatozoa where exposed to a range of bourgeonal 

concentrations (10-5 to 10-14 M) in the Zigmond chamber, assessment of chemotactic 

responses showed a clear typical bell-shaped dose-response curve characteristic of 

chemotaxis (Adler et al., 1973). Peak chemotactic response was observed at 10-9 M 

bourgeonal (1nM), the response at this concentration resembling that seen with 10 pM 

progesterone (Teves et al, 2006). Thus a 1nM  bourgeonal gradient in Ca2+ containing 

media exerts a chemotactic effect in capacitated human spermatozoa. These findings 

corroborate the conclusions of Spehr et al. (2003), though the method of assessment 

used in that study was less specific for chemotaxis. Furthermore experimental data 

provided by Spehr et al (2003) suggests that spermatozoa chemotactically respond to 
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bourgeonal at ≥10-6 M; in contrast to 10-9M bourgeonal acquired with our discriminating 

experimental assay. The difference in chemotactic response might be due to the 

experimental protocol/technique to determine chemotaxis and cell preparation used by 

Spehr’s group (rather uncertain whether cells were capacitated or not). Spehr’s group 

determined chemotaxis to bourgeonal with microcapillaries with ascending, uniform 

and descending chemical gradients (bourgeonal). With this technique spermatozoa cells 

response did not result in bell-shaped response curve; typical of responses in all cellular 

models (Adler et al., 1973), spermatozoa seemed to further respond to the elevating 

bourgeonal concentrations. Adler et al. (1973) using the same technique with E.coli, 

demonstrated the cells responded to certain sugars with a typical bell-shaped response 

curve. Therefore the data provided by Spehr show resemblance to data from 

spermatozoa exposed to temporal gradients. In temporal responses the fraction of 

responding cells could elevate further than 80%, a process that is not restricted to 

capacitated spermatozoa (Gakamsky et al., 2009).  Having established a clear 

chemotactic response to bourgeonal in capacitated spermatozoa, it was crucial to 

examine whether non-capacitated spermatozoa were also able to chemotactically 

respond to a bourgeonal gradient. It is clear in the literature that capacitated 

spermatozoa are a subpopulation (≈10%) of cells that are able to undergo chemotaxis. 

To prevent capacitation, spermatozoa were bathed in HAM F-10 medium in the absence 

of albumin for <30 minutes, required for capacitation (see Chapter 1). Cells prepared in 

this way showed no significant chemotactic response to bourgeonal. Parallel 

experiments showed that, if prepared under capacitating conditions, cells from the same 

samples were capable of responding chemotactically to bourgeonal. Teves et al. (2006) 
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showed  similarly that non-capacitated spermatozoa were unable to chemotactically 

respond to a P gradient. Since the chemotactic response to bourgeonal is dependent on 

capacitation, it was examined whether a chemotactically active dose is also capable of 

inducing AR; a process which also requires capacitation. Assessment of AR 

demonstrated that 1nM bourgeonal does not significantly stimulate AR 

 

Using the most effective dose of bourgeonal (1nM), the role of [Ca2+]i signaling in the 

chemotactic response to bourgeonal was studied. When capacitated spermatozoa were 

confronted with a 1nM bourgeonal gradient in low-Ca2+ (NCFsEBSS; <5µM/L Ca2+; 

Harper et al., 2004) the  chemotactic response was eliminated. Additionally, when 

spermatozoa were confronted with a 1pM P gradient in low-Ca2+ the chemottactic 

response was suppressed; as previously reported by Teves et al. (2009) using the same 

bathing medium (NCFsEBSS); which did not significantly alter spermatozoa motility. 

This is consistent with the findings of Gakamsky et al. (2009), who showed that 

‘behavioral’ responses of human sperm to both bourgeonal and progesterone  exhibited 

dependence on external Ca2+,  requiring >10-4 M.  When capacitated spermatozoa were 

pretreated with nifedipine (1, 10, 100 µM), the chemotactic response to bourgeonal was 

inhibited in a dose dependent manner. Hence L-type (Cav1) and T-type (Cav3) channels, 

which are inhibited by nifedipine, might play a role in the chemotactic response to 

bourgeonal.  

To examine possible participation of Ca2+ stores, capacitated spermatozoa were 

pretreated with TMB-8, an inhibitor of Ca2+ store release channels. This inhibited the 

chemotactic response of capacitated spermatozoa to P but the chemotactic response to a 
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1nM bourgeonal gradient was unaltered. Thus the chemotactic response to bourgeonal 

requires extracellular Ca2+ which presumably enters the cell though membrane channels, 

but stored Ca2+ appears not to play a role. 

 

 

Spehr et al. (2003, 2004, 2006) suggested that the response of spermatozoa to 

bourgeonal occurs through induction by the agonist of mAC, leading to the production 

of cAMP. Hence it was logical to examine whether treatment of human sperm with the 

maximally chemotactic dose (1 nM) would increase production of cAMP. When cells 

were incubated with IBMX (to inhibit cAMP phosphodiesterase) there was a clear 

increase in [cAMP] compared with parallel non-bourgeonal treated incubations. 

However, these results cannot be taken as evidence that generation of cAMP is involved 

the chemotactic signaling pathway activated by a bourgeonal gradient. The temporal 

nature of the chemotactic response is such that only techniques that provide high 

temporal resolution (such as rapid mixing; Kaupp et al., 2003, 2008) will allow 

determination of the participation of cAMP, but these data are consistent with the model 

of Spehr et al  (2003, 2004, 2006). 

 

When capacitated spermatozoa were exposed to a series of stepped increased in 

bourgeonal concentration (fM to mM) >15% of the cells responded to each 

concentration with an elevation in OGB fluorescence. A small proportion of 

spermatozoa, after responding at very low concentrations, showed no response to the 

succeeding increases in bourgeonal concentration. Thus spermatozoa may undergo an 
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adaptation phase, possibly involving temporal desensitization of the receptor, as 

suggested by Gakamsky et al. (2009). In the model proposed by Gakamsky and 

colleagues (2009) the response characteristics include an excitation phase, composed of 

a delay (i.e., not including a change in the motility parameter) and a subsequent turn and 

an adaptation phase during which the cell ceases to respond to the chemoattractant even 

if the attractant is still present (Gakamsky et al., 2009).  When sperm were exposed to  P 

gradient composed of incremented steps (as for bourgeonal), Ca2+ oscillations were 

elicited in >20% of the sperm population. These increased in amplitude and frequency 

with the elevating P concentration. Here too a small proportion of spermatozoa showed 

an adaptation phase. These preliminary results suggest that the P gradient levels that 

induce specific sperm processes (e.g. chemotaxis, acrosome reaction priming, and 

hyperactivation) also trigger differential calcium oscillations that might be crucial as 

spermatozoa swim in vivo towards the attractant source. Consequently these oscillation 

increasing amplitude and frequency might significantly influence mammalian 

spermatozoa motility, not only by stimulation of chemotaxis, but hyperactivation of 

spermatozoa in vivo when required.  
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Many of the experiments reported in this chapter were performed in collaboration with 
Dr Teves, Dr Giojalas, Dr Gidobaldi and Dr Uñates from the Cebicem. Cordoba 
Argentina. All of the experiments both in Argentina and Birmingham were carried out 
by Aduén Andrés Morales García (author of this thesis). Additionally, one of the 
experiments in this chapter was done with the contribution of project students Jack 

Lewis and Danielle Breen (University of Birmingham, School of Bioscience). 
Additionally a few sections of this Chapter were published (with Dr Teves as main 
author) & other section will be published with Dr Uñates as first author and Aduén 
Morales García as second (or co-author, details yet to be confirmed).  
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Chapter Six 
 

General Discussion 

 
The aim of this project was to examine the [Ca2+]i signal response of capacitated and 

non-capacitated spermatozoa to the floral scent bourgeonal and to investigate further the 

signal cascade that leads to the chemotactic response. The work of Spehr’s  group 

provided a break-through in the identification of ectopic ORs in mammalian 

spermatozoa (hOR17-4) and in demonstration of their putative role in mammalian 

sperm chemotaxis. However, the technique of sperm preparation used in these 

experiments was puzzling regarding whether the spermatozoa were capacitated or not. 

All of  the experiments reported here employed clearly defined media with characterised 

effects on capacitation to distinguish between capacitating and non-capacitating 

conditions (WHO, 1999).  The data published by Spehr et al. (2003, 2004, 2006) 

proposed that the response of bourgeonal is dependent on [Ca2+]o and that the opening 

of the Ca2+ channel(s) is due to the direct or indirect effect of both cAMP and/or PKA. 

Additionally that the effect of the floral scent does not induce AR and has a 

chemottactic effect on mammalian spermatozoa, however this was proposed without the 

use of discriminating technique(s) to distinguish between chemotaxis and other 

processes that result in sperm accumulation (chemokinesis, trapping, hyperactivation) 

(Eisenbach & Giojalas, 2006).  

 

The first approach of  this study was to examine the Ca2+ response of capacitated 

spermatozoa to a stepped increase in bourgeonal concentration and whether the 
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response to the ligand was reversible. Experimental data demonstrated that spermatozoa 

showed a clear sustained response when constantly stimulated with bourgeonal; [ 

Figure.1. ], as previously reported by Spehr et al. (2003). Additionally it was also 

observed that a small subpopulation of spermatozoa showed a single transient response, 

halting a further elevation in OGB fluorescence, even when the ligand was still present. 

This strongly suggesting that a subpopulation of spermatozoa activated a negative 

feedback mechanism that terminated a further response to bourgeonal with the closure 

of the membrane channel(s). Bourgeonal had a dose-response effect and here too all of 

the cells responded with a single transient response, terminating any further elevation in 

OGB fluorescence. Furthermore, experimental data acquired in this study demonstrated 

that the response of capaciated human spermatozoa to bourgeonal is reversible. When 

spermatozoa were stimulated with bourgeonal, resulting in an elevation in OGB 

fluorescence, when ligand was washed-off the OGB fluorescence dropped to control 

levels, and upon the reintroduction of bourgeonal the cells once again showed a clear 

response to the agonist. Hence demonstrating whilst the agonist is bound to hOR17-4 

located in the midpiece of mammalian spermatozoa (Spehr et al., 2003, 2004) the 

consequent signal cascade is stimulated, consequently the removal of the ligand from 

the bathing media results in the termination of the response (ligand is no longer bound 

to G-protein coupled receptor).  

 

In this study it was demonstrated that capacitated human spermatozoa show no 

significant response when exposed to bourgeonal in low-Ca2+ (<5µM/L Ca2+), clearly 

showing that like many physiological process in sperm, the response is dependent 



 - 225 -

primarily on Ca2+ and in the case bourgeonal Ca2+-influx. This was further demonstrated 

when spermatozoa where stimulated with the ligand in Ca2+-containing media buffered 

with EGTA; resulting in no significant response [ Figure.1. ]. This strongly correlates 

with publications by Spehr et al. (2003, 2004, 2006) and Gakamsky et al. (2009), both 

reporting that the response to bourgeonal is dependent on [Ca2+]o and that the [Ca2+]i 

elevation is due to Ca2+-influx from the extracellular medium. This hypothesis was 

corroborated by the observation that bis-phenol pre-treated capacitated spermatozoa 

showed a clear response to bourgeonal when exposed to the ligand in Ca2+-containing 

medium. Intracellular Ca2+ stores in human spermatozoa do not play a role in the 

response to bourgeonal and the [Ca2+]i elevation is due to Ca2+-influx. 
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Figure.1. Summary of  responses recorded from the head of capacitated human 
spermatozoa, when confronted with bourgeonal in varying Ca2+ conditions or media 
buffered with Ca2+ chelator (Spermatozoa Image from: Costello et al., 2008).  
 

 

When similar experiments were carried out on cells not incubated under capacitating 

conditions clearly demonstrated that capacitation is required for the cells to generate a 

response to bourgeonal. However, whether this effect was absolute or was due to an 

increase in sensitivity in  capacitated cells was not investigated. Thus  the responses of 

non-capacitated spermatozoa to higher concentrations (>100 µM) might reflect a 

difference in bourgeonal sensitivity (Gakamsky et al. 2009). For example, the elevation 

in cAMP and stimulation of PKA, which take place when mammalian spermatozoa 

undergo capacitation (Parinaud and Milhet, 1996; Chen et al., 2000; Lefièvre et al., 

2002) are believed to be key components in the signal transduction pathways in 
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response to bourgeonal (Spehr et al., 2003, 2004, 2006) and thus might modulate OR-

mediated responses.  [ Figure.2. ].  

 

In this research study it was possible to demonstrate that capacitated spermatozoa do not 

result in AR when incubated with bourgeonal in Ca2+ (nM to µM). Spehr et al. (2003, 

2004) demonstrated that at higher concentrations than the ones used in this studies, 

bourgeonal had no significant effect on the acrosomal status of human spermatozoa.  

 

 

Figure.2.  Proposed model exploring intracellular variations that suggest the why 
capacitated spermatozoa might be more responsive to bourgeonal than  non-capacitated. 
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When bourgeonal preatreated cells in low-Ca2+ were introduced to high-Ca2+ a single 

transient [Ca2+]i response occurred, rapidly terminating any further response to 

bourgeonal. Thus when spermatozoa were treated with bourgeonal in low-Ca2+ saline 

this  had a  priming effect. Thus whilst bourgeonal is bound  to its receptor the signal 

transduction pathway results in the opening of the membrane Ca2+ channel(s) but in the 

absence of  Ca2+ no response was induced through Ca2+-influx. Consequently upon the 

introduction of Ca2+ the capacitated spermatozoa respond with the activation of the 

negative feedback mechanism halting any further elevation in [Ca2+]i, resulting in a 

single transient elevation in OGB fluorescence. This mechanism may be of great 

significance in the chemotactic action of bourgeonal, providing the temporal fidelity 

required for sampling a concentration gradient.  

 

When spermatozoa were incubated with bourgeonal and IBMX in Ca2+ there was a 

significant elevation in cAMP. Hence, it was therefore investigated whether the 

activation of Ca2+-influx by bourgeonal and the termination of this influx could be 

elicited by dbcAMP. When spermatozoa were exposed to dbcAMP in Ca2+-containing 

medium a clear sustained elevation of [Ca2+]i occurred. No response was detected when 

cells were exposed to dbcAMP in low-Ca2+, suggesting that, as with bourgeonal, cAMP 

opens a membrane Ca2+ channel. Similarly to treatment with bourgeonal, a small 

subpopulation of sperm responded to dbcAMP with a single transient elevation in OGB 

fluorescence, consistent with the presence of a feedback mechanism [ Figure.3. ]. When 

the effects of dbcAMP were investigated using the Ca2+-readmission protocol to 

investigate feedback, the kinetics were as with bourgeonal. Furthermore, pretreatment 
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with IBMX to prevent hydrolysis of cAMP generated in response to bourgeonal did not 

affect kinetics of the transient [ Figure.3. ]. Thus, though cAMP may open a Ca2+-

channel(s) in bourgeonal-treated cells, either directly or indirectly (via PKA; Spehr et 

al., 2003, 2004, 2006), (cAMP) concentration does not play a part in  termination of the 

response. A direct effect of Ca2+ (or Ca2+/CaM) on the membrane channel is thus the 

likely mechanism of feedback. CNG channels, which are present in sperm (Jimenez-

Gonzalez et al., 2006; Darszon et al., 1999) activated by cAMP and modulated by CaM  

(Molday, 1996, Kaupp et al., 2002) are thus a candidate for the bourgeonal-activated 

channel [ Figure.5. ].  

 

 

 

Figure.3. Summary of  responses recorded from the head of capacitated human 
spermatozoa when investigating the negative feedback response.  
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Figure.4. Summary of signaling components that potentially contribute to modulation 
of the membrane channel(s) activated upon binding of bourgeonal. Drugs and analogues 
used during my investigation and their probable sites of action are also shown 
 

To investigate whether CNG channels might indeed be involved, the potential 

involvement of CaM in modulation of the bourgeonal-activated channel (CNG channels 

?) was examined, by using trifluoperazine a CaM antagonist (Cheung, 1980). Inhibition 

of CaM would result in the loss of the Ca2+-mediated negative feedback such that the 

Ca2+ transient that occurs upon readmission of Ca2+ to bourgeonal treated cells in low-

Ca2+ medium should be followed by a plateau. However, though the drug did prolong 

the decay of the transient, control experiments showed that this effect was probably due 

mainly to an effect on the rate of Ca2+ clearance rather than gating of Ca2+ channels. 
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Plasma membrane Ca2+ ATPases are activated by CaM (Luthra et al., 1982) and 

inhibition of this process may have been responsible for my observations.  

 

However, a potential role of  CNG channels in the response to bourgeonal was 

demonstrated in this study with the use of Ni2+ and to a less extent with La3+. Pretreated 

with these ions, at doses that block CNG channels, did suppress the [Ca2+]i response to 

the ligand. Thus CNG channels remain a putative pathway for bourgeonal-activated 

Ca2+ influx [ Figure.5. ].   
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Figure.5. Summary of signaling components that may underlie activation of Ca2+ influx 
by bourgeonal and negative feedback terminating the response. Red arrow (����) indicates 
the modulatory effect of Ca2+ or Ca2+/CaM on the Ca2+ channel (CNG?).  
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The acquired data throughout this thesis suggest the potential role of CNG channels, 

located in the flagellar midpiece (Publicover et al., 2007, Molday et al., 1996), in 

response to bourgoenal. The binding of  bourgeonal to the hOR17-4, located in the 

flagellar midpiece (Spehr et al., 2003, 2004, 2006), could result in an elevation in cAMP 

and PKA, consequently opening of the CNG channels (or other channels). The opening 

results in a elevation in [Ca2+]i, which could then result in the activation of a feedback 

mechanism resulting in the closure of the CNG channel by the modulatory effect of 

CaM (Ca2+/CaM) (Molday et al., 1996, Kaupp et al., 2002) [ Figure.5. ]. This model 

suggests part of intracellular response and the temporal resolution of the chemotactic 

response and a potential directional change. However, this is not an absolute model of  

the signalling events in response to bourgeonal, other Ca2+ channels (CatSpers, TRPc 

??) and other signal cascade(s) could be involved too. The described events, 

hypothesised from the data acquired [ Figure.5. ],  explains in an elegant (and simple) 

way the occurrence of the feedback mechanism, terminating the response. However, it 

is possible that other events could occur in response to bourgeonal; the extensive data 

acquired and further research would shed light on this possibility.  

 

“Behavioral” assessment of capacitated human spermatozoa showed that the cells 

respond chemotactically to a bourgeonal gradient.  Maximum response occurred at 10-9 

M bourgeonal (1nM). These data are largely consistent with the report of Spehr et al. 

(2003, 2004, 2006), who observed a chemotactic response at a concentration ≥10-6 M. 

Moreover it was also demonstrated that the chemotactic response to bourgeonal was 

dependent on Ca2+ but that the Ca2+ stores do not participate. Significantly, it was 



 - 233 -

possible to show that non-capacitated spermatozoa showed no chemottactic response to 

a bourgeonal gradient, consistent with previously published findings that only 

capacitated spermatozoa are the chemotactically responding cells (Cohen-Dayag et al., 

1995; Eisenbach, 1999; Fabro et al., 2002; Teves et al., 2006).   

 

Positive control experiments, using 10pM P were in agreement with data published by 

Teves et al. (2006), confirming the sensitivity of the assay. To test the Ca2+ response to 

chemotactic doses of P,  a range of concentrations (fM to µM) were used to examine the 

response of capacitated spermatozoa to these treatments. A subpopulation of 

spermatozoa (≈20%) responded with Ca2+ oscillations, which increase in amplitude and 

frequency with the increasing P concentration. Thus the very low concentrations that 

stimulate chemotaxis in human spermatozoa are also capable of triggering Ca2+ 

oscillations (Uñates D.R. & Morales-Garcia A.A, 2008). Similarly, when treated with a 

very low bourgeonal concentrations (fM to mM) a subpopulation of spermatozoa 

(≈15%) responded with a series of peaks, starting at fM. Thus when human sperm 

encounter a chemoattractant gradient in vivo, the cells may respond in this way in the 

presence of an increasing chemoattractant concentration. Capacitated spermatozoa 

would detect the lower concentrations of the attractant, possibly inducing a turn (Ca2+  

spike?). At high concentrations, inducing increased frequency and magnitude of Ca2+ 

spikes, hyperactivation may occur [ Figure.6. ].  
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Figure.6.  Diagramatic representation of proposed effects of an increasing P 
gradient. Progesterone at pM concentrations guides spermatozoa towards the 
occyte via chemotaxis. This process could be regulated by oscillations of  low 
frequency and magnitude. In the proximity of the oocyte, where P concentration 
would be at µM levels. P stimulates hyperactivated motility enabling spermatozoa 
to travel through the cumulus cells, a process that might be regulated by 
oscillations of greater magnitude and frequency (DR Uñates & Morales-Garcia 
A.A, 2008). 
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7.1 Future Research 

 
It is clear that Ca2+ is a critical element in all the processes that spermatozoa undergo, 

including the response to bourgeonal and derivatives. It’s also clear that bourgeonal 

exerts a chemotactic response in capacitated spermatozoa but not uncapacitated cells. 

However, a number of aspects of the model described above are currently only 

speculative. Future work must address these. 

 

• The involvement  of cAMP in activating the Ca2+ channel is probable but not 

proven. It will be necessary in the future directly to quantify the kinetics of [cAMP] 

in cells stimulated with bourgeonal and other chemo-attractants.  

 

• It is still uncertain whether the CNG channels are involved in the response to 

bourgeonal, and if not, what Ca2+ channels are involved?  A major limitation of work 

on human sperm is the difficulty of genetic manipulation, such that a 

pharmacological approach must be used, accepting its potential for secondary effects 

on other processes. 

 

 

• The mechanism that enables capacitated spermatozoa to respond chemotactically, 

whereas uncapacitated cells cannot, must be established. It has been postulated that 

non-capacitated spermatozoa are capable of responding to a ligand, however higher 

concentrations must be needed to see a response, due to lower receptivity of the cells 
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(Gakamsky et al., 2008). If this is the case, what are the changes that enable the 

capacitated spermatozoa to be more “sensitive” than non-capacitated.  

 

The work reported here is another step forward towards the understanding of the effects 

of chemo-attractants on human sperm and specifically the role of the OR hOR17-4. 

However, we are a long way from being able to provide a functional explanation of 

chemotaxis in human (or other mammalian) sperm equivalent to the models that have 

been proposed for echinoderm spermatozoa.   
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APPENDIX I 

 

MEDIA 

 
Supplemented Earle’s Balanced Salt Solution (sEBSS) 

 

Composition: 
 

Sodium Dihyd. Phosphate 0.122g/l (1.0167 mM) 
Potassium Chloride 0.4g/l (5.4 mM) 

Magnesium Sulphate.7H2O 0.2g/l (0.811 mM) 
Dextrose Anhydrous 1.0g/l (5.5 mM) 

Sodium Pyruvate 0.3g/l (2.5 mM) 
DL-Lactic Acid, Sodium 4.68g/l (19.0 mM) 
Calcium Chloride.2H2O 0.264g/l (1.8 mM) 

Sodium Bicarbonate 2.2g/l (25.0 mM) 
Sodium Chloride 6.8g/l (116.4 mM) 

 
The composition of this medium is based upon Supplemented Earle’s Balanced Salt 
Solution (with/out Phenol Red recipe). The osmolarity of the medium was adjusted with 
sodium chloride to 285-295 mOsm, and checked using an Advanced Micro Osmometer 
(Vitech Scientific Ltd, West Sussex, UK) [pre-calibrated using a 50 mOsm/Kg H2O and 
a 850 mOsm/Kg H2O calibration standards]. The pH was adjusted to 7.25-7.4 with 1M 
hydrochloric acid (HCl) and 1M sodium hydroxide (NaOH). sEBSS was stored in 
100ml glass beakers at 4°C until use. Thus upon use, the pH was rechecked and 
adjusted if necessary. When experiments involved capaciated spermatozoa 0.3% Bovine 
serum albumin (BSA) was introduced into the medium and filtered, to remove any 
possible residues. 
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HEPES-buffered saline 

 

Composition: 

 
Potassium Chloride 0.336g/l (4.5 mM) 

Magnesium Chloride. 6H2O 0.9ml from aM stock  0.9g/l (1.0mM) 
Dextrose Anhydrous 1.621g/l (9.0 mM) 

Calcium Chloride.2H2O 1.8ml from a 1M stock 1.8g/l (2.0 mM) 
Sodium Chloride ≈7.889g/l (135.0 mM) 

Hepes 2.147g/l (135.0mM) 
 
Identical protocol as for  standard sEBSS; however NCFsEBSS. When experiments 
involved capaciated spermatozoa 0.3% Bovine serum albumin (BSA) was introduced 
into the medium and steryle-filtered to remove any possible residues. 
 

 

 

 

Ca
2+

-free sEBSS (NCFsEBSS) 

 

Composition: 
 

Sodium Dihyd. Phosphate 0.122g/l (1.0167 mM) 
Potassium Chloride 0.4g/l (5.4 mM) 

Magnesium Sulphate.7H2O 0.2g/l (0.811 mM) 
Dextrose Anhydrous 1.0g/l (5.5 mM) 

Sodium Pyruvate 0.3g/l (2.5 mM) 
DL-Lactic Acid, Sodium 4.68g/l (19.0 mM) 

Sodium Bicarbonate 2.2g/l (25.0 mM) 
Sodium Chloride 6.8g/l (118.4 mM) 

 
 
Identical protocol as for  standard sEBSS; however NCFsEBSS was stored at 4°C, in a 
100 ml volume polystyrene bottles until use (recommendation by Dr Kirkman-
Brown).When experiments involved capaciated spermatozoa 0.3% Bovine serum 
albumin (BSA) was introduced into the medium and steryle-filtered to remove any 
possible residues. 
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 PUBLICATIONS AND PRESENTATIONS OF RESEARCH 

 
 Machado-Oliveira Gisela; Lefièvre Linda; Ford Christopher; Herrero M Belen; Barratt 
Christopher; Connolly Thomas J; Nash Katherine; Morales-Garcia Aduen; Kirkman-
Brown Jackson; Publicover Steve, (2008). Mobilisation of Ca2+ stores and flagellar 
regulation in human sperm by S-nitrosylation: a role for NO synthesised in the female 
reproductive tract. Development (Cambridge, England) 2008;135(22):3677-86. 
 

 
Publicover, S. J., Giojalas, L. C., Teves, M. E., Oliveira, G. S., Garcia, A. A., Barratt, 
C. L.and Harper, C. V. (2008). Calcium signalling in the control of motility and 
guidance in mammalian sperm. Front Biosci 13, 5623-37. 
 
 
Teves M., Guidobaldi H., Uñates D., Sanchez R., Miska W., Publicover S., Morales 

García A., Giojalas L.(2009). Molecular Mechanism for Human Sperm Chemotaxis 
Mediated by Progesterone. PLoS ONE 4(12): e8211 
 
 
 
 
 
CONFERENCE POSTERS & ABSTRACTS 

 
 
Gordon Conference, Fertilization & Activation Of Development, USA (2009) 
 
DOES HUMAN SPERMATOZOA CONTAIN RYANODINE RECEPTORS? 
Linda Lefièvre, Katherine Nash, Gisela Machado-Oliveira, Aduen Morales Garcia,  
Frank Michelangeli and Stephen Publicover 
 
 
INTRACELLULAR CALCIUM STORES & STORE-OPERATED CALCIUM 
INFLUX IN HUMAN SPERMATOZOA. Linda Lefièvre, Katherine Nash, Aduen 

Morales Garcia, Frank Michelangeli and Stephen Publicover 
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44th Annual meeting, Argentine Society for Biochemistry and Molecular Biology 

Research. November 2008. Villa Carlos Paz, Cordoba. Argentina. 
 
INTRACELLULAR CALCIUM OSCILLATION IN SPERMATOZOA EXPOSED TO 
A CONCENTRATION GRADIENT OF PROGESTERONE. Uñates DR, Morales-

Garcia AA., Publicover Sj, Giojalas LC. 
 
 
 

Society for Reproduction and Fertility (SRF), Scotland (2008) 
 
INTRACELLULAR CALCIUM SIGNALLING AND MAMMALIAN SPERM 
CHEMOTAXIS. Morales-Garcia A.A, JC Kirkman-Brown, CL Barratt, SJ Publicover  
 
 
University of Birmingham, Bioscience Simposium (2007 & 2008) 

 
INTRACELLULAR CALCIUM SIGNALLING AND MAMMALIAN SPERM 
CHEMOTAXIS. Morales-Garcia A.A, JC Kirkman-Brown, CL Barratt, SJ Publicover  
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