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ABSTRACT 

Functional genomics technologies, in which thousands of mRNAs, proteins, or 

metabolites can be measured in single experiments, have contributed to reshape 

biological investigations. One of the most important issues in the analysis of the 

generated large datasets is the selection of relatively small sub-sets of variables that 

are predictive of the physiological state of a cell or tissue. In this thesis, a truly 

multivariate variable selection framework using diverse functional genomics data 

has been developed, characterized, and tested. This framework has also been used to 

prove that it is possible to predict the physiological state of the tumour from the 

molecular state of adjacent normal cells. This allows us to identify novel genes 

involved in cell to cell communication. Then, using a network inference technique 

networks representing cell-cell communication in prostate cancer have been inferred. 

The analysis of these networks has revealed interesting properties that suggests a 

crucial role of directional signals in controlling the interplay between normal and 

tumour cell to cell communication. Experimental verification performed in our 

laboratory has provided evidence that one of the identified genes could be a novel 

tumour suppressor gene. In conclusion, the findings and methods reported in this 

thesis have contributed to further understanding of cell to cell interaction and 

multivariate variable selection not only by applying and extending previous work, 

but also by proposing novel approaches that can be applied to any functional 

genomics data. 
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CHAPTER 1  

System identification is a crucial step in the analysis and 

modelling of complex biological systems 

1.1 - Making Sense of Large Scale Microarray Data: A Variable 

Selection Problem 

Since the genomic era where large segments of DNA have been sequenced, biological 

sciences have been evolving from a mere descriptive or qualitative science to a 

quantitative one. It is now fully accepted that computational approaches are an 

integral part of modern biology to the extent that the development of computational 

models of biological systems is a top priority for most of the government funding 

bodies in the United Kingdom (BBSRC Cross-Committee Priorities1 - Bioinformatics 

and e-Science), The United States of America (NCBI, The Bioinformatics and 

Computational Biology initiatives2, NSF, DOE, and DARPA3), and for the European 

Union (European Commission, Fundamental Genomics, Bioinformatics4). 

 

Biology has traditionally operated on a hypothesis driven strategy focussed on 

testing the involvement of a specific gene in a biological process of interest. This 

strategy has led to the development of a large body of knowledge on how genes 

                                                 

1 http://www.bbsrc.ac.uk/science/areas/crosscommittee.html 

2 http://nihroadmap.nih.gov/bioinformatics/ 

3http://sciencecareers.sciencemag.org/career_development/previous_issues/articles/0630/ 

federal_funds_and_bioinformatics_grants_a_match_made_in_heaven/(parent)/ 

4 http://ec.europa.eu/research/health/genomics/index_en.htm 

http://www.bbsrc.ac.uk/science/areas/crosscommittee.html
http://nihroadmap.nih.gov/bioinformatics/
http://sciencecareers.sciencemag.org/career_development/previous_issues/articles/0630/
http://ec.europa.eu/research/health/genomics/index_en.htm
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interact with each other in the context of complex functional pathways. Because of 

the qualitative nature of the approach, this knowledge has been often represented in 

the form of a cartoon (or more specifically a graph) showing the general topology of 

a functional gene network. The recent development of functional genomics 

technologies and consequently the progressive increase in complexity of the data that 

can be generated have created the necessity to develop computational techniques 

that allow the identification of the genes involved in a biological process and their 

organization in a pathway in the absence of any hypothesis.  

 

The simplest approach for the identification of genes involved in particular biological 

processes (for example, response to chemical exposure) works by identifying up- and 

down-regulated genes using relatively standard statistical techniques. More complex 

bioinformatics methods have been developed to facilitate biological interpretation of 

gene lists (such as the one identified by differential expression) or for general data 

exploration and visualization purposes.  Even more complex computational methods 

are required for developing statistical models based on molecular signatures 

predictive of phenotypic features of a biological system or for inferring gene 

regulatory networks from observational or interventional data.  

 

In the last two cases it is important to search in the space of biological variables for a 

combination of informative expression profiles. Techniques designed to achieve 

these tasks are known as variable selection methods. So far, few researchers have 

applied these computational tools to their full potential in the analysis of biological 

data. Most of the work described in this thesis aims to develop and exploit such 

methodologies in biomarker identification and in understanding biological processes 

involved in cell to cell communication. 
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1.2 - Understanding cell to cell communication: The need for 

computational approaches 

The recent development of genome-wide gene expression profiling and other 

functional genomics technologies has provided the scientific community with 

versatile tools to characterize the molecular state of cells at a genomic level. Statistical 

and mathematical analysis of generated datasets has identified gene signatures 

related to the molecular state of cells. These results have been essential to look for 

alternative experimental setups for biological investigations. However, most current 

studies performed at a genome level are based on analysis of individual cell types or 

tissues. Thus, important factors present in the tissue microenvironment expressed by 

nearby cells have not explicitly been taken into account in genome-wide studies. 

 

As in any communication system, the process of cell-to-cell communication involves 

membrane proteins (transmitters), which secrete signal proteins (message) that travel 

through the extra-cellular matrix (media) to be detected by membrane receptors 

(sensors) in other cells. Receptors are coupled to signal transduction machineries 

delivering the message signal to final cellular effectors (interpretation). The 

importance of cell-to-cell communication has been studied and demonstrated in 

virtually every biological system of relevance [1-6].  

 

When a system is sufficiently well understood and experimental measurements of its 

parameters are available (for example the binding affinity of a growth factor to its 

receptor) it is possible to develop computational models that represent the precise 

mechanism that govern the system of interest. Such models (for example based on 

differential equations) can be extremely useful to verify that a system is well 

understood. These models can in fact be used to simulate the behaviour of a system 

and to compare its results to observed data. 
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Unfortunately, very few of these parameters are known in cell to cell communication 

systems. For many of the gene products for which there is evidence of an 

involvement in this process, the precise molecular function is unknown. 

 

It is necessary therefore to design and employ inference and data mining approaches 

to identify components and to infer the network structures involved in cell to cell 

communication from functional genomics data. Although some of these approaches 

are available, they have not been used in the context of cell to cell communication. 

 

An important part of this thesis has been to address the problem of identifying 

molecular components involved in the interaction between normal and tumour cells. 

As a first approach to study cell to cell interaction, a multivariate variable selection 

method has been designed, implemented, and applied to show that the physiological 

state of a cell type can be inferred from the molecular state of adjacent cells. 

Afterwards, a gene selection approach that allows the identification of functional 

networks involved in cell to cell communication has been designed. The results, 

mainly reported in Chapters 5 and 6, have led in the identification of a novel putative 

tumour suppressor gene in cancer. 

 

1.3 - Thesis Organisation and Summary 

This thesis begins with an introductory Chapter reviewing the current techniques 

available for experimental and computational analysis using large scale datatsets 

(Chapter 2). This is followed by the description of a multivariate variable selection 

statistical modelling environment that has been developed in the statistical 

programming language R (Chapter 3).  Chapter 4 describes the application of this 
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environment for biomarker discovery for both proteomics and NMR metabolomics 

data. Chapters 5 and 6 describe the application of statistical modelling to identifying 

genes involved in cell to cell communication between normal and tumour cells in 

prostate cancer. In Chapter 6, a simple metric to rank genes that are potentially 

involved in a particular case of cell to cell interaction has been proposed and 

characterised. 

 

A large part of the work described in this thesis is based on variable selection 

methods. Multivariate variable selection methods seem to be more powerful than the 

univariate ones. From the multivariate selection methods, those using stochastic 

searches are the most robust, versatile, successful, and relatively fast. However, no 

software package was available that could be used in a variety of situations and 

datasets. Therefore, Chapter 3 presents GALGO, an R package that uses Genetic 

Algorithms (random) searches coupled with versatile fitness functions for 

classification and regression. This package was designed to be generic, easy to use for 

common large datasets, and flexible taking benefit from the free and robust R 

programming environment. GALGO package was inspired in a prototype tool 

developed in in C language during the first year of research. This C-based tool was 

difficult to modify, adapt, expand, and use. GALGO has been designed to surpass 

these difficulties. 

 

In the microarray context, multivariate variable selection based on random search 

has been used successfully in the literature to solve several biological problems. 

However, several aspects of the multivariate search system such as redundant genes 

in models, generation of a gene list, model similarity, collinear genes, and specificity 

of gene-class have not been so far studied. 
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The methods and data studied in this thesis are mainly based on transcriptomics 

data, that is, data from the expression of genes detected by the mRNA present in 

cells. Although transcriptomics is by far the most used functional genomics 

technology, other technologies have emerged that quantify other cell aspects. 

Proteomics determines the amount of proteins present in a sample whereas 

metabolomics detects the relative amount of metabolites. These technologies produce 

very similar datasets to those produced by transcriptomics, with some peculiarities 

though. Therefore, it would be worth to know whether methods presented in this 

thesis would be useful to analyse this kind of data. Thus, Chapter 4 presents 

successful studies based on proteomics and metabolomics data using GALGO.  

 

The first ideas to provide supportive evidence of the interaction between tumour and 

surrounding normal cells are shaped in Chapter 5. There, data in which surrounding 

normal (not tumoural) cells are predictive of tumour features is presented. One of the 

explanations why normal cells are, in some sense, aware of the physiological state of 

the tumour is that there is some interaction between normal and tumour cells. 

However, other logical explanation may be that surrounding normal cells are 

carrying the same defect than tumour cells in such a way that adjacent normal cells 

are lagged in the progression of malignancy transformation. Given the results 

obtained in which selected genes seem to be somehow related to cell to cell 

interactions, we believe that the former hypothesis is more realistic. 

 

Under the assumption that there is some interaction between normal and tumour 

cells, in Chapter 6 it has been hypothesised how components of the assumed 

communication could be revealed. The proposal was based on the observation that 

some genes expressed in normal cells have correlations with the expression of several 

other genes in tumour cells but the same was not observed in the other direction (the 

same gene expressed in tumour were not correlated with several genes in normal 
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cells). To identify and rank these genes, Chapter 6 propose and characterise a 

descriptive metric. It is shown also that this metric displays interesting properties 

and analysis of the selected genes in a number of datasets is provided. 

 

Chapter 7 concludes this manuscript with a series of general considerations on the 

biological findings. 
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Dopazo, and Dr. Moray J. Campbell provided complementary data. In Chapter 6, Dr. 

Moray Campbell, Dr. Farida Latif, and Dr. Heiner supplied important results. All are 
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CHAPTER 2  

Linking Molecular Signatures to Cell Physiology:  

A Variable Selection Problem 

 

The development of Functional Genomics Technologies (FGT) has been responsible for 

an important revolution in biological sciences. These techniques have contributed to 

characterize biological systems at an unprecedented level of detail. Such advances have 

boosted the development of computational methods to analyze large datasets and to 

generate new hypotheses on the global behaviour of biological systems. So far, studies 

based on a functional genomics (FG) approach have been performed to investigate the 

response of cells and tissues to a variety of stimuli or to associate molecular signatures 

to specific aspects of cell physiology. Our research interests have been focussing on the 

development of analysis methods to reveal a link between the molecular state of cells 

and the physiology of a biological system. As part of this effort, a statistical modelling 

techniques based on a multivariate variable selection strategy have been developed and 

applied. This introductory chapter summarizes the current state of the art on FGT and 

the statistical modelling techniques used to make sense of these complex datasets. 

Other background information specifically related to individual aspects of my work is 

contained in their respective Chapters. 

2.1 - Introduction 

The relatively recent introduction of FGT has contributed to change the way the 

experimental data is acquired and analysed in Biology (Figure 2.1). The ability to 

monitor the expression of thousands of genes in single experiment has increased our 

capacity to characterize cell identity and the dynamics of cell response to stimuli. In 
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many cases however this large amount of information has not immediately resulted in a 

better understanding of cell physiology. The interpretation of descriptive data is indeed 

difficult when so many variables are measured. For this reason a number of statistical 

and data mining approaches have been devised to facilitate the extraction of significant 

patterns from large scale datasets. In this context, a key strategy to formulate new 

meaningful hypothesis is to identify statistical properties that link physiological 

readouts to molecular signatures. Our interest is to develop and apply such methods to 

identify components of the cell machinery linking the molecular state of a cell to its 

physiological state. Practical examples of this are the identification of genes expressed 

in a bacterial cell during infection that are responsible for certain specific aspects of the 

host cell response and the identification of genes expressed in tumour cells that are 

related to tumour aggressiveness. 

 

The link between cell physiology and molecular signatures can be achieved using 

appropriate statistical techniques coupled with efficient methods of variable selection 

(VS) which are reviewed in this chapter.  

 

The conceptual problem of linking molecular signatures to a physiological readout has 

found its natural place in clinical informatics and in particular in the identification of 

Biomarkers of clinical significance. Most of the work being performed in the field is, 

therefore, referring to the problem of identifying a sufficiently small subset of genes 

that can explain the behaviour of disease. A clear example is the identification of 

markers predictive of tumour stage [7; 8] or survival after therapy [9]. 

 

Biological 
Question

Experimental
Design

Functional Genomics 
Experiment (microarray)

Data
Processing

Biology: Verification 
and Interpretation

Statistical 
Modelling 

 

Figure 2.1 - Schematic representation of biology knowledge generation using FG. 
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Developing statistical models to identify molecular markers of clinical significance is 

not the only application of machine learning techniques in Biology. Once gene 

expression profiles are found to be linked to a specific aspect of cell physiology, a 

hypothesis can be made on the mechanisms and pathways underling the observed link. 

Figure 2.1 sketches the idealized learning cycle associated to statistical modelling of 

biological data. 

 

This review aims to provide an overview of the computational and statistical methods 

used in the development of statistical models from FG data. In this context, several 

methods have been proposed that are difficult to classify in terms of method, search 

strategy, model size, pre-processing, and particularities. Therefore, a table summarizing 

the overall data processing of the methods mentioned in this chapter is provided (Table 

2.1).  

 

2.2 - Functional Genomics Technologies 

In the last decade, to measure the activity of a molecule, a simple but tedious, time 

consuming and expensive experiment had to be performed. This was critical when 

measuring or comparing the activity of several molecules. FGT has evolved from these 

simple manually performed laboratory techniques to complex automated assays using 

robotics. In some sense then, FGT are just the miniaturization and automation of well 

established laboratory assays. Thus, FGT can be defined as a set of laboratory 

techniques to measure simultaneously the activity of a large number of genes, proteins, 

or metabolites. The final result of applying FGT in the laboratory is to produce a 

measure for each of the thousands of molecules for a given biological sample. This 

result can be represented, independently of the specific FGT, by a data matrix whose 
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rows are represented by variables (genes, proteins, or metabolites) and columns are 

represented by samples (with their associated prognostic information). This data matrix 

can be analysed by methods described in Sections 2.3. The next sections introduce the 

most commonly used FGT. 

 

2.2.1 - Transcriptomics 

The most common application of FGT is in monitoring the gene expression (gene 

expression profiling). The technique is based on a classic molecular biology procedure 

called reverse northern blot. A schematic representation of this procedure is shown in 

Figure 2.2. mRNA is extracted from a biological sample and reverse transcribed in the 

presence of a radioactive or fluorescent precursor. The reaction produces a pool of 

labelled complementary DNA copies (cDNAs) representative of the original mRNA 

pool which is called here a target. The expression of an individual gene is quantified by 

hybridizing the target to the gene specific cDNA (defined as a probe) which has been 

previously spotted on a solid surface. The amount of radioactive or fluorescent signal 

associated to the spot is proportional to the amount of the target gene and hence to the 

specific RNA originally present in the cell. Multiple cDNAs can be spotted in an 

ordered pattern (array) allowing the quantification of multiple genes in single 

experiments (see reference [10] for a recent review of the technology and applications 

others than transcriptomics). There are, mainly, two types of microarrays, cDNA which 

are commonly assayed for two samples labelled with different dyes, and 

oligonucleotide microarrays where only one dye is used. Both technologies (and others) 

generate a unique measure for every probe (Figure 2.2). 
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2.2.2 - Proteomics 

Although at the moment expression profiling is the most commonly used FG 

application, there are other techniques that measure other components of the cell. 

Proteomics is one such technology. Proteins are the translated product of the processed 

mRNAs and are directly involved in translating the genetic information into function. 

Their precise measurements can therefore be potentially more informative of the 

physiological state of a cell than the mRNA levels. For practical reasons, proteomics is 

still not as widespread as expression profiling but is recently becoming a standard tool. 

Proteomics analyzes and identifies the proteins in cells, tissues, or organisms. 
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Data Processing

PROCESS

Healty/Control Disease/Treatement

REFERENCE TEST

Gene: A 1-1 B 1-0 C 3-3 D 0-3
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Digital
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Figure 2.2 - Schematic representation of a gene expression microarray assay. Arrows represent 
process (left column) and pictures or text represent the product. Differences in the protocol in one- 
and two-dye technologies are specific to the technology rather than samples or question. 
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A simplified overview of a typical proteomic assay is shown in Figure 2.3A. The 

analysis may include characterization of physicochemical properties as amino acidic 

sequence and post-translational modifications and the description of their behaviour at 

function and expression level. Commonly, a 2-D gel electrophoresis is used as a 

separation and profiler method where the first separation is performed by isoelectric 

point (pI) then by weight [11]. The gel is characterised by a large number of spots 

representing, in many cases, a single protein. Scanned gel images are analysed to detect 

and quantify every spot. The resulting data is similar to a microarray dataset, hence 

similar dbata analysis methods can be applied. One of the problems is, however, that 

only a small fraction of the spots are annotated (with their corresponding gene or 

protein identification attached). Several methods are then applied to annotate or 

identify the proteins in a spot [12]. In the case of protein microarrays, the procedures 

needed for the data acquisition (scanning, image analysis, and normalization), and data 

Protein Extraction
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Array
Hybridization
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Statistical Analysis
(of several samples)

Image Analysis &
Data Processing

SAMPLE

Spot D  0.001
Spot E  0.005
Spot K  0.001
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(Mass Spectrometry)

Data Binning 
and Processing

Peak D  0.001
Peak E  0.005
Peak K  0.001
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Peak: A 1  B 1  C 1  D 0
Peak: E 4  F 1  G 1  H 2
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(of several samples)

Characterization
(NMR)

A B

 

Figure 2.3 � Overview of Proteomics (A) and Metabolomics (B) assays. After data has been acquired, 
the data processing and statistical analysis is similar to DNA microarrays. Gel images were 
obtained from http://www.cogeme.abdn.ac.uk found by Google. 

http://www.cogeme.abdn.ac.uk
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analysis are similar to those for DNA microarrays (although some exceptions may 

apply) [13]. For small-scale proteomics (a few dozens), classical manual laboratory 

techniques can be used, such as a series of ELISA assays, or multiplex Luminex assays 

[11; 14].  

 

Independent of the proteomic technology, the dataset is a matrix whose rows represent 

proteins and columns represent samples. Thus, this dataset can be processed similar to 

a DNA microarray dataset. 

 

2.2.3 - Metabolomics 

Metabolomics is the set of techniques designed to measure the amount of metabolites 

present in a biological sample. Metabolites are usually small molecules or protein 

ligands. Metabolomics is then the study of low weight molecules (proteins and nucleic 

acids are therefore excluded). There are two levels of metabolite measurements, 

metabolic profiling whose aim is quantify a very limited number of metabolites, and 

metabolic fingerprinting whose goal is to provide a global screening [15]. Metabolic 

fingerprinting is commonly performed by nuclear magnetic resonance (NMR) or by 

mass spectrometry (MS). An overview of the process is depicted in Figure 2.3B. Sample 

preparation is critical in MS-based metabolomics [15] whereas it could be sometimes 

simpler in NMR-based metabolomics [16]. MS is a technique to measure ion mass-to-

charge ratios. An ion source unpins and ionizes molecules in a sample. Molecules then 

fly under the influence of an electric and magnetic field. Ionized molecules are therefore 

separated by their mass-to-charge ratio. A spectrum is then collected. To identify 

specific molecules, their mass-to-charge ratio is compared to those produced by known 

molecules. NMR on the other hand uses the spin property of atoms with an odd 

number of protons or neutrons, such as 1H, 13C, 15N, 19F and 31P. These nuclei possess an 

overall intrinsic magnetic moment and angular momentum. However, electrons also 
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alter the nuclear spin, hence molecules sharing electrons in different configurations will 

shift the frequency of the energy needed for resonance. This effect, known as chemical 

shift, is reported as a relative measure from a reference frequency. To measure 1H or 13C, 

the common reference used is that from tetramethylsilane. Both techniques (NMR and 

MS) generate a metabolic profile (spectra) representing the relative concentration 

(vertical axis in Figure 2.3B) of metabolites (horizontal axis in Figure 2.3B) in a sample. 

The profile is characterized by several peaks each of which would represent, mainly, a 

single metabolite. Data processing involves reducing noise and background, spectra 

alignments, peak annotation, removal of signals due by water or solvents, 

normalization, and binning [15; 16]. The final result is then a dataset of metabolites for a 

number of samples. Statistical analysis can proceed similarly to a DNA microarray 

dataset. 

 

2.2.4 - Other "omics" 

Recent generalizations of the above approaches have derived new terms such as 

lipidomics and glycomics (which perform large-scale studies of lipids and sugars 

respectively). It would not be a surprise that new terms are defined and re-defined in a 

few years1. 

 

2.3 - Data Processing 

As any experimental device, FGT produce noisy data. The objective of data processing 

is removing the noise and systematic variability produced by devices and laboratory 

instruments and reveals, at a certain level, the genuine biological signal. Another 

                                                 

1 See the site http://www.genomicglossaries.com/content/omes.asp 

http://www.genomicglossaries.com/content/omes.asp
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implicit goal is to generate data that is independent of the technology used. In addition, 

different FGT may need specific processing issues but a number of concepts described 

here can also be applied or adapted. This chapter describes the data processing 

principles using microarray technology as a reference technology making appropriate 

mention to the generality of the process when needed. The schematic representation of 

the procedure for array-based FGT is shown in Figure 2.4. The following paragraphs 

will introduce these processes.  

 

2.3.1 - Image Analysis: Spot recognition and background subtraction 

Image analysis is the process of converting the image generated from the microarray 

scanner to generate a measure of every spot. In this context, the number of pixels per 
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Figure 2.4 - General scheme for pre-processing procedures. (a) Pre-processing scheme. (b) Image 
analysis and background subtraction. (c) Log transformations. (d) Within and between 
Normalization. 
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spot, spot shape, and pixel intensity of every spot could vary significantly from 

experiments or slide quality (normally related to different stocks). This variation can be 

a systematic error or noise and is intended to be removed by the normalization process. 

The main sources of systematic error are the dye bias, labelling efficiency, and manual 

labours in the laboratory during RNA extraction and probe purification. Correction is 

generally algorithm-dependent [17; 18]. The process of image acquisition involves 

several steps, which are reviewed in Leung et al. [19]. Briefly, the process can be 

summarized in three steps: image acquisition (scanning), spot identification 

(segmentation), and signal quantification (see Figure 2.4b). Spot identification is an 

essential and a non trivial step because of the high density of spots located in the array. 

Specific algorithms for spot recognition are detailed elsewhere [20]. Once the spot is 

identified, individual pixels forming the spot can be quantified. The background can be 

estimated from areas outside the spot itself by different methods [21-26]. Finally, the 

spot can be converted to a single value. This is typically the median value of the pixel 

signal distribution. Slide manufacturers commonly provide their own scanner and 

software both tuned for optimal results. The values of the data are however different, in 

one-dye based experiments such as Affymetrix, values represent signal whereas two-

colour based arrays represent a ratio of signals. Therefore, data processing and 

normalization may differ depending of the type of data available. 

 

2.3.2 - Transformation 

In one-dye microarrays, the data is heavily biased towards low signal intensity. 

Therefore, a transformation that distributes the values smoothly is used. For this, 

Logarithm base two (log2) is preferred because it behaves reasonably well (Figure 2.4c), 

in addition an increment by one unit represents a double value which facilitates the 

interpretation into fold-changes. Other transformations such as trigonometric 

hyperbolic functions have been proposed whose advantage is that they deal with 
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negatives values [27]. For two-dye microarrays whose readout is a ratio between the 

two channels, a log2 transformation is also used to represent fold changes. However, 

ratios are subject to noise when the denominator is close to zero. 

 

2.3.3 - Normalization 

Systematic errors are introduced in labelling, hybridization, and scanning procedures. 

Normalization is the process to correct for these systematic errors without removing or 

altering biological variation. There are two different types of normalization. These are: 

within slide normalization and between slide normalization (Figure 2.4d). Within 

normalization refers to normalization applied to the same slide and it is applicable, 

commonly, for two-dye technologies correcting for dye and spatial bias [28]. Between 

normalization is used when at least two slides are analyzed and it requires that both 

slides are measured on the same scale and that their values are independent of the 

device parameters used to generate such measurements. Several methods have been 

reported and compared for normalization [21; 23; 29; 30]. 

 

2.3.4 - Gene and Probeset Summarization 

Summarization is the process of producing a single value for a gene that has been 

measured by several probes. This process is necessary since microarrays include several 

measures of the same transcript. For instance, Affymetrix arrays are based on 

oligonucleotide probesets which consist of around 20 oligonucleotides designed to 

represent individual transcripts. Other array technologies, which may rely on PCR 

generated DNA fragments spanning larger regions of the transcript, print the same 

fragment in duplicate or triplicate across the same slide. Therefore, methods that 

produce a unique measure for every gene that is the closest to a true gene expression 

value are used [22; 31]. However, this process may be optional. 
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2.3.5 - Filtering 

Genome-wide microarray experiments generate large amounts of data that is 

influenced by noise. Several algorithms and statistical approaches are sensitive to the 

quality of data, thus, low-quality data could lead to wrong conclusions. On the other 

hand, computational resources are finite, so large amounts of data may lead to futile 

processing cycles and confusing results. Filtering then removes data due to bad quality, 

uninformative, reliability, internal assay controls, proximity to background, and 

manual marking [28; 32; 33]. Consequently filtering reduces the number of variables to 

analyse. 

 

2.4 - Understanding Genome Wide Data is a High Dimensional 

Problem 

Although the data generated using different FGT are acquired in a different format, 

their analysis has common issues. One of the most important issues is a consequence of 

the extremely large number of variables measured in an experiment [34; 35]. The most 

obvious problem linked to the number of genes being measured is that the traditional p-

value is, in fact, not reliable in all cases when tens of thousands of variables are assessed. 

This problem is commonly called a multiplicity test. A number of methods have been 

recently proposed to address this issue. Some of the proposed approaches are based on 

the application of an a-posteriori correction [36; 37]. Other approaches are based on the 

application of an error model estimated from experimental data [32; 38]. In both cases 

there is an attempt to estimate the false discovery rate (FDR). Another important issue 

is that statistical tests, such as the t-test, assume that all variables are independent of 

each other. This assumption is clearly not true in a biological system where genes 
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display a strong correlation with several others (for example, because they share a 

common activator). Multivariate approaches, which test combinations of variables at 

the time, seem to be more appropriate in this context1. However, the specific variables 

involved and the optimal number of them to consider together is a parameter that 

needs to be determined using objective criteria. In addition, it is not feasible to compute 

every single combination of sets of variables for very large datasets. 

 

2.5 - Computational Methods for the Analysis of Microarray Data 

A common task is to identify genes differentially expressed between two or more 

experimental conditions. A number of statistical tests have been used for this purpose; 

some compare means (t-test) or variances (f-test). Other methods are adaptations or 

non-parametric versions of these two approaches. Recently approaches that are more 

tailored to the analysis of microarray data have been proposed (for a review of these 

methods see Speed [39]). More advanced statistical approaches are, however, required 

to predict cell physiology from its molecular signatures. In its simplest formulation this 

task can be considered a classification or a regression problem. Because of the large 

number of genes involved, an efficient VS method must be part of the analysis strategy. 

Machine learning approaches are particularly suitable for this task. The further sections 

will introduce several of the approaches that have already been applied to relate 

molecular profiles to cell physiology. 

                                                 

1 Even though sometimes univariate methods produce models displaying similar accuracy and number 

of genes to those models generated by multivariate methods. See Chapter 3. 
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2.5.1 - Detection of Differential Expressed Genes 

The most common and basic question in the analysis of FGT data is whether variables 

(genes, proteins, metabolites) appear to be down-regulated  or up-regulated between 

two or more classes of samples. For this, a statistical test is used to test the hypothesis 

that a gene is not differentially expressed (Figure 2.5). To detect differentially expressed 

genes, intuitive and formal statistical approaches have been proposed. The most used 

intuitive approach proposed in early microarray studies is fold change that is defined 

as the logarithm base 2 of the ratio between the expression value of the sample divided 

by the reference [40; 41]. Genes whose fold change is larger than certain (arbitrary) 

value, are selected for further analyses. Although fold change is a very useful measure, 

the weaknesses of this criterion are the overestimation for genes expressed at low level 

in the reference, the value that determines a "significant" change is subjective, and the 

tendency to omit small but significant changes in gene expression levels. From the 

statistical approaches, the common t-test is the easiest option, though not the best [42], 
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Figure 2.5 � Detection of Differential Expressed Genes. Large differences in gene expression are 
likely to be genuine differences between two groups of samples (A and B) whereas small 
differences are unlikely to be truly differences. Samples can be biological replicates or unreplicated 
populational samples. 
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for two groups of samples whose data follows a parametric distribution. The equivalent 

method for more than two groups of samples is the analysis of variance (ANOVA). 

These options apply for both one- and two-dye microarrays. If the data is non 

parametric, Wilcoxon or Mann-Whitney tests may be applied. Although these classical 

statistical tests are useful, other tests more suitable to microarray data have been 

proposed. For example, SAM is one of the fundamental methods in the context of 

relating genes to physiology [43]. Kim et al. [42] provides a comparison of differential 

expression statistical tests, including SAM [43], B-Statistic [44], samroc [45], Zhao-Pan 

[46], Bayes T-Statistics [47], MMM [48], and fold change.  

 

Most of the methods to detect differential expression are based on the assumption that 

the majority of samples display similar expression values for a set of samples in a given 

class. However, the criteria of group samples in a class are commonly based on certain 

physiological, morphological, or molecular peculiarities. These criteria nevertheless 

may mask sample sub-classes that are not easy to spot. To address this issue1, Tomlins 

et al. developed cancer outlier profile analysis (COPA). This method has been designed to 

detect "outlier genes" which show an increase in expression only in a subset of cancer 

samples [49]. COPA procedure is based on a non-parametric version of a 

standardization procedure which was further generalized [50].  

 

2.5.2 - Unsupervised Classification: Describing the Relationship between the 

Molecular State of Biological Samples 

One key issue in the analysis of microarray data is finding genes with a similar 

expression profile across a number of samples. Co-expressed genes have the potential 

                                                 

1 Another way to overcome this limitation is removing the assumption of any class grouping which is 

seen as an unsupervised method. These methods are revised in the next section. 
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to be regulated by the same transcriptional factors or to have similar functions (for 

example, belonging to the same metabolic or signalling pathways). The detection of co-

expressed genes may therefore reveal potential clinical targets, genes with similar 

biological functions, or expose novel biological connections between genes. On the 

other hand, description of the degree of similarity of biological samples at the 

transcriptional level may be desired [51]. It is expected that such analysis confirms that 

samples with similar biological properties tend to have a similar molecular profile. 

Although this is true it has also been demonstrated that the molecular profile of 

samples is also reflecting disease heterogeneity and therefore it is useful in discovering 

novel disease sub-classes [52]. From the methodological prospective, these questions 

can be addressed using unsupervised clustering methods. Common unsupervised 

methods applied to FGD (some revised in [53]) are Hierarchical Clustering [51; 52; 54], 

Principal Component Analysis [55-58], and Self Organized Maps [59]. These and other 

unsupervised methods are available in several software packages such as R 

(http://cran.r-project.org), GEPAS [60], TIGR T4  [61], [54], GeneSpring [62] and Genesis 

[63]. 

 

2.5.3 - Supervised Classification: Predicting the Relationship between the Molecular 

State of Biological Samples 

Supervised classification is the process of predicting sample categories once their 

representative patterns have been learned from data (Figure 2.6). In order to forecast 

the class, a rule is needed that relates data (variables) to the class. There are a number of 

methods that generate this rule. These methods are referred in statistics and machine 

learning as classifiers. Every classifier makes specific assumptions about the data and 

uses a model or algorithm to yield the rule. The number of guesses that were predicted 

by the classifier can be high or low depending on how good the classifier learned the 

data. Therefore, a robust statistical procedure referred as error estimation procedure is 
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used to evaluate the accuracy of classifiers. In addition, error should be general. That is, 

it should be approximately the same independently of the subset of samples used for its 

estimation. A concept called overfitting refers to the event where a model may describe 

well trained data but cannot describe test data that was not used for training. In this 

context, it is generally accepted that models with a high number of variables tend to 

over-fit the data. Simon argues:  

�Complex models have so many parameters that they can fit all of the random 

variations in the training data well. They find predictors and nonlinear functions 

that account for the random variations in the training data, but these discovered 

relationships do not represent real effects that exist in independent data; 

consequently, predictive ability is poor.� [64; 65].  
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Thus, within a rule, some variables would be more important than others, and some 

variables could be not needed at all. Therefore, supervised classification is commonly 

linked to the identification of signatures (genes, proteins, or metabolites) that are 

genuinely useful for the prediction. 

 

In summary, supervised classification involves classifiers and error estimation 

procedures that are connected to VS strategies (Figure 2.6, for VS methods, see next 

section). Classifiers are algorithms or mathematical models that are able to make 

categorical predictions. Classifiers are generally multivariate, that is, several variables 

are considered in the model. A number of classifiers that have been used in the context 

of FGD [66-72]. Some of the most used are Nearest and Shrunken Centroids [73], K-

Nearest-Neighbours [74], Classification Trees and Random Forest [75; 76], Discriminant  

Analysis [77-79], Neural Networks [80-82], and Support Vector Machines [83; 84]. 

 

Error Estimation is the process to determine the error in prediction made by classifiers. 

The true error made by a classifier in a population would be the proportion of wrong 

predictions from the total number of samples in the population. In practice, however, 

the number of samples is limited. Thus, a procedure to approximate the error has to be 

used. In the context of FG, the samples are scarce and the procedure to estimate error 

should be careful selected. A robust error estimation procedure also serves to compare 

the performance of different classifiers. Although there are classifiers that allow direct 

error estimation (at least on training data), in general, the procedure to estimate the 

error is performed outside the classifier. The procedure is based on defining two sets of 

samples. One used to train the classifier whereas the other is used to test the classifier 

comparing the class prediction made by the classifier against their original classes (see 

Figure 2.6). The differences among error estimation procedures are on how the training 

and testing sets are defined and how the error is mathematically determined. The most 

common error estimation procedures are resubstitution which employs the same 
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samples used for training as the testing cases, cross-validation [74; 75; 79; 85] that use a 

subset of samples for training and the rest for testing in such a way that all samples are 

part of the testing set only once, bootstrap [86-88] and out of bag [75] which use random 

sample subsets, and bolstered estimation [88] that consider the amount of the error in 

prediction. For a comprehensive comparison of error estimation strategies used by 

published work revised here, see Table 2.1. 

 

For heuristic multivariate model construction that is designed in two steps, two error 

estimations may be required: (i) inside, in the VS procedure, and (ii) outside, in the final 

designed model. Wessels et al. propose averaging 100 times a 3-fold-CV for test error 

and 10-fold-CV for train error [89]. This research thesis has, also, followed a similar 

strategy (see Chapters 3, 5, and 6). 

 

2.5.4 - Regression 

In regression, likewise in supervised classification, the objective is the prediction of 

values of a dependent variable given the values of independent variables. The main 

difference between regression and supervised classification is that regression attempts 

to predict a continuous variable whereas supervised classification tries to predict a 

categorical variable such as class. Strictly, supervised classification is a special case of 

regression where the regressive variable is categorical. For example, the logit and probit 

are commonly used as classifiers however both are regression models that predict 

quasi-categorical variables. Therefore the issues detailed in the Supervised 

Classification section such as training and testing the model and error estimation 

procedures also applies to regression (Figure 2.6).  
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Examples of the independent variables are the concentration of metabolites, proteins, 

response to treatment, growth, clinical outcome, or any other molecular, morphological, 

or physiological measure whose numerical representation makes sense progressively. 

The mathematical model that relates the independent variable to dependent variables 

(genes, proteins, or metabolites) is, commonly, a linear model (Figure 2.7). When the 

response variable is not linear, a transformation is used to make it linear if possible 

otherwise a non-linear model has to be employed. The work done by Antonov et al. [90] 

can be seen as a linear regression model where genes correlated to classes were 

successfully selected. 

 

A special case of regression to predict survival times where the data is censored is 

known as Survival Analysis. In rigorous terms, the objective is to infer the distribution of 

survival times in a population of diseased people from the survival data acquired in the 

course of a clinical study. Since the study has a finite duration, the correct survival time 
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Figure 2.7 - Selection procedure for genes associated to outcome. The expression of a positive gene 
(horizontal axis in left plot) is highly correlated with the associated outcome (vertical axis). For a non-
associated gene (right plot), the gene expression (horizontal axis) is not correlated to outcome 
(vertical axis). 
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can only be measured in the case that the patient is deceased in the course of the study. 

If the patient is not deceased in the course of the study it is defined as censored. This 

issue complicates the estimation of a survival function. In this context, a commonly 

used method to estimate the survival function is the Kaplan-Meier estimator or Product 

Limit Estimator. Kaplan-Meier plot is a visual technique commonly used in clinics to 

evaluate the distinction of survival times in different populations. An example of a 

Kaplan-Meier plot and variable selection related to survival times is shown in Figure 

2.8. To find the variables related to survival curves, a Cox Proportional Hazard 

regression model is commonly used [91].  

 

Using a univariate Cox model, Lapointe et al. have related genes to discover novel sub-

types of prostate cancer [9]. Multivariate methods have been also proposed [92]. 
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Figure 2.8 � Variable selection for Survival Times. When a gene included in a survival or hazard 
model (e.g. Cox model), if the resulted fitted curve fits reasonable well with the original survival or 
hazard curve, that gene is then considered as related to survival therefore selected (left plot) 
otherwise it is not selected (right plot). 
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2.6 - Variable Selection Methods 

Variable selection methods (VSM) are procedures to select those variables more suitable 

for a given problem. This is important in the context of FG where the number of 

variables (genes, proteins, or metabolites) is huge. Although classifiers are commonly 

multivariate and could deal with such number of variables, their accuracy is drastically 

decreased by the high content of uninformative and noisy data. This happens because 

classifiers (or regression models) tend to use all variables and can not determine 

efficiently which variables are more suitable for the prediction. Therefore, VSM are 

coupled to predictive models to select those variables more appropriate for the 

prediction. VSM can be categorized as univariate and multivariate depending on how 

many variables are assessed at the time. Such methods are described next. A 

comparison of the results applying multivariate and univariate methods for FGD is 

detailed in Chapter 3. 

 

2.6.1 - Univariate Variable Selection Approaches 

Univariate variable selection (UVS) approaches are inspired in the simplest and 

commonest approach to distinguish two populations: comparing their central value 

(mean or median). Nevertheless, other properties such as variance are also used. In this 

view, only one variable is considered at a time and the test is somehow blind to the 

remaining set. Thus, a statistical test is performed for each variable and the selection is 

simply the collection of variables that are significant. For example, if the problem is a 

supervised classification, the VS procedure could be simply the selection of those 

variables that are significantly different among classes; if the problem is a regression 

model, the selection could be those variables that are significantly correlated with the 

outcome. At this stage, no predictor (classifier or regressive model) has been built. 

Thus, univariate approaches are based on the assumption that variables that are, by 
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themselves, related to the problem (classification or regression) could be part of good 

predictors. Given that the univariate selection is "decoupled" to the predictor, the major 

drawback is that the building of a predictive model is uncertain. Nevertheless, in 

practice, univariate VSM are commonly successful. In addition, they have the 

advantage that they are simple, fast, and have none or a few parameters to optimize. To 

build the predictor, a forward selection procedure is commonly used. The overall 

process is depicted in Figure 2.9. 

 

Some of the most used univariate selection methods are Golub's centroids [7], Shrunken 

Centroids [73], t- and F-Tests [93], Wavelets [94] (see [95-97] for details), and other 

classical statistical tests. In general, any method that estimates differential expressed 

genes could be easily adapted as a UVS approach. In this context, a recent work has 
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Figure 2.9 - Univariate Variable Selection. A statistical test is used to relate genes to classes. The 
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compared1 10 parametric and non-parametric differential expressed methods [98]. 

 

2.6.2 - Multivariate Variable Selection Approaches 

The UVS approaches, described in previous sections, select variables in a univariate 

manner to build a multivariate predictor. Multivariate Variable Selection (MVS) 

techniques on the other hand are also used in combination with multivariate 

classification or regression methods. However in this approach, variables are selected 

by testing several variables in combination. MVS approaches are generally better that 

the univariate counterpart (see Chapter 3). The main reason is that univariate 

approaches cannot detect differences when a variable displays similar distributions 

between classes whilst a set of variables with distributions alike across classes can be 

good discriminators using multivariate approaches (Figure 2.10). Another reason why 

multivariate approaches surpass the univariate ones is that only one variable could not 

explain completely the behaviour of the sample class. So, perhaps another variable 

could complement this case. Thus, multivariate methods can take advantage of 

combinations of variables.  

                                                 

1 Methods compared were SAM, ANOVA, empirical bayes t-statistic, template matching, maxT, between 

group analysis (BGA), area under the receiver operating characteristic (ROC) curve, the Welch t-statistic, 

fold change, rank products, and randomly selected genes. A brief description of these methods is 

provided in the original paper. 
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The problem is, nevertheless, to search for combinations of variables that together are 

good predictors with a minimum of error under the realistic use of resources and time. 

An oversimplified generic overview of the MVS process is sketched in Figure 2.11. In 

this figure, the process after the MVS can be also viewed as a second MVS; nevertheless, 

the depicted process is closer to the trend in the literature. Unlike UVS approaches, the 

generation of models can be the result of the MVS or from a further model selection. In 

general, the process is similar to the univariate ones replacing the univariate test by the 

MVS. 
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Figure 2.10 � Combinations in the distribution of two variables. The distributions of variables 
among classes are shown in left and central panels as seen in univariate methods, sometimes well 
separated and others almost identical. Variables with almost identical distributions cannot 
discriminate between classes using univariate methods. Alternatively, multivariate methods could 
distinguish classes when at least one variable is a good discriminator (right-top and right-middle 
panels), but in addition, under certain conditions, multivariate methods could also distinguish 
classes reasonable well when variables are distributed evenly (right-bottom panel). Right panels are 
a simplistic multivariate representation. Circles enclose samples of a target class. 
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In the analysis of FG data, several search strategies have been tested. Some of them are 

general search engines independent of the predictor such as Genetic Algorithms  [74; 

79; 99-101] (see [102; 103] for details), Random Walk [104], Forward Search [105], 

Exhaustive Search [106-108], Backward Elimination (see Chapter 3), Estimation of 

Distribution Algorithms [109], and Markov Chain Monte Carlo [110] (see [87; 111; 112] 

for details) while some others, are specific search strategies coupled with a specific 

predictor such as back-propagation in Neural Networks [59; 113; 114], random search 

with classification trees in Random Forest [75; 76; 115], nested coefficients in Wavelets, 

loadings in Principal Component Analysis [56; 58; 116] and Independent Component 

Analysis [117-121], Recursive Feature Elimination [122], Ensembles [123], and Ideal 

Features [90] for support vector machines, and sub-networks in correlation-like 

matrices [124].  

 

In the following, Genetic Algorithms will be described because an implementation of 
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this method is presented in Chapter 3.  

 

2.6.2.1 - Genetic Algorithms 

Genetic Algorithms (GA) is a general search strategy created by John Holland since 

1970 [102] and have been popularized by Goldberg [103]. The name was inspired by 

how genomes evolve in a living organism. GA is popular because it can be adapted to 

specific problems relatively easily.  

 

The schematic representation and flow of a GA is shown in Figure 2.12. The initial 

concept is the creation of an artificial string called a chromosome. Imitating life in 

organisms, a chromosome in a GA is created by artificial genes where an artificial gene 

represents a parameter of the model of interest. In our case, an artificial gene could be 
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Figure 2.12 - Schematic representation of Genetic Algorithms (GA). (A) Flow chart. (B) Operation 
over GA chromosomes. 
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any gene of the set of genes measured in the microarray or any variable from any other 

FG data. The second concept, called fitness, is a function that evaluates the GA 

chromosome and assigns a measure on how good this chromosome is relative to a goal 

(mimicking nature). In classification problems, the function could be the number of 

correctly classified samples divided by the number of total samples. The procedure 

starts by creating an initial population of random chromosomes. Subsequently the 

fitness function is evaluated for every chromosome in the population. A new 

generation of chromosomes is generated by picking chromosomes randomly with a 

probability proportional to the fitness obtained for every chromosome (like natural 

selection). Therefore, the new generations will be dominated by those chromosomes 

that were highly evaluated in the fitness function. The new generation of chromosomes 

is then mated using the concept of crossover and eventually mutated at random with a 

specific probability. The mutation in our case is selecting a different gene or variable. 

Finally, the new generation is evaluated again and the process is repeated until a fixed 

number of generations or a chromosome reaches a goal. The process from the creation 

of new chromosomes until a solution is reached is called evolution. 

 

The objective of search strategies, such as GA, is to find the combination of parameters 

(genes) that produce a maximum for the fitness function. This combination is known as 

global maximum. In GA in general, like in any stochastic search strategy, there is 

uncertainty that a global maximum was achieved because the procedure is dependent 

on a random processes (initial random population, random mutation, and random 

crossover). However, the solutions found are presumed to be close to this optimal point 

and sometimes are called near-optimal solutions. In order to be more confident that the 

selected parameters in an evolution of a GA search obey a near-optimal solution, 

sometimes independent runs are performed and different solutions are analyzed. 
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The work of Li et al. [74] was the first proposal of GA for gene selection from 

microarray data (because it is a seminal paper for the work presented here, a higher 

level of detail will be provided and will be referred as GA/KNN). They used a GA as 

the VSM and K-Nearest-Neighbour (KNN) as a classifier. The fitness function 

implemented is a measure of how many samples were classified correctly in a training 

set using a leave-one-out cross validation (LOOCV) method: 
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where C(i) is the class prediction of the chromosome being evaluated for sample i, pci is 

the predicted class for sample i considering the distance to any other sample j ≠ i (leave-

one-out), classi is the original class for sample i.  

 

A common variant in GA known as niche [103] was used in GA/KNN. The use of 

elitism forces the best chromosome of every generation to pass, as is, to the next 

generation which is finally used to avoid bad movements. However, excessive elitism 

cycles could lead to populations trapped in attractors which may result in no evolution 

of their chromosomes. GA/KNN used 10 niches evolved in parallel with an elitism 

scheme. The probability of mutation was 1 (always mutate) and the number of 

mutations varied randomly from 1 to 5, except in chromosome lengths less than 11 

where only 1 mutation was allowed. In Li et al. GA/KNN, one solution is the result of 

one evolution, that is, a run of a GA algorithm until a fitness function is greater than a 

threshold or the number or maximum generations is reached. Only solutions greater 

than the threshold of 31/34 were considered. After a number of solutions have been 

polled, the frequency for a particular gene present in every solution is assumed to be 

the relative importance of that gene for KNN classification. Then, the top t most 

important genes are used as predictors. t was decided by plotting a graph for the error 
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in classification versus t in a forward selection manner (Figure 2.11). One of their results 

suggested that the higher the number of solutions collected the more stable the 

resulting frequency. They recommended polling solutions until a plot of the ranks for 

independent runs are close to a straight line. The chromosome size was fixed. They 

tested chromosome sizes of 5, 10, 20, 30, 40, and 50 concluding that larger chromosome 

sizes stabilize gene ranks and therefore produce better reproducibility. Thus, they 

suggested running their method on several chromosome lengths from 20 to 50. They 

also showed that for small chromosome lengths the genes selected are dominated by a 

few genes (attractor genes) whereas other genes appear when size is increased. Li et al. 

successfully tested and selected genes that distinguish between classes for lymphoma 

[125] and colon data [52]. 

 

Although the work of Li et al. is a milestone for the work presented in this thesis, their 

implementation shows some disadvantages. First, they used all available data in the 

selection procedure. This leads to a misinterpretation of the comparison of independent 

runs. It has been seen that gene selection, for a limited number of samples, is somehow 

dependent on the subset of samples [126]. Therefore, in comparing independent runs 

using all data, they are comparing random effects within the GA procedure rather than 

the selected variables. Second, they suggested using large chromosome sizes because it 

stabilizes the gene-frequency-ranks between different sizes. Nevertheless, it will be 

shown that test accuracy decreases while increasing chromosome size (see Chapter 5). 

Thus, increasing chromosome size leads, unfortunately, to overfitting. These problems 

were apparently derived by the combination of using all the data and LOOCV. By using 

both, there are no degrees of freedom in the selection and error estimation procedures 

between one run and another, except by the GA randomness. 

 

Instead of using a non-parametric KNN classifier, Ooi et al. have used MLHD 

discriminant functions [79]. In that work, the fitness function was based on subtracting 
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the sum of error rates in training and test sets as )(2)( ICi EESf   where EC is the 

LOOCV error rate in the training set and EI is the error rate in the test set. Error rate was 

computed fitting the parameters for the training set and evaluating the function for 

every test sample to get the fraction of misclassified samples. They speculated that 

relatively high crossover rates (pc >= 0.8) together with high mutation rates (pm >= 0.002) 

are more likely to produce a good model. The termination criterion considers only the 

number of generations which was fixed to 120 and the best chromosome evaluated in 

all generations was retained. Instead of limiting the chromosome length to a particular 

value, they implemented variable length approach using the first artificial gene as 

chromosome length (Figure 2.13). A mutation in the chromosome length (position 0) 

produces a change in the effective chromosome size.  

 

 

Figure 2.13 - Schematic representation of variable length chromosome. The maximum length, in genes, 
of the classification model is M. However, the active model consists of k which is encoded as the first 
gene "0". 

 

Ooi et al. showed that running their GA/MLHD algorithm several times produced very 

similar chromosomes. Therefore, unlike Li et al., Ooi et al. do not run the algorithm 

several times to pool chromosomes and select by frequency. They argue for doing so 

different models are built in a further procedure which has an effect on the complexity 

present in multiple classes. Finally, they think that MLHD is a better classifier for 

multiple classes against KNN because the distance metric used in KNN are invariably 

less sensitive as data dimensionality increases [127] and because the GA/KNN does not 

use the resulting near-optimal chromosomes. 

 

Gene M � Gene 3 Gene 2 Gene 1 Gene 0 

k = k Genes 
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Likewise in the Li et al., one of the disadvantages in the Ooi et al. implementation is the 

use of all samples in the selection procedure. Although they included training and test 

sets, they used both sets in the fitness function. Thus they biased the search for those 

models that perform well in the test set which may explain why they found similar 

models in different runs. It would be expected that by using variable sized 

chromosomes may lead in a large number of generations needed to optimize for this 

additional parameter, surprisingly they reported 120 as an upper-limit which seems too 

low. Their variable size implementation may display undesired properties because 

genes are mutated randomly. Thus, previously added genes are less likely to be 

removed than new profitable genes. 

 

Other successful uses of GA include the work of Fröhlich who linked GA to SVM as 

classifier [99] where the GA search contains the gene subset and specific SVM 

parameters. A more refined but complex approach was proposed by Ho et al. using 

fuzzy rules defined as "if gene A is up-regulated and gene B is down-regulated, then the 

probability of disease K is high" [100].  

 

2.7 - Introducing Functional Analysis and Biological Interpretation to 

Gene Sub-Sets 

The methods mentioned here do not use biological knowledge for the selection of the 

genes. The selection criterion is simply to obtain the best possible model within the 

space that has been explored. For example, if our interest is developing models that 

explain the physiological state of tumour cells by means of gene expression profiles 

observed in nearby normal cells, from a biological prospective, the expected type of 

genes could be considered. Because the interaction between physically separated cells is 

only possible through the diffusion of secreted factors our algorithms could be forced to 
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explore preferentially a subset of genes fitting our expectation. Similarly, when 

modelling the behaviour of bacterial cells, operon structures could be used as well as 

knowledge available in the literature. 

 

How can this be achieved? It is not sufficient to select a subset of genes and ignore all 

other possible solutions. Instead, a conditional probability of a certain gene to be 

included in the model dependent on its function or combine different types of data 

could be defined and used [128; 129]. In a Bayesian framework this can be done 

defining a prior distribution dependent on the function of each individual gene. 

Regardless of the modelling technique used, knowledge can be included in the VS 

strategy. In a GA this can be easily achieved setting different mutation rates that are 

dependent on pre-existing knowledge. The inclusion of biological knowledge in 

searching for models has been already done in different applications. For example, 

Gavaert et al. [130] included clinical information (CI) for Bayesian networks in three 

manners, (i) as if CI were additional variables integrating to the original matrix of gene 

expression, (ii) mixing learned models for gene expression and CI by weights, and (iii) 

learning the structure separately then mixing both structures. They concluded that only 

(ii) and (iii) were better than not making any mixing. 

 

2.8 - Concluding Remarks  

Microarray technology has been successfully used to relate gene transcription to 

different behaviours like cell cycle [116] and diseases like lymphomas [7] and prostate 

cancer [8; 9]. 

 

Microarray data is affected by systematic errors and noise. Pre-processing techniques 

are required to avoid these undesired effects keeping biological variability as intact as 
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possible. 

 

One important problem using microarray data is a consequence of its high volume of 

data. Both classical statistical procedures and state of the art machine learning 

approaches have been proposed to select the information related to some desired 

observable outcome. Multivariate methods have been recently applied in this sense and 

proven to provide robust solutions even though univariate solutions are not found. 

 

Multivariate methods coupled to stochastic search strategies such as GA or MCMC 

have been demonstrated to be model-independent, fast solution finding, relatively easy 

implementation, and easy translation from model to biology. Another important 

property of these stochastic methods is that the inclusion of biological knowledge is 

feasible. In the special case of multivariate models of two independent variables, an 

exhaustive search is feasible.  

 

To build a multivariate model several univariate and multivariate methodologies use a 

ranking strategy that is then fed to a forward selection procedure (Figure 2.11). Recall 

that in these cases the forward selection explores the space starting always with the top 

variables and proceeds in order. So, in this case the space starting with variable two is 

never explored. However, in principle, instead of using a forward selection approach, 

any more versatile or explorative VS approach could be used (included the full version 

of forward selection). The motivation to use specifically forward selection in such 

limitation should correspond to historical reasons rather than to technical ones. So, to 

me, it should be expected that using better search engines such as GA or MCMC should 

improve the model in size and accuracy. 

 

A very large number of supervised and non supervised methods have been applied and 

tested to analyse large scale functional genomics data. In this review, several methods 
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from classical statistics (t-test, ANOVA), data exploration (clustering and PCA), and 

state of the art machine learning techniques (ICA, NN, SVM, Fuzzy Logic, Wavelets) 

have been introduced. Table 2.1 shows a comparison on the methods used to analyse 

FG data for selected references cited in this chapter. Many of these methods have 

already become common analytical tools in bioinformatics. The importance of error 

estimation methods to avoid overfitting has also been stressed. Several methods can be 

adapted in order to study different biological systems like host pathogen interaction 

using microarray or other FG experiments.  
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Table 2.1 - Comparison of methodologies from publications reviewed in this Chapter. Model building 
column is specified only when it is different from the combinatorial search strategy.  

Aim Datasets Processing- 
Filtering 

Genes 
Used 

Search 
Size 

Comb. 
Search 

Strategy 

Model 
Building 
Method 

Classifier Train/ 
Test 

Train 
Error 

Reference 
 

Prediction 72 Leukemia  6817 1 Exhaustive S2N Ratio Centers+ 
Voting 

38/34 Loocv 

Discovery       SOM   

Golub et al. 

Recurrence  
Genes 

62C + 41N 
Prostate 
(Survival) 

mean cent 
F/B > 1.5x 
>=3x var 

5153/ 
26260 

1 Exhaustive  SAM 62/62 Perm 

Distinction Gleason   1 Exhaustive  SAM 62/62 Perm 
Distinction Capsular   1 Exhaustive  SAM 62/62 Perm 

Lapointe et al. 

Relapse 52T + 50N 
Prostate 

mead cen 
<5 fold 

12600 4+   KNN 
 

 Loocv 

Prediction T/N S2N (Golub) 456 1 Exhaustive  Correlation   
Prediction Gleason r corr perm 5265 1 Exhaustive  Correlation   

Singh et al. 

Distinction 8 Hum CL 
IR/nIR 

gene avg 6800 1 Exhaustive  SAM 8/8 Perm Tusher et al. 

Prediction 88 Round Blue 
Cell Tumors 
(SRBCT) 

 2308 1 Exhaustive Shrunken 
Centroids 

Discriminant 
Shrunken 
Centroids 

63/25 10cv Tibshirani et al. 

Outliers 
Reduction 
Prediction 

Rat nervous 
system 
Mice cancer 

 112 
 
2050 

ALL ROBPCA  Discriminant 
Analysis 

 Loocv Hubert et al. 

Prediction 72 Leukemia  
(Golub) 

Variance top 3930/ 
7129 

ALL djPCA + 
Forward 

Residuals 
+ PCA 
score 

F-test: 
disjoint PCA 
Residuals 

38/34 Perm 

Prediction SRBCT Variance top 2308 ALL djPCA + 
Forward 

Residuals 
+ PCA 
score  

F-test: 
disjoint PCA 
Residuals 

63/25 Perm 

Bicciato et al. 

Association  
Cell Cycle 

Cell Cycle  
Scerevisae 

 4579 ALL   SVD   Alter et al. 

Prediction 62 Colon (Alon) Log 2000 5-50 GA Forward KNN 40/17 Loocv 
Prediction 47 Lymphoma Log2 

(Alizadeh) 
4026 5-50 GA Forward KNN 34/13 Loocv 

Li et al. 

Prediction  
MultiClass 

61 Cancer CL  
(Ross) 

Ratio 
Variance top 

1000/ 
9703 

<(11-15) GA  MLHD 2/1 Loocv 

Prediction  
MultiClass 

198 GCM 
(Ramaswamy) 

variance top 1000/ 
16063 

<(11-15) GA  MLHD 144/54 loocv 

Ooi et al. 

Prediction 22T + 21N 
Breast  
(Hedenfalk) 

 3226 Varied MCMC  
Gibbs 

 Probit  Loocv 

Prediction 72 Leukemia  
(Golub) 

 7129 Varied MCMC 
Gibbs 

 Probit 38/34 Loocv 

Eun Lee et al. 

Prediction 36 Drug  
Treated 

Kruskal- 
Wallis 

4700 Varied RF  Decision 
trees 

36/OOB Loocv Gunther et al. 

Prediction 72 Leukemia  
(Golub) 

 7129 All-1 � RFE-SVM  SVM 31/31 Loocv Guyon et al. 

Prediction 
(Proteomics) 

69T+253N 
Prostate  
 

 15154 Opt SVM  JOIN/ENS  Resub Jong et al. 

Prediction 22N+40T Colon  
(Alon) 

M=0, 
SD=1 

2000 20-1000 
 

GA  SVM-Linear 50/12  
x50  
(10CV) 

svm/ge Fröhlich et al. 

Prediction Lymphoma 0~1 4026 ALL, W NN  NN 2/3 cv O'Neill et al. 
Prediction 72 Leukemia 

(Golub) 
MHT,  
t-Ratio 

50/ 
7129 

ALL, W NN Weights NN 38/34 Resub Bicciato et al. 

Discovery 
MultiClass 

72 Leukemia  
(Golub) 

Min~Max 
< 100 

5855/ 
7129 

ALL SOM Adapted 
Golub 

SOM 38/34  Hsu et al. 

Prediction Several Varied Varied 2 Exhaustive  SVM-like  Loocv Grate et al. 
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(continuation) 
Aim Datasets Processing- 

Filtering 
Genes 
Used 

Search 
Size 

Comb. 
Search 

Strategy 

Model 
Building 
Method 

Classifier Train/ 
Test 

Train 
Error 

Reference 
(et al.) 

Distinction 59 Calibration  12640 1 Forward  Hotelling T2 1/0 Perm 
Distinction 82C+72N  

Liver (Chen) 
(Chen) 11386/ 

17400 
1 Forward  Hotelling T2 1/0 Perm 

Distinction 34M + 44F 
Breast (van't 
Veer) 

  1 Forward  Hotelling T2 1/0 Perm 

Lu et al. 

Prediction 90C+22N 
Gastric 
(Chen) 
(Others) 

Golub Varied Selected Clustering 
Model 

 Model 
+Variance 

 Loocv Qiu et al. 

Prediction Multiple 
Tumor 

Forward 
Variance 

Varied Opt Maximum 
Margins 

 Voting 144/54 Loocv Antonov et al. 

Prediction Mice Diff exp 
genes 

  R.Walk  Small 
Distance 

 kFold-cv Xiao et al. 

Prediction Golub, 
Armstrong, 
Alon 

 7129, 
12582, 
2000 

Varied Ranks+ 
Average 
Clusters 

 KNN, SVM, 
C4.5, Bayes 

72/72, 
72/72, 
62,62 

Loocv Wang et al. 

Prediction Golub   1 Exhaustive Logist Reg KNN  Varied Guan et al. 
Prediction Several Top30+ PCA+ 

Clustering 
Several All 100 NN  Voting Varied splits Liu et al. 

Prediction Several  2000~ 
12625 

All fastICA A 
coefficients 

Nearest 
Centroids 

2/3 , 1/3 Loocv Huang et al. 

Association SRBCT 
AML+ALL, 
Breast Cancer 

none 2308 
7129 
? 

1 Exhaustive Wavelets    Subramani et al. 

Prediction Rheumatoid 
Arthritis 

 999 Varied 
1~300 

MCMC  Probit 2/3, 1/3 Loocv Sha et al. 

Prediction Breast Cancer published 70 7 Exhaustive  KNN, Cart, 
LDA 

2/3, 1/3 Bolstered Choudhary et. 
al. 
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CHAPTER 3  

The Development of a Statistical Modelling Environment Based 

on a Truly Multivariate Variable Selection Strategy 

 

Large datasets are generated by genome-wide studies. Selecting those variables 

involved in certain sample phenotypes is a challenging task. Univariate and 

multivariate methods have been proposed to this end. Multivariate approaches seem to 

be more appropriate because they consider combinations and interactions of variables 

in a single model. However, there is no multivariate variable selection framework that 

can be easily configured and used in a variety of situations. Therefore, this chapter 

shows GALGO, a generalized multivariate variable selection framework. The 

usefulness of GALGO is demonstrated. An illustrative tutorial is also presented. Other 

uses of GALGO have been presented in Chapters 4 and 5 which includes the study of 

cell-to-cell communication and the study of functional genomics data other than 

transcriptomics. 

 

3.1 - Introduction 

Functional Genomics Technologies (reviewed in Chapter 2) allow us to measure 

thousands of transcripts, proteins, and metabolites in single experiments. In order to 

make sense of these complex datasets, methods with select relatively small subsets of 

biological measurements that are associated to cell function are essential. In this 

context, many statistical modelling techniques have been applied to microarray data 

[see Chapter 2 and reference 131]. These approaches can be subdivided into univariate 

and multivariate analysis. Univariate approaches test one feature at a time for their 
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ability to discriminate a dependent variable (Figure 2.15). The top-most significant 

features are then used to develop a statistical model [for an extensive comparison of 

classification methods in the context of a UVS strategy see reference 132]. Multivariate 

approaches take into consideration that variables are influencing a biological outcome 

in the context of networks of interacting genes rather than in isolation and can take into 

consideration synergy between genes, proteins, or metabolites. Although these 

approaches have been very successful, there are still issues in the development of 

multivariate models from large datasets. These issues are related to the extremely large 

number of possible models that would need to be evaluated to identify the most 

predictive. In order to address these issues, stochastic search strategies have been 

developed and tested on Functional Genomics datasets (FGD). Among these, Markov 

Chain Monte Carlo (MCMC) and Genetic Algorithms (GA) procedures have been used 

successfully in the analysis of microarray data [74; 79; 110]. Although a comparative 

study of these methods, analyzing functional genomics data, has not been published, 

the GA procedure seems to be computationally more efficient. Chapter 2 described the 

GA procedure in section 2.6.2.7. Briefly, GA starts from a random population of models 

and evolve good local solutions by mimicking the process of natural selection using 

mechanisms such as higher rate of replication of the more effective variable subsets 

(chromosomes), mutation to generate variants, and crossover to improve combinations 

[103]. The fact that sets of variables (arranged in chromosomes) are tested in 

combination during the selection process ensures a truly MVS. Past implementations of 

GA in FGD [74; 79] are limited to a specific GA procedure, classification methods, and 

error estimation strategy. Moreover, their output is a plain text file that is often difficult 

to interpret. In order to address these issues, the GALGO package has been developed. 

To provide flexibility, GALGO was implemented in an object-oriented fashion and has 

been coupled with a general-purpose fitness function to guide the variable selection. In 

the initial release, several fitness functions for solving classification problems were 

included, documentation for implementing ad-hoc fitness functions to solve general 
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optimization problems were also made available (the package, manual, and 

supplementary information can be downloaded from http://www.bip.bham.ac.uk/ 

bioinf/galgo.html). This chapter will show an overview of the implementation, a quick 

tutorial of GALGO package, and a comparison of the accuracy and size of the models 

designed using GALGO for classification problems from microarray data with a 

number of other methods. The results suggest that GALGO is a useful tool in the 

analysis of large scale FGD.  

 

 

MULTIVARIATE VARIABLE SELECTION IN GALGO

Gene 1
Gene 2
Gene 3

.

.

.

.
Gene N

Class A
Samples

Class B
Samples

Genetic Algorithm Search:
Evolutionary selection of 
�good� gene combinations 

using a Multivariate 
Classification Method

(each run generates a single model)

Good 
Classifier
Models

Model 1
Model 2
Model 3

.

.

.

.
Model M

311 16  498  72

87  24  311 88

976 64  72 287

Frequency of
Genes in 

Good Models

Variable 
Ranking

(genes sorted 
by frequency)

Model
Selection

Error

M
odel Size

�better�
genes

�worse�
genes

Minimum    
Error

Genes

(A)
(B)

(C)

(D) (E) (F)  
Figure 3.1 - Schematic representation of MVS in GALGO. From a dataset of two classes of samples 
(A), a genetic algorithm (B) searches and evolves combination of genes (chromosomes representing a 
multivariate model) that distinguish between classes using a classification method. A number of 
models are generated performing this procedure several times (C). These models may differ in gene 
content but with similar high classification accuracy. Genes appearing multiple times in different 
models suggest these genes are important for the classification problem in a multivariate context. 
Therefore, the number of times (frequency) a gene appears in a model is computed (D). These 
frequencies are used to rank genes (E). Then, a forward selection strategy is used to select a 
representative model that generates the lowest error (F). 

http://www.bip.bham.ac.uk/
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3.2 - Implementation 

The GALGO package has been conceived as an implementation of MVS using a GA in 

an object-oriented paradigm under the R language (Figure 3.1). GALGO uses a GA 

procedure for selecting models with a high fitness value and implements functions for 

the analysis of the populations of selected models as well as functions to reconstruct 

and characterize representative summary models [74]. 

 

3.2.1 - The GA procedure and GALGO Object-Oriented Design 

GALGO uses Genetic Algorithms for selecting variable subsets (detailed in section 

2.6.2.7 in Chapter 2). In short, the procedure starts from a random population of 

variable subsets of given size (defined as chromosomes). Each chromosome is assessed 

for its ability to predict a dependent variable and has a certain level of accuracy. The 

general principle is to replace the initial population with a new population that includes 

variants of chromosomes with higher classification accuracy and to repeat the process 

enough times to achieve a desired level of accuracy. The progressive improvement of 

chromosome population is driven by a number of operators that mimic the process of 

natural selection (selection, mutation, and crossover). In order to increase the 

proportion of the solution space that is explored, independent chromosomes 

populations can be evolved in partially isolated environments, named niches [103]. 

Chromosomes can occasionally migrate from one niche to another ensuring that 

particularly good solutions can recombine. In GALGO, a collection of niches is called 

world. A detailed description of the procedure is available in GALGO manual and 

tutorial (http://www.bip.bham.ac.uk/bioinf/ galgo.html). 
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The object design of the GALGO package reflects the structure just described (Figure 

3.2).  In GALGO, the Gene object represents a variable (representing mRNA, proteins, 

metabolites, or any other measure) whereas the Chromosome object stands for a set of n 

variables that will be included in the multivariate model that will be evaluated using a 

fitness function. A Niche object organizes chromosomes in populations whereas the 

World object may include several niches. The Galgo object arranges all these objects, 

implements the GA evolutionary process, and saves the best chromosome. Finally, a 

BigBang object collects the result of several GA searches for further analysis. All these 

objects have properties that allow users to control each part of the process. To provide 

further flexibility, common GA operators such as Reproduction, Mutation, Crossover, 

Migration, and Elitism have been included as rewritable methods [see reference 103 for 

details about this operators]. Another important characteristic of GALGO is that the 

user can add custom defined properties to add new functionality.  

�mutate�mutate
�evaluate
�decode

�evaluate
�progeny

�offspring
�mutate
�crossover

�plots

�evaluate
�progeny
�plots

�evaluate
�evolve
�plots

�blast
�accuracies
�model generation
�plots

DATA
best chromosomes
gene frequencies
statistics shapesgene values

best
max
statistics

best
max

best
max

Gene  Chromosome  Niche  World  Galgo  BigBang  

Fitness Function   
 

Figure 3.2 - Simplified object-oriented structure of the GALGO package. Boxes represent objects, 
which are connected by one-to-many relationships hierarchically. Major object properties are 
marked with solid squares above boxes whereas core methods are marked with solid circles 
below boxes. Dashed box represents the fitness function, which are included in GALGO for 
several classification methods. Dashed lines represent logical connections. 
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3.2.2 - Classification Methods in GALGO 

In the current implementation, parametric and non-parametric classification methods 

such as KNN, MLHD discriminant functions, nearest centroid, SVM, classification trees, 

NN, and RF have been included (see Chapter 2 for an overview of these methods). The 
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Figure 3.3 - Implementation and application of GALGO package. (A) General strategy (see text). 
(B) Specification of data input, error estimation, classification (fitness function) and GA 
parameters. (C) Monitoring evolution of GA process. The values of chromosomes inside the GA 
across generations and the evolution of the maximum fitness can be traced. (D) Monitoring 
models acquired. Every time the GA generates a final chromosome, this chromosome is collected 
and can be used to view the frequency for each gene, the stability of their ranks, the generation 
distribution, and the evolutionary fitness distribution. These plots serve as diagnostics during 
and after the whole process. (E) Analysis of genes in models. Collected chromosomes are analyzed 
in most frequent genes, number of genes present in chromosomes, top-genes overlapping in 
chromosomes and gene dependency in chromosomes. (F) Analysis of accuracy and specificity of 
models. The models or chromosomes can be assessed for: classification accuracy in test and/or 
train cases, confusion matrix, overall accuracy distribution, accuracy per data split, and 
determination of important genes within chromosome. (G) Development of representative model. 
(H) Model and chromosome visualization. Heatmaps and PCA decomposition plots can be used 
from the representative model or any other chromosome. 
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first three were implemented in C whereas the others were adapted from original R 

packages. 

 

3.3 - Application 

The aim in this section is to describe a typical application of GALGO in a real dataset. 

The analysis protocol has been subdivided into four steps (for an overview of the whole 

process, see Figure 3.3, for details, see GALGO manual, tutorial, and supplementary 

material in http://www.bip.bham.ac.uk/bioinf/galgo.html).  

 

3.3.1 - Step 1: Setting-Up the Analysis 

In this initial stage of the analysis the user specifies the input data, the dependent 

variable (e.g. class labels), the statistical model (classifier), the desired accuracy (fitness), 

the error estimation scheme, and the parameters that define the GA search 

environment. Gene expression values can be provided in a common text file or as a 

matrix object, which may be the result of pre-processing using other R tools such as 

Bioconductor [133]. The classification method may be one of the six already 

implemented supervised classification methods, or a user-defined function. The error 

estimation can be defined at two levels: the classic training and test validation strategy 

using a single or multiple random splits, and inside the training process using k-fold 

cross-validation, random splits, or re-substitution error [see section 2.5.3.2 in Chapter 2 

and reference 131]. The common GA parameters are automatically configured but can 

also be specified. 

 

http://www.bip.bham.ac.uk/bioinf/galgo.html).
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3.3.2 - Step 2: Searching for Relevant Multivariate Models 

Every evolutionary cycle in the GA procedure starts from a random population of 

chromosomes and may lead to a diverse collection of good local solutions. For this 

reason a sufficiently large number of chromosomes should be selected in order to have 

a good representation of the solution space. Ideally such numbers should be sufficiently 

large to ensure that all solutions that can be found with the GA procedure are 

represented in the population of selected chromosomes. In order to make this possible 

two real time monitors that provide information on the chromosome composition have 

been designed. These are the level of convergence of the solutions and the evolution of 

the fitness values. These diagnostic plots are useful tools to assess when the searches 

converge to a stable population that can then be analyzed further. 

 

3.3.3 - Step 3: Refinement and analysis of the Population of Selected Chromosomes 

The chromosomes selected from the GA procedure have a fixed length defined at the 

first step of the analysis. Although the models have the desired classification accuracy, 

there is the possibility that not all genes included in the model contribute significantly 

to the fitness value. Therefore, a backward selection strategy (revised in section 2.6.2.6 

in Chapter 2) has been implemented to derive a chromosome population where only 

genes effectively contributing to the classification accuracy of the model are included 

(refinement). This function can also be used within the selection process in step 2.  

 

GALGO implements a number of functions for the analysis of the chromosome 

populations. These produce a text or graphical output and describe: 1) occurrence of 

genes in the model population, 2) gene composition of models, 3) model accuracy, 4) 

relative importance of genes within models, 5) evolution of the fitness function during 

chromosome selection, and 6) prediction of new samples. In addition, gene signatures 



 53 

associated to specific chromosomes can be visualized using two dimensional clustering 

heatmaps, PCA plots, gene profiles, or class profiles. 

 

3.3.4 - Step 4: Development of a Representative Statistical Model 

The aim of this part of the analysis is to develop a single representative model from the 

population of selected chromosomes. In order to do so, a forward selection strategy has 

been implemented (see section 2.6.2.5 in Chapter 2) based on the step-wise inclusion of 

the most frequent genes represented in the chromosome population [74]. Every model 

developed with GALGO can be stored and used to predict the identity of novel 

samples. 

 

3.4 - Quick GALGO Tutorial 

This section describes a typical application of GALGO in biomarker discovery using 

large scale expression profiling data. The aim of this illustrative analysis is to identify 

gene sets that are predictive of disease type in a panel of leukaemia patients. This 

tutorial will describe the main and basic functionality implemented in GALGO to 

introduce the reader to the entire process. More advanced features in each step are 

detailed in the GALGO manual (http://www.bip.bham.ac.uk/bioinf/galgo.html). This 

tutorial assumes certain knowledge about the R programming environment 

(http://cran.r-project.org). The analysis pipeline implemented below is summarised in a 

schematic form in Figure 3.3. This tutorial uses the dataset described in section 3.5.2.1 -. 

 

3.4.1 - Step 1 � Setting-Up the Analysis 

The GALGO package includes a data-frame object (named ALL) that contains the 

normalized expression values of the datasets used in this tutorial. The object is a matrix 
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in which rows are genes and columns are samples. The identity of the samples is 

defined in another object (ALL.classes). Both objects are loaded making available for the 

user using the function data() as follows. In R type: 

 

> library(galgo) 
> data(ALL) 
> data(ALL.classes) 
 

Of course, user data from an external text file can be loaded specifying the parameter 

file instead of data and perhaps classes (refer to the GALGO manual for details) in the 

wrapper function. The wrapper function configBB.VarSel is used to specify the data, the 

parameters for the GA search, the classification method, the error estimation method, 

and any user-defined parameter. This function builds a BigBang object that contains the 

data and the values of all parameters and it eventually stores the results of the analysis.  

 

To set up the GA search type in R:  

 

> bb.nc <- configBB.VarSel( 
data=ALL,  
classes=ALL.classes,  
classification.method="nearcent",  
chromosomeSize=5,  
maxSolutions=300,  
goalFitness = 0.90,  
main="ALL-Tutorial",  
saveVariable="bb.nc", 
saveFrequency=30,  
saveFile="bb.nc.Rdata") 
 

The code above configures a BigBang object that will store 300 chromosomes 

(maxSolutions=300) which will contain 5 genes (chromosomeSize=5) that correspond to 

models developed using a nearest centroid classifier (classification.method=�nearcent�) 

with a classification accuracy of at least 90% (goalFitness=0.9). The other parameters 

define the name of the saved object that is created (saveVariable=�bb.nc�), the frequency 
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of saving the results in a file (saveFrequency=30) and the name of the file where the 

results are saved (saveFile=�bb.nc.Rdata�). 

 

The wrapper function configBB.VarSel can also be used to configure additional 

functions. Please refer to the GALGO manual for an extensive description of the 

configBB.VarSel parameter specification. To show the available parameters and their 

descriptions type: 

 

> ?configBB.VarSel 
 

3.4.2 - Step 2 - Evolving Models/Chromosomes  

Once the BigBang and Galgo objects are configured properly, the user is ready to start 

the procedure and to collect chromosomes that are good predictive models of the 

tumour class. This is achieved by calling the method blast(). 

 

In R type: 

 

> blast(bb.nc) 
 

This procedure can last a long time, from minutes to hours, depending on the degree of 

difficulty in the classification problem, in the classification method, and in the GA 

search parameters. The default configuration displays the course of BigBang and Galgo 

objects to the console (controlled by the verbose parameter) including the approximated 

remaining time.  

 

This is an example of the text output for one GA cycle (61 generations): 

 

[e] Starting: Fitness Goal=0.9, Generations=(10 : 200) 
[e]     Elapsed Time    Generation      Fitness %Fit    [Next Generations] 
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[e]     0h 0m 0s        (m)     0       0.64103 71.23%  +++++++...+......... 
[e]     0h 0m 6s                20      0.87179 96.87%  .................... 
[e]     0h 0m 14s               40      0.87179 96.87%  .....+..+.....+.+... 
[e]     0h 0m 22s               60      0.92308 102.56% + 
[e]     0h 0m 22s       ***     61      0.92308 102.56% FINISH: 2164 1612... 
[Bb]    300     299     Sol Ok  0.92308 102.56% 61      22.16s  3722s   4054s   14 (0h 
0m 14s ) 

 

Lines starting with �[Bb]� correspond to the current collection of the BigBang object. 

This line shows respectively the number of evolutions (300 in this case), the number of 

evolutions that have reached the goal fitness (299), the status of the last evolution (Sol 

Ok � the goal fitness was reached), the fitness value of the best chromosome from the 

last evolution (0.92408) along with its percentage relative to the goal fitness (102.56%), 

the number of generations it needed (61), the process time spent in last evolution (22.16 

seconds), the accumulated process time spent in all evolutions (3,722 seconds), the 

accumulated real time (4,054 seconds, which considers the time spent by saving the 

object and other operative system delays), and the remaining time needed to collect the 

previously specified number of chromosomes (14 seconds). 

 

Lines starting with �[e]� represent the output of the evolutionary process (the genetic 

algorithm search). The first line of each evolution shows the goal fitness and the 

constraints in generations. Successive lines show, in columns, the elapsed time, the 

current number of generation (by default refreshed every 20 generations) and the 

current best fitness along with the percentage relative to the goal fitness. The last 

column summarizes the behaviour of the next generations, �+� means that maximum 

fitness of the current population has increased, �-� means that it has decreased, and �.� 

means that it has not changed. �G� appears occasionally when the fitness goal has been 

reach but the algorithm can not end because of a constraint in the number of 

generations. 

 

The default configuration would show three plots summarizing the characteristics of 

the population of selected chromosomes. This plot is shown in Figure 3.4. The top-most 
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plot shows the number of times each gene has been present in a stored chromosome, by 

default the top 50 genes are coloured and the top 7 are named. The middle plot shows 

the stability of the rank of the top 50 genes, which is designed to aid in the decision to 

stop or continue the process once the top ranked genes are stabilized. When genes have 

many changes in ranks, the plot shows different colours; hence the rank of these genes 

is unstable. Commonly the top 7 �black� genes are stabilized quickly, in 100 to 300 

solutions, whereas low ranked �grey� genes would require many thousands of 

solutions to be stabilized. The plot at the bottom is the distribution of the last 

generation of the GA process to have produced a solution. It is intended to show how 

difficult is the search problem for the current configuration of GA. If peaks are observed 

at either end, a configuration change is advisable (see GALGO manual).  

 

Once the blast method ends, you can continue with the analysis step. Nevertheless, the 

blast process can be interrupted (by typing the ctrl-c keys in Linux or esc in windows) 

and the results analyzed straight away. It is recommended to break the process in the 

evolution stage, not in the BigBang update stage as that may disrupt the object. The 

process can be resumed by typing the blast command again. The result of the last 

evolution might be lost but the accumulated results should remain intact. 
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Resuming the process will have the effect of restarting the Galgo object as in any cycle. 

The possibility to interrupt the process is very useful for initial exploratory analysis 

since the most updated results can be analysed and can be saved anyway using the 

saveObject method. Instead of interrupting the process, one can open a new R console 

and benefit from the use of progressive saving strategy that updates the current object 

called �bb.nc� into a file named �bb.nc.Rdata� once at least 30 solutions have been 

 
Figure 3.4 - Default monitoring of accumulated chromosomes in the BigBang object. 
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reached or the saveObject method has been called (controlled by saveVariable, saveFile, 

and saveFrequency parameters respectively). To do this, a previously saved object can 

be loaded in GALGO using the loadObject method in a new R console window: 

 

> library(galgo) 
#change directory to yours 
> loadObject("bb.nc.Rdata") 
 

Once the file is loaded, the loadObject method displays a summary of the loaded 

variables and their classes and you can proceed to the analysis step. 

 

GALGO also has the functionality to summarise the population of chromosomes within 

each generation. The code below shows the modifications to the definition of the 

BigBang Object that are required to activate this function (marked in red). 

 

> x11() 
> x11() 
> bb.nc <- configBB.VarSel( 
data=ALL,  
classes=ALL.classes,  
classification.method="nearcent",  
chromosomeSize=5,  
maxSolutions=300,  
goalFitness = 0.90,  
saveVariable="bb.nc",  
saveFrequency=30,  
saveFile="bb.nc.Rdata",  
main="ALL-Tutorial",  
callBackFuncGALGO=plot,  
callBackFuncBB=function(...) dev.set(2);plot(...);dev.set(3);  
) 
 

The topmost plot in Figure 3.5 shows the current values of the genes in chromosomes in 

order to show the explorative process. The middle plot shows the evolution of the 

fitness relative to the goal in the course of generations. The plot at the bottom shows the 

history of the maximum chromosome. 
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3.4.3 - Step 3 - Analysis and Refinement of Populations Chromosome 

3.4.3.1 - Are we getting solutions? 

The first question to answer is whether one is actually getting acceptable solutions. By 

default, configBB.VarSel configures the BigBang object to save all chromosomes even if 

they did not reach the goalFitness value. The reason is that one may need to assess the 

success of the configured GA search in all searches, not only in those that reach 

solutions. To analyze the success of the configured GA search, one can look at the 

evolution of the fitness value across generations, using the code below. 

 

 
Figure 3.5 - Real-time monitoring of the Genetic Algorithm search. The horizontal axis of the top 
and bottom plots display unranked gene indexes. The vertical axis of the top panel is displaying 
the chromosome index whereas the vertical axis of the bottom panel is displaying the generation 
number. In the middle plot the horizontal axis is displaying the generation whereas the vertical 
axis is displaying the fitness value. 
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> plot(bb.nc, type="fitness") 

 

Figure 3.6 shows that on average, the search is reaching a solution in generation 40, 

which is very sensible. The blue and cyan lines show the average fitness for all 

chromosomes and for those that have not reached a goal respectively. These lines 

intend to delimit an empirical �confidence interval� for the fitness across generations. 

Grey lines describe the course of each evolution. The characteristic plateau effect could 

be useful to decide if the search is not working to reach our goal, which is marked with 

a dotted line. See the GALGO manual if you cannot reach solutions. 

 

It is possible to separate the evolutions that have reached the goal using the following 

code. 

 

> par(mfrow=c(2,1)) 
> plot(bb.nc, type="fitness", filter="solutions") 
> plot(bb.nc, type="fitness", filter="nosolutions") 
 

The �filter� parameter can be used almost in any function and in any plot type. 

  

 
Figure 3.6 - Evolution of the maximum fitness across generations in 303 independent searches. 
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3.4.3.2 - What is the overall accuracy of the population of selected models? 

Once the chromosomes have been selected it is needed to assess the classification 

accuracy of the corresponding models using one of the three error estimation strategies 

described in BOX 1 (see Chapter 2 for details) that were specified in the first step. The 

default configuration will estimate the accuracy of the models using strategy 3 as 

described in BOX 1. 

 

Use the following command to plot the overall accuracy. 

 

> plot(bb.nc, type="confusion") 
 

The output of this function is shown in Figure 3.8. The horizontal axis represents the 

individual samples grouped according to class whereas the vertical axis represents the 

predicted classes. The barcharts represent the percentage of models that classify each 

sample in a given class. For example, samples in the second column (marked in red) 

belong to the HYP+50 class. These are, on average, correctly classified 85.6% of the 

times. However, on average, they are �wrongly� classified 2.5% of the times as EMLLA, 

5.4% of the times as MLL, 1.5% as T, and 5% as TEL. The plot also reports the value of 

sensitivity and specificity of the prediction. These are measures of the overall prediction 

per class. The sensitivity of the prediction for a given class k is defined as the proportion 

of samples in k that are correctly classified. The specificity for a given class k is defined 

as the number of true negatives divided by the sum of true negatives and false 

positives. 
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BOX 1: Error estimation strategies in GALGO 
There are several methods to estimate classification accuracy. These are all based on the fundamental 
principle that a correct estimate of accuracy must be performed on a set of samples that has not been used 
to develop the model itself. Classical approaches involve splitting data into training and test sets. The 
training set is used to estimate the parameters of the model whereas the test set is left aside and it is used 
to assess the accuracy of the model itself. This approach is considered the most appropriate when a large 
number of samples is available. However, when the number of samples is relatively small, as it is the case 
of a typical functional genomics experiment, the test set could be too small to estimate the classification 
accuracy with acceptable precision. In order to estimate the accuracy with small datasets it is possible to 
use a different statistical technique called cross-validation (see Chapter 2). The dataset is split in k different 
training and test sets. The classification accuracy is then defined as the average of the classification 
accuracies calculated, by default, on the test sets for each of the k splits. GALGO uses a technique called 
bootstrapping [86] to generate the splits.  
 
Within GALGO one can use three main strategies for estimating classification accuracy. In the first 
strategy a simple cross-validation or resubstitution error strategy is used to compute the value of the 
fitness function that guide chromosome selection in the GA procedure. The classification accuracy of the 
selected chromosome is defined as the fitness value (Figure 3.7A). The second strategy (Figure 3.7B) is a 
classic training and test procedure where the accuracy is estimated on the test data. In the GA process, 
the value of the fitness function is estimated by cross validation on the training data. Other approaches, 
such as .632 bootstrap [86], combine training and test accuracies, which can be specified as error weights 
through the parameter classification.test.error = c(.368, .632) for training and test respectively. The third 
strategy is to select the chromosomes as in the second strategy and to compute the classification accuracy 
of the selected chromosomes as the average of the classification accuracy estimated on k data splits as 
exemplified in Figure 3.7C. GALGO defines the initial split (common to both strategies) as Split 1.  

 

Figure 3.7 - Schematic Representation of the Estimation of Classification Accuracy. (A) Strategy 1, 
using all data as training and test. (B) Strategy 2, classical training and test. (C) Strategy 3, k repetitions 
of the strategy 2. The respective values of the parameters, train and test, needed to perform each 
strategy is shown at the bottom of the schema. 
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To obtain the confusion matrix, specificity, and sensitivity measures in a numeric 

format use the following code. 

 
> cpm <- classPredictionMatrix(bb.nc) 
> cm <- confusionMatrix(bb.nc, cpm) 
> sec <- sensitivityClass(bb.nc, cm) 
> spc <- specificityClass(bb.nc, cm) 
 

cpm is a matrix with the number of times every sample as been predicted as any other 

class. For instance, let's analyze the first rows of cpm. 

 

 
Figure 3.8 - Overall classification accuracy. 
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> cpm[1:3,] 
            EMLLA HYP+50  MLL    T TEL (NA) 
E2A.PBX1.C1 10837   1418 1062 1473 663    0 
E2A.PBX1.C2 13654    101  767  113 212    0 
E2A.PBX1.C3 13729    262 1225  218  19    0 
 
The output above shows that E2A.PBX1.C2 sample has been predicted 14847 times (the 

row sum), in which 13654 times (92%) as been predicted as EMLLA, 101 times (0.6%) as 

HYP+50 and so on. The number of predictions depends on how the error is estimated in 

terms of training and test sets, and the number of chromosomes (type 

?classPredictionMatrix.BigBang). By default, the prediction is made on test sets only for 

each chromosome (303 in the plot shown here). Initially, configBB.VarSel function 

generated 150 random test sets and each test set was made using 1/3 of the samples. 

Thus, on average, a sample would be predicted 303 * 150/3 times, that is 15150 times, 

which is comparable to 14847 for the second sample. In certain circumstances, some 

classification methods cannot make a prediction based on the data, �(NA)� column 

summarise those cases (for nearest centroid method, it will be always 0). 

 

To evaluate the error in the first training set (as they were evolved), one can use the 

following changes in parameters. 

 

> plot(bb.nc, type="confusion", set=c(1,0), splits=1, 
filter="solutions")  
 

set parameter specify that the error estimation should be computed in the training set 

only. splits parameter limit the estimation to one partition, the original used to evolve 

the chromosomes. filter specify that only chromosomes that reach the goal fitness will 

be evaluated. In this plot (not shown) some samples do not show their respective �bar�, 

which indicates that those samples were never predicted. This is because a limit for the 

evaluation was used to the train set in the split #1, which should contain 155 samples 

approximately (2/3=66%).  
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To evaluate a single chromosome or any other model in the same circumstances use the 

following code. 

 

> plot(bb.nc, type="confusion", set=c(0,1), splits=1, 
chromosomes=list(bb.nc$bestChromosomes[[1]]))  
 

In this case, the bars do not represent an average prediction because each test sample 

were predicted once (1 model in 1 split only). 

 

3.4.3.3 - Is the rank of the genes stable? 

Stochastic searches (such as GA) are very efficient methods to identify solutions to an 

optimization problem (e.g. classification). However they are exploring only a small 

portion of the total model space. The starting point of any GA search is a random 

population. Different searches therefore are likely to provide different solutions. In 

order to extensively cover the space of models that can be explored, it is necessary to 

collect a large number of chromosomes.  GALGO offers a diagnostic tool to determine 

when the GA searches reach some degree of convergence. Our approach is based on the 

analysis of the frequency that each gene appears in the chromosome population. As 

chromosomes are selected, the frequency of each gene in the population will change 

until no new solutions are found. Therefore, monitoring the stability of gene ranks 

(based on their frequency) offers the possibility to visualize that the GA has detected a 

representative population of models.  

 

To produce the rank stability plot type: 

 

> plot(bb.nc, type="generankstability") 
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By default, the most frequent 50 genes are shown in 8 different colours with about 6 or 

7 genes per colour. Figure 3.9 and Figure 3.10 shows two extreme examples. Horizontal 

axis in these figures shows the genes ordered by rank. Vertical axis shows the gene 

frequency (in the top part of the y axis) and the colour coded rank of each gene in 

previous evolutions. Consequently, for a given gene, changes in ranks are marked by 

different colours (below the frequency). Figure 3.9 shows that the first 7 black genes 

have been stable at least during the last 50 solutions whereas some red genes have 

recently swapped from green. Thus, red and green genes are not yet stable; this is 

because 303 chromosomes are not enough to stabilize these genes. Probably, 1000 

chromosomes would generate more stable results, nevertheless, the more chromosomes 

the better. For a comparison, Figure 3.10 shows the result for the same run used here 

but using 1,000 chromosomes, which shows more stability in ranks, at least, for black, 

red, and perhaps green and blue marked genes. Thus, top genes are being stabilized in 

order; first black genes, then red, green and so on. 

 
Figure 3.9 - Gene Ranks across past evolutions. 
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3.4.3.4 - Are all genes included in a chromosome contributing to the model 

accuracy? 

The chromosome size is fixed by an initial parameter in GALGO. This implies that 

some of the genes selected in the chromosome could not be contributing to the 

classification accuracy of the correspondent model. GALGO offers the possibility to 

identify these genes and remove them from the chromosomes. This can be done after 

the selection is completed or within the selection process itself. In order to perform this 

task a backward selection procedure has been implemented (see Chapter 2).  Briefly, the 

methodology works as follows. A given gene is removed from the chromosome. The 

classification accuracy of the resulting shorter chromosome is then computed. If this is 

not reduced, another elimination cycle is performed. If the classification accuracy is 

 
Figure 3.10 - Rank Stability in 1000 chromosomes. 
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reduced the gene is left in the chromosome and another elimination cycle is performed. 

The process continues until all genes have been tested. 

 

In order to perform this procedure outside the blast method type: 

 

> rchr <- lapply(bb.nc$bestChromosomes[1:300], 
robustGeneBackwardElimination, bb.nc, result="shortest") 
 

The distribution of the size of the refined chromosome population can be plotted using 

the following function. 

 
> barplot(table(unlist(lapply(rchr,length))), main="Length of 
Shortened Chromosomes") 
 

Figure 3.11 shows that a large proportion of the chromosomes require all five genes to 

accurately classify the samples. Considering that the problem trying to be solved here is 

a five-class problem (multi-class), the fact that in this example the majority of the 

models actually need five genes is not particularly surprising. However, it is common 

to build models with more genes than classes; indeed the majority of the datasets 

 
Figure 3.11 - Refinement of chromosomes. 
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actually contain only two classes (e.g. treated-untreated, cancer-normal, wild-mutant, 

etc). Therefore, it is advisable to perform this analysis regularly. 

 

3.4.4 - Step 4 - Developing Representative Models 

The GA procedure provides a large collection of chromosomes. Although these are all 

good solutions of the problem, it is not clear which one should be chosen for 

developing a classifier, for example, of clinical importance or for biological 

interpretation. For this reason there is a need to develop a single model that is, to some 

extent, representative of the population. The simpler strategy to follow is to use the 

frequency of genes in the population of chromosomes as criteria for inclusion in a 

forward selection strategy [74]. The model of choice will be the one with the highest 

classification accuracy and the lower number of genes. However GALGO also stores 

alternative models with similar accuracy and larger number of genes. This strategy 

ensures that the most represented genes in the population of chromosomes are 

included in a single summary model. 

 

This procedure should be applied to the population of chromosomes generated by 

initial GA search. However, it can also be applied to the population of chromosomes 

that is the result of backward selection procedure explained in the previous section. 

 

The forward selection model can be generated by typing: 

 

> fsm <- forwardSelectionModels(bb.nc) 
> fsm$models 
> ?forwardSelectionModels.BigBang # Help System 
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Figure 3.12 shows the results from forward selection procedure. The selection is done 

evaluating the test error using the fitness function in all test sets. The output is a list of 

values including the models whose fitness is higher than 99% of the maximum (or 

above a specified value using �minFitness� parameter). fsm object contains the best 

models (29 in this case). The model labelled as 12, containing the 33 most frequent 

genes, was the best model in terms of accuracy. The other 28 models included in fsm are 

99% as close to the best model. Models included in the result can be viewed in heat 

maps, PCA space, or profiles. To visualize the best model in a heatmap plot use the 

following code. 

 

> heatmapModels(bb.nc, fsm, subset=12) 

 
Figure 3.12 - Forward selection using the most frequent genes. Horizontal axis represents the genes 
ordered by their rank. Vertical axis shows the classification accuracy. Solid line represents the 
overall accuracy (misclassified samples divided by the total number of samples). Coloured dashed 
lines represent the accuracy per class. 1 model resulted from the selection whose fitness value is 
maximum (black thick line), but 29 models were finally reported because they were very similar in 
absolute value. 
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Details for visualization of models (or chromosomes) are given in the GALGO manual. 

The classification accuracy can be plotted extracting the information for any of these 

specific models, as in the example below (plot not shown).  

 

> plot(bb.nc, type="confusion", 
chromosomes=list(fsm$models[[1]])) 
> cpm.1 <- classPredictionMatrix(bb.nc, 
chromosomes=list(fsm$models[[1]]))  
> cm.1 <- confusionMatrix(bb.nc, cpm.1) 
> mean(sensitivityClass(bb.nc, cm.1)) 
[1] 0.9863334 
> mean(specificityClass(bb.nc, cm.1)) 
[1] 0.9965833 
 

From the mean values of sensitivity and specificity one can conclude that the selected 

model is, by far, more accurate than any original evolved chromosome.  

 

3.4.5 - Visualizing Models and Chromosomes 

Gene signatures associated within individual chromosomes or in a representative 

model (derived by forward selection) can be visualised in GALGO using a number of 

 
Figure 3.13 - Heatmaps. From a model resulted from forward selection (A) and an original evolved 
chromosome (B). 
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graphical functions. This section will illustrate the use of heat maps, PCA, and other 

methods. For, the typical heat map format, use the following commands.   

 

> heatmapModels(bb.nc, fsm, subset=1) # forward 
> heatmapModels(bb.nc, bb.nc$bestChromosomes[1]) 
 

 

The results are shown in Figure 3.131. 

 

In order to visualise the relation of samples using the genes selected in a chromosome 

or in a representative model one can also use principal component analysis 

representation. In order to do this, type the following command (see Figure 3.14). 

 

> pcaModels(bb.nc, fsm, subset=1) 
> pcaModels(bb.nc, bb.nc$bestChromosomes[1]) 

                                                 

1 Remember that the hierarchical clustering of samples given in the heatmap is the product of an 

unsupervised algorithm, which may differ from the classification method of our choice. Therefore, the 

relative sample order in the heatmap, the original class, and the predicted class by the model may all be 

different. Nevertheless, many of the times, the hierarchical clustering gives a good overview. 

 
Figure 3.14 - Depiction of a model (left) and a chromosome (right) in PCA space. 
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By default, only the first four components are shown, which can be changed specifying 

the npc parameter. 

 

Another useful way to show a model is using the profiles of samples within a class as 

shown in Figure 3.15, which is the result from the code. 

 

> plot(bb.nc, fsm$models[[1]], type="sampleprofiles") 
 

 

3.4.6 - Gene content in Models 

Another interesting analysis is how top-ranked genes are included in models, that is, 

what is the gene-composition of models. Figure 3.16 shows the composition of the 

models in terms of top-ranked genes. By default, the chromosomes are sorted by their 

most top-ranked genes; hence, chromosomes with similar top-ranked-genes are stacked 

together. Chromosomes are shown in vertical and genes in horizontal. For example, one 

can see easily which genes have been combined with the first top-gene. 

 

> plot(bb.nc, type="geneoverlap",cex=.75) 
 

 
Figure 3.15 - Sample profiles per class. 
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3.4.7 - Predicting Class Membership of Unknown Samples 

An important characteristic of any model is their ability to make predictions. Models 

designed using GALGO can be evaluated with a complete unknown or blind dataset. 

The following code exemplifies how to make predictions in a new �dummy� dataset for 

all chromosomes collected in the BigBang object.  

 

> data(ALL) 
# dummy data: the first 15 samples from original ALL data 
# which all must be from EMLLA class 
> dummy <- ALL[,1:15]  
> ?predict.BigBang 
> cpm <- predict(bb.nc, newdata=dummy, 
func=classPredictionMatrix, splits=1:10) 
> cpm 
> plot(bb.nc, cpm, type="confusion") 
 

 
Figure 3.16 - Overlapped genes in models. 



 76 

In the above code, dummy was temporarily appended to the original data. Then 

classPredictionMatrix was run for all chromosomes. splits is a parameter used in 

classPredictionMatrix (which was used to illustrate the use of user-parameters for any 

function specified in func). The result of the plot is shown in Figure 3.17 where the new 

data were labelled as �UNKNOWN�. The black bars in these samples indicate that they 

were predicted as EMLLA (as expected).  

 

To predict new data using an individual model, one may use the classPredictionMatrix 

method using the chromosomes parameter (see ?classPredictionMatrix.BigBang), such as 

in the following code. 

 

> cpm <- predict(bb.nc, newdata=dummy, 
func=classPredictionMatrix, chromosomes=fsm$models[1]) 
> cpm 
> plot(bb.nc, cpm, type="confusion") 
 

 

Figure 3.17 - Prediction for unknown samples (the last 15 samples in the right). 
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3.4.8 - Tutorial Summary 

The configBB.VarSel configures the necessary objects and specifies the right parameters 

to make the entire process to work in different contexts and testing strategies with the 

classification method of your choice. In addition, the implementation of new 

classification methods is simplified providing your specific fitness function in the 

classification.userFitnessFunc parameter (type ?configBB.VarSel). 

 

It has been shown in this section how to build multivariate statistical models for a 

classification problem using GALGO. So far, a basic analysis with the dataset included 

has been performed. The GALGO manual contains more advanced analysis explaining 

many of the available options in each step that can be customized for particular data, 

classification methods, GA searches, user defined fitness functions, error estimation, 

process parallelization, GA parameters, and troubleshooting. 

 

3.5 - A Comparison between GALGO and Univariate Variable Selection 

Methods 

To show the utility of GALGO, a comparison of a UVS strategy (Figure 2.15) using F-

statistic and d-statistic versus the MVS implemented in GALGO has been performed 

(Figure 3.1). This comparison includes a number of classification methods in UVS and 

MVS. The models developed have been analysed in respect to classification accuracy, 

number of genes required to achieve the highest classification accuracy and the identity 

of the genes selected in the models. In order to make sure that the comparison is of 

general validity three different datasets have been used. 

 

The results support the use of MVS in developing statistical models and in particular 

support the use of GALGO as a general software environment for model selection. 
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3.5.1 - Methods 

3.5.1.1 - Variable selection 

In this comparison three variable selection strategies have been used. These are: The F-

test, d-statistics and GA. 

 

3.5.1.2 - Classification methods 

F-statistics and GA have been compared with the following methods: 1) Diagonal 

Linear Discriminant Analysis (DLDA)1, 2) Support Vector Machines (SVM), 3) Random 

Forest (RF) and 4) K-Nearest-Neighbours (KNN). Another well established tool PAM 

[see reference 73 and section 2.6.1.2 in Chapter 2] that uses a d-statistics based in 

centroid distances in combination with shrunken nearest centroids was also compared 

versus GA in combination with nearest centroid (NC). 

 

3.5.1.3 - Construction of a representative model 

To generate a representative model, a Forward Selection (FS) strategy in both 

multivariate and univariate model selection was used (Figures 2.15, 2.17, and Figure 

3.1). Briefly, an initial model is created using the first two genes from an ordered list of 

genes (using p-values or d-statistic for UVS or gene frequency using GALGO). Then, 

the model is assessed using a classification method to estimate the classification error. 

Subsequently, the model is lengthened with the next gene in the ordered list and the 

resulting model is re-assessed. This cycle continues until all genes in a list have been 

                                                 

1 The MLHD method implemented in GALGO is equivalent linear discriminant analysis (LDA). 



 79 

included. The model whose classification error is the lowest is chosen. In the case of a 

draw, the smallest model is selected. 

 

3.5.1.4 - Method-specific gene signatures 

To determine the degree of overlap between the different models at a gene identity 

level, a pool gene set containing the genes from the models generated with all five 

methods have been built. For each gene in a given model, the number of times it 

appears in the pool set was counted. Genes appearing only once were defined as 

model-specific. 

 

3.5.1.5 - Implementation 

To develop classifiers with a UVS strategy (F- or d-statistics), the web-based tool 

TNASAS [60] (http://tnasas.bioinfo.cipf.es), which is part of the Gene Expression 

Pattern Analysis Suite (GEPAS, http://gepas.bioinfo.cipf.es) have been used. All 

classification methods tested in combination with GA have been used in the GALGO 

implementation with default settings with the addition of a backward elimination step 

for model enhancement. The representative models were developed from 1,000 

chromosomes.  

 

3.5.2 - Datasets 

3.5.2.1 - ALL-Subclasses Dataset (ALLS) 

This dataset, developed by Yeoh et al. [134], describes the expression profile of 327 acute 

lymphoblastic leukaemia (ALL) patients representing 7 different disease sub-classes. 

The authors have used Affymetrix GeneChips.  In this comparison the five largest 

classes were selected (EMLLA, Hyp+50, MLL, T, and TEL including respectively 27, 64, 

http://gepas.bioinfo.cipf.es)
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20, 43, and 79 samples). The original dataset, downloaded from 

http://www.stjuderesearch.org/data/ALL1/ comprising 12,600 genes, have been filtered 

to eliminate the most invariant genes. Briefly, the standard deviation and difference 

between maximum and minimum expression values were calculated for each gene. The 

genes were ranked by these values, and if they were within the top 15% for either, were 

selected for further analysis. The dataset after filtering contained the expression values 

for 2,435 genes. 

 

3.5.2.2 - ALL-AML Dataset (ALL/AML) 

This dataset developed by Golub et. al. [7] describes the transcriptional state of 47 acute 

lymphoblastic leukaemia (ALL) and 25 acute myeloid leukaemia (AML) patients. Data 

were processed as in the original publication. Briefly, intensity values were re-scaled 

such that overall intensities for each chip are equivalent. This was done by fitting a 

linear regression model using the intensities of all genes with "P" (present) calls in both 

the first sample (baseline) and each of the other samples. The inverse of the "slope" of 

the linear regression line becomes the (multiplicative) re-scaling factor for the current 

sample. This was performed for every chip (sample) in the dataset except the baseline 

which gets a re-scaling factor of one. A further processing step was performed to 

eliminate genes that were not detected in the majority of the samples. For this reason 

every gene that was not expressed (Flagged as M or A) in more then 80% of the samples 

was filtered out. 

 

3.5.2.3 - Breast Cancer Dataset (BC) 

This dataset was developed by van�t Veer et al. [135] representing 78 patients 

subdivided in two groups with different clinical outcomes in which 44 patients with no 

metastases developed within the first five years versus 34 patients positive for 

http://www.stjuderesearch.org/data/ALL1/
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metastases within the first five years. Data were normalized as described in the original 

publication. Genes were filtered out when the confidence level that a gene�s mean ratio 

is significantly different from 1 were larger than 0.001 using all samples. 

 

3.5.3 - Results 

Table 3.1, Table 3.2, and Table 3.3 show the results of the analysis performed using 

GALGO with five different classification methods (NC, KNN, SVM, MLHD, RF) on 

three datasets  (BC, ALL/AML, ALLS). The tables report the classification accuracy and 

model size for the best representative models developed using forward selection and 

for the top five individual chromosomes selected by the GA search. These tables show 

that in all cases GALGO can identify accurate models of a relatively small size. Figure 

3.18, Figure 3.19, and Figure 3.20 summarize the results of the comparison between 

GALGO and UVS strategies. 

 

In the Breast Cancer dataset (Table 3.1 and Figure 3.18) GALGO produced models with 

higher classification accuracy regardless of the classification method used. The error 

was diminished by about the half. Except for one case (RF), the size of the models 

developed with GALGO was comparable or smaller than the models developed with 

the UVS strategy (Figure 3.18). The largest difference was observed in models 

developed with the KNN method (these require 2920 genes with univariate model 

selection and 31 genes with GALGO).  
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Table 3.1 � GALGO results for Breast Cancer dataset. GA � Genetic Algorithms, FS � Forward 
Selection, BE � Backward Elimination. DLDA � Diagonal Linear Discriminant Analysis, PAM � 
Shrunken Centroids, PAMR � Shrunken Centroids R package, KNN � K-Nearest-Neighbours, SVM � 
Support Vector Machines, NC � Nearest Centroid, MLHD � Maximum Likelihood Discriminant 
Functions, RF � Random Forest. 

BREAST CANCER (2 Classes) 
Method KNN SVM NC MLHD RF 

Model Size Error Size Error Size Error Size Error Size Error 
GA+FS 1st 32 0.16 12 0.17 35 0.15 4 0.18 47 0.17 
GA+FS 2nd 33 0.16 9 0.18 11 0.15 - - 37 0.18 
GA 1st 5 0.20 5 0.17 5 0.18 5 0.17 5 0.18 
GA 2nd 5 0.21 5 0.18 5 0.19 5 0.18 5 0.24 
GA 3rd 5 0.22 5 0.19 5 0.19 5 0.18 5 0.24 
GA 4th 5 0.22 5 0.19 5 0.19 5 0.19 5 0.25 
GA 5th 5 0.22 5 0.20 5 0.19 5 0.19 5 0.25 
GA+BE+FS 1st 31 0.15 12 0.17 23 0.14 4 0.18 40 0.18 
GA+BE+FS 2nd 32 0.15 - - 9 0.15 - - 14 0.19 
GA+BE 1st 5 0.21 5 0.17 3 0.17 4 0.17 4 0.18 
GA+BE 2nd 3 0.21 4 0.17 4 0.17 3 0.17 3 0.23 
GA+BE 3rd 4 0.21 2 0.18 3 0.18 4 0.17 2 0.24 
GA+BE 4th 4 0.21 2 0.18 5 0.18 4 0.18 4 0.24 
GA+BE 5th 3 0.22 2 0.18 4 0.18 3 0.19 3 0.24 

 

In the ALL-AML dataset (Table 3.2 and Figure 3.19) the classification accuracy of models 

developed with univariate and multivariate models was comparable (GALGO gave 

models in the range between 3% and 10% of error whereas the univariate methods gave 

models with error in the range between 3% and 7%). However, the models developed 

2920

2 5
10

51

4 5

47

31

23

DLDA SVM RF KNN PAM MLHD SVM RF KNN NC

  0.32

0.36 0.35

0.44

0.36

0.17 0.17 0.17
0.15 0.14

DLDA SVM RF KNN PAM MLHD SVM RF KNN NC

  

Classification Error Model Size

GALGOF-
statistic

d-
statistic

GALGOF-
statistic

d-
statistic

BREAST CANCER

 

Figure 3.18 � Results from Breast Cancer dataset. 
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using GALGO were markedly smaller in size (a range of 4 to 49 genes respect to 79 to 

1697 in the UVS). 

 

 

Table 3.2 � GALGO results for ALL-AML dataset. Abbreviations as in table 1. 
ALL-AML Dataset (2 Classes) 

Method KNN SVM NC MLHD RF 
Model Size Error Size Error Size Error Size Error Size Error 
GA+FS 1st 42 0.06 50 0.07 37 0.05 9 0.14 47 0.08 
GA+FS 2nd 37 0.06 23 0.07 24 0.06 17 0.14 45 0.08 
GA 1st 5 0.11 5 0.07 5 0.13 5 0.10 5 0.12 
GA 2nd 5 0.12 5 0.11 5 0.15 5 0.10 5 0.15 
GA 3rd 5 0.13 5 0.11 5 0.15 5 0.11 5 0.15 
GA 4th 5 0.13 5 0.12 5 0.15 5 0.12 5 0.16 
GA 5th 5 0.13 5 0.13 5 0.15 5 0.12 5 0.16 
GA+BE+FS 1st 45 0.04 25 0.06 29 0.03 13 0.12 49 0.07 
GA+BE+FS 2nd 40 0.05 24 0.06 27 0.03 34 0.13 32 0.08 
GA+BE 1st 3 0.08 4 0.07 2 0.12 4 0.10 2 0.12 
GA+BE 2nd 3 0.09 3 0.11 2 0.12 5 0.10 4 0.14 
GA+BE 3rd 3 0.11 5 0.11 5 0.13 4 0.11 4 0.15 
GA+BE 4th 3 0.11 3 0.12 4 0.14 4 0.11 5 0.15 
GA+BE 5th 4 0.12 3 0.12 3 0.15 2 0.11 4 0.16 

 

In the ALLS dataset (Table 3.3 and Figure 3.20) GALGO generated either model with 

comparable accuracy (the maximum difference in classification accuracy was 2%) or 

higher accuracy with respect to univariate models (1% against 17% using RF and 1% 
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Figure 3.19 � Results from ALL-AML dataset. 
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against 13% with NC). As in the other datasets the size of the models developed using 

GALGO was markedly smaller than models developed with univariate methods (the 

range of model size in this dataset was between 4 and 49 whereas the range of model 

size in the univariate selected models was between 75 and 1697).  

 

 

Table 3.3 � GALGO results from ALL-Subclasses dataset. Abbreviations as in table 1. 

ALL-Subclasses Dataset (5 Classes) 
Method KNN SVM NC MLHD RF 

Model Size Error Size Error Size Error Size Error Size Error 
GA+FS 1st 47 0.00 10 0.02 50 0.01 23 0.01 14 0.01 
GA+FS 2nd 13 0.01 9 0.03 16 0.02 15 0.02 10 0.02 
GA 1st 5 0.06 5 0.05 5 0.06 5 0.06 5 0.08 
GA 2nd 5 0.06 5 0.05 5 0.07 5 0.06 5 0.08 
GA 3rd 5 0.06 5 0.05 5 0.07 5 0.06 5 0.08 
GA 4th 5 0.06 5 0.06 5 0.07 5 0.06 5 0.08 
GA 5th 5 0.06 5 0.06 5 0.07 5 0.06 5 0.09 
GA+BE+FS 1st 47 0.00 10 0.02 50 0.01 20 0.01 19 0.01 
GA+BE+FS 2nd 13 0.01 9 0.03 16 0.02 15 0.02 10 0.02 
GA+BE 1st 4 0.06 5 0.05 5 0.06 5 0.06 4 0.08 
GA+BE 2nd 5 0.06 5 0.05 4 0.07 5 0.06 4 0.08 
GA+BE 3rd 4 0.06 5 0.06 5 0.07 5 0.06 4 0.08 
GA+BE 4th 5 0.06 5 0.06 5 0.07 4 0.06 5 0.09 
GA+BE 5th 4 0.06 4 0.06 5 0.07 5 0.06 5 0.09 
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Figure 3.20 � Results from ALL dataset. 
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In two datasets the model size is dramatically different making obvious that 

multivariate models are very effective in identifying different gene subsets. In the 

Breast Cancer dataset, gene sets are of a more comparable size. However, in Breast 

Cancer the error was remarkably smaller.  

 

Table 3.4 summarizes the overlap in gene composition of the models developed with 

the different methods in the Breast Cancer dataset. These results suggest that 

multivariate model selection tend to give different gene subsets respect to the UVS 

strategy. In interpreting these results however it should be taken into account that the 

classification error of models developed from UVS strategies was very high. 

 

Table 3.4 � Method-Specific genes. The table shows the genes that have been selected by only one 
method, hence these genes could not be obtained by the other methods. 

 
 
Method 

 
 
Model Size 

 
Method-Specific  
Genes 

Percent of  
Method-Specific 
Genes 

F+DLDA 2 0 0% 
F+SVM 5 0 0% 
F+RF 10 0 0% 
F+KNN 2920 - - 
d+PAM 51 38 75% 
GA+BE+MLHD 4 2 50% 
GA+SVM 5 3 60% 
GA+FS+RF 47 32 68% 
GA+BE+FS+KNN 31 11 35% 
GA+BE+FS+NC 23 11 48% 
 

3.6 - Conclusion and Discussions 

GALGO is a user-friendly R package designed for developing multivariate statistical 

models using large-scale �omics� data. In the context of MVS in large-scale datasets 

GALGO performs well and does not require any coding. For a more general use, its 
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object-oriented structure allows the definition of new methods by simply recoding the 

fitness function. GALGO allows the development and analysis of statistical models 

using a unique wrapping function. These characteristics make GALGO an ideal 

environment for both Bioinformaticians and computer minded biologists. The 

availability of a very broad spectrum of R libraries with general statistical (CRAN) or 

with specific machine learning functionality (such as MLinterfaces and ipred) makes 

GALGO an ideal prototyping environment for any analysis method that utilizes GA as 

a search strategy 

 

The models developed have been analysed in respect to classification accuracy, number 

of genes required to achieve the highest classification accuracy, and the identity of the 

genes selected in the models. All these factors are important in determining the 

usefulness of variable selection methodologies. High classification accuracy is 

obviously a very desirable property but in order for the models to be biologically 

interpretable and of practical use, it is also important that the gene set is a manageable 

size. The identity of the genes is also a very important factor. One of the reasons why 

multivariate methods may be a good option is that they allow the identification of 

genes that contribute to a biological effect in association. These could not be discovered 

by UVS methods where every gene is tested in isolation. If univariate and multivariate 

approaches provide models with comparable classification accuracy but with different 

genes then the two approaches have to be considered complementary as they are likely 

to represent different underlying biological processes.  

 

It will be shown in Chapter 5 that GALGO also produces similar multivariate models 

displaying comparable accuracies than those generated by a Markov Chain Monte 

Carlo using a probit classifier. In addition, GALGO provides more flexibility in 

classifiers, GA search, and user interface than other tools published so far. 
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The results shown here suggest that the methodology implemented in the R package 

GALGO tends to produce models with comparable or better classification accuracies 

than UVS strategies. The multivariate selected models generally use a smaller number 

of genes than univariate models in all datasets and methods tested. These results 

support the use of a multivariate model selection strategy in the analysis of FGD and in 

particularly support GALGO as a general tool. 

 

In conclusion, GALGO is a valuable, robust, and easy to use tool for developing 

multivariate statistical models using multivariate variable selection. 
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CHAPTER 4  

The Application of GALGO to Biomarker Discovery in 

Proteomics and Metabolomics 

 

Genomic technologies generate large datasets for a few samples. Besides 

Transcriptomics, other "omics" such as Proteomics and Metabolomics are increasingly 

being used as research tools for functional genomics which require computational tools 

for data analysis. The selection of features such as transcripts, proteins, or metabolites, 

related to sample classes is an important task to design novel clinical tests and to guide 

further research revealing some of the biological components. This Chapter will show 

two successful multivariate variable selection analyses based on the proteomics of 

Rheumatoid Arthritis and metabolomics of Vitreoretinal Disease. 

 

4.1 - Introduction 

Methods previously used in transcriptomics will now be applied to proteomics and 

metabolomics data. In general, the work will focus on multivariate variable selection 

using GALGO (see Chapter 3) to analyse two case studies, which are described next. 

 

4.1.1 - Case 1: Early Rheumatoid Arthritis 

Arthritis is a disease in which joints are chronically inflamed. The inflammation is 

commonly accompanied by pain, swelling, and stiffness. There are a several types of 

Arthritis. One of these is Rheumatoid Arthritis (RA) which is considered a chronic, 



 89 

inflammatory autoimmune disorder. In RA, joints are attacked by the immune system 

causing painful joint inflammations. To diagnose RA, several clinical and molecular 

factors have been used. Two of the most common molecular factors are the presence of 

rheumatoid factor (RF) and Cyclic Citrullinated Peptide antibody (CCP) in blood. It is 

known that individuals who are positive for both RF and CCP will suffer or are actually 

suffering RA. However, RF and CCP are both positive only in around 50% of 

individuals that suffer RA. Due to the inflammation caused by the immune response, 

several other related molecular factors are also detected in RA such as tumour necrosis 

factor alpha (TNF-á), interleukins IL-1, IL-6, IL-8 and IL-15, transforming growth factor 

beta, fibroblast growth factor and platelet-derived growth factor. Whether any of these 

molecules or combinations of them is better predictors of RA needs to be demonstrated. 

In this context, Dr. Karim Raza (IBR, Medical School, University of Birmingham, UK) 

[136] has designed an experimental setup that includes performing a number of clinical 

tests along with a proteomic approach measuring levels of more than 30 cytokines from 

individuals at the very early stages of RA. More precisely, samples are taken within a 

few weeks from the first referral to the general practitioner when it is impossible to 

predict the disease associated with the symptoms. Patients are followed in the 

subsequent months until their test is clear (typically after 6 months from referral). The 

aim of our modelling approach has been to develop models based on a combination of 

blood cytokines that are predictive of disease outcome. Our results are encouraging and 

show that markers other than CCP and RF can be developed that are more sensitive 

and specific than the currently employed CCP and RF autoantibody test. Furthermore, 

a model could be designed using an identified marker together with CCP and RF that 

are also more sensitive. 
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4.1.2 - Case 2: Vitreoretinal Disease 

Uveitis is the inflammation of the uvea sited in the middle layer of the eye. The uvea 

includes the iris, ciliary body and choroid. Vitreoretinal Disease (VD) like other forms 

of uveitis or inflammatory disease lacks specific biomarkers that define either disease 

type or response to treatment. A range of possible endpoints is used to define outcome, 

but it is not clear how these relate to each other in different patients or studies [137]. 

This is particularly relevant for clinical trials when comparing a novel treatment to 

established therapy. Several studies have identified inflammatory mediators, such as 

cytokines, chemokines and growth factors or single nucleotide polymorphisms with 

disease type, activity, and response to treatment; however, there is no clear result that 

can relate to clinical response [138-142]. In this study, Dr. Stephen Young has used 

functional genomics analysis of metabolite fingerprints (metabolomics) in vitreous 

humour of patients with VD using high-resolution 1H-nuclear magnetic resonance 

spectroscopy. The goal is the identification of metabolites that may help in the 

prognosis of VD. The results show that a few putative metabolites could be good 

predictors even though a small number of samples were used. The identified segments 

of the spectra (bins) were method-specific. Even though consecutive bins were treated 

independently by the multivariate search, a number of selected bins were agglomerated 

in the neighbourhood suggesting that these bins represent the same putative 

metabolite. 

 

4.2 - Results 

4.2.1 - Case 1: Early Rheumatoid Arthritis 
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It is known that the presence of CCP and RF autoantibodies are related to RA 

prognosis. When used in combination, their specificity is close to 100%; however the 

sensitivity is around 50% only [143; 144]. Our aims are therefore to identify groups of 

cytokines from the 30 cytokines measured that could be better predictors of RA and 

propose prognostic tests including these identified cytokines. Preliminary inspection of 

clinical data available for this study confirmed that, as expected, 50% of RA patients 

recruited in this study are RA and CPP double positives (Figure 4.1A). Also, as 

expected, only 11 samples out of 25 that are diagnosed as RA are positive for RF and 

CCP simultaneously (Figure 4.1B). To identify cytokines, univariate and multivariate 

variable selection procedures were performed. Univariate results suggest that several 

cytokines may also be related to RA outcome (Figure 4.2). However, the multivariate 

variable selection used chooses only a few variables among a number of classifier 

machines (Table 4.1). In general, the most recurrent cytokine was IL-1ra which was 

accompanied by TNF in a couple of classifiers. Not all classifiers were able to produce 
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Figure 4.1 � Overview of clinical information related to RA outcome. (A) Clinical variables 
associated to RA along with their significant test p-value. Some of these variables are the basis for 
RA diagnosis. P-values correspond to contingency Chi-square test and its subsequent FDR 
correction. (B) RF and CCP clinical tests for each individual. Labels indicate RA outcome (in red). 
Individuals with both RF and CCP positive are indicated inside dotted circle. Axes in arbitrary 
units, high values are clinically considered positive otherwise negative. 
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acceptable accuracy though. RF, CT and KNN produced the most accurate models. In 

the following however, the study has been focused on CT and KNN because these 

methods would be easier to interpret and implement in clinical practice. 

 

 

From the 109 samples, 87 samples are both CCP and RF negative in which 11 samples 

are actually diagnosed as RA (Figure 4.1B). In these 11 individuals, CCP and RF were 

not able to provide any information about the outcome. However, cytokine levels are 

still differentially detected between RA and non-RA individuals whose CCP and RF 

were negative (Figure 4.3). Therefore, once it has been shown that acceptable 

multivariate models could be designed using cytokine levels in the overall RA 

population (Table 4.1), the next question to answer was whether predictive models can 

be built using cytokine levels in a reduced dataset where CCP and RF are both negative. 

Results are shown in Table 4.2. KNN found good models whereas CT could not design 

predictive models. Repeated KNN runs yielded models where IL-1ra was always 

present but the inclusion of other variables was unstable which suggest that variables 

other than IL-1ra were dependent on the specific data split set for training. Although 

this last result indicates that perhaps more RA samples would be needed, in general, 

results indicate that IL-1ra may be an important prognostic factor even when CCP and 

RF are negative. 

Table 4.1 � Summary of multivariate models designed using cytokines levels in the RA dataset. 
Sensitivity and Specificity are estimated relative to RA class. ROC area is the product of sensitivity 
and specificity. In general, higher ROC areas indicate better predictive models. Models were 
developed using GALGO. KNN � K-nearest-neighbours, MLHD � Maximum likelihood discriminant 
functions, RF � Random Forest, SVM � Support Vector Machines, CT � Classification Trees. 

Classifier Variables used in model Sensitivity Specificity ROC area 
KNN IL-1ra, IL-2R, TNF 0.83 0.88 0.73 
MLHD IL-1ra, MCP-1, MMP-3 0.70 0.88 0.62 
RF TNF, IL-1ra 0.85 0.89 0.76 
SVM MMP-13, Eotaxin 0.45 0.80 0.36 
CT IL-1ra, IL-2 0.81 0.92 0.75 
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Figure 4.2 � Univariate test for association of cytokines levels to RA outcome. The figure shows that 
several cytokines are associated to outcome. Minimum and maximum values are indicated. Values in 
log-scale, zero values before log where set to -1. A non-parametric test p-value and its corresponding 
FDR correction are shown. 

Table 4.2 � GALGO results for reduced RA dataset where CCP and RF are negative. 

Classifier-Run Variables used in model Sensitivity Specificity ROC area 
KNN-1 IL-1ra, IL-6    
KNN-2 IL-7, IL-1ra (best) 0.87 0.85 0.74 
KNN-3 
KNN-4 

MMP-3, IL-1ra 
IL-10, IL-5 

   

CT-1�10 IL-7, IL-8, IL-5 1 0 0.00 
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The results shown above suggested that cytokine levels, especially IL-1ra, are able to be 

predictive of RA regardless of the RF and CCP outcome.  

 

Then, the study was focused on whether a model could be build considering both 

clinical and cytokine variables. GALGO results using this combined dataset are shown 

in Table 4.3. In these models, IL-1ra, RF, and CCP were preferable selected. In models 

designed by GALGO, IL-1ra was surprisingly more frequent than the usual RF and 
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Figure 4.3 � Univariate test for association of cytokines levels in samples whose CCP and RF are 
negative. The figure shows that only a subset of the cytokines is related to RA outcome for samples 
where CCP and RF are negative. Minimum and maximum values are indicated. Values in log-scale, 
zero values before log where set to -1. A non-parametric test p-value and its corresponding FDR 
correction are shown. 
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CCP markers (Figure 4.4). Data inspection supports the combined predictive power of 

IL-1ra, RF, and CCP (Figure 4.5).  

 

Altogether, these results suggest that IL-1ra is an important RA prognostic factor which 

can also be used in combination with RF and CCP to increase RA prediction. 

Consequently, a rule using these three variables was finally designed. This rule 

increases sensitivity from 44% to 88% at only 6% decrease in specificity (Figure 4.6). 

Since protein expression data were obtained with a relatively large scale technique 

these results will need to be validated by more robust methodologies (for example 

ELISA assays) that could also be more appropriate for applications in the clinic. 

Table 4.3 � Results for the RA dataset where clinical information and cytokine levels are both 
considered. Unmarked models were designed using GALGO whereas. For comparison purposes, 
some models were built manually which are marked with a star (*). 

Classifier Variables used in model Sensitivity Specificity ROC area 
KNN IL-1ra, RF, CCP 0.87 0.91 0.79 
KNN* RF, CCP 0.52 1.00 0.52 
CT IL-1ra 0.82 0.91 0.75 
CT* IL-1ra, RF, CCP 0.82 0.92 0.75 
CT* RF, CCP 0.50 0.99 0.50 

 

Figure 4.4 � Frequency for each variable when both clinical information and cytokines levels are 
considered. Representative results estimated from 500 KNN models.  
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Figure 4.5 � Values of IL-1ra, CCP, and RF. Each dot represents a sample. Green dots are samples 
diagnosed as RA and whose CCP and RF test were both positive. Red dots stand for the remaining 
samples also diagnosed as RA. Black dots symbolize samples not diagnosed as RA. The vertical 
axis depends on IL-1ra in top panels and on CCP in bottom panel. The horizontal axis depends on 
RF in the right panels and on CCP in the left panel. 
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Figure 4.6 � Designed rule adding IL-1ra as RA prognostic factor. For RA prognosis, the first and 
common condition is whether CCP and RF are both positive. If this condition is false, the second 
condition decides the outcome, if IL.1ra is "positive" (greater than 5070 before log transformation), 
the prediction is RA otherwise it is designated as non-RA. 
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4.2.2 - Case 2: Vitreoretinal Disease 

There are no definitive biomarkers to diagnose VD. Dr. Young et al. [145] used nuclear 

magnetic resonance spectroscopy to obtain metabolomic profiles from patients with 

chronic uveitis (CU) and lens-induced uveitis (LIU). The aim is therefore to select "bins" 

from the metabolic profile that could discriminate between CU and LIU patients. A 

"bin" is the result of the integration of a continuous segment of the original NMR 

spectrum (see Methods sections). The result is a smoothed spectrum (top profiles in 

Figure 4.7) formed by bins. The VD dataset consists of 1,960 bins per sample which will 

be considered here as variables. 18 samples were used, 10 for CU and 8 for LIU. Two 
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Figure 4.7 � Metabolomic profiles overview (two representations). Top panel show the raw 
metabolic profile (1960 bins in horizontal) whereas the bottom panel shows the classical heatmap 
representation. Coloured marks (+) in the middle of the figure represent selected bins from a 
multivariate selected representative model using the labelled classifier (SVM - purple, KNN - 
green, MLHD - blue). Heatmap values were mean centred, red (darker) represent higher values 
whereas green colours (lighter) represent lower values. The white band around 1000 in the 
heatmap corresponds to water region that is commonly removed before the analysis. 
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representations of the profiles of this dataset are shown in Figure 4.7 in which 

hierarchical clustering shows that, overall, samples of the same class are grouped 

together though not all of them in the same cluster. Although the goal is to find specific 

bins that are related to classes, hierarchical clustering indicates that sample classes can 

be distinguished using the whole profile. The goal is to make this distinction using 

specific bins of the spectrum. 

 

In order to select bins potentially related to VD classes, GALGO was used to search for 

multivariate models. These models were then used to design a representative model. 

Table 4.4 � Representative models for Vitreoretinal Disease obtained using three classifier machines. 
Bins are shown ordered by their frequency in pooled models (the most frequent is shown first). 

 
Classifier 

Pooled 
models 

Bins used in representative model 
(number of bins) 

Sensitivity- 
Specificity 

ROC 
area 

KNN 2199 
 

1733,1738,1740,1734,1736,1737,1739,1623, 
1622,821,1187,1225,1384,1620,787,1178, 
1624,1621,1188, 771,1625,1394 
(22) 

0.82-0.89 0.73 

MLHD 4181 
 

5,690,544,19,167,98,92,87,1744,705,543,459, 
192,16,626,1787,302,1783,204,246,775,1798, 
1784,1622,1796, 1745,684,778,1791 
(29) 

0.85-0.83 0.71 

SVM 3638 
 

1738, 1739, 1737 
(3) 

0.98-0.77 0.75 

Table 4.5 � Contiguous and non-contiguous bins selected in representative models for Vitroretinal 
disease. Contiguous bins may represent the same metabolite. In this table, "contiguous" bins were 
defined as those bins in Table 4.4 that are no farther than 10 bins.  

Classifier Non-Contiguous bins "Contiguous" bins 
KNN 771, 787, 821, 1178, 

1225, 1384, 1394, 1620 
1187-1188, 1621-1625, 1733-1740 

MLHD 5, 167, 192, 204, 246, 302, 
459,626, 705, 1622 

16-19, 87-98, 543-544, 684-690,  
775-778, 1744-1745, 1783-1793 

SVM  1737-1739 
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Representative models using the most frequent bins from a pool of more than 2,000 

multivariate selected models are shown in Table 4.4, their relative position in reference 

to the metabolic profiles is shown in Figure 4.7 (marked with coloured "+" in the middle 

of the figure). Only 3 bins were sufficient to obtain a good classifier distinguishing 

between CU and LIU using SVM. Interestingly, these 3 signatures are nearby each other 

(1737 to 1739). Considering the property of metabolic profiles in which the signal is 

continuous and very highly correlated, these three bins could represent the same 

metabolite. Other classifiers selected larger numbers of bins (22 and 29 for KNN and 

MLHD respectively). However, the same trend of selecting contiguous or almost 

contiguous bins was conserved (Table 4.5). Bins selected by SVM were also selected by 

KNN but not by MLHD. Nevertheless, MLHD selected bins nearby (1744 and 1745). In 

general, KNN and MLHD did not select similar bins (Figure 4.7). 

 

A PCA representation of the representative models show sample separation using only 

those bins selected by the classifiers and the first two components (Figure 4.8) whereas 

the whole profile show only partial distinction for the first component (Figure 4.9). 

Some of the selected bins are clearly related to large groups of samples in the same class 

PC1

46.7729
(46.8%)

PC2

KNN

PC2

MLHD

PC1

86.09536
(86.1%)

PC2

SVM

Chronic Uveitis (CU)
Lens-induced Uveitis (LIU)  

Figure 4.8 � PCA representation of representative models. Axes show the first and second principal 
components (horizontal and vertical respectively). 
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(Figure 4.10). In summary, it was possible to select some bins that could be related to 

distinguish CU from LIU in VD. 

 

PC1

PC2

PC3

PC4

PC5  

Figure 4.9 - PCA representation of the whole metabolic profile from the VD dataset. Red dots 
represent CU samples whereas black dots represent LIU samples. 
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Figure 4.10 � Heatmap representation of representative models for VD. Zones more dense for 
higher or smaller values are evident and cross related to classes and bins. Samples are shown in 
horizontal axis whereas bins are shown in vertical axis. Numbers at the right of each heatmap 
represent the relative order and their corresponding bin number. 
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4.3 - Discussions 

4.3.1 - Case 1: Early Rheumatoid Arthritis 

It was possible to select IL-1ra as a prognostic factor for RA in which the sensitivity is 

folded at a very low decrease in specificity. Although IL-1ra could be selected by means 

of the univariate tests, multivariate approaches provided several additional facts. First, 

it confirmed that IL-1ra is indeed important for RA prediction under a different 

modelling scheme. Second, multivariate models discriminate variables that were also 

highly ranked in the univariate approach. Third, multivariate models using only 

cytokines were also very accurate which can be used to guide further research. Finally, 

multivariate models also designed a model using IL-1ra, RF, and CCP by a blind search, 

that is, without constraining the inclusion of RF and CCP that would be necessary using 

only univariate variable selection methods. 

 

In the reduced dataset where RF and CCP are both negative, only 11 RA samples were 

used, this is almost 8 times less than the 84 samples from non-RA/SL individuals. 

Consequently and contrary to clinical expectations, classifiers tend to give more 

importance in prediction to those 84 non-RA/SL samples than to the 11 RA samples. To 

compensate for this effect, classifiers had to be trained using similar number of samples 

for each class. In the case analysed here, this number should be be less than 11 to leave 

some samples for external testing. Thus, variable selection other than IL-1ra was 

presumably unstable due to this lack of data. This lack of data should be one of the 

reasons for the failure of CT classifier in this reduced dataset. In order to select further 

variables successfully and to perform validations, more RA samples would 

consequently be needed. 
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4.3.2 - Case 2: Vitreoretinal Disease 

Several bins were selected that are putatively related to VD. Multivariate models 

designed with these bins display acceptable sensitivity and specificity. However, only 

19 samples were provided in this study. Thus, results should be considered as 

preliminary. The selected bins have been considered for future research in which the 

first task would be the identification of the metabolites corresponding to those bins. The 

selection of some bins is supported by the inclusion of different classifier machines. 

This fact suggests that those bins are better candidates. It makes sense that many of the 

selected bins were also close to other selected bins. This is supported by the fact that 

metabolic profiles are a continuous signal in which the boundaries where a metabolite 

starts and ends need to be solved by further experiments at higher resolutions focused 

in that specific range of the spectra (perhaps using techniques other than NMR). In 

addition, continuous signal could generate auto-correlation: nearby bins could be very 

highly correlated. It makes sense therefore that nearby correlated signals were selected. 

It would be sensible to argue that the higher the number of bins selected within a 

nearby range of the spectra the higher the confidence that a genuine association has 

been found. Nearby selection nevertheless can also be affected by this continuous signal 

if the metabolic profiles are not aligned or binned accurately. It was assumed here that 

misalignment was not an issue. Putatively then, SVM was able to separate CU from LIU 

using only one metabolite. In addition, KNN and MLHD classifiers selected others bins 

which may provide additional information about other metabolites altered in VD. 

 

4.4 - Conclusion 

It has been shown that GALGO is able to design multivariate variable selected models 

in other functional genomics data, proteomics in the case of Rheumatoid Arthritis and 

metabolomics in the case of Vitreoretinal Disease. The analyses were conducted in two 
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biologically interesting problems and the selected variables would hopefully provide 

important insights about these diseases. In addition, the selected predictive models may 

allow the design of novel clinical tests. Besides, it has been showed that other variables 

may also be related. These other variables may provide additional information for 

further hypothesis or experiments. 

 

GALGO is a versatile and powerful tool that can be used to aid solving several 

biological problems using any kind of functional genomics data or combinations of 

different types of data. Metabolic profiles in which the signal was continuous and 

highly correlated was not a problem for finding predictive models.  

 

4.5 - Methods 

4.5.1 - Case 1: Early Rheumatoid Arthritis 

Cytokine data were log transformed before analysis. GALGO was used to search for 

multivariate variable selection [146]. A representative model was built using GALGO 

which uses the top most frequent variables in a large number of models. GALGO was 

run using 2/3 of the data as training and leaving 1/3 of the data blind for the 

evolutionary process. The number of random splits used to assess accuracy, sensitivity, 

and specificity was equal to the number of samples used in each run. Five classifier 

machines were used for initial screening (see Table 4.1 for classifiers' names).  

 

Data from the experimental and clinical work was acquired and kindly provided by Dr. 

Karim Raza et al. from a previous work [136]. The experimental and clinical procedure 

described next was also provided by Dr. Raza. Patients were recruited through the 

rapid access clinic for early inflammatory arthritis at City Hospital, Birmingham, UK. 

Ethical permission was obtained and all patients gave written informed consent. All 
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patients had one or more swollen joints and a symptom duration of 3 months or less. 

Patients with evidence of previous inflammatory joint disease were excluded. No 

patient had commenced a disease-modifying antirheumatic drug (DMARD) before 

initial assessment. Joints were aspirated under either palpation or ultrasound guidance. 

Patients were included in the study if adequate synovial fluid was obtained by 

palpation or ultrasound-guided aspiration/lavage at initial assessment using a method 

described previously [147]. Patients were subsequently assessed at 1, 2, 3, 6, 12 and 18 

months. If joint effusions were present at follow-up assessments, and if consent to a 

further arthrocentesis was obtained, then these effusions were aspirated. Patients were 

assigned to their final diagnostic groups at 18 months. Patients were classified as 

having RA in accordance with the 1987 American Rheumatism Association criteria 

[148], allowing criteria to be satisfied cumulatively. Although the 1987 American 

Rheumatism Association criteria have no exclusions, patients with alternative 

rheumatological diagnoses explaining their inflammatory arthritis were excluded from 

the RA category. Patients were diagnosed with reactive arthritis, psoriatic arthritis, and 

a number of miscellaneous conditions according to established criteria. 30 cytokine plus 

RF, CCP, and RF were measured in all patients along with other clinical information. 50 

µl of serum, or of the cytokine / chemokine standard, were pre-incubated with 50 µl 

blocking buffer ([40% normal mouse serum (Sigma, Poole, UK), 20% goat serum 

(DakoCytomation Ltd., Ely, UK), 20% rabbit serum (DakoCytomation Ltd., Ely, UK)]) 

for 30 minutes. Eight standards were made, each containing all the chemokines / 

cytokines to be analysed at serial ¼ dilutions from 64 ng/ml to 3.12 pg/ml, giving a final 

concentration range of 32 ng/ml to 1.56 pg/ml. Each well of a 96 well plate was hydrated 

with PBS for 1 minute and excess PBS removed with a vacuum pump. 50 µl of the 

diluted serum sample, the standard, or the blocking buffer alone were added to each 

well (4 wells were run with blocking buffer alone). 12.5 µl of beads from the bead set 

was added to each well and the plate incubated at room temperature for 2 hours on a 

plate shaker. The wells were washed 6 times in a vacuum pump with 100 µl wash 
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buffer (PBS/0.05% Tween 20) and then incubated with 25 µl of the biotinylated 

detection antibodies diluted in 25 µl blocking buffer and 50 µl assay buffer (1% BSA 

(Sigma, Poole, UK) in PBS/0.05% Tween 20) at room temperature for 1 hour on a plate 

shaker. Each well was washed 4 times with 100 µl wash buffer. 0.5 µl of 1 mg/ml 

BeadlyteTM streptavidin-PE (Upstate Biotechnology, Lake Placid, NY, USA), diluted in 

100 µl assay buffer, was added per well and incubated at room temperature for 30 

minutes. Each well was washed once with 100 µl wash buffer. The beads from each 

well were resuspended in 100 µl assay buffer and transferred to eppendorf tubes for 

analysis using the Luminex100 LabMAPTM system (Luminex Corporation, Austin, TX, 

USA, http://www.luminexcorp.com).  

 

4.5.2 - Case 2: Vitreoretinal Disease 

GALGO [146] has been used to search for multivariate bins associated to VD. For these 

analyses, no further data normalization was performed. Leave-one-out cross-validation 

in training (LOOCV) was used for error estimation. Training data consisted of 2/3 of the 

samples. 19 random splits (2/3 for training and 1/3 for test) were used to assess 

accuracy, sensitivity, and specificity. Models were explored until 100% accuracy was 

found in the LOOCV training data or 100 generations were reached. Three classifiers 

were used: K-nearest-neighbours (KNN), maximum likelihood discriminant functions 

(MLHD), and support vector machines (SVM). More than 2,000 models were 

considered for each classifier. 

 

The experimental work has been done in Dr. Stephen Young's laboratory at the 

University of Birmingham. The data and the experimental procedure described next 

were kindly provided by Dr. Young. Patients were recruited from the tertiary referral 

Vitreo-retinal unit of the Birmingham and Midland Eye Centre. Samples were obtained 

from patients undergoing vitrectomy (vitreous humor excised, removed, and replaced 

http://www.luminexcorp.com).
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with a clear fluid) for chronic uveitis (n=10) or lens-induced uveitis (n=8). Ethical 

approval and patient consent was obtained in all cases. An undiluted vitreous sample 

was taken at the beginning of surgery. One-dimensional 1H spectra were acquired using 

excitation sculpting on a Bruker DRX 500MHz NMR spectrometer. Chemical shifts 

were calibrated with respect to the chemical shift position of the trimethylsilyl 2,2,3,3-

tetradeuteropropionic acid (TMSP) resonance. Spectra were segmented into 0.005-ppm 

(2.5 Hz) chemical shift �bins� between 0.2 and 9.0 ppm using ProMetab version 2. The 

spectral area within each bin was integrated. Bins between 4.5 and 5.0 ppm containing 

residual water were removed. The total spectral area of the remaining bins was 

normalized and the binned data describing each spectrum were then compiled into a 

matrix, with each row representing an individual sample. Every element was log-

transformed to equalize the weightings of the smaller and larger peaks.  
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CHAPTER 5  

Statistical Modelling for Understanding Cell-to-Cell 

Communication: A Supervised Classification Approach 

 

We were interested in designing an approach to develop signatures predictive of 

tumour physiology from the molecular state of normal cells and ultimately to infer gene 

networks representing molecular interactions between the two cell types. This chapter 

describes the results in demonstrating that indeed the molecular state of normal cells is 

predictive of the tumour physiological state. 

 

5.1 - Background 

The relatively recent development of functional genomics technologies, particularly 

gene expression profiling, has provided the scientific community with the tools to 

characterize the molecular state of cells and tissues at a genome level. These 

technologies coupled with the ability to dissect specific cell types from a complex tissue 

have created an unprecedented opportunity to characterise the molecular identity of 

specific cell types in the context of a complex tissue. Following this approach, a number 

of studies have been performed using gene expression profiling technologies. Results 

have proven that components of the transcriptional profile of tumour cells are 

predictive of both tumour features and clinical outcome in a variety of human cancers 

[149]. These genome-wide studies however do not take into consideration components 

of the extra-cellular matrix (ECM) (matrix proteins, soluble growth factors and 

chemokines) secreted by normal cells, adjacent to the tumour site, heavily influence the 

biology of the tumour. Until now, stromal cells have been most often considered as the 
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primary candidates for playing a role in normal-tumour cell interactions [150]. These 

cells are known to secrete most of the enzymes involved in ECM breakdown. They 

produce growth factors that have a role in controlling cell proliferation, apoptosis, and 

migration of tumour cells and also secrete pro-inflammatory cytokines involved in 

chemo-attraction and activation of specific leukocytes [151]. Growth factors and 

cytokines are also involved in the neoplastic transformation of cells, angiogenesis, 

tumour clonal expansion and growth, passage through the ECM, intravasation into 

blood or lymphatic vessels and the non-random homing of tumour metastasis to 

specific sites. Many of these factors are also secreted by normal epithelial cells, immune 

cells and endothelial cells in the proximity of the tumour mass. The importance of the 

micro-environment in determining the onset and progression of cancer raises the 

question whether it may be possible to predict the patho-physiology and clinical 

outcome of the tumour from cell type specific components of the molecular state of 

normal cells. If possible, this would allow the identification of important components of 

cell to cell cross-talk involved in specifying the development of cancer. To address this 

question, statistical models based on a genome wide profiling of normal tissue adjacent 

to the tumour and that are predictive of cancer features are presented. Proof that such 

an approach has the potential to identify novel mechanisms involved in cancer patho-

physiology is provided. In this context, two different prostate cancer microarray 

datasets available in the public domain have been analyzed [8; 9]. Demonstration that 

the molecular state of cells adjacent to the tumour is indeed predictive of its physiology 

is shown. Genes included in these predictive models represent components of cell to 

cell communication pathways with the ability to modify tumour physiology. 
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5.2 - Results 

5.2.1 - Statistical modelling establishes a link between the molecular state of normal 

cells and tumour histopathological features 

The initial objective of the analysis is to demonstrate that it is possible to predict 

relevant features of cancer from the molecular profile of normal cells. Two important 

aspects of prostate tumour physiology have been considered: the degree of 

organization of tumour cells (defined by a histopathological scoring system called 

Gleason Score) and the ability of tumour cells to penetrate the organ capsule 

(summarized by a binary histopathological score called Capsular Penetration). The 

level of differentiation of tumour cells measures their tendency to aggregate in 

glandular-like structures that are reminiscent of the organization of the normal tissue. 

The Gleason Score (GS) can be used to define two main classes. The first is 

characterized by low-grade tumours that display a highly organised structure 

(correspondent to a score below 7) whereas a second class is characterized by high-

grade tumours cells that are dispersed in the matrix and do not show a tendency to 

form glandular-like structures (correspondent to a score above 6). By contrast, Capsular 

Penetration (CP) describes if cells have evaded the capsule that delimitate the organ 

itself. 

 

The analysis aims to link then the molecular profile of normal cells to GS differentiation 

level (low versus high differentiation) and CP (positive versus negative). To achieve 

this, statistical models were developed based on the molecular profile of normal cells 

and predictive of the sample classes, defined on the basis of the histopathological 

profile of the tumour. 

 

Firstly, classification models were developed using a combination of a univariate 

variable selection strategy and supervised classification techniques. In univariate 
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variable selection each gene is tested independently for its ability to separate the two 

classes of interest (for example using a simple t-test). The most differentially expressed 

genes are then included in the statistical model and its classification accuracy is 

assessed. Figure 5.1 shows that the classification accuracy of univariate models based 

on the molecular profile of normal cells is, in most cases, good and compare well with 

the classification accuracy achieved using the expression profile of tumour cells. These 

preliminary results suggest that the initial hypothesis may be correct. Indeed, the 

molecular state of the normal tissue is, at some degree, predictive of the 

histopathological features of the tumour. The validity of the approach is further 

supported by Gene Ontology (GO) analysis performed using the tool FatiScan [152]. 

Functional terms were defined as significantly enriched in the predictive signatures if 

satisfying the threshold of FDR<20% (Table 5.1). The most significant GO term enriched 

in genes with a higher accuracy for CP in the Singh et al. dataset is membrane bound 

vesicles. For GS, cell adhesion and regulation of growth terms are significantly altered. 

Although significant terms are rather general and do not allow a very detailed 

biological interpretation, they suggest the importance of components of cell 

communication and growth factors in contributing to the predictive power of models 

based on the molecular state of normal cells. 
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Figure 5.1 - Univariate gene selection models. Models were generated using a forward selection 
procedure that includes, progressively, genes ranked by a univariate statistic (F-ratio, horizontal axis). 
The accuracy is assessed by leave-one-out-cross-validation for a number of classification methods 
(vertical axis, see legends, and the Prophet tool within www.gepas.org [93]). Maximum accuracy is 
marked by a dotted horizontal line. Overall, this univariate gene selection generates comparable 
predictive models irrespective of the classification method. More accurate multivariate models 
generated by GA-MLHD and BVS used in this chapter are shown for comparison in red and black 
dots. Legends: DLDA � Diagonal Linear Discriminant Analysis, KNN � K-Nearest-Neighbours, PAMR 
� Shrunken Centroids, SOM � Self Organized Maps, and SVM � Support Vector Machines. See 
GEPAS [93] for details in F-ratio, error estimation, and classification methods. Dataset, normal or 
tumour data, and class is specified in each plot. 

http://www.gepas.org
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Table 5.1 - Gene Ontology analysis of genes ranked by univariate statistics. The table below 
summarizes the results of the Fatiscan analysis performed on the genes ranked by F-statistics (F) (the 
same statistics used for the development of the statistical models described in the previous section) 
and using the adaptive statistics (ada). The analysis has been performed using the FatiScan tool 
available as part of the web based data analysis toolset GEPAS. A star (*) marks terms that were also 
present in several further windows. The last column specifies if the term is over- () or under- () 
represented in the class of samples to which the term is associated. CP+ refers to samples whose 
capsular were broken otherwise referred as CP-. G7+ refer to samples whose Gleason Score is 7 or 
greater otherwise G6-. NA denotes analysis that did not show any significant term. CC Denotes 
Cellular Component, BP Biological Processes, MF Molecular Function, SP SwissProt. 
Dataset Analysis Statistic Window Term FDR Significance 
Singh et al. Capsular-Normal F 2 cytoplasmic membrane-bound vesicle (GO-CC) 0.08718700  CP- 
 Gleason-Normal F 12 regulation of growth (GO-BP) 0.18635191  G6+ 
  F 4 cell adhesion (GO-BP) 0.18635191  G6- 
 Capsular-Tumor F NA   - 
 Gleason-Tumor F 1 extracellular matrix structural constituent (GO-MF) 0.09168624  G6- 
  F 1 fibrillar collagen (GO(CC) 0.07888285  G6- 
  F 1 Hydroxylation (SP) 0.00492100  G6- 
  F 1 Extracellular matrix (SP) 0.09832600  G6- 
  F 1 Signal (SP) 0.00781821  G6- 
  F 1 Glycoprotein (SP) 0.00828534  G6- 
Lapointe et al. Capsular-Normal F NA   - 
 Gleason-Normal F NA   - 
 Capsular-Tumor F 1 cadmium ion binding 0.01050723  CP- 
  F 1 copper ion binding 0.09695348  CP- 
  F 1 Metal-thiolate cluster 0.01643020  CP- 
  F 1 Cadmium 0.01643020  CP- 
 Gleason-Tumor F 1 extracellular matrix (sensu Metazoa) (GO-CC) 0.14571587  G6- 
  F 1 Sushi (SP) 0.09121746  G6- 
Singh et al. Capsular-Normal ada 13 cell communication (GO-BP) 0.03003447  CP- 
  ada 16 organ development (GO-BP) 0.00210180  CP+ 
 Gleason-Normal ada 9 Direct protein sequencing (SP) .000001210  G6- 
 Capsular-Tumor ada 16 MAPK signaling pathway (KEGG) 0.04855273  CP+ 
 Gleason-Tumor ada 11 Direct protein sequencing (SP) .000009020  G6- 
  ada 11 transferase activity (GO-MF) 0.00951405  G6- 
  ada 10 cytoplasm (GO-CC) 0.02073723  G6- 
Lapointe et al. Capsular-Normal ada 1 response to biotic stimulus (GO-BP) 0.02075259  CP- 
  ada 28 cell adhesion (GO-BP) 0.02075259  CP+ 
 Gleason-Normal ada 27 intracellular organelle (GO-CC) 0.04916338  G6- 
  ada 2 Apoptosis (SP) 0.04824884  G6- 
  ada 2 Homeobox(SP) 0.04824884  G6- 
  ada 12 Direct protein sequencing(SP)* 0.04824884  G6- 
  ada 17 Signal(SP)* 0.04509734  G7+ 
  ada 17 Golgi stack(SP) 0.04857050  G7+ 
  ada 19 EGF-like domain(SP)* 0.02340546  G7+ 
  ada 19 Signal-anchor(SP) 0.04824884  G7+ 
  ada 22 Immune response(SP) 0.04689970  G7+ 
  ada 26 Plasma(SP) 0.04689970  G7+ 
  ada 26 Hyaluronic acid(SP) 0.02663752  G7+ 
  ada 27 Lipid-binding(SP) 0.04319938  G7+ 
  ada 27 Hyaluronic acid(SP) 0.01024267  G7+ 
 Capsular-Tumor ada 1 cadmium ion binding(GO-MF) 0.01050723  CP- 
  ada 5 membrane-bound organelle(GO-CC) 0.03310354  CP- 
  ada 5 intracellular organelle(GO-CC) 0.00832116  CP- 
  ada 22 unlocalized protein complex(GO-CC) 0.00832116  CP+ 
  ada 1 Cadmium (SP) 0.00947798  CP- 
  ada 1 Metal-thiolate cluster (SP) 0.00947798  CP- 
 Gleason-Tumor ada 25 Signal (SP)* 0.01810243  G7+ 
  ada 25 Blood coagulation(SP) 0.04010447  G7+ 
  ada 29 Hyaluronic acid(SP) 0.01810243  G7+ 
  ada 28 Sushi 0.03150510  G7+ 
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Although these results are encouraging, this univariate methodology suffers from at 

least one severe limitation. Univariate variable selection procedures test each gene 

independently for its ability to discriminate two or more biological states. This 

methodology therefore ignores the fact that genes work in the context of a network of 

interacting gene products. Procedures that allow searching for predictive gene sets in 

association have been developed and tested on microarray datasets and other 

functional genomics platforms [79; 110; 146] and have been demonstrated to often 

perform better than their univariate counterparts [146]. Therefore, a second and more 

detailed analysis was performed based on the application of two different classification 

methods that use multivariate variable selection strategies for the development of 

predictive models. These are a Genetic Algorithm search engine coupled to a 

discriminant analysis as classifier, and Markov Chain Monte Carlo search coupled with 

a probit classifier (GAMLHD and BVS respectively, see Methods section). Using these 

approaches, more accurate representative models predictive of tumour features by 

means of the gene expression profile of normal cells were developed (Figure 5.2, Figure 

5.3, Figure 5.6, Figure 5.5, and Figure 5.6). The classification accuracy and model size of 

these models demonstrate that comparable models were developed using the molecular 

state of normal and tumour cells. Representative models developed with the BVS and 

GA-MLHD methods are based on a very similar number of genes and have a high 

degree of overlap at the gene level, suggesting that these results are independent of the 

multivariate methodology used. Moreover, the degree of accuracy of models built with 

a multivariate variable selection approach is higher with respect to the univariate 

variable selection approach (Figure 5.1). An extensive functional analysis of 

multivariate models both at the level of models population and for representative 

models is described further in this chapter.  
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Figure 5.2 - Multivariate Models for Capsular Penetration using Normal data. Genes present in 
GA-MLHD and BVS for the same dataset are highlighted in red. Accuracy is estimated as 
described in the Material and Methods section. GeneBank accession number and gene symbol is 
shown. Brighter green or red colours in heatmaps represent lower or higher relative expression 
respectively. t-test is shown for comparison with the differential expression criteria commonly 
used in UVS. PCA plots and loadings are used to associate the contribution of every gene to class 
separation. For example, PRELP gene in top heatmap seems to contribute strongly to positive 
Capsular Penetration whereas MDB3 contribute weakly to negative Capsular Penetration. 
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Capsular Penetration - Tumour Data
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Figure 5.3 - Multivariate Models for Capsular Penetration using Tumour data. Genes present in 
GA-MLHD and BVS for the same dataset are highlighted in red. Accuracy is estimated as 
described in the Material and Methods section. GeneBank accession number and gene symbol is 
shown. Brighter green or red colours in heatmaps represent lower or higher relative expression 
respectively. t-test is shown for comparison with the differential expression criteria commonly 
used in UVS. PCA plots and loadings are used to associate the contribution of every gene to class 
separation. For example, TALDO1 gene in top heatmap seems to contribute strongly to positive 
Capsular Penetration whereas ST14 contribute weakly to negative Capsular Penetration. 
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Figure 5.4 - Multivariate Models for Gleason Score using Normal data. Genes present in GA-MLHD 
and BVS for the same dataset are highlighted in red. Accuracy is estimated as described in the 
Material and Methods section. GeneBank accession number and gene symbol is shown. Brighter 
green or red colours in heatmaps represent lower or higher relative expression respectively. t-test is 
shown for comparison with the differential expression criteria commonly used in UVS. PCA plots 
and loadings are used to associate the contribution of every gene to class separation. For example, 
TEGT gene in top heatmap seems to contribute strongly to high Gleason grades whereas D89667 
contribute to low Gleason Grades. 
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Gleason Score � Tumour Data
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Figure 5.5 - Multivariate Models for Gleason Score using Tumour data. Genes present in GA-
MLHD and BVS for the same dataset are highlighted in red. Accuracy is estimated as described in 
the Material and Methods section. GeneBank accession number and gene symbol is shown. 
Brighter green or red colours in heatmaps represent lower or higher relative expression 
respectively. t-test is shown for comparison with the differential expression criteria commonly 
used in UVS. PCA plots and loadings are used to associate the contribution of every gene to class 
separation. For example, ACPP gene in top heatmap seems to contribute strongly to low Gleason 
grades whereas TM8B4X contribute to low Gleason Grades. 
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Figure 5.6 - Accuracy and tissue specificity of representative models. The predictive accuracy of the 
models developed using normal data (panel A, filled circles) is comparable to those models 
developed using tumour data (panel B, filled diamonds). When models developed using normal 
data are trained and tested using tumour data, the predictivity is decreased considerably (empty 
circles). Likewise, tumour models trained and tested with normal data are also non predictive 
(empty diamonds). Filled symbols follow then the step 1 whereas empty symbols follow the step 2 
described in Tissue Specificity inside Material and Methods section. Panel A shows the accuracy 
for normal models whereas Panel B shows the accuracy for tumour models. Panel C shows the 
strategy described. 
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5.2.2 - Signatures representative of tumour physiology are tissue-specific 

Results in the previous section demonstrated that the molecular state of normal cells 

adjacent to the tumour is predictive of cancer histopathological features and that the 

predictive power of these models is comparable with those developed using the 

molecular profile of tumour cells. Although adjacent normal and tumour tissues are 

distinct, they show a high degree of molecular similarity (in the overall gene expression 

profile, data not shown). Therefore, the study was conducted on whether the predictive 

power of these models based on the molecular profile of normal cells is a reflection of 

either the inherent similarity between normal and tumour tissues or the relatively small 

degree of difference observed in the two tissues. In order to test this hypothesis, the 

tumour tissues expression profile of genes selected in the representative models 

developed from the molecular state of the normal tissue were used to predict tumour 

features (see section 5.5.3 - in Methods and Figure 5.6C). The specificity of signatures 

based on the molecular state of the tumour tissue performing the procedure in the 

opposite direction outlined above was also tested. With both statistical modelling 

approaches and in both datasets the predictive power of the non-tissue-specific 

signatures is closer to 50% (empty circles and empty diamonds in Figure 5.6) whereas 

the predictive power of the tissue-specific models is closer to 100% (filled circles and 

filled diamonds in Figure 5.6). This analysis suggests that the predictive power of the 

models shown is not a mere reflection of the overall similarity of normal and tumour 

tissues but instead the molecular signatures developed are highly specific for the tissues 

they are designed to represent. 
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5.2.3 - Molecular signatures of normal cells associated to tumour histopathological 

features represent pathways involved in cell to cell communication 

There are at least two possible biological scenarios that can explain why the molecular 

profile of normal cells is predictive of cancer histopathological features. The first 

scenario involves the ability of normal cells to react and modify the micro-environment 

thereby affecting the physiology of tumour cells. A second scenario is based on the fact 

that the genetic make-up of normal cells may carry the hallmarks of the initial events of 

neoplastic transformation and influences further development of the disease [153]. 

Mutations in oncogenes, tumour suppressor genes or in genes involved in 

detoxification and/or repair mechanisms are known to determine the onset of the 

malignancy and influence clinical outcome [154]. It may be therefore possible that the 

expression profile of genes directly or indirectly related to mutations in tumour 

susceptibility genes may be predictive of disease outcome. This second possibility is 

realistic in respect to normal tissue only in case of germline mutations. This scenario in 

fact would be compatible with the presence of the mutation in both normal and tumour 

cells. 

 

In order to test these hypotheses, a functional analysis of the multivariate 

representative models was performed. However, this would be certainly limited 

because of the small number of genes included which would reveal specific biological 

functions and would perhaps obscure other biological components. Nevertheless, the 

analysis with the GA-MLHD procedure identifies many alternative models that are 

equally predictive of tumour features. Consequently, many of the genes selected in 

these models may represent important biological pathways and therefore could provide 

important insights in the patho-physiology of the tumour. Thus, a search was 

performed to identify coherent functional trends amongst the genes selected not only in 
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representative models but also in the population of models developed using the GA-

MLHD procedure. The results are detailed in the next sections.  

 

5.2.3.1 - Functional Analysis of representative models 

The biological interpretation of the representative models (representing the most 

frequent solutions identified by the GA-MLHD and BVS procedures, see Figure 5.2,  

Figure 5.3, Figure 5.4, and Figure 5.5), reinforce the importance of genes of extra-

cellular or membrane localization with a demonstrated regulatory activity on tumour 

physiology. Models developed using the dataset by Singh et al. include several secreted 

factors and surface proteins with the ability to influence tumour physiology. These are: 

The neutral peptidase gene CALLA, the matrix metalloprotease encoding genes 

MXRA7 and ADAM22, the collagen component PRELP and the chemokine ligand 

CCL13. The neutral peptidase gene CALLA is a cell-surface metallopeptidase expressed 

by prostate epithelial cells that degrades various bioactive peptides [155] including 

some involved in the growth of prostate cancer. Its expression in cancer cells is 

drastically reduced by promoter methylation [156] and has been associated with 

biochemical relapse (increased levels of Prostate Specific Antigen protein in sera) after 

surgery [157]. CALLA has a demonstrated role in cell to cell communication by 

influencing prostate cancer cell invasion via a stromal-epithelial cell interaction [158]. 

The role of matrix metalloproteases and chemokines in influencing tumour 

aggressiveness is also well documented in many types of cancer. The results point in 

the direction of a greater importance of the expression of these factors by normal 

epithelial cells. Models developed from the Lapointe et al. dataset include the gene 

encoding for the CX3CL1 chemokine. This gene encodes for an important chemotactic 

factor that regulates the migration of human T-lymphocytes on the tumour site [159]. 

Of particular interest is its role in driving the migration of NK-cells, a type of immune 

cell involved in the host response to tumour expansion. The models developed here 



 122 

also include the insulin-like growth factor 1 (IGF1), a very important component in cell 

to cell communication networks involved in tumour progression. IGF1 encodes a 

growth factor whose signal (via a regulator tyrosine kinase pathway) has been 

implicated in the regulation of growth and apoptosis of a number of highly prevalent 

tumours [160]. In prostate cancer, high levels of serum IGF1 have been correlated with 

higher risk of relapse [161]. The gene CYR61 encodes for an extra-cellular matrix 

component that promotes adhesion, migration, and proliferation of endothelial cells 

and fibroblasts. Its role in determining the stromal and vascular expansion correlated 

with to prostate hyperplasia has been well documented [162-164]. The mechanism that 

has been suggested involves the stimulation, via serum growth factors, of CYR61 in 

stromal and normal epithelial cells with consequent effect in the proliferation and 

migration of cells. Its biological activity would be a result of an enhanced activity of 

bFGF [165]. Interestingly, like the CALLA genes identified in the Singh et al. dataset, the 

CYR61 gene is inactivated in prostate cancer [165]. Its biological role, its relevance in 

predicting tumour CP together with the observation that its expression is diminished in 

the tumour cells suggest a role in the interaction of normal cells and tumour cells. 

Although no particular role has been suggested for SSR4 prostate cancer it is a 

component of the secretion machinery [166] further supporting the importance of 

factors secreted by the normal tissue in specifying the histo-pathological features of the 

tumour. Representative models also include a number of oncogenes such as MYCN and 

RAF and the methylation protein MBD3. 

 

5.2.3.2 - Functional Network Analysis of the genes represented in the GA-MLHD 

model populations 

In order to identify associations between the collections of models with known 

functional pathways, the selected gene signatures have been mapped on the Ingenuity 

database using the web-based Ingenuity Pathway Analysis (IPA) tool 
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(www.ingenuity.com).  Ingenuity knowledge base stores curated information on the 

interactions between genes, maps of canonical functional pathways, and functional 

relationships supported by published literature and by protein-protein interaction data. 

Pathways of highly interconnected predictive genes are identified in this database by 

statistical likelihood and can be used to formulate hypotheses on the biological 

framework underlying the statistical models. The analysis was then performed on the 

218 genes represented in the population of statistical models developed using the GA-

MLHD procedure from the molecular profile of normal cells and predictive of CP. This 

analysis revealed that all genes included in the models and represented in the Ingenuity 

database were all part of a single large network representing 11 interconnected sub-

networks with a significant score (Table 5.2). Figure 5.7 shows a simplified network 

representing the union of sub-networks 1, 3, and 4 (the untrimmed version is shown in 

Supplementary Figure 5.1). The figure shows that 53 of the genes represented in the 

model populations are associated with interconnected pathways centred on the 

cytokines TNF, IL4, IL13 and the growth factors TGFâ and IGF1. GO analysis of the 

genes represented in this network reveal a significant association with growth factor 

activity, response to stress, response to external stimulus and a strong association with 

extra-cellular region, cell to cell signalling and extra-cellular matrix terms. These GO 

terms indicate a direct link between the predictive power of signatures based on the 

molecular state of normal cells and gene products associated with the extra-cellular 

environment (see Supplementary Table 5.1 for the full list of significant GO terms). 

Figure 5.8 shows that 29 additional genes are directly linked to the oncogenes c-myc or 

p53 (Figure 5.8A and Figure 5.8B respectively, see also the corresponding untrimmed 

version in Supplementary Figure 5.2 and Supplementary Figure 5.3). This finding is 

consistent with the importance of p53 as a tumour suppressor gene whose mutations 

are associated with the development of many human malignancies. Abnormal nuclear 

p53 accumulation and p53 mutations have in fact been observed in prostate cancers, 

particularly in prostate cancers of higher tumour stage, higher tumour grade, 
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metastases, or androgen-independent tumours [167]. The fact that genes associated 

with the oncogen c-myc are part of a significant network, in combination with the 

recent discovery that over expression of c-myc in a transgenic mouse induces the 

development of prostate cancer [168] raises the interesting possibility that c-myc status 

may also be an important predisposition factor in the development of human prostate 

cancer [169]. GO analysis of the networks associated with c-myc and p53 shows the link 

with GO terms transcriptional regulation, nucleus, and regulation of cell proliferation 

(see Supplementary Figure 5.2, and Supplementary Table 5.3 for the full list of 

significant GO terms in c-myc and p53 sub-networks respectively). These results 

support the validity of the approach confirming the expectation that pathways 

involving cell contact and directly controlling cell migration in normal cells may be 

involved in sensing and/or influencing the microenvironment and so influence the 

aggressiveness of a tumour. 

 



 125 

Table 5.2 - Significant Networks identified by IPA associated to CP class from the population of 
models of the molecular profile of normal cells developed using the GA-MLHD procedure in Singh et 
al. dataset. Column identifiers are: NTW-Network, S-Score, FG-Focus genes, FUNCTIONS-most 
important functional terms associated to the network as identified by the IPA software. 
NTW GENES S FG FUNCTIONS 

1 ACTN1, ADAM15, ADCYAP1, AFR1, ARAF, BCAM, COL6A1, 
CTGF, DGCR6, DNAJB2, EEF2, EPOR, ERBB3, GCLM, GRB2, 
IGF1, IGFBP4, IRS4, ITGA3, JUNB, KCNH2, LRPAP1, MCM2, 
MCM3AP, NRG2, PAK4, PAPPA, PTK6, SERPINA3, SPIN2A, 
SYNPO2, TUB, YWHAB, YWHAH, YWHAZ 

39 26 Cellular Growth and Proliferation, 
Cardiovascular System 
Development and Function, 
Cellular Function and 
Maintenance 

2 ARPC3, ARPC1B, COL18A1, COX17, COX4I1, COX5B, COX6A1, 
COX7C, CRIM1, DDB2, E2F1, EEF1G, EGFR, FBN1, GABPB2, 
GAPDH, GRP, H3F3A, IGF1R, JRK, MAP4, MDK, MYCN, NRG2, 
RBBP8, RPL13, RPL37, RPL13A, RPL37A, RPS2, RPS7, RUSC1, 
TMED9, UBB, XDH 

23 18 Cell Cycle, Cancer, Cell Death 

3 ADFP, ASS, ATF3, EXT1, FABP4, FOXC2, GCLC, GCLM, GPD1, 
GSTT1, HSD11B1, HSD17B4, IFIT1, JUNB, LBP, MGP, NFE2L2, 
NFRKB, NUP98, NUTF2, PMF1, PPARA, PPARD, S100A8, 
SCARB1, SERPINA3, SKIP (includes EG:51763), SLC16A5, 
SLC2A4, ST6GAL1, STMN1, TFAP2C, TNF, UBC, WWOX 

21 17 Lipid Metabolism, Molecular 
Transport, Small Molecule 
Biochemistry 

4 BATF, C19ORF10, CAP1, CCL11, CYC1, CYTB, DEFB103A, 
DHCR24, FKBP1A, FZR1, HSD11B1, HSD3B1, IGFBP4, IL4, IL9, 
IL11, IL13, IL4R, ITGA7, KRT1, LGALS3BP, MMP11, MVK, PLP1, 
S100A8, SRM, SYNGR2, TGFB1, TIMP1, UQCRB, UQCRC1, 
UQCRC2, UQCRFS1, UQCRFSL1, UQCRH 

21 17 Carbohydrate Metabolism, Cell 
Signaling, Energy Production 

5 ASGR2, BRD2, CDK8, CSDA, DNAJC7, DSTN, FKBP4, GADD45G, 
GAPDH, HOXB4, HSP90AA1, ID2, KPNA4, LY6A, MYC, NFYB, 
NOSIP, NR1I3, OAZ2, PPIA, PPID, PRDX2, PRDX3, PRKCD, 
RAD51, RB1, RCC1 (includes EG:1104), RPL32, RPL41, SNRPN, 
SRM, TBC1D22A, TPM1, UGT1A2, ZBTB16 

17 15 Cell Cycle, Connective Tissue 
Development and Function, Post-
Translational Modification 

6 ACP1, APOD, APS, ATP1B3, BRP44, CEACAM1 (includes 
EG:634), CLU, CTNNB1, ERBB2, GAS6, GRIK1, GRIK2, GRIK5, 
IGF2R, IGHA1, IL7, IL9, ILK, KRT5, LYN, M6PRBP1, MAP2K2, 
MAPK1, MME, NPC2, PEBP1, PIK3CA, PTPN18, RPL17, SH2B, 
STAT2, STAT5B, TIMP1, UBTF, WFS1 

17 15 Cellular Growth and Proliferation, 
Cancer, Cell Death 

7 BLM, BTBD2, CCND3, CCNG1, CDKN2A, CLIC4, CRYBA4, 
DAZAP2, DUSP1, E4F1, ETS1, FOSL1, GSTM1, JUNB, MAF, 
MFAP2, MSX1, MYB, NDN, NEDD4, NFE2, NQO1, PLAGL1, 
PLTP, PLXNB2, PPP2R4, RNF11, RPL8, RREB1, SGK, TADA3L, 
TP53, TWIST1, UBE2D2, UBE3A 

16 14 Gene Expression, Cell Cycle, Cell 
Death 

8 ACACA, ACO1, AKR1A1, CCKAR, CD160, CSF2, CTSH, EFNB1, 
ERP29, FOS, FOXE1, GCLC, GRP, HLA-G, HNRPD, HSD3B1, 
IFNG, IL1RL1, INS1, KALRN, LDHB, LEP, NIPSNAP1, OPLAH, 
PDE3B, PMCH, POMC, PSMC5, PSMD5, RPL23A, SLC13A2, 
SNRPD2, SORBS1, TBX19, TIMP1 

16 14 Behavior, Digestive System 
Development and Function, 
Nutritional Disease 

9 ACVR1, ADORA2B, ARF5, ATF3, AVIL, CBLC, CLDN7, DDIT3, 
EGF, EGR2, ELL2, GABBR1, GABBR2, GGTLA1, HIRA, IGFBP4, 
MME, MR1, MSN, PAX7, PEA15, PLCB3, PLD2, PRKCD, PTHLH, 
RDX, RPS6KA1, SGK, SIM1, SLC9A3R2, SORBS3, STK11, 
TBC1D10A, USP19, VIL2 

14 13 Cellular Assembly and 
Organization, Cancer, Cell Death 

10 ATN1, BLM, CASP3, CCND1, CD247, CRK, CYP19A1, EPAS1, 
GPX4, GRP, HNRPL, HYOU1, IRS1, KCNK3, KRT5, KRT14, 
MYCBP2, NASP, NEU3, NFE2, PIK3CA, PINK1, PRKCD, PRKCE, 
PRKCZ, RASSF1, SLC25A1, SMPDL3B, SOCS6, SPINK4, TCEB2, 
UBTF, VEGF, XRCC2, ZAP70 

13 12 Cancer, Cell Death, Hepatic 
System Disease 

11 ACTA2, APBA2, APBB1, APOE, APP, CASP6, CD59, CLSTN1, 
COL18A1, CST3, CTSB, EDN1, EGR1, EWSR1, FOSB, FUS, FYN, 
HSPG2, MAPK10, PAX3, PIGA, PIGB, PIGH, PIGQ, PRELP, 
PSEN1, PSEN2, PURA, PURB, SF1, SHC3, SRF, TEAD1, TGFB2, 
YBX1 

8 9 Cell Death, Neurological Disease, 
Organismal Injury and 
Abnormalities 
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Figure 5.7 - Functional Network Analysis: genes associated to cytokine and growth factor 
pathways. The figure displays a network resulting from the union of three of the networks 
identified from the molecular signatures predictive of CP, selected using the molecular profile of 
the normal tissue (correspondent to networks 1, 3 and 4 of supplementary table 6). The original 
networks were representing 105 genes associated to five important cytokines and growth factors 
present in the tumour microenviroment. These are TNF, IL4, IL13, IGF1 and TGFâ. The network in 
the figure has been simplified in order to make easier the interpretation by pruning some of the 
genes not included in the statistical models. The original version of the figure is available in 
Supplementary Figure 5.1. The final network represents 59 genes that have been selected in the 
predictive models. Nodes, representing genes, with their shape representing the functional class of 
the gene product, and multiple edges representing the biological relationships between the nodes 
(see key on the left). Nodes representing genes included in predictive modes are coloured in pink. 
Functional analysis was performed using a Hypergeometric test and statistically significant high-
level functions are reported in Supplementary Table 5.1. Some manually chosen GO terms are 
shown in the top-left corner.  
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Figure 5.8 - Functional Network Analysis: genes associated to oncogenes. The figure displays two 
networks identified from the molecular signatures predictive of CP, selected using the molecular 
profile of the normal tissue. The network in panel A represents 35 genes connected to MYC. Of 
these, 15 were selected in the models predictive of CP. The network in panel B represented 35 
connected to p53. Nodes, representing genes, with their shape representing the functional class 
of the gene product, and multiple edges representing the biological relationships between the 
nodes are represented as depicted in the key to Figure 5.7. Nodes representing genes included in 
predictive models are coloured in pink. Functional analysis was performed using a 
Hypergeometric test and statistically significant high-level functions are reported in 
Supplementary Figure 5.3 and Supplementary Table 5.3. Some manually chosen GO terms are 
shown in the top-left corner. 
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5.2.3.3 - Canonical Pathway analysis of the genes represented in the GA-MLHD 

model populations 

In order to further characterize the function of the genes selected using the GA-MLHD 

procedure, a canonical pathway analysis using the IPA software was performed. This 

analysis has revealed additional evidence that models are representing components of 

the cell to cell interaction machinery and suggests that the expression of genetic 

predisposition factors is an important component of the models. The results of this 

analysis are shown in Figure 5.9 and reveal five functional pathways associated with 

models developed from the molecular profile of tumour cells and five pathways 

significantly associated to normal tissue (á=0.05). Models predictive of CP using the 

molecular state of the normal tissue represent Jak/Stat signalling, Integrin signalling, and 

Glutathione metabolism biological pathways. Among these, the Integrin pathway is a key 

component of the cell to cell interaction machinery. The Glutathione metabolism 

pathway plays a role in defending normal cells against carcinogens and its disruption is 

a predisposition factor for prostate cancer, Lin et al. [170] discovered a genetic defect in 

88 out of 91 prostate cancer cell samples analyzed. This defect prevents the body from 

producing glutathione S-transferase (GST), an enzyme needed by the liver to detoxify 

harmful chemicals. The defect was not found in cells from healthy men. The results are 
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Figure 5.9 - Summary of the results of the canonical pathway analysis performed with the ingenuity 
software on the models developed from the analysis of the Singh et al. dataset to predict CP. Genes 
are marked in blue if specific for normal tissue and in red if specific for tumour. Genes marked in 
green have been found both in models developed from normal and tumour tissues. 
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consistent with these findings and further support the importance of the disruption of 

the Glutathione metabolism-dependent detoxification in the initiation or, most 

probably, in the progression of prostate cancer. Despite a very small degree of overlap 

at the gene level, two inter-related functional pathways seem to be significantly 

associated to models developed from the molecular profile of both normal and tumour 

tissues. These are the IGF-1 and ERK/MAPK signalling pathways. Typical signalling 

pathways controlling cell proliferation and apoptosis (PI3/AKT signalling, P38/MAPK 

signalling, and general G- protein signalling) are instead specific for models built on the 

transcriptional profile of tumour cells. The analysis of the dataset developed by 

Lapointe et al. did provide a consistent but less comprehensive picture. Likewise the 

analysis performed on the Singh et al. dataset, the integrin pathway was significantly 

associated to models based on the transcriptional profile of the normal tissue whereas 

fatty acid biosynthesis was associated to models based on the transcriptional profile of 

tumour cells.  

 

5.2.4 - Survival Analysis 

Once demonstrated that it is possible to correlate the molecular state of the normal 

tissue to tumour features, the analysis was directed to answer whether the molecular 

state of normal cells is also predictive of clinical outcome. It has been possible to 

address this question because of the availability of survival free recurrence for a subset 

of patients in both the Lapointe et al. and Singh et al. datasets ("recurrence" in this 

context is defined by increased levels of prostate specific antigen in the sera that 

indicate the presence of a secondary tumour). Figure 5.10 describes the strategy used in 

this analysis (see Methods section). SAM was used to identify genes related to survival 

free of recurrence [43].  
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SAM analysis identified 19 genes whose expression profile in the normal tissue is 

significantly associated to survival free of recurrence. The most striking characteristic of 

this signature is the large number of immunoglobulin genes (Figure 5.11). This result 

suggests that the presence of an extensive B-cell infiltrate adjacent to the tumour site at 

the time of surgery would be an important factor influencing recurrence. Gene 

signatures derived from the transcriptional profile of tumour cells that are associated to 

survival are radically different. Interestingly, no immunoglobulin genes or other B-cell 

markers have been found. 

 

In order to gain further confidence on these results, the dataset developed by Singh et 

al. has been used as an independent validation set. Genes in common between the 

signatures developed from Lapointe et al. dataset and the dataset from Singh et al. were 

identified using Unigene. Then, a cluster analysis was performed to identify groups of 

patients with different survival characteristics using the data from Singh et al. The 

results are summarised in Figure 5.12. Cluster analysis shows that samples are split in 

two major clusters. A Kaplan-Meier analysis of these two population of patients shows 

significantly different survival rates (p=0.004). Other common agglomerative methods 

(average and complete) display similar results (data not shown). Molecular signatures 
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Figure 5.10 - Survival Analysis Strategy. Genes that are potentially related to survival times were 
detected by SAM in normal and tumour from Lapointe et al. dataset. These genes were mapped in 
Singh et al. dataset and subject to clustering. The significance of the difference in survival times 
between two groups in Singh et al. were assessed by the log rank test and shown by Kaplan-Meier 
plots. 



 131 

identified by SAM analysis in the tumour cells from Singh et al. dataset are also 

predictive of survival times in Lapointe et al. dataset (data not shown).  

 

 

Because of the limited number of patients in the dataset that have information on the 

clinical outcome, these results should be considered as indicative and must be 

confirmed with a much larger patient population. 

 

R07311 C18orf1
H56918 EIF4A1

T49529 LIPG
* AA740786 IGHV3-21

AA283739 ANXA2
N64010 PFKFB3

AA421018 FLJ37034
* N92646 IGHG1

AA406526 
AA135001 TMEM45B

AI674972 PGC
* T70057 IGJ

AA088439 TM4SF1
AA055657 KRT19

AA939238 
* T90492 IGJ

AI821407 
AI040033 CLCF1

AA026192 SLPI
* AI820828 IGLV@
AI301004 PFKFB3

AA455980 
AA705507 RCC1

* AI668562 IGLV@
* AA971714 IGLV6-57

AI984082 
R96522 PSG1

R96393 LOC647017
AA496741 HNRPU

AA405569 FAP
* T63045 IGL@

AI207358 STS-1
W79069 ADAMTS6

H44567 TNFSF10
N48737 C18orf1
* W73587 IGLL1

AA402920 TXNRD1
AI275120 LOC130576

P
N

37
P

N
11

2
P

N
33

5
P

N
22

4
P

N
18

7
P

N
83

P
N

19
*

P
N

10
0

P
N

19
5

P
N

22
9

P
N

10
2

P
N

19
1

P
N

20
5

P
N

26
5*

P
N

25
0*

P
N

92
P

N
14

8
P

N
10

3*
P

N
21

P
N

11
1

A

P
T

11
1

P
T

22
9

P
T

92
P

T
21

5
P

T
22

4
P

T
20

5
P

T
83

P
T

33
5

P
T

37
P

T
11

2
P

T
10

2
P

T
19

1
P

T
21

P
T

10
0

P
T

19
*

P
T

32
P

T
07

*
P

T
18

7
P

T
14

8
P

T
25

0*
P

T
19

5
P

T
16

8*
P

T
87

*
P

T
41

P
T

10
3

P
T

26
5*

W79069 ADAMTS6
AA676537 RBM6

H23028 GALNT13
AA702307 FGF12

H15302 GDAP1
AA931884 CCL1

N47387 STN2
AA125751 ANGPT2

T96854 JAG1
AA497033 CDO1

W60413 LOX
N30156 DCLRE1A
AA507763 RNF19

H89490 TMEM118
AA682423 MAOB

AA455131 
AI337292 TTK

R96780 APOA1
AA454747 RAB3GAP2

AA418698 
AA456821 NETO2

H94812 PROX1
H09966 CPLX2

AA939238 
H89282 IGSF10

AA873056 RAD51
AA424833 BMP6
N26562 MLANA

AA406529
N66138 CREB5

R22878 
AI821407 

AA463490 
N50834 MVD

AA131299 CAMK2N1
AA421284 SNAP91
AA135809 ZNF367

AA278407 POU2AF1
AA426086 CA5B/CA5BL

AI093577 
AA504348 TOP2A

AA402920 TXNRD1
AA464176 PIK3CG

H51419 KCNQ2
AI203404 L1TD1
AA705507 RCC1

AA425373 CAMK2N1
AA701455 CENPF

H66070 AGTR1
W88421 

AA055811 GPA33
AA476918 GRK5

AA204830 DEPDC1
AA425336 NEFH

AA862465 AZGP1
AA677165 

AI185068 ARIH1
AA779273 Hs.335163

R20861 KCNMB4

B

 

Figure 5.11 - Genes associated to survival times (Lapointe et al. dataset). (A) Genes obtained from 
normal data. (B) Genes obtained from tumour data. Immunoglobulin gene products (in rows) are 
highlighted in red and marked with a star (*). Genes also found in Singh et al. dataset are 
underlined. Samples (in columns) with a recurrence event are marked with a star. Brighter green or 
red colours represent lower or higher relative expression respectively. 
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5.3 - Discussion 

Results have demonstrated that the expression of a set of genes in the normal tissue is 

predictive of important aspects of cancer physiology and probably clinical outcome. 

The models represent two different classes of genes. They are either important 
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Figure 5.12 - Validation of genes associated to survival times in Singh et al. dataset from genes 
obtained using SAM analysis of Lapointe et al. dataset. (A) In normal data. (B) In tumour data. 
Samples (in columns) with a recurrence event are marked with a star (*). Brighter green or red colours 
represent lower or higher relative expression respectively. 
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components of the extra-cellular environment with a demonstrated biological activity 

on tumour cells (such as CALLA, Cytokines and chemokine ligands, matrix 

components and matrix remodelling proteins) or with the associated regulation of 

oncogenes and cancer predisposition factors (such as p53, the glutathione metabolism 

pathway and possibly the oncogene c-myc). 

 

This analysis leads us to re-formulate the hypothesis that the expression of extra-

cellular or membrane bound proteins with the ability to alter tumour physiology and 

produced by normal cells is an important factor in specifying the development of 

cancer. Moreover, many of these genes encode for proteins that have a demonstrated 

tumour suppressor activity suggesting that tumour cells have to escape the molecular 

restraints of their own internal signalling networks, but also must overcome the 

inhibitory actions of signals from adjacent cells. Furthermore, these concepts extend 

beyond the idea of intrinsic tumour suppression where within a given tumour cell 

genomic surveillance systems and other tumour suppressor pathways are activated 

under the cellular stress of oncogenic activation. The current findings also suggest that 

this concept extends to the adjacent normal tissue which also acts in a proactive manner 

to suppress local malignancy. The importance of the expression profile of the normal 

tissue in determining the development of cancer is further supported by the indicative 

results that the expression of genes in the normal tissue is predictive of biochemical 

relapse. This analysis shows the existence of molecular signatures, from the normal 

tissue, that specifies groups of patients with a significantly different likelihood of 

survival free of metastases. The biological interpretation of these signatures reveal, 

among various factors, that the presence of an extensive B-cell infiltrate in the normal 

tissue, at the time of surgery, is a component of the signatures that are associated to the 

development of secondary tumours and/or metastases that determine biochemical 

relapse. 
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The identification of factors expressed in normal cells and sufficient to predict tumour 

physiology lead to interesting hypothesis on the mechanisms involved in the 

development and progression of cancer and suggest a series of experiments that could 

be designed to confirm the validity of these hypothesis. The most obvious one is the 

demonstration (using for example SNP analysis) that the mutational status of some of 

the genes identified is associated to tumour features. 

 

5.4 - Conclusions 

In the context of prostate cancer the application of the analysis strategy described in 

combination with the ability to laser micro-dissect different subpopulations may allow 

the identification of important components in the interaction between normal, tumour 

epithelia, stroma and endothelial cells. Moreover, the approach described here is 

general and can be applied to identifying the components of the cell to cell interaction 

machinery in any tissue where it is possible to isolate different cell types. 

 

5.5 - Material and Methods 

5.5.1 - Datasets 

The analysis is based on two independent large prostate cancer studies performed 

using different array technologies. In both studies, cells from tumour and adjacent 

normal tissues have been isolated and the extracted RNA has been hybridized on 

human microarrays for expression profiling. The first dataset used in the analysis is 

derived from a study performed by Singh et al. [8] where 52 samples of prostate 

tumours and adjacent normal tissues were collected from patients undergoing radial 

prostatectomy; then profiled using Affymetrix Genechip technology. The second 
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dataset used was collected by Lapointe et al. (2004) using cDNA arrays. In this study 41 

paired normal and tumour specimens were removed from radical prostatectomy. 

Information about the histo-pathology of the tumour specimens (GS and CP) as well as 

survival free of recurrence was available for both datasets. For the Singh et al. dataset, 

the analysis has been performed on a subset of 40 unique patients for which matching 

normal and tumour samples were available. Probesets with an average expression 

across samples in the bottom 10% and range within top 28% were filtered. 2,752 genes 

matched these criteria. For the Lapointe et al. dataset, 39 samples were selected having 

tumour and matched normal data. Spots and samples with at least 75% of non-missing 

data were used. Missing data were median-imputed. Genes were filtered using 23% 

largest range. 2599 genes were then used.  

 

5.5.2 - Statistical Modelling 

The analysis aims to identify molecular signatures predictive of two binary variables 

representing relevant features of tumour biology. These are the degree of differentiation 

of the tumour (GS) and the ability of the tumour to penetrate the organ capsule (CP). 

For this purpose, univariate and multivariate methods have been used which are 

described in the following sections (general concepts are also presented in Chapter 2). 

 

5.5.2.1 - Classification methods with univariate variable selection 

A univariate variable selection strategy was tested based on an F-test in combination 

with several classification methods (SVM, DLDA, PAMR, KNN, SOM) as implemented 

in the software application Prophet available in the web-based microarray analysis 

suite GEPAS [93]. This application uses a step-wise variable inclusion strategy to 

construct increasingly large models from a list of genes ranked by the value of the F-
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statistics and it also implements a cross-validation strategy for error estimation. Results 

of this analysis are shown in Figure 5.1. 

 

The univariate variable selection strategy has been validated for biological significance 

using FatiScan [152], a functional annotation tool available in the context of the web-

based analysis toolset GEPAS [93]. The aim of FatiScan is to find functional classes 

(defined by GO terms, InterPro, KEGG, and SwissProt keywords), namely blocks of 

genes that share some functional property, showing a significant asymmetric 

distribution towards the extremes of a list of ranked genes. This is achieved by means of 

a segmentation test, which consists of the sequential application of a Fisher's exact test 

over the contingency tables formed with the two sides of different partitions made on 

an ordered list of genes. The Fisher's exact test finds significantly over or under 

represented functional classes when comparing the upper side to the lower side of the 

list, as defined by any partition. The FatiScan procedure has been applied to the list of 

genes ranked by the value of the F-statistics as described in the previous paragraph. 

The application of FatiScan to such ranked lists renders blocks of functionally related 

genes that are over or under-represented to sample classes (CP or GS). 

 

5.5.2.2 - Classification methods with multivariate variable selection 

In order to consider the effect of combinations of genes in the prediction of the 

histopathological variables, statistical modelling approaches combined with 

multivariate variable selection procedures have been used. Besides, in order to 

demonstrate that the results are independent of a particular methodology, multivariate 

classification models obtained using two independent procedures were compared. 

These methods differ for both the variable selection strategy and for the classification 

algorithms used. The first approach is a modification of the Genetic Algorithm 

maximum likelihood discriminant analysis (GA-MLHD) method originally proposed 
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by Ooi and Tan [79]. This method uses a genetic algorithm approach for variable 

selection coupled to an MLHD functions classifier. The GA-MLHD methodology uses 

an initial random population of models (called chromosomes) and evolves from them 

highly accurate classifiers using a process that mimics natural selection. In the 

implementation used (see Chapter 3), the error estimation strategy has been improved 

by using two-levels of cross-validations. The first level is used in the evolutionary step 

of the GA to evaluate the error in a subset of the dataset using a k-fold-cross-cross-

validation procedure (k=5). The second level is used at the end of the evolutionary 

process, when all chromosomes are selected, to estimate the classification error as an 

average of the test error in 40 random splits (2/3 for training and 1/3 for testing) using 

the entire dataset. For details in error estimation strategies see Chapter 2. The resulting 

models obtained using a Bayesian variable selection (BVS) approach that was recently 

developed [110] were compared with those obtained with GA/MLHD (these BVS 

models were kindly provided by collaboration with Dr. Mahlet G. Tadesse and Dr. 

Marina Vannucci from Texas A&M University). The BVS method uses a multinomial 

probit model as classifier and Markov Chain Monte Carlo (MCMC) methods to search 

multivariate space for informative subsets of the variables. Error estimation and 

parameters settings have been described in Sha et al. [110]. 

 

5.5.2.3 - Selection of model size 

The variable selection strategies employed in the implementation of the GA-MLHD and 

the BVS methods require the definition of the a-priori model size. In the GA-MLHD 

method the model size is specified as the dimension of the chromosomes whereas in the 

BVS method this is the parameter of the prior model, w, that determines the expected 

model size. Since training accuracy is not a good indicator of the optimal model-size, to 

choose this parameter the classification test accuracy of models of different sizes was 

compared (Figure 5.13). For the GA-MLHD method the optimal model size has been 
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defined as the value associated to the highest second-level classification accuracy 

averaged across a population of 10,000 chromosomes. The initial value of w for the BVS 

method was set to 10, or 20. Two runs for each choice of w were performed. The optimal 

model size was chosen according to the lowest miss-classification error (Table 5.3).  

 

 

5.5.2.4 - Selecting representative models 

Both GA-MLHD and BVS modelling approaches provide a number of alternative 

models with comparable predictive values. These models tend to have a degree of 

overlap in their gene composition. It is therefore meaningful to select a single summary 

model that represents the most frequent solutions. In order to do so, for the GA-MLHD 

approach, a forward selection procedure was applied to the top 1% most predictive 

models selected using the GA procedure (as in Chapter 3 and [146]). In the case of BVS, 

models were developed with the genes that were included in the subsets of variables 

most frequently visited by the MCMC search. The final list of models was generated by 
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Figure 5.13 - Model size selection for GA-MLHD method. Panels show representative test accuracy 
distribution from 10,000 models of three sizes (5, 10, 20) for Singh et al. dataset (left panel) and for 
Lapointe et al. dataset (right panel). The overall accuracy tends to decrease for larger models. 
Accuracy distribution for other class-data combinations are similar to those shown in this figure 
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the union of the two chains with minimum average mis-classification error [110]. 

Interestingly, representative models developed with the GA-MLHD procedure largely 

overlaps with the pooled models from the BVS approach. 

 

5.5.3 - Tissue specificity of representative models 

An important component of the strategy is to demonstrate that molecular signatures are 

tissue specific hence they are not representing a mere reflection of the overall similarity 

between normal and tumour tissues. The strategy to demonstrate the specificity of the 

gene signatures obtained with the multivariate variable selection strategy implemented 

in the GA-MLHD procedure is described below in two steps. 

 

5.5.3.1 - Step 1: Development of representative models 

Expression data from the normal tissue samples are split between a training and test 

sets (respectively 2/3 and 1/3 of the original dataset). The training set is used to develop 

a classification model to predict cancer features with a cross-validation strategy. Once 

the representative models have been developed, their classification accuracy is 

estimated on the test set. This procedure is performed in 40 random train-test splits. 

Table 5.3 - Model size selection for BVS method. The final accuracy of two BVS runs starting with 
model size 10 or 20 is shown. The size chosen for each combination of tissue-class-dataset is bolded. 
CP+N � Capsular Penetration class from Normal data, CP+T � Capsular Penetration Tumour, GS+N � 
Gleason Score Normal, GS+T � Gleason Score Tumour. 
Class+Tissue 
Dataset 

Run Expected 
Model �Size=10 

Expected 
Model-Size=20 

Class+Tissue 
Dataset 

Run Expected 
Model �
Size=10 

Expected 
Model-
Size=20 

CP+N 
Singh et al. 

Run 1 
Run 2 

72.9% 
72.9% 

78.4% 
78.4% 

CP+N 
Lapointe et al. 

Run 1 
Run 2 

97.1% 
94.3% 

97.1% 
100% 

 
CP+T 
Singh et al. 

 
Run 1 
Run 2 

 
91.9% 
91.9% 

 
89.2% 
94.6% 

 
CP+T 
Lapointe et al. 

 
Run 1 
Run 2 

 
100% 
100% 

 
100% 
100% 

 
GS+N 
Singh et al. 

 
Run 1 
Run 2 

 
75% 
62.5% 

 
95% 
85% 

 
GS+N 
Lapointe et al. 

 
Run 1 
Run 2 

 
100% 
97.4% 

 
97.4% 
97.4% 

 
GS+T 
Singh et al. 

 
Run 1 
Run 2 

 
90% 
90% 

 
87.5% 
90% 

 
GS+T 
Lapointe et al. 

 
Run 1 
Run 2 

 
97.4% 
97.4% 

 
89.5% 
92.1% 
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5.5.3.2 - Step 2: Specificity test 

Expression data from the tumour tissue samples are split between a training and test 

sets (respectively 2/3 and 1/3 of the original dataset). The expression profile of genes 

selected in Step 1 (in the samples selected in the training set) is used to train a 

classification model to predict cancer features. The classification accuracy of the trained 

model is then estimated on the test set. This procedure is performed in 40 random train-

test splits. The classification accuracy estimated in this step 2 is then compared to the 

classification accuracy estimated in step 1 to establish the tissue specificity of the gene 

signatures (Figure 5.6). In order to demonstrate the tissue specificity of models based on 

the molecular profile of tumour tissues, the reverse test between tumour models using 

normal data was also performed. 

 

The assessment of the tissue specificity of the molecular signatures obtained with the 

BVS procedure has been performed similarly using a cross-validation procedure for the 

error estimation as described in [110]. 

 

5.5.4 - Network and Canonical Analysis of Genes Selected in the GA-MLHD Models 

Using the Ingenuity Software 

Because of the relatively small number of genes selected in the summary models the 

biological interpretation is relatively simple. This analysis has been presented in section 

5.2.3.1 -. However, the analysis with the GA-MLHD procedure identifies many 

alternative models that are equally predictive of tumour features. Consequently, many 

of the genes selected in these models may represent important biological pathways and 

therefore could provide important insights in the patho-physiology of the tumour. In 

order to identify associations between the collections of models with known functional 
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pathways, the selected gene signatures were mapped on the Ingenuity database using 

the web-based Ingenuity Pathway Analysis (IPA) tool (Palo Alto, www.ingenuity.com) 

which enables discovery, visualization, and exploration of biological interaction 

networks. This database store maps of canonical functional pathways and functional 

relationships supported by published literature and by protein-protein interaction data. 

This chapter focuses the discussion on the analysis of the models that are predictive of 

CP and are based on the molecular profile of normal cells. Nevertheless, supplementary 

tables report the results of network analysis in a tabular format for all datasets and all 

models developed. 

 

The gene sets represented in the populations of models selected using the GA-MLHD 

procedure have been analyzed using IPA application. Gene lists represented in the 

model populations developed with normal or tumour expression data predicting CP or 

GS were uploaded into the application. Each gene identifier was mapped to its 

corresponding gene object in the Ingenuity Pathways Knowledge Base. Only genes 

found in this database were considered. These genes, called focus genes, were overlaid 

onto a global molecular network developed from information contained in the 

Ingenuity Pathways Knowledge Base. Networks of these focus genes were then 

algorithmically generated based on their connectivity according to the following 

procedure implemented in the IPA software application. The specificity of connection 

for each focus gene was calculated by the percentage of its connection to other focus 

genes. The initiation and the growth of pathways proceed from the gene with the 

highest specificity of connections. Each network had a maximum of 35 genes for easier 

interpretation and visual inspection. Pathways of highly interconnected genes were 

identified by statistical likelihood using the following equation: 
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Where N is the number of genes in the genomic network, of which G is the total number 

of focus genes, for a pathway of s genes, f of which are included in focus genes. C(n,k) is 

the binomial coefficient. Pathways with a Score greater than 5 (p<0.00001) were selected 

for biological interpretation. GO analysis for identifying functional terms significantly 

enriched in the selected networks has been performed outside the IPA application 

using a Hyper-geometric test with FDR correction using the Benjamini and Hochberg 

procedure [171] as implemented in the Cytoscape plug-in BINGO [172]. 

 

Canonical pathway analysis was performed using the IPA tools and significance for the 

enrichment of the genes with a particular Canonical Pathway was determined by right-

tailed Fisher's exact test with á=0.01 and the whole database as a reference set. 

 

5.5.5 - Survival Analysis 

Figure 5.10 describes the strategy used in this analysis. SAM was used to identify genes 

related to survival free of recurrence [43]. This method uses a proportional-hazard Cox 

model (see section 2.5.4.1 in Chapter 2) to relate genes whose expression values are 

associated to survival times considering censored data. SAM uses permutations of 

survival times to estimate a significance score (FDR) for each gene. The genes identified 

in initial analysis of the larger training dataset (Lapointe et al.) were selected using a 

threshold of FDR < 30%. The genes associated to survival in the molecular profile of 

normal and tumour tissues were mapped on Unigene to identify the Affymetrix probes 

from the Singh et al. dataset. Normal and tumour data were then used to cluster 

patients in the Singh et al. dataset. Clusters delimited by two clearly separated groups 

of patients were analysed by survival curves and their difference assessed by a log-rank 

test. The analysis was performed using different clustering algorithms to determine that 

results are independent of the clustering method (data not shown). 
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5.6 - Supplementary Material 

Supplementary Table 5.1 - Gene Ontology analysis of the genes represented in the network shown in 
Supplementary Figure 5.1. Significant terms have been identified using a Hypergeometric test 
followed by FDR correction using the Benjamini and Hochberg False discovery rate (FDR) procedure. 
Terms with an FDR<=1% and with more than 4 genes in the term were listed in the table. Column 
identifiers are: N= number of genes in the GO term, FDR= False Discovery Rate. 

GO terms N FDR GO term N FDR 
cellular metabolism 57 6.60E-03 steroid metabolism 9 2.28E-05 
protein binding 52 4.04E-06 electron transport 9 5.15E-03 
signal transducer activity 29 6.17E-03 organelle envelope 8 3.19E-03 
organismal physiological process 25 5.15E-03 envelope 8 3.35E-03 
extracellular region 23 5.63E-06 extracellular matrix (sensu Metazoa) 8 3.35E-03 
response to stress 19 4.82E-04 mitochondrial inner membrane 7 2.94E-04 
extracellular region part 17 2.80E-05 organelle inner membrane 7 4.27E-04 
immune response 17 2.82E-04 mitochondrial membrane 7 9.79E-04 
defense response 17 9.79E-04 mitochondrial envelope 7 1.63E-03 
response to biotic stimulus 17 1.32E-03 protein dimerization activity 7 3.19E-03 
receptor binding 15 2.45E-04 mitochondrial part 7 7.63E-03 
oxidoreductase activity 15 9.79E-04 oxidoreductase activity, acting on diphenols and 

related substances as donors, cytochrome as acceptor 
6 1.55E-08 

response to pest, pathogen or parasite 14 2.82E-04 oxidoreductase activity, acting on diphenols and 
related substances as donors 

6 1.55E-08 

response to other organism 14 2.82E-04 ubiquinol-cytochrome-c reductase activity 6 1.55E-08 
response to wounding 13 2.80E-05 mitochondrial electron transport chain 6 5.48E-06 
organelle membrane 13 2.82E-04 mitochondrial membrane part 6 1.93E-04 
response to external stimulus 13 2.94E-04 hydrogen ion transporter activity 6 1.49E-03 
extracellular space 12 4.46E-04 monovalent inorganic cation transporter activity 6 2.11E-03 
lipid metabolism 12 2.64E-03 positive regulation of cell proliferation 6 2.94E-03 
positive regulation of biological process 12 5.48E-03 regulation of organismal physiological process 6 5.15E-03 
phosphorylation 12 6.60E-03 humoral immune response 6 5.26E-03 
cellular lipid metabolism 11 1.84E-03 growth factor activity 6 6.17E-03 
cell-cell signaling 11 4.09E-03 cholesterol metabolism 5 1.32E-03 
organ development 11 5.02E-03 sterol metabolism 5 1.84E-03 
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Supplementary Figure 5.1 - Network representing gene interactions between 53 of the genes 
selected in the statistical models (in pink) predictive of Capsular penetration based on the 
molecular state of normal cells. The network shows that many of the genes selected in the 
network are associated to cytokines and growth factor pathways. The network shown in the 
figure is the union of Networks 1, 3, and 4 (as annotated in Table 5.2). It complements its 
trimmed version shown in Figure 5.7. Keys to the symbols are as in Figure 5.7. 
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Supplementary Table 5.2 - Gene Ontology analysis of the genes represented in the network shown in 
Supplementary Figure 5.2. See Supplementary Table 5.1 for methods and annotations. 

GO terms N FDR 
cellular physiological process 29 9.88E-03 
cellular metabolism 26 4.54E-03 
primary metabolism 25 4.54E-03 
protein binding 19 9.88E-03 
intracellular organelle 19 6.77E-02 
regulation of biological process 16 1.70E-02 
regulation of cellular physiological process 13 4.02E-02 
regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism 11 2.76E-02 
negative regulation of cellular process 6 3.09E-02 

 

Supplementary Figure 5.2 - Network representing gene interactions between 15 of the genes 
selected in the statistical models predictive of CP based on the molecular state of normal 
cells. The network shows that many of the genes selected in the network are associated to 
the gene c-myc. The network shown in the figure annotated as network 5 in Table 5.2. It 
complements its trimmed version shown in Figure 5.8A. Keys to the symbols are as in 
Figure 5.7. 
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Supplementary Figure 5.3 - Network representing gene interactions between 13 of the genes 
selected in the statistical models predictive of Capsular penetration based on the molecular 
state of normal cells. The network shows that many of the genes selected in the network are 
linked to the oncogene p53. The network shown in the figure is annotated as network 7 in 
Table 5.2. It complements its trimmed version shown in Figure 5.8B. Keys to the symbols are as 
in Figure 5.8.  
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Supplementary Table 5.3 - Gene Ontology analysis of the genes represented in the network shown in 
Supplementary Figure 5.3. See Supplementary Table 5.1 for methods and annotations. 

GO terms N FDR GO term N FDR 
physiological process 31 2.77E-02 regulation of transcription 14 1.74E-03 
cellular physiological process 29 2.09E-02 regulation of nucleobase, nucleoside, nucleotide 

and nucleic acid metabolism 
14 1.96E-03 

Intracellular 27 3.23E-03 Transcription 14 2.03E-03 
intracellular part 26 3.11E-03 regulation of cellular metabolism 14 2.68E-03 
Metabolism 26 6.98E-03 regulation of metabolism 14 3.23E-03 
primary metabolism 24 1.23E-02 transcription regulator activity 12 7.53E-04 
cellular metabolism 24 1.85E-02 biopolymer metabolism 11 8.11E-02 
intracellular organelle 22 2.09E-02 Development 10 2.77E-02 
Organelle 22 2.09E-02 cell cycle 9 8.38E-04 
Nucleus 20 7.53E-04 transcription factor activity 9 2.03E-03 
intracellular membrane-bound organelle 20 1.85E-02 transcription from RNA polymerase II promoter 8 6.27E-04 
membrane-bound organelle 20 1.85E-02 regulation of progression through cell cycle 7 1.41E-03 
nucleic acid binding 18 9.79E-04 regulation of cell cycle 7 1.41E-03 
protein binding 18 2.15E-02 negative regulation of cellular physiological process 7 6.14E-03 
DNA binding 17 9.55E-05 negative regulation of physiological process 7 6.98E-03 
regulation of cellular physiological process 17 2.03E-03 negative regulation of cellular process 7 9.33E-03 
regulation of physiological process 17 2.56E-03 negative regulation of biological process 7 1.32E-02 
regulation of cellular process 17 3.31E-03 protein dimerization activity 6 6.27E-04 
regulation of biological process 17 6.65E-03 regulation of transcription from RNA polymerase II 

promoter 
6 9.79E-04 

nucleobase, nucleoside, nucleotide and nucleic 
acid metabolism 

15 1.88E-02 sequence-specific DNA binding 6 7.23E-03 

regulation of transcription, DNA-dependent 14 1.24E-03 cell proliferation 6 9.46E-03 
transcription, DNA-dependent 14 1.41E-03 transcriptional activator activity 5 2.56E-03 

 

Supplementary Table 5.4 - Significant Networks identified by IPA associated to GS tumour class from 
the population of models of the molecular profile of normal cells developed using the GA-MLHD 
procedure in Singh et al. dataset. Column identifiers as in Table 5.2. 
NTW GENES S FG FUNCTIONS 

1 CALR, CANX, CSNK1D, CSTA, CTNNA1, CTNNB1, DCT, DDX17, DUSP26, FCGRT, 
FGF9, FGF19 (includes EG:9965), GAS6, HSF4, HSPA1A, ILF3, JUND, MAPK3, 
MARCKSL1, NOTCH1, ORM1, P2RX7, PDIA3, PLAU, PMP22, QPCT (includes 
EG:25797), SERPINA5, SIM2, SORBS3, SREBF1, TAX1BP3, TFF3, TRIM28, USP9X, VCL 

33 21 Cell-To-Cell Signaling and Interaction, 
Cell Death, Cellular Growth and 
Proliferation 

2 AGRP, ANPEP, APBB1, APP, BCL2L1, BRD2, CCL2, CLSTN1, CNKSR1, DOK1, E2F4, 
IGF1, IGFBP4, KITLG (includes EG:4254), MAP2K4, MC2R, MGA (includes EG:23269), 
PHB, PRKCA, PRKCG, PRKCSH, PSMA1, PSMA2, PSMA4, PSMB1, PSMB5, RAF1, 
SRRM2, STMN1, SUPT4H1, TNF, UBC, UGCG, WDR1, ZNF267 

22 16 Cell Death, Cell Cycle, Skeletal and 
Muscular Disorders 

3 ADCYAP1, AP1B1, ASAH1, BASP1, CASP2, CCL5, CYP17A1, ECH1, EPHA2, EWSR1, 
FUS, GNL1, HLA-J, IFIT1, KRT8, LBP, LTBR, MAP2K6, NRP1, NRP2, PLXNA1, 
PSMD2, RBPMS, REL, RPSA, RXRA, SEMA3C, SEMA3F, SERPINA3, SF1, SMPD1, 
TNF, TRAF4, TUBB2B, YBX1 (includes EG:4904) 

19 14 Cell Death, Connective Tissue Disorders, 
Cellular Movement 

4 B2M, CAT, CD24, CD160, CTTN, FANCC, FCGR2A, FGR, GSTP1 (includes EG:2950), 
GYPC (includes EG:2995), HLA-A, HLA-C, HLA-E, HLA-G, IFNG, IGFBP4, JRK, 
KIR2DL4, MYCN, NALP12, PRDX2, PRKCA, PRKCB1, PRPF8, RAB5B, RGS10, RPS17 
(includes EG:6218), SERPINA5, SF3A1, SIM1, SMARCB1, TAP1, TAPBP, TMEM109, 
VLDLR 

19 14 Cell-To-Cell Signaling and Interaction, 
Hematological System Development and 
Function, Immune Response 

5 BCL2L1, CAD, CAPN1, CCL2, CDKN1A, CEBPA, CKAP4, CSDE1, DDX17, DNMT1, 
EIF4A1, EIF4G1, EIF4G3, GGT1, H1FX, H2AFZ, HES1, IRF7, LGMN, LUM, MYC, 
NOTCH1, PABPC1, PCBP2, PCBP1 (includes EG:5093), PIAS2, REL, RPL6, SFRS4, 
SFRS12, STRAP, TEGT, TNFSF11, TTK, TUBB2A 

19 14 Cellular Development, Hematological 
System Development and Function, 
Immune and Lymphatic System 
Development and Function 

6 ADRB2, ANXA2, ARHGAP1, ARHGAP8, ARHGEF1, ATF1, BAIAP2, BCL2, BCL2L1, 
BNIP2, C1QL1, CCL2, CDC42, DIAPH1, DNMT1, ELAVL3, FOS, FUS, HRAS, IL3, 
IL1R1, MID1, NOTCH1, P4HB, PPP2CA, PRKCA, RHOA, RPL15, RPL27A, SLC30A3, 
SLC9A3R1, SOX4, SPTBN1, WASF2, YBX1 (includes EG:4904) 

17 13 Cell Morphology, Cell Cycle, Cancer 

7 AGT, BLM, CCL2, CCL13, COX4I1, DDOST (includes EG:1650), FAM38A, GEMIN6, 
GEMIN7, GPI, GPX4, GRN, HES1, HK2, HK3, IGFBP4, IL13, LSM2, LSM4, MAOB, 
PIAS2, PKM2, PML, POU2F1, PTGDS, RAD51L3, REL, S100A2, SMN1, SNRPE, 
SNRPF, SNRPG, SP1, SUMO3, TP53 

17 13  Hematological System Development and 
Function, Immune and Lymphatic 
System Development and Function, 
Tissue Morphology 

8 CD40, CD74, CSF2, DDT, H2-PB, HLA-DPA1, HLA-DPB1, IFNG, IGH-IA, IL8, IL15, 
IL1B, MAPK8, NFKB1, NME4, TNF, TNFRSF25, TXNRD1 

6 5  Cell-To-Cell Signaling and Interaction, 
Hematological System Development and 
Function, Gene Expression 
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 Supplementary Table 5.5 - Significant Networks identified by IPA associated to CP tumour class 
from the population of models of the molecular profile of normal cells developed using the GA-
MLHD procedure in Lapointe et al. dataset. Column identifiers as in Table 5.2.  
NTW GENES S FG FUNCTIONS 

1 AGT, CBLB, CCDC99, CCNB2, CEACAM5, CEACAM1 (includes EG:634), COL4A1, 
COL8A1, CSPG2, CYP19A1, CYR61, DCLRE1A, FN1, GATA2, GHR, IGF1, IGFBP7, 
IL1RN, ITGA8 (includes EG:8516), LOX, LPL, MAP3K5, MAPK8, MYCN, NFE2, PDE3B, 
PDLIM2, PIK3CG, RFC3, SLC5A5, SORBS1, TITF1, TP53, UBE2C, WAC 

67 33 Cellular Growth and Proliferation, Cell 
Morphology, Cell Death 

2 AKT2, ANG, ARD1A, ASPH, CCL19, DACH1, EDIL3, FOS, FSCN1, GFAP, GNAI1, 
GSTM2, GSTP1 (includes EG:24426), IFNGR2, IGFBP6, IL11, IL16, IL4R, IRS4, ITPR3, 
LTBP2, NAT2, OGN, PANK1, PEX5L, POMC, PTEN, QKI, RPLP0 (includes EG:6175), 
RPS7, SSR4, TNF, WEE1, YWHAZ, ZAP70 

19 14 Cellular Development, Connective Tissue 
Development and Function, Skeletal and 
Muscular System Development and 
Function 

3 ALDH1A1, ARPC1A, CDH11, CNN1, COL5A2, CTNNB1, DDX5, EPHA7, EPHB3, FER 
(includes EG:2241), FRAS1, GRIP1, HES2, HOXC8, HRAS, IGFALS, IL1B, INS1, ISL1, 
JAK1, MEIS2, NALP2, PBX1, PKP1, PPM2C, RALA, RYK, SLC2A2, SOCS2, TF, THRSP, 
TJP1, TSPAN8, VHL, VIPR1 

19 14 Tissue Development, Cellular Growth 
and Proliferation, Carbohydrate 
Metabolism 

4 ACTN4, AFR1, AKT2, BEX1, BGLAP, CDCA7, CDH1, CDO1, DDX5, EP300, FABP1, 
FABP4, FOXP1, GTF2E2, IL11, ITGAM, LY6A, MAPK1, MDM2 (includes EG:246362), 
MST1R, MYC, MYCT1, MYH11, MYLPF, MYOD1, NCAM1, PLA1A, PPARG, PTMA, 
PTPRM, ST8SIA1, TGFB1, TJP1, TPM1, ZBTB17 

16 12 Cellular Development, Cell Morphology, 
Cellular Growth and Proliferation 

5 ADA, ATP2A1, BCL11A, CACNA1C, CACNA1D, CCL20, CEBPA, DEFB103A, FANCC, 
GAL, HSD11B1, IDE, IFNGR2, IGF1, IL2, IL4, IL6, IL13, IL3RA, IL4R, LCN2, MALT1, 
MRVI1, MS4A1, PAG1, PCLO, PDLIM2, PFKP, PLP1, PSME1, PTPN9, PTPRC, TK1, 
UCP1, WEE1 

16 12 Cellular Development, Hematological 
System Development and Function, 
Immune and Lymphatic System 
Development and Function 

6 CEBPA, CIITA, CNTN4, COL1A2, GRIA4, HLA-DQB2, HLA-DRA, IFNG, MTPN, MYC, 
NFYA, NFYB, NFYC, NSF, RFX1, RFX2, RFX3, RFX4, RFX5, SLMAP, STX16, TAF6, 
TAF9, TAF10, TAF12, TNF 

5 5 Gene Expression, Endocrine System 
Disorders, Metabolic Disease 

 

Supplementary Table 5.6 - Significant Networks identified by IPA associated to GS tumour class from 
the population of models of the molecular profile of normal cells developed using the GA-MLHD 
procedure in Lapointe et al. dataset. Column identifiers as in Table 5.2. 
NTW GENES S FG FUNCTIONS 

1 ADAM17, ARD1A, CD53, CDH16, CMA1, CSPG2, CYP1B1, FANCC, FAP, FBLN1, 
FGF10, FN1, GLB1, GNAQ, GNB5, GSTA2, GSTM2, GSTP1 (includes EG:2950), 
ITGA8 (includes EG:8516), ITGB1, KITLG (includes EG:4254), NAT2, NPNT, OGG1, 
POMC, PRKCB1, R9AP, RGS11, RGS13, RND3, RPS6, TACSTD2, TNFSF4, TPSB2, 
TYR 

21 15 Cellular Movement, Embryonic 
Development, Cell-To-Cell Signaling and 
Interaction 

2 CASP1, CD40LG, CTDSPL, CTNNB1, EGFR, F2, F5, FSCN1, FUT8, HLA-DQA1, 
IFITM1, KLK2, KLK3, MEF2C, NEDD4L, NRP1, NRP2, PLAT, PLXNA1, PODXL, 
PPARA, RB1, RBP4, RPLP0 (includes EG:6175), SEMA3C, SEMA6D, SERPINA3, 
SERPINA5, SERPINB6, SERPINE1, STX7, TAGLN3, TFAP2A, UGT2B4, YWHAZ 

19 14 Cellular Movement, Tissue Development, 
Hematological System Development and 
Function 

3 ACSL3, APOC2 (includes EG:344), CASP1, CCNA2, CCND3, CD14, CDH8, CHUK, 
CPA3, CX3CL1, EGF, ETS1, GABRE, GSK3B, HDAC3, IGFBP3, IKBKG, IL1RL1, 
MAPK8, MDFIC, MYB (includes EG:4602), NFKBIA, NOX4, NUAK1, OGG1, PDPN, 
PPP3CA, PRKCQ, RAB6IP2, RUNX1, SCG2, STK11, THAP7, TP53, UBE2C 

18 13 Cell Death, Cellular Growth and 
Proliferation, Gene Expression 

4 ABCG2, ADCYAP1, AKAP9, AR, ARF1, CCNA2, CFTR, CGA, CHUK, CLIC5, 
COL9A1, COL9A2, COL9A3, DQX1, FOS, GAS1, GBF1, GCG, GDF2, GSK3B, IL11, 
KBTBD10, KCNMA1, KRT8, KRT18, MGAT4A, PRKACA, PTPRN, PTPRN2, 
RASL11B, RIMS1, SNAP25, STX1A, STXBP6 (includes EG:29091), VIL2 

16 12 Drug Metabolism, Molecular Transport, 
Small Molecule Biochemistry 

5 CASP1, CCL22, CMA1, CTSL2, CX3CL1, DIAPH3, DNAJA4, FABP5, GAS6, IL2, 
IL13, IL16, IL1B, IL6ST, ISL1, JAK1, JAK2, KCNJ10, LHX3, MGP, MME, NALP2, 
NR5A2, PAG1, PFKP, PLSCR1, POU5F1, PRL, PTPN11, PYCARD, RXRA, SH2D1A 
(includes EG:4068), SRC, TNFSF4, TPT1 

16 12 Cellular Movement, Inflammatory Disease, 
Cellular Growth and Proliferation 

6 ACPP, AR, ARC, ASPH, ATAD4, BDNF, CD14, CENTG1, CHUK, CXCL14, DOK1, 
EIF4EBP1, ERBB2, FOLR1, HBD, IKBKB, IKBKG, IL8, KLK3, KRT19, LZTR1, NFKB2, 
NTRK2, PDE8A, PLCG1, PTEN, PXN, RTKN, SLC12A5, TAX1BP3, TGFBR1, 
TNFRSF10D, TNFRSF11B, TNFSF10, TSC22D3 

14 11 Tissue Morphology, Organismal Survival, 
Cancer 

7 ADAM17, AK3, CACNB1, CCL4, CCL6, CCNA2, CCND3, CCNE1, CHEK1, CHGN, 
CSN2, FTH1, GPM6B, HMGA1, IL4, IL9, IL1RL1, IL1RN, IL6ST, JUN, KLK3, MAOB, 
MAP2K4, MYC, NOG, PIGR, PIM1, PRKCD, PRNP, SHANK2, SST, SSTR2, SUPT3H, 
TEAD4, TNFSF11 

12 10 Cell Death, Cellular Growth and 
Proliferation, Cellular Development 
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Supplementary Table 5.7 - Significant Networks identified by IPA associated to CP tumour class from 
the population of models of the molecular profile of tumour cells developed using the GA-MLHD 
procedure in Singh et al. dataset. Column identifiers as in Table 5.2. 
NTW GENES S FG FUNCTIONS 

1 AHNAK, BTG2, CCND1, CD14, CEBPA, DGCR6, DUSP1, ELAVL2, EPOR, FCGRT, FOSL1, 
GADD45B, GADD45G, GDF15, H1FX, HNRPD, IGFBP3, IGFBP4, IL6, ILK, JUNB, KCNMB1, 
KRT18, LITAF, MEF2D, MYH11, NPY, NR4A1, PDPK1, RPS6KB2, SCARB1, SPINT2, TFF3, 
TNFRSF1B, YWHAQ 

64 35 Cellular Growth and Proliferation, Cancer, 
Cell Death 

2 ACP1, ANG, APOE, ASAH1, BTG2, CDKN2A, CFTR, CTSB, CXCL5, CYBA, CYP7A1, DHRS3, 
FBP1, FCGR3A, GNL1, HLA-C, HNF4A, ITGAL, LTBR, MTTP, PIGR, PTX3, RASA1, RPL8, RREB1, 
SLC4A4, SMPD1, SOD3, SSR4, TALDO1, TM4SF1, TNF, TRAF4, ZAP70, ZNF202 

18 15 Lipid Metabolism, Molecular Transport, 
Small Molecule Biochemistry 

3 ANXA2, CCNB1, CCNE1, CDC42, ECHS1, EEF2, GAPDH, HNRPK, ID2, JRK, MYCN, NCL, NME1, 
PARD6A, PDLIM5, RPL28, RPL30, RPL31, RPL34, RPL35, RPL27A, RPS7, RPS20, RPS24, SDC1, 
SNCA, SORD, STAU1, TIAM1, TIMP2, TMED9, TMED10, TUBB2A, WT1, YWHAZ 

18 15 Cell Cycle, Cancer, Cellular Movement 

4 ADM, ARG1, BSG, CD2, COL1A2, CSF2, CTSB, DDX5, DOK2, EIF3S6, IFNG, ING1, IREB2, ITK, 
KIR2DS2, LCK, LILRB1, MYC, PNN, PRPF8, PRPH, PURB, RFX1, RFX2, RFXAP, RPL35, RPS15A, 
SFRS4, SFRS12, SLAMF1, TREM3, TYROBP, YBX1, YWHAB, ZFP36 

18 15 Cellular Growth and Proliferation, 
Hematological System Development and 
Function, Immune Response 

5 APOE, BLM, COMT, DAXX, DDB2, DDT, ERCC1, ERCC5, EXO1, GDF15, GH1, HIPK1, HIPK2, 
KLK2, KLK3, MLH1, MSH2, MSH6, MUTYH, PA2G4, PLTP, PMAIP1, PMS2, POU4F1, RAD51L3, 
RFC1, S100A2, SPN, TERF2, TMPRSS2, TMSL8, TP53, UBB, XPC, XRCC2 

14 13 DNA Replication, Recombination, and 
Repair, Cancer, Gastrointestinal Disease 

6 ALAS2, BTG1, CALM2, CAMK2G, CD2, CLNS1A, CRKL, DIAPH1, DOK1, EDG2, EFNB1, FCGR2B, 
FHL1, FHL2, FHL3, INPP5D, ITGA7, ITGB5, ITGB6, ITGB7, KRT1, KRT17, LSM7, MAPK1, PTPRH, 
RAB1A, RABAC1, RAP1GA1, RHOA, RHOB, SERPINH1, SNRPD3, STAT1, TGFB1, WDR77 

14 13 Organismal Survival, Cell Death, 
Neurological Disease 

7 ADM, ARHGDIA, ATN1, CASP3, DAP, DHRS7, DNAJB6, ERBB2, GPAA1, GRB10, IGHMBP2, ITK, 
NDUFC1, NFYB, PHYH, PHYHIP, PTEN, RAC2, SETD7, SRC, TAF2, TAF4, TAF7, TAF10, TAF11, 
TAF12, TAF13, TAF15, TAF7L, TAX1BP3, TBN, TBP, TMEM87A, TNK2, TRAM1 

14 13 Cellular Development, Cellular Growth 
and Proliferation, Connective Tissue 
Development and Function 

8 ADAM12, ADM, APP, CALCRL, CAMKK2, CCL20, CCNF, CST3, CTSB, DRG2, EDN1, FGF10, 
GLI1, HDGF, HSPA5, HYOU1, IAPP, IRS1, M6PR, NME2, PIK3R3, PTN, RAMP3, RBL2, RELA, 
RETN, RPS6KB2, SDHA, SDHB, SDHC, SDHD, SERPINB2, TIMP3, VEGF, VEGFB 

14 13 Cellular Growth and Proliferation, Cancer, 
Cell Cycle 

9 ABCB1, ADH7, APOC3, APOD, ARF4, CDK5R1, CRAT, CTNNB1, DHCR24, G6PC, G6PD, GCLC, 
GCLM, HAX1, JUN, KARS, LLGL2, LSS, MITF, MTTP, MVD, NFE2L2, PARD6A, PKD1, PKD2, 
PPARGC1B, PRKCI, PXDN, SAA1, SLC1A4, SREBF1, SREBF2, TM7SF2, UBC, WT1 

13 12 Gene Expression, Cancer, Genetic Disorder 

10 ARCN1, ARG1, CDH1, CDH4, COPA, COPB, COPB2, COPE, COPG, COPG2, COPZ1, COX6C, 
CTSB, EIF4B, ENC1, FURIN, G6PD, GDF15, HIRA, IL15, IL1B, ITGB7, KRT19, LRPAP1, PAX7, 
PSG1, PTPRM, RB1, RPS6KA1, SORL1, STK11, TCF8, TGFB1, TGM2, USP19 

13 12 Cellular Assembly and Organization, Cell 
Death, Neurological Disease 

 

Supplementary Table 5.8 - Significant Networks identified by IPA associated to GS tumour class from 
the population of models of the molecular profile of tumour cells developed using the GA-MLHD 
procedure in Singh et al. dataset. Column identifiers as in Table 5.2. 
NTW GENES S FG FUNCTIONS 

1 BGN, BIN1, C7, C1R, CCR7, CD74, CSF1, DAXX, FHL2, FUS, GSK3A, HLA-DPB1, HLA-DRA, HMGN2, 
HSF1, IL1B, ING1, INHBB, ITGB1, KCNH2, KLK2, KLK3, MAZ, MDK, MYBPC1 (includes EG:4604), NPY, 
OAZ1, ODC1, PIM1, PSME2, RBP1, RPSA, SF1, TIMP3, TPT1 

63 35 Cellular Growth and Proliferation, 
Cellular Movement, Hematological 
System Development and Function 

2 ACPP, CD34, CDH1, CDKN1A, COL6A3, DDR1, DPT, ERBB2, GADD45G, HDAC1 (includes EG:3065), 
HYOU1, ID1, ID2, IER2, IGFBP3, KLF6, KRT18, LGALS3, LUM, MSX1, MYL9, NR4A1, PTPRF, PTPRM, 
RELA, SERPINF1, SPARCL1, TBX19, TFF3, TMSB4X, TNFRSF10B, VEGF, VIM, WFS1, ZFP36L2 

63 35 Cancer, Cellular Growth and 
Proliferation, Cell Death 

3 BAT1, CDKN2A, CHAF1A, CSDE1, CTCF, CTSD, DBI, DBN1, DDX17, G3BP, GSTP1 (includes EG:2950), 
GYPC (includes EG:2995), ID1, MAP4, MAZ, MBD2, MYC, NRG1, PRKCB1, PTBP1, RFX1, RFX2, RFX3, 
RPL8, RPL19, RPL30, RPL35, RPS19, S100A6, SGSH, STRAP, TFF1, TSPO, TUBB2A, ZFP36 

22 18 Cancer, Tumor Morphology, 
Immunological Disease 

4 ADAM10, BMP4, CBLC, CCNG1, CEACAM1 (includes EG:634), CRAT, CTNNB1, DLG5, EGF, EIF4A2, 
FLNA (includes EG:2316), FSHR, FST, GNAI2, GOLGA2, GORASP1, HSD11B1, ID2, IDI1, IGF1, IRS1, 
MC2R, PHLDA2, PLA2G2A, RAP1GAP (includes EG:5909), ROCK2, RPSA, SFRS3, SIM2, SLC1A5, 
SORBS3, SP7, STXBP1, TMED2, XRCC2 

21 17 Connective Tissue Development and 
Function, Organ Development, 
Reproductive System Development 
and Function 

5 ADCYAP1, AMACR, ARF5, AZIN1, BCAM, COX1, COX17, COX4I1, COX4I2, COX6A2, COX6B1, 
COX6B2, COX6C (includes EG:1345), COX7B, COX7B2, COX8A, COX8C, CSK, DEGS1, EGFR, FKBP4, 
GIPC1, GNRHR, IDH2, IGF1R, MAPK1, PEA15, PHYH, PHYHIP, PML, RPL24, RPL37A, SLC2A1, 
SUMO3, TCOF1 (includes EG:6949) 

21 17 Cancer, Cell Cycle, Renal and 
Urological Disease 

6 ANAPC2, ANK3, AOF2, ARID4B, ATRX, BRD2, CD63, E2F4, HBB (includes EG:15127), HDAC1 (includes 
EG:3065), HMG20B, IL3, KIAA0101, MT1G, MYCN, NFYB, PHB, PHF21A, POLR2L, PTTG1, PTTG1IP, 
RCOR1, RPL4, RPL11, RPL41, RPL27A, RPS5, RPS19, RPS20, SCN2A1, SLIT3, SMARCA3 (includes 
EG:6596), SRRM2, STMN1, UBB 

19 16 Gene Expression, Protein Synthesis, 
Cellular Growth and Proliferation 

7 ANXA11, B2M, CD74, CFD, CYP17A1, FOSL2, GBP1, GCH1, GPAM, GPX1, HSD11B1, IDH1, IFITM1, 
IL16, JUND, LEP, LTC4S, NR4A1, NTS (includes EG:57303), OPLAH, PPP1R12B, PTS, RBPMS, SEPP1, 
SFTPB, SMARCA4, SOD3, SPRR1B (includes EG:6699), TACSTD2, TNF, TREM2, UBE2H (includes 
EG:7328), UCP1, UCP3, ZFP36 

17 15 Lipid Metabolism, Molecular 
Transport, Small Molecule 
Biochemistry 

8 ADA, APP, CCNG1, CCT2, CTCF, CTSH, DHCR24, DIAPH1, DNASE1, ERCC1, ERCC5, HERPUD1, IL13, 
LTBP1, M6PR, MYB (includes EG:4602), MYBL2, MYOZ3, NGFR, NR2F2, PFKFB2, PHLDA1, PPP2R4, 
PPP3CA, PRKCG, RHOA, ROCK1, S100A2, SERPINF1, SLC9A1, TACSTD1, TNFAIP2 (includes EG:7127), 
TP53, TRIO, YWHAG 

16 14 Cell Death, Cancer, Reproductive 
System Disease 

9 ADRA1A, ADRA1B, ADRA1D, ALPP, ARF1, CAMK4, CAMK2G, CD46, DDB2, ECGF1, EGR2, EIF2AK2, 
FOS, HAS1, HINT1 (includes EG:3094), HSP90AB1, HTR2A, ITGAE, KARS, KLK3, MITF, MPZ, MST1R, 
MYLK, NR3C1, PMP22, PRKCG, PSMB1, RPS9, SELENBP1, SPTBN1, STAT1, TGFB1, TGTP, UNC45A 

16 14 Immunological Disease, Inflammatory 
Disease, Respiratory Disease 
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Supplementary Table 5.9 - Significant Networks identified by IPA associated to CP tumour class from 
the population of models of the molecular profile of tumour cells developed using the GA-MLHD 
procedure in Lapointe et al. dataset. Column identifiers as in Table 5.2. 
NTW GENES S FG FUNCTIONS 

1 ADA, ANK3, CBLB, CISH, CYR61, DEFB103A, FBXO32, FLJ20701, FLOT1, GHR, GRB10, 
HSD11B1, HSD3B1, HTR2C, ID2, IFNGR2, IGF1, IL13, IL3RA, JAK2, LCP2, LPA, MAP3K5, 
MT1X, PDE3B, PDLIM2, PHLDA1, POU1F1, PPP3CA, PTD004, PTPRC, SOCS2, SORBS1, 
STS-1, TUB 

23 16 Gene Expression, Cellular Development, 
Cellular Growth and Proliferation 

2 APOC2 (includes EG:344), BTG2, CCL19, CEBPA, CFB, CLASP1, CYLN2, DDC, DSC3, GCH1, 
GHR, HMGN3, HSD11B1, IL1B, IL3RA, LCN2, MAPRE3, MGP, MMP8, MTPN, NALP2, 
OAS2 (includes EG:4939), OASL, PAPPA, PENK1, PGD, PTGES, RND1, SEMA3C, SLMAP, 
SPARC, THRB, TNF, TRIB1, UBXD5 

21 15 Lipid Metabolism, Small Molecule 
Biochemistry, Amino Acid Metabolism 

3 ACSL3, BTG2, CCNA1, CCNG1, CDKN2A, CKM, GH1, GPT, HLA-DQA1, HMMR, ID2, 
IFI16, IGFBP7, IGSF4 (includes EG:23705), INSM1, LPHN2, MDM2 (includes EG:246362), 
MELK, PCNA, PIAS4, POLD3, POLS, PRIM2A, PVRL3, RET, RNF19, SOD2, TBX3, TCF3, 
TFAP2C, TP53, TPX2, TWIST1, WRN (includes EG:7486), ZNF202 

21 15 Cell Cycle, Cancer, Dermatological Diseases 
and Conditions 

4 C1QBP, CACNA1A, CACNA1B, CACNA1C, CACNA1D, CTNNB1, CYR61, DVL3, F2, FZD8, 
GABRB1, GABRB3, GABRD, GNB2L1, GPX2, IL8, KCNMA1, KLK2, LRP6, MUC1, PLAT, 
PRKCB1, PRKCD, PRKCDBP, PRKD1, PTGS2, QPCT (includes EG:25797), RAB3B, RBP4, 
RIMS1, SERPINA5, SFRP4, SLC12A2, STK39, TGM1 

20 14 Organismal Injury and Abnormalities, Cell-
To-Cell Signaling and Interaction, Nervous 
System Development and Function 

5 ACOX1, AGXT, BTG2, CDC6, CDC25B, CEACAM5, CRYZ, CYP1B1, EEF2, ESR2, GFAP, 
GLS, GNRH1, ID2, IL6, JUN, LGALS4, MAPK14, NRAP, PPARA, PRDX1, PREP, PTGES, 
PTGS2, REXO4, RHOH, SOCS2, SOD1, SYNPO2, TLN1, TPSD1, TXN, UCP1, WEE1, YWHAZ 

18 13 Cell Cycle, Cancer, Cell Death 

6 ADM, ANXA3, AREG, ARF1, CAMK1D, CD40LG, CFLAR, CXCL5, CXCL14, CYP2E1, FOS, 
GBF1, GCLC, GUSB, HRAS, ID2, IL8, IL18RAP, IVL, MPO, MT1H, MUC13, PRRX1, PTGER1, 
PTGER4, PTGS2, PTHLH, RGS1, RPS6, SH2B2, SPARC, TACR1, THBS4, TPSD1, TSLP 

18 13 Cellular Growth and Proliferation, Cell-To-
Cell Signaling and Interaction, 
Cardiovascular System Development and 
Function 

7 AKT2, CD9, CDKN1A, DPT, EDN2, ERBB2, ERBB3, FAP, FYB, GHR, GMDS (includes 
EG:2762), IGFBP6, IGFBP7, IGSF8 (includes EG:93185), ITGA7, ITGB1, L1CAM (includes 
EG:3897), MAPK1, MKI67, PDHA1 (includes EG:5160), PDK1, PFKFB3, PIK4CA, PIM1, 
PRAME, PTEN, PTGS2, ROCK2, S100A4, SCAP1, SIAH1, SPARC, UBE2E3, VIM, WRN 
(includes EG:7486) 

16 12  Cellular Movement, Cellular Growth and 
Proliferation, Cancer 

 

Supplementary Table 5.10 - Significant Networks identified by IPA associated to GS tumour class 
from the population of models of the molecular profile of tumour cells developed using the GA-
MLHD procedure in Lapointe et al. dataset. Column identifiers as in Table 5.2. 

NTW GENES S FG FUNCTIONS 
1 AHNAK, BTG2, CCND1, CD14, CEBPA, DGCR6, DUSP1, ELAVL2, EPOR, FCGRT, FOSL1, 

GADD45B, GADD45G, GDF15, H1FX, HNRPD, IGFBP3, IGFBP4, IL6, ILK, JUNB, KCNMB1, 
KRT18, LITAF, MEF2D, MYH11, NPY, NR4A1, PDPK1, RPS6KB2, SCARB1, SPINT2, TFF3, 
TNFRSF1B, YWHAQ 

64 35 Cellular Growth and Proliferation, 
Cancer, Cell Death 

2 ACP1, ANG, APOE, ASAH1, BTG2, CDKN2A, CFTR, CTSB, CXCL5, CYBA, CYP7A1, DHRS3, 
FBP1, FCGR3A, GNL1, HLA-C, HNF4A, ITGAL, LTBR, MTTP, PIGR, PTX3, RASA1, RPL8, 
RREB1, SLC4A4, SMPD1, SOD3, SSR4, TALDO1, TM4SF1, TNF, TRAF4, ZAP70, ZNF202 

18 15 Lipid Metabolism, Molecular Transport, 
Small Molecule Biochemistry 

3 ANXA2, CCNB1, CCNE1, CDC42, ECHS1, EEF2, GAPDH, HNRPK, ID2, JRK, MYCN, NCL, 
NME1, PARD6A, PDLIM5, RPL28, RPL30, RPL31, RPL34, RPL35, RPL27A, RPS7, RPS20, RPS24, 
SDC1, SNCA, SORD, STAU1, TIAM1, TIMP2, TMED9, TMED10, TUBB2A, WT1, YWHAZ 

18 15 Cell Cycle, Cancer, Cellular Movement 

4 ADM, ARG1, BSG, CD2, COL1A2, CSF2, CTSB, DDX5, DOK2, EIF3S6, IFNG, ING1, IREB2, ITK, 
KIR2DS2, LCK, LILRB1, MYC, PNN, PRPF8, PRPH, PURB, RFX1, RFX2, RFXAP, RPL35, 
RPS15A, SFRS4, SFRS12, SLAMF1, TREM3, TYROBP, YBX1, YWHAB, ZFP36 

18 15 Cellular Growth and Proliferation, 
Hematological System Development and 
Function, Immune Response 

5 APOE, BLM, COMT, DAXX, DDB2, DDT, ERCC1, ERCC5, EXO1, GDF15, GH1, HIPK1, HIPK2, 
KLK2, KLK3, MLH1, MSH2, MSH6, MUTYH, PA2G4, PLTP, PMAIP1, PMS2, POU4F1, 
RAD51L3, RFC1, S100A2, SPN, TERF2, TMPRSS2, TMSL8, TP53, UBB, XPC, XRCC2 

14 13 DNA Replication, Recombination, and 
Repair, Cancer, Gastrointestinal Disease 

6 ALAS2, BTG1, CALM2, CAMK2G, CD2, CLNS1A, CRKL, DIAPH1, DOK1, EDG2, EFNB1, 
FCGR2B, FHL1, FHL2, FHL3, INPP5D, ITGA7, ITGB5, ITGB6, ITGB7, KRT1, KRT17, LSM7, 
MAPK1, PTPRH, RAB1A, RABAC1, RAP1GA1, RHOA, RHOB, SERPINH1, SNRPD3, STAT1, 
TGFB1, WDR77 

14 13 Organismal Survival, Cell Death, 
Neurological Disease 

7 ADM, ARHGDIA, ATN1, CASP3, DAP, DHRS7, DNAJB6, ERBB2, GPAA1, GRB10, IGHMBP2, 
ITK, NDUFC1, NFYB, PHYH, PHYHIP, PTEN, RAC2, SETD7, SRC, TAF2, TAF4, TAF7, TAF10, 
TAF11, TAF12, TAF13, TAF15, TAF7L, TAX1BP3, TBN, TBP, TMEM87A, TNK2, TRAM1 

14 13 Cellular Development, Cellular Growth 
and Proliferation, Connective Tissue 
Development and Function 

8 ADAM12, ADM, APP, CALCRL, CAMKK2, CCL20, CCNF, CST3, CTSB, DRG2, EDN1, FGF10, 
GLI1, HDGF, HSPA5, HYOU1, IAPP, IRS1, M6PR, NME2, PIK3R3, PTN, RAMP3, RBL2, RELA, 
RETN, RPS6KB2, SDHA, SDHB, SDHC, SDHD, SERPINB2, TIMP3, VEGF, VEGFB 

14 13 Cellular Growth and Proliferation, 
Cancer, Cell Cycle 

9 ABCB1, ADH7, APOC3, APOD, ARF4, CDK5R1, CRAT, CTNNB1, DHCR24, G6PC, G6PD, 
GCLC, GCLM, HAX1, JUN, KARS, LLGL2, LSS, MITF, MTTP, MVD, NFE2L2, PARD6A, PKD1, 
PKD2, PPARGC1B, PRKCI, PXDN, SAA1, SLC1A4, SREBF1, SREBF2, TM7SF2, UBC, WT1 

13 12 Gene Expression, Cancer, Genetic 
Disorder 

10 ARCN1, ARG1, CDH1, CDH4, COPA, COPB, COPB2, COPE, COPG, COPG2, COPZ1, COX6C, 
CTSB, EIF4B, ENC1, FURIN, G6PD, GDF15, HIRA, IL15, IL1B, ITGB7, KRT19, LRPAP1, PAX7, 
PSG1, PTPRM, RB1, RPS6KA1, SORL1, STK11, TCF8, TGFB1, TGM2, USP19 

13 12 Cellular Assembly and Organization, 
Cell Death, Neurological Disease 
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CHAPTER 6  

Inference of Networks representing Cell to Cell Interaction 

6.1 - Introduction 

The previous chapter discussed how the interaction between different cell types is of 

fundamental importance in maintaining the normal tissue homeostasis and plays a 

major role in the development of pathological conditions such as cancer. Most of our 

understanding of cell to cell communication comes from studies addressing the role of 

stromal cells in shaping the microenvironment. However, our initial results suggest that 

the role of normal epithelial cells in influencing tumour physiology may not be 

negligible. 

 

In particular it has been demonstrated that it is possible to predict tumour features from 

the molecular profile of adjacent normal cells. This chapter describes the application of 

network inference methods to deduce the structure of cell to cell communication 

networks in prostate cancer. A number of approaches for network inference have been 

developed and applied to varieties of biological systems. Information theoretical 

approaches have been demonstrated to be effective for inference from large scale 

datasets whereas probabilistic approaches, although potentially more powerful are only 

effective with relatively small datasets. Among these last class of methods, relevance 

networks (RN) are a simple but effective network inference approach that has been 

used to identify gene regulatory networks in a variety of experimental systems [173; 

174]. Its performance is comparable with bayesian networks and mutual information 

based approached such as ARACNE.  
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Here, a methodology developed to infer cell to cell communication networks is 

described. This methodology is somehow derived from RN. By applying this 

methodology to a gene expression profiling dataset representing paired normal and 

tumour tissue, it will be shown that the identified genes provide insights into the 

complex molecular mechanisms implicated in normal-tumour interaction. The analysis 

of cell to cell interaction networks shows the existence of a relatively large number of 

genes that are associated to a directional effect (referred here as polarization). Of 

particular interest is the existence of signals generated by normal epithelial cells that are 

associated to transcriptional networks in the tumour cells. Experimental validation for 

one of the genes associated to polarization reveals a potentially new tumour suppressor 

gene in prostate cancer. 

 

 Although, this study is focused on a prostate dataset published by Singh et al., analysis 

of other datasets suggests that the methodology is generally applicable. 

 

6.2 - Results 

6.2.1 - Inferring Gene Networks Representative of Cell to Cell Communication in 

Prostate Cancer 

A RN based approach was applied to a dataset of paired normal and tumour tissue 

samples with the aim to infer the existence of significant connections between normal 

and tumour expressed genes. In the implementation used in this study, a Spearman 

correlation coefficient was employed. The significance of the interaction was 

established calculating a FDR [37] (see section 6.5.2 - in Methods) based on the 

distribution of correlation coefficients from a bootstrap dataset. Figure 6.1 (and 

Supplementary Figure 6.1) shows the distribution of correlation coefficients in normal 

cells, tumour cells, and across normal and tumour cells in relation to the distribution of 
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correlation coefficients in the randomized data. This simple characterization of the 

correlation structure that exist in the normal and tumour cells and in the interface 

between the two reveal that the degree of connectivity between the two adjacent cell 

types is sparser than the degree of connectivity within a normal or tumour tissue.  

 

6.2.2 - The Definition of a Polarized Signal in Cell-to-Cell Communication Networks 

The analysis and biological interpretation of a network representing gene interactions 

between normal and tumour epithelial cells is complex. Therefore, an approach was 

designed here to identify sub-networks that would be representative of a particularly 

interesting biological scenario. The study was focused in a scenario represented by a 
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Figure 6.1 � Distribution of non-parametric correlations in Singh et al. dataset and their significance 
estimations. Distributions are shown by the type of gene-gene pairs (N-T, N-N, T-T). Their 
corresponding bootstrap distributions are also shown (the three are overlapped). Labels show FDR 
in percentage (%), the corresponding correlation cut-off value in brackets, and finally the number of 
correlations larger or smaller than the cut-off. The distributions in other datasets are shown in 
Supplementary Figure 6.1. The boostrap distributions (bs) N-T, N-N, and T-T are over imposed. 
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directional effect. In this scenario, a given gene expressed in normal cells is 

characterized by a high number of connections with genes expressed in tumour cells 

whereas the same gene, expressed in tumour cells, would not have many connections 

with genes expressed in normal cells (a schema describing this scenario is shown in 

Figure 6.2). Such a scenario is biologically relevant and plausible. For example, any 

paracrine signalling, where released signals affects nearby cells, fits in this scenario.  

 

The magnitude and direction of this effect is represented by defining a polarization 

index for a given gene i as: 

Cell Type A
(normal)

Cell Type B
(tumour)

gene Kgene K

gene K

(e.g.)
gene 1
gene 2
�
gene 100

number of significant correlations
(forward direction)

gene K(e.g.) no genes
correlated

number of significant correlations
(backward direction)

f =

b =  

Figure 6.2 - Concept and estimation of polarization index (pol). A gene k expressed in cell type A 
(normal cells in this figure) could be correlated with several genes in cell type B (tumour cells in 
this figure), however, the same gene k expressed in cell type B has no correlations in the opposite 
direction, either because it is not expressed, not exported, not activated, defective, or receptor is not 
present. Candidate genes would have pol values close to +/- 1 depending on the direction of 
polarized correlations. Any other scenario would generate pol values far from +/- 1. 
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where f is the number of connections between gene i expressed in the normal tissue and 

genes expressed in the tumour tissue, b is the number of connections between the same 

gene i and genes expressed in the tumour tissue, and å is a small constant designed to 

stabilize the pol ratio for small numbers of f and b.  pol carry a number of desirable 

properties. The value of pol is proportional to the effect, the sign of pol gives the 

direction of the effect, and the metric tend to -1 and +1 for f or b >> 0. As previously 

stated, the empirical distribution of correlations observed by random chance in 

bootstrap datasets is used to estimate an FDR value for every pair-wise connection in 

the network. Sparse networks are then generated by thresholding the adjacency matrix 

using an arbitrary FDR cut-off. Figure 6.3 shows the pol distribution for different FDR 
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Figure 6.3 � pol distribution for Singh et al. dataset at various FDR correlation cut-offs. pol 
distributions for other datasets are shown in Supplementary Figure 6.2. 
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thresholds. The figure displays a tri-modal distribution with a relatively high frequency 

of highly polarized genes. The shape of the distribution is independent of the FDR 

threshold. A large proportion of these genes are therefore stable irrespective of the cut-

off threshold (Figure 6.4). Similar results were observed in another two datasets though 

these peaks were not observed in three datasets due to the lack of significant 

correlations (Supplementary Figure 6.2). To select a cut-off point, the dependency on 

the number of genes having high pol with the correlation cut-off and FDR has been 

estimated for the datasets studied (Figure 6.5). As in any gene selection procedure, the 

choice of a good threshold is a trade-off, in this case, between the number of selected 

genes and the expected number of false correlations. For gene selection and 

experimental analysis derived from Singh et al. dataset, a correlation cut-off of 0.75 was 

choosen because at this point the number of polarized genes is maximum (5%) whilst 

the FDR is minimum (~0.001%, 1 false correlation out of 100,000, see Figure 6.5). In 

practice, to highlight only genes with large number of correlations, if the absolute value 

of f-b is less than =20, pol is set to zero.  
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Figure 6.4 � Examples of genes whose polarization is stable in a wide range. Genes were selected 
by high area under the polarization curve (vertical axis) depending on the correlation cut-off 
(horizontal axis). 
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Figure 6.5 � Number of highly polarized genes and their FDR estimations. Left panel shows the 
dependency of FDR on the correlation cut-off. Right panel shows the fraction of the total number 
of genes whose absolute pol value is greater than 0.9 at various correlation cut-offs. 
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6.2.3 - High Frequency of Highly Polarized Genes is Independent of Experimental 

Noise and Dependent on the Normal-Tumour Connections 

The analysis of the distribution of the polarization metric has revealed a high frequency 

of highly polarized genes. Although intriguing, this interesting property may not be 

associated by biological phenomena but by the result of random chance or by some 

interaction between the properties of the two expression matrices. In order to acquire 

confidence in the biological relevance of the high frequency of polarization, two 
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Figure 6.6 � Simulation Experiments. (A) Noise Simulation. The original dataset from normal cells 
is used to add noise depending on signal levels (bottom plot) multiplied by a scaling factor ã (see 
Methods section). The observed levels of polarization index computed from these simulated 
datasets would be due therefore to random experimental noise. (B) Correlation Structure 
Simulation. The correlation structure within normal or tumour (but not both) is resembled by a 
multivariate Gaussian model which generates random data with similar correlation structures. 
Thus, the calculated degree of polarization index from these synthetic datasets is due by 
unconnected correlation structures. 
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different simulations were used. These datasets are representative of two scenarios 

where expression data are simulated in the absence of any interaction between normal 

and tumour tissues. Thus, these datasets are meant to test whether the connection 

structure between genes expressed in the normal and tumour tissues or whether 

experimental and technical variability would be responsible of such a high frequency of 

polarized genes. A schema for the procedure of these simulations is shown in Figure 

6.6. 

 

Expression data acquired with microarray technology is subject to experimental and 

technical variability [20; 175; 176]. The properties of this noise have been investigated 

by a number of publications and error models have been proposed [32]. In the first case, 

the expression data associated to the normal tissue samples has been used to generate 

two separated datasets by adding noise using a well defined error model [32]. In this 

model (see Figure 6.6A and Methods section), noise has been added with intensity 

depending on a scaling factor ã (see methods sections for details). In the simulation, a 

value of this parameter was choosen (ã=3) to match the distribution of correlations 

between a given gene i in the simulated datasets with the observed in the real data 
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Figure 6.7 � ã parameter chosen for the noise model simulations. Left panel show the level of 
noise injected depending on the gene expression (dotted line). Right panel shows the correlation 
distribution of the same gene in both datasets (see Methods section). 
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between normal and tumour tissue samples as a measure of the overall similitude 

between the two tissues (Figure 6.7 and Figure 6.21). The polarization index was 

subsequently computed for this synthetic dataset (Figure 6.8).  

 

Figure 6.8 shows that the pol distribution observed in the noise-model-generated 

dataset is very low compared to the observed in the real dataset independently of the 

FDR correlation cut-off chosen. Furthermore, the number of synthetic genes whose 

absolute polarization index is greater than 0.9 (at 0.75 cut-off) was always less than the 

observed in the real dataset independently of noise scaling factor (left panel in 

Supplementary Figure 6.3). Moreover, the shape of these distributions is symmetrical 

and more populated around zero compared to the distribution in the real dataset (right 

panel in Supplementary Figure 6.3). Similar results were obtained for other datasets 

(Supplementary Figure 6.4). Altogether, these results suggest that the observed level of 

polarized genes is not due to experimental and technical random noise. 
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Figure 6.8 � Comparison of pol in real and noise-model simulated datasets. Left panel shows the 
number of highly polarized genes independent of the correlation cut-off. Right panel shows a 
comparison of pol distribution for the chosen correlation cut-off (0.75). 
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Reasoning about the correction structure, it is possible that the observed connection 

structure might be the result of the interaction of the underlying networks between 

normal and tumour. Hence, to evaluate whether unconnected but similar connection 

structures could generate comparable polarization indices, another simulation 

experiment (depicted in Figure 6.6B) was performed. Using normal and tumour 

separately, the observed correlation matrix from 2,000 randomly selected genes was 

employed to fit a multivariate Gaussian correlation matrix. The fitted parameters were 

then used to generate 2,000 synthetic genes whose correlation distribution is similar to 

the observed one to finally estimate and compare the polarization index (Figure 6.9, and 

Supplementary Figure 6.5-7). In this generated dataset, the number of synthetic genes 

whose absolute polarization index is higher that 0.9 was 0, which is opposite to 255 

genes estimated under the same methodological conditions in the real dataset (middle 

panel in Figure 6.9). A similar trend was observed in other datasets (Supplementary 

Figure 6.6). Despite the number of polarized genes in the synthetic dataset was not 

always zero along correlation cut-off (right panel in Figure 6.9), the trend of observing 
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Figure 6.9 � Comparison of pol in real and multivariate Gaussian simulated datasets. Left panel 
shows that the distribution of correlations in the simulated dataset resembles that of the original 
dataset for N-N and T-T. However, the unconnected N-T correlation distribution is largely 
different from the observed in the Singh et al. dataset. Middle panel shows the distribution of 
pol values in both datasets under the same methodological conditions (using the same 2,000 
randomly chosen genes, see also Methods section). For other datasets see Supplementary Figure 
6.6. Right panel shows a comparison on the dependency of the number of highly polarized genes 
to the correlation cut-off under the same methodological conditions. For other datasets see 
Supplementary Figure 6.7. 
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fewer polarized synthetic genes still holds for sensible correlation cut-offs 

(Supplementary Figure 6.7). These multivariate simulations suggest therefore that the 

generation of high polarization indices, at the observed correlations, are not due to 

unconnected correlation structures. 

 

6.2.4 - Relationship of Differential Expression and Polarization 

The analysis was then focused on whether highly polarized genes tend to be among the 

differentially expressed genes (DEG). In order to test this hypothesis, the overlap 

between genes with high pol and those DEG generated between normal and tumour 

gene levels resulted by appling a t-Test, a Wilcoxon-Mann-Whitney rank sum test, and 

SAM analysis [43] (see Methods section) has been inspected. Results are shown in 
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Figure 6.10 � Overlap between genes differentially expressed and polarized genes. Genes 
differentially expressed (n in legend) were tested for overlap with those genes whose pol was 
higher than a threshold (horizontal axis). Raw p-value is shown in the vertical axis. Numbers in 
the top axis show the number of genes whose pol was higher than the corresponding threshold (in 
bottom axis). (A) Ignoring pol sign. (B) Considering only genes having positive pol. (C) 
Considering only genes having negative pol. Data estimated from Singh et al. 
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Figure 6.10. No significant overlaps were found between highly polarized genes (pol > 

0.9 or pol < -0.9) and DEG even though the number of differential expressed genes were 

three times more than those highly polarized. On the contrary, a significant overlap 

exists for |pol| between 0.2~0.6. In this condition the degree of polarization is very low 

and the number of DEG is about 1,500 out of 8,059 [18%]. This analysis supports the 

conclusion that highly polarized genes are not more frequently differentially expressed 

between normal and tumour samples. 

 

6.2.5 - A Link between Dramatic Over-Expression and Polarization 

Among the causes in cancer that could induce very extensive changes in gene 

expression are genetic mutations, such as translocations. A common consequence of 
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Figure 6.11 � Overlap between COPA genes and polarized genes. COPA genes (n in legend) were 
tested for overlap with those genes whose pol was higher than a threshold (horizontal axis). The 
p-value is shown in vertical axis. Numbers in top axis show the number of genes whose pol (in 
absolute value) was higher than the corresponding threshold (in bottom axis). Legend "COPA @ X 
>= Y" stands for COPA genes whose X quantile is larger Y (see Methods). (A) Ignoring pol sign. (B) 
Considering only genes having positive pol. (C) Considering only genes having negative pol. Data 
estimated from Singh et al. 
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such rearrangement is the dramatic change in the expression of genes associated to this 

translocation. Tomlins et al. developed a method named cancer outlier profile analysis 

(COPA) to identify genes likely to be a target of this genetic rearrangement [49]. COPA, 

which was successfully used to detect gene fusions in prostate cancer [49], is essentially 

a non-parametric standardization coupled with quantile filtering to detect genes that 

are over-expressed in a considerable subset of samples (see section 2.5.1.3 in Chapter 2 

for details). Thus, highly polarized genes were compared to genes highlighted by 

COPA. The results shown in Figure 6.11 suggest that there is a significant overlap only 

for the topmost ranked COPA genes (n <= 11) with the topmost polarized genes (n < 36). 

No other significant associations were apparent. These results propose therefore that a 

small proportion of highly polarized genes are associated to an effect on gene 

expression that is compatible with gene translocations. 

 

6.2.6 - Effect of Gene Silencing on Polarization 

Since silencing may affect the gene expression, an obvious hypothesis is whether 

silencing could be a cause for large polarization indexes. If a gene is silenced during 

tumorigenesis or tumour progression, it is likely that the normal counterpart gene still 

correlates with a subset of genes in tumour cells that were previously correlated before 

the silencing event. This would generate high polarization indexes. In order to verify if 

silencing is a plausible mechanism that generates, systematically, high polarization 

indexes, it has been defined for this study that a gene is silenced when it has been 

'expressed' in a significantly larger number of normal samples than in tumour samples 

(or vice versa). A gene was called 'expressed' if the normalized expression is larger than 

a threshold (details are described in section 6.5.7 -). Results are shown in Figure 6.12. 

Although there is an abrupt decrease in the random probability for very high polarized 

genes (|pol| >= 0.99), a statistically significant overlap (á=0.05) between the genes called 
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expressed and those highly polarized for a sensible range of expression thresholds was 

not observed. 
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Figure 6.12 � Overlap between lack of expression and polarization. (A) Overall data distribution 
showing the threshold values tested. For (B), (C), and (D), not expressed genes (n in legend) were 
tested for overlap with those genes whose pol was higher than a threshold (horizontal axis). The p-
value is shown in vertical axis. Numbers in top axis show the number of genes whose pol (in 
absolute value) was higher than the corresponding threshold (in bottom axis). Legend "sil <= X, 
FDR=Y%" stands for genes whose number of genes <= X (not expressed genes) was not due by 
chance at a FDR=Y (see Methods). (B) Ignoring pol sign. (C) Considering only genes having 
positive pol. (D) Considering only genes having negative pol. Data estimated from Singh et al. 



 166 

6.2.7 - A Significant Proportion of Genes Methylated in Tumour Cells Are Heavily 

Polarized 

In previous section, it has been demonstrated that genes that are expressed mainly in 

one tissue are not associated to any particular degree of polarization. However, the 

analysis was then directed to verify whether specific silencing mechanisms that have a 

very important role in the development of cancer may be associated to polarization. The 

most obvious candidate is methylation which is one of the best studied mechanisms for 

silencing [177] in which upstream gene promoters (or first exon) in nuclear DNA are 

methylated in the cytosine residue of CpG islands impeding the binding of activators 

and depleting gene expression [178; 179]. In tumour cells, several genes are methylated 

and not expressed in opposite to their corresponding normal cells in the same tissue 

where those genes are expressed and not methylated [178; 180-183]. If silencing is 

occurring in the tumour side, more genes with high Polarization Index in normal than 

in tumour would be expected because the tumour correlations would be depleted while 

normal correlations would be maintained. This agrees with the observation that there 

are more genes at the +1 end than at the -1 end in Singh et al. dataset (Figure 6.3) using 

the sign convention like in Figure 6.2. This same trend seems to be present in other 

datasets though in different degrees (Supplementary Figure 6.2). To further support the 

hypothesis that silencing by promoter methylation could be a driven force for high 

polarization indexes, two literature mining approaches were performed. First, highly 

polarized genes where compared with the number of Pubmed abstracts that relates 

each gene with "methylation" and "cancer" keywords. Significant p-values (p <= 0.03, 

hyper-geometric test) were obtained for the overlap of highly positive polarized genes 

and Pubmed abstracts, but not for negative polarized genes (Figure 6.13). This result 

suggests that methylation, cancer and highly (positive) polarized genes are, somehow, 

related.  
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To further stress the association of methylation and polarization specifically for prostate 

cancer, genes affected directly or indirectly by methylation in prostate cancer cell lines 

reported in the literature derived from genome-wide studies [184-186] were compared 

to corresponding polarization indexes estimated in Singh et al. (Table 6.1). In these 

methylation studies nevertheless prostate cancer cell lines were used whose 

methylation patterns may vary slightly with those in clinical samples. In addition, one 

of the studies has treated cell lines with demethylation agents (5'-aza-2' deoxycytidine 

and trichostatin A) which may lead to the detection of genes affected by indirect de-

methylation regulation. Thus, it is expected that a fraction of reported methylated genes 
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Figure 6.13 - Comparison of pol and the number of Pubmed abstracts. Black bars in vertical axis 
show the number of polarized genes at a certain polarization index (in horizonal axis). Red  bars 
represent the number of genes whose Pubmed abstracts is larger than 2 in queries including the 
gene symbol, "cancer", and "methylation" as keywords. Indicated p-values corresponds to hyper-
geometric p-values testing the null hyphotesis that the overlap of highly polarized genes (pol >= 
0.8, pol >= 0.9, pol <= -0.8, and pol <= -0.9) and Pubmed abstracts per gene are due by chance. Data 
from Singh et al. dataset.  



 168 

in these studies could not be methylated in clinical samples. From the 111 genes 

reported and included in the Singh et al. dataset, 30 genes had pol greater than 0.8 which 

is significantly higher than the expected by random chance (p=0.035, hyper-geometric 

test) whereas only 12 genes had pol less than -0.8, which is not significant (p=0.105). 

These results agree with the hypothesis that silencing and specifically promoter 

methylation in tumour cells could be, partially, a source of high polarization indexes.  
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Figure 6.14 � Comparison of pol and methylated genes reported in the literature for prostate 
cancer. P-values were estimated by the hypergeometric probability of observing an overlap 
between the methylated genes (dots, n=12+30) and highly polarized genes (pol >= 0.8 or pol <= -0.8). 
pol values were estimated at 0.57 correlation cut-off in Singh et al. dataset (see Methods section). 
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6.2.8 - Functional Analysis of Polarized Genes 

In previous sections polarization index, pol, was defined as a heuristic measure of 

directional cell interaction. It was also demonstrated that the relatively high percentage 

of polarized genes cannot be explained as a property derived from experimental noise 

nor independent correlation structure of normal and tumour gene expression. It was 

Table 6.1 � pol in methylated genes reported in the literature for prostate cancer. Original reference is 
shown in headings. U column marks unique genes with a star, the total is 111. +/- column specifies 
whether the gene is considered highly positive polarized (30 in total) or highly negative polarized (12 
in total). pol values were estimated at 0.57 correlation cut-off in Singh et al. dataset (see Methods 
section). 

Lodygin et al.  Wang et al.  Yu et al. 
Symbol Affymetrix Id pol U +/-  Symbol Affymetrix Id pol U +/-  Symbol Affymetrix Id pol U +/- 
APAF1 37227_at -0.918* -  ADK 38301_at 0.000*   ABCC4 34955_at 0.000*  
APOD 36681_at 0.000*   BBS4 33174_s_at 0.999* +  ACTB 32318_s_at -0.225*  
BIN1 459_s_at 0.112*   BCL2 2038_g_at 0.994* +  ANXA2 769_s_at 0.000*  
BRCA2 1503_at 0.629*   BRCA1 33724_at -0.560*   AOX1 37599_at 0.000*  
BTG1 37294_at 0.042*   CCNB2 32263_at 0.439*   CKS2 40690_at 0.000*  
BTG3 37218_at 0.974* +  CD44 40493_at 0.967* +  CNN3 40953_at 0.906* + 
CASP7 38281_at 0.000*   CDC25C 1584_at -0.725*   GAPDH 35905_s_at 0.998* + 
CDKN1A 2031_s_at 0.000*   CDKN1A 2031_s_at 0.000   GSN 32612_at 0.391*  
CDKN1C 1787_at 0.989* +  CDKN2C 36053_at 0.973* +  GSTP1 829_s_at 0.976* + 
CDKN2D 41497_at 0.000*   DMXL1 33271_r_at 0.000*   GYPC 38119_at 0.831* + 
CITED2 33113_at 0.000*   ESR1 1681_at -0.374*   HPS1 38467_at 0.000*  
CTGF 36638_at 0.000*   FAS 1440_s_at -0.694*   IGFBP4 1737_s_at 0.528*  
CUTL2 37812_at -0.866* -  FBN1 32535_at 0.812* +  IL6ST 35842_at 0.999* + 
CYLD 39582_at 0.000*   FEM1C 39976_at 0.000*   LRRFIP1 41320_s_at -0.909* - 
DDB2 1243_at 0.000*   FOXD1 33203_s_at 0.815* +  MARCKSL1 36174_at 0.999* + 
DKK1 35977_at 0.000*   GADD45A 1911_s_at 0.776   MGC5576 38655_at 0.000*  
DKK3 31454_f_at -0.542*   GRK6 1392_at -0.989* -  MYO6 33375_at 0.000*  
DLC1 37951_at 0.422*   HOXD1 39476_at 0.988* +  NR3C1 36690_at 0.000*  
DUSP1 1005_at -0.603*   K6HF 33058_at -0.969* -  OXSR1 39136_at 0.000*  
GADD45A 1911_s_at 0.776*   KRTHB6 32329_at -0.281*   PLAGL1 36943_r_at 0.988* + 
GAS2L1 31874_at 0.253*   LAMA4 37671_at 0.000*   PLEKHC1 36577_at 0.861* + 
GPX3 770_at 0.823* +  MAPK7 35617_at -0.962* -  RAB31 33372_at 0.309*  
GSTM1 39054_at 0.000*   MTAP 38150_at 0.000*   SAT 34304_s_at 0.875* + 
HPGD 37323_r_at 0.433*   MYC 37724_at -1.000* -  SGCE 41449_at 0.000*  
ID3 37043_at 0.913* +  OSMR 39277_at 0.995* +  SOD2 34666_at 0.000*  
IRF1 669_s_at -0.980* -  PAX9 34933_at 0.196*   TGFB3 1767_s_at 0.970* + 
IRF7 36412_s_at 0.000*   PLAU 37310_at -0.800* -  TUBB4 429_f_at -0.512*  
JUNB 32786_at 0.997* +  RAB11A 36660_at 0.433*   TXNIP 31508_at 0.923* + 
MRE11A 32869_at 0.000*   RPL17 32440_at 0.000*   VAMP5 32534_f_at 0.000*  
NGFR 1673_at 0.285*   RPS4Y1 41214_at 0.972* +      
PMS2 526_s_at -0.496*   RTEL1 33727_r_at 0.991* +      
PTGER4 1118_at 0.000*   SFN 33323_r_at 0.000       
PTGS2 1069_at -0.565*   SLC26A4 36376_at 0.000*       
RBL2 32596_at 0.868* +  SPARC 671_at -0.152*       
RIS1 35692_at 0.000*   STC1 41354_at 0.000*       
SFN 33323_r_at 0.000*   STK4 36294_at 0.961* +      
SFRP1 32521_at 0.603*   SYK 36885_at -0.996* -      
SGK 973_at 0.000*   TJP2 36655_at -0.837* -      
SMARCA1 40213_at 0.667*   TP53 1974_s_at 0.080*       
SQSTM1 40898_at -0.974* -  TSPY1 35929_s_at 0.997* +      
THBS1 866_at 0.156*   WIT-1 1946_at 0.000*       
TNFRSF10B 34892_at 0.982* +           
XPC 1873_at 0.260*            
ZFP36 40448_at 0.583*            
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also shown that a specific gene silencing mechanism (methylation), unlike differential 

expression, seems to be to some extent associated to gene polarization. All these results 

strongly suggest that the polarization index is associated to biological properties of the 

system and is therefore likely to be a useful tool to identify interesting candidate genes 

involved in cell to cell interactions. 

 

In order to further support this claim, a bioinformatics functional analysis of highly 

polarized genes was performed looking for an association between polarization and 

functional properties of the genes. This analysis was performed using the functional 

analysis tools implemented in the web-based toolset BABELOMICS [152]. The results 

revealed a strong association (FDR<1%) between highly polarized genes and the terms 

nucleic acid binding (in particular RNA binding) and cell differentiation (Table 6.2). No 

other functional terms were significant, even if the FDR threshold would be relaxed to 

FDR< 25%. 

 

Although these results were encouraging, they were of limited validity. By simply 

comparing two or more lists of genes in functional terms, a large amount of biological 

information concerning the interaction between gene products is ignored. It is of 

interest to address the question whether the polarized genes form complex networks of 

interacting genes. For this reason, a more sophisticated analysis using the Ingenuity 

Pathways Analysis (IPA) was used [187]. Ingenuity knowledge base stores curated 

information on the interactions between genes, maps of canonical functional pathways, 

Table 6.2 � Functional analysis of polarized genes in BABELOMICS. 
Polarization Index Database Term Inner Outer p-value FDR 
Positive InterPro ATP-dependent helicase, DEAD-box 5/141 2/2310 0.0000132 0.0252 
  DEAD/DEAH box helicase 6/141 8/2310 0.0000819 0.0784 
  DEAD/DEAH box helicase, N-terminal 6/141 9/2310 0.0001297 0.0827 
 SwissProt Keywords Differentiation 10/123 33/2084 0.0001332 0.0608 
  Hydroxylation 6/123 11/2084 0.0002473 0.0608 
Negative Gene Ontology  Molecular Function RNA binding 16/67 86/1833 0.0000020 0.0030 
  Nucleic acid binding 38/74 446/2047 0.0000885 0.0667 
 InterPro RNA-binding region RNP-1/ 

RNA recognition motif 
8/85 29/2322 0.0000505 0.0956 

 SwissProt Keywords RNA-binding  13/81 54/2099 0.0000021 0.0010 
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and functional relationships supported by published literature and by protein-protein 

interaction data. Pathways of highly interconnected predictive genes are identified in 

this database by statistical likelihood and can be used to formulate hypotheses on the 

biological framework underlying the statistical models (refer to sections 5.5.4 in 

Chapter 5 for details about IPA). The list of positively and negatively polarized genes 

was overlaid onto a global molecular network developed from information contained in 

the IPA (see Methods section 6.5.8 -). 

 

 

 

 

Table 6.3 � Top functional networks for positive polarized genes. 
Ntw Top Functions Score Focus Genes 

1  Skeletal and Muscular System Development and Function, Tissue Morphology, Cellular Movement 63 35 

2  Cell Death, Cancer, Cellular Growth and Proliferation 41 27 

3  Cellular Movement, Hematological System Development and Function, Immune Response 22 18 

4  Cancer, Cell Morphology, Connective Tissue Disorders 20 17 

5  Cancer, Cell Morphology, Reproductive System Disease 19 16 

6  Cancer, Cell Morphology, Connective Tissue Disorders 19 16 

7  Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry 15 14 

8  Cell-To-Cell Signaling and Interaction, Hematological System Development and Function, Immune Response 15 14 

9  Cell Morphology, Cellular Compromise, Connective Tissue Disorders 14 13 

10  Cellular Development, Gene Expression, Organ Development 6 7 

Table 6.4 � Top functional networks for negative polarized genes. 
Ntw Top Functions Score Focus Genes 

1  Cellular Development, Cellular Growth and Proliferation, Hematological System Development and Function 28 18 

2  RNA Post-Transcriptional Modification, Cancer, Tumor Morphology 24 16 

3  Organ Development, Reproductive System Development and Function, Tissue Development 22 15 

4  Cell Death, Cancer, Reproductive System Disease 20 14 

5  Gene Expression, Digestive System Development and Function, Hepatic System Development and Function 18 13 

6  Cellular Development, Skeletal and Muscular System Development and Function, Gene Expression 14 11 
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This analysis identified a number of interesting high scoring networks (Table 6.3 and 

Table 6.4). The two highest scoring networks for the positively polarized genes are 

respectively associated to cell mobility/morphogenesis and cell growth, and survival (Table 

6.3). Interestingly, 15 genes were secreted factors or membrane proteins indicating a 

consistent large component of cell communication processes (Figure 6.15). The two 

highest scoring networks for the negatively polarized genes represent other functional 

components. The top scoring network is associated to cellular growth and proliferation 

whereas the second network is associated to RNA post-transcriptional modifications, 

cancer and tumour morphology (Table 6.4). It is interesting that the most significant 

functional category represented in the second network is RNA post-transcriptional 
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Figure 6.15 � TGF-beta network, a large component of secreted factors or membrane proteins are 
highly polarized. 



 173 

modifications (Figure 6.16). This result is consistent with the initial analysis suggesting 

an association between negatively polarized genes and RNA binding. Further insights 

into the biology of polarized genes come from the analysis of the largest scoring 

network for the positively polarized genes. The analysis of the highest scoring network 

for the positively polarized genes shows that the majority of the genes are somehow 

linked to TGF beta (Figure 6.15). Some genes are not directly linked to TGF beta but are 

somehow related to one of the effects of TGF beta, such as Slit-2 that interacts with 

paxillin, an important component of the actin remodelling pathway. 
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Figure 6.16 - RNA Post-Transcriptional Modification, Cancer, and Tumour Morphology Network and 
negatively polarized genes. 
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In addition to the general properties of the polarized genes that have been identified 

using network analysis, it was interesting that the most polarized genes (top 20) were 

characterized by being important regulators of key processes involved in cell 

communication. The most polarized gene SEC23A is indeed a key gene involved in 

controlling protein secretion [188], DBN1 play a role in cell migration , AHSG promotes 

endocytosis [189; 190], LPP has been implicated in cell adhesion, motility, and 

signalling events [191; 192], SLIT2 has been related to cell migration [193-195], MAML1 

(pol ~= -1) has been involved in hematopoietic development by regulating Notch-

mediated lymphoid cell fate decisions [196; 197], and PRKCI (pol ~= -1)has been related 

to epithelial tight junctions [198]. 

 

6.2.9 - Slit-2, One of the Most Polarized Genes, is Methylated and Control Survival 

in Prostate Cancer 

The network analysis described above revealed a very interesting pattern. The 

Transforming Growth Factor Beta 1 (TGFB1) pathway, primarily involved in the 

survival of cancer cells, is connecting a significant number of genes selected by the 

approach described in this Chapter. Moreover, Slit-2 has the potential to interfere with 

this survival pathway. Slit-2 is also interesting because it is one of the top polarized 

genes regardless of the choice of parameters (Supplementary Table 6.1). Slit-2 is a 

secreted factor and is known to be methylated in tumours such as colon, glioma, lung, 

breast, Wilms, neuroblastoma, cervix, and renal cell cancer [199-203] but the 

methylation status in prostate cancer remains unknown so far. Furthermore, when 

genes highly correlated with Slit-2 (|r| >= 0.75, n=151) are used for searching functional 

networks in IPA, the terms observed are similar to those obtained using only polarized 

genes. In addition, Slit-2 is significantly differentially expressed between normal and 

tumour in Singh et al. dataset, and seems to be more expressed in normal than in 
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tumour (Figure 6.17). This raises the interesting hypothesis that Slit-2, and perhaps all 

other members of the slit gene family secreted by normal epithelial cells, may be 

involved in controlling the molecular and physiological state of prostate cancer cells. In 

order to test this hypothesis and to provide an indication of the mechanism involved in 

the polarized nature of this relationship, some experiments were performed. 

0
20

40
60

80
10

0
12

0

Slit-2 Expression (Singh et al. Dataset)
V

al
ue

Normal Tumour

t.test = 0.00068873
wilcoxon.test = 0.00037404

 

 

In particular, we wanted to first identify the biological effect that is associated to the 

relationship identified between the expression of Slit-2 and the transcriptional state of 

tumour cells. Second, we wanted to identify the molecular mechanism behind the 

directionality of the signal. Considering that genes with high pol that are secreted 

factors and whose methylation status is known in cancers others than prostate could be 

potential targets to support the observations derived from our methodology.  

 

6.2.9.1 - Slit-2 is Methylated in Prostate Cancer Cell-lines 

Having shown that slit proteins could be able to inhibit survival in prostate cancer cells, 

we wondered if the discovery that Slit-2 was a highly polarized gene could be related 

Figure 6.17 � Slit-2 is differentially expressed in normal and tumour. p-values are shown in 
legend. Vertical axis represents linear expression values. Lines connecting dots represent the 
expression of the same individual in both samples. Black lines represent larger expression in 
normal whereas red lines represent larger expression in tumour. 
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with the methylation status of its promoter in tumour cells. In order to verify this, a 

methylation specific PCR assay was performed (Figure 6.22) from PC-3 and DU-145 cell 

lines derived from prostate cancer, and RWPE-1, a non-tumorigenic human prostate 

epithelial cell line (Figure 6.18). The methylation of the Slit-2 promoter was positive in 

PC-3 and DU-145 but not in RWPE-1. This result strongly suggests that Slit-2 is 

methylated in prostate cancer. 
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Figure 6.18 � Methylation assay for SLIT2 promoter. (A) The SLIT2 putative promoter region was 
predicted by Promoter Inspector software (http://www.genomatix.de).  This region is from -761 to -
212 relative to the translation start site.  "CpG" sites are highligthed in bold. The region was 
amplified from cell lines using the primers Sli2MOD4F (5�-GGGAGGTGGGATTGTTTAGATAT 
TT-3�) and primer Sli2MOD4R2 (5�-CAAAAACTCCTTAAACAACTTTAAATCCTAAAA-3�) as 
described previously (Dallol et al. Cancer Res. 2003 Mar 1;63(5):1054-8). 1/50 volume of the PCR 
reaction (with primers Sli2MOD4F and Sli2MOD4R2) was used in a nested PCR reaction with 30 
cycles using primer SL2-SP-F (5�-AGTTTAGAGTYGTGYGTTTTTAGAAT-3�) and the primer SL2-
SP-R (5�-CCRATCAAAATAAACTCCRTAAACTAA-3�) where Y is C+T and R is A+G.  These 
primers amplify a region where most of the methylated CpGs in the putative SLIT2 promoter are 
concentrated. The PCR conditions for both the first and second PCR were 95C for 10 min, 
followed by 30-40 cycles of 1 min denaturation at 95C, 1 min annealing at 52-54C, and 2 min 
extension at 74C.  The PCR products were concentrated and purified using QIAquick PCR 
Purification columns (Qiagen).  (B)  The PCR products were then digested with 10 U of BstUI for 2 
hours at 60ºC. The restriction enzyme digestion products were then visualized by separation in a 
3% agarose gel. Experiments performed by Dr. Ashraf Dallol in Dr. Farida Latif's Laboratory. Data 
and image kindly provided by Dr. Latif. 
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6.2.9.2 - Slit-2 Inhibit Survival in Prostate Cancer Cell-lines 

In order to test the possible role of Slit-2 protein in prostate cancer, Dr. Nicholas Davies 

and Dr. Moray Campbell tested the ability of conditioned supernatants from cells 

transfected with Slit2, Slit3, and Slit-like-21 in a clonogenic assay using PC-3 and DU-

145 (Figure 6.19). All conditioned supernatants significantly inhibited the survival of 

both cells lines at 1:50 dilution.  

 

 

6.3 - Discussion 

In this work, a polarization index was defined that is based on highly directional gene-

gene connections between two cell types to emphasize genes hypothetically involved in 

                                                 

1 Kindly provided by Dr. Heiner who determined that transfected products of the Slit-2-like construction 

fused with MYC is anchored in the membrane of HEK-293T cells by fluorescence microscopy assays. 
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Figure 6.19 � Clonogenic assay in prostate cancer cell lines. PC-3 and DU-145 cell lines were 
treated with dilutions (1/100 or 1/50) of slit-1, slit-2, and slit-2-like (horizontal axis). A significant 
reduction in the number of colonies (vertical axis, marked with stars "*") was observed in both 
cell lines. 
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cell to cell communication. The fact that only significant connections are used and that 

several genes show a stable index over a wide range of cut-off values suggests that pol 

measure is robust. High pol values were detectable at varied frequencies among 

datasets suggesting that the level of detectable interactions depends highly on the 

biological systems and the experimental setup. For instance, three prostate cancer 

datasets were used in which the levels of polarization detected were very high for 

Singh et al., small for Lapointe et al., and none for Yu et al.. Since Singh et al. and Yu et al. 

used the same microarray technology and Lapointe et al. used a different one, the 

observed polarization differences might be due mostly to differences in the biological 

samples used and to their relatively proximity (see Table 6.5) rather than experimental 

issues.  

 

Polarization indexes were estimated based on significant connections based on a FDR 

approach. Thus, high values of f or b (e.g. > 100) would result in robust pol estimations if 

the chosen FDR is kept low (< 10%). However, a proper FDR associated to pol, rather 

than to each individual connection, is needed. Although rather laborious, perhaps the 

most important and fair FDR estimation for pol would be the one found empirically, 

testing a number of highly polarized genes experimentally. In this context, the FDR 

would be the fraction of those genes not involved in cell to cell communication. 

 

Data that could be used as positive and negative controls for cell to cell communication 

is lacking. Therefore, the results of the simulations showing that high polarization 

indexes are not due to random noise neither to unconnected data are, at least, the first 

approaches to validate that the observed pol are not artefacts. The establishment of 

proper controls (mainly negative), however, is rather challenging because cells in 

contact or cells in shared media would inevitably affect each other. 
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Interestingly, differentially expressed genes do not tend to be highly polarized 

suggesting that some components of gene-gene connections between cells are regulated 

by subtle changes in expression. On the contrary, COPA results suggest that minor 

components of gene-gene connections between cells are due to drastic over-expression. 

In addition, another component seems to be related to silencing by methylation. Thus, 

although systematic changes in expression (silencing and DEG) were not significantly 

related to cell to cell communication processes under the scenario considered, specific 

mechanisms for under-expression (methylation) and over-expression (COPA) were 

detected to be, at certain degrees, related to cell to cell communication. 

 

Functional and pathways analysis support the hypothesis that selected genes might be 

involved in the communication process. This is based on the fact that several functional 

terms and networks are related to cellular growth, proliferation, mobility, and 

signalling.  

 

Based on polarization, the extra-cellular protein Slit2 was selected to be tested 

experimentally. The experiments performed in prostate cancer cell-lines show that Slit2 

affects survival that its promoter is methylated. This agrees with the hypothesis that 

Slit2 is not beneficial for the tumour, which methylate Slit2 promoter in the course of 

tumour progression to neutralize its effects. However, Slit2 is being secreted by normal 

cells to control tumour expansion. 

 

6.4 - Conclusions 

A gene index named polarization has been defined to select genes important for a 

specific cell to cell communication scenario. Paracrine signalling are clear examples of 

this scenario. The index is based on highly directional gene-gene connections between 
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two cell types. Simulation experiments show that polarization is not a data artefact. On 

the contrary, in-silico analysis shows that highly polarized genes are related to 

meaningful biological phenomena such as methylation, over-expression, signalling, 

proliferation, cell-growth, and cell mobility. Experimental results of a selected gene 

show that polarization successfully predicted its role in cell to cell communication 

events. The evidence shown here supports the use of the defined polarization index to 

identify components of cell to cell communication from large scale functional genomics 

data. 

 

6.5 - Materials and Methods 

6.5.1 - Datasets 

Six public datasets were used. Three prostate datasets originally published by Singh et 

al.[8], Lapointe et al.[9], and Yu et al.[204], a liver dataset published by Chen et al.[205], a 

colon dataset published by Notterman et al.[206], and a kidney dataset published by 

Boer et al.[207]. Only paired data corresponding to tumour and normal from the same 

tissue were used. Only one pair of samples per individual was used. In general, normal 

tissue was adjacent to the tumour. Datasets were normalized and processed before 

analysis to remove low variant and low expressed genes. Further details are included in 

Table 6.5. 
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6.5.2 - Correlations 

Non-linear Spearman ranking correlation was used to make the estimations robust to 

any monotone transformation. In order to estimate the number of significant 

correlations f and b, 100 bootstrap versions were used for each dataset to draw the null 

distribution of Spearman ranking correlation coefficients expected by chance. The 

bootstrap distribution was used to estimate a p-value which was subsequently 

corrected for multiple-test using an FDR correction [37]. Thus, FDR is meant as the 

expected number of false correlations. This ensures that estimations of pol are robust for 

genes displaying a large number of significant correlations. Scripts were written in R 

(http://www.r-project.org/). 

 

6.5.3 - Noise Model Simulations 

The normal datasets were used to generate synthetic normal and tumour datasets by 

adding random Gaussian noise with zero mean and standard deviation derived from 

an error model. Jain et al. proposed a model to estimate the error based on replicated 

microarray experiments [32]. This approach was adapted, for all non-replicated datasets 

used here, to estimate the experimental error by considering only the 50% centred data 

for each gene. This was based on empirical observations that the smoothed loess (non-

Table 6.5 � Summary of datasets used. 
 
Reference 

 
Microarrays 

 
Tissue 

 
Samples 

 
Probes 

Author's definition of 
"Normal" 

 
Pre-processing 

Probes 
Used 

Singh et al. 
[8] 

Affymetrix 
U95Av2 

Prostate 47 12,600 Adjacent Prostate Tissue Log scale; Quantile Normalization (in 
simulations); Mean > 1 

8,079 

Lapointe et al. 
[9] 

Custom 
cDNA 2-dyes 

Prostate 39 11,490 Prostate Non-cancerous 
region 

Median Imputed-NA; Quantile Normalization; 
SD >= 66% Quantile OR Mean >= 66% Quantile 

6,269 

Yu et al. 
[204] 

Affymetrix 
U95Av2 

Prostate 56 12,625 Adjacent Prostate Tissue Quantile Normalization; SD >= 66% Quantile  
OR Mean >= 66% Quantile 

6,741 

Chen et al. 
[205] 

Custom 
cDNA 2-dyes 

Liver 43 22,645 Adjacent non-Tumour 
Tissue 

Array removal: #NA > 3000; KNN Imputed-
NA; 
Quantile Normalization; SD >= 66% Quantile 

7,550 

Notterman et al. 
[206] 

Affymetrix 
Hum6500 

Colon 18 7,464 Normal Tissue - 7,464 

Boer et al. 
[207] 

Custom Nylon 
membranes 

Kidney 34 36,864 Normal Tissue Signal-to-Noise; Quantile Normalization; 
t-test FDR  < 0.2 OR SD >= 80% Quantile 

7,743 
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linear) fitted curve displays a similar behaviour to that exhibited by Jain et al. Figure 

6.20 shows that the adapted error estimation for Singh et al. dataset is similar to that of 

Jain et al.. In order to control the level of noise that would conserve the overall 

similitude to the observed Normal and Tumour correlations, more ad hoc deviances 

were introduced by a scaling factor ã controlling the observed same-gene correlation 

distribution as a measure of similarity between Normal and Tumour gene expression. 

The selection of ã obeys to the distribution of same-gene correlations in the synthetic 

datasets that are closer to the observed ones (Figure 6.21). Therefore, ã=3 was used in 

this study. Synthetic datasets were then employed to compute the correlation matrix 

followed by the estimation of the polarization index. 
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Figure 6.20 � Error model comparisons for Singh et al. and Jain et al. datasets. The figure shows 
similar behaviours of error models in SD (left) and CV (right). 
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6.5.4 - Multivariate Gaussian Simulation 

Two thousand randomly selected genes from each dataset were used to compute 

normal and tumour correlation matrices. The choice of 2,000 genes follows to 

computational resources restrictions. The observed distribution of polarized genes is 

not affected by this choice due to the random gene selection. Similar results are 

observed even selecting randomly 500 genes (data not shown). Each matrix was fitted 

by a multivariate Gaussian [208] model to generate a synthetic dataset. Synthetic 

datasets were then used to compute the correlation matrix (supplementary figure 5). 

Subsequently, the polarization index was estimated from this correlation matrix. For 

comparisons with real data, 2,000 randomly selected genes from real data were used. 

The multivariate fitting and subsequent random dataset generation was performed 

using the function rmvnorm within mvtnorm package in R (http://www.r-project.org/). 
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Figure 6.21 � Adjusting same-gene distribution in error model. ã factor controls the level of noise 
(left panel).  Same-gene distributions depend therefore on ã factor (right panel). ã=0.5 is the right-
most curve whereas ã=5 is the left-most curve. 
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6.5.5 - Differential Expression 

Genes differentially expressed were estimated by a t-Test, a Wilcoxon-Mann-Whitney 

rank sum test, and SAM analysis in R. The p-values were corrected for multiple testing 

using a false discovery rate approach [37] or empirical FDR in the case of SAM[43]. Log-

transformed and quantile-normalized data were used. The overlap between polarized 

genes and DEG were assessed by estimating the Hypergeometric probability. Genes 

whose pol were larger than a threshold were then tested. 

 

6.5.6 - COPA analysis 

Log-transformed and quantile-normalized data were used. 0.75, 0.90, and 0.95 quantiles 

of COPA-transformed data were used as suggested by Tomlins et al. [49] to select 

COPA genes. A gene was called COPA if the COPA-transformed value was larger than 

selected thresholds (75%, 90%, and 95%, see section 2.5.1.3 in Chapter 2 for COPA 

mathematical formula). The overlap between polarized genes and COPA genes were 

assessed by estimating the Hypergeometric probability. Genes whose pol were larger 

than a threshold were then tested. 

 

6.5.7 - Gene Silencing 

For a gene, silencing was defined as the significant difference in the number of normal 

expressed samples minus the number of tumour expressed samples (or vice versa). A 

gene was called 'expressed' if the expression value, log-transformed and quantile 

normalized, was larger than a threshold. Explored thresholds ranged from 10% to 60% 

of the overall observed distribution. To determine statistical significance in calling a 

gene silenced, 100 bootstrap versions for each threshold were used to draw the null 

distribution of differences. The p-value for an observed difference was obtained by 

counting the number of bootstrapped differences equal or larger than the observed 
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were then divided by the total number of bootstrapped differences. Raw p-values were 

corrected using a FDR approach [37]. Results for 5%, 10%, and 20% FDR are reported. 

 

6.5.8 - Functional Gene Annotation 

For the annotation of genes, OMIM, GeneCards, HubMed, AmiGO, PubGene, and 

iHOP were used by querying the current gene symbol given by HUGO ([209-215]). 

FatiGO+ within BABELOMICS  [152] was used for the functional association of positive 

or negative polarized genes. The search included Gene Ontology, InterPro motifs, 

SwissProt keywords, KEGG Pathways, and Transcription Factors. Fisher exact test was 

used to assess the significance of annotation ratios between polarized genes (195: pol > 

0.9, 111: pol < -0.9) and non-polarized genes (3241: pol = 0 in correlation cut-off 0.57 and 

0.75). p-values were corrected by an FDR approach [37]. Only significant terms after 

this multiplicity test correction are reported (FDR <= 1%). IPA [187] was used for the 

systematic analysis of sets of highly polarized genes in association to functional 

networks. Three gene lists were generated, genes whose pol was positive (232 genes >= 

0.8 at 0.75 correlation cut-off), negative (140 genes <= -0.8), and consistently zero 

between 0.57 and 0.75 correlation cut-off (3241 genes). Only those IPA networks and 

canonical pathways that contained, at least, 7 polarized genes were used. The functional 

analysis of a network identified the biological functions that were most significantly 

associated to the genes in the network. Fisher�s exact test was used to calculate a p-

value determining the probability that each biological function and/or disease assigned 

to that network is due to chance alone. See details in section 5.5.4 in Chapter 5. For the 

analysis of genes highly correlated with Slit-2, 151 genes whose absolute Spearman 

correlation was higher than 0.74 were selected. 
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6.5.9 - Methylation Experiments 

The detection of the methylation status was determined by comparing the BstUI 

digestion pattern of the PCR products from prostate cancer cell-lines DNA with and 

without sodium bisulphate treatment which leads to the conversion of cytosine to 

uracil. Methyl-cytosines are not converted by this treatment thus methylated CGCG 

patterns are conserved. This pattern is then recognized and digested by BstUI enzyme 

(Figure 6.22). To confirm that methylation is somehow related to genes identified by the 

method described in this chapter, Slit-2 promoter was investigated in three prostate 

cancer cell-lines using the procedure described. The experiment was performed by Dr. 

Ashraf Dallol in Dr. Farida Latif Laboratory at the University of Birmingham. Dr. Latif 

kindly provided data and images in Figure 6.18. Details of the PCR, primers, and 

experimental conditions are given in [199-201] and Figure 6.18. 

 

 

For comparison of methylated genes reported in the literature, Singh et al. dataset was 

additionally annotated using HCNetDat (http://www.hartwellcenter.org /hcnetdat). A 

correlation cut-off of 0.57 was used to estimate the pol in order to obtain a 

representative larger overlap between the genes present in our dataset and those genes 

C-to-U conversion
(bisulfate treatment)

BstUI digestion

CGCG

CGCG

UGUG

Digested Undigested

PCR

UGUG

CGCG
Me Me

CGCG
Me Me

 
Figure 6.22 � Detection of methylated CpG promoter sites. Methylated cytosines (left) are finally 
digested because they are not sensitive to bisulfate treatment. Unmethylated cytosines are 
converted to uracil avoiding BstUI digestion. Figure inspired and adapted from Akagi et al. [216]. 
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reported in the literature affected directly or indirectly by methylation in prostate 

cancer cell-lines. Gene-names reported to be methylated in papers were sought in Singh 

et al. dataset (111 genes in total). For gene symbols appearing more than once, the 

highest polarization value was considered. For the text-mining association of gene-

cancer-methylation, systematic queries to PubMed using the gene name and "Cancer 

Methylation" as keywords were used. 

 

 

6.6 - Supplementary Material 

 

Supplementary Table 6.1 � Positive polarized genes. Sorted by pol. For a gene expressed in normal, f is 
the number of significant correlations with tumour genes whereas b is the number of significant 
correlations with normal genes for the same gene expressed in tumour. 
Affy Id Symbol Gene Name pol(+) f b 
35749_at TADA3L transcriptional adaptor 3 (NGG1 homolog, yeast)-like 0.997 374 0 
39099_at SEC23A Sec23 homolog A (S. cerevisiae) 0.997 357 0 
37981_at DBN1 drebrin 1 0.996 232 0 
36621_at AHSG alpha-2-HS-glycoprotein 0.995 206 0 
41195_at LPP LIM domain containing preferred translocation partner in lipoma 0.995 195 0 
37042_at HYAL2 hyaluronoglucosaminidase 2 0.994 166 0 
38506_at TCF2 transcription factor 2, hepatic, LF-B3, variant hepatic nuclear factor 0.994 163 0 
34203_at CNN1 calponin 1, basic, smooth muscle 0.994 163 0 
39634_at SLIT2 slit homolog 2 (Drosophila) 0.993 151 0 
31440_at TCF7 transcription factor 7 (T-cell specific, HMG-box) 0.993 145 0 
32464_at DEFB4 defensin, beta 4 0.993 133 0 
40945_at KLF11 Kruppel-like factor 11 0.992 127 0 
37606_at KHK ketohexokinase (fructokinase) 0.991 116 0 
34539_at OR7E37P olfactory receptor, family 7, subfamily E, member 37 pseudogene 0.991 115 0 
32531_at GJA1 gap junction protein, alpha 1, 43kDa (connexin 43) 0.991 108 0 
888_s_at GDF1 growth differentiation factor 1 0.990 103 0 
40474_r_at KPNA1 karyopherin alpha 1 (importin alpha 5) 0.990 98 0 
35365_at ILK integrin-linked kinase 0.989 93 0 
38725_s_at DPM2 dolichyl-phosphate mannosyltransferase polypeptide 2, regulatory subunit 0.989 90 0 
38643_at LOC92689 0.989 90 0 
40359_at RASSF7 Ras association (RalGDS/AF-6) domain family 7 0.989 86 0 
35263_at EIF4EBP2 eukaryotic translation initiation factor 4E binding protein 2 0.988 85 0 
37279_at GEM GTP binding protein overexpressed in skeletal muscle 0.988 84 0 
37065_f_at GAGE5 G antigen 5 0.988 83 0 
36762_at GABRG2 gamma-aminobutyric acid (GABA) A receptor, gamma 2 0.988 82 0 
36577_at PLEKHC1 pleckstrin homology domain containing, family C (with FERM domain) member 1 0.988 80 0 
39145_at MYL9 myosin, light polypeptide 9, regulatory 0.986 73 0 
40592_at IDS iduronate 2-sulfatase (Hunter syndrome) 0.986 73 0 
38230_at EPAS1 endothelial PAS domain protein 1 0.986 73 0 
32026_s_at RAPGEF2 Rap guanine nucleotide exchange factor (GEF) 2 0.986 72 0 
36650_at CCND2 cyclin D2 0.986 69 0 
37697_s_at VDAC2 voltage-dependent anion channel 2 0.986 69 0 
41856_at UNC5B unc-5 homolog B (C. elegans) 0.985 66 0 
37732_at RYBP RING1 and YY1 binding protein 0.985 65 0 
32000_g_at ABCA1 ATP-binding cassette, sub-family A (ABC1), member 1 0.985 64 0 
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36159_s_at PRNP prion protein (p27-30) (Creutzfeld-Jakob disease, Gerstmann-Strausler-Scheinker syndrome, 
fatal familial insomnia) 

0.984 63 0 

2057_g_at FGFR1 fibroblast growth factor receptor 1 (fms-related tyrosine kinase 2, Pfeiffer syndrome) 0.984 62 0 
36613_at IFRD2 interferon-related developmental regulator 2 0.984 61 0 
32582_at MYH11 myosin, heavy polypeptide 11, smooth muscle 0.983 59 0 
40352_at YPEL1 yippee-like 1 (Drosophila) 0.983 59 0 
1495_at LTBP1 latent transforming growth factor beta binding protein 1 0.983 58 0 
33091_at HOXD13 homeo box D13 0.983 58 0 
37318_at ETF1 eukaryotic translation termination factor 1 0.983 58 0 
38863_at RFC5 replication factor C (activator 1) 5, 36.5kDa 0.983 57 0 
37628_at MAOB monoamine oxidase B 0.982 55 0 
39511_at MLLT4 myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila), translocated 

to, 4 
0.982 55 0 

38559_at MGC22014 0.982 55 0 
1469_at MAPKAPK2 mitogen-activated protein kinase-activated protein kinase 2 0.982 55 0 
32367_at SIRPB1 signal-regulatory protein beta 1 0.982 54 0 
38644_at PXN paxillin 0.982 54 0 
34355_at MECP2 methyl CpG binding protein 2 (Rett syndrome) 0.982 54 0 
41402_at DKFZP564O0823 0.981 53 0 
33092_at FPRL2 formyl peptide receptor-like 2 0.981 52 0 
33017_at GPLD1 glycosylphosphatidylinositol specific phospholipase D1 0.981 52 0 
527_at CENPA centromere protein A, 17kDa 0.981 52 0 
32420_at GPR6 G protein-coupled receptor 6 0.981 52 0 
41191_at KIAA0992  0.981 51 0 
1922_g_at  0.980 49 0 
31321_at   0.980 49 0 
37875_at GPA33 glycoprotein A33 (transmembrane) 0.980 49 0 
31793_at DEFA1 defensin, alpha 1 0.980 49 0 
1859_s_at MDM2 Mdm2, transformed 3T3 cell double minute 2, p53 binding protein (mouse) 0.980 48 0 
33876_at WWTR1 WW domain containing transcription regulator 1 0.979 47 0 
34677_f_at LOC220594 0.979 47 0 
39225_at AGPS alkylglycerone phosphate synthase 0.979 140 1 
33891_at CLIC4 chloride intracellular channel 4 0.979 46 0 
32457_f_at PRB4 proline-rich protein BstNI subfamily 4 0.979 46 0 
41137_at PPP1R12B protein phosphatase 1, regulatory (inhibitor) subunit 12B 0.979 46 0 
41738_at CALD1 caldesmon 1 0.978 45 0 
654_at MXI1 MAX interactor 1 0.978 45 0 
41161_at DAXX death-associated protein 6 0.978 45 0 
760_at DYRK2 dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2 0.978 45 0 
40468_at FNBP1 formin binding protein 1 0.978 44 0 
755_at ITPR1 inositol 1,4,5-triphosphate receptor, type 1 0.977 43 0 
41207_at C9orf3 chromosome 9 open reading frame 3 0.977 43 0 
448_s_at MEN1 multiple endocrine neoplasia I 0.977 43 0 
37360_at LY6E lymphocyte antigen 6 complex, locus E 0.977 43 0 
35168_f_at COL16A1 collagen, type XVI, alpha 1 0.977 42 0 
31618_at   0.976 41 0 
36149_at DPYSL3 dihydropyrimidinase-like 3 0.976 41 0 
40841_at TACC1 transforming, acidic coiled-coil containing protein 1 0.976 40 0 
40146_at RAP1B RAP1B, member of RAS oncogene family 0.975 39 0 
41382_at DMBT1 deleted in malignant brain tumors 1 0.974 38 0 
37972_at DNASE1L3 deoxyribonuclease I-like 3 0.974 38 0 
40927_at SLC6A8 solute carrier family 6 (neurotransmitter transporter, creatine), member 8 0.974 38 0 
34097_at NME7 non-metastatic cells 7, protein expressed in (nucleoside-diphosphate kinase) 0.974 37 0 
41566_at TCF15 transcription factor 15 (basic helix-loop-helix) 0.974 37 0 
39700_at ARHGAP1 Rho GTPase activating protein 1 0.973 36 0 
31775_at SFTPD surfactant, pulmonary-associated protein D 0.973 109 1 
32542_at FHL1 four and a half LIM domains 1 0.971 34 0 
35330_at FLNC filamin C, gamma (actin binding protein 280) 0.971 34 0 
648_at AVPR1B arginine vasopressin receptor 1B 0.971 34 0 
34849_at SARS seryl-tRNA synthetase 0.971 34 0 
38607_at TM4SF5 transmembrane 4 L six family member 5 0.971 34 0 
38991_at LOC441773 0.971 103 1 
938_at   0.971 33 0 
716_at GGTLA1 gamma-glutamyltransferase-like activity 1 0.971 33 0 
34063_at RECQL5 RecQ protein-like 5 0.971 33 0 
35595_at RCP9  0.971 33 0 
41488_at LOC57149 0.970 32 0 
32045_at DATF1 death associated transcription factor 1 0.970 32 0 
36956_at SLC20A2 solute carrier family 20 (phosphate transporter), member 2 0.970 32 0 
36785_at HSPB1 heat shock 27kDa protein 1 0.969 31 0 
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34164_at   0.969 31 0 
38526_at PDE4D phosphodiesterase 4D, cAMP-specific (phosphodiesterase E3 dunce homolog, Drosophila) 0.969 31 0 
38282_at ADAM15 ADAM metallopeptidase domain 15 (metargidin) 0.969 31 0 
35112_at RGS9 regulator of G-protein signalling 9 0.969 31 0 
33007_at LOC63928 0.968 30 0 
1305_s_at CYP4F3 cytochrome P450, family 4, subfamily F, polypeptide 3 0.967 29 0 
40817_at NUCB1 nucleobindin 1 0.967 29 0 
35756_at GIPC1 GIPC PDZ domain containing family, member 1 0.967 29 0 
35177_at DDHD2 DDHD domain containing 2 0.967 29 0 
2066_at BAX BCL2-associated X protein 0.967 29 0 
40448_at ZFP36 zinc finger protein 36, C3H type, homolog (mouse) 0.967 29 0 
36805_s_at NTRK1 neurotrophic tyrosine kinase, receptor, type 1 0.967 29 0 
348_at KIFC1 kinesin family member C1 0.967 29 0 
40074_at MTHFD2 methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 2, methenyltetrahydrofolate 

cyclohydrolase 
0.966 28 0 

1915_s_at FOS v-fos FBJ murine osteosarcoma viral oncogene homolog 0.966 28 0 
39046_at H2AFV H2A histone family, member V 0.966 28 0 
33756_at AOC3 amine oxidase, copper containing 3 (vascular adhesion protein 1) 0.964 27 0 
37049_g_at TOMM34 translocase of outer mitochondrial membrane 34 0.964 27 0 
38026_at FBLN1 fibulin 1 0.964 27 0 
484_at NCOA1 nuclear receptor coactivator 1 0.964 27 0 
34647_at DDX5 DEAD (Asp-Glu-Ala-Asp) box polypeptide 5 0.964 27 0 
40527_at KCNQ1 potassium voltage-gated channel, KQT-like subfamily, member 1 0.964 27 0 
35255_at IPO7 importin 7 0.964 27 0 
41331_at LRIG2 leucine-rich repeats and immunoglobulin-like domains 2 0.964 27 0 
37418_at POU2F2 POU domain, class 2, transcription factor 2 0.964 27 0 
32313_at TPM2 tropomyosin 2 (beta) 0.963 26 0 
31897_at DOC1  0.963 26 0 
1071_at GATA2 GATA binding protein 2 0.963 26 0 
33442_at KIAA0367 KIAA0367 0.963 26 0 
41598_at SEC22L1 SEC22 vesicle trafficking protein-like 1 (S. cerevisiae) 0.963 26 0 
35324_at SLIT3 slit homolog 3 (Drosophila) 0.963 26 0 
32242_at CRYAB crystallin, alpha B 0.963 26 0 
32469_at CEACAM3 carcinoembryonic antigen-related cell adhesion molecule 3 0.963 26 0 
1276_g_at RBPMS RNA binding protein with multiple splicing 0.962 25 0 
39175_at PFKP phosphofructokinase, platelet 0.962 25 0 
32749_s_at FLNA filamin A, alpha (actin binding protein 280) 0.962 25 0 
37664_at DRG2 developmentally regulated GTP binding protein 2 0.962 25 0 
38786_at SVEP1 sushi, von Willebrand factor type A, EGF and pentraxin domain containing 1 0.962 25 0 
38714_at GYPA glycophorin A (includes MN blood group) 0.960 24 0 
39797_at UBR2 ubiquitin protein ligase E3 component n-recognin 2 0.960 24 0 
35438_at PLXNA3 plexin A3 0.960 24 0 
36283_at DDX6 DEAD (Asp-Glu-Ala-Asp) box polypeptide 6 0.960 24 0 
36443_at DNAH9 dynein, axonemal, heavy polypeptide 9 0.960 24 0 
33418_at RAB3GAP1 RAB3 GTPase activating protein subunit 1 (catalytic) 0.959 71 1 
37230_at KLHL21 kelch-like 21 (Drosophila) 0.958 23 0 
affx-murfas_at  0.958 23 0 
33907_at EIF4G3 eukaryotic translation initiation factor 4 gamma, 3 0.958 23 0 
38736_at WDR1 WD repeat domain 1 0.958 23 0 
32971_at C9orf61 chromosome 9 open reading frame 61 0.957 22 0 
33388_at TEX261 testis expressed sequence 261 0.957 22 0 
32314_g_at TPM2 tropomyosin 2 (beta) 0.955 21 0 
39661_s_at SLC29A2 solute carrier family 29 (nucleoside transporters), member 2 0.955 21 0 
40776_at DES desmin 0.955 21 0 
32458_f_at PRB4 proline-rich protein BstNI subfamily 4 0.955 21 0 
720_at HSF4 heat shock transcription factor 4 0.955 21 0 
32410_at MYOG myogenin (myogenic factor 4) 0.955 21 0 
32239_at MATN2 matrilin 2 0.952 20 0 
39370_at MAP1LC3B microtubule-associated protein 1 light chain 3 beta 0.952 20 0 
35413_s_at ZNF22 zinc finger protein 22 (KOX 15) 0.952 20 0 
39544_at DMN desmuslin 0.952 20 0 
33643_at MYCL1 v-myc myelocytomatosis viral oncogene homolog 1, lung carcinoma derived (avian) 0.952 20 0 
32662_at MDC1 mediator of DNA damage checkpoint 1 0.952 20 0 
37968_at NCR3 natural cytotoxicity triggering receptor 3 0.952 20 0 
33472_at FMO4 flavin containing monooxygenase 4 0.952 20 0 
32624_at GARNL1 GTPase activating Rap/RanGAP domain-like 1 0.952 20 0 
1652_at PIM2 pim-2 oncogene 0.952 20 0 
41546_at CDK6 cyclin-dependent kinase 6 0.951 59 1 
41153_f_at CTNNA1 catenin (cadherin-associated protein), alpha 1, 102kDa 0.949 57 1 
34906_g_at GRIK5 glutamate receptor, ionotropic, kainate 5 0.948 94 2 



 190 

36423_at P8  0.948 94 2 
32255_i_at TERF1 telomeric repeat binding factor (NIMA-interacting) 1 0.947 55 1 
38355_at DDX3Y DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked 0.946 89 2 
34788_at C9orf132 chromosome 9 open reading frame 132 0.945 53 1 
34933_at PAX9 paired box gene 9 0.945 53 1 
34306_at MBNL1 muscleblind-like (Drosophila) 0.943 51 1 
38205_at NEUROD2 neurogenic differentiation 2 0.939 47 1 
1992_at FHIT fragile histidine triad gene 0.936 106 3 
37790_at VENTX2 VENT-like homeobox 2 0.935 44 1 
31535_i_at  0.933 43 1 
1419_g_at NOS2A nitric oxide synthase 2A (inducible, hepatocytes) 0.932 42 1 
31317_r_at  0.931 97 3 
1775_at POLA2 polymerase (DNA directed), alpha 2 (70kD subunit) 0.925 140 5 
37680_at AKAP12 A kinase (PRKA) anchor protein (gravin) 12 0.922 61 2 
34507_s_at LMTK2 lemur tyrosine kinase 2 0.921 232 9 
38443_at PTPN11 protein tyrosine phosphatase, non-receptor type 11 (Noonan syndrome 1) 0.921 36 1 
36952_at HADHA hydroxyacyl-Coenzyme A dehydrogenase/3-ketoacyl-Coenzyme A thiolase/enoyl-Coenzyme 

A hydratase (trifunctional protein), alpha subunit 
0.919 59 2 

100_g_at RABGGTA Rab geranylgeranyltransferase, alpha subunit 0.919 35 1 
39744_at DDX3X DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked 0.914 33 1 
38711_at CLASP2 cytoplasmic linker associated protein 2 0.911 53 2 
36946_at DYRK1A dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A 0.909 31 1 
33520_at F7 coagulation factor VII (serum prothrombin conversion accelerator) 0.909 31 1 
41097_at TERF2 telomeric repeat binding factor 2 0.907 51 2 
39639_s_at TNP1 transition protein 1 (during histone to protamine replacement) 0.894 44 2 
935_at CAP1 CAP, adenylate cyclase-associated protein 1 (yeast) 0.893 26 1 
41001_at RPH3A rabphilin 3A homolog (mouse) 0.892 61 3 
36659_at COL4A2 collagen, type IV, alpha 2 0.889 25 1 
38221_at CNKSR1 connector enhancer of kinase suppressor of Ras 1 0.889 42 2 
37939_at APOBEC3C apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3C 0.889 25 1 
37814_g_at DDX51 DEAD (Asp-Glu-Ala-Asp) box polypeptide 51 0.887 91 5 
40326_at CBLN1 cerebellin 1 precursor 0.885 24 1 
34702_f_at psiTPTE22 0.885 24 1 
32897_at MTHFR 5,10-methylenetetrahydrofolate reductase (NADPH) 0.884 40 2 
34559_at LOC388818 0.884 40 2 
39110_at EIF4B eukaryotic translation initiation factor 4B 0.884 40 2 
39539_at ZBTB7A zinc finger and BTB domain containing 7A 0.875 112 7 
32340_s_at YBX1 Y box binding protein 1 0.875 22 1 
37517_at GARNL4 GTPase activating Rap/RanGAP domain-like 4 0.870 21 1 
39346_at KHDRBS1 KH domain containing, RNA binding, signal transduction associated 1 0.870 21 1 
33565_at TSHB thyroid stimulating hormone, beta 0.865 34 2 
32007_at   0.865 34 2 
32569_at PAFAH1B1 platelet-activating factor acetylhydrolase, isoform Ib, alpha subunit 45kDa 0.863 47 3 
35536_at ECE2 endothelin converting enzyme 2 0.848 30 2 
41445_at TGFB1 transforming growth factor, beta 1 (Camurati-Engelmann disease) 0.848 42 3 
36517_at U2AF1 U2(RNU2) small nuclear RNA auxiliary factor 1 0.844 29 2 
37082_at ZNF96 zinc finger protein 96 0.844 29 2 
1793_at CDC2L5 cell division cycle 2-like 5 (cholinesterase-related cell division controller) 0.841 40 3 
41703_r_at AKAP7 A kinase (PRKA) anchor protein 7 0.839 28 2 
37284_at SEMA4D sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short 

cytoplasmic domain, (semaphorin) 4D 
0.833 60 5 

1709_g_at MAPK10 mitogen-activated protein kinase 10 0.829 37 3 
40636_at FLOT1 flotillin 1 0.828 79 7 
336_at TBXA2R thromboxane A2 receptor 0.821 25 2 
34457_at SLC30A3 solute carrier family 30 (zinc transporter), member 3 0.821 25 2 
39263_at OAS2 2'-5'-oligoadenylate synthetase 2, 69/71kDa 0.817 54 5 
34018_at COL19A1 collagen, type XIX, alpha 1 0.816 34 3 
41190_at TNFRSF25 tumor necrosis factor receptor superfamily, member 25 0.805 78 8 
33080_s_at RAP1GA1 RAP1, GTPase activating protein 1 0.800 22 2 
32119_at   0.800 31 3 
774_g_at MYH11 myosin, heavy polypeptide 11, smooth muscle 0.800 22 2 
39423_f_at SPOP speckle-type POZ protein 0.800 22 2 
35339_at RAB8A RAB8A, member RAS oncogene family 0.795 65 7 
40089_at WBSCR22 Williams Beuren syndrome chromosome region 22 0.794 30 3 
35598_at HIST1H3E histone 1, H3e 0.792 47 5 
37620_at TAF12 TAF12 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 20kDa 0.786 37 4 
38062_at RAPGEF5 Rap guanine nucleotide exchange factor (GEF) 5 0.785 70 8 
32263_at CCNB2 cyclin B2 0.780 36 4 
1742_at ERBB3 v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian) 0.776 43 5 
34467_g_at HTR4 5-hydroxytryptamine (serotonin) receptor 4 0.771 42 5 
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33865_at ZMYND11 zinc finger, MYND domain containing 11 0.771 42 5 
37294_at BTG1 B-cell translocation gene 1, anti-proliferative 0.767 26 3 
1782_s_at STMN1 stathmin 1/oncoprotein 18 0.759 25 3 
31889_at MLANA melan-A 0.759 25 3 
40890_at MTX1 metaxin 1 0.750 24 3 
37122_at PLIN perilipin 0.748 93 13 
38942_r_at SPBC25 spindle pole body component 25 homolog (S. cerevisiae) 0.743 30 4 
37551_at ZNF592 zinc finger protein 592 0.743 30 4 
36355_at IVL involucrin 0.743 30 4 
32490_at CEACAM4 carcinoembryonic antigen-related cell adhesion molecule 4 0.741 23 3 
36098_at SFRS1 splicing factor, arginine/serine-rich 1 (splicing factor 2, alternate splicing factor) 0.729 41 6 
33246_at MAPK13 mitogen-activated protein kinase 13 0.725 122 19 
40832_s_at TOR1AIP1 torsin A interacting protein 1 0.711 38 6 
41840_r_at ANTXR1 anthrax toxin receptor 1 0.710 26 4 
41752_at GHITM growth hormone inducible transmembrane protein 0.710 26 4 
31429_at   0.690 73 13 
41276_at SAP18 sin3-associated polypeptide, 18kDa 0.688 40 7 
39103_s_at DHRS1 dehydrogenase/reductase (SDR family) member 1 0.683 50 9 
33069_f_at UGT2B15 UDP glucuronosyltransferase 2 family, polypeptide B15 0.679 44 8 
34606_s_at ATF7 activating transcription factor 7 0.676 28 5 
35596_at MGC11271 0.651 68 14 
39790_at ATP2A2 ATPase, Ca++ transporting, cardiac muscle, slow twitch 2 0.648 58 12 
40904_at PRPF31 PRP31 pre-mRNA processing factor 31 homolog (yeast) 0.641 125 27 
1468_at TRAP1 TNF receptor-associated protein 1 0.639 29 6 
38928_r_at TYR tyrosinase (oculocutaneous albinism IA) 0.618 27 6 
1567_at FLT1 fms-related tyrosine kinase 1 (vascular endothelial growth factor/vascular permeability factor 

receptor) 
0.618 27 6 

36865_at ANGEL1 angel homolog 1 (Drosophila) 0.615 52 12 
35323_at EIF3S9 eukaryotic translation initiation factor 3, subunit 9 eta, 116kDa 0.615 31 7 
32710_at KCNAB1 potassium voltage-gated channel, shaker-related subfamily, beta member 1 0.595 33 8 
37779_at SMPDL3B sphingomyelin phosphodiesterase, acid-like 3B 0.543 35 10 
37270_at ATP1B2 ATPase, Na+/K+ transporting, beta 2 polypeptide 0.539 58 17 
728_at   0.515 51 16 
38091_at LGALS9 lectin, galactoside-binding, soluble, 9 (galectin 9) 0.500 34 11 
39730_at ABL1 v-abl Abelson murine leukemia viral oncogene homolog 1 0.494 57 19 
34558_at OPRL1 opiate receptor-like 1 0.490 144 49 
41799_at DNAJC7 DnaJ (Hsp40) homolog, subfamily C, member 7 0.479 35 12 
1339_s_at BCR breakpoint cluster region 0.444 32 12 
40336_at FDXR ferredoxin reductase 0.427 58 23 
39855_at FZR1 fizzy/cell division cycle 20 related 1 (Drosophila) 0.407 41 17 
396_f_at EPOR erythropoietin receptor 0.359 43 20 
32560_s_at LSM4 LSM4 homolog, U6 small nuclear RNA associated (S. cerevisiae) 0.321 51 26 
36894_at CBX7 chromobox homolog 7 0.319 47 24 
1409_at SRF serum response factor (c-fos serum response element-binding transcription factor) 0.304 51 27 
36991_at SFRS4 splicing factor, arginine/serine-rich 4 0.296 109 59 
33686_at SPINT3 serine peptidase inhibitor, Kunitz type, 3 0.244 53 32 
31819_at MGC34821 0.209 95 62 

 

Supplementary Table 6.2 - � Negative polarized genes. Sorted by pol. For a gene expressed in normal, f 
is the number of significant correlations with tumour genes whereas b is the number of significant 
correlations with normal genes for the same gene expressed in tumour. 
Affy Id Symbol Gene Name pol(-) F b 
31311_at   -0.998 0 545 
37281_at FAM38A family with sequence similarity 38, member A -0.998 0 467 
41302_at AHCYL1 S-adenosylhomocysteine hydrolase-like 1 -0.997 0 345 
34652_at NPAS1 neuronal PAS domain protein 1 -0.997 0 311 
41766_at MAN2A2 mannosidase, alpha, class 2A, member 2 -0.996 0 241 
37292_at MAML1 mastermind-like 1 (Drosophila) -0.996 0 235 
41292_at HNRPH1 heterogeneous nuclear ribonucleoprotein H1 (H) -0.996 0 225 
39180_at FUS fusion (involved in t(12,16) in malignant liposarcoma) -0.995 0 189 
1602_at PRKCI protein kinase C, iota -0.995 0 189 
32085_at PIP5K3 phosphatidylinositol-3-phosphate/phosphatidylinositol 5-kinase, type III -0.995 0 186 
32230_at EIF3S2 eukaryotic translation initiation factor 3, subunit 2 beta, 36kDa -0.994 0 176 
39024_at NUP98 nucleoporin 98kDa -0.994 0 158 
39117_at PHF2 PHD finger protein 2 -0.994 0 156 
38122_at SLC23A2 solute carrier family 23 (nucleobase transporters), member 2 -0.993 0 145 
36186_at RNPS1 RNA binding protein S1, serine-rich domain -0.993 0 142 
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34169_s_at OCRL oculocerebrorenal syndrome of Lowe -0.993 0 137 
39435_at PFDN1 prefoldin 1 -0.992 0 132 
40491_at ARID4B AT rich interactive domain 4B (RBP1- like) -0.991 0 116 
32804_at RBM5 RNA binding motif protein 5 -0.991 2 542 
1556_at RBM5 RNA binding motif protein 5 -0.990 0 99 
40998_at MED12 mediator of RNA polymerase II transcription, subunit 12 homolog (yeast) -0.990 0 97 
242_at MAP4 microtubule-associated protein 4 -0.990 0 97 
32508_at BAT2D1 BAT2 domain containing 1 -0.989 1 265 
34305_at PCBP1 poly(rC) binding protein 1 -0.988 0 85 
34754_at SCYL3 SCY1-like 3 (S. cerevisiae) -0.987 0 75 
37676_at PDE8A phosphodiesterase 8A -0.986 0 69 
39405_at UTP14C UTP14, U3 small nucleolar ribonucleoprotein, homolog C (yeast) -0.984 0 62 
40870_g_at RBM6 RNA binding motif protein 6 -0.984 0 61 
31447_at SCC-112  -0.984 0 61 
36576_at H2AFY H2A histone family, member Y -0.983 1 177 
37450_r_at GNAS GNAS complex locus -0.981 0 53 
41183_at CSTF3 cleavage stimulation factor, 3' pre-RNA, subunit 3, 77kDa -0.981 1 159 
36153_at DHX9 DEAH (Asp-Glu-Ala-His) box polypeptide 9 -0.981 1 154 
40826_at MARK3 MAP/microtubule affinity-regulating kinase 3 -0.981 0 51 
41399_at PHF8 PHD finger protein 8 -0.980 0 50 
33218_at ERBB2 v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, neuro/glioblastoma derived 

oncogene homolog (avian) 
-0.980 0 50 

34767_at MOAP1 modulator of apoptosis 1 -0.980 2 251 
41258_at WBSCR20C -0.980 0 49 
33931_at GPX4 glutathione peroxidase 4 (phospholipid hydroperoxidase) -0.980 0 49 
35242_at PCTK3 PCTAIRE protein kinase 3 -0.980 0 49 
39112_at USF2 upstream transcription factor 2, c-fos interacting -0.980 0 48 
36971_at RW1  -0.980 0 48 
41841_at BRD3 bromodomain containing 3 -0.980 0 48 
32654_g_at BRD8 bromodomain containing 8 -0.979 0 46 
41836_at CHERP calcium homeostasis endoplasmic reticulum protein -0.978 0 45 
40869_at RBM6 RNA binding motif protein 6 -0.978 0 45 
37449_i_at GNAS GNAS complex locus -0.978 0 44 
34192_at VPS13B vacuolar protein sorting 13B (yeast) -0.977 0 43 
35477_at ZNF79 zinc finger protein 79 (pT7) -0.977 0 43 
329_s_at   -0.976 0 41 
40835_at MTA2 metastasis associated 1 family, member 2 -0.976 0 40 
36784_at CSHL1 chorionic somatomammotropin hormone-like 1 -0.976 0 40 
32209_at FAM89B family with sequence similarity 89, member B -0.975 7 601 
1863_s_at ATM ataxia telangiectasia mutated (includes complementation groups A, C and D) -0.975 0 39 
35745_f_at PCBP2 poly(rC) binding protein 2 -0.975 1 116 
39866_at USP22 ubiquitin specific peptidase 22 -0.974 2 193 
41528_at LOC130074 -0.974 0 38 
1616_at FGF9 fibroblast growth factor 9 (glia-activating factor) -0.973 0 36 
32439_at ATP4B ATPase, H+/K+ exchanging, beta polypeptide -0.972 0 35 
40506_s_at PABPC4 poly(A) binding protein, cytoplasmic 4 (inducible form) -0.972 0 35 
38402_at LAMP2 lysosomal-associated membrane protein 2 -0.972 0 35 
40988_at YME1L1 YME1-like 1 (S. cerevisiae) -0.972 4 314 
33885_at KIAA0907 KIAA0907 -0.971 0 33 
34148_at SIX3 sine oculis homeobox homolog 3 (Drosophila) -0.971 0 33 
319_g_at H1FX H1 histone family, member X -0.970 0 32 
41553_at C8orf1 chromosome 8 open reading frame 1 -0.970 0 32 
39240_at NRXN1 neurexin 1 -0.970 0 32 
35436_at GOLGA2 golgi autoantigen, golgin subfamily a, 2 -0.970 3 226 
33360_at FBXL11 F-box and leucine-rich repeat protein 11 -0.967 0 29 
38650_at IGFBP5 insulin-like growth factor binding protein 5 -0.966 0 28 
37744_r_at FEZ1 fasciculation and elongation protein zeta 1 (zygin I) -0.964 0 27 
39520_at KIAA0692  -0.964 0 27 
1741_s_at IGFBP2 insulin-like growth factor binding protein 2, 36kDa -0.964 0 27 
35030_i_at PDZK10 PDZ domain containing 10 -0.963 0 26 
1644_at EIF3S2 eukaryotic translation initiation factor 3, subunit 2 beta, 36kDa -0.963 0 26 
1908_at ETV3 ets variant gene 3 -0.962 2 130 
37597_s_at SEC6L1 SEC6-like 1 (S. cerevisiae) -0.962 0 25 
1728_at PCGF4 polycomb group ring finger 4 -0.962 0 25 
33120_at RGS10 regulator of G-protein signalling 10 -0.960 0 24 
32171_at EIF5 eukaryotic translation initiation factor 5 -0.960 0 24 
32164_at EXT1 exostoses (multiple) 1 -0.960 0 24 
35618_at HELZ helicase with zinc finger -0.958 0 23 
40845_at ILF3 interleukin enhancer binding factor 3, 90kDa -0.958 0 23 
36962_at COPA coatomer protein complex, subunit alpha -0.956 2 111 



 193 

31594_at KRTHA3A keratin, hair, acidic, 3A -0.955 1 64 
affx-dapx-m_at  -0.955 0 21 
34778_at LRRC15 leucine rich repeat containing 15 -0.955 0 21 
40946_at ISG20L2 interferon stimulated exonuclease gene 20kDa-like 2 -0.955 0 21 
35746_r_at PCBP2 poly(rC) binding protein 2 -0.952 0 20 
40928_at WSB1 WD repeat and SOCS box-containing 1 -0.952 1 61 
34634_s_at HTR7 5-hydroxytryptamine (serotonin) receptor 7 (adenylate cyclase-coupled) -0.947 3 127 
40780_at CTBP2 C-terminal binding protein 2 -0.945 1 53 
33325_at RPS6KA2 ribosomal protein S6 kinase, 90kDa, polypeptide 2 -0.944 1 52 
919_at   -0.943 1 51 
1161_at HSPCB heat shock 90kDa protein 1, beta -0.943 1 51 
36592_at PHB prohibitin -0.940 1 48 
35450_s_at GTF2I general transcription factor II, i -0.933 1 43 
34493_at TNFRSF10C tumor necrosis factor receptor superfamily, member 10c, decoy without an intracellular 

domain 
-0.930 13 374 

156_s_at GPR19 G protein-coupled receptor 19 -0.929 7 202 
35514_at MCF2L2 MCF.2 cell line derived transforming sequence-like 2 -0.928 14 387 
37448_s_at GNAS GNAS complex locus -0.928 3 93 
41316_s_at SAFB scaffold attachment factor B -0.925 1 38 
33539_at MYEF2 myelin expression factor 2 -0.923 2 62 
36226_r_at SFPQ splicing factor proline/glutamine-rich (polypyrimidine tract binding protein associated) -0.919 1 35 
35292_at BAT1 HLA-B associated transcript 1 -0.919 14 342 
31536_at RTN4 reticulon 4 -0.918 2 58 
41358_at CNNM2 cyclin M2 -0.914 1 33 
40553_at LOC441079 -0.907 4 92 
2056_at FGFR1 fibroblast growth factor receptor 1 (fms-related tyrosine kinase 2, Pfeiffer syndrome) -0.906 1 30 
32474_at PAX7 paired box gene 7 -0.906 2 50 
39229_at SDCCAG1 serologically defined colon cancer antigen 1 -0.906 2 50 
39330_s_at ACTN1 actinin, alpha 1 -0.904 5 109 
36388_at PTHR2 parathyroid hormone receptor 2 -0.902 2 48 
34026_at   -0.902 6 125 
36209_at BRD2 bromodomain containing 2 -0.900 1 28 
33683_at TI-227H  -0.897 1 27 
38393_at KIAA0247 KIAA0247 -0.893 1 26 
33027_at SYNPO2L synaptopodin 2-like -0.889 1 25 
2030_at WNT11 wingless-type MMTV integration site family, member 11 -0.885 3 57 
31452_at SMNP  -0.880 1 23 
40322_at IL1RL1 interleukin 1 receptor-like 1 -0.875 2 37 
37415_at ATP10B ATPase, Class V, type 10B -0.873 3 51 
1008_f_at EIF2AK2 eukaryotic translation initiation factor 2-alpha kinase 2 -0.870 3 50 
41529_g_at LOC130074 -0.870 60 867 
39097_at SON SON DNA binding protein -0.870 7 107 
36702_at TBX19 T-box 19 -0.870 1 21 
1643_g_at MTA1 metastasis associated 1 -0.870 1 21 
41366_at KIAA1002  -0.868 2 35 
31961_r_at  -0.865 2 34 
33543_s_at PNN pinin, desmosome associated protein -0.861 2 33 
32284_at TBX1 T-box 1 -0.857 3 45 
38860_at PDE4C phosphodiesterase 4C, cAMP-specific (phosphodiesterase E1 dunce homolog, Drosophila) -0.848 2 30 
38854_at CEP4 centrosomal protein 4 -0.845 4 53 
31923_f_at DKFZP586A0522 -0.844 2 29 
240_at SRM spermidine synthase -0.839 2 28 
38527_at NONO non-POU domain containing, octamer-binding -0.828 5 58 
37425_g_at CCHCR1 coiled-coil alpha-helical rod protein 1 -0.821 3 35 
1396_at IGFBP5 insulin-like growth factor binding protein 5 -0.815 2 24 
37226_at BNIP1 BCL2/adenovirus E1B 19kDa interacting protein 1 -0.806 6 60 
39295_s_at ARGBP2  -0.800 2 22 
37675_at SLC25A3 solute carrier family 25 (mitochondrial carrier, phosphate carrier), member 3 -0.796 60 532 
526_s_at PMS2 PMS2 postmeiotic segregation increased 2 (S. cerevisiae) -0.781 3 28 
31463_s_at HNRPA1 heterogeneous nuclear ribonucleoprotein A1 -0.776 22 178 
36026_at PGAM2 phosphoglycerate mutase 2 (muscle) -0.769 4 34 
40790_at BHLHB2 basic helix-loop-helix domain containing, class B, 2 -0.767 3 26 
32303_at ETV3 ets variant gene 3 -0.750 4 31 
38624_at SLC12A4 solute carrier family 12 (potassium/chloride transporters), member 4 -0.745 6 44 
35956_s_at PSG7 pregnancy specific beta-1-glycoprotein 7 -0.744 5 37 
affx-hsac07/x00351_m_at -0.701 11 65 
34841_at EIF3S8 eukaryotic translation initiation factor 3, subunit 8, 110kDa -0.690 4 24 
834_at ZNFN1A1 zinc finger protein, subfamily 1A, 1 (Ikaros) -0.683 9 50 
36338_at AOF2 amine oxidase (flavin containing) domain 2 -0.681 7 39 
38901_at USP19 ubiquitin specific peptidase 19 -0.676 5 28 
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36285_at KCNJ4 potassium inwardly-rectifying channel, subfamily J, member 4 -0.676 5 28 
33943_at FTH1 ferritin, heavy polypeptide 1 -0.672 10 53 
40984_at 76P  -0.667 5 27 
32588_s_at ZFP36L2 zinc finger protein 36, C3H type-like 2 -0.664 125 620 
37031_at C9orf10 chromosome 9 open reading frame 10 -0.658 6 31 
36004_at IKBKG inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma -0.655 19 93 
32152_at ANK1 ankyrin 1, erythrocytic -0.643 7 34 
40723_at SIT1 signaling threshold regulating transmembrane adaptor 1 -0.638 12 56 
33221_at PAXIP1 PAX interacting (with transcription-activation domain) protein 1 -0.632 19 86 
41155_at CTNNA1 catenin (cadherin-associated protein), alpha 1, 102kDa -0.627 9 41 
37195_at CYP11A1 cytochrome P450, family 11, subfamily A, polypeptide 1 -0.618 10 44 
37053_at ATP2B2 ATPase, Ca++ transporting, plasma membrane 2 -0.614 24 102 
36328_at SHBG sex hormone-binding globulin -0.612 9 39 
40725_at GOSR1 golgi SNAP receptor complex member 1 -0.590 45 176 
41225_at DUSP3 dual specificity phosphatase 3 (vaccinia virus phosphatase VH1-related) -0.589 11 44 
39692_at CREB3L2 cAMP responsive element binding protein 3-like 2 -0.578 9 35 
36888_at KIAA0841 KIAA0841 -0.578 9 35 
37839_at   -0.566 16 59 
39508_at NDRG2 NDRG family member 2 -0.564 8 30 
34727_at AHCYL1 S-adenosylhomocysteine hydrolase-like 1 -0.561 14 51 
38400_at FAM61A family with sequence similarity 61, member A -0.557 13 47 
31936_s_at LKAP  -0.548 9 32 
32247_at GTF2I general transcription factor II, i -0.544 33 113 
32297_s_at KLRC2 killer cell lectin-like receptor subfamily C, member 2 -0.540 14 48 
32328_at KRTHB5 keratin, hair, basic, 5 -0.538 24 81 
32576_at EIF3S5 eukaryotic translation initiation factor 3, subunit 5 epsilon, 47kDa -0.536 48 160 
38066_at NQO1 NAD(P)H dehydrogenase, quinone 1 -0.528 83 270 
34302_at EIF3S4 eukaryotic translation initiation factor 3, subunit 4 delta, 44kDa -0.512 10 32 
39200_s_at CIP29  -0.508 14 44 
39839_at CSDA cold shock domain protein A -0.502 81 245 
1998_i_at BAX BCL2-associated X protein -0.500 25 76 
40203_at SUI1  -0.497 42 126 
39065_s_at TTC3 tetratricopeptide repeat domain 3 -0.465 11 31 
39845_at HTRA2 HtrA serine peptidase 2 -0.426 15 38 
31668_f_at EPB41L2 erythrocyte membrane protein band 4.1-like 2 -0.424 28 70 
33817_at HNRPA3P1 heterogeneous nuclear ribonucleoprotein A3 pseudogene 1 -0.392 15 35 
34538_at LOC145678 -0.372 29 64 
32855_at LDLR low density lipoprotein receptor (familial hypercholesterolemia) -0.369 26 57 
1019_g_at WNT10B wingless-type MMTV integration site family, member 10B -0.350 19 40 
41156_g_at CTNNA1 catenin (cadherin-associated protein), alpha 1, 102kDa -0.326 46 91 
31324_at ATP8A2 ATPase, aminophospholipid transporter-like, Class I, type 8A, member 2 -0.308 31 59 
33856_at CXX1 CAAX box 1 -0.277 49 87 
36298_at PRPH peripherin -0.267 42 73 
32814_at IFIT1 interferon-induced protein with tetratricopeptide repeats 1 -0.264 33 57 
38558_at MAG myelin associated glycoprotein -0.127 140 181 
32505_at GRINA glutamate receptor, ionotropic, N-methyl D-asparate-associated protein 1 (glutamate binding) -0.064 160 182 
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Supplementary Figure 6.1 � Correlation distributions in all datasets studied. 
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Supplementary Figure 6.2 � Polarization for all datasets studied at selected FDR correlation 
cut-offs. 
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Supplementary Figure 6.3 � Dependence of pol to noise level factor ã. Left panel shows the 
number of genes with high pol (absolute value greater than 0.9). Right panel shows the 
distribution of pol across noise levels at the correlation cut-off chosen (0.75). In the right panel, 
the top section of the histograms has been omitted to clarify the comparison. 
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Supplementary Figure 6.4 � Number of genes with high values of pol in all datasets studied. 
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Supplementary Figure 6.5 � Comparison of the correlation distributions of the multivariate 
Gaussian generated data for all datasets studied. 
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Supplementary Figure 6.6 � Comparison of pol distribution for the multivariate Gaussian 
generated datasets. 



 201 

 

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200

250

300

350

Singh et al. (Prostate)
Number of Genes whose |pol| > 0.9

Correlation Cut-Off

Singh et al. (Prostate)
Multivariate Simulation

0%

2.5%

5%

7.5%

10%

12.5%

15%

17.5%

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

Lapointe et al. (Prostate)
Number of Genes whose |pol| > 0.9

Correlation Cut-Off

Lapointe et al. (Prostate)
Multivariate Simulation

0%

2.5%

5%

7.5%

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200

Yu et al. (Prostate)
Number of Genes whose |pol| > 0.9

Correlation Cut-Off

Yu et al. (Prostate)
Multivariate Simulation

0%

2.5%

5%

7.5%

10%

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200

250

Notterman et al. (Colon)
Number of Genes whose |pol| > 0.9

Correlation Cut-Off

Notterman et al. (Colon)
Multivariate Simulation

0%

2.5%

5%

7.5%

10%

12.5%

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

Chen et al. (Liver)
Number of Genes whose |pol| > 0.9

Correlation Cut-Off

Chen et al. (Liver)
Multivariate Simulation

0%

1%

2%

3%

4%

5%

0.0 0.2 0.4 0.6 0.8 1.0

0

100

200

300

400

Boer et al. (Kidney)
Number of Genes whose |pol| > 0.9

Correlation Cut-Off

Boer et al. (Kidney)
Multivariate Simulation

0%

5%

10%

15%

20%

 

Supplementary Figure 6.7 � pol dependency to correlation cut-off in the multivariate-Gaussian 
generated datasets. 



 202 

 

CHAPTER 7  

Conclusions and Discussions on the Biological Findings 

 

7.1 - Multivariate Variable Selection  

An important part of this thesis concerns the development and validation of a 

methodology for multivariate variable selection based on Genetic Algorithms. 

Although an approach based on GA has been previously proposed for the analysis of 

microarray data, our approach is more general, it allows the application of these 

methodologies to regression and survival analysis, it is capable of using several 

classification machines or coupling a user-specific one, it offers more options in error 

estimation procedures, and it provides a powerful graphical framework. The 

importance of parameters such as chromosome size in influencing model predictivity 

has been shown. A series of functions to analyze and optimize populations of models 

discovered using GA has also been developed. It is also important to stress the fact that 

these methodologies have been implemented in the statistical modelling environment R 

making it a very flexible system and indeed accessible to the average Bioinformatician. 

 

Many questions remain open. An important issue is whether other methods for 

multivariate variable selection (for example the Bayesian Variable Selection methods 

described briefly in Chapter 2 and applied in Chapter 5) offer any advantage with 

respect to evolutionary algorithms. Do they explore a similar space of solutions? 

Because of the diverse strategy employed to search in the variable space we may be 

tempted to hypothesize that this is the case. The results described in Chapter 5 suggest 
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however that the genes most frequently included in the models discovered with GA are 

in part overlapping with the models discovered with the BVS methodology that have 

highest posterior probability. As a matter of fact more research is needed to address this 

important issue. 

 

In Chapter 5, the analysis of models developed with GA and BVS strategies suggested 

that the expression of genes encoding for a number of membrane bound and extra-

cellular proteins may be predictive of tumour physiology. In the analysis of other 

datasets however we have noticed that models may not reflect plausible biological 

scenarios. For example, models that are predictive of the likelihood of developing 

metastases in breast cancer appear not to represent solutions that include genes 

involved in the interaction between extra-cellular matrix components and membrane 

receptors. Since we know that these processes are of fundamental importance for 

metastases formation it is reasonable to wonder whether the search strategy used is 

capturing models that are representative of important biological components of the 

biological process of interest. We suspect that, because of the limited number of 

combinations that can be effectively explored with random searches, the scenario 

described is possible. A possible solution to the problem could be to use biological 

functional descriptors to �inform� the search. By doing this, other genes or models that 

could not be obtained in an unbiased search may be obtained. This can be achieved for 

GA based searches by assigning higher chromosome inclusion weights to genes in 

predefined categories. As described in Chapter 3, this is easy to do using the 

functionality that already exists in GALGO. As a result, genes with higher weights are 

more likely to be included in explored and final models. In the context of a BVS 

approach this could be achieved in a more principled way using biological knowledge 

to define a prior probability distribution. Indeed, the GA strategy is being investigated 

by Russell Compton, a PhD student in our research group. His preliminary results are 
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so far confirming our expectation that using biological knowledge to drive model 

search allow the identification of biologically relevant models. 

 

In the context of cell to cell communication, GALGO can be easily adapted to extend the 

network of previously selected genes. In Chapter 5 several genes were selected that 

may be involved in arresting tumour expansion. This response should hypothetically be 

derived from sensing external factors produced by the tumour. In this context, GALGO 

could be used to explain the expression profile of selected genes by means of other gene 

profiles using a regression model. This further selection of genes could extend the 

network in normal cells of genes related to the detection mechanism of tumour signals. 

 

Chapter 3 and 4 have demonstrated that the methodology can be used successfully to 

identify biomarkers from large scale datasets. Examples have been presented using 

datasets from expression profiling, NMR metabolomics, and proteomics that 

collaborators have developed in the context of collaboration with our group. It has been 

also stressed along the thesis the fact that statistical models can be used for formulating 

hypotheses on the molecular basis of a biological process. To explore this possibility we 

have performed an extensive analysis of public domain datasets focussing on the 

problem of identifying genes involved in the interaction between normal and epithelial 

cells. In the next few paragraphs discussions of the implications of the findings is 

provided. 
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7.2 - The Rational behind Developing a Methodology to Identify 

Molecular Components Likely to be involved in the Communication 

Between Adjacent Cell Types 

All living organisms sense their surroundings. These can contain nutrients, diffusible 

factors, and, of course other organisms including pathogens and parasites. Depending 

on the detected stimulus, cells activate specific pathways whose function is to 

orchestrate the response of the cell to the changing environment. A cell can integrate 

different stimuli via interaction between different signalling pathways. Another form of 

interaction between different components of response is the interaction between 

different cells in a tissue. Insulin, hormones, cytokines, and neurotransmitters are 

examples of factors involved in these interactions. To determine genes involved in the 

response to these factors, experiments are carried out where cells are exposed to 

controlled titration of these factors and the cell response is analyzed. This methodology 

has been successfully used for years and has provided most of the cellular knowledge 

we have today. Recently, microarray technology has expanded this knowledge by 

providing the response of thousands of genes in single experiments. Microarray 

technology gives also the opportunity to study the interaction between different cells at 

the genome level because mRNA from each cell type can be isolated and assayed in 

specific microarrays. However, there are no data analysis tools that can study this kind 

of dataset. Therefore, my goal was to propose a framework to study cell crosstalk from 

functional genomics data. 

 

7.3 - Bioinformatics Approaches to Studying Cell to Cell Interactions 

Along this thesis, two novel methods for studying cell crosstalk have been proposed. 

First, in Chapter 5, a multivariate variable selection approach was designed explaining 
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features of one cell type (tumour) by means of data from a surrounding cell type 

(normal epithelial cells). This method is detailed in Chapter 3, which was proven to be 

useful for other functional genomics data in Chapter 4. Second, in Chapter 6, a method 

based on the difference of significant correlations for the same gene in both cell types 

was also proposed. For a gene expressed in one cell type, the number of significant 

correlations with genes in the opposite cell type are counted. Interesting genes are those 

whose difference in the number of significant correlations in both cell types is high. In 

other work, it has been shown in this work that simple differential expression analysis 

commonly applied to microarray data is also interesting to study cell to cell interaction. 

 

Because the first method provides which genes are predictive, the second selects genes 

that are correlated to others genes expressed in other cells, and the third gives those 

genes whose expression has changed, these three methods should be considered 

complementary. 

 

7.4 - Overall Biological Results 

It has been shown that the molecular state of normal cells surrounding the tumour is 

predictive of tumour physiology and clinical outcome. Predictive models were 

characterized, mainly, by extra-cellular factors with demonstrated biological activity on 

tumour cells and by factors associated to cancer predisposition or regulation of 

oncogenes. 

 

It has been shown also that genes involved in cell communication can be identified 

from microarray data independently of the technology and tissue. One of the genes 

selected, Slit-2, has been experimentally validated to be related in killing tumour cells. 
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7.5 - Discussion and Scope of Methods 

Our main purpose was to design computational methods to study cel to cell 

interactions. The biological results, reviewed in previous section, are interesting and 

successful for our purposes. These results together with their biological implications are 

mainly discussed along this thesis. Therefore, in the following paragraphs, the 

discussion will be focused on some methodological issues of the procedures used to 

study cell to cell interactions. 

 

7.5.1 - Polarization Hypothesis 

The polarization hypothesis described and characterized in Chapter 6 may be 

important in discovering mechanisms and genes involved in cell communications. For 

experimental designs equivalent to that detailed in Chapter 6, pol can be used "as is", 

without any modification. However, to use pol or a pol-like metric in slightly different 

experimental designs or contexts, parts of the process should be inevitably adapted. In 

order to discuss changes and adaptations, the overall gene-selection procedure will be 

summarized as follow: 

1. Estimation of the null distribution of correlations. 

2. Computation of the observed correlations. 

3. Estimation of the number of expected false correlations along null distribution. 

4. Selection of a significant threshold. 

5. Determination of significant correlations (f and b). 

6. Computation of pol. 

7. Gene selection based on pol. 

 

The entire process is based on a measure of correlation between the expression profiles 

of any two genes in both cell types. Spearman ranking coefficient was used in order to 



 208 

detect any monotone correlation. However, any other correlation measure could be 

used. 

 

Our metric is based on "significant" correlations which impose the task that a 

significance threshold should be carefully picked. A FDR approach was used to choose 

this threshold. The threshold value chosen was around 0.75 whose FDR is estimated to 

0.000001. In our case, FDR means "the expected number of false correlations", thus the 

expected number of false correlations is around 1 in 10,000. This selection was 

conservative considering that highly polarized genes (whose absolute pol value is high) 

is around 200 versus 1 correlations (pol=(200-1)/(200+1+1)=0.985). Thus, these genes 

should not be sensitive to a few false correlations. However, the use of dissimilar 

significance thresholds could generate that pol for some genes may be substantially 

different. This instability may produce false positives which may diminish the chances 

A B

 

Figure 7.1 � pol profile for random selected genes whose pol area under the curve is high (panel A) 
and low (panel B). A vertical line used as reference is shown around 0.57. 
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to select genes genuinely involved in cell interactions. To avoid this issue, other more 

stable metrics could be used. For this, a simple strategy could be averaging pol 

measurements for a broad range of significance thresholds (e.g. 0.6, 0.61, 0.62, � 0.80). 

Another strategy could use, for example, the area under the curve of pol as shown in 

Figure 7.1. Genes with a high area would tend to have high pol for a broad range 

(Figure 7.1A) whereas genes a with low area would tend to have low pol (Figure 7.1B).  

 

The threshold to determine "significant" correlations explained above also produce that 

a huge amount of correlations are removed from the analysis (those smaller than a 

significance threshold). For example, a threshold of 0.6 would use only 0.05% of the 

total number of correlations. This is mainly due to the use of a general threshold. To 

circumvent this issue, a new procedure considering more correlations per gene could be 

designed. For instance, the distribution of correlations of Slit-2 gene expression could be 

modelled by three additive Gaussians distributions: one centred close to zero similar to 

the null hypothesis and the other two for the highest negative and positive correlations 

respectively (Figure 7.2). The underlying hypothesis is that the observed correlations 

are a random and noisy sample of true and random correlations. True correlations 

should be, by far, different from zero whereas random correlations should be around 

zero. Thus, only correlations within the central Gaussian should be considered as 

random correlations hence removed from the analysis. Indeed, this is the assumption 

used in the procedure detailed in Chapter 6. However, in the case just described, two 

other Gaussian curves has been added whose mean and standard deviation depends on 

the observed correlations for each gene.  
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As an example, the parameters of three Gaussian distributions were estimated using a 

K-Means algorithm with 3 centres that initially set to -1, 0, and +1. Correlations 

predicted to pertain to any of the three resulted groups were then used to estimate the 

mean and standard deviation of the Gaussian distributions. In addition, a 1.25 was used 

as a scaling factor for the standard deviation to compensate for this kind of biased 

estimation. Figure 7.2 shows simulations of samples obtained from the three fitted 

Gaussian curves. The figure demonstrates a good fit of the proposed approach for the 

observed correlation distribution of the Slit-2 gene. Consequently, this procedure, or a 

similar procedure may allow choosing a specific correlation threshold for each gene 

which may allow the usage of much larger total number of correlations decreasing the 

chance, perhaps, of selecting false positive genes. 

Slit2 Simulations Gaussian Curves

 

Figure 7.2 � Modelling correlation distributions by three Gaussians distributions. The horizontal axis 
shows the correlation coefficient whereas vertical axis shows the frequency (in genes) for Slit-2 gene 
(expressed in normal correlated with genes in tumour). Dotted lines represent three hypothetical 
Gaussian distributions. Red lines correspond to the distribution of simulations of random values 
generated by the same number of genes sampled from the three fitted Gaussian distributions. 
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7.5.1.1 - Identifying interaction networks in a Host-Pathogen interaction 

system 

The polarization metric presented in Chapter 6 assumes that both interacting cell types 

are of the same species therefore the genes measured in the two cell types are the same. 

There are however extremely interesting biological systems where cells from different 

species interact. One of these systems is the interaction between bacterial pathogens 

and human host cells. During the course of this thesis, work has been done for the 

characterization of this cell interaction system [38]. Unfortunately the experimental 

system has not yet been fully developed to allow the simultaneous analysis of cell 

interaction. However, it is important to discuss here how gene networks involved in 

cell to cell interaction in Host-Pathogen interaction can be identified. 

 

Our approach was based on around 40 paired tumour and adjacent normal samples 

taken from biopsies. This approach was designed, in part, to the fact that obtaining 

dynamical data from patients is not practical. The use of this experimental design 

implies that time was not considered. That is, the observed transcriptional state of both 

cell types is assumed to be the result of continuous interaction with very slow dynamics 

or in different equilibrium states. This assumption is realistic because tumours may 

take years to develop and a clinical sample represents a temporary equilibrium between 

the two cell types. However, the observed dynamic responses in a host-pathogen 

interaction system are in the order of hours [217]. This has implications in the 

experimental design. A more appropriate experimental design could be designed by 

taking a sample from the host and the pathogen just before infection (time = 0) and then 

at time intervals after infection (time > 0) [217]. In this experimental design, in which 

our research group has made remarkable progress [217], the first approach would be 

perhaps the detection of differentially expressed genes in all time intervals in both, the 
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host [218] and Pathogen. Then, to identify gene-gene connections between cell species, a 

method dealing with time-course data could be used, for example, Bayesian networks 

[219], state-space models [220], ordinary differential equations [221], or mutual 

information [222]. 

 

7.5.1.2 - Polarization metric for multiple cell types 

In the work presented in Chapter 6, it has been assumed that the interaction is 

composed of two cell types only. Theoretically, however, more complex interaction 

systems could be analysed. For instance, in prostate cancer the role of stomal cells 

should be considered or immune cells in the Host-Pathogen interaction model. In a 

three cell interaction system where all cell types come from the same species, pol can be 

used in a pair-wise manner. Polarization indexes can still be used in a host-pathogen 

interaction model if more than one cell type is considered on the host side, however, 

specifically for the host-pathogen interaction, more appropriate methods mentioned in 

previous sections should be considered. 
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