

EUROPÄISCHE ATOMGEMEINSCHAFT - EURATOM

BESTIMMUNG DER TEMPERATURLEITFAHIGKEIT IN EINEM HOHLZYLINDER MITTELS DER LÖSUNG DER FOURIER'SCHEN DIFFERENTIALGLEICHUNG DER WÄRMELEITUNG

von

G. DI COLA und R. F. GLODEN

1963

Gemeinsame Kernforschungsstelle Forschungsanstalt Ispra - Italien

Zentralstelle für die Verarbeitung wissenschaftlicher Information - CETIS

HINWEIS

Das vorliegende Dokument ist im Rahmen des Forschungsprogramms der Kommission der Europäischen Atomgemeinschaft (EURATOM) ausgearbeitet worden.

Es wird darauf hingewiesen, dass die Euratomkommission, ihre Vertragspartner und alle in deren Namen handelnden Personen:

- 1º keine Gewähr dafür übernehmen, dass die in diesem Dokument enthaltenen Informationen richtig und vollständig sind oder dass die Verwendung der in diesem Dokument enthaltenen Informationen oder der in diesem Dokument beschriebenen technischen Anordnungen, Methoden und Verfahren nicht gegen gewerbliche Schutzrechte verstösst;
- 2º keine Haftung für die Schäden übernehmen, die infolge der Verwendung der in diesem Dokument enthaltenen Informationen oder der in diesem Dokument beschriebenen technischen Anordnungen, Methoden oder Verfahren entstehen könnten.

Die Namen der Autoren sind in alphabetischer Reihenfolge aufgeführt.

Dieser Bericht wird zum Preise von 50,— bfrs. verkauft. Bestellungen sind zu richten an : PRESSES ACADEMIQUES EUROPEENNES - 98, chaussée de Charleroi - Brüssel 6.

- Die Zahlung ist zu leisten durch Überweisung :
 - an die BANQUE DE LA SOCIETE GENERALE (Agence Ma Campagne) - Brüssel - Konto Nr. 964.558,
 - an die BELGIAN AMERICAN BANK AND TRUST COMPANY - New York - Konto Nr. 121.86,
- an die LLOYDS BANK (Foreign) Ltd. 10, Moorgate, London E.C.2,

als Bezug ist anzugeben : "EUR 377.d - Bestimmung der Temperaturleitfähigkeit in einem Hohlzylinder mittels der Lösung der FOURIER'schen Differentialgleichung der Wärmeleitung".

Das vorliegende Dokument wurde an Hand des besten Abdruckes vervielfältigt, der zur Verfügung stand.

Gedruckt von EURATOM, Brüssel, September 1963.

EUR 377.d

HOHLZYLINDER MITTELS DER LÖSUNG DER FOURIER'SCHEN DIFFERENTIALGLEICHUNG DER WÄRMELEITUNG von G. DI COLA und R.F. GLODEN BESTIMMUNG

Europäische Atomgemeinschaft - EURATOM Gemeinsame Kernforschungsstelle Forschungsanstalt Ispra (Italien) Zentralstelle für die Verarbeitung wissenschaftlicher Information (CETIS) Brüssel, September 1963 - 31 Seiten + 6 Abbildungen.

Um die Temperaturleitfähigkeit eines Materials zu bestimmen, führt man folgendes Experiment aus: man heizt innen ein Rohr während sehr kurzer Zeit mit Hilfe eines Blitzgerätes. Man misst die Zeit, in welcher die Temperatur an der Aussenfläche des Rohres die Hälfte ihres Maximalwertes erreicht.

Die Anwendung der FOURIER'schen Differentialgleichung der Wärme-leitung auf einen Hohlzylinder, mittels der Lösung eines Eigenwertproblems, führt zu einer Reihenentwicklung in Besselfunktionen als Ausdruck der Temperatur.

EUR 377.d

DETERMINATION OF THERMAL CONDUCTIVITY IN A HOLLOW CYLINDER BY SOLVING THE FOURRIER DIFFERENTIAL EQUATION FOR THE THERMAL CONDUCTIVITY by G. DI COLA and R.F. GLODEN.

European Atomic Energy Community - EURATOM. Joint Nuclear Research Center Ispra Establishment (Italy) Scientific Data Processing Center (CETIS) Brussels, September 1963 - pages 31 - figures 6

To determine experimentally the thermal diffusivity of a material, a tube is heated inside by an instantaneous impulse of heat. A determination is made of the time taken for the temperature on the external surface of the tube needs to reach the half of its maximum value.

Parting from the heat equation applied to an insulated hollow cylinder, through the solution of an eigenvalue problem, one obtains for the temperature an expression in form of a series of Bessel functions.

A plot is made of the temperature as function of a variable τ proportional to the product of the diffusivity with the time.

EUR 377.d

.

DETERMINATION OF THERMAL CONDUCTIVITY IN A HOLLOW CYLINDER BY SOLVING THE FOURRIER DIFFERENTIAL EQUATION FOR THE THERMAL CONDUCTIVITY by G. DI COLA and R.F. GLODEN.

European Atomic Energy Community - EURATOM. Joint Nuclear Research Center Ispra Establishment (Italy) Scientific Data Processing Center (CETIS) Brussels, September 1963 - pages 53 - figures 6

To determine experimentally the thermal diffusivity of a material, a tube is heated inside by an instantaneous impulse of heat. A determination is made of the time taken for the temperature on the external surface of the tube needs to reach the half of its maximum value.

Parting from the heat equation applied to an insulated hollow cylinder, through the solution of an eigenvalue problem, one obtains for the temperature an expression in form of a series of Bessel functions.

A plot is made of the temperature as function of a variable τ proportional to the product of the diffusivity with the time.

EUR 377.d

DETERMINATION OF THERMAL CONDUCTIVITY INHOLLOW Α CYLINDER BY SOLVING THE FOURRIER DIFFERENTIAL EQUATION FOR THE THERMAL CONDUCTIVITY by G. DI COLA and R.F. GLODEN.

European Atomic Energy Community - EURATOM. Joint Nuclear Research Center

Ispra Establishment (Italy) Scientific Data Processing Center (CETIS) Brussels, September 1963 - pages 31 - figures 6

To determine experimentally the thermal diffusivity of a material, a tube is heated inside by an instantaneous impulse of heat. A determination is made of the time taken for the temperature on the external surface of the tube needs to reach the half of its maximum value.

Parting from the heat equation applied to an insulated hollow cylinder, through the solution of an eigenvalue problem, one obtains for the temperature an expression in form of a series of Bessel functions.

A plot is made of the temperature as function of a variable τ proportional to the product of the diffusivity with the time.

Die Temperatur wird graphisch dargestellt in Funktion der Veränderlichen τ , welche proportional dem Produkt der Temperaturleitfähigkeit und der Zeit ist. Die Kenntnis des Wertes von τ , welcher der Hälfte der Maximaltemperatur entspricht, ermöglicht mit Hilfe der Bestimmung der Zeit, nach welcher diese Temperatur während des Experiments an der Aussenfläche des Zylinders erreicht wird, die Berechnung der Temperaturleitfähigkeit.

Knowing the value of τ corresponding to half the value of the maximum temperature, and knowing the time after which this temperature is reached in the experiment on the external surface of the cylinder, it is possible to calculate the diffusivity.

Knowing the value of τ corresponding to half the value of the maximum temperature, and knowing the time after which this temperature is reached in the experiment on the external surface of the cylinder, it is possible to calculate the diffusivity.

Knowing the value of τ corresponding to half the value of the maximum temperature, and knowing the time after which this temperature is reached in the experiment on the external surface of the cylinder, it is possible to calculate the diffusivity.

EUR 377.d

EUROPÄISCHE ATOMGEMEINSCHAFT - EURATOM

BESTIMMUNG DER TEMPERATURLEITFÄHIGKEIT IN EINEM HOHLZYLINDER MITTELS DER LÖSUNG DER FOURIER'SCHEN DIFFERENTIALGLEICHUNG DER WÄRMELEITUNG

von

G. DI COLA und R. F. GLODEN

1963

Gemeinsame Kernforschungsstelle Forschungsanstalt Ispra - Italien

Zentralstelle für die Verarbeitung wissenschaftlicher Information - CETIS

VORWORT

Herr Tielsch führt in der Abteilung Technologie folgendes Experiment aus: Er heizt dünnwandige Rohre aus verschiedenen Materialien mit Hilfe eines Blitzgerätes während sehr kurzer Zeit und misst die Temperatur an der Aussenwandung des Rohres in Funktion der Zeit. Zweck der Messung ist die Bestimmung der Temperaturleitfähigkeit, der thermischen Leitfähigkeit und der spezifischen Wärme der gemessenen Materialien. Um diese Werte nachzuprüfen, haben wir die analytische Funktion der Temperatur aufgestellt, indem wir von der FOURIER'schen Differentialgleichung der Wärmeleitung ausgehen.

BESTIMMUNG DER TEMPERATURLEITFÄHIGKEIT IN EINEM HOHLZYLINDER MITTELS DER LÖSUNG DER FOURIER'SCHEN DIFFERENTIALGLEICHUNG DER WÄRMELEITUNG

ZUSAMMENFASSUNG

Um die Temperaturleitfähigkeit eines Materials zu bestimmen, führt man folgendes Experiment aus: man heizt innen ein Rohr während sehr kurzer Zeit mit Hilfe eines Blitzgerätes. Man misst die Zeit, in welcher die Temperatur an der Aussenfläche des Rohres die Hälfte ihres Maximalwertes erreicht.

Die Anwendung der FOURIER'schen Differentialgleichung der Wärmeleitung auf einen Hohlzylinder, mittels der Lösung eines Eigenwertproblems, führt zu einer Reihenentwicklung in Besselfunktionen als Ausdruck der Temperatur.

Die Temperatur wird graphisch dargestellt in Funktion der Veränderlichen τ , welche proportional dem Produkt der Temperaturleitfähigkeit und der Zeit ist.

Die Kenntnis des Wertes von \mathcal{T} , welcher der Hälfte der Maximaltemperatur entspricht, ermöglicht mit Hilfe der Bestimmung der Zeit, nach welcher diese Temperatur während des Experiments an der Aussenfläche des Zylinders erreicht wird, die Berechnung der Temperaturleitfähigzeit.

SUMMARY

To determine experimentally the thermal diffusivity of a material, a tube is heated inside by an instantaneous impulse of heat. A determination is made of the time taken for the temperature on the external surface of the tube needs to reach the half of its maximum value.

Parting from the heat equation applied to an insulated hollow cylinder, through the solution of an eigenvalue problem, one obtains for the temperature an expression in form of a series of Bessel functions.

A plot is made of the temperature as function of a variable τ proportional to the product of the diffusivity with the time.

Knowing the value of \mathcal{T} corresponding to half the value of the maximum temperature, and knowing the time after which this temperature is reached in the experiment on the external surface of the cylinder, it is possible to calculate the diffusivity.

AUFGABENSTELLUNG

Wir gehen von einem Hohlzylinder aus, längs dessen Achse eine Wärmequelle sehr kurze Zeit wirkt. Der Innenradius sei "a", "b" der Aussenradius und "L" die Höhe des Zylinders. Wir nehmen an, die Wärmeleitung in der Zylinderwandung verlaufe gemäss einer Rotationssymmetrie und die Innen- und Aussenflächen seien isoliert.

Man gelangt zu folgender Differentialgleichung in Zylinderkoordinaten:

$$\frac{\partial T}{\partial t} = \sigma' \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} \right)$$
(1)

wobei T die Temperatur, d' die Temperaturleitfähigkeit und r die Radialkoordinate bezeichnen.

Die Anfangsbedingungen lauten:

$$T(r,o) = \frac{Q}{2\pi a \in L c \, Q} \qquad a \leq r \leq a + \varepsilon$$

$$T(r,o) = o \qquad a + \varepsilon < r \leq b$$
(2)

und die Randbedingungen:

$$\left(\frac{\partial T}{\partial r}\right)_{r=a} = \left(\frac{\partial T}{\partial r}\right)_{r=b} = 0$$
(3)

LÖSUNG DER DIFFERENTIALGLEICHUNG

Wir wenden die Methode der Trennung der Veränderlichen an und setzen

$$T(r,t) = X(t) U(r)$$
(4)

Einsetzen von (4) in (1) ergibt

$$U(r) \frac{dX(t)}{dt} = \mathscr{O}'X(t) \left[\frac{d^2 U(r)}{dr^2} + \frac{1}{r} \frac{dU(r)}{dr} \right]$$
(1')

1.1

und man erhält

$$\frac{1}{\mathbf{S}\mathbf{X}}\frac{\mathrm{d}\mathbf{X}}{\mathrm{d}\mathbf{t}} = \frac{1}{\mathbf{U}}\left(\frac{\mathrm{d}^{2}\mathbf{U}}{\mathrm{d}\mathbf{r}^{2}} + \frac{1}{\mathbf{p}}\frac{\mathrm{d}\mathbf{U}}{\mathrm{d}\mathbf{r}}\right) = -\lambda^{2} \qquad (1")$$

wobei λ konstant ist, da ja das erste Glied unabhängig von r und das zweite unabhängig von t ist.

Folglich erhält man die Differentialgleichung

$$\frac{d^2 U}{dr^2} + \frac{1}{r} \frac{d}{dr} \frac{U}{r} + \lambda^2 U = 0$$
 (5)

welche gemeinsam mit den Randbedingungen ein Eigenwertproblem ergibt und folgende Beziehung:

$$\frac{d X}{d t} + \sigma \lambda^2 X = 0$$
 (6)

Erstere wird gelöst durch die Funktion

$$U = \Delta J_{o}(\lambda r) + B Y_{o}(\lambda r)$$
(5')

wobei die Konstanten A, B, λ mittels der Randbedingungen bis auf einen Faktor zu bestimmen sind. Die Lösung der zweiten Gleichung erhält die Form

$$-\sigma\lambda^{2} t$$

$$X = X_{e}$$
(6')

Wegen der Bedingungen (3) führt die Gleichung (5) zu folgenden Eigenfunktionen:

$$U_{\underline{i}}(\lambda_{\underline{i}}r) = Y_{0}(\lambda_{\underline{i}}b) \cdot J_{0}(\lambda_{\underline{i}}r) - J_{0}(\lambda_{\underline{i}}b) Y_{0}(\lambda_{\underline{i}}r)$$
(7)

welche der Bedingung $\left(\frac{\partial T}{\partial r}\right)_{r=b}=0$ genügen; man hat nämlich

$$\mathbf{U}_{\pm}^{*}(\boldsymbol{\lambda} \mathbf{b}) = \mathbf{0} \tag{7}$$

The Wahl von $-\lambda^2$ als Wert des zweiten Gliedes von (1") bedingt, dass die Lösung T(r,t) für t->- begrenzt bleibt, was von (6') abgeleitet werden kann. (Siehe Fussnote **x x** Seite 8)

Ferner erhält man folgende Eigenwerte, welche Wurzeln der Gleichung:

$$U_{i}^{\prime}(\lambda_{i}a) = Y_{o}^{\prime}(\lambda_{i}b) J_{o}^{\prime}(\lambda_{i}a) - J_{o}^{\prime}(\lambda_{i}b) Y_{o}^{\prime}(\lambda_{i}a) = 0$$
(8)

sind.

Man entwickelt nun T(1,0) in eine Reihe orthogonaler Eigenfunktionen, von der Form U₁(λ_{1} r), welche den Randbedingungen (3) genügen [±]; ebenso T(r,t). Da die Funktion C₀ (Konstante) auch der partiellen Differentialgleichung (1) und den Beziehungen (3) genügt, erhält man für T(r,t) folgenden Ausdruck

$$T(\mathbf{r},t) = C_{0} + \sum_{i=1}^{\infty} C_{i} U_{i}(\lambda_{i} \mathbf{r}) e^{-\sigma' \lambda_{i}^{2} t}$$
(9)

mit

$$C_{o} = \frac{Q}{\mathcal{L}(b^{2}-a^{2})L c}$$
(10)

(Q stellt die Wärmemenge des Zylinders dar, c die spezifische Wärme und die Dichte).

Dieser Wert von C_O ergibt sich, indem man berücksichtigt, dass die totale Wärmemenge konstant bleiben muss. ^{X X}

Dieses wird ausgedrückt durch folgende Gleichung:

$$2 \Re \int_{a}^{b} T(r,t)r dr = \frac{Q}{Lc\rho}$$
(11)

Einsetzen von (10) ergibt:

$$2\pi \int_{a}^{b} C_{0} \mathbf{r} \, d\mathbf{r} + 2\pi \sum_{i=1}^{\infty} \left[a U_{i}(\lambda_{i}a) - b U_{i}(\lambda_{i}b) \right] e^{-\sigma' \lambda_{i}^{2} t} = \frac{Q}{L c P}$$
(12)

Siehe bibliographische Angaben [3] und [5]

* * Man gelangt auch zu diesem Wert von C₀ wenn man annimmt, die Temperatur strebe schliesslich einem Mittelwert zu: $T(r, \infty) = \frac{\int_{a}^{b} T(r, 0) r dr}{T(r, 0) r dr}$

$$(\mathbf{r},\infty) = \frac{\int_{a}^{\mathbf{T}(\mathbf{r},0)\mathbf{r}d\mathbf{r}}}{\int_{a}^{b}\mathbf{r}\,d\,\mathbf{r}}$$

Dieser Integralenquotient hat gerade den Wert des zweiten Gliedes von (10). Diese Annahme ist möglich, da die Exponenten der Gleichung (9) negativ sind. wenn man die Beziehung

$$\int \mathbf{r} \, \mathbf{U}_{\mathbf{i}} \, (\lambda_{\mathbf{i}} \, \mathbf{r}) \, d\mathbf{r} = -\mathbf{r} \, \mathbf{U}_{\mathbf{i}}^{*} (\lambda_{\mathbf{i}} \, \mathbf{r}) \tag{13}$$

betrachtet. Wegen (7') und (8) folgt nun

$$\pi c_0 (b^2 - a^2) = \frac{Q}{L c g}$$
 (14)

und man findet für C_0 den vorher erwähnten Wert.

$$C_{i} = \frac{\int_{a}^{b} T(r_{j}0)r U_{i}(\lambda_{i}r) dr}{\int_{a}^{b} r U_{i}^{2}(\lambda_{i}r) dr}$$

$$= -\frac{\pi Q}{4 \operatorname{Le} Q} \frac{\lambda_{i}}{\varepsilon} \frac{J_{1}^{2}(\lambda_{i}a)}{J_{1}^{2}(\lambda_{i}a) - J_{1}^{2}(\lambda_{i}b)} (1 + \frac{\varepsilon}{a}) U_{i}[\lambda_{i}(a + \varepsilon)]^{\Xi}$$

gegeben.

Die Berechnung der Koeffizienten C_i. Berechnen wir zuerst die Nenner

$$D_{i} = \int_{a}^{b} U_{i}^{2} (\lambda_{i}r) r dr$$

es ergibt sich

$$D_{i} = -\frac{1}{2} \left[r^{2} U_{i}(\lambda_{i}r) U_{i}''(\lambda_{i}r) \right]_{a}^{b}$$

Wenn wir die WRONSKI'sche Formel betrachten

$$J_{n}(x)Y_{n}'(x) - Y_{n}(x)J_{n}'(x) = \frac{2}{\pi x}$$

und

$$\frac{J_{o}^{\prime}(\lambda_{i}^{a})}{J_{o}^{\prime}(\lambda_{i}^{b})} = \frac{Y_{o}^{\prime}(\lambda_{i}^{a})}{Y_{o}^{\prime}(\lambda_{i}^{b})} = \rho$$

setzen, so erhält man, wegen (8)

b
$$U_{i}(\lambda_{i}b) = \frac{2}{\pi\lambda_{i}}$$
 a $U_{i}(\lambda_{i}a) = \frac{2}{\pi\lambda_{i}}$
b $U_{i}''(\lambda_{i}b) = -\frac{2}{\pi\lambda_{i}}$ a $U_{i}''(\lambda_{i}a) = -\frac{2}{\pi\lambda_{i}}$

(15)

und es folgt

$$D_{i} = \frac{2}{\pi^{2} \lambda_{i}^{2}} (1 - \frac{1}{\rho^{2}}) \qquad D_{i} = 2 \frac{\left[J_{1}^{2}(\lambda_{i}a) - J_{1}^{2}(\lambda_{i}b)\right]}{\pi^{2} \lambda_{i}^{2} J_{1}^{2}(\lambda_{i}a)}$$

Die Zähler werden uns durch folgende Formel geliefert:

$$N_{i} = \int_{a}^{b} T(r_{\rho}0)U_{i}(\lambda_{i}r)rdr = \frac{Q}{2\pi a \varepsilon L c \rho} \int_{a}^{a+\varepsilon} U_{i}(\lambda_{i}r)rdr$$

Berechnen wir nun das Integral

$$I = \int_{a}^{a+\ell} U_{i}(\lambda_{i}r)rdr \qquad I = \left[-\frac{r}{\lambda_{i}}U_{i}(\lambda_{i}r)\right]_{a}^{a+\ell} = -\frac{a+\ell}{\lambda_{i}}U_{i}(\lambda_{i}(a+\ell))$$

so erhält man

$$N_{i} = -\frac{Q}{2\pi\varepsilon_{L}c\rho} \frac{(i+\frac{b}{a})}{\lambda_{i}} U_{i}[\lambda_{i}(a+\varepsilon)]$$

und es ergibt sich

$$C_{i} = -\frac{\pi Q}{4Lc\rho} \frac{(a+\varepsilon)}{a\varepsilon} \lambda_{i} \frac{J_{1}^{2}(\lambda_{i}a)}{J_{1}^{2}(\lambda_{i}a) - J_{1}^{2}(\lambda_{i}b)} U_{i}[\lambda_{i}(a+\varepsilon)]$$

Die Lösung T(r,t) erhält die Form

$$T(\mathbf{r},t) = \frac{Q}{\pi(b^2 - a^2)Lc\rho} - \frac{\pi Q}{4\varepsilon Lc\rho} \sum_{i=1}^{\infty} \lambda_i \frac{J_1^2(\lambda_i a)}{J_1^2(\lambda_i a) - J_1^2(\lambda_i b)} \left(\frac{a + \varepsilon}{a}\right).$$

$$U_i[\lambda_i(a+\varepsilon)] U_i(\lambda_i r)e^{-\varepsilon \lambda_i^2} t$$
(16)

Lassen wir nun 🗧 gegen Null streben, so werden die Koeffizienten

$$C_{i} = \frac{Q}{2 \text{ a L e } \rho} \lambda_{i} \frac{J_{1}(\lambda_{i}a) J_{1}(\lambda_{i}b)}{J_{1}^{2}(\lambda_{i}a) - J_{1}^{2}(\lambda_{i}b)}$$
(17)

und man erhält schliesslich.

$$T(r,t) = \frac{Q}{\pi(b^{2}-a^{2})L c f} + \frac{Q}{2 a L c f} \sum_{i=1}^{\infty} \lambda_{i} \frac{J_{1}(\lambda_{i}a) J_{1}(\lambda_{i}b)}{J_{1}^{2}(\lambda_{i}a) - J_{1}^{2}(\lambda_{i}b)} U_{i}(\lambda_{i}r)e^{-6\lambda_{i}^{2}t}$$
(18)

Setzen wir den Exponenten gleich τ , welcher ein dimensionsloser Parameter ist, und führen wir die reduzierte Temperatur $\theta(r, \tau)$ ein, welche man bekommt, indem man T(r,t) durch die Temperatur für t $\rightarrow \infty$ dividiert, so folgt:

$$\Theta(\mathbf{r}, \mathcal{T}) = 1 + \frac{\Re^{2}(\mathbf{b}^{2} - \mathbf{a}^{2})}{2\mathbf{a}} \sum_{i=1}^{\infty} \lambda_{i} \frac{J_{1}(\lambda_{i}\mathbf{a}) - J_{1}(\lambda_{i}\mathbf{b})}{J_{1}^{2}(\lambda_{i}\mathbf{a}) - J_{1}^{2}(\lambda_{i}\mathbf{b})} U_{i} (\lambda_{i}\mathbf{r})e^{-\mathbf{T}}$$
(18)

Weil wir uns aber hauptsächlich für die Aussentemperature O(b,T) interessieren, können wir schreiben

$$\Theta(b,t) = 1 + \frac{b^2 - a^2}{ab} \sum_{i=1}^{\infty} \frac{J_1(\lambda_i a) J_1(\lambda_i b)}{J_1^2(\lambda_i a) - J_1^2(\lambda_i b)} e^{-t}$$
(19)

BERECHNUNG EINER EFFEKTIVEN TEMPERATUR

Die Autoren von [2] gehen im ebenen Fall aus von dem Mittelwert der reduzierten Temperatur an den Anfangs- und Endpunkten und integrieren diesen bis zu dem Zeitpunkt, wo die Endtemperatur den halben Maximalwert erreicht. Dieses Integral dividiert durch die entsprechende Zeit ergibt die sogenannte "effektive" Temperatur.

Wir führen nun im drehsymmetrischen Falle eine ähnliche Rechnung aus für k = 1,07. Weil die Umfänge des Innen- und Aussenkreises 2 \Re a bezw. 2 \Re b sind, ist es logischer statt $\frac{\Theta(a, \tau) + \Theta(b, \tau)}{2}$, den Temperaturmittelwert

$$\Theta_{m}(\tau) = \frac{a \theta(a, \tau) + b \theta(b, \tau)}{a + b}$$
(20)

zu setzen. Aus (18') folgt

$$\theta(a, C) = 1 + \frac{b^2 - a^2}{a^2} \sum_{i=1}^{\infty} \frac{J_1^2(\lambda_i b)}{J_1^2(\lambda_i a) - J_1^2(\lambda_i b)} e^{-C}$$
(21)

Wegen (19) erhalten wir

$$\Theta_{\underline{m}}(\hat{\tau}) = 1 + \frac{b-a}{a} \sum_{i=1}^{\infty} \frac{J_1(\lambda_i b)}{J_1^2(\lambda_i a) - J_1(\lambda_i b)} e^{-\hat{\tau}}$$
(22)

Die graphische Abbildung 2b) gibt uns $\tau_{\gamma_2} = 1,38$. Die Gleichung (23) programmiert liefert das Resultat $\theta_{eff} = 1,5591$ was sehr wenig von der Formel (14) (15) von [2] abweicht.

Wir haben folgende Programme ausgeführt:

```
A) Testprogramme
```

1) Berechnung der Nullstellen von $U_i(\lambda_{i^a})$ [Gleichung (8)] für

a = 85 und k = 1,07 (Siehe Tabelle 1) b = 90,95

Wir haben eine Formel aufgestellt, die eine annähernd gute Bestimmung der Nullen λ_i a gibt. Diese Formel lautet

$$\lambda_{ia} = k\pi \frac{a}{b-a}$$

(Siehe Schlussbemerkung).

- 2)Tabellierung von T(r,0) nach der vereinfachten Formel (18) (Vgl. Fig. 1a)).
- 3) Tabellierung von T(r,0) nach der genauen Formel (16) (Vgl. Fig. 1b)).
- 4) Tabellierung von $\Theta(b, \mathcal{T})$, wobei der Parameter $\mathcal{T} = \mathcal{G} \lambda_1^2$ t bedeutet (Vgl. Fig. 2a) und 2b)).

B) Tabellierungsprogramme

Gegebene Werte: $\begin{cases} a_1 = 89 \text{ mm} & b_1 = 95 \text{ mm} & k_1 = 95/89 = 1,0674 \\ a_2 = 89 \text{ mm} & b_2 = 101 \text{ mm} & k_2 = 101/89 = 1,1135 \end{cases}$

- 1) Berechnung der Nulstellen von $U_{i}^{\prime}(\lambda_{i}a)$ für die Werte k_{1} und k_{2} von k. (Siehe Tabelle 1).
- 2) Tabellierung von $\theta(a, \mathcal{X})$, $\theta(\frac{a+b}{2}, \mathcal{X})$ und $\theta(b, \mathcal{X})$ nach der Formel (18') für den Wert k_1 mit 0,1 $\leq \mathcal{X} \leq$ 10 und $\Delta \mathcal{X} = 0,1$ (Vgl. Tabellen 2a), 2b), u. 2c) und siehe Abb. 3a)).
- 3) Tabellierung derselben Funktionen im Falle k₂ (Vgl. Tabellen 3a), 3b) und 3c) und siehe Abbildung 3b)).
- 4) Tabellierung von $\Theta(r, \mathcal{T}_0)$ für k_2 , mit $89 \le r \le 101$ und $\mathcal{T} = 0,5$; 1; 1,5; 2; 2,5; 4; 10.

/ 0/

(25)

- C) ERGÄNZUNGSPROGRAMME
 - Berechnung nach [2] einer sogenannten "effektiven" Temperatur im rotations-symmetrischen Falle für k = 1,07.
 - 2) Auswertung der Gleichung (6) des Berichtes [2] (ebener Fall): Tabellierung der reduzierten Temperatur.

BESTIMMUNG DER TEMPERATURLEITFÄHIGKEIT

Die graphische Darstellung der Kurve $\Theta(\mathcal{T})$ ermöglicht ohne Schwierigkeit die Bestimmung der Temperaturleitfähigkeit. Wir nehmen jetzt an, das Experiment liefere uns die Zeit, nach der die reduzierte Temperatur den Wert Θ' annimmt; der Wert des Parameters \mathcal{T}' , der Θ' entspricht, wird dann von der Kurve $\Theta(\mathcal{T})$ abgeleitet.

Man kann die Temperaturleifähigkeit von der Formel (26) herleiten

$$\mathbf{G} = \frac{\mathbf{t}'}{\mathbf{\lambda}_1^2 \mathbf{t}'} \tag{27}$$

Als Beispiel nehmen wir t' = 0,07 s; θ' = 0,5; aus Figur 2b) ergibt:sich \mathcal{T}' = 1,38; wegen $\lambda_1 = \frac{44.9}{4.25}$ cm⁻¹ folgt

$$\mathbf{\mathbf{6}} = \frac{1,38}{(\frac{44,9}{4,25})^2 \cdot 0,07} = 0, \ 176 \ \mathrm{cm}^2 \ \mathrm{s}^{-1}$$
(28)

Wir haben festgestellt, dass die Kurven der reduzierten Endpunkttemperatur V(l,t) [2] bzw. der Aussentemperatur $\Theta(b,C)$ für beliebiges b praktisch übereinstimmen. Ferner hat die "effektive" Temperatur im ebenen und im rotationssymmetrischen Falle denselben Wert.

Hieraus schlussfolgern wir, dass bei einem dünnwandigen Hohlzylinder genügend grossen Durchmessers die Temperaturverteilung im Wandungsquerschnitt annähernd dieselbe ist wie im Querschnitt einer ebenen Platte. Tabelle 1) : Die Nullstellen von $U_1(x)$; drei Werte von $k = \frac{b}{a}$ Tabelle 2a) : $\Theta = \Theta(a, \mathcal{C})$; $k = k_1 \left(= \frac{95}{89}\right)$ Tabelle 2b) : $\Theta = \Theta(b, \mathcal{T})$; $k = k_1$ Tabelle 2c) : $\Theta = \Theta(\frac{a+b}{2}, \mathcal{C})$; $k = k_1$ Tabelle 3a) : $\Theta = \Theta(a, \mathcal{L})$; $k = k_2$ ($= \frac{101}{89}$) Tabelle 3b) : $\Theta = \Theta(b, \mathcal{C})$; $k = k_2$ Tabelle 3c) : $\Theta = \Theta(\frac{a+b}{2}, \mathcal{C})$; $k = k_2$ Tabelle 4) : $V = V(1, \mathcal{C})$; ebener Fall

ABBILDUNGEN

Abb.	1a)	: $T = T(r, 0)$, $k = 1,07$; Formel (18)
abb.	1b)	: $T = T(r,0)$, $k = 1,07$; Formel (16)
Abb.	2 a)	$; \Theta = \Theta(b, \mathcal{C}), k = 1,07$
Abb.	2Ъ)	: Gradliniger Teil von 2a).
Abb.	3a)	: $\Theta = \Theta(\mathbf{r}_0, \mathcal{T}), \ \mathbf{k} = \mathbf{k}_1 \ (= \frac{95}{89})$ Werte von r.: $a = 89, \ \frac{a+b}{5} = 92, \ b = 95.$
Abb.	3b)	$\Theta = \Theta(r_0, C), k = k_2 (= \frac{101}{89})$ Werte von r_0 : $a = 89, \frac{a+b}{2} = 95, b = 101.$
Abb.	4)	$r_{0} = \Theta(r_{0}, r)$ Werte von r_{0} : 0,5; 1; 1,5; 2; 2,5; 4; 10.

1.1

SCHLUSSBEMERKUNG

Die Formel 25 wird auf folgende Weise aufgestellt: Für grosse Werte von x hat man die Näherungsformeln [6]

$$J_n(x) \sim \sqrt{\frac{2}{\pi x}} \cos [x - (2n + 1) \frac{\pi}{4}]$$

 $Y_n(x) \sim \sqrt{\frac{2}{\pi x}} \sin [x - (2n + 1) \frac{\pi}{4}]$

Aus (8) ergibt sich

$$U_{i}^{\prime}(\lambda_{i}a) = Y_{1}(\lambda_{i}b) J_{1}(\lambda_{i}a) - J_{1}(\lambda_{i}b) Y_{1}(\lambda_{i}a)$$

$$\sim \frac{2}{\pi x} \sin (\lambda_{i}b - \lambda_{i}a)$$

Dieser Ausdruck verschwindet, wenn wir folgende Beziehung haben

$$\lambda_{i}(b-a) = k \pi$$

Dieses Ergebnis geht auch aus Tabelle 1 hervor; geht man von k₁ zu k₂ über, so verdoppelt sich b - a. Tatsächlich stimmen jede n^{te} Nullstellen aus Kolonne 2 mit der entsprechenden (2n)^{ten} Nulstelle aus Kolonne 3 überein.

TABELLE 1

.

Die	Nullstellen von Ui(x); drei Werte von $k = \frac{b}{a}$.	
i	$k = k_0 = 1,07$	$k = k_1 = 1,0674$	$k = k_2 = 1,1135$
1	44,8877	46,6079	23,3143
2	89,7637	93,2044	46,6074
3	134,6423	139,8035	69,9052
4	179,5216	186,4032	93,2041
5	224,4011	233,0031	116,5035
6	269,2807	279,6031	139,8032
7	314,1604	326,2033	163,1030
8	359,0402	372,8035	186,4029
9	#03,9200	419,4037	209,7028
10	448,7998	466,0039	233,0028
11	493,6797	512,6041	256,3029
12	538,5595	559,2044	279,6029
13	583,4393	605,8046	302,9029
14	628,3192	652,4049	326,2030
15	673,1990	699,0052	349,5031
16	718,0789	745,6055	372,8032
17	762,9588	7 92,2057	396,1032
18	807,8386	838,8060	419,4033
⁻ 19	852,7185	885,4063	442,7034
2 0	897,5984	932,0066	466,0035
21	942,4783	978,6069	489,3036
22	987,3582	1025,2072	512,6038

.

.

Tab. 2a .

.

THETA1	THE TA2	THETA3	THETA4	THETA5	TAU
5.76046 2.33137 1.71345 1.42070 1.25355 1.15356 1.09311 1.05647 1.03425 1.02077 1.01260 1.00764 1.00464 1.00281 1.00103 1.00063 1.00038 1.00023 1.00014	4.06311 2.15592 1.63955 1.37986 1.22931 1.13894 1.08425 1.05110 1.03099 1.01880 1.01140 1.00692 1.00254 1.000419 1.00057 1.00034 1.00021 1.00013	3.31118 2.01451 1.57468 1.34317 1.20741 1.12570 1.07623 1.04623 1.02804 1.01701 1.01032 1.00626 1.000380 1.00140 1.00040 1.00085 1.00051 1.00031 1.00019 1.00011	2.86298 1.89742 1.51730 1.31015 1.18763 1.11374 1.06897 1.04183 1.02537 1.00539 1.00933 1.005566 1.00343 1.00566 1.00126 1.00028 1.00046 1.00028 1.00017 0.	2.55713 1.79845 1.46628 1.28039 1.16974 1.00291 1.06241 1.003785 1.02296 1.01393 1.00845 1.00512 1.00311 1.00188 1.00114 1.00069 1.00026 1.00015 0.	0-50 1.00 2.50 3.50 3.50 4.50 5.50 5.50 5.50 6.50 7.50 8.50 7.50 8.50 9.00 9.50 10.00

 ľa	b	2	b
		_	

		Tab.2b			
THETAL	THE TA2	THETA3	THETA4	THETA5	TAU
$ $	$\begin{array}{c} 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 2 & 4 & 7 & 4 \\ 0 & 4 & 1 & 3 & 9 & 4 \\ 0 & 4 & 3 & 9 & 4 & 4 \\ 0 & 4 & 3 & 6 & 5 & 6 & 5 \\ 0 & 5 & 7 & 7 & 8 & 6 & 5 & 6 & 6 \\ 0 & 5 & 9 & 1 & 8 & 4 & 7 \\ 0 & 5 & 9 & 5 & 4 & 6 & 6 & 6 \\ 0 & 5 & 9 & 9 & 5 & 1 & 6 & 6 & 6 \\ 0 & 5 & 9 & 9 & 9 & 6 & 7 & 6 & 6 & 6 \\ 0 & 5 & 9 & 9 & 9 & 6 & 7 & 6 & 6 & 6 & 7 \\ 0 & 5 & 9 & 9 & 9 & 8 & 6 & 6 & 7 \\ 0 & 5 & 9 & 9 & 9 & 8 & 6 & 6 & 7 \\ 0 & 5 & 9 & 9 & 9 & 8 & 6 & 7 \\ 0 & 5 & 9 & 9 & 9 & 8 & 6 & 7 \\ 0 & 5 & 9 & 9 & 9 & 8 & 6 & 7 \\ 0 & 5 & 9 & 9 & 9 & 8 & 6 & 7 \\ 0 & 5 & 9 & 9 & 9 & 8 & 6 & 7 \\ 0 & 5 & 9 & 9 & 9 & 8 & 6 & 7 \\ 0 & 5 & 9 & 9 & 9 & 8 & 6 & 7 \\ 0 & 5 & 5 & 5 & 6 & 7 & 7 & 7 & 7 \\ 0 & 5 & 5 & 9 & 5 & 7 & 7 & 7 & 7 \\ 0 & 5 & 5 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 5 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 5 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 5 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 5 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 5 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 5 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 5 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 0 & 5 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7$	0.00176 0.18130 0.46587 0.67083 0.79965 0.87838 0.92622 0.95525 0.97286 0.99394 0.999633 0.999777 0.999865 0.999918 0.99970 0.99970 0.999989	0.01175 0.24082 0.51411 0.70181 0.81866 0.88995 0.93324 0.95951 0.97544 0.98510 0.999097 0.999668 0.99768 0.9978 0.999878 0.99955 0.99973 0.99983 0.99983	0.03604 0.30054 0.55862 0.83589 0.93960 0.96336 0.97778 0.999182 0.999182 0.999504 0.999699 0.999818 0.999818 0.999818 0.999833 0.999559 0.99975 0.99985 0.99985	0.50 1.50 1.50 2.50 2.50 3.3.4.50 4.50 5.5.05 6.50 7.50 8.50 9.50 9.50 9.50 10.50 9.50 100

Tab. 2c

THETAL	THETA2	THETA3	THETA4	THETA5	TAU
$\begin{array}{c} 0 & 0 & 1 & 2 & 1 & 8 \\ 0 & 8 & 2 & 7 & 1 & 3 \\ 0 & 9 & 8 & 2 & 0 & 4 \\ 1 & 0 & 0 & 0 & 8 & 8 \\ 1 & 0 & 0 & 2 & 1 & 3 \\ 1 & 0 & 0 & 1 & 5 & 1 \\ 1 & 0 & 0 & 0 & 9 & 4 \\ 1 & 0 & 0 & 0 & 9 & 4 \\ 1 & 0 & 0 & 0 & 9 & 4 \\ 1 & 0 & 0 & 0 & 0 & 5 \\ 1 & 0 & 0 & 0 & 0 & 5 \\ 1 & 0 & 0 & 0 & 0 & 5 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ \end{array}$	$\begin{array}{c} 0.18386\\ 0.88677\\ 0.98961\\ 1.00159\\ 1.00203\\ 1.00038\\ 1.00052\\ 1.00052\\ 1.00052\\ 1.000032\\ 1.000012\\ 1.000012\\ 1.000003\\ 1.000001\\ 1.00000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.000\\ 1.000\\ 1.0000\\ 1.0000\\ 1.0000\\ $	$\begin{array}{c} 0.41930\\ \dot{0}.92654\\ 0.99452\\ 1.00197\\ 1.00197\\ 1.00126\\ 1.00077\\ 1.00047\\ 1.00029\\ 1.000017\\ 1.00001\\ 1.00006\\ 1.00004\\ 1.00002\\ 1.00001\\ 1.00001\\ 1.00000\\ 1.0000\\ 1.000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\ 1.0000\\$	0.60667 0.95298 0.99768 1.00214 1.00178 1.00014 1.00043 1.00026 1.00026 1.00006 1.00006 1.00004 1.00002 1.00001 1.00000 1.00000 1.00000 0.	$\begin{array}{c} 0.73810\\ 0.97049\\ 0.99966\\ 1.00217\\ 1.00164\\ 1.00104\\ 1.00039\\ 1.00023\\ 1.00014\\ 1.00009\\ 1.00005\\ 1.00005\\ 1.00000\\ 1.00000\\ 1.00000\\ 1.00000\\ 1.00000\\ 1.00000\\ 1.00000\\ 0. \end{array}$	0.50 1.00 2.00 2.500 3.500 4.500 5.500 6.500 5.500 6.500 7.500 8.500 8.500 8.500 9.500 10.00

ah 2c

Tab. 3a							
	THETAL	THETA2	THETA3	THETA4	THETA5	TAU	
	5.91291	4.16128	3.38533	2.92272	2.60700	0.50	
	2.37394	2.19282	2.04685	1.92599	1.82384	1.00	
	1.73611	1.65985	1.59290	1.53370	1.48105	1.50	
	1.43402	1.39188	1.35403	1.31996	1.28926	2.00	
	1.26157	1.23656	1.21398	1.19356	1.17511	2.50	
	1.15842	1.14333	1.12968	1.11733	1.10616	3.00	
	1.09606	1.08691	1.07864	1.07116	1.06438	3.50	
	1.05826	1.05271	1.04770	1.04316	1.03905	4.00	
	1.03533	1.03197	1.02893	1.02618	1.02369	4.50	
	1.02143	1.01939	1.01755	1.01588	1.01437	5.00	
	1.01300	1.01176	1.01064	1.00963	1.00871	5.50	
	1.00788	1.00713	1.00645	1.00584	1 .0 0528	6.00	
	1.00478	1.00433	1.00392	1.00354	1.00321	6.50	
	1.00290	1.00262	1.00237	1.00215	1.00194	7.00	
	1.00176	1.00159	1.00144	1.00130	1.00118	7.50	
	1.00107	1.00097	1.00087	1.00079	1.00072	8.00	
	1.00065	1.00059	1.00053	1.00048	1.00043	8.50	
	1.00039	1.00036	1.00032	1.00029	1.00026	9.00	
	1.00624	1.00022	1.00019	1.00018	1.00016	9.50	
	1.00014	1.00013	1.00012	1.00011	1.00010	10.00	

0.00229	3,00038	0.00212	0.01184	0.03599	0.50	
5, 57473	5.12453	0.18105	0.24054	0.30025	1.00	
6.35834	2.41366	0.46560	0.51386	0.55838	1.50	
0.59924	<u>0.63659</u>	Č. 67065	0.70164	0.72980	2.00	
0.75535	J. 77853	0.79953	0.81856	0.83579	2.50	
5.85146	L £6553	0.87831	Û.88989	C.90036	3.00	
0 . 90984	0.91842	6.92618	0.93320	· 0.93956	3.50	
0.94531	0.9505Z	0.95522	୦ ∙95949	0.96334	4.00	
0.96683	0.96999	0 .97 284	0.97543	C•97776	4.50	
Ú.979 88	J.98180	0.98353	ũ∙98510	0.98651	5.00	
0198760	J.98896	č∙99001	0.99096	C.99182	5.50	
0.99260	ú . 99330	0 .99 394	0.99452	0.99504	6.00	
Ú.99551	J.99594	0.99 632	0.99667	0.99699	6.50	
3.99728	ご ∎99 7 54	0.99777	0.99798	0.99817	7.00	
0.99835	0.99851	0.99865	0.99878	C.99889	7.50	
0.99900	0 .9 9909	0.99918	Ũ . 99926	0.99933	8.00	
0.99939	J .99945	0.99950	0.99955	0-99959	8.50	
3.99963	J.99967	0.999 7 0	0.99973	0.99975	9.00	
C.99978	J.99980	Q•99952	0.99983	0.99985	9.50	
C.99986	0.99988	0-99989	0.99990	C.99991	10.00	
						•

Tab. 3b

		Tab. 3c			
THETAL	THE TA2	THETA3	THETA4	THETA5	TAU
0.01202	0.18592	0.42406	0.61328	0.74568	0.50
0.83508	0.89471	0.93422	0.96027	0.97732	1.00
0.98837	∂ ∎99544	0.99988	1.00257	1.00413	1.50
1.00494	1.00528	1.00532	1.00518	1.00493	2.00
1.00462	1.00429	1.00396	1.00363	1.00332	2.50
1.00302	1.00275	1.00250	1.00227	1.00206	3.00
1.00186	1.00169	1.00153	1.00138	1.00125	3.50
1.00113	1.00103	1.00093	1.00084	1.00076	4.00
1.00069	1.00062	1.00056	1.00051	1.00046	4.50
1.00042	1.00038	1.00034	1.00031	1.00028	5.00
1.00025	1.00023	1.00021	1.00019	1.00017	5.50
1.00015	1.00014	1.00013	1.00011	1.00010	6.00
1.00009	1.00008	1.00008	1.00007	1.00006	6.50
1.00006	1.00005	1.00005	1.00004	1.00004	7.00
1.00003	1.00003	1.00003	1.00003	1.00002	7.50
1.00002	1.00002	1.00002	1.00002	1.00001	8.00
1.00001	1.00001	1.00001	1.00001	1.00001	8.50
1.00001	1.00001	1.00001	1.00001	1.00001	9.00
1.00000	1.00006	1.00000	1.00000	1.00000	9.50
1.00000	1.00000	1.00000	1.00000	1.00000	10.00

.

.

Т	Vů	Vl	₩2	٧3	₩4	٧5	V 6	٧7	V 8	٧9
0	1.0000E 00	2.2352E-08	3.4794E-05	1.7343E-03	1 .17 39E-02	3.6055E-02	7.4914E-02	1.2480E-01	1.8138E-01	2.4090E-01
1	3.00635-01	3.5871E-01	4.1403E-01	4.65958-01	5.1420E-01	5.5869E-01	5.9953E-01	6.3686E-01	6.7090E-01	7.0186E-01
2	7.3000E-01	7.5554E-01	7.7870E-01	7.9968E-01	8.1870E-01	8.3592E-01	8.5151Ĕ - 01	8.656 3E- 01	8.7841E-01	8.8997E-01
3	9.0044E-01	9.0991E-01	9.1848E-01	9.2624E-01	9.3326E-01	9.3961E-01	9.4535E-01	9.5055E-01	9 .5526E-01	9 .5952E-01
4	9.6337L-01	9.6685E-01	9.7001E-01	9.7286E-01	9 .7 545E-01	9.7778E-01	9 .7 990E-01	9.8181E-01	9.8354E-01	9.8511E-01
5	9.86526-01	9.8781E-01	9.8897E-01	9.9002E-01	9.9097E-01	9.9183E-01	9 .9 260E-01	9.9331E-01	9.9394E-01	9.9452E-01
6	9.9504E-01	9.9551E-01	9.9594E-01	9 . 9633E-01	9.9668E-01	9.9699E-01	9.9728E-01	9.9754E-01	9.9777E-01	9.9798E-01
7	9.9818E-01	9.9835E-01	9.9851E-01	9.9865E-01	9.9878E-01	9.9889E-01	9.9900E-01	9.9909E-01	9.9918E-01	9.9926E-01
8	9.9 933E-01	9 .9 939E-01	9.9945E-01	9 .995 0E-01	9.9955E-01	9.9959E-01	9.9963E-01	9.9967E-01	9.9970E-01	9.9973E-01
9	9.9975E-01	9.9978E-01	9.9980E-01	9.9982E-01	9.9983E-01	9.9985E-01	9.9986E-01	9.9988E-01	9.9989E-01	9.9990E-01

.

,

.

.

Tab. 4

كمنت التحدثان

ويصفحن والمعجو

- 1. H.S. CARSLAW and J.C. JAEGER: Conduction of heat in solids; Oxford, At the Clarendon Press, 1959; 332-334, 370.
- W.J. PARKER, R.J. JENKINS, C.P. BUTLER, J.L. ABBOTT: Flash Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity; Journal of Applied Physics, Vol. 32, No. 9, Sept. 1961; 1679-1684.
- 3. R. COURANT and P.H. HILBERT: Methods of Mathematical Physics; Vol. I; Interscience Publishers, Inc., New York, 1953; 308-313.
- 4. H. SAGAN: Boundary and Eigenvalue Problems in Mathematical Physics; John Wiley & Sons, Inc., New-York-London, 1961; 230-232.
- 5. C. LANCZOS: Linear differential operators; D. Van Nostrand Company Ltd., London, 1961; 469-472.
- F. BERTEIN: Méthodes théoriques fondamentales concernant les champs, ondes et trajectoires; Centre d'Etudes Nucléaires de Saclay, 1958; 16-20.

