

EUROPÄISCHE ATOMGEMEINSCHAFT - EURATOM

VERGLEICH DREIER METHODEN ZUR MESSUNG DER OBERFLÄCHENSPANNUNG VON POLYPHENYLEN

von

G. FRIZ und R. NEHREN

1963

Programm ORGEL

Gemeinsame Kernforschungsstelle Forschungsanstalt Ispra - Italien

Wärmeübertragung Dienst

HINWEIS

Das vorliegende Dokument ist im Rahmen des Forschungsprogramms der Kommission der Europäischen Atomgemeinschaft (EURATOM) ausgearbeitet worden.

Es wird darauf hingewiesen, dass die Euratomkommission, ihre Vertragspartner und alle in deren Namen handelnden Personen:

- 1° keine Gewähr dafür übernehmen, dass die in diesem Dokument enthaltenen Informationen richtig und vollständig sind oder dass die Verwendung der in diesem Dokument enthaltenen Informationen oder der in diesem Dokument beschriebenen technischen Anordnungen, Methoden und Verfahren nicht gegen gewerbliche Schutzrechte verstösst;
- 2° keine Haftung für die Schäden übernehmen, die infolge der Verwendung der in diesem Dokument enthaltenen Informationen oder der in diesem Dokument beschriebenen technischen Anordnungen, Methoden oder Verfahren entstehen könnten.

Dieser Bericht wird zum Preise von 40 bfrs. verkauft. Bestellungen sind zu richten an : PRESSES ACADE-MIQUES EUROPEENNES - 98, Chaussée de Charleroi, Brüssel 6.

Die Zahlung ist zu leisten durch Überweisung

- an die BANQUE DE LA SOCIETE GENERALE (Agence Ma Campagne), Brüssel, Konto Nr. 964.558,
- an die BELGIAN AMERICAN BANK AND TRUST COMPANY - New York - Konto Nr. 121.86,
- an die LLOYDS BANK (Foreign) Ltd., 10 Moorgate, London E.C.2,

als Bezug ist anzugeben: «EUR 209,d - Vergleich dreier Methoden zur Messung der Oberflächenspannung von Polyphenylen ».

Gedruckt von IMPRIMERIE VANMELLE S.A. GENT. Brüssel, Februar 1963.

EUR 209.d

VERGLEICH DREIER METHODEN ZUR MESSUNG DER OBERFLÄCHENSPANNUNG VON POLYPHENYLEN von G. FRIZ und R. NEHREN.

Europäische Atomgemeinschaft — EURATOM. Programm ORGEL. Gemeinsame Kernforschungsstelle. Forschungsanstalt Ispra (Italien). Wärmeübertragung Dienst. Brüssel, Februar 1963 — 12 Seiten — 5 Abb.

In dieser Arbeit werden die Ergebnisse dreier Methoden zur Bestimmung der Oberflächenspannung an Polyphenylen mitgeteilt und verglichen. Die drei Methoden sind : horizontale Kapillare, Blasendruck- und Abreissmethode. Die Ergebnisse der Blasendruckmethode und Kapillarmethode stimmen gut überein, was auf gute Benetzung schliessen lässt. Die Abreissmethode zeigt schwer zu vermeidende systematische Fehler. Ein Ausbau der Blasendruckmethode zur Absolutbestimmung ist daher vorzuziehen.

EUR 209.d

COMPARISON BETWEEN THREE METHODS OF MEASURING SURFACE TENSION IN POLYPHENYLS by G. FRIZ and R. NEHREN.

European Atomic Energy Community — EURATOM. ORGEL Program. Joint Nuclear Research Center — Ispra Establishment (Italy). Heat Exchanges Service. Brussels, February 1963 — pages 12 — figures 5.

The paper presents and compares the results of three methods for the determination of the surface tension of polyphenyls. These three methods are : horizontal capillary, bubble pressure method and Lenard's wire method. The results of horizontal capillary and bubble pressure agree very well, which verifies that the liquids have zero contact angle. The wire-method shows systematic errors hard to prevent. A further development of the bubble pressure method to an absolute one should be prefered.

EUR 209.d

COMPARISON BETWEEN THREE METHODS OF MEASURING SURFACE TENSION IN POLYPHENYLS by G. FRIZ and R. NEHREN.

European Atomic Energy Community — EURATOM. ORGEL Program. Joint Nuclear Research Center — Ispra Establishment (Italy). Heat Exchanges Service. Brussels, February 1963 — pages 12 — figures 5.

The paper presents and compares the results of three methods for the determination of the surface tension of polyphenyls. These three methods are : horizontal capillary, bubble pressure method and Lenard's wire method. The results of horizontal capillary and bubble pressure agree very well, which verifies that the liquids have zero contact angle. The wire-method shows systematic errors hard to prevent. A further development of the bubble pressure method to an absolute one should be prefered.

EUR 209.d

COMPARISON BETWEEN THREE METHODS OF MEASURING SURFACE TENSION IN POLYPHENYLS by G. FRIZ and R. NEHREN.

European Atomic Energy Community — EURATOM. ORGEL Program. Joint Nuclear Research Center — Ispra Establishment (Italy). Heat Exchanges Service.

Brussels, February 1963 — pages 12 — figures 5.

The paper presents and compares the results of three methods for the determination of the surface tension of polyphenyls. These three methods are : horizontal capillary, bubble pressure method and Lenard's wire method. The results of horizontal capillary and bubble pressure agree very well, which verifies that the liquids have zero contact angle. The wire-method shows systematic errors hard to prevent. A further development of the bubble pressure method to an absolute one should be prefered.

EUROPÄISCHE ATOMGEMEINSCHAFT - EURATOM

VERGLEICH DREIER METHODEN ZUR MESSUNG DER OBERFLÄCHENSPANNUNG VON POLYPHENYLEN

von

G. FRIZ und R. NEHREN

1963

Programm ORGEL

Gemeinsame Kernforschungsstelle Forschungsanstalt Ispra - Italien

Wärmeübertragung Dienst

.

• • • • •

INHALTSVERZEICHNIS

		Seite				
1.	EINLEITUNG	2				
2.	METHODE DER HORIZONTALEN KAPILLARE	2				
3.	BLASENDRUCKMETHODE	3				
	3.1 Messprinzip	3				
	3.2 Apparatur und Messverfahren	4				
	3.3 Ermittlung von r _m aus Messungen mit Testsubs- tanzen	4				
	3.4 Genauigkeit der Methode	5				
4.	ABREISSMETHODE	6				
	4.1 Messprinzip	6				
	4.2 Apparatur und Messverfahren	7				
	4.3 Messungen mit Testsubstanzen	7				
5.	VERGLEICH DER ERGEBNISSE DER DREI METHODEN	10				
	5.1 Kontaktwinkel	10				
	5.2 Absolutwerte	11				
REFERENZEN 12						

VERGLEICH DREIER METHODEN ZUR MESSUNG DER OBERFLÄCHENSPANNUNG VON POLYPHENYLEN

ZUSAMMENFASSUNG

In dieser Arbeit werden die Ergebnisse dreier Methoden zur Bestimmung der Oberflächenspannung an Polyphenylen mitgeteilt und verglichen. Die drei Methoden sind: horizontale Kapillare, Blasendruck- und Abreißmethode. Die Ergebnisse der Blasendruckmethode und Kapillarmethode stimmen gut überein, was auf gute Benetzung schließen läßt. Die Abreißmethode zeigt schwer zu vermeidende systematische Fehler. Ein Ausbau der Blasendruckmethode zur Absolutbestimmung ist daher vorzuziehen.

SUMMARY

The paper presents and compares the results of three methods for the determination of the surface tension of polyphenyls. These three methods are: horizontal capillary, bubble pressure method and Lenard's wire method. The results of horizontal capillary and bubble pressure agree very well, which verifies that the liquids have zero contact angle. The wire-method shows systematic errors hardly to prevent. A further development of the bubble pressure method to an absolute one should be prefered.

1. EINLEITUNG

Die Oberflächenspannung der Polyphenyle wurde von BOWRING und GARTON 1961 (R.1) mit der Steighöhenmethode bestimmt.

In dieser Arbeit soll über die Ergebnisse berichtet werden, die mit 3 verschiedenen Methoden, und zwar mit der horizontalen Kapillare, mit der Blasendruckmethode und der Bügelmethode erhalten wurden. Zunächst wurden Messungen mit der horizontalen Kapillare durchgeführt. Über diese Arbeit wurde kürzlich berichtet (R. 2). Die Ergebnisse der bis dahin vorliegenden Messungen bedurften jedoch in zweierlei Hinsicht noch einer Kontrolle:

l.) Bei der horizontalen Kapillare sowohl wie bei der Steighöhenmethode muß der Randwinkel bekannt sein, bzw. muß geprüft werden, ob wirklich volle Benetzung vorliegt.

2.) Die Ergebnisse von Ref. 1 sind im Relativverfahren mit Eichsubstanzen bestimmt worden. Es wäre wünschenswert – zumindest in einem gewissen Temperaturbereich – Absolutwerte zu haben.

Um die oben zitierten Arbeiten abzurunden wurde daher noch eine Apparatur für die Blasendruckmethode, die vom Randwinkel unabhängig ist, und eine Apparatur für die Lenardsche Bügelmethode – die bisher meistverwendete Absolutmethode – gebaut.

2. METHODE DER HORIZONTALEN KAPILLARE

Mit dieser Methode wurde der Krümmungsdruck des Meniskus in horizontaler Kapillare bestimmt. Meßmethode und Apparatur wurden in einem vorausgegangenen Bericht (R.2) ausführlich beschrieben; im Anhang ist die Apparatur noch einmal in Figur 3 abgebildet.

Die in Diagramm (Fig. 4) dargestellten Ergebnisse wurden mit der Annahme berechnet, daß der Kontaktwinkel zwischen Flüssigkeit und Glaswand gleich Null zu setzen ist.

3. BLASENDRUCKMETHODE

Bei dieser Methode wird der Maximaldruck in kleinen Blasen gemessen; es entfällt der Einfluß des Kontaktwinkels.

3.1. Meßprinzip

Die Methode besteht darin, den Differenzdruck zwischen dem Inneren einer Blase, die aus einer feinen Kapillare austritt, und der Flüssigkeit zu messen. Der Flüssigkeitsdruck in der Umgebung der Blase ist um ρ g h höher als der auf der Flüssigkeit ruhende Raumdruck. Die maximale Differenz zwischen diesem Raumdruck und dem Druck im Inneren der Blase wird möglichst genau bestimmt. Nach Überschreiten der Maximaldifferenz löst sich die Blase vom Kapillarende ab.

Nach KOHLRAUSCH : Praktische Physik (R.3) errechnet sich dann die Oberflächenspannung mit Hilfe der Formeln:

$$\sigma = \frac{\mathbf{r}_{\mathrm{m}} \mathbf{p}}{2} \left[1 - \frac{2\mathbf{r}_{\mathrm{m}} \rho g}{3\mathbf{p}} - \frac{1}{6} \left(\frac{\mathbf{r}_{\mathrm{m}} \rho g}{\mathbf{p}} \right)^{2} \right]$$

$$p = p' - \rho_{ch} = \rho_{w} \cdot g\left(h' - \frac{\rho}{\rho_{w}}h\right)$$

wobei

rm	=	Innenradius des Kapillarendes,
ρ_w	Ξ	Dichte des Wassers bei der Temperatur des Meßinstrumentes,
ρ	Ξ	Dichte der Meßsubstanz bei Meßtemperatur,
h '	=	Ablesung im Miniskop,
h	=	Eintauchtiefe der Kapillare.

r_m kann direkt (Absolutmethode) oder aus Messungen mit Flüssigkeiten bekannter Oberflächenspannung (Relativmethode) ermittelt werden.

3.2. Apparatur und Meßverfahren

Die Apparatur, deren Schema aus Fig. 4 zu ersehen ist, besteht im Wesentlichen aus 5 Teilen:

a) einem kleinen senkrechten Ofen, der mit einer Genauigkeit von \pm 0,3^oC geregelt wird und Temperaturen bis zum Siedepunkt der Polyphenyle erlaubt;

b) einer Glaskapillare von ca. 0,3 mm Durchmesser mit einer scharfen waagerechten Kante am unteren Ende, die in ein angeschmolzenes, mit einer Öffnung versehenes Vorratsgefäß von ca. 7 mm lichter Weite taucht;

c) einer Druckeinstell-Vorrichtung die es erlaubt, einen Luftdruck mit einer Genauigkeit von ±0,03 mm Wassersäule einzustellen;

d) einer genauen Druckmeßvorrichtung (Miniskop mit einer Ablesegenauigkeit von ±0,02 mm Wassersäule) und

e) einem Kathetometer zur Messung der Kapillareintauchtiefe mit einer Ablesegenauigkeit von ±0,02 mm.

Das Verfahren besteht darin, den Druck im Inneren der Blase langsam so weit zu erhöhen, bis sich die Blase ablöst, den Druck in diesem Augenblick im Miniskop abzulesen und sofort anschließend die Eintauchtiefe mit dem Kathetometer zu bestimmen.

Wie bei allen Methoden zur Messung der Oberflächenspannung ist äußerste Sauberkeit der Apparatur und Reinheit der zu untersuchenden Substanz besonders wichtig. Auch die zugeführte Preßluft wurde sorgfältig gereinigt.

3.3. Ermittlung von r_m aus Messungen mit Testsubstanzen.

In der folgenden Tabelle 1. wurden Messungen mit reinen Flüssigkeiten bekannter Oberflächenspannung zusammengestellt und daraus r_m rechnerisch ermittelt.

Flüssigkeit	T (°C)	$\rho \left(\frac{g}{cm3}\right)$	h' (cm)	h (cm)	Tafelwert für σ (- <u>dyn</u>)	r (cm)
Wasser	21,7	0,998	8,810	0,136	72,48	0,01709
Benzol	20,0	0,879	3 , 555	0,078	28,89	0,01698
Tetrachlor						
methan	20,0	1,594	3,490	0,146	26,77	0,01688
Athanol	20,8	0,789	2,765	0,109	22,15	0,01694
Ameisen-						
säure	21,0	1,219	4,765	0,159	37,47	0,01680
Essigsäure	21,2	1,048	3,590	0,272	27,29	0,01693
			<u> </u>	daraus	: r _m =	0,01694
				Standar	dabweichung	±0,6%

<u>Tabelle l</u>

Die Tafelwerte für die Oberflächenspannung stammen aus TIMMERMANS: Physico-chemical constants (R4). Es wurden jeweils die neuesten Meßwerte durch Interpolation auf die Meßtemperatur korrigiert.

Gleichzeitig wurde r mit einem Meßmikroskop direkt bestimmt, wobei sich r = 0,01635 cm ergab, was eine Abweichung von ca. 3 %von dem experimentell bestimmten Wert r_m bedeutet. Diese Abweichung wird auf Kapillarkräfte im Vorratsgefäß zurückgeführt.

3.4. Genauigkeit der Methode.

Bei einer Abschätzung der Fehlergrößen dürfte einzusetzen sein:

0,6 % für die Abweichung von r_m , 0,2 % für Temperaturfehler,

0,2 % für die Miniskopablesung und 0,2 % für die Messung der Eintauchtiefe.

Daraus ergibt sich ein Maximalfehler von 1,2 % unter der Voraussetzung, daß ein weiterer systematischer Fehler nicht auftritt. Ein solcher könnte vorliegen bei: schräger Kapillare, elliptischer Öffnung, Unebenheiten am Rand. Wahrscheinlich werden jedoch systematische Fehler durch die Bestimmung von r_m mit Testsubstanzen unterdrückt.

4. ABREISSMETHODE

Da die beiden bisher angeführten Methoden nur Relativmessungen gestatteten, wurde nach einer Absolutmethode gesucht. Das am meisten angewendete Absolutverfahren ist die Abreißmethode mit Drahtbügeln nach LENARD.

4.1. Meßprinzip

Da die Theorie der Methode gut bekannt ist (R5, R6, R7), erübrigt es sich, näher darauf einzugehen.

Nach HOUBEN-WEYL: Methoden der Organischen Chemie (R 8) lauten die Formeln für die Berechnung der Oberflächenspannung:

$$\sigma = \sigma' - r \left(\sqrt{2\sigma' \rho g} - \frac{2\sigma'}{L} \right) + r^2 \left[\left(1 + \frac{\pi}{4} \right) \rho g - \frac{3}{L} \sqrt{2\sigma' \rho g} \right]$$

 $\sigma' = \frac{G'' - G'}{2L}$

wobei

G''	=	Zugkraft mit Flüssigkeitshaut) bei gleicher
G'	Ξ	" ohne ") Eintauchtiefe
_		
L	=	Meßdrahtlänge
		Maduating
Г	-	Mesorantradius
0	=	Dichte der Meßsubstanz bei Meßtemperatur.
٣		

4.2. Apparatur und Meßverfahren

Die Apparatur, deren Schema in Fig. 5 wiedergegeben ist, besteht aus einem Glasgefäß mit 2 Heizmänteln, einer temperaturkonstanten Kondensationsstrecke und einem Kühler, einer Vorrichtung zum Absenken der Flüssigkeitsoberfläche und einer Torsionswaage mit einer Ablesegenauigkeit von ± 0,5 mg.

Bei allen bisher üblichen Verfahren wird das die Meßsubstanz enthaltende Gefäß abgesenkt. Wir haben versucht, dieses Verfahren, das bei einer größeren Apparatur ziemlich viel Aufwand erfordert, dadurch abzuändern, daß die Oberfläche der Flüssigkeit sehr langsam abgesenkt wird, indem sie durch allmähliche Druckverringerung in ein Vorratsgefäß abfließt.

Kontrollen der Temperatur innerhalb des Meßraumes ergaben eine Temperaturkonstanz von $\pm 0, 2^{\circ}$ C. Der Temperaturbereich, der theoretisch bis zum Siedepunkt der Meßflüssigkeit geht, wird praktisch durch die Thermostatenflüssigkeit beschränkt. Es kommt darauf an, eine geeignete Thermostatenflüssigkeit zu finden, die auch nach längerem Gebrauch bei höheren Temperaturen genügend durchsichtig bleibt, da die einwandfreie Bügelstellung ständig kontrolliert werden muß.

4.3. Messungen mit Testsubstanzen.

Zur Erprobung von Apparatur und Drahtbügeln wurden verschiedene Messungen mit Substanzen bekannter Oberflächenspannung durchgeführt. Diese Meßreihen werden in den Tabellen 2 bis 4 dargestellt. Dazu muß bemerkt werden, daß die Messungen der Tabelle 2 nicht mit der später fertiggestellten Apparatur sondern in einem offenen Gefäß ohne Thermostatisierung durchgeführt wurden, wodurch die schlechte Reproduzierbarkeit der Resultate zu erklären ist.

-7-

· · .

Tabelle 2

Meßflüssig-	Meßdraht-	Temperatur	mittlere	Reproduzier-	σ	Tabellen-	% Abweichung
Keit	(cm)	(°C)	(°C)	$\pm \%$	$\left(\frac{dyn}{cm}\right)$	$\left(\frac{dyn}{cm}\right)$	vom Tabellenwert
Wasser	1,990	20,0 - 21,3	20,65	0,4	70,80	72,53	-2,4
	3,033	21,0 - 21,2	21,1	0,4	70,50	72,53	-2,8
Benzol	1,990	20,2 - 21,2	20,7	0,5	28,36	28,79	-1,5
	3,033	20,2 - 21,2	20,7	0,4	28,26	28,79	-1,8
	3,943	20,2 - 21,2	20,7	0,3	28,39	28,79	-1,4
Tetrachlor-							
methan	1,990	22,6 - 22,8	22,7	0,3	26,35	26,55	-0,8
	3,033	22,7 - 23,1	22,9	0,6	26,22	26,55	-1,2
	3,943	22,5 - 22,6	22,55	0,5	26,42	26,55	-0,5
Ameisen-							
säure	1,990	23,2 - 23,4	23,3	0,7	37,1	37,3	-0,5
	3,033	23,5 - 23,7	23,6	0,3	37,0	37,3	-0,8
	3,943	23,2 - 23,5	23,35	0,3	37,0	37,3	-0,8
Essigsäure	1,990	22,6 - 22,9	22,75	0,1	26,9	27,4	-1,8
_	3,033	22,9 - 23,2	23,05	0,1	26,8	27,4	-2,2
	3,943	22,9 - 23,1	23,0	0,1	26,8	27,4	-2,2

*

Tabelle 3

Meßflüssigkeit:	:	Benzol
Temperatur	:	22°C
gemittelter Tabellenwer	t:	28,62 $\left(\frac{dyn}{cm}\right)$

.

Meßdrahtlänge	$\sigma \left(\frac{dyn}{cm}\right)$	Reproduzierbar- keit (±%)	% Abweichung vom Tabellenwert
1,952 1,955 1,976 3,023 3,027 3,034 3,930 3,939 3,973	28, 35 28, 20 28, 07 28, 01 27, 90 28, 31 28, 33 28, 23 28, 23 28, 33	0,14 0,26 0,20 0,18 0,35 0,22 0,25 0,12 0,13	-0,9 -1,5 -1,9 -2,1 -2,5 -1,1 -1,0 -1,4 -1,0

<u>Tabelle 4</u>

Meßflüssigkeit	:	doppelt di	stilliertes	Wasser
Temperatur	:	20°C	J	
gemittelter Tabellenwert	:	72,33 (-	$(\frac{yn}{m})$	

Meßdrahtlänge	$\frac{\sigma}{(\frac{\mathrm{dyn}}{\mathrm{cm}})}$	Reproduzierbar- keit (<u>+</u> %)	% Abweichung vom Tabellenwert
1,952	72,41	0,06	+0, 1
1,955	72,25	0,11	-0, 1
1,976	71,71	0,06	-0, 9
3,023	71,70	0,05	-0, 9
3,027	71,60	0,07	-1, 0
3,034	71,69	0,03	-0, 9
3,930	72,19	0,11	-0, 2
3,939	72,09	0,08	-0, 3
3,973	71,80	0,14	-0, 7

Da die prozentuale Reproduzierbarkeit in den Tabellen 3 und 4 gut ist, müssen die Abweichungen der gefundenen Werte untereinander und von den Tabellenwerten auf systematischen Fehlern beruhen. Diese Fehler könnten verursacht werden durch:

- a) Unreinheit der gemessenen Substanzen,
- b) Verunreinigung der Oberfläche im Verlauf einer Meßreihe,
- c) Beeinträchtigung der Brauchbarkeit der Meßbügel durch Formfehler.

Die Abweichungen der Bügel untereinander haben ihre Ursache wahrscheinlich in der mangelhaften Form der Meßbügel, die miteiner Ausnahme negativen Abweichungen von den Tabellenwerten wohl teilweise in der Unreinheit der Substanzen bzw. ihrer Oberflächen.

Es muß noch erwähnt werden, daß nach den Erfahrungen der PTB Braunschweig nur 10 % aller Bügel die erforderliche Formgenauigkeit aufweisen. Uns standen bei unseren Messungen nur 4 Serien von Meßbügeln zur Verfügung, aus denen wir die uns am brauchbar,sten erscheinenden für die Messung an o-Terphenyl herausgesucht haben.

5. VERGLEICH DER ERGEBNISSE DER DREI METHODEN.

Die Resultate der Messungen nach den drei Methoden sind in zwei Diagrammen (Fig. 1 und 2) wiedergegeben.

5.1. Kontaktwinkel

Die Methode der horizontalen Kapillare ist, wie die Formel.

$$\sigma = \frac{1}{\cos \alpha} \cdot \frac{d\Delta p}{4}$$

zeigt, vom Kontaktwinkel α abhängig. Die Meßpunkte (0) wurden

unter der Annahme $\alpha = 0$ eingetragen. Die Blasendruckmethode ist unabhängig vom Kontaktwinkel, und der Vergleich dieser Meßwerte (∇) mit den obigen zeigt, daß die Annahme im Rahmen der Meßgenauigkeit von [±]l bis l,5 % gerechtfertigt war. Für spätere Messungen wird infolge des etwas erhöhten Aufwandes der Blasendruckmethode diese nur zu Kontrollmessungen herangezogen werden.

5.2. Absolutwerte

Die Ergebnisse der Abreißmethode sind in Fig. 2 mit den Werten der Methode der horizontalen Kapillare im Temperaturbereich bis ca. 100°C verglichen. Die Abweichungen betragen zwischen 1,5 und 3,0 %, und zwar gibt die Abreißmethode immer zu geringe Werte, d. h. die Flüssigkeitslamelle reißt zu früh ab. Wie oben ausgeführt, ist es schwierig, Verunreinigungen zu vermeiden. Dazu kommen eventuelle Formfehler der Bügel und Verdampfungseinflüße, besonders an der Lamelle.

Die Ergebnisse zeigen, daß, verglichen mit den beiden anderen Methoden, der notwendige Aufwand zur Verbesserung der Methode zu hoch sein wird. Außerdem werden große Mengen (ca. 50 g) von Meßsubstanzen benötigt, so daß von der Verwendung dieser Methode abgeraten werden muß.

Sollte es vielmehr gelingen, den Einfluß der Kapillarkräfte im Vorratsgefäß rechnerisch zu erfassen, so könnte die Blasendruckmethode auch zur Absolutmethode ausgebaut werden. Näherungsberechnungen dieser Kapillarkräfte zeigten nämlich, daß die Abweichung von ca. 3 % zwischen r_m und direkt gemessenem Innenradius r sich durch jene erklären lassen.

Diese Notwendigkeit ergibt sich nur dann, wenn man das Vorratsgefäß für kleine Substanzmengen (im vorliegenden Falle ca400mg) dimensioniert. Bei einem größeren Vorratsgefäß kann mit 2 Kapillaren gearbeitet werden, was eine wesentlich genauere Absolutbestimmung erlaubt. CUNY und WOLF (R9) haben dieses Verfahren zu hoher Genauigkeit ausgebildet.

REFERENZEN:

- (R1) BOWRING et al. AEEW R-41
- (R2) FRIZ, G. VOSSEN, H.: EUR 165 e
- (R3) KOHLRAUSCH Praktische Physik. Band I (Stuttgart 1955).
- (R4) TIMMERMANS Physico-chemical Constants of Pure Organic Con.pounds (New York 1950)
- (R5) LENARD Ann. d. Phys. 74, 381 (1924)
- (R6) ZACHMANN Heidelberger Dissertation 1927
- (R7) MOSER Ann. d, Phys. 82, 993 (1927)
- (R8) HOUBEN-WEYL Methoden der organischen Chemie Teil I. Band III, 1 (Stuttgart 1955)
- (R9) CUNY and WOLF Ann.d. Phys. 6. Folge 17, 57 (1956)

.

-

Messung der Oberflächenspannung mit der Blasendruck methode

.

.

¢

.

