
Commission of the European Communiti

hGentre-lsprao O O
;o

oo
oo

b
o,fttso

Io
-o
=o,btsE
o,
C)
C,,E

II

-
=CL
Eo
C)

\
\

rYYl \

oooooo ooo
rY-t

./

oo
oo

,7
o
ooo
o
ollo0I

8 I
)

8

o
o
o
o
o
o
o

8

, lgrE

Contents

Editorial note

lntroduction to data base management systems

lntroduction to STAIRS

The COREA system

Statistics on computer utilization - October

Utilization by objectives and accounts - October

Table of equivalenttime, summary per month

and cumulative

SHELTRAN, an example of application

2

3

7

11

16

17

18

19

Notc of the Editor

Tho praant Narvrlctta will bc
published monthly excrpt for August
md Deombor.

Ths Na^Elett r will include:
. O6rolopmontl. changes, usas of

inrtallations
e Announoement3. norvs tnd abctrsctt

on inirlrtlve and .ccomgl irhmenb.

The Editor tbnk! ln cdvane thola who
will wrnt to contrlbuto to the Ngtv+
l€tler by sanding crticle in English or
French to one of the followlng per3ons

o{ the Editorial Boerd.

Noto de !r R6daaion

Le pr6sont Bulletin rera publi6 menluelle
ment excepr6 durant 16 mols d'loot st
d6cembre.

Le Bulletin rraitora des:

. O(rveloppemenB. changsments et
emplol cles installations

o Avil. norrvell€s €t r6slrn6r concernant
|€s initiltiv€c et 1€3 (blilrtions

Lr R(faction ramerpie d'arranco ceux
qui voudront blon contribud ar Bullain
€n snvoyent des oriiclec €n angleis ou
frangab i l'un des m€flrbrB du Cornit6
de Rddaction.

Editoriel Eorrd / Gomit6 dc R&astion

S.R. Gabbai. D.G. lrPra
H. de Wolde, C.C. lrPra

G Pigni, C.C. hpra
J. Pire, C.C. lspra

Editoi r Sylvia R. Gabbai

byout: Paul De Hoe
Graphicel and Printing Workrhop, JRC lspra

kknowledgpment drould be giten for their
ths. N.G. Giarctrr,, Mrs. fil. Van Andel, Mr.

tochnical E rppon to Nn E. Eiselt,
G. Clivio, A. Nergnini, G. Zurlo

lntroduction to Data Bae Management Systems

A. Borella, S. Capobianchi

Reasons for Choosing a DBMS

The necessity of collecting an ever greater quantity of information relating
to the various fields of activity of the Centre (technical scienlific, fi-
nancial, personnel administration, etc.) to be placed at the disposal of the
rarious users for processing in different ways in accordance with specific
requirements, has led the lnformatics personnel to study and test some

data processing systems for the construction and management of data
banks (DBMS, Dau Base Management System).

By data bank is meant a set of data stored just once and interconnected by
logical and physical relationships. Such relationships, which form part of
the bank, are defined and. managed in a way independent of the appli-
cation and of the data stored.

Wth the traditional information filingrmethods, the need to process a

specific datum together with complementary data from different sources

required redundancy of data and considerable programming effort. Addi-
tionally the lack of correlation between data from different sources failed
to take full advantage of the data themselves.

Present integrated data management techniques (DBMS) have solved most

of the difficulties of traditional methods.
Briefly, the most interesting characteristics of DBMS are:

a) the simple, safe, uniform and documented management of large

amounts of data and their logical relationships,
b) the elimination of files directed to specific uses, by the use of an

integrated system in which data are not repeated but stored just once,
so that the data supplied can be up-dated and accurately controlled;

c) the availability of the data for interactive processing using a standar-
dised and easy to apply Teleprocessing system; this allows a wider and
more intensive use of the TP in the processing and inquiry of thedau
stored in a more sophisticated way;

d) the creation of data structured in accordance wlth physical and logical
hierarchies with the possibility of modifying the logic structure on the
basis of possible new requirements that necessitate a different view of
the structure;

tr

e) the maximum possible independence of the programs from the physical

structure'of the data storage in mass memories. The program can, in

fact, use the logical structure of the data instead of the physical; this

makes it possible to add (with caution) new types of information to
the structures, in a way transparent to the already existing applications
programs which are not directly concerned with the new data. Natu-

rally this transparency can be used in all the applications programs

which process data existing from the start in the physical structure;

such programs need only know the data that concern them and take no

account of the others.
f) The simultaneous access to the bank by more than one user. Access to

data of a confidential nature can be protected by appropriate keys and

consequently p revented f or non-auth orised u sers.

All these characteristics are so useful that it is difficult to imagine a future
development of informatics in the management of large volumes of inte
grated data that prescinds the use of DBMS. lt is clear that they entail a

greater amount of work in the initial phase and require a delicate tran-

sition period in pasing from a traditional environment (based on classical

files) to a DB environment, but it is also clear that an 'a priori' rejection of
DB methodology would be quite contrary to the line of development of
informatics.

It must, however, be remembered that wnite OguS techniques are extre
mely helpful in the study and solution of particular applications they do

not remove the ne'cessity for specif ic programming for everything'which
does not concern the management of data. lts use requires an accurate

analysis of the problem to be solved which takes into account the requi-

rements of the correlations between the dau. lf such analysis is not based

on adequate technical preparation, the resulting structure could, from an

efficiency point of view, greatly degrade the performance of the system

giving rise to unacceptable times and costs.

Description of the DMBS lnstalled at lspra: IBM's IMS

Having analysed the DBMSs at present offered by software manufacturers
from both a cost/performance and a reliability and maintenance point of
view, it was decided to try IBM's IMS (lnformation Management System).

From an experimental phase on several data banks (reliability data base,

medical service, etc.) we then passed on to an operative phase (personnel

and financial DBs).
The IMS installed at the lspra Computer Centre was introduced into the

environment shown in Fig. 1.

E

OS MFT/MVT

ACCESS METHODS

SAM OAM ISAM BTAM

B

T

s

lMs v2

DL1 I OC
D
Irf

ru!
s!

R
c
o
B
I

M
s

c
o
$v
!a
N
s

APPLICATIONS
PROGBAMS

BATcH I oc

The basic IMS software is composed of two parts:

- the first, called DL1, for the management of the files in the data bases,

- the second, called DC (data communication), for the management of
application programs, interactive or non-interactive.

Further complementary software has gradually been installed to produce
an "environment" more suitable for users.

The use of a DBMS raises two kinds of problems:

. to bring about a centralised coordination of the DBMS, indispensable
for the maintenance, development and safety of an lMS, DB/DC environ-
ment. ln particular, this centralised DB/DC environment brings out some
aspects relating to control bnd availability:

- of the data, their specifications and physical and logical connections;

- of transactions (inquiries and answers in an interactive environment);

- of the authorisations to use the resources (data, terminals).
All these functions in reality devolve onto a "logical" person, the Data
Base Administrator, who is responsible for the physical safety of the DBs
and their definitions as well as for the distribution of the resources con-
troled by the DBMS and the enforcement of the regulations concerning
the use of the system.

tr

ln order to help the DBA in his activities, an IBM product-program, the
data dictionary, has been installed which, by means of the creation, up-
dating and inquiry of various dictionaries (of the data, data and program
descriptive blocks, user's libraries, formats), automatically supplies the
DBA with documentary information on the state of the system.

o To make the system easy to use while safeguarding the integrity of the
DBs for each user. lt is, in fact, the task of the user to analyse his parti-
cular problem, check with the DBA whether the necessary information
already exisB on the.operative DBs and define the new information to be
added and the logical interconnection; once this phase has been achieved,
thy programmer c:rn devote himself exclusively to the programming and
tesB with,out having to concern himself about the structure of the data. He
can, in fact, use the necessary data independent of their location and
connection in the bank.

The IMS allows the use of programming languages such as COBOL, PL1
and Assembler by means of a direct interface via "Call".
To facilitate the task of the programmers further, two auxiliary product-
programs have been installed, namely:

- COBIMS, (COBOL IMS), a COBOL pre-compiler possesing the state-
ments necessary for the definition and call of the IMS function, and for
the management of messages and errors while the programs are running.
Not only does it generate the parts of the COBOL program necessary
for the above functions, but introduces and verifies the definitions of
the different components of the data bases, having as a secondary but
no less important effect that of standardising the definition modules.

- the BTS (Batch Terminal System) with its 3270 formatting feature, is a
program for simulating the Data Communication typical functions. The
BTS allows interactive programs to be run in batch mode.

The BTS accepts the card reader as input instead of the keyboard and
the printer as output instead of the video screen. lt thus simulates the
characteristics of the normal terminals, such as the IBM 3270, supply-
ing print-outs that represent the contents of the screen in its input and
output conditions.

Moreover, the BTS provides analytical and synthetic lists to check the
correctness and optimisation of the programs. Thus, this product-
program allovlc conversational programs to be developed without inter-
ference with the normal run of work already in production.

Introduction to STAIRS

S. Perschke, G. Fattori

!ntroduction

Recently the IBM program product STAIRS (Storage and lnformation
Retrieval Systems) was implemented on our computer. STAIRS is a

package for the creation, maintenance and on-line inquiry of a particular
class of data bases in which the essential part of the information is re-
corded in natural language. However, it permits the structuring of the
information contained in a "document", u/tlich is the basic unit of data,
and the handling of formatted data.

The version implemented at lspra uses the data communication facility of
IMS (IMS/DC) as time sharing monitor while the data base creation and
maintenance programs operate in batch mode.

STAIRS is to be used within the lspra Establishment on the one hand for
experimental work in automatic documentation and on the other hand for
the creation of some of the data banks within the program of the JRC.

Data Base Structure

The structure and inter-relation of the different files which compose the
data base is shown below.

Dictionary

This is an indexed sequential data set whoseacces keysare the keywords
extracted from the source data. The dictionary is the main acces path to
the data at inquiry time, and the search program includes facilities to
permit access to terms whose exact spelling is not known. Each record of
the dictionary contains the total number of occurrences of the term, the
number of documents in which it is contained and the address of the
asociated inverted f ile entry.

lnverted file

This is a direct access file which contains a vector of pointers to the
documents in which a word occurs along with positional information (pa
ragraph, sentence, word number).

Text index

This is a direct access data set which contains mainly the formatted fields
and information about the document (privacy, etc.).

collsvs
Text Box

collsvs
Text Box

E

orcIroNARY)

!tr

Itcr

collsvs
Text Box

Text

This is a direct access data set which contains those data which are to be

displayed or printed after search.
One of the interesting features of the STAIRS concept is the possibility of
combining up to 16 (homogeneous) da bases which, in connection with
the very articulated protection and privacy mechanism, can be used to
control access to the single datum.

Document Structuring and Search Medtanisms

A document which is the unit of data to be retriryed is suMivided into:

- paragraphs

- sentences

- formatted f ields.

Names can be associated with the paragraphs (or paragraph groups) and
with the formatted f ields.

E

collsvs
Text Box

As already stated above, the principal path of irccess to a data base is via

dictionary and inverted file. This mode of inquiry is called "SEARCH".

Search terms or statements can be combined with each other:

a) witrr Boolean operatofii (AND, OR, NOT),
bl with positional operators (SAME - same paragraph, WITH - same serF

tence, ADJ - same word order).
The range of the search can be limited through the indication of particular
paragraph in which a search term must or must not be located.
The access to the "formatted" field, for which STAIRS provides the
"SELECT" mode, is to be considered a secondary path of access to the
data base, because it implies a sequential scan of the entire TEXT INDEX
data set, which might degrade the response time considerably.
It'is therefore advisbble to retriet/e a subset of the data base with the
search mode, beforE-one-enters the select mode.
The advantage of the select mode over the search mode is the availability,
in addition to the Boolean operators, of relational operators (EO - equal,
NE - not equal, GT - greater than, LT - lessthan,WL-within limits,OL-
outside limir, etc.) which makes it particularly suitable for numerical
wlues. Data in the formatted fields can also be modified on-line during a

search session. '

Conclusion

ln comparison with soralled Data Base Management Systems (like lMS,
TOTAL, etc.), STAIRS is a prckage, i.e. a set of programs with well-
defined functions and a certain number of options among which one can
choose when a new data base is being defined and generated.

The great advantage of such a solution is that flre effort of designing and
creating a data base is minimized, because it involvesvirtually no program-
ming, but one is limited in the possibilities of structuring the data and of
defining access and transaction mechanisms.

It is therefore only through an examination of the information which is to
constitute the data Dase, and of the use which is to be made of it that one
can decide whether the use of this package is feasible for some application
or whether one should embark on the effort and expense necessary to
cr@te a data ban k using the services offered by a generalized DBMS.

The COREA System

G. Crestoni*), G. Gaggero, A.A. Pollicini

lntroduction

The main purpose of the COREA system f its in the spirit of data acquisi-

tion and manipulation by terminal, avoiding use of punched cards, as

stated in the article of Mr. Pire, published in the Newsletter No. 4.

It is planned that the COREA system will come into operation next

January.

The next isgue of the Newsletter will report some examples of application.

General Description

The COREA system has been developed to provide the users of the JRC

computing installation with a simple and flexible tool for using a library of
application programs from remote terminals.

The system works under the local conversational extension of HASP-2,

TE LE UR.

Outline of Facilities

The system provides the user with the following basic facilities:

- creation and editing of private data-files (hereafter called "lnput-tasks")

to be used as input data to library programs;

- submision of jobs asking for execution of a library program, using an in-

put-task as case data and storing results into an user data-file
(hereafter cal led "Output-task") ;

- selective inspection of the content of an Output-usk.

The editing facilities can operate at line, character string or word level.

A special facility allows formatted data to be entered as list of items which
is then edited according to an user specified format.

*) PRAXIS CALCOLO *a, Milano

tr

COREA Fila
The COREA system operates, f rom the user point of view, on four logical
files:

- the lnput-Task File, (lTF)

- the Output-Task File, (OTF)

- the Library-Procedure File, (LPF)

- theWork File, (WF)

While the lTF, OTF, and LPF files are permanent fites, the WF fite is
temporary, i.e. it exists only for the duration of a COREA session.

The lnput-Tak File

The ITF file contains all the user lnput-tasks.
An lnput-task is a named set of text-lines.
Lines are sequentially numbered from 1 to 7.20O, which is the maximum
number of lines in a task.
Each text-line contains 80 alphanumeric characters and, for this reason, it
may also be referred to as a "card".

The Output-Task File
The OTF file contains all the user Output-tasks.
An Output-task is a named set of text-lines.
Lines are sequentially numbered from 1 to the maximum number of lines
in an Output-task.
Each text-line can contain a maximum of 133 alphanumeric characters.

The Library-Procedure File
The LPF file contains all the Jbt procedures for executing the COREA
library programs.
From the user point of view the LPF is a readonly file. However, the user
is allovved to make temporary changes to a procedure for an individual job
submission.

The Work File

The WF file can contain different things during a COREA sesion.
It can be empty or contain either:

- a set of text-lines which have been entered but not yet used to up-
date an input-task; or

- a library procedure which has been called for.

tr

collsvs
Text Box

collsvs
Text Box

COREA Language

The user can enter "commands" and "text-lines".
An easy-touse and extensive set of commands is available.

Command syntax:

Command-keyword Iparameter - list]

Where:

Command-keyword consists of a "flag character" immediately
followed by one of the words which
form the COREA command dictionary.

Parameter-list is a list of parameters in accordance with
the individual command syntax.

Any of the following characters $. /) can be used as flag character,
but the character which is used as flag in the first command of a session is

recognized as flag for the duration of that session.

The command-keyword and the parameter-list must be separed by at least
one space.

The parameter-list can consist of one or more parameters. ln the latter
case, they are separated by a comma.
A parameter can have a subparameter, in which ffise the subparameter is

enclosed in parantheses and must immediately follow the parameter.

The COREA command-dictionary contains the following words:

ALTER FORMAT LIST PROG RAM UNFORMAT
COPY HELP MODIFY REPLACE WRITE
DELETE INSERT NAME STOP

EXECUTE JUSTIFY OUTPUT TASK

All command-words may be abbreviated by typing the f irst character only.
However all the characters typed are checked for correctness.

Text-line syntax:
character-string I item-list

Where:

character-string is any string of alphanumeric characters.

It can consist of up to 80 characters.

item-list is a list of items in accordance with the
rules for building a formatted text-line.

t-,al

collsvs
Text Box

collsvs
Text Box

The first dtaracter of a text-line cannot be the character chosen as flag-
draracter for the session. This restriction is imposed by the necessity to
distinguislr between command and text-lines.

The alternatirle forms "character-string" and "item-list" can be used for
bu ilding unformatted and formatted text-l ines respectively.

Commandr Classif ication

Depending on the operation to be performed and tlre file(s) concerned, the
commands can be grouped into five clases.
Furthermore, there exist three system commands, which provide analysis
facilities to locate and remore system bugs.

Cla.as of Commands for General Purpoes

NAME To open the system and to allow user to access Corea-
fites.

TASK To identify a user lnput or Output task to be activated
for fu rther operations.

HELP To guide the user in learning system use and error
recovery.

STOP To close the system.

Clds of Comman& to lntoduce text-lines into the WF

FORMAT To declare a Fortran-format to build formatted text-lines.
JUSTIFV To declare a tabulation to build formatted text-lines.
UNFORMAT To introduce unformatted character strings.
MODIFY To modify an incorrect text-line in the \l/F.

Clars of Commands to Opente m lnput-Taks

INSERT To insert text-lines into the active input-task.
REPLACE To replace text-lines of the active input-task.
DELETE To delete text-lines from the active input-task.
ALTER To substitute a string of characters within a text-line.
COPY To cdpy all or part of an input-task.
LIST To list all or part of the active input-task.

Class of Conmands for Job Submission

PROGRAM To invoke a procecture to execute a library program.
EXECUTE To perform job submission from the terminal.

Class of Commands to Opemte on Ouput'Taks

OUTPUT To analyse the content of the active output-task.

WR ITE To print the active output-t€sk.

r A course for potential users of the COR EA system will be held

on January 25th.

r A User's Manual will be made available to all interested people

by the time of the course.

E

collsvs
Text Box

collsvs
Text Box

Statistics of computing installation utilization
Report of computing installation exploitation
for the month of Gober

Number of working days
Work hours from 8.00 to 24.OOor
Duration of scheduled maintenance
Duration of unexpected maintenance

Total maintenanoe tarne

Total exploitation tirne
CPU time in problem mode

Tclcproccring:
CPU tims
l/O number
Equivalent time
ElaFed time

Brtdr Foccine:
Number of iobe
Number of cards read

Number of cards punched

Number of lin6 pranted

Number ot pages printed

YEAR 1976

21.50 d
16.00 h
29.81 h

2.25 h
32.06 h

311.11 h
1 19.64 h

2.38 h
443,000

3.10 h
183.00 h

10,194
2867,000

200,000
26r60,000

574,000

YEAR 1975

23d
9.25 h

19.50 h

9.25 h
28.75 h

197.25 h
76.68 h

0.89 h
573,000

4.90 h

87.40 h

8,291
2869,000

241,000
2t 504,000

494,000

BATCH PROCESSING DISTRIBUTION BY CLASS

A1 o TOTAL

Number of joba 1322 3222 1460 2218 509 181 591 9503

Elaped tirne (hrs, 23 121 98 189 A2 12 57 612

CPU time (hrcl o.7 11 21 36 29 12 6.5 116.2

Equivalent time (hrsl g 31 43 91 41 22 30 267

Turn around time (hrrl 0.3 0.s 0.6 1.3 1.9 0.9 0.6o.7

PERCENTAGE OF JOBS FINTSHED IN LESS THAN

TIME 15' cr' th 2h 4h 8h 1D ZO 3D 5D

%veat 1975 22.7 3A.8 55.6 69.6 79.4 84.5 94.9 96.2 97.9 tOO

46.4 65.5 80.5 91.8 98.1 99.3 99.5 99.6 100%Veat 1976

E

collsvs
Text Box

Utilization of the computer center by the objectives and

appropriation accounts for the month of October
rBM 370/165

equivalent timo in hours

12O General lnfrastructure 59.3130

130 Scientific and Technical Support 0.7348

143 ESSOR Reactor 7.0843

145 Medium Activity Laboratory 0.0194

146 Central Bureau for Nuclear Measurements (CBNM)

191 Technical Support to Commission Activities 3.1564

193 Technlcal Support to Power Stations

211 Waste Disposal 1.6620

213 Materials Science and Basic Research on Materials 2.5879

214 Hydrogen 0.8581

221 Reactor Safety 50.4739

222 Applied lnformatics 50.9031

223 lnformation Analysis Services 22.4851

230 European lnformatics Network 2.3795

251 Standards and Reference Materials 7.6376

252 Protection of the Environment 11.1125

253 Remote Sensing of Earth's Resources 18.0220

254 New Technologies

412 Fissile Materials Control 0.7664

TOTAL 243.il43

190 Services to external Users 30.7908

E

TOTAL 274.4351

EOUIVALENT TIME TABLE FOR ALL JOBS OF THE ADMINISTRATTON - MOITTHLY AND CUMULATTVE STATISTIG
January February March April May June July August September October November December

Year 1975 U 55 62 73
accumulation 64 119 181 254

62 51 59 74
523 574 6g' 707

62
316

61
377

%
471

70
777

s9
712

77 57 64 73 54 61

W 4Ol /t65 538 592 653
82

166
101
267

Year 1976 U
accumulation U

EOUIVALENT TIME TABLE FOR THE JOBS OF ALL THE OBJECTTVES - MONTHLY AND CUMULATIVE STATISTI6
January February March April May July August September October November D€cember

178
178

171
349

168
517

190
1868

176
2044

166
991

166
68i,

142
425

228 137
1219 1356

152 170
1508 1678

Year 1975
accumulation

Year 1976
accumulation

248
1431

206 237
206 443

270
713

241
9Br

229
1 18:t

249 ?23
1680 1903

233 24
2136 2380

EOUIVALENT TIME TABLE FOR THE JOBS OF THE EXTERNAL USERS. MONTHLY AND CUMULATIVE STATISTTCS

January February March April May July August Ssptember October November December

18
267

32
124

31
159

26
185

19
237

12
249

15 18
2o,0 21A

2A 24 28
4/.6896

16
16

Year 1975
accumulation

Year 1976
accumulation

18
18

19
37

25
106

32
138

14
152

11

163
31

221
28 16
65 81

27
190

EOUIVALENT TIME TABLE FOR ALL JOBS.OF ALL USERS - MONTHLY AND CUMULATIVE STATISTICS

January February March April May July August September October November December

214
214

216
430

222
1265

266
1531

208
2fi7

166
1697

190
1043

208
638

215
853

181 2o2
1878 2080

219
2299

Year 1975
accumulation

Year 1976
accumulation

2A1
1655

233
233

271
504

313
817

2AO
1097

277
1374

260 245
1915 2160

273 2872433 2720

June

June

June

SHELTRAN : An Example of Application

A.A. Pollicini

lntroduction

Structurd Programming in a FORTRAN Environment

There is a basic need for structured programming techniques: the possi-

bility of building program segments by means of concatenation, selection

and iteration.

The FORTRAN control statements allow users with too freedom in im-

plementing control patterns. lndeed there are some negative restrictions:

- there are no closed structures (1 entry, 1 normal exit),

- the logical lF has not a frame that intrinsically includesthealternative
way;

and some harmful extensions:

- the DO structure may allow an unlimited number of exits,

- all type of GO TO statements may permit branchs anywhere in the
program;

furthermore there are not logical parentheses like begin end to enclose

blocks of statements.

The Control Structures Simulation Appruch

The simplest way to go round these difficulties is the definition of a set of
programming recommendations which show how simulate inexisting eon-

trol structures by means of existing control statements.

Although it is .not the goal of this presentation, the simulation of

structured pattern is a very interesting technique.

Nevertheless it is well known that recommendations are rarely succesful

because it is necessary to enforce oneself a certain discipline to folloar

them.

The Precompiler APProach

The introduction of a precompilation step within a job, implies some

drawbacks concerning time overhead, indirect path when interpreting com-

piler diagnostics, increase of rules to be observed etc'

But in this context, because the lack of structuring means in FORTHAN

l-anguage, it can be an useful technique as proved by the proliferation of
structured F O RTRAN precompilers.

lndeed a list of 69 such tools has been established.

one of them, the SHELTHAN precompiler, is available for use at the lspra

Computing Centre since November 1975.

t,,l

A bri€f description of the language and an example of use is presented

hereafter.

Dercription of the SHELTRAN Language

Control Structures

To inhibit the unrestraint'use of branchs, the statement label is illegal in
SHELTRAN, except for the FORMAT statements.

This fuct implies that also the FORTRAN statements which refer to sta-
tement label (e.9. control statements) become illegal.

Of course, a set of suitable closed control structures is provided.
Notice that statement labels must be less than 10000.

SELECT€ASEOTH ER.CSE LECT

lF p

THEN
block c

kme I
L orocr< P J

CIF

IF.THEN-ELSE-CIF

SELECT
CASE

l-cnsr

I
ItotHeR

expression
nr[,nz, .'. ,nj]
block a
mr[,mz, ... , mk]l
block B I

l
I block c.r]

CSELECT

@

WHILE.XWHILE.CWHILE

HEPEAT.XREPEAT.UNTIL

WH ILE P

block o

I xwHrLE]
block P

CWHILE

REPEAT
block o

I xREPEAT]
block P

UNTIL P

E

--'t

-l Irr ltlr
-l I

I_li
, lt

Ir

!exrr

L___ --J

collsvs
Text Box

collsvs
Text Box

FOR.XFORCFOR

FOR iv = n1, nz [, nr]
block a

lxFoRl
block p

CFOR

The Proedure Conept

The SHELTRAN Language introduces into the FORTRAN environment,
the facility of procedure definition, well known in other programming
languages.

A SHELTRAN procedure is a set of statement which can be called for
execution from several points of the program unit (MAlN, SUBROUTINE
or FUNCTION) which defines it.
For this reason, the procedure has no parameters and can access all va-
riables and arrays defined in the program unit that contains it.
A procedure is defined as follows:

PROC name
statements

CPROC

and can be referred to by the keyword PERFOBM:

l#ll----+---J

PERFORM name

@l

collsvs
Text Box

Editing Facilities

The SHE LTRAN precompiler includes three output facilities:

- Note. That is a kind of comment card, whose content will be printed on

the same line of the next instruction, starting from column 82.

A Note card must have N in column 1.

- Eject. This command causes the next instruction to be printed on a new
page.

An Eject card must have E in column 1 and may contain a

comment which will be printed as header of the new page.

- lndentation. The precompiler may edit the source statements, with
automatic indentation of nested control structures.

A detailed description of the Language can be found in:

G.A. Croes, F. Deckers
Aspects of structured programming in FORTRAN
lnformatie jaargang 17 n. 3 1975 (pp. 121,131l..

A copy of this paper, as well as other documentation can be requested at

the EUROCOPI secretary.

The Application Example

The Problem

Generate all Wuences of N charrcterc, dtosen from an alphabet of
/VS symbols, such that no two immediately adiacent subsequenca are
qual.
This example is a generalization of an algorithm presented by Niklaus
Wirth in his book "Systematic Programming" and developed in several

steps, using the PASCAL Programming Language.

The Daign Phase

The initial framework is a global and abstract definition of the solving
program, in which the logic layout of the control flow is already expressed

by means of the keywords of the SHELTRAN structures, but the oper-
ations are described by synthetical phrases which point out logical and
self-contained f unctions.

Such a design language is also called pseudocode.

E

DEFINITION OF THE PROGRAM "GENSO"

Get the alphabet.
Get the length of the sequence.

lF the length is within the dimension limit,
THEN

Set to zero the counter of the generated sequences.

Set a counter to define a null sequence.

Declare valid the null sequence.

REPEAT
lF the sequence is valid,

THEN
lF the sequence has reached the fixed length,

THEN
Write the sequence.

lncrease by 1 the counter of the generated sequences.
Change the sequence.

E LSE

CIF
Extend the sequence appending one character.

ELSE
Chanp the sequence.

ctF
Declare valid a priori the new sequence.
Check the sequence for validity.

UNTIL all valid sequences have been generated.

Write the total number of valid sequence of the fixed length.
ELSE
Write a message to point out the input inconsistence.

CIF
END PROGRAM.

This global definition of the program contains the formulation of a set of
functions to be performed. While many of them can be directly coded into
one or more FORTRAN statements, there are three functions which imply
some complex operations on the actual sequence.

A more detailed definition of these functions will be given below and
represents the first refinement of the problem definition.

tr

collsvs
Text Box

collsvs
Text Box

Function EXTEND

Append one character to the right of the actual sequence'

Assign the initial symbol of the alphabet to the new character'

END function.

Function CHANGE

WHILE the rightmost character of the sequence is equal to the

terminal symbol of the alphabet,

lF the character under consideration is in the leftmost position,

THEN
Point out that no more sequence can be generated.

XWHILE
E LSE.

Decrease by one the sequence length, ignoring the
rightmost character.

CIF
CWH ILE
lF valid sequences can still be generated,

TH EN

Look for what alphabet symbol is contained in the rightmost
character.

Replace the actual symbol with its successor within the alphabet.

CIF
END function.

tr

Function CHECK
Take into account a null subfield.
Set the boundary of the largest subfield.
WHILE sequence is potentially valid and subfields are shorter than

the boundary,
lncrease by one the subfield length.
Point to the rightmost position of the subfields.
REPEAT

Locate the homologous characters of the two subfields
to be verified.

Declare a priori that the two subfields are different.
lF thecharactersunder consideration are equal,

THEN
Declare the two subfields potentially equal.

CIF
Point to the contiguous position of the subfields.

UNTIL subfields are different or subfields have reached
the boundary.

CWHILE
END function.

This first refinement level of the functions, for the problem is small, can
directly be coded into FORTRAN statements.
But in practice, more levels can be needed before coding the program
definition in source language.

The Coding Phase

At this point, coding the program in SHELTRAN Language is an easy task
because the program structure is already supplied (according to the syntax
of the language) by the program design in pseudo-code.
It will suffice to substitute each statement in natural language with
SHELTRAN statements to obtain the source program listed below, which
can be processed by the SHE LTRAN precompiler.

E

YTRSTIN I IAPR T{ I SHTTTI'AIi P'GT I

'TR6[T
TH€ SHELIRAN IRTNSLAIOR IS A PROPTI{TV OF SIPX 8V THE hAGUC

s l,l.t{o
c yilIs proGRAr ts A sotuTloN 0F IHt PRo8tEtr..
C. TINII'ATL STAI'FNCTS OF TF}iGtr| N hIIH hO EQUAI. ADJACENT SUE.StQUEilCTC ACC TROI{G TO I}IE AtGORItH'{S OESCRIIIEO BY NII(IAUS I'IRIH IN..
c - sysrtrarlc PRU(;t{lr{r,rlxG PRENilCE-HILIrFirGLErGO0 C[lFFS, 19731PP.lt2-
C otrf itsl,_tN ALFI {l r sl Sltoctcrt Goouitl{D

tOC FOR!nIll4.cIr(All
600 F0*"tal(rtx,(Hs . ;Bl ll601 |o{tiaIl//i0x.13HlotrL NU|IBER 0F Urtl0 scouElrcES 'rt(l602

'ORIII(TOXT5llHINPIJI
PARII{ETER il EXCEEOS IhE SEQT,EI{CE SIIEO fITCO

I Ar 6.1
LH '5L llr{r
tlhAI!l LR, 5001 NSr lAtFl I Irl.l rt{SD
Rf AOI LR.500l r{
tF {.rt.8
IHTN

{nO
NT(lIrO
GtlrlO.. ltlU€ o
fYOr.fALSC.
iTPEA I

tF G00n
IrtfN

lF {.E0.1{
IHEN

ItRIIE lLhr600l I Sl Il rl.lrl{l
NIO l.N t0?r I
PE rF ORII CHA{GE

ETSE, PtRFOf,I't E IICI{O
CIF

ET SE
PfRFORT CHANG€

clF
G.ll)O..IRUE.
PhT FURT CH€CI(

UNI IT TND
ILlItlLhr60ll ,rl0t

€t sE
IRI IElLhr602l'

ctF
sroP

2,
a,
6I
i
9

l0
lll{Ir
l5l6
l?
l8
li
2l
?t2l
21
25
29
3l
il
tittl
{2{ta,
a9rl,,
5{5'

vExtlot I lAPn l+ I

tlnc€l fuilcllorl..ErlEt{o
s Ir.No

t6 PR,Od Er IEto
5' ilrHll
SE Slnl.ALFlll
,9 CPROC

sHC trnlt
tHE, SEOOENCE TPPEilOIilG I CHANTCTER.

9rct 2

@

PIGI I
rIGHI[osr chlRlcIER.

PTG: .

FOR!rril iurEEnttc

YEnStot I
t lnGC Isll.rto

60cl
6a
66
666'ct
c9
,o,r
?t,t,,
76
?e
00
02
6ttt

yErst(x IIAPNII sxEL[nli
l$G€l fuiEttoit..GHEct rl{€ sEcwrce FoR ylltottv.
3lr.ilo

at Pnoc clt€cr0C trot7 tlHri/2t0 rH ILE GOOO.ll(,.l. L I.HH9l L.til9? 1"0 -
9' R,T PFAT9t (lr{-l95 X,Z.rl-L- t96 GOoD.iIitE.9' lF SlKll.E0.sl(2199 IHF

'{99 GO(lr.FlLSE.100 c tFlot I -llllo2 l'lrll Gooo.ot.l.E0.LIO{ C III IL Elot cPROc100 EfiD

Er{o 0i ScctEiat
OPI lOllS lil Ef FECt - t ttrEC0Ut{tr!5rLlf{EIlDIH.l!l o So.ltGCo
0 ERnors 10, tArcEt slArExEalts

sHEt lnlrlrPr ,a I

clF
C'TOC

FUt*,I loil..SHonIEill t f . frEC0ED, ailo nEptlcE

ttoc our{G€rHttF itil.lc.rrF rr{st
Dt€il

Eltl0'' fnU€'
IIHILE

EL SE
ltrH- l

ctF
THIT EF .tlol.ENO
XCil(. IIHttE SlHl.r{€.lLFltl(rfol

CraHl LE
St rl I rltF l(o ll

@

Ex*ution and Resulls

Users are provided with two procedures that invoke the precompiler as first
step:

- Precompilation and compilation (FORTRAN H)

II EXEC SHPHC

//PRC.SYSIN DD +

{rorr.. in SHELTRAN language

l* r

- Precompilation, compilation (FORTRAN H), Link-edit and

executi on

II EXEC SHPHCLG
//PRC.SYSIN DD *(.

j source in SHELTRAN language

l*
//GO.SYSIN DD *

I data

l*t
Both procedures must be executed in clas 3 because of memory requi-
rement of the compiler FORTRAN H.

The program described here above has been executed with the follow
ing data:

N - Q length of the sequences

NS = t number of alphabet symbols

X Y Z chosensymbols.

The output obtained is reported below:

TOIAT M,IISER OF YALIO SEOUENCES . 18

: XYI2r IYIXr XYZY- xZxYr ITYXt \LYZr YXYIr YXZXi YX,Yr Y,XYr Ylxfr YIYX. ZXYXr IXYI. lIlY'r IYXYr ZYXZ. ZYIX

E

f * ** f f ** f * ** * * ** ** * * * * *.* *t *
*

Nous informons nos lecteurs que, conune pr6vu, Computing Centre ** Ne*sletter ne paraitra pas en D6cembre. A tous, la R6daction prt."nt" *
t ses meilleurs voeux pour Noel et le Nouvel An! *
* We inform our readers that, as formerly planned, the December issue of *
* Computing Centre Newsletter will not be available. The Editorial Board *
* whishes to all, a very Merry Christmas and a Happy New Year! *
* *t ** * *. * t * * * * * * ** * * * * * * * * * *.

@

collsvs
Text Box

collsvs
Text Box

Les personnes int6ress6es et d6sireuses de recevoir r6gulidre'

ment "Computing Centre Newsletter" sont pri6es de remplir
le bulletin suivant et de l'envoyer d:

Mme R. Porta
Bibliothdque des Programmec

Bet.36, Tsl. 760

Nom

Adresse

Tel,

The Persons interested in receiving regularly the "Computing
Centre Newsletter" are requested to fill out the following
form and to send it to:

Mrs R. Porta
Program Library
Building 36, Tel. 760

Name .

Address:.

Tel.

collsvs
Text Box

