

Coments

Editorial note

Introduction to data base management systems

Introduction to STAIRS

The COREA system

Statistics on computer utilization — October

Utilization by objectives and accounts — October

Table of equivalenttime, summary per month
and cumulative

SHELTRAN, an example of application

1"
16
17

18
19

Note of the Editor Note de la Rédaction

The present Newsletter will be Le présent Bulletin sera publié mensuelle-

published monthly except for August ment excepté durant les mois d’ao0t et

and December. décembre,

The Newsletter will include: Le Bulletin traitera des:

o Developments, changes, uses of e Développements, changements et
installations emplol des installations

o Announcements, news and abstracts e Avis, nouvelles et résumés concernant
on initiatives and accomplishments. les initiatives et les réalisations.

The Editor thanks in advance those who La Rédaction remercie d'avance ceux

will want to contribute to the News- qui voudront bien contribuer au Bulletin

letter by sending articles in English or en envoyant des articles en anglais ou

French to one of the following persons francais & I'un des membres du Comité

of the Editorial Board. de Rédaction.

Editorial Board / Comité de Rédaction

S.R. Gabbai, D.G. ispra
H. de Wolde, C.C. Ispra
C. Pigni, C.C. Ispra
J. Pire, C.C. Ispra

Editor : Sylvia R. Gabbai
Layout: Paul De Hoe
Graphical and Printing Workshop, JRC Ispra

Acknowledgement should be given for their technical support to Mr. E. Eiselt,
Mrs. M.G. Giaretta, Mrs. M. Van Andel, Mr. G. Clivio, A. Margnini, G. Zurlo

Introduction to Data Base Management Systems
A. Borella, S. Capobianchi

Reasons for Choosing a DBMS

The necessity of collecting an ever greater quantity of information relating
to the various fields of activity of the Centre (technical scientific, fi-
nancial, personnel administration, etc.) to be placed at the disposal of the
various users for processing in different ways in accordance with specific
requirements, has led the Informatics personnel to study and test some
data processing systems for the construction and management of data
banks (DBMS, Data Base Management System).

By data bank is meant a set of data stored just once and interconnected by
logical and physical relationships. Such relationships, which form part of
the bank, are defined and managed in a way independent of the appli-
cation and of the data stored.

With the traditional information filing'methods, the need to process a
specific datum together with complementary data from different sources
required redundancy of data and considerable programming effort. Addi-
tionally the lack of correlation between data from different sources failed
to take full advantage of the data themselves.

Present integrated data management techniques (DBMS) have solved most
of the difficulties of traditional methods.
Briefly, the most interesting characteristics of DBMS are:

a) the simple, safe, uniform and documented management of large
amounts of data and their logical relationships,

b) the elimination of files directed to specific uses, by the use of an
integrated system in which data are not repeated but stored just once,
so that the data supplied can be up-dated and accurately controlled;

¢) the availability of the data for interactive processing using a standar-
dised and easy to apply Teleprocessing system; this allows a wider and
more intensive use of the TP in the processing and inquiry of the data
stored in a more sophisticated way;

d) the creation of data structured in accordance with physical and logical
hierarchies with the possibility of modifying the logic structure on the
basis of possible new requirements that necessitate a different view of
the structure;

e} the maximum possible independence of the programs from the physical
structure of the data storage in mass memories. The program can, in
fact, use the logical structure of the data instead of the physical; this
makes it possible to add {with caution) new types of information to
the structures, in a way transparent to the already existing applications
programs which are not directly concerned with the new data. Natu-
rally this transparency can be used in all the applications programs
which process data existing from the start in the physical structure;
such programs need only know the data that concern them and take no
account of the others.

f) The simultaneous access to the bank by more than one user. Access 10
data of a confidential nature can be protected by appropriate keys and
consequently prevented for non-authorised users.

All these characteristics are so useful that it is difficult to imagine a future
development of informatics in the management of arge volumes of inte-
grated data that prescinds the use of DBMS, It is clear that they entail a
greater amount of work in the initial phase and require a delicate tran-
sition period in passing from a traditional environment (based on classical
files) to a DB environment, but it is also clear that an ‘a priori’ rejection of
DB methodology would be quite contrary to the line of development of
informatics.

It must, however, be remembered that while DBMS techniques are extre-
mely helpful in the study and solution of particular applications they do
not remove the necessity for specific programming for everything which
does not concern the management of data. Its use requires an accurate
analysis of the problem to be solved which takes into account the requi-
rements of the correlations between the data. If such analysis is not based
on adequate technical preparation, the resulting structure could, from an
efficiency point of view, greatly degrade the performance of the system
giving rise to unacceptable times and costs.

Description of the DMBS Installed at Ispra: 1BM’s IMS

Having analysed the DBMSs at present offered by software manufacturers
from both a cost/performance and a reliability and maintenance point of
view, it was decided to try IBM's IMS {Information Management System).

From an experimental phase on several data banks {reliability data base,
medical service, etc.) we then passed on to an operative phase {personnel
and financial DBs).

The IMS installed at the Ispra Computer Centre was introduced into the
environment shown in Fig, 1.

0S MFT/MVT
h ACCESS METHO ‘
U SAM r DAM ISAM BTAM D g
Awm
s i TI
B E :\l
IMS v2
E T s
-
D g8 T
S DL1 oC | R
R I $ A A
M} s g
s A 8 o
c S Sa ER
o B v APPLICATIONS | B
_/ :3 . - PROGRAMS _/
M A3
s A BATCH DC

The basic IMS software is composed of two parts:

— the first, called DL1, for the management of the files in the data bases,

— the second, called DC {data communication), for the management of
application programs, interactive or non-interactive.

Further complementary software has gradually been installed to produce

an “environment’’ more suitable for users.

The use of a DBMS raises two kinds of problems:

e to bring about a centralised coordination of the DBMS, indispensable
for the maintenance, development and safety of an IMS, DB/DC environ-
ment. In particular, this centralised DB/DC environment brings out some
aspects relating to controi and availability:

— of the data, their specifications and physical and logical connections;

— of transactions (inquiries and answers in an interactive environment);

— of the authorisations to use the resources (data, terminals).

All these functions in reality devolve onto a “logical’” person, the Data
Base Administrator, who is responsible for the physical safety of the DBs
and their definitions as well as for the distribution of the resources con-
troled by the DBMS and the enforcement of the regulations concerning
the use of the system,

In order to help the DBA in his activities, an IBM product-program, the
data dictionary, has been installed which, by means of the creation, up-
dating and inquiry of various dictionaries (of the data, data and program
descriptive blocks, user's libraries, formats}, automatically supplies the
DBA with documentary information on the state of the system.

e To make the system easy to use while safeguarding the integrity of the
DBs for each user. It is, in fact, the task of the user to analyse his parti-
cular problem, check with the DBA whether the necessary information
already exists on the operative DBs and define the new information to be
added and the logical interconnection; once this phase has been achieved,
thy programmer can devote himself exclusively to the programming and
tests without having to concern himself about the structure of the data. He
can, in fact, use the necessary data independent of their location and
connection in the bank.

The IMS allows the use of programming languages such as COBOL, PL1
and Assembler by means of a direct interface via “Call”.

To facilitate the task of the programmers further, two auxiliary product-
programs have been installed, namely:

— COBIMS, (COBOL IMS), a COBOL pre-compiler possessing the state-
ments necessary for the definition and call of the IMS function, and for
the management of messages and errors while the programs are running.
Not only does it generate the parts of the COBOL program necessary
for the above functions, but introduces and verifies the definitions of
the different components of the data bases, having as a secondary but
no less important effect that of standardising the definition modules.

— the BTS (Batch Terminal System) with its 3270 formatting feature, isa
program for simulating the Data Communication typical functions, The
BTS allows interactive programs to be run in batch mode.

The BTS accepts the card reader as input instead of the keyboard and
the printer as output instead of the video screen, 1t thus simulates the
characteristics of the normal terminals, such as the IBM 3270, supply-
ing print-outs that represent the contents of the screen in its input and
output conditions.

Moreover, the BTS provides analytical and synthetic lists to check the
correctness and optimisation of the programs. Thus, this product-
program allows conversational programs to be developed without inter-
ference with the normal run of work already in production,

Introduction to STAIRS

S. Perschke, G. Fattori

Introduction

Recently the IBM program product STAIRS (Storage and Information
Retrieval Systems) was implemented on our computer. STAIRS is a
package for the creation, maintenance and on-line inquiry of a particular
class of data bases in which the essential part of the information is re-
corded in natural language. However, it permits the structuring of the
information contained in a "document”, which is the basic unit of data,
and the handling of formatted data.

The version implemented at Ispra uses the data communication facility of
IMS (IMS/DC) as time sharing monitor while the data base creation and
maintenance programs operate in batch mode.

STAIRS is to be used within the Ispra Establishment on the one hand for
experimental work in automatic documentation and on the other hand for
the creation of some of the data banks within the program of the JRC,

Data Base Structure

The structure and inter-relation of the different files which compose the
data base is shown below,

Dictionary

This is an indexed sequential data set whose access keys are the keywords
extracted from the source data. The dictionary is the main access path to
the data at inquiry time, and the search program includes facilities to
permit access to terms whaose exact spelling is not known, Each record of
the dictionary contains the total number of occurrences of the term, the
number of documents in which it is contained and the address of the
associated inverted file entry.

Inverted file

This is a direct access file which contains a vector of pointers to the
documents in which a word occurs along with positional information (pa-
ragraph, sentence, word number).

Text index

This is a direct access data set which contains mainly the formatted fields
and information about the document (privacy, etc.).

collsvs
Text Box

collsvs
Text Box

INVERTED FILE

Conrag,

LETTER puIR CONTROLS ND. o |t .] PeLT
}Mvu ';;/ :own ogeloge 1% ‘
Con (i
COurng, :’.‘;’"' ENTRIES M conth
oy [Soems T :

\u 5 el R
‘:’t' xlew .
Yoy

IRELATIVE [pana- [SEN
I00C usg 1 1ecE

Cagg
k'ﬂmm(n

me lros Lo

collsvs
Text Box

Text

This is a direct access data set which contains those data which are to be
displayed or printed after search.

One of the interesting features of the STAIRS concept is the possibility of
combining up to 16 (homogeneous) da bases which, in connection with
the very articulated protection and privacy mechanism, can be used to
control access to the single datum,

[TITY)
QTR
COBRIR®:

YR70
QTR1
QT2
QTR3

DBCB2 s

QTR2

pECEh

QTRA

Document Structuring and Search Mechanisms
A document which is the unit of data to be retrieved is subdivided into:

— paragraphs
— sentences
— formatted fields.

Names can be associated with the paragraphs (or paragraph groups) and
with the formatted fields.

collsvs
Text Box

As already stated above, the principal path of access to a data base is via
dictionary and inverted file, This mode of inquiry is called “SEARCH".

Search terms or statements can be combined with each other:

a) with Boolean operators (AND, OR, NOT),

b) with positional operators (SAME - same paragraph, WITH - same sen-
tence, ADJ - same word order).

The range of the search can be limited through the indication of particular

paragraph in which a search term must or must not be located.

The access to the ‘“‘formatted’” field, for which STAIRS provides the

“SELECT” mode, is to be considered a secondary path of access to the

data base, because it implies a sequential scan of the entire TEXT INDEX

data set, which might degrade the response time considerably.

It'is therefore advisable to retrieve a subset of the data base with the

search mode, before one enters the select mode.

The advantage of the select mode over the search mode is the availability,

in addition to the Boolean operators, of relational operators (EQ - equal,

NE - not equal, GT - greater than, LT - less than, WL - within limits, OL -

outside limits, etc.) which makes it particularly suitable for numerical

values. Data in the formatted fields can also be modified on-line during a

search session. '

Conclusion

In comparison with so-called Data Base Management Systems (like IMS,
TOTAL, etc.), STAIRS is a package, i.e. a set of programs with well-
defined functions and a certain number of options among which one can
choose when a new data base is being defined and generated.

The great advantage of such a solution is that the effort of designing angd
creating a data base is minimized, because it involves virtually no program-
ming, but one is limited in the possibilities of structuring the data and of
defining access and transaction mechanisms.

It is therefore only through an examination of the information which is to
constitute the data nase, and of the use which is to be made of it that one
can decide whether the use of this package is feasible for some application
or whether one should embark on the effort and expense necessary to
create a data bank using the services offered by a generalized DBMS,

The COREA System

G. Crestoni*), G. Gaggero, A.A. Pollicini

Introduction

The main purpose of the COREA system fits in the spirit of data acquisi-
tion and manipulation by terminal, avoiding use of punched cards, as
stated in the article of Mr. Pire, published in the Newsletter No. 4.

It is planned that the COREA system will come into operation next
January.

The next issue of the Newsletter will report some examples of application.

General Description

The COREA system has been developed to provide the users of the JRC
computing installation with a simple and flexible tool for using a library of
application programs from remote terminals.

The system works under the local conversational extension of HASP-2,
TELEUR.

Outline of Facilities

The system provides the user with the following basic facilities:

— creation and editing of private data-files (hereafter called |nput-tasks”’)
to be used as input data to library programs;

— submission of jobs asking for execution of a library program, using an in-
put-task as case data and storing results into an user data-file
{hereafter called "'Output-task”);

— selective inspection of the content of an Output-task.

The editing facilities can operate at line, character string or word level.

A special facility allows formatted data to be entered as list of items which
is then edited according to an user specified format.

*} PRAXIS CALCOLO Spa, Milano

COREA Files

The COREA system operates, from the user point of view, on four logical
files:

— the Input-Task Fite, (ITF)

— the Output-Task File, (OTF)

— the Library-Procedure File, (LPF)

— the Work File, (WF)

While the 1TF, OTF, and LPF files are permanent files, the WF file is
temporary, i.e. it exists only for the duration of a COREA session.

The Input-Task File

The ITF file contains all the user Input-tasks.

An Input-task is a named set of text-lines,

Lines are sequentially numbered from 1 to 7.200, which is the maximum
number of lines in a task.

Each text-line contains 80 alphanumeric characters and, for this reason, it
may also be referred to as a ““card”’.

The Output-Task File

The OTF file contains all the user Gutput-tasks.

An Output-task is a named set of text-lines.

Lines are sequentially numbered from 1 to the maximum number of lines
in an Output-task.

Each text-line can contain a maximum of 133 alphanumeric characters.

The Library-Procedure File)

The LPF file contains all the JCL procedures for executing the COREA
library programs,

From the user point of view the LPF is a read-only file, However, the user
is allowed to make temporary changes to a procedure for an individual job
submission,

The Work File

The WF file can contain different things during a COREA session.

It can be empty or contain either:

— a set of text-lines which have been entered but not yet used to up-
date an input-task; or

— alibrary procedure which has been called for.

collsvs
Text Box

collsvs
Text Box

COREA Language

The user can enter “‘commands’’ and ‘‘text-lines”.
An easy-to-use and extensive set of commands is available,

Command syntax:
Command-keyword [parameter - list]
Where:

Command-keyword consists of a “*flag character”” immediately
followed by one of the words which
form the COREA command dictionary.
Parameter-list is a list of parameters in accordance with
the individual command syntax.
Any of the following characters $. /) can be used as flag character,
but the character which is used as flag in the first command of a session is
recognized as flag for the duration of that session.
The command-keyword and the parameter-list must be separed by at least
one space.
The parameter-list can consist of one or more parameters. In the latter
case, they are separated by a comma.,
A parameter can have a subparameter, in which case the subparameter is
enclosed in parantheses and must immediately follow the parameter.

The COREA command-dictionary contains the following words:

ALTER FORMAT LIST PROGRAM UNFORMAT
COPY HELP MODIFY REPLACE WRITE
DELETE INSERT NAME STOP

EXECUTE JUSTIFY OUTPUT TASK

All command-words may be abbreviated by typing the first character only.
However all the characters typed are checked for correctness.

Text-line syntax:

character-string | item-list
Where :
character-string is any string of alphanumeric characters.
It can consist of up to 80 characters.
item-list is a list of items in accordance with the

rules for building a formatted text-line.

collsvs
Text Box

collsvs
Text Box

The first character of a text-line cannot be the character chosen as flag-
character for the session. This restriction is imposed by the necessity-to
distinguish between command and text-lines.

The alternative forms ‘‘character-string’”’ and “item-list”’ can be used for
building unformatted and formatted text-lines respectively.

Commands Classification

Depending on the operation to be performed and the file(s) concerned, the
commands can be grouped into five classes.

Furthermore, there exist three system commands, which provide analysis
facilities to locate and remove system bugs.

Class of Commands for General Purposes

NAME To open the system and to allow user to access Corea-
files.

TASK To identify a user Input or Output task to be activated
for further operations.

HELP To guide the user in learning system use and error
recovery.

STOP To close the system.

Class of Commands to Introduce text-lines into the WF

FORMAT To declare a Fortran-format to build formatted text-lines.
JUSTIFY To declare a tabulation to build formatted text-lines.
UNFORMAT To introduce unformatted character strings.
MODIFY To modify an incorrect text-line in the WF,

Class of Commands to Operate on Input-Tasks

INSERT To insert text-lines into the active input-task.
REPLACE To replace text-lines of the active input-task.
DELETE To delete texi-lines from the active input-task.
ALTER To substitute a string of characters within a text-line.
COPY To copy all or part of an input-task.

LIST To list all or part of the active input-task.

Class of Commands for Job Submission

PROGRAM To invoke a procedure to execute a library program.
EXECUTE To perform job submission from the terminal.

Class of Commands to Operate on Output-Tasks

OUTPUT To analyse the content of the active output-task.
WRITE To print the active output-task.

s A course for potential users of the COREA system will be held
on January 25th,

s A User’s Manual will be made available to all interested people
by the time of the course.

collsvs
Text Box

collsvs
Text Box

Statistics of computing installation utilization

Report of computing installation exploitation
for the month of October

YEAR 1976 YEAR 1975
Number of workingdays —8m8 8 — —— 21.50d 23 d
Work hours from 8.00 to 24.00or —— 16.00 h 9.25 h
Duration of scheduled maintenance ~——— 29.81 h 19.50 h
Duration of unexpected maintenance 2.25h 9.25 h
Total maintenance time 32.06 h 28.75 h
Total exploitation time 311.11 h 197.25 h
CPU time in problem mode —— — 119.64 h 76.68 h
Teleprocessing:
CPU time 2.38 h 0.89 h
1/0 number 443,000 573,000
 Equivalent time 3.10 h 4.90 h
Elapsed time 183.00 h 87.40 h
Batch processing:
Number of jobs 10,194 8,291
Number of cards read 2867,000 2869,000
Number of cards punched ——mno«—— 200,000 241,000
Number of lines printed 26160,000 21504,000
Number of pages printed 574,000 494,000

BATCH PROCESSING DISTRIBUTION BY CLASS

A 1 2 3 4 5 D TOTAL

Number of jobs 1322 3222 1460 2218 509 181 591 9503
Elapsed time (hrs} 23 121 98 189 82 42 57 612
CPU time (hrs) 0.7 11 21 36 29 12 6.5 116.2
Equivalent time (hrs) 9 31 43 91 41 22 30 267
Turn around time (hrs) 0.3 0.5 06 07 13 1.9 09 0.6

PERCENTAGE OF JOBS FINISHED IN LESS THAN

TIME 1 300 th 2h 4h gh 1D 2D 3D gD
% year 1975 22,7 38.8 65.6 69.6 79.4 84.5 94.8 96.2 97.9 100
% year 1976 46.4 65.5 80.5 91.8 98.1 99.3 99.5 99.6 100

collsvs
Text Box

Utilization of the computer center by the objectives and
appropriation accounts for the month of October

1BM 370/165
equivalent time in hours

120 General Infrastructure 59.3130
130 Scientific and Technical Support 0.7348
143 ESSOR Reactor 7.0843
145 Medium Activity Laboratory 0.0194
146 Central Bureau for Nuclear Measurements (CBNM) -
191 Technical Support to Commission Activities 3.1564
193 Technical Support to Power Stations
211 Waste Disposal 1.6620
213 Materials Science and Basic Research on Materials 2.5879
214 Hydrogen _ 0.8581
221 Reactor Safety 50.4739
222 Applied Informatics 50.9031
223 information Analysis Services 22.4851
230 European Informatics Network 2.3795
251 Standards and Reference Materials 7.6376
252 Protection of the Environment 11.1125
253 Remote Sensing of Earth’s Resources 18.0220
254 New Technologies ’ -
412 Fissile Materials Control 0.7664
TOTAL 243.6443
190 Services to external Users 30.7908
TOTAL 274.4351

EQUIVALENT TIME TABLE FOR ALL JOBS OF THE ADMINISTRATION — MONTHLY AND CUMULATIVE STATISTICS

January February March April May June July August September October November December
Year 1975 64 55 62 73 62 61 94 62 51 59 74 70
accumulation 64 119 181 254 316 377 471 6523 574 633 707 777
Year 1976 84 82 101 77 57 64 73 54 61 59
accumulation 84 166 267 344 401 465 6538 592 653 712
EQUIVALENT TIME TABLE FOR THE JOBS OF ALL THE OBJECTIVES — MONTHLY AND CUMULATIVE STATISTICS
January February March April May June July August September October November December
Year 1975 178 171 168 166 142 166 228 137 152 170 190 176
accumulation 178 349 517 683 825 991 1219 1356 1508 1678 1868 2044
Year 1976 206 237 270 241 229 248 249 223 233 244
accumulation 206 443 713 954 1183 1431 1680 1903 2136 2380
EQUIVALENT TIME TABLE FOR THE JOBS OF THE EXTERNAL USERS — MONTHLY AND CUMULATIVE STATISTICS
January February March April May June July August September October November December
Year 1975 16 28 24 28 32 31 26 15 18 19 12 18
accumulation 16 44 68 96 128 159 185 200 218 237 249 267
Year 1976 18 19 28 16 25 32 14 11 27 31
accumulation 18 37 65 81 106 138 162 163 190 221
EQUIVALENT TIME TABLE FOR ALL JOBS OF ALL USERS — MONTHLY AND CUMULATIVE STATISTICS
January February March Aprit May June July August September October November December
Year 1975 214 216 208 215 190 222 266 166 181 202 219 208
accumulation 214 430 638 853 1043 1265 1531 1697 1878 2080 2299 2507
Year 1976 233 271 313 280 277 281 260 245 273 287

accumulation 233 504 817 1097 1374 1655 1915 2160 2433 2720

SHELTRAN : An Example of Application
A.A, Pollicini

Introduction

Structured Programming in a FORTRAN Environment

There is a basic need for structured programming techniques: the possi-
bility of building program segments by means of concatenation, selection
and iteration.

The FORTRAN control statements allow users with too freedom in im-

plementing control patterns. Indeed there are some negative restrictions:

— there are no closed structures (1 entry, 1 normal exit},

— the logical IF has not a frame that intrinsically includes the alternative
way;

and some harmful extensions:

— the DO structure may allow an unlimited number of exits,

— all type of GO TO statements may permit branchs anywhere in the
program;

furthermore there are not logical parentheses like begin end to enclose

blocks of statements.

The Control Structures Simulation Approach

The simplest way to go round these difficulties is the definition of a set of
programming recommendations which show how simulate inexisting eon-
trol structures by means of existing control statements.

Although it is -not the goal of this presentation, the simulation of
structured pattern is a very interesting technique.

Nevertheless it is well known that recommendations are rarely successful
because it is necessary to enforce oneself a certain discipline to follow
them,

The Precompiler Approach

The introduction of a precompilation step within a job, implies some
drawbacks concerning time overhead, indirect path when interpreting com-
piler diagrostics, increase of rules to be observed etc.
‘But in this context, because the lack of structuring means in FORTRAN
Language, it can be an useful technique as proved by the proliferation of
structured FORTRAN precompilers,

Indeed a list of 69 such tools has been established.

One of them, the SHELTRAN precompiler, is available for use at the Ispra
Computing Centre since November 1975,

A brief description of the language and an example of use is presented
hereafter.

Description of the SHELTRAN Language

Control Structures
To inhibit the unrestraint' use of branchs, the statement label is illegal in
SHELTRAN, except for the FORMAT statements.

This fact implies that also the FORTRAN statements which refer to sta-
tement label {e.g. control statements) become illegal.

Of course, a set of suitable closed control structures is provided.
Notice that statement labels must be less than 10000.

SELECT-CASE-OTHER-CSELECT

IF p
F 0 T THEN
block a
[E LSE]
block 8 block O block 6
CIF
I J

IF-THEN-ELSE-CIF

SELECT expression

0 CASE nyf.ng,....n;]
block a

CASE my[,my, ..., mg]

Py block g
OTHER
[block w]
block @ block # cos block w CSELECT
| N T . - T

WHILE-XWHILE-CWHILE

4
]

F T

block &

m
x
]

block 8

i
|
|
|
~—H
|
I
|

REPEAT-XREPEAT-UNTIL

_block &

E eXIT!

block #

WHILE o]
block &

[XWHILE]
block B
CWHILE

REPEAT
block o

[XREPEAT]
block
UNTIL p

collsvs
Text Box

collsvs
Text Box

FOR-XFOR-CFOR

=_i_v<—n1) FOR iv=n1,n2[,n3]

-7 block a
- '} [XFOR]
! } block 8
| | block @ : CFOR
} |
: EXIT |
: |

|

i block |
L___:f.___J

The Procedure Concept

The SHELTRAN Language introduces into the FORTRAN environment,
the facility of procedure definition, well known in other programming
languages.

A SHELTRAN procedure is a set of statements which can be called for
execution from several points of the program unit {(MAIN, SUBROUTINE
or FUNCTION) which defines it.

For this reason, the procedure has no parameters and can access all va-
riables and arrays defined in the program unit that contains it.

A procedure is defined as follows:

PROC name
statements
CPROC

and can be referred to by the keyword PERFORM:
PERFORM name

collsvs
Text Box

Editing Facilities
The SHELTRAN precompiler includes three output facilities:

— Note. That is a kind of comment card, whose content will be printed on
the same line of the next instruction, starting from column 82,
A Note card must have N in column 1.

— Eject. This command causes the next instruction to be printed on a new
page.
An Eject card must have E in column 1 and may contain a
comment which will be printed as header of the new page.

— Indentation. The precompiler may edit the source statements, with
automatic indentation of nested control structures,

A detailed description of the Language can be found in:

G.A. Croes, F. Deckers
Aspects of structured programming in FORTRAN
Informatie jaargang 17 n. 3 1975 (pp. 121, 131).

A copy of this paper, as well as other documentation can be requested at
the EUROCOPI secretary.

The Application Example

The Problem

Generate all sequences of N characters, chosen from an alphabet of

NS symbols, such that no two immediately adjacent subsequences are
equal.

This example is a generalization of an algorithm presented by Niklaus
Wirth in his book ‘‘Systematic Programming’ and developed in several
steps, using the PASCAL Programming Language.

The Design Phase

The initial framework is a global and abstract definition of the solving
program, in which the logic layout of the control fiow is already expressed
by means of the keywords of the SHELTRAN structures, but the oper-
ations are described by synthetical phrases which point out logical and
self-contained functions. '

Such a design language is also called pseudo-code.

DEFINITION OF THE PROGRAM “GENSQ"

Get the alphabet.
Get the length of the sequence.
IF the length is within the dimension limit,
THEN
Set to zero the counter of the generated sequences.
Set a counter to define a null sequence.
Declare valid the null sequence.
REPEAT
IF the sequence is valid,
THEN
tF the sequence has reached the fixed length,
THEN
Write the sequence.
Iincrease by 1 the counter of the generated sequences.
Change the sequence.
ELSE
Extend the sequence appending one character.
CIF
ELSE
Change the sequence.

CIF
Declare valid a priori the new sequence.
Check the sequence for validity.
UNTIL all valid sequences have been generated.
Write the total number of valid sequence of the fixed length.
ELSE)
Write a message to point out the input inconsistence,
CIF
END PROGRAM.

This global definition of the program contains the formulation of a set of
functions to be performed. While many of them can be directly coded into
one or more FORTRAN statements, there are three functions which imply
some complex operations on the actual sequence.

A more detailed definition of these functions will be given below and
represents the first refinement of the problem definition.

collsvs
Text Box

collsvs
Text Box

Function EXTEND
Append one character to the right of the actual sequence.
Assign the initial symbol of the alphabet to the new character.
END function.

Function CHANGE
WHILE the rightmost character of the sequence is equal to the
terminal symbol of the alphabet,
IFE the character under consideration is in the leftmost position,

THEN '
Point out that no more sequence can be generated.
XWHILE '

ELSE

Decrease by one the sequence length, ignoring the
rightmost character,

CIF
CWHILE
IF valid sequences can still be generated,
THEN
Look for what alphabet symbol is contained in the rightmost

character.
Replace the actual symbol with its successor within the alphabet.
CIF
END function.

Function CHECK
Take into account a null subfield.
Set the boundary of the largest subfield.
WHILE sequence is potentially valid and subfields are shorter than
the boundary,
Increase by one the subfield length.
Point to the rightmost position of the subfields.
REPEAT
Locate the homologous characters of the two subfields
to be verified.
Declare a priori that the two subfields are different.
IF the characters under consideration are equal,
THEN
Declare the two subfields potentially equal.

CIF
Point to the contiguous position of the subfields.
UNTIL subfields are different or subfields have reached
the boundary.
CWHILE
END function.

This first refinement level of the functions, for the problem is small, can
directly be coded into FORTRAN statements.

But in practice, more levels can be needed before coding the program
definition in source language.

The Coding Phase

At this point, coding the program in SHELTRAN Language is an easy task
because the program structure is already supplied (according to the syntax
of the language) by the program design in pseudo-code.

It will suffice to substitute each statement in natural language with
SHELTRAN statements to obtain the source program listed below, which
can be processed by the SHELTRAN precompiler.

GJUD=e TRUE o
Nt PPKFURN CHECK

IL END
WRITE(LWy601) NEOY
WRITE(LW,602)
CIF

VERSIIN | (APR T4) SHE L THAN PAGE
;::cka THE SHELTRAN TRANSLATOR IS A PROPERTY OF SIPM BV THE HAGUE
L 2
¢ TNIS PKUGKAN 1§ A SOLUTION OF Tue PROBLEN..
~ FIND ALL SFQUENCES OF LENGTH N wITH NO EQUAL ADJACENT SUE-SEQUENCE
ACCIRDING TO THE ALGORITHMS DESCRIBED BY NIKLAUS WIRTH IN..
- SYSTIMATIC PRUGRAMMING PRENTICE—HALL oFNGLEWCOD CLIFFS, 1973(PP .142-
2 DINENSIIN ALF(4)4S(8)
3 LOGICAL GONYLEND
4 500 FORMAT{1 4,6Xg4A1)
5 600 FORMAT(HX,4HS = ,AA1)
6 601 FORMAT(/ /10X (334 T0TAL NUMBER OF VALID SEQUENCES =, 14)
60 rg;anglox.samlupur PARAMETER N EXCEEDS ThE SEQUENCE SIZE, FIXED
Be
8 LR=S
9 LWsb
0 READ(LR,SCO) NSe{ALFE1),1s]l4NS)
] READ(LR500) N
1 nol.s
4 THEN
4 LED)]
5 NTUT«0
& Gi)0= o TRUE o
7 £NDe, FALSE.
8 REPEAT
9 I, 600D
21 HEN .
21 IF M.EQ.N
23 THEN
23 HRIYE!Lh*bool {SUD) 4I=1,N)
24 NTO
25 RFORM CHANGE
29 ELSE
3 FPtﬂFORH EXTEND
36 ELS
3 PERFORM CHANGE
41 CIf
2
3
7
9
1
3
4
5

WA D ISP

VERSION 1 (APR 74)

TARGET
STM.ND

stop

SHELTRAM PAGE 2
FUNCTION..EXTEND THE. SEQUENCE APPENDING 1 CHARACTER.

PROC EXTEND

M=M e
S{M)=ALFL1)
CPRUC

VERSION L (APR 74) SHELTRAM PAGE 3

g:acﬁa FUNCTION .o SHORTEN(IF' NEEDED) AND REPLACE THE RIGHTMOST ChARACTER.
*
o ""Eu?"?"cgln Q.ALF (NS)
1] I MR
86 £
66 ENN=, TRUE.
&1 XWHILE
68 EL SE
69 NaM-1
n G
1 wHiL
1 F_ NOT.END
75 HEN
15 K=}
76 WHILE S(M) JNE.ALF(K)
l Kakel
CWHILE
8 S(M) =ALF {K#1)
a3 CIF
84 CPROC
VERSION | (APR T4) SHELTRAN PAGE &
Tarcer FUNCTION..CHECK THE SEQUENCE FOR VALIOLTY,
s PROC CHECK
86 L=0
81 NHaM/ 2
8 WHILES GOOD.AND.L.LT.MH
9} EIR S
9 =0
b5 REPEAT
K1xM-1
95 K2=M-1-1
36 GOUD=, TRUE .
9 IF SiK1)eEQ.5(K2)
99 THEN
99 GODO-.FALSE.
00 g1e
ol =tel
02 UNTIL GOODD.OR.I.EQeL
19 CWHILE
0 CPROC
108 END

END OF SEGMENT
OPTIONS IN EFFECY -~ LINECOUNT=SS,LINEWIDTH=131, SOURCE, FORTRAN NUMBERING
0 ERRORS 107 TARGET STATEMENTS :

Execution and Results

Users are provided with two procedures that invoke the precompiler as first
step:
— Precompilation and compilation (FORTRAN H)
// EXEC SHPHC
//PRC.SYSIN DD *
{source in SHELTRAN language
/*

— Precompilation, compilation (FORTRAN H), Link-edit and
execution
// EXEC SHPHCLG
/[PRC.SYSIN DD =«
{source in SHELTRAN language

[+

//GO.SYSIN DD +
i data

/*

Both procedures must be executed in class 3 because of memory requi-
rement of the compiler FORTRAN H.

The program described here above has been executed with the follow-
ing data:

N =4 length of the sequences
NS =3 number of alphabet symbols
X Y Z chosen symbols.

The output obtained is reported below:

g = XYXZ
= XYIX
S = XYIY
S = XIXY
S = XZYX
S = X2Vl
S = yXxy?
S = YXIX
S = YXIY
S = YZXY
S = yix?
S = YIVYX
S = IXYX
S = IXY?
S.= IXLlY
S = 2YXY
g = JYXZ

= 2YIX

TOTAL NUMBER OF VALID SEQUENCES = 18

% % % % % % o2

RSN SR--JR -G - - - S-S - R J - AR 2 AR AR AR IR AR IR SRR

Nous informons nos lecteurs que, comme prévu, Computing Centre
Newsletter ne paraitra pas en Décembre. A tous, la Rédaction présente
ses meilleurs voeux pour Noél et le Nouvel An!

We inform our readers that, as formerly planned, the December issue of
Computing Centre Newsletter will not be available. The Editorial Board
whishes to all, a very Merry Christmas and a Happy New Year!

LR S-SR - G A A AR AR AR AR AR IR AR B AR AR

LA R <3

collsvs
Text Box

collsvs
Text Box

—— —— A —— ——— ——————— —— ———— ————

Les personnes intéressées et désireuses de recevoir réguliére-
ment “Computing Centre Newsletter’ sont priées de remplir
le bulletin suivant et de I'envoyer a:

Mme R.Porta

Bibliothéque des Programmes
Bat. 36, Tel. 760

...

The Persons interested in receiving regularly the “Computing
Centre Newsletter’’ are requested to fill out the following
form and to send it to:

Mrs R.Porta
Program Library
Building 36, Tel. 760

PO S T T I R S I I I L R R N R A I B AL LI L S R

collsvs
Text Box

