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ABSTRACT 
 

A series of isothermal and cyclic oxidation tests were carried out on two thermal barrier 

coating systems consisting of a CMSX-4 nickel-based superalloy substrate, NiCoCrAlY 

overlay bond coat applied by two different techniques and a yttria stabilised zirconia topcoat 

applied by electron beam physical vapour deposition (EBPVD).  The bond coats were applied 

by either high velocity oxy-fuel spraying (HVOF) or EBPVD.  Isothermal oxidation tests were 

carried out at 950°C, 1050°C and 1150°C for both coating system for up to 3000 hours.  

Cyclic oxidation testing was conducted at 1150°C in one hour cycles to coating failure on both 

coatings. 

 

A detailed examination on the oxide thickness was conducted on all specimens, along with 

characterisation of the bond coat and TGO.  This was coupled with examination of specimen 

cross-sections for cracking and signs of coating degradation. 

 

Isothermal oxidation showed sub parabolic oxide growth consistent with the literature.  

Detailed analysis of oxide thickness showed a normal distribution but with increasing standard 

deviation with increasing oxidation time.  Both bond coats were dual phase, β + γ.  The 

EBPVD applied bond coat only, was found to contain yttrium rich precipitates in the bond 

coat and TGO.  Both coatings showed no increase in surface roughness after either isothermal 

or thermal cycle testing. 

 

Short sub-critical cracks were observed at the TGO/topcoat interface in the HVOF applied 

bond coat only associated with the flanks of asperities.  Coating failure in both coatings 

occurred at the TGO/bond coat interface on cooling and was likely driven by the thermal 

expansion mismatch between the TGO, topcoat and substrate.  The initial mechanism of crack 

formation was not determined conclusively but could be a wedge cracking type mechanism. 
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1 INTRODUCTION 
 

The role of coatings in the protection of metals from high temperature degradation has been 

seen as important since the start of the 20
th

 century[1, 2].  These first coatings were an early 

form of aluminium diffusion coating and a process of pack cementation aluminising was 

patented in 1911 by Van Aller[1].  These first coatings were used to provide protection from 

the hot environment in power plant steam condensers for example[1].  Their use quickly 

spread to other furnace components and combustion environments, but with little 

understanding of the mechanisms by which protection was being afforded[1, 2].  It was 

hypothesised however that the protection came from the formation of an alumina layer on the 

coating surface[1].   

 

The first use of coatings of this sort for gas turbines came as early as 1942 with work by 

Anselm Franz, who used aluminising of low alloy steel as an alternative to more expensive 

and rare high alloy steels[1].  The thermal protection afforded by these coatings allowed for 

an increase in the temperatures the components were exposed to.  It was found early on that 

increasing the inlet temperature of the gas turbine allowed for significant increases in engine 

power and/or efficiency[1-3].  These early coatings in use were solely metallic single layer 

coatings.  It was at this time in the late 1940’s that the idea of using a ceramic coating was 

hypothesised and tested by Bartoo and Clure[4].  They combined this coating with internal air 

cooling of the turbine blade which provided a great increase in the temperature the component 

could operate at[4].  The first operational components to use coatings came in 1960 with their 

use on rocket nozzles[1, 4].  During this time advances in alloy design with the use of cobalt 

based alloys and then nickel based alloys allowed for further rises in inlet temperature 
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capacity[1].  From the 1960’s with the use of air cooled components, mainly turbine blades, 

further advancements were sought in coatings technology.  Focus remained on aluminising 

and this process continued to evolve, additionally new overlay style coatings were in 

development which allowed for optimising environmental protection with less emphasis on 

the substrate material properties[1].  The first such overlay coatings came from the 

requirements of environmental protection for the nuclear industry and FeCrAlY alloys were 

soon transferred to use in gas turbines[1].  Further developments over the remaining years 

focused on optimisation of the coating constituents through use of CoCrAlY, NiCrAlY and 

CoNiCrAlY coatings[1].  More recent study on coatings has led to the refinement of the 

coating composition and addition of platinum to diffusion coatings to increase oxide 

adherence[1, 5].  Figure 1.1 shows schematically the evolution of turbine entry temperature 

(TET) with changes in alloy design and coatings.  It demonstrates that since the introduction 

of coatings commercially in around 1960 the turbine capability has risen above that of the 

alloy.  This has steadily increased with the optimisation of the coatings and in around 

1985[4]came the introduction of ceramic coatings in combination with metallic coatings. 

 

Figure 1.1: Schematic chart showing the increase in turbine entry temperature (TET) over 

time with changing technology[6]. 
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Both metallic and ceramic coatings first found use in aero gas turbines with specific drive 

initially for military applications[2, 4].  The requirements of these applications specifically 

increase in engine power output, led to the drive for higher entry temperatures.  These 

advancements were then passed down to civil aero gas turbine use and led to a significant 

increase in engine efficiency through reduced need for internal cooling[7].  Land based gas 

turbines however, whilst having similar requirements to aero engines tend to run at a much 

lower temperature and as such the requirements for coatings in these applications is much 

less.  Despite this there is an ever growing push for increasing efficiency and so reducing 

emission from land based gas turbines.  As such the entry temperatures for land based gas 

turbines now require the use of metallic/ceramic coatings- Thermal Barrier Coatings (TBC’s). 

 

This thesis evaluates two thermal barrier coating systems for use in a land based gas turbine.  

As such it will examine the rates of oxidation and thermal stability of the coating at elevated 

temperatures.  It will also describe the major failure mechanisms associated with these 

coatings and seek to draw parallels with the observed failure modes for the coatings studied 

here.  The first part of this thesis will look to give background information to the process of 

metal oxidation and the application and use of TBC’s.  It will then give an overview of the 

major failure mechanisms involved in these coatings as described in the literature.  The 

remainder of this work will look at the two specific coatings studied here and provide results 

and observations to the oxidation mechanisms and failure modes, whilst drawing comparisons 

between the two coatings and the literature. 
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2 OXIDATION AND DEGRADATION OF METALS AND 

ALLOYS 
 

2.1 Basic Metal Oxidation 

 

The initial step in the oxidation of metals involves the adsorption of oxygen atoms onto the 

metal surface [8].  The oxygen can then react at the surface to form either discrete nuclei of 

oxide and/or a complete film, the generalised equation for this reaction is given in reaction 2.1 

[8, 9]. 

 

baOMeO
b

aMe  2
2

    (2.1) 

 

This process is affected by a number of factors including the surface orientation, presence of 

crystal defects, surface impurities and impurities in the oxidising gas[8, 9]. 

The initial oxide film produced creates a barrier between the metal and oxygen, therefore 

further oxidation requires solid-state diffusion of cations (M
x+

) and or anions (O
2-

) through the 

oxide film [8, 10].   
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Figure 2.1: Schematic of the transport paths involved in the oxidation of a metal, 

 a) cation transport,  b) anion transport[9] 

 

The location of continued growth of the oxide is therefore determined by the predominating 

diffusion species.  If the cation diffusion dominates then new oxide will form at the oxide/gas 

interface, figure 2.1(a).  Alternatively new oxide growth will occur at the scale metal interface 

should anion diffusion dominate, figure 2.1(b)[9]. 

 

This diffusion is driven by electric fields set up through the oxide film and a chemical 

potential gradient across the film.  Along with the diffusion of ions through the oxide, 

vacancies migrate in the opposite direction to the ion movement.  There are typically two 

types of defect involved in this diffusion process and they are Frenkel defects, whereby the 

anion lattice is complete and the cation lattice contains vacancies with cation interstitials[9].  

Schotky defects contain an equal number of vacancies on both the anion and cation lattice.  

However in order to maintain neutrality of the scale a movement of electrons must occur 

along with the ions, figure 2.1.[9]  For this to occur the oxide produced must be non-

stoichiometric in nature to allow electrons to be elevated to the conduction band[9]. This non-

stoichiometry can be caused by either a deficit of cations and corresponding excess of anion, 
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referred to as negative superconductors, or by a deficit of anions (O
2-

) and corresponding 

excess of cations, termed positive superconductors.  Oxides of metals typically used in this 

work such as alumina, chromia and nickel oxide are positive superconductors[9]. 

 

2.2 Oxidation Rates 

 

It can be observed from the previous section that the rate of oxidation is dependent to a large 

extent upon the diffusion of cations and/or anions across the oxide and also on the 

conductivity of the oxide scale.  An ideal model for this dependence has been described by 

Wagner[11]. 

 

The Wagner model makes a number of important assumptions to simplify the overall 

behaviour, some of these are listed below[11]. 

 The oxide scale is dense and adherent to allow free ion transport. 

 The oxidation rate is dependent upon diffusion of ions across the scale. 

 There is thermodynamic equilibrium of atoms, ions and electrons at the reaction 

interfaces. 

 

For oxide growth dominated by cation diffusion the number of diffusing ions per unit area of 

oxide surface  per second  (flux) of the cation (JM
2+

) is equal to the flux of vacancy 

movement inwards (-JVm), equation 2.2 [11]. 
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

'''

2 mm VV

mm

CC
DVJVJM




    (2.2) 

DVm = Cation vacancy diffusion co-efficient 

''

mVC  = Cation vacancy concentration at oxide/metal interface 

'

mVC  = Cation vacancy concentration at oxide/gas interface 

ξ = oxide thickness 

 

As both interfaces are at thermodynamic equilibrium then '''

mm VV CC   must be constant at all 

times, therefore this equation can be simplified, equation 2.3 [11]. 

 



'''

2 1
mm VV

m

ox

CC
DV

dt

dx

A
JM




    (2.3) 

Aox = Volume of oxide formed  

t = time 

 

Therefore by rearranging this formula and creating a rate constant k
’
, equation 2.4 and 

integrate assuming x=0 at t=0 to give the parabolic rate constant shown in equation 2.5 [11] 



'k

dt

dx
   Where,  )( ''''

mm VVoxm CCADVk     (2.4) 

 

The rate of oxidation is also affected by the temperature, pressure of oxygen, time and surface 

preparation[8, 9].  Under ideal conditions most metals will follow one of three rate equations 

depending upon the temperature: at lower temperatures the rate follows a logarithmic 
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equation;  at higher temperatures the oxidation rate follows a parabolic type equation; under 

non-protective conditions, a linear rate response from the metal[8, 9] may be observed.  This 

project focuses on temperatures and pressures under which ideally a parabolic relationship 

would occur and so this will be discussed in the following section.  However under these 

conditions it has now been shown that sub parabolic kinetics are more usually seen[12-16] 

and these will be discussed in section 2.2.2. 

 

2.2.1 Parabolic 

 

Ideal parabolic relationship for the growth of an oxide has been described by Wagner as 

discussed in the previous section and has been shown to occur in a number of oxide forming 

systems[8, 11, 17].  Equation 2.5 describes the kinetics of the process based on the thickness 

of the oxide formed at a given exposure time at temperature. 

  

pp CtK 2      (2.5) 

 

Where, t = time at temperature 

Kp = parabolic rate constants 

 Cp = integration Factor 

 ξ = oxide film thickness or mass gain  

 

Grain boundary diffusion is also important for polycrystalline materials as diffusion at the 

grain boundary has a lower activation energy (~half that of lattice diffusion) than diffusion 
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through the lattice structure.  The growth of alumina at temperatures of around 900-1000°C is 

thought to be dominated [9, 18-20] by the inward transport of oxygen ions along oxide grain 

boundaries which act as fast-transport paths[20].  Should the number of oxide grain 

boundaries decrease during oxidation due to preferential nucleation of oxide grains, the 

effective diffusion coefficient will reduce as will the oxidation rate.  As a consequence, sub-

parabolic growth rates of alumina are observed[20] 

 

2.2.2 Sub parabolic Kinetics 

 

Several experimental studies of oxidation resistant coatings and alloys has shown a tendency 

away from the parabolic kinetics predicted by Wagner’s theories[21].  These types of kinetics 

are described using a modified version of equation 2.5 shown in equation 2.6, whereby the 

value of the growth exponent n is greater than 2[22].   

 

nn

n CtK        (2.6) 

This equation is describes the oxidation of a system where the initially formed oxide is non-

protective and the subsequently formed oxide is protective[22].  It can be applied also to an 

oxide growing by parabolic kinetics where the exponent n becomes 2.  It has been used in the 

literature[23, 24] to describe the sub parabolic oxidation of thermal barrier coatings. 

 

Experimental studies in the literature have shown values for n can be in excess of 3 depending 

upon the type of system and testing regime[13, 15, 16, 21].  A number of theories have been 

proposed for this behaviour, the first of which is the reduction in available “short-circuit” 
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diffusion paths available as a consequence of increased average oxide grain size through 

preferential nucleation of oxide grains[25], as described briefly in the previous section.  Such 

behaviour has been described in the literature for many systems[12-16] for example 

Quadakkers et al[26] on FeCrAl alloys and show that the effective diffusion rate of oxygen 

across the scale varies with the grain size, whereby the diffusion rate decreased with 

increasing grain size.  It is then clear that this is an important observation for the description 

of sub parabolic and cubic, where n > 3, growth kinetics; however it is important to know 

whether it is possible for the grain size to change with time.  Studies on some oxide scales 

such as NiO and zirconia[12, 14] have demonstrated that the average grain size can indeed 

increase with increasing time at temperature. 

 

Increase in average oxide grain size though is not the only model to describe sub-parabolic 

growth kinetics in oxides.  A continuous increase in compressive growth stress within the 

oxide layer will decrease the diffusion rate of vacancies across the oxide this will then reduce  

the growth rate of an oxide, likewise a tensile stress will increase the oxide growth rate[27-

30].  This effect has been described and modelled by Evans et al for zirconia and agrees with 

the observations of the other systems cited above [31] [32].   

 

The third described mechanism comes from the transformation of less stable isoforms of 

alumina such as γ and θ, which form along with α-alumina during the early competitive stages 

of oxide growth on the bare metal surface[33, 34].  These isoforms differ in their electronic 

structure, density and stability at temperature as shown in table 2.1, which gives some of the 

basic properties of three main isoforms. 

 



11 

 

Table 2.1: Some selected properties of the main important alumina isoforms[35]. 

 α- alumina γ-alumina θ-alumina 

Structure Rhombohedral Monoclinic Modified FCC 

Density (Kg/m3) 3980-3990 3560-3600 3200-3700 

Elastic modulus, E 

(GPa) 

409-441 - - 

Hardness (GPa) 28 - - 

Melting point (°C) 2051   

Transition 

Temperature (°C) 

 Transition to α- 

~925 

Transition to δ- 

700-800 

 

At temperatures above around 1000°C only the more dense α phase remains stable and at this 

temperature the other main isoforms fully transform into this phase[35].  Common to this 

process for all isoforms is that the transformations from a less stable form to a more stable 

form at differing temperatures results ultimately in the irreversible transformation to α phase 

[35].  This transformation to the denser and more stable isoform results in changing of the 

oxide growth kinetics[33].  The transitional aluminas γ and θ both have growth rates which 

are greater than α alumina, figure 2.2 and as such the transition to α at higher temperatures 

could result in sub parabolic kinetics observed in the literature[35]. 
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Figure 2.2: Arrhenius plot of the rate constant Kp for oxidation of isoforms of aluminas on a 

NiAl substrate[35] 

 

2.3 Thermodynamics 

 

The oxidation rate constant as shown by equation 2.6 is related to the concentration of 

vacancies and this has also been shown to be proportional to the oxygen partial pressure at the 

interface.  Therefore from equation 2.6[17], 

 

])()[(

1

''

1

''

22

x
O

x
O PPk    (2.7) 

 

k
’
 = rate constant 

'

2OP  and 
''

2OP  = oxygen partial pressure at the oxide/gas interface and the oxide/metal interface 

respectively 
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Typically in a cation dominated process the partial pressure of oxygen at the oxide/metal 

interface would be negligible when compared to the pressure at the oxide/gas interface and so 

this term can typically be omitted[8]. 

 

For an oxide to form on any metal the partial pressure of oxygen must be greater than the 

partial pressure of oxygen present at equilibrium for the given oxide.  This can be shown in 

equation (2.9) for the following reaction[8]. 

 

            baOMeO
b

aMe  2
2

     (2.8) 


















b

O

a

metal

oxide

Pa

a
RTG

2

ln      (2.9) 

 

ΔG= Free energy of formation of the oxide 

R= Universal gas constant 

T= Temperature (K) 

aoxide = Activity of the oxide 

ametal = Activity of the metal 

2OP  = Partial pressure of oxygen at equilibrium. 

For a reaction to occur the oxygen partial pressure must be greater than at this equilibrium 

value and ΔG must be less than 0[9].  This can be used to predict the presence and expected 

composition of an oxide scale by plotting the activities of an oxide at various temperatures to 

form an Ellingham diagram as shown in figure 2.3.  The formation of an oxide on the surface 

can protect the underlying metal from further oxidation and thus can be a beneficial factor[9]. 
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Figure 2.3: Ellingham diagram of some relevant oxides modified from Birks and Meier[9]. 
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These diagrams give an indication as to the stability of an oxide formed on an alloy and can 

be used to design alloys to form a protective oxide layer through selective oxidation of a 

particular solute[9].  Careful selection of the element to be oxidised is important to ensure that 

the desired oxide formed is more stable than the oxide of the parent metal in the alloy.  

Therefore for nickel-based alloys the formation of an alumina oxide would be relatively easy 

as the stability of alumina is considerably greater than that of nickel oxide.  However for other 

base metals such as titanium the formation of solely alumina would more problematic as the 

stabilities are similar therefore a mixed oxide scale would likely be formed.  In the case of the 

oxides shown in figure 2.3, we can see that all of these selected oxides are stable in the 

temperature range shown and that the majority of the oxides shown particularly chromia and 

alumina are more stable than nickel oxide.  However the stability of an oxide at temperature 

does not mean that an oxide is good for oxidation or corrosion protection.  An equally 

important factor is the growth rate of the oxide[9]. 

 

2.4 Selecting Alloy Compositions for Oxidation Protection 

 

With this information it is possible to design alloys which form a protective oxide scale 

through selective oxidation.  Taking the information from figure 2.3, in principle it could be 

possible to form a protective oxide scale on a nickel based alloy from any of the elements 

listed as they form a more stable oxide than nickel[9].  However it is the rate of oxide growth 

which is equally important, for an ideal protective oxide this must be as low as possible. 

Therefore those oxides with the lowest Kp values are those, which form the best protective 

oxides[9]. 
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Figure 2.4: Parabolic rate constants for the growth of some oxides[9] 

 

We can see from figure 2.4 that the oxide with the lowest growth rate is α-alumina followed 

by silica and chromia.  This large variation in growth kinetics follows closely with the 

concentration of point defects in the oxides, with those with higher concentrations having a 

faster growth rate[9].  Silica has the potential to provide a protective oxide layer at 

temperatures in excess of that for alumina and has been used on carbon materials at up to 

1800°C[9].  However silica can be susceptible to breakdown in moist atmosphere and so is 

used preferentially in dry atmospheres[9]. 
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2.4.1 Oxidation of Chromium-Bearing Alloys 

 

Chromia is an important protective oxide at temperatures between 600-900°C, and has been 

widely used in applications such as catalytic converters[9].  At high temperatures in excess of 

950°C and in a high flow rate gas, chromia has been shown to convert to the volatile gaseous 

oxide CrO3 and as such its use is limited to temperatures below these conditions[9].  

Therefore for applications above 950°C alumina is the protective oxide of choice. 

 

2.4.2 Oxidation of Aluminium-Bearing Alloys 

 

With the knowledge that an alumina protective oxide is the scale of choice for high 

temperature applications it now follows that the fundamental requirement for protection of an 

alloy from oxidation is to provide enough of the selected element to form a protective oxide 

scale[9].  The high density of alumina means that the numbers of available vacancies for 

diffusion are low and thus the growth rate of the oxide is correspondingly low.  In addition 

however to forming the oxide it is important for the alloy to have a sufficient reservoir of the 

aluminium to enable re-healing of the scale should cracking or spallation occur[36].  However 

it is important to balance this consideration with maintaining the mechanical properties.  In 

the case of the Ni-based alloys which are the most widely used for high temperature turbine 

applications aluminium is an important alloying element in the strengthening of the γ΄ phase 

of the alloy[37].  However additions of heavier elements such as tungsten, tantalum and 

ruthenium have meant the concentration of aluminium in these alloys is typically around 5-

6wt%, which is considered to be the minimum requirement for the formation of an alumina 
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scale[37].  This is also aided by the addition of chromium, this is shown to increase the 

likelihood of forming an alumina protective oxide through providing nucleation points of 

chromia which the alumina forms around[38].  This process is known as the gettering[10] 

effect.  However other theories exist about the beneficial effect of chromium in alumina 

formers such as determining the growth rate of transient oxides through formation of a 

chromia layer[39, 40].   Studies have shown that the minimum amount of aluminium required 

for re-healing of an oxide scale is ~3wt% although this can be as high as 6wt% without the 

addition of chromium to the alloy[38].  This is demonstrated schematically in figure 2.5 

which shows the composition of the oxide scale formed at various alloy aluminium and 

chromium concentrations. 
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Figure 2.5: A schematic map showing the type of oxide formed in the NiCrAl system at 

temperatures between 1000-1200°C [41] 

 

We can see from figure 2.5 that the typical superalloys, as used in high temperature 

applications, typically do not have sufficient aluminium to form a continuous alumina scale.  

Thus mixed oxides of nickel, chromium and aluminium will form.  This therefore requires the 

addition of a high aluminium/chromium coating to be applied to increase the surface 

concentration of aluminium to allow a continuous alumina scale to form initially and for 

rehealing of the scale should it become damaged.   

 



20 

 

2.5 Aluminium Depletion 

 

Selective oxidation of the aluminium to form a protective scale leads to the depletion of 

aluminium in the alloy.  Figure 2.6 shows schematically the depletion profile of aluminium in 

a typically used alloy (dotted line) after the formation of an alumina scale. 
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Figure 2.6: Depletion profile for aluminium during the formation of an oxide scale [36].    

 

From this depletion profile it can be seen that for a typically used alloy the concentration of 

aluminium local to the scale falls below the 3wt%[38] required for re-healing after the 

formation of the oxide scale.  This leads to the formation of rapidly growing mixed oxides, 

upon scale cracking, typically Ni containing, which consumes a greater depth of the alloy 

surface than the formation of alumina would.   This then demonstrates the requirement of the 
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application of an aluminium rich coating to the surface of the alloy to increase the size of the 

aluminium reservoir.  Figure 2.6 also shows the depletion profile for an applied aluminium 

rich coating (solid line) and demonstrates that increasing the aluminium content to around 

10wt% provides an aluminium reservoir to enable re-healing of the oxide.  These coatings are 

therefore widely used to protect the bare alloys without having to increase the alloy 

aluminium content and compromise mechanical properties.  These will be covered in the next 

chapter. 

 

2.6 Oxidation of NiCoCrAlY Coatings 

 

As has been discussed above, for oxidation protection at high temperatures of >900°C, a fully 

dense α-alumina scale is the preferred oxide due to its slow growth and dense structure.  Also 

as seen in figure 2.6 a minimum concentration of 3wt% Al is required to provide a re-healing 

dense alumina scale on the surface, this assumes a bond coat chromium concentration of 

>10wt%[38].  Without the addition of chromium the critical aluminium content is 6wt%, this 

effect is likely due to the initial formation of chromia at the oxide metal interface which 

promotes alumina growth[38].  A typical NiCoCrAlY alloy will contain around 10wt% Al to 

provide an increased reservoir for rehealing of the oxide scale should any cracking occur.   

 

Reactive elements such as yttrium, as used in these coatings, are added to these coatings,  

typically to aid adherence of the scale to the bond coat free surface[42-47].  Typically around 

0.05-0.1wt% Y is added and is shown by several studies to increase scale adhesion and 

decrease the oxidation rate of the coating[45, 48-51].  However increasing the amount of 
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yttrium added causes the formation of oxide pegs, typically yttrium aluminium garnet (YAG-

Y3Al5O12)[52].  These oxide pegs increase the apparent growth rate of the oxide, compared to 

lower additions of yttrium, when measured by mass gain due to their higher mass than 

alumina[45].  It has also been shown that having high yttrium concentration causes 

segregation of the yttrium to the oxide grain boundaries.  This could increase the diffusion of 

oxygen along these grain boundaries and so increase the oxidation rate, compared to lower 

concentrations of yttrium[48, 49, 53].  The increase in adhesion of the oxide formed on a bond 

coat with yttrium addition was originally thought to be a consequence of mechanical keying 

provided by the formation of the oxide pegs[54].  However other studies have shown that 

additions of yttrium can increase scale adhesion without the formation of oxide pegs.  

Additionally some studies have linked the large size of YAG particles to increasing the 

susceptibility of the oxide to spallation[55, 56].  It is currently not known with certainty the 

effect that oxide pegs have on coating lifetimes. 

 

2.7 Oxide Scale Stresses 

 

The growth of a protective oxide scale on a metal surface at temperature is a beneficial 

property of the alloys and coatings used at elevated temperatures.  However for the oxide 

scale formed to be beneficial it is important that it can withstand stresses both external from 

an applied loading during use and also internally produced stresses, which form during the 

oxidation processes.  These oxide growth stresses can arrive from a number of areas, some of 

which will be discussed in the remainder of this section. 
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2.7.1 Volume Differences  

 

The growth of an oxide scale on a metal surface naturally consumes part of the metal 

substrate surface in its formation.  In addition the specific volume of the oxide forms rarely 

equals this volume of metal consumed.  It is possible to quantify this as a ratio known as the 

Pilling-Bedworth ratio, which is defined below[18]. 

 

m

ox

Vo

Vo
PBR        (2.10) 

 

PBR= Pilling-Bedworth Ratio 

Voox= Volume of Oxide formed 

Vom= Volume of metal consumed to form that volume of oxide 

 

For most metals, the volume of the oxide is greater than the volume of metal consumed, for 

example, a PBR of 1.28 for alumina and 2.05 for chromia, but there are cases (MgO, for 

example) where the PBR is < 1.  For some years[57], it was thought that a volume expansion 

would result in compressive oxide growth stresses and a volume contraction, tensile growth 

stresses.  However, it has long been recognised that this early view is simplistic and that stress 

development depends on a number of factors, such as the location of oxide formation and 

stress relaxation processes within the scale and substrate.  If the oxide is formed at the oxide 

gas interface, for example, then no compressive stresses will form as the volume difference is 

shown in the oxide thickness[58].  Similarly, the formation of new oxide at the oxide/metal 

interface on a flat surface will not develop growth stresses either[58].  The situation is 
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different for oxide growth on curved surfaces where growth stresses can develop for oxide 

formation at either interface[58].   

 

2.7.2 Epitaxial Stresses 

 

During initial nucleation of the oxide scale on the metal surface it is feasible for stresses to 

develop within the oxide due to differences in the lattice parameters between the oxide grains 

and the metal structure[9].  For oxides where the PBR value is >1 and the accommodation of 

the change in lattice parameter is within the oxide via dislocation formation, as for thin 

oxides, a compressive stress is generated[58].  Likewise for oxides with a PBR value of <1 a 

tensile stress is generated[58].  However modeling of this process by Fromhold[59] has 

suggested that the stresses generated decrease exponentially with increasing distance from the 

metal/oxide interface.  Thus this effect is only likely to play a major role in thin oxides, this 

has been demonstrated for copper oxides[60], where these stresses have only been found 

within 30nm of the interface.  It is unlikely to play a major role in total growth stress of a 

thick oxide layer for this reason. 
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2.7.3 Thermal Stresses 

 

The growth stresses above are formed in the oxide during formation at the oxidation 

temperature.  Considerable stresses, however, are also formed upon cooling of the metal and 

oxide due to the difference in thermal expansion coefficient between the metal and the oxide.  

This difference can often be as large as 4 times, for example for a CMSX4 superalloy a 

typical value would be 2.0x10
-5

 K
-`1 

 compared to 7.9x10
-6

 K
-`1

 for α-alumina.  The strain 

energy generated due to this thermal expansion mismatch can be calculated using equation 

2.11[61]. 

 

22 )())(1(*   ThEW oxox     (2.11) 

W*= Strain Energy 

Eox=Young’s Modulus of the oxide 

h=Oxide thickness 

νox= Poisson’s ratio of the Oxide 

ΔT= Change in Temperature 

Δα= Difference in thermal expansion co-efficient 

 

Using values of, 

E=367GPa 

νox=0.3 

ΔT= 1000K 

α-Alumina = 7.9x10
-6

 K
-`1

 

CMSX-4 Substrate = 2.0x10
-5

 K
-`1 

 

 

 

For an oxide thickness at 1μm the strain energy generated between an alumina oxide and 

superalloy substrate would be 37.61Jm
-2

.  This is far in excess of the fracture energy, 0.66Jm
-

2
[62] of the alumina on a Ni substrate and so should there be no mechanism of relaxation for 

this strain energy cracking will occur at the scale/metal interface. 
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3 OXIDATION PROTECTION FOR INDUSTRIAL GAS 

TURBINE APPLICATIONS   
 

Early gas turbine engines operated at temperatures around 700°C due to the creep rupture 

strength of the materials.  These engines created around 50 times less thrust than a typical 

modern engine[63].  The increase in thrust generated can be partly attributed to a doubling of 

the engine inlet temperature[63].  This increase in temperature has led to the development of 

newer alloys which have the capability of withstanding temperatures exceeding 1100°C.  

However these alloys are often far more prone to both type I and type II hot corrosion which 

initially limited their use[64, 65].  A solution to this problem came in the development of 

coatings which protected the substrate alloy and thus improved its hot corrosion 

resistance[65].  Further developments in these coatings led to the further application of a 

ceramic layer onto the original metallic coating to reduce the exposure temperature of the 

alloy[66].  These developments have led not only to an increase in engine inlet temperature 

but also to a reduction in the required cooling air to the engine components thus not only 

increasing the generated thrust but also the engine efficiency[63, 67-71].   

 

The turbine alloy is optimised for mechanical properties, however the elements which provide 

these benefits conflict with the requirements for oxidation protection[72].  To overcome this 

coatings have been developed and are used in these applications[72].  These coatings can be 

broadly split into 2 categories, overlay and diffusion, this chapter will describe the major 

overlay coatings used as they are specific to this project; however diffusion coatings are 

widely used and will be briefly described. 
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3.1 Overlay Coatings 

 

These coatings are deposited onto a substrate surface, with a minimal amount of interaction 

with the substrate; therefore the compositions of the coatings can be more carefully 

controlled[7, 72, 73]. Additionally these types of coatings can be much more flexible in terms 

of composition and allows for the addition of elements that cannot be applied to the substrate 

in the required quantities[7, 72, 73].  For high temperature applications as typically found in 

turbine blades these coatings are applied as a bond coat onto the substrate, with a ceramic 

topcoat applied afterwards to provide thermal protection as can be seen in figure 3.1.  The 

topcoat is described later in section 3.4.3 

 

Overlay bond coats traditionally have been formed from MCrAlY materials where the M is 

usually iron, nickel and/or cobalt[72-74].  These coatings do form large Al reservoirs and 

dense alumina layers. They tend to be less dense than the diffusion coatings because of the 

techniques used to apply them, and internal oxidation can occur within the coating[74]. 

 

Typical application processes involve physical techniques such as sputtering, ion plating, 

evaporation and most widely used is various spraying techniques[72].  Thermal spraying of 

coatings has been widely used for several decades and provides a relatively inexpensive way, 

equivalent to a platinum aluminide diffusion coating[72], of applying thick coatings of almost 

any composition to complex shapes.  The main process involves heating a powder or solid 

substrate material[3], e.g. a wire, by electrical resistance or fuel burning.  This molten/soft 

mixture is accelerated to a substrate using a gas stream[3], these coatings are termed air 

plasma sprayed(APS) coatings.  Several variations of this technique exist which alter the 
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properties and cost effectiveness of the coating being applied, some examples include Low 

Pressure Plasma Spraying (LPPS) where the coating takes place under a reduced pressure 

atmosphere, typically 5-7x10
-3

 Pa[7, 72, 73].  This coating type is typically used with coatings 

containing reactive elements such as Al or Y[72]. Vacuum Plasma Spraying (VPS) is carried 

out in a very low pressure inert atmosphere using the same technique to produce plasma from 

electric current.  This technique produces dense coatings with no oxidation of powder 

particles so is ideal for powders containing highly reactive elements[3].  High Velocity Oxy 

Fuel(HVOF) involves the burning of a high pressure, oxy-fuel mixture into which the coating 

powder is added[72].  The burning mixture provides both the heat and velocity for coating.  

This can produce very thick coatings of >100μm that are typically very dense due to the high 

flow rate of the fuel and powder, typically 200m/s[72]; a full description of this coating type 

can be found in section 3.3.1.  A similar technique using a fuel/oxygen mixture such as 

acetylene/oxygen which is detonated and accelerates the powder to the target substrate[3].  

This method can produce temperatures of several thousand degrees and very high velocities to 

produce a coating of high density and strength.  

 

More recently, a relatively new technique has been used, which involves using electron beam 

physical vapour deposition (EBPVD) to apply either a single or dual phase bond coat.  This 

technique is described below in section 3.3.2.  This coating is densified after application to 

provide a dense evenly distributed bond coat with a smooth interface as can be seen in figure 

3.1. 
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Figure 3.1: A scanning electron micrograph of a typical MCrAlY bond coat applied using the 

EBPVD technique. 

 

3.2 Specific Coating Application Methods 

 

This project has examined two coatings applied by different coating methods, namely HVOF 

and EBPVD.  These are two widely used and important coating methods and are described 

below. 

 

3.2.1 High Velocity Oxyfuel (HVOF) Spraying 

 

In this technique a fuel and oxygen mixture is burnt producing a hot high pressure stream of 

gas.  Powder or ingot materials of the coating are then fed into this stream either at a nozzle or 

into the combustion chamber and are then accelerated toward the substrate[3, 7, 72, 73, 75].  

The heat of the combustion softens or melts the powder or ingot so that it splats onto the 

substrate to form an even coating[73, 75], figure 3.2 shows a schematic diagram of the set-up.  

Bond coat Substrate Topcoat 
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The temperature required to soften these coating materials can cause additional complications 

and so cooling in the form of a water jacket is required for the spray gun[75].  However this 

can be alleviated if the combustion is carried out remotely from the nozzle and compressed air 

is used in the combustion mixture to both accelerate the mixture to the nozzle and to cool the 

apparatus[75].  The coating can be fine tuned to the application by the alteration of several 

factors including the oxy-fuel mixture which adjusts both the heat and spray velocity.  Also 

the feed powder size plays an important role in determining the coating structure[75].  This 

type of coating forms a near dense, well bonded coating with a relatively high degree of 

accuracy and due to its nature it can be carried out on complex, large components cost 

effectively[72, 76].   

 

 

Figure 3.2: Schematic diagram of a HVOF coating set up [77]. 
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3.2.2 Electron Beam Physical Vapour Deposition (EBPVD) 

 

In this technique the substrate to be coated is placed into a vacuum chamber at a pressure of 

10
-2

-10
-4

Pa and located onto a movable stage[73].  Within the chamber are several electron 

guns and source ingots of the material to be deposited onto the specimen or component[73].  

After evacuation the ingots are bombarded with focussed electrons at around 20-30kV.  This 

heats the ingots and forms a molten pool on the surface from which a vapour of the ingot 

material is formed in the vacuum.  This vapour is directed onto the substrate material in a 

rotation fashion to form the correct composition[72, 73].  The processes of condensing the 

coating on the substrate is a line of sight process between the electron beam and the ingot as 

shown in figure 3.3, and so column like grains are formed on the substrate surface[1, 72, 73].  

After coating these are densified using a shot blasting type process to remove any vertical 

grain structures.  This type of coating forms an evenly distributed dense structure for metallic 

coatings.  Additionally the deposition rate is related to the incident beam power and as such a 

very high deposition rates, in excess of 25μm/min can be achieved which is important for 

industrial applications[73].  However this process is a line of sight process in a very 

controlled atmosphere and as such the substrate size and shape are limited.  This technique is 

used widely for the production of thermal barrier coatings due to its tight control on 

composition and high deposition rate[3, 72, 73]. 
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Figure 3.3: Schematic diagram of an EBPVD coating set-up.[78] 

 

3.3 Diffusion Coatings 

 

Although not studied as part of this project this type of coating is widely used for aerospace 

applications and so it is important to mention briefly here[3, 72, 73].  This type of coating is 

produced by the addition to the surface of the substrate of elements to improve the resistance 

to oxidation but also to maintain some of the substrate mechanical properties[1, 3, 63, 72, 73].  

Typically this involves the diffusion into the surface of aluminium, chromium or silicon 
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depending upon the application that has been deposited on the surface of the substrate[1, 3, 

63, 72, 73].  The addition of these elements in the surface provides a large reservoir for the 

selective oxidation and thus formation of a protective oxide scale[1, 3, 63, 72, 73].  A large 

reservoir of the element to be oxidised is required to enable re-healing of the oxide scale due 

to damage or spallation.  Diffusion coatings are usually manufactured by vapour deposition of 

the required element either within a pack or above pack.  It is important to note that as this is a 

chemical vapour process at atmospheric pressure, it is not line of sight and as such allows 

coating of complex component shapes[1, 3, 63, 72, 73].  However other methods such as 

slurry coating and hot dipping may also be used but will not be discussed further here[1, 3, 

63, 72, 73].  

 

3.3.1 Chemical Vapour Deposition (CVD) 

 

A typical example of this process involves immersing the substrate material in a series of 

powders which include Al[79], either pure or as an alloy, an activator, usually a halide, and an 

inert filler- usually alumina[79].  Upon heating to temperatures around 1000°C, the halide 

activator reacts with the Al to form a volatile aluminium halide with high Al content[79, 80].  

The halide formed has a higher aluminium activity than the substrate so diffuses and deposits 

on the substrate surface[79, 80].  It then reacts with the surface and the aluminium is released 

and diffuses into the substrate[79, 80].  The coating process takes several hours depending 

upon the desired coating thickness and post coating heat treatment may be required to remove 

any brittle δ Ni2Al3 phases formed[79]. 
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3.3.2 Typical Coating Materials Used for Diffusion Coatings 

 

Pt-aluminide diffusion coatings are the typical diffusion coating used for aerospace 

applications[3, 7, 72, 73], they are usually predominantly β phase but some phase 

transformation can occur at temperature depending upon the alloy composition[1, 74].   These 

coatings are now usually created by platinum plating the component, subsequently a chemical 

vapour deposition (CVD) pack aluminising process at approximately 1050°C is performed for 

around 10 hours[79].  The high temperatures and long time of the process helps to provide a 

large aluminium store in the coating and also to maintain the mechanical properties of the 

substrate[79].  The existence of refractory elements in the substrate, their diffusion into the 

coating and also loss of Al through diffusion into the alloy substrate can impair the function 

of the bond coat[81-84].  One function of the platinum may be to inhibit diffusion of the 

refractory elements from the substrate but its main role is to stabilise the aluminium within 

the modified (Ni,Pt)Al β phase formed during this coating process, it is thought to achieve 

this through having a strong affinity with aluminium[81]. 

 

Newer coatings omit the aluminising process described above and instead rely upon the 

plating and diffusion of a platinum layer, these form a platinised γ/γ΄ bond coat [85, 86] 
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3.4 The Thermal Barrier Coating (TBC) System 

 

For high temperature turbine applications a combination of a bond coat providing oxidation 

protection and a topcoat providing thermal protection is required.  The typical structure 

consists of the overlay or diffusion bond coat applied to the substrate material.  Some 

interdiffusion will occur at this interface with typically aluminium diffusion into the substrate 

and nickel diffusion out, leaving behind heavy element precipitates in the form of an 

interdiffusion zone(IDZ)[81, 84].  The size of the IDZ and its effects on the substrate 

mechanical properties will vary with the coating type, with overlay coatings providing the 

least interdiffusion in most cases as by their nature they are independent of the substrate[7].  

Despite this some interdiffusion is desirable for adhesion of the bond coat and so 

interdiffusion does occur[7].   The exposed surface of the bond coat will form ideally a stable, 

protective, slow growing thermally grown oxide(TGO), which will increase in thickness with 

increasing exposure time[73, 87].  For high temperature applications the TGO will usually be  

α-alumina as discussed in section 2[1].  This TGO is first formed as part of the coating 

process as described in section 3.2 and 3.3.  Onto this TGO the ceramic topcoat is applied to 

form the thermal barrier coating system as shown schematically in figure 3.4.   
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Figure 3.4: Schematic of a Typical TBC Structure [88] 

 

3.5 Ceramic Topcoats 

 

The application of a thermal barrier coating provides thermal protection of the substrate 

material from the atmosphere.  This then allows for a reduction of internal cooling of up to 

6% which corresponds to a significant increase in component efficiency[7, 68, 89].  It 

therefore requires very specific properties.  It has a low thermal conductivity to create a 

thermal gradient[68, 89]. It must have good strain tolerance due to the differences in the 

thermal expansion of the substrate, bond coat, TGO and topcoat during operation[68, 89].  

The topcoat is also required to be microstructurally and chemically stable at the proposed 

working temperature and at room temperature, over a period of time.  In addition it must also 

be chemically compatible with, and able to adhere to the bond coat and TGO[68, 89]. 
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3.5.1 Typical Ceramic Materials Used 

 

The main material used for the topcoat in these systems is zirconia containing 7%± 1wt% 

yttria which stabilises the zirconia (YSZ) into the tetragonal phase and prevents the large 

volume change associated with its conformational change at temperature[74, 89].  This 

material has proven to be very thermally stable and strain resistant in temperatures up to 

1200˚C[74].  However other materials have been considered for thermal barrier coatings at 

lower temperatures, including mullite. Some studies have shown that this material could be a 

viable alternative to zirconia at lower temperatures[89]. It is argued that mullite experiences 

lower stress relief than zirconia and so compressive stresses could be maintained within the 

coating[89]. The development of tensile stresses and associated cracking would then be 

limited.  However mullite does not possess the same mechanical properties and more 

importantly thermal properties that zirconia has at high temperatures, including its low 

thermal conductivity, κ [89], with mullite having a typical κ of 3.2 Wm
-1

K
-1

 compared to 1.5 

Wm
-1

K
-1

 of zirconia[90, 91]. 

 

For future use in high temperature applications two potential materials are being considered.  

The first is a doped variant of the existing YSZ technology with the addition of rare earth 

oxides (REO) such as Yb, Er, Gd and Nd[74, 92].  These appear to offer considerable 

advances in terms of thermal conductivity however there are currently issues with 

compatibility with the alumina TGO[74].  The second material is pyrochlore-type zirconates 

(M2Zr2O7) which have shown considerably favourable thermal conductivity values of 

typically 1.3Wm
-1

K
-1

[93]. However variations in manufacture have been found which create 

difficulties in analysing the results[74].   
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3.5.2 Topcoat Application 

 

The material most widely used for the formation of a ceramic topcoat is YSZ, which has been 

used in this project.  Other materials often require different application techniques but will not 

be discussed here. 

 

To date there are only two main routes for depositing the yttria stabilised zirconia (YSZ) 

topcoats.  Each have their own unique advantages and disadvantages both in terms of 

performance and ease of modification[74, 89].  The main deposition routes are electron beam 

physical vapour deposition (EBPVD) and air plasma spraying (APS). 

 

EBPVD 

 

Application and densification of the metallic bond coat provides a thin ~1μm thick alumina 

oxide on the surface of the substrate[73].  This preformed alumina aids the adhesion of the 

ceramic applied on top[73].  The YSZ topcoat is then applied using the procedure described in 

section 3.2.2 and is the same procedure used to apply the metallic bond coat tested in this 

study[73]. However for the production of a topcoat the deposition temperature is raised to 

1000°C and a high pO2 atmosphere is used.  Also the densification process required for a 

dense bond coat is omitted and a columnar structure is therefore produced.  Figure 3.5 shows 

an electron micrograph of the structure produced.   
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Figure 3.5: Electron micrograph showing a section through a TBC heat-treated at 1100˚C for 

100hrs in air, showing the substrate, Interdiffusion zone, diffusion bond coat, TGO and 

EBPVD topcoat. 

 

APS 

 

As with the EBPVD process this is a line of sight technique[1, 7, 63, 72, 73, 76] in which 

powder particles ~60μm in diameter are passed through plasma created from Ar and H2[7].  

The semi-molten particles impact onto the substrate surface creating a characteristic 

horizontally layered structure of the YSZ material[73].   Figure 3.6 shows a typical structure 

of an air plasma sprayed coating in a TBC system. 
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Figure 3.6: Scanning electron micrograph of an APS topcoat TBC oxidised for 216hrs at 

1010˚C showing the bond coat, TGO and topcoat[94]. 

 

3.5.3 Properties of the Topcoat 

 

EBPVD coatings are widely used because of the excellent durability when compared to APS 

coatings[74].  This is largely due to the open columnar grain structure created by this method, 

which is thought to allow for considerable strain relief of the topcoat[74].  However a 

collection of in house and literature failure times has shown that there is little difference in 

failure times associated with either of these coatings methods; this will be discussed later in 

section 8.7.8.  APS coatings while not as durable do offer considerable improvements in 

thermal insulation with conductivity below 1 Wm
-1

K
-1

compared with typical EBPVD values 

of 1-2 Wm
-1

K
-1

[74, 89].  Both of these coatings do offer considerable thermal stability and 

strain tolerance at temperature and upon cooling as they are manufactured from the same 

material[74].  However, the columnar structure of EBPVD topcoats does mean that they are 

more tolerant to strain then APS coatings.  Although both methods are now well established 

EBPVD topcoats are somewhat more expensive to create due to a large capital outlay in 

equipment and difficulties in applying the topcoat to large specimens when compared to APS 

topcoats.   

APS 

topcoat 

Bond coat 

TGO 
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4 DEGRADATION AND FAILURE OF PROTECTIVE 

COATINGS 
 

One of the major stumbling blocks with the introduction of these coatings into service has 

been a continued problem with their endurance[67-71].  Considerable research effort over the 

last 40 years has aimed at discovering how and why these coatings fail, both prematurely and 

after considerable life.   Many plausible mechanisms have been developed over the years and 

it is increasingly likely that most if not all of these methods have a part to play in the failure 

of these coatings, with some having more of an effect in particular coating systems than 

others. 

 

Failure of the topcoat can be potentially catastrophic to the component and the remainder of 

the engine, as it leads to exposure of the bond coat to extremes of temperature and 

environment beyond its capabilities[64], leading to increased oxidation rates.  This leads to 

failure of the bond coat and eventual failure of the component soon afterwards.  Therefore the 

use of these coatings has been restricted both in the time and temperatures at which they are 

used[67-71].  To make these components more economically viable it is important to be able 

to understand their failure modes and so try to improve their endurance.  Some of the main 

failure modes are described below, but it is important to remember that it is unlikely that these 

modes act alone, but in fact work together in causing coating failure. 
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4.1 Substrate/ Coating Interactions 

 

Diffusion of elements at the substrate/ coating interface is a well known phenomenon and can 

have considerable impact upon the coating life.  For example the coating contains 

considerably more of the reactive elements than does the substrate.  These reactive elements, 

mainly tungsten, rhenium, tantalum and molybdenum are present in the substrate to increase 

the mechanical properties[81].  Many high temperature coatings have high levels of 

aluminium to form a stable alumina scale with a reservoir for re-healing due to the substrate 

having an insufficient amount of aluminium for protective scale formation.  However the 

aluminium from the coating can lead to the formation of brittle topographical close 

packed(TCP) phases such as σ and μ, which can be a site of fracture in the superalloy[81, 84, 

95].  These phases are rich, in comparison to the coating and substrate, in refractory elements 

such as rhenium, tungsten and tantalum.  The solubility of these elements in the substrate is 

very low and the inward diffusion of aluminium from the coating leads to their precipitation 

[81, 84, 95].  These phases have been observed in a number of studies with a range of coating 

types[81, 84, 95].  The addition of platinum however appears to block the formation of these 

TCP phases and also the diffusion of reactive elements to the bond coat surface, where they 

could have a detrimental effect on the protective oxide[82, 83, 95].  In addition diffusion of 

the reactive element into the substrate also depletes the reservoir available in the bond coat 

which after lengthy exposure can lead to breakaway oxidation.  
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4.2 Buckling 

 

Buckling occurs when the bond between the TGO and bond coat is poor, due normally to the 

presence of voids or impurities at the interface[96].  Differences in the thermal expansion co-

efficient of the TGO, topcoat and bond coat lead to compressive stresses being set-up in the 

TGO during cooling[96]. This can lead to delamination at the TGO/bond coat interface[97] as 

shown schematically in figure 4.1 and a typical example is shown in figure 4.2.  The exact 

mode and location of buckle propagation depends upon the bonding between the oxide and 

substrate and also on the mechanical properties of both layers, table 4.1[96, 98]. 

 

Table 4.1: Failure modes of a thin oxide film under a compressive stress, from [96] after work 

by [98] 

 

 

Even with an area of decohesion present between the oxide and substrate buckling may not 

occur as the size of the decohesion must be such that sufficient stress is generated within the 

coating.  This critical stress can be represented by equation 4.1 below, assuming solely plastic 

deformation and shows clearly that the ratio of decohesion size and oxide thickness is an 

important criteria to buckle propagation[61, 96].  
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σc = Critical buckle propagation stress 

Eox= Young’s modulus of the oxide (367GPa for α-alumina) 

υox= Poisons ratio of the oxide (~0.3) 

ξ = Oxide thickness 

R*= Radius of the area of decohesion 

 

Figure 4.1: Schematic diagram showing the process of buckling [96] 
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Figure 4.2: Typical example of a buckled topcoat after thermal cycling between 1280°C and 

950°C.[99] 

 

The presence of this mechanism is now supported by much experimental evidence[94, 96, 97, 

100-102].  It is now generally accepted that this is the final mechanism by which de-

lamination occurs in most TBC systems[88, 94, 103].  The main limitation behind this 

mechanism is the slow stage of sub-critical crack growth at the topcoat/TGO or TGO/bond 

coat interface that is necessary for the initial area of decohesion to form.  Equation 4.1 shows 

that to generate a sufficient stress for buckle propagation a large area of decohesion and a thin 

oxide is usually required.  It is as yet unclear how these areas of decohesion develop. 

 

4.3 Wedge Cracking 

 

Wedge cracking occurs at the TGO/bond coat interface when the cohesive strength of the 

TGO is less than the bonding strength between the TGO and substrate[61].  In this case 

compressive shear cracks develop in the coating as shown in figure 4.3(a) due to compressive 

stresses set up in the coating during cooling, because of the mismatch in thermal expansion 

coefficients.[96] 
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Figure 4.3: Schematic diagram of the mechanism of spallation by wedge cracking.[96] 

 

Continued cooling leads to strain development in the region of the crack due to the deflection 

of the TGO.  This deflection comes from the combination of shear cracks through the TGO 

and the compressive stress applied on cooling.  This leads to the formation of wedges between 

the coating and substrate as can be seen in figure 4.3(b)[96].  Some of the stress developed is 

relieved in the bond coat through creep however as the temperature decreases further the 

compressive stress increases and the ability of the bond coat to creep decreases.  When a 

critical temperature drop is reached enough stress is developed at the crack tip for propagation 

of the crack along the TGO/bond coat interface[96].  This mechanism has also been 

demonstrated under the constraint of a topcoat which could potentially restrict the formation 

of the wedge cracks.  However the vertical displacement needed to form the cracks is very 

small in the region of a 50nm.  Therefore modelling of the propagation of cracks with 
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increasing temperature drop and with a compressive stress applied on top shows only 

restriction of the initial formation of the cracks but no restriction on rapid crack propagation.  

This mechanism requires through thickness cracks to develop in the TGO, examples of these 

cracks are rare but have been seen in previous work[104]. 

 

4.4 Chemical Failure 

 

Formation of rapidly growing non-protective oxides, usually Ni and Co rich, at the bond coat 

surface due to localised aluminium depletion is termed “chemical failure”[105, 106].  It can 

lead to increased out-of-plane stresses within the TBC system and the development of 

delamination cracks, which can ultimately lead to buckling type failures.  It is still unproven 

whether this mechanism occurs in EBPVD coatings and whether it leads to spallation of the 

TBC, it has however been shown in overlay MCrAlY coatings as a consequence of the 

formation of diffusion cells[105-108] which are isolated areas experiencing rapid Al 

depletion. A limited diffusion path usually caused by topographical features causes this.  Once 

the Al content falls below the 2-4wt% minimum required to sustain an alumina scale, Ni and 

Co spinels will form.  Air plasma sprayed and HVOF bond coats are typically particularly 

rich in these features due to the oxidation of the individual particles leading to isolated regions 

as shown in figure 4.4.   
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Figure 4.4: a) Schematic diagram showing diffusionally isolated regions of the coating, b) 

Scanning electron micrograph showing same feature.[107] 

 

4.5 Bond coat Phase transformations 

 

There are three main phases present in the bond coat of most Ni based TBC systems, these are 

the β (NiAl) phase, γ (Ni) phase and γ΄ (Ni3Al) phase.  Figure 8.10 shows the distribution of 

these phases at 1150˚C and as can be seen from the phase diagram, a reduction in Al from the 

β-phase can lead to conversion of β to γ and/or γ΄ phases.  This reaction comes from the 

depletion of aluminium through formation of the TGO and interdiffusion with the substrate 

leads to a change from the β (NiAl) phase to the γ΄ (Ni3Al) phase[109-111].  This could lead 

(a) 
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to tensile stress being set-up at the interface between the phases due to the associated volume 

change and also through differences in the thermal expansion co-efficients of the two 

phases[5, 70].  This applies mainly to the (Ni, Pt) Al bond coats as they primarily consist of 

the β phase whereas the overlay and γ/ γ΄ bond coats contain relatively small amounts or none 

of the β-phase.  It is unclear however whether this transformation has much of an effect on 

TBC life as some studies have shown that despite a similar volume of γ΄ (Ni3Al) phase being 

formed in different alloys there is considerable variation in TBC lifetimes[110]. 

 

In addition to the phase transformation mentioned above, there are several observations of a 

further conformational change in the β (NiAl) phase, in which upon cooling it converts from a 

B2 structure to a distorted L1o martensite structure[5, 109, 112].  This transformation has 

associated changes in volume whereby the change from B2 to martensite results in a 

contraction of ~2%, thus exacerbating the effect of the mismatch in thermal expansion co-

efficients[5, 109].  Figure 4.5 shows the percentage strain associated with this transformation 

both on heating and on cooling and shows that a higher strain with the substrate is maintained 

during the transformation associated with the volume change.  There is also a rapid increase 

on heating in strain at the point of transformation and a rapid decrease on cooling also at the 

point of transformation.  This mechanism cannot be applied to the γ/γ΄ bond coats as they 

contain little or no β phase. 
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Figure 4.5: Chart to show the strain induced in the bond coat compared to the substrate during 

the B2 to L1o transformation in β (NiAl) phase bond coats[5, 109]. 

 

4.6 Non uniform oxide growth 

 

In an ideal TBC system the bond coat will form a dense pure α-alumina TGO at its surface, 

which is protective and slow growing[100].  However, in some TBC systems other aluminas 

and even other fast growing oxides can form non-uniformly across the surface[16, 33, 35, 48, 

53, 105, 106].  These transitional and peg oxides grow at a much quicker rate than the α-

alumina, however after relatively short times at high temperature the transitional aluminas 

will convert to the more stable α form and in doing so undergo a volume contraction[35].  

This can put the TGO under considerable tensile stresses, which can lead to crack nucleation 

at the TGO/topcoat interface. During the production of the bond coats, the heat treatments 

applied as discussed previously, lead to the development of α-alumina, however some meta-

stable transitional aluminas can be present for many hundreds of hours depending upon the 

exposure temperature[35]. 
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4.7 Growth on Non-planar Surfaces 

 

Most of the failure methods described above are appropriate to flat planar surfaces; however 

the bond coat surface is never actually flat.  In the case of sprayed coatings or CVD processes 

the surface is often roughened by grit blasting prior to coating in order to aid in coating 

adhesion[113].  Therefore the TGO grows on non-planar surfaces and so creates out of plane 

stresses around asperities[94].  Cracks can form at the asperity, when large out-of-plane 

stresses develop (figures. 4.6 and 4.7).  These stresses develop due to the growth of alumina 

on the flanks of the asperities.  The vertical component of this growth is less on these flanks 

than at the peaks or troughs as the alumina grows perpendicular to the bond coat surface.  The 

displacement of the bond coat in this plane is governed by the oxide growth at the peaks and 

troughs.  Therefore tensile stresses are developed on the flanks of the asperities which can 

cause cracking in the topcoat and TGO in this region.  Figure 4.7 shows finite element 

modelling of the area around the TGO and demonstrates that significant out of plane tensile 

stresses can develop along the flanks of the asperities if the roughness amplitude to 

wavelength ratio is great enough. 
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Figure 4.6: Schematic diagram showing the development of cracks due to out of plane TGO 

growth during cooling[94]. 

 

 

Figure 4.7: Contour of maximum out of plane principal stress near TGO layer at 1100 °C after 

100 hours oxidation at 1100 °C in a TBC system when BC and TGO creep behaviour and 

topcoat sintering are considered. (a) b / a = 0.52 and (b) b / a = 0.25. a = Roughness 

amplitude, b = roughness wavelength[114] 
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Experimental evidence suggests that increased surface roughness prior to oxidation 

significantly decreases TBC life and these locations have been reported as sites of failure [94, 

113, 115] 

 

4.8 Ratcheting 

 

Considerable stresses are developed in the TGO upon cooling due to the thermal expansion 

mismatch with the substrate.  On a planar surface these stresses are purely biaxial in nature, 

however TBC coatings are often quite undulating in nature and are seldom planar, this 

roughness is often intentionally added to aid mechanical adhesion of the bond coat[116].  

These undulations lead to shear stresses on the flanks of the asperities during cooling after 

growth of the TGO[116, 117].  If these stresses are greater than the yield strength of the alloy 

the undulation will increase in size due to plastic deformation of the bond coat[116, 117].  

This process relies on thermal cycles with incremental increase in roughness with increasing 

cycles[116, 117].  This increased roughness can lead to decohesion at the base or peaks of the 

asperities and cause failure through buckling[117]. 

 

4.9 Rumpling 

 

It has been shown that repeated thermal cycling of both diffusion and overlay coated bond 

coats with no topcoat results in a progressive roughening of the bond coat (BC) outer 

surface[67, 88, 100, 118-128].  This roughening/rumpling leads to characteristic wavelengths 
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in the scale of 130-345μm[88].  It has also been shown that this rumpling is a phenomenon 

that occurs only in thermal cycled specimens and identical specimens that are isothermally 

tested do not exhibit this phenomenon[88, 118, 119].  Figure 4.8 shows visually the difference 

between two identical samples, one treated isothermally at 1150˚C for 100hrs the other with 

1hr thermal cycle to 100hrs; clearly the thermal cycled samples exhibit greater roughness. 

 

Figure 4.8: Two Scanning electron micrographs showing identical sections through diffusion 

bond coats without topcoat), a) has been cycled with 100 x 1hr thermocycles at 1150˚C, b) 

has been held for 100hrs isothermally at 1150˚C[118]. 

 

This effect as yet is not fully understood however, it potentially could be a relevant 

mechanism contributing to failure as most gas turbine engines components are thermally 

cycled in service[123-125, 127, 128].  Rumpling could be caused by a number of factors 

including thermal expansion co-efficient mismatch between the bond coat, topcoat and TGO, 

leading to contraction of the TGO which is accommodated by creep of the bond coat[103].  It 

does therefore depend upon having a bond coat weak in creep.  To date, there is no clear 

evidence that this mechanism occurs in typically used coatings and this may be because of the 

mechanical constraint imposed by the outer ceramic layer.  Table 4.1 gives the experimentally 

determined differences of co-efficient of thermal expansion (CTE) compared with the Al2O3 

TGO.  It shows that both phases have considerably different thermal expansions when 
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compared to the TGO, the β- phase is representative of the beta diffusion bond coats and the 

other two are representative of the MCrAlY overlay and γ+γ΄ diffusion bond coats 

respectively. 

 

Table 4.2: Comparison of the co-efficient of thermal expansion of 3 different bond coats with 

alumina[129] 

Alloy Composition Thermal expansion co-

efficient at 1150˚C, 10
-6

°C 

Alloy phases at 1150˚C 

NiPt52Al 11 β 

Ni20Cr19Al+Y 15 β + γ 

Ni10Cr19Al+Y 13 γ+γ΄ 

Alumina 7.9 α-Al2O3 

 

  This could cause a characteristic waviness of the coating, depending on the coating strength 

and the development of voids at the TGO/topcoat interface, as demonstrated schematically in 

figure 4.9.[119] 
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Figure 4.9: Schematic diagram showing how voids and TGO/topcoat separation could occur 

during rumpling[119] 

 

It is also proposed that the volume contraction associated with phase changes in the bond 

coat, mainly the β-martensite transformation, could cause surface rumpling if it occurred 

adjacent to the TGO interface[103]. Rumpling could lead to small void like separations of the 

TGO from the topcoat[119].  If these small flaws were to coalesce they may lead to a large 

enough flaw to initiate buckling and spallation/ delamination of the topcoat at the 

topcoat/TGO interface[119].  However experimental evidence of TBC failures show that most 

failures occur at the bond coat/TGO interface therefore these flaws would need to initiate 

cracking through the TGO and as yet there is no evidence for this type of failure. 
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5 EXPERIMENTAL 

5.1 Coating Detail 

 

In the present study, two thermal barrier coating systems were analysed under an isothermal 

and cyclic testing regime.  After oxidation the samples were prepared and examined in order 

to compare their oxidation kinetics and any damage to the coatings caused during the 

oxidation process.  The two coatings tested in the present study were deposited on to a 

CMSX-4 nickel based superalloy a typical composition of this alloy is given in table 5.1.  The 

first group of specimens had an overlay NiCoCrAlY coating applied by High Velocity Oxy 

Fuel (HVOF) spraying and the second group had a similar NiCoCrAlY overlay coating 

applied by Electron Beam Physical Vapour Deposition (EBPVD). Both sets of specimens had 

an identical EBPVD applied 7wt% yttria partially stabilised zirconia (YSZ) topcoat. 

 

Table 5.1:  Compositional data of a typical CMSX-4 nickel based superalloy in wt.% [130]. 

Ni Co Cr Al Ti Ta Mo W Re Hf 

62 9 6.5 5.5 1 6.5 0.6 6 3 0.1 

 

The approximate compositions of the two bond coats, after deposition, is given in table 5.2. 

Both are NiCoCrAlY, having more Ni than Co, although the relative amounts of these 

elements varies in each coating.  There is also more Cr in the HVOF bond coat and slightly 

less Al.  There is a significant difference in the quantity of yttrium with the HVOF applied 

coating showing a higher bulk concentration in the centre of the coating.  The HVOF 

specimens were produced by Siemens Industrial Turbomachinery in Lincoln, UK.  The 
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EBPVD specimens were provided by Siemens of Finspong, Sweden.  The coating parameters 

and pre-spraying compositions were not available from the companies.  After the bond coats 

were applied the specimens were shot peened to flatten and densify the surface before 

application of the 7 wt% YSZ topcoat.  A summary of the makeup of both coatings is given in 

table 5.3 

 

Table 5.2: Measured average bond coat compositions for both groups of specimens in wt.% 

Application 

Method Ni Co Cr Al Y 

HVOF 36.2 33.5 21.0 9.0 0.3 

EBPVD 52.8 19.2 17.8 10.2 0.1 

 

Table 5.3:  Summary of the details of both thermal barrier coating systems studied. 

 Substrate Bond coat Topcoat 

Coating 1 

CMSX-4 (Nickel 

based single crystal 

superalloy) 

NiCoCrAlY coating 

applied by HVOF 

 

YSZ deposited by 

EBPVD 

Coating 2 

CMSX-4 (Nickel 

based single crystal 

superalloy) 

NiCoCrAlY coating 

applied by EBPVD 

YSZ deposited by 

EBPVD 

 

5.2 Specimen Geometry 

 

Both groups of specimens were supplied as small circular buttons with a full coating on two 

sides only; the base of each button consisted of the bare superalloy.  The geometry of the 

specimens can be found in figure 5.1.  The specimens with the EBPVD bond coat were 

provided with a metallic peg welded to the bare superalloy side of each specimen, which is 

used to secure the specimen during the coating process, this was removed after testing. 
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Figure 5.1: Schematic diagram of the specimen geometry. 

 

5.3 Oxidation Testing 

 

Both sets of specimens were oxidised using the same procedure as outlined in the following 

sections and in the same furnaces. 

 

5.3.1 Isothermal Oxidation 

 

Specimens were oxidised isothermally in laboratory air for up to 3000 hours at temperatures 

of 950°C and 1050°C in bench top furnaces with tests at 1150°C being carried out in a 

vertical furnace.  Tests were also conducted at 1000°C and 1100°C in a bench top furnace for 

the HVOF applied bond coat only. Due to the limited availability of specimens with the 

EBPVD bond coat testing at these temperatures was not possible.  The full test matrix for 

both coating systems is given in Section 5.7.  

 

3.5mm  

Coating 

12mm 

Substrate 
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The specimens were first measured using a micrometer to assess the thickness and diameter 

before being cleaned ultrasonically in ethanol for 5 minutes.  They were then placed onto a 

clean alumina boat of approximately 90 mm in length as can be seen in figure 5.2A.  The 

furnace was preheated to the set temperature before the specimens were inserted using a 

metallic rod.  This was done in 3 increments to prevent thermal shock of the alumina furnace 

tube and alumina boat.  After the specimen was fully inserted, the end of the furnace was 

covered with alumina wool to maintain a consistent temperature but allow unrestricted air 

access.  Figure 5.2 shows photographs of (A) specimen positioned in one of the alumina boats 

and (B) one of the bench top furnaces used. 

 

 

 

 

 

 

 

 

 

Figure 5.2: Photographs of the isothermal test set-up showing  (A) a specimen positioned on 

an alumina boat and (B) an isothermal bench-top furnace. 

 

After the allotted test time, the specimens were removed from the furnace and allowed to cool 

in the alumina boat in laboratory air to room temperature before being prepared for 

examination as described in Section 5.5. 

 

A B 
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5.3.2 Thermal Cycling 

 

Surface rumpling has been cited as a potential failure mechanism for these coating types, 

Section 4.9.  To ascertain whether this is the case the following testing regime was carried out 

on specimens from each coating type.  Firstly, the topcoat on these specimens was removed 

from half of the top surface mechanically using wet and dry SiC paper.  The exposed bond 

coat was then roughened using a grinding stone to more closely match the surface roughness 

of the bond coat section with topcoat attached.  The specimens were sectioned using a slow 

speed saw with a cubic boron nitride (CBN) blade such that each half consisted of one section 

with a topcoat intact and the other section was exposed bond coat.  One of these half 

specimens was examined metallographically in the as-received condition and the other half 

specimen was cyclically oxidised to failure by spallation of the remaining topcoat.  The cycles 

consisted of 1 hour at 1170°C followed by 5 minutes cool down in laboratory air and 15 

minutes standing in laboratory air.  The cool down and standing procedure was carried out in 

the furnace tube with the furnace having been moved away.  Examination of the specimen for 

spallation was possible after every cycle as a silica furnace tube was used for the majority of 

the cycles.  Later cycles were carried out in an alumina tube with examination of the specimen 

taking place after each cycle through the end of the tube and a closer examination was carried 

out by removing the sample from the furnace tube after cooling.  These tests were carried out 

in a horizontal furnace thermal cycling rig built for this project and a picture of the set-up can 

be seen in figure 5.3. 
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Figure 5.3: Photograph of the thermal cycling set-up created for this project. 

5.4 Specimen Preparation 

 

After testing and cooling to room temperature the specimens were vacuum impregnated in a 

low viscosity epoxy resin (Epofix, made by Struers) to protect the coating from damage from 

subsequent preparation.  The specimens were allowed to cure for at least 24 hours before 

being sectioned perpendicular to the top surface using a CBN blade.  To ensure that the 

specimens remained flat for the duration of the preparation they were mounted, with cut face 

exposed, in a high filler content epoxy resin with a much higher hardness than the Epofix 

resin.  Once the resin had set, the specimens were ground to 1200 grit using wet and dry SiC 

paper and subsequently polished using diamond suspension down to ¼ m finish.  A short 

final polish using an alumina sol was performed immediately prior to examination; the time of 



63 

 

this final polish was only a few minutes to minimise etching by the sol of certain phases 

within the bond coats. 

 

5.5 Microscopy 

 

Two different microscopes were used to examine the specimens.  A Philips XL-30 

microscope with a LaB6 filament with a resolution of ~0.5μm was used for comparatively low 

magnification imaging for surface roughness measurements and for bond coat microstructural 

analysis using Energy Dispersive Spectroscopy (EDS).  High-resolution images and detailed 

compositional analysis was provided by a JEOL 7000 microscope with a field emission gun, 

which provides a very stable high density, narrow electron beam and a resolution of up to 

3nm, with a typical resolution for the specimens tested here of around 50nm.  Microscopy 

was used to characterise the samples, measure the thickness of the TGO, identify sources of 

cracking, provide information on surface roughness and for compositional details.   

 

An extensive study was made of the growth of the TGO as this is thought to be one of the 

important factors that affect coating life in service.  Therefore it is important to identify the 

growth kinetics of the TGO over time at temperature.  Ten images of sections through the 

coating were obtained at regular intervals across each tested coating using the JEOL 7000 

microscope.  Figure 5.4 shows an example of one of these images. 
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Figure 5.4: SEM micrograph of a section through a TBC with an EBPVD bond coat in the as-

received condition showing details of the bond coat, topcoat and TGO interface. 

 

Ten TGO thickness measurements were taken at equally spaced intervals from each image, 

i.e. in the growth direction of the oxide. This gave a total of 100 measurements for each 

specimen.  These measurements were plotted onto a probability plot.  The mean TGO 

thickness and standard deviation were also calculated. 

 

A single representative specimen was selected to examine the structure in the as-received 

condition.  This sample was used as a benchmark from which to provide an initial oxide 

thickness and surface roughness value for comparison and calculations of TGO growth rate 

during the laboratory testing.  Ideally a starting thickness for each individually tested 

specimen should be used to accurately measure the thickness of oxide produced during 

 

Topcoat 

Bond coat 

TGO 
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testing.  However, this was not possible as sectioning each sample would introduce additional 

stresses into the coatings and would also expose an uncoated superalloy section whereby 

oxygen could ingress and adversely alter the oxide growth.  It was therefore decided that this 

was a good approximation and any variation between specimens would fall within the 

resolution of the measurements taken. 

 

Common to all of the proposed failure mechanisms in these coatings is the nucleation and 

growth of micro-cracks.  Therefore, one of the main tasks of imaging microscopy was to 

examine the cross sections for evidence of these cracks and, if found, to relate the location to 

any microstructural or topographical features.  

 

Surface roughness has been cited as an important factor in several proposed TBC failure 

mechanisms, e.g. rumpling; therefore, the surface roughness was determined from sections 

taken through various specimens, including the thermally cycled specimens.  Five low 

magnification micrographs were taken at representative regions across the bond coat interface 

and included the IDZ and part of the topcoat.  An example is shown in figure 5.5; note that a 

straight line parallel to the TGO can be drawn at the IDZ / bond coat interface.  This line was 

used as a reference line away from, and parallel to, the TGO surface.  Measurements were 

taken from this line to the bond coat/TGO interface at 10μm intervals, figure 5.6.  An average 

of these values was taken to identify the mean location of the surface as shown by the dashed 

line in figure 5.6. 
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Figure 5.5: SEM micrograph of an as-received specimen with an EBPVD bond coat, showing 

the location of the reference line used to calculate surface roughness.  

 

 

 

 

 

 

 

 

 

Figure 5.6: Schematic diagram of surface roughness measurement. 
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This mean point was subtracted from the original measurements to obtain a set of values of 

the distance of the actual interface surface from the average line.  The Ra value could then be 

calculated using the procedure laid down in British Standard BS1134, thus: 

n

y
n

i

i
 1y       (5.1) 

n

yy
n

i i 
aR     (5.2) 

Where, 

Ra= Roughness average 

n=number of sampling lengths 

y=surface profile 

 

In addition, the wavelength and amplitude of the surface roughness was measured in a number 

of isothermally oxidised specimens to give an indication of changes in surface roughness with 

time and temperature. 

 

In order to characterise the microstructure of the alumina TGO and possible effects this might 

have on the oxidation kinetics and failure modes observed, an EBSD study was carried out 

using the JOEL 7000 SEM.  Unfortunately sample preparation through mechanical polishing 

was not sufficient for this technique to be useful.  
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5.6 X-Ray Diffraction (XRD) 

 

Phase analysis of the TGO and topcoat was carried out using X-Ray Diffraction.  A section of 

spalled topcoat with TGO attached was examined using an incident X-ray beam at angles 

between 5 and 20°, to minimise the penetration depth of the incident beam.  Peaks attributed 

to the YSZ were inevitable due to the thin TGO but could be easily identified and eliminated. 

5.7 Test Matrix and Coding 

 

The following tables show the isothermal test times and temperatures conducted in this study.  

For both coatings short term testing at the lower temperatures was omitted as the growth of 

the oxide would have been very small.  Testing in all cases was stopped at the longer times 

when specimen failure by spallation occurred.   

 

 

Table 5.4:  Test matrix for the HVOF applied bond coat TBCs. 

Time(h)/ 

Temperature 1 2 4 8 25 50 100 240 500 750 1000 2000 3000 

950°C                           

1000°C                           

1050°C                           

1100°C                           

1150°C                           

 

Tested   

Not 

Tested   
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Table 5.5:  Test matrix for the EBPVD applied bond coat TBCs. 

Time(h)/   

Temperature 1 2 4 8 25 50 100 240 500 1000 3000 

950°C                       

1050°C                       

1150°C                       

 

Tested   

Not 

Tested   

 

Due to the large number of specimens used in this study and the array of different cooling 

types and oxidation regimes a coding system was devised.  This is indicated below and these 

codes may be found throughout this thesis to aid in descriptions of exact specimen conditions. 

 

 

L NF 100 SC 

 

 

 

 

 

 

Bond coat type 

L=HVOF 

F=EBPVD 

Temperature 

NF=950°C 

T  =1000°C 

TF=1050°C 

H  =1100°C 

HF=1150°C 

Time at 

Temperature 

(Hours) 

Special Code 

SC=Slow Cooled 

Q=Water Quenched 

Pt=Platinum Coated 

TC= Thermal Cycled 

 

These extra codes where 

duplicated as necessary 
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6 RESULTS FOR THE TBC SYSTEM WITH THE HVOF 

APPLIED NICOCRALY BOND COAT 
 

6.1 Introduction 

 

This section contains the results of the testing described in section 5 on the TBC system with 

the HVOF NiCoCrAlY bond coat.  The results of the testing performed on the TBC system 

with the EBPVD NiCoCrAlY bond coat are given in section 7.  A comparison of the two 

coating systems is made in the discussion, section 8, which will also include information from 

the literature. 

 

The growth of the TGO is dealt with first for each coating type as this is the main emphasis of 

this thesis.  This naturally leads on to lifetime determination and prediction which, in turn, 

leads on to seeking an understanding of the mechanisms leading to spallation of the topcoat 

and thus failure of the coating system.  Thus, sub-sections on analysis of oxide growth, 

surface roughness, composition and cracking are included. 

 

6.2 Oxide Thickness Distribution 

 

The oxide thicknesses measured from all the specimens examined as shown in section 5.7, 

were plotted on probability plots and were found to follow a normal Gaussian distribution, 

figure 6.1 shows three test temperatures with a fixed oxidation exposure of 4 hours.  Shown in 

these plots are the actual data points plotted on to a predicted normal distribution curve 
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obtained from the data.  The good fit seen in these distribution curves and the lack of 

excessively thick oxides in these specimens demonstrates, along with the SEM examination, 

that no fast growing non-protective oxides were formed at any of the test times and 

temperatures.  Such oxides, essentially Ni, Co and Cr spinels, are associated with topcoat 

delamination late in life and result from localised aluminium depletion within the bond 

coat[107, 131, 132].  Their absence in the present specimens indicates that this mechanism of 

failure did not operate in the present tests. 
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Figure 6.1: Probability plots showing a normal Gaussian distribution of TGO thickness for 

specimens tested for 4 hours at (a) 950°C, (b) 1050°C and (c) 1150°C. 

 

A similar plot showing the influence of increasing exposure time at the highest test 

temperature of 1150
o
C is shown in figure 6.2.  Again, a normal distribution was observed 

even after extended exposure periods.  It is also clear, however, that the standard deviation 

increased with increasing exposure time, see also table 6.1.  An explanation of this trend may 

be that there is a persistent high and low alumina growth rates in localised regions of the bond 

coat surface.  As each region continues to grow it does so at its own individual rate, thus 

producing the effect seen here.  This may also be due to grain orientation differences within 

the alumina TGO, but the exact mechanism is not fully understood.  Attempts were made to 

index the orientation of the alumina TGO using Electron Backscatter Diffraction (EBSD).  

Unfortunately, whilst it was possible to image some bond coat grains, it proved exceedingly 

difficult to mechanically polish the sectioned surface to the level necessary to obtain 

information using this technique.  This is primarily due to the close proximity of three very 

different materials with different polishing requirements.  This leads to the effect of relief 
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being evident in the polished surface and insufficient index being obtained.  This problem 

could possibly be alleviated in future work by the use of electro-polishing techniques or using 

the recently installed focussed ion beam scanning electron microscopy (FIBSEM).  However 

insufficient time was available in this project for this to be attempted.  An example of the 

polishing that could be achieved using this technique can be found in section 8, figure 8.4. 
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Figure 6.2: Probability plots of TGO thickness distribution in the as-received condition and 

after various exposure periods at 1150
o
C.  The change in slope of the curves indicates that the 

standard deviation of the distribution increases with exposure time. 

 

In addition to the above, this observed increase in standard deviation could be attributed to an 

increase in surface roughness with increasing time at temperature.  This would lead to 

localised angled slices of the TGO being taken during the cross sectioning procedure which 

would falsely indicate an abundance of thicker growing oxides.  However, no increase in 
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surface roughness was observed in these specimens as described later in section 6.4.1, 

therefore it is highly unlikely that this effect is being seen here. 

Table 6.1:  Mean and 2 standard deviations of the TGO thicknesses for the specimens with an 

HVOF bond coat at all times and temperatures, taken from 100 measurements per specimen.  

A summary of the cracking and spallation observations is also included. 

Time/ 

h 

950°C 1000°C 1050°C 1100°C 1150°C 

0 0.49 +/- 

0.24μm 

0.49 +/- 0.24μm 0.49 +/- 0.24μm 0.49 +/- 

0.24μm 

0.49 +/- 0.24μm 

1 NOT 

TESTED 

NOT TESTED NOT TESTED 1.04 +/- 

0.68μm 

1.05 +/- 0.38μm 

2 NOT 

TESTED 

0.87 +/- 0.28μm 0.95 +/- 0.41μm 1.06 +/- 

0.68μm 

1.36 +/- 0.39μm 

4 0.57 +/- 

0.33μm 

1.01 +/- 0.41μm 1.11 +/- 0.41μm 1.44 +/- 

0.49μm 

1.43 +/- 0.49μm 

8 0.94 +/- 

0.39μm 

1.15 +/- 0.38μm 1.37 +/- 0.54μm 1.51 +/- 

0.59μm 

2.11 +/- 0.75μm 

25 0.96 +/- 

0.34μm 

1.39 +/- 0.53μm 1.56 +/- 0.66μm 2.06 +/- 

0.69μm 

DELAMINATED 

50 1.05 +/- 

0.46μm 

1.58 +/- 0.54μm 1.93 +/- 0.67μm 2.41 +/- 

0.78μm 

SPALLED 

100 1.17 +/- 

0.45μm 

1.83 +/- 0.61μm 2.01 +/- 0.62μm SPALLED 2.85 +/- 1.05μm 

240 1.49 +/- 

0.56μm 

2.05 +/- 0.58μm DELAMINATED SPALLED NOT TESTED 

500 1.94 +/- 

0.59μm 

DELAMINATED SPALLED NOT 

TESTED 

NOT TESTED 

750 NOT 

TESTED 

2.36 +/- 0.75μm NOT TESTED NOT 

TESTED 

NOT TESTED 

1000 2.30 +/- 

0.87μm 

NOT TESTED NOT TESTED NOT 

TESTED 

NOT TESTED 

2000 NOT 

TESTED 

SPALLED NOT TESTED SPALLED NOT TESTED 

3000 2.60 +/- 

0.84μm 

NOT TESTED NOT TESTED NOT 

TESTED 

NOT TESTED 

 

   Sub Critical Cracking Observed 

   Delaminated at TGO/Bond-coat Interface 

   Spallation at TGO/Bond-coat Interface 
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6.3 Oxidation Kinetics 

 

The oxidation kinetics was determined for five temperatures from the increase in TGO 

thickness as described in section 5.5.  The TGO thickness present on the HVOF bond coat in 

the as-received condition was found to be 0.49 m, figure 6.3.  This is a characteristic feature 

of TBC systems which have an EBPVD topcoat and was formed during the topcoat 

manufacturing stage and is essential for bonding.  This value was subtracted from all the TGO 

measurements taken from the tested specimens to give TGO growth rates for the oxidation 

test conditions.   

 

 

Figure 6.3: Scanning electron micrograph of a section through the as-received TBC system 

consisting of a NiCoCrAlY HVOF bond coat with an EBPVD topcoat.  The thin (0.49 m) 

alumina TGO layer, formed during processing, can be seen in dark contrast between the 

topcoat and bond coat. 
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Equation 6.1 describes the kinetics of oxidation growth for these systems[22].  

 

  )tk( o
n/1

n       (6.1) 

Where,  is the measured average oxide thickness in metres, t is time in seconds, o is the 

average oxide thickness in the as-received condition, taken as 4.9x10
-7

m for all specimens; n 

is a numerical constant and kn is a rate constant.  

 

Equation 6.1 as described in section 2.2.2 describes the sub parabolic oxidation of an oxide 

growing on a pre formed none protective oxide.  It applies well to the coatings studied here 

due to the formation of the transitional alumina, θ-alumina, during the application of the 

topcoat.  This transitional alumina, then transforms to α-alumina after a short time, typically 2 

hours at 1100°C[133].  This transformation results in a volume contraction and resultant 

tensile stress in the order of 400MPa in the growing oxide[134].  This stress leads to through 

thickness cracks through the θ-alumina matrix and growing α-alumina nodules[133].  These 

cracks allow direct molecular gas access to the metallic bond coat surface and thus remove the 

protective nature of the oxide[133].  Subsequent oxidation fills the cracks with α-alumina but 

this can take as much as 250 hours at 1000°C[133]. 

 

Log/log plots of the increase in oxide thickness against exposure time at each temperature 

provides the time exponent, n, by taking the inverse of the slopes, figure 6.4.  The values of n 

obtained in this way are given in table 6.2. 
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Figure 6.4: Plot of increase in TGO thickness growth kinetics for the five test temperatures 

plotted according to equation (6.1). 

Table 6.2: Experimentally determined time exponents’ n from equation 6.1 for the HVOF 

NiCoCrAlY bond coat. 

Temperature, 

°C 

Time exponent n 

950 2.31 

1000 3.18 

1050 3.27 

1100 2.99 

1150 3.28 

 

The time exponent, n, in all cases was found to be >2, demonstrating that sub-parabolic 

oxidation kinetics were observed.  Such sub-parabolic behaviour is commonly observed in 

alumina-forming alloys [13, 15, 16, 24, 33, 135] and other systems [25, 31].  It has been 

attributed to various factors including the transformation from transitional aluminas such as  

or γ to -alumina after a short time at temperature.  Typically these transitional aluminas have 
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a much increased rate of growth when compared to α-alumina[13, 33, 35].  At the elevated 

temperatures used in these tests this transformation would occur after a short period of time.  

In addition, the presence of an already formed dense α-alumina, as is the case here, would 

preclude formation of any further transitional aluminas and thus this mechanism is unlikely to 

cause the sub-parabolic behaviour seen here.   

 

Alternatively, an increase in the average oxide grain size would lead to a decrease in the 

number of available grain boundaries within the TGO for short circuit diffusion[25].  It has 

been demonstrated that the rate of oxygen transfer across the TGO is higher than would be 

predicted through lattice diffusion of oxygen, therefore a short circuit pathway for oxygen 

diffusion must exist[25].  This is thought to occur along grain boundaries within the TGO, 

thus an increase in the average oxide grain size with time at temperature would cause decrease 

in oxygen diffusion and so a decrease in oxidation rate, as seen in these specimens.  This is 

the likely cause of the sub-parabolic growth described here[25].  

 

A continuous increase in compressive growth stress within the oxide layer has been 

demonstrated to reduce the growth rate of an oxide, likewise a tensile stress will increase the 

oxide growth rate[27-30].  This effect has been described and modelled by Evans et al for 

zirconia and agrees with the observations of the other systems cited above [31].  A stress in 

the order of several GPa has been measured indirectly for alumina growing in a coating 

however these results of at temperature growth stresses are difficult to determine. 

 

The rate constant kn was calculated by plotting the increase in oxide thickness raised to the 

value of n at each temperature against the oxidation time again using equation 6.1, figure 6.5.  
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The value kn was determined from the slope of the resultant linear plot, the calculated values 

of the rate constants are given in table 6.3 
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Figure 6.5: Plots for the determination of individual kn values as each test temperature, results 

are displayed in table 6.1 

 

Table 6.3: Experimentally determined kinetic parameters and pseudo-parabolic parameters 

from equation 6.1 for the HVOF NiCoCrAlY bond coat. 

Temperature, 

°C 

Time exponent n Measured rate 

constant, kn, 

m
n
s

-1 

Pseudo-parabolic  

rate constant, kp, 

m
2
s

-1 

950 2.31 1.68x10
-20 

9.33x10
-19

 
 

1000 3.18 6.93x10
-25 

5.86x10
-18

 
 

1050 3.27 3.53x10
-25 

6.38x10
-18

  

1100 2.99 4.93x10
-23 

1.92x10
-17

 
 

1150 3.28 1.47x10
-24 

1.34x10
-17

 
 

 

These values were used to produce oxide growth equations specific for each temperature by 

inserting the appropriate values of n and kn into equation 6.1.  Additionally taking a weighted 

mean of n to be 2.5 it is possible to produce a global temperature invariant equation from 

equation 6.1, equation 6.2.  This allows for the calculation of a predicted oxide thickness at 

any time and temperature within the test range. 
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It can be appreciated that the differing values of n and kn for each test temperature preclude 

comparison within the data and with other published work.  In order to permit such a 

comparison, the kinetics were assumed to be parabolic at all temperatures, i.e. n=2 in equation 

(6.1), and the best-fit parabolic rate constant, kp, was evaluated for each data set, these values 

are given in table 6.3.  This is a similar procedure to that used by Hindam and Whittle [136] 

when comparing the oxidation kinetics from diverse sources.  The values of kp for the present 

results are given in table 6.3 and plotted in the Arrhenius plot of figure 6.6 together with the 

mean trend line for a variety of alumina formers obtained from Hindam and Whittle[136].  It 

can be seen that the present data fit reasonably well to Hindam and Whittle’s findings and 

indicates that the characteristically good protection offered by -alumina is present in the 

TGO system tested here.  
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Figure 6.6: A comparison of the pseudo-parabolic rate constants fitted to the present data with 

the mean trend line for alumina-forming alloys obtained from the compilation by Hindam and 

Whittle[136]. 

 

6.4 Bond coat Surface Roughness (Topography) 

 

Surface roughness at the TGO/ bond coat interface has been linked in the literature to 

numerous failure mechanisms including surface rumpling[120, 137-139].  However, as 

described in section 4.9 there is no substantial evidence to date of surface rumpling in systems 

containing a topcoat and / or a strong bond coat.  The following results show the wavelength 

and amplitude of the bond coat before and after oxidation in selected specimens and were 

measured using the procedure described in section 5.5. 
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Analysis of the surface roughness from data obtained from the experiments as described in 

section 5.5 follow in the next two sub-sections.  Firstly the amplitude and wavelength 

measurements taken from the as received specimen and a specimen oxidised isothermally for 

100 hours at 1050°C.  This is followed by a more detailed analysis of measured roughness 

average values performed on thermal cycled specimens. 

 

6.4.1 Wavelength and Amplitude Measurements 

 

The wavelength and amplitude of the bond coat surface roughness was measured from low 

magnification scanning electron micrographs of cross sections of two specimens with a 

NiCoCrAlY bond coat with attached YSZ topcoat as described in section 5.5.  The two 

specimens examined were an as-received, untested specimen to get a base line measurement 

of the roughness prior to testing and a specimen oxidised isothermally for 100 hours at 

1050°C.  An example of the images used can be seen in figure 6.7.  On examination of these 

specimens it was found that two scales of roughness were evident depending upon the 

magnification used.  Firstly at a higher magnification a short range roughness was observed as 

indicated in figure 6.7.  At a lower magnification a long range roughness or “waviness” was 

observed as seen in figure 6.8. 
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Figure 6.7: SEM micrographs of an as-received specimen showing measurements of the 

wavelength and amplitude of the small scale roughness. 

 

Figure 6.8: Scanning Electron Micrographs of sections through an as-received specimen 

showing the wavelength and amplitude measurements taken of the large scale roughness. 

 

A small number of measurements, six in total, were taken of the wavelength and amplitude 

for both scales of roughness, table 6.4. 

 

No significant difference between the as-received and oxidized specimens were observed, 

with any small differences being attributed to the resolution and accuracy of the method used 

in examination.   Roughening of a bond coat surface upon oxidation is a well documented 

effect, in the absence of a topcoat and on relatively weak bond coats and substrates; these 

allow for deformation and creep to occur[67, 88, 120, 137-142].  The lack of this effect in this 

Small scale 
wavelength 

Small scale 
peak to 
trough 
height 

Large scale wavelength 

Large scale peak 

to trough height 
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system is likely due to the mechanical constraint provided by the topcoat and the high creep 

strength of the bond.  Further discussion with respect to the significance of these results can 

be found in section 8.8 of this thesis. 

 

Table 6.4: Roughness amplitude and wavelength measurements of the bond coat for as 

received specimen and 100 hour oxidised samples at 1050°C.  Samples with HVOF applied 

NiCoCrAlY bond coat. 

 As-received 100 hours at 

1050°C 

Average small scale peak 

to trough height(µm) 

6 Measurements 2.28 1.97 

Average large scale peak 

to trough height(µm) 

6 Measurements 16.12 18.15 

Average small scale 

wavelength (µm) 

6 Measurements 3.82 3.42 

Average large scale 

wavelength (µm) 

6 Measurements 199.58 203.61 

 

6.4.2 Thermal Cycling 

 

In order to assess the role of the topcoat on the suppression of rumpling in this coating system 

thermal cycle testing as described in section 5.5 was carried out.  This would further examine 

the tendency of the HVOF applied NiCoCrAlY bond coat to roughen.  This procedure 

involved 1 hour cycles, on a half sized sectioned specimen where the topcoat had further been 

mechanically removed from half of the specimen, at 1170°C until failure of the coating.  An 

identical specimen half was stored and examined without exposure to provide a means for 

comparison.  Roughness average values were measured as a basis for comparison of the 

specimen.  It should be noted at this stage that obtaining a reference line for measurement of 

Ra was complicated greatly in these specimens by an uneven internal layer structure and as 
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such the results obtained have a high standard deviation as shown in figure 6.9.  For 

clarification of the results shown in figure 6.9, the term “topcoat removed” refers to the 

section part where the topcoat was mechanically removed.  The term “topcoat intact” refers to 

the part of the specimen where the topcoat was left intact prior to cycling. 

 

The results as shown in figure 6.9 show that there is no significant difference between the 

roughness of the specimen before and after thermal cycling.  However a large difference can 

be seen between the areas with topcoat attached and the areas where the topcoat had been 

mechanically removed, with the intact section showing a greater roughness.  This can be 

attributed to the difficulties in attempting to match the surface profile obtained from the 

spraying procedure using mechanical methods.  The method used here to measure the 

roughness, by its nature of using relatively low magnification images, measures the large 

scale roughness referred to in section 6.4.1.  It is this scale of roughness which is impossible 

to replicate using mechanical means as used for this testing. 

 

These results indicate that whilst every opportunity was given in terms of cycling time and 

temperature no evidence of surface rumpling was seen.  This could be attributed as described 

above to the creep strength of bond coat and substrate which does not permit significant 

deformation during thermal cycling.  Equally however, factors such as microstructral stability 

of the bond coat could be important as no evidence of phase changes at the bond coat/TGO 

interface were observed.  This is thought to be a contributing factor to surface rumpling. 
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Figure 6.9: Plot of the roughness average values (Ra) measured before and after thermal 

cycling to failure at 36 hours at a temperature of 1170°C for samples with a HVOF bond coat 

 

6.5 Microstructure and Composition 

 

The microstructure and compositional development of both the TGO and bond coat are 

important factors potentially to coating lifetime.  This section will examine first the bond coat 

microstructure and composition followed by that of the TGO.  Examination was carried out 

by a number of techniques, as described in section 5, including scanning electron microscopy, 

energy dispersive spectrometry (EDS) and x-ray diffraction. 
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6.5.1 HVOF NiCoCrAlY Bond Coat 

 

The general structure of the HVOF applied bond coat was essentially dual-phase, consisting 

of β-phase particles in a largely γ-phase matrix.  This is shown in figure 6.10 along with the 

average compositions of each phase determined using EDS measurements from several points 

across each phase in the centre of the bond coat.  These measured compositions were 

compared to the Ni-Cr-Al ternary phase diagram to identify the phases, section 8.  However 

an added complication to this is the high concentration of cobalt in the bond coat.  There is no 

quaternary phase diagram available for this system and combination of Ni and Co into a 

pseudo-ternary phase diagram is unsatisfactory, since each has a different effect on γ΄ phase 

stability.  The NiCrAl ternary phase diagram, figure 8.10, is used as an approximation in this 

discussion for guidance. 

 

Even in the as-received condition a narrow -depleted zone existed at the TGO/ bond coat 

interface as shown in figure 6.11(a).  It is a consequence of aluminium depletion due to the 

formation of the alumina TGO during the topcoat deposition stage.   As expected, this 

depleted zone increased in thickness with increasing time at temperature due to further 

depletion of aluminium as the alumina TGO continues to grow, figure 6.11b 
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Figure 6.10: Scanning electron micrograph of a section through a TBC with HVOF applied 

NiCoCrAlY bond coat oxidised for 8 hours at 1150°C and air cooled outside of the furnace 

showing the two phase structure and detailing the average phase compositions.   

 

 

 

 

 

 

 

 

Figure 6.11: Scanning Electron Micrographs of a section through specimens showing the 

extent of -phase depletion within the bond coat in the vicinity of the TGO in (a) an as-

received specimen and (b) after 25 hours at 950
o
C. 

 

From the NiCrAl phase diagrams, figure 8.10, it can be seen that the γ΄ phase field shrinks 

with increasing temperature.  This could perhaps explain the presence of only β and γ phases 

in these coatings as the γ΄ phase field at test temperature will be relatively reduced coupled to 

the relatively fast cool from temperature not permitting an equilibrium microstructure to form.  
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This hypothesis was tested by conducting a slow cooling and water quenched experiment.  

The specimens that were slow cooled were allowed to do so within the furnace after oxidation 

for 8 hours at 1150°C; this took several hours to reach room temperature as recorded by the 

furnace temperature thermocouple but not a directly attached thermocouple.  The quenched 

specimens were again held at 1150°C for 8 hours before being quenched in cold water back to 

room temperature.  These specimens were sectioned and the bond coat microstructure 

analysed.  Table 6.5 gives the compositions of the bond coat phases for the slow cooled, 

normal cooled and water quenched specimens. 

 

Table 6.5: Bond coat phase compositions after 8 hours at 1150°C and cooling under different 

regimes showing the effect of cooling rates. 

 

β Phase 

Cooling 

Composition (wt%) 

Al Cr Co Ni Y 

Slow Cooled 17.91 10.66 20.92 50.39 0.13 

Normal Cool 18.73 9.22 21.44 50.35 0.26 

Water 

Quenched 17.45 9.82 21.85 50.33 0.55 

 

γ Phase 

Cooling 

Composition (wt%) 

Al Cr Co Ni Y 

Slow Cooled 4.21 24.28 36.03 35.67 0 

Normal Cool 5.25 24.16 36.30 33.89 0.40 

Water 

Quenched 5.84 22.57 33.91 37.54 0.14 

 

As can be seen from table 6.5 there is no significant difference in the composition of the 

phases related to different cooling regimes employed.  This demonstrates that the 

compositions measured at room temperature are the same as those that exist at temperature for 
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this system.  Therefore the compositions and microstructure observed is likely to be the near 

equilibrium microstructure.   

 

6.5.2 TGO composition 

 

Analysis of the TGO developed at temperature, using XRD analysis, shows the formation of 

solely α-alumina.  These measurements were taken from sections of spalled topcoat which 

retained the TGO.  The sections were positioned in the XRD such that the TGO was exposed 

and low angles were used to limit penetration into the YSZ, an example of one such trace is 

shown in figure 6.12.  This plot shows the presence of α-alumina peaks, ZrO2 peaks but 

significantly the absence of any transitional alumina peaks.  This result was as predicted as 

the specimens had received a pre-treatment at temperatures which would encourage the 

formation of α-alumina. 
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Figure 6.12: XRD spectrum of spalled ceramic topcoat with TGO attached from a specimen 

oxidised at 1150°C for 50 hours showing the principal peaks of -alumina and zirconia.  The 

remaining unidentified peaks can be attributed to minor peaks of -alumina, zirconia and 

yttria. 

 

6.6 Cracking and Failure 

 

During the detailed scanning electron microscopy examination of all the specimens, an 

examination of the entire TGO was undertaken to look for the presence of any cracking which 

may be present.  Additionally the morphology of any large scale cracking and the time to 

failure was recorded for all specimens where total coating failure occurred.  A summary of the 

observed cracking and coating failure is given along with the oxide thicknesses in table 6.1.  

For the purpose of this project, initially a criterion of TBC failure was that greater than 20% 

of the topcoat had spalled.  However it was observed that when failure of the coating occurred 

Position (2 theta) 

Counts 
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the complete ceramic topcoat and TGO would crack away typically in one piece, these 

specimens were described as “spalled” in table 6.2.  On examination of some long life 

specimens after cross-sectioning it was further observed that full length cracks had occurred 

and as such the coating was classified as failing and described as “delaminated” in table 6.2.  

The results of the cracking observation for the HVOF applied NiCoCrAlY bond coat will be 

presented in the following section along with additional comments and explanation.  A full 

examination of the significance of these observations can be found in section 8.7.   The results 

are split into two sections, firstly an examination of cracking which did not lead directly to 

failure, called sub critical cracking and then an examination of coating final failure. 

 

6.6.1 Early Sub-critical Cracking 

 

Examination of sections of a range of specimens oxidised at different times at temperature 

demonstrated the presence of two distinct cracking mechanisms in these coatings.  At 

relatively short times at 1050°C small cracks could be identified at the TGO/topcoat interface 

region and these extended within the topcoat and TGO.  Examples are shown in figure 6.13 

for the relatively short time of 2 hours at 1050
o
C.  These cracks could be short, typically 

between 1-2μm in length, but some had coalesced/linked to form longer defects, as shown in 

figure 6.13.  However, no further progression of these cracks was evident even after 

considerably longer times at temperature.  This indicates that the driving force for the 

extension of these cracks was limited and, it is suggested, was localised to distances of similar 

magnitude to the bond coat surface roughness.  
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Figure 6.13: Scanning Electron Micrographs of two different areas through a specimen 

oxidised at 1050°C for 2 hours, showing cracking at the TGO/topcoat interfacial region and 

within the TGO.  

 

Stresses of this type have been shown by finite element analysis of models of similar systems  

to occur near the flanks of asperities/roughness in the TGO at temperature [143, 144].  These 

show how the volumetric strains associated with the growth of the TGO result in the 

development of out-of-plane tensile stresses at the oxidation temperature.  The severity of the 

stresses is increased by an increase in aspect ratio (amplitude/wavelength) of the asperities; 

therefore in order for these stresses to become significant a relatively high surface roughness 

is required, figure 6.14.  The results from section 6.5 demonstrate that this coating system has 

a relatively high surface roughness.  These stresses are located within the topcoat near the 

flanks of bond coat protuberances and extend over a relatively small distance as shown in 

figure 6.14[144].  On the basis of these results, it is suggested that the cracks shown in figure 

6.13 nucleated within the topcoat at temperature but have limited scope for propagation, at 

least for the bond coat surface topology found in the present specimens.  In cases where the 

bond coat protuberances are of high aspect ratio and closer spaced, extended cracking seems 

possible at the base of the topcoat [106], however the roughness in general in the coating 
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Bond 

coat TGO 

linked cracks 



96 

 

system viewed here was not sufficiently large or too widely spaced to allow significant 

coalescence of cracks and lead to failure.   It is expected that crack development is also aided 

by out-of-plane tensile stresses developed during cooling [106]. 

 

 

Figure 6.14: Contour of maximum out-of-plane principal stress near the TGO layer at 1100 

°C after 100 hours oxidation at 1100 °C in a TBC system when BC and TGO creep behaviour 

and topcoat sintering are considered. (a) b / a = 0.52 and (b) b / a = 0.25 [144]. 

 

6.6.2 Coating Failure 

 

At longer times, extensive cracking was seen at the bond coat/TGO interface, which leads to 

spallation or delamination of the ceramic topcoat and TGO from the bond coat.  This enabled 

XRD analysis to be made of the then exposed TGO.  Figure 6.15 shows an example of this 

crack development which occurred late in life.  In the example given in figure 6.15 complete 

spallation had not occurred but the crack was extensive and ran the full width of the specimen.  
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Ultimately it is this cracking mechanism that leads to failure of the coating in all cases except 

at 950°C where failure did not occur over the time frame of the project.  The failure seen at 

the other temperatures tested demonstrates that the release of strain energy within the TGO 

could be a significant driving force in the fracture process. 

 

Large stresses are generated within the TGO specifically during cooling to room temperature, 

equation 6.4[61] gives an expression for calculating the strain energy generated within an 

oxide during cooling. 

 

22 )())(1(*   ThEW oxox     (6.4) 

W*= Strain Energy 

Eox=Young’s Modulus of the oxide 

h=Oxide thickness 

νox= Poisson’s ratio of the Oxide 

ΔT= Change in Temperature 

Δα= Difference in thermal expansion co-efficient 

 

Using values of, 

E=367GPa 

νox=0.3 

ΔT= 1000K 

α-Alumina = 7.9x10
-6

 K
-`1

 

α-CMSX-4 Substrate = 2.0x10
-5

 K
-`1 

 

α-NiCoCrAlY Bond coat = 1.52x10
-5

 K
-`1 

 

α-YSZ Topcoat = 1.03x10
-5

 K
-`1  

 

 

For an oxide thickness at 1μm the strain energy generated between the TGO and substrate 

would be 37.6Jm
-2

.  The work of adhesion for alumina on a Ni surface has been calculated to 

be 0.66 J/m
-2

[62],  which is clearly well below the generated strain energy.  Therefore it can 

be deduced that a mechanism for relaxation of these strain energies must exist. This 
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Topcoat 

Bond coat 

mechanism is likely to take advantage of creep within the bond coat which could absorb these 

stresses through deformation.  Further discussion on this can be found in section 8. 

 

 

 

 

 

 

 

 

 

 

Figure 6.15: Scanning electron micrograph of a specimen oxidised at 1150°C for 25 hours, 

demonstrating an extensive crack at the bond coat/TGO interface. 

 

Times to failure have been recorded for four temperatures out of the five tested as no failure 

was observed at 950°C over the timescale of the experiment.  These data and those for the 

TBC system with the EBPVD bond coat are presented in Section 8 in the context of TBC 

lifetimes of conventional production-quality coatings available from the literature. 

Crack 

TGO 
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7 RESULTS FOR THE TBC WITH THE EBPVD APPLIED 

BOND COAT 

7.1 Introduction 

 

This section contains the results of the testing described in section 5 on the TBC system with 

the EBPVD NiCoCrAlY bond coat.  A comparison of the two coating systems is made in the 

discussion section 8 which will also include information from the literature. 

 

The presentation of the results in this section will follow the same format used in section 6 for 

ease of comparison.  Thus to begin with the TGO thickness measurements will be shown 

followed by the kinetics derived from these data.  Microstructure, composition, bond coat 

surface roughness measurements, etc. are then covered to more fully characterise the coatings 

and aid identification and elimination of possible failure mechanisms.   

 

7.2 Oxide Thickness Distribution 

 

As with the TBC specimens containing a HVOF NiCoCrAlY bond coat, the oxide thickness 

measurements on all the TBC specimens with the EBPVD NiCoCrAlY bond coat supplied by 

Finspong were found to fit a normal Gaussian distribution.  Figure 7.1 show examples of the 

curves produced from specimens oxidised for 4 and 25 hours at 950, 1050 and 1150°C.  These 

plots are of the actual data points, which have been plotted over a fitted normal distribution 

curve based on the data.  The fit of the data to the curve is excellent across the whole range of 

measured thicknesses.  This demonstrates that there are no detected areas of excessively thick 
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oxides on the surface and therefore the TGO is relatively uniform in thickness across the 

surface.  The lack of excessively thick oxides demonstrates that the TGO is also uniform in 

composition with no evidence of rapid growing oxides or spinels; this demonstrates good 

protection by the TGO to the underlying bond coat.  

 

These plots also show the increase in the standard deviation observed with increasing time at 

each temperature as also seen for the HVOF bond coat.  This effect is likely due to regions of 

alumina growing at a consistently faster rate than neighbouring regions which continue to 

grow at a slightly slower rate.  The range of growth rates observed are within that recorded for 

alumina growth, as will be shown in section 7.3 and 8.3.  This effect, in principle, could also 

be due to an increase in surface roughness with increasing oxide thickness, the subsequent 

geometrical effect of sectioning a rough oxide would show an increase in the variation in 

oxide thickness with some very thick oxides showing on the sides of flanks. 

 

Table 7.1 gives the mean, together with  2-standard deviations, of the measured TGO 

thicknesses at the test times and temperatures.  This presentation of the data further highlights 

the observed increase in standard deviation with increasing time at temperature.  However, it 

can also be seen from these data that there is no correlation between the specific oxide 

thickness and the standard deviation value, for example at a time of 25 hours the standard 

deviation value at the three test temperatures is 0.51, 0.47 and 0.64μm respectively.  This 

makes it unlikely that this effect of increasing standard deviation with increasing time at 

temperature is a geometrical effect as described above.  Additionally no increase in surface 

roughness has been seen as described in section 7.4. 
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Figure 7.1: Probability plots of the oxide growth distribution of Finspong TBC specimens 

with an EBPVD bond coat oxidised for 4 and 25 hour at 950, 1050 and 1150°C 

 

Table 7.1: Mean and 2 standard deviations of the TGO thicknesses for the Finspong TBC 

specimens with an EBPVD bond coat at all times and temperatures, taken from 100 

measurements per specimen.  A summary of the cracking and spallation observations are also 

included. 

Time/ h 950°C 1050°C 1150°C 

0 0.42 ± 0.28μm 0.42 ± 0.28μm 0.42 ± 0.28μm 

1 NOT TESTED NOT TESTED 1.08 ± 0.46μm 

2 NOT TESTED 0.82 ± 0.44μm 1.33 ± 0.41μm 

4 0.52 ± 0.35μm 0.94 ± 0.39μm 1.52 ± 0.56μm 

8 0.70 ± 0.48μm 1.08 ± 0.41μm SPALLED 

25 0.82 ± 0.51μm 1.52 ± 0.47μm 2.69 ± 0.64μm 

50 1.00 ± 0.52μm 1.93 ± 0.56μm DELAMINATED 

100 1.23 ± 0.57μm 2.29 ± 0.87μm SPALLED 

240 1.45 ± 0.53μm SPALLED NOT TESTED 

500 1.68 ± 0.58μm SPALLED NOT TESTED 

1000 1.87 ± 0.68μm NOT TESTED NOT TESTED 

3000 SPALLED NOT TESTED NOT TESTED 

 

   Delaminated at TGO/bond coat interface 

   Spallation at TGO/bond coat interface 
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7.3 Oxidation Kinetics 

 

The initial TGO thickness, as determined from a randomly chosen untested specimen, was 

found to be 0.42μm, table 7.1.  This value for the TGO thickness in the as-received condition 

was subtracted from the mean TGO thickness determined from Scanning Electron 

Micrographs for each specimen tested, table 7.1.  These adjusted data were used to determine 

the oxidation kinetics as described previously, using equation 6.1.  Figure 7.2 shows the 

log/log plot of these data, from which can be determined the exponent factor, n.    
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Figure 7.2: Log-log plot of data from table 7.1 used to obtain growth rate kinetics exponents. 

 

The measured values of the exponent n from figure 7.2 obtained using equation 6.1 are given 

in table 7.2.  This shows a small temperature dependence of n from a value of 2.3 to a 
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maximum of 2.6.  This small temperature dependence means that interpolation to other 

temperatures within this range adds a slight complication for extrapolation of the results but 

provides an adequate basis for the derivation of a general kinetic equation.  An approach to 

providing a single equation to describe the TGO growth behaviour over the whole of the test 

range can be made through the use of a weighted, temperature-invariant value of the 

exponent, n, of 2.5.  Using this value, the best estimates for kn at each of the test temperatures 

are given in table 7.2.     

 

Table 7.2: Experimentally determined kinetic parameters for the HVOF NiCoCrAlY bond 

coat. 

Temperature, 

°C 

Time exponent n Measured rate 

constant, kn, 

m
n
s

-1 

Pseudo-parabolic  

rate constant, kp, 

m
2
s

-1 

950 2.3 7.31x10
-22 

6.81x10
-19

 
 

1050 2.5 1.36x10
-20 

1.05x10
-17

  

1150 2.6 8.56x10
-20 

5.84x10
-17

 
 

 

Using equation 7.1 an Arrhenius plot of these rate constants, normalised to n=2.5 was 

calculated, figure 7.3 and yields a global activation energy of ~347 kJmol
-1

. 











 RT

Q

0n ekk       (7.1) 

 

 

Where kn is the rate constant, k0 is the pre-exponential factor, Q is the activation energy for 

oxide formation, R is the universal gas constant (8.314 J.mol
-1

.K
-1

) and T is the exposure 

temperature in Kelvin. 
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Figure 7.3: Arrhenius plot of the rate constants, kn, at the three test temperatures, normalised 

to an n=2.5, producing an activation energy of ~347 kJ.mol
-1

. 

 

By combining equations 6.1 and 7.1 it was possible to produce an equation that describes the 

oxidation kinetics of this TBC system as follows: 

 

(7.2)                      1042.0
346652

exp1016.5 6
5.2

1

7  














 
 t

RT
  

 

 

Where ξ is the oxide thickness in m, R is the gas constant, 8.314 J.mol
-1

.K
-1

, t is the exposure 

time in seconds, and T is temperature in Kelvin.   
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Using equation 7.2 it is possible to predict the oxide thickness for this system given the 

exposure time and temperature.  Figure 7.4 shows the comparison between the predicted TGO 

thickness from this global equation and the measured values.  The agreement is inevitably less 

good than that found using the specific values of n for each temperature but is, typically, 

within 10-20% of the measured means and always well within the values of 2-standard 

deviations given in table 7.1.  This equation can thus be used to predict the oxide thickness 

within the range of times and temperatures study here.  The accuracy may be less good 

outside this range. 
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Figure 7.4: Comparison between the predicted increase in TGO thickness with time using the 

global equation (7.2) and the measured mean values at the three test temperatures. 
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Table 7.2 shows all the oxidation kinetics variables for this TBC system.  From this it can be 

seen that the values of n were found to be sub-parabolic at each temperature.  This is similar 

to the observations for the TBC coating with the HVOF bond coat, table 6.1.  One possible 

explanation for the sub-parabolic behaviour is the role of grain boundaries in the kinetics of 

the system.  Grain boundaries act as fast diffusion paths (section 2.2.2) and thus, if there is an 

increase in alumina grain size with increasing time at temperature, there will be a 

corresponding decrease in the number of grain boundaries available for short-circuit diffusion 

of oxygen across the oxide and thus a slowing of oxide growth.  This will be expanded upon 

in section 8.3. 

 

These sub-parabolic kinetics provide an additional complication in comparing these data with 

those from the literature for other alumina forming alloys, where parabolic kinetic behaviour 

is assumed.  As described in section 6.3 one method for overcoming this is by forcing the data 

to fit pseudo-parabolic kinetics a as described by Hindam and Whittle[136].  When these 

points are plotted in conjunction with the mean line for typical alumina formers, Figure 7.5, a 

very good correlation between the two was found.  This demonstrates that a fully dense, slow 

growing α-alumina oxide is likely to be forming in this TBC system. 
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Figure 7.5: A comparison of the pseudo-parabolic rate constants calculated for the TBC with 

an EBPVD bond coat to the mean trend line for alumina-forming alloys obtained from the 

compilation of data produced by Hindam and Whittle [136]. 

 

7.4 Bond Coat Surface Roughness (Topography) 

 

The bond coat surface roughness was measured using the procedure laid down in section 5.5.  

For the isothermally tested specimens an indication of the surface roughness was taken from 

measurements of the wavelength and amplitude whereas the Ra value was calculated for those 

specimens thermal cycled as described in section 5.5 whereby half of a sectioned specimen 

was thermal cycled and the other half examined in the as received condition as a control. 

 

 

 



109 

 

7.4.1 Wavelength and Amplitude Measurements 

 

Unlike for the TBC with the HVOF bond coat, no large scale roughness was observed.  This 

is a consequence of the differences in the coating procedures used to produce the two bond 

coat types.  In the case of an EBPVD bond coat, a characteristically smoother surface is 

produced lacking the large scale undulations noted in the HVOF process.  Therefore, only the 

short scale wavelength and amplitude were present as shown in figure 7.6.  Measurements of 

wavelength and amplitude taken from micrographs are shown in table 7.3. 

 

 

Figure 7.6: Scanning Electron Micrographs through the TBC specimens with the EBPVD 

bond coat showing the measurements taken of the wavelength and amplitude of undulations 

of the bond coat outer surface. 

 

 

 

 

 

 

Small scale 
wavelength 

Small scale peak to 
trough height 
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Table 7.3: Table showing the wavelength and amplitude measurements and standard deviation 

for both the as-received specimen and the specimens oxidised for 100 hours at 1050°C. 

 

100 hours 

at 1050°C

As 

Received

1.69

0.59

Average small scale 

wavelength (µm)

Average small scale peak 

to trough height(µm)

1.496 Measurements

0.716 Measurements

100 hours 

at 1050°C

As 

Received

1.69

0.59

Average small scale 

wavelength (µm)

Average small scale peak 

to trough height(µm)

1.496 Measurements

0.716 Measurements

 

These results show that there is no significant roughening of the bond coat surface even after 

100 hours of isothermal exposure.  

 

7.4.2 Thermal Cycling 

 

In order to assess the role of the topcoat on the suppression of rumpling in this coating system 

and to examine the tendency for the EBPVD applied NiCoCrAlY bond coat examined here to 

roughen during oxidation, testing and examination as described in section 5.5 were carried 

out.  This procedure was carried out using 1 hour cycles on a half sized cross-sectioned 

specimen where the topcoat had further been mechanically removed from half of the 

specimen, at 1170°C until failure of the coating.  An identical specimen half was stored and 

examined without exposure to provide a means for comparison.  Roughness average values 

were measured as a basis for comparison of the specimen.   For clarification of the results 

shown in figure 7.7, the term “topcoat removed” refers to the section part where the topcoat 

was mechanically removed.  The term “topcoat intact” refers to the part of the specimen 

where the topcoat was left intact prior to cycling. 

 

± 0.26 

± 0.63 ± 0.61 

± 0.35 
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The results as shown in figure 7.7 show that there is no significant difference between the 

areas of the specimen before and after thermal cycling.  However a larger difference can be 

seen between the areas with topcoat attached and the areas where the topcoat had been 

mechanically removed, with the removed section showing a greater roughness.  This 

difference is the reverse of the HVOF applied coating seen in section 6.4.1 as the EBPVD 

applied coating is somewhat smoother than the HVOF applied coating.  The difference 

between the sections can be attributed to the difficulties in attempting to match the surface 

profile obtained from the spraying procedure using mechanical methods.  These results 

indicate that whilst every opportunity was given in terms of cycling time at temperature, no 

evidence of surface rumpling was seen.  This could be attributed to the creep strength of the 

bond coat not allowing for significant deformation.  Equally however factors such as 

microstructural stability of the bond coat could be important as no evidence of phase changes 

at the bond coat/TGO interface were observed.  This is thought to be a contributing factor to 

surface rumpling where no topcoat is present. 
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Figure 7.7: Plot of the roughness average values (Ra) measured before and after thermal 

cycling to failure at 36 hours at a temperature of 1150°C for samples with a HVOF bond coat. 

 

7.5 Microstructure and Composition 

7.5.1 EBPVD NiCoCrAlY Bond Coat 

 

A section through a TBC specimen in the as-received condition is shown in figure 7.8.  The 

columnar structure of the EBPVD YSZ topcoat can be seen with an underlying layer of 

thermally grown alumina, in darker contrast, produced during the coating process to aid 

adhesion between the topcoat and the bond coat.  The duplex β (nominally, NiAl) plus γ 

(nominally, Ni) structure associated with NiCoCrAlY coatings can be seen.  In addition, 

within the bond coat some α-Cr particles were also identified close to the substrate interface, 

again in keeping with these coating types.  The bond coat is dense, approximately 120 m 

thick and shows good adherence with the YSZ topcoat and the substrate.  Interdiffusion 

±0.39 

±0.24 ±0.50 

±0.30 
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between the bond coat and the substrate has occurred producing a mixed phase interdiffusion 

zone, including β (NiAl), due to aluminium diffusion from the coating into the substrate and 

precipitates of heavier elements derived from the substrate, visible in bright contrast, e.g. Ta, 

W, and Re. 

 

 

Figure 7.8: Scanning electron micrograph of a section through an as-received specimen, 

showing the topcoat, TGO, a β (NiAl) + γ (Ni) two phase bond coat, an interdiffusion layer 

(IDZ) and the substrate. 

 

Examination of sections through tested specimens showed that, with increasing time at 

temperature, the thickness of the TGO increased with a corresponding increase in the 

thickness of the β (NiAl)- depleted region of the bond coat adjacent to the oxidising surface 

(figures 7.9 and 7.10).  The interdiffusion zone (IDZ) also continued to develop with time 

with further heavy-element precipitation and β (NiAl) phase formation.  

 

       EBPVD YSZ topcoat 

        TGO 

 

         EBPVD MCrAlY bond coat 

 

 

         Interdiffusion zone (IDZ) 

 

           

           CMSX-4 superalloy substrate 
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Figure 7.9: Scanning electron micrographs of sections, at low and higher magnification, 

through a specimen held at 1050°C showing the thick bond coat, IDZ with heavy element 

precipitates and the mainly two phase bond coat. 

 

   

Figure 7.10: Scanning electron micrographs of sections, at low and high magnification, 

through a specimen held at 1050°C for 100 hours showing further increase in the TGO 

thickness, an increase in the -depleted region and increase in the IDZ thickness.  In addition, 

in this specimen, near-vertical full thickness cracks were dispersed throughout the bond coat, 

some showing signs of oxidation.  

 

7.5.2 TGO Composition 

 

The high-resolution images produced with current SEM technology make it possible to study 

the structure of the TGO in detail, figures 7.9 and 7.10.  The TGO was essentially alumina but 

it was clear that, with increasing time at 1050 and 1150°C, it contained increasing amounts of 
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Two Phase 

bond coat 
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TGO 

γ      

       

Yttrium-rich 
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another oxide phase, distinguishable by phase contrast, figure 7.11.  These phases seemed to 

form pegs into the bond coat in the specimens tested at 1050 and 1150°C but were not seen in 

the specimens tested at 950°C.   

 

 

Figure 7.11: High magnification Scanning Electron Micrograph of the TGO region of the 

specimen held at 1050°C for 100 hours showing the presence of oxide pegs within the TGO. 

 

 

Yttrium-rich 

Phases 



116 

 

 

Figure 7.12: XRD spectrum of spalled ceramic topcoat with TGO attached from a specimen 

oxidised at 1150°C for 100h showing the principal peaks of -alumina and zirconia.  The 

remaining unidentified peaks can be attributed to minor peaks of -alumina, zirconia and 

yttria. 

 

XRD analysis of a spalled section of the TGO with attached YSZ, figure 7.12, shows that the 

TGO formed in these coatings is an -alumina with no evidence of transitional alumina or 

other oxide peaks.  EDS mapping of the TGO region, figure 7.13, showed that these pegs 

were yttrium-rich and were probably yttria alumina garnet (YAG).  Other Y-rich phases were 

also found within the bond coat but without the associated oxygen signal found in the 

corresponding TGO phase, figure 7.11.  This suggests that yttrium is diffusing in its elemental 

form through the bond coat to the oxidising surface where it reacts with the oxygen present to 

form YAG, (an yttrium, aluminium, oxygen compound).  These oxide pegs have been seen in 

other studies and are believed to be due to an increase in the yttrium concentration in the 

EBPVD bond coats [145].  These oxides are known to be faster growing than the dense 
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alumina and may have a detrimental effect on the adhesion of the TGO to the bond coat due 

to tensile stress generated between the alumina and the bond coat interface adjacent to the 

pegs.  However, no evidence of a detrimental effect has been observed due to the presence of 

these pegs in this study. 
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Figure 7.13: EDS maps taken from the 

cross section of a specimen oxidised for 

100 hours at 1050°C. The central image 

is the original electron image with the 

elemental maps shown around this 

image. 
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7.6 Cracking and Failure 

7.6.1 Sub-Critical Cracking 

 

A significant observation, made in the sections of the specimen held at 1050°C for 100h, figure 

7.10, and also in the as-received specimen, figures 7.14 was the presence of near-vertical cracks 

extending through the full thickness of the bond coat.  The bond coat between these cracks was 

fully dense and intact.  In the specimen examined in the as-received condition, no oxide was 

found within the cracks but in the specimen held at 1050°C for 100h, oxidation of the crack 

surfaces had occurred with an associated β (NiAl) phase depletion region in the adjacent bond 

coat.  The oxidation of these features had not occurred in all cases.  This suggests that some of 

these cracks are likely to intersect the outer bond coat surface allowing gas access and that others 

do not and are sealed.  It is also worth noting that many of the cracks clearly extend the full 

thickness of the coating to the substrate but these cracks were not seen to extend into the IDZ or 

substrate.  The effects of these features on the long term oxidation behaviour and on the 

delamination cracking within the TBC structure are not known.   

 

It seems likely that this type of cracking is a result of the EBPVD coating process which produces 

a columnar structure.  Post-coating densification is needed to close the interfaces between the 

columns which had not been fully achieved in these specimens.  The numbers of specimens 

affected were few and possibly limited to one batch of specimens.  Where it was believed that the 

features led to premature spallation of the topcoat repeat testing was performed.  It was not 
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possible to detect these cracks before testing and thus no further study of the effect they may have 

was carried out.  The main result of these features is the observation that increased care is 

required in the manufacture of these coatings. 

 

   

Figure 7.14 Scanning electron micrographs of a section through the as-received specimen 

showing the near-vertical cracks and their distribution throughout the bond coat.  

 

7.6.2 Coating Failure 

 

The criterion for failure in this coating system was set the same as for the TBC system with the 

HVOF bond coat, i.e. greater than or equal to 20% loss of the topcoat.  It was observed that at all 

times when this criterion was met spallation occurred at the bond coat/TGO interface and on most 

occasions the topcoat and TGO spalled as a single piece.  The spallation event occurred during 

the cooling stage of the test.  The location of failure was at the bond coat/TGO interface and was 

consistent throughout; an example can be seen in figure 7.15 where it can be seen that total 

separation from the bond coat had not occurred.  A low viscosity protective resin was used during 

preparation to maintain the integrity of the weakened structure to permit greater study.  It should 
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be noted that this specimen was not classified as having spalled and is listed in table 7.1 as 

delaminated as it is clear that the failure process is well advanced. 

 

In addition it should be noted that despite examining a number of pre-failure specimens no 

evidence of sub-critical cracking was observed.  This is consistent with the hypothesis made in 

section 6.6.1 that such sub critical short cracks require relatively large surface roughness to 

generate the out of plane stresses, this roughness is not present in these specimens. 

 

   

 

 

 

 

 

 

 

Figure 7.15 low magnifications SEM micrograph of a cross section through the TBC system with 

an EBPVD bond coat oxidised at 1150°C for 50hr, showing delamination at the TGO / bond coat 

interface. 

 

This study indicates that crack development and propagation in these specimens occurs rapidly 

towards the end of life and during the final cooling transient.  This is likely a result of the strain 

energy developed in the TGO during cooling due to the large mismatch in thermal expansion co-
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efficient between the substrate and TGO/topcoat.  These strain energies within the TGO and 

topcoat can be calculated approximately using equation 6.4 at various temperature transitions, 

oxide thicknesses and thermal expansion co-efficient of the different layers.  An example plot of 

the resultant strain energy generated at a fixed temperature drop of 1000K is given in figure 7.16.  

This gives the energy generated in the TGO and topcoat layers by the thermal expansion 

mismatch with the substrate.  Here it is possible to see that greatest strain is developed within the 

topcoat.  Whilst the substrate is not in direct contact with the TGO or topcoat it is still important 

to consider its affect as it makes up the majority of the specimens examined here.  It would 

therefore exert a large influence over the total coating system.  Failure of these coatings can be 

approximated to occur at an oxide thickness of 2.5μm as shown in table 7.1.  It is clear to see here 

that the strain energies generated at an even smaller oxide thickness, however, are greater than 

the fracture energy required to cause cracking between the TGO and bond coat of approximately 

0.66Jm
-2

[62].  Therefore mechanisms for relaxation of this energy must occur to prevent failure 

of these coatings.  It is likely that given, that the bond coat is capable of creep at high 

temperatures that this is the mechanism that allows for relaxation of the strain energy in the TGO.  

Also of importance here is the temperature drop which plays a significant role in the stress 

generation.  At greater temperature drops the strain energy generated will increase whilst the 

capability of the bond coat to creep will fall.  When the temperature reaches a critical level such 

that the stress generated  after relaxation by the bond coat is greater than the energy required for 

crack propagation failure of the coating can occur through fast fracture, figure 7.17 
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Figure 7.16: Strain energy formed in each of the TBC layers due to the thermal expansion miss 

match with the substrate after a temperature change of 1000K  
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Figure 7.17: The kinetics of wedge crack growth during cooling a TBC system from 1100
o
C at a 

constant rate of 40x10
3 o

C h
-1

.  The different curves correspond to different assumed values of the 

Young’s modulus of the top coat[146]. 

 

The lifetimes of these specimens in the test conditions studied here are given in table 7.1 and, 

later in sections 8.7.8, figure 8.14, where a fuller discussion is given.  Clearly the morphologies 

found in these two coating systems is similar and the results presented in sections 6 and 7 allow 

for further comparison and discussion of the coating systems.  The next section, section 8, will 

seek to compare the two coating systems where possible but also draw conclusions as to the 

significance of these results. 
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8 DISCUSSION 

8.1 Introduction 

 

The previous sections have described the results obtained from the testing described in section 5 

for both coatings.  Whilst the two coatings studied here are somewhat different in terms of the 

method of application of the bond coat there are many factors which are identical between the 

two systems.  The bond coats are from the same generic coating group, i.e. MCrAlY overlays and 

the compositions are very similar, table 8.1,  the substrates are the same and produced in the same 

manner, table 5.1, the topcoats are also identical, yttria partially stabilised zirconia,  and these are 

produced using EBPVD (section 5.1).  A summary of the two systems is given in table 8.1.  The 

experimental procedures were also held constant so that direct comparisons can be drawn 

between the two sets of data produced.  The following chapter will explore the similarities and 

differences in the oxidation behaviour and failure mechanisms observed during this project and 

relate this to information from the literature. 

 

Table 8.1: Bond coat Compositions for both coatings (wt%) 

Application 

Method Ni Co Cr Al Y 

HVOF 36.2 33.5 21.0 9.0 0.3 

EBPVD 52.8 19.2 17.8 10.2 0.1 
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8.2 Oxide Growth Distributions 

 

An extensive investigation was performed on the distribution of the TGO thicknesses across the 

surface of the bond coat.  Ten TGO thickness measurements were taken from each of ten 

micrographs, taken at regular intervals across the section from the whole specimen, to give a total 

of 100 measurements. Very few investigations to this level have been performed.  This in-depth 

analysis has provided insight into the statistical distribution of the TGO thickness measurements 

for both coating systems.   

 

During the course of this investigation care was taken such that the thickness of the TGO in the 

growing direction was recorded.  In some cases this could be difficult due to the 3-D surface 

roughness of the bond coat.  An increase in the surface roughness where the cross section is taken 

will tend to produce a thicker oxide measurement.  This local surface roughness is a characteristic 

of the HVOF coating system and is necessary to improve the bonding between the bond coat and 

the topcoat.  Although less severe in the case of EBPVD bond coats there remains some local 

surface roughness.  In these coating systems the effect of surface roughness was minimised 

through careful sample preparation and measurement.  The influence of surface roughness is 

discussed in terms of potential cracking at the interface in later sections 8.4 and 8.7.7.   

 

The results as shown in sections 6.2 and 7.2 show that both coating systems followed a normal 

distribution of oxide thickness across the surface, with no evidence of rapid oxide growth or 

spinel formation, figures 6.1 and 7.1.  Spinels are rapidly growing mixed oxides usually 
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containing Ni, Cr and Co and their rapid growth is often a cause of failure in these types of 

coatings due to the stress developed in the topcoat by the upward localised growth of the 

oxide[105, 106].  Figure 8.1 shows an example of spinel growth on a bond coat surface from the 

literature; these features have not been observed in any of the specimens tested here. 

 

 

Figure 8.1: Example of a Spinel oxide formed on an electroplated NiCoCrAlY bond coat oxidised 

isothermally for 1000 hours at 1000°C.  These oxides have not been observed in either coating 

studied here[106]. 

 

The lack of these features is likely to be a consequence of the relatively flat interface and few 

intersplat oxidation features which would restrict the diffusion of aluminium or lead to undercut 

oxidation, figure 8.2. 



128 
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depletion 
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(a) (b) 

        

Figure 8.2: Scanning electron micrographs of the bond coat, TGO and topcoat of coatings with a) 

EBPVD applied bond coat and b) HVOF applied bond coat in the as received condition.  Here the 

alumina TGO is visible in the as received condition. 

 

Detailed analysis of the distribution of the oxide thicknesses shows an increase in standard 

deviation with increasing exposure time and temperature for both coatings.   This can be seen in 

tables 6.1 and 7.1 which provide the oxide thicknesses and standard deviations for both coatings.    

 

It is possible that this effect is caused by the geometric effect of cross sectioning of a rough bond 

coat.  If the cross section falls across the flank of an asperity the oxide will appear thicker when 

measured at that location.  However for this effect to be observed the surface roughness and thus 

distribution would need to increase with increasing time at temperature.  In both of these coatings 

however the bond coat surface roughness is shown to not increase with time at temperature as 

shown in figure 8.3. 

(a) 

Alumina TGO 
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Figure 8.3: Plot of peak to trough heights and wavelength measurements for both coatings in the 

as received condition and after 100 hours at 1050°C 

 

It could also be possible that despite a dense alumina TGO being formed on both coatings as 

described in sections 6.5.2 and 7.5.2, that areas of the TGO grow with slightly different growth 

rates.  It is then possible these localised areas of faster and slower growth rates continue to grow 

at their own localised rate and as such the standard deviation increase with increasing time at 

temperature.  These localised growth rates could be caused by different localised concentrations 

of aluminium in the bond coat, with a localised decrease in aluminium leading to a slower growth 

rate in that area.  However in the case of both coatings examined here this is unlikely to be the 

case as there is no evidence visually of phase differences within the bond coat adjacent to the 

TGO, this distribution of phases can be seen in the as received specimen for both coatings in 

figure 8.2 
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Another possible cause of the observation in both coatings of an increase in standard deviation in 

TGO thickness measurements is an uneven distribution of oxide grain size within the TGO.  It is 

known that the rate of oxygen diffusion across the TGO is an important determinant in the 

growth rate of the TGO.  Additionally, it is also known that for alumina oxides the rate of oxygen 

diffusion observed is greater than observed for pure lattice diffusion and so diffusion along oxide 

grain boundaries is likely to occur (section 2.2).  This short circuit diffusion pathway is likely to 

be the dominant oxygen pathway and thus rate determining step for the growth of the TGO.  

Therefore any localised increase in size of oxide grains would lead to a localised decrease in 

oxide growth rate.  It is likely that this mechanism plays a large part in the observations for both 

these coatings. 

 

Measurements of the oxide grain size and distribution were attempted using electron 

backscattered detection (EBSD); however this technique requires an atomically smooth surface to 

be able to obtain good patterns.  The process of polishing both coatings to a sufficiently smooth 

surface was complicated by the layered structure of these coatings, with layers of differing 

hardness and properties.   Therefore it was not possible to obtain sufficiently good spectra from 

either coating using the mechanical polishing techniques available.  However for future work it 

may be possible to use a newly installed focussed ion beam SEM (FIBSEM) to polish the 

coatings to a sufficient level.  Unfortunately this equipment was not installed and available for 

this project but figure 8.4 of the EBPVD applied bond coat specimens shows that this technique 

could be used in future work. 
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Figure 8.4: Cross section scanning electron micrograph of an EBPVD bond coat specimen 

observing the bond coat, interdiffusion zone and substrate, polished using a FIBSEM (image 

courtesy of Dr M P Taylor, University of Birmingham). 

 

The range of TGO thicknesses obtained from each specimen, the lack of any evidence of other 

oxide formation from EDS analysis of sections through the specimens and some, all be it limited 

XRD, and the fact that the standard deviation increases with increasing time at temperature does 

show that there are a range of alumina growth rates for the alumina forming bond coats across the 

surface, table 8.2.  These high and low Kp values have been calculated using the same procedure 

for the values given in section 6.3 and 7.3.  The low Kp was calculated from oxide thickness 

taken at the 10 percentile from the normal distribution, whilst the high Kp values were taken as 

the 90 percentile. 

 

 

 

 

Substrate Bond coat 

TGO 

Interdiffusion 

zone 
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Table 8.2: High and Low Kp Values for EBPVD and HVOF bond coats at 950°C 

 

Kp at 950°C EBPVD Bond coat (m
2
s

-1
) HVOF Bond coat (m

2
s

-1
)

High 7.78x10
-19

1.33x10
-18

Mid 6.81x10
-19

9.33x10
-19

Low 4.21x10
-19

6.68x10
-19

 

 

Another possibility is that the growth rate of the alumina changes, all be it slightly, over the 

course of its life, i.e. one region may start off at the lower end of the alumina growth rate range 

but as the time increases the growth rate of that region may increase, or vice versa.  Reasons for a 

decrease in the growth rate could be an increase in the average local grain size of the alumina, i.e. 

the width of the alumina grains.  This would decrease the number of grain boundaries and thus a 

decrease in short circuit diffusion paths.  An increase may be due to an increase in grain 

boundaries as would occur in regions of equiaxed grains.  However such an effect is likely to 

even out the oxide growth across the surface and not show the increase in standard deviation seen 

in these coatings. 

 

The likely cause therefore of the increase in observed oxide thickness standard deviation in both 

of these coatings is the differential growth rates of alumina across the surface.  This is likely due 

to variations in the grain size distribution across the TGO, however the grain size could not be 

mapped for this project so this hypothesis could not be confirmed. 
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8.3 Oxidation Kinetics 

 

After examination of the oxide growth distributions the kinetics of the oxide growth were 

calculated from the average thickness measurements.  Both coatings observed sub-parabolic 

kinetics at all temperatures.  However they demonstrated a wide variation in their time exponent 

(n) values with the HVOF bond coat showing cubic kinetics at all but the lowest 

temperature(table 8.3) and the EBPVD bond coat showing n values of around 2.5 

 

Table 8.3: Values of the time exponent, n, and rate constant, kn, calculated at each test 

temperature. (Note: temperatures of 1000°C and 1100°C were not tested for the EBPVD bond 

coat) 

EBPVD Bondcoat HVOF Bondcoat EBPVD Bondcoat HVOF Bondcoat

950°C 2.3 2.3 7.31x10
-22

1.68x10
-20

1000°C NA 3.2 NA 6.93x10
-25

1050°C 2.5 3.3 1.36x10
-20

3.53x10
-25

1100°C NA 3.0 NA 4.93x10
-23

1150°C 2.6 3.3 8.56x10
-20

1.47x10
-24

Time Exponant, n Rate Constant kn (m
n
s

-1
)Temperature/

Coating

 

 

This apparent discrepancy of the n value at 950°C for the HVOF bond coat could be explained by 

erroneous points at the short test times. This is not unexpected as the oxide thickness at this time 

of 4 hours at temperature is very thin and approaching the limit of resolutions for the tests carried 

out here.  Taking this into account it is reasonable to approximate the kinetics for the HVOF bond 

coat to be cubic.  Using the data from table 8.3, it is possible to plot the oxide thicknesses against 

the oxidation time, figure 8.5.  This demonstrates that at all but the lowest temperature tested here 

the EBPVD coating has the fastest growth rate.   
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It should be noted that while data for oxide thickness at 1150°C has been plotted to 100 hours for 

simplicity, this is an extrapolation from 25 hours.  Failure of both coatings at 25 hours oxidation 

at this temperature means that the oxide growth kinetics were only calculated for data up to this 

point. 

Figure 8.5: Plot of predicted oxide thickness at 3 temperatures within the tested range, obtained 
from data in table 8.3. 

To aid the comparison with literature sources the pseudo parabolic kinetics were calculated at 

each test temperature using the method described by Hindam and Whittle[136]. Both coatings 

fitted well to literature results when using these pseudo-parabolic kinetics data indicating that for 

both coatings the oxide growth mechanism was typical to that seen in other related coating 

systems and an α alumina oxide is likely to have been formed.  This is demonstrated when 
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plotting this calculated kinetics against a mean line for alumina formers from Hindam and 

Whittles work (figure 8.6).  

 

Figure 8.6: Plot of Pseudo-parabolic rate constants for both coatings compared to the predicted 

rates from work by Hindam and Whittle[136]. 

 

The sub parabolic kinetics observed here is typical of MCrAlY TBC systems and has been seen 

in a number or other studies[13-16].  There are a number of possible mechanisms for this type of 

growth kinetics.  Firstly the transformation of transitional isoforms of alumina such as  or γ to -

alumina has been described to form these sorts of kinetics[33, 35].  These transitional aluminas 

are known to have a higher growth rate than -alumina and their gradual transition to -alumina 

results in sub parabolic growth kinetics.  However at the elevated temperatures used in this study 
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-alumina is the most stable isoform and as such any transitional aluminas would quickly 

transform.  Additionally both of the coating systems examined here have a preformed -alumina 

TGO from the application of the EBPVD topcoat.  Therefore this mechanism is unlikely to be 

occurring in either coating type studied here. 

 

A continuous increase in compressive growth stress within the oxide layer has been demonstrated 

to reduce the growth rate of an oxide, likewise a tensile stress will increase the oxide growth 

rate[27-30].  This effect has been described and modelled by Evans et al by considering the affect 

of the stress on vacancy transport.  When comparing this model with data for the oxidation of for 

zirconia on zircaloy-2 a good agreement is observed[31].  This model however requires relatively 

thick oxides which are not seen in the present study[31]. 

 

The most likely cause of the observed kinetics for both of these coatings then is the increase in 

average oxide grain size.  This occurs through the formation of larger oxide grains during 

continued oxidation because of preferred nucleation at the TGO/bond coat interface.  This 

increase of average grain size at temperature will reduce the number of available grain 

boundaries at the TGO/bond coat interface for short circuit diffusion of oxygen to the TGO/bond 

coat interface.  This effect will then reduce the growth rate of the oxide and lead to the sub 

parabolic kinetics observed here for both coatings. 

 

 



137 

 

8.4 Bond coat Surface Roughness 

 

The surface roughness of the bond coat is thought to be an important factor in failures of some 

types of coatings, in particular an increase in surface roughness has been observed in some 

coatings with increasing time at temperature, section 4.9[120, 121, 123, 126-128, 137, 138, 147].  

To examine this effect in the coating systems studied here two experiments were conducted as 

described in section 5.5.  Briefly, cross sections of the as-received and the isothermally oxidised 

for 100 hours at 1050°C specimens were examined and measurements of wavelength and 

amplitude were taken.  Additionally specimens were thermally cycled in 1 hour cycles at 1170°C 

to failure as described in section 5.3.3.  These specimens had half the topcoat removed 

mechanically and were sectioned prior to testing.  These specimens were then mounted in cross 

section and the roughness average (Ra) value was calculated at each area to British Standard 

BS1134, i.e. with and without the topcoat and before and after testing.  This was carried out on 

both coating systems. 

 

The calculation of the Ra value for each coating required the identification of a reference line 

from which a mean surface profile could be measured.  This reference line for both coatings was 

taken to be the bond coat/substrate interface where precipitation of heavy elements from the 

substrate into the interdiffusion zone created a clear boundary (figure 5.6).  In the case of the 

EBPVD bond coat this interface provided a good reference point in both specimens.  However 

the HVOF applied bond coat is applied to a roughened substrate surface to provide mechanical 

keying.  Therefore the interface contained considerable roughness in itself and made obtaining a 

reference line a challenging task.  It was decided to use the peaks of the waviness at this interface 

as the reference line as a best approximation (figure 8.7).  In terms of the Ra value calculated the 
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most important requirement to this reference line is that it is parallel to the measured surface 

which this technique provided.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7: Scanning electron micrograph of an as received specimen of the HVOF applied bond 

coat for surface roughness measurement 

 

An alternative and more accurate method of measuring the surface roughness would have been to 

use a Talysurf or atomic force microscope (AFM) to record the surface profile both before and 

after oxidation.  However, this approach requires an exposed bond coat surface on which to 

perform the measurements and in the case of the specimens available for this project this was not 

possible due to the presence of the topcoat.  Further the EBPVD process used to deposit the 

topcoat onto the bond coat modifies that surface, e.g. an alumina layer is grown on the bond coat.  

Any attempt to remove the topcoat and TGO either mechanically or chemically is likely to have 

altered the bond coat surface through relaxation of any constraints, therefore any results obtained 

would not be representative of the bond coat surface in a full coating system.   

 

Peak 

Measurement 

Reference line 



139 

 

The results of this testing can be found in sections 6.4 and 7.4 for the HVOF and EBPVD bond 

coats respectively.  The following two sections will look to draw comparisons between these 

results of both coating systems. 

 

8.4.1 Wavelength and Amplitude Measurements 

 

Whilst surface roughening has been seen in a number of overlay coatings without topcoats during 

oxidation, neither of the coating systems here showed an increase in surface roughness with time 

at temperature.  It is likely that the topcoat provides mechanical constraint to the system and 

prevents any significant roughening of the surface.  Additionally the strength of the bond coat is 

important to consider, for rumpling of the bond coat it must be compliant enough to creep at 

temperature.  It is possible that the bond coats tested here had a creep strength at temperature that 

is too high for significant deformation and roughening.  

 

A significant difference has been observed between the two coatings in that the HVOF coating 

exhibits a large scale surface roughness even in the as received specimen.  This is not seen in 

EBPVD coating and may be important in terms of coating adherence and cracking.  Additionally 

it can be noted from table 8.4 that the short scale roughness of the EBPVD coating is smaller in 

height and has a much shorter wavelength than the HVOF applied bond coat  The difference can 

also be observed in figure 8.8 below in which the as-received oxide cross section of both coatings 

is shown.  The rougher interface of the HVOF bond coat, as typical in thermal spray coatings, is 

evident. 
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Figure 8.8: Two SEM micrographs of cross sections through the as-received specimen for both 

coatings showing (a) the EBPVD bond coat specimen with a relatively flat interface and , (b) the 

HVOF bond coat specimen showing a the two scales of roughness. 

 

Table 8.4: Short scale wavelength and amplitude measurements for both coatings in the as 

received state and after isothermal oxidation. 

 

As-received
100 hours at 

1050°C
As-received

100 hours at 

1050°C

Average small scale peak to 

trough height(µm)
6 Measurements 2.28 1.97 0.59 0.71

Average large scale peak to 

trough height(µm)
6 Measurements 16.12 18.15

Average small scale wavelength 

(µm)
6 Measurements 3.82 3.42 1.69 1.49

Average large scale wavelength 

(µm)
6 Measurements 199.58 203.61 NOT OBSERVED

HVOF EBPVD

NOT OBSERVED

 

 

This large scale roughness is a consequence of the different manufacturing route of the HVOF 

coating.  In order to provide mechanical keying of the bond coat to the substrate the substrate is 

shot peened and the surface therefore deliberately roughened.  This process does not take place 

(a)

  

(b)

  

20μm 50μm 
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for the EBPVD application method as a smoother substrate surface on application likely provides 

better columnar growth of the grains during the EBPVD process and a more even coating 

microstructure after final processing.  Additionally it is likely that the adhesion between the 

substrate and the bond coat in the EBPVD system is greater than the HVOF system and therefore 

this mechanical keying is not required.  The presence of a rougher interface in the HVOF applied 

bond coat may have a deleterious effect on the coating lifetime.  Section 4.7 described how 

growth of the TGO could lead to the development of out of plane tensile stresses at temperature 

on the flanks of these asperities.  These stresses could then lead to cracks forming in the topcoat 

and or TGO around these asperities and could ultimately lead to failure of the coating.  Some 

examples of this type of cracking have been seen in the coating with a HVOF applied bond coat 

but did not lead to failure of the coating (section 6.6.1).  These cracks were not seen in the 

smoother interface of the EBPVD applied coating. 

 

8.4.2 Thermal Cycling 

 

Numerous studies have shown that thermal cycling of diffusion coatings without topcoats can 

lead to a greater roughening of the coating surface, as stated in section 8.4.1.  Therefore short 1hr 

cycles were carried out.  It was important in gaining these results that a base line value of the 

surface roughness was obtained.  However due to the presence of the topcoat the only way to 

obtain this for each specimen was to section the specimen prior to testing and examine the 

untested section as a reference.  Additionally as noted in the previous section the effect of bond 

coat roughening has not been observed in the presence of a topcoat.  To investigate the effect the 
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topcoat may have on this mechanism it was decided to mechanically remove the topcoat from 

half of each sectioned specimen.  The roughness of each section with and without a topcoat could 

then be compared.  Whilst a reasonable match to the short scale roughness was achieved the large 

scale roughness of the HVOF applied bond coat was not.  This is largely due to the difficulty of 

trying to match a roughness obtained from shot peening with that from mechanical grinding.   

 

The results of this experiment show that for both coatings there was no significant difference in 

the surface roughness in any part of the specimen after thermal cycling to failure.  As expected 

there is a difference between areas of the specimen with and without a topcoat due to difficulties 

in matching the coated surface roughness through mechanical polishing.  This result is important 

as it suggests that the mechanical constraint applied by the topcoat in the systems tested here is 

not responsible for the lack of surface roughness observed.  It therefore remains that there must 

be another contributing factor.  This type of surface roughness has also not been observed from 

this type of coating with a thick substrate as seen here.  It is therefore likely given this 

observation and the results seen here that the creep strength of the bond coats tested here prevents 

roughening of the bond coat. 

 

Additionally it has been proposed[141] that one of the mechanisms that leads to this surface 

roughening is the transformation of phases in the bond coat adjacent to the TGO.  In the case of 

the bond coats tested here only the γ phase was observed adjacent to the TGO even prior to 

oxidation.  This is due to the depletion of aluminium to form the TGO during the application 

process of the topcoat.  Therefore any phase change would not occur adjacent to the bond 
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coat/TGO interface during subsequent oxidation.  Any phase volume change associated with this 

phase change would be accommodated by the surrounding bond coat and would not lead to 

rumpling in these coatings.   

 

8.5 Microstructure and Composition  

 

Analysis of the compositional and microstructural development was carried out on both coatings 

using the techniques described in section 5.  Emphasis was placed on analysing the bond coat and 

the TGO as these are the main differences and areas of interest between the two coatings.  The 

microstructral development of the bond coat is an important consideration in many failure 

mechanisms such as chemical failure (8.7.2), rumpling (8.7.7) and phase transformations (8.7.3), 

therefore these results are important in characterising the behaviour of the coating systems. 

 

This section will look to compare the main differences and similarities between two coating 

systems, looking firstly at the bond coat and moving on to the TGO.  It will look to draw some 

conclusions as to the reasons and relevance of the observations reported in sections 6.5 and 7.5 

for the HVOF and EBPVD applied bond coats respectively. 

 

 

 



144 

 

8.5.1 NiCoCrAlY Bond Coat 

 

Whilst having slightly different compositions as shown in table 8.1, both coatings exhibited a 

similar dual phase β and γ structure, typical of NiCoCrAlY systems[148-152].  EDS analysis of 

the two phases was performed and the results are given in table 8.5, where data from slow and 

fast cooled experiments are presented alongside the results after normal air cooling. 

 

Table 8.5: Compositions of the two phases present in the bond coat of both specimens after slow, 

fast and normal air cooling. 

Slow 

Cooled

Normal 

Cooling

Fast 

Cooled

Slow 

Cooled

Normal 

Cooling

Fast 

Cooled

Al 5.5 5.3 5.3 4.2 5.3 5.8

Ni 44.9 33.9 42.1 35.7 33.9 37.5

Co 25.9 36.3 25.9 36.0 36.3 33.9

Cr 26.9 26.0 26.9 24.3 24.2 22.6

Y 0.0 0.4 0.0 0.0 0.4 0.1

Slow 

Cooled

Normal 

Cooling

Fast 

Cooled

Slow 

Cooled

Normal 

Cooling

Fast 

Cooled

Al 19.5 19.2 17.4 17.9 18.7 17.5

Ni 58.7 52.8 56.2 50.4 50.4 50.3

Co 12.9 17.8 15.9 20.9 21.4 21.9

Cr 9.0 10.2 11.0 10.7 9.2 9.8

Y 0.0 0.1 0.0 0.1 0.3 0.6

Concentration/ 

wt%

Beta Phase

EBPVD Bond coat HVOF Bond coat

Gamma Phase

EBPVD Bond coat HVOF Bond coatConcentration/ 

wt%

 
 

This data shows that both coatings have similar phase compositions with any differences being 

within the measured standard deviation.  A slight variation in the two coatings can be seen in the 

concentration of cobalt and nickel present, with the HVOF applied bond coat showing more 

cobalt and corresponding less nickel than the EBPVD applied bond coat.  This fact appears 



145 

 

however to have no effect upon the phases formed or the oxide formed as discussed in section 

8.5.2.  

 

 These data are plotted in figure 8.10, on two Ni-Cr-Al phase diagrams at 1150°C and 1025°C, as 

discussed in sections 6 and 7 this is an approximation as no quaternary phase diagram taking into 

account the nickel and cobalt concentrations is available to match this system.  The compositions 

of the beta and gamma phases follow boundaries of those phases as expected.  Additionally from 

the phase diagrams the close proximity of the γ΄-phase must be noted and therefore the possible 

presence of γ΄ phases within the bond coats.  However no evidence of these phases was observed 

in either coating system prior to or after oxidation.  It can also be seen in figure 8.10 that the γ΄ 

phase field shrinks with increasing temperature.  Therefore it is possible that at the temperatures 

tested in this study the γ΄ would not form at temperature but only briefly during cooling.  Varied 

cooling rate experiments were carried out to examine this further, table 8.5, but this demonstrated 

that even with a relatively slow cool no γ΄ was present.  This is possibly due to the slow cool not 

being slow enough to form a fully room temperature equilibrium structure or that any nucleation 

of γ΄ phase was too small to detect using SEM analyse and further analyse using TEM could be 

necessary.  

 

In addition to the predominating γ and β phases present in both coatings some α-Cr isolated 

particles were observed in both coatings along the boundary with the interdiffusion zone, figure 

8.9. 
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Figure 8.9: EBPVD applied bond coat oxidised for 25 hours at 1050°C. a) Scanning electron 

micrograph of bond coat, b) chromium EDS map showing α-Cr particles in bright contrast.  

 

These particles are seen in the same area for both coatings and are likely formed in this region 

due to interdiffusion between the bond coat and substrate as this phase wasn’t observed 

elsewhere in these coatings. 

 

The structure of the outer region of the bond coat changed during exposure such that the β grains 

near the TGO convert to γ releasing aluminium for TGO formation.  An increasing β depleted 

zone in this region developed in both coatings.  This decrease in aluminium close to the TGO 

surface is typical of that formed under a growing oxide scale and can lead to failure of the coating 

if the level falls below that required for rehealing and continued growth of the oxide scale.  This 

leads to the formation of often rapidly growing mixed oxides under the TGO, normally in 

isolated regions where diffusion of aluminium form the bond coat is restricted.  Failure associated 

α-Cr particles 
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with this formation of none protective oxides is classed as chemical failure and was not observed 

in either of these coatings, section 8.7.2. 
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Figure 8.10: Ni-Cr-Al Phase diagrams at 1025°C and 1150°C showing the locations of the phases 

from both coating systems[153]. 

 

1025°C 

1150°C 
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8.5.2  TGO Composition 

 

Both coatings formed a stable dense α-alumina TGO at all times and temperatures as shown by 

the extensive statistical analysis performed, the kinetics of the two systems, EDS analysis and the 

XRD data, sections 6 and 7.  The TBC system with the EBPVD bond coat exhibited substantial 

yttrium aluminium garnet (YAG) formation in the TGO coupled with enrichment of yttrium in 

precipitate phases in the bond coat near to the TGO possibly at grain boundaries in the bond coat.  

These yttrium phases were not seen with the HVOF bond coat, this may be a consequence of the 

coating production technique which tends to oxidise yttrium during the coating process.  This 

effectively removes yttrium from the MCrAlY and forms yttria which is then trapped at the inter-

splat boundaries.  This does not occur during the EBPVD process, thus these bond coats are 

enriched with yttrium.  This yttrium as described in section 2.5 is added to the bond coat to aid 

the adherence of the alumina TGO.  The formation of these YAG pegs has been shown in section 

2.5 to have both beneficial and deleterious effects on coating lifetime as the pegs are faster 

growing than the alumina scale but could provide mechanical keying for the scale.    However, in 

this case neither of these effects are obvious as the failure time of both coatings are very similar, 

section 8.8, and therefore there appears to be no influence from the oxide pegs.  It may be 

possible to prevent the formation of these yttrium rich particles and pegs for the EBPVD coating 

through reducing the yttrium content of the source ingot materials. 
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8.6 Cracking and Failure 

 

During measurement of the TGO thickness examination of the entire bond coat/ TGO interface 

was carried out to look for signs of cracking and degradation of the coating.  This was combined 

with the oxidation testing failures and observations were made to assess the mechanism of 

cracking and failure within both coating systems.  The observations could be grouped into two 

categories, there were sub-critical cracks which did not lead to coating failure and, secondly, final 

coating delamination.  The results of these observations can be found in section 6.6 and 7.6 for 

the two coatings systems.  This section will compare the two coating systems and attempt to draw 

some conclusions from the observations made.  

 

8.6.1 Sub-Critical Cracking 

 

During observation of the HVOF applied coating after testing, short sometimes linked cracks 

were observed in the TGO/topcoat interface region.  These cracks were often less than a few 

microns in length and normally associated with the flanks of asperities or surface roughness, 

figure 8.11. 
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Figure 8.11: Scanning electron micrograph of a specimen with a HVOF bond coat oxidised for 2 

hours at 1050°C showing short cracks at the interfacial region. 

 

These cracks have been seen only in a few of the specimens but as all the specimens were 

prepared and examined in the same way so it is not believed that these features are produced 

during preparation.  Also of note is that no such features have been observed in the EBPVD 

specimens.   This is likely an indication and reflection that these crack are associated with the 

surface roughness of the bond coat.  As was seen in section 8.4 the HVOF applied bond coat has 

a considerably rougher bond coat surface. 

 

Cracks such as these have been demonstrated in the literature to be associated with the 

development of out of plane stresses on the flanks of the asperities where growth of the oxide is 

not perpendicular to the mean bond coat surface.  The displacement of the topcoat however is 

perpendicular to the mean bond coat surface and as such exerts an out of plane stress across the 

TGO.  Finite element analysis from the literature has shown that these stresses accumulate at 

temperature within the TGO and mainly the topcoat on the flanks of the asperities only for a short 

Topcoat 

 

TGO 

 

Cracks 

 

Bond coat 
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distance, figure 6.14.  The short range of developed stresses means that there is no driving force 

to propagate these cracks for long distance through the coating and this explains the short nature 

of the cracks observed here and demonstrates why failure has not occurred associated with these 

cracks.  Furthermore, figure 6.14 demonstrates that if the surface roughness is small, as is the 

case for the EBPVD coating, there is much less stress developed and therefore no cracks would 

be expected.  This is what is seen with the EBPVD coating. 

 

These cracks are only seen in some specimens oxidised at 1050°C with no sub critical cracks 

observed at the other test temperatures.  It is possible that at the lower tested temperatures the rate 

of oxidation is too slow and thus the oxide is too thin to generate the required stresses to cause 

these cracks.  Additionally it is possible that deformation of the bond coat through high 

temperature creep acts as a stress reliever and releases the stress before cracking occurs.  A 

significant observation for both specimens is the lack of roughening, rumpling, of the bond coat 

during either isothermal or thermal cycle testing.  This is an important consideration in this 

mechanism as rumpling of the bond coat will increase the size and distribution of the surface 

roughness where these cracks are observed.  The lack of rumpling observed here would suggest 

that any cracking could only occur on pre existing roughness and this effect is unlikely to occur 

late in life due to a rougher bond coat.  
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8.6.2 Final Coating Failure 

 

Both coatings demonstrated identical final failures with total removal of the topcoat and TGO at 

the TGO/bond coat interface upon cooling.  For both coatings failure typically occurred across 

the entire surface at once, a short time after removal from the furnace.  This indicates that the 

mechanism of failure is similar in both coatings and is likely related to the strain energy 

generated upon cooling due to thermal expansion mismatch between the TGO and substrate.  It is 

possible to calculate the expected strain energy generated in the TGO and topcoat for these 

coatings and as each is similar in composition and make up the generated energies would be 

expected to be similar. Equation 6.2 gives the equation for calculating the strain energy and 

plotting these energies, figure 8.12, for the topcoat, TGO and combined system.  This shows that 

large strain energies are generated predominantly in the topcoat.  This plot was calculated using 

the parameters in table 8.6. 

 

Table 8.6: Parameters used for calculation of strain energy in the TGO and topcoat of a TBC 

system. 

 

Parameter/   

Coating layer
Alumina TGO

EBPVD YSZ 

topcoat

CMSX-4 

Substrate

Young's Modulus, 

E, GPa
367 60 NA

Poisson's Ratio, υ 0.25 0.1 NA

Thermal Expansion 

Co-efficient, K
-1 7.9x10

-6
1.03x10

-5
2.0x10

-5
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Figure 8.12: Plot of the specific strain energy generated in the TGO and topcoat due to thermal 

expansion co efficient miss match between these layers and the substrate against oxide thickness 

for a temperature drop of 1000K 

 

 

This level of energy is clearly above the fracture energy required to cause decohesion of the 

alumina at the bond coat/TGO interface which, first-principle calculations[62] indicate, is around 

0.66 J.m
-2

.  Therefore as described in section 6.6 the energy generated in the TGO is most likely 

being absorbed by creep of the bond coat.   
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8.7 Failure Mechanisms and Coating Lifetimes 

 

Final spallation in both TBC systems occurred by the same mechanism at the bond coat/TGO 

interface.  The driving force for this was the thermal expansion mismatch between the very 

different material layers.  Section 4 of this thesis described some major failure mechanisms 

associated with thermal barrier coating systems.  This section will explore these failure 

mechanisms in relation to the results and observations for this project. 

 

8.7.1 Wedge Cracking 

 

This failure mechanism occurs at the bond coat/TGO interface by the growth of a wedge crack 

driven by shear stresses along fracture surfaces in the TGO.  The driving force for this failure 

mechanism is the energy from thermal expansion mismatch between the TGO and substrate.  

This generates a compressive stress within the oxide as the substrate contracts more than the 

TGO during cooling.  It is this compressive stress coupled with strong TGO/bond coat adhesion 

which leads to the formation of shear cracks within the TGO and small area of decohesion 

between the TGO and bond coat.  The deflection of the TGO leads to the development of stresses 

at or near the crack tip.  Some of this stress is released by creep of the bond coat.  However as the 

temperature decreases the ability of the bond coat to creep decreases and the compressive stresses 

on the TGO increase.  This leads to greater tensile stresses at the crack tip until a sufficient 

temperature drop is reached for propagation of the crack.  However a requirement for the 
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generation of the wedge crack is the formation of shear cracks within the TGO but no clear 

evidence for such cracks was found in this work.  The vertical displacement of the TGO required 

to form this shear cracks is very small in the range of a few nanometres.  It is therefore possible 

that these cracks were present but not observed prior to failure by rapid propagation of the areas 

of decohesion.  It is likely that this is the final failure mechanism observed for both of these 

coatings however the lack of through thickness cracks within the TGO make it difficult to 

confirm this. 

 

8.7.2 Chemical Failure 

 

Chemical Failure is the breakdown of the bond coat through oxidation and the formation of 

rapidly growing oxides, typically of Ni and Co.  These sorts of failures occur because of 

excessive depletion of the selectively oxidised alloying element, in this case aluminium.  

Typically these failures will occur where an anomaly will prevent the transport of aluminium 

through the bond coat to the oxide/bond coat interface.  These anomalies could be oxide splats, 

usually found in plasma sprayed coatings, creases and folds in the bond coat surface where 

undercut oxidation has prevented aluminium diffusion and in surface protuberances.  This type of 

failure can also occur very late in life where the aluminium concentration of the bond coat has 

fallen below the level required to maintain an alumina protective oxide.  Examination of these 

specimens under an SEM has shown no evidence of any of the features required for this type of 

failure.  Although some oxide splats have been observed in the HVOF applied coating they are 

small in number and widely dispersed so do not prevent aluminium diffusion.  Additionally 
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statistical analysis of the TGO thickness has shown no evidence for rapidly growing oxides.  

Therefore this mechanism is not occurring in either coating examined here. 

 

8.7.3 Bond coat Phase Transformations 

 

The transformation of phases in the bond coat adjacent to the TGO could cause displacement of 

the TGO through a volume expansion or contraction associated with the phase change.  This can 

be particularly noticeable in the conversation of β to γ or γ΄ phase in the bond coat.  Some 

calculations have shown that a volume contraction due to this conversion could cause stresses 

across the TGO.  However observations of β to γ΄ phase changes in the bond coat adjacent to the 

TGO interface has shown no deflection, figure 8.13.  Another additional phase transformation 

which could be important is the formation of β-martensite.  However the presence of an area 

depleted of β- phase adjacent to the TGO already present in the as received specimen would 

negate any impact of phase changes on these coatings.  No evidence of phase changes adjacent to 

the TGO has been seen in either of these coatings and so this mechanism is unlikely to have any 

affect here. 
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Figure 8.13: Scanning electron micrograph of a platinum aluminide bond coat oxidised for 100 

hours at 1100°C showing phase transformation from β to γ΄ phase and no deflection of the 

TGO.[154] 

 

8.7.4 Non-uniform oxide growth 

 

The growth of transitional aluminas with a high growth rate can have a deleterious effect on the 

lifetime of the coating.  These transitional aluminas are meta-stable at the high temperatures used 

in this study and will therefore tend to convert to α- alumina.  This conversion leads to a volume 

decrease and can therefore lead to increased stress in the TGO.   This generates tensile stresses 

across the TGO and leads to crack nucleation and growth at the topcoat/TGO interface.  XRD 

analysis of the TGO formed from both of these coatings has shown no evidence of transitional 

aluminas, additionally the statistical analysis performed on the TGO thickness shows the oxide 

formed is consistent with solely α-alumina formation.  This is likely due to the heat treatment 

performed for application of the topcoat forming a fully dense α-alumina oxide.  Furthermore 

β-Phase 
γ΄-Phase 

Topcoat 

TGO 
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extensive cracking on these coatings leading to final failure has not been observed at the 

TGO/topcoat interface, therefore this mechanism is unlikely to affect these coatings.  

 

8.7.5 Growth of Oxide on non-planar Surfaces 

 

The growth of alumina on a roughened surface can lead to considerable localised out of plane 

stress development of the flanks of any asperities.  While localised this mechanism can form 

small cracks in the TGO/topcoat interface, which can link together to lead to further degradation 

of the coating.  The EBPVD bond coat studied here has a relatively flat bond coat surface and 

thus does not have the necessary roughness to form these sorts of cracks.  This is consistent with 

the observation that no cracks have been seen in the EBPVD coating in this area.  However the 

HVOF bond coat has a much rougher surface and therefore could form these sorts of cracks.  At 

some short times at 1050°C cracks of this sort have been observed in this coating.  However these 

cracks are short as there is insufficient driving force to propagate the cracks through the coating.  

Also few of the cracks have linked together probably because the surface roughness is not great 

enough for the cracks to be close enough together to link.  Whilst it is clear that this mechanism 

is occurring only in the HVOF coating, the roughness of the coating and the subsequent size of 

the cracks is not sufficient to lead to coating failure. 
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8.7.6 Ratcheting 

 

As discussed earlier in this section considerable stresses are developed in the TGO upon cooling 

due to the thermal expansion mismatch with the substrate.  On a planar surface these stresses are 

purely biaxial in nature, however TBC coatings are often quite undulating in nature as 

demonstrated in these coatings in there surface roughness[116].  These undulations lead to shear 

stresses on the flanks of the asperities during cooling after growth of the TGO[116, 117].  If these 

stresses are greater than the yield strength of the alloy the undulation will increase in size due to 

plastic deformation of the bond coat[116, 117].  This process relies on thermal cycles with 

incremental increase in roughness with increasing cycles[116, 117].  This increased roughness 

can lead to decohesion at the base or peaks of the asperities and cause failure through 

buckling[117].  This failure mechanism relies on the growth of the oxide and thermal 

cycles[117].  Measurement of bond coat surface roughness of both coatings tested here shows 

that there is no significant increase due to thermal cycling or isothermal testing.  Therefore this 

mechanism is not occurring in either of the coatings tested here. 

 

8.7.7 Rumpling 

 

Roughening of the bond coat surface has been shown to occur in systems without a topcoat and 

leads to cracking of the oxide layer.  Currently no evidence has been observed for rumpling of 

bond coats with the topcoat in place as is the case with both the coatings tested here.  

Measurement of the surface roughness before and after oxidation for the isothermal tests showed 
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no increase in surface roughness or any evidence of rumpling occurring.  Additionally 1-hour 

thermal cycle tests carried out with and without a topcoat in place on both coatings types showed 

no significant increase in surface roughness.  Therefore, this would mean that rumpling of the 

bond coat surface is not occurring in either coating tested here.  This could be due to the bond 

coats being too strong in creep to allow sufficient deformation and movement of the TGO. 

 

8.7.8 Coating Lifetime 

 

There is considerable literature available on the failure times for TBC systems containing both 

MCrAlY and Pt-aluminide bond coats.  Figure 8.14 gives some of these results obtained from 

specimens coated with standard, non-experimental TBC systems.    The coatings presented in 

figure 8.14 include a range of MCrAlY overlay coatings of different compositions and also 

NiAlPt diffusion type bond coats.  In all cases failure has been determined by the spallation of at 

least 20% of the topcoat using the same criteria as used in this thesis.  They include tests which 

were exposed to both isothermal and thermal cycling conditions but no systematic effect of test 

condition could be found.  Similarly, there appeared to be no great difference between systems 

with a MCrAlY or Pt-aluminide bond coat.  It is clear however from figure 8.14 that there is 

considerable scatter in the observed failure lifetimes, often varying by 10 times.  This large 

scatter is likely a consequence of variation in the coating manufacture.  Even when the same 

equipment and parameters are used some variation in handling can occur between coating 

batches.  These variations invariably lead to variations in surface roughness or inclusion on the 

coating surface or layers.  It is likely that the variation in surface roughness affects the scatter of 



162 

 

failure times observed here, as this is a major cause of stress generation in coatings.  Also plotted 

in this graph are the failure times for both coating systems studied here, noting however that only 

the EBPVD coating showed a failure at 950°C.  This shows that the spallation times found in this 

present work agree well with the literature values reported elsewhere for similar coatings and the 

present coatings tested offer neither an advantage nor disadvantage in terms of coating lifetime.  
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Figure 8.14: The failure times of both coating 1(HVOF) and coating 2(EBPVD)in comparison 

with literature data on failure times of similar coatings[100, 155-163].  
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9 CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions 

 An in depth and extensive study has been carried out into the oxidation behaviour of two 

thermal barrier coating systems consisting of a CMSX-4 substrate, MCrAlY bond coat 

and EBPVD applied yttria stabilised zirconia (YSZ) topcoat.  One bond coat was applied 

by high velocity oxy-fuel (HVOF) spraying and the other of similar composition was 

applied by electron beam physical vapour deposition (EBPVD). 

 

 Oxidation kinetics 

o An examination of the oxidation kinetics through detailed analysis of oxide 

thicknesses was performed after isothermal testing in air on both coating systems 

at three test temperatures of 950°C, 1050°C, and 1150°C.  Additional testing at 

1000°C and 1100°C was carried out on the HVOF applied coating only due to 

limitations in the availability of specimens. 

o The kinetic data produced showed that the oxide thickness varied across the 

surface with a Gaussian distribution found for both coating systems. 

o Further analysis showed that an increase in the standard deviation of these coating 

thicknesses was observed with increasing time at temperature for both coatings 

and this was likely due to varying localised alumina growth rates across the 

coating surface. 
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o The growth rates for both coatings were found to be sub parabolic at all the tested 

temperatures with n values ranging from 2.3-3.3.  This was likely due to an 

increase in the average oxide grain size with increasing time at temperature but 

could not be confirmed in the present study. 

o For comparison to literature kinetics, pseudo parabolic kinetics were calculated for 

both coatings.  These kinetics were found to fit well to the mean line for alumina 

formers derived by Hindam and Whittle[136]. 

 

 Bond coat surface roughness. 

o The surface roughness of the isothermally oxidised specimens for both coatings 

were determined from amplitude and wavelength measurements taken from 

specimen cross sections.  The HVOF applied bond coat system was found to have 

a short and long scale roughness, characteristic of this coating type.  The EBPVD 

applied bond coat system showed a much smoother interface with only short scale 

roughness present. 

o The surface roughness did not increase in either coating under isothermal 

oxidation exposures. 

o The surface roughness was measured for both coating systems with and without a 

topcoat under cyclic oxidation of 1 hour cycles at 1170°C.  Again, no increase in 

surface roughness with increasing cycles was observed in either coating.  No 

evidence of bond coat rumpling was found. 
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 Microstructure and compositions 

o The compositions of the bond coats of each coating were measured using EDS.  

Both coatings formed a dual phase β-NiAl and γ-Ni structure throughout the bond 

coat with heavy elements from the substrate precipitating in the interdiffusion 

zone.  Some α-Cr particles were found in both coatings along the bond coat 

interdiffusion zone interface. 

o Depletion of aluminium adjacent to the bond coat surface to form the thermally 

grown oxide (TGO) led to the formation of a β depleted zone adjacent to the TGO.   

This increased in size with increasing time at temperature for both coatings. 

o A TGO was present between the bond coat and topcoat in all specimens including 

the as coated, untested specimens.  This was found, through XRD analysis of 

oxidised specimens, to be α-alumina.  The oxide thickness distributions were uni-

modal, indicating that no breakaway-type oxides had formed and that α-alumina 

was the predominant oxide phase at all tested times and temperatures for both 

coating systems.  This was consistent with the SEM observations. 

o Yttrium rich phases were observed in the TGO of the EBPVD applied bond coat 

only with further yttrium rich phases within the bond coat close to the TGO/bond 

coat interface.  These phases were likely to be yttrium aluminium garnet (YAG) 

pegs.  They were not observed in the HVOF applied bond coat appear to have no 

influence on coating failure in these coatings. 
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 Cracking and failure 

o Sub critical cracks of a few microns in length were observed in the vicinity of the 

TGO/topcoat interface after short times at 1050°C for the HVOF applied coating. 

o These cracks were found predominantly on the flanks of the asperities in the bond 

coat surface roughness. 

o Whilst some of these cracks were found to link together, they were not of 

considerable length and appeared not to grow with increasing time at temperature. 

o These cracks are formed by the generation of out of plane tensile stresses on the 

flanks of the asperities at temperature.  These stresses are typically shown through 

finite element modelling, performed elsewhere, to be localised in these areas and 

so there is no driving force to propagate the cracks further.  As such these cracks 

are not, in the case of the coating tested here, associated with final coating failure. 

o These cracks are not observed in the EBPVD applied bond coat, this is due to the 

bond coat surface having a low roughness. 

o Final coating failure in both coating systems occurred at the bond coat/TGO 

interface through rapid propagation of cracks along the interface.  This rapid 

propagation is likely driven by the large strain energies generated in the TGO 

through thermal expansion mismatch between the TGO and substrate layer. 

o The mechanism of generation of the initial decohesion at this interface is unknown 

but could be due to the formation of wedge cracks.  However failure typically 

occurred through complete spallation of the topcoat and TGO therefore no 
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evidence of wedge crack formation was observed so this mechanism cannot be 

confirmed. 

o Comparison of the time to failure for both coating systems with published 

literature values for a range of coatings shows a good fit.  However there is a large 

scatter within these observed failure times even for similar coatings.  This is likely 

due to variation in manufacture of these coatings, specifically related to the bond 

coat surface roughness. 

 

9.2 Future Work 

 

 Confirmation of the measured oxidation kinetics could further demonstrate the sub 

parabolic growth of the TGO in these coating systems.  This could be carried out through 

thermo gravimetric analysis of the mass gain of the coatings.  Some experiments were 

conducted with the present set of specimens but a failure to mask the substrate alloy on 

the exposed surface made the results unusable.  The use of fully coated specimens would 

alleviate this problem and allow this type of testing. 

 The characterisation of the microstructure of the TGO formed on these coatings could be 

used to confirm its effect on TGO growth kinetics.  This could be achieved through use of 

Focussed Ion Beam Scanning Electron Microscopy (FIBSEM) to polish specimen cross 

sections for examination using Electron Backscatter Diffraction (EBSD).  Trials on this 

technique for these coatings have shown promising results for the FIBSEM polishing, 

figure 8.4. 
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10 APPENDIX 1 

10.1 Thermal-Gravimetric Analysis (TGA) 

TGA experiments were attempted using the apparatus available, figure 11.1, in an attempt to 

obtain oxidation kinetics based on weight gain.  The intension was to compare these data with the 

kinetics obtained from the TGO thickness measurements and obtain early stage oxidation data.   

 

Figure 11.1: TGA measurement equipment. 
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However, this procedure was complicated by the exposed superalloy on the base surface of the 

specimens.  In addition, the total weight of each specimen exceeded the maximum weight 

capability of the apparatus.  Therefore, each test specimen had to be first manually thinned by 

using wet and dry SiC paper to remove part of the superalloy substrate from the uncoated surface 

of the specimen and reduce the total specimen weight to 3mg.  Oxidation of the exposed 

superalloy was still an issue and three techniques to limit its extent were investigated.  Firstly, an 

alumina paste supplied by Pi-Kem, was applied to the uncoated superalloy.  However, it was 

found that the alumina paste did not sufficiently bond to the alloy and thus easily spalled away 

during the early part of the test, proving ineffective.  Secondly, a platinum sputtered coating was 

applied to the uncoated superalloy.  Despite reducing the substrate oxidation this again produced 

no useable results as it did not prevent oxidation of the substrate.  Thirdly, a CMSX-4 coupon, 

uncoated on all surfaces, was used.  It was postulated that the TGA data this provided could be 

standardised for surface area and then be used to subtract from the specimen mass gain data of 

the coated specimens to obtain the mass gain for the coated section only.  However, the high rate 

and variability of the oxidation of the substrate made the errors involved in this procedure too 

great to obtain meaningful results.   
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