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Abstract

This dissertation deals with the automatic generation of sound specifications from a given program in
the form of loop invariants and method contracts. Sound specifications are extremely useful, in that
without them analysis of non-trivial programs becomes almost impossible. Verification tools can be used
to prove complex properties for real-world programs, but this requires the presence of sound specifications
for unbounded loops and unbounded recursive method calls. If even one simple specification is missing,
the proof may become impossible to close.

In general automation and precision are two goals which are often mutually exclusive. To ensure that
the generation of specifications is fully automatic, precision will suffer. Approaches exist which perform
abstraction on programs, replacing all types with abstracted counterparts with only finitely many different
abstract values. Thus algorithms relying on fixed points for these abstract values can be used in the
automatic generation of specifications, ensuring termination thereof. Precision is lost not only at the loops
and method calls where this is required to ensure automation, however, but in the entire program.

The automatic generation of specifications illustrated in this dissertation is characterized by the following:
(i) abstraction is restricted to the loops and method calls themselves, ensuring that precision is kept for
the remaining program, (ii) the loss of precision due to abstraction is partially reduced, by coupling the
abstraction with introduction of new invariants which aim to counteract this loss of precision to a certain
degree, and (iii) non-standard control flows of real-world programming languages are supported, rather
than restricting the analysis to an academic toy language.

In order to restrict the loss of precision to loops and method calls, abstraction is performed on program
states, rather than the entire program. This allows full precision to be kept where possible, while program
states related to loops and method calls are abstracted in order to ensure the termination of fixed point
algorithms. The abstraction of program states is performed using abstract domains for the corresponding
types. These abstract values can then be used outside of the loop or method call as normal values for
which only partial knowledge is present. Real-world programming languages, such as Java, can contain,
for example, a program heap which can be modified in loops or method calls, as well as objects and arrays
as types in addition to the simpler primitive types such as booleans and integers. This leads to abstract
domains being presented for objects and program heaps.

As abstract domains are hard to fine-tune, additional invariants are introduced when abstracting, to
counteract the coarse overapproximations. This allows abstraction of an array’s elements, for example,
by a coarse overapproximation of the program heap on which the elements reside, in addition to the
introduction of invariants regarding the values of said array elements.

Real-world programming languages contain many elements that make the automatic generation of spec-
ifications much harder than these are on academic toy languages or strongly reduced subsets of real-world
languages. Both loops and simple recursion are comparatively easy to reason about by themselves, how-
ever combining these, where a method calls itself recursively inside a loop, makes automatic generation of
specifications a much harder task. Mutual recursion and non-standard control flows such as breaking out of
a loop, throwing exceptions or returning from a method call while inside a loop add further complications.
This dissertation describes how to automatically generate specifications in all of these cases.
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Zusammenfassung

Diese Dissertation beschreibt die automatische Erzeugung korrekter Spezifikationen aus einem gegebenen
Programm in Form von Schleifeninvarianten und Methodenverträge. Korrekte Spezifikationen sind für die
Analyse nichttrivialer Programme unumgänglich. Verifikationswerkzeuge können komplexe Eigenschaften
von realen Programmen beweisen, benötigen aber hierzu korrekte Spezifikationen für unbeschränkte Schlei-
fen und unbeschränkte rekursive Methodenaufrufe. Selbst das Fehlen einer einzigen Spezifikation kann dazu
führen, dass der Beweis nicht geschlossen werden kann.

Im Allgemeinen sind Automatisierung und Präzision Ziele, die sich oft gegenseitig ausschließen. Die Her-
ausforderung besteht häufig darin einen guten Mittelweg zu finden. Um vollautomatische Erzeugung von
Spezifikationen zu erlangen, müssen Kompromisse bei der Präzision hingenommen werden. Es existieren
Ansätze, die Programme als Ganzes abstrahieren, indem alle Typen durch abstrakte Typen ersetzt werden,
die nur endlich viele abstrakte Werte beinhalten. Dies ermöglicht es bei der automatischen Spezifikations-
erzeugung Algorithmen zu verwenden, die auf Fixpunktberechnung beruhen, und so deren Terminierung zu
garantieren. Bei den bisherigen Ansätzen tritt ein Präzisionsverlust nicht nur bei Schleifen oder Methoden-
aufrufen auf, bei denen dieses zum Sicherstellen der Automatisierung notwendig ist, sondern im gesamten
Programm.

Die in dieser Dissertation vorgestellte Spezifikationserzeugung zeichnet sich durch folgende Punkte aus:
(i) Abstraktion findet nur bei Schleifen und Methodenaufrufen statt, so dass Präzision an allen anderen
Stellen des Programms beibehalten wird, (ii) durch das Koppeln der Abstraktion an die Einführung neuer
Invarianten wird eine präzisere Darstellung des symbolischen Programmzustandes erreicht, und (iii) werden
komplexere Konstrukte zur Steuerung des Kontrollflusses realer Programmiersprachen unterstützt, anstatt
sich auf einer akademischen Spielsprache zu beschränken.

Um den Präzisionsverlust zu minimieren, werden Programmzustände abstrahiert, an Stelle ganzer Pro-
gramme. Um die Terminierung der Fixpunktalgorithmen sicherzustellen, müssen Programmzustände bei
Schleifen oder Methodenaufrufen abstrahiert werden. Die Abstraktion von Programmzuständen wird mit-
tels abstrakter Domänen passenden Typs ausgeführt. Diese abstrakten Werte können dann ausserhalb der
Schleife oder des Methodenaufrufs als normale Werte betrachtet werden, für die nur Teilwissen zur Verfü-
gung steht. Reale Programmiersprachen wie Java beinhalten zum Beispiel sowohl einen Programm-Heap,
der von Schleifen oder Methodenaufrufen verändert werden kann, als auch Objekte und Arrays als Typen
neben den Primitivtypen wie Bool’sche Werte oder ganze Zahlen. Abstrakte Domänen für Objekte und
Programm-Heaps werden vorgestellt.

Da abstrakte Domänen sich nur schwer problemspezifisch anpassen lassen, werden zusätzliche Invarian-
ten beim Abstrahieren eingeführt, um den Folgen der Überapproximation etwas entgegenzuarbeiten. Dies
erlaubt es zum Beispiel Wissen über die Werte der Elemente eines Arrays beizubehalten, die ansonsten bei
der Durchführung der Abstraktion verloren gegangen wären.

Reale Programmiersprachen beinhalten viele Konstrukte, die die automatische Spezifikationserzeugung
erschweren. Sowohl bei Schleifen als auch bei einfacher Rekursion ist die automatische Spezifikationserzeu-
gung vergleichsweise einfach zu realisieren. Kompliziertere Fälle, wie zum Beispiel wechselseitige Rekursion,
stellen die automatische Spezifikationserzeugung vor signifikant größere Herausforderungen. Auch nicht-
standard Kontrollflüsse, wie das Verlassen einer Schleife durch ein break, das Werfen einer Exception oder
das Verlassen einer Methode innerhalb einer Schleife, sind weitere Komplikationen bei der automatischen
Spezifikationserzeugung. Das in dieser Dissertation entwickelte Verfahren kann für alle diese Fälle korrekte
Spezifikationen automatisch erzeugen.
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1 Introduction

Correctness of software is an extremely important goal. Software bugs have been directly responsible for
the deaths of over 100 people and billions of Euros in damages. With computers becoming more and more
ubiquitous and software influencing our lives more than ever, the very real threats of faulty programs must
be apparent.

As testing can prove only the presence of bugs and never their absence [19], formal specifications of
program code and proofs that these formal specifications hold are one of the only guarantees for the
correctness of software. But writing formal specifications is quite hard and time consuming for non-trivial
programs. It requires many hours of a highly skilled professional’s costly time. It also does not suffice
to give a single specification of an entire program, as specifications are required for each unbounded loop
and method call (or at least for the method’s definition, akin to Bertrand Meyer’s design-by-contract [48]).
These specifications often allow verification tools to be used to prove complex properties for real-world
programs automatically, or at least strongly reduce the amount of time a human needs to spend on the
proof. But this requires that these specifications exist, which would normally call for a human to have
invested time writing them. Here the idea of automatic specification generation comes in.

When it comes to the generation of specifications, automation and precision are two conflicting goals.
If the generation of specifications should be fully automatic, precision will suffer. One such approach is
abstract interpretation [15], which allows a fixed point algorithm for finding specifications, by abstracting
all program types to abstract domains. Here precision is lost by the abstraction, while automation is
gained.
Symbolic execution [45] is a technique where programs are executed not on concrete values, but rather

symbolic values which may have constraints attached. This allows the execution of all possible inputs
as a single symbolic execution run, which produces a symbolic exection tree. Approximation is required
when encountering unbounded loops or method calls, by applying specifications for these. Outside of these
approximations, symbolic execution is fully precise.

Combining symbolic execution with abstract interpretation allows the full precision of symbolic execution
to be coupled with automatic abstraction of program states when unbounded loops and method calls are
encountered. While the abstracted program states introduce a loss of precision, this need not be as large
a loss, as in the remaining program the abstracted values can simply be treated as symbolic values and so
full precision of the remaining program for the abstracted input is guaranteed.

This combination of symbolic execution and abstract interpretation was proposed in [12], where its use in
automatically generating loop invariants was demonstrated for an academic toy language without method
calls, nested loops or non-primitive types.

This dissertation describes the steps involved in applying this ingenious idea to a closer approximation
of a real-world programming language. A symbolic execution engine for an almost complete subset of
sequential Java has been described in [9], extended to use of an explicit heap in [63] and implemented in
the state-of-the-art verification tool KeY1 [1]. Applying the ideas from [12] to the scope of this language
involves introducing abstract domains for all types which can be encountered, including objects, arrays
and program heaps, as well as generating loop invariants for loops with non-standard control flows, such as
breaking out of the loop, and generating method contracts for recursive method calls. Also required is the
generation of specifications requiring further specifications, such as is the case with nested loops, mutual
recursion and recursive calls from within a loop body.

As abstract domains are often too coarse, a finer grained solution is introduced by adding additional
invariants when abstracting, to somewhat counteract the overapproximations. This allows abstraction of
an array’s elements, for example, by the combination of a coarse overapproximation of the program heap

1 KeY can be downloaded at http://www.key-project.org
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on which the elements reside with the introduction of invariants regarding the values of all elements within
different partitions of the array.

The dissertation is structured in the following way:

• Chapter 2 gives background information on abstract interpretation, dynamic logic and the initial
paper [12] that combined these ideas to automate loop invariant generation for an academic toy
while-language.

• Chapter 3 gives abstract domains for the non-heap types which can appear in the programs we
consider.

• Chapter 4 gives the abstract domain for program heaps we use, a widening operator for this abstract
domain and a detailed proof for the correctness thereof.

• Chapter 5 explains how the coarse overapproximations resulting from abstraction can be fine-tuned
with the addition of invariant patterns and describes these invariant patterns in detail. Thus, for
example, abstraction of partitions of an array is possible.

• Chapter 6 explains how non-standard control flows within a loop body complicate not only the
automatic generation of loop invariants, but also the application of a sound loop invariant rule.
Problems with existing solutions are described and a novel solution introduced.

• Chapter 7 contains the algorithms for automatically generating specifications and describes how
these work, in particular how complicating factors such as nested loops, mutual recursion and loops
containing recursive calls are dealt with soundly.

• Chapter 8 contrasts the ideas in this dissertation with other approaches to automatic specification
generation.

• Finally, Chapter 9 sums up the work’s conclusions.

1.1 Publications this Thesis is Based on

• A Theorem Prover Backed Approach to Array Abstraction. Nathan Wasser and Richard Bubel. In 5th
International Workshop on Invariant Generation. Held as part of Vienna Summer of Logic, Vienna,
Austria. 2014. [61]
This paper introduces three new ideas: (i) It extends the value abstraction in [12] from primitive
types to arrays, by giving an abstraction for all elements of the array within a given contiguous range.
It also extends the information flow tracking ideas from [12], by (ii) adding arrays of dependencies
for program variables of type array, storing for each element a set of program variables on whose
initial values the value of the array element depends, and (iii) adding a dependency stack to store
implicit dependencies caused by branching program instructions and have these implicit dependencies
as well as the explicit dependencies be assigned to the matching dependency variable when a program
variable is assigned a value.
I was the main author of this paper. All three of the above mentioned ideas were mine.

• Generating specifications for recursive methods by abstracting program states. Nathan Wasser. In De-
pendable Software Engineering: Theories, Tools, and Applications — First International Symposium,
Nanjing, China. 2015. [60]
This paper uses an academic recursive toy language to introduce a way to automatically generate
method contracts for recursive methods by repeated symbolic execution and abstraction of resulting
pre- and postconditions for the recursive calls. An implementation of this approach using KeY is
used to generate method contracts for selected recursive algorithms from the literature.
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I was the sole author of this paper. The novel ideas put forth in the paper were all mine and evaluation
of the implementation was performed by me.

• Abstract Interpretation. NathanWasser and Reiner Hähnle and Richard Bubel. In Deductive Software
Verification – The KeY Book: From Theory to Practice. 2016. [62]
In this chapter of the most recent version of the KeY book, value abstraction is described in the
context of KeY. We mention useful abstract domains for primitives, and introduce novel abstract
domains for objects and heaps.
I came up with the novel abstract domains for objects and heaps, and made major contributions to
this chapter.

• Array Abstraction with Symbolic Pivots. Reiner Hähnle and Nathan Wasser and Richard Bubel. In
Theory and Practice of Formal Methods: Essays Dedicated to Frank de Boer on the Occasion of His
60th Birthday. 2016. [34]
This paper introduces the novel idea of symbolic pivots to reason about array indices in loops. With
the help of these, non-contiguous partitions of arrays can be abstracted. An integration of this
approach in the implementation of loop invariant generation based on KeY allows for the generation
of stronger loop invariants involving arrays.
I was the main author of this paper. The idea behind symbolic pivots was mine. I performed the
experiments.

1.2 Further Publications

• Verification, Induction, Termination Analysis: Festschrift for Christoph Walther on the Occasion of
His 60th Birthday. 2010. Simon Siegler and Nathan Wasser, editors. [55]
As one of the editors of the Festschrift for Christoph Walther, I was involved in gathering and re-
viewing paper submissions, working with the authors to fix any problems, and putting the Festschrift
together.

• Towards Fully Automatic Logic-Based Information Flow Analysis: An Electronic-Voting Case Study.
Quoc Huy Do and Eduard Kamburjan and Nathan Wasser. In Principles of Security and Trust: 5th
International Conference, POST 2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2–8, 2016, Proceedings.
2016. [22]
This paper describes the combination of two logic-based tools in order to achieve almost full au-
tomation in analyzing information flow security while maintaining high precision. One of the tools is
KeG [21], which allows Java programs annotated with information flow policies to be analyzed with
respect to these policies. Information flow leaks detected are then exposed by a generated JUnit test.
However, KeG requires loop invariants to be supplied for unbounded loops and method contracts to
be supplied for unbounded recursive method calls. In order to provide these, an implementation
based on the work in [61, 60, 34] automatically generates specifications for the input before passing
both to KeG. An electronic voting case study utilizing this approach is discussed.

• Fermat, Euler, Wilson - Three Case Studies in Number Theory. Christoph Walther and Nathan
Wasser. In Journal of Automated Reasoning. 2016. [59]
This paper demonstrates how three well-known theorems from number theory can be proven using
the verification tool VeriFun2 [57, 58].

2 VeriFun can be downloaded at http://verifun.de
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1.3 Impact

This dissertation advances research in the fields of proof automation, specification generation, abstraction
techniques for complex types such as program heaps and arrays, as well as dynamic logic [36].

The case study [22] demonstrates how the approach described in this dissertation can be incredibly useful,
by automatically generating specifications required by, in this example, another verification tool dealing
with information flow security. This validates the claim that advancements in automatic specification
generation have wide reaching effects.

Further areas where the automatic generation of specifications described in this dissertation can be useful,
are in (i) the integration with an IDE, such that the programmer’s code is annotated with specifications on
the fly, similar to the integration of automatic bug checking tools based on static analysis already present
in state-of-the-art IDEs; and (ii) enhancing the work in [37], where a user supplied contract for a method
implementation is attempted to be proven in a background task. If symbolic execution within this proof
encounters an unbounded loop or method call without a user supplied specification, the proof cannot finish.
By integrating the automatic generation of specifications in these cases, the proofs can be continued.

The work on generating specifications for non-standard control flows described in Chapter 6 revealed an
inherent incompleteness in the dynamic logic calculus rule given in [9] for applying loop invariants on loops
with non-standard control flows. The theory in [9] is further based on the introduction of a multitude of
new modalities, which could be a nightmare to implement. Therefore the implementation in KeY was based
on program transformation of the loop body, although program transformation of real-world programming
languages is error-prone. Research on this topic resulted in the introduction of a new dynamic logic calculus
rule to apply loop invariants. This solution requires neither the introduction of new modalities into dynamic
logic, nor program transformation of the loop body, thus being both easier to implement and more likely
to be implemented bug-free. The results have been shared with the KeY community, such that the newest
release of the KeY book [2] can take these into account.

An implementation of some of the novel ideas in this dissertation was integrated into a branch of the
KeY project. This branch was kept up-to-date with changes on the master branch, such that moving these
new features to the master branch can be accomplished with minimal effort, once the feature freeze in
preparation for the release of the new KeY book has ended.
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2 Background

In this chapter we briefly introduce the concepts of abstract interpretation and Java dynamic logic, tak-
ing the information required in order to follow this dissertation from a few main sources while referring
interested readers to further information sources if they are so inclined.

2.1 Basics

Definition 1 (Partial Order). Given a set M , a partial order � is a relation on M (i.e. a subset of M×M)
which is reflexive, anti-symmetric and transitive. I.e. for all x, y, z ∈M :

1. x � x

2. x = y, if x � y and y � x

3. x � z, if x � y and y � z

A set with a partial order is also called a partially ordered set, or poset.

Definition 2 (Join-semilattice). A set M with partial order � is a join-semilattice iff for all x, y ∈M there
exists a least upper bound (or supremum) of the set {x, y}. We call the binary operator which calculates
this least upper bound for x and y the join operator.

Definition 3 (Sequence). Given a non-empty set M , an (infinite) sequence 〈xi〉 is a function of type
N→M . For all n ∈ N we write xn to refer to 〈xi〉(n).

Infinite sequences are often defined by recursion.

Definition 4 (Ultimately Stationary). A sequence 〈xi〉 is ultimately stationary iff there exists some n ∈ N,
such that xn = xm for all m ∈ N, where m > n.

Definition 5 (Ascending Chain). Given a set M with partial order �, an ascending chain is a sequence
〈xi〉, such that xn � xn+1 for all n ∈ N.

Definition 6 (Infinite Ascending Chain). An infinite ascending chain is an ascending chain, which is not
ultimately stationary.

Definition 7 (Ascending Chain Condition). A partially ordered set satisfies the ascending chain condition
iff all its ascending chains are ultimately stationary, i.e. it contains no infinite ascending chains.

2.2 Abstract Interpretation

Abstract interpretation [15] is a formal verification technique which allows proving that the abstract seman-
tics of a program satisfies an abstract specification. If the abstract semantics is sound, i.e. conclusions in
the abstract semantics imply the same in the concrete semantics, then a proof via abstract interpretation
guarantees that all concrete instances satisfy the abstract specification.

The heart of abstract interpretation is the concept of an abstract domain.

Definition 8 (Abstract Domain). Given a concrete domain D, an abstract domain A = (A,t,v) is a
join-semilattice, with join operator t and partial order v. There is an abstraction function α : 2D → A
and a concretization function γ : A→ 2D which form a (monotone) Galois connection (initially introduced
as antitone [10], the standard is now the monotone Galois connection [15]) , such that:
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1. ∀X, Y ∈ 2D. X ⊆ Y → α(X) v α(Y )

2. ∀a, b ∈ A. a v b→ γ(a) ⊆ γ(b)

3. ∀X ∈ 2D. X ⊆ γ(α(X))

4. ∀a ∈ A. a = α(γ(a))

Let f : A→ A be any function. The monotonic function f ′ : A→ A is defined as f ′(a) = a t f(a). If
A satisfies the ascending chain condition [6] (trivially the case if A has finite height), then starting with
any initial input x ∈ A a least fixed point [56] for f ′ on this input can be found by locating the stationary
limit of the sequence 〈x′i〉, where x′0 = x and x′n+1 = f ′(x′n).

Abstract interpretation makes use of this when analyzing a program. Let p be a loop, x the only variable
in p and a ∈ A the abstract value of x before execution of the loop. Then we can see f as the abstract
semantic function of a single loop iteration on the variable x. The fixed point for f ′ is an abstract value
expressing an overapproximation of the set of all values of x before and after each iteration. Therefore it
is sound to replace the loop with the assignment x = a.

If A does not satisfy the ascending chain condition, there may not be a stationary limit for 〈x′i〉. In
these cases a widening operator is required.

Definition 9 (Widening Operator ·∇·). A widening operator for an abstract domain A is a function
∇ : A× A→ A, where

1. ∀a, b ∈ A. a v a∇b

2. ∀a, b ∈ A. b v a∇b

3. for any sequence 〈y′n〉 and initial value for x′0 the sequence 〈x′n〉 is ultimately stationary, where
x′n+1 = x′n∇y′n.

If A has a least element ⊥, it suffices to use this as the initial value for x′0, rather than proving the
property for all possible initial values.

For further information on abstract interpretation, abstract domains and widening operators see [14, 15, 16].

2.3 Java Dynamic Logic

Java dynamic logic [9] is a sound extension of dynamic logic [36], which is a sound abstract semantics.
The main idea of dynamic logic is to be able to express statements about program behavior by integrating
deterministic programs and formulas within a single language. The modalities 〈p〉 and [p] can be used
in formulas, where p is any sequence of legal program statements. These operators refer to the final
state of p and can be placed in front of any formula. The formula 〈p〉φ expresses that the program p
terminates in a state in which φ holds, while [p]φ does not demand termination and expresses that if p
terminates, then φ holds in the final state. For this dissertation we restrict ourselves to partial correctness
and therefore mainly only use the box modality [·]. For example, “when started in a state where x is
zero, then if x++ terminates it does so in a state where x is one” can be expressed in dynamic logic as
x .= 0 → [x++](x .= 1). Java dynamic logic (Java DL) extends typed first-order logic. An extension of
Java DL to explicit heap notation can be found in [63]. The following definitions regarding syntax and
semantics are taken from [9, 63], modified and simplified slightly in order to give the reader enough basics
to understand the following chapters.
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2.3.1 Syntax of Java Dynamic Logic

Definition 10. A type hierarchy is a pair T = (TSym,v), where

1. TSym is a set of type symbols, containing at least the empty type ⊥ and the universal type >

2. v is a reflexive, transitive relation on TSym, called the subtype relation;

3. ⊥ v A v > for all A ∈ TSym.

The type hierarchy TJ in Figure 2.1 is the minimal type hierarchy for Java DL. A Java DL type hierarchy
for a given Java program Prg is any hierarchy T = (TSym,v) that contains TJ as a sub-hierarchy. All
Java integer types (byte, char, short, int, long) are mapped to the type int ∈ TSym. Floating-point
numbers are not (yet) supported.

>

Any
Heap Field

Boolean int Object LocSet

class types
from Java code

Null

⊥

Figure 2.1: The minimal type hierarchy TJ

Definition 11. A type hierarchy T2 = (TSym2,v2) is an extension of a type hierarchy T1 = (TSym1,v1),
in symbols T1 v T2, if

1. TSym1 ⊆ TSym2

2. v2 is the smallest subtype relation containing v1∪∆ where ∆ is a set of pairs (S, T ) with T ∈ TSym1
and S ∈ TSym2 \ TSym1.

Definition 12. A signature Σ = (FSym, PSym,VSym) for a given type hierarchy T is made up of the
disjoint sets FSym, PSym,VSym, where

1. the set FSym contains typed function symbols f : A1, . . . , An → A,

2. the set PSym contains typed predicate symbols p(A1, . . . , An), in particular at least the dedicated
binary symbol .=(>,>) for equality and the predicate symbols true() and false(), and

3. the set VSym contains typed variable symbols v : A.

All types A, Ai in this definition must be different from ⊥. Function symbols without any arguments
c : → A are called constant symbols of type A, while predicate symbols p() are called propositional variables
or propositional atoms. For sake of readability we can omit the empty parentheses.

Java DL requires a minimum signature ΣJ given in [2]. An excerpt of this signature containing the
elements required for this dissertation is shown in Figure 2.2, while some axioms for these are shown in
Figure 2.3 and an excerpt of rules for wellFormed heaps is shown in Figure 2.4.
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In Java DL, there are both rigid and non-rigid function symbols. While the interpretation of rigid
symbols maintain their interpretation throughout program execution, non-rigid symbols can be changed
by the program. In particular constant non-rigid symbols thus can be construed as program variables.

Definition 13. Let T be a Java DL type hierarchy for a Java program Prg. A Java DL signature w.r.t. T
is a tuple

Σ = (FSymr, FSymnr , PSym,VSym)

where

• FSymr and FSymnr are disjoint sets of function symbols;

• (FSymr, PSym,VSym) includes at least the vocabulary from ΣJ ;

• the set PVSym ⊆ FSymnr of all constant non-rigid function symbols, which we call program variables,
contains all local variables a declared in Prg, where the type of a :A ∈ PVSym is given by the declared
Java type T as follows:

– A = T if T is a reference type,
– A = Boolean if T = boolean,
– A = int if T ∈ {byte, char, short, int, long}.

• PVSym ⊆ FSymnr contains an infinite number of symbols of every typing.

• PVSym ⊆ FSymnr contains the “special” program variable heap : Heap ∈ PVSym .

The set of all (rigid and the non-rigid) function symbols is denoted by FSym = FSymr ∪ FSymnr .

While logical variables in VSym can be universally or existentially quantified but never occur in programs,
program variables in PVSym can occur in programs but cannot be quantified.

Definition 14 (Method Identifier). For any Java DL type hierarchy (TSym,v) and Java program Prg, let
T be the set of types, such that

for all τ in TSym, τ is in T iff τ is int or τ is Boolean or Null À τ v Object

Then a method identifier is a tuple (m, sig, t, C), where m is the method name, sig ∈ (T × · · · × T ) is the
method signature, t ∈ (T ∪ {void}) is the method’s return type and C is the Java class in Prg containing
an implementation of the method. We write the method identifier (m, sig, t, C) as

m(sig → t)@C

Definition 15 (Legal program fragments). Let Prg be a Java program. A legal program fragment contained
in a modality in Java DL is a sequence of Java statements, where there are local variables a1, . . . , an ∈
PVSym of Java types T1, . . . , Tn such that extending Prg with an additional class

class C {
static void m(T1 a1, . . ., Tn an) { p }

}

yields again a legal program according to the rules of the Java language specification, except that

• p may refer to fields, methods and classes that are not visible in C, and
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int and Boolean all function and predicate symbols for int, e.g., +, ∗, <, . . .
Boolean constants TRUE , FALSE

Java types null : Null
length : Object → int
castA : Object → A for any A in T with ⊥ À A v Object.
instanceA : Any → Boolean for any type A v Any
exactInstanceA : Any → Boolean for any type A v Any

Field created : Field
arr : int → Field
f : Field for every Java field f

Heap selectA : Heap ×Object × Field → A for any type A v Any
store : Heap ×Object × Field × Any → Heap
create : Heap ×Object → Heap
wellFormed(Heap)

LocSet ∈̇(Object,Field,LocSet)
∅̇ : LocSet
allLocs : LocSet
singleton : Object × Field → LocSet
∪̇ : LocSet × LocSet → LocSet
allFields : Object → LocSet
allObjects : Field → LocSet
unusedLocs : Heap → LocSet
anon : Heap × LocSet × Heap → Heap

Figure 2.2: An excerpt of the vocabulary ΣJ

∀Object x; (instanceA(x) .= TRUE ↔ ∃y : A; (y .= x))
∀Object x; (exactInstanceA(x) .= TRUE → instanceA(x) .= TRUE)
∀Object x; (exactInstanceA(x) .= TRUE → instanceB(x) .= FALSE) with A 6v B
∀Object x; (instanceA(x) .= TRUE → castA(x) .= x)
∀Object x; (length(x) ≥ 0)

Figure 2.3: Axioms for functions related to Java types
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onlyCreatedObjectsAreReferenced
wellFormed(h)→ selectA(h, o, f) .= null ∨ selectboolean(h, selectA(h, o, f), created) .= TRUE

wellFormedStoreObject
wellFormed(h) ∧ (x .= null ∨ (selectboolean(h, x, created) .= TRUE ∧ instanceA(x) .= TRUE))

→ wellFormed(store(h, o, f, x)) where f is declared as a field of typeA

wellFormedStorePrimitive
wellFormed(h)→ wellFormed(store(h, o, f, x))
provided f is a field of type A, x is of type B, and B v A,B 6v Object, B 6v LocSet

wellFormedStorePrimitiveArray
wellFormed(h)→ wellFormed(store(h, o, arr(idx), x))
provided o is of sort A, x is of sort B,B 6v Object, B 6v LocSet, B v A

wellFormedCreate
wellFormed(h)→ wellFormed(create(h, o))

wellFormedAnon
wellFormed(h) ∧ wellFormed(h2)→ wellFormed(anon(h, y, h2))

The variables h, h2 : Heap, o : Object, f : Field , x : Any, y : LocSet are implicitly universally quantified.

Figure 2.4: An excerpt of rules for the predicate wellFormed

• p may contain method frames in addition to normal Java statements. A method frame is a statement
of the form

method-frame(source=m, result->r, this=t) : { body } ,

where (a) m is a method identifier, (b) r is a local variable, (c) t is an expression free from side-
effects and from method calls, and (d) body is a legal program fragment in the context of Prg. The
semantics of a method frame is that, inside body (but outside of any nested method frames that might
be contained in body), the keyword this evaluates to the value of t, and the intent of a return
statement is to assign the returned value to r and to then exit the method frame. Both “result->r”
and “this=t” are optional. A method-frame without a reference to this denotes a static method,
while a missing result pointer indicates either that the method is declared void and therefore has
no return value, or that the process of returning is already underway.

In addition to legal program fragments, Java DL contains terms, formulas and updates. As these are
mutually defined and the notion of terms and formulas is clear, we first present the idea and definition of
updates and then give the formal definition for terms and formulas. Like program fragments, updates denote
state changes. The difference between updates and program fragments is that updates are a simpler and
more restricted concept. For example, updates always terminate, and the expressions occurring in updates
never have side effects.

Definition 16 (Updates). Let Prg be a Java program, T a type hierarchy for Prg, and Σ a signature for
T . The set Upd of updates is inductively defined

• (a := t) ∈ Upd for each program variable a : A ∈ PVSym and term t ∈ TrmA′ such that A′ v A.

• (U1 ||U2) ∈ Upd for all updates U1,U2 ∈ Upd.

• ({U1}U2) ∈ Upd for all updates U1,U2 ∈ Upd.
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Intuitively, an elementary update a := t assigns the value of the term t to the program variable a, a
parallel update U1 ||U2 performs assignment of the updates U1 and U2 in parallel (where the elementary
update in U2 wins in case of clashes), while an update application {U }ξ (where ξ can be a term, formula,
or update) has the inherent meaning that ξ should be evaluated in the state produced by U .

Definition 17 (Terms and Formulas of Java DL). Let Prg be a Java program, T a type hierarchy for Prg,
and Σ a signature w.r.t. T .
The set TrmA of Java DL terms of type A, for A 6= ⊥, is inductively defined by:

1. v ∈ TrmA for each variable symbol v : A ∈ VSym of type A.

2. f(t1, . . . , tn) ∈ TrmA for each f : A1, . . . , An → A ∈ FSym and all terms ti ∈ TrmBi
with Bi v Ai

for 1 ≤ i ≤ n.

3. (if φ then t1 else t2) ∈ TrmA for φ ∈ Fml and ti ∈ TrmAi
where A2 v A1 = A or A1 v A2 = A.

4. {U }t ∈ TrmA for all updates U ∈ Upd and all terms t ∈ TrmA.

The set Fml of Java DL formulas is inductively defined by:

1. p(t1, . . . , tn) ∈ Fml for p(A1, . . . , An) ∈ PSym, and ti ∈ TrmBi
with Bi v Ai for all 1 ≤ i ≤ n.

2. (¬φ), (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ), (φ↔ ψ) are in Fml for arbitrary φ, ψ ∈ Fml.

3. ∀v ;φ, ∃v ;φ are in Fml for φ ∈ Fml and v : A ∈ VSym.

4. 〈p〉φ, [p]φ ∈ Fml for all legal program fragments p.

5. {U }φ ∈ Fml for all formulas φ ∈ Fml and updates U ∈ Upd.

A term or formula is called rigid if it does not contain any non-rigid function symbols.

2.3.2 Semantics of Java Dynamic Logic

Definition 18 (Domain). The domain for a given type hierarchy T and signature Σ consists of

1. a set D,

2. a typing function δ : D → TSym\{⊥} such that for every A ∈ TSym the following set is not empty:

DA = {d ∈ D | δ(d) v A}

The set DA = {d ∈ D | δ(d) v A} is called the type domain for A. This implies that for different types
A,B ∈ TSym \ {⊥} there is an element o ∈ DA ∩DB only if there exists C ∈ TSym, C 6= ⊥ with C v A
and C v B.

The fixed type domains for Java DL are shown in Figure 2.5

Definition 19. A first-order structure M for a given type hierarchy T and signature Σ consists of

• a domain (D, δ),

• an interpretation I

such that

1. I(f) is a function from DA1 × · · · ×DAn into DA for f : A1, . . . , An → A in FSym,
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2. I(p) is a subset of DA1 × · · · ×DAn for p(A1, . . . , An) in PSym,

3. I( .=) = {(d, d) | d ∈ D}.

Some semantics are fixed for all first-order structures considered in Java DL. Fixed semantics are given
in Figure 2.6 for the subset of ΣJ shown in Figure 2.2. Some important notes: The semantics of the store
function is such that it cannot change the implicit field created . The function anonM (h1, s, h2) overwrites
the function h1 for the arguments (o, f) ∈ s by the values of h2. This cannot lead to a created field being
reset, but can set the created field of an unused location in h1. Usually the anon operation is applied with
h2 being a heap function of unknown properties, such that h1 is anonymized for the locations in s. The
length function is defined for all elements in DObject, not only for elements in DOT where OT is an array
type; however, only for arrays does the value of length have any greater meaning.

Definition 20. Let M be a first-order structure with domain D.
A variable assignment is a function β : VSym→ D such that β(v ) ∈ DA for v : A ∈ VSym.
For a variable assignment β, a variable v : A ∈ VSym and a domain element d ∈ DA, a modified

variable assignment is defined as:

βdv (v ′) =
{
d if v ′ = v
β(v ′) if v ′ 6= v

A term t can be evaluated with regard to a first-order structure M and variable assignment β. The
notation for this is valM ,β(t). A formula φ can be defined to be true (or false) with respect toM and β
The notation for this is (M , β) |= φ (or (M , β) 6|= φ).

Definition 21. The evaluation of terms t ∈ TrmA is defined inductively by:

• valM ,β(v ) = β(v ) for any variable v .

• valM ,β(f(t1, . . . , tn)) = I(f)(valM ,β(t1), . . . , valM ,β(tn)).

• valM ,β(if φ then t1 else t2) =
{

valM ,β(t1) if (M , β) |= φ
valM ,β(t2) if (M , β) 6|= φ

1. Dint = Z,

2. DBoolean = {tt,ff },

3. DObjectType is an infinite set of elements for every ObjectType with Null À ObjectType v Object,

4. DNull = {null},

5. DHeap = the set of all functions h : DObject ×DField → DAny,

6. DLocSet = the powerset of {(o, f) | o ∈ DObject and f ∈ DField},

7. DField is an infinite set.

Figure 2.5: Semantics of fixed type domains
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1. TRUEM = true and FALSEM = false

2. selectMA (h, o, f) = castMA (h(o, f)), castMA (o) =
{
o if o ∈ AM
arbitrary element in AM otherwise

3. storeM(h, o, f, x) = h∗, where the function h∗ is defined by

h∗(o′, f ′) =
{
x if o′ = o, f = f ′ and f 6= createdM
h(o′, f ′) otherwise

4. createM(h, o) = h∗, where the function h∗ is defined by

h∗(o′, f) =
{

true if o′ = o, o 6= null and f = createdM

h(o′, f) otherwise

5. h ∈ wellFormedM iff (a) if h(o, f) ∈ DObject , then h(o, f) = null or h(h(o, f), createdM) = tt, (b) if
h(o, f) ∈ DLocSet , then h(o, f) ∩ unusedLocsM(h) = ∅, (c) there are only finitely many o ∈ DObject

for which h(o, createdM) = tt

6. arrM is an injective function from Z into FieldM

7. createdM and fM for each Java field f are elements of FieldM, which are pairwise different and also
not in the range of arrM.

8. nullM = null

9. instanceMA = AM = {o ∈M | δ(o) v A}

10. exactInstanceMA = {o ∈M | δ(o) = A}

11. lengthM(o) ∈ N

12. ∈̇M(o, f, s) iff (o, f) ∈ s

13. ∅̇M = ∅

14. allLocsM = ObjectM× FieldM

15. singletonM(o, f) = {(o, f)}

16. ∪̇M(s1, s2) = s1 ∪ s2

17. allFieldsM(o) = {(o, f) | f ∈ FieldM}

18. allObjectsM(f) = {(o, f) | o ∈ ObjectM}

19. unusedLocsM(h) = {(o, f) | o ∈ ObjectM, f ∈ FieldM, o 6= null, h(o, createdM) = false}

20. anonM(h1, s, h2) = h∗, where the function h∗ is defined by:

h∗(o, f) =


h2(o, f) if (o, f) ∈ s and f 6= createdM , or

(o, f) ∈ unusedLocsM(h1)
h1(o, f) otherwise

Figure 2.6: Semantics for the vocabulary from Figure 2.2
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Definition 22. The evaluation of formulas φ ∈ Fml is inductively defined by:

1 (M , β) |= true, (M , β) 6|= false
2 (M , β) |= p(t1, . . . , tn) iff (valM ,β(t1), . . . , valM ,β(tn)) ∈ I(p)
3 (M , β) |= ¬φ iff (M , β) 6|= φ
4 (M , β) |= φ1 ∧ φ2 iff (M , β) |= φ1 and (M , β) |= φ2
5 (M , β) |= φ1 ∨ φ2 iff (M , β) |= φ1 or (M , β) |= φ2
6 (M , β) |= φ1 → φ2 iff (M , β) 6|= φ1 or (M , β) |= φ2
7 (M , β) |= φ1 ↔ φ2 iff ((M , β) |= φ1 and (M , β) |= φ2) or

((M , β) 6|= φ1 and (M , β) 6|= φ2)
8 (M , β) |= ∀ A v ;φ iff (M , βdv ) |= φ for all d ∈ DA

9 (M , β) |= ∃ A v ;φ iff (M , βdv ) |= φ for at least one d ∈ DA

For a set of formulas Φ, (M , β) |= Φ is short for: (M , β) |= φ for all φ ∈ Φ. If φ contains no free
variables, (M , β) |= φ is the same for all variable assignment β and so the notation M |= φ is used
instead.

As Java allows inheritance, in order to make a claim about Java programs without restricting ourselves to
a closed-world assumption, logical consequence requires that a formula hold in all type hierarchy extensions.

Definition 23. Let T be a type hierarchy and Σ a signature, φ ∈ FmlT ,Σ a formula without free variables,
and Φ ⊆ FmlT ,Σ a set of formulas without free variables.

1. φ is a logical consequence of Φ, in symbols Φ |= φ if, for all type hierarchies T ′ with T v T ′ and
all T ′-Σ-structures M such that M |= Φ, also M |= φ holds.

2. φ is universally valid if it is a logical consequence of the empty set, i.e., if ∅ |= φ.

3. φ is satisfiable if there is a type hierarchy T ′, with T v T ′ and a T ′-Σ-structure M with M |= φ.

Java DL formulas are evaluated in Kripke structures, which are collections of first-order structures. We
take the following explanations and definitions from [2, Chapter 3]:

‘ Different first-order structures within a Kripke structure assign different values to program
variables. Accordingly, they are called program states or simply states. We demand that states
in the same Kripke structure differ only in the interpretation of the non-rigid function symbols
(i.e., program variables). Two different Kripke structures, on the other hand, may differ in the
choice of domain or interpretation of the predicate and rigid function symbols.

Definition 24 (Java DL Kripke structure [2, Chapter 3]). Let Prg be a Java program, T a type
hierarchy for Prg and Σ a signature w.r.t. T . A Java DL Kripke structure for Σ is a tuple

K = (S , %)

consisting of
• an infinite set S of first-order structures over Σ (Def. 19), which we will call states, such

that:
– Any two states s1, s2 ∈ S coincide in their domain and in the interpretation of
predicate and rigid function symbols.

– S is closed under the above property, i.e., any FOL structure coinciding with the
states in S in the domain and the interpretation of the non-rigid function symbols is
also in S .
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• a function % that associates with every legal program fragment p a transition rela-
tion %(p) ⊆ S 2 such that (s1, s2) ∈ %(p) iff p, when started in s1, terminates normally
in s2 (i.e., not by throwing an exception). (We consider Java programs to be deterministic,
so for all legal program fragments p and all s1 ∈ S , there is at most one s2 such that
(s1, s2) ∈ %(p).)

Definition 25 (Semantics of Java DL updates [2, Chapter 3]). Let Prg be a Java program, T a
type hierarchy for Prg, Σ a signature for T , K a Kripke structure for Σ, s ∈ S a state, and
β : VSym→ D a variable assignment. The valuation function valK ,s,β : Upd→ (S → S ) is
defined as follows:

valK ,s,β({u}t) = valK ,s′,β(t), where s′ = valK ,s,β(u)(s)

valK ,s,β(a := t)(s′)(b) =

valK ,s,β(t) if b = a
s′(b) otherwise

for all s′ ∈ S , b ∈ PVSym

valK ,s,β(u1 ||u2)(s′) = valK ,s,β(u2)(valK ,s,β(u1)(s′)) for all s′ ∈ S
valK ,s,β({u1}u2) = valK ,s′,β(u2), where s′ = valK ,s,β(u1)(s)

valK ,s,β({u}φ) = valK ,s′,β(φ), where s′ = valK ,s,β(u)(s)

Definition 26 (Semantics of Java DL terms and formulas [2, Chapter 3]). Let Prg be a Java
program, T a type hierarchy for Prg, Σ a signature w.r.t. T , K = (S , %) a Kripke structure
for Σ, s ∈ S a state, and β : VSym→ D a variable assignment.
For every Java DL term t ∈ TrmA, we define its evaluation by

valK ,s,β(t) = vals,β(t) ,

where vals,β is defined as in the first-order case (Def. 21).
For every Java DL formula φ ∈ Fml, we define when φ is considered to be true with respect to
K , s, β, which is denoted with (K , s, β) |= φ, by Clauses 1–9 as shown in the definition of the
semantics of FOL formulas (Def. 22) – with M = s and (K , s, β) replaced for (M , β) – in
combination with the two new clauses:

10 (K , s, β) |= [p]φ iff there is no s′ with (s, s′) ∈ %(p) or
(K , s′, β) |= φ for s′ with (s, s′) ∈ %(p)

11 (K , s, β) |= 〈p〉φ iff there is an s′ with (s, s′) ∈ %(p) and
(K , s′, β) |= φ for s′ with (s, s′) ∈ %(p)

Finally, we define what it means for a Java DL formula to be valid or satisfiable. A first-order
formula is satisfiable (resp. valid) if it holds in some (all) model(s) for some (all) variable
assignment(s). Similarly, a Java DL formula is satisfiable (resp. valid) if it holds in some (all)
state(s) of some (all) Kripke structure(s) K for some (all) variable assignment(s).
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Definition 27. [2, Chapter 3] Let Prg be a Java program, T a type hierarchy for Prg, Σ a
signature w.r.t. T , and φ ∈ Fml a formula.
φ is satisfiable if there is a Kripke structure K , a state s ∈ S and a variable assignment β
such that (K , s, β) |= φ.
φ is logically valid, denoted by |= φ, if (K , s, β) |= φ for all Kripke structures K , all states
s ∈ S and all variable assignments β.

’

Kripke structures can therefore be used to express the semantics of Java DL formulas.

2.3.3 Java Dynamic Logic Calculus

Java dynamic logic uses a sequent calculus [29] where rules are written in the form

ruleName
P1 . . . Pn

C

The Pi are called the premisses and C the conclusion of the rule. If there are no premisses, the rule is
called a closing rule. Premiss and conclusion contain the schematic variables Γ ,∆ for sets of formulas,
ϕ, φ for formulas and t, c for terms and constants. Γ , φ and ϕ,∆ stand for Γ ∪ {φ} and {ϕ} ∪ ∆. An
instance of a rule is obtained by consistently replacing the schematic variables in premiss and conclusion
by the corresponding entities: sets of formulas, formulas, etc. Rule application works from the bottom
up. Starting with an initial sequent, we apply a calculus rule leading to new sequents. This process is
continued for each new sequent. Thus a proof tree is created. If all leaves of this proof tree have been
closed, the proof is closed.

Definition 28. A proof tree is a tree, shown with the root at the bottom, such that

1. each node is labeled with a sequent or the symbol ∗,

2. if an inner node n is annotated with Γ =⇒ ∆ then there is an instance of a rule whose conclusion is
Γ =⇒ ∆ and the children nodes of n are labeled with the premisses of the rule instance, or the single
child node is annotated with ∗ if this was a closing rule.

A branch in a proof tree is called closed if its leaf is labeled by ∗. A proof tree is called closed if all its
branches are closed, or equivalently if all its leaves are labeled with ∗.
A sequent Γ =⇒ ∆ can be derived if there is a closed proof tree whose root is labeled by Γ =⇒ ∆.

The calculus contains rules for first-order reasoning. The rules for conjunctions are shown as an example:

andLeft
Γ , φ, ϕ =⇒ ∆
Γ , φ ∧ ϕ =⇒ ∆

andRight
Γ =⇒ φ,∆ Γ =⇒ ϕ,∆

Γ =⇒ φ ∧ ϕ,∆

There are also the three closing rules:

close
Γ , φ =⇒ φ,∆

closeTrue
Γ =⇒ true,∆

closeFalse
Γ , false =⇒ ∆

There are also rewrite rules to simplify terms and updates. In addition, Java dynamic logic also contains
calculus rules for modalities and the programs within them. For example the calculus rule for the empty
modality is:

emptyModality
Γ =⇒ {U }φ,∆
Γ =⇒ {U }[ ]φ,∆
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In general we are interested in modalities containing programs. The symbolic execution rules operate
on the first active statement p in a modality [πpω]. The non-active prefix π consists of an arbitrary
sequence of opening braces “{”, labels, beginnings “try{” of try-catch-finally blocks, and beginnings
“method-frame(. . .){” of method invocation blocks. The prefix is needed to keep track of the blocks that
the (first) active command is part of, such that the abruptly terminating statements throw, return, break,
and continue can be handled appropriately, and in order to access the value of the this object of the
current method invocation and determine in which class the implementation resides, so as to correctly
handle super, private and static calls.

The postfix ω denotes the “rest” of the program, i.e., everything except the non-active prefix and the
part of the program the rule operates on (in particular, ω contains closing braces corresponding to the
opening braces in π). For example, if a rule is applied to the following Java block operating on its first
active command “i=0;”, then the non-active prefix π and the “rest” ω are the indicated parts of the block:

l:{try{︸ ︷︷ ︸
π

i=0; j=0; } finally{ k=0; }}︸ ︷︷ ︸
ω

Symbolic Execution Calculus Rules

Many symbolic execution calculus rules are concerned with splitting complex Java statements into multiple
simpler statements. When a rule contains a schema expression se, this is a simple expression (a program
variable or constant), while nse can be any expression, such as o.a[o.a.length - x].f.m(). Some rules
to split complex statements are shown below, where T, T0, T1 are appropriate types for the expressions:

Γ =⇒ {U }[π T x = nse1; x.f = nse2; ω]ϕ,∆
Γ =⇒ {U }[π nse1.f = nse2; ω]ϕ,∆

Γ , {U }se .= null =⇒ {U }[π throw new NullPointerException(); ω]ϕ,∆
Γ , {U }se 6= null =⇒ {U }[π T0 x0 = se; T1 x1 = nse; x0.f = x1; ω]ϕ,∆

Γ =⇒ {U }[π se.f = nse; ω]ϕ,∆

Once we have reduced the complex statements to simple statements, there are calculus rules to perform
these. We show here the calculus rules for assignment to a local variable, object field and primitive array
index. The assignment rules move the assignment to the update. For assignments to fields and array
indices this involves modifying the heap:

assignLocalVariable
Γ =⇒ {U }{x :=se}[π ω]ϕ,∆
Γ =⇒ {U }[π x = se; ω]ϕ,∆

assignObjectField
Γ , {U }o .= null =⇒ {U }[π throw new NullPointerException(); ω]ϕ,∆
Γ , {U }o 6= null =⇒ {U }{heap := store(heap, o, f, se)}[π ω]ϕ,∆

Γ =⇒ {U }[π o.f = se; ω]ϕ,∆

assignPrimitiveArrayIndex
Γ , {U }a .= null =⇒ {U }[π throw new NullPointerException(); ω]ϕ,∆
Γ , {U }a 6= null, {U }(se1 < 0 ∨ se1 ≥ length(a)) =⇒

{U }[π throw new ArrayIndexOutOfBoundsException(); ω]ϕ,∆
Γ , {U }a 6= null, {U }se1 ≥ 0, {U }(se1 < length(a)) =⇒

{U }{heap := store(heap, a, arr(se1), se2)}[π ω]ϕ,∆
Γ =⇒ {U }[π a[se1] = se2; ω]ϕ,∆
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Calculus Rules for Non-standard Control Flow

We consider the labeled break statement. The following rules allow the break to be propagated out of
non-matching blocks and try-blocks, or resolved by leaving the labeled block.

blockBreakNoMatch
Γ =⇒ {U }[π break l′; ω]ϕ,∆

Γ =⇒ {U }[π l1 : . . . ln :{ break l′; p } ω]ϕ,∆
, if ∀i ∈ {1, . . . , n}. l′ 6= li

blockBreakLabel
Γ =⇒ {U }[π ω]ϕ,∆

Γ =⇒ {U }[π l1 : . . . li : . . . ln :{ break li; p } ω]ϕ,∆

tryBreakLabel
Γ =⇒ {U }[π r break l′; ω]ϕ,∆

Γ =⇒ {U }[π try{ break l′; p } cs finally{ r }ω]ϕ,∆

It is important to point out that the contents r of the finally-block will be executed before the break
statement is again the active statement.

Calculus Rules for Method Calls

The rules for preparation and execution of a method call and for returning from said call are given here.
Before the method call is invoked, the target of the call must first be established.

methodCallUnfoldTarget
Γ =⇒ {U }[π Tnse v0 = nse; lhs = v0.mname(args); ω]ϕ,∆

Γ =⇒ {U }[π lhs = nse.mname(args); ω]ϕ,∆

Next the method’s arguments are simplified, as Java uses pass-by-value.

methodCallUnfoldArguments
Γ =⇒ {U }[π Tel1

v1 = el1 ; . . . ; Telk
vk = elk ; lhs = se.mname(a1, . . . , an); ω]ϕ,∆

Γ =⇒ {U }[π lhs = se.mname(e1, . . . , en); ω]ϕ,∆

Where ai is either ei or vli , depending on whether ei is a simple expression or not.
As Java allows for inheriting, the actual method implementation to be called is not a function merely of

the method’s name. Rather, the method’s name, signature and type of the target influence in which class
the implementation is located. The rule methodCall splits on the actual type of the target (including the
premiss for type Null), annotating the method call with the implementation containing class Ci. Methods
declared static or private, and super invocations can only have one implementing class and so the rule
can be somewhat simplified. Furthermore, fresh program variables are provided for the method parameters,
as modifications to the parameters do not leave the method in Java due to pass-by-value.

methodCall
Γ , {U }se .= null =⇒ {U }[π throw new NullPointerException(); ω]ϕ,∆
Γ , {U }se 6= null =⇒ {U }[π Tse1 p1 = se1; . . . Tsen pn = sen; Tlhs v0; ifCscd; lhs = v0; ω]ϕ,∆

Γ =⇒ {U }[π lhs = se.mname(se1, . . . , sen); ω]ϕ,∆
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Where ifCscd is ...
if (se instanceof C1)

v0 = se.mname(p1, . . . , pn)@C1;
else if (se instanceof C2)

v0 = se.mname(p1, . . . , pn)@C2;
...

else if(se instanceof Ck−1)
v0 = se.mname(p1, . . . , pn)@Ck−1;

else v0 = se.mname(p1, . . . , pn)@Ck;
It is important to note that in contrast to the remaining calculus rules, methodCall requires a closed-

world assumption when applied to non-private instance methods. This is because ifCscd must list all
method implementations which could be called and this is not known in an open world.

The execution of a non-recursive method can be handled by simply expanding the method body. This
creates a new method-frame containing the method identifier, this reference for calls directly within this
method-frame, and program variable to store the result to. Static methods do not have a this reference
and void methods do not contain a program variable for the result.

methodBodyExpand
Γ =⇒ {U }[π method-frame(source=m, result->lhs, this=se) : { body } ω]ϕ,∆

Γ =⇒ {U }[π lhs = se.mname(v1, . . . , vn)@Class;ω]ϕ,∆
Where m is a method identifier mname(sig)@Class, with sig the signature Class× Tfp1 × · · · × Tfpn

→ T
(including implicit this parameter and return value) of the method mname as declared in class Class
with the formal parameters fpi.

Return statements at method-frames cause the result value for the method to be set and the beginning
of method-frame cleanup to be triggered.

methodCallReturn
Γ =⇒ {U }[π method-frame(source=m, this=se) : { v = se; } ω]ϕ,∆

Γ =⇒ {U }[π method-frame(source=m, result->v, this=se) : { return se; p } ω]ϕ,∆
Note that the result pointer has disappeared from the method-frame, making it easy to check when the
following rule is applicable (method was declared void or return value already set):

methodCallEmpty
Γ =⇒ {U }[π ω]ϕ,∆

Γ =⇒ {U }[π method-frame(source=m, this=se) : { } ω]ϕ,∆
The following rule can be used for methods declared void which have a return statement:

methodCallEmptyReturn
Γ =⇒ {U }[π ω]ϕ,∆

Γ =⇒ {U }[π method-frame(source=m, this=se) : { return; p } ω]ϕ,∆
Method-frames can also be left exceptionally:
methodCallThrow

Γ =⇒ {U }[π throw se; ω]ϕ,∆
Γ =⇒ {U }[π method-frame(source=m, result->v, this=se) : { throw se; p } ω]ϕ,∆

The general rules for return and throw statements are to first evaluate the argument and then propagate
the statement out of all (unlabeled, labeled, try-) blocks until it reaches the method-frame. The catch
blocks can resolve matching throw statements, while statements in finally-blocks have precedence over
propagation.
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For more information on Java dynamic logic and the explicit heap notation see [9, 63, 2]

2.4 Abstracting Program States

The combination of abstract interpretation with dynamic logic presented in [12] introduces a logical rep-
resentation of abstract domains, in the form of partially interpreted γ- and χ-symbols.

Definition 29 (Logical Representation of Abstract Domains). For an abstract domain (A,t,v), the sig-
nature ΣA provides for every a ∈ A:

1. a unary predicate symbol χa

2. an infinite number of constant symbols γa,z, where z ∈ Z

For this signature ΣA only interpretations I satisfying the following are considered:

1. I(χa) = γ(a), for all a ∈ A

2. I(γa,z) ∈ γ(a), for all a ∈ A, z ∈ Z

This ensures that there exist characteristic functions χa and constrained values γa,z for the abstract
elements of A.

Definition 30 ((P,C)-weaker). Let P be a sequent proof, C a set of constraints and U1,U2 updates. U2 is
said to be (P,C)-weaker than U1, if for all interpretations I, states s and variable assignments β, where
for all φ ∈ C it holds that valI,s,β(φ) = tt, the following holds:

valI,s,β(U1) ∈ {valI′,s,β(U2) | I 'P,C I ′}

where I 'P,C I ′ means that I and I ′ coincide on all function and predicate symbols occurring in P or C.

For any valid semantics of the update U1 under the set of constraints C, the (P,C)-weaker update U2
can be given the same semantics. Additionally, U2 can possibly be given semantics which U1 cannot.

Definition 31 (Update Join). An update join ṫ has the signature

ṫ : (2Fml × Upd)× (2Fml × Upd)→ Upd

and fulfills the following properties:

1. The result of (U1, C1) ṫ (U2, C2) is (P,C)-weaker than (U1, C1)

2. The result of (U1, C1) ṫ (U2, C2) is (P,C)-weaker than (U2, C2)

The result of an update join is an update which can express at least all possible values either of its inputs
can express. A concrete implementation of an update join is given in [12]

Definition 32 (Substitution). A syntactic substitution [·/·] applied to a formula φ, term t or set of con-
straints C is to be understood as follows:

• φ[x/y] is the formula resulting by syntactically replacing every occurrence of x in φ with y

• t[x/y] is the term resulting by syntactically replacing every occurrence of x in t with y

• C[x/y] := {φ[x/y] | φ ∈ C}
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Definition 33 (Vector Notation). Vectors (x1, . . . , xn) are abbreviated x̄. Operations on vectors are to be
understood as follows:

• t̄
.= t̄′ := t1

.= t′1 ∧ . . . ∧ tn
.= t′n

• χā(t̄) := χa1(t1) ∧ . . . ∧ χan(tn)

• ∃ȳ.φ := ∃y1. · · · ∃ym. φ

• t[x̄/ȳ] and φ[x̄/ȳ] are the result of simultaneously syntactically replacing every occurrence of xi with
yi for all i ∈ {1, . . . , n} in the term t or formula φ

Generating Invariant Updates: Abstract Program States Expressing Loop Invariants

The ability to express abstract values syntactically via γ-symbols and join updates containing both concrete
and abstract values, allows the fixed point algorithm to find an abstract update weaker than the initial
update and all updates reachable by symbolic execution of a loop for any number of iterations. Based on
the proof P and initial sequent seq encountering a loop, where seq is

Γ =⇒ {U }[while (g) { p }; r]φ,∆

this is accomplished in the following manner:

1. Set U ′ to U , C to Γ∪!∆.

2. Unroll the loop in C =⇒ {U ′}[while (g) { p }; r]φ and perform symbolic execution of one
iteration, gathering the n sequents Γi =⇒ {Ui}[while (g) { p }; r]φ,∆i, for 1 ≤ i ≤ n of open
branches leading back to the loop entry.

3. Use update joining to calculate U ∗ = (C,U ′)ṫ(Γ1∪!∆1,U1)ṫ · · · ṫ(Γn∪!∆n,Un).

4. If U ′ is (P,C)-weaker than U ∗, a fixed point has been found and U ′ expresses an invariant update.

5. Otherwise, set U ′ to U ∗ and go to step 2.

Applying Invariant Updates

An invariant update may be used in the Java dynamic logic calculus rule invariantUpdate presented in [12],
where x̄ is a duplicate free vector of all program variables assigned to in U or U ′, c̄ is a vector of the same
length as x̄ containing fresh constant symbols, γ̄ is a vector of all γ-symbols introduced in U ′ and ȳ is a
vector of the same length as γ̄ containing fresh logical variables:

invariantUpdate

Γ , {U }(x̄ .= c̄) =⇒ ∃ȳ.(χā(ȳ) ∧ ({U ′}(x̄ .= c̄))[γ̄/ȳ]),∆
Γ , {U ′}g, {U ′}[p](x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄),∆
Γ , {U ′}¬g =⇒ {U ′}[r]ϕ,∆

Γ =⇒ {U }[while (g) {p}; r]ϕ,∆

The calculus rule invariantUpdate has three premisses, ensuring that:

1. the update U ′ is weaker than the initial update U , i.e. that U ′ can express all possible program
states upon loop entry;

2. the loop body preserves the update U ′, i.e. that U ′ can express all possible program states resulting
from a single loop iteration starting from a program state expressible by U ′; and finally

3. the use case is valid, i.e. that evaluating the remaining program after the loop in program states
expressible by U ′ results in provable sequents.
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3 Abstract Domains for Local Variable Types

The first step in extending the ideas put forward in [12] from a toy language to a closer approximation
of full Java programs is to make sure our abstractions can cover all types occurring in updates. In this
chapter we describe the abstract domains chosen for the various types a local program variable can have,
where “local program variable” includes method parameters and return values. In the next chapter we
describe an abstract domain for program heaps, to allow abstract values for the program variable heap
expressing the state of the Java program’s heap.

Before describing our chosen abstract domains, we briefly list what sort of abstractions we do not supply:

Relational abstract domains: While relational abstract domains are much better at expressing certain prop-
erties and have been used, for example, to express complicated numerical synergies between various
variables, such as through congruence relations, polyhedra or linear or polynomial equations, they
cannot easily be integrated with the concept of γ-symbols, as these rely on the immutability of any
references values and can therefore not express something like “greater than the value of variable x”
as this value could change. We do, however, offer a way to express some relational aspects when
discussing helpful invariants in Chapter 5.

Abstract domains for floating point numbers: While floating point numbers are used in many calculations
and are of course themselves abstractions of real numbers, they are rather hard to reason about in
many ways and for the most part have been ignored in KeY. For this reason creating an abstract
domain for floating point numbers is simply out of the scope of this thesis.

3.1 Abstract Domains for Primitive Types

The main primitive types in Java are various integer types and boolean. Java DL uses the int type domain
for byte, char, short and long, and the Boolean type domain for boolean, while floating point numbers
are not allowed. The semantics of any integer type is mapped to Z. In order to be sound with regard to
implementation of integers in Java, we can constrain the various integer types to the range of actual values
in Z that they can have while ensuring Java integer operators are performed in symbolic execution rules
as defined by the Java Language Specification [32], including numeric promotion, widening, arithmetic
overflows and casts. On a theoretical level, however, often we wish to simplify and treat built-in arithmetic
operators as their corresponding operators on Z ignoring integer overflow, etc. We offer abstract domains
useful for both of these cases, as while the second option is known to be unsound when considering actual
Java programs, it can be quite useful when examining a program expressing a theoretical algorithm on the
full integer range Z.

3.1.1 Abstract Domain for Booleans

We use the simple domain A bool = (2Dbool
,∪,⊆), with abstraction and concretization functions defined

as simple identities αbool(X) = γbool(X) = X , shown in the following lattice:

{tt,ff }

{tt} {ff }

∅
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3.1.2 Abstract Domains for Integers

We begin with abstracting integers assuming that all values in Z are possible and normal integer arithmetic
rules are present. This makes abstractions such as a sign domain quite useful, as we know, for example,
that two positive numbers added or multiplied result in a positive number. Two relatively simple abstract
domains for Z with this in mind are given: The first is a finite width, finite height abstract domain
extending somewhat on the sign lattices of [15, 12, 24]:

>

⊥

≤ 6= ≥

zero< >

Figure 3.1: Abstract domain A sign

A sign = ({>,⊥, zero, >,<,≥,≤, 6=},tsign,vsign), where tsign and vsign can be inferred from the
lattice in Figure 3.1 while concretization and abstraction functions are shown in Figure 3.2.

γsign(⊥) = ∅
γsign(zero) = {0}
γsign(>) = {z ∈ Z | z > 0}
γsign(<) = {z ∈ Z | z < 0}
γsign( 6=) = Z \ {0}
γsign(≥) = {z ∈ Z | z ≥ 0}
γsign(≤) = {z ∈ Z | z ≤ 0}
γsign(>) = Z

αsign(X) =



⊥ , if X = ∅
zero , if X = {0}
> , if X 6= ∅ ∧ ∀x ∈ X. x > 0
< , if X 6= ∅ ∧ ∀x ∈ X. x < 0
6= , if 0 6∈ X ∧ ∃x, y ∈ X. x > 0 ∧ y < 0
≥ , if 0 ∈ X ∧X 6= {0} ∧ ∀x ∈ X. x ≥ 0
≤ , if 0 ∈ X ∧X 6= {0} ∧ ∀x ∈ X. x ≤ 0
> , otherwise

Figure 3.2: Abstraction and concretization functions for abstract domain A sign

The second abstract domain expresses within which interval (lower bound, upper bound) the values
reside. This interval abstraction was first proposed in [14] and provides much higher precision than the
sign abstraction above, however the interval abstract domain has infinite height (and width) and therefore
requires a widening operator.

The interval abstract domain is defined as A interval = (Ainterval ,tinterval ,vinterval), where

Ainterval = {⊥} ∪ {(x, y) | x ∈ (Z ∪ {−∞}) ∧ y ∈ (Z ∪ {∞}) ∧ x ≤ y}
∀a ∈ Ainterval . ⊥ vinterval a

(x1, y1) vinterval (x2, y2) = (x1 ≥ x2 ∧ y1 ≤ y2)
∀a ∈ Ainterval . ⊥ t a = a t ⊥ = a

(x1, y1) tinterval (x2, y2) = (min(x1, x2),max(y1, y2))

An excerpt of the abstract domain lattice for A interval is shown in Figure 3.3, where dots and dotted
lines represent an infinite number of abstract elements. Abstraction and concretization functions are shown
in Figure 3.4.
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⊥

· · · (−2,−2) (−1,−1) (0, 0) (1, 1) (2, 2) · · ·

· · · (−2,−1) (−1, 0) (0, 1) (1, 2) · · ·

· · · (−2, 0) (−1, 1) (0, 2) · · ·

(−∞, 0) (0,∞)

(−∞, 1) (−1,∞)

(−∞,∞)

Figure 3.3: Excerpt of abstract domain A interval

αinterval(M) =



⊥ , if M = ∅
(inf(M), sup(M)) , if infimum and supremum of M exists
(inf(M),∞) , if infimum of M exists but supremum does not
(−∞, sup(M)) , if supremum of M exists but infimum does not
(−∞,∞) , if neither infimum nor supremum of M exist

γinterval(⊥) = ∅
γinterval((x, y)) = {z ∈ Z | x ≤ z ≤ y}

Figure 3.4: Abstraction and concretization functions between A interval and Z

The widening operator ∇interval is defined as follows:

∇interval : Ainterval × Ainterval → Ainterval

(⊥, i) 7→ i

(i,⊥) 7→ i

((x1, y1), (x2, y2)) 7→ (x3, y3), where x3 = x1 if x1 ≤ x2, x3 = −∞ otherwise
and y3 = y1 if y1 ≥ y2, y3 =∞ otherwise

We introduce one further abstract domain for integers, as the standard integer abstract domain to be
used when Java integer semantics for arithmetic operators is enforced. The important points here are as
follows:

• Only a finite subset of Z is now relevant, as values outside of the range defined by the variable type
are not permissible. As we still map to and from the full concrete domain of Z, we still need to take
values outside of this range into account, but this can simply be done by having these map to >.
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• Intervals are still useful, but as most integer types are signed and expressed in two’s complement,
incrementing the “bigger” number might lead to a smaller, negative number. An abstract domain for
these wrapped intervals has been presented in [49], but they use a non-lattice abstract domain which
causes problems in the strict definition of a join for non-overlapping intervals [28].

As a Java long is the integer type which can contain the most values, we can limit the relevant range
for integers to those between −263 and 263 − 1. In order to take overflows into account and still be able
to consider intervals, we let an abstract element combine two finite intervals in Z: an interval containing
negative numbers and one containing non-negative numbers.

The abstract domain A int = (Aint ,tint ,vint), where:

Aint = {>} ∪ {(n, p) | n ∈ ({⊥} ∪ {(x, y) | x, y ∈ Z. − 263 ≤ x ≤ y < 0})
and p ∈ ({⊥} ∪ {(x, y) | x, y ∈ Z. 0 ≤ x ≤ y < 263})}

Joining and ordering is done by joining or checking both intervals:

> tint a = a tint > = >
(n1, p1) tint (n2, p2) = (n1 t′int n2, p1 t′int p2)
⊥ t′int b = b t′int ⊥ = b

(x1, y1) t′int (x2, y2) = (min(x1, x2),max(y1, y2))

a1 vint a2 =


tt , if a2 = >
ff , if a1 = > and a2 6= >
n1 v′int n2 ∧ p1 v′int p2 , otherwise, where a1 = (n1, p1) and a2 = (n2, p2)

b1 v′int b2 =


tt , if b1 = ⊥
ff , if b2 = ⊥ and b1 6= ⊥
x2 ≤ x1 ∧ y1 ≤ y2 , otherwise, where b1 = (x1, y1) and b2 = (x2, y2)

An excerpt of the abstract domain is shown in Figure 3.5 with dots and dotted lines representing a finite
number of further abstract elements. Abstraction and concretization functions are shown in Figure 3.6.

The abstract domainA int has a lattice of finite height and therefore does not require a widening operator
to ensure termination when finding a fixed point. However, as the height of the lattice is quite large (264+2),
supplying a widening operator is still useful. As in general higher precision is more important for numbers
closer to zero than it is for numbers farther away (a fact that is used in the IEEE definition of floating
point numbers), our widening operator should widen based on a logarithmic scale. As all numbers in Java
are stored as a certain number of bits, it is fairly straightforward to choose 2 as the logarithmic base. In
addition to widening to a certain power of two, it can also often make sense to widen to one less or one
more than the power of two, for example to reach 127, the upper bound for a byte. Combining these ideas
we define our widening operator as follows:
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(⊥,⊥)

· · · ((−1,−1),⊥) (⊥, (0, 0)) (⊥, (1, 1)) · · ·

· · · ((−1,−1), (0, 0)) ((−1,−1), (1, 1)) (⊥, (0, 1)) · · ·

· · · ((−1,−1), (0, 1)) · · ·

((−263,−1), (0, 263 − 1))

>

Figure 3.5: Excerpt of abstract domain A int

αint(M) =


> , if ∃m ∈M. m < −263 ∨m ≥ 263

(α′int(N), α′int(P )) , otherwise, where N = {m ∈M | m < 0}
and P = {m ∈M | m ≥ 0}

α′int(M) =

⊥ , if M = ∅
(min(M),max(M)) , otherwise

γint(>) = Z
γint((⊥,⊥)) = ∅

γint(((x, y),⊥)) = {z ∈ Z | x ≤ z ≤ y}
γint((⊥, (x, y))) = {z ∈ Z | x ≤ z ≤ y}

γint(((x1, y1), (x2, y2))) = {z ∈ Z | (x1 ≤ z ≤ y1) ∨ (x2 ≤ z ≤ y2)}

Figure 3.6: Abstraction and concretization functions between A int and Z
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∇int : Aint × Aint → Aint

(>, a) 7→ >
(a,>) 7→ >

((n1, p1), (n2, p2)) 7→ (W n
int(n1, n2),W p

int(p1, p2)), where:

W n
int(⊥, b) = b

W n
int(b,⊥) = b

W n
int((x1, y1), (x2, y2)) = (x3, y3), where x3 = x1 if x1 ≤ x2, x3 = −1 ∗ next(−1 ∗ x2) otherwise

and y3 = y1 if y1 ≤ y2, y3 = −1 ∗ prev(−1 ∗ x2) otherwise

W p
int(⊥, b) = b

W p
int(b,⊥) = b

W p
int((x1, y1), (x2, y2)) = (x3, y3), where x3 = x1 if x1 ≤ x2, x3 = prev(x2) otherwise

and y3 = y1 if y1 ≤ y2, y3 = next(x2) otherwise

next(x) =

x , if ∃n ∈ N. x = 2n − 1 ∨ x = 2n ∨ x = 2n + 1
2n − 1 , otherwise, where n is chosen such that 2n−1 < x < 2n

prev(x) =

x , if ∃n ∈ N. x = 2n − 1 ∨ x = 2n ∨ x = 2n + 1
2n + 1 , otherwise, where n is chosen such that 2n < x < 2n+1

3.2 Abstract Domain for Objects

Most of the information about objects actually resides on the heap. There are only a few things we
can say about objects directly, such as whether or not two objects are equal. We do not use relational
abstract domains directly, but there is one object which always exists and we always have reference to:
null. Additionally, we can abstract objects based on the value the length function returns for them.
Furthermore, each object is of precisely one dynamic type, allowing abstraction based on types.

We therefore first introduce abstract domains for objects based on each of these points separately and
can then combine them into one abstract domain for objects AObject .

3.2.1 Null/Not-null Abstract Domain

The abstract domain AObject
null for objects based on reference equality to null is quite simple and at the

same time incredibly useful, in that it can be used to check for possible NullPointerExceptions or prove
the lack thereof in a piece of Java code.
AObject

null is shown in Figure 3.7 with abstraction and concretization functions.

3.2.2 Length Abstract Domain

An abstract domain for objects based on the result of the built-in length function is useful only for arrays.
For all other object types this value is some arbitrary natural number which has no further meaning [63,
pages 84-85]. For arrays, however, abstracting these to their length can be quite helpful, for example in
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⊥

null not-null

> αAObject
null

(X) =


⊥ , if X = ∅
null , if X = {null}
not-null , if null 6∈ X
> , otherwise

γAObject
null

(x) =


∅ , if x = ⊥
{null} , if x = null
DObject \ {null} , if x = not-null
DObject , if x = >

Figure 3.7: Abstract Domain A Object
null

order to prove no ArrayIndexOutOfBoundsException is thrown. Furthermore, one could conclude based
on this abstraction whether a loop iterating over an array should be unrolled completely or a loop invariant
generated for it. A large fraction of all loops merely iterate over a structure such as an array, such that
this, coupled with knowledge of the array’s length, could be used to drastically improve certain proofs.

We require an abstract domain A Z for the concrete domain Z and map each object’s length to said
abstract domain. We can then define the abstract domain for objects based on their length as AObject

length :=
A Z with abstraction and concretization functions as follows:

αAObject
length

(X) = αAZ({lengthM(x) | x ∈ X})

γAObject
length

(x) = {o ∈ DObject | lengthM(o) ∈ γAZ(x)}

We can use any abstract domain for Z, for example the sign domain in Figure 3.1. However, using this
abstract domain would not be very clever as the abstract elements < and ≤ will never abstract valid array
lengths, while the abstraction of both 1 and 10000 to the same abstract element > is not very helpful.
Instead, let us consider the following points:

1. Iterating over an array of length 0 is trivial (do not enter loop) and therefore full precision should be
kept, rather than abstracting by applying a loop invariant.

2. Iterating over an array of length 1 is similarly trivial (execute the loop body once) and therefore full
precision should also be kept here by unrolling the loop, rather than applying a loop invariant. The
loop invariant rule must still prove that the loop body preserves the invariant, thus execution of the
loop body is always required once, even when applying a loop invariant.

3. Iterating over an array of length 2 or 3 can usually be done reasonably quickly by unrolling the loop
a sufficient number of times, therefore unrolling should be favored over applying a loop invariant
except in cases where symbolic execution of the loop body is extremely costly.

4. Iterating over an array of length 4 or 5 can often be done reasonably quickly by loop unrolling,
therefore applying a loop invariant should only be done for somewhat complex loop bodies.

5. Iterating over an array of length 6 to 10, applying a loop invariant should be favored, except in cases
where the loop body is trivial.

6. Iterating over an array of length greater than 10 should almost always be solved by applying a loop
invariant.
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The above are reasonable guidelines (or in the case of lengths 0 and 1 simple facts), such that we can
present the abstract domain in Figure 3.8 for the concrete domain Z and therefore also for objects based
on their length.

⊥

0 1 2 3 4 5 6 7 8 9 10 > 10

0..1 2..3 4..5 6..10

0..3

0..5

0..10

≥ 0

>

Figure 3.8: An Abstract Domain A Object
length

3.2.3 Type Abstract Domain

Abstracting on object type requires knowledge of the type hierarchy. However, due to logical consequence
of a formula requiring that the formula hold in all extensions of the type hierarchy, we must in essence
create an abstract domain based on not just the type hierarchy given directly by the program, but any
extension thereof.

For a set of objects X we offer abstractions for their types based on which exact types are present in X ,
i.e. a set of types such that each element in X is an exact instance of one of those types.

For any given type hierarchy T we must create an abstract domain, such that there exist abstraction
and concretization functions for all type hierarchies T ′ which extend T .

For a given type hierarchy T = (TSym,v) we first split the set of types TSym into the disjoint sets
TSyma and TSymd, where TSyma contains all abstract types for Java classes declared abstract and for
interfaces, as well as the empty type ⊥. TSymd contains all other types, the so-called dynamic types.
We now define the set of all dynamic object types Od = {T ∈ TSymd | T v Object} and based on
this define the abstract domain AObject

Od
, as shown in Figure 3.9. Then for any type hierarchy extension

T ′ = (TSym′,v′) of T the abstraction and concretization functions are given in Figure 3.10.
The abstract domains AObject

Od
can be used, for example, to:

• prove that casting of an object does not cause a ClassCastException to be thrown,

• prove that no ArrayStoreException is thrown when inserting an object into an array,

• prove that an instanceof check will be successful,

• prove that an instanceof check will be unsuccessful, and/or

• narrow the list of possible method body instantiations down which is created when unfolding a
method call.
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AObject
Od

= (AObject
Od

,vObject
Od

,tObject
Od

)

AObject
Od

= {>} ∪ (2Od \Od)

X tObject
Od

Y =

> , if X = > or Y = > or X ∪ Y = Od

X ∪ Y , otherwise

X vObject
Od

Y =


tt , if Y = >
ff , if X = > and Y 6= >
X ⊆ Y , otherwise

Figure 3.9: Family of Abstract Domains AObject
Od

αObject
Od,T ′ (X) =


> , if ∃x ∈ X. δ′(x) 6∈ Od

or {T ∈ TSymd | ∃x ∈ X. δ′(x) = T} = Od

{T ∈ TSymd | ∃x ∈ X. δ′(x) = T} , otherwise

γObject
Od,T ′ (X) =

{o ∈ D′ | δ′(o) v′ Object} , if X = >
{o ∈ D′ |

∨
T∈X δ

′(o) = T} , otherwise

Figure 3.10: Abstraction and Concretization Functions between AObject
Od

and Concrete Objects in T ′

Example 1. We can consider a simplified Java program containing only the types declared in List-
ing 3.1. Based on this we have the set of concrete object types {Object, B,Null} and the abstract domain
AObject
{Object,B,Null} as shown in Figure 3.11.

It is important to point out that althoughAObject
Od

always has abstract elements {Null} and Od\{Null},
it is not inherently stronger than the abstract domain AObject

null . This is because given a type hierarchy
extension T ′ which introduces a new dynamic type d′ À Object, for which it holds for some o that
δ′(o) = d′, then αObject

null ({o}) = not-null but αObject
Od,T ′ ({o}) = >.

3.2.4 Combining the Object Abstract Domains Into One

Of course, we would like just one abstract domain for objects encompassing all of the abstractions discussed
in the previous subsections. The abstract domainAObject for a given type hierarchy T is a partial Cartesian
product of the abstract domainsAObject

null ,AObject
length andAObject

Od
such that the abstraction and concretization

functions for any type hierarchy extension T ′ can be given as in Figure 3.12. The reason why only a subset
of the cartesian product is required is due to the following: As it must hold that α(γ(a)) = a for all

class Object {...}
abstract class A {...}
interface I {...}
class B extends A implements I {...}

Listing 3.1: Type Declarations
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∅

{Object} {B} {Null}

{Object, B} {Object,Null} {B,Null}

>

Figure 3.11: Abstract Domain AObject
{Object,B,Null}

αObject(X) = (αObject
null (X), αObject

length(X), αObject
Od,T ′ (X))

γObject((a, b, c)) = γObject
null (a) ∩ γObject

length(b) ∩ γObject
Od,T ′ (c)

Figure 3.12: Abstraction and Concretization Functions between AObject and Concrete Objects in T ′

abstract elements a, there can never be more than one abstract element representing the same set. We
therefore cannot have both (⊥, y, z) and (x,⊥, z) as separate abstract elements, as intuitively both of these
would have to represent the empty set. Additionally, while the abstraction for length is orthogonal to the
abstractions for null and exact type (due to the function length being defined for all objects, including
null and non-array types), the abstractions for null and exact type are not. While it is true that in
one abstraction we may know that null does not appear, while in the other abstraction we do not, it is
nonetheless impossible for certain abstract elements to be combined without representing the empty set,
for example the abstract elements null and {Object}.

The abstract domain AObject is shown in Figure 3.13.

AObject = (AObject ,vObject ,tObject)
AObject ⊂ AObject

null × A
Object
length × A

Object
Od

(a, b, c) vObject (x, y, z) = a vObject
null x ∧ b vObject

length y ∧ c v
Object
Od

z

(a, b, c) tObject (x, y, z) = (a tObject
null x, b tObject

length y, c t
Object
Od

z)

Figure 3.13: Abstract Domain AObject
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4 Abstract Domain for Heaps

Joining values which differ between two updates must also include the ability to join heaps, as often updates
will also contain a new value for the state of the program heap.

Example 2 (Updates to heap). Symbolically executing the sequent

o 6= null, x ≥ 0, x < length(o) =⇒ {a := o ‖ i := x ‖ heap := h}[a[i] = 5;]φ

will result in the sequent

o 6= null, x ≥ 0, x < length(o) =⇒ {a := o ‖ i := x ‖ heap := store(h, o, arr(x), 5)}φ

containing a modification to the update of the program variable heap of type Heap.

The simplest and least useful abstraction for heaps would be to have the minimal abstract domain:

>

⊥

This would imply that at any point when joining heaps, if these are not identical, i.e. if there have
been any changes to the program heap whatsoever, that all knowledge of the program heap be forgotten,
replaced with a fresh heap for which we do not know anything.

We would, of course, much rather have more refined options available for abstracting perhaps only parts
of the heap, or at the very least retaining some information of the shape of structures, or existence of
objects that must reside on the heap.

4.1 Normal-Form Heap Abstraction

In general, we are interested only in heaps in DHeap for terms in TrmHeap which can be generated by our
program rules, as for the generation of specifications for Java programs we need only consider heaps which
can occur while executing said Java program. Initially, any program analysis can be said to begin with
the program variable heap set to a heap term heap, for which the wellFormed predicate holds. Well-
formedness of heaps entails in particular that only a finite number of objects on the heap are created, i.e.
have their created-flag set. Further, the program rules can only modify this heap term through the use
of store, create and anon, while the heap simplification rules can only reorder, remove or replace these
modifications (replacing them with others from the same set). We can therefore define the set of normal-
form syntactic representations of heaps as the smallest subset of all syntactic heaps (HeapNF ⊂ TrmHeap)
fulfilling the following properties:

heap ∈ HeapNF

create(h, o) ∈ HeapNF , for all h ∈ HeapNF , o : Object
store(h, o, f, v ) ∈ HeapNF , for all h ∈ HeapNF , o : Object, f : Field, v : Any

anon(h, ls, h′) ∈ HeapNF , for all h ∈ HeapNF , o : Object, ls : LocSet, h′ : Heap, if wellFormed(h′) holds
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The semantic heap functions represented by elements of HeapNF are well-formed, as was shown in [63].
Reducing our concrete domain to normal-form heaps allows for a better abstract domain, as well as better
manipulation at the syntax level, allowing more flexibility when generating specifications. We will show
that extending this to the full domain of heaps is then rather trivial.

In particular, joining heaps will only ever occur between heaps, or rather their abstractions, which are
both based on the same initial heap. This is ensured by all normal-form heaps being based on the inital
value heap. But often a larger heap can be chosen, such as the heap before execution of a loop or method
call, so we define the family of normal-form heaps HeapNF

old to be all normal form heaps based on the normal
form heap old . In particular, therefore, HeapNF

heap = HeapNF .
In order to define a concrete domain of normal form heaps for the term old , we must fix the semantic

value of old to a heap h ∈ DHeap. We therefore introduce the family of concrete domains for HeapNF
old

where old is fixed to the value h as:

D
HeapNF

old
h = {h′ ∈ DHeap | wellFormedM(h′) ∧ (h(o, createdM) = tt → h′(o, createdM) = tt)}

We define LS ⊂ DLocSet to contain all object/field pairs not containing the created field, i.e.:

LS = DObject × (DField \ {createdM})

The abstract domain A LS = (ALS ,vLS ,tLS) is defined as:

ALS = {⊥} ∪ 2LS

x tLS y =


x , if y = ⊥
y , if x = ⊥
x ∪ y , otherwise

x vLS y =


tt , if x = ⊥
ff , if x 6= ⊥ and y = ⊥
x ⊆ y , otherwise

Lemma 1. tLS is commutative

Proof.

x tLS y =


x , if y = ⊥
y , if x = ⊥
x ∪ y , otherwise

=


x , if y = ⊥
y , if x = ⊥
y ∪ x , otherwise

= y tLS x
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4.2 Joining and Widening Normal-form Abstract Heaps

When joining two abstract heaps based on some initial heap old we can simply use the union of both sets
to gain all possible heaps in either abstraction. However, due to the abstract domain containing infinite
ascending chains, we could not simply use joining to reach a fixed point for our abstract heaps and therefore
require the use of a widening operator.

We must choose our widening operator carefully to ensure that the result remains fairly precise whenever
possible. We can, however, use knowledge of how Java programs work in order to know where precision
matters most. An example of this is object field modifications (and also static field modifications, as these
are modelled as object field modifications of the object null): ignoring arrays for the moment, any given
Java program defines by its source code a finite set of object fields at which the program can at most
modify objects. Simply put, the null object can only be modified at most at static fields, while a non-null ,
non-array object can only be modified at most at instance fields declared in the program, as well as at the
created field. Any given program can only declare a finite number of static and instance fields. We can
further constrain this finite set using static analysis to over-approximate the set of fields at which objects
are actually modified at by examining the left hand sides of all assignments appearing in the program. If
a field is never used in an assignment, no objects will be modified at that field by the given program. KeY
performs a similar analysis when determining which local variables might be modified within a loop. Here,
however, we focus not on variables on the left hand side of assignments, but rather the fields. Knowing this,
we can define our widening based on a finite set of non-array fields fs, thereby narrowing one otherwise
infinite dimension.

Getting back to arrays, we cannot give a finite set of array fields a priori, as while the set of array fields
modified in a terminating program will of course be finite, it cannot be determined by mere static code
analysis, as the array indices are expressions which must be evaluated, rather than mere field names which
are static. Our widening must therefore be able to deal with this possibly infinite dimension.

Let the set of all array index accessor fields be defined as

Arr = {arrM(x) | x ∈ Z} ⊂ (DField \ {createdM})

Lemma 2. |Arr | =∞

Proof. As arrM is injective, it follows that |Arr | = |{arrM(x) | x ∈ Z}| =∞

The third possibly infinite dimension is objects modified. Once again, the problem is an inability to
provide a finite set of objects modified a priori, again due to object references being expressions needing
evaluation.

In short, our widening operator must be able to deal with the following infinite ascending chains for all
i, j ∈ N, o, oi, oj ∈ DObject , f, fi, fj ∈ (DField \ Arr) with oi = oj → i = j and fi = fj → i = j, in
particular:

〈az〉 , with a0 = ∅, ai+1 = ai ∪ {(oi, f)}
〈bz〉 , with b0 = ∅, bi+1 = bi ∪ {(o, arrM(i))}
〈cz〉 , with c0 = ∅, ci+1 = ci ∪ {(oi, arrM(i))}
〈dz〉 , with d0 = ∅, di+1 = di ∪ {(oi, fi)}

We define a family of widening operators ∇fs,n,m,k, with fs ⊂ ((DField \ Arr) \ {createdM}), |fs| <∞,
n,m, k ∈ N as follows:

∇fs,n,m,k : ALS × ALS → ALS

(x, y) 7→

⊥ , if x tLS y = ⊥
Wfs,n,m,k(x tLS y) , otherwise
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Where Wfs,n,m,k is defined as:

Wfs,n,m,k : 2LS → 2LS

ls 7→

LS , if ∃(o′, f ′) ∈ ls. f ′ 6∈ (fs ∪ Arr)
ls ∪WN

fs,n(ls) ∪WM
m (ls) ∪WK

k (ls) , otherwise

With WN
fs,n,W

M
m ,WK

k defined as:

WN
fs,n(ls) = {(o, f) | f ∈ fs ∧ |{o′ | (o′, f) ∈ ls}| > n}
WM
m (ls) = {(o, f) | f ∈ Arr ∧ |{f ′ ∈ Arr | (o, f ′) ∈ ls}| > m}

WK
k (ls) =

DObject × Arr , if |{o | ∃f ∈ Arr . (o, f) ∈ ls}| > k

∅ , otherwise

Intuitively, Wfs,n,m,k(ls) widens the location set ls in the four possible infinite dimensions demonstrated
in the sequences 〈az〉, . . . , 〈dz〉 based on the bounds fs, n,m, k as follows:

1. The set fs bounds the number of different object fields within ls, widening in all dimensions if an
object field outside of fs is present. This widening would be applied to sequence 〈dz〉.

2. WN
fs,n bounds the number of different objects with the same object field in ls, widening to include all

objects for that object field if the bound n is surpassed. This widening would be applied to sequence
〈az〉.

3. WM
m (ls) bounds the number of different array index fields for the same object within ls, widening

to include all array index fields for that object if the bound m is passed. This widening would be
applied to sequence 〈bz〉.

4. Finally,WK
k (ls) bounds the number of different objects paired with an array index field in ls, widening

to include all pairs of objects and array index fields if the bound k is passed. This widens both the
infinite dimension of a single object being paired with an infinite number of array index fields, as well
as the diagonal of infinite objects with infinite array index fields. This widening would be applied to
sequence 〈cz〉.

Lemma 3. f̂ 6∈ Arr → (ô, f̂) 6∈ WM
m (X) ∧ (ô, f̂) 6∈ WK

k (X)

Proof. This is trivial, as by definition

(ô, f̂) ∈ WM
m (X) ≡ (ô, f̂) ∈ {(o, f) | f ∈ Arr ∧ |{f ′ | f ′ ∈ Arr ∧ (o, f ′) ∈ X}| > m}

≡ f̂ ∈ Arr ∧ |{f ′ | f ′ ∈ Arr ∧ (ô, f ′) ∈ X}| > m

⇒ f̂ ∈ Arr

(ô, f̂) ∈ WK
k (X) ≡ (ô, f̂) ∈

DObject × Arr , if |{o′ | f ′ ∈ Arr ∧ (o′, f ′) ∈ X}| > k

∅ , otherwise

≡

(ô, f̂) ∈ (DObject × Arr) , if |{o′ | f ′ ∈ Arr ∧ (o′, f ′) ∈ X}| > k

(ô, f̂) ∈ ∅ , otherwise

≡

(ô, f̂) ∈ (DObject × Arr) , if |{o′ | f ′ ∈ Arr ∧ (o′, f ′) ∈ X}| > k

ff , otherwise

⇒ (ô, f̂) ∈ (DObject × Arr)
⇒ f̂ ∈ Arr
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Example 3 (Widening Heaps). We show that the infinite ascending chain 〈az〉 as above, with a0 = ∅ and
ai+1 = ai ∪ {(oi, f)}, reaches a fixed point through the widening operator ∇fs,n,m,k, i.e. that the sequence
〈x′z〉 (defined by x′0 = ⊥ and x′i+1 = x′i ∇fs,n,m,k ai) is ultimately stationary. We know that for all i, j ∈ N,
oi, oj ∈ DObject , with oi = oj → i = j:

x′1 = (x′0 ∇fs,n,m,k a0) = (⊥ ∇fs,n,m,k ∅) = Wfs,n,m,k(∅) = ∅
x′2 = (x′1 ∇fs,n,m,k a1) = (∅ ∇fs,n,m,k {(o1, f)}) = Wfs,n,m,k({(o1, f)})

x′i+3 = (x′i ∇fs,n,m,k ai) = Wfs,n,m,k(x′i ∪ ai)

We consider two cases:

f 6∈ fs:

x′2 = Wfs,n,m,k({(o1, f)}) = LS
x′i+3 = Wfs,n,m,k(x′i+2 ∪ ai+2) = Wfs,n,m,k(LS ∪ ai+2) = Wfs,n,m,k(LS) = LS

So widening finds the fixed point LS .

f ∈ fs: We can show that
∀i ∈ N. i < n→ x′i+2 = ai+1 (4.1)

Proof. By induction over i:
Base case: For i = 0 < n it holds that

x′i+2 = x′2
= Wfs,n,m,k({(o1, f)})
= {(o1, f)} ∪WN

fs,n({(o1, f)}) ∪WM
m ({(o1, f)}) ∪WK

k ({(o1, f)})
= {(o1, f)}
= a1

= ai+1

Step case: For i > 0 and i < n we can assume the induction hypothesis:

x′i+1 = ai (IH1)

Then it holds that

x′i+2 = Wfs,n,m,k(x′i+1 ∪ ai+1)
= Wfs,n,m,k(ai ∪ ai+1) by (IH1)
= Wfs,n,m,k(ai ∪ ai ∪ {(oi, f)}) by definition
= Wfs,n,m,k(ai ∪ {(oi, f)})
= Wfs,n,m,k(ai+1)
= ai+1 ∪WN

fs,n(ai+1) ∪WM
m (ai+1) ∪WK

k (ai+1)
= ai+1 ∪WN

fs,n(ai+1) by Lemma 3, as ai+1 contains only pairs with field f 6∈ Arr
= ai+1 as ai+1 contains only i+ 1 pairs (o′, f) and i+ 1 ≤ n

And thus we have shown (4.1).
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Using (4.1) we can show that
∀i ∈ N. i ≥ n→ x′i+2 = {(o′, f) | o′ ∈ DObject} (4.2)

Proof. By induction over i:
Base case: For i = 0 ≥ n it holds that n = 0 and

x′i+2 = x′2
= Wfs,n,m,k({(o1, f)})
= {(o1, f)} ∪WN

fs,n({(o1, f)}) ∪ ∅ ∪ ∅ by Lemma (3)
= {(o1, f)} ∪ {(o, f ′) | o ∈ DObject ∧ f ′ ∈ fs ∧ |{o′ | (o′, f ′) ∈ {(o1, f)}}| > n}
= {(o1, f)} ∪ {(o, f) | o ∈ DObject ∧ |{o′ | (o′, f) ∈ {(o1, f)}}| > n}

as no field other than f can occur more than n = 0 times
= {(o1, f)} ∪ {(o, f) | o ∈ DObject ∧ 1 > n}
= {(o1, f)} ∪ {(o, f) | o ∈ DObject}
= {(o′, f) | o′ ∈ DObject}

Step case: For i > 0 and i > n (i− 1 ≥ n) we can assume the induction hypothesis:
x′i+1 = {(o′, f) | o′ ∈ DObject} (IH2)

By case distinction
either i = n:

x′i+2 = Wfs,n,m,k(x′i+1 ∪ ai+1)
= Wfs,n,m,k(x′n+1 ∪ an+1)
= Wfs,n,m,k(x′(n−1)+2 ∪ an+1)
= Wfs,n,m,k(a(n−1)+1 ∪ an+1) by (4.1)
= Wfs,n,m,k(an ∪ an+1)
= Wfs,n,m,k(an+1)
= an+1 ∪WN

fs,n(an+1) ∪ ∅ ∪ ∅
by Lemma (3), as an+1 contains only pairs with field f 6∈ Arr

= an+1 ∪ {(o, f ′) | f ′ ∈ fs ∧ |{o′ | (o′, f ′) ∈ {(o1, f)}}| > n}
= an+1 ∪ {(o, f) | o ∈ DObject}

as an+1 contains exactly n+ 1 pairs (o′, f) and n+ 1 > n

= {(o′, f) | o′ ∈ DObject}

or i > n:
x′i+2 = Wfs,n,m,k(x′i+1 ∪ ai+1)

= Wfs,n,m,k({(o′, f) | o′ ∈ DObject} ∪ ai+1) by (IH2)
= Wfs,n,m,k({(o′, f) | o′ ∈ DObject})
= {(o′, f) | o′ ∈ DObject} ∪WN

fs,n({(o′, f) | o′ ∈ DObject}) ∪ ∅ ∪ ∅
by Lemma (3), as f 6∈ Arr

= {(o′, f) | o′ ∈ DObject} ∪ {(o′, f) | o′ ∈ DObject}
= {(o′, f) | o′ ∈ DObject}

And thus we have shown (4.2).

So the fixed point {(o′, f) | o′ ∈ DObject} will be reached by widening 〈ai〉.
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We will now prove that ∇fs,n,m,k is a widening operator according to Definition 9. For this proof we
require the introduction of various helper functions and many lemmas about the helper functions,Wfs,n,m,k
and ∇fs,n,m,k. This is structured as follows:

• In Subsection 4.2.1 we introduce helper functions and lemmas related to the widening aspect on
object fields.

• In Subsection 4.2.2 we introduce helper functions and lemmas related to the widening aspect on array
index fields.

• Subsection 4.2.3 introduces one last helper function in order to combine the two widening aspects
and finally proves that ∇fs,n,m,k is a widening operator.

The lemmas in the following sections contain detailed proofs. As to the best of our knowledge this is the
first non-trivial widening operator defined for an abstraction of heaps which tries to retain full precision
of which locations on the heap have been modified if these locations are not responsible for the widening,
the mathematically rigorous proofs ensure that this is indeed a sound widening operator.

Note: free variables in lemmas are to be considered universally quantified.

4.2.1 Widening Object Fields

We introduce the following helper functions:

finFieldModsfs(ls) = {f | f ∈ fs ∧ |{o′ | (o′, f) ∈ ls}| <∞}

fieldModsLeftfs,n(ls) =
∑

f∈finFieldModsfs(ls)
1 + n− |{o′ | (o′, f) ∈ ls}|

The function finFieldModsfs looks at a location set and returns the subset of fs for which only a finite
number of field modifications exist, i.e. pairs of objects and fields in fs. Intuitively, fieldModsLeftfs,n
gives an upper bound of the number of widening steps involving new field modifications left until no more
widening on these dimensions is possible. In essence fieldModsLeftfs,n(X) computes an upper bound for
the maximal number of iterations the following algorithm can have:

1. Set X to Wfs,n,m,k(X ∪ (o, f)), where (o, f) 6∈ X and f is not an array index field.

2. If X 6= LS , goto 1.

Lemma 4. X ⊆ Y → finFieldModsfs(Y ) ⊆ finFieldModsfs(X)

Proof. This follows directly from the definition of finFieldModsfs:

f ∈ finFieldModsfs(Y ) ≡ f ∈ fs ∧ |{o′ | (o′, f) ∈ Y }| <∞
⇒ f ∈ fs ∧ |{o′ | (o′, f) ∈ X}| <∞ as X ⊆ Y

≡ f ∈ finFieldModsfs(X)
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Lemma 5. f̂ ∈ fs → {ô | (ô, f̂) ∈ Wfs,n,m,k(X)} = DObject ∨ |{ô | (ô, f̂) ∈ Wfs,n,m,k(X)}| ≤ n

Proof. As f̂ ∈ fs and fs ⊂ ((DField \ Arr) \ {createdM}), we know

f̂ 6= createdM (4.3)

f̂ 6∈ Arr (4.4)

By case distinction:

∃(o′, f ′) ∈ X. f ′ 6∈ (fs ∪ Arr):

{ô | (ô, f̂) ∈ Wfs,n,m,k(X)} = {ô | (ô, f̂) ∈ LS}
= {ô | (ô, f̂) ∈ (DObject × (DField \ {createdM})}
= DObject by (4.3)

∀(o′, f ′) ∈ X. f ′ ∈ (fs ∪ Arr):

{ô | (ô, f̂) ∈ Wfs,n,m,k(X)}
= {ô | (ô, f̂) ∈ (X ∪WN

fs,n(X) ∪WM
m (X) ∪WK

k (X))}
= {ô | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ WN

fs,n(X) ∨ (ô, f̂) ∈ WM
m (X) ∨ (ô, f̂) ∈ WK

k (X)}
= {ô | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ WN

fs,n(X)} by (4.4) and Lemma 3

= {ô | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ {(o, f) | f ∈ fs ∧ |{o′ | (o′, f) ∈ X}| > n}}
= {ô | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ {(o, f̂) | |{o′ | (o′, f̂) ∈ X}| > n}}

We further distinguish between two cases:
|{o′ | (o′, f̂) ∈ X}| > n:

{ô | (ô, f̂) ∈ Wfs,n,m,k(X)} = {ô | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ {(o, f̂) | |{o′ | (o′, f̂) ∈ X}| > n}}
= {ô | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ {(o, f̂) | tt}}
= {ô | (ô, f̂) ∈ X ∨ tt}
= {ô | tt}
= DObject

|{o′ | (o′, f̂) ∈ X}| ≤ n:

|{ô | (ô, f̂) ∈ Wfs,n,m,k(X)}| = |{ô | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ {(o, f̂) | |{o′ | (o′, f̂) ∈ X}| > n}}|
= |{ô | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ {(o, f̂) | ff }}|
= |{ô | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ ∅}|
= |{ô | (ô, f̂) ∈ X ∨ ff }|
= |{ô | (ô, f̂) ∈ X}|
= |{o′ | (o′, f̂) ∈ X}|
≤ n
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Lemma 6. f ∈ finFieldModsfs(Wfs,n,m,k(X))→ 0 < 1 + n− |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}| ≤ n+ 1

Proof.

f ∈ finFieldModsfs(Wfs,n,m,k(X)) ≡ f ∈ fs ∧ |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}| <∞
⇒ |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}| <∞
⇒ {o′ | (o′, f) ∈ Wfs,n,m,k(X)} 6= DObject

⇒ |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}| ≤ n by Lemma 5
⇒ 0 < 1 + n− |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}| ≤ n+ 1

Lemma 7. 0 ≤ fieldModsLeftfs,n(Wfs,n,m,k(X)) ≤ |fs|(n+ 1)

Proof. By case distinction:

∃(o′, f ′) ∈ X. f ′ 6∈ (fs ∪ Arr):

fieldModsLeftfs,n(Wfs,n,m,k(X)) = fieldModsLeftfs,n(LS) = 0

∀(o′, f ′) ∈ X. f ′ ∈ (fs ∪ Arr):

fieldModsLeftfs,n(Wfs,n,m,k(X)) =
∑

f̂∈finFieldModsfs(Wfs,n,m,k(X))

1 + n− |{o′ | (o′, f̂) ∈ Wfs,n,m,k(X)}|

By definition

finFieldModsfs(Wfs,n,m,k(X)) = {f | f ∈ fs ∧ |{o′ | (o′, f̂) ∈ Wfs,n,m,k(X)}| <∞} ⊆ fs (4.5)

We can determine a lower bound:

fieldModsLeftfs,n(Wfs,n,m,k(X)) =
∑

f̂∈finFieldModsfs(Wfs,n,m,k(X))

1 + n− |{o′ | (o′, f̂) ∈ Wfs,n,m,k(X)}|

≥
∑

f̂∈finFieldModsfs(Wfs,n,m,k(X))

1 by Lemma 6

≥ 0

As well as determining an upper bound:

fieldModsLeftfs,n(Wfs,n,m,k(X)) =
∑

f̂∈finFieldModsfs(Wfs,n,m,k(X))

1 + n− |{o′ | (o′, f̂) ∈ Wfs,n,m,k(X)}|

≤
∑

f̂∈finFieldModsfs(Wfs,n,m,k(X))

n+ 1 by Lemma 6

≤
∑
f̂∈fs

n+ 1 by (4.5)

= |fs|(n+ 1)
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Lemma 8.

Wfs,n,m,k(X) ⊆ Wfs,n,m,k(Y )→ fieldModsLeftfs,n(Wfs,n,m,k(X)) ≥ fieldModsLeftfs,n(Wfs,n,m,k(Y ))

Proof. We know that for any f

Wfs,n,m,k(X) ⊆ Wfs,n,m,k(Y )⇒ {o′ | (o′, f) ∈ Wfs,n,m,k(X)} ⊆ {o′ | (o′, f) ∈ Wfs,n,m,k(Y )}
⇒ |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}| ≤ |{o′ | (o′, f) ∈ Wfs,n,m,k(Y )}| (4.6)

We can therefore show:

fieldModsLeftfs,n(Wfs,n,m,k(X))
=

∑
f∈finFieldModsfs(Wfs,n,m,k(X))

1 + n− |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}|

≥
∑

f∈finFieldModsfs(Wfs,n,m,k(Y ))
1 + n− |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}| by Lemmas 4 and 6

≥
∑

f∈finFieldModsfs(Wfs,n,m,k(Y ))
1 + n− |{o′ | (o′, f) ∈ Wfs,n,m,k(Y )}| by (4.6)

= fieldModsLeftfs,n(Wfs,n,m,k(Y ))

Lemma 9. f̂ ∈ fs ∧ (ô, f̂) 6∈ Wfs,n,m,k(X) ∧Wfs,n,m,k(X) ⊂ Wfs,n,m,k(Y ) ∧ (ô, f̂) ∈ Wfs,n,m,k(Y )→
fieldModsLeftfs,n(Wfs,n,m,k(X)) > fieldModsLeftfs,n(Wfs,n,m,k(Y ))

Proof. We know that for any f

Wfs,n,m,k(X) ⊂ Wfs,n,m,k(Y )⇒ {o′ | (o′, f) ∈ Wfs,n,m,k(X)} ⊆ {o′ | (o′, f) ∈ Wfs,n,m,k(Y )}
⇒ |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}| ≤ |{o′ | (o′, f) ∈ Wfs,n,m,k(Y )}| (4.7)

Furthermore,

(ô, f̂) 6∈ Wfs,n,m,k(X)⇒ ô 6∈ {o′ | (o′, f̂) ∈ Wfs,n,m,k(X)}
⇒ {o′ | (o′, f̂) ∈ Wfs,n,m,k(X)} 6= DObject

⇒ |{o′ | (o′, f̂) ∈ Wfs,n,m,k(X)}| ≤ n by Lemma 5

⇒ f̂ ∈ finFieldModsfs(Wfs,n,m,k(X)) (4.8)

By case distinction

f̂ ∈ finFieldModsfs(Wfs,n,m,k(Y )): Then we have

f̂ ∈ finFieldModsfs(Wfs,n,m,k(Y )) ≡ f̂ ∈ fs ∧ |{o′ | (o′, f̂) ∈ Wfs,n,m,k(Y )}| <∞
⇒ |{o′ | (o′, f̂) ∈ Wfs,n,m,k(Y )}| <∞ (4.9)

As well as

Wfs,n,m,k(X) ⊂ Wfs,n,m,k(Y )
⇒ Wfs,n,m,k(X) ⊆ (Wfs,n,m,k(Y ) \ {(ô, f̂)}) as (ô, f̂) 6∈ Wfs,n,m,k(X)
⇒ {o′ | (o′, f̂) ∈ Wfs,n,m,k(X)} ⊆ {o′ | (o′, f̂) ∈ (Wfs,n,m,k(Y ) \ {(ô, f̂)})}
⇒ {o′ | (o′, f̂) ∈ Wfs,n,m,k(X)} ⊆ ({o′ | (o′, f̂) ∈ Wfs,n,m,k(Y )} \ {ô})
⇒ |{o′ | (o′, f̂) ∈ Wfs,n,m,k(X)}| ≤ |{o′ | (o′, f̂) ∈ Wfs,n,m,k(Y )} \ {ô}|
⇒ |{o′ | (o′, f̂) ∈ Wfs,n,m,k(X)}| ≤ |{o′ | (o′, f̂) ∈ Wfs,n,m,k(Y )}| − 1

by (4.9) and (ô, f̂) ∈ Wfs,n,m,k(Y )
⇒ |{o′ | (o′, f̂) ∈ Wfs,n,m,k(X)}| < |{o′ | (o′, f̂) ∈ Wfs,n,m,k(Y )}| (4.10)
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Therefore

fieldModsLeftfs,n(Wfs,n,m,k(X))
=

∑
f∈finFieldModsfs(Wfs,n,m,k(X))

1 + n− |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}|

= 1 + n− |{o′ | (o′, f̂) ∈ Wfs,n,m,k(X)}|
+

∑
f∈(finFieldModsfs(Wfs,n,m,k(X))\{f̂})

1 + n− |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}| by (4.8)

> 1 + n− |{o′ | (o′, f̂) ∈ Wfs,n,m,k(Y )}|
+

∑
f∈(finFieldModsfs(Wfs,n,m,k(X))\{f̂})

1 + n− |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}| by (4.10)

≥ 1 + n− |{o′ | (o′, f̂) ∈ Wfs,n,m,k(Y )}|
+

∑
f∈(finFieldModsfs(Wfs,n,m,k(Y ))\{f̂})

1 + n− |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}| by Lemmas 6 and 4

≥ 1 + n− |{o′ | (o′, f̂) ∈ Wfs,n,m,k(Y )}|
+

∑
f∈(finFieldModsfs(Wfs,n,m,k(Y ))\{f̂})

1 + n− |{o′ | (o′, f) ∈ Wfs,n,m,k(Y )}| by (4.7)

=
∑

f∈finFieldModsfs(Wfs,n,m,k(Y ))
1 + n− |{o′ | (o′, f) ∈ Wfs,n,m,k(Y )}|

= fieldModsLeftfs,n(Wfs,n,m,k(Y ))

f̂ 6∈ finFieldModsfs(Wfs,n,m,k(Y )):

fieldModsLeftfs,n(Wfs,n,m,k(X))
=

∑
f∈finFieldModsfs(Wfs,n,m,k(X))

1 + n− |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}|

= 1 + n− |{o′ | (o′, f̂) ∈ Wfs,n,m,k(X)}|
+

∑
f∈(finFieldModsfs(Wfs,n,m,k(X))\{f̂})

1 + n− |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}| by (4.8)

>
∑

f∈(finFieldModsfs(Wfs,n,m,k(X))\{f̂})

1 + n− |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}| by (4.8) and Lemma 6

≥
∑

f∈(finFieldModsfs(Wfs,n,m,k(Y ))\{f̂})

1 + n− |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}| by Lemmas 6 and 4

≥
∑

f∈finFieldModsfs(Wfs,n,m,k(Y ))
1 + n− |{o′ | (o′, f) ∈ Wfs,n,m,k(X)}|

by case distinction assumption
≥

∑
f∈finFieldModsfs(Wfs,n,m,k(Y ))

1 + n− |{o′ | (o′, f) ∈ Wfs,n,m,k(Y )}| by (4.7)

= fieldModsLeftfs,n(Wfs,n,m,k(Y ))

This (with Lemma 8) is the main lemma of this subsection, showing that as more object field modifications
exist after a widening, the number of field modifications available decreases, i.e. with Lemma 7 that the
number of such steps is bound.
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4.2.2 Widening Array Index Fields

We introduce the following helper functions:

indexMods(ls) = {o | 0 < |{f ∈ Arr | (o, f) ∈ ls}|}
finIndexMods(ls) = {o | 0 < |{f ∈ Arr | (o, f) ∈ ls}| <∞}

indexModsLeftm,k(ls) = (m+ 1)(k + 1−min(k + 1, | indexMods(ls) |))
+

∑
o∈finIndexMods(ls)

1 +m− |{f ∈ Arr | (o, f) ∈ ls}|

The function indexMods takes a locations set and calculates the set of objects for which at least one
array index modification exists, i.e. pairs of objects and array index fields. The function finIndexMods is
the subset of indexMods containing only those objects for which a finite number of array index modification
exists. Intuitively, the function indexModsLeftm,k calculates the number of widening steps containing such
modifications left before the infinite dimensions related to object/index pairs are completely widened. In
essence indexModsLeftm,k(X) computes an upper bound on the maximal number of iterations the following
algorithm can have:

1. Set X to Wfs,n,m,k(X ∪ (o, arrM(i))), where i ∈ Z and (o, arrM(i)) 6∈ X .

2. If X 6= DObject × Arr , goto 1.

Lemma 10. f̂ 6∈ fs → (ô, f̂) 6∈ WN
fs,n(X)

Proof. This is trivial, as by definition

(ô, f̂) ∈ WN
fs,n(X) ≡ (ô, f̂) ∈ {(o, f) | f ∈ fs ∧ |{o′ | (o′, f) ∈ X}| > n}

≡ f̂ ∈ fs ∧ |{o′ | (o′, f̂) ∈ X}| > n

⇒ f̂ ∈ fs

Lemma 11. {o | {f ∈ Arr | (o, f) ∈ WM
m (X)} 6= ∅} ⊆ {o | {f ∈ Arr | (o, f) ∈ X} 6= ∅}

Proof.

ô ∈ {o | {f ∈ Arr | (o, f) ∈ WM
m (X)} 6= ∅}

≡ {f̂ ∈ Arr | (ô, f̂) ∈ WM
m (X)} 6= ∅

≡ {f̂ ∈ Arr | (ô, f̂) ∈ {(o, f) | f ∈ Arr ∧ |{f ′ | f ′ ∈ Arr ∧ (o, f ′) ∈ X}| > m}} 6= ∅
≡ {f̂ ∈ Arr | f̂ ∈ Arr ∧ |{f ′ | f ′ ∈ Arr ∧ (ô, f ′) ∈ X}| > m} 6= ∅
≡ {f̂ ∈ Arr | |{f ′ | f ′ ∈ Arr ∧ (ô, f ′) ∈ X}| > m} 6= ∅
≡ ∃f ∈ Arr . f ∈ {f̂ ∈ Arr | |{f ′ | f ′ ∈ Arr ∧ (ô, f ′) ∈ X}| > m}
≡ ∃f ∈ Arr . |{f ′ | f ′ ∈ Arr ∧ (ô, f ′) ∈ X}| > m

≡ |{f ′ | f ′ ∈ Arr ∧ (ô, f ′) ∈ X}| > m

⇒ {f ′ | f ′ ∈ Arr ∧ (ô, f ′) ∈ X} 6= ∅
≡ ô ∈ {o | {f ∈ Arr | (o, f) ∈ X} 6= ∅}
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Lemma 12. Similar to Lemma 5 for object fields, widening of array index fields is bound by m or complete:

ô ∈ DObject → {f̂ ∈ Arr | (ô, f̂) ∈ Wfs,n,m,k(X)} = Arr ∨ |{f̂ ∈ Arr | (ô, f̂) ∈ Wfs,n,m,k(X)}| ≤ m

Proof. By case distinction:

∃(o′, f ′) ∈ X. f ′ 6∈ (fs ∪ Arr):

{f̂ ∈ Arr | (ô, f̂) ∈ Wfs,n,m,k(X)} = {f̂ ∈ Arr | (ô, f̂) ∈ LS}
= {f̂ ∈ Arr | tt}
= Arr

∀(o′, f ′) ∈ X. f ′ ∈ (fs ∪ Arr):

{f̂ ∈ Arr | (ô, f̂) ∈ Wfs,n,m,k(X)}
= {f̂ ∈ Arr | (ô, f̂) ∈ (X ∪WN

fs,n(X) ∪WM
m (X) ∪WK

k (X))}
= {f̂ ∈ Arr | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ WN

fs,n(X) ∨ (ô, f̂) ∈ WM
m (X) ∨ (ô, f̂) ∈ WK

k (X)}
= {f̂ ∈ Arr | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ WM

m (X) ∨ (ô, f̂) ∈ WK
k (X)} by Lemma 10

A further case distinction gives us
|{o | ∃f ∈ Arr . (o, f) ∈ ls}| > k:

{f̂ ∈ Arr | (ô, f̂) ∈ Wfs,n,m,k(X)}
= {f̂ ∈ Arr | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ WM

m (X) ∨ (ô, f̂) ∈ WK
k (X)}

= {f̂ ∈ Arr | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ WM
m (X) ∨ (ô, f̂) ∈ (DObject × Arr)}

= {f̂ ∈ Arr | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ WM
m (X) ∨ tt} as f̂ ∈ Arr

= {f̂ ∈ Arr | tt}
= Arr

|{o | ∃f ∈ Arr . (o, f) ∈ ls}| ≤ k:

{f̂ ∈ Arr | (ô, f̂) ∈ Wfs,n,m,k(X)}
= {f̂ ∈ Arr | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ WM

m (X) ∨ (ô, f̂) ∈ WK
k (X)}

= {f̂ ∈ Arr | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ WM
m (X) ∨ (ô, f̂) ∈ ∅}

= {f̂ ∈ Arr | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ WM
m (X)}

= {f̂ ∈ Arr | (ô, f̂) ∈ X ∨ (ô, f̂) ∈ {(o, f) | f ∈ Arr ∧ |{f ′ | f ′ ∈ Arr ∧ (o, f ′) ∈ X}| > m}}
= {f̂ ∈ Arr | (ô, f̂) ∈ X ∨ (f̂ ∈ Arr ∧ |{f ′ | f ′ ∈ Arr ∧ (ô, f ′) ∈ X}| > m)}
= {f̂ ∈ Arr | (ô, f̂) ∈ X ∨ |{f ′ | f ′ ∈ Arr ∧ (ô, f ′) ∈ X}| > m}

One last case distinction yields
|{f ′ | f ′ ∈ Arr ∧ (ô, f ′) ∈ X}| > m:

{f̂ ∈ Arr | (ô, f̂) ∈ Wfs,n,m,k(X)}
= {f̂ ∈ Arr | (ô, f̂) ∈ X ∨ |{f ′ | f ′ ∈ Arr ∧ (ô, f ′) ∈ X}| > m}
= {f̂ ∈ Arr | (ô, f̂) ∈ X ∨ tt}
= {f̂ ∈ Arr | tt}
= Arr
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|{f ′ | f ′ ∈ Arr ∧ (ô, f ′) ∈ X}| ≤ m:

|{f̂ ∈ Arr | (ô, f̂) ∈ Wfs,n,m,k(X)}|
= |{f̂ ∈ Arr | (ô, f̂) ∈ X ∨ |{f ′ | f ′ ∈ Arr ∧ (ô, f ′) ∈ X}| > m}|
= |{f̂ ∈ Arr | (ô, f̂) ∈ X ∨ ff }|
= |{f̂ ∈ Arr | (ô, f̂) ∈ X}|
≤ m

Lemma 13. X ⊆ Y → finIndexMods(Y ) ⊆ ((indexMods(Y ) \ indexMods(X)) ∪ finIndexMods(X))

Proof. We show

X ⊆ Y ∧ o ∈ finIndexMods(Y )→ o ∈ ((indexMods(Y ) \ indexMods(X)) ∪ finIndexMods(X))

As X ⊆ Y , we know that

o ∈ finIndexMods(Y ) ≡ 0 < |{f ∈ Arr | (o, f) ∈ Y }| <∞
≡ 0 < |{f ∈ Arr | (o, f) ∈ Y }| ∧ |{f ∈ Arr | (o, f) ∈ Y }| <∞
⇒ 0 < |{f ∈ Arr | (o, f) ∈ Y }| ∧ |{f ∈ Arr | (o, f) ∈ X}| <∞ (4.11)

With this we can then show that:

o ∈ ((indexMods(Y ) \ indexMods(X)) ∪ finIndexMods(X))
≡ (0 < |{f ∈ Arr | (o, f) ∈ Y }| ∧ ¬(0 < |{f ∈ Arr | (o, f) ∈ X}|))

∨ (0 < |{f ∈ Arr | (o, f) ∈ X}| <∞)
≡ (0 < |{f ∈ Arr | (o, f) ∈ Y }| ∧ |{f ∈ Arr | (o, f) ∈ X}| = 0) ∨ (0 < |{f ∈ Arr | (o, f) ∈ X}| <∞)
≡ (tt ∧ |{f ∈ Arr | (o, f) ∈ X}| = 0) ∨ (0 < |{f ∈ Arr | (o, f) ∈ X}| <∞) by (4.11)
≡ |{f ∈ Arr | (o, f) ∈ X}| = 0 ∨ (0 < |{f ∈ Arr | (o, f) ∈ X}| <∞)
≡ |{f ∈ Arr | (o, f) ∈ X}| <∞ ≡ tt by (4.11)

Lemma 14. | finIndexMods(Wfs,n,m,k(X)) | ≤ k

Proof. By case distinction:

∃(o′, f ′) ∈ X. f ′ 6∈ (fs ∪ Arr):

| finIndexMods(Wfs,n,m,k(X)) | = | finIndexMods(LS) |
= |{o | 0 < |{f ∈ Arr | (o, f) ∈ LS}| <∞}|
= |{o | 0 < |{f ∈ Arr | tt} <∞}|
= |{o | 0 < |Arr | <∞}|
= |{o | 0 <∞ <∞}| = |{o | ff }| = |∅| = 0 ≤ k

∀(o′, f ′) ∈ X. f ′ ∈ (fs ∪ Arr):

| finIndexMods(Wfs,n,m,k(X)) |
= | finIndexMods(X ∪WN

fs,n(X) ∪WM
m (X) ∪WK

k (X)) |
= |{o | 0 < |{f ∈ Arr | (o, f) ∈ (X ∪WN

fs,n(X) ∪WM
m (X) ∪WK

k (X))}| <∞}|
= |{o | 0 < |{f ∈ Arr | (o, f) ∈ X ∨ (o, f) ∈ WN

fs,n(X)
∨ (o, f) ∈ WM

m (X) ∨ (o, f) ∈ WK
k (X)}| <∞}|

We distinguish two cases:
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|{o | ∃f ∈ Arr . (o, f) ∈ ls}| > k:

| finIndexMods(Wfs,n,m,k(X)) |
= |{o | 0 < |{f ∈ Arr | (o, f) ∈ X ∨ (o, f) ∈ WN

fs,n(X)
∨ (o, f) ∈ WM

m (X) ∨ (o, f) ∈ WK
k (X)}| <∞}|

= |{o | 0 < |{f ∈ Arr | (o, f) ∈ X ∨ (o, f) ∈ WN
fs,n(X)

∨ (o, f) ∈ WM
m (X) ∨ (o, f) ∈ (DObject × Arr)}| <∞}|

= |{o | 0 < |{f ∈ Arr | (o, f) ∈ X ∨ (o, f) ∈ WN
fs,n(X) ∨ (o, f) ∈ WM

m (X) ∨ tt}| <∞}|
as f ∈ Arr

= |{o | 0 < |{f ∈ Arr | tt}| <∞}|
= |{o | 0 < |Arr | <∞}| = |{o | ff }| = |∅| = 0 ≤ k

|{o | ∃f ∈ Arr . (o, f) ∈ ls}| ≤ k:

| finIndexMods(Wfs,n,m,k(X)) |
= |{o | 0 < |{f ∈ Arr | (o, f) ∈ X ∨ (o, f) ∈ WN

fs,n(X)
∨ (o, f) ∈ WM

m (X) ∨ (o, f) ∈ WK
k (X)}| <∞}|

= |{o | 0 < |{f ∈ Arr | (o, f) ∈ X ∨ (o, f) ∈ WN
fs,n(X)
∨ (o, f) ∈ WM

m (X) ∨ (o, f) ∈ ∅}| <∞}|
= |{o | 0 < |{f ∈ Arr | (o, f) ∈ X ∨ (o, f) ∈ WN

fs,n(X) ∨ (o, f) ∈ WM
m (X) ∨ ff }| <∞}|

= |{o | 0 < |{f ∈ Arr | (o, f) ∈ X ∨ (o, f) ∈ WN
fs,n(X) ∨ (o, f) ∈ WM

m (X)}| <∞}|
= |{o | 0 < |{f ∈ Arr | (o, f) ∈ X ∨ (o, f) ∈ WM

m (X)}| <∞}| by Lemma 10
= |{o | 0 < |{f ∈ Arr | (o, f) ∈ X} ∪ {f ∈ Arr | (o, f) ∈ WM

m (X)}| <∞}|
= |{o | 0 < |{f ∈ Arr | (o, f) ∈ X} ∪ {f ∈ Arr | (o, f) ∈ WM

m (X)}| ∧
|{f ∈ Arr | (o, f) ∈ X} ∪ {f ∈ Arr | (o, f) ∈ WM

m (X)}| <∞}|
= |{o | 0 < |{f ∈ Arr | (o, f) ∈ X} ∪ {f ∈ Arr | (o, f) ∈ WM

m (X)}|} ∩
{o | |{f ∈ Arr | (o, f) ∈ X} ∪ {f ∈ Arr | (o, f) ∈ WM

m (X)}| <∞}|
≤ |{o | 0 < |{f ∈ Arr | (o, f) ∈ X} ∪ {f ∈ Arr | (o, f) ∈ WM

m (X)}|}|
= |{o | ({f ∈ Arr | (o, f) ∈ X} ∪ {f ∈ Arr | (o, f) ∈ WM

m (X)}) 6= ∅}|
= |{o | {f ∈ Arr | (o, f) ∈ X} 6= ∅ ∨ {f ∈ Arr | (o, f) ∈ WM

m (X)} 6= ∅}|
= |{o | {f ∈ Arr | (o, f) ∈ X} 6= ∅} ∪ {o | {f ∈ Arr | (o, f) ∈ WM

m (X)} 6= ∅}}|

Simplifying using Lemma 11 gives us

| finIndexMods(Wfs,n,m,k(X)) |
≤ |{o | {f ∈ Arr | (o, f) ∈ X} 6= ∅} ∪ {o | {f ∈ Arr | (o, f) ∈ WM

m (X)} 6= ∅}}|
= |{o | {f ∈ Arr | (o, f) ∈ X} 6= ∅}| by Lemma 11
= |{o | ∃f ∈ Arr . (o, f) ∈ X}|
≤ k by case distinction assumption
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Lemma 15. f̂ 6∈ (fs ∪ Arr) ∧ (ô, f̂) ∈ Wfs,n,m,k(X)→ Wfs,n,m,k(X) = LS

Proof. By case distinction

∃(o′, f ′) ∈ X. f ′ 6∈ (fs ∪ Arr): Then by definition we have our conclusion: Wfs,n,m,k(X) = LS

∀(o′, f ′) ∈ X. f ′ ∈ (fs ∪ Arr): This means in particular, that

(ô, f̂) 6∈ X (4.12)

Then we have a proof by contradiction, by assuming part of the premiss: f̂ 6∈ (fs ∪ Arr)

(ô, f̂) ∈ Wfs,n,m,k(X) ≡ (ô, f̂) ∈ (X ∪WN
fs,n(X) ∪WM

m (X) ∪WK
k (X)

≡ (ô, f̂) ∈ X ∨ (ô, f̂) ∈ WN
fs,n(X) ∨ (ô, f̂) ∈ WM

m (X) ∨ (ô, f̂) ∈ WK
k (X)

≡ (ô, f̂) ∈ X ∨ (ô, f̂) ∈ WN
fs,n(X) ∨ ff ∨ ff by Lemma 3

≡ (ô, f̂) ∈ X ∨ (ô, f̂) ∈ WN
fs,n(X) ≡ (ô, f̂) ∈ X ∨ ff by Lemma 10

≡ (ô, f̂) ∈ X ≡ ff by (4.12)

Which is a contradiction to the other premiss.

Lemma 16. 0 ≤ indexModsLeftm,k(Wfs,n,m,k(X)) ≤ (m+ 1)(k + 1)

Proof. By Lemma 14 we know that there is some z ∈ N, such that

z = | finIndexMods(Wfs,n,m,k(X)) | ≤ k (4.13)

As finIndexMods(Wfs,n,m,k(X)) ⊆ indexMods(Wfs,n,m,k(X)) there is some y ∈ (N ∪ {∞}) such that

y = | indexMods(Wfs,n,m,k(X)) | ≥ z (4.14)

indexModsLeftm,k(Wfs,n,m,k(X))
= (m+ 1)(k + 1−min(k + 1, | indexMods(Wfs,n,m,k(X)) |))

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

= (m+ 1)(k + 1−min(k + 1, y))
+

∑
o∈finIndexMods(Wfs,n,m,k(X))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}| by (4.14)

Simplifying inside the sum, we note that for any object o, in particular an o ∈ finIndexMods(Wfs,n,m,k(X)),
by Lemma 12 either:

{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)} = Arr : This contradicts the guard o ∈ finIndexMods(Wfs,n,m,k(X)),
as

o ∈ finIndexMods(Wfs,n,m,k(X)) ≡ o ∈ {o | 0 < |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}| <∞}
≡ 0 < |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}| <∞
≡ 0 < |Arr | <∞
≡ 0 <∞ <∞
≡ ff
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|{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}| ≤ m: We first show 0 ≤ indexModsLeftm,k(Wfs,n,m,k(X)):

indexModsLeftm,k(Wfs,n,m,k(X))
= (m+ 1)(k + 1−min(k + 1, y))

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

≥ (m+ 1)(k + 1− (k + 1))
+

∑
o∈finIndexMods(Wfs,n,m,k(X))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

= 0 +
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

≥ 0 +
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m−m

= 0 +
∑

o∈finIndexMods(Wfs,n,m,k(X))
1

≥ 0

Now we show indexModsLeftm,k(Wfs,n,m,k(X)) ≤ (m+ 1)(k + 1):

indexModsLeftm,k(Wfs,n,m,k(X))
= (m+ 1)(k + 1−min(k + 1, y))

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

≤ (m+ 1)(k + 1−min(k + 1, y)) +
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− 0

= (m+ 1)(k + 1−min(k + 1, y)) +
∑

o∈finIndexMods(Wfs,n,m,k(X))
m+ 1

= (m+ 1)(k + 1−min(k + 1, y)) + z(m+ 1) by (4.13)
= (m+ 1)(k + 1−min(k + 1, y) + z)

By case distinction
k + 1 ≤ y:

indexModsLeftm,k(Wfs,n,m,k(X)) ≤ (m+ 1)(k + 1−min(k + 1, y) + z)
= (m+ 1)(k + 1− (k + 1) + z)
= (m+ 1)z
< (m+ 1)(k + 1) by (4.13)

k + 1 > y:

indexModsLeftm,k(Wfs,n,m,k(X)) ≤ (m+ 1)(k + 1−min(k + 1, y) + z)
= (m+ 1)(k + 1− y + z)
= (m+ 1)(k + 1 + (z − y))
≤ (m+ 1)(k + 1) by (4.14)
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Lemma 17. o ∈ finIndexMods(Wfs,n,m,k(X))→ 0 < 1+m−|{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}| ≤ m+1

Proof.
o ∈ finIndexMods(Wfs,n,m,k(X)) ≡ 0 < |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}| <∞

⇒ |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}| <∞
⇒ {f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)} 6= Arr
⇒ |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}| ≤ m by Lemma 12
⇒ 0 < 1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}| ≤ m+ 1

Lemma 18. | indexMods(Wfs,n,m,k(Y )) | > k ⇒ finIndexMods(Wfs,n,m,k(Y )) = ∅

Proof.
| indexMods(Wfs,n,m,k(Y )) | > k ≡ |{o | 0 < |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}|}| > k

≡ |{o | ∃f ∈ Arr . (o, f) ∈ Wfs,n,m,k(Y )}| > k

⇒ WK
k (Y ) = (DObject × Arr)

⇒ Wfs,n,m,k(Y ) ⊇ (DObject × Arr)
⇒ finIndexMods(Wfs,n,m,k(Y )) = ∅

Lemma 19.
Wfs,n,m,k(X) ⊆ Wfs,n,m,k(Y )→ indexModsLeftm,k(Wfs,n,m,k(X)) ≥ indexModsLeftm,k(Wfs,n,m,k(Y ))

Proof. As premiss we have
Wfs,n,m,k(X) ⊆ Wfs,n,m,k(Y ) (4.15)

Let xall , yall ∈ (N ∪ {∞}) be defined as
xall := | indexMods(Wfs,n,m,k(X)) | = |{o | 0 < |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|}|
yall := | indexMods(Wfs,n,m,k(Y )) | = |{o | 0 < |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}|}|

By subset relation we know that
xall ≤ yall (4.16)

By case distinction
yall > k:

indexModsLeftm,k(Wfs,n,m,k(X))
= (m+ 1)(k + 1−min(k + 1, xall))

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

≥ (m+ 1)(k + 1−min(k + 1, xall)) +
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m−m by Lemma 12

≥ (m+ 1)(k + 1−min(k + 1, xall)) + 0
≥ (m+ 1)(k + 1−min(k + 1, yall)) + 0 by (4.16)
= (m+ 1)(k + 1−min(k + 1, yall)) +

∑
o∈∅

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}|

= (m+ 1)(k + 1−min(k + 1, yall))
+

∑
o∈finIndexMods(Wfs,n,m,k(Y ))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}| by Lemma 18

= indexModsLeftm,k(Wfs,n,m,k(Y ))
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yall ≤ k:

indexModsLeftm,k(Wfs,n,m,k(X))
= (m+ 1)(k + 1−min(k + 1, xall))

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

= (m+ 1)(k + 1− xall)
+

∑
o∈finIndexMods(Wfs,n,m,k(X))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}| by (4.16)

= (m+ 1)(k + 1 + 0− xall)
+

∑
o∈finIndexMods(Wfs,n,m,k(X))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

= (m+ 1)(k + 1 + (yall − yall)− xall)
+

∑
o∈finIndexMods(Wfs,n,m,k(X))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

= (m+ 1)(k + 1− yall + (yall − xall))
+

∑
o∈finIndexMods(Wfs,n,m,k(X))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

= (m+ 1)(k + 1− yall) + (m+ 1)(yall − xall)
+

∑
o∈finIndexMods(Wfs,n,m,k(X))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

= (m+ 1)(k + 1− yall) +
∑

o∈(indexMods(Wfs,n,m,k(Y )) \ indexMods(Wfs,n,m,k(X)))
m+ 1

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}| by (4.15)

≥ (m+ 1)(k + 1− yall)
+

∑
o∈(indexMods(Wfs,n,m,k(Y )) \ indexMods(Wfs,n,m,k(X)))

m+ 1− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

≥ (m+ 1)(k + 1− yall)
+

∑
o∈finIndexMods(Wfs,n,m,k(Y ))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

by Lemmas 13 and 17
≥ (m+ 1)(k + 1− yall)

+
∑

o∈finIndexMods(Wfs,n,m,k(Y ))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}| by (4.15)

= (m+ 1)(k + 1−min(k + 1, yall))
+

∑
o∈finIndexMods(Wfs,n,m,k(Y ))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}|

= indexModsLeftm,k(Wfs,n,m,k(Y ))
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Lemma 20. f̂ ∈ Arr ∧ (ô, f̂) 6∈ Wfs,n,m,k(X) ∧ Wfs,n,m,k(X) ⊂ Wfs,n,m,k(Y ) ∧ (ô, f̂) ∈ Wfs,n,m,k(Y ) →
indexModsLeftm,k(Wfs,n,m,k(X)) > indexModsLeftm,k(Wfs,n,m,k(Y ))

Proof. As premisses we have
f̂ ∈ Arr (4.17)

(ô, f̂) 6∈ Wfs,n,m,k(X) (4.18)
Wfs,n,m,k(X) ⊂ Wfs,n,m,k(Y ) (4.19)

(ô, f̂) ∈ Wfs,n,m,k(Y ) (4.20)
As in Lemma 19, let xall , yall ∈ (N ∪ {∞}) be defined as

xall := | indexMods(Wfs,n,m,k(X)) | = |{o | 0 < |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|}|
yall := | indexMods(Wfs,n,m,k(Y )) | = |{o | 0 < |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}|}|

By subset relation we know that
xall ≤ yall (4.21)

We know that
(ô, f̂) 6∈ Wfs,n,m,k(X)⇒ (DObject × Arr) 6⊆ Wfs,n,m,k(X) by (4.17)

⇒ WK
k (X) 6= (DObject × Arr)

≡ |{o | ∃f ∈ Arr . (o, f) ∈ Wfs,n,m,k(X)}| ≤ k

≡ |{o | 0 < |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|}| ≤ k

≡ | indexMods(Wfs,n,m,k(X)) | ≤ k

≡ xall ≤ k (4.22)
Therefore

indexModsLeftm,k(Wfs,n,m,k(X))
= (m+ 1)(k + 1−min(k + 1, xall))

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

= (m+ 1)(k + 1− xall)
+

∑
o∈finIndexMods(Wfs,n,m,k(X))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}| by (4.22)

By case distinction either yall > k or yall ≤ k:
yall > k:

indexModsLeftm,k(Wfs,n,m,k(X))
= (m+ 1)(k + 1− xall) +

∑
o∈finIndexMods(Wfs,n,m,k(X))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

≥ (m+ 1)(k + 1− xall) + 0 by Lemma 12
> (m+ 1)(k + 1− (k + 1)) + 0 by (4.22)
= (m+ 1)(k + 1−min(k + 1, yall)) + 0 by case distinction assumption
= (m+ 1)(k + 1−min(k + 1, yall)) +

∑
o∈∅

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}|

= (m+ 1)(k + 1−min(k + 1, yall))
+

∑
o∈finIndexMods(Wfs,n,m,k(Y ))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}| by Lemma 18

= indexModsLeftm,k(Wfs,n,m,k(Y ))
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yall ≤ k: We know that

(ô, f̂) ∈ Wfs,n,m,k(Y )⇒ ô ∈ {o | 0 < |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}|}
≡ ô ∈ indexMods(Wfs,n,m,k(Y )) (4.23)

Reformulating indexModsLeftm,k(Wfs,n,m,k(X)) gives us

indexModsLeftm,k(Wfs,n,m,k(X))
= (m+ 1)(k + 1− xall)

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

= (m+ 1)(k + 1 + 0− xall)
+

∑
o∈finIndexMods(Wfs,n,m,k(X))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

= (m+ 1)(k + 1 + (yall − yall)− xall)
+

∑
o∈finIndexMods(Wfs,n,m,k(X))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

= (m+ 1)(k + 1− yall + (yall − xall))
+

∑
o∈finIndexMods(Wfs,n,m,k(X))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

= (m+ 1)(k + 1− yall) + (m+ 1)(yall − xall)
+

∑
o∈finIndexMods(Wfs,n,m,k(X))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

= (m+ 1)(k + 1− yall) +
∑

o∈(indexMods(Wfs,n,m,k(Y )) \ indexMods(Wfs,n,m,k(X)))
m+ 1

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}| by (4.19)

It remains to show that the sum of the two sums is greater than∑
o∈finIndexMods(Wfs,n,m,k(Y ))

1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}| (4.24)

With this we can then finish the proof:

indexModsLeftm,k(Wfs,n,m,k(X))
= (m+ 1)(k + 1− yall) +

∑
o∈(indexMods(Wfs,n,m,k(Y )) \ indexMods(Wfs,n,m,k(X)))

m+ 1

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

> (m+ 1)(k + 1− yall) +
∑

o∈finIndexMods(Wfs,n,m,k(Y ))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}|

= indexModsLeftm,k(Wfs,n,m,k(Y ))

We consider the following three cases and show in each that the sum of the two sums is greater than
(4.24):
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Case 1: ô ∈ finIndexMods(Wfs,n,m,k(X)) and ô 6∈ finIndexMods(Wfs,n,m,k(Y )). We know that
finIndexMods(Wfs,n,m,k(Y ))

⊂ finIndexMods(Wfs,n,m,k(Y )) ∪ {ô} by case distinction assumption
⊆ (indexMods(Wfs,n,m,k(Y ))\indexMods(Wfs,n,m,k(X)))∪finIndexMods(Wfs,n,m,k(X))∪{ô}

by (4.19) and Lemma 13
= (indexMods(Wfs,n,m,k(Y )) \ indexMods(Wfs,n,m,k(X))) ∪ finIndexMods(Wfs,n,m,k(X))

It therefore holds that
finIndexMods(Wfs,n,m,k(Y )) (4.25)

⊂ ((indexMods(Wfs,n,m,k(Y )) \ indexMods(Wfs,n,m,k(X))) ∪ finIndexMods(Wfs,n,m,k(X)))

With this we can now show that∑
o∈(indexMods(Wfs,n,m,k(Y )) \ indexMods(Wfs,n,m,k(X)))

m+ 1

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

≥
∑

o∈(indexMods(Wfs,n,m,k(Y )) \ indexMods(Wfs,n,m,k(X)))
m+ 1− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

>
∑

o∈finIndexMods(Wfs,n,m,k(Y ))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}| by (4.25) and L. 17

≥
∑

o∈finIndexMods(Wfs,n,m,k(Y ))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}| by (4.19)

Case 2: ô ∈ finIndexMods(Wfs,n,m,k(Y )).
|{f ∈ Arr | (ô, f) ∈ Wfs,n,m,k(X)}|

< |{f ∈ Arr | (ô, f) ∈ Wfs,n,m,k(X)} ∪ {f̂}| by (4.18)
≤ |{f ∈ Arr | (ô, f) ∈ Wfs,n,m,k(Y )}| by (4.19) and (4.20)
≤ m by Lemma 17

Therefore we have the inequalities
|{f ∈ Arr | (ô, f) ∈ Wfs,n,m,k(X)}| < |{f ∈ Arr | (ô, f) ∈ Wfs,n,m,k(Y )}| ≤ m (4.26)∑
o∈(indexMods(Wfs,n,m,k(Y )) \ indexMods(Wfs,n,m,k(X)))

m+ 1

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

≥
∑

o∈(indexMods(Wfs,n,m,k(Y )) \ indexMods(Wfs,n,m,k(X)))
m+ 1− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

≥
∑

o∈finIndexMods(Wfs,n,m,k(Y ))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}| by L. 13 and L. 17

>
∑

o∈finIndexMods(Wfs,n,m,k(Y ))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}|

by (4.19) and (4.26)
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Case 3: ô 6∈ finIndexMods(Wfs,n,m,k(X)). Reformulating this yields:

ô 6∈ finIndexMods(Wfs,n,m,k(X))
≡ ô 6∈ {o | 0 < |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}| <∞}
≡ |{f ∈ Arr | (ô, f) ∈ Wfs,n,m,k(X)}| = 0 ∨ |{f ∈ Arr | (ô, f) ∈ Wfs,n,m,k(X)}| =∞

Which we can express as the implication:

|{f ∈ Arr | (ô, f) ∈ Wfs,n,m,k(X)}| <∞→ |{f ∈ Arr | (ô, f) ∈ Wfs,n,m,k(X)}| = 0 (4.27)

Reformulating the premiss (4.18) gives us:

(ô, f̂) 6∈ Wfs,n,m,k(X)⇒ {f ∈ Arr | (ô, f) ∈ Wfs,n,m,k(X)} 6= Arr
≡ |{f ∈ Arr | (ô, f) ∈ Wfs,n,m,k(X)}| ≤ m by Lemma 12
⇒ |{f ∈ Arr | (ô, f) ∈ Wfs,n,m,k(X)}| <∞
≡ |{f ∈ Arr | (ô, f) ∈ Wfs,n,m,k(X)}| = 0 by (4.27)
≡ ô 6∈ indexMods(Wfs,n,m,k(X)) (4.28)

By (4.23) and (4.28) we know that

ô ∈ (indexMods(Wfs,n,m,k(Y )) \ indexMods(Wfs,n,m,k(X))) (4.29)

We can therefore show that

∑
o∈(indexMods(Wfs,n,m,k(Y )) \ indexMods(Wfs,n,m,k(X)))

m+ 1

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

>
∑

o∈(indexMods(Wfs,n,m,k(Y )) \ indexMods(Wfs,n,m,k(X)))
m+ 1− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}|

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(X)}|

by (4.29) and (4.23)

≥
∑

o∈(indexMods(Wfs,n,m,k(Y )) \ indexMods(Wfs,n,m,k(X)))
m+ 1− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}|

+
∑

o∈finIndexMods(Wfs,n,m,k(X))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}| by (4.19)

≥
∑

o∈finIndexMods(Wfs,n,m,k(Y ))
1 +m− |{f ∈ Arr | (o, f) ∈ Wfs,n,m,k(Y )}|

by Lemmas 13 and 17

Similar to Lemma 9, this (with Lemma 19) is the main lemma of this subsection, showing that as more
array index field modifications exist after a widening, the number of array index modifications available
decreases, i.e. with Lemma 16 that the number of such steps is bound.
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4.2.3 Proving Widening

We introduce a final helper function:

modsLeftfs,n,m,k : ALS → N

⊥ 7→ 2 + |fs|(n+ 1) + (m+ 1)(k + 1)
LS 7→ 0

ls 7→ 1 + fieldModsLeftfs,n(ls) + indexModsLeftm,k(ls)

Intuitively, modsLeftfs,n,m,k expresses the total number of widening steps left for any new modification of
the location set. The result of modsLeftfs,n,m,k(X) is an upper bound on the maximal number of iterations
the following algorithm can have:

1. Set X to Wfs,n,m,k(X ∪ (o, f)), where (o, f) 6∈ X .

2. If X 6= LS , goto 1.

Lemma 21. 0 ≤ modsLeftfs,n,m,k(Wfs,n,m,k(X)) ≤ 1 + |fs|(n+ 1) + (m+ 1)(k + 1)

Proof. If Wfs,n,m,k(X) = LS , we have

modsLeftfs,n,m,k(LS) = 0 ≤ 1 + |fs|(n+ 1) + (m+ 1)(k + 1)

Otherwise, we show first that 0 ≤ modsLeftfs,n,m,k(Wfs,n,m,k(X)):

modsLeftfs,n,m,k(Wfs,n,m,k(X)) = 1 + fieldModsLeftfs,n(Wfs,n,m,k(X)) + indexModsLeftm,k(Wfs,n,m,k(X))
≥ 1 + 0 + indexModsLeftm,k(Wfs,n,m,k(X)) by Lemma 7
≥ 1 + 0 + 0 by Lemma 16
> 0

Next we show modsLeftfs,n,m,k(Wfs,n,m,k(X)) ≤ 1 + |fs|(n+ 1) + (m+ 1)(k + 1):

modsLeftfs,n,m,k(Wfs,n,m,k(X)) = 1 + fieldModsLeftfs,n(Wfs,n,m,k(X)) + indexModsLeftm,k(Wfs,n,m,k(X))
≤ 1 + |fs|(n+ 1) + indexModsLeftm,k(Wfs,n,m,k(X)) by Lemma 7
≤ 1 + |fs|(n+ 1) + (m+ 1)(k + 1) by Lemma 16

Lemma 22. ∇fs,n,m,k is commutative

Proof.

x ∇fs,n,m,k y =

⊥ , if x tLS y = ⊥
Wfs,n,m,k(x tLS y) , otherwise

=

⊥ , if y tLS x = ⊥
Wfs,n,m,k(y tLS x) , otherwise

by Lemma 1

= y ∇fs,n,m,k x
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Lemma 23.
Wfs,n,m,k(X) ÀLS Wfs,n,m,k(Y )→ modsLeftfs,n,m,k(Wfs,n,m,k(X)) > modsLeftfs,n,m,k(Wfs,n,m,k(Y ))

Proof. Rephrasing the premiss gives us
Wfs,n,m,k(X) ÀLS Wfs,n,m,k(Y )

≡ Wfs,n,m,k(X) 6= Wfs,n,m,k(Y ) ∧Wfs,n,m,k(X) ⊆ Wfs,n,m,k(Y )
≡ Wfs,n,m,k(X) ⊂ Wfs,n,m,k(Y ) (4.30)

It follows that
∀loc ∈ LS . loc ∈ Wfs,n,m,k(X)→ loc ∈ Wfs,n,m,k(Y ) (4.31)
∃loc ∈ LS . loc 6∈ Wfs,n,m,k(X) ∧ loc ∈ Wfs,n,m,k(Y ) (4.32)

We therefore know that Wfs,n,m,k(X) 6= LS and therefore
modsLeftfs,n,m,k(Wfs,n,m,k(X)) = 1 + fieldModsLeftfs,n(Wfs,n,m,k(X)) + indexModsLeftm,k(Wfs,n,m,k(X))

(4.33)
By case analysis
Wfs,n,m,k(Y ) = LS :

modsLeftfs,n,m,k(Wfs,n,m,k(X))
= 1 + fieldModsLeftfs,n(Wfs,n,m,k(X)) + indexModsLeftm,k(Wfs,n,m,k(X)) by (4.33)
≥ 1 + 0 + indexModsLeftm,k(Wfs,n,m,k(X)) by Lemma 7
≥ 1 + 0 + 0 by Lemma 16
> 0
= modsLeftfs,n,m,k(LS)
= modsLeftfs,n,m,k(Wfs,n,m,k(Y ))

Wfs,n,m,k(Y ) 6= LS : By (4.32) there is some (ô, f̂) ∈ LS , such that
(ô, f̂) 6∈ Wfs,n,m,k(X) ∧ (ô, f̂) ∈ Wfs,n,m,k(Y ) (4.34)

We further differentiate between 3 cases:
f̂ 6∈ (fs ∪ Arr): This leads to the contradiction

(ô, f̂) ∈ Wfs,n,m,k(Y ) ≡ Wfs,n,m,k(Y ) = LS by Lemma 15
≡ ff by case analysis assumption

f̂ ∈ fs:
modsLeftfs,n,m,k(Wfs,n,m,k(X))

= 1 + fieldModsLeftfs,n(Wfs,n,m,k(X)) + indexModsLeftm,k(Wfs,n,m,k(X)) by (4.33)
≥ 1 + fieldModsLeftfs,n(Wfs,n,m,k(X)) + indexModsLeftm,k(Wfs,n,m,k(Y )) by Lemma 19
> 1 + fieldModsLeftfs,n(Wfs,n,m,k(Y )) + indexModsLeftm,k(Wfs,n,m,k(Y )) by Lemma 9
= modsLeftfs,n,m,k(Wfs,n,m,k(Y ))

f̂ ∈ Arr :
modsLeftfs,n,m,k(Wfs,n,m,k(X))

= 1 + fieldModsLeftfs,n(Wfs,n,m,k(X)) + indexModsLeftm,k(Wfs,n,m,k(X)) by (4.33)
≥ 1 + fieldModsLeftfs,n(Wfs,n,m,k(Y )) + indexModsLeftm,k(Wfs,n,m,k(X)) by Lemma 8
> 1 + fieldModsLeftfs,n(Wfs,n,m,k(Y )) + indexModsLeftm,k(Wfs,n,m,k(Y )) by Lemma 20
= modsLeftfs,n,m,k(Wfs,n,m,k(Y ))
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Lemma 24. X ⊆ Y → X ⊆ Wfs,n,m,k(Y )

Proof. This is trivially the case, as by definition either:

1. Wfs,n,m,k(Y ) = LS and obviously X ⊆ LS , or

2. Wfs,n,m,k(Y ) = Y ∪WN
fs,n(Y ) ∪WM

m (Y ) ∪WK
k (Y ), which contains all elements of Y and therefore

also all elements of X .

With these lemmas and helper functions we can now finally prove that ∇fs,n,m,k is a widening operator:

Theorem 1. ∇fs,n,m,k is a widening operator

Proof. We must show the following:

x vLS (x ∇fs,n,m,k y) and y vLS (x ∇fs,n,m,k y): By Lemma 22, ∇fs,n,m,k is commutative, so it suffices to
only show that x vLS (x ∇fs,n,m,k y). By case distinction we show this for the following three cases:
x = ⊥:

x vLS (x ∇fs,n,m,k y) = tt

x 6= ⊥ and y = ⊥:

x vLS (x ∇fs,n,m,k y) = x vLS Wfs,n,m,k(x tLS y)
= x vLS Wfs,n,m,k(x)
= x ⊆ Wfs,n,m,k(x)
= tt by Lemma 24

x 6= ⊥ and y 6= ⊥:

x vLS (x ∇fs,n,m,k y) = x vLS Wfs,n,m,k(x tLS y)
= x vLS Wfs,n,m,k(x ∪ y)
= x ⊆ Wfs,n,m,k(x ∪ y)
= tt by Lemma 24

A sequence produced by ∇fs,n,m,k is ultimately stationary: Given any sequence 〈y′z〉, we must prove that the
sequence 〈x′z〉 defined by

x′0 = ⊥
x′z+1 = (x′z ∇fs,n,m,k y′z)

is ultimately stationary. Proof by contradiction:
We know that x′i v x′i+1. Further, if 〈x′z〉 were not ultimately stationary, there must exist an
infinite sequence 〈i′z〉, such that i0 = 0, ij < ij+1 and x′ij = x′ij+1−1 ÀLS x′ij+1 . We show that this
sequence cannot exist by limiting the number of elements in any such sequence to a maximum of
3 + |fs|(n+ 1) + (m+ 1)(k + 1). This is the case because
1. modsLeftfs,n,m,k(x′i0) = 2 + |fs|(n+ 1) + (m+ 1)(k + 1)

By definition

modsLeftfs,n,m,k(x′i0) =


2 + |fs|(n+ 1) + (m+ 1)(k + 1) , if x′i0 = ⊥
0 , if x′i0 = LS
1 + fieldModsLeftfs,n(x′i0) + indexModsLeftm,k(x′i0) , otherwise

= 2 + |fs|(n+ 1) + (m+ 1)(k + 1) as x′i0 = x′0 = ⊥
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2. ∀j ∈ N. modsLeftfs,n,m,k(x′ij ) > modsLeftfs,n,m,k(x′ij+1)
By case distinction either
j = 0: We know

x′ij = ⊥ (4.35)

As x′ij = ⊥ ÀLS x′ij+1 , we also know

x′ij+1 6= ⊥ (4.36)

We use this to show

x′ij+1 6= ⊥ ≡ (x′ij+1−1 ∇fs,n,m,k y
′
ij+1−1) 6= ⊥

≡ (x′ij ∇fs,n,m,k y
′
ij+1−1) 6= ⊥

≡ (⊥ ∇fs,n,m,k y
′
ij+1−1) 6= ⊥

≡ (⊥ tLS y′ij+1−1) 6= ⊥
≡ y′ij+1−1 6= ⊥ (4.37)

Therefore

modsLeftfs,n,m,k(x′ij ) = modsLeftfs,n,m,k(⊥)
= 2 + |fs|(n+ 1) + (m+ 1)(k + 1)
> 1 + |fs|(n+ 1) + (m+ 1)(k + 1)
≥ modsLeftfs,n,m,k(Wfs,n,m,k(y′ij+1−1)) by Lemma 21 and (4.37)

= modsLeftfs,n,m,k(Wfs,n,m,k(⊥ tLS y′ij+1−1))
= modsLeftfs,n,m,k(⊥ ∇fs,n,m,k y

′
ij+1−1)

= modsLeftfs,n,m,k(x′ij ∇fs,n,m,k y
′
ij+1−1)

= modsLeftfs,n,m,k(x′ij+1−1 ∇fs,n,m,k y
′
ij+1−1)

= modsLeft ′fs,n,m,k(x′ij+1)

j > 0: As ⊥ ÀLS . . . ÀLS x′ij À
LS x′ij+1 we know

x′ij 6= ⊥ (4.38)

x′ij+1 6= ⊥ (4.39)

Therefore

x′ij À
LS x′ij+1

≡ (xij−1 ∇fs,n,m,k yij−1) ÀLS (x′ij+1−1 ∇fs,n,m,k y
′
ij+1−1)

≡ Wfs,n,m,k(xij−1 tLS yij−1) ÀLS (x′ij+1−1 ∇fs,n,m,k y
′
ij+1−1) by (4.38)

≡ Wfs,n,m,k(xij−1 tLS yij−1) ÀLS Wfs,n,m,k(x′ij+1−1 tLS y′ij+1−1) by (4.39)

⇒ modsLeftfs,n,m,k(Wfs,n,m,k(xij−1 tLS yij−1)) >

modsLeftfs,n,m,k(Wfs,n,m,k(x′ij+1−1 tLS y′ij+1−1)) by Lemma 23

≡ modsLeftfs,n,m,k(x′ij ) > modsLeftfs,n,m,k(x′ij+1)
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3. ∀j ∈ N. modsLeftfs,n,m,k(x′ij ) ≥ 0
By case distinction
either x′ij = ⊥:

modsLeftfs,n,m,k(x′ij ) = modsLeftfs,n,m,k(⊥)
= 2 + |fs|(n+ 1) + (m+ 1)(k + 1)
≥ 0

or x′ij 6= ⊥:

modsLeftfs,n,m,k(x′ij ) = modsLeftfs,n,m,k(xij−1 ∇fs,n,m,k yij−1)

= modsLeftfs,n,m,k(Wfs,n,m,k(xij−1 tLS yij−1))
≥ 0 by Lemma 21

4.3 Abstraction For All Heaps

Although normal form heaps built on an initial heap old are the only ones of particular interest to us, we
can extend the heap abstraction to cover all heaps by introducing a top element > to hold all heaps which
are not normal form heaps built on old :

A Heap = (AHeap,tHeap,vHeap)
AHeap = {>} ∪ ALS

x tHeap y =

> , if x = > or y = >
x tLS y , otherwise

x vHeap y =


tt , if y = >
ff , if x = > and y 6= >
x vLS y , otherwise

With this abstract domain, we can now define families of abstraction and concretization functions be-
tween 2DHeap and ALS . For all old ∈ TrmHeap and h ∈ DHeap, in particular for h the value of old in a
valid model, we define the families of abstraction and concretization functions as:

αold
h : 2DHeap → ALS

∅ 7→ ⊥

heaps 7→

> , if heaps 6⊆ D
HeapNF

old
h

{(o, f) | f 6= createdM∧ ∃h′ ∈ heaps. h′(o, f) 6= h(o, f)} , otherwise

γold
h : ALS → 2DHeap

⊥ 7→ ∅
> 7→ DHeap

ls 7→ {h′ | ∀o ∈ DObject . (h(o, createdM) = tt → h′(o, createdM) = tt)
∧ ∀f ∈ (DField \ {createdM}). (o, f) 6∈ ls → h′(o, f) = h(o, f)}
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4.3.1 Syntactic Representation of Abstract Heaps

While generating specifications, we encounter modified heap terms as updates to the program variable heap.
If we wish to join two updates where the value for heap is not identical, we need to abstract these heap terms
(and thus all possible semantic heaps they can express) and then join the resulting abstractions, possibly
widening the result thereof. We can accomplish an overapproximation of this purely on the syntactic heap
terms, by performing the following steps:

1. Find the term old ∈ TrmHeap which represents the state of the heap before the loop or method call.

2. Abstract the heap terms we wish to join, by determining a location set term for each heap term,
overapproximating all locations which may have been changed in regards to old .

3. Perform a syntactic union operation on the resulting location set terms.

4. Perform syntactic widening along the lines of the widening operator ∇fs,n,m,k.

Example 4. We consider the following initial sequent, containing a program traversing a list (of final
class List) and replacing all values with 0:

=⇒ {l := l ‖ heap := h1}[while (l != null) { l.value = 0; l = l.next; }]φ

Symbolic execution of a single loop iteration leads to the sequent:

l 6= null =⇒ {l := selectList(h1, l, next) ‖ heap := store(h1, l, value, 0)}
[while (l != null) { l.value = 0; l = l.next; }]φ

As the two heap terms h1 and store(h1, l, value, 0) are not identical, we wish to abstract and join them
before evaluating another loop iteration. The first step is therefore to determine the heap term old, repre-
senting the state of the heap before the loop. For this example, that means:

old = h1 (4.40)

In order to determine if a term h ∈ TrmHeap was built on old and if so to construct a location set term
containing all locations that may change, we define the following family of functions:

locsold : (TrmHeap × TrmLocSet)→ (TrmLocSet ∪ {>})

(h, ls) 7→



ls , if h = old
locsold(h′, singleton(o, f) ∪̇ ls) , if h = store(h′, o, f, v ) 6= old
locsold(h′, ls′ ∪̇ ls) , if h = anon(h′, ls′, h′′) 6= old
locsold(h′, ls) , if h = create(h′, o) 6= old
> , otherwise

Intuitively, the result of locsold (called with second parameter ∅̇) represents an abstract element in AHeap

which overapproximates the heap, where a result of > represents > ∈ AHeap and a location set term ls
represents the abstract element for the value of that location set. As can be seen, create does not add to
the location set term, as createdM is not a valid field in LS , while store and anon add terms reflecting the
location sets they may have modified.
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Example 5. Continuing Example 4, we now wish to abstract and syntactically join the heap terms h1 and
store(h1, l, value, 0). From (4.40), abstracting means calculating:

locsh1(h1, ∅̇) = ∅̇
locsh1(store(h1, l, value, 0), ∅̇) = locsh1(h1, singleton(l, value) ∪̇ ∅̇) = singleton(l, value) ∪̇ ∅̇

Syntactic joining results in:

locsh1(h1, ∅̇) ∪̇ locsh1(store(h1, l, value, 0), ∅̇) = ∅̇ ∪̇ singleton(l, value) ∪̇ ∅̇

Which can be simplified to:
singleton(l, value)

An overapproximative widening can be performed syntactically on the resulting location set term ls, by
using allLocs, allFields and allObjects to widen locations if it cannot be proven that the semantic location
sets represented by the terms would not be widened by ∇fs,n,m,k. This can be accomplished by starting
side proofs, leading to widenings if these side proofs cannot be closed. Let this syntactic widening be:

widenfs,n,m,k : TrmLocSet → TrmLocSet

Example 6. Continuing Example 5, we can calculate widenfs,n,m,k(singleton(l, value)). For this we open
side proofs to try and prove:

1. All object fields in singleton(l, value) are in the set fs, i.e. that fs contains the field value.

2. For each object field in singleton(l, value), the number of different objects paired with this field is
less than or equal to n, i.e. that n > 0.

3. For each object in singleton(l, value), the number of different array index fields paired with this
object is less than or equal to m. This is trivially proven, as there are no array index fields in
singleton(l, value).

4. The number of different objects paired with any array index field in singleton(l, value) is less than
or equal to k. Again, this is trivially proven, as there are no array index fields in singleton(l, value).

This leads to three separate cases:

fs does not contain the field value: Then side proof 1 is not provable and therefore:

widenfs,n,m,k(singleton(l, value)) = allLocs (4.41)

fs contains the field value and n = 0: Then side proof 2 is not provable and therefore:

widenfs,n,m,k(singleton(l, value)) = singleton(l, value) ∪̇ allObjects(value) (4.42)

Which can be simplified to:
allObjects(value)

fs contains the field value and n > 0: Then all side proofs can be proven, so:

widenfs,n,m,k(singleton(l, value)) = singleton(l, value) (4.43)
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Abstracting, joining (and possibly widening) heap terms h and h′ can thus be performed by calling
abstractold(h, h′, anonHeap), with anonHeap a fresh heap term and:

abstractold : (TrmHeap × TrmHeap × TrmHeap)→ TrmHeap

(h, h′, anonHeap) 7→



anonHeap , if locsold(h, ∅̇) = >
or locsold(h′, ∅̇) = >

anon(old,
widenfs,n,m,k(locsold(h, ∅̇) ∪̇ locsold(h′, ∅̇)),
anonHeap) , otherwise

Example 7. Continuing Example 6, we have:

abstracth1(h1, store(h1, l, value, 0)) =


anon(h1, allLocs, anonHeap) , if (4.41)
anon(h1, allObjects(value), anonHeap) , if (4.42)
anon(h1, singleton(l, value), anonHeap) , otherwise

Thus, if (4.43), the sequent for the next iteration would be:

=⇒ {l := γ{List,Null},1 ‖ heap := anon(h1, singleton(l, value), anonHeap)}
[while (l != null) { l.value = 0; l = l.next; }]φ

Abstracting the value for the program variable heap suffices as an anonymizing update for all modified
values on the heap and therefore we do not need to be concerned with modifier sets as described in [53, 9],
instead relying on the generated fixed point update U ′ to (i) anonymize all modified local variables and
heap locations, and (ii) constrain the values for local variables as well.
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5 Gathering Helpful Invariants

In addition to γ-values expressing abstraction of program variable values at the syntactic level, we want to
track additional helpful invariants. Often these helpful invariant will be relational invariants, combining
two (or more) program variables, or rather their values in certain updates. The addition of these invariants
therefore also allows modeling some forms of relational abstract domains. We therefore search for a fixed
point not of only an update, but rather a constraint/update pair.

The idea is that when refining a constraint/update pair (C1,U1) with another constraint/update pair
(C2,U2), with the goal of finding a fixed point, to allow part of the information lost in the new update
U ′ = (C1,U1) ṫ (C2,U2) due to abstraction, to be retained in the form of possibly new constraints.
Thus further abstraction can take place not only within the update, but also by refining or removing these
new constraints. Important is that the introduction, refinement and removal of these constraints does not
allow infinite chains where there were none to begin with. Therefore the set of new constraints must be
guaranteed to be finite, while refining of constraints must have only a finite maximal number of steps before
removal of the constraint and introduction of new constraints is only ever allowed when joining of values
introduces a new abstract element in U ′. This creates in essence a lexicographical ordering of abstract
elements and constraints, where as both parts are guaranteed to terminate (possibly by widening), a fixed
point can be found.

We ensure these rules for new constraints are followed, by the introduction of a placeholder update Û
within the new constraints. The purpose of the placeholder update is to be substituted by the relevant
updates where proving properties is required.

Definition 34 (Placeholder Update Û ). The placeholder update Û is a reserved symbol of type Upd. No
rules for the application of this update exist. Given an update U , the placeholder update can be replaced
in a term, formula or set of constraints with substitution [Û /U ].

We introduce the method refine, shown in Algorithm 1 on page 64, allowing a constraint set C, which
may contain the placeholder update Û , and an update U1 to be refined (with respect to the proof P ) by a
constraint/update pair (C2,U2). The result is a constraint/update pair (C ′,U ′) expressing a refinement
of (C,U1), where C ′ may contain the placeholder update Û . If refine(C,U1, C2,U2) returns (C,U1), i.e.
no refinement took place, this can be seen as a refinement fixed point being found.

Example 8. Consider the case where C does not contain the placeholder update Û and no invariant patterns
exist. The call refine(C,U1, C2,U2) sets C1 to C on line 1, as C does not contain Û . It further calculates
the following update join on line 2:

U ′ = (C1,U1) ṫ (C2,U2)

If U1 is (P,C1)-weaker than U ′ at line 3, the call returns (C,U1) at line 19, as allValid is initialized to
true on line 4 and the foreach-loop on lines 6-16 does not modify this value, as C does not contain Û .
Otherwise, it returns (C ′,U ′) at line 29, where C ′ = C, as it is initialized so at line 23 (as C does not
contain Û ) and the foreach-loop on lines 24-27 does not change this (as there are no invariant patterns).
Applications of method refine when invariant patterns do exist (and C potentially contains the placeholder

update Û ) are shown in Example 9 on page 65.

Rather than joining updates until a fixed point is found, our fixed point search for constraint/update
pairs in order to generate valid by construction specifications (see Chapter 7), will use the refinement
method refine.

When generating a loop invariant from a sequent Γ =⇒ {U }[π while . . . ω]φ,∆, we start with the
constraint/update pair (C,U ), where C = Γ∪!∆. As we can assume the constraints C when analyzing
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{U }[π while . . . ω]φ, the assumption that
∧
C[Û /U ] is trivially the case, as C does not contain Û .

We refine (C,U ) by the constraint/update pairs given by symbolic execution of the loop body leading to
open branches re-entering the loop. These refinements continue until a fixed point (C ′,U ′) is found, where
the refinement guarantees that U ′ is weaker than U and C =⇒ ∧

C ′[Û /U ] is valid. Together these
ensure that the invariant given by (C ′,U ′) is valid initially. Due to the fact that the constraint/update
pair is a fixed point, the loop body is also ensured to preserve the invariant. Therefore we can apply a
modified version of the update invariant rule introduced in [12].

When introducing new constraints in the method refine, we gather the strongest valid invariants for the
arguments, where the invariants are instantiations of invariant patterns. These invariant patterns contain
the placeholder update Û and are otherwise explained in detail in the corresponding section introducing
each type of invariant pattern.

global : Proof P
input : Constraint set C with update U1 to be refined by constraint/update pair (C2,U2), where

Û does not appear in C2 and we can assume that
∧
C[Û /U1].

output: A refined constraint/update pair.
1 C1 ← C[Û /U1];
2 U ′ ← (C1,U1) ṫ (C2,U2);
3 if U1 is (P,C1)-weaker than U ′ then
4 allValid ← true;
5 C ′ ← ∅;
6 foreach c ∈ C do
7 if c contains Û and C2 =⇒ c[Û /U2] cannot be proven then
8 allValid ← false;
9 if c can be refined to c′, such that C2 =⇒ c′[Û /U2] is valid then
10 C ′ ← C ′ ∪ {c′} /* C ′ contains a valid refinement of c */
11 end
12 /* otherwise, neither c nor any refinement thereof will appear in C ′ */
13 else
14 C ′ ← C ′ ∪ {c}
15 end
16 end
17 if allValid then
18 /* refinement not needed, return the original constraint/update pair */
19 return (C,U1)
20 end
21 else
22 /* new update is strictly weaker, we can introduce new helpful invariants */
23 C ′ ← C \ {c ∈ C | c contains Û };
24 foreach invariant pattern p do
25 c′ ← strongest invariant for p, such that C1 =⇒ c′[Û /U1] and C2 =⇒ c′[Û /U2] are valid;
26 C ′ ← C ′ ∪ {c′}
27 end
28 end
29 return (C ′,U ′)

Algorithm 1: Method refine to refine one constraint/update pair through another pair.
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5.1 Well-formedness of Heaps

An important aspect of the heaps our program calculus rules operate on is that these are well-formed
heaps, obeying certain properties [63]. Well-formedness is preserved by create as well as by store, provided
a primitive type, or a created object is stored, while anon requires both heap arguments are well-formed.
As the fresh heap introduced during introduction of γ-symbols for heaps does not need to be well-formed
(as otherwise the > element could not be expressed), we need a way to keep the well-formedness property
for those anonymized heaps which are well-formed.

To this end we introduce the following invariant pattern, where h is a program variable of type heap:

{Û }wellFormed(h) (5.1)

There are no refinement possibilities for this invariant pattern, leading to its removal if no longer valid.

Example 9 (Invariant for well-formed heaps). Given the initial sequent:

wellFormed(h), o 6= null =⇒ {heap := h}[while (o.i < 0) o.i++;]φ

After one iteration of the loop, we have the new sequent:

wellFormed(h), o 6= null, select(h, o, i) < 0 =⇒
{heap := store(h, o, i, select(h, o, i) + 1)}[while (o.i < 0) o.i++;]φ

We therefore call refine(C,U1, C2,U2), with:

C = {wellFormed(h), o 6= null}
U1 = (heap := h)
C2 = {wellFormed(h), o 6= null, select(h, o, i) < 0}
U2 = (heap := store(h, o, i, select(h, o, i) + 1))

Within the method call, line 1 sets C1 to C[Û /U1], which (as C does not contain Û ) gives us:

C1 = C = {wellFormed(h), o 6= null}

Joining (C1,U1) with (C2,U2) on line 2 gives us the new update:

U ′ = (heap := anon(h, singleton(o, f), h′))

As U1 is not (P,C1)-weaker than U ′, we initialize C ′ to C on line 23, as C does not contain Û . Then
on lines 25 and 26 we add to C ′ an instantiation c′ of the invariant pattern (5.1), where:

c′ = {Û }wellFormed(heap)

We add c′, as it is the strongest invariant for pattern (5.1), where both sequents C =⇒ c′[Û /U1] and
C2 =⇒ c′[Û /U2] can be proven:

Validity of C =⇒ c′[Û /U1]: Substituting and applying the update gives the trivially valid sequent:

wellFormed(h), o 6= null =⇒ wellFormed(h)
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Validity of C2 =⇒ c′[Û /U2]: Substituting and applying the update gives the sequent:

wellFormed(h), o 6= null, select(h, o, i) < 0 =⇒ wellFormed(store(h, o, i, select(h, o, i) + 1))

As store preserves well-formedness of heaps when storing primitives, this sequent is also valid.

The result of refine(C,U1, C2,U2) is therefore(C ′,U ′), with:

C ′ = C ∪ {c′} = {wellFormed(h), o 6= null, {Û }wellFormed(heap)}

The sequent for the next iteration will be C ′[Û /U ′] =⇒ {U ′}[while (o.i < 0) o.i++;]φ, or:

wellFormed(h), o 6= null,wellFormed(anon(h, singleton(o, f), h′)) =⇒
{heap := anon(h, singleton(o, f), h′)}[while (o.i < 0) o.i++;]φ

Symbolic execution (with heap simplification) results in the constraint/update pair:

C3 = {wellFormed(h), o 6= null,wellFormed(anon(h, singleton(o, f), h′)), select(h′, o, i) < 0}
U3 = (heap := store(anon(h, singleton(o, f), h′), o, i, select(h′, o, i) + 1))

Calling refine(C ′,U ′, C3,U3) causes the joining of updates (C ′[Û /U ′],U ′) ṫ (C3,U3), resulting in:

U ′′ = (heap := anon(h, singleton(o, f), h′′))

As U ′ is (P,C ′[Û /U ′])-weaker than U ′′ and the sequent C3 =⇒ {U3}wellFormed(heap) can be proven,
the method refine returns the fixed point (C ′,U ′).
Note: Our specification generation will use the constraint set C ′[Û /U ′].

5.2 Simple Relational Invariants

Some simple relational invariant patterns are (in)equalities between non-integer variables, and any built-in
relation between integer variables, such as >,≥, <,≤ in addition to .= and 6=.

{Û }(x1
.= x2) (5.2)

{Û }(x1 6= x2) (5.3)
{Û }χa(x1 − x2) (5.4)

For invariant patterns (5.2) and (5.3) between non-integer terms, we allow no refining of these and so
removal or weakening the abstract element for x1 and/or x2 are the only possible ascending options.

The invariant pattern (5.4) allows invariants x1 R x2 for integer program variables x1, x2 and an integer
relation R to be easily expressed in an abstract domain A for integers, by finding a suitable value for the
integer term x1 − x2 within A . This allows for refinement by ascending within A .

Note: In all examples using an integer abstract domain in this chapter, we use the sign domain for
integers, so that a in (5.4) can only be in the set {⊥, <, 0, >,≤, 6=,≥,>} as we thus do not have to deal
with widening. In general any domain can be used, but if widening operators are required in the domain,
they will be required for invariant patterns as well.
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Example 10 (Relational Integer Invariant). Given the initial sequent:

=⇒ {x := 5 ‖ y := 1}[while (x > y) y++;]φ

After one iteration of the loop, we call: refine(∅, (x := 5 ‖ y := 1), ∅, (x := 5 ‖ y := 2))
Joining leads to the update:

U ′ = (x := 5 ‖ y := γ>,1)

As the initial update is not (P,C)-weaker than U ′, we introduce {Û }χ>(x− y), due to the valid sequents:

=⇒ {x := 5 ‖ y := 1}χ>(x− y) =⇒ {x := 5 ‖ y := 2}χ>(x− y)

The result of refine is (C ′,U ′), with:

C ′ = {{Û }χ>(x− y)}

Symbolic execution of C ′[Û /U ′] =⇒ {U ′}[while (x > y) y++;]φ for the next iteration results in:

5 > γ>,1 =⇒ {x := 5 ‖ y := γ>,1 + 1}[while (x > y) y++;]φ

Calling refine(C ′,U ′, {5 > γ>,1}, (x := 5 ‖ y := γ>,1 + 1)) leads to the joined update:

U ′′ = (x := 5 ‖ y := γ>,2)

While U ′ is (P,C ′[Û /U ′])-weaker than U ′′, the sequent C2 =⇒ {U2}χ>(x− y) cannot be proven, so a
fixed point has not yet been found. The invariant must be refined, and so we replace {Û }χ>(x − y) with
{Û }χ≥(x− y), as this can be shown:

Validity of C2 =⇒ {U2}χ>(x− y): Simplifying gives the valid sequent:

5 > γ>,1 =⇒ 5− (γ>,1 + 1) ≥ 0

The constraint/update pair for the next iteration is (C ′′,U ′′), with:

C ′′ = {{Û }χ≥(x− y)}

The next iteration will reveal (C ′′,U ′′) is a fixed point, resulting in the specification generation using:

(C ′′[Û /U ′′],U ′′) = ({5 ≥ γ>,2}, (x := 5 ‖ y := γ>,2))

Only allowing instantiations of the invariant pattern for program variables ensures that there are only
a finite number of such invariants. However, it can be quite useful to increase the number of program
variables before beginning the first refinement, by adding for each program variable x a fresh program
variable xold containing the value for x in the initial update. This allows us to track, for example, that the
value for x can only be increased within a loop.
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5.3 Affine Term Invariants

Another source for helpful invariants are terms which have an affine relationship with a loop iteration. In
order to be able to introduce such invariants, when analyzing a loop, we introduce a fresh program variable
it, which stores the value of the current iteration, and add program statements to the loop to ensure that
this is so, translating (5.5) into (5.6) before continuing with the loop analysis.

Γ =⇒ {U }[π while (g) body ω]φ,∆ (5.5)
Γ =⇒ {U ‖ it := 0}[π while (g) { it++; body } ω]φ,∆ (5.6)

The affine term invariant pattern then has the form:
{Û }t .= (c1 + {Û }it ∗ c2) (5.7)

Intuitively, a term t is affine to a loop iteration if {U }t is equal to c1 for the initial update U and in
an update Un expressing the state after executing the loop body n times {Un}t is equal to c1 + n ∗ c2.
Iteration affine invariants cannot be refined, but can only be removed if no longer valid.
Example 11 (Iteration Affine Invariant). Given the program and sequent from Example 10:

=⇒ {x := 5 ‖ y := 1}[while (x > y) y++;]φ
Before continuing the analysis, we first add the program variable it:

=⇒ {x := 5 ‖ y := 1 ‖ it := 0}[while (x > y) { it++; y++; }]φ
Both terms x and y are iteration affine and as such the fixed point constraint/update pair is:

C ′ = {{Û }x .= 5 + {Û }it ∗ 0, {Û }y .= 1 + {Û }it ∗ 1}
U ′ = (x := 5 ‖ y := γ>,2 ‖ it := γ≥,2)

C ′ can be simplifyied to {{Û }x .= 5, {Û }y .= 1 + {Û }it} and C ′[Û /U ′] is {5 .= 5, γ>,2
.= 1 + γ≥,2}.

We allow the term t to be an integer program variable, but also allow certain other terms. In order to
ensure only a finite set of affine term invariants can be introduced, we restrict these other terms to only
such that appear inside a call to the method arr , i.e. are indices in an array access or modification. This
will allow for more useful array invariants, as seen in Section 5.5.
Example 12 (Iteration Affine Invariant for an Array Index). Given the program P and sequent:

=⇒ {heap := h ‖ x := v}[while (x > 1) { x++; a[x] = 0; x=x-3; }]φ
Before continuing the analysis, we first add the program variable it:

=⇒ {heap := h ‖ x := v ‖ it := 0}[while (x > 1) { it++; x++; a[x] = 0; x=x-3; }]φ
After symbolic execution of a loop iteration we have the following sequent returning to the loop entry:

=⇒ {heap := store(h, a, arr(v + 1), 0) ‖ x := v − 2 ‖ it := 1}[while . . .]φ
Refinement results in the constraint/update pair (∅,U ), where:

U = (heap := anon(h, singleton(a, arr(v + 1)), h′) ‖ x := γ≥,1 ‖ it := γ≥,2)
Symbolic execution of the next iteration gives the following update:
heap := store(anon(h, singleton(a, arr(v + 1)), h′), a, arr(γ≥,1 + 1), 0) ‖ x := γ≥,1 − 2 ‖ it := γ≥,2 + 1
The term γ≥,1 + 1 can be found within a call to arr . As we can trace γ≥,1 back to the value of x before
the iteration, replacing γ≥,1 with x leads to the symbolic pivot (see [34]) x + 1. The value for x + 1 in the
initial update was v + 1, while the difference of the values for x + 1 between successive updates is −2. All
this leads to the generation of the invariant pattern:

{Û }(x + 1 .= v + 1 + it ∗ −2)
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5.4 Relational Heap-Object Invariants

Relational invariants combining a program variable of type heap and a program variable of some subtype
of Object can allow exploring the fields of an object on the heap. Given program variables h of type heap
and o of type Object, as well as f ∈ Field , we can access the value for the field f of object o on heap h by:

select(h, o, f)

Using this, we can generate various invariants regarding this value. First, we can choose an appropriate
abstract domain for the type of the field and have the invariant pattern:

χa(select(h, o, f)) (5.8)

Second, we can generate simple relational invariants between the value on the heap and a program
variable or a further value on a (possibly different) heap, such as with the invariant patterns:

{Û }(select(h, o, f) 6= x) (5.9)
{Û }χa(select(h, o, f)− x) (5.10)

{Û }(select(h, o, f) .= select(h’, o’, f’)) (5.11)

Third, we can generate affine term invariants using the value on the heap in place of a program variable,
with the invariant pattern:

{Û }select(h, o, f) .= c1 + {Û }it ∗ c2 (5.12)

In all three cases we only allow field f to be an element of the finite set of fields defined by the java
program without array index fields, or to be an array index field mentioned explicitly in the location set
of a heap γ-symbol, such that we can be ensured of a finite set of invariants which can be so instantiated.
Widening in the heap abstraction ensures that only a finite number of array fields will be mentioned
explicitly.

Example 13 (Integer abstraction for value on heap). Given a program P and the sequent:

C =⇒ {heap := h}[while (o.i < 0) o.i++;]φ

Where C = {wellFormed(h), o 6= null, select(h, o, i) < 0}. Refining after the first iteration introduces
not only {Û }wellFormed(heap), but also the invariant:

{Û }χ≤(select(heap, o, i))

The constraint set C ′[Û /U ′], where (C ′,U ′) is the fixed point for the loop, is:

C ∪ {wellFormed(anon(h, singleton(o, i), h′′)), select(anon(h, singleton(o, i), h′′), o, i) ≤ 0}

Which can be simplified to:

C ∪ {wellFormed(anon(h, singleton(o, i), h′′)), select(h′′, o, i) ≤ 0}
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5.5 Array Invariants

If widening in the abstract domain for heaps has resulted in all array index fields for an object of an array
type being anonymized, we cannot generate invariants for each of these fields separately, as this would be
an infinite set of constraints. We need a way to express invariants about partitions of the array.

The idea is to find an (ideally minimal) overapproximation of all modified fields and create an invariant
pattern which contains both an invariant about this partition, as well as the invariant that nothing has
changed outside of this partition.

In essence we take a relational heap-object invariant pattern and apply a universal quantifier for a certain
partition P ⊆ Z of array indices on it. At the same time we constrain the array at all indices not in P to
be equal to their corresponding value in a different heap. This leads to the general invariant pattern:

{Û }((∀int i; i 6∈ P ; select(h, o, arr(i)) .= select(h’, o, arr(i))) ∧ (∀int i; i ∈ P ; pattern)) (5.13)

Where pattern can be, for example:

χa(select(h, o, arr(i)))
or select(h, o, arr(i)) .= x

Additionally, as array index fields rely on an underlying integer value, we can allow pattern to compare
some field arr(i) with some other field arr(f(i)) for some function f : Z→ Z, as in:

select(h, o, arr(i)) .= select(h’, o’, arr(f(i)))
or χa(select(h, o, arr(i))− select(h’, o’, arr(f(i))))

We must restrict the type of functions f allowed, so as to ensure only a finite number of invariants can be
instantiated. This is accomplished by allowing only those functions which appear within arr in the update
used for refinement.

Example 14 (Array Reversal). Given a program copying an array b backwards into another array a, we
consider the following updates encountered during analysis (where U is the state before and U ′ after an
iteration of the loop):

U = (. . . ‖ x := γ≥,1 ‖ heap := h′)
U ′ = (. . . ‖ x := γ≥,1 + 1 ‖ heap := store(h′, a, arr(γ≥,1), select(h′, b, arr(length(a)− 1− γ≥,1))))

Inside arr is the index length(a) − 1 − γ≥,1. We can trace γ≥,1 back to a program variable, therefore we
allow the function f(i) = length(a)− 1− i.
As pattern the following will be quite useful:

select(heap, a, arr(i)) .= select(heap, b, arr(length(a)− 1− i))

Refinement of invariants using the array invariant pattern (5.13) is possible either by refinement within
pattern, or by refinement of the chosen partition (or both).

We turn now to what form of partitions are possible, and how these can be refined. At the highest
abstraction level before removal of the invariant pattern is the partition containing all legal array indices
of the array in o. This partition allows reformulating i ∈ P and i 6∈ P to:

i ∈ P : 0 ≤ i ∧ i < length(o) (5.14)
i 6∈ P : 0 > i ∨ i ≥ length(o) (5.15)
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Beneath this abstraction level are contiguous ranges of indices [l, r), with 0 ≤ l ≤ r < length(o), such
that all indices between l (inclusive) and r (exclusive) are within P :

i ∈ P : l ≤ i ∧ i < r (5.16)
i 6∈ P : l > i ∨ i ≥ r (5.17)

When generating such an invariant, we choose l and r based on the term within arr in the refinement
update and the value for this term in the initial update.

Example 15 (Contiguous Range Example). Given the following sequent:

v > 0 =⇒ {x := v}[while (x < b.length) { b[x-1] = 0; x = x*x; }]φ

Refinement after one iteration gives the update:

x := γ>,1 ‖ heap := h′

Where h′ is the heap abstraction. Symbolic execution from this program state leads to the update:

x := γ>,1 ∗ γ>,1 ‖ heap := store(h′, b, arr(γ>,1 − 1), 0)

The index within arr is γ>,1 − 1. As γ>,1 can be traced back to the program variable x, we choose x − 1
as upper bound and the value thereof in the initial update (v − 1) as lower bound. This gives us an array
invariant pattern:

{Û }((∀int i; v − 1 > i ∨ i ≥ x− 1; select(heap, b, arr(i)) .= select(heapold, b, arr(i)))
∧ (∀int i; v − 1 ≤ i ∧ i < x− 1;χa(select(heap, b, arr(i)))))

While after four iterations, for example, b has been modified only at indices {v −1, v 2−1, v 4−1, v 8−1},
we overapproximate this range with the contiguous range {v − 1, v , v + 1, . . . , v 16 − 2}.
Without any further knowledge of the program, the only abstract element for which this can be proven is
>, leading to the simplified invariant:

{Û }∀int i; v − 1 > i ∨ i ≥ x− 1; select(heap, b, arr(i)) .= select(heapold, b, arr(i))

Finally, the lowest abstraction level is that of iteration affine ranges. The value c1 is the first index
at which the array will be modified and therefore must be non-negative, as array indices are always non-
negative. The value c2 determines how big the affine step is and in which direction. For an affine range
with positive c2, we have (with % the modulo operator):

i ∈ P : c1 ≤ i ∧ i < c1 + it ∗ c2 ∧ (i− c1)%c2
.= 0 (5.18)

i 6∈ P : c1 > i ∨ i ≥ c1 + it ∗ c2 ∨ (i− c1)%c2 6= 0 (5.19)

While the affine range for a negative c2 is:

i ∈ P : c1 + it ∗ c2 < i ∧ i ≤ c1 ∧ (c1 − i)%(0− c2) .= 0 (5.20)
i 6∈ P : c1 + it ∗ c2 ≥ i ∨ i > c1 ∨ (c1 − i)%(0− c2) 6= 0 (5.21)

Note: If c2 = 0, only one value ever gets modified so we need not introduce a range invariant.
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Example 16 (Affine Range Example). Continuing from Example 12, where we had the initial extended
sequent:

=⇒ {heap := h ‖ x := v ‖ it := 0}[while (x > 1) { it++; x++; a[x] = 0; x=x-3; }]φ

At the start of a later iteration the update was:

heap := anon(h, singleton(a, arr(v + 1)), h′) ‖ x := γ≥,1 ‖ it := γ≥,2

While the update after symbolic execution of the loop body was:

heap := store(anon(h, singleton(a, arr(v + 1)), h′), a, arr(γ≥,1 + 1), 0) ‖ x := γ≥,1 − 2 ‖ it := γ≥,2 + 1

This leads to the affine term invariant:

{Û }(x + 1 .= v + 1 + it ∗ −2) (5.22)

We can now add the appropriate affine range invariant, where we know each value at a modified index is
now 0:

{Û }((∀int i; v + 1 + it ∗ −2 ≥ i ∨ i > v + 1∨(v + 1− i)%2; (5.23)
select(heap, a, arr(i)) .= select(heapold, b, arr(i)))

∧(∀int i; v + 1 + it ∗ −2 < i ∧ i ≤ v + 1∧(v + 1− i)%2 .= 0;χzero(select(heap, a, arr(i)))))

Here we lose no precision, as after four iterations, for example, both the actual set of indices at which the
array has been modified and our affine range modification set are {v + 1, v − 1, v − 3, v − 5}.

As can be seen in Example 16, we require that both the affine range invariant (5.23) and the affine term
invariant (5.22) can be proven in further iterations. If this is the case, as it is in the example, the set
of indices at which the array a can be modified is kept very precise. However, without the affine term
invariant we cannot prove that the affine range invariant is preserved for any iteration, making this an
integral part of the whole.

Note on array aliasing problem

An inherent problem when dealing with arrays is the concept of array aliasing, i.e. that multiple program
variables of array type contain the same array object. This causes reasoning about an array a to have to
take into account not only what may happen to a itself, but also any other array b which might just be
the same object as a.

As our approach utilizes a theorem prover with a sound calculus for Java to check the validity of potential
invariants, we are not susceptible to these problems. Any assumptions made about program variables of
array type must still be shown to be valid sequents and therefore aliasing problems will at most cause some
invariants to be refined and/or removed, where a better option may have been to modify them slightly.
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6 Analysis of Loops With Non-standard Control Flows

The approach to loop analysis given in [12] is based on a fragment of Java not containing any sort of
non-standard control flow out of loops. Java, however, has many such possibilities. Ignoring these allows a
simple loop unrolling prior to analysis of the loop body in a side proof. Taking non-standard control flows
out of loops into account requires re-thinking this.

In this chapter we first show how the JavaDL calculus rules for loops deal with non-standard control
flows. We then discuss what our purposes for analyzing loops are and how best to solve these needs,
describing the changes necessary for our side proof calculus.

6.1 Unrolling Loops With Non-standard Control Flows

Beckert, Hähnle and Schmitt [9] describe the JavaDL rule for loop unrolling (page 126):

‘In the general case where break and/or continue occur, the following more complex rule
version has to be used:

loopUnwind
Γ =⇒ [π if (e) l’:{ l”:{ p′ } l1 : . . . ln : while (e) { p } } ω]φ,∆

Γ =⇒ [π l1 : . . . ln : while (e) { p } ω]φ,∆

where
• l′ and l′′ are new labels,
• p′ is the result of (simultaneously) replacing in p

– every “break li” (for 1 ≤ i ≤ n) and every “break” (with no label) that has the
while loop as its target by break l′, and

– every “continue li” (for 1 ≤ i ≤ n) and every “continue” (with no label) that has
the while loop as its target by break l′′.

(The target of a break or continue statement with no label is the loop that immediately
encloses it.)’

The update application {U } is implicitly present before the box modalities of the given rule. Beckert,
Hähnle and Schmitt [9] further note (page 127):

‘In the “unwound” instance p′ of the loop body p, the label l′ is the new target for break
statements and l′′ is the new target for continue statements, which both had the while loop
as target before. This results in the desired behaviour: break abruptly terminates the whole
loop, while continue abruptly terminates the current instance of the loop body.
A continue (with or without label) is never handled directly by a JAVA CARD DL rule,

because it can only occur in loops, where it is always transformed into a break statement by
the loop rules.’

Indeed, the continue (with or without label) is always transformed into a labeled break statement and
unlabeled break statements are also never handled directly by any JavaDL rule, as they may only occur
in loops and switch blocks, where all existing rules transform them into labeled break statements.

Note:
Beckert, Hähnle and Schmitt [9] supply a rule for dealing with unlabeled break statements, but this

rule can never be applied due to the transformations performed, nor would the rule’s application make
any sense. The rule is not present in the KeY system and we therefore stand by the above statement that
unlabeled break statements are never handled directly by any JavaDL rule.
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6.2 Proving Loop Invariants for Loops With Non-standard Control Flows

The following two approaches for a loop invariant rule for loops with non-standard control flows are given
in Beckert, Hähnle and Schmitt [9] on page 148, where the first more theoretical approach is described in
detail, while the second more pragmatic approach is the one implemented in KeY:

Firstly, the logic Java Card DL could be enriched with additional labelled modalities []R
and 〈〉R with R ⊆ {break, exception, continue, return} referring to the reason R of a possible
abrupt termination. The semantics of a formula [p]Rφ is that, if the program p terminates
abruptly with reason R, then the formula φ has to hold in the final state, whereas 〈p〉Rφ
expresses that p terminates abruptly with reason R and in the final state φ holds.
The second possibility for distinguishing non-termination and abrupt termination is to per-

form a program transformation such that the resulting program catches all top-level exceptions
and thus always terminates normally.’

Both approaches are inherently incomplete. Additionally, a bug in KeY made the implementation un-
sound.

6.2.1 Theoretical Approach

We consider the rule loopInvariantRule taken from Beckert, Hähnle and Schmitt [9] utilizing labeled modal-
ities for applying a loop invariant, where AT = {break, exception, return}, AT ′ = {exception} and
U ′ = V (Mod) with Mod a correct modifier set [53]:

loopInvariantRule
Γ =⇒ {U }Inv,∆
Γ , {U ′}Inv =⇒ {U ′}[boolean v=nse;](v .= TRUE→ ([p]Inv ∧ [p]continueInv)),∆
Γ , {U ′}Inv, {U ′}〈boolean v=nse;〉AT ′ true =⇒ {U ′}[π v=nse; ω]φ,∆
Γ , {U ′}Inv, {U ′}〈boolean v=nse;〉(v .= TRUE ∧ 〈p〉AT true) =⇒ {U ′}[π v=nse; p ω]φ,∆
Γ , {U ′}Inv =⇒ {U ′}[boolean v=nse;](v .= FALSE→ [π ω]φ),∆

Γ =⇒ {U }[π while (nse) { p } ω]φ,∆
By removing the inactive statements and remaining program surrounding the loop, it is ensured that

control flow will not leave the loop during analysis of the formula [p]Inv, for example. There are, however,
a few problems with this approach, starting with the reason given in [9] when they mention why this is not
the implemented solution: Introducing so many different modalities means quite an increase in the number
of calculus rules which must be introduced into the KeY system, which in addition to involving intensive
work also carries the increased risk of introducing errors into the system.

In addition to the problem recognized in [9], by removing the method-frame information contained in π
when trying to analyze the loop body p, information is lost without which certain calculus rules can no
longer by applied.

Consider the following sequent:

obj .= o =⇒ [method-frame(source=...,this=o):{while(i > 0){i = this.x - obj.x;}}]i .= 0

Intuitively it is clear that applying the loop invariant i ≥ 0 should suffice to prove this sequent, as the
statement i = this.x - obj.x; is equivalent to i = 0; within the given context and method frame
where both obj and this points to o (which cannot be null as this references are never null). However,
applying this loop invariant leads to the following sequents expressing that the body preserves the loop
invariant needing to be proven:

obj .= o, c > 0 =⇒{i := c ‖ v := TRUE}[i = this.x - obj.x;]i ≥ 0 (6.1)
obj .= o, c > 0 =⇒{i := c ‖ v := TRUE}[i = this.x - obj.x;]continuei ≥ 0 (6.2)
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These sequents cannot be proven, as the information that this points to o has been lost. Additionally,
knowing from within which class the implementation came is needed in order to correctly resolve method
calls. This inherent incompleteness of the theoretical approach is the main reason why we chose a different
solution.

6.2.2 Implemented Approach

In the KeY tool the implemented solution was to transform the loop body by:

1. initializing fresh variables (flags) to track if abrupt termination took place and how,

2. initializing fresh variables to track which exception was thrown or what the return value should be
in those cases of abrupt termination,

3. replacing return statements with setting the return flag, storing the return value (unless the method
is void) and breaking out of the loop, and

4. replacing continue statements which refer to the loop and break statements refering to the loop
or a block outside of the loop with setting an appropriate flag and breaking out of the loop. Note
that although we do not transform continue statements refering to a different loop when performing
loop body transformation, we will still never encounter these statements during symbolic execution
as both rules to deal with loops transform these statements into break statements at some point.

5. As thrown exceptions cannot easily be traced to their origin, due to implicitly thrown exceptions
and exceptions leaving method calls, the program transformation included wrapping the transformed
loop body in a try-catch block which catches all throwables and sets an exception flag, as well as
storing the caught throwable for later use.

Example 17 (Loop transformation). Figure 6.1 shows a loop containing abrupt termination possibilities
and its transformed loop body generated according to the above rules.

Where the classical loop invariant rule differentiates between a use case branch and a body preserves
invariant branch, in the KeY tool the body preserves invariant branch must also consider abrupt termination
of the loop body and therefore in addition to showing that the loop invariant is preserved in some instances,
the use case must be proven in other instances. This was done in the following manner: Let π and ω be
the inactive statements surrounding the loop invocation, ϕ be the use case property to prove and inv be
the invariant which should hold in each iteration. Further let Γ ′ and U ′ be the new constraint set and
update resulting from executing the modified loop body until (abrupt) termination thereof, if the guard
held. Then depending on which flags were set due to a return, break or continue statement or a thrown
exception:

No flags set: This is the basic case in which the loop body was executed without any abrupt termination.
The loop invariant inv must therefore hold in the new program state. It therefore remains to show
that Γ ′ =⇒ {U ′}inv.

The return flag set: It remains to show that Γ ′ =⇒ {U ′}[π return returnExpr; ω]ϕ. Or a simpler
version, in case of a return statement without an argument.

The break flag for an unlabeled break (or labeled break refering to the current loop) set: It remains to show
that Γ ′ =⇒ {U ′}[π ω]ϕ, as the break statement has been fully resolved by leaving the loop.

A break flag for a statement break li; is set, where li is not a label for the current loop: It remains to show
that Γ ′ =⇒ {U ′}[π break li; ω]ϕ, as the break statement must exit the block labeled li before
it is fully resolved.
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while (guard) {
if (b1) return r;
if (b2) continue;
st

}

boolean rtrn#1 = false;
int returnExpr#1;
boolean cont#1 = false;
boolean exc#1 = false;
Throwable thrownExc#1;
try {

l1: {
if (b1) {

returnExpr#1 = r;
rtrn#1 = true;
break l1;

}
if (b2) {

cont#1 = true;
break l1;

}
st

}
}
catch (Throwable t) {

exc#1 = true;
thrownExc#1 = t;

}

Figure 6.1: Transforming Loop Body Containing Abrupt Termination

The continue flag set: It remains to show that Γ ′ =⇒ {U ′}inv, as the continue flag marks that control
flow would remain inside the loop and therefore requires ensuring that the invariant holds.

The flag due to a caught exception is set: As the exception was caught outside of the loop body, it therefore
was thrown within the loop body and not caught or otherwise dealt with. It therefore remains to
show that Γ ′ =⇒ {U ′}[π throw thrownExc; ω]ϕ.

There are, however, many problems with this approach. They all result from the same source problem:
that the Java language does not easily allow program transformation, as program statements which seem
to imply something (for example a return statement returning from the method call) only ever attempt
to perform these actions, but can be stopped from doing so for various reasons: exceptions being thrown
while calculating the return value, finally-blocks being executed and redirecting control flow, etc. The
resulting problems can be summed up as follows:

Multiple flags set: Java control flow only ever allows abrupt termination for a single reason. An abrupt
termination for reason X while attempting to terminate abruptly for reason Y will result only in
abrupt termination for reason X. The reason Y is completely forgotten. However, the solution
implemented in KeY allows multiple flags to be set without it being clear which reason was the last
and therefore only relevant reason. This is at the least inherently incomplete, as the only safe solution
is to treat multiple flags being set such that we must prove all resulting sequents based on each flag
which is set, although it is of course known that only one of these caused the abrupt termination of
the loop.

Flag(s) for abrupt termination set in spite of normal termination: This is a much more serious problem than
mere incompleteness, as this makes the loop invariant rule unsound. On the positive side it is caused
only by code specifically chosen to exploit this weakness, code which would otherwise never occur
in real programs. However, it remains a serious problem. To illustrate we examine the loop in
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while (guard) {
try {

try {
break;

} finally {
throw new Exception();

}
} catch (Exception e) {

// ignore
}

}

Listing 6.1: No Abrupt Termination of Loop, Despite Flags Set

Listing 6.1. While it appears at first glance that the loop will be terminated abruptly by the break
statement, the finally block must first be executed. This throws an exception which is caught
within the loop and ignored. The result of all this is that the loop is not abruptly terminated at
all! However, due to the program transformations on the loop body, the loop invariant rule assumes
the loop was abruptly terminated due to an encountered break statement and therefore relies on
the proof of an irrelevant sequent while ignoring the actual control flow and therefore the relevant
sequent.

These problems can be solved by extending the program transformation to finally blocks as well, such
that the cause of abrupt termination is saved at the beginning of the finally block before resetting the
flag and if the end of the block is reached the flag for said cause is set once again. This allows abrupt
termination from within a finally block to in essence overwrite the cause for abrupt termination. However,
the fact that program transformation is a tricky subject which allowed the problem in the first place is the
motivation to develop a solution with little to no program transformation.

Note that correctly modelling abrupt termination within finally blocks has stumped other researchers
as well. The tool Joogie [5] translates Java sourcecode into bytecode before analyzing it for infeasible code,
i.e. code for which no feasible execution path exists which leads to its execution. The authors recognize
some of the problems with finally blocks: as these do not exist in the translated bytecode, the contents
of the finally block is instead copied for each potential exit point. This can lead to infeasible bytecode in
one copy without infeasible Java sourcecode, as the bytecode in another copy might not be infeasible. Due
to this or other reasons their implementation fails to correctly identify whether infeasible code exists within
examples similar to Listing 6.1, erring on the side of caution by stating that it cannot make any definitive
statement about the existence of infeasible code. Huisman and Jacobs [40] describe an approach to Java
program verification for code containing abrupt termination, focusing on break, continue and return
statements, as well as the corresponding points at which the abrupt termination is “caught” and normal
termination restored. They briefly mention abrupt termination via exceptions and the handling thereof with
try-catch(-finally) blocks, but fail to recognize that finally blocks must also be considered a catching
mechanism for the other forms of abrupt termination as well. However, in [41] Jacobs describes the solution
for try-catch-finally blocks, which correctly deal also with other forms of abrupt termination.

6.3 Generating Loop Invariants for Loops With Non-standard Control Flows

Our approach to automatic generation of loop invariants does not mesh perfectly with either of the ap-
proaches to loops with non-standard control flows, as in both of those cases leaving the loop exceptionally
produced additional proof obligations of some sort. While we are generating a loop invariant, i.e. a state-
ment valid at every iteration entry point, leaving the loop exceptionally immediately reduces our interest
in that branch to zero. We need not consider a single further statement execution, update application
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or proof simplification on any proof branch which will not reach the next iterations entry point. For this
reason our loop body analysis can be simplified in some ways. We do, however, require the addition of new
calculus rules for continue and unlabeled break statements which previously were not required, as these
statements could never become the active statement via the existing JavaDL rules.

6.3.1 Unrolling the Loop

The analysis of loops is started when encountering a sequent of the form:

Γ =⇒ {U }[π while (g) st ω]ϕ,∆ (6.3)
or Γ =⇒ {U }[π l1:. . . ln: while (g) st ω]ϕ,∆ (6.4)

For our side proof, ω does not interest us at all, as it is only relevant when the loop is left, normally or
exceptionally. For this reason most of π is also not of interest. However, π can contain method frames,
which contain information possibly of relevance while analyzing the loop body, such as class names and
what the method’s this reference points to. We therefore cannot completely ignore π and ω. However,
we do not want to allow control flow to enter any part of π or ω, as we are interested only in a single
execution of the loop’s body, followed by the decision whether we are continuing the loop, or leaving it for
any reason. In order to accomplish this, we extend the set of inactive prefix types to include an opening
loop scope � and also add a matching closing loop scope �. No calculus rules exist which will allow a loop
scope to be exited, ensuring that at all times symbolic execution performs rules only inside the loop scope.

Furthermore, we need not perform loop unrolling in the sense that one iteration is unrolled in front of
the loop, as in the side proof we do not actually care about the original loop, but only its body. In [12]
the original loop is used only as a marker, in that if symbolic execution of the body results in the original
loop being reached again, the loop will be continued. We can instead use the statement “continue;” as a
marker. The sequent which will be given to the side proof, where ψ is an uninterpreted predicate ensuring
no updates or constraints will be lost, is therefore:

Γ =⇒ {U }[π � if (g) { st continue; } � ω]ψ,∆ (6.5)
or Γ =⇒ {U }[π � if (g) l1 : . . . ln :{ st continue; } � ω]ψ,∆ (6.6)

As can be seen we need not change the loop body st.

6.3.2 Addition of New Rules

Unrolling the loop body verbatim introduces three new active statements which were previously not possible
to encounter. There are the unlabeled break and both the labeled and unlabeled continue. The unlabeled
continue will also be encountered if the loop body terminates normally, as it has been added after the
loop body in the initial sequent given to the side proof. The other approaches turned occurrences of these
break and continue statements within the original loop body into labeled break statements. We consider
what encountering each of these new statements entails with generation of loop invariants in mind:

break: Encountering an unlabeled break attempts to exit the loop. If the unlabeled break therefore
manages to propagate all the way to the loop scope, this signals that it was not ignored via a finally
block as in Listing 6.1 and therefore leads to an irrelevant branch. In order to be able to perform
this propagation we therefore need to introduce some new rules:

blockBreakNoLabel
Γ =⇒ {U }[π break; ω]ϕ,∆

Γ =⇒ {U }[π l1, . . . , ln:{ break; p } ω]ϕ,∆
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tryBreakNoLabel
Γ =⇒ {U }[π r break; ω]ϕ,∆

Γ =⇒ {U }[π try{ break; p } cs finally{ r }ω]ϕ,∆

continue: Encountering an unlabeled continue attempts to exit the current loop iteration and re-enter
the loop. If this is successful, this branch is relevant for the genation of loop invariants. But, as
noted above, we must first propogate the continue statement upward in case a finally block is used
to ignore its control flow. For this propagation we introduce new rules:

blockContinueNoLabel
Γ =⇒ {U }[π continue; ω]ϕ,∆

Γ =⇒ {U }[π l1, . . . , ln:{ continue; p } ω]ϕ,∆

tryContinueNoLabel
Γ =⇒ {U }[π r continue; ω]ϕ,∆

Γ =⇒ {U }[π try{ continue; p } cs finally{ r }ω]ϕ,∆

continue li: Encountering a labeled continue statement attempts to exit the current iteration of the
loop targeted by the label and re-enter said loop. This can be the innermost loop, making the labeled
continue equivalent to an unlabeled continue, or it could be a surrounding loop, in which case
before exiting that loop’s current iteration we first have to exit the innermost loop abruptly, making
such a labeled continue equivalent to a break for our purposes of evaluating whether the branch is
relevant or not.

outer: while (se1)
inner: while (se2) {

continue inner;
}

outer: while (se1)
inner: while (se2) {

continue outer;
}

Figure 6.2: Continuing With the Inner or Outer Loop

In order to understand our reasoning when introducing new rules for labeled continues, consider the two
program fragments shown in Figure 6.2. Step by step we now show the sequents reached or generated
for side proofs in the analysis of these loops, to easily demonstrate the difference between the two. (The
top sequent is always for the inner continuation, the bottom sequent for outer continuation.) Upon first
encounter of the outer loop, we start a new side proof:

=⇒ [� if (se1) outer:{inner: while (se2){continue inner;} continue;}�]ψ
=⇒ [� if (se1) outer:{inner: while (se2){continue outer;} continue;}�]ψ

In this side proof we encounter the inner loop:

se1 .= true =⇒ [� outer:{inner: while (se2){continue inner;} continue;}�]ψ
se1 .= true =⇒ [� outer:{inner: while (se2){continue outer;} continue;}�]ψ

This leads to a new side proof:

se1 .= true =⇒ [� outer:{� if (se2) inner:{{continue inner;} continue;}� continue;}�]ψ
se1 .= true =⇒ [� outer:{� if (se2) inner:{{continue outer;} continue;}� continue;}�]ψ
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Simplifying until the labeled continue is the active statement gives us:

se1 .= true, se2 .= true =⇒ [� outer:{� inner:{{continue inner;} continue;}� continue;}�]ψ
se1 .= true, se2 .= true =⇒ [� outer:{� inner:{{continue outer;} continue;}� continue;}�]ψ

Our rules must be able to propagate the labeled continue statements out of blocks, but also be able to
show that one sequent is relevant, while the other is not. We therefore introduce the following rules for
labeled continue statements:

blockContinueNoMatch
Γ =⇒ {U }[π continue l′; ω]ϕ,∆

Γ =⇒ {U }[π l1 : . . . ln :{ continue l′; p } ω]ϕ,∆
, if ∀i ∈ {1, . . . , n}. l′ 6= li

tryContinueLabel
Γ =⇒ {U }[π r continue l′; ω]ϕ,∆

Γ =⇒ {U }[π try{ continue l′; p } cs finally{ r }ω]ϕ,∆

blockContinueLabel
Γ =⇒ {U }[π continue; ω]ϕ,∆

Γ =⇒ {U }[π l1 : . . . li : . . . ln :{ continue li; p } ω]ϕ,∆

The rules blockContinueNoMatch and tryContinueLabel merely propagate the labeled continue upwards.
The rule blockContinueLabel transforms a labeled continue into an unlabeled continue, which is propa-
gated upwards. The reason we do this is that due to loop scopes this rule will only ever be applicable in
the innermost loop scope. A labeled continue matching a block label in the innermost loop scope can only
be possible if it is the block corresponding to the innermost loop, as continue labels must be labels for
loops in the original program and all surrounding unrolled loops are outside of the innermost loop scope.
Therefore a labeled continue in this case is equivalent to an unlabeled continue.

6.3.3 Analysis of Open Branches for Invariant Generation

In addition to closed branches, we must consider the following possibilities for open branches, some of which
signal relevance, while others do not. Here we describe the new possible open branches after symbolic
execution has terminated and how they should be treated in regard to refining the abstract update and
finding a fixed point for our generated loop invariant:

Labeled breaks: A sequent Γ =⇒ {U }[π � break l; ω]ϕ,∆ is reachable only if:
1. The label l references a block in π (outside of this loop scope),
2. the statement “break l;” was encountered during symbolic execution, and
3. this statement left all enclosing labeled, unlabeled and try blocks.

The break was therefore successful in exiting the loop and will not have any influence on the loop
invariant: the open branch belonging to this sequent can be safely ignored.

Unlabeled breaks: A sequent Γ =⇒ {U }[π � break; ω]ϕ,∆ signifies that:
1. The statement “break;” was encountered during symbolic execution, and
2. this statement left all enclosing labeled, unlabeled and try blocks.

The break was therefore successful in exiting the loop and if we were concerned with further control
flow, the break statement should be removed as it has been resolved upon exiting the loop. For our
purposes, however, the only important aspect is that the loop has been exited and the open branch
belonging to this sequent is therefore irrelevant for the loop invariant.
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Labeled continues: A sequent Γ =⇒ {U }[π � continue l’; ω]ϕ,∆ signifies that:
1. The label l′ references a block in π (outside of this loop scope),
2. the statement “continue l′;” was encountered,
3. this statement was propagated through the enclosing labeled, unlabeled and try blocks until

reaching the block belonging to the innermost loop, and
4. the labeled continue left the block as a labeled continue, as it did not match any labels of the

block belonging to the loop.
This continue therefore functions as a break out of the current loop, in order to continue a different
loop. As the current side proof is only interested in determining the loop invariant for the current
loop, however, for our purposes this is treated as any other break: the open branch belonging to the
sequent can be safely ignored.

Unlabeled continues: A sequent Γ =⇒ {U }[π � continue; ω]ϕ,∆ signifies one of three things:
1. The loop body terminated normally, thereby causing the continue statement after the loop

body to be encountered and propagated out of the enclosing block; or
2. a) an unlabeled continue was encountered, and

b) this continue was propagated through the enclosing labeled, unlabeled and try blocks until
reaching the loop scope; or

3. a) a labeled continue referencing the innermost loop was encountered,
b) this continue was propagated through the enclosing labeled, unlabeled and try blocks until

reaching the block belonging to said innermost loop, and
c) the rule blockContinueLabel transformed the labeled continue into an unlabeled continue.

Such a sequent, no matter which of the causes for it, signifies that the loop would be re-entered.
Furthermore, the update in front of the modality, which contains the active continue statement,
expresses the program’s state at the point the loop should be re-entered.

Returns: A sequent Γ =⇒ {U }[π � return; ω]ϕ,∆ or Γ =⇒ {U }[π � return se; ω]ϕ,∆ signifies
that:
1. The return statement was encountered within the method frame containing the loop, and
2. this statement was propagated through the enclosing labeled, unlabeled and try blocks until

reaching the loop scope.
The loop has therefore been abruptly terminated by the return statement. The open branch con-
taining the sequent is irrelevant for the loop invariant.

Thrown exceptions: A sequent Γ =⇒ {U }[π � throw se; ω]ϕ,∆ signifies one of the following:
1. Symbolic execution of the loop guard encountered the statement “throw se;” caused by an

implicit exception in the guard statement, such as 1 / 0 == 0. The loop body was therefore
never entered and will not be entered.

2. a) Symbolic execution of the loop guard encountered the statement “throw se;” caused by
an implicit or explicit exception from within a method call contained in the guard, and

b) this exception was not handled (either by a catch or finally block), allowing the exception
to leave the method frame of the method call within the guard.

In this case as well the loop body was never entered and will not be entered.
3. a) Symbolic execution of the loop body encountered the statement “throw se;” (caused either

explicitly or implicitly), and
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b) this exception was not handled (either by a catch or finally block), allowing the exception
to propagate up to and out of the loop.

In this case the loop body was entered, but abrupt termination via thrown exception ensures
that it will not be re-entered.

In all three cases the open branch belonging to this sequent has no bearing on the loop invariant.

Empty loop scope: A sequent Γ =⇒ {U }[π � � ω]ϕ,∆ signifies that either:
1. The loop guard was evaluated to false and therefore the loop body was never entered and will

not be entered so this open branch can be safely ignored, or
2. a) A labeled break referencing the innermost loop was encountered,

b) this labeled break was propagated through the enclosing labeled, unlabeled and try blocks
until reaching the block belonging to the innermost loop, and

c) the labeled break and matching labeled block were removed by use of the calculus rule
blockBreakLabel (provided on page 18).

Therefore the loop was left abruptly by the labeled break statement and this open branch can
be ignored.

Note: Due to the continue statement added after the loop body, the above are the only two possi-
bilities for reaching an empty loop scope.

Note on Open Branches With Method Calls or Inner Loops as Active Statements

As this analysis takes place when generating specifications, new side proofs will be opened for any encoun-
tered method calls or inner loops in order to generate specifications also for these (see Chapter 7). The
generated specifications for these will then be applied to the loop or method call responsible for initiating
the side proof, in order to resolve the method call or inner loop, and the resulting branch(es) will then
be symbolically executed further (again, with any method calls or inner loops dealt with in their own
side proofs) until none of the resulting open branches contains a method call or inner loop as its active
statement.

Introducing Rules to Close Irrelevant Branches

As we already ignore all closed branches as irrelevant during loop invariant generation, we could simply
introduce new calculus rules in the side proofs which close the branches we have determined to be irrelevant,
rather than analyze these open branches to determine if they are irrelevant. In fact, this is the safer approach
when dealing with a calculus which can be stopped due to maximum step count or similar, as this could
give false positives due to a symbolic execution not finishing and a partial result resembling an irrelevant
or relevant branch.

We therefore introduce the following rules in order to close all irrelevant branches in side proofs.
Rule for throw:

closeThrowLoopScope
Γ =⇒ {U }[π � throw expr; ω]ϕ,∆

Rules for return:

closeEmptyReturnLoopScope
Γ =⇒ {U }[π � return; ω]ϕ,∆
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closeReturnLoopScope
Γ =⇒ {U }[π � return expr; ω]ϕ,∆

Note that in the case of an application of closeReturnLoopScope it is ensured by our introduction of the
loop scope that the expression expr is a simple expression and therefore the loop would indeed be abruptly
terminated due to the return statement itself. However, even if this were not the case the loop would be
abruptly terminated, although the reason for this could also be caused by an exception thrown while trying
to evaluate expr . For this reason it is therefore safe to allow this rule for any expression, rather than just
simple expressions.

Rules for break:

closeUnlabeledBreakLoopScope
Γ =⇒ {U }[π � break; ω]ϕ,∆

closeLabeledBreakLoopScope
Γ =⇒ {U }[π � break li; ω]ϕ,∆

Rule for empty loop scope:

closeEmptyLoopScope
Γ =⇒ {U }[π � � ω]ϕ,∆

Note that application of the rule closeEmptyLoopScope can be due to either the loop guard being
evaluated to false or the loop body being left abruptly due to a labeled break referencing the current
loop.

Rule for labeled continue:

closeLabeledContinueLoopScope
Γ =⇒ {U }[π � continue li; ω]ϕ,∆

Finding the Invariant Update Based on Open continue Branches

As the full generation of specifications involves generating not only loop invariants but also method con-
tracts for recursive methods, we defer to Chapter 7 for full details. A brief overview for the generation of
loop invariants is as follows, where seq is a sequent Γ =⇒ {U }[π while (guard) body ω]φ,∆.

1. Set seq′ := seq, (C ′,U ′) := (Γ∪!∆,U ).

2. Unroll the loop in seq′ using a loop scope as detailed in Section 6.3.1.

3. Symbolically execute the resulting sequent, performing specification generation and application on
any encountered method calls or inner loops.

4. Join (C ′,U ′) with the constraint-update pairs (Γi∪!∆i,Ui) resulting from all open branches with
sequents Γi =⇒ {Ui}[π � continue; ωi]ψ,∆i.

5. If (C ′,U ′) was not changed, a fixed point has been found and we can return the constraint/update
pair (C ′,U ′). Else set seq′ := C ′ =⇒ {U ′}[π while (guard) body ω]ψ and goto 2.
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6.4 Applying Generated Invariant Update

While generation of an invariant update allows us to ignore control flow leaving the loop, any rule actually
applying the invariant update must take these non-standard control flows into account. To this end we
introduce an indexed loop scope with calculus rules allowing control flow to leave the loop scope while
retaining the information about whether the loop has been left abruptly or if control flow would return to
the beginning of the loop. Our indexed loop scope has the form �x · � where x is a program variable of
type boolean. The idea is to set x upon exiting the loop scope so that x is false if control flow remains
within the loop and x is true if control flow leaves the loop (due to either abrupt termination or the loop
guard being false).

We introduce the following calculus rules for the indexed loop scope.
Rule for throw:

throwIndexedLoopScope
Γ =⇒ {U }[π x = true; throw se; ω]ϕ,∆
Γ =⇒ {U }[π �x throw se; p � ω]ϕ,∆

Rules for return:

emptyReturnIndexedLoopScope
Γ =⇒ {U }[π x = true; return; ω]ϕ,∆
Γ =⇒ {U }[π �x return; p � ω]ϕ,∆

returnIndexedLoopScope
Γ =⇒ {U }[π x = true; return se; ω]ϕ,∆
Γ =⇒ {U }[π �x return se; p � ω]ϕ,∆

Rules for break:

labeledBreakIndexedLoopScope
Γ =⇒ {U }[π x = true; break li; ω]ϕ,∆
Γ =⇒ {U }[π �x break li; p � ω]ϕ,∆

unlabeledBreakIndexedLoopScope
Γ =⇒ {U }[π x = true; ω]ϕ,∆

Γ =⇒ {U }[π �x break; p � ω]ϕ,∆

Rule for empty loop scope:

emptyIndexedLoopScope
Γ =⇒ {U }[π x = true; ω]ϕ,∆
Γ =⇒ {U }[π �x � ω]ϕ,∆

Note that the rule emptyIndexedLoopScope will be applied on sequents resulting from two different
types of control flow: Either the loop was not entered due to the loop guard evaluating to false, or the
loop was exited abruptly via a labeled break statement referencing the current loop. In both of these
cases the loop is exited and no further steps need to be applied before continuing with the surrounding
program. Furthermore, this result is mirrored in the rule unlabeledBreakIndexedLoopScope, such that a
labeled break referencing the current loop and an unlabeled break result in the same behavior.

Rule for labeled continue:

labeledContinueIndexedLoopScope
Γ =⇒ {U }[π x = true; continue li; ω]ϕ,∆
Γ =⇒ {U }[π �x continue li; p � ω]ϕ,∆
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Rule for unlabeled continue:

continueIndexedLoopScope
Γ =⇒ {U }[x = false;]ϕ,∆

Γ =⇒ {U }[π �x continue; p � ω]ϕ,∆

Note that continueIndexedLoopScope is the only rule that sets x to false rather than true and also the
only rule that completely removes the inactive parts of the sequent, rather than keeping π and ω. This is
important in order to allow for the improved invariantUpdate rule (6.7), where:

• (C ′,U ′) are a supplied constraint/update pair,

• z is a fresh program variable of type boolean,

• x̄ is a duplicate free vector of all program variables assigned to in U or U ′,

• c̄ is a vector of the same length as x̄ containing fresh constant symbols,

• cnt is a non-trivial, variable-free formula containing a fresh constant symbol ĉ, such as ĉ .= 0,

• γ̄ is a vector of all γ-symbols introduced in U ′, and

• ∃γ̄.ϕ is an abbreviation for ∃ȳ.(χā(ȳ) ∧ ϕ[γ̄/ȳ]), with ȳ a vector of the same length as γ̄ containing
fresh logical variables.

invariantUpdate
Γ =⇒ {U }∧

C ′,∆
Γ , {U }(x̄ .= c̄) =⇒ ∃γ̄.{U ′}(x̄ .= c̄),∆
Γ , {U ′}

∧
C ′ =⇒ cnt ∧ ∃γ̄.{U ′}(x̄ .= c̄), {U ′}[π �z if (nse) l1 : . . . ln : { p continue; } � ω]

((z .= TRUE→ φ) ∧ (z .= FALSE→ (!(cnt ∧ (x̄ .= c̄)) ∧ ∧
C ′))),∆

Γ =⇒ {U }[π l1 : . . . ln : while (nse) { p } ω]φ,∆
(6.7)

The first premiss of invariantUpdate guarantees that C ′ is a set of constraints which are initially valid.
The second premiss guarantees that U ′ is (P, Γ ∪ ¬∆)-weaker than U . The third premiss contains the
body preserves invariant, the use case and the abrupt termination use case in one. In all cases we may
assume the invariant, which is given by {U ′}

∧
C ′ in the antecedent as well as by the update U ′ before

the modality. Additionally we have cnt ∧ ∃γ̄.{U ′}(x̄ .= c̄) in the succedent, which we cannot prove by
itself, as we have no knowledge of the fresh skolem constant ĉ and can therefore not prove cnt (and in most
cases could not prove ∃γ̄.{U ′}(x̄ .= c̄), as we have no knowledge of the fresh skolem contants c̄, either).
Symbolically executing the loop body will lead to z either being set to true or false. If z is set to true
it is either due to the loop guard being evaluated to false or the loop being abruptly terminated. These
are the use case and abrupt termination use case and we must prove φ in each of these. If z is set to false
we must prove that the body preserves the invariant. Part of that is proving

∧
C ′ in the resulting update.

The other part is proving that the resulting update could have been expressed by U ′. Here the negated
formula !(cnt ∧ (x̄ .= c̄)) lends itself to being shifted to the antecedent (removing the negation) after the
resulting update has been applied. This gives us knowledge about the skolem constants c̄ which we can
now use to prove ∃γ̄.{U ′}(x̄ .= c̄), while the formula cnt is now trivially proven, as it is assumed. In this
way cnt serves merely as a safeguard in the case that all x̄ in U ′ are assigned γ>-symbols, as in that case
the formula ∃γ̄.{U ′}(x̄ .= c̄) is trivially true and would therefore not require that the symbolic execution
of the body leads to the loop being continued.
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6.5 Further Uses for Indexed Loop Scopes

The introduction of indexed loop scopes allows us to reconsider the currently implemented solutions to
dealing with loops in KeY. As loopInvariantRule needs to be fixed in any case, we begin by considering
the following loop invariant rule utilizing indexed loop scopes, where Inv is a supplied loop invariant and
U ′ = {V (Mod)}U with Mod a correct modifier set [53]:

loopInvariant
Γ =⇒ {U }Inv,∆
Γ , {U ′}Inv =⇒ ∆, {U ′}[π �x if (nse) l1 : . . . ln : { p continue; } � ω]((x .= TRUE→ φ) ∧

(x .= FALSE→ Inv))
Γ =⇒ {U }[π l1 : . . . ln : while (nse) { p } ω]φ,∆

The first premiss of loopInvariant ensures that Inv is initially valid. The second premiss combines use
case, body preserves and abrupt termination use case in one. Assuming the loop invariant holds before
some iteration, we must show that if the loop ends before or during this iteration then we can prove the
use case φ and otherwise we can show that the loop invariant is valid at the end of this iteration.

The rule loopInvariant is in essence a special case of the rule invariantUpdate, where:

• C ′ = {Inv}, and

• U ′ assigns to all non-heap xi a γ>-element, and to heap the heap in U anonymized based on Mod ,
such that all these anonymized values are γ>-elements.

As C ′ = {Inv} and therefore
∧
C ′ = Inv, the first premiss of loopInvariant matches the first premiss

of invariantUpdate. The second premiss of invariantUpdate is trivially proven, due to the choice of γ>-
elements for all changed values between U and U ′. In the third premiss of invariantUpdate ∧

C ′ = Inv
as well, and the premiss can further be simplified, as ∃γ̄.{U ′}(x̄ .= c̄) can be trivially proven in the case
of loop continuation, due to the γ>-elements and the fact that Mod is a correct modifier set, ensuring that
no other values were changed by the loop body.

In addition to being sound, loopInvariant requires no program transformation of the loop body itself and
does not require the introduction of multiple modalities.

While the rule for unwinding loops does not need to be changed, we can consider replacing it with the
following rule utilizing indexed loop scopes:

loopUnwind
Γ =⇒ ∆, {U }[π �x if (nse) l1 : . . . ln : { p continue; } � ω]((x .= TRUE→ φ) ∧

(x .= FALSE→ [π l1 : . . . ln : while (nse) { p } ω]φ))
Γ =⇒ {U }[π l1 : . . . ln : while (nse) { p } ω]φ,∆

The advantage of this rule is that it does not require program transformation of the loop body. The
disadvantages are that it is a bit harder to understand and the introduction of fresh program variables
each time the loop is unrolled is somewhat ugly. However, we offer it as a possible alternative and due to
its close similarity to the loopInvariant rule we feel it is worth considering replacing both loop related rules
in KeY with these rules based on indexed loop scopes.
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7 Specification Generation

In this chapter we demonstrate the entire process for the automatic generation of specifications. We modify
the symbolic execution engine during program analysis in the following manner:

1. We add all calculus rules from Chapter 6 related to indexed and unindexed loop scopes, while
removing the automatic application of any loop unrolling rules.

2. We remove the automatic application of all calculus rules related to the instantiation and removal of
method-frames.

The above allows user defined specifications to be applied in the usual manner to loops and method calls,
while otherwise preventing the unrolling of loops and expanding of method bodies. Symbolic execution
stopped due to a method call or loop for which no applicable specification exists is used as an entry point
for the automatic generation of a specification for this method call or loop. The application of calculus
rules allowing method calls to return (normally or exceptionally) is also prevented, enabling the side proofs
to gather the information required in order to generate method contracts.

In order to more easily reason about sequents, we introduce the notion of a normal form for sequents.

Definition 35 (Normal Form Sequent). A sequent is in normal form, if there exists exactly one formula
{U }[p]φ in the succedent of the sequent. No other formula in the antecedent or succedent may contain a
modality.

Let the method gatherSequents take a normal form sequent seq as argument and return the set of normal
form sequents belonging to open branches of the symbolic execution tree resulting from symbolic execution
of the program in the sole modality in seq.

The process for analyzing a sequent in order to generate all required specifications for it is as follows:
We repeatedly apply gatherSequents interleaved with the generation and application of specifications for the
loops and method calls causing the symbolic execution to stall.

The restriction to normal form sequents allows the further explanations in this chapter to focus on the
relevant points rather than be complicated with special cases for sequents containing multiple formulas
with modalities. The restriction itself is not particularly grave, as:

1. The sequents initially passed as input to have specifications automatically generated and applied to
them are in normal form.

2. Neither the standard calculus rules, nor the application of our generated specifications produces
sequents with additional modalities.

3. If a sequent contains multiple modalities, our approach can still be utilized as follows: First, removing
all but one of the formulas containing modalities; then performing the interleaving of gatherSequents
with application of automatically generated specifications as above; and finally, once the formula
containing the modality has been fully handled, adding the removed formulas back into the sequent.
This reduces the number of formulas containing modalities in the sequent and by induction this
process will be able to automatically generate and apply specifications required for each program in a
modality. Further, the information contained in the removed formulas is not lost, as these are added
back into the sequent.

In Section 7.1 we show how loop invariants are generated and applied, in addition to discussing how
nested loops are handled. Section 7.2 then describes how method contracts are generated and applied,
with details on handling mutual recursion and recursive calls within loops. While not illustrated in this
chapter, the sound specifications returned by the methods generateLoopInvariant and generateContract
(see Algorithms 2 and 6) can be stored and used to annotate the source code.
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7.1 Generating and Applying Loop Invariants

When symbolic execution of the input sequent encounters a sequent with a loop as active statement
(see (7.1) for the form such a statement has, where nse is any expression, labels is a possibly empty
string of labels l1:. . . ln: and body is any program statement), the method generateLoopInvariant (see
Algorithm 2) is called with the constraint set Γ∪!∆, update U and the program p shown in (7.2).

Γ =⇒ {U }[π labels while (nse) body ω]φ,∆ (7.1)

π � if (nse) labels { body continue; } � ω (7.2)

input : Initial constraints C, update U and program p (loop body inside a loop scope)
output: A fixed point constraint/update pair expressing the loop invariant

1 (C ′,U ′)← (C,U );
2 repeat
3 (C ′′,U ′′)← (C ′,U ′);
4 seq ← C ′[Û /U ′] =⇒ {U ′}[p]ψ; /* create a sequent from (C ′,U ′, p) */
5 /* evaluate seq, generating and applying specifications where needed */
6 E ← eval(seq);
7 /* E contains sequents which would re-enter this loop */
8 foreach seq ′ ∈ E do
9 /* seq ′ has the form Γ1 =⇒ {U1}[π � continue; . . . � ω]ψ,∆1 */

10 (C ′,U ′)← refine(C ′,U ′, Γ1∪!∆1,U1); /* refine with state from seq ′ */
11 end
12 until (C ′,U ′) = (C ′′,U ′′);
13 return (C ′,U ′)

Algorithm 2: Method generateLoopInvariant

The method generateLoopInvariant works as follows: Beginning with the initial constraint/update pair,
a new sequent is created and passed to the method eval , which we will discuss shortly. The result of eval is
a set of sequents Γi =⇒ {Ui}[π � continue; ...� ω]ψ,∆i, corresponding to the symbolic executions
of a loop iteration leading back to the loop entry. We refine the constraint/update pair based on these
sequents and if a fixed point has not yet been found, we continue in this manner, creating a new sequent
from the refined constraint/update pair and passing this to the method eval .

We now turn to the method eval . For a simple loop containing no method calls or nested loops, the part
of eval shown in Algorithm 3 is sufficient, as in the simplest case symbolic execution of the input sequent
in eval results in a symbolic execution tree containing closed branches for those cases where the loop body
was not entered at all or was entered but left exceptionally, and open branches containing sequents which
would re-enter the loop. The set of all such sequents is returned.

7.1.1 Applying the Invariants

As we generate the specifications in such a way as to ensure they are sound in regards to the implementation
they are generated from, we do not need to apply the full invariantUpdate rule, but rather only produce a
sequent expressing the use case administration of this rule. The use case is triggered for both normal and
exceptional termination of the loop. The method applyLoopInvariant shown in Algorithm 4 demonstrates
how the application of a loop invariant in the form of a constraint/update pair is applied to a sequent
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input : A sequent seq
output: A set of sequents with active continue statements just inside a loop scope

1 L← ∅;
2 E ← gatherSequents(seq);
3 while E 6= ∅ do
4 /* Deal with continues in loop scopes */
5 if there is a seq ∈ E, where seq has the form: Γ =⇒ {U }[π � continue; . . . � ω]φ,∆

then
6 E ← E \ {seq}; /* remove sequent from E */
7 L← L ∪ {seq}; /* add sequent to result set */
8 continue
9 end

10 /* Deal with returns (see Algorithm 8) */
11 . . .
12 /* Deal with throws (see Algorithm 9) */
13 . . .
14 /* Deal with method calls (see Algorithm 11) */
15 . . .
16 /* Deal with loops (see Algorithm 5) */
17 . . .

18 end
19 return L

Algorithm 3: Method eval

where the active statement is a loop, producing a resulting sequent with an indexed loop scope expressing
the use case for this application.

input : Loop invariant as constraint/update pair (C ′,U ′) and sequent of the form:
Γ =⇒ {U }[π labels while (nse) body ω]φ,∆

output: The use case sequent resulting from applying the loop invariant
1 z← a fresh program variable of type boolean;
2 /* create a sequent from (C ′,U ′), z and the input sequent */
3 return

C ′[Û /U ′] =⇒ {U ′}[π �z if (nse) labels { body continue; } � ω](z .= TRUE→ φ);

Algorithm 4: Method applyLoopInvariant

7.1.2 Nested Loops

Before dealing with the more complex issue of method calls encountered during symbolic execution, let us
remain in the realm of loops by examining what the method eval does when encountering an inner loop in
a sequent of an open branch. This is shown in Algorithm 5.

In the case that an inner loop is encountered, a new call to generateLoopInvariant is made with argu-
ments based on the encountered sequent. This new call to generateLoopInvariant will then itself call eval ,
such that these two methods operate in a mutually recursive manner. A loop invariant will be generated for
this inner loop (possibly generating further invariants for nested loops inside the inner loop) based on the
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1 . . .
2 while E 6= ∅ do
3 . . .
4 /* Deal with loops */
5 if there is a seq ∈ E, where seq has the form:

Γ =⇒ {U }[π labels while (nse) body ω]φ,∆
6 then
7 p← π � if (nse) labels { body continue; } � ω;
8 (C ′,U ′)← generateLoopInvariant(Γ∪!∆,U , p);
9 E ← E ∪ gatherSequents(applyLoopInvariant(C ′,U ′, seq));

10 continue
11 end
12 . . .

13 end
14 . . .

Algorithm 5: The part of method eval dealing with loops

program state at which the inner loop was initially encountered. This loop invariant will then be applied
to the sequent responsible for its creation and the result of this application will be symbolically executed,
with resulting sequents of open branches added to the set of sequents eval processes. This ensures that
the code after the inner loop is taken into account.

Invariants generated for inner loops may be generated multiple times, as the abstract program state
describing the entry points of the inner loop in the first iteration of the outer loop may well need to be
abstracted further for a later iteration.

Example 18. Given the sequent (7.3), the initial call to generateLoopInvariant leads to eval encountering
the inner loop at sequent (7.4).

=⇒{x := 0 ‖ y := v}[while(x < y) { while (x > 0) { x--; y--; } x++; }]φ (7.3)
0 < v =⇒{x := 0 ‖ y := v}[� { { while (x > 0) { x--; y--; } x++; } continue; } �]ψ (7.4)

Calling generateLoopInvariant with the initial constraint/update pair ({0 < v}, x := 0 ‖ y := v ) and the
program in (7.5) based on the sequent (7.4) results in the constraint/update pair remaining unabstracted,
as the inner loop is not entered in this program state and so the method eval therefore returns an empty
set of sequents (as none would re-enter the inner loop that is not entered at all), requiring no refinement
of the constraint/update pair and its return as a result.

� { { � if (x > 0) { { x--; y--; } continue; } � x++; } continue; } � (7.5)

Applying the loop invariant ({0 < v}, x := 0 ‖ y := v ) to sequent (7.4) gives us the following sequent:

0 < v =⇒ {x := 0 ‖ y := v}[� { { �z if (x > 0) { x--; y--; } � x++; } continue; } �]
(z .= TRUE→ ψ)

Symbolic execution leads to the sequent:

0 < v =⇒ {y := v ‖ z := TRUE ‖ x := 1}[� continue; �](z .= TRUE→ ψ)

The initial call to generateLoopInvariant now takes this sequent (the result of eval) and uses it to refine
(∅, x := 0 ‖ y := v ). Using the sign abstract domain, this results in the new constraint/update pair
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(∅, x := γ≥,1 ‖ y := v ). As no fixed point for the outer loop has been found yet, eval is called again,
encountering the inner loop this time at sequent (7.6).

γ≥,1 < v =⇒ {x := γ≥,1 ‖ y := v}[� { { while (x > 0) { x--; y--; } x++; } continue; } �]ψ
(7.6)

This time the call to generateLoopInvariant for the inner loop is more interesting, resulting in refinement
of ({γ≥,1 < v}, x := γ≥,1 ‖ y := v ) with ({γ≥,1 < v}, x := γ≥,1 − 1 ‖ y := v − 1).

As the example clearly demonstrates, a fixed point invariant for an inner loop in one iteration of the
outer loop can change drastically in the next.

7.2 Generating and Applying Method Contracts

Our specifications for recursive method calls in essence contain two types of program state invariants:

Precondition: (An overapproximation of) all program states at the call sites for this method, containing
both the initial call and (at least) all recursive calls reachable from this initial call.

Postconditions: (Overapproximations of) all program states resulting from the method returning (normally
or exceptionally), when called from a precondition state.

In [60] we showed how interprocedural dataflow analysis [54] can be used in order to generate these pre-
and postconditions automatically for method calls of a recursive toy language containing no loops and only
the integer type for parameters and return value. A solution idea for mutual recursion is included. In this
section we extend this idea to allow:

1. inclusion of all Java types for parameters and return values, including the void-return type,

2. the method body to contain loops,

3. the program heap as implicit input parameter and result,

4. instance methods with their additional parameter this,

5. exceptional behavior and therefore exceptional postconditions, and

6. a detailed algorithm which can also handle mutual recursion.

7.2.1 Outline

The basic idea is to generate the precondition by applying symbolic execution to the expanded method
body and joining all program states at which recursive calls are reached. Additionally, postconditions are
generated by joining program states at which the method call returns. We differentiate here between normal
behavior and exceptional behavior, by joining program states at which the method is returned exceptionally
only with each other and analogously for normal returns. Similar to the generation of loop invariants, we
seek fixed points for the precondition and postconditions. The following important distinctions must be
made, however:

1. In contrast to loops, where we are interested in the values for explicit program variables and can
therefore join the unmodified program states, for methods we are interested in the values of the formal
parameters of the method. The actual parameters are always fresh program variables created by the
calculus rule methodCall, such that joining unmodified program states would accomplish nothing.
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We therefore need to modify the precondition program states at method calls before joining, to
ensure that the modified updates use matching program variables for the method’s formal parameters.
Additionally, as the method call cannot access any program variables other than its actual parameters
and heap, the modified update should remove all assignments to other program variables.

2. The precondition and postconditions are not orthogonal to each other. Obviously, the precondition
influences the postconditions, but for non-tail recursive methods the postconditions may also influence
the preconditions as well, if a second recursive call takes place after returning from the first recursive
call. For these reasons a fixed point is only reached if neither precondition nor postconditions change.

3. In order to join program states for the postconditions, these must first be modified to ensure the
following:

a) The program variable for the return value must always be the same when joining normal post-
conditions.

b) The program variable for the thrown value must always be the same when joining exceptional
postconditions.

c) Aside from heap and the value returned or thrown, the postcondition may not change any
program variables.

4. In contrast to loops, where the joined program state will be used only once in the next iteration of
the fixed point algorithm, the postconditions may be applied at multiple points. As postcondition
updates contain γ-symbols, which could express different values at each of these application points,
we must apply modifed postconditions containing fresh γ-symbols.

In this chapter we use an implementation for calculating the nth element of the Fibonacci sequence
shown in Listing 7.1 as a running example to demonstrate many of these issues.

class Math {
static int fib(int n) {

if (n < 0)
throw new IllegalArgumentException();

else if (n == 0)
return 0;

else if (n == 1)
return 1;

else
return fib(n-2) + fib(n-1);

}
}

Listing 7.1: A method implementing the Fibonacci sequence

7.2.2 Definitions

As mentioned above, we need to ensure that when joining precondition updates, these assign to the same
program variables, based on the method’s formal parameters. As the program heap is an implicit input
parameter, we also require a program variable to store its initial value, as otherwise this knowledge would
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be lost if the heap is modified. Similarly, we require designated program variables for the return value and
thrown value of a method. For these reasons we introduce placeholder program variables.
Definition 36 (Placeholder program variables). For each method identifier mname(τ1×· · ·×τn → τ)@Class,
abbreviated m, we define the following placeholder program variables, which are unique reserved program
variables:

1. heapm of type Heap,

2. pmi of type τi for all i ∈ {1, . . . , n},

3. throwm of type Throwable À Object, and

4. returnm of type τ , if τ is not the void return type.
In order to deal with mutual recursion, we need to know within the context of which other method calls

an encountered method call lies. To this end we introduce the concept of a method frame stack.
Definition 37 (Method Frame Stack). A method frame stack is a data structure for storing non-duplicate
method identifiers, with the following (partial) functions:
empty: a constant function returning a method frame stack designated as empty.

push: takes a method frame stack and a method identifier and returns a new method frame stack with the
top element being the pushed element and the remaining stack being the original stack (or undefined
if the method identifier is already on the stack).

pop: takes a method frame stack and returns the stack without its top element (or undefined for an empty
stack).

get: takes a method frame stack and a method identifier and returns undefined if the method identifier
is not on the stack. Otherwise it returns all elements from the top of the stack up to the method
identifier argument (both inclusive).

Method frame stacks provide the following axioms:
1. No method identifiers are on the empty stack.

2. pop(push(MFS ,m)) = MFS , if push(MFS ,m) is defined.

3. get(push(. . .push(MFS ,m1) . . . ,mn),m1) = {m1, . . . ,mn}, if for all 1 ≤ i ≤ n the function
calls push(. . .push(MFS ,m1) . . . ,mi) are defined.

The following is a possible implementation of a method frame stack, modeled as sets of sets of method
identifiers:

empty = ∅

push(MFS ,m) =

{{m}} ∪ {X ∪ {m} | X ∈ MFS} , if ∀M ∈ MFS . m 6∈M
undefined , otherwise

pop(MFS) =

{X \ {m} | X ∈ MFS} \ {∅} , if there is an m such that ∀M ∈ MFS . m ∈M
undefined , otherwise

get(MFS ,m) =

undefined , if ∀X ∈ MFS . m 6∈ X
M , where m ∈M ∧M ∈ MFS ∧ ∀X ∈ MFS . m ∈ X →M ⊆ X

While gathering the information required to create sound method contracts for encountered method calls,
we begin with only partial information about the precondition and no information about postconditions.
During analysis more information becomes available, until a sound method contract can be inferred from
the fixed point of our partial method contract.
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Definition 38 (Partial Method Contract). A partial method contract is a tuple (m, init, pre,POST ), where
m is a method identifier, init is a boolean value, pre is a single constraint/update pair and POST is a set
of constraint/update pairs.

Given a method identifier m and a set of partial method contracts S containing no duplicate method
identifiers, we define:

S(m) :=

(m, init, pre,POST ) , if there is a (m, init, pre,POST ) ∈ S
undefined , otherwise

In order to track the partial method contracts created so far and to join these in the case of mutual
recursion, we require a partial method contract mapping.

Definition 39 (Partial Method Contract Mapping). A partial method contract mapping is a set of tuples
(M,S, redo), where M is a set of method identifiers, S is a set of partial method contracts containing no
duplicate method identifiers and redo is a boolean value, such that the sets of method identifiers in all tuples
are disjoint from one another.

Given a method identifier m and a partial method contract mapping PMC , we define:

PMC (m) :=

(M,S, redo) , if there is a (M,S, redo) ∈ PMC where m ∈M
undefined , otherwise

7.2.3 Generating the Method Contracts

Symbolic execution of a sequent with a method call as active statement, such as the call to Math.fib
in (7.7), still leads to the application of the rule methodCall (shown on page 18) to initialize local variables
for the actual parameters and locate the implementation, as well as further rules on the result thereof.
The sequents of open branches after symbolic execution will have fully specified method calls as active
statements. For example symbolic execution of (7.7) will lead to (7.8).

v ≤ 1 =⇒ {heap := h ‖ x := v}[π f = Math.fib(x); ω]φ (7.7)
v ≤ 1 =⇒ {heap := h ‖ x := v ‖ x1 := v}[π x0 = Math.fib(x1)@Math; f = x0; ω]φ (7.8)

At this point the method generateContract (see Algorithm 6) is called with the constraints, update,
method identifier and a list of the actual parameter program variables gained from the sequent. In the
case of sequent (7.8), we call:

generateContract({v ≤ 1}, heap := h ‖ x := v ‖ x1 := v , Math.fib(int→int)@Math, x1)
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global : A method frame stack MFS and a partial method contract mapping PMC .
input : Constraints C, update U , method id m and parameter program variables x1, . . . , xn.
output: A flag stating whether the generation finished after the initial pass and a set of

postconditions as constraint/update pairs.
1 /* add m to method frame stack */
2 MFS ← push(MFS ,m)
3 /* m has no known mutual recursion with other method ids */
4 M ← {m};
5 /* initialize U1 with read-only input parameters and modifiable heap */
6 U1 ← heap := {U }heap ‖ heapm := {U }heap ‖ pm1 := {U }x1 ‖ . . . ‖ pmn := {U }xn;
7 /* set initial partial contract for m */
8 S ← {(m, true, (C,U1), ∅)};
9 repeat

10 /* add partial contracts */
11 PMC ← PMC ∪ {(M,S, false)};
12 foreach (m′,_, (C ′,U ′),_) ∈ S do
13 /* evaluate the expanded sequent based on m′, C ′,U ′

resulting (empty) set of sequents is ignored, but PMC may change */
14 eval(createExpandedSequent(C ′,U ′,m))
15 end
16 /* find out if our partial contract has reached a fixed point */
17 (M,S, redo)← PMC (m);
18 /* remove partial contracts (if redo, they will be added again) */
19 PMC ← PMC \ {(M,S, redo)}
20 until redo is false;
21 /* remove m from method frame stack */
22 MFS ← pop(MFS);
23 /* if mutual recursive calls are still on the method frame stack... */
24 foreach m′ ∈ (M \ {m}) do
25 if get(MFS ,m′) is defined then
26 /* ...add partial contracts back, so they can be reused by those calls */
27 PMC ← PMC ∪ {(M,S, false)};
28 end
29 end
30 /* return the postconditions for m */
31 (m, init,_, R)← S(m);
32 return (init, R)

Algorithm 6: Method generateContract
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The method generateContract works as follows:

• In order to handle mutual recursion, the method identifier has to be pushed to the global (initially
empty) method frame stack MFS at the start of generateContract and removed at the end. Addi-
tionally, we use the set {m}, rather than simply m, in order to allow multiple method identifiers in
the case that these are found to be mutually recursive. Furthermore, in general the partial method
contracts for the method under consideration are removed from the partial method contracts mapping
before returning the postconditions generated for the initial call. In the case of mutual recursion,
the partial method contract mapping must retain partial method contracts for all mutually recursive
methods until all specifications generated for these methods have been put to use. For details on
this, see Section 7.2.8. For the moment we will focus on simple recursion.

• To ensure that preconditions can be joined, we create an update U1 which assigns the values of the
actual parameters to the placeholder parameters for the method. In addition, as the program heap
is always an implicit input parameter to all methods, we assign the value of the heap in U1 to heap
and also heapm.

• With the initial partial method contract based on the constraints and the newly created update U1,
we now try to find a fixed point. This is accomplished by adding the partial method contract to
the global partial method contract mapping, before creating a sequent from it (see Algorithm 7) and
then calling eval on the result. Within the method eval , the partial method contract mapping may
be modified. If no modification takes place, then a fixed point has been found for the partial method
contract and we can return the postconditions for this sound contract to be applied to the initial
method call. Otherwise, in the next iteration of the fixed point search, we will create a new sequent
based on the modified partial method contract, continuing until a fixed point is found.

input : Constraints C, update U and method id m = m(sig)@Class
output: The expanded sequent of the form C ′ =⇒ {U ′}[method-frame(...){ body }]ψ

1 (x1, . . . , xn)← fresh program variables of matching type to pm1 , . . . , p
m
n ;

2 args ← x1, . . . , xn;
3 C ′ ← C[Û /U ];
4 U ′ ← U ‖ x1 := {U }pm1 ‖ . . . ‖ xn := {U }pmn ;
5 /* gather the method frame info */
6 info ← source=m;
7 if m is an instance method then
8 /* the receiving object is stored in the first argument */
9 info ← info,this=x1;

10 args ← x2, . . . , xn
11 end
12 if m has a non-void return type then
13 info ← result->returnm, info;
14 end
15 body ← the body for the implementation of m with the formal parameters replaced by args
16 return C ′ =⇒ {U ′}[method-frame(info):{ body }]ψ

Algorithm 7: Method createExpandedSequent
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Example 19. Consider the call:

generateContract({v ≤ 1}, heap := h ‖ x := v ‖ x1 := v , Math.fib(int→int)@Math, x1)

The first iteration of the loop will add the following to PMC , where m is Math.fib(int→int)@Math:

({m}, {(m, true, ({v ≤ 1}, heap := h ‖ heapm := h ‖ pm1 := v ), ∅)}, false)

This leads to the call createExpandedSequent({v ≤ 1}, heap := h ‖ heapm := h ‖ pm1 := v , m),
resulting in the following sequent being passed to eval:

v ≤ 1 =⇒{heap := h ‖ heapm := h ‖ pm1 := v ‖ x1 := v}
[method-frame(result->returnm,source=m):{
if (x1 < 0)
throw new IllegalArgumentException();

else if (x1 == 0)
return 0;

else if (x1 == 1)
return 1;

else
return fib(x1-2) + fib(x1-1);

}]ψ

The first step in eval is to call gatherSequents on the input sequent. This results in the set E containing
the following three sequents, where h′ is the modified heap containing the newly created exception e, while
Γ contains additional information regarding h′ and e:

v
.= 0 =⇒{heap := h ‖ heapm := h ‖ pm1 := v ‖ x1 := v ‖ returnm := 0}

[method-frame(source=m):{ }]ψ (7.9)
v
.= 1 =⇒{heap := h ‖ heapm := h ‖ pm1 := v ‖ x1 := v ‖ returnm := 1}

[method-frame(source=m):{ }]ψ (7.10)
Γ , v < 0 =⇒{heapm := h ‖ pm1 := v ‖ x1 := v ‖ heap := h′ ‖ exc := e}

[method-frame(result->returnm,source=m):{ throw exc; }]ψ (7.11)

In Section 7.1 we already discussed how eval deals with loop re-entry and inner loops. In Algorithm 8
we show how returning from a method normally is dealt with.

In the case that no recursive calls have been encountered for the method, the partial method contract
mapping is simply updated with a further postcondition based on the sequent with an empty method-
frame. All constraints are kept, but the update is reduced to containing only unmodified input program
variables and the output program variables. Local variables introduced in the method call therefore do not
leak into the postcondition update.
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1 . . .
2 while E 6= ∅ do
3 . . .
4 /* Deal with returns */
5 if there is a seq ∈ E, where seq has the form:

Γ =⇒ {U }[π method-frame(source=m,. . .) { } ω]φ,∆
6 then
7 E ← E \ {seq}; /* remove the sequent from E */
8 (M,S, redo)← PMC (m); /* PMC (m) will return a defined value */
9 (m, init, (C ′,U ′), R)← S(m);

10 /* create normal postcondition update with preconditions... */
11 UR ← heapm := {U }heapm ‖ pm1 := {U }pm1 ‖ . . . ‖ pmn := {U }pmn ;
12 UR ← UR ‖ heap := {U }heap; /* ...heap postcondition... */
13 if returnm is assigned in U then
14 UR ← UR ‖ returnm := {U }returnm; /* ...and result postcondition */
15 end
16 if init then
17 R′ ← R ∪ {(Γ∪!∆,UR)}; /* add normal postcondition */
18 redo′ ← false; /* only need to redo if a recursive call is encountered */
19 else
20 /* Normal postcondition may need refining (see Algorithm 16) */
21 . . .

22 end
23 /* update PMC */
24 S′ ← (S \ {(m, init, (C ′,U ′), R)}) ∪ {(m, init, (C ′,U ′), R′)};
25 PMC ← (PMC \ {(M,S, redo)}) ∪ {(M,S′, redo′)};
26 continue
27 end
28 . . .

29 end
30 . . .

Algorithm 8: The part of method eval dealing with returns
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7.2.4 Exceptional Behavior

The method eval deals with method calls returning exceptionally in a very similar manner to normal
behavior. The update contains an assignment to throwm based on the program statement, but otherwise
the steps taken are almost identical. Algorithm 9 shows the steps involved for methods for which no
recursive calls have yet been encountered.

Example 20. Continuing Example 19, the sequents (7.9), (7.10) and (7.11) result in modification of the
partial method contract mapping, such that the value of PMC is shown in (7.12)):

PMC = { ({m}, (m, true, ({v ≤ 1}, heap := h ‖ heapm := h ‖ pm1 := v ), R), false) } (7.12)
where R = { ({v

.= 0}, heap := h ‖ heapm := h ‖ pm1 := v ‖ returnm := 0),
({v

.= 1}, heap := h ‖ heapm := h ‖ pm1 := v ‖ returnm := 1),
(Γ ∪ {v < 0}, heapm := h ‖ pm1 := v ‖ heap := h′ ‖ throwm := e) }

1 . . .
2 while E 6= ∅ do
3 . . .
4 /* Deal with throws */
5 if there is a seq ∈ E, where seq has the form:

Γ =⇒ {U }[π method-frame(source=m,. . .) { throw se; . . . } ω]φ,∆
6 then
7 E ← E \ {seq}; /* remove the sequent from E */
8 (M,S, redo)← PMC (m); /* PMC (m) will return a defined value */
9 (m, init, (C ′,U ′), R)← S(m);

10 /* create exceptional postcondition update with preconditions... */
11 UR ← heapm := {U }heapm ‖ pm1 := {U }pm1 ‖ . . . ‖ pmn := {U }pmn ;
12 UR ← UR ‖ heap := {U }heap ‖ throwm := {U }se; /* ...and postconditions */
13 if init then
14 R′ ← R ∪ {(Γ∪!∆,UR)}; /* add exceptional postcondition */
15 redo′ ← false; /* only need to redo if a recursive call is encountered */
16 else
17 /* Exceptional postcondition may need refining (see Algorithm 17) */
18 . . .

19 end
20 /* update PMC */
21 S′ ← (S \ {(m, init, (C ′,U ′), R)}) ∪ {(m, init, (C ′,U ′), R′)};
22 PMC ← (PMC \ {(M,S, redo)}) ∪ {(M,S′, redo′)};
23 continue
24 end
25 . . .

26 end
27 . . .

Algorithm 9: The part of method eval dealing with throws

99



input : Method id m, flag init, set of postconditions R and a sequent of one of the forms:
Γ =⇒ {U }[π Class.m(x1, . . . , xn)@Class; ω]φ,∆
Γ =⇒ {U }[π r=Class.m(x1, . . . , xn)@Class; ω]φ,∆
Γ =⇒ {U }[π x1.m(x2, . . . , xn)@Class; ω]φ,∆
Γ =⇒ {U }[π r=x1.m(x2, . . . , xn)@Class; ω]φ,∆

output: A set of sequents resulting from application of the specification
1 E ← ∅;
2 foreach (CR,UR) ∈ R do
3 /* the modified heap is always an output of the method call */
4 h← {UR}heap;
5 if init = false then
6 /* output values are always γ-symbols if not init */
7 a← the abstract element h is a γ-symbol for
8 h← a fresh γ-symbol for abstract element a;
9 end

10 /* all program variables other than heap remain unchanged by the method call
*/

11 U ′ ← U ‖ heapm := {U }heap ‖ heap := h;
12 p← the empty program statement “;” ;
13 if throwm is assigned in UR then
14 p← the statement “throw exc;” ;
15 exc← a fresh program variable of type Throwable;
16 /* what was thrown from the method is also an output */
17 t← {UR}throwm;
18 if init = false then
19 a← the abstract element t is a γ-symbol for;
20 t← a fresh γ-symbol for abstract element a;
21 end
22 /* only the modified heap and what was thrown leave the method call */
23 U ′ ← U ′ ‖ exc := t;
24 else if the return value is stored in r in the active statement of the input sequent then
25 ret ← {UR}returnm;
26 if init = false then
27 a← the abstract element ret is a γ-symbol for;
28 ret ← a fresh γ-symbol for abstract element a;
29 end
30 /* only the modified heap and the return value leave the method call */
31 U ′ ← U ′ ‖ r := ret
32 end
33 /* instantiate constraints with new update */
34 C ′ ← CR[Û /U ′];
35 /* create a sequent from C ′,U ′, p and add it to the set of results */
36 E ← E ∪ {C ′ =⇒ {U ′}[π p ω]φ};
37 end
38 return E

Algorithm 10: Method applyPost
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7.2.5 Applying the Method Contracts

Application of the generated method contracts is somewhat more complex than applying loop invariants.
This is due in large part, however, to the different types of call and return possibilities. Algorithm 10
shows how a set of postconditions can be applied to a method call.

If the flag init is still set for the partial method contract, then no recursive calls have been encountered
for the initial method call. In this case we can apply the postconditions in a relatively straightforward
manner. Syntactic replacement of Û will also not take place in this case, as the initial constraints never
contain Û and this is only added when abstracting the program states, which is only done once a recursive
call has been encountered.

Example 21.

v ≤ 1 =⇒ {heap := h ‖ x := v ‖ x1 := v}[π x0 = Math.fib(x1)@Math; f = x0; ω]φ (7.13)

Analysis of the sequent (7.13) caused automatic generation of the postconditions R from Example 20. Using
Algorithm 10 to calculate what applying a method contract with the given postconditions to the method call
in sequent (7.13) results in, gives us the following three new sequents:

v
.= 0 =⇒{x := v ‖ x1 := v ‖ heapm := h ‖ heap := h ‖ x0 := 0}[π f = x0; ω]φ (7.14)

v
.= 1 =⇒{x := v ‖ x1 := v ‖ heapm := h ‖ heap := h ‖ x0 := 1}[π f = x0; ω]φ (7.15)

Γ , v < 0 =⇒{x := v ‖ x1 := v ‖ heapm := h ‖ heap := h′ ‖ exc := e}
[π throw exc; f = x0; ω]φ (7.16)

In essence this is the same result as we would have gained by simply expanding the method call. This is as
it should be, as no recursion was present to cause abstraction to be required.

Example 21 demonstrates an advantage of our automatic generation of specifications. Encountering the
method call must cause the automatic generation of specifications to be triggered, as we cannot know
at that point if recursion will be reached in the given program state. However, after generation of the
specification we know for a fact whether any recursive calls were reached from the initial call. If this is not
the case, our approach allows for full precision to be retained.

7.2.6 Nested Method Calls

If eval encounters a method call, what is to be done depends on whether this method is currently be-
ing investigated already, or if this method is new. If the method has not already caused a call to
generateContract, this is initiated now. The goal is to either be able to generate a sound contract for
this method call and apply it in order to then move on with the current execution of eval , or through
analysis of this new method come across a mutual recursive call to the method currently being investi-
gated. Algorithm 11 show the steps involved if the encountered method does not yet have a partial method
contract mapping.

We have actually already quietly performed these steps in the examples so far, as the constructor
call IllegalArgumentException() is a method call which causes the automatic generation of specifi-
cations just like any other call. The constructor may itself be recursive, or it may contain a loop or
call a recursive method which requires the generation of specifications. As in this case the construc-
tor for IllegalArgumentException was not recursive, we simply generated and applied a specification
maintaining full precision.
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1 . . .
2 while E 6= ∅ do
3 . . .
4 /* Deal with method calls */
5 if there is a seq ∈ E, where seq has one of the forms:

Γ =⇒ {U }[π Class.m(x1, . . . , xn)@Class; ω]φ,∆
Γ =⇒ {U }[π r=Class.m(x1, . . . , xn)@Class; ω]φ,∆
Γ =⇒ {U }[π x1.m(x2, . . . , xn)@Class; ω]φ,∆
Γ =⇒ {U }[π r=x1.m(x2, . . . , xn)@Class; ω]φ,∆

6 then
7 E ← E \ {seq}; /* remove the sequent from E */
8 sig ← the signature for method m;
9 m← m(sig)@Class; /* create the method id */

10 if PMC (m) is defined then
11 /* Deal with recursive method call (see Algorithm 13) */
12 . . .

13 else
14 /* generate a specification for m */
15 (init, R)← generateContract(Γ∪!∆,U ,m, x̄)
16 end
17 /* apply the specification to seq and add resulting sequents to E */
18 foreach seq ′ ∈ applyPost(m, init, R, seq) do
19 E ← E ∪ gatherSequents(seq ′);
20 end
21 continue
22 end
23 . . .

24 end
25 . . .

Algorithm 11: The part of method eval dealing with method calls
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7.2.7 Recursion

Encountering a recursive call, whether direct or mutually recursive, causes refinement of the preconditions
as new program states are found in which the method is called. Additionally, if this was the first recursive
call encountered, the postconditions are abstracted and joined. This is to ensure that only one abstracted
normal postcondition and one abstracted exceptional postcondition for the method exist, in order to
guarantee termination of the fixed point search. We cannot simply keep adding new postconditions to the
set, otherwise a fixed point will never be reached. These steps are detailed in Algorithm 13.

In order to abstract and join the postconditions, we require the help of two additional methods: (i)
initialConstraints, shown in Algorithm 12, to find the constraints which all postconditions can assume,
removing the new constraints added due to branching in the method call, etc. and (ii) joinPost, shown in
Algorithm 14, to accomplish the actual abstraction and joining of postconditions.

input : Constraint set C, possibly containing the placeholder update Û .
output: A constraint set equal to C without the constraints containing Û .

1 C ′ ← ∅;
2 foreach c ∈ C do
3 if c does not contain the placeholder update Û then
4 C ′ ← C ′ ∪ {c}
5 end
6 end
7 return C ′

Algorithm 12: Method initialConstraints

Example 22. Consider the sequent (7.17), which creates the partial method contract mapping in (7.18)
(with R shown in (7.19) like in Example 21) before eval encounters the recursive call in (7.20).

=⇒ {heap := h ‖ x := v ‖ x1 := v}[π x0 = Math.fib(x1)@Math; f = x0; ω]φ (7.17)

PMC = { ({m}, (m, true, (∅, heap := h ‖ heapm := h ‖ pm1 := v ), R), false) } (7.18)

R = { ({v
.= 0}, heap := h ‖ heapm := h ‖ pm1 := v ‖ returnm := 0),

({v
.= 1}, heap := h ‖ heapm := h ‖ pm1 := v ‖ returnm := 1),

(Γ ∪ {v < 0}, heapm := h ‖ pm1 := v ‖ heap := h′ ‖ throwm := e) } (7.19)

v ≥ 2 =⇒{heap := h ‖ heapm := h ‖ pm1 := v ‖ x1 := v ‖ tmp1 := v − 2 ‖ tmp2 := v − 2} (7.20)
[method-frame(result->returnm,source=m):{ x0 = Math.fib(tmp2)@Math; . . . }]ψ

As PMC contains a mapping for m, the first step is to create an update from (7.20) which can be joined
with the precondition update from (7.18). This leads to the update:

U1 = heap := h ‖ heapm := h ‖ pm1 := v − 2

Calling refine(∅, heap := h ‖ heapm := h ‖ pm1 := v , {v ≥ 2}, heap := h ‖ heapm := h ‖ pm1 := v−2)
gives us the following refined constraint/update pair as new precondition for the partial method contract:

C2 = ∅ U2 = heap := h ‖ heapm := h ‖ pm1 := γ>,1
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1 . . .
2 while E 6= ∅ do
3 . . .
4 /* Deal with method calls */
5 if there is a seq ∈ E, where seq has one of the forms:

Γ =⇒ {U }[π Class.m(x1, . . . , xn)@Class; ω]φ,∆
Γ =⇒ {U }[π r=Class.m(x1, . . . , xn)@Class; ω]φ,∆
Γ =⇒ {U }[π x1.m(x2, . . . , xn)@Class; ω]φ,∆
Γ =⇒ {U }[π r=x1.m(x2, . . . , xn)@Class; ω]φ,∆

6 then
7 . . .
8 if PMC (m) is defined then
9 /* Deal with recursive method call */
10 (M,S, redo)← PMC (m); /* get partial method contract for m */
11 (m, init, (C ′,U ′), R)← S(m);
12 /* create U1 which is joinable with U ′ */
13 U1 ← heap := {U }heap ‖ heapm := {U }heapm;
14 U1 ← U1 ‖ pm1 := {U }x1 ‖ . . . ‖ pmn := {U }xn;
15 /* refine (C ′,U ′) */
16 (C2,U2)← refine(C ′,U ′, Γ∪!∆,U1);
17 if (C2,U2) 6= (C ′,U ′) then
18 /* contract needs refinement */
19 if init then
20 C ← initialConstraints(C ′);
21 R′ ← joinPost(m,C,R); /* abstract and join postconditions */
22 else R′ ← R;
23 /* update PMC with new specification, reset init and set redo */
24 S′ ← (S \ {(m, init, (C ′,U ′), R)}) ∪ {(m, false, (C2,U2), R′)};
25 PMC ← (PMC \ {(M,S, redo)}) ∪ {(M,S′, true)};
26 end
27 /* merge mutually recursive methods on PMC (see Algorithm 18) */
28 . . .
29 /* re-get (possibly refined) contract for m */
30 (_, S,_)← PMC (m);
31 (m, init,_, R)← S(m)
32 else
33 . . .
34 end
35 /* apply the specification to seq and add resulting sequents to E */
36 foreach seq ′ ∈ applyPost(m, init, R, seq) do
37 E ← E ∪ {gatherSequents(seq ′)};
38 end
39 continue
40 end
41 . . .

42 end
43 . . .

Algorithm 13: The part of method eval dealing with recursive method calls
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The method joinPost abstracts and joins precise postconditions, resulting in a set containing at most
one normal postcondition and one exceptional postcondition. This is accomplished with the help of the
methods abstractPost shown in Algorithm 15 and refine. The method abstractPost turns a precise post-
condition into an abstract postcondition by keeping the input parameters precise, while finding smallest
overapproximations for the output parameters (the program heap and possible returned or thrown value).
Then a constraint set is added based on the initial constraints extended with instantiated invariant patterns
containing the placeholder update Û . This constraint set can be assumed to hold in the abstract update,
as it held for the concrete realization it is based on.

Example 23. Continuing Example 22, in order to abstract and join the postconditions we calculate the
initial constraints C = ∅. The call to joinPost(m, ∅, R) results in R′ = {(CR

1 ,U R
1 ), (CR

2 ,U R
2 )}, where:

CR
1 = { {Û }(heap .= heapm), {Û }(returnm .= pm1 ) }
U R

1 = heapm := h ‖ pm1 := v ‖ heap := h1 ‖ returnm := γ≥,1

CR
2 = { {Û }Γ2 }
U R

2 = heapm := h ‖ pm1 := v ‖ heap := h2 ‖ throwm := e2)

Here h1 and h2 are γ-symbols for heaps, expressing the heap h modified at no (non-created) locations or
only at the locations needed for the newly created exception e respectively. Furthermore e2 is a γ-symbol
for objects, expressing the exact type IllegalArgumentException, and Γ2 contains constraints regarding
heapm, heap and throwm.
The partial method contract mapping is updated to become:

PMC = { ({m}, (m, false, (∅, heap := h ‖ heapm := h ‖ pm1 := γ>,1), R′), true) }

Let us focus on the abstract postcondition for normal behavior: While both the return value and the heap
have been abstracted, constraints have been added to remedy this coarse overapproximation. The abstract
postcondition is based on the sequents leading to the method call returning normally so far and in each of
these two cases (v is 0 or 1) both the output heap is equal to the input heap and the output value is equal to
the parameter value. While this second constraint will not last, due to the fact that in general fib(x) 6= x,
the constraint regarding the heap is indeed valid in general for the normal behavior of Math.fib.

After the partial method contract mapping has been updated due to a recursive call, the call itself is
replaced by applying the partial method contract gathered so far. This is needed in order to reach program
points occurring after the recursive call, which can be further recursive calls, method returns or exception
throwing, all of which must be taken into account.

As the method call has been determined to be recursive, we must use fresh γ-symbols for the output
values, rather than the actual γ-symbols contained in the postconditions. The reason for this is simple:
Let f be some method under consideration. Then we are not interested in the value of f(γai,j), but rather
the value of f(γai,z) for all z ∈ Z. This means in particular, that the return value for f(γai,j) being γak,l

does not imply that γak,l is the return value for all f(γai,z), but only that for each z ∈ Z there is a z′ ∈ Z,
such that f(γai,z) = γak,z

′ .
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input : Method id m, with initial constraint set C and a set of constraint/update pairs R
expressing return and/or throw postconditions.

output: A set of abstracted constraint/update pairs, maximum of one for returns and one
for throws.

1 Returns ← ∅;
2 Throws ← ∅;
3 foreach (CR,UR) ∈ R do
4 if throwm is assigned in UR then
5 if Throws 6= ∅ then
6 (C ′R,U ′R)← the element in Throws;
7 Throws ← {refine(C ′R,U ′R, CR,UR)}
8 else Throws ← {abstractPost(C,CR,UR)};
9 else if Returns 6= ∅ then
10 (C ′R,U ′R)← the element in Returns;
11 Returns ← {refine(C ′R,U ′R, CR,UR)}
12 else Returns ← {abstractPost(C,CR,UR)};
13 end
14 return Returns ∪ Throws

Algorithm 14: Method joinPost, to abstract and join postconditions.

input : Method id m with initial constraint set C and constraint/update pair (C2,U2),
where Û does not appear in either C or C2.

output: An abstracted constraint/update pair.
1 /* gather the program variables which are outputs of the method call */
2 O ← {heap};
3 if throwm is assigned in U2 then
4 O ← O ∪ {throwm}
5 else if returnm is assigned in U2 then
6 O ← O ∪ {returnm}
7 end
8 /* keep the inputs */
9 U ′ ← pm1 := {U2}pm1 ‖ . . . ‖ pmn := {U2}pmn ‖ heapm := {U2}heapm;

10 /* abstract the outputs */
11 foreach x ∈ O do
12 A ← the abstract domain for the type of x;
13 a← the smallest abstract element of A , where C2 =⇒ χa({U2}x) is valid;
14 γa,j ← a fresh γ-symbol for the abstract element a;
15 U ′ ← U ′ ‖ x := γa,j
16 end
17 foreach invariant pattern p do
18 c′ ← strongest invariant for p, such that C2 =⇒ c′[Û /U2] is valid;
19 C ′ ← C ′ ∪ {c′}
20 end
21 return (C ′,U ′)

Algorithm 15: Method abstractPost to create an abstract constraint/update pair.
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Example 24. Continuing Example 23, we apply the postconditions in R′ to the sequent:
v ≥ 2 =⇒{heap := h ‖ heapm := h ‖ pm1 := v ‖ x1 := v ‖ tmp1 := v − 2 ‖ tmp2 := v − 2}

[method-frame(result->returnm,source=m):{ x0 = Math.fib(tmp2)@Math; . . . }]ψ
After symbolic execution of the resulting sequents in gatherSequents, the following (somewhat simplified)

sequents are added to E, where Γ ′ contains constraints regarding h, h′2 and e′2, while h′1, h′2, e′2 are fresh
γ-symbols for the same abstract elements as h1, h2, e2:
v ≥2, h′1

.=h,γ≥,2
.= v =⇒ {heapm := h ‖ pm1 := v ‖ x1 := v ‖ heap := h′1 ‖ x0 := γ≥,2 ‖ tmp := v−1}

[method-frame(result->returnm,source=m):{ y0 = Math.fib(tmp)@Math; . . . }]ψ
(7.21)

Γ ′, v ≥ 2 =⇒{heapm := h ‖ pm1 := v ‖ x1 := v ‖ heap := h′2 ‖ exc := e′2}
[method-frame(result->returnm,source=m):{ throw exc; . . . }]ψ (7.22)

The sequent (7.21) contains a recursive call, but refinement reveals that the partial method contract
is already applicable for this call and so application of the postcondition and symbolic execution in
gatherSequents leads to:
v ≥ 2, h′1

.= h, h′′1
.= h′1, γ≥,2

.= v , γ≥,3
.= v =⇒

{heapm := h ‖ pm1 := v ‖ x1 := v ‖ x0 := γ≥,2 ‖ heap := h′′1 ‖ y0 := γ≥,3 ‖ returnm := γ≥,2 + γ≥,3}
[method-frame(source=m):{ }]ψ

(7.23)
Once a method call has been deemed recursive, we can no longer simply add new postconditions when

normal or exceptional termination of the method is reached. Instead, the new postcondition is used to refine
the existing normal or exceptional postcondition. If a matching postcondition type does not already exist,
then the new postcondition is instead abstracted and this abstract postcondition is added. Thus we continue
to ensure that only at most one normal postcondition and at most one exceptional postcondition exist for
the partial method contract for a recursive method. Details on these steps for normal postconditions are
in Algorithm 16 and for exceptional postconditions in Algorithm 17. The differences between dealing with
normal and exceptional postconditions are again quite minimal.
Example 25. The sequents (7.22) and (7.23) from Example 24 cause postcondition refinement. In the case
of the exceptional postcondition, the result of refine does not change, so no further action is taken. This
is in fact a fixed point for the exceptional behavior: an exception of type IllegalArgumentException is
thrown, it is stored on the heap and its fields are initialized. Nothing more can be gained from this abstract
exceptional postcondition.
Refinement of the normal postcondition (C ′R,U ′R) with the postcondition (CR,UR) gained from se-

quent (7.23), however, leads to the new postcondition (C1,U1), where:
C ′R = { {Û }(heap .= heapm), {Û }(returnm .= pm1 ) }
U ′R = heapm := h ‖ pm1 := v ‖ heap := h1 ‖ returnm := γ≥,1

CR = { v ≥ 2, h′1
.= h, h′′1

.= h′1, γ≥,2
.= v , γ≥,3

.= v }
UR = heapm := h ‖ pm1 := v ‖ heap := h′′1 ‖ returnm := γ≥,2 + γ≥,3

C1 = { {Û }(heap .= heapm) }
U1 = heapm := h ‖ pm1 := v ‖ heap := h′3 ‖ returnm := γ≥,4

The method eval now has no more sequents to consider and so returns to generateContracts. As the
redo-flag has been set for for the method identifier m in the partial method contract mapping, a further
iteration of the fixed point search will be triggered. In this new call to eval, all recursive method calls can
be replaced with their postconditions without modifying the precondition. Further, the postconditions will
not need to be modified, either. A fixed point has therefore been found for the program state of the initial
method call and an overapproximation of all program states in which recursive calls can be reached.
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1 . . .
2 while E 6= ∅ do
3 . . .
4 /* Deal with returns */
5 if there is a seq ∈ E, where seq has the form:

Γ =⇒ {U }[π method-frame(source=m,. . .) { } ω]φ,∆
6 then
7 . . .
8 /* UR is the normal postcondition update calculated from seq */
9 . . .

10 else
11 /* init is false, normal postcondition may need refining */
12 if R contains a (C ′R,U ′R), where throwm is not in U ′R then
13 (C1,U1)← refine(C ′R,U ′R, Γ∪!∆,UR);
14 if (C1,U1) = (C ′R,U ′R) then
15 continue /* no refinement to specification needed */
16 end
17 /* need to update normal postcondition */
18 R′ ← (R \ {(C ′R,U ′R)}) ∪ {(C1,U1)}
19 else
20 /* get constraints of initial method call */
21 C ← initialConstraints(C ′);
22 /* add abstracted normal postcondition */
23 R′ ← R ∪ {abstractPost(C, Γ∪!∆,UR)}
24 end
25 redo′ ← true; /* specification was changed, fixed point not found

*/
26 end
27 /* update PMC */
28 S′ ← (S \ {(m, init, (C ′,U ′), R)}) ∪ {(m, init, (C ′,U ′), R′)};
29 PMC ← (PMC \ {(M,S, redo)}) ∪ {(M,S′, redo′)};
30 continue
31 end
32 . . .

33 end
34 . . .

Algorithm 16: The part of method eval dealing with returns for a recursive method
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1 . . .
2 while E 6= ∅ do
3 . . .
4 /* Deal with throws */
5 if there is a seq ∈ E, where seq has the form:

Γ =⇒ {U }[π method-frame(source=m,. . .) { throw se; . . . } ω]φ,∆
6 then
7 . . .
8 /* UR is the exceptional postcondition update calculated from seq

*/
9 . . .

10 else
11 /* init is false, exceptional postcondition may need refining */
12 if R contains a (C ′R,U ′R), where throwm is in U ′R then
13 (C1,U1)← refine(C ′R,U ′R, Γ∪!∆,UR);
14 if (C1,U1) = (C ′R,U ′R) then
15 continue /* no refinement to specification needed */
16 end
17 /* need to update exceptional postcondition */
18 R′ ← (R \ {(C ′R,U ′R)}) ∪ {(C1,U1)}
19 else
20 /* get constraints of initial method call */
21 C ← initialConstraints(C ′);
22 /* add abstracted exceptional postcondition */
23 R′ ← R ∪ {abstractPost(C, Γ∪!∆,UR)}
24 end
25 redo′ ← true; /* specification was changed, fixed point not found

*/
26 end
27 /* update PMC */
28 S′ ← (S \ {(m, init, (C ′,U ′), R)}) ∪ {(m, init, (C ′,U ′), R′)};
29 PMC ← (PMC \ {(M,S, redo)}) ∪ {(M,S′, redo′)};
30 continue
31 end
32 . . .

33 end
34 . . .

Algorithm 17: The part of method eval dealing with throws for a recursive method
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7.2.8 Mutual Recursion

As was mentioned in Section 7.2.3, the method generateContract is designed in order to also be able to
generate method contracts for mutually recursive methods. Let us briefly sketch the idea: If a method
f calls a method g, which calls a method h, then during analysis of the method body for h the partial
method contract mapping is:

PMC = { ({f}, {(f, initf , pref ,POST f )}, redof ),
({g}, {(g, initg, preg,POST g)}, redog),
({h}, {(h, inith, preh,POSTh)}, redoh) }

If a partial method contract can be generated for the method h, then it is returned and PMC (h)
is removed from PMC . This removal allows multiple calls to the same non-recursive method to occur
without triggering abstraction, to ensure high precision specifications. Even for recursive methods this can
enhance the precision, as we might generate two vastly different method contracts if a method is called
with a positive or negative input. If these were joined, we lose quite a bit of precision in the precondition,
which could cause loss of precision in the postconditions as well.

But what if h calls f or g? To begin with, we must treat this recursive call to f or g as usual. Additionally,
however, we need to establish in these cases that multiple methods have the capability of calling each other
and therefore changes to the partial method contract of one method may also influence the partial method
contracts of other methods. There are two questions to answer:

1. Which methods exactly are involved in the mutual recursion?

2. How can we ensure that the fixed points gathered for all these methods interact appropriately?

The answer to the first question is on the method frame stack. As we can trace back through the stack,
we can gather all methods involved in the mutual recursion. If the method stack has h as its top element
and g right below it, then a call to g within h only involves these two methods. If, however, f is called
from within h, then we must gather all methods on the stack up to and including f . For if f calls g calls
h calls f , then all three methods are mutually recursive.

The solution for the second question is implemented in the following manner:

1. The partial method contract mapping maps sets of method identifiers to sets of partial method
contracts. This allows mutually recursive methods to be grouped. As there is only one redo-flag per
element in the partial method contract mapping, this ensures that any member of the group setting
this flag will suffice.

2. The fixed point search in generateContract checks all of the partial method contracts in PMC (m)
for the method m under consideration. This means that not only m itself, but all mutually recursive
methods grouped with m will be tested before it is determined if a fixed point is found.

3. The treatment for sequents containing a method call as active statement perform the steps in Algo-
rithm 18 after refining the precondition for m and before applying the postcondition. This ensures
that mutually recursive method calls are recognized as such.
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1 . . .
2 /* merge mutually recursive methods on PMC */
3 M ′ ← get(MFS ,m); /* get all methods involved in recursion */
4 if M ′ 6⊆M then
5 joinPMC (M ∪M ′); /* merge all on PMC */
6 end
7 . . .

Algorithm 18: The part of method eval dealing with mutual recursive method calls

global: A partial method contract mapping PMC .
input : Set of method ids M

1 M ′ ←M ;
2 S′ ← ∅;
3 while M 6= ∅ do
4 m′ ← some element of M ′;
5 (M1, S1, redo1)← PMC (m′);
6 PMC ← PMC \ {(M1, S1, redo1)}; /* remove M1 from PMC */
7 M ←M \M1; /* remove M1 from M */
8 S′ ← S′ ∪ S1; /* S′ now contains contracts for all methods in M1 */
9 end

10 PMC ← PMC ∪ {(M ′, S′, true)}; /* add new entry to PMC */

Algorithm 19: Method joinPMC , joining elements of PMC into a single element

Algorithm 19 performs the actual joining of members of the partial method contract mapping. All
members containing partitions which have members belonging to the set of newly recognized mutually
recursive methods are joined into one member.

Example 26. Let the method frame stack and partial method contract mapping be:

MFS = { {f, g, h}, {g, h} , {h} }

PMC = { ({f, g}, {(f, initf , pref ,POST f ), (g, initg, preg,POST g)}, redofg),
({h}, {(h, inith, preh,POSTh)}, redoh) }

If a method call to g is encountered, then first the element

({f, g}, {(f, initf , pref ,POST f ), (g, initg, preg,POST g)}, redofg)

is retrieved and init and preg updated to false and pre′g. Then the method frame stack is checked, to reveal
that {g, h} is the minimal set of method identifiers that must be grouped. As {g, h} 6⊆ {f, g}, we call
joinPMC ({f, g, h}), which results in the partial method contract mapping being modified to:

PMC = {({f, g, h}, {(f, initf , pref ,POST f ), (g, false, pre′g,POST g), (h, inith, preh,POSTh)}, true)}

7.2.9 Recursive Calls Within Loops

In the case that a recursive call is encountered within a loop, i.e. during analysis of a loop in eval called
from generateLoopInvariant, which itself was called during analyisis of a method call in eval called from
generateContract, we first perform all necessary steps on the recursive call:
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1. possible refinement of the partial method contract’s precondition,

2. possible grouping of partial method contracts due to mutual recursion,

3. application of the partial method contract’s postconditions on the sequent containing the recursive
call, and finally

4. gathering the sequents of open branches in the symbolic execution tree resulting from symbolic
execution of the sequents resulting from these applications.

We then continue analysis of the loop. This can lead to the same recursive calls being encountered in
multiple iterations of the fixed point search for the loop. Often this will be in a different program state.
Once a fixed point for the loop invariant has been found, it will be applied to the loop upon returning
from generateLoopInvariant. This application will then lead in eval to new sequents returning from the
method containing the loop (normally or exceptionally). These may further modify the partial method
contract for the method call. If no modification took place, either of the precondition due to the recursive
call or the postconditions, then no further steps are required and the postconditions will be returned and
applied. In the general case, however, where the partial method contract has been modified and therefore
requires a new iteration of the fixed point search, the loop for which we have already generated a loop
invariant will be encountered again, this time potentially with a different program states. Therefore, similar
to the way nested inner loops are dealt with in Section 7.1.2, this loop must also have its loop invariant
re-generated. Even in the case where the program state is the same, the loop needs to be re-analyzed, as
the postconditions for the method may have changed, resulting in modified behavior of the loop body.

Note on Method Overriding

This approach works not only for static methods and private instance methods, which do not have the
capability to be overridden, but also for non-private instance methods which can be overridden. This is
due to the fact that we use method identifiers to determine which actual method implementation is being
called before considering if this is a recursive call. Given the Java class definitions in Listing 7.2, we note
the following:

1. The method identifiers f(C×int→int)@C and f(E×int→int)@E are different.

2. A call of f(E×int→int)@E will not reach any recursive calls and therefore a fully precise postcon-
dition will be generated.

3. A call of f(C×int→int)@C may or may not reach a recursive call. In particular, even in the case
that x > 0 and o 6= null, a recursive call might not be reached: if o is of type E (or a subtype
thereof not overriding method f), then the call to o.f(x-1) is not a recursive call, but rather a call
of the different, non-recursive method identifier f(E×int→int)@E. Therefore in this case the call
of f(C×int→int)@C also need not be abstracted and a fully precise postcondition will be generated
and applied.

class C { class E extends C {
int f(int x) { int f(int x) {

if (x <= 0) if (x <= 0)
return 0; return 0;

return 1 + o.f(x-1); return x;
} }

}
C o;

}
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Listing 7.2: Classes demonstrating method overriding

Our approach cannot fully support an open world assumption on additional types when generating spec-
ifications for non-private instance methods, however, as it relies on the use of the calculus rule methodCall
in order to let a call o.f(x-1) be split into the various calls to different method identifiers. Use of the
methodCall rule assumes a closed world in this regard, however.

Note on Method Frames

In our analysis we do not examine each recursive call in its actual call environment, but rather create a
new sequent with the method call expanded at top-level. This is required, as the set of all possible call
environments for recursive calls could be infinite. As such, we cannot allow the method call to access all
method-frames, as otherwise our sandbox would perform differently than the actual environment. This is
not much of a problem, as Java does not allow direct access to the method-frames. However, there are
some Java library methods which do allow indirect access to method-frames, such as methods to print the
stack trace. Momentarily, this is not part of Java dynamic logic. However, if it were to be added, we would
require a safe overapproximation of the method-frames in which a call is made.
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8 Related Work

In this chapter we discuss related work in the fields of automatic invariant generation, abstract interpreta-
tion, array and heap abstraction, as well as automatic generation of method summaries. We contrast these
with the solutions chosen in this dissertation.

Abstract Interpretation: There are various approaches to automatic generation of specifications using ab-
stract interpretation (see [23] for a survey). As noted in [28], although abstract interpretation relies
on abstract domains being lattices, restriction in this manner is quite costly on precision. For this rea-
son many approaches use non-lattice abstract domains. Examples of these are wrapped intervals [49]
and the array segmentations proposed in [31, 35, 17]. Non-lattice abstract domains, however, are
not directly usable with abstract interpretation. Ad-hoc introduction of quasi-joins can allow the
integration, but causes other problems [28]. Predicate abstraction [7, 8, 38, 63] is a quite efficient
technique, using predicates about the values of program variables to replace these.
We rely on abstract domains which are lattices. Our abstract domain for integers A int, while not
quite as expressive as wrapped intervals, has the advantage of the result of each join being clearly
defined. By using abstract domains, but adding refinement invariants, we keep precision high while
not needed to deal with the problems of non-lattice domains. We do not perform abstraction of
program variables, but rather their states.

Array Abstraction and Invariants: There has been much research in the field of array abstraction. Abstract
interpretation results range from simple array smashing [11], where all elements of the array are
treated as one abstract element, to the more detailed array segmentations of [17], where arrays
can be partitioned into numerous different ranges. Based on linear loop-dependent scalars [20] or
the various properties (increasing, dense, etc.) for scalars in [46], or utilizing range predicates [43],
allows invariants for ranges within arrays to be automatically generated. Many of these approaches
only allow for contiguous ranges. Other approaches to array abstraction are to use templates to
introduce quantified formulas from quantifier-free elements [33], or by abstracting the program itself
by replacing the array with multiple array slices as in [35].
With the approach outlined in this dissertation we can handle both contiguous as well as affine
ranges when generating instantiations of invariant patterns for array updates. We do not require
the abstraction of the program itself, but rather only the abstraction of the program states, thereby
potentially keeping higher precision. Our use of invariant patterns, while different from the concept
of templates in [33], results similarly in the generation of invariants of a predefined form.

Heap Abstraction: Some interesting abstraction techniques for heaps are the various points-to-analyses [39]
and the related shape analysis [51, 44], as well as canonical abstraction [52]. With these approaches
it is possible to automatically perform abstraction on (parts of) the program heap, forming abstract
members which express certain shapes, reachability issues, etc.
Our heap abstraction is limited to anonymizing a smallest overapproximation of the location sets
modified and refining this with instantiations of invariant patterns. While this approach is not as
precise as shape analysis for reasoning about lists and trees, it is firmly anchored in an abstract
domain expressible as a lattice, with a sound non-trivial widening operator.

Automatic Generation of Loop Invariants and Method Summaries: In general, the approaches to automatic
generation of loop invariants and method summaries are either restricted to an academic toy language,
require modification of the program to, for example, remove recursion [13] or replace concrete types
with abstract ones [7, 8, 38], use bottom-up optimizations unfitting for mutual recursive methods [26,
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64], or analyze only some of the dynamic traces of a program [25]. Some interesting approaches [50,
42, 47, 18, 27, 3] (can) use provided annotations to guide generation of loop invariants and pre- and
postconditions for non-recursive methods. The approaches in [50, 3] also utilize symbolic execution.
Our automatic generation of specifications is based on a real-world language and requires no mod-
ification of the program. The top-down approach allows easy integration of mutual recursion and
symbolic execution allows consideration of all program traces. As some of the use cases for our
approach do not provide annotations, we cannot use these to guide our generation of specifications.
Furthermore, all known approaches which use provided annotations in the automatic generation of
specifications cannot deal with recursive methods.
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9 Conclusion

This dissertation has demonstrated how abstract interpretation and symbolic execution can be combined
in order to automatically generate loop invariants and method contracts in real-life programming languages
containing, among others, nested loops, mutual recursion, exceptional behavior and non-standard control
flows.

Useful abstract domains for integers, booleans, objects and heaps have been introduced. In particular,
the abstract domain for heaps is to our knowledge the first abstract domain for heaps relying on an infinite-
height lattice with non-trivial widening operator which tries to retain full precision of which locations on
the heap have been modified if these locations are not responsible for the widening.

In order to retain higher precision than with only an abstraction using abstract domains, it has been
shown how automatic instantiations of invariant patterns can counteract the coarse overapproximations
of an abstract domain, while still retaining a terminating fixed point algorithm. These invariant patterns
allow for relational invariants, strengthening of the heap abstraction and invariants for array contents, by
classification for contiguous or affine ranges within the array and the complementing range.

Non-standard control flows within loops complicate analysis and application of loop invariant rules. This
dissertation uncovered problems with two existing attempts at loop invariant rules for non-standard control
flows in Java dynamic logic: (i) by the introduction of a multitude of new modalities, and (ii) by program
transformation of the loop body. The introduction of loop scopes into Java dynamic logic allows gathering
the necessary sequents for automatic generation of loop invariants. Using an extension of loop scopes, a
sound loop invariant rule for Java dynamic logic has been proposed, which does not have the problems
the other attempts had and furthermore relies neither on the introduction of new modalities, nor on the
transformation of the loop body, both of which are error-prone. Furthermore, this extension of loop scopes
can also be used to replace the loop unwinding rule.

Finally, the entire process of automatic generation and application of sound loop invariants and method
contracts has been described. This process is capable of dealing with the possible presence of nested loops,
mutual recursion and recursive calls from within a loop.

A case study [22] has illustrated how an implementation of this approach can help in the automatic
analysis of programs for information flow properties. Further use case scenarios are in helping with the
verification of partially specified code, for example by integration with [37], and integration with an IDE
in order to present the programmer with specifications generated on-the-fly.
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10 Future Work

The automatic generation of specifications outlined in this dissertation uses the box modality [·] which
covers partial correctness. This could be extended to total correctness, using the diamond modality 〈·〉.
A simple solution would be to use the calculus rule splitTermination in (10.1) in order to separate the
total correctness requirement into (i) proving partial correctness and (ii) proving termination. For the
partial correctness, specifications can be automatically generated as before. For the termination proof, a
program can be generated from the sequent and passed to an existing tool for termination analysis, such
as AProVE [30] or COSTA [4]. A more comprehensive solution would involve proving both aspects of total
correctness at the same time, as termination proofs often calculate helpful invariants as side effects which
could be used in the proof of partial correctness, while for some programs knowledge of partial correctness
may be required in order to prove termination.

splitTermination
Γ =⇒ {U }[p]φ,∆ Γ =⇒ {U }〈p〉true,∆

Γ =⇒ {U }〈p〉φ,∆
(10.1)

Invariant patterns could be introduced for reachability concerns on the heap, using shape analysis tech-
niques to allow better invariants for structures such as lists and trees. The invariant patterns for arrays
could be further enhanced to allow multi-range partitions in order to generate strong specifications for
methods such as quicksort, which modify arrays at multiple (contiguous) ranges.

While not a requirement in all use cases for automatic generation of specifications, often annotations for
at least parts of the source code are provided. Using ideas from [50, 3] these annotations could be utilized
to help guide the generation of stronger loop invariants. Furthermore, the use of annotations to guide
generation of method contracts for (mutual) recursive methods could be investigated.

Integration of the information flow tracking ideas in [61] into the framework for automatic generation of
specifications could lead to the automatic generation of information flow properties, or at the least to the
automatic generation of invariants regarding explicit and implicit dependencies for program variables and
array elements.
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