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If you can’t explain it simply,
you don’t understand it well enough.

— Albert Einstein





A B S T R A C T

Investigating and extracting users’ context has always been a main drive for re-
search in the field of smart environments. Context is defined as the set of con-

ditions that characterize a certain situation in which the user exists. An example of
user’s context is the activity currently performed by the user along with her/his
current indoor location. Identifying users’ context paves the road for the realization
of a wide variety of context-aware services that improve the quality of life for in-
dividuals as well as societies. To extract users’ context, researchers have resorted
to the approach of deploying a huge number of sensors in the environment where
users’ context has to be extracted. Examples of these sensors are cameras, micro-
phones, motion and contact sensors, state-change sensors and other types of sensors
that monitor every aspect of users’ context. However, this approach has always been
criticized as causing a huge deployment and maintenance overhead for researchers.
Moreover, it has been perceived as an intrusive approach by users because they feel
themselves surrounded by all possible types of visible sensors.

Recent years have seen an increasing adoption of smart metering technologies
along with the manufacturing of new appliance-level power sensors that are able
to measure the fine-granular power consumption of individual devices in smart en-
vironments. As a result, fine-granular sensing of power consumption has emerged
as a new sensing modality that avoids the afore-mentioned problems of other sens-
ing modalities. One of the main goals of this thesis is to develop intelligent models
that infer and predict several challenging and essential aspects of users’ context only
based on fine-granular sensing of power consumption.

Activities of daily living (ADL) represent an essential part of users’ context that
has always motivated researchers in the field of smart environments. Context-aware
services such as energy conservation in smart environments and ambient assisted
living can be realized based on the recognition of users’ current activity. In this the-
sis, we develop SMARTENERGY.KOM, an intelligent hardware/software platform
for recognizing activities of users in single-user environments. We build an activity
recognition model and evaluate its performance based on a dataset we collect by
deploying SMARTENERGY.KOM in two single-user apartments.

As an essential part of this thesis, we conduct an in-depth analytical study on the
dataset collected by SMARTENERGY.KOM with three main contributions, namely
modeling of user’s daily behavior, indoor localization based on fine-granular power
consumption data, and profiling of user’s hourly power consumption. As users tend
to follow a daily routine in performing their activities, identifying behavioral pat-
terns of users helps to improve the predictive performance of activity recognition
models. We develop an approach that identifies such patterns of user’s behavior.
Evaluation results show that feeding these patterns into the model of activity recog-
nition leads to a significant improvement in its predictive performance. Indoor lo-
cation represents another important aspect of users’ context that has its potential
benefits in realizing location-aware services. We develop a localization model that
is able to determine the indoor location of users based on their fine-granular power



consumption. Building a profile that characterizes average hourly power consump-
tion of users has its potential benefits in increasing their awareness of the power
they consume as well as in detecting abnormal consumption patterns. Driven by this
motivation, we develop an approach that identifies and builds this profile based on
SMARTENERGY.KOM dataset.

As more than one user tend to live, work and reside in one common place, ac-
tivity recognition models need to cope with the fact that parallel and overlapping
activities of several users have to be recognized and assigned to their respective
users. This fact has always represented a great challenge for researchers in the field
of activity recognition. In this thesis, we address this challenge by developing ML-
SMARTENERGY.KOM, our platform for activity recognition in multi-user environ-
ments. We develop our model for recognizing activities based on the concept of
multi-label classification, which exploits label dependency and temporal relations
between activities.

Forecasting fine-granular power consumption of individual consumers represents
another aspect of users’ context that has its potential benefits for consumers as well
as electric utilities. In this thesis, we develop state-of-the-art forecasting models that
are able to forecast hourly, daily, and monthly power consumption of individual
buildings based on building characteristics, demographic features of residents, avail-
able appliances as well as historical power consumption values. We evaluate these
models using a dataset collected by Commission for Energy Regulation (CER) in
Ireland.



K U R Z FA S S U N G

Die Erfassung und Analyse von Nutzerkontext ist ein großer Bestandteil der
Forschung auf dem Gebiet der intelligenten Umgebungen. Kontext wird als

die Menge von Bedingungen definiert, die eine bestimmte Situation charakterisieren,
in der der Nutzer existiert. Ein Beispiel für Kontext ist die Aktivität, die gerade durch
den Nutzer an seinem aktuellen Standort durchgeführt wird. Die Identifizierung des
Nutzerkontexts ebnet den Weg für die Realisierung einer Vielzahl von kontextsensi-
tiven Diensten, die die Lebensqualität des Einzelnen als auch ganzer Gesellschaften
verbessern können. Um den Kontext des Nutzers zu extrahieren, wird in verwandten
Arbeiten der Ansatz verfolgt, eine große Anzahl von Sensoren in der Umgebung
einzusetzen, in der der Nutzerkontext erfasst werden soll. Beispiele für solche Sen-
soren sind Kameras, Mikrofone, Bewegungsmelder, Kontaktsensoren, Zustandsän-
derungssensoren und andere Arten von Sensoren, die jeden Aspekt des Nutzerkon-
texts überwachen. Allerdings wurde dieser Ansatz immer kritisiert, weil er großen
Einsatz- und Wartungsaufwand verursacht. Darüber hinaus wird dieser Ansatz als
invasive Methode von den Nutzern wahrgenommen, weil sie sich umgebend von
allen möglichen Arten von sichtbaren Sensoren unwohl fühlen.

Die Einführung von Smart-Metering-Technologien einhergehend mit der Innova-
tion von Stromsensoren, die in der Lage sind den fein-granularen Stromverbrauch
einzelner Geräte in intelligenten Umgebungen zu messen, hat in den letzten Jahren
stark zugenommen. Als Ergebnis meiner Arbeit hat sich die fein-granulare Erfas-
sung des Stromverbrauchs als neue Erfassungsmodalität herausgestellt, die die oben
genannten Probleme der anderen Erfassungsmodalitäten vermeidet. Eines der wichtig-
sten Ziele dieser Arbeit war es, intelligente Modelle zu entwickeln, die in der Lage
sind, herausfordernde und wesentliche Aspekte des Nutzerkontexts - sowohl für
einzelne Nutzer als auch für mehrere Nutzer und sowohl für einzeln als auch paral-
lel durchgeführte Aktivitäten - anhand der fein-granularen Erfassung des Stromver-
brauchs zu erkennen und vorherzusagen.

Aktivitäten des täglichen Lebens stellen einen wesentlichen Teil des Nutzerkon-
texts dar. Kontextbewusste Dienste wie beispielsweise zur Energieeinsparung in in-
telligenten Umgebungen und umgebungsunterstütztes Leben können auf Basis der
Erkennung der aktuellen Nutzeraktivität realisiert werden. In dieser Arbeit wird
SMARTENERGY.KOM konzipiert und entwickelt, eine intelligente Hardware/Soft-
ware Plattform für die Erkennung von Nutzeraktivitäten in Einzelnutzer-Umgebungen.
Es wird ein Aktivitätserkennungsmodell erstellt und basierend auf einem Datensatz,
der durch den Einsatz von SMARTENERGY.KOM in zwei Einzelnutzer-Wohnungen
gesammelt wird, wird seine prädiktive Performanz bewertet. Als ein wesentlicher
Teil dieser Arbeit wird eine gründliche analytische Studie über den SMARTEN-
ERGY.KOM-Datensatz mit drei wichtigen Beiträgen durchgeführt, das sind die Mod-
ellierung des täglichen Benutzerverhaltens, Lokalisierung in Gebäuden basierend auf
fein-granularen Stromverbrauchsdaten und die Profilierung des stündlichen Stromver-
brauchs. Menschen neigen dazu, eine tägliche Routine bei der Durchführung ihrer
Aktivitäten zu verfolgen, die Identifizierung von Verhaltensmustern hilft dabei, die



prädiktive Performanz der Aktivitätserkennungsmodelle zu verbessern. Daher wird
einen Ansatz entwickelt, der solche Verhaltensmuster identifizieren kann. Die Auswer-
tungsergebnisse zeigen, dass die Integration dieser Muster in das Aktivitätserken-
nungsmodell zu einer deutlichen Verbesserung der prädiktiven Performanz dieses
Modells führt. Lokalisierung in Gebäuden ist ein weiterer wichtiger Aspekt des
Nutzerkontexts, der die Realisierung von standortbezogenen Dienste ermöglicht. Es
wird ein Lokalisierungsmodell entwickelt, welches in der Lage ist, den Aufenthalt-
sort der Nutzer in Gebäuden basierend auf ihrem fein-granularen Stromverbrauch
zu bestimmen. Der Aufbau eines Profils, das den durchschnittlichen, stündlichen
Stromverbrauch charakterisiert, ermöglicht es, das Bewusstsein für den Stromver-
brauch zu erhöhen, sowie ungewöhnliche Konsummuster zu entdecken. Angetrieben
von dieser Motivation, wird in dieser Arbeit der Ansatz verfolgt, dieses Profil auf Ba-
sis von SMARTENERGY.KOM-Datensatz zu identifizieren und zu erstellen.

Neben überwiegend einzeln genutzten Wohnungen gibt es viele Orte, an denen
gemeinsam gelebt bzw. gearbeitet wird. Damit müssen Aktivitätserkennungsmod-
elle auch überlappende Aktivitäten mehrerer Nutzer erkennen und ihrem jeweiligen
Nutzern zuordnen. Dies stellt eine große Herausforderung auf dem Gebiet der Ak-
tivitätserkennung dar. Diese Arbeit befasst sich daher mit dieser Herausforderung
durch die Entwicklung von ML-SMARTENERGY.KOM, unsere Plattform für die Ak-
tivitätserkennung in Multi-Nutzer-Umgebungen. Das Aktivitätserkennungsmodell
wird basierend auf dem Konzept der Multi-Label-Klassifikation entwickelt, das die
Abhängigkeit von Klassen und die zeitlichen Beziehungen zwischen den Aktivitäten
ausnutzt.

Die Vorhersage des fein-granularen Stromverbrauchs einzelner Verbraucher stellt
einen weiteren Aspekt des Nutzerkontexts dar, der verschiedene potenzielle Vorteile
für die Verbraucher als auch Stromversorger bietet. In dieser Arbeit werden Vorher-
sagemodelle entwickelt, die in der Lage sind, stündliche, tägliche, und monatliche
Stromverbräuche der einzelnen Gebäude auf Basis von Gebäudeeigenschaften, de-
mographischen Merkmalen der Bewohner, verfügbaren Geräten sowie historischen
Stromverbrauchswerten vorherzusagen. Diese Modelle werden auf Basis des von
der Commission for Energy Regulation (CER) in Irland gesammelten Datensatzes
evaluiert.
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1

I N T R O D U C T I O N

1.1 motivation

Fine-granular sensing of power consumption has become a new sensing modal-
ity after the wide spread of smart metering technologies [18]. Moreover, the

emergence of new appliance-level power sensors made it possible to obtain power
consumption data from several single devices in smart environments [88]. With elec-
tricity virtually present in a majority of homes, power consumption has become an
obvious modality to infer context information. The availability of such fine-granular
measurements paves the road for an accurate extraction and utilization of users’ con-
text in smart environments solely based on power measurements and without the
need for any other sensing modalities. Anind K. Dey has provided a general, clear
and widely accepted definition of context [35, Page 2]:

“Context is any information that can be used to characterize the situation of an
entity. An entity is a person, place, or object that is considered relevant to the in-
teraction between a user and an application, including the user and applications
themselves.”

The identification, recognition and prediction of users’ context have always been
considered as main enablers for a wide variety of context-aware systems [97] such
as ambient assisted living [83][19][37], energy saving in smart spaces [20] and user-
oriented communication services [45].

As parts of users’ context, we focus in this work on the recognition of daily activ-
ities in single-user and multi-user environments, modeling of users’ daily behavior,
indoor localization of users, power profiling and forecasting of long-term and short-
term power consumption.

Activity recognition represents an essential basis of several intelligent services that
can be realized in the context of smart environments. By recognizing activities of
users, we can realize services that help potential groups of people in their daily life
such as elderly care [94] and energy conservation services [5]. Researchers in the
field have always used a huge amount of sensors in order to recognize daily activ-
ities of users [105]. We argue that with the availability of fine-granular information
about power consumption, we can build powerful predictive models that can rec-
ognize human daily activities without the need of installing any other additional
sensors. Moreover, multi-user environments where more than one user resides and
performs co-temporal activities represent a great challenge for researchers in the
field of activity recognition. The challenge lies in the fact that parallel activities of
several users have to be recognized and assigned to their respective users. With the
help of fine-granular power sensing and the techniques of multi-label classification,
this challenge can be solved as we show in Chapter 6.

Getting insights into user lifestyle and whereabouts helps in providing users with
personalized intelligent services that assist them in their everyday life [83]. Fine-
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2 introduction

granular power measurements offer a great potential for extracting such insights.
One example is the indoor localization of users. It represents an important aspect
of any smart environment that aims to provide users with location-aware services.
Indoor localization is usually realized using motion sensors that sense and report
movement in the environment. In our work, we show that it can be realized based on
power measurements and without the need for installing any other sensing modal-
ities [6]. Apart from that, human beings tend to perform their daily activities in a
daily routine which repeats itself every day. Identifying insights about such routines
can be of a great benefit in improving the predictive accuracy of activity recognition
models.

Forecasting of hourly power consumption of individual buildings represents an-
other aspect that can be realized with the help of fine-granular measurements of
power consumption. Forecasting of such data can be of a great benefit to consumers
as well as electric utilities. By knowing this information, consumers can become
aware of their future expected consumption values based on their historical con-
sumption. This awareness can lead consumers to adjust their consumption so that
they avoid expensive power prices in peak hours. Electric utilities can also benefit
from such information in adjusting their power generation so that they avoid short-
age and surplus of generated power.

1.2 research goals and contributions

This work has the main goal of utilizing fine-granular power consumption data as
the main modality for inferring and predicting different aspects of users’ context in
smart environments. This thesis provides a list of contributions to achieving this goal
and addressing the motivation presented in the previous section. These contributions
are summarized in the following list and their dependencies are depicted in Figure
1:

• The development of SMARTENERGY.KOM, an intelligent hardware/software
platform for activity recognition in single-user environments based on the in-
stallation of appliance-level power sensors.

• The deployment of SMARTENERGY.KOM in two single-user apartments and
the collection of a dataset which we use in the development of an accurate
predictive model for recognizing activities in single-user environments.

• An in-depth analytical study of the dataset collected by SMARTENERGY.KOM
with the following main contributions:

– Identifying and extracting behavioral patterns in users’ daily life.

– Utilizing the extracted patterns for improving the predictive power of our
single-user activity recognition model. The proposed model achieves a
very good predictive performance with an average f-measure value of
94.5% in recognizing users’ activities solely based on their fine-granular
power consumption data combined with their identified behavioral pat-
terns.

– The development of an indoor localization method that extracts the indoor
location of users based on their fine-granular power consumption data.
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Chapters 4 & 5 & 6

Forecasting Framework 
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Figure 1: Research Contributions

– Building a profile of user’s hourly power consumption with the goal of
creating a model that characterizes the normal average hourly power con-
sumption of users in smart environments. Such model can increase users’
awareness of the power consumed and detect abnormal power consump-
tion values.

• The development of ML-SMARTENERGY.KOM, an extension of SMARTEN-
ERGY.KOM which provides activity recognition in multi-user environments.

• The deployment of ML-SMARTENERGY.KOM in a two-user apartment where
a multi-label activity recognition dataset has been collected.

• The development of an accurate multi-label activity recognition model using
the techniques of multi-label classification. This model represents one of the
first activity recognition models that extract, represent and exploit label depen-
dency and temporal relations between activities for improving the predictive
performance of activity recognition in multi-user environments. The proposed
model achieves a very good predictive performance with an average f-measure
value of 91%.

• The development of short-term and long-term power forecasting models based
on a fine-granular power consumption dataset collected for thousands of build-
ings by Commission for Energy Regulation (CER) in Ireland [25].

1.3 structure of the thesis

This work is structured as follows. In Chapter 2, we introduce the background
knowledge necessary to understand further parts of this work. We discuss several
research projects related to the contributions of this work in Chapter 3. We present
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the strengths and weaknesses of each research project and clarify its relation to our
work. In Chapter 4, we introduce SMARTENERGY.KOM, our platform for activity
recognition in single-user environments. This chapter presents the hardware as well
as the software components of the platform. Moreover, it describes the deployment
of SMARTENERGY.KOM in two single-user apartments and the collection process
of the dataset required to the development of activity recognition model. Chapter
5 presents an in-depth analytical study covering three main contributions. Firstly, it
explains the process of modeling user’s behavior and improving the predictive per-
formance of activity recognition models by feeding behavioral patterns of the user
into them. Secondly, it presents our approach of indoor localization based on fine-
granular power consumption data. Thirdly, it introduces our approach of building
daily power consumption profiles of users in smart environments. Chapter 6 intro-
duces ML-SMARTENERGY.KOM, our platform for activity recognition in multi-user
environments. This chapter introduces our concept for extracting, representing, and
utilizing label dependency and temporal relations between activities in multi-user
environments to enhance the predictive performance of activity recognition mod-
els. Chapter 7 introduces our approaches of long-term and short-term forecasting
of power consumption. It covers an extensive evaluation study of these approaches
based on a fine-granular dataset of power consumption measurements collected by
CER in Ireland. We conclude this work and present an overview of potential future
research work in Chapter 8.



2

B A C K G R O U N D

In this chapter, we introduce the background knowledge necessary to understand
the main contributions of this thesis. We start by defining the field of machine

learning, its main sub-fields, and the different learning strategies used to build a
machine learning model. Afterwards, we explain in details two types of supervised
learning problems. We start by introducing single-label classification, its important
algorithms and the main performance metrics used to evaluate single-label classifica-
tion problems. After introducing the problem of single-label classification, we further
introduce multi-label classification (MLC) as an extension to it. We present the two
main approaches used to handle multi-label classification problems, namely problem
transformation and algorithm adaptation. Moreover, we introduce the metrics used
to extract the multi-label characteristics of a dataset as well as the main performance
metrics used in evaluating multi-label classification problems.

2.1 machine learning

Machine learning can be defined as the process in which a computer program pro-
gressively and continuously learns to perform a task normally done by a human
agent by introducing it to a series of examples related to this task. Tom M. Mitchel
has provided a general and clear definition of machine learning [73, Page 2]:

“A computer program is said to learn from experience Ewith respect to some class
of tasks T and performance measure P, if its performance at tasks in T , as measured
by P, improves with experience E”.

An example of a task T handled by machine learning is the problem of face recog-
nition. In this task, a computer program has to learn with respect to a performance
measure P how to correctly recognize faces and assign a correct label to each indi-
vidual face presented to it. Each face will be represented as a feature vector which
can contain for example the image pixel representation of it. An experience E in this
scenario can be a set of faces represented as feature vectors where a correct label is
assigned to each vector telling the machine learning model what the correct labeling
is. This set of labeled examples is called a training set and it is used to train the
machine learner to perform the task in a way that optimizes the value of the perfor-
mance measure P. Each feature vector in the training set is called a training instance
to which a correct label must be assigned in this use case.

Machine learning deals with four main types of learning paradigms based on the
experience “E” presented to the machine learner. These paradigms are supervised,
unsupervised, semi-supervised and reinforcement learning. Each of these paradigms
has its different learning strategy and learning objective. Supervised learning as the
name implies works with a training set completely labeled with the correct output.
This means that the process of learning is supervised by an external entity which
provides the machine learner with the correct output for a set of instances. This set

5
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has to be used for building a machine learning model that is supposed to provide
the correct output for a set of unlabeled examples. The problem of face recognition
we mentioned before is an example of a supervised learning problem. Supervised
learning mainly deals with two types of problems, namely classification and regres-
sion problems [14]. On one hand, a problem is said to be a classification problem if it
has a categorical output such as “true” and “false”. On the other hand, a regression
problem is characterized by a numerical output where the machine learning model
has to predict a numerical value. In this work, we mainly work with classification
problems where human activities have to be recognized based on a series of sensor
readings obtained from an indoor sensor deployment.

Unsupervised learning is characterized by a different learning goal as the ex-
perience E presented to the machine learner consists only of unlabeled instances.
Therefore, a direct labeling of instances by the machine learner is not possible in
this paradigm. Unsupervised learning is used when similarities or hidden struc-
tures have to be found in unlabeled datasets. An example problem of unsupervised
learning can be the grouping of a set of articles into several sub-groups based on
similarities between words in the articles. These sub-groups can be different text cat-
egories such as political, religious, movies and box office, sport and weather. Another
paradigm is the semi-supervised learning which is characterized by having a dataset
with both labeled and unlabeled examples.

As the fourth paradigm, reinforcement learning is characterized by the notion of
a reward function. An intelligent agent has to perform a sequence of decisions so
that it maximizes a cumulative reward function. There are no explicit pairs of the
form (feature vector, label) as in supervised learning. The agent learns from the
environment in a trial and error fashion as it receives a certain reward that reflects
its success in performing the desired sequence of decisions.

In the following sections, we mainly focus on two important types of supervised
learning, namely single-label and multi-label classification.

2.1.1 Single-Label Classification

As we have mentioned before, in a supervised learning setting each feature vector in
the training set should be labeled with its correct label. In this setting, the supervised
learning problem can be mathematically formulated as follows:

Given a training set consisting of pairs of instances (xi,yi) where i ∈ [1,N] and
yi = f(xi), the machine learning model has to learn a function f̂ that approximates
the true real function f [92].

In classical machine learning problems, yi corresponds to a single value that rep-
resents one and only one label. For example, each face in the problem of face recog-
nition should belong to one person i.e. each feature vector has exactly one label.
However, there are certain problems that impose the existence of more than one la-
bel per feature vector. Classification of movies into different genres represents such
a problem where one movie can belong to more than one category. For example,
most of the action movies belong to the categories crime, and thriller. In this sec-
tion, we focus on single-label classification. We introduce the problem of multi-label
classification in details in Section 2.1.2.
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Depending on label type, single-label classification can be divided into three dif-
ferent categories:

• One-class (unary) classification: it focuses on the recognition of objects belong-
ing to a specific class among a group of objects [75]. The training set in this
setting contains only instances that are labeled with one specific class. The task
of the classifier is to recognize the objects belonging to this class. An example
application scenario of one-class classification is outlier detection. This can be
achieved by training the classifier on instances only representing the normal
behavior in the system. This can be very helpful in situations where data about
abnormal behavior is very rare or not available as is the case in building a
classifier which detects abnormal behavior in the operational state of a nuclear
plant.

• Binary classification: it focuses on problems where the label takes one of only
two possible values. Diagnostic systems are example application scenarios for
binary classification where the presence or absence of a certain disease has to be
detected. In contrast to unary classification, the training set contains instances
belonging to both classes.

• Multi-class classification: it focuses on problems where the objects to be classi-
fied belong to more than two classes. The training set in this setting contains
examples from each class and the task of the classifier is to predict the correct
class for a certain instance presented to it. An example scenario is the classifica-
tion of images into different classes where each class refers to the object shown
in the image.

As mentioned before, each classification object has to be represented as a feature
vector. Features represent discriminative object characteristics that distinguish objects
belonging to different classes from each other. These features can be for example
pixel values of an image or the words contained in a text document. Features can
take the form of numerical or categorical variables [118]. Determining the relevant
features for a classification problem represents a challenge that essentially affects the
predictive performance of a classification model.

In order to create the training set necessary to build a classification model, each
feature vector should be annotated with its correct label. The annotation process is
mostly done manually by a domain expert who has to assign the correct label for
each feature vector based on her/his own judgment. In order to evaluate the predic-
tive performance of a classifier, the set of annotated instances has to be divided into
a training and testing set. The training set is used to build the classification model
whereas the testing set is used to evaluate its predictive performance by predicting
the labels of testing instances and comparing them with ground truth labels. There
are different methodologies used in dividing the data intro training and testing sets.
These methodologies, their advantages and disadvantages are the topic of Section
2.1.1.2.

2.1.1.1 Single-label Classification Algorithms

Single-label classification models are broadly categorized into two main categories,
namely generative and discriminative models [46]. Generative models focus on mod-
eling the distribution from which the data has been generated. More precisely, it
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models the joint probability distribution p(x,y) of the feature vectors x and the class
y. Discriminative models, as their name implies, focus on directly mapping the ob-
jects into their respective classes without modeling the joint distribution of the data
itself [76]. As generative models require the joint probability distribution p(x,y) to
be explicitly modeled, it is more compelling to use discriminative models [111].

Naive Bayes classifier represents an example of generative models. It uses Bayes
theorem [14] to compute the posterior probability p(y|x) of a feature vector x having
the label y. It is based on the naive assumption that the features are independent of
each other. For a given feature vector xi, naive Bayes classifier computes the posterior
probability of each possible outcome yi to be the correct label of xi [77]. As a result,
the label with highest posterior probability is chosen as the outcome label of xi.

Apart from generative models, decision trees build a tree-based discriminative
model which is traversed based on the values of feature vectors to determine the
correct labels [89]. The root node in a decision tree model represents the most dis-
criminative feature. Less discriminative features follow in the lower levels of the tree.
Different approaches can be used to determine the discriminative power of a specific
feature in a decision tree. These approaches can either be heuristic-based or statis-
tical. Given a feature vector xi, the tree is traversed starting from the root node. In
each node, a decision is made based on the value of the respective feature which it
represents. This is continued until a leaf node is reached. A leaf node determines the
correct label of a feature vector. One special type of decision trees extensively used
in the course of this work is conditional inference trees (ctrees) [51]. Ctrees follow a
statistical approach in selecting the important features for building the decision tree.
A null hypothesis of independence is assumed between the response variable i.e. the
label and each of the predictor variables i.e. the features. A statistical association test
is performed to estimate the association between the response variable and each of
the predictor variables. If an association exists, the null hypothesis of independence
is rejected and the feature with the highest association is chosen as the next node of
the tree.

Artificial neural networks (ANNs) are discriminative models that work very effi-
ciently in modeling nonlinear and complex structures in the data. An artificial neural
network is composed of an input layer, one or more hidden layers and an output
layer [47]. Each layer is composed of a number of neurons which are connected to
the ones in preceding layer as well as in succeeding layer. Each neuron aggregates
the input signals delivered to it from preceding layer. The aggregated signal is for-
warded to the succeeding layer when it is above a determined threshold. New types
of neural networks have been proposed with new topological architectures such as
convolutional and recurrent neural networks [44]. This is attributed to the emergence
of deep learning where deep architecture with several hidden layers have been pro-
posed and proved to achieve very good predictive performance results [44].

Support Vector Machines (SVMs) build kernel-based discriminative models [32].
They define a hyperplane that separates the instances of different classes in a way
that maximizes the distance between borderline instances that represent the support
vectors. SVMs achieve very good predictive performance results as they avoid over-
fitting even in extreme cases when the number of features i.e. the dimensionality
of the dataset exceeds the number of available training instances. The problem of
overfitting happens when the classifier tends to model the random noise in the data
instead of modeling the abstract relation between input and output.
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2.1.1.2 Evaluation of Predictive Performance

The ability of a certain classifier to generalize beyond its training set represents the
essential criterion in evaluating its predictive performance. Different metrics are used
to evaluate the predictive performance of a classifier. Each metric has its own mean-
ing and importance based on the application scenario and requirements. All evalua-
tion metrics are built and calculated based on the confusion matrix which visualizes
the correctness of a classifier in a tabular view [80]. In Table 1, we show the confusion
matrix for binary classification where the instances are classified either as positives
or as negatives. The rows refer to the actual class while the columns refer to the
predicted class. Each cell in the table refers to the value of the respective category.
TP, for example, represents the number of positive instances that have been correctly
classified as positives. The sum of all cells is always equal to N which is the total
number of instances [103].

Table 1: Confusion matrix (TP = "‘True Positive"’ = Correctly classified as positive; FN =
"‘False Negative"’ = Wrongly classified as negative; FP = "‘False Positive"’ = Wrongly
classified as positive; TN = "‘True Negative"’ = Correctly classified as negative)

Classified As

positive negative Sum

Actual Class
positive TP FN TP+ FN

negative FP TN FP+ TN

Sum TP+ FP FN+ TN N

Accuracy is defined as the percentage of positive and negative instances that are
correctly classified.

Accuracy =
TP+ TN

N
(1)

Precision is defined as percentage of true positives among all objects that are clas-
sified as positives.

Precision =
TP

TP+ FP
. (2)

Recall is defined as the percentage of positive instances that are correctly classified
as positives.

Recall =
TP

TP+ FN
. (3)

The importance of each measure is closely tied to the application scenario. In a
diagnostic system which detects if a person suffers from cancer, it is of great im-
portance to detect all positive instances that suffer from cancer. Therefore, a high
recall value has to be achieved even at the expense of misclassifying some negative
instances as positives. This leads to a low precision value.

A measure which represents the harmonic mean of precision and recall is the
F-Measure.

F-Measure =
2 ∗ Precision ∗ Recall
Precision+ Recall

. (4)

Kappa statistic measures the difference between two quantities, namely the agree-
ment we observe between our classifier and the ground truth, and the agreement
we expect to have in case of a random classifier given the confusion matrix we have
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[112]. Accuracy as defined in Eq. 1 represents the observed agreement. Expected
agreement is calculated as follows:

e =
TP+ FN

N
∗ TP+ FP

N
+
FP+ TN

N
∗ FN+ TN

N
. (5)

After defining expected agreement e, we can define kappa statistic as follows:

k =
Accuracy− e

1− e
: (6)

2.1.2 Multi-Label Classification

Multi-label classification represents an emerging research topic in machine learning
where classical single-label classification approaches are being extended to cover
more realistic scenarios in which an object is allowed to have multiple labels [108].
The need for multi-label classification comes from the fact that most of the objects in
the real world can be described in different ways and can belong to several categories
based on our subjective interpretation. The image shown in Figure 2 can be described
for example using three different labels, namely “Tree”, “Winter” and “Blue Sky”.
Movies can also be seen as examples of objects that always belong to more than one
category. For example, a movie can be both an action and sci-fi movie.

Figure 2: An example of multi-label classification: the labels “Tree”, “Winter”, and “Blue Sky”
can be assigned to this image.

Table 2 shows a synthetic example of a multi-label dataset. As we can see from
the table, an instance can take up to five different labels. The task of a multi-label
classifier is to find out all possible labels that an instance takes. This can be mathe-
matically formulated as follows [108]: For each n-dimensional feature vector xi, we
define a label set yi ⊆ L xi where L = (λ1, λ2, ....λn) represents the set of all defined
labels an instance may take.
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Instance Feature vectors Label set

1 f1 λ1, λ3
2 f2 λ3, λ4
3 f3 λ1, λ2
4 f4 λ2, λ4
5 f4 λ3

Table 2: An example of a multi-label dataset

One important characteristic of multi-label datasets is label dependency. It refers
to the fact that labels in multi-label datasets are correlated and associated with each
other and not independent of each other. This means that the presence or absence of
a certain label for a specific instance can imply with a certain probability the presence
or absence of another label based on the type and degree of association these two
labels have. Exploiting label dependency for enhancing the predictive performance
of multi-label classification has become a very active research topic in the field of
multi-label classification [33].

As single-label classifiers are only designed to work with problems in which an
instance has one and only one label, new methodologies need to be developed for
solving multi-label classification problems. Two main methodologies have been pro-
posed by the research community, namely problem transformation and algorithm
adaptation [108]. We present both of these methodologies in the next two sections
with example approaches of each one of them.

2.1.2.1 Problem Transformation

Problem Transformation represents one of the first methodologies that have been
proposed to handle multi-label classification problems. It is based on the conversion
of multi-label datasets into single-label datasets on which single-label classifiers can
be used.

Binary Relevance (BR) is one of the first and basic problem transformation ap-
proaches. As its name implies, BR builds one single-label dataset for each label yi ∈ L.
Therefore, for an n-label dataset, BR creates n single-label datasets. A single-label
classifier can then be applied to each of the n datasets and the results of all classi-
fiers are merged to get the final classification result. BR has the main disadvantage of
ignoring label dependencies. As a separate dataset is built for each label, BR ignores
and losses all the information related to label associations. This affects its predictive
performance in comparison to other problem transformation approaches that extract
and utilize label dependency to enhance their predictive performance.

Table 3 shows the results of applying BR on the dataset shown in Table 2. As we
can see from the table, a new dataset is built for each one of the labels in which only
its presence or absence is encoded.

Ranking by Pairwise Comparison (RPC) represents another problem transforma-
tion approach which takes label dependency into account by creating a new dataset
for each pair of labels [52]. This results in the creation of q(q− 1)/2 datasets for a set
of q labels. Each of these datasets contains instances for which only one of its two
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Instance Label

1 λ1

2 ¬λ1

3 λ1

4 ¬λ1

5 ¬λ1

Instance Label

1 ¬λ2

2 ¬λ2

3 λ2

4 λ2

5 ¬λ2

Instance Label

1 λ3

2 λ3

3 ¬λ3

4 ¬λ3

5 λ3

Instance Label

1 ¬λ4

2 λ4

3 ¬λ4

4 λ4

5 ¬λ4

Table 3: The result of applying BR on the multi-label dataset shown in Table 2

labels occurs but not both of them. This results in a binary classification problem
for each of the new datasets and therefore transforms the multi-label classification
problem into a set of binary classification problems which can be solved using the
classical techniques of single-label classification. Table 4 shows the result of applying
RPC on the dataset shown in Table 2.

Instance Label

1 λ1,¬2

4 λ¬1,2

Example Label

2 λ¬1,3

3 λ1,¬3

5 λ¬1,3

Example Label

1 λ1,¬4

2 λ¬1,4

3 λ1,¬4

4 λ¬1,4

Example Label

1 λ¬2,3

2 λ¬2,3

3 λ2,¬3

4 λ2,¬3

5 λ¬2,3

Example Label

2 λ¬2,4

3 λ2,¬4

Example Label

1 λ3,¬4

4 λ¬3,4

5 λ3,¬4

Table 4: The result of applying RPC on the multi-label dataset shown in Table 2

Another problem transformation approach which takes label dependency into con-
sideration is Label Powerset (LP) [107]. It is based on the idea of creating a new set
of labels in which each of existing basic label combinations is defined as a new la-
bel. The result of applying LP on our example dataset is shown in Table 5. LP has
two main disadvantages. On one hand, it results in a dataset which only contains
examples for the label combinations available in the training set. Therefore, it cannot
predict new label combinations for which no new labels have been created. On the
other hand, creating a new label for each unique combination of labels leads to an
exponential increase in the number of labels where each label is only associated with
a few number of instances. These two problems affect the predictive performance of
any single-label classification model that has to be applied to the resulting dataset.

RAkEL (RAndom k-LabELsets) [109] is an extension of LP. It avoids the problems
of LP while taking label dependency into account by creating an ensemble of LP
classifiers where each classifier is based on a random subset of the label set. By
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Example Label

1 λ1,3

2 λ3,4

3 λ1,2

4 λ2,4

5 λ3

Table 5: The result of applying LP on the dataset shown in Table 2

reducing the number of labels on which each LP classifier is built, RAkEL tries to
avoid the main two disadvantages of LP.

Another important problem transformation approach is classifier chains [85]. It
exploits label dependency by using the predictions obtained for a certain label as
a feature in predicting another label. This leads to the creation of a classifier chain
where each classifier predicts only one label as it is the case using BR. The main
difference to BR is the inclusion of label predictions into the feature vectors.

2.1.2.2 Algorithm Adaptation

Algorithm adaptation represents the second and more complicated methodology for
dealing with multi-label problems. It is based on adapting single-label classification
models so that they directly work on multi-label data. Several algorithms have been
adapted to work directly on multi-label data. An example algorithm is k-nearest
neighbors which has been adapted into multi-label k-nearest neighbors (MLknn)
[125], Binary Relevance k-nearest neighbors (BRknn) [104] and DMLkNN[122]. Re-
searchers have also adapted other algorithms such as SVM [38], C4.5 [24], AdaBoost.MH
[96], AdaBoost.MR [96] and the perceptron algorithm [30].

2.1.2.3 Dataset Metrics

In order to quantify the multi-label nature of datasets, researchers designed a set
of metrics which check different multi-label aspects [108][84]. In the following, we
present a set of important metrics that have to be calculated for each multi-label
dataset in order to understand its multi-label characteristics and based on that to
decide about the best classification methodology to use. We define D as a multi-label
dataset, n as the number of instances, L as the set of labels, q as the number of labels
and Yi as the correct label set of an instance Xi.

Label cardinality (LCard) measures the average number of labels per instance in a
dataset.

LCard(D) =
1

n

n∑
i=1

|Yi| (7)

Label density (LDens) quantifies label cardinality with respect to the number of
labels in a dataset.

LDens(D) =
1

n

n∑
i=1

|Yi|

q
=
LCard(D)

q
(8)
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Distinct labelsets (DL) calculates the number of all label combinations existing in
a dataset.

DL(D) = |Y ⊆ L|∃(x, Y) ∈ D| (9)

The proportion of distinct labelsets (PDL) calculates the ratio of distinct label sets
with respect to the total number of instances in a dataset.

PDL(D) =
DL(D)

n
(10)

The proportion of unique label combinations (PUniQ) calculates the ratio of unique
label sets i.e. label sets that have only one instance with respect to the total number
of instances in a dataset. A high value for PUniQ shows a dataset with irregular la-
beling pattern as it indicates the existence of many label sets with only one training
instance which makes the classification process more complicated.

PUniQ(D) =
|Y ⊆ L|∃!x : (x, Y)εD|

n
(11)

The PMax metric focuses on the most frequent label set in a dataset. It calculates
the ratio of instances associated with this label set with respect to the total number
of instances in a dataset. A high value for PMax indicates a dataset that is skewed
towards its dominant label set.

PMax(D) = maxY⊆L
count(Y,D)

n
(12)

2.1.2.4 Evaluation Metrics

This section presents the evaluation metrics used in evaluating the predictive perfor-
mance of multi-label classification algorithms. As more than one label per instance
has to be predicted, different evaluation metrics than the ones presented in Section
2.1.1.2 have to be used. A classification model may predict part of a label set cor-
rectly and not all labels. Therefore, metrics which are able to quantify the partial
predictive performance with regard to each label as well as to each instance have to
be used. There are two different types of evaluation metrics for multi-label classifica-
tion, namely example-based and label-based metrics.

Example-based metrics as their name implies are calculated with respect to all
instances in the dataset. We define D as a multi-label dataset, n as the number of
instances, L as the set of labels, q as the number of labels and Yi, Zi as the correct
and predicted label sets of an instance Xi respectively.

Subset accuracy represents an example-based metric that calculates the number
of instances for which all labels have been correctly predicted. It considers only
instances with an exact match between predicted and correct label set. Therefore,
it is considered to be a strict metric as it does not take into account any partially
correct prediction.

0/1subsetaccuracy =
1

n

n∑
i=1

[[Zi = Yi]] (13)

To take partially correct predictions into consideration, another example-based
metric has been proposed, namely Hamming Loss. It calculates the number of mis-
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matches i.e. the distance between predicted and correct label sets. A low value of
hamming loss indicates a good predictive performance.

HammingLoss =
1

n

n∑
i=1

1

q
|Zi∆Yi| (14)

As in single-label classification, the classical metrics of precision, recall, accuracy
and f-measure play an important role in quantifying the predictive performance
of multi-label classification models. As example-based metrics, they are defined as
follows [43]:

Recall calculates the fraction of positive labels for each instance that have been
correctly predicted averaged over all instances in the dataset.

Recall =
1

n

n∑
i=1

|Zi ∩ Yi|
|Yi|

(15)

Precision calculates the fraction of positive labels that have been predicted for each
instance and are correctly positives averaged over all instances in the dataset.

Precision =
1

n

n∑
i=1

|Zi ∩ Yi|
|Zi|

(16)

Accuracy calculates the fraction of positive and negative labels that have been
correctly predicted for each instance averaged over all instances in the dataset.

Accuracy =
1

n

n∑
i=1

|Zi ∩ Yi|
|Zi ∪ Yi|

(17)

F-measure calculates the harmonic mean of precision and recall values.

F−Measure =
1

n

n∑
i=1

2|Zi ∩ Yi|
|Zi|+ |Yi|

(18)

In contrast to example-based metrics, label-based metrics are calculated with re-
spect to each label and then averaged over all labels. Using this methodology, we can
compute classical single-label evaluation metrics with respect to each label individu-
ally as a first step. Thereafter, we perform the averaging process over all labels as a
second step. The averaging process can be performed in two different ways, namely
macro averaging and micro averaging [120]. Define M(tp, tn, fp, fn) as a label-based
evaluation metric and tpa, fpa, tna and fna as true positives, false positives, true
negatives and false negatives of label a. The macro and micro averaged M can be
calculated as follows:

Mmacro =
1

q

q∑
a=1

M(tpa, fpa, tna, fna). (19)

Mmicro =M
( q∑
a=1

tpa,
q∑

a=1

fpa,
q∑

a=1

tna,
q∑

a=1

fna

)
. (20)

As we can see from Eq. 19, we compute the macro-averaged evaluation metric M
by summing up the individual M metrics of each label and dividing them by the
total number of labels. For computing the micro-averaged M, we first sum up the
values of tp, fp, tn and fn for all labels and then calculate the evaluation metric based
on these aggregated values as shown in Eq. 20.
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R E L AT E D W O R K

Recognition and prediction of human context has always been an important
research topic in the area of smart environments. In this chapter, we explore

several research projects with the main goal of extracting, detecting and predicting
user’s context in smart environments based on a wide variety of sensing modalities.
This work focuses on two main aspects of users’ context, namely the recognition
of users’ daily activities and the prediction of long-term and short-term power con-
sumption of individual buildings. Therefore, we restrict the research projects pre-
sented in this chapter to these two areas. We begin in Section 3.1 by presenting a
group of research projects that handle the problem of activity recognition in single-
user as well as multi-user smart environments. For each project, we discuss the fol-
lowing list:

• Application scenario and monitored environment.

• Used sensing modalities.

• Monitored activities.

• Predictive performance of resulting activity recognition models.

Thereafter, we present in Section 3.2 a group of state-of-the-art research projects
in the field of power consumption forecasting. We introduce for each project the
entities for which power consumption is predicted, type of used forecasting models
and their achieved predictive performance.

3.1 activity recognition and behavioral modeling

As mentioned before, recognizing humans’ daily activities has its potential bene-
fits in several application scenarios such as elderly care in ambient assisted living,
power saving and comfort increasing in smart homes, to name a few. As a result
of such benefits, researchers have designed several systems that are able to recog-
nize humans’ daily activities in different settings and environments based on their
application scenarios. To recognize users’ activities, their environments have to be
monitored with sensing modalities that are able to gather enough information about
the environments as well as about the users. Wireless sensor nodes that take battery
lifetime into consideration paved the road for building efficient monitoring systems
that collect the required environmental parameters for building an accurate activ-
ity recognition model while maintaining a long battery lifetime which guarantees
seamless system operations [62][86].

Single-user environments where one user is assumed to live alone and to perform
only one activity at a given time represent the most used setting in activity recogni-
tion research [121]. The researchers impose such a restriction to avoid the complexity
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generated by allowing users to perform parallel and overlapping activities. However,
such an assumption is contradicted with real-world scenarios where users tend to
live together and to perform more than one activity at a given time. Therefore, we
start by presenting projects that impose this restriction and then move to more ad-
vanced projects where more than one user are assumed to live in a common place
and to perform parallel activities.

3.1.1 Single-User Environments

As we mentioned before, most of the research conducted in the field of activity
recognition impose the single-user single-activity restriction on the environment to
be monitored. This means that the environment is supposed to have only one resi-
dent performing a single activity at a given time. Several research projects handled
the problem of activity recognition from this perspective. Researchers have deployed
a wide variety of sensing modalities to achieve their goal of building accurate activ-
ity recognition models. Examples are Radio-frequency identification (RFID) sensors,
cameras, microphones, wearable sensors, motion detectors and environmental sen-
sors, to name a few.

Based on the deployed sensor nodes, activity recognition can be classified into
three main categories, namely audio/video-based models [15][78][41], infrastructure-
based models[110][105] and wearable-based models [102][23][81][68][94][93]. Video-
and audio-based activity recognition models deploy a group of cameras and micro-
phones in the monitored environments. To collect the required data for building and
evaluating the model of activity recognition, the researchers save the collected data
and then perform a manual annotation process in which each data instance is anno-
tated with its corresponding activity. Audio/video-based models achieve very good
predictive performance due to the rich amount of information provided by cameras
and microphones. However, such models are confronted by very low acceptance of
users due to their privacy concerns. Moreover, with cameras and microphones de-
ployed all over the environment, users feel themselves strictly monitored and start
to follow a behavior which is different from their normal behavior.

Wearable-based models depend on sensors that can be mounted on the bodies
of monitored persons to collect information about their current context. Examples
of such sensors are acceleration, orientation and pulse sensors, to name a few. As
they depend on body-mounted sensors, most of the wearable-based models focus
on activities that are related to body movements. Examples of such activities are
walking, running, sitting and biking. The main problem of wearable-based models
lies in the fact that several electronic devices have to be mounted on the body of
monitored person. People do not prefer electronic devices to be mounted on their
bodies except in experimental settings and therefore these models are not suitable
for real-world deployments. Moreover, activities of daily living such as watching TV,
reading, preparing a meal cooking cannot be recognized purely based on the infor-
mation collected from wearable sensors. With the advancements in the production
of smartphones and smartwatches, these devices started to contain sensors such as
accelerometers and gyroscopes that can be used to collect information about the peo-
ple holding them. As a result of these advancements, several researchers developed
activity recognition models that can recognize human activities based on sensors
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readings collected from their smartphones [63] [11] and smartwatches [70][115]. The
main problem of smartphone-based models lies in the fact that people tend to leave
their mobile phones away from them for most of the time [79]. Moreover, they are
restricted to the same set of movement-related activities. Smartwatches are worn
rather the whole day; however, smartwatch-based models still impose the restriction
of movement-related activities.

Infrastructure-based activity recognition models utilize sensors that can be de-
ployed in the environment without being perceived by the residents as a threat to
their privacy as it is the case with cameras and microphones. Examples of such
sensors are motion detectors, temperature, brightness and humidity sensors as well
as simple state-change sensors. Kasteren et al. [110] designed a system which can
recognize human activities based on the information provided by a set of simple
state-change sensors. In their experimental setup, the authors have positioned state-
change sensors on a wide variety of objects in the monitored environments. A group
of 14 sensors has been attached to the cupboards, doors, fridge and toilet flush. By
deploying these sensors in a single-person apartment, the authors collected a dataset
of 28 days with an overall number of 245 activities and 2120 sensor readings. For an-
notating the collected data with ground truth labels, the authors designed a speech
recognition system so that the user can provide her/his currently performed activity
with a Bluetooth microphone. Seven different activities have been monitored with
the proposed system, namely making dinner, making breakfast, preparing a bever-
age, toileting, showering, sleeping, and leaving home. When no activity is provided
by the user as a feedback, the stream of sensor readings is annotated with the label
“Idle”. To build their predictive models, the authors use conditional random fields
(CRFs) and hidden Markov models (HMMs) as they are able to model the tempo-
ral patterns contained in the data. Moreover, they designed three different types of
features for constructing the required dataset. The first type of features is directly
built using the raw sensor readings. The second type takes into consideration state
transitions of sensors where the feature representing each sensor takes the value of
one when this sensor changes its state during the respective time slot. The third type
of features is built by giving the value of one for the feature which represents the
sensor lastly changed its value. This feature continues to take the value of one un-
til another sensor changes its value, and then it is switched to zero. The predictive
performance of both HMM and CRF models is evaluated with respect to the three
different types of features. The best performance has been achieved with a feature
set consisting of both second and third types of features. With this set of features,
HMM and CRF models reached a class accuracy of 79.4% and 70.8% respectively.
Another experimental aspect of this work is the size of the training set required to
achieve the best predictive performance. The authors showed that a training set of
12 days is enough for building an accurate activity recognition model.

Another infrastructure-based activity recognition platform is proposed by Tapia
et al. in [105]. The authors designed a system based on state-change sensors to rec-
ognize activities in single-user environments. To collect the required training and
testing datasets, the authors deployed their system in two single-person apartments
where 77 and 88 state-change sensors were installed in the first and second apart-
ment respectively. The sensors have been mounted to different objects in the mon-
itored apartments such as doors, windows, electrical appliances, lamps and light
switches, to name a few. The residents of both apartments were ordinary users who
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have no technical experience with the deployed system. The system monitors a set
of 35 activities where the users are supposed to provide the feedback about their cur-
rently performed activity using a software installed on a personal digital assistant
(PDA) given to each one of them. After collecting required data, the authors noticed
that several activities have very few numbers of instances which are not enough for
training an accurate prediction model. As a result, they decided to keep only eight ac-
tivities while excluding all other activities. In contrast to [110], the authors allow for
parallel activities performed by the same user to exist. This is done by building a set
of binary naive Bayesian classifiers where each classifier is responsible for recogniz-
ing only one activity. By evaluating the predictive performance of all naive Bayesian
classifiers, the authors reached an average class accuracy of 55% with regard to all
eight monitored activities.

As the first step in our work, we deal with the problem of activity recognition
from a single-user perspective where we do not allow for any parallel or overlapping
activities. We design a system which is able to recognize users’ activities in single-
user environments only based on the measurements of power consumed by each
available appliance in the monitored environment. In contrast to the aforementioned
projects, our system does not require the installation of any sensing modality apart
from the appliance-level power sensors which have the advantage of being perceived
by the users as normal electrical parts that do not threaten their privacy. As a second
main part of this work, we improve our activity recognition platform so that it works
in multi-user environments where intra-user and inter-user parallel and overlapping
activities are allowed to happen.

3.1.2 Multi-User Environments

Recognizing activities in multi-user environments represents a difficult challenge for
researchers in the field of smart environments [13]. This is due to two main reasons.
On one hand, parallel and overlapping activities performed by one or more users
have to be recognized and differentiated from each other. On the other hand, users
performing each of the running activities have to be identified so that each activity
is assigned to its respective user.

Crandall et al. [31] proposed an approach for user identification in multi-user envi-
ronments. They designed a mapping procedure in which triggered sensor events are
mapped to the users who have generated them. By identifying the users triggering
certain sensor events, we can accurately assign each running activity to its respective
user. In this work, the authors use two types of sensors. On one hand, they deploy
motion sensors to monitor the presence of users in the monitored environment. On
the other hand, they record the interactions between users and light switches. To
achieve an accurate mapping procedure, the authors differentiate between users’ be-
haviors by taking temporal features that characterize each triggered sensor event
into consideration. As users tend to perform the same activities in different time pe-
riods, having temporal information about each triggered sensor event simplifies the
process of user identification. Therefore, the following features have been collected
regarding each triggered sensor event:

• Hour.

• Day.
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• Day segment i.e. morning, afternoon and evening.

• Day type i.e. business day, weekend, or holiday.

As a result, each generated sensor event has a feature vector consisting of its tem-
poral features combined with its serial number and the generated event message.
Each of these feature vectors is labeled with the user ID. In the training period, users
have been asked to provide their presence information by pushing a special button
whenever they enter or leave the monitored environment. The authors utilized a
naive Bayes classifier to build the classification model which maps sensor events to
users. Evaluation of models that includes sensors with temporal features show good
results in differentiating the users. The dataset has been randomly divided into a
90% training set and 10% testing set. Through an extensive evaluation study, the
authors were able to reach an accuracy of 95% for the mapping process. This work
has the main disadvantage of not considering parallel activities performed by more
than one user into consideration. This is due to the fact that it is not possible for the
system to differentiate between users with similar temporal behavior.

To build an activity recognition model that can recognize parallel activities of mul-
tiple users, we need to allow an instance to have more than one activity as its label.
The main problem which faces researchers when building a model for activity recog-
nition in multi-user environments is the rarity of powerful multi-label classification
algorithms that can handle instances with more than one label as it is the case in
multi-label classification problems. Most of the available multi-label algorithms are
problem transformation approaches that convert multi-label classification problems
into single-label problems as we showed in Section 2.1.2. As a result, most of the
researchers follow an approach in which they combine all concurrent activities into
an artificial joint label that represents all of them [36][22].

To recognize activities in clinical context, Doryab et al. [36] designed an approach
that creates an artificial joint label for any combination of concurrent activities. The
goal of this work is to develop a system which is able to recognize concurrent sur-
gical activities performed in operating rooms. The researchers deployed a group
of wearable and embedded sensors in operating rooms so that they get information
about clinicians’ locations, positions of objects and the way in which they are used by
the clinicians in the operating room. Ten minimally invasive surgeries (MISs) have
been monitored to collect the required dataset for building and testing an activity
recognition model. Six clinicians took part in each of the surgeries. After transform-
ing all sensor data into the binary form, the researchers used it to build a model
that recognizes base single activities. Around 70% of instances in the dataset have
more than two labels indicating the occurring of more than two base activities at a
given time. The researchers used Apriori algorithm [1] which extracts all frequently
occurring patterns from a dataset to identify base activities that frequently occur
together. An artificial joint label is assigned to each frequent set of concurrent activi-
ties so that the collected data is converted into a single-label dataset. The researchers
assume their dataset to have a time series nature in which a temporal relation ex-
ists between subsequent sets of actions. These relations can be incorporated into
the activity recognition model so that they enhance their predictive performance. To
capture such relations, they utilize a virtual evidence boosting algorithm. To build
the joint activity recognition models, the researchers chose to use CRFs in which
the identified temporal relations are incorporated. They built three different models,
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namely model A, B and C. Model A is characterized by creating an artificial joint
label for all available combinations of base activities. However, due to the big num-
ber of newly created joint labels, this model has shown poor predictive performance
with an average accuracy of 43% accompanied with computational inefficiency. To
reduce the number of newly created labels, the researchers separated activities of
anesthesia and operating teams. A separate CRF chain is built for the activities of
each team with the same set of observations. With accuracy increasing to reach 63%,
model B achieved relatively good predictive performance in comparison to model A.
However, this model ignores the dependencies between actions of both teams. There-
fore, a model C is built which models the concurrent activities between both teams.
This model achieved an accuracy of 62% which is almost similar to the accuracy of
model B.

To solve the problem of concurrent activity recognition in multi-resident environ-
ments, Chen et al. [22] proposed a model which works in two different stages. In
the first stage, the researchers transform all multi-label instances into single-label
instances by creating combined label states based on the available data associations.
During this stage, the model learns combined label states. In the second stage, the
model recognizes multiple activities of home residents. The researchers used HMMs
and CRFs to model the data where CASAS dataset of Washington state university
[26] is used to build and evaluate the activity recognition model. They utilized met-
rics of multi-label classification to evaluate the predictive performance of the pro-
posed models. The evaluation results showed that HMM and CRF models achieved
a good average accuracy of about 75%.

Another approach for recognizing concurrent activities in multi-user environments
was proposed by Wu et al. in [124]. In this work, the researchers built two models for
activity recognition using Factorial CRFs (FCRFs) and Linear Chain CRFs (LCRFs).
They used House_n dataset collected by Massachusetts Institute of Technology (MIT)
for building and evaluating their models. This dataset contains readings of switch
sensors, light sensors and current sensors deployed in a house. The collection dura-
tion was four hours, namely from 9 AM to 1 PM. The annotation process was done
manually by the person who performed the activities where he provided informa-
tion about his activity and location. As a first step, the researchers clustered the total
number of activities performed by the user, namely 89 activities into six clusters
that are allowed to overlap with each other. Thereafter, they designed FCRF model
so that it takes temporal relations between activities into consideration. Evaluation
results have shown poor predictive performance for both FCRF and LCRF models
with f-measure values of 49.8% and 41.7 % respectively. The main reason behind
these results is the very small size of the dataset used in this work.

3.2 forecasting of power consumption

Forecasting future power consumption of individual buildings has always repre-
sented an important research topic for science and industry. The importance of this
topic lies in the benefits it provides especially for electric utilities. On one hand, fore-
casting of short-term future power consumption of individual customers provides
electric utilities with deep insights into expected consumption behavior so that they
can efficiently schedule and control their resources to avoid any surpluses or short-
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falls in power provisioning [2]. On the other hand, forecasting of long-term future
power consumption allows the electric utilities to accurately plan and expand their
infrastructure so that they meet the predicted increase in power consumption effi-
ciently and without wasting any resources. Researchers have utilized different types
of models for achieving an accurate forecasting of future power consumption. Based
on the utilized modeling approach, we can classify these models into different five
categories, namely averaging models [27][29][28], regression models [10][40][55][50],
time series models [99][17][69], artificial intelligence models [119][59][72][91] as well
as hybrid models [74][100].

Averaging models represent one of the simplest models existing for forecasting of
power consumption. Their simplicity lies in the fact that they make their prediction
by taking into consideration only the average consumption values of similar points
in time. As a result, these models only require the historical data of previous power
consumption as input. A comprehensive evaluation study of several averaging mod-
els for short-term forecasting of power consumption is presented by Aman et al. in
[9]. In this work, the authors have compared three averaging models, namely Time
of the Week (ToW) averaging model, Southern California Edison (CASCE) model
[27][29] and New York ISO (NY ISO) model [28]. Power consumption is predicted in
short 15-minute intervals. ToW model predicts the power consumption of a certain
15-minute interval x by taking the average power consumed during the same interval
x with regard to all weeks in the available history. ToW model has the main advan-
tage of being able to capture the difference in power consumption between different
daily periods based on the activities and schedules of residents. Moreover, it can
easily capture the different power consumption behaviors in weekend and business
days. However, it has limited capability in capturing seasonal variations in power
consumption. Time of Year (ToY) models can capture such seasonal effects. However,
ToY models are usually outperformed by ToW models.

Regression models represent another approach with which the researchers handle
the problem of forecasting power consumption. With regression models, the power
consumption is treated as a response variable of a set of predictor variables such
as weather conditions, demographics of residents and buildings’ characteristics, to
name a few. Researchers use two types of regression models to model the relation be-
tween power consumption and its predictor variables. On one hand, they use simple
linear regression models where they assume the existence of linear relations between
response and predictor variables. On the other hand, they use more advanced mod-
els where non-linear relations are assumed to exist between response and predictor
variables. Regression trees represent an example of such advanced models. A mul-
tiple linear regression model for forecasting hourly electric load has been proposed
by Hong et al. in [50]. In this work, the authors modeled electric load as a linear
response of several predictor variables, namely temperature, month of the year, day
of the week and hour of the day. As these variables interact with each other, the au-
thors modeled their cross-effects by creating additional variables that represent their
multiplications. To model and forecast the hourly electric load, the authors built nine
different models based on different combinations of the predictor variables and their
modeled cross-effects. To evaluate the predictive performance of these models, they
used a four-year dataset of hourly electric load and temperature values provided by
a US utility. This dataset covers the period from 2005 to 2008. As a training set, they
used the years 2005-2007 while 2008 has been used as a testing set. They selected
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their optimal model through an iterative trial-and-error process where they used
goodness-of-fit statistics, namely adjusted R-square, mean absolute percentage error
(MAPE) and standard deviation of the absolute percentage error (STDAPE) to eval-
uate the model performance on the training dataset. Moreover, they evaluated the
predictive performance on the testing set using accuracy statistics, namely MAPE,
STDAPE, mean absolute error (MAE) and standard deviation of the absolute error
(STDAE). Their optimal model reached a MAPE value of 4.558% on the testing set. As
most of the relations between power consumption and its predictor variables are of
complex and non-linear nature, it is recommended to utilize non-linear approaches
that are able to model such complex relations. Aman et al. in [10] introduced such
an approach based on regression trees to model and forecast the daily as well as fine-
granular 15-min power consumption on campus- and building-level for a university
campus microgrid. As predictor variables, the authors utilized indirect indicators
of power consumption that are related to academic environments, namely day of
the week, semester as well as holiday. Moreover, they utilized buildings’ character-
istics as well as weather information, namely humidity and average and maximum
temperature as direct indicators of power consumption. To build and evaluate their
forecasting models, they used a three-year dataset of smart meters’ readings collected
from 170 buildings at the campus of University of Southern California (USC) with 15-
minute granularity. The dataset covers the period from 2008 to 2010. To evaluate the
predictive performance of their models, the authors used the coefficient of variation
of the root mean squared error (CV-RMSE). As a first step, they built a campus-level
regression tree model which forecasts the daily power consumption of the whole
campus based on holiday, day of week, semester and maximum temperature as a
feature set. The years 2008 and 2009 have been used as a training set while 2010 has
been used as a testing set. This model achieved a CV-RMSE value of 7.45%. To quan-
tify the relative importance of single features, the authors built a set of models based
on different combinations of them. As a result, they considered “day of the week” to
be the most important feature. As a second step, they built another regression tree
model to forecast the fine-granular 15-min power consumption of the whole campus
based on the same previous set of features combined with campus humidity. Us-
ing the same previous evaluation setting, this model achieved a CV-RMSE value of
13.70% with temperature as the most important feature. As a final step, they built a
regression tree to forecast the power consumption of individual buildings. Building
characteristics combined with the previous feature set has been used to build the
model. A dataset belonging to 23 buildings has been used to train and evaluate the
model. This model achieved CV-RMSE values of 11.77%, 12.09% and 19.32% based
on building’s type.

Artificial intelligence techniques have also attracted the attention of researchers as
potential methods for forecasting power consumption. Several research projects ap-
plied such techniques for predicting short-term power consumption [72]. The power
consumed by a certain entity can have linear and non-linear complex relationships
with a wide spectrum of external variable such as weather conditions, demographic
features of residents as well as behavioral patterns, to name a few. As a result of
this complexity, it is required to utilize a modeling methodology that is capable of
accurately representing such a combination of linear and non-linear relations. Due to
their powerful capability in representing complicated non-linear functions, artificial
neural networks (ANNs) represent one of the widely used AI techniques in the field
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of power consumption forecasting [49]. An example ANN-based model for forecast-
ing short-term power consumption of campus buildings is introduced by Wan et al.
in [114]. In this work, the authors developed an ANN which predicts the power con-
sumption of campus buildings based on two different types of predictor variables.
On one hand, they used variables related to weather conditions such as outside tem-
perature and humidity, air pressure, wind speed, dew point temperature and rainfall
rate. In addition to these predictors, they utilized the current power consumption as
an input to the ANN. The network predicts the next 15-minute power consumption
as its output. To determine the optimal network architecture, the authors designed
two ANNs with different network configurations. The first ANN consists of one
hidden layer in which nine neurons exist. The second one consists of two hidden
layers with the first one containing ten neurons and the second one containing 5

neurons. The dataset used in this work represents a one-month consumption data of
an administration building at the California Polytechnic State University. It consists
of 2878 sample measurements taken at 15-minute sampling granularity. The dataset
has been divided so that 2000 instances have been used as a training set and the rest
as a testing set. Evaluating the predictive performance of both networks has shown
that the first one achieves a root mean square (RMS) value of 5.66% while the second
one achieves an RMS value of 10.76%. Both RMS values are computed for the test-
ing error. These results show that the first ANN outperforms the second one even
though it contains less number of hidden layers. A comparative evaluation study for
identifying the main factors that influence the performance of ANNs in predicting
short-term power consumption is provided by Rui et al. in [91].

Another well-known approach in the field of power consumption forecasting is
time series based modeling. The main advantage of time series models lies in the
fact that they require only historical consumption data for building a model which
can predict the future consumption. They do not depend on any external factors such
as weather conditions or demographic and behavioral data of residents. A wide vari-
ety of time series models has been used by researchers to forecast long-term as well
as short-term power consumption. Among these models are Moving Average (MA)
models, Auto-Regressive Moving Average (ARMA) models and Auto-Regressive In-
tegrated Moving Average (ARIMA) models [17]. Pattern sequence matching is an-
other approach used in analyzing time series. It is based on the idea that every time
series contains temporal patterns that repeat themselves over time. By identifying
and extracting such patterns, we can forecast the future behavior of a certain series.
Martinez Alvarez et al. introduced an approach for forecasting day-ahead power
consumption based on pattern sequence matching in [69]. In this work, the authors
developed the algorithm of Pattern Sequence-based Forecasting (PSF). As a first step,
PSF algorithm creates a 24-hour power consumption vector for each day in the histor-
ical data. As a result, each day is represented as a point in 24-dimensional Euclidean
space. As a second step, PSF utilizes k-means clustering algorithm to cluster all these
points into a set of homogeneous clusters where each cluster represents a group of
days that follow a similar 24-hour power consumption pattern. PSF utilizes cluster-
ing validity indexes in order to determine the optimal number of clusters. A label is
assigned to each cluster so that all days belonging to it get labeled with this label.
In order to predict the day-ahead power consumption, PSF extracts the sequence of
labels representing the w days preceding the day to be predicted. The number of
preceding days w is referred to as the window size. Thereafter, it searches for this
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pattern in the historical data. In case no match is found, it reduces window size to
be w− 1 and restarts the search process. PSF calculates the power consumption of
the day to be predicted as the average power consumption of each day succeeding
each found pattern. The authors applied their algorithm on three different datasets
collected by three electricity market operators, namely in Spain, New York and Aus-
tralia for the year 2006. Each dataset consists of the total hourly power consumed in
the respective market for the year 2006. As a result of an exhaustive evaluation study,
PSF achieved a predictive performance of 4.99%, 2.87% and 3.43% for New York,
Spain and Australia datasets respectively in terms of Mean Error Relative (MER).
Apart from forecasting day-ahead power consumption, the authors utilized PSF for
predicting electricity prices in the same three markets with good results.

To exploit the advantages of different modeling methodologies in forecasting fu-
ture power consumption, several researchers developed hybrid forecasting models
in which multiple modeling techniques are combined to deal with complex different
relations between the power consumption and its driving factors. Mori et al. [74]
developed a hybrid model in which they combine regression trees with relevance
vector machines (RVMs) [106] to predict the day-ahead maximum load. As an initial
step, regression trees are used to divide the training dataset into a set of homoge-
neous groups. Thereafter, an RVM is built for each terminal node to forecast the
maximum day-ahead load of the group this terminal represents. RVMs has the main
advantage of providing the distribution of its predicted value and therefore its upper
and lower limits. To build their forecasting model, the authors utilized the following
set of features:

• Average and minimum humidity of the next day

• Average, minimum and maximum temperature of the next day

• Daylight and discomfort index of the next day

• Maximum load demand of the current day.

As weather features of the next day are not available, they need to be estimated.
Therefore, the authors built a combined CART-RVM forecasting model for each
weather feature to predict its value for the next day based on its current value. After
estimating the values of these features, they are used in combination with the max-
imum load of current day for forecasting next day’s maximum load. For training
and evaluating their model, the authors used an 11-year dataset which is provided
by a Japanese utility and covers the period from 1991 to 2001. Ten years from 1991

to 2000 were used for training purposes while the remaining year was used for test-
ing purposes. By evaluating the proposed model, it has achieved a good predictive
performance with a maximum error of 6.04%.

3.3 summary and discussion

In this chapter, we presented a detailed overview of the state-of-the-art research
projects in the fields of activity recognition and behavioral modeling as well as
power consumption forecasting. We started in Section 3.1.1 by introducing a group
of research projects that worked on activity recognition in single-user environments.
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Thereafter, we presented more advanced projects that handled the problem of ac-
tivity recognition in multi-user environments in Section 3.1.2. For each project, we
presented in details its sensing modalities, deployment process, monitored environ-
ments and activities, modeling techniques as well as its achieved predictive perfor-
mance. In Section 3.2, we introduced a categorization of research projects in the
field of power consumption forecasting based on their modeling methodologies. We
presented five different categories of forecasting approaches with one or more exam-
ple projects. For each of the presented projects, we clarified in details its modeling
and evaluation methodology, its experimental dataset used to build and evaluate the
model as well as its achieved predictive performance.

In our work, we handle the problem of activity recognition in multi-user envi-
ronments from a new and different perspective. Instead of transforming it into a
single-label classification problem, we build an ensemble of multivariate conditional
inference tree classifiers where each classifier takes a set of correlated and depen-
dent labels as its multivariate response. To identify these sets of labels, we develop
an innovative approach which identifies dependency relations between concurrent
labels using the algorithm of conditional inference trees. We identify two types of
dependency, namely intra-user and inter-user dependencies that study dependency
relations within the activities of a single user and between the activities of all users
respectively. Moreover, we take temporal relations between subsequent activities into
account to build the final activity recognition model. Our work is distinguished by
using appliance-level fine-granular measurements of power consumption as its only
sensing modality. Our final activity recognition model works without using any in-
formation provided by other sensing modalities such as motion, wearable, environ-
mental or state-change sensors. Moreover, it achieves a very good average f-measure
value of 91% which outperforms the predictive performance of all multi-user activity
recognition models presented in this section.

Concerning the forecasting of long-term and short-term power consumption, we
follow in our work a hybrid methodology in which we develop several models for
forecasting long-term and short-term power consumption of individual buildings as
well as of a portfolio of buildings. In contrast to most of the aforementioned research
projects, this work focuses on forecasting the detailed power consumption of indi-
vidual buildings and not only on aggregated power consumption of a community
such as a city or a country. Our novel models for forecasting total and detailed 24-
hour day-ahead power consumption of individual buildings have shown very good
predictive performance even when working with a heterogeneous set of buildings
where different behavioral patterns of residents make it difficult for other forecast-
ing approaches to achieve an accurate predictive performance.
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A C T I V I T Y R E C O G N I T I O N I N S I N G L E - U S E R E N V I R O N M E N T S

Activity recognition represents an important research field in the area of smart
environments [21]. By realizing accurate and rigorous solutions for activity

recognition, we pave the road for a wide spectrum of IT services that enhance hu-
man beings’ quality of life. In this chapter, we present SMARTENERGY.KOM, our
platform for activity recognition in single-user environments, where we utilize fine-
granular power consumption data to extract users’ context and recognize their cur-
rent activities. We start by giving a general definition of user activities in Section
4.1. In Section 4.2, we introduce software and hardware components of SMARTEN-
ERGY.KOM. We present our experimental deployments in Section 4.3. In Section 4.4,
we clarify the processes of data preprocessing and feature extraction. We evaluate
the predictive performance of our solution for activity recognition in Section 4.5. We
summarize the chapter in Section 4.6. The research contributions presented in this
chapter were the main topics of our paper in [5].

4.1 activities of daily living (adls)

As defined by Merriam-Webster [71], “an activity is the state of being active: behavior
or actions of a particular kind”. It can also be defined as “something that is done as
work or for a particular purpose”. ADLs represent an important type of activities
which has been the subject of activity recognition literature. This type involves all
kinds of activities that we perform in our daily life in order to maintain good health
conditions [117]. ADLs are defined as “the things we normally do...such as feeding
ourselves, bathing, dressing, grooming, work, homemaking, and leisure” [117].

Human activities can be categorized into atomic and non-atomic [95]. Atomic ac-
tivities consist of only one event which represents a primitive action such as opening
a door or pouring water into the teacup. Non-atomic activities consist of multiple
sub-events such as making tea or preparing a meal in the kitchen. In our work, we
focus on non-atomic activities of daily living such as eating, watching TV, reading
and so on.

4.2 smartenergy.kom activity recognition platform

Our main research goal in this chapter is to recognize users’ context based on their
fine-granular power consumption data. In order to achieve this goal, we built a sys-
tem of sensor nodes which collects appliance-level power consumption data of all
appliances at home. Moreover, it collects other environmental parameters, namely
temperature, brightness and motion in the environment. The different components
of the system are shown in Figure 3.

29
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Figure 3: System architecture and network topology

sensor nodes Our platform utilizes two types of sensor nodes. On one hand,
Plugwise appliance-level power sensors1 are used to measure the power consump-
tion of each electrical appliance. On the other hand, Pikkerton environmental sen-
sors2 are used to measure the temperature, brightness, and to detect motion in the
environment. Figure 3 shows the environmental sensors mounted to the ceiling as
well as the power sensors connected to the TV and oven as an example.

raspberry pi Raspberry Pi3 plays the role of a gateway which collects all sensor
readings and forwards them to the control server.

smartphone The user’s smartphone represents the feedback channel in the sys-
tem as it is used by the user to tag her/his ongoing activities.

control server The locally deployed control server is responsible for collecting
and storing the data. Moreover, it represents the smartness of the platform by pre-
processing the data and constructing of the activity recognition model.

4.3 deployments and experimental setup

In order to collect the required training data for building and evaluating the activ-
ity recognition model, we deployed our platform in two different homes which we

1 http://www.plugwise.com/
2 http://www.pikkerton.com/
3 http://www.raspberrypi.org/
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House A House B

Cooking CuttingBread

WatchingTV WatchingTV

WorkingAtPc ListenToRadio

Eating Eating

MakingCoffee MakingTea

CleaningDishes Ironing

Reading Reading

Sleeping Sleeping

OutOfHome OutOfHome

Ignore Ignore

Table 6: List of monitored activities in each house

call in the context of this chapter House A and House B. House A was occupied by
a researcher who knows the technical details of the system whereas House B was
occupied by a person who has no expertise in the field. Table 6 shows the lists of
monitored activities in each of the houses. These lists have been designed based on
our discussion with the residents who have provided us with the required informa-
tion about their usual daily behavior and the activities they normally perform on a
daily basis. Table 7 shows the rooms that we monitor in each of the houses as well

Room In House A In House B

Kitchen

Coffee machine, Radio,
Electric kettle, Lamp
above the hob, Lamp
above the kitchen sink,
Oven, Fridge

Radio, Electric kettle,
Electric iron, Cooking
mixer, Electric bread
cutter

Living room
Projector, Audio sys-
tem, Lamp

Television, Satellite re-
ceiver, Lamp

Office room
PC, PC accessories
(screen, loudspeaker,
etc.)

-

Sleeping room -
Lamp, Radio alarm
clock

Table 7: List of available electrical appliances at each house

as the available electrical appliances in each room. We connect each appliance to a
Plugwise sensor. Moreover, we deploy an environmental sensor in each of the rooms
apart from the sleeping room in House B.

To preserve the private sphere of users, we give them the choice to report their
current activity as Ignore. In this way, we enable the users to perform the activities
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that they do not want to be monitored without interrupting or affecting the system
operations. All sensor readings related to the feedback Ignore are deleted from the
datasets in the preprocessing step. We have deployed the system for 82 days in House
A where around 22.5 million of data points have been collected. The duration of
deployment was shorter in House B with 62 days and about 20 million collected data
points.

4.4 data preprocessing and feature extraction

Our platform follows a supervised learning approach to build a machine learning
model whose task is to learn the correlation between sensor readings and user activ-
ities from the collected datasets. As mentioned before, our data consists of around
42.5 million data points. In order to extract meaningful training and testing instances
that are necessary to build the machine learning model, we follow a windowing ap-
proach in which we divide our series of data into time slots where each time slot
represents an instance of sensor readings labeled with the accompanied activity. We
extract the features in each time slot as shown in Figure 4 where the maximum read-
ing of each sensor during this time slot is taken as a representative feature for it. The
reason behind taking the maximum value as a feature is that it ignores all zero read-
ings of the respective sensor during time slots in which the device connected to this
sensor is turned on after the beginning of the respective time slot which causes zero
readings to be initially reported. Other features such as the average will be affected
by such zero values and therefore can cause confusion for machine learning models.
Eq. 21 shows the feature vector consisting of maximum sensor readings as well as the
timestamp at which the activity is happening. The timestamp is only represented by
the hour because minutes and seconds cause the model to overfit the training data.
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Figure 4: The process of feature extraction

Feature vector : F(t) =< mS1(t),mS2(t), ...,mSN(t),H > (21)

Where:

• mSi(t) : maximum value of

sensor si during timeslot t
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Figure 5: Length of the time slot vs. accuracy of the activity recognition platform for House
A and House B

• N : number of sensors

• H : timestamp represented by the hour

The optimal length of the time slot has to be specified empirically. In Section 4.5,
we run an experiment to specify this optimal value.

4.5 results and evaluation

To evaluate the predictive performance of SMARTENERGY.KOM, we design a set of
experiments that cover several aspects of the collected datasets. As we are using a
windowing technique to divide our data into time slots, we conduct an experiment
which determines the optimal length of the windowing time slot. After determining
this value, we build our model for activity recognition based on the datasets collected
from both houses. As our dataset contains both power and environmental data, we
conduct two different experiments. In the first one, we incorporate the values of
environmental and power sensors into the feature vector presented in Eq. 21. In the
second experiment, we exclude environmental sensors from the feature vector and
build our model for activity recognition solely based on power consumption data.
The hour is used as a feature in both models. The goal of the second experiment is
to study the effect of excluding environmental sensors on the predictive accuracy of
activity recognition models.

We use the random forest classifier [16] for all experiments as it produces one of
the most robust and accurate machine learning models. Moreover, it has proven to
be the most suitable classifier for other datasets that have the same characteristics
as our dataset [39] [87]. We divide the data into 70% training set and 30% testing
set. For building random forest models, we use the caret library [61] in R [82] by
applying a 10-fold cross-validation [12] on the training set. Using training set, caret
determines the optimal set of parameters for building a random forest model and
returns a model based on this set of parameters.
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Figure 6: F-measure values of environmental-power model with regard to all activities in
House A
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Figure 7: Accuracy values of environmental-power model with regard to all activities in
House A

4.5.1 Optimal Time Slot Length

The length of windowing time slot plays an essential role in determining the predic-
tive performance of the activity recognition model. We assume a scenario in which
the user is allowed to perform one activity at a time. Therefore, a long time slot
may cause the instances of two different activities to be combined in one time slot as
some activities such as MakingCoffee lasts for 3 to 5 minutes. Having two activities in
one time slot renders it useless as we assume only a single activity to be performed
at a given time. Moreover, a long time slot leads to a decreasing number of train-
ing and testing instances which has a negative effect on the performance of activity
recognition model.

Figures 5a and 5b show the accuracy of activity recognition models with regard to
the length of the time slot. As we can see from both figures, the accuracy decreases
as the length of time slot increases. This can be explained by the increased number
of slots with more than one activity as we clarified before. A 1-minute time slot leads
to the best accuracy value. However, we choose the time slot length to be 2 minutes
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Figure 8: Overall performance of environmental-power model with regard to House A in
terms of average f-measure, accuracy, precision and recall

as a 1-minute slot is very short for all sensors to change their values according to
the new activity in case of activity change. This is because users tend to give their
feedback before they start performing the new activity.
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Figure 9: F-measure values of environmental-power model with regard to all activities in
House B

4.5.2 Power and Environmental Sensors

In this section, we evaluate the predictive performance of our model for activity
recognition based on power and environmental sensors. Using a time slot of 2 min-
utes, we build the feature vectors based on the readings of both power and environ-
mental sensors as clarified in Figure 4. We refer to this model as “environmental-
power model”. As mentioned before, we use caret library in R to train a random
forest classifier using 70% of the data as a training set. After getting the optimal
classifier using a 10-fold cross-validation in caret, we test it on the remaining 30% of
the dataset. We present our evaluation results for both deployments, namely House
A and House B.
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Figure 10: Accuracy values of environmental-power model with regard to all activities in
House B
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Figure 11: Overall performance of environmental-power model with regard to House B in
terms of average f-measure, accuracy, precision and recall

Figures 6 and 7 show the predictive performance in terms of f-measure and ac-
curacy values achieved in recognizing each of the activities in House A. We notice
from both figures that our activity recognition model is able to recognize most of the
activities with very good predictive performance represented by f-measure values
of up to 95%. However, for activities such as CleaningDishes and MakingCoffee the
model reached f-measure values of 40% and 70% respectively. The reason behind
this poor performance in recognizing both activities is their short duration which
leads to a very few number of instances available for training the model. We present
a solution for this problem in Chapter 5 by incorporating temporal relations between
subsequent activities into the feature space of our activity recognition model. Figure
8 presents the overall average performance of House A’s model in terms of f-measure,
accuracy, precision and recall.

The results obtained after evaluating the predictive performance on House B’s
dataset follow the same direction as shown in Figures 9 and 10. As we see from
both figures, our model is able to recognize activities such as Sleeping, OutOfHome
and WatchingTV with f-measure values of up to 99%. Moreover, it shows a very
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Figure 12: Comparison between power-only and environmental-power models in terms of
f-measure values for activities of House A
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Figure 13: Comparison between power-only and environmental-power models in terms of
f-measure values for activities of House B

good performance in recognizing the activities of Reading, Eating, ListenToRadio and
Ironing. However, it recognizes the activities of MakingTea and SlicingBread with f-
measure values of 69% and 80% respectively. As explained before, this is because
the few number of instances these activities have due to their short durations. We
present our solution for this problem in Chapter 5.

4.5.3 Power Sensors

In this section, we study the effect of excluding environmental sensors on the pre-
dictive performance of our model for activity recognition. In this evaluation setting,
feature vectors consist of only readings of power sensors combined with the hour
as activity’s timestamp. We repeat the same evaluation setup in which we build a
random forest model using R’s caret library with 70% of the data as a training set
and 30% as a testing set. We refer to this model as “power-only” model.
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Figure 14: Comparison between power-only and environmental-power models in terms of
average f-measure, accuracy, precision and recall achieved for House A
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Figure 15: Comparison between power-only and environmental-power models in terms of
average f-measure, accuracy, precision and recall achieved for House B

Figure 12 presents a comparison between the f-measure values achieved in recog-
nizing the activities of House A using power-only and power-environmental models.
We notice from this figure 10% to 14% decrease in f-measure values for the activities
MakingCoffee, Eating, Reading and Cooking. No serious decrease can be noticed for the
activities Sleeping, WorkingAtPc, WatchingTV and OutOfHome. Moreover, we notice an
8% increase in the f-measure value of the activity CleaningDishes. A larger decrease
in f-measure values can be noticed in recognizing activities of House B as shown in
Figure 13. We notice 30% to 40% decrease in recognizing the activities Reading, Eating,
ListenToRadio, MakingTea and SlicingBread.

Figure 14 and 15 present an overall comparison between environmental-power
and power-only models in terms of average f-measure, accuracy, precision and re-
call achieved in recognizing the activities of House A and House B respectively. As
can be seen from Figure 14, f-measure and recall values for the model of House A
have slightly decreased by 5% and 6% respectively. However, Figure 15 shows that
f-measure and recall values for the model of House B have decreased by 22% and 26%
respectively.
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The obtained results show a decrease in predictive performance of our activity
recognition model after the exclusion of environmental sensors. However, we present
in Chapter 5 a solution that enhances the predictive performance of power-only mod-
els so that they outperform environmental-power models. This solution is based on
incorporating temporal relations between subsequent activities into the feature space
of power-only models.

4.6 summary

In this chapter, we presented SMARTENERGY.KOM, our platform for activity recog-
nition in single-user environments. In Section 4.2, we introduced the hardware com-
ponents of the platform. Moreover, we presented the deployment of SMARTEN-
ERGY.KOM in two single-user apartments in Section 4.3. In Section 4.4, we explained
the processes of data preprocessing and feature extraction. We introduced the exper-
imental setup of constructing activity recognition models in Section 4.5. We clarified
the used windowing technique and identified the optimal time slot length in Section
4.5.1. In Section 4.5.2, we evaluated the predictive performance of environmental-
power activity recognition models. We studied the effect of excluding environmental
sensors on the predictive performance of activity recognition models in Section 4.5.3.
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B E H AV I O R A L M O D E L I N G O F U S E R S I N I N D O O R
E N V I R O N M E N T S

Humans tend to follow daily routines in performing their everyday activities.
Identifying and extracting such routines pave the road for the realization of a

wide variety of intelligent context-aware services that enhance many aspects of peo-
ple’s life. Examples of such services are energy-conservation and comfort-increasing
services.

As users’ activities in smart environments are strongly associated with their power
consumption, fine-granular sensing of power consumption represents an important
sensing modality for identifying and extracting insights into users’ everyday behav-
ior. In this chapter, we cover three essential aspects of users’ behavior in indoor
environments. First, we present our approach for indoor localization of users based
on their fine-granular power consumption in Section 5.1. Thereafter, we introduce
our approach for identifying behavioral patterns that are followed by users in per-
forming their activities in Section 5.2. Furthermore, we analyze the effect of these
patterns on improving the predictive performance of activity recognition models. In
Section 5.3, we conduct an in-depth analysis of users’ hourly power consumption
with the goal of building an hourly power consumption profile of users. Such a pro-
file can be used for increasing users’ awareness of their power consumption and for
identifying and detecting abnormal power consumption behaviors. We evaluate all
of the approaches presented in this chapter based on the dataset we collected using
SMARTENERGY.KOM framework as clarified in Chapter 4. The research contribu-
tions presented in this chapter were the main topics of our papers in [6][7].

5.1 indoor localization based on power consumption

Localization of users in indoor environments has always represented a challenge for
researchers in the field of smart environments [67]. Many approaches have been de-
veloped to tackle this challenge. They have utilized a wide variety of sensing modal-
ities to achieve this goal. Examples are Passive Infrared sensors (PIRs) [101], Radio-
frequency identification (RFID) tags [60], wireless transceiver [4][98][113], cameras
[123] and so on. Our research goal in this section is to design an accurate approach
for indoor localization only based on fine-granular sensing of power consumption
and without the need for deploying any other sensing modality.

In order to test and evaluate the predictive performance of our approach, we need
a dataset in which fine-granular measurements of power consumption are labeled
with user location in an indoor environment. We build this dataset by modifying
SMARTENERGY.KOM dataset so that it contains users’ indoor location as explained
in the next section.

41
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5.1.1 Dataset

As our research goal is to accurately localize users in indoor environments based
on their fine-granular power consumption, we require a dataset which combines
this information. In Chapter 3, we presented the dataset we collected by deploy-
ing SMARTENERGY.KOM in two single-user apartments. Each feature vector in this
dataset is labeled with user’s current activity. As the users in both deployments
perform each of their activities in one known place which does not change through-
out the deployment, we can infer user location based on her/his current activity.
Therefore, we modify both datasets so that each feature vector gets labeled with the
location at which the activity happens instead of the activity itself. As a result, we
get a dataset in which each instance combines appliance-level power measurements
with user location inside the house as shown in Eq. 22. Table 8 shows the location
of each activity performed by users in House A and House B. It can be seen from the
table that House A has only one room, namely living room in which the user lives
and sleeps. After constructing the required dataset, we build the classification model
and evaluate its performance in the next section.

It =< mS1(t),mS2(t), ...,mSN(t),H,Loc(t) > (22)

Where:

• mSi(t) : maximum value of

sensor si during timeslot t

• N : number of sensors

• H : timestamp represented by the hour

• Loc(t) : location of user during timeslot t

Location In House A In House B

Kitchen
Cooking, Eating, Making-
Coffee, CleaningDishes

Eating, ListenToRadio,
MakingTea, SlicingBread,
Ironing

Living room
Sleeping, WatchingTV,
Reading

WatchingTV

Office room WorkingAtPc -

Sleeping room - Sleeping, Reading

Outside OutOfHome OutOfHome

Table 8: Locations of activities

5.1.2 Evaluation

This section presents the evaluation results of our indoor localization models with
regard to both House A and House B. Following the same evaluation settings pre-
sented in Chapter 4, we use R’s caret library to build two random forest models for
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Figure 16: F-measure values of indoor localization model with regard to House A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Living  room Office room Kitchen Outside

Figure 17: Accuracy values of indoor localization model with regard to House A

each house. We utilize 70% of the dataset as a training set to construct the optimal
random forest models using 10-fold cross validation. We test the resulting models
on the remaining 30% of the dataset.

Figures 16 and 17 show the values of f-measure and accuracy achieved in rec-
ognizing each location in House A. Both figures confirm the very good predictive
performance achieved in recognizing each location. The model achieved f-measure
values of 96%, 89% and 91% in recognizing the locations “living room”, “office room”
and “outside”. A lower f-measure value, namely 81% has been achieved in recogniz-
ing the location “kitchen”. This is due to the fewer number of instances this location
has as the user spent most of his time in living room

Figure 18 shows that our model is able to recognize the locations with an average
f-measure value of 89% and an average accuracy value of 92%.

The same applies for House B as shown in Figures 19, 20 and 21.



44 behavioral modeling of users in indoor environments

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. Presicion Avg. Recall Avg. F-measure Avg. Accuracy

Figure 18: Overall performance of indoor localization model with regard to House A in terms
of average f-measure, accuracy, precision and recall
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Figure 19: F-measure values of indoor localization model with regard to House B

5.2 patterns in user’s daily life and their effect on the accuracy

of activity recognition

Humans tend to perform their daily activities in certain routines that repeat them-
selves over the days. Logically, we perform the activity of Cooking before we start
Eating. Moreover, we tend to watch TV or read a book before going to sleep. Intro-
ducing such temporal patterns between subsequent activities should be beneficial in
enhancing the predictive performance of activity recognition models. In this section,
we identify such patterns in the dataset we collected using SMARTENERGY.KOM
platform as introduced in Chapter 4. Furthermore, we present our approach for
incorporating these patterns into our model for activity recognition presented in
Chapter 4. Finally, we evaluate the predictive performance of our model for activity
recognition after incorporating the temporal patterns and we present the obtained
results.
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Figure 20: Accuracy values of indoor localization model with regard to House B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. Presicion Avg. Recall Avg. F-measure Avg. Accuracy

Figure 21: Overall performance of indoor localization model with regard to House B in terms
of average f-measure, accuracy, precision and recall

5.2.1 Identification of Temporal Patterns

J. F. Allen and G. Ferguson [8] defined three types of temporal relations between
two activities X and Y, namely X happens after Y, X happens before Y or X overlaps
with Y. In Chapter 4, we assumed the user to perform only a single activity at a
given time. Therefore, we are interested only in the first two temporal relations as
no overlapping activities are allowed in our dataset. We use Apriori algorithm [1] for
identifying frequent activity sequences i.e. temporal patterns in our dataset. Before
presenting the approach of identifying temporal patterns using Apriori algorithm,
we need to define two basic terms, namely episode and sequence.

• Episode: D. Lymberopoulos et al. [66] defined an episode as a sequence of
one or more activities characterized by begin and end timestamps. An episode
represents the main unit of interest in mining temporal patterns. Therefore,
we choose our episode to be a whole day starting at 00:00:00 and ending at
23:59:59. We build an episode dataset for House A and House B. This results
in two datasets comprised of 64 and 61 episodes for House A and House B
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respectively. Eq. 23 represents the mathematical representation of an episode
comprised of n activities.

Episodei =< A1(T1),A2(T2), ...,An(Tn) > i ∈ [1,d] (23)

Where:

– Aj : activity j

– Tj : the timestamp associatedwith activity j

– n : number of activities during day i

– d : number of days

• Sequence: it is defined as a set of two or more activities that successively hap-
pen. A sequence defined as <Cooking, Eating> implies that the activity of eat-
ing directly happens after the activity of cooking.

As mentioned before, we utilize Apriori algorithm for identifying temporal patterns
in our episode datasets. The main goal of Apriori algorithm is to extract frequent se-
quences from an episode dataset based on two main values, namely support and con-
fidence of these sequences. The support of a certain sequence is defined as the num-
ber of episodes that contain this sequence divided by the total number of episodes as
shown in Eq. 24. A sequence is considered as a frequent sequence when its support
is larger than a predefined threshold which we refer to as minSupp.

Support(< X, Y >) =
#episodesContaining < X, Y >

#episodes
(24)

Confidence is defined as the probability of activity Y occurring given that activity
X has already occurred. It is computed by dividing the support of sequence < X, Y >
over the support of sequence < X > as shown in Eq. 25.

Confidence(< X, Y >) =
Support(< X, Y >)
Support(< X >)

(25)

The result of applying Apriori algorithm on an episode dataset is a set of rules

that take the form A
confidence−−−−−−−−→ B. Such a rule implies a high support value for

both sequences < A > and < A,B >. Moreover, it implies a high confidence for the
sequence <A,B> meaning that the activity B occurs with high probability given that
activity A has occurred. However, requiring high support values for these sequences
lead to a problem in our use case. The reason behind this problem is the existence
of activities that are rarely performed by the user. Such activities are characterized
by having low support values. However, they might be part of other sequences that
have very high confidence values. These sequences will be discarded due to the low
support values of rare activities. For example, the activity Reading has a small support
value, namely 4.7% since it is rarely performed by the user. However, the sequence
<Reading, Sleeping> is characterized by having a very high confidence value which
implies that any occurrence of reading activity will be followed by sleeping with a
high probability. To solve this problem, we follow [65] by utilizing the approach of
multiple minimum supports which assigns a different miniSupp value for each item
by multiplying its support value by the global miniSupp value shown in Eq. 26. This
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results in individual miniSupp values that are proportional to the individual support
values.

miniSuppi = global_miniSupp× support(Ai) (26)

By applying Apriori algorithm on our episode datasets, we identify all frequent
sequences of activities that regularly occur after each other. Table 9 shows the list of
these sequences.

Temporal Relations

Previous Activity Current Activity

Deployment 1

Sleeping WorkingAtPC

WorkingAtPC Eating

MakingCoffee Eating

Eating WorkingAtPC

WatchingTV Sleeping

OutOfHome WorkingAtPC

Cooking Eating

Deployment 2

Reading Sleeping

ListenToRadio Eating

MakingTea Eating

Table 9: Temporal patterns identified in our episode datasets

After the identification of all frequent temporal patterns in the datasets, we incor-
porate this knowledge into the feature space of our activity recognition model. This
is done by expanding the feature vector so that it contains besides sensor readings,
the previous performed activity as well as the most probable current activity based
on the identified temporal patterns. Eq. 27 shows the new feature vector structure.

Feature vector : F(t) =< mS1(t),mS2(t), ...,mSN(t),H,At−1,At > (27)

Where:

• mSi(t) : maximum value of

sensor si during timeslot t

• N : number of sensors

• H : timestamp represented by the hour

• At−1 : the activity performed in the previous slot

• At : themost probable current activity

After transforming all instances of our datasets based on the new feature vector struc-
ture, we conduct our evaluation study to measure the effect of extracted temporal
knowledge on the predictive performance of activity recognition models.
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5.2.2 Evaluation

This section presents the results obtained by evaluating the predictive performance
of our activity recognition model after incorporating temporal knowledge into the
feature space. As presented in Chapter 4, House A and House B datasets contain
readings of power and environmental sensors. We incorporate the temporal knowl-
edge only to the power models as our main goal is to recognize users’ activities
solely based on their fine-granular power consumption data. Therefore, readings of
environmental sensors are excluded from the feature vector presented in Eq. 27. We
compare the obtained results to the predictive performance of environmental-power
and power-only activity recognition models presented in Chapter 4. We build one
random forest model for each deployment using R’s caret library with 70% of the
data as a training set and 30% as a testing set.

Figure 22 compares the f-measure values achieved in recognizing activities of
House A by environmental-power, power-only and power-temporal activity recog-
nition models. It is clear from the figure that incorporating temporal knowledge
significantly enhanced the predictive performance of the power-only model. More-
over, power-temporal model outperforms environmental-power model in recogniz-
ing all activities. An overall comparison between all models in terms of average f-
measure, accuracy, precision and recall achieved in recognizing activities of House A
is shown in Figure 23 which clearly shows that power-temporal model outperforms
environmental-power and power-only models with respect to all four measures. We
conduct the same comparison for House B dataset as shown in Figures 24 and 25. It is
clear from both figures that power-temporal model outperforms both other models
for the dataset of House B as well.

The obtained results lead to the conclusion that users’ activities can be recognized
with very good predictive performance solely based fine-granular sensing of power
consumption and without the need for deploying any other sensing modality which
proves our hypothesis. Even though the predictive performance of activity recogni-
tion model has decreased after the exclusion of environmental sensors, we were able
to significantly increase it by incorporating temporal knowledge into the feature
space. The final power-temporal model outperformed environmental-power model
in terms of all performance measures, namely f-measure, accuracy, precision and
recall as shown in Figure 26.

5.3 power profiling

As humans are used to performing the same activities every day, their daily power
consumption tends to have a pattern that repeats itself over the days. Our goal in
this section is to identify such a pattern and to build a daily power consumption
profile of users by conducting an in-depth analysis of their daily power consump-
tion. Identifying a daily power profile of users has its potential benefits in several
application scenarios. On one hand, it helps users understanding their detailed daily
power consumption and thereby being more aware of the power they consume. On
the other hand, daily power consumption profiles of consumers help electric utilities
in planning their resources and recommending more suitable tariffs to consumers
based on their power consumption behavior.
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Figure 22: Comparison between the models: power-environmental, power-only and power
with temporal patterns in terms of f-measure values for activities of House A
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Figure 23: Comparison between the models: power-environmental, power-only and power
with temporal patterns in terms of average f-measure, accuracy, precision and
recall achieved for House A

We use SMARTENERGY.KOM dataset to conduct our analytical study in this sec-
tion. Based on the appliance-level power measurements, we build a detailed time
series for each day that gives the power consumed during each hour of the respec-
tive day. Section 5.3.1 presents in details the construction process of the dataset.

5.3.1 Extracting Hourly Power Consumption

In this section, we explain the process of constructing the dataset required to conduct
our analysis of users’ daily power consumption. As SMARTENERGY.KOM dataset
contains power measurements for each appliance in House A and House B, we com-
pute the power consumed during each hour as follows:

• For each time slot belonging to the respective hour, we calculate the average
value of the readings of each Plugwise sensor.
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Figure 24: Comparison between the models: power-environmental, power-only and power
with temporal patterns in terms of f-measure values for activities of House B
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Figure 25: Comparison between the models: power-environmental, power-only and power
with temporal patterns in terms of average f-measure, accuracy, precision and
recall achieved for House B

• We divide the obtained average value by 30 so that we convert “Watt” readings
of Plugwise sensor into “Wh (Watt-hour)”

• We sum up the Wh values obtained from all Plugwise sensors in the time slot.

• We obtain the hourly power consumption by summing up the power consumed
during each time slot of the hour. Eq. 28 and Eq. 29 show mathematically
the computation of power consumed during a time slot and during an hour
respectively.

Psloti =

n∑
j=1

Sj(Sloti)

30
(28)

Ph =

m∑
i=1

Psloti h ∈ [1, 24] (29)
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Figure 26: Comparison between the models: power-environmental, power-only and power
with temporal patterns in terms of average f-measure, accuracy, precision and
recall achieved for both houses

Where:

• Psloti : power consumed during time slot i

• Sj(Sloti) : average of sensor j readings during time slot i

• n : number of sensors

• Ph : power consumed during hour hwhere h ∈ [1, 24]

• m : number of time slots : in hour h
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Figure 27: Hourly power consumption of House A on “2013-04-06”

Using these two equations, we compute the hourly power consumption for each
house during the whole deployment period. Figure 27 shows a time series represent-
ing the hourly power consumed on Saturday “2013-04-06” by House A. We notice
from this figure that the user consumes more power from afternoon till midnight.
The power consumption after midnight is close to zero as the user is sleeping. More-
over, we notice a moderate consumption around 08:00 am as the user tends to wake
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Figure 28: Hourly power consumption of House A on “2013-05-21”
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Figure 29: Comparison between consumption behaviors on the days “2013-04-06” and “2013-
05-21” for House A after standardizing hourly consumption values

up and take a breakfast at this time. The same consumption behavior can be noticed
on Tuesday “2013-05-21” as shown in Figure 28 with a time shift of 2 hours as the
user starts his day around 06:00 am. This is because the user tends to sleep more
during weekends and therefore starts his day two hours later on Saturday. However,
he follows the same consumption pattern in which the power is more consumed
between afternoon and midnight. Figure 29 clearly shows this similarity. As can be
seen in this figure, we standardized hourly consumption values so that each day
has a mean of 0 and standard deviation of 1. The standardization process has been
performed for all days of both deployments as it is a prerequisite for the similarity
analysis presented in the next section.

Figure 30 presents two time series for the normalized consumption values of House
B on Monday “2013-05-27” and Wednesday “2013-06-05”. This figure clearly shows
that the user in House B as well follows a power consumption pattern which repeats
itself every day.

By normalizing and visualizing the 24-hour consumption patterns for certain days,
we are able to visually assume the existence of a user-specific consumption pattern
which is daily followed by each user. In the next section, we provide a mathematical
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Figure 30: Comparison between consumption behaviors on the days “2013-05-27” and “2013-
06-05” for House B after standardizing hourly consumption values

proof of the existence of such pattern using the algorithm of Dynamic Time Warping
(DTW) [58].

5.3.2 Similarity Analysis

In order to decide if a user follows the same power consumption behavior every day,
we need to compute a similarity metric between the time series that represent the
hourly power consumption during each day. There are several algorithms for com-
puting similarities between time series. Calculating the Euclidean distance represents
one of the simplest approaches. Another well-known algorithm is symbolic represen-
tation where each time series is represented by a set of symbols [64] [57]. However,
these two approaches have the main disadvantage of not being able to handle the
problem of time shifting. If two time series are completely identical except the fact
that one is shifted in time, these two approaches will consider them as different time
series with no similarity between them. This problem can be noticed in Figure 29

where we see that the same consumption pattern is followed in both days but with
a 2-hour shift in time. Moreover, both approaches require the time series to be equal
in size for a similarity metric to be computed.

The DTW algorithm [58] provides a solution for this problem as it is able to handle
shifts in time while computing similarities between time series of equal or different
sizes. To compute the similarity between two time series A = (a1,a2, . . . ,an) and
B = (b1,b2, . . . ,bm), DTW utilizes the following working principle:

• As a first step, DTW computes the Euclidean distance between each element
ai of A and all the elements of B. This results in n ∗m distance matrix.

• The main goal of DTW is to find the optimal warping paths between A and
B where each warping path represents a mapping between A and B and has
an associated warping cost which is calculated as the sum of all Euclidean
distances along it divided by its length. Figure 31 shows a distance matrix with
an example warping path. The optimal path between two time series is the one
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Figure 31: Distance matrix with an example warping path associated with it

associated with the minimum warping cost and is calculated according to the
iterative process shown in Eq. 31.

• For a warping path to be valid, it should fulfill the boundary condition where
it starts at (1,1) and ends at (n,m), the monotonic condition where it is not
allowed to go back in time and the continuity condition where it is allowed to
move only one step forward.

OptimalWarpingPath : P(x,y) = D(x,y)+min(P(x−1,y),P(x−1,y−1),P(x,y−1))
(30)

Warping Score :WS =
P(n,m)

k
(31)

Where:

• The calculation is initialized with P(1, 1) = D(a1,b1)

• D(x,y) : Euclidean distance between ax and by

• k : length of the optimalwarping path

To compute the similarity between two time series A and B based on DTW, we
find the optimal warping path which aligns A to B and then we compute its warping
score WS following Eq. 31. The similarity score between A and B can be computed
according to Eq 32 [56].

Similarity− Score =
1

1+WS
(32)

We apply DTW on all 24-hour power consumption time series for House A and
House B respectively where we calculate for each house the minimum, average and
maximum similarity scores as shown in Table 10. As we can see from the table,
average similarity scores of 90.32% and 93.50% are obtained for the time series of
House A and House B respectively. These results prove that both users follow a power



5.3 power profiling 55

Table 10: Results of similarity comparison of all 24-hour power consumption time series in
each deployment

House A House B

Minimum Similarity 81.72% 88.13%

Maximum Similarity 97.13% 97.68%

Average Similarity 90.32% 93.50%

consumption pattern which repeats itself on a daily basis. To further verify these
results, we present in the next section a detailed analytical study in which we identify
potential outliers in power consumption that can affect our similarity comparison.
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Figure 32: The process of identifying and excluding outliers from hourly power consumption
time series of House A

5.3.3 Further Analysis

This section presents our approach for identifying potential outliers in all 24-hour
power consumption time series that can affect our assumption of similarity in the
previous section. To achieve that, we extract for each hour the minimum and max-
imum power consumed during it over the whole deployment period for each of
the houses. As a result, we get for each hour the complete range of possible power
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(b) Extracting the double average
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sumption

Figure 33: The process of identifying and excluding outliers from hourly power consumption
time series of House B

consumption values during the whole deployment period as shown in Figures 32a
and 33a. We notice in Figure 33a a significant fluctuation at hour 14:00 where the
power consumed in House B ranges from 0Wh to 160Wh. The same applies for House
A where we see a fluctuation between 0Wh and 600Wh for the hour 10:00. Such
fluctuations can happen due to abnormal power consumption values in certain days.
To prove the existence of such outliers, we compute the double average of hourly
power consumption for both houses. The result is shown in Figures 32b and 33b
where the red dashed line represents the values of double average. For identifying
potential outliers, we consider these values of double average as empirical thresh-
olds. Any value of hourly power consumption that exceeds its respective threshold
is considered as an outlier and excluded. The results of this exclusion process are
shown in Figures 32c and 33c. Both figures show that most of the peaks are caused
by the existence of outliers that have been excluded based on the values of double
average. To further identify the normal power consumption pattern in each of the
houses, we compute the hourly average of consumption values after the exclusion of
outliers. Figures 32d and 33d show these values as a dotted line. Both average lines
indicate power consumption behaviors that are characterized by low consumption
values during night and morning. The consumption continues to be low until 14:00

o’clock for House B. Starting from the afternoon, we notice a significant increase in
power consumption for both houses. This is because the users in both houses tend
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to stay at home and watch TV starting from this time as indicated by their feedback.
Moreover, they perform other types of activities such as cooking, eating and working
at PC during this period. The power consumption drops again to low values during
the night where both users are sleeping.

5.4 summary

In this chapter, we introduced three novel approaches for identifying and predict-
ing several aspects of users’ behavior in indoor environments. We started in Section
5.1 by presenting our novel approach for indoor localization in smart environments
solely based on fine-granular measurements of power consumption. We evaluated
this approach in Section 5.1.2. The evaluation results showed that we are able to rec-
ognize indoor locations of users with f-measure values ranging from 81% to 96%. In
Section 5.2.1, we introduced our approach of identifying behavioral patterns of users
in indoor environments. We introduced our concept for incorporating such patterns
in the building process of activity recognition models so that we enhance their pre-
dictive performance. Evaluation results in Section 5.2.2 showed that incorporating
these patterns into the feature space led to a clear enhancement in the predictive
performance of our activity recognition models. In Section 5.3, we explained our
approach for the identification of daily power consumption patterns that are fol-
lowed by users in their everyday lives. In Sections 5.3.2 and 5.3.3, we mathematically
proved the existence of such patterns and identified them for the dataset collected
by SMARTENERGY.KOM platform.





6
A C T I V I T Y R E C O G N I T I O N I N M U LT I - U S E R E N V I R O N M E N T S

As any activity recognition model is supposed to work in real-world scenarios, it
must take into consideration the following facts:

• people live in multi-user environments where more than one user perform
similar or different activities at the same time.

• A person tends to perform more than one activity at the same time which leads
to parallel and overlapping activities.

• In a multi-user environment, it is of a great importance for the system to iden-
tify the person who is performing the activity.

In Chapter 4, we introduced SMARTENERGY.KOM, our platform for activity recog-
nition in single-user environments. Although SMARTENERGY.KOM has shown a
very good predictive performance in recognizing user activities, it was restricted
to single-user environments where the user is allowed to perform only one activ-
ity at a given time. As these restrictions do not take into consideration the facts
mentioned above, we developed ML-SMARTENERGY.KOM, our platform for activity
recognition in multi-user environments. It represents an improvement of SMARTEN-
ERGY.KOM as it is able to recognize parallel and overlapping activities for a group
of users while identifying which user is performing which activity.

In this chapter, we focus on three main aspects. Firstly, we show that human ac-
tivities in multi-user environments can be accurately recognized solely based on the
measurements of fine-granular appliance-level power consumption in the respective
environment. Secondly, we prove the existence of temporal relations between subse-
quent activities and we show that exploiting such relations can notably improve the
predictive performance of activity recognition models in multi-user environments.
Thirdly, we introduce the concept of dependency between concurrent activities. We
show that observed activities in multi-user environments exhibit dependency char-
acteristics. We identify and exploit these characteristics to enhance the predictive
performance of our activity recognition model. The research contributions presented
in this chapter were the main topics of our paper in [3].

6.1 ml-smartenergy.kom activity recognition platform

Building upon our platform for activity recognition in single-user environments, we
designed ML-SMARTENERGY.KOM by following the same research goal of extract-
ing user context based on her/his fine-granular power consumption data. Therefore,
we followed the same hardware architecture we used for SMARTENERGY.KOM as
it has been shown in Figure 3 in Chapter 4. The core parts of the platform are power
sensor nodes which collect the fine-granular power consumption of every electrical

59
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appliance. Moreover, environmental sensors have been used as well to monitor tem-
perature, brightness, and movement in the environment. A Raspberry Pi module has
been used to collect all the readings sent by the sensors and send them to the central
database server where the data is stored and analyzed to build the required machine
learning model. Table 11 shows the list of power devices which have been connected
to power sensors.

Lamp Monitor

User 1’s PC User 2’s PC

Oven Stove

Vacuum cleaner Sound system

TV Water heater

Table 11: List of power devices which have been connected to power sensors

In order to evaluate the predictive performance of ML-SMARTENERGY.KOM, we
deployed it in a studio apartment shared by two students. The layout of the apart-
ment is shown in Figure 34. We designed the list of activities to be monitored after a
discussion with the students in which they told us about their daily behavior and the
activities they perform during their normal day. Table 12 shows the list of monitored
activities. This list contains 11 different activities besides the Ignore activity which we
have included to preserve the users’ privacy and to give them a chance to perform
activities which they do not want to be monitored. The platform has been deployed
for a period of 23 days. By the end of the deployment, we were able to collect a
dataset of 335000 sensor readings combined with 677 user feedbacks. In section 6.2,
we explain the process with which we extract the features required for building the
activity recognition model.

LIVING ROOM

KITCHENWC

CORRIDOR

ENTRANCE

BALCONY

Figure 34: Layout of the apartment
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Eating Reading

WorkingAtPc WatchingMovie

WatchingTV Cooking

Cleaning ListenToMusic

Sleeping OutOfHome

MakingTea Ignore

Table 12: List of monitored activities

6.2 data preprocessing and feature extraction

Extracting the correct features from the raw collected dataset plays a crucial role in
building a predictive model which can generalize beyond the training data. In this
section, we follow the same windowing technique we presented in Section 4.4. As
a time slot value, we choose a duration of 2 minutes as it has proven to achieve
the best predictive performance in SMARTENERGY.KOM as shown in Section 4.5.1.
After dividing the dataset into time slots of 2 minutes, we choose the maximum value
of each sensor in a time slot to be the feature representing this sensor in this time
slot as shown in Eq. 33. The reason behind using the maximum value as a feature
has been clarified in Section 4.4.

Activity Recognition in multi-user environments represents an example of multi-
label classification (MLC) problems as more than one activity i.e. label can belong
to the same feature vector i.e. instance. This is because two users are performing
activities at the same time where each user can perform more than one activity at a
time. Therefore, each feature vector will have a label vector representing the labels
associated with it. Eq. 34 shows the mathematical representation of the label vector.
It is represented as a binary vector with “L ′′ dimensions where “L ′′ is the number of
distinctive labels in the dataset. Each label takes the value “1 ′′ if it associated with
the respective feature vector and “0 ′′ otherwise. “L ′′ is equal to 2 ∗ 11 = 22 in our
dataset as each user can perform 11 different activities.

Feature vector : F(t) =< mS1(t),mS2(t), ...,mSN(t) > (33)

Label vector : Y(t) =< y1(t),y2(t), .....,yL(t) > (34)

Where:

• mSi(t) : maximum value of

sensor si during timeslot t

• yi(t) ∈ {0, 1} : value of label
yi during timeslot t

• N : number of features

• L : number of labels
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Table 13 shows the multi-label characteristics of our dataset. As explained in Section
2.1.2.3, label cardinality, label density, PMax, and PDL give a deep insight into the
multi-label nature of a certain dataset. The table shows these characteristics for the
label set of each user alone as well as for the whole label set combining the labels of
both users. As we can see from the table, we get a label cardinality of around 2.3 by
combining the label sets of both users. A label cardinality of more than 2 indicates
that in most of the instances we get a label vector with more than one label.

Dataset Label Cardinality Label Density PMax PDL

User 1 1.21816 0.101513 0.31014 0.00199074

User 2 1.14584 0.0954868 0.335700 0.001584

Both users 2.33553 0.0973138 0.324116 0.0095757

Table 13: Multi-label characteristics of the dataset

6.3 binary relevance model of activity recognition

As explained in the previous section, activity recognition in multi-user environments
represents an instance of MLC problem. In Section 2, we introduced several ap-
proaches that handle MLC problems. One of these approaches is binary relevance
in which the multi-label dataset is divided into L single-label datasets so that each
label has its own dataset. To handle our activity recognition problem, we decide as
a first step to follow the approach of binary relevance as shown in Figure 35. There-
fore, we build a model for each user activity so that we have 22 models. As seen
in Figure 35, we use the algorithm of conditional inference trees (ctree) to build the
individual prediction models. We have chosen ctree algorithm due to two reasons.
On one hand, ctree follows a rigorous statistical framework in which the predictors
are selected based on their statistical correlation with the response variable. On the
other hand, ctree is suitable for our problem as for each activity the user performs,
only a subset of sensors are related while other sensors have no effect on it.

For each label, we build five different ctree models based on the selected predictor
variables. As explained in Section 6.2, the maximum value of each sensor in a time
slot is used as a predictor variable. Moreover, we utilize the time during which an
activity happens as an extra predictor variable. This is due to the fact that human
beings follow a daily pattern in which they repeat their activities on a daily basis
where each activity approximately occurs during the same time period every day.
Figure 36 shows the five individual ctree models we build for each label. As we can
see in the figure, we use the label for which we build the model as the response
variable of the ctree. As stated before in addition to using maximum sensor readings
as features, we use time-related features. The five models resulting from the different
combinations of features are as follows:

• The “WithoutTime-Model” which uses only sensor readings as features with
no time-related features.

• The “Hour-Model” which uses the hour at which the activity has occurred as
an extra feature.
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L-label dataset

Label-L datasetLabel-2 dataset

Ctree model_2 Ctree model_LCtree model_1

Label-1 dataset

0/1
0/10/1

. . .

. . .

Predicted label vector =  <cm1, cm2, …, cmL>

Figure 35: Binary relevance model

Ctree model for Label i

Response  Label i

Predictors

Sensor values Without time

Sensor values Hour

Sensor values Hour, Minutes

Sensor values Hour, Minutes, Day

Sensor values Day

Figure 36: Individual ctree model

• The “Hour+Minute-Model” which uses the hour and minute at which the ac-
tivity has occurred as extra features.

• The “Day-Model” which uses the day at which the activity has occurred as an
extra feature.

• The “Hour+Minute+Day-Model” which uses the hour, minute, and day at
which the activity has occurred as extra features.

Figure 37 shows the ctree model for Reading activity of User 2. This tree has been
built using the “Hour-Model”. As we can see in the figure, the ctree was able to
isolate the positive from the negative examples based on the Watt readings of lamp
power sensor and the kWh readings of the sensors connected to sound system and
PC of User 1. It is clear from this ctree that no reading activity happens when no
power is consumed by the lamp i.e. it is switched off. Another ctree model is shown
in Figure 38 which represents the Cooking activity of User 1. It has been generated
using the “Hour-Model” as well.
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The models built for each label have been evaluated using the collected dataset to
measure their predictive performance. In the next section, we present an exhaustive
evaluation study in which we compute a set of predictive metrics to evaluate the
overall performance of our approach as well as to select the combination of predictors
which achieve the best predictive performance.
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6.3.1 Evaluation

In this section, we evaluate the predictive performance of our binary relevance ap-
proach. As explained in the previous section, each label will be modeled using five
different models. Our research goal is to recognize human activities in multi-user
environments based on the fine-granular power consumption values of the environ-
ment. Two types of sensors have been used in our deployment, namely power and
environmental sensors. In the next two sections, we present our evaluation results
when using power sensors alone as features and when using them in combination
with environmental sensors. The goal of this evaluation strategy is to show that
power sensors alone are enough for achieving high predictive performance.

In order to start our evaluation, we divide the dataset into training and testing
sets by taking the first two weeks of collection as a training set and the last week as
a testing set. The evaluation study is structured as follows. Section 6.3.1.1 evaluates
the predictive performance of binary relevance approach when using environmental
and power sensors as features. The effect of temporal relations between activities
on the performance of our activity recognition models is studied in Section 6.3.1.2.
Section 6.3.1.3 evaluates the effect of excluding environmental sensors from feature
vectors on the predictive performance of our models. It proves that fine-granular
power measurements are enough to build a power prediction model that is able to
recognize human activities.

6.3.1.1 Power and Environmental Sensors

In this evaluation setting, we consider the feature vector of each time slot to contain
the maximum readings of all sensors including the environmental sensors. As stated
before, we use the ctree algorithm as the classifier in building binary relevance mod-
els. We build five different ctree models for each label using the training set. Each of
these models is tested using the testing set and four performance metrics have been
calculated, namely recall, precision, f-measure and accuracy. Figures 39, 40 show the
values of f-measure and accuracy for each label with regard to User 1. The same is
shown for User 2 in Figures 41, 42.

As we can see from the figures, binary relevance models were able to recognize
the activities of both users with different predictive performance. No model was
able to predict the activity of MakingTea for both users. This is due to the fact that the
number of instances for this activity is very low in comparison with other activities.
Therefore, it is not possible for the machine learning algorithm to build a model that
can recognize it. The low number of instances has also affected the activity of Eating
which has been predicted with low predictive performance.

Figure 43 summarizes the average values of recall, precision, f-measure and accu-
racy for all models with respect to all activities of both users. As we can see from
this figure, “Hour” model has achieved the best values for recall, f-measure and ac-
curacy. This can be explained by the fact that humans tend to follow a daily pattern
in which they perform their activities in the same order within the same time pe-
riod every day. “Hour+Minute” model has achieved the same results as the “Hour”
model which means that adding minutes to the hour as a timestamp does not im-
prove the predictive performance. Therefore, we decide to use the hour as the only
feature that represents the timestamp of an activity in the following analysis.
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Figure 39: F-measure values of environmental-power binary relevance models with regard
to User 1
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Figure 40: Accuracy values of environmental-power binary relevance models with regard to
User 1

6.3.1.2 Temporal Relations Between Activities

As users tend to follow a daily routine in performing their everyday activities, pro-
viding any information about previous activities performed by the users to activity
recognition models has a potential in improving their predictive performance. In this
section, we analyze and evaluate this potential. We extend feature vectors previously
explained in Section 6.2 so that they contain the activities performed by the user in
the previous timeslot as extra features. Eq. 35 shows the new mathematical represen-
tation of feature vectors where Act(t − 1) represents the previous user’s activities
performed in time slot t− 1.

Feature vector : F(t) =< mS1(t),mS2(t), ...,mSN(t),Act(t− 1) > (35)

To study the effect of temporal relations on activity recognition models, we con-
duct an evaluation study in which we re-evaluate the predictive performance of
binary relevance models with the new feature vectors containing previous activities
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Figure 41: F-measure values of environmental-power binary relevance models with regard
to User 2
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Figure 42: Accuracy values of environmental-power binary relevance models with regard to
User 2

as features. We follow the same previously used evaluation setting in which we take
the first two weeks of data as a training set and the third week as a testing set.

Figure 44 shows the improvement in f-measure values achieved in recognizing
each of User 1’s activities after adding previous activities as features. As we can
see in the figure, temporal relations have improved the predictive performance in
recognizing all activities especially the ones with low f-measure values. We see an
improvement of about 34% and 37% for the activities Cooking and Eating respectively.
However, it is still not possible for the models to recognize any instance of the ac-
tivity MakingTea. We present a solution to this problem in Section 6.4 by identifying
intra-user and inter-user dependencies between activities. The same applies for User
2 as shown in Figure 45. We see an improvement of f-measure values for all activities
apart from the activity of MakingTea for which no instance has been predicted. This
improvement has reached the values of 60% and 56% for the activities of ListenToMu-
sic and Eating respectively.

Figure 46 compares the average overall performance of temporal and non-temporal
models in terms of accuracy, f-measure, recall and precision. The average value of
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Figure 43: Comparison between the five time models
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Figure 44: The improvement in f-measure values achieved by encoding temporal relations as
extra features for the activities of User 1

each measure shown in the figure is computed with respect to all activities of both
users. As we can see from the figure, an improvement in all performance measures
can be seen. These results prove the existence of a temporal pattern in which users
perform their daily activities. Moreover, it shows that providing such pattern into the
model of activity recognition leads to a remarkable improvement in its predictive
performance. In the following evaluation studies, previous activity will always be
part of feature vectors as clarified in Eq. 35.

6.3.1.3 Power Sensors

In this section, we evaluate the predictive performance of binary relevance models
by only using fine-granular measurements of power consumption as information for
recognizing users’ current activities. Therefore, we exclude the values of environmen-
tal and motion sensors from feature vectors and repeat the previous experiments. We
keep temporal patterns as part of the feature vectors as we stated before. Our goal
is to prove that fine-granular power consumption data provides enough information
for an accurate recognition of users’ activities in multi-user environments.
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Figure 45: The improvement in f-measure values achieved by encoding temporal relations as
extra features for the activities of User 2
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Figure 46: Comparison between temporal and non-temporal models in terms of average f-
measure, accuracy, precision and recall

Figure 47 compares the predictive performance of power-environmental and power-
only models in terms of f-measure values for the activities of User 1. As we can see
from this figure, the exclusion of environmental and motion sensors has not much
affected the predictive performance in recognizing all activities except the activity
of Reading which has seen a decrease of about 40% in f-measure value. The reason
of this decrease can be explained by the fact that the absence of motion sensors has
caused confusion between the activities of Reading and Sleeping as both of them take
place in the sleeping room where the user tends to read a bit before falling asleep.

Figure 48 shows the previous comparison for the activities of User 2. In this figure,
we can notice that the exclusion of environmental and motion sensors has not much
affected the f-measure values. It has even improved the predictive performance in
recognizing activities OutOfHome and Eating.

An overall comparison between power-only and power-environmental models in
terms of average accuracy, f-measure, recall and precision is shown in Figure 49. We
have computed the average values of all measures with respect to the activities of
both users. This figure shows that the exclusion of environmental and motion sensors
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Figure 47: Comparison between power-only and power-environmental activity recognition
models in terms of f-measure values for activities of User 1
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Figure 48: Comparison between power-only and power-environmental activity recognition
models in terms of f-measure values for activities of User 2

has no notable effect on the predictive performance of activity recognition models. It
proves the ability of our platform to recognize users’ activities in multi-user environ-
ments solely based on fine-granular measurements of power consumption without
the need for any other sensing modality.

The problem of predicting the activity of MakingTea still represents a difficult chal-
lenge for all models evaluated so far. We present a solution for this problem in the
following section where we develop a multi-label activity recognition model which
identifies and utilizes dependency relations between activities for realizing an accu-
rate predictive performance in recognizing users’ activities.

6.4 label dependency in ml-smartenergy.kom dataset

Most of multi-label datasets have the important feature that the labels are correlated
and dependent on each other [34]. The dependency in this context means that the
values each label takes are statistically correlated with the values of some other labels
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Figure 49: Comparison between power-only and power-environmental activity recognition
models in terms of average f-measure, accuracy, precision and recall

in the label set. As a result of this dependency relation, we can predict the value of
a certain label with a higher predictive performance if we already know the values
of some other labels correlated with it. This leads us to the fact that predicting each
label alone in a binary relevance setting will cause a loss of information related to
this dependency. Therefore, it is of great importance for any multi-label machine
learning model to be able to find this dependency relation and to utilize it in a way
that enhances its predictive performance.

In this section, we examine in details the dependency relations between the labels
in ML-SMARTENERGY.KOM dataset. In order to extract all dependency relations
between the labels, we follow a rigorous mathematical framework, namely the ctree
algorithm which mathematically proves the existence of such relations if they exist.
As explained in Section 2.1.1.1, the ctree algorithm examines the null hypothesis of
independence between its response variable and all the predictor variables. It stud-
ies the statistical associations between each one of the predictors and its response
variable. In order to use ctree algorithm for finding the dependencies between labels,
we have to model our problem in a way that one label will be the response of the
other labels that represent the predictors in the ctree. Using this methodology, ctree
algorithm extracts the association between the response label and each of the pre-
dictor labels. In order to realize this methodology, we create a new dataset that only
contains the label vectors from ML-SMARTENERGY.KOM dataset.

Dependency relations can exist between the labels of one user i.e. intra-user de-
pendency as well as between the labels of both users i.e. inter-user dependency. In
the next two sections, we present in details these two types of dependency.

6.4.1 Intra-User Label Dependency

Intra-user dependency refers to the associations that exist between the labels of an
individual user. An example of this dependency can be a user who performs the
activities of Eating and WatchingTV most of the time simultaneously. Being able to
predict one of these two activities with a very good predictive performance will make
it easier to predict the other one. In this section, we extract all dependency relations



74 activity recognition in multi-user environments

that are exhibited by the label set of each individual user in our dataset. Figure
50 clarifies the process of extracting dependencies. As mentioned in the previous
section, each of the labels in the label set will be taken as a response of a ctree whose
predictors are all other labels in the label set.

Start

Number_of_labels = q

Current_label = 1

Current_label <= q

Build a ctree

Response = Current_label

Predictors = Labelset - current_label
Stop

Yes

No

Current_label = current_label + 1

Figure 50: The methodology of extracting label dependency in intra-user scenario

Figure 51 shows an example dependency ctree for Cooking activity of User 1. The
label Sleeping represents the root node for this ctree which implies a strong associa-
tion i.e. dependency between these two activities. This can be explained by the fact
that no activity occurs during sleeping which implies a strong negative association
between Sleeping and any other activity. We notice that by inspecting “Node 21” in
the ctree which contains 3002 examples for them labels Sleeping and Cooking take the
values of 1 and 0 respectively.

6.4.2 Inter-User Label Dependency

People who reside in a common place tend to perform their activities in accordance
with each other. They follow a common pattern in which they take into consideration
the activities of others while performing their own activities. As an example, people
who live with each other tend to go to sleep at the same time, to eat dinner and
watch TV together. Our goal in this section is to extract such common patterns so
that we know which activities are simultaneously performed by both users in our
dataset and which are not. We refer to these patterns as inter-user label dependency.

Figure 52 introduces the details of our approach for identifying inter-user label
dependency. To identify it for label x belonging to User 1, we build a ctree in which
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label x represents the response variable while the predictor variables are all the labels
of User 2. The individual steps of this process are clarified in the flowchart shown
in Figure 52. An example inter-user dependency tree for the activity OutOfHome of
User 1 is shown in Figure 53. The ctree shows that this activity is strongly correlated
with OutOfHome activity of User 2 which means that both users tend to be outside
during the same time period. Figure 54 presents another example ctree for Sleeping
activity of User 2. It is clear from this ctree that both users tend to go sleep at the
same time. Moreover, we notice in the tree a strong negative association between this
activity and the activities WorkingAtPc and WatchingTV of User 1.

Start

Dataset = Label set of both users 

#_of_labels_for_each_user = p

User?

User2_current_label = 1

User2User1

User1_current_label = 1

User1_current_label <= p User2_current_label <= p

Stop

Create a ctree

Response: user1_current_label

Predictors: Label set of user 2

Create a ctree

Response: user2_current_label

Predictors: Label set of user 1

User2_current_label =

user2_current_label+1

User1_current_label =

user1_current_label+1

No

Yes

Yes

Figure 52: The methodology of extracting label dependency in inter-user scenario

6.5 ml-smartenergy.kom activity recognition model

After the identification of intra- and inter-user dependency relations, we present in
this section our approach for utilizing these relations to build a multivariate model
for activity recognition in multi-user environments. For each label in our dataset, we
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build intra- and inter-user dependency ctree. By interpreting each of these trees, we
obtain the following dependency relations:

• Each of the activities Sleeping, Reading, WatchingTV, Cooking, OutOfHome, Eating
and WatchingMovie is generally performed by both users at the same time.

• Each of the users tends to perform the activity ListenToMusic while he is
WorkingAtPc.

• A notable negative association exists between the activities OutOfHome, Sleeping
and MakingTea.

In order to utilize the information encoded in dependency patterns, we build a set
of multivariate activity recognition models. Each of these models has a combina-
tion of dependent labels as its multivariate response. As the ctree algorithm ac-
cepts multivariate response variables, we choose it as a base classifier. Figure 55

shows the combination of labels for which a ctree model is built. The resulting
ML-SMARTENERGY.KOM activity recognition model is an ensemble of multivari-
ate ctree models.

Response 

combinations

Inter- & intra-user 

dependency

Intra-user 

dependency

Inter-user 

dependency

OutOfHome.x

OutOfHome.y 

Sleeping.x

Sleeping.y 

MakingTea.x 

MakingTea.y

ListenToMusic.x

WorkingAtPc.x

ListenToMusic.y

WorkingAtPc.y

Cooking.x

Cooking.y

Reading.x

Reading.y

WatchingTV.x

Cooking.y

WatchingMovie.x

WatchingMovie.y

Eating.x

Eating.y

Figure 55: The set of label combinations used to build the multivariate ctree models

6.5.1 Evaluation

In this section, we present the improvement achieved in the predictive performance
of activity recognition models by combining correlated labels into a set of multivari-
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Figure 56: Comparison between ML-SMARTENERGY.KOM and no-dependency activity
recognition models in terms of f-measure values for activities of User 1
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Figure 57: Comparison between ML-SMARTENERGY.KOM and no-dependency activity
recognition models in terms of f-measure values for activities of User 2

ate responses. Based on the results presented in Section 6.5, we showed that activ-
ities performed in multi-user environments expose dependency patterns that pro-
vide a potential benefit for improving the predictive performance of activity recogni-
tion models. We compare the predictive performance of ML-SMARTENERGY.KOM
model to the performance of binary relevance approach presented in Section 6.3.

Figure 56 compares the values of f-measures achieved using binary relevance ap-
proach and ML-SMARTENERGY.KOM model in predicting the activities of User 1.
The figure shows a remarkable improvement in predicting the activities of Reading
and Cooking. Moreover, we notice that ML-SMARTENERGY.KOM model is able to
predict the activity of MakingTea with a predictive performance of 64% in terms of
f-measure value. Figure 57 shows that the same applies for User 2 as our model was
able to predict his activity of MakingTea as well.

Figure 58 presents an overall comparison between the approach of binary rele-
vance and ML-SMARTENERGY.KOM model. We notice from this figure an increase
of 11% and 13% in values of f-measure and recall respectively. This noticeable im-
provement in results proves the importance of dependency patterns between concur-



6.6 summary 81

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Avg. Precision Avg. Recall Avg. F-measure Avg. Accuracy

No-dependency model

ML-SMARTENERGY.KOM
Activity Recognition Model

Figure 58: Comparison between ML-SMARTENERGY.KOM and no-dependency activity
recognition models in terms of average f-measure, accuracy, precision and recall

rent activities in improving the predictive performance of activity recognition models
in multi-user environments.

6.6 summary

In this chapter, we presented ML-SMARTENERGY.KOM, our platform for activity
recognition in multi-user environments. We started by introducing the hardware and
software components of the platform in Section 6.1. We explained the deployment of
ML-SMARTENERGY.KOM in a two-user apartment. Then, we highlighted the data
collection process and presented the set of monitored devices and activities. There-
after, we clarified the process of feature extraction and data preprocessing in Section
6.2 where we also quantified the multi-label characteristics of the collected dataset.
In Section 6.3, we presented our basic model for activity recognition in multi-user
environments, namely the binary relevance model. We evaluated the predictive per-
formance of this model in Section 6.3.1. By conducting a comprehensive evaluation
study, we showed the important effect of temporal relations between subsequent ac-
tivities on enhancing the predictive performance of activity recognition models in
multi-user environments in Section 6.3.1.2. Moreover, we proved the adequacy and
sufficiency of fine-granular power consumption measurements as a sensing modal-
ity for building an accurate activity recognition model in Section 6.3.1.3. To further
improve the predictive performance of activity recognition models in multi-user en-
vironments, we introduced our approach for identifying intra- and inter-user label
dependency between concurrent activities in Sections 6.4.1 and 6.4.2 respectively.
Based on the identified label dependency relations, we presented our multivariate
ML-SMARTENERGY.KOM activity recognition model in Section 6.5. We evaluated
the predictive performance of this model in Section 6.5.1 where we showed how it
outperforms binary relevance models by exploiting intra- and inter-user label depen-
dency.
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H Y B R I D L A R G E S C A L E F O R E C A S T I N G O F P O W E R
C O N S U M P T I O N

Forecasting of long-term and short-term power consumption has always been
an important research topic for academia and industry [48][116]. It has its bene-

fits for consumers and providers of electric power. On one hand, it provides electric
utilities with an overview about expected power consumption of individuals and
communities in near and far future. This allows utilities to plan their short-term and
long-term provisioning of power so that no surplus or shortage can happen. More-
over, this information makes it easier for utilities to plan their infrastructure so that
they meet the expected future demand of their customers. On the other hand, this
information increases consumers’ awareness of their power consumption. It allows
them to plan their consumption so that they reduce the cost of the power they con-
sume by avoiding peak hours and following different available tariffs introduced by
utilities.

The emergence and increased adoption of smart metering technologies paved the
road for having a very detailed overview of power consumption of individual build-
ings as well as complete geographical areas. By providing measurements on a minute
scale, smart meters open new perspectives for research in the field of power con-
sumption forecasting. Due to the availability of such fine-granular measurements,
it has become possible to accurately forecast daily and hourly consumption of in-
dividual buildings. In this chapter, we start by introducing our model for the aver-
age monthly power consumption of individual buildings. Thereafter, we present our
model for forecasting long-term daily power consumption of individual buildings.
Moreover, we present two models for forecasting short-term daily and hourly power
consumption. We evaluate our work based on a fine-granular dataset of power con-
sumption measurements collected by the Commission for Energy Regulation (CER)
in Ireland [25].

7.1 dataset

To start the adoption process of smart metering technologies in Ireland, the CER has
started a project in which they installed about 5000 smart meters in Irish residential
buildings as well as small and medium enterprise (SME) buildings. The project has
covered eight urban areas and three villages for duration of one and a half year
starting from July 2009 and ending in 2010. All participants have contributed to pre-
trial and post-trial surveys. Residential participants provided information about the
following aspects in their pre-trial survey:

• Demographic features of residents such as number of people living in the
house, age groups, household income and employment status.
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• Physical characteristics of the house such as floor size, house type, number of
bedrooms, heating type and insulation.

• Type and number of available electrical appliances in the house.

• Behavioral features of residents such as their usage patterns of electrical appli-
ances as well as their awareness degree of the power each appliance consumes.

Different questions have been provided to the owners of SME buildings in the
pre-trial survey. They have answered questions related to:

• Business sector of their establishment such as entertainment, office, industrial
and retail.

• Number of employees.

• Availability of Internet access.

• Hours and days of operation.

Based on this dataset and the pre-trial survey, we build and evaluate our models
for long-term and short-term forecasting of power consumptions as presented in the
next sections. Two types of features are used in building our forecasting models,
namely time-independent and time-dependent features:

• With time-independent features, we refer to the features that affect power con-
sumption but do not change with time. Examples are demographic features of
residents, building characteristics, available appliances and their usage pattern.

• With time-dependent features, we refer to the features that change with time
leading to fluctuations in mean power consumption. Weather conditions rep-
resent an example of time-dependent features. Another example is type of the
day i.e. business day, weekend, or holiday.

Time-independent features contribute to the modeling of mean power consumed by
buildings irrespective of the effect of time-dependent features. Floor size is an exam-
ple time-independent feature where buildings with large floor size tend to consume
more power than small buildings. Time-dependent features explain the seasonal fluc-
tuations that happen in power consumption. For example, high summer tempera-
tures lead to more power consumption by the same building due to the need for air
conditioning.

7.2 long-term forecasting of power consumption

Forecasting of long-term power consumption has its potential benefits on the strate-
gic future development of electric utilities’ infrastructure so that they meet the in-
creasing demand of their residential and industrial customers. By foreseeing the
future development of customers’ needs, electric utilities can accurately plan the re-
quired future expansion of their facilities including Transmission and Distribution
(T&D) equipment.

In this section, we present the building-performance multiple regression model
which uses time-independent features to model the average monthly power con-
sumption of residential buildings. Thereafter, we introduce our hybrid model for
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forecasting long-term daily power consumption based on time-independent and
time-dependent features. We build and evaluate our models using only the data
of residential buildings.

In order to build and evaluate our models, the dataset has to be divided into
training and testing sets. To do that, we design a novel statistical approach which
ensures that training and testing sets follow the same distribution and represent the
total potential variety in the data. We build a conditional inference tree (ctree) that
models the total power consumption of each building based on its time-independent
features. Our goal from building such a tree is to divide our dataset into several ho-
mogeneous groups of buildings that have similar total power consumption patterns.
We divide each of these groups into 80% training set and 20% testing set. As a re-
sult, we obtain training and testing sets that represent all available buildings in the
dataset.

Figure 59 shows the resulting ctree. Apart from dividing the data into homoge-
neous groups, this ctree reflects the importance of several time-independent features
in modeling total power consumption. As we can see from the figure, these features
are number of bedrooms, floor size, people description, numbers of game consoles,
dishwashers and tumble dryers. After dividing the data into training and testing
sets, we present our approach for modeling average monthly power consumption of
buildings in Section 7.2.1.

7.2.1 Building-Performance Multiple Regression Model

In this section, we introduce our approach for modeling average monthly power
consumption of residential buildings based on their time-independent features. To
build our model, we follow the technique of multiple linear regression. We build a
linear regression model following Eq. 36. This model takes as a response the aver-
age monthly power consumption of a building. As predictors, it takes demographic
features of residents, building characteristics, heating sources and number of avail-
able appliances. We refer to this model as building-performance multiple regression
model as it is only based on the characteristics of buildings and their residents. This
model achieves two purposes. On one hand, it estimates the effect of each time-
independent feature on average monthly power consumption. As a result, we obtain
a list of important features that can be used in further modeling steps. On the other
hand, it helps in detecting buildings with abnormal power consumption as we ex-
plain later in this section.

yi = β1xi1 +β2xi2 + .... +βpxip + ei (36)

Where:

• yi : averagemonthly power consumption of building i

• xij : predictor variable j where j ∈ [1 : p]

• p : number of predictor variables

• β1 . . . βp : regression coefficients

• ei : estimation error of building i
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Some predictors are linearly correlated. For example, floor size is correlated with
the number of bedrooms as a larger floor size means more bedrooms in the house.
This leads to a multicollinearity problem that can cause a false interpretation of fea-
ture importance as the importance level of certain features can be underestimated or
overestimated. To handle this problem, we follow an iterative backward elimination
approach to identify the most accurate regression model and delete all predictors
that have no effect on the response variable. We start our modeling approach with
48 predictors representing time-independent features taken from the pre-trial survey.
Backward elimination produces a model with only the predictors that contribute to
the improvement of model’s predictive performance. We utilize this model for iden-
tifying buildings with abnormal consumption patterns. Eq. 37 computes the stan-
dardized residual for each building in terms of actual and predicted average power
consumption. Any building with an absolute standardized residual |ẑi| > 2 is con-
sidered to be an outlier and has to be excluded from the modeling process [90, page
420][54]. After excluding all outliers, we fit the model again. We continue this itera-
tive process as long as the predictive performance of the model is being improved.

ẑi =
yi − ŷi
σ̂

(37)

Where:

• yi : actual averagemonthly power consumption of building i

• ŷi : predicted averagemonthly power consumption of building i

• ẑi : standardized residual for building i

• σ̂ : standard error

Table 14 shows the coefficients of the final model which we obtained after the
application of backward elimination and the deletion of all outliers. We notice from
this table that features such as people description, number of bedrooms and number
of laptop and desktop computers are very important in determining the average
monthly power consumption. The values that are taken by “People description” as
a feature are obtained from the answers to the following question from the pre-trial
survey:

What best describes the people you live with?

• 1 I live alone

• 2 All people in my home are over 15 years of age

• 3 Both adults and children under 15 years of age live in my home

7.2.2 Hybrid Model

This section introduces our model for forecasting long-term daily power consump-
tion of residential buildings based on their time-independent and time-dependent
features. To build this model, we follow a hybrid approach in which we combine
the ctree algorithm with multiple linear regression. As a first step, we divide our
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Coefficient Estimate Std. Error t-value Pr(> |t|)

(Intercept) -2.995e+03 3.775e+02 -7.934 8.48e-15

People description 6.079e+02 8.455e+01 7.189 1.69e-12

Floor size 2.836e-01 7.365e-02 3.851 0.000128

Bedrooms 4.378e+02 7.111e+01 6.157 1.25e-09

Water central heating system -2.323e+02 1.479e+02 -1.571 0.116663

Water electric (immersion) 3.509e+02 9.609e+01 3.652 0.000280

Water heating (Gas) -5.435e+02 1.423e+02 -3.819 0.000146

Water heating (Oil) -2.729e+02 1.200e+02 -2.274 0.023293

Water heating (Other) -1.628e+03 8.723e+02 -1.866 0.062394

Cook -2.634e+02 7.533e+01 -3.497 0.000501

Tumble dryer 4.529e+02 1.174e+02 3.857 0.000125

Dishwasher 4.296e+02 1.281e+02 3.355 0.000837

Electric heater plug in 1.622e+02 6.928e+01 2.341 0.019511

Stand-alone freezer 3.134e+02 8.788e+01 3.566 0.000388

TV greater 21 1.972e+02 5.469e+01 3.605 0.000334

Desktop computers 5.562e+02 8.141e+01 6.832 1.83e-11

Laptop computers 3.146e+02 5.755e+01 5.467 6.39e-08

Games consoles 2.612e+02 6.441e+01 4.056 5.56e-05

Table 14: The coefficients of building-performance model where “Estimate” refers to the esti-
mated value of each coefficient, Std. Error refers to its standard deviation, t-statistic
tests the null hypothesis H0 : βi = 0 against the alternative hypothesis H1 : βi 6= 0,
Pr(>|t|) gives the corresponding p-value.

heterogeneous set of buildings into a set of homogeneous groups. This is done by
building a ctree model which takes the daily power consumption of a building as its
response variable. As predictors, this ctree model takes time-independent features,
namely demographic features of residents, building characteristics, heating sources
as well as type and number of available electric appliances. The obtained ctree mod-
els the mean daily power consumption of a building based on its time-independent
features.

As a second step, we build a multiple linear regression model for each of the ob-
tained homogeneous groups of buildings. This model takes as a response the daily
power consumption of a building. As predictors, it combines time-dependent fea-
tures, namely temperature and day type i.e. holiday, business day or weekend with a
part of time-independent features, namely people description, number of bedrooms,
floor size, construction year and home description. We reuse time-independent fea-
tures as they contribute to the modeling of base power consumption. By utilizing
time-dependent features, we model the fluctuations that happen in power consump-
tion due to seasonal effects, temperature changes and different behavioral patterns
of users according to the day type.
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Figure 60: The methodology of building the hybrid model for forecasting long-term daily
power consumption

Figure 60 shows both modeling steps. We notice in this figure that a linear regres-
sion model is fitted in each node in the resulting ctree. To build and evaluate the
proposed hybrid model, we use power consumption data of residential buildings
after dividing it into training and testing sets as clarified in Figure 59.

7.2.2.1 Evaluation

We present in this section the evaluation results of our hybrid model for forecasting
long-term daily power consumption of residential buildings. As a first step, we use
building-performance model to remove buildings with abnormal power consump-
tion. As a result, we obtain a training set of 753 buildings and an out-of-sample
testing set of 139 buildings. We train and test our model on two six-month datasets
extracted from training and testing sets.

To evaluate the predictive performance of our hybrid model, we forecast the daily
power consumption of each building in the testing group during the test period from
August to December. We divide our evaluation study into two parts. In the first part,
we evaluate the ability of our model to predict the total daily power consumed by all
buildings in the testing set. This is done by predicting the daily power consumption
of each test building and then summing all these values up as shown in Eq. 38. In the
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second part, we compute the predictive performance achieved by the hybrid model
in forecasting the daily power consumption of each building individually.

p̂
j
total =

i=139∑
i=1

p̂
j
i (38)

Where:

• p̂
j
total : predicted total power consumption of all buildings for day j

• p̂
j
i : predicted power consumption of building i for day j

Figure 61 compares the predicted total sum of daily consumption values of all
buildings to the actual total consumption. As we can see from this figure, our hybrid
model is able to accurately predict the total daily power consumed by all buildings
in the testing set. Figures 62 and 63 show the predictive performance achieved when
using a random forest model and ctree model respectively. The goal of these two
figures is to compare our hybrid model to two rigorous machine learning models,
namely random forests and ctree algorithms. As we can see from the figures, both
algorithms achieve good results in predicting the total daily power consumption.
However, our hybrid model outperforms both of them in terms of Mean Absolute
Percentage Error (MAPE) and Mean Absolute Error (MAE) as shown in Table 15.
MAPE evaluates the predictive performance of a forecasting model by calculating
the mean absolute percentage error as shown in Eq. 39. MAE calculates the mean
absolute error as shown in Eq. 40. MAPE is more expressive than MAE as we can
use it to judge the predictive performance of a model without having any previous
knowledge about the scale of actual values to be predicted.

MAPE =
100

N

N∑
h=1

∣∣∣∣xh − x̂h
xh

∣∣∣∣ (39)

MAE =
1

N

N∑
h=1

|xh − x̂h| (40)

Our hybrid model can be generalized so that it predicts the long-term daily power
consumption of new constructions where no information is available with regard
to residents’ demographic data and number of available appliances. Therefore, we
build the generalized hybrid model based on the same evaluation settings used to
build the hybrid model after removing demographic data and available appliances
from the set of predictors. The generalized hybrid model achieves good predictive
performance as shown in Figure 64. However, we notice from Table 15 an increase
in the values of MAPE and MAE in comparison to the values of the original hybrid
model. This increase is the main result caused by the removal of demographic data
and available appliances from the set of predictors.

Table 16 further presents the predictive performance of all previous models in
terms of individual buildings. In this evaluation setting, we compare the values of
predicted and actual power consumption for each building individually. As we can
see from the table, hybrid model outperforms all other models. However, it achieves
low predictive performance when compared to the performance achieved in fore-
casting the power consumption of a portfolio of buildings. This can be explained
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Portfolio of buildings

Model MAPE MAE

Ctree 4.84% 176.44

Random Forest 5.38% 215.63

Hybrid Model 2.43% 89.41

Generalized Hybrid Model 3.43% 123.11

Table 15: Comparison between hybrid, generalized hybrid, random forests and ctree models
in terms of MAPE and MAE values achieved for a portfolio of buildings

Individual buildings

Model MAPE MAE

Ctree 58.65% 10.51

Random Forest 52.34% 9.65

Hybrid Model 49.01% 8.82

Generalized Hybrid Model 50.67% 9.00

Table 16: Comparison between hybrid, generalized hybrid, random forests and ctree models
in terms of MAPE and MAE values achieved for individual buildings

by the fact that building a single model for forecasting power consumption of sev-
eral buildings leads to an averaging process where individual behavioral patterns
of single buildings are not taken into consideration. To further improve the predic-
tive performance in forecasting daily power consumption and to forecast hourly
power consumption, we introduce two main models in the next sections, namely
Hourly Consumption Pattern Matching (HCPM) model and Total Consumption Pat-
tern Matching (TCPM) model.

7.3 short-term forecasting of power consumption

Short-term forecasting of day-ahead power consumption plays an essential role for
electric utilities. It allows them to reliably and accurately manage their power gener-
ation so that they avoid any shortfalls or surpluses that can have very bad effects on
the company. Moreover, it has a great potential in increasing consumers’ awareness
of the power they are going to consume.

In this section, we introduce two models for predicting short-term day-ahead
power consumption of individual buildings with two different granularities. On one
hand, we present the Hourly Consumption Pattern Matching (HCPM) model with
the main goal of forecasting the detailed 24-hour day-ahead power consumption of
individual buildings. On the other hand, we present the Total Consumption Pattern
Matching (TCPM) model whose main goal is to predict the total day-ahead power
consumption of individual buildings.

To build both models and evaluate their predictive performance, we use the data
of SME buildings. This data has in total 225 Buildings belonging to four different
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Figure 61: Predictive performance of the hybrid model

business sectors, namely retail, industrial, entertainment and office buildings. For
creating an accurate forecasting model, it is always recommended to have a homo-
geneous training set in which a common pattern exists between all training objects.
Therefore, we cluster the heterogeneous set of SME buildings into a set of homo-
geneous building groups where each group follows common seasonal, weekly and
daily consumption patterns. For this purpose, we design a set of discriminative tem-
poral features that will be clarified in Section 7.3.1.

7.3.1 Grouping of Buildings

The evaluation results in Section 7.2.2.1 has shown that using time-independent fea-
tures for creating homogeneous groups of buildings did not lead to an accurate pre-
diction model. Therefore, we designed a new set of features that use historical con-
sumption information to distinguish the buildings based on their seasonal, weekly
and daily patterns of power consumption. This set is constructed by computing the
following list of values for each building:

• The normalized value of the total power consumed during the whole trial pe-
riod. The normalization is performed according to Eq 41.

• The percentages of power consumed during Saturdays and Sundays.

• The percentage of power consumed during each of the following six day seg-
ments: early morning, morning, early afternoon, afternoon, early night and late
night.
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Figure 62: Predictive performance of the random forest model

pitn =
pit − pmin

pmax − pmin
(41)

Where:

• pitn : normalized total power consumption of building i

• pit : total power consumption of building i

• pmin : minimum value of total power consumption over all buildings

• pmax : maximum value of total power consumption over all buildings

The total power consumed during the whole trial period distinguishes between
buildings with different business sectors. Industrial buildings, for example, tend to
consume more power in general than office buildings. To differentiate between build-
ings in the same sector, we use the percentages of power consumed during Saturdays
and Sundays. These features distinguish buildings that belong to the same sector but
follow different paradigms of working hours during weekends. To further cluster the
buildings based on the daily variation in their consumption patterns, we utilize the
percentage of power consumed during each day segment. All these features have
their values in the range [0, 1]. However, we do not consider them to have the same
importance in the clustering process. As the total amount of power consumed during
the whole trial period is a major discriminative feature for distinguishing between
business sectors, we assign a high importance level to it by multiplying it by a factor
of 8. For all remaining features, we assign the same importance level, namely 1.

To obtain the optimal clustering results, we utilize two robust algorithms, namely
k-means and hierarchical clustering. Figure 65 demonstrates the different steps of
the clustering process. As a first step, we aggregate power consumption data so that
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Figure 63: Predictive performance of the ctree model

Figure 64: Predictive performance of the generalized hybrid model

total, monthly, daily and hourly consumption values are computed for each building.
Based on the aggregated data, we compute the values of each feature vector that are
later normalized to be in the range [0, 1]. Thereafter, we assign for each feature its
importance level by multiplying it with a scaler. We run k-means and hierarchical
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Figure 65: Workflow diagram of the clustering process
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Figure 66: Values of clustering validity indexes with different numbers of clusters

clustering using the obtained normalized feature vectors and for a number of clusters
in the range [3, 10]. Due to the fact that only 225 buildings are available in our dataset,
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K-means clustering Hierarchical clustering

K Silhouette Davies-Bouldin Dunn Silhouette Davies-Bouldin Dunn

3 0.464 0.618 0.036 0.379 0.572 0.036

4 0.415 0.844 0.052 0.410 0.485 0.053

5 0.341 0.648 0.046 0.359 1.197 0.053

6 0.302 1.013 0.034 0.294 1.160 0.045

7 0.280 0.656 0.038 0.347 0.326 0.075

8 0.340 0.593 0.068 0.311 0.323 0.078

9 0.262 0.937 0.041 0.297 0.342 0.069

10 0.286 0.726 0.030 0.326 0.357 0.072

Table 17: Values of clustering validity indexes with different numbers of clusters
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Figure 67: Comparison between the values of Dunn index for different number of clusters
using k-means and hierarchical clustering

we choose the maximum value which can be taken by the number of clusters to be 10.
Allowing the number of clusters to take higher values than 10 results in clusters that
have only a small and statistically insignificant subset of buildings. As a final step, we
utilize clustering validity indexes, namely Silhouette, Dunn and Davies-Bouldin to
determine the optimal number of clusters as well as the optimal clustering algorithm.
A number k of clusters is considered to be the optimal number if at least two indexes
reach their optimal values with it. With an optimal number of clusters, Silhouette
and Dunn indexes must reach their highest values while Davies-Bouldin index must
reach its minimum value.

Figure 66 and Table 17 show the values of each clustering validity index obtained
by applying the algorithms of k-means and hierarchical clustering with numbers of
clusters in the range [3− 10]. As we notice, two validity indexes, namely Dunn and
Davies-Bouldin reach their optimal values for both algorithms with a number of clus-
ters K = 8. Therefore, we consider the optimal number of clusters to be 8. By further
inspecting the values of validity indexes when k = 8, we notice that they reach better
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Figure 68: Comparison between the mean daily power consumed by each of the eight ob-
tained clusters using the algorithm of hierarchical clustering

values with hierarchical clustering in comparison to k-means. Furthermore, Figure
67 shows that Dunn index always reaches better values with hierarchical clustering
for all numbers of clusters. Therefore, we choose the results obtained by using hier-
archical clustering with a number of clusters k = 8 as the optimal final clustering
results.

Figure 68 compares the mean daily power consumed by each cluster created using
the algorithm of hierarchical clustering. As we notice from the figure, clusters 2, 3,
4, 5, 6 and 8 expose medium to large differences between their mean daily power
consumption values. Therefore, the feature “total power consumed during the whole
trial period” can be considered as an important discriminative feature between these
clusters as it represents the sum of power consumed during all days in the trial.
However, this feature has less impact in distinguishing between the clusters 1 and 7

as they tend to have similar mean daily power consumption. To differentiate between
these two clusters, the percentage of power consumed during weekends plays an
essential role as we can see in Figure 69. This figure shows that cluster 7 consumes
around 14 % of its power during the weekend while cluster 1 consumes around 8%.
Moreover, Figure 70 demonstrates the percentage of power consumed during each
of the six day segments by each cluster. It is clear from this figure that cluster 7 has
its consumption peak in the afternoon while cluster 1 consumes most of its power in
the morning period.

For each of the obtained 8 homogeneous clusters of buildings, an HCPM model
will be built. Each of these models is responsible for forecasting the detailed 24-
hour day-ahead consumption of SME buildings int the respective cluster using the
techniques of clustering and pattern sequence matching [69].
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Figure 69: Percentage of power consumed during weekend days by each cluster
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Figure 70: Percentage of power consumed during each day segment by each cluster

7.3.2 Hourly Consumption Pattern Matching (HCPM) Model

As its name implies, HCPM focuses on forecasting the detailed 24-hour day-ahead
power consumption of individual buildings. As mentioned before, a main prerequi-
site for building an accurate forecasting model is to have a set of training objects
that follow a certain pattern which can be modeled. Therefore, a separate HCPM
model is built for each of the eight clusters that are obtained using the algorithm of
hierarchical clustering.

Figure 71 demonstrates the workflow of HCPM approach. As an input, HCPM
takes one homogeneous cluster of buildings. As a first step, it introduces a new
clustering process in which all days belonging to its input are clustered based on
their detailed 24-hour power consumption. As a result, a set of clusters will be pro-
duced where each cluster represents a different daily 24-hour consumption pattern.
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Figure 71: Workflow diagram of HCPM forecasting model

The produced clusters are labeled so that all the days belonging to a certain cluster
are labeled with its label. The input of HCPM is therefore transformed into a series
of labels where each label corresponds to the 24-hour consumption pattern of the
respective day.

HCPM utilizes the approach of pattern sequence matching to forecast the detailed
24-hour day-ahead consumption of a certain building. It extracts the sequence of
labels representing the preceding days of the day to be forecast. The number of pre-
ceding days is referred to as the window size W. The value of W significantly affects
the predictive performance of the forecasting model as we will see in the evaluation
study in Section 7.3.2.1. A found sequence is accepted only if its succeeding day rep-
resents the same day of the week as the day to be forecast. For example, if the day
to be forecast is Saturday, then we accept only sequences whose succeeding day is
Saturday. After extracting the respective sequence of labels, HCPM starts to look for
it in its input series of labels. The search is initially restricted to the days belonging to
the same building. When more than one match is found, the most recent one is taken
as the consumption behavior tends to be similar in near past. The label succeeding
a chosen matching sequence is used as the forecasting result for day-ahead power
consumption. In case no match is found in same building’s data, HCPM looks for the
sequence in the days belonging to other buildings. In case more than one match is
found, the most frequent succeeding label of all sequences is used as a prediction for
the day-ahead power consumption. In case no match at all is found, HCPM repeats
the whole process with a window size W − 1. HCPM keeps reducing W by 1 until a
match is found. Figure 71 introduces the detailed workflow of HCPM.

7.3.2.1 Evaluation

In this section, we evaluate the predictive performance of HCPM model. For the eval-
uation, we choose a group of 58 buildings representing the third cluster obtained via
hierarchical clustering as explained in Section 7.3.1. Figure 72 shows the distribution
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Figure 72: Distribution of buildings in the evaluation group with respect to each business
sector
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Figure 73: Values of clustering validity indexes with different numbers of clusters

of buildings in this group with respect to each business sector. We use a dataset rep-
resenting five months of detailed 24-hour daily power consumption for this group of
buildings. A subset of four months is used as an input to build HCPM model. This
data has to be transformed into a series of labels. The remaining one-month data is
used as a testing group.

As an input, HCPM is provided with a set of instances where each instance is a
vector of 24 features representing the detailed 24-hour power consumption of the
respective day. To cluster these instances, we use the algorithm of hierarchical clus-
tering with a cluster number K ∈ [3− 30]. As we did before, we evaluate clustering
quality for each number of clusters using three validity indexes, namely Silhouette,
Dunn and Davies-Bouldin. Figure 73 shows the values taken by the three indexes for
different numbers of clusters. We choose K = 9 and K = 10 to be the best numbers
of clusters as all validity indexes reach relatively optimal values with them.
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Figure 74: Mean detailed 24-hour power consumption for each of the 10 clusters
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Figure 75: Predictive performance of HCPM model in terms of MER for different values of
window size

Figure 74 shows the average power consumed by each cluster over 24 hours. It
is clear from the figure that each cluster represents a distinctive daily consumption
pattern. It is important to notice from this figure that clusters 2 and 7 show special
cases with approximately constant and low power consumption patterns as it is the
case during weekend days.

As we mentioned before, window size has an essential effect on the predictive
performance of HCPM model. We demonstrate this fact by evaluating HCPM model
with different values for the window size. Mean Error Relative (MER) is used to
evaluate the predictive performance of HCPM model with W ∈ [1, 10]. For each
actual value of the response variable, MER [99] as shown in Eq. 42 calculates the
percentage of its difference to its predicted counterpart with respect to the mean of
all actual values that can be taken by the response variable.

MER = 100 ∗ 1
D

D∑
h=1

|ph − p̂h|

p̃
(42)

Where:

• ph : actual power consumed at hour h

• p̂h : predicted power consumed at hour h

• p̃ : mean hourly power consumption in respective day

• D : number of hours predicted in respective day

Figure 75 illustrates the predictive performance achieved by HCPM model in terms
of MER and with respect to different values of window size. This figure clearly shows
the significant effect of window size on MER values. An MER value of 24% has been
achieved with a window size of 1. This value has been significantly decreased to
reach 17.1% for a window size of 9. This means, an increasing value of the window
size leads to a better predictive performance of HCPM model. However, when the
window size is increased to 10, MER value starts to increase. This is due to the
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Figure 77: Accuracy of HCPM model for different values of window size.

fact that less number of matched patterns is found with high values of window
size which negatively affects the predictive performance of HCPM model. Figure 76

illustrates this fact by presenting the relation between window size and total number
of found patterns in all buildings as well as in the same building to which the day
to be forecast belongs. It is clear from the figure that fewer matches are found with
larger window size.

To further evaluate the predictive performance of HCPM, we compute its accuracy
in assigning a correct label to each of the days to be forecast. Accuracy is calculated
by dividing the number of correctly labeled instances to the total number of instances.
Figure 77 shows accuracy values achieved by HCPM for different window sizes. This
figure confirms the results obtained by computing MER values as the model accuracy
also increases with an increasing window size. The model started with an accuracy
of 62.5% for a window size of 1 and reached an accuracy of 82.1% for a window size
of 10.
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Figure 78: PSF algorithm: values of validity indexes obtained for different numbers of clus-
ters using k-means algorithm

Cluster Number Average Hourly Power Consumption (kWh)

1 6.62

2 15.14

3 18.73

4 35.66

5 1.32

6 10.03

7 4.46

Table 18: PSF algorithm: Average amount of power consumed during an hour by each of the
obtained clusters

7.3.2.2 Comparison of HCPM and PSF

This section presents the results of comparing HCPM model against Pattern Sequence-
based Forecasting (PSF) [69] as an algorithm which is designed to achieve the same
goal of predicting the detailed 24-hour day-ahead power consumption. PSF works
by directly clustering the days belonging to all buildings into a set of clusters based
on their detailed 24-hour consumption pattern. In contrast to our HCPM model, PSF
assumes homogeneity in its data and does not involve any initial clustering step in
which the buildings are clustered into homogeneous groups based on a specific set
of features related to the characteristics of the building itself or its occupants. For
the purpose of comparison, we apply PSF on our dataset by first utilizing the al-
gorithm of k-means to create a set of clusters where each cluster corresponds to a
certain 24-hour consumption pattern. To determine the optimal number of clusters,
we utilize clustering validity indexes namely, Davies-Bouldin, Dunn and Silhouette
indexes. Figure 78 shows the different values obtained by each clustering index for
a number of clusters k ∈ [3, 30]. By following a majority vote, we choose k = 7 as the
optimal number of clusters.

Figure 79 shows the average 24-hour consumption pattern for each of the obtained
clusters using k = 7 as the optimal number of clusters. Table 18 compares each of
these clusters in terms of average hourly power consumption. This table shows a big
difference in the average hourly power consumed in each of the clusters.
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Figure 79: PSF algorithm: the average 24-hour consumption pattern for each of the obtained
clusters using k = 7 as the optimal number of clusters.

Figure 79 and Table 18 clearly show that the clustering results produced by k-
means are mainly based on the average hourly power consumed during a day. By
inspecting the days assigned to each cluster, we notice that most of the days belong-
ing to the same building are assigned to the same cluster. This is due to the fact
that average hourly power consumption plays the main role in building the different
clusters and not the daily consumption pattern where the power consumed during
each segment of the day distinguishes the clusters from each other.
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Window Size MER

W PSF HCPM

7 46.73 % 24.02%

8 45.11% 23.84%

9 43.15% 17.14%

10 39.91% 17.70%

Table 19: Comparison between the MER values achieved by PSF and HCPM

After assigning a label to each day of the dataset, PSF predicts the day-ahead
power consumption of a certain day x by looking for a matching pattern in its his-
torical dataset. As no initial clustering process is performed by PSF, the search space
for a matching pattern expands to include the days belonging to all buildings in the
dataset. As a result, we notice with PSF an execution time of up to 5 days with a win-
dow size of 10 compared to an execution time of 2 minutes for HCPM. To compare
the predictive performance of both algorithms, we run both of them with a window
size w in [7, 10]. Evaluation results in terms of achieved MER values are shown in
Table 19. As we can see from this table, HCPM clearly outperforms PSF in terms of
MER values and for all different window sizes. This is mainly because PSF relies on
average hourly power consumption to distinguish between the clusters without tak-
ing daily segments into account. This leads to more found matches in the historical
data. However, these matches will produce faulty 24-hour consumption patterns.

7.3.3 Total Consumption Pattern Matching (TCPM) Model

This section introduces TCPM, our model for forecasting day-ahead total power con-
sumption of individual SME buildings. In contrast to HCPM, this model forecasts
the total daily power consumption and not the detailed 24-hour consumption. As
the predictive performance of HCPM model can be affected by the chosen optimal
number of clusters and the averaging process caused by combining several days of
power consumption into a certain cluster, it is not recommended to use it for fore-
casting the total daily power consumption. It is more efficient and accurate to build a
separate model for achieving this purpose and therefore we build the TCPM model.
The main difference between TCPM and HCPM models lies in the fact that TCPM
does not perform the clustering process performed by HCPM. As shown in Figure
80, TCPM follows the same workflow of HCPM except that it takes as input the to-
tal power consumed during each day of the dataset. No labels are assigned to the
days based on their 24-hour power consumption. To determine whether two days,
namely D1 and D2 are similar or not, we first compute the percentage change of
their power consumption as shown in Eq. 43. We consider two days to be similar if
their percentage change is less than 10%.

PD(P1,P2) =
∣∣∣∣P1 − P2P1

∣∣∣∣ (43)

Where:
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Figure 80: Workflow diagram of TCPM forecasting model

• PD(P1,P2) : percentage change betweenD1 andD2

• P1 : total power consumed duringD1

• P2 : total power consumed duringD2

For forecasting the power consumption of day x, TCPM follows the same steps
of HCPM. It starts by searching for all day sequences that match the day sequence
preceding x. The length of sequence is determined by the window size w as it is the
case with HCPM. As a first step, TCPM searches only in the data belonging to the
same building. In case more than one match are found, it chooses the most recent
match and uses it for predicting the power consumption of x. In case no match is
found, it starts searching in the data belonging to other buildings. When several
matches are found, TCPM takes their average as the predicted power consumption
of x. If no match at all is found, TCPM reduces the window size w by 1 and repeats
the same previous search procedure.

7.3.3.1 Evaluation

In this section, we evaluate the predictive performance of TCPM in terms of MER
as expressed in Eq. 42. We follow the same evaluation setup of HCPM in which the
group of 58 SME buildings representing the third cluster is used for building and
evaluating the model. We divide the same HCPM five-month dataset into a four-
month training set and 1-month testing set. We mainly study the effect of window
size w on the achieved MER values as shown in Figure 81. As we can see from this
figure, increasing window size has a positive effect on MER value. TCPM starts with
an MER value of 22.6% for a window size of 1. This value decreases to 9.1% for a win-
dow size of 8. As these results imply, larger window size leads to a better predictive
performance. This is mainly due to the increasing knowledge embedded in larger
sequences. However, large window size leads to a less number of found matches in
same building’s dataset as well as in the complete repository of all buildings’ data.
Figure 82 clearly shows this effect as the number of found matches gradually de-
creases with larger values of window size. Less number of found matches can have a
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Figure 81: The effect of window size on MER for TCPM.
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Figure 82: The effect of window size on the number of found matches for TCPM model.

negative effect on the predictive performance. This can be seen in Figure 81 where the
MER value slightly increased for a window size of 9. Figure 82 also shows that with
a large window size all found patterns will only belong to same building’s dataset.
The reason behind this phenomenon is the restriction imposed by the 10% similarity
criterion as it is difficult to find a large sequence of similar days that achieve this
criterion in the dataset of other buildings.

Another important aspect of this evaluation study is the comparison between
TCPM and HCPM in terms of their ability to forecast the total day-ahead power
consumption. As we clarified before, HCPM is used to forecast the detailed 24-hour
day-ahead power consumption. However, it can be used to forecast the total con-
sumption by taking the sum of all hours’ predictions. The MER values achieved by
each model with respect to different window sizes can be seen in Figure 83. This fig-
ure clearly shows that TCPM outperforms HCPM in forecasting the total day-ahead
power consumption. The reason behind these results lies in the fact that HCPM in
contrast to TCPM follows a clustering approach for determining similarities between
different days. Such an approach has a main disadvantage with regard to total day-
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Figure 83: Comparison of TCPM and HCPM in terms of achieved MER values.
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Figure 84: Comparison between the numbers of found matches by HCPM and TCPM

ahead power forecasting. The clustering algorithm relies on calculating the distances
to clusters’ centroids for determining the cluster to which a day belongs. This may
cause two days to be positioned in the same cluster based on their detailed 24-hour
power consumption even though they have a significant difference between their to-
tal values of power consumption. TCPM avoids this problem by imposing its 10%
similarity criterion. This is clear from Figure 84 where we can see that HCPM always
finds more matches than TCPM even for large window size.

7.4 summary

In this chapter, we presented our approaches for forecasting long-term and short-
term power consumption of individual buildings as well as of a portfolio of buildings.
In Section 7.1, we introduced the CER dataset with which we built and evaluated our
forecasting models. We presented our methodology for forecasting long-term power
consumption in Section 7.2 where we clarified in details our Building-Performance
Multiple Regression model for modeling average monthly power consumption of res-
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idential buildings based on their time-independent features. In Section 7.2.2, we in-
troduced and evaluated our hybrid model for forecasting long-term daily power con-
sumption of residential buildings based on time-independent and time-dependent
features. Thereafter, we introduced two approaches for forecasting short-term day-
ahead power consumption for SME buildings in Section 7.3. We started by explaining
the HCPM model for forecasting the detailed 24-hour day-ahead power consumption
in Section 7.3.2. We evaluated the predictive performance of HCPM and showed that
it outperforms the PSF model in Sections 7.3.2.1 and 7.3.2.2. Then, we explained the
TCPM model for forecasting the total day-ahead power consumption in Section 7.3.3.
We evaluated the predictive performance of TCPM and compared it to the perfor-
mance achieved by HCPM in Section 7.3.3.1.
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S U M M A RY A N D O U T L O O K

8.1 summary

The recognition and prediction of users’ context have always been the focus of re-
searchers in the field of smart environments. The main reason behind this interest
lies in the fact that several novel Information and Communications Technology (ICT)
services can be realized and implemented given the availability of an accurate recog-
nition and prediction of users’ context. Ambient Assisted Living (AAL) represents
an example of such services where the researchers develop systems that are able
to help elderly people in safely performing their daily activities by recognizing any
dangerous situations that may face them and informing the responsible entity [83].
Another example service is power conservation where the researchers develop sys-
tems with the main aim of increasing users’ awareness of their power consumption
so that power wastages can be avoided [42][53]. In this thesis, we presented our four
novel contributions for an accurate extraction, recognition and prediction of several
aspects of users’ context solely based on fine-granular measurements of power con-
sumption as a sensing modality.

The first contribution of this work focused on the recognition of user activities in
single-user environments. We developed SMARTENERGY.KOM, our hardware/soft-
ware platform for recognizing user activities in smart environments. We deployed
SMARTENERGY.KOM in two single-user apartments where we collected information
about several environmental parameters, namely motion, temperature and bright-
ness as well as appliance-level fine-granular power consumption data of available
electrical appliances. We designed a set of activities which have to be monitored for
each apartment. Through a smartphone-based feedback system, the user provided
us with his current activity. After obtaining the required dataset, we preprocessed it
so that we create the required training and testing datasets for building and evaluat-
ing our activity recognition models. We conducted an extensive evaluation study in
which we studied the effect of excluding environmental sensors on the predictive per-
formance of SMARTENERGY.KOM. The evaluation results showed that SMARTEN-
ERGY.KOM is able to recognize users’ activities with a predictive performance of
86.1% in terms of average f-measure value. Moreover, the results showed that our
platform is able to recognize the activities after excluding the environmental sensors
from the feature space, however, with a 14% decrease in the predictive performance
in terms of f-measure.

The second contribution of this work focused on three main aspects of users’ be-
havior in smart environments. Firstly, we introduced our novel approach for indoor
localization of users in smart environments based on their fine-granular appliance-
level power consumption data. We evaluated our localization approach using the
dataset we collected with SMARTENERGY.KOM. The evaluation results showed that
our approach is able to recognize the indoor location of users solely based on their
power consumption data with a predictive performance of up to 96% in terms of

111
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f-measure values. Secondly, we presented our approach for modeling behavioral pat-
terns of users with the main goal of identifying temporal relations between user’s
subsequent activities. Using Apriori algorithms, we identified all potential temporal
patterns followed by the users. Thereafter, we introduced our approach for incorpo-
rating the extracted knowledge into the models of activity recognition. The evalua-
tion results showed that with temporal patterns incorporated into the feature space,
our platform is able to recognize users’ activities with a predictive performance of
94.5% in terms of average f-measure value solely based on fine-granular power con-
sumption data. Thirdly, we introduced our approach for power profiling in which we
mathematically proved the existence of a user-specific power consumption pattern
which repeats itself over the days. We conducted an analytical study with which we
identified this pattern after excluding the outliers in power consumption.

The third contribution of this work builds upon the first contribution by focus-
ing on activity recognition in multi-user environments. With this contribution, we
developed ML-SMARTENERGY.KOM, our hardware/software platform for activity
recognition in multi-user environments. We deployed ML-SMARTENERGY.KOM in
a two-user apartment where we installed appliance-level power sensors as well as
environmental sensors for sensing motion, brightness and temperature in the envi-
ronment. The users provided their feedback about their ongoing activities through a
smartphone-based feedback system. After a deployment period of three weeks, we
got the dataset required for building and evaluating our activity recognition models.
As a first step, we built a set of binary relevance models. Each model is trained to
recognize one of the activities where the readings provided by power and environ-
mental sensors have been incorporated into the feature space. After evaluating the
predictive performance of these models, we incorporated temporal relations between
subsequent activities into the feature space as a second step. The evaluation results
showed that these temporal relations have an essential effect on enhancing the pre-
dictive performance of activity recognition models. As a third step, we excluded
all environmental sensors from the feature space and evaluated the predictive per-
formance of the binary relevance models. The evaluation results proved that power
sensors are enough for achieving an accurate predictive performance in recognizing
activities in multi-user environments. Another essential part of our third contribution
is the design of a novel approach for identifying intra- and inter-user dependency
relations between concurrent users’ activities. Based on the identified dependency re-
lation, we designed the multivariate ML-SMARTENERGY.KOM activity recognition
model which builds upon these dependency relations for enhancing the predictive
performance of activity recognition models. The evaluation results showed that ML-
SMARTENERGY.KOM model achieved the highest predictive performance in recog-
nizing the activities of both users. Moreover, it outperformed all multi-user activities
recognition models presented in Chapter 3 by achieving an average f-measure value
of 91%.

The fourth contribution of this work focuses on forecasting long-term and short-
term power consumption of individual buildings as well as of a portfolio of buildings.
We built and evaluated all of our models using the dataset provided by the Irish
commission for energy regulation (CER). We started by developing the Building-
Performance Multiple Regression model for the average monthly power consump-
tion of individual buildings. The main goal of this model was to identify the impor-
tant predictors that affect buildings’ power consumption. The initial set of predic-



8.2 outlook 113

tors contained demographic features of residents, building characteristics, heating
sources and number of available appliances. By utilizing the approach of backward
elimination, we were able to identify the important predictors as well as the build-
ings with abnormal power consumption. Thereafter, we developed our hybrid model
for forecasting long-term power consumption of individual buildings and portfolios
of buildings. To build this model, we combined two modeling techniques, namely
conditional inference trees and multiple linear regression. This model showed a very
good predictive performance in forecasting the long-term power consumption for a
portfolio of buildings. However, its predictive performance dropped when the power
consumption of individual buildings had to be predicted. This can be explained by
the fact that the approach of linear regression models the mean power consumption.
This causes the model to ignore any consumption differences between individual
buildings that are caused by different behavioral patterns of residents. To overcome
this problem, we developed two models for forecasting short-term day-ahead power
consumption of individual buildings, namely Hourly Consumption Pattern Match-
ing (HCPM) model and Total Consumption Pattern Matching (TCPM) model. HCPM
model forecasts the detailed 24-hour day-ahead power consumption of individual
buildings while TCPM forecasts their total day-ahead power consumption. The evalu-
ation of HCPM model showed that it achieved a very good predictive performance of
17.1% in terms of Mean Error Relative (MER) and 82.1% in terms of accuracy. More-
over, it outperformed the approach of Pattern Sequence-based Forecasting (PSF) in
terms of predictive performance and time efficiency. Moreover, TCPM model showed
a very good predictive performance as well by achieving an MER value of 9.1% in
predicting the total day-ahead power consumption of individual buildings.

8.2 outlook

In this thesis, we presented four main contributions concerning the accurate iden-
tification, recognition and prediction of several aspects of users’ context in smart
environments. The contributions of this work pave the road for new research ideas
in the field of context recognition and prediction. Each of the presented contribu-
tions exposes a potential for designing and developing new approaches that can
build upon the ideas, systems, results and conclusions presented in this work.

With regard to our platforms for activity recognition in smart environments, namely
SMARTENERGY.KOM and ML-SMARTENERGY.KOM, there is a potential to include
and recognize further activities that are not covered in our work. By deploying these
platforms in new houses and for new users, the researchers can design new sets of
activities to be monitored based on users’ daily behavior and their lifestyle. These
activities can be chosen based on a specific use case for which the system is deployed
such as elderly care, power conservation or increasing the comfort of users where
the researchers can study the effect of achieved predictive performance on the use
case. It should be noticed here that a new training phase has to be completed before
utilizing our platforms for recognizing new sets of activities.

Deploying our two platforms in new houses leads to further potential research
work regarding our approach of indoor localization based on power consumption
which can be extended to cover richer environments in which the locations of two or
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more users have to be recognized. This includes dealing with new types of complex-
ity that arise due to the existence of several persons in one common environment.

Regarding activity recognition in multi-user environments, there is a great poten-
tial for deploying and evaluating our approach in environments with more than two
users where a wider range of interactions between users’ activities can be obtained.
As a result, new intra- and inter-user label dependency patterns can be identified
using our approach and utilized for achieving an accurate recognition of multiple
concurrent activities of several users. The main work

Concerning our models for long-term and short-term forecasting of power con-
sumption, new datasets that cover several years of power consumption can be used
to evaluate the predictive performance of all models. With such long time periods,
it becomes possible to study and discuss the effects of seasonality on the power con-
sumed by individual buildings as well as portfolios of buildings. Taking seasonal
effects into account can lead to an enhanced predictive performance as it allows
distinguishing between different patterns of power consumption based on different
time periods.
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