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Abstract

A rigid and a passively deforming airfoil, designed to alleviate fatigue causing load
fluctuations that appear during normal operation of wind turbines, are investigated
under unsteady conditions in two-dimensional wind tunnel experiments. In a first
series of experiments, a vertical gust encounter is generated by means of an active
grid. This approximates the wind turbine blade’s passage through the atmospheric
boundary layer and corresponds to the theoretical formulation of the Sears problem.
In a second experiment the airfoil is oscillated in a steady free stream, which approx-
imates the bending and twisting motion of a wind turbine blade and corresponds to

the theoretical formulation of the Theodorsen problem.

The frequency dependent dynamic lift response of the rigid airfoil under attached
flow conditions is compared to the Theodorsen and Sears function. If the airfoil is
oscillated around its zero lift angle, experimental results and theoretical prediction
agree. Contrary to theoretic assumptions, a substantial dependence on the mean an-
gle of attack is observed: If the airfoil is oscillated around higher mean angles of
attack, the dependence on the reduced frequency is is inverted.

The deforming airfoil shows good performance in terms of gust load alleviation over
a wide range of operating conditions: At small mean angles of attack, up to 60 % of
the fluctuating loads are alleviated. Under high mean angles of attack, leading edge
vortices are efficiently suppressed, yielding up to 30 % less load fluctuations.
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Zusammenfassung

In dieser Arbeit wird die aerodynamische Lastantwort eines starren Fliigels und eines
Fliigels mit selbstanpassender Wolbung experimentell unter instationdren Bedin-
gungen untersucht. Das Konzept der selbstanpassenden Wolbung wurde entwick-
elt, um Lastschwankungen an Windenergieanlagen zu dimpfen. Die Anstrombe-
dingungen am rotierenden Windenergieanlagenblatt werden in zwei Windkanal Ex-
perimenten am zweidimensionalen Fliigel abgebildet: Mittels eines aktiven Gitters
wird eine sinusformige Vertikalboe erzeugt, was das Durchstreichen des boden-
nahen Geschwindigkeitsprofils nachempfindet und gleichzeitig dem Sears-Problem
entspricht. In einem zweiten Experiment oszilliert der Fliigel in stationdrer Anstro-
mung, was Biege-Torsionsschwingungen am Windenergieanlagenblatt nachempfindet
und dem Theodorsen-Problem entspricht.

Die frequenzabhingige dynamische Lastantwort des starren Fliigels in angelegter
Stromung wird mit der Sears- und der Theodorsen-Funktion verglichen. Eine Oszil-
lation um den Nullauftriebswinkel zeigt gute Ubereinstimmungen zwischen exper-
imentellen Daten und theoretischen Werten. Entgegen theoretischer Annahmen hat
der mittlere Anstellwinkel einen grofen Einfluss auf das Ubertragungsverhalten: Bei
einer Oszillation um hohere mittlere Anstellwinkel werden deutliche Unterschiede

in der Frequenzabhingigkeit der dynamischen Lastantwort beobachtet.

Das Fliigelprofil mit selbstanpassender Wolbung dampft fluktuierende Lasten effek-
tiv iber einen weiten Betriebsbereich: Bei kleinen mittleren Anstellwinkeln wer-
den bis zu 60 % der Lastschwankungen gedampft, unter hoheren mittleren Anstell-
winkeln wird die Bildung von Vorderkantenwirbeln unterdriickt, was zu einer Damp-
fung von bis zu 30 % der Lastschwankungen fiihrt.
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1. Introduction

1.1. Motivation

Wind turbines operate under highly unsteady conditions and are submitted to fluc-
tuating inflow due to yaw misalignment, wind shear, tower shadow, gusts or atmo-
spheric turbulence. This leads to fluctuating aerodynamic loads which are transmit-
ted from the blades to the drive train and tower, where they cause fatigue and limit
the life time and upscaling of turbines. Several concepts to alleviate these fluctuating
loads are currently under investigation, amongst them a passive approach developed
by Hufnagel and Lambie [38] at TU Darmstadt. The concept comprises an airfoil
with a mechanically coupled leading-edge and trailing flap. The combined motion
of leading-edge and trailing flap corresponds to a change of camber, therefor the
concept is named ’adaptive camber concept’. Proof of concept was given by Lam-
bie [57] under steady inflow conditions: The adaptive camber concept effectively
manipulates the airfoil’s load response. A lift curve with a high mean and reduced
slope can be generated, which is promising in terms of gust load reduction on wind
turbines. The experimental results have been numerically confirmed by Spiegelberg
[88]. Spiegelberg investigated further the vibration dynamics of the adaptive cam-
ber airfoil and its response to unsteady inflow by coupling a structural model of
the adaptive camber airfoil to unsteady thin airfoil theory and an unsteady panel
code. Although attained under simplified conditions using linear theory, the results
promised good gust load alleviation performance of the adaptive camber airfoil under
unsteady conditions. The lift response of an airfoil in unsteady flow differs signifi-
cantly from results obtained under quasi-steady conditions: At small angles of attack,
every change in inflow leads to the shedding of a vortex in the wake of the airfoil. The
wake vortices couple back on the flow field and pressure distribution on the airfoil,
integrally altering the lift. At high angles of attack, viscous nonlinear effects become
predominant and encourage delayed flow separation, accompanied by high transient
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forces. These effects are still not completely understood. Accordingly, an analytic or
numeric prediction of unsteady airfoil response has to be treated with caution, even
on rigid airfoils. In the case of the adaptive camber airfoil, the increased fluid struc-
ture interaction intrinsic to the concept introduces an additional complexity into the
predictions.

1.2. Objectives and Outline of the Thesis

To assess the adaptive camber airfoil in terms of gust load alleviation under unsteady
conditions, a systematic experimental study has to be performed. This is the scope
of this thesis, which is structured in six chapters:

Chapter 2 motivates the need for gust load alleviation in modern multi-mega-watt
wind turbines and gives a brief overview of the current research. A special focus is
placed on active trailing flap devices, as they are based on the same working prin-
ciple as the passively working adaptive camber concept. Then the adaptive camber
concept is introduced. The concept comprises a mechanically coupled leading-edge
and trailing flap, where flow conditions on the leading-edge provoke a trailing flap
deflection. The quasi steady aeroelastic response of the adaptive camber airfoil and
parameters to influence this aeroelastic response are presented.

Chapter 3 provides the theoretical background of unsteady aerodynamics. First, im-
portant parameters to describe the unsteady inflow are defined and placed in the con-
text of wind turbines. The physics of unsteady airfoil response differ substantially
between attached and detached flow regime. In attached flow, at small mean angles
of attack, the airfoil’s load response is dominated by pressure forces and can be de-
scribed by linear theory. The basic assumptions of linear theory as well as important
results are summarized. At higher mean angles of attack, viscous forces that are not
included in linear assumptions become predominant. A phenomenon typically re-
ferred to as dynamic stall occurs. Basic physical processes during dynamic stall and
their implications for the adaptive camber airfoil are presented.



The pursued experimental approach of Chapter 4 and Chapter 5 is schematically

visualized in Figure 1.1.

Chapter 4 : Steady airfoil - oscillating flow

3D flow situation 2D flow situation Experimental investigation
horizontal vertical gust attached detached
velocity deficit oo <= g
individual
Exp. setup dyn. response
active grid —
load
reduction
B

Chapter 5: Oscillating airfoil - steady flow

3D flow situation 2D flow situation Experimental investigation
blade bend and oscillation attached detached
twist e -_— /|
individual
B dyn. response
. . Pemm——
pitch-plunge rig
load
reduction
feo—y

Figure 1.1.: Schematic visualization of the pursued experimental approach.

From the three-dimensional flow situation in the rotating reference frame of a wind
turbine, the corresponding flow scenarios on a two-dimensional blade section are
transferred into wind tunnel experiments. A two-dimensional airfoil model equipped
with an adaptive camber mechanism and a rigid reference airfoil are submitted to
these unsteady conditions. The experimental data are evaluated in terms of individ-
ual dynamic airfoil response and compared to prediction models from literature. The
adaptive camber airfoil’s gust load alleviation performance is assessed by compar-
ing the dynamic load response of the adaptive camber and the rigid reference airfoil
under the same unsteady conditions.



Chapter 4 presents the experimental investigation of the vertical gust encounter. The
vertical gust encounter is an important flow condition in terms of gust load allevia-
tion: In the rotating reference frame of a wind turbine, the vertical gust corresponds to
the passage of the blade through a horizontal velocity deficit, caused by -for example-
the earth atmospheric boundary-layer or the tower shadow. Experiments were per-
formed at the university of Oldenburg active grid wind tunnel. The active grid offers
the possibility to vary the reduced frequency, while keeping all other flow parame-
ters constant. An extensive investigation of the influence of the mean angle of attack,
the gust amplitude and the reduced system stiffness on the frequency dependent in-
dividual dynamic load response and the frequency dependent gust load alleviation
performance of the adaptive camber airfoil was carried out. The individual dynamic
load response of the rigid airfoil is used to validate the linear transfer function of
an airfoil encountering a sinusoidal vertical gust, the so-called Sears function. This
widely used transfer function still lacks a systematic experimental verification in

terms of reduced frequency dependence.

Chapter S presents the experimental investigation of a pitching and plunging air-
foil, obtained at the Eiffel wind tunnel at TU Darmstadt. This experimental setup
approximates the twisting and bending oscillations of a wind turbine blade, which
occur for example due to cyclic loading or after a heavy gust impact. In attached
flow, the experimental results serve as a second basis to validate linear transfer func-
tions of the airfoil’s dynamic load response. Pitching and plunging motions induce
additional inertial forces on the adaptive camber airfoil, which is designed to be ac-
tuated by aerodynamic forces alone. The influence of inertial forces on the gust load
alleviation capabilities is studied. At high mean angles of attack, a phenomenon typi-
cally referred to as ’dynamic stall’ occurs. Dynamic stall is accompanied by coherent
leading-edge vortices that induce high localized forces on the airfoil. The interaction
between coherent leading-edge vortices and the adaptive camber airfoil’s rotatable

leading-edge is studied by means of particle image velocimetry.

Chapter 6 summarizes the results regarding individual airfoil response and gust load

alleviation capabilities. An outlook for further research is given.
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2. State-of-the-Art

2.1. Gust Load Alleviation

The Need for Gust Load Alleviation

The power P produced by a wind turbine of diameter D and subjected to an inflow
velocity U.. can be estimated according to Hau [34] by
2

P:C,,guin (g) @.1)
where p is the mass density of the air and C;, is the turbines total power coefficient,
determined by the turbine design. In 1926, using linear momentum theory, Betz [10]
found that not more than 16/27 of the energy present in an air stream can be ex-
tracted by an ideal turbine. Independent of the turbine design the power coefficient is
therefore limited to Cp max < 0.59. According to Hau [34], modern turbines achieve
a power coefficient of Cp max > 0.5. Increasing power production is thus most eas-
ily achieved by increasing the turbine diameter D. Power production scales with the
square of the rotor diameter D?, but the cost of energy (COE) does not. COE is
estimated by

COE lifetime energy capture

= : : ; 22
capital + operation 4+ maintenance cost 22

Van Dam et al. [95] confirm that the most effective way to decrease COE on wind
turbines is by increasing the rotor diameter. These facts and the demand for afford-
able green energy production have led to an increase of turbine rotor diameter in
recent years, as illustrated in Figure 2.1. With increasing rotor diameter, the turbine
experiences higher load fluctuations and increased bending moments due to the pas-
sage through the wind profile of the atmospheric boundary-layer (ABL). Increased
bending oscillations are critical, as a contact of the blades with the tower or other
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Figure 2.1.: Average size of world wide installed wind turbines. Data taken from IWES [106].
The growing demand for affordable green energy leads to an increase of rotor diameter.
With increasing rotor diameter, the wind turbine blade experiences higher velocity fluc-
tuations due to the passage of the wind profile of the atmospheric boundary-layer. The
wind profile of the atmospheric boundary-layer is commonly approximated by a power
law, where Up(z) is the known wind speed at a certain height zy and « is an empirically
derived coefficient that depends on the stability of the atmosphere.

components has to be avoided. Deflection analysis and tower clearance verification
are the first steps in wind turbine blade design according to the Det Norske Veritas
(DNV) standard [99]. Bending oscillations can be reduced by either stiffer blades or
alleviation of the fluctuating aerodynamic loads. A stiffer blade design can be ac-
complished by the use of more glass fiber or stiffer materials such as carbon fibers.
The disadvantages are increased weight or an economical disadvantage. Alleviation
of fluctuating loads can be achieved by innovative rotor design, which is not only
beneficial in terms of blade bending and tower clearance. It also helps reduce fluc-
tuating loads and increase lifetime of all turbine components, as cyclic aerodynamic
loads are transmitted from the blades to the drive train and tower. The importance
of cyclic loading on material failures was first reported by Wohler [107] in 1870,
who found that components fail well below their ultimate load if subjected to cyclic
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loading of smaller amplitudes. This degradation is known as fatigue and the number
of load cycles that a component can withstand before it breaks is the fatigue life.
Fatigue life is determined by properties of the cyclic loading itself (amplitude, mean,
oscillation frequency, waveform and time history) and the properties of the structure
(geometry and material). Wind turbines are complex mechanical systems that op-
erate in a wide spectrum of fluctuating loads. Sutherland [93] summarizes methods
of fatigue analysis specially adapted for wind turbine applications. Veers et al. [98]
state that an alleviation of 10-20 % of aerodynamic load fluctuations would result in
substantial savings of all major turbine components and improve the cost of energy
significantly. This has given rise to extensive research in smart rotor technology, aim-
ing to alleviate fluctuating loads, reduce fatigue, increase turbine lifetime and rotor

diameter and thereby reduce the cost of energy.

Classification of Gust Load Alleviation Devices

A comprehensive overview on smart rotor systems is given by Barlas and van Kuik
[8] and van Dam et al. [95]. The authors categorize the approaches of smart rotor
control into active and passive systems, which is schematically visualized in Figure
2.2

e Active systems manipulate loads by actively controlling wind turbine compo-

nents or the surrounding flow

through -for example- a change in pitch, generator torque, flaps, tabs or other devices.
The need for appropriate sensor input, effective control strategies and advanced ac-
tuators all represent current research topics associated with active load control on
wind turbines.

o Passive systems manipulate the boundary-layer passively or allow a deforma-

tion under aerodynamic loading due to their structural design.

Compared to active systems, passive systems are more robust and less complex, as no
sensors, actuators or control schemes are needed. If they encompass deformations, a
thorough structural design is required. Furthermore, smart rotor control systems can
be categorized into:



e approaches that manipulate the entire wind turbine blade and

o sectional approaches that influence only part of the wind turbine blade.

Active j ( Passive
Plasma actuators e Vortex generators Boundary-
Synthetic jets e Microtabs layer
Blowing/suction manipulation
Morphing
Trailing flaps e Adaptive camber airfoil

Yaw (upwind)
(Cyclic) pitch
Variable rotor speed

e Yaw (downwind)
e Blade twist
o Flexible blades

(Entire blade) ( Sectional )

Figure 2.2.: Schematic visualization of the categorization of smart rotor control systems (in-
comprehensive), adapted from Barlas and van Kuik [8] and van Dam et al. [95]. The adap-
tive camber airfoil analyzed in this study can be classified as one of the few passive sectional
approaches.

The fluctuating velocity perturbations on which smart rotor systems have to react can
be attributed to different causes. Figure 2.3 gives a spectral view of these fluctuating
perturbations. Leishman [63] categorizes the fluctuating inflow on a wind turbine
into deterministic perturbations, which occur periodically and arise from wind shear,
yaw misalignment or tower shadow, and stochastic perturbations due to turbulence,
wake dynamics, blade/wake interaction or gusts. Deterministic fluctuations occur
with rotational frequency (1P) of the rotor or multiples of it. Stochastic fluctuations
are distributed over a broad range of frequencies. According to Burton [14], the
response time of systems acting on the entire blade, as -for example- state-of-the-
art pitching mechanisms, is generally in the order of minutes; faster changes are
not feasible. Bergami and Gaunaa [9] show in a numerical analysis on the NREL
5 MW that only 11 % of a turbine’s life time fatigue is caused by deterministic loads
around the 1P frequency (= 0.2 - 1 Hz on modern multi megawatt turbines). 89 %
of the damage equivalent load of a turbine are attributed to stochastic processes.
These loadings can neither be alleviated by systems acting on the whole blade nor
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Figure 2.3.: Schematic representation of the frequency content of the velocity fluctuations
encountered by a wind turbine. The stochastic turbulent inflow contains a wide band of
frequencies while deterministic loads occur at multiples of the rotational frequency P. The
entire frequency range contributes to fatigue, while energy is only harvested in the energy
containing range, limited by the torque threshold, as pointed out by Connell [19]. The
limits of the energy containing range are difficult to estimate as very few temporally highly
resolved data sets of the inflow velocity on a wind turbine exist.

by systems aiming to reduce deterministic loading such as cyclic pitch.

Trailing Flaps

According to Marrant and van Holten [67], trailing flaps are the most promising
devices for the alleviation of high frequency load fluctuation on wind turbines. A
trailing flap deflection of only a few degrees causes a substantial change of blade
lift. Trailing flaps can be distributed radially on the wind turbine blade. They are
accordingly less costly in terms of actuation power, exhibit faster response and can
react locally. Using trailing flaps to alter lift characteristics is common practice on
aircraft. Barbarino et al. [7] give an extensive review of past and current aircraft re-
lated research topics. In aircraft applications, flap deflections are set by the pilot if
inflow conditions or mission segments deviate from ideal cruise conditions. In wind

turbine applications, this task has to be automated and executed by a controller. It
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was experimentally shown by Bak et al. [6] that an almost complete attenuation of
the load fluctuations on a two-dimensional airfoil section is possible, if the angle of
attack perturbations are known beforehand and the controller can set the flap deflec-
tion accordingly. Andersen et al. [3] point out that the time lag between the angle of
attack perturbation and the controller reaction is the most critical point in wind tur-
bine applications. In a numerical study of the Upwind 5 MW reference turbine, they
observed a decrease in fatigue load alleviation efficiency in the order of 20-30 % for
time lag of 150 ms and pointed out that larger time lags can have harmful effects on
the wind turbine. The adequate sensing of oncoming perturbations and the realization
of small response time of the flap actuation are critical issues in gust load allevia-
tion by active trailing flaps. Their realizability is best investigated in experimental

studies.

Literature Review of Experimental Investigations

In experimental studies, trailing flaps showed to effectively alleviate deterministic
and stochastic loadings: Lee et al. [61] experimentally investigated a two-dimensio-
nal airfoil with an active trailing flap at high Reynolds numbers (Re = 540.000 —
660.000). The two-dimensional airfoil had a span of 2m, a chord of 1.2 m and was
equipped with a hinged trailing flap with maximum flap deflection of 10 °. The flap
was actuated with up to 1200 N according to a feedback control protocol, which got
its input from load cells measuring the flapwise bending loads. When exposed to tur-
bulent inflow, load fluctuations were reduced by 20-30 %. Better results in terms of
gust load alleviation were found by Van Wingerden et al. [96,97] in a lower Reynolds
number experimental setup: A two-dimensional airfoil of 0.12m chord and 0.9 m
span and a two bladed test turbine of D ~ 2m diameter with the dynamically scaled
properties of the Upwind 5 MW reference turbine were exposed to stochastic per-
turbations as well as periodic disturbances due to yaw misalignment. Mechanical
stresses, measured at the blade root, were fed into a real time environment that con-
trols high performance actuators. In this set up, up to 90 % of the periodic perturba-
tions and up to 55 % of distinct frequencies in the broad turbulence spectrum were
alleviated.
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From an aerodynamic point of view, trailing flaps are the right choice to alleviate
high frequency load fluctuations. Adequate control of trailing flaps is the critical
point: An ideal gust load alleviation device reacts on a changes in flow conditions
before they are converted into aerodynamic loads and mechanical stresses. Active
systems currently under investigation use mechanical stresses that act as an input
signal. Gaunaa and Andersen [27] proposed to use the pressure difference on the
leading flap as a sensor input, as aerodynamic conditions at the leading-edge are
a good estimator for the total lift and hence the mechanical stresses. The adaptive
camber airfoil exploits the same idea: the pressure distribution on the leading-edge
is used as a sensor for the oncoming flow. Simultaneously, the leading-edge serves
as an actuator, making the whole system passive. No further control schemes or

actuation power are foreseen.

2.2. Adaptive Camber Concept

Theoretical Considerations

From thin airfoil theory (see for example Katz [46]) it follows that the stationary lift

coefficient Cy, of a rigid thin airfoil is:
CL = 271?06—CLO(T[) (2.3)

where 27« is the lift coefficient for a flat plate under angle of attack o and Cro(n) is
an additive constant accounting for camber 1. The lift curve slope dCr/da is then
27, since on a rigid airfoil the effect of camber is independent of ¢. If the camber of
an airfoil changes with , the lift curve slope deviates from 27:

aC 9
5o =21 = Cuo(n(@)) (2.4)

This can be beneficial in terms of gust load alleviation, as a gust expresses itself
mainly through a change of angle of attack A« in the rotating reference system of a
wind turbine. The fluctuating load on a two-dimensional wind turbine blade section

can be approximated by

oCy,
AC = %A(x (2.5)
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Figure 2.4.: Schematic view of the adaptive camber airfoil: Leading-edge and trailing flap
are detached and hinged. The rotation of the leading-edge /N is transferred to the trailing
flap via a mechanical coupling mechanism of coupling ratio N. The motion is opposed by
a restraining spring system of stiffness x, allowing to apply a pre-cambering moment M.

Modifying the airfoil camber such that the lift curve slope ‘93% < 27 results in a
reduction of fluctuating loads ACy, compared to a rigid airfoil with constant camber.
One way to achieve such modification of camber in a purely passive way is the
adaptive camber concept.

Working Principle

The concept was developed by Hufnagel and Lambie at TU Darmstadt and patented
in 2011 [38]. A schematic view of an airfoil equipped with adaptive camber concept
is given in Figure 2.4: It consists of an airfoil with detached and hinged leading-
edge (LE) and a trailing-edge (TE) flap. Leading-edge and trailing flaps are mechan-
ically coupled via a coupling mechanism of ratio N. A clockwise rotation of the
leading-edge of y/N results in a counterclockwise rotation of the trailing flap of y
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Figure 2.5.: Functionality of the adaptive camber airfoil: High aerodynamic loads at high
angles of attack induce a high aerodynamic moment on the leading-edge. Both leading and
trailing flap rotate upwards, until an equilibrium between restraining spring system and
aerodynamic forces is obtained.

and vice versa. The combined motion of both flaps results in a change of camber.
The maximal flap deflections are limited by mechanical stoppers. A spring system
of stiffness k restrains the motion by applying the spring moment M, that coun-
teracts the leading-edge deflection. The mechanism can be pre-stressed by applying
an additional pre-cambering moment My. My is defined as the moment that needs
to be applied to bring the airfoil to its reference shape (y = 0°). A positive My in-
creases the camber (flaps down), if no flow is present. The mode of operation of
the adaptive camber airfoil is schematically shown in Figure 2.5: When placed in
an air stream, a pressure distribution p(x,7) is generated around the airfoil, inte-
grally responsible for the aerodynamic loads. The pressure distribution is such that
the main part of the load is generated at the leading-edge, whereas the level of the
load is mainly determined by the trailing flap deflection. The adaptive camber airfoil
concept exploits these facts and uses the airfoil’s leading-edge to actuate the trailing
flap: At high angles of attack, the pressure distribution generates an upward bending
aerodynamic moment M,ero 1 E around the leading-edge. Around the trailing flap, an
aerodynamic moment M,ero TE is generated, which is an order of magnitude smaller
than Mero LE- The leading-edge is rotated upwards around its hinge by —y/N. The
motion is transfered via the mechanical coupling system to the trailing flap. The trail-
ing flap rotates upward by —¥ and the level of the pressure distribution around the
airfoil decreases. The combined flap motion corresponds to a de-cambering of the
airfoil. The de-cambering persists, until an equilibrium

Maero LE(®, ¢, N, ALE; Xo,LE) — N - Maero TE (00, ¢, M, ATE, X0, TE) = Mic (K, M, ) (2.6)
13



between the aerodynamic moments Maer, and the restraining spring moment M is
reached. For one fixed configuration of the adaptive camber airfoil (i.e. leading and
trailing flap length, hinge positions and coupling ratio), the dependencies of equation
2.6 reduce to

MaerO,LE(aa q, TI) —n 'Maero,TE(av% n) = MK(KaM(w n) (27)

The driving aerodynamic forces Myer, are proportional to the aerodynamic pressure
q= %Ui and the angle of attack o. The restraining spring moment is composed of
the pre-cambering moment My and a moment proportional to the LE deflection y/N

and the physical spring stiffness k. Omitting the influence of Myero g yields:

gUia Maero LE(N) = Mo — K-% 2.8)

The proportionality between the M.ero,1 £ and the angle of attack ¢ leads to an uni-
form de-cambering of the airfoil with increasing . Figure 2.6 shows the numerically
calculated aeroelastic response of the adaptive camber airfoil and graphically illus-
trates how a constant de-cambering results in a decreased lift curve slope dCr/d o
compared to a rigid airfoil. The starting point of de-cambering is defined by the
pre-cambering moment M, the rate of de-cambering is determined by the system
stiffness k. The effect on the lift curve under quasi steady flow conditions was ex-
perimentally investigated by Lambie [57]. He states:

e The lift curve slope dCy,/d o decreases with decreasing system stiffness .
e Adding a pre-cambering moment My shifts the lift curve vertically.

In this way, the lift curve of the adaptive camber airfoil can be customized accord-
ing to a target function. For gust load alleviation on wind turbine blades, the lift
curve target function has a small slope whilst maintaining a high mean. The driving
aerodynamic moments Myero scale with the dynamic pressure g = %Ui At higher
inflow velocity, the adaptive camber airfoil de-cambers earlier and at a higher rate.
This perceived reduction of the pre-cambering moment M, and the physical system
stiffness k is accounted for by defining the reduced pre-cambering moment M(;r and
the reduced system stiffness k:

oo
o= apgz F T @9
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rigid, Y= +15°, flaps down
rigid, Y= 0°ClarkY
- - = rigid, Y= —15°, flaps up

adaptive, y=1f(a)
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Angle of attack o [°]

Figure 2.6.: Lift coefficient Cy plotted over the angle of attack o, obtained with a steady panel
code (XFLRS5). The rigid airfoil with constant camber has a lift curve slope of dC/d o =
2 7. Fixing leading and trailing flap at the indicated deflection angles leads to an increase of
camber and shifts the lift curve vertically, but does not affect dCy,/da. The lift coefficient
of the adaptive camber airfoil is obtained by gradually decreasing the flap deflection from
Yia=—8°) = 15° 10 Y g—4120) = —15°. This results in a decreased lift curve slope dCp /d .

For a constant MO+ and a constant k1, the airfoil de-cambers in the same manner.

The influence of the adaptive camber airfoil configuration, i.e. the relative leading
and trailing flap length A;g and Atg, the leading and trailing flap hinge positions
Xo,LE and X, TE, the coupling ratio N, as well as the airfoil camber 17 on the aeroelastic
response of the adaptive camber airfoil was studied analytically by Spiegelberg [88].
He found that:

e For a given airfoil configuration (i.e. leading-edge and trailing flap length,
hinge positions and coupling ratio), a lift curve slope dCr/do = 0 can be
attained by choosing an appropriate reduced system stiffness (see Spiegelberg
[88], p. 69, Figure 5.6).

Lambie [57] found a coupling ratio of N = 3 (meaning that a 1 ° clockwise rotation of
the leading-edge results in a 3 © rotation in counterclockwise direction of the trailing
flap), a leading-edge length of 20 % chord and a trailing length of 30 % chord to be
an experimentally viable and effective configuration. In this study, all experimentally
investigated airfoil models are equipped with an adaptive camber mechanism of this
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configuration, the corresponding parameters are summarized in Table 2.1.

Table 2.1.: Common parameters of the investigated adaptive camber airfoil models.

Parameter Unit Quantity
Leading-edge length ALE [x/c] 0.2
Trailing flap length ATE [x/c] 0.3
Leading-edge hinge position X, LE [x/c] 0.2
Trailing flap hinge position Xo TE [x/c] 0.7
Coupling ratio N [°/°] 3
Airfoil profile Clark Y

16



3. Theoretical Background: Unsteady
Aerodynamics

Unsteady flow conditions can be described by their frequency, amplitude and wave-
form. All investigations performed during this thesis deal with sinusoidal waveforms
and differ only in terms of frequency and amplitude. Section 3.1 presents the cor-
responding parameters of unsteady aerodynamics and places them in the context
of wind turbine applications. If an airfoil is subjected to unsteady conditions, its
dynamic response differs from quasi-steady approximations. In the linear region of
attached flow regime, the unsteady airfoil response follows a sinusoidal perturba-
tion with the same waveform and frequency, but with a different amplitude and a
phase shift. This behavior is most conveniently described with transfer functions. In
section 3.2 the common approaches to derive theoretical transfer functions are re-
viewed. In detached flow regime the airfoil response follows the perturbation with
a different waveform, including high transient forces. The physical mechanisms of
lift generation that are responsible for this change in behavior are reviewed in section
3.3.

3.1. Parameters of Unsteady Aerodynamics

Harmonic unsteady flow conditions are described by the frequency of their occur-
rence and their amplitude. For comparability, these parameters are expressed in di-
mensionless form: the reduced frequency k describes the unsteadiness in time and
the Strouhal number Sr the perturbation amplitude.

17



Reduced Frequency k

The reduced frequency k is used to quantify the unsteadiness of a flow situation. It is
defined as

Tfe (3.1)

k=
Us

Physically, k signifies the ratio of convective time or length-scale to the period or

length-scale of the perturbation.

T Lg;
k=1 flight —r flight (3.2)

Tperturbation Lperturbation

Figure 3.1 illustrates the relationship for an airfoil encountering a traveling sinu-
soidal vertical gust.

1 oo
Tperturbi\ti(m = 7 Tﬂighl =cU.e; ~ cUs

»m =

perlurbatmn = A T Lﬂight =c

~ U

k<m

Figure 3.1.: Physical significance of the reduced frequency k for an airfoil: For small &, the
wave-length of the perturbation is long compared to the chord length. The airfoil ’sees’
only a small part of the perturbation. For high k, the wavelength of the perturbation is short
compared to the chord length.

An approximation of the reduced frequencies encountered by a wind turbine blade
due to the passage of the atmospheric boundary-layer is given in Figure 3.2. In the
rotating reference frame, the time of flight Tfene depends mainly on the radial po-
sition of the airfoil section r, the chord length at that radial position ¢(r) and the
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Figure 3.2.: Left: The passage of the atmospheric boundary-layer leads to angle of attack
fluctuations on the blade section. Right: Reduced frequency of the 1P perturbation, seen by
an airfoil section on a certain radial position at a certain inflow velocity U.., approximated
with data of the NREL 5 MW turbine provided by Jonkman et al. [45].

rotational velocity @. The rotational velocity m is defined by the turbine characteris-
tics and increases with increasing wind velocity until the rated wind speed is reached.
The period of the perturbation Tyerurbation depends primarily on the nature of the per-
turbation. Deterministic perturbations occur with multiples of the rotor frequency P.
Perturbations due to yaw misalignment or perturbations due to the passage of the
atmospheric boundary-layer occur with 1P frequency. Stochastic perturbations due
to atmospheric turbulence or gusts are distributed over a wide spectra of frequencies.
There is disagreement about the exact k-limit that distinguishes unsteady aerody-
namics from steady aerodynamics. Leishman [64] (p. 427) considers disturbed flow
of k£ > 0.05 as unsteady, Pereira et al. [74] (p. 208) sets the limit to k¥ = 0.02 and
Carr et al. [16] found significant dynamic effects for reduced frequencies as small as
k=0.004.

Figure 3.2 illustrates that wind turbine blades encounter a large variety of reduced
frequencies and the flow on a wind turbine blade section must be considered as un-
steady.
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Strouhal Number Sr

The perturbation amplitude is quantified by the Strouhal Number Sr. In the context
of flapping flight, the Strouhal number of a plunging airfoil is usually defined as the
ratio of oscillating speed to forward speed:

_ 2ARf
T U

Sr (3.3)

Considering an equal effective angle of attack, the Strouhal number of a pitching
airfoil can be derived as:

2tan o,

(3.4)

r =
T

where 0}, is amplitude of the pitching oscillation. For an airfoil encountering a si-
nusoidal vertical gust of amplitude ﬁg, the effective angle of attack approach yields:

S 2y 3.5)
r= . (3.

Figure 3.3 visualizes the relationships for the flow situations relevant in this study.

U /_T i‘zeff § ap: U ég_é‘
Ahf T@/eﬂ/v ¢2Ah f)\g W '

plunge pitch vertical gust

Figure 3.3.: Definition of the Strouhal number on a plunging airfoil (left) and equivalent
formulations on a pitching airfoil (middle) and an airfoil entering a sinusoidal vertical gust
(right).

The perturbation height experienced by wind turbines is difficult to estimate as it
depends highly on the inflow velocity field. According to Sutherland [93], current
practice is to describe the inflow velocity field by a vertical velocity, superimposed
by wind shear and a turbulence intensity. This is also the recommendation of IEC
Standards Comity [39]. Rezaeiha et al. [79] followed the IEC standard and calcu-
lated the angle of attack & caused by turbulence, wind shear, yawed inflow and tower
shadow on the DTU-10MW-RWT reference wind turbine. They compared the results
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Figure 3.4.: Angle of attack on the rotor plane of the DTU-10MW-RWT reference wind turbine
under representative operating conditions, taken from Rezaeiha et al. [79].

to the angle of attack on the same wind turbine under constant inflow. According
to their calculations, the tower shadow has a negligible effect on the angle of attack
fluctuation ¢’ encountered during one rotation. Wind shear, modeled by a power law
and and a 10 ° yaw misalignment increase @’ by 2 — 4 times, compared to the clean
inflow. The highest impact is observed when changing the turbulence intensity 7,: o’
increases 10 — 14 times for 7, = 0.16. A reproduction of Rezaeiha’s results is given
in Figure 3.4 on the right. The angle of attack fluctuations on a blade section during
one revolution of up to o’ ~ 12° occur. According to Rezaeiha, the inflow scenario
is representative for the operating conditions of multi-megawatt turbines. In nature,
fully developed turbulence is characterized by intermittent fluctuations of the wind
velocity comprising nonlinear and non-Gaussian properties, which are not accounted
for by the IEC norm. Boettcher et al. [11] analyzed an excerpt of atmospheric wind
measurements collected with a frequency of 4 Hz over one year. They found wind to
be highly intermittent, meaning that strong gusts occur more often than predicted by
Gaussian distribution, which would result in even higher &’ on a wind turbine blade
section.

It can thus be assumed that angle of attack fluctuations of several degrees are com-
monly encountered by wind turbine blades. Depending on the blade section’s mean
angle of attack, the flow remains attached to the airfoil surface or separates. The
underlying physics during both flow situations differ fundamentally.

21



3.2. Attached Flow Regime

If the total angle of attack of the unsteady flow remains below the static stall angle,
the flow stays attached to the airfoil surface. In the attached flow regime, pressure
forces dominate over viscous forces. A constant linear dependence between airfoil
lift and angle of attack exists under quasi-steady conditions. Under dynamic con-
ditions the lift follows the perturbed angle of attack with a certain amplitude and
phase shift that depend on the reduced frequency of the perturbation, independent
of the perturbation amplitude. Unsteady thin airfoil theory is the classical low order
approach to estimate the unsteady airfoil response under attached flow conditions.
Section 3.2.1 summarizes the assumptions leading to unsteady thin airfoil theory.
Traditionally, unsteady thin airfoil theory is used to obtain the unsteady lift response
of an airfoil in frequency domain, using so-called transfer functions. Transfer func-
tions can be obtained by approaches of different complexities: Assuming a spatially
constant undisturbed velocity field and linearizing the kinematic boundary condition
yields classical first-order transfer functions. Closed form solutions for rigid airfoils,
derived in the 1920s and 1930s are briefly summarized. Section 3.2.2 presents ex-
plicit first-order solutions for the rigid airfoil for flow scenarios relevant in this
thesis, namely the pitching and plunging rigid airfoil and a fixed rigid airfoil sub-
mitted to a sinusoidal vertical gust. First-order solutions for the adaptive camber
airfoil are given by Spiegelberg and reviewed in section 3.2.3. Second-order solu-
tions are obtained by accounting for a spatially variable velocity field and a coupling
between steady and unsteady flow solutions. Section 3.2.4 illustrates the major differ-
ence between first and second-order models and reviews a closed form second-order
solution for the rigid airfoil for a sinusoidal vertical and horizontal gust that will be
relevant later in this study. Although transfer functions based on thin airfoil theory
are extensively used in flutter calculations, a very limited amount of experimental
validation data exists. Section 3.2.5 gives a literature review of experimental in-
vestigations relevant to this thesis.
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3.2.1. Unsteady Thin Airfoil Theory

Thin airfoil theory uses potential flow to represent an airfoil by its camber line only.
For an airfoil of small camber, singularities are distributed on the x-axis in such a way
that the induced velocity fulfills the kinematic boundary condition at the camber line.
This assumption comprises the interchangeability of a vertically moving camber line
with an additional vertical velocity component v of opposite direction. An illustrative
example is depicted in Figure 3.5. Different boundary condition scenarios can thus be
distinguished by the spatial and temporal occurrence of relative velocities between
airfoil and surrounding flow. Steady thin airfoil theory differs fundamentally from
dynamic thin airfoil theory. A schematic visualization of the considerations leading
to this statement is shown in Figure 3.6. Besides fulfilling the kinematic boundary

condition, each singularity induces a tangential velocity. This tangential velocity is

( Vertical velocity component j ( Moving camber line j
U.. Us
—p c——— —> == =
Frettteetty h=—v

Figure 3.5.: Example of the interchangeability of boundary conditions in thin airfoil theory:
A constant vertical velocity component v that appears at every point of the airfoil chord
at the same time (left) imposes the same boundary condition as an airfoil, plunging with a
purely vertical velocity iz = —v (right).

( Steady j ( Unsteady j
'=Ydr=5dI =Y dI'=5dI

bound @%%, bound wake

vorticity dI', vorticity dI',  vorticity dI'y,,

Figure 3.6.: Visualization of the considerations leading to unsteady thin airfoil formulation:
Kelvins Theorem imposes the shedding of opposite sign vorticity in the wake if the bound-
ary conditions on the airfoil are altered. This wake vorticity changes the airfoil’s lift, com-
pared to steady conditions.
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related to the static pressure via Bernoulli’s equation. Integration of the pressure
distribution in terms of singularities yields the lift of the thin airfoil. The total bound
circulation of the airfoil is proportional to the exhibited lift. According to Kelvin’s
circulation theorem (see for example Spurk [89]), the total circulation of a material
contour is constant in time. In the unsteady case, the boundary conditions are time
dependent. This leads to a time dependence of the integrated bound circulation. In
order to fulfill Kelvin’s circulation theorem for each change in bound circulation
the same amount of opposite sign vorticity has to be shed in the flow. This shed
vorticity in turn induces a tangential velocity on the airfoil that changes the pressure
distribution and integrally alters the total lift.

Depending on the order of approximation of the surrounding flow and the lineariza-
tion of the boundary conditions, solutions to the thin airfoil problem of different
complexities can be derived. First-order transfer functions assume an uniform steady
flow solution U.. and linearized boundary conditions. This leads to a complete un-
coupling of steady and fluctuating flow and allows closed form solutions. Closed
form solutions for selected boundary conditions, motivated by various physical in-
flow scenarios, were derived in the 1920s and 1930s and are still referred to today.
According to Dowell [22] (p. 449) and Hodges and Pierce [35], these first-order
transfer functions are the most commonly used design tool in unsteady aerodynamic
engineering problems today. A detailed review of the different methods to obtain
first-order transfer functions is provided by Johnston [41]. A schematic overview of
the most common transfer functions is given in Figure 3.7. Solutions can be divided
into the treatment in time domain and the treatment in frequency domain. The tran-
sient response of the airfoil to a perturbation in time domain is described by an im-
pulse response function, the counterpart in frequency domain is a transfer function.
Wagner [103] presented a time domain solution of an airfoil submitted to a sudden
change in angle of attack. This is equivalent to a constant vertical velocity compo-
nent imposed over the whole chord. The corresponding impulse response of the lift
is referred to as Wagner function. Kiissner [56] derived a time domain solution for
the lift evolution due to a vertical traveling gust. This impulse response function is
the Kiissner function. Because it is more convenient for flutter calculations, simi-
lar results have been obtained in the frequency domain. Theodorsen [94] presented

the frequency domain solution for an airfoil (with an aileron) oscillating sinusoidally

24



f Time domain j f Frequency domain j

(impulse response function) (transfer function)
‘Wagner step change in AoA Theodorsen oscillating airfoil
——> T O T
() a
appears atfo Garrick\ F
Kuessner advancing change in AoA Sears  advancing vertical gust
Ues v g )

U N JERY
T T vw% D

v, travels with Us Horlock

(+horiz. gust)
Atassi £

(2nd order)
Naumann

K / K (+A0A, camber) /

Figure 3.7.: Schematical representation of different boundary conditions leading to the classi-
cal first-order solutions in thin airfoil theory. Time domain and frequency domain solutions
are connected by Fourier transformation.

with a small amplitude, using the perturbing vertical velocity component v as bound-
ary condition. His solution is known as the Theodorsen function C(k). An identical
result was obtained by Schwarz [82], who imposed a corresponding movement of
the camber line. Sears [83] introduced the transfer function for an airfoil entering
a sinusoidal vertical gust. This transfer function is referred to as the Sears function
S(k). The relationship between impulse response functions in time domain and the
transfer functions in frequency domain was pointed out by Garrick [25]. He showed
that the Wagner function is connected to the Theodorsen function and that the Kiiss-
ner function is connected to the Sears function by Fourier transformation. The linear
assumptions in the derivation of thin airfoil first-order transfer functions allow the
superposition of the results. Karman and Sears [102] presented the solution for a
pitching and plunging airfoil entering a sharp edged gust. Sears [84] summarized the
works of Kiissner [56], Theodorsen [94] and Karman and Sears [102] and applied
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them to a fan blade operating in the wake of other blades.

Recently, different authors have derived solutions for parts of the airfoil section in-
stead of the whole airfoil, to investigate on the influence of flaps or a generally de-
forming camber line. Gaunaa [26] gave analytical expressions for the unsteady forces
on an airfoil with variable geometry undergoing arbitrary motion. Johnston et al. [42]
pursued a similar goal and submitted an airfoil with general deforming camber to a
vertical gust. The case of an airfoil with adaptive camber mechanism, where the bal-
ance of moments around leading-edge and trailing flap defines the camber line was
treated by Spiegelberg [88].

3.2.2. 1%t Order Solutions for the Rigid Airfoil

As explained in section 3.2.1 the dynamic lift Lay, differs from the quasi-steady lift
Lgs, cf. Figure 3.6, p. 23. According to Karman and Sears [102] and graphically
illustrated in Figure 3.8, Lgy, can be expressed as the complex sum of three different
lift contributions:

o the quasi-steady lift Lgs
e the apparent mass lift Lypp, mass and
o the lift due to the presence of the wake Lyke-

The magnitude of each lift contribution corresponds to the vector length in Fig-
ure 3.8. The perturbing velocity v serves as a phase reference and is aligned with
the real axis. The angle enclosed by the lift contribution vector and the real axis
physically signifies the phase ¢ between the lift contribution and v. The quasi-steady
lift Lqs is in phase with the velocity perturbation v. Lgs is produced by the bound cir-
culation on the airfoil in the steady case and is obtained by steady thin airfoil theory.
Lapp. mass physically signifies the lift due to fluid acceleration caused by the perturb-
ing velocity v and leads v by 90 °. It is obtained by integrating the change of bound
vorticity on the airfoil in the unsteady case. The lift contribution of the wake Lyake
tends to diminish Lgy, and causes a lag behind v. Mathematically, Ly, is accounted
for by the Theodorsen Function C (k), derived by Theodorsen [94]. C (k) is a com-
plex function that depends on the reduced frequency k of the velocity perturbation v
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Figure 3.8.: Left: Vector diagram for the unsteady lift of an oscillating airfoil, adapted from
Karman and Sears [102]. The dynamic lift is obtained by complex addition of different lift
contributions: Lgyn, = Lyake -+ Lgs + Lapp. mass- The perturbing velocity v(x,) is aligned
with the real axis and serves as a phase reference. Right: Representation of the origin of the
lift contributions. The bound vorticity on the airfoil generates Lgs and Lapp. mass, While the
shed vorticity in the wake is responsible for Ly;ke.

only and is defined as
C(k)=F (k)+iG(k). (3.6)

F and G are the real and the imaginary parts of C and are given in terms of Bessel
functions of first and second-order, see Theodorsen [94]:
_ N +Yo)+ 1 (N — o)
(1 +0)* + (Jo—11)°
Yo +J1J
G(k) =1[C (k)] = 1A (3.8)
(J1+Y0) 4+ (Jo—T1)
For harmonic velocity perturbations, the dynamic lift Lqy, can be expressed in terms
of the perturbing velocity v(x,¢) and the Theodorsen function C(k). Relating the
dynamic lift Lyy, to the quasi-steady lift Lys effectively normalizes the lift amplitude

F (k) =R[C (k)] (3.7

and yields the transfer function A.
L
= 280 (C(k),v(x,1)) (3.9)
Lgs
The magnitude of 4 is the ratio of the dynamic and quasi-steady lift amplitude and ¢
is the angle enclosed by the vector of Lgy, and the real axis in the complex plane.
I(R)

, ¢ = arctan <R(h)> (3.10)

h

~

Ldyn

Lqs

|h (k)| =
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For quasi-steady conditions at k = 0, the dynamic lift equals the quasi-steady lift and
|h (k)| = 1 and ¢ = 0. Under dynamic conditions, the lift contributions of Ly,e and
Lapp. mass alter |A(k)| and @. For a given v(x,), the transfer function / is a function of
k only. Representing % as a vector in the complex plane and connecting all vectors of
h(k) for k = 0 — oo yields the classical representation of aerodynamic transfer func-
tions. Figure 3.9 shows such transfer functions for the flow situations of a plunging
and pitching airfoil and a fixed airfoil submitted to a sinusoidal vertical gust. The
evolution of % in terms of k depends on not solely on the imposed perturbation ve-
locity v, but also on the definition of the quasi-steady lift Lqs and the choice of the
reference system. Different authors use different definitions of the quasi-steady lift
and the reference system, which sometimes leads to confusion. Table 3.1 gives an
overview of the flow scenarios, corresponding boundary conditions, dynamic lift so-
lutions and corresponding transfer functions relevant to this study. Parameters for the
plunging airfoil are taken from Karman and Sears [102], for the pitching airfoil from
Leishman [64] and the sinusoidal vertical gust problem is taken from Sears [84].

Experimental Transfer Function of the Pressure Difference

Most solutions of unsteady thin airfoil theory consider the unsteady lift response,
which is the integral of the unsteady pressure distribution. The unsteady pressure
distribution is an intermediate, but not often reported result when obtaining the un-
steady lift response, as it is related to the tangential velocity on the airfoil surface via
the unsteady Bernoulli equation. The tangential velocity is directly obtained from the
singularity distribution on the airfoil’s chord line and wake. Postel and Leppert [75]
give an expression of the pressure distribution of an oscillating airfoil and Mateescu
and Abdo [68] present a closed form solution for the same problem based on velocity
singularities. Integration of the transfer function of the pressure distribution yields
again the Theodorsen function.
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Figure 3.9.: Transfer function 4(k) in the complex plane for different velocity perturbations.
Top: Pitch around elastic axis e, measured in half chords from the airfoil center. Middle:
Plunge. Bottom: Sinusoidal vertical gust referenced to the mid-chord (black line) and to the
leading-edge (gray line). The exact definitions of the perturbing velocity v and the definition
of the quasi-steady lift Lqs are given in table 3.1. If not indicated otherwise, the reference
system is fixed to the airfoil’s mid-chord and distances are counted in semi-chords b = ¢/2.
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v(x,1) = iohe " = ioh v(x,t) = a(x—x0) + U V(x,1) = Pge i@k
Effective AoA amplitude

Gt Gerr = tan({2) = () Gt = ey Gerr = tan () = (3F)
Quasi-steady Cr,

Clgs = 2Tty 2 270 2

Quasi-steady lift

Lgs = Crgs 2U2¢ 28 Uch 2m8U2ca 278 Uy

Transfer Function

h(k) = ww,: Ck)+i% (14 (L —e)ik))C(k) + Lk(i—ke)  S(k) = (Jo— i1 )C(K) +iJ,

Table 3.1.: Overview of the first-order transfer functions used in this study. The perturbing velocity is the relative velocity between

airfoil surface and surrounding flow imposed by the airfoil motion or the oncoming gust. From this perturbing velocity an effective
angle of attack amplitude Gefr is calculated that serves to estimate the quasi-steady lift Lgs. Relating the dynamic to the quasi-
steady lift yields the transfer function.
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3.2.3. 1%t Order Solutions for the Adaptive Camber Airfoil

In the following section, transfer functions of the adaptive camber airfoil from the
work of Spiegelberg [88] are reviewed. Spiegelberg gives a complete description of
the aeroelastic problem of a pitching and plunging adaptive camber airfoil submitted
to a sinusoidal gust. In his notation, the adaptive camber airfoil possesses three de-
grees of freedom (heaving, pitching and flap-deformation), combined in the vector
p. It exhibits a normal force and a pitching moment, included in the force vector f.
These values can be non-dimensionalized and expressed in the force and moment co-
efficient vector ¢. Bold letters mark vectors y = (y1,y2,y3). Each vector component
takes the form of a sinusoid y; = y; sin (@ + ¢y, ) of amplitude y; and a phase ¢y, .
A transfer function h connects a response of type r to an excitation of type e.
If only one vector component is considered, the transfer function reduces to

i+,
€ ' o) —ior _

hre = - = ; = ;el< ei(Pr (3.1 1)
e e

e i1
The magnitude |h,.| = 7/e relates the amplitude of the response to the amplitude
of the excitation. The argument arg (h,,) = ¢ contains information about the phase
between excitation and response. The response can consist of a motion or a (non-
dimensional) force, the excitation can be a motion, a (non-dimensional) force or a
sinusoidal gust. Here, only three experimentally accessible and for the description of
the adaptive camber airfoil’s performance relevant transfer functions are considered.
Their relationship is visualized in Figure 3.10 and they are namely

e the Aerodynamic Transfer Function h., that relates the non-dimensional
aerodynamic forces cg exhibited by a (rigid) airfoil to the fluctuating angle of
attack due to a sinusoidal vertical gust g.

In the case of an airfoil with adaptive camber, aerodynamic forces are not only de-
pendent on the inflow, but also on the shape of the airfoil, which is itself dependent

on the aerodynamic forces. The aerodynamic transfer function is then replaced by

o the Aeroelastic Transfer Function of the Load h. e that relates the load
response of the deformed adaptive camber airfoil c¢ to the fluctuating angle
of attack due to a sinusoidal vertical gust g.
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The deformation of the adaptive camber airfoil is described by

o the Aeroelastic Transfer Function of Motion h,, that connects the motion
response p of the adaptive camber airfoil to the fluctuating angle of attack due
to a sinusoidal vertical gust g.

The aeroelastic transfer function is also helpful for a prediction of the performance
of the adaptive camber airfoil, as its load reduction capabilities depend largely on the

amplitude and the phase of the trailing flap deflection.

Cr

Jie N i WAy A e ;)
U ,

Figure 3.10.: Transfer functions in the aeroelastic system of the adaptive camber airfoil. The
aeroelastic transfer function hpe connects the adaptive camber airfoil’s motion response to
the fluctuating angle of attack. The load response is described by the aerodynamic transfer
function h e

For an adaptive camber airfoil fixed in a wind tunnel and submitted to a sinusoidal
vertical gust, these three general transfer functions can be simplified. In order to
facilitate a later comparison with experimental results, the notation is adapted to
match the experimental notation. As the only considered excitation e is the excitation
due to a gust, the index g’ is omitted for clarity.

Transfer Function of the Load on a Rigid Airfoil of a Certain Shape

The aerodynamic transfer function h. ¢ (Spiegelberg [88], p. 83) connects the non-
dimensional aerodynamic forces due to a sinusoidal gust ¢, to the corresponding
sinusoidal gust @, on an airfoil with a certain shape.
b
Qg

Reye = (3.12)
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For the assessment of the adaptive camber airfoil in terms of gust load reduction, only
the normal force is considered, and c, that comprises force and moment coefficients,

reduces to the lift coefficient Cy.

CL rigid

hcgg — hL,rigid =
Qg

(3.13)
hi rigia 1 a function of the reduced frequency, the elastic axis and the airfoil shape.
In the case of an airfoil with leading and trailing flap, the airfoil shape depends on
the flap length and the flap deflections. If the flaps are set at y = 0°, equation 3.12 is
connected to the Sears function S (see Sears [83] or section 3.2.2) by

CL hrrigia M rigid

= 0y (9Cj9a) ~ aCLjaa  2m

(3.14)
where the lift curve slope is dCy./d o = 27 according to steady thin airfoil theory.

Transfer Function of Motion

The aeroelastic transfer function hg (Spiegelberg [88], p. 87) connects the response
of the airfoil’s degree of freedom p (plunge, pitch and flaps) to the excitatory gust
angle of attack o and is given as

~ ~ ~\ —1
By = (~0 N +i0" D+ K hee (") (3.15)

Retaining the formulation of Spiegelberg, the pitching eigenfrequency @, is used
to non-dimensionalize the equations of motion. U* = U /b is the reduced free-
stream velocity, ®" = @/®, is the non-dimensional excitation frequency and b is
half of the airfoil’s chord length c. M, D and K are the structural mass, damping
and stiffness matrices of the system, respectively. The denominator on the right side
(—=n2M + inD + K) takes the classical form of the transfer function of a linear
dynamical system. This highlights the influence of the structural parameters. h.,
is the aerodynamic transfer function of the load for an airfoil of a certain shape, as
defined above. Scaled with the dynamic pressure, k., (U *)2 represents the influence
of the aerodynamic properties on the adaptive camber airfoil’s transfer function of
motion. If the pitching and plunging degree of freedom are blocked, the vector p
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reduces to the flapping degree of freedom, represented by the trailing flap angle y
and the transfer function of motion can than be written as

o (3.16)

Transfer Function of the Load on the Adaptive Camber Airfoil

The aeroelastic transfer function h. o (Spiegelberg [88], p. 92) connects the dimen-
sionless aerodynamic forces on the adaptive camber airfoil to the gust angle of attack,
while taking the deformation of the airfoil into account. It is defined as

heg = Heyphpg + heyg (3.17)

where H,, is a matrix of transfer functions that connects the aerodynamic forces to
the motion of the airfoil. Most entries of H, cannot be accessed in the performed
experiments. Considering only the lift response to the flap degree of freedom, H,
is reduced to C—YL The transfer function of motion hye reduces to /iy and the aerody-
namic transfer function hcgg reduces to Ay sigid as described above. The load response
of the adaptive camber airfoil can than be written as

CL,adaptive

o (3.18)

CL
thg — hL,adaptive = 7h'y +hL,rigid =
Where C—yL h., represents the load response to the flap motion due to the excitatory gust
and Ay igid is the transfer function of the load for a certain airfoil configuration, as
described above. The adaptive camber airfoil’s load response can thus be described
by the sum of the aerodynamic forces due to the deformation of the airfoil and the

aerodynamic forces on the airfoil itself.

3.2.4. 2" Order Solutions for the Rigid Airfoil

First-order transfer functions represent a thin flat plate without angle of attack at low
speeds reasonably well. In most engineering applications however, these assump-
tions are violated. One important limitation is the assumption of a spatially constant
steady velocity field. The physical origin of this non-uniform flow fields ranges from
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shock waves in transonic flows over separated flows to the mere presence of a lifting
airfoil. One possibility to account for the non-uniform steady velocity field are time
linearized models, their solutions are referred to as 2" order transfer functions.
Figure 3.11 graphically illustrates the differences between the assumptions leading
to first- and second-order transfer functions.

( 1st order j /( 2nd order )
= U\
M %\

uniform constant velocity field spatial variable velocity field

unsteady velocity field uncoupled distorted perturbation

(S (S

Figure 3.11.: Illustration of the different assumptions leading to first and second-order transfer
functions. First-order transfer functions assume a spatially constant steady flow solution
Uo. Second-order transfer functions account for the distortion of the steady flow solution,
for example due to the presence of a lifting airfoil.

First-order theories assume that the steady surrounding flow and the unsteady pertur-
bations are not influenced by one another. The individual solutions of the surround-
ing flow and the perturbations are summed up to obtain the solution of the combined
problem. Second-order theories are motivated by the idea that the steady velocity
field around an airfoil couples back on a superimposed perturbation. If a pertur-
bation passes through such a spatially variable velocity field, its characteristics are
altered. Retaining the restrictions of small perturbations and potential flow assump-
tions, second-order solutions can be obtained by a combination of a solution for the
spatially variable steady flow field and a perturbation approach (see e.g. Dowell and
Hall [22], p. 453). Closed form solutions of second-order are more challenging to
find and to some extend more complex in implementation than first-order models.
Still, they are cheap with respect to computing power. Numerous second-order solu-
tions have been derived for transonic flows and the associated compression shock and
are widely accepted in the community. For the case of a lifting airfoil, only few and
little noticed theories exist, although the physical motivation is identical: The pres-
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ence of a lifting airfoil causes an acceleration of the flow on the suction side of the
airfoil and a deceleration on the pressure side. An oncoming velocity perturbation
propagates faster over the suction side, leading to an increased wavelength, com-
pared to the pressure side. The sinusoidal shape is distorted. The coupling between
the airfoil thickness and the oncoming gust was partially accounted for by Horlock
[37]. He extended the solution of the Sears problem to a fluctuation in mainstream
direction. Investigating the transfer functions for a flat plate under sinusoidal vertical
and horizontal gusts, he found that a horizontal gust has only an influence on the air-
foil response if the airfoil possesses a mean angle of attack. The influence of a small
camber was added to Horlock’s extension by Naumann and Yeh [72]. Goldstein and
Atassi [29] accounted for the dependence of the fluctuating lift on the wavenumber
of the gust in the direction perpendicular to the airfoil, caused by the distortion of
the initial gust. For a flat plate of zero thickness, Goldstein’s theory leads to a closed
form solution that consists of a simple but important correction of Sears function.
Atassi [4] used these results to derive specific lift formulas for an airfoil with zero
thickness, camber and mean angle of attack. The airfoil is submitted to a velocity
perturbation with vertical and horizontal components of the respective reduced fre-
quencies k1 and kp. Atassi’s closed form solution of the transfer function

L
h= Ldy“ = ho+ 0 - hg +otm-hy, (3.19)
qs

can be constructed by linear superposition of the effects of airfoil thickness, camber
am and angle of attack o3, despite the non-linearity of the underlying theory. The
effect of airfoil thickness /¢ is found to be proportional to the Sears function S.

ho = %S(kl) (3.20)

with k being defined as k = k| + ik>. The influence of camber 4,, and angle of attack
hg depend in a complex way on the Sears, Hankel and Bessel functions, defined in
terms of the reduced frequencies k| and k», as well as k| and k, themselves.

hg = f(S(k1),k1,k2), h = f(S(k1), k1, k2) (3.21)

For explicit formulas, the reader is referred to Atassi [4], p.116.
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3.2.5. Literature Review of Experimental Investigations

Despite the extensive use of first-order transfer functions in engineering applica-
tions, very little experimental validation has been performed. This section provides
an overview of a thorough research of relevant literature on this topic. For an air-
foil oscillating in pitch and/or plunge, the so-called Theodorsen problem, a hand
full of experiments were performed in the middle of the 20/ century. These exper-
iments aimed to experimentally verify the Theodorsen function, which is the first-
order solution to this problem. Second-order solutions of the Theodorsen problem,
namely for transonic flows, became popular in the 1980s and a couple of validation
experiments were performed at this time. While measuring transient forces on an
oscillating airfoil is a difficult task, generating repeatable two-dimensional fluctuat-
ing inflow is even more challenging. Accordingly fewer attempts to experimentally
verify of the so-called Sears problem, an airfoil encountering a sinusoidal vertical
gust, have been performed. Experimental work concerned with the Theodorsen prob-
lem is discussed first, followed by an overview of the experimental validation of the
Sears problem. The different objectives, investigated parameters and setups of the
experiments make a direct comparison of the results difficult. In order to provide an

overview and give orientation, a table summarizes the discussed work.

Theodorsen problem of an oscillating airfoil

Table 3.2 summarizes the work discussed on the experimental validation of the
Theodorsen problem. The first two columns give information about the author and
the experiment. The last two columns comment on the agreement of the obtained
results with the Theodorsen function in terms of magnitude and phase.

In 1939, Silverstein and Joyner [87] investigated the phase of the dynamic lift re-
sponse of a symmetric two-dimensional airfoil of 0.127m (5in) chord and 18 %
thickness. The airfoil was pitched around its quarter chord with a reduced frequency
of 0.06 < k < 2. According to Theodorsen, the dynamic lift of an airfoil in this setup
lags the excitation for small reduced frequencies. Then a change in phase occurs at
k = 0.15 and the unsteady lift leads the excitation for higher reduced frequencies.
Silverstein found acceptable agreement with theory for higher reduced frequencies
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Table 3.2.: Overview of the experimental investigations on pitching and plunging airfoils. The
last two columns indicate agreement with the Theodorsen function.

Author Exp. setup ~ Parameter Magnitude Phase
Silverstein ~ <4_, '¥% k=0.06—2 notinvestigated underpredicted
1 939 %lch
Reid 0de 1% 0<k<0.7 ok ok

= . . .
1940 0.7<k opposite opposite
Bratt pitching " "

SSiech opposite opposite

1945 PP moment PP PP
Halfmann . pure

0.37¢ Bﬁ:g Eilfnge . Ok Ok
1952 12% combined motion
Rainey % small ¢, ok ok
1957 TP high o, opposite opposite
DaViS 0.25¢ 10%
1957 =, lranssonic opposite opposite

above k = 0.2. For low excitation frequencies, where theory predicts a lag of the
unsteady lift, he found the unsteady lift to lead. A lag was never observed in his
experiments.

One year later, Reid [78] pitched four NACA 0015 profiles of different chord length
and elastic axis with an oscillation amplitude of £2° and oscillation frequencies
between 6.66< f <10Hz. The reduced frequency was varied by changing the os-
cillation frequency, chord length and inflow speed. For reduced frequencies above
k = 0.7, he found rather good quantitative agreement of both the magnitude and the
phase of the dynamic lift response. Below reduced frequencies of k = 0.7, magnitude
and phase of the dynamic lift response varied in a sense opposite to that predicted by
linear theory.

In 1945, Bratt [12] investigated the effect of mean angle of attack, oscillation ampli-
tude, shape and aspect ratio on the dynamic response of the pitching moment. He did
not comment on the lift response, but found substantial quantitative and qualitative
discrepancies to linear theory especially at higher mean angles of attack and high

38



oscillation amplitudes for the pitching moment response.

In 1952, Halfmann [31] examined a two-dimensional NACA 0012 airfoil of 0.305 m
(1ft) chord and 0.61 m (2 ft) span in pure pitch, pure plunge, and combined pitch/
plunge motion with and without a mean angle of attack. The airfoil was pitched
around its 0.37c axis with an oscillation amplitude of £6.7 “and +13.5° at reduced
frequencies between 0.05 < k < 0.46. For the pure motions, Halfmann observed
good agreement of theoretical and experimental data, with larger deviations for small
reduced frequencies.

In 1957 Rainey [77] oscillated a two-dimensional NACA 65A010 airfoil in pitch
around its mid-chord and reported on the magnitude and phase of the dynamic lift
and moment response. The reduced frequency was varied between 0.2 < k < 0.63 at
Mach numbers of M = 0.35 and 0.7 and different mean angles of attack. He observed
a clear dependence of the transfer functions on the Mach number and the mean an-
gle of attack, which is not accounted for in first-order theory. The best agreement
of experiments and theory was observed for small Mach numbers and low mean
angles of attack in both phase and magnitude of the transfer functions. For high
mean angles of attack above ¢, = 4°, the experimentally derived transfer functions
showed a behavior inverse to the theoretical transfer functions of Theodorsen. While
the magnitude of the unsteady lift was supposed to decrease with increasing reduced
frequency, Rainey observed a significant increase. The phase, which is supposed to
change from a lag to a lead at kK = 0.25, changed from a lead to a lag. At high Mach
numbers, the qualitative behavior of the transfer functions was acceptable for small
angles of attack, but systematically under predicted by theory.

Taking into account the effects of compressibility, Leishman [62] compared impulse
response functions of second-order of the normal force and pitching moment to ex-
perimental data originating from different authors. The experimental data depended
significantly on the airfoil shape and Mach number. Even though his second-order
transfer functions are not of closed form and were tuned with experimental data, he
observed a significant discrepancy between theory and experiment, especially at low
reduced frequencies.

Davis and Malcolm [20] examined an oscillating NACA 64A010 airfoil under tran-
sonic conditions for low reduced frequencies below k = 0.4 to investigate the effect
of compressibility on transfer functions. The airfoil was pitched around its quarter
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chord with an amplitude of 1 ° about a mean angle of attack of ¢, =4° and a Mach
number of M = 0.8. The experimental transfer functions differed significantly from
the theoretical first-order functions and Davis and Malcolm underlined the impor-

tance of Mach number effects.

A comparison among the different experiments is difficult due to differences in the
experimental setups such as airfoil shape (thickness and camber), type of motion
(pitch, plunge or combined), mean incidence angle, amplitude of oscillation, the lo-
cation of the elastic axis, aspect ratio, Reynolds number and Mach number. Nev-
ertheless, some overall conclusions can be drawn. In none of the experiments does
the experimentally derived transfer function match the theoretical transfer function
quantitatively and qualitatively in amplitude and phase. The best agreement is found
by Halfmann, but even his data differs by about 30 % from theoretical values. The
largest discrepancies are observed at small reduced frequencies. Generally, the agree-
ment between theory and experiment is best for small mean angles, moderate reduced
frequencies and low Mach numbers. In the case of a lifting airfoil with ¢ # 0°, ex-
perimentally obtained transfer functions show a completely different behavior than
the one obtained by first-order approximations.

Sears Problem of an oscillating inflow

Table 3.3 summarizes the discussed work on the experimental validation of the Sears
problem. As above, the first two columns provide information on the author and the
experimental setup. The last two columns state on the general agreement of the ex-
perimental results with the Sears function in terms of magnitude and phase.
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Table 3.3.: Overview of the experimental investigations on airfoils in an oscillating air stream.
The last two columns state on the agreement with the Sears function.

Author Exp. setup Parameter Magnitude Phase
Commerford C e under-
Oful k=39 ; ok
1973 predicted
Larose o ¢ 0.1< k < 07 € not
oG . . opposite ] )
1999 % 8(‘ 3’ - PP investigated
Hatakana oy overpredicted not
0.01< k< 0.8 P ot
2002 S —— opposite investigated

The first attempt to verify the Sears function was carried out by Commerford and
Carta [18] in 1973. They used the wake of a cylinder to approximate a sinusoidal
vertical gust. The vortex shedding frequency of a cylinder is proportional to the in-
flow velocity, hence the reduced frequency is fixed for one setup (k = 3.9, in their
case). Phase and magnitude of the dynamic lift response for this reduced frequency
were taken at different mean angles of attack. The magnitude was underpredicted by
theory; the error was in the order of 50 - 100 %, the phase agreed better. No correla-
tion of the phase or magnitude with the mean angle of attack was observed.

In civil engineering gust loadings and aeroelastic response are of importance for the
stability of buildings. Typically, structures used in civil engineering are bluff bodies
such as cylinders or building blocks, which do not fall in the category of slender,
lifting surfaces. Bridge decks however can be abstracted as a non-symmetric edgy
airfoil. One famous example, illustrating that these structures are also subject of
aeroelastic phenomena such as flutter is the collapse of the Tacoma Narrows Bridge
in 1940. Motivated by the need for a correct modeling of gust loads on bridge decks,
Larose [58] measured the aeroelastic response of such a bridge deck in 1999. The
Deck, resembling a tick and edgy airfoil, was mounted on a wind tunnel balance and
submitted to turbulent inflow, generated upstream by large spires and a fixed grid.
The transfer function, referred to as admittance in the community of civil engineer-
ing, was derived from a power spectra. Hence, only a comparison of the magnitude
is possible, phase information is lost. Laroses experimental data showed a behavior
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not predicted by theory. While the Sears function decreases steadily with increas-
ing frequency, the experimental values increased with increasing frequency until a
maximum at k = 0.02 was reached and decreased afterwards.

Also motivated by bridges Hatanaka and Tanaka [33] sought to verify the Sears func-
tion in 2002.They submitted a two-dimensional NACA 0012 airfoil and a flat box
bridge deck to large scale turbulence employing an active gust generator. Comparing
the magnitude of the admittance functions for very low reduced frequencies of 0.01
< k < 0.8 to the theoretical values of the Sears function, they found the experimen-
tal values to be under predicted by theory, especially for low reduced frequencies.
In the case of the bridge deck, they even observed an increase in magnitude above
the quasi-steady value of 1, while theory always predicts dynamic values inferior to

their quasi-steady counterpart, due to the positive aerodynamic damping of the wake.

Despite the small number of data sets, it can be concluded that linear first-order trans-
fer functions do not account for all effects contributing to the dynamic lift response
of an airfoil in an oscillating flow. In the case of symmetric non-lifting surfaces, the-
ory and experiments agree reasonably well. Non-symmetric, lifting surfaces are not
captured by first-order theory.

3.3. Detached Flow Regime

In attached flow, the unsteady airfoil response depends only on the reduced frequency
k and can be described by linear transfer functions. Increasing the mean angle of at-
tack such that the fluctuating angle of attack surpasses the static stall angle results
in a domination of viscous forces over pressure forces. A non-linear dependence
of the airfoil response on the perturbation, accompanied by high force excursions,
is observed. This phenomenon is commonly referred to as dynamic stall and the
main events during the dynamic stall cycle are explained in subsection 3.3.1. It has
been known for a long time that animals exploit dynamic stall during flapping flight.
For some technical applications such as micro air vehicles, exploiting the high lift
might be advantageous. If dynamic stall occurs unintentionally, as it can be the case
on helicopter or wind turbine blades, the high fluctuating loads can be destructive.
For this reason, a correct prediction of the dynamic loads is of interest for industry
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and research. Current approaches to model dynamic stall are briefly summarized in
section 3.3.1. In contrast to the few systematic experimental investigations of the dy-
namic airfoil response in attached flow regime that were presented in section 3.2.5,
numerous experimental studies of the dynamic airfoil response above the static stall
angle have been carried out. A review of experimental investigations focusing on
aspects relevant to this study is given in subsection 3.3.2 and parameters that influ-
ence vortex behavior during dynamic stall are presented. The section closes with a
discussion of prospective implications for the adaptive camber airfoil regarding
dynamic stall.

3.3.1. Dynamic Stall Cycle

In 1932, Kramer [54] was the first to observe that an airfoil generates higher lift under
dynamic conditions for a short period of time than it does under steady conditions. It
took until the 1970s for Carr, McAlister and McCroskey [15,16,69] to relate the force
history on a dynamically oscillating airfoil to the presence of vortical structures.
Pitching a NACA 0012 airfoil dynamically above its static stall angle, they observed
the cycle of events schematically displayed in Figure 3.12:

At stage @, flow reversal appears at the airfoil’s surface and large eddies begin to
form in the boundary-layer. The lift continues to increase at a constant rate. At @,
flow reversal spreads over the airfoil and a coherent vortex forms near the leading-
edge. During @, this leading-edge vortex (LEV) moves towards the trailing-edge.
The airfoil’s lift curve slope increases and exceeds the static value of 27. At @
the vortex passes the airfoil’s trailing-edge and a rapid lift breakdown is observed,
followed by full stall at @ During downstroke @, the flow begins to reattach and
the lift value approaches its initial value, forming a hysteresis loop.

In their work, Carr, McAlister and McCroskey investigated different airfoil geome-
tries, Reynolds numbers, oscillation frequencies and oscillation amplitudes. Macro-
scopically, they observed similar force histories over a wide range of parameters,
which lead Carr to his vision: "to introduce the possibility of a method that may al-
low the prediction of engineering parameters without exhaustive dynamic testing of
an airfoil’. However, Carr already pointed out that although force cycles and macro-
scopic vortex behavior are similar, the underlying physical mechanisms of formation,
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Figure 3.12.: Dynamic stall cycle on a continuously pitching NACA 0012 airfoil, adapted
from Carr et al. [15]. The left side shows the quantitative behavior of steady (rigid line)
and dynamic lift (dotted line). The corresponding flow structures for typical points of the
dynamic stall cycle are depicted on the right.

growth, propagation and detachment might differ significantly.

Modeling of Dynamic Stall

During dynamic stall, reversed flow and vortical structures appear and viscous forces
become predominant. The potential flow approximations that lead to the derivation
of thin airfoil theory and transfer functions in attached flow regime, cf. section 3.2, p.
22, are no longer justified. Numerous extensions to attached thin airfoil theory that
phenomenologically model dynamic stall exist. Larsen et al. [59] categorize these
attempts in three groups:

e Models that take basic physical relationships into account,
e models that modify the lift curve in a certain manner and
e models that modify the effective angle of attack.

Dynamic stall is a highly complex phenomenon that still lacks full understanding.
Its characteristics depend on various parameters and none of the developed dynamic
stall models is universally valid. All have to be tuned with a significant number of
empirical coefficients obtained from experiments. From these semi-empirical dy-
namic stall models, the Beddoes-Leishman model [65], developed by Leishman and
Beddoes, is the most established. Like most dynamic stall models, the Beddoes-
Leishman model was initially developed to predict fluctuating loads on helicopter
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blades. Wind turbines operate at smaller Mach number and have thicker airfoil pro-
files than helicopters. Momentum effects due to compressibility and leading-edge
separation can be neglected. Hansen et al. [32] adapted the Beddoes-Leishman model
for wind turbine applications. For deformable airfoils, Andersen et al. [2] coupled
Hansen’s model to Gaunaa’s [26] thin airfoil solution of an airfoil with deformable
trailing-edge in unsteady flow. For an airfoil with adaptive camber mechanism, no
dynamic stall model exists so far. Holierhoek et al. [36] and Larsen et al. [59] com-
pare different semi-empirical dynamic stall models, amongst them the Beddoes-
Leishman model. Although tuned with experimental coefficients, none of the semi-
empirical dynamic stall models captured the phenomenon accurately.

Contrary to semi-empirical models, higher order numerics do not have to be tuned
with experimental coefficients. Kitsios et al. [49] compared two-dimensional sim-
ulations and three-dimensional LES models. They found that the less cost inten-
sive two-dimensional calculations are not capable of resolving turbulent separation
during dynamic stall adequately. LES models show better agreement with experi-
mental observations, but the need of a third dimension makes them more costly in
terms of computing time. Ekaterinaris and Platzer [23] reviewed commonly used
LES schemes and their solutions and found that the obtained lift depends on the
accurate prediction of laminar to turbulent boundary-layer transition as well as the
point of boundary-layer separation. The underlying physics of these processes are
yet not completely understood, which encourages experimentalists to investigate the
subject.

3.3.2. Literature Review of Experimental Investigations
Influencing Parameters of Coherent Vortex Development

Several different vortex shedding mechanisms exist and their occurrence depends on
a set of parameters which influence and depend on each other, namely the frequency
and the amplitude of the airfoil oscillation, the kind of motion (pitch, plunge, com-
bined, rotational), the Reynolds number, the two-dimensionality of the problem (in-
teraction with tip vortices), the time history (interaction with wake vortices), the air-
foil shape (thickness and camber), leading-edge geometry and the two-dimensionality
of the flow. Numerous studies have been performed, investigating the influence of
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Figure 3.13.: Schematic overview of parameters governing the dynamic stall cycle in the two-
dimensional case: Vortex formation is initialized by boundary-layer separation or a laminar
separation bubble. The shear layer rolls up and feeds into a LEV. The LEV grows at a rate
I' and accumulates circulation I" as it convects downstream with the convection velocity
U,. The vortex detaches by boundary-layer eruption or by bluff body mechanism at its
maximum circulation I'y,x

more or less isolated parameters on more or less isolated quantities during one of the
regimes. Shyy et al. [86] give a good overview of research performed before 2010
on the subject for the flapping wing cases. Akkala [1] gives an extensive review of
recent research on rigid airfoils. Some basic relationships and key findings necessary
to understand the complexity of the subject are visualized in Figure 3.13. The vortex
life cycle can be roughly divided into four stages: vortex formation, growth, convec-
tion and detachment. Basic physical relationships and influence parameters during
each of the stages are summarized below.

It is common understanding that vortex formation occurs at the leading-edge due
to a roll up of the shear layer. The shear layer roll up is contributed to two different
mechanisms. According to Carr et al. [15] and McCroskey et al. [69], the airfoil’s
leading-edge shape and the airfoil’s camber determine which vortex formation mech-
anism takes place. They investigated a sinusoidally pitching NACA 0012 with dif-
ferent leading-edge geometries. Shear layer roll up due to boundary-layer separation
and due to the burst of a laminar separation bubble were observed. The boundary-
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layer separation mechanism is the most commonly observed reason for shear layer
roll up. As the angle of attack increases, the stagnation point moves on the pressure
side of the airfoil away form the leading-edge. The outer flow has to overcome a
higher pressure gradient when passing the leading-edge on the suction side. When
the momentum of the boundary-layer is not sufficient to overcome the pressure gra-
dient, flow reversal occurs and a coherent LEV starts to form at the leading-edge.
The second mechanism leading to shear layer roll up is the separation bubble mech-
anism. Theoretical considerations to this mechanism are given by Cebeci et al. [17]:
the outer flow adapts almost instantaneously (with the speed of sound) to the higher
pressure gradient, since it can be seen as non-viscous. The boundary-layer around
the airfoil however is dominated by viscous effects and reacts much slower to the
changes imposed by the incoming flow and a separation bubble is formed out of
which the LEV develops. In both mechanisms, the shear layer strength and pressure
difference around the airfoil’s leading-edge are key parameters.

During vortex convection from the airfoil’s leading-edge towards its rear part, the
LEV remains connected to the leading-edge via the feeding shear layer. The convec-
tion of the LEV is slower than the mainstream velocity U... According to McCroskey
et al. [69], the convection velocity is in the order of U, ~1/3-1/4 U.. A simple for-
mula for the convection velocity is given by Doligalski et al. [21], obtained from the
convection of an infinite vortex line over an infinite wall U, = U — %, where a is
the distance of the LEV to the wall. The convection velocity depends thus mainly on
the inflow velocity U.. and the circulation of the vortex I'.

The circulation of the LEV T is determined by the vortex growth rate I". It is com-
monly accepted that the main source of vortex growth is the shear layer that feeds
into the LEV and its strength and thickness are key parameters that influence vortex
growth. Already Carr et al. [16] anticipated the importance of the relationship be-
tween the feeding shear layer in the dynamic stall cycle: *The mechanism by which
the boundary-layer vorticity transfers into the tight, strong vortex ... is probably the
key to stall modification’. Widmann and Tropea [105] used the Falkner-Skan solu-
tion to estimate the shear layer thickness 6 and found the vortex growth rate to scale
with the integrated vorticity flux over the shear layer thickness. Other authors found
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the feeding shear layer to be an important, but not the only source that transfers
vorticity into the leading-edge vortex. Wojcik and Buchholz [108] performed a flux
analysis on a rotating blade. They concluded that opposite sign vorticity is drawn
into the LEV from the surface on a rotating blade, which regulates LEV circulation
and causes the vortex to remain close to the airfoil’s surface. Since the flow on a
rotating blade is three dimensional by definition, Wojcik and Buchholz did not fur-
ther investigate out-of-plane vorticity flux. Panah et al. [73] confirmed the findings
of Wojcik and Buchholz and quantified the flux of negative vorticity to be approxi-
mately half of the positive vorticity flux coming from the feeding shear layer. They
additionally found that there is a small but non-negligible out-of-plane vorticity flux
on two-dimensional plunging flat plates, especially at high reduced frequencies of
up to k =2.09.

At some point, the LEV is cut from the feeding shear layer and vortex detach-
ment takes place. Different mechanisms leading to vortex detachment exist. Their
occurrence depends mainly on the ratio of the convection velocity U, of the LEV to
the stroke period of the airfoil. The definition of the reduced frequency illustrates the
problem. The reduced frequency relates the convection time of a particle in the undis-
turbed outer flow to the time of one airfoil oscillation. For high reduced frequencies,
the airfoil performs several oscillations, while the particle passes the airfoil. For low
reduced frequencies, the particle ’sees’ only a small part of the oscillating motion,
while it passes the airfoil. Similar considerations can be made for the LEV that con-
vects with a velocity U, < U. over the airfoil. For high oscillation frequencies, the
vortex has only convected over a small part when the angle of attack is inverted. For
low oscillation frequencies, the vortex reaches the TE before the angle of attack is
inverted. Mulleners and Raffel [71] performed high speed PIV on a harmonically
pitching airfoil. They found two different regimes, dependent on whether the LEV
can reach the airfoil’s trailing-edge or not. Light dynamic stall was observed if the
angle of attack was inverted before vortex reaches trailing-edge. Deep dynamic stall
was observed if the LEV had time to reach the airfoil’s trailing-edge. The physi-
cal reason for this phenomena was studied in more detail by Widmann and Tropea
[105]. They investigated pitching and plunging flat plate airfoils at constant reduced
frequency, Strouhal number and Reynolds number, with variable chord length. Two

48



detachment mechanisms were found, the bluff body mechanism and the boundary-
layer eruption. In the first case, the vortex is able to reach the plate’s trailing-edge,
where it interacts with a counter rotating trailing-edge vortex and detaches. This
regime was found for low reduced frequencies, where the vortex had enough time
during downstroke to reach the trailing-edge. At high reduced frequencies, where
the vortex was too slow to reach the trailing-edge, the boundary-layer eruption pro-
cess was observed.

The maximal circulation I',,x of a LEV is determined by the vortex growth rate
and the time until vortex detachment occurs. In the case of bluff body detachment,
Widmann [105] found the chord length c of the flat plate airfoil to be the limiting
factor in vortex growth. In this case, [, scales with I" and c . If the vortex detaches
via boundary-layer eruption, the limiting factor in vortex growth is the time of vortex
detachment. According to Gharib et al. [28], the time of vortex detachment can be
approximated by the maximal dimensionless formation time 7. A forming vortex
accepts vorticity flux until a maximal dimensionless formation time of 7" = CTIZ/ is
reached. C is a constant factor depending on the physical configuration of the vortex
generator, AU quantifies the strength of the shear layer and D is a characteristic
length scale. For a plunging plate, a maximal dimensionless formation time of 7" =
4 has been reported. Beyond this time, additional vorticity flux is rejected and a
secondary vortex forms instead. These considerations are confirmed by Rival et al.
[80], who found vortex formation times of 4.4 < T < 5.0 for modified and pure
sinusoidal plunging motions of an asymmetric SD7003 airfoil. If the vortex detaches

by boundary-layer eruption, I'nax scales hence with I and 7.

The Relationship Between Coherent Vortices and Aerodynamic Forces

Ever since Carr, McAlister and McCroskey’s [15, 16,69] investigations in the 1970s,
agreement exists that the force excursion during dynamic stall is caused by the pres-
ence of vortical structures. The exact relationship between vortical structures and
dynamic lift has only recently been quantified. Jones and Babinsky [44] related the
normalized circulation of coherent vortical structures on an unsteady rotating flat

plate wing to measured lift and drag forces. They found a proportionality between the
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unsteady lift and the normalized circulation of the coherent LEV for all investigated
wing kinematics. Beyond the static stall angle, when the first LEV is formed, lift
and normalized circulation increase linearly. After the first LEV separates, both lift
and normalized circulation drop rapidly. A second coherent LEV starts to form. Lift
and normalized circulation increase again, but with a smaller rate and to a smaller
maximal value than in the first vortex shedding cycle. Only very recently, Akkala [1]
combined time resolved PIV and surface pressure measurements to relate the vor-
tical structures to the pressure distribution exhibited by a plunging plate. He found
the LEV to have a very localized influence on the lift. The LEV causes a suction
peak underneath its center which enhances as the LEV grows in size and accumu-
lates circulation. The suction peak propagates downstream towards the trailing-edge
along with the convecting LEV. The suction peak disappears as the LEV detaches
and is drawn away by the outer flow. Akkala showed the lift due to the presence of
the vortex to be about 40 % of the total lift and to be produced very locally, in the
direct vincinity of the LEV.

Understanding and effective manipulation of vortex life, its formation, its growth and
its maximal size during dynamic stall can be the key to lift control on dynamically
oscillating airfoils.

3.3.3. Implications for the Adaptive Camber Airfoil

Significant differences of the dynamic stall cycle on the rigid and the adaptive cam-
ber airfoil are expected only if the aerodynamic forces are high enough to actuate
the adaptive camber mechanism. According to Akkala [1] the LEV induces a very
localized suction peak in its vicinity that contributes approximately 40 % to the to-
tal dynamic lift. The adaptive camber airfoil is designed to operate in the attached
flow regime. Since the dynamic lift in detached flow is typically higher than lift in
attached flow and the LEV is formed on the leading-edge, the suction peak induced
by the LEV is presumed to be sufficiently high to actuate the adaptive camber mech-
anism. The key parameter in LEV formation, growth and convection during dynamic
stall is the feeding shear layer. This feeding shear layer is manipulated by the adap-
tive camber airfoil and its rotatable leading-edge. The no-slip condition alters the
velocity difference between airfoil surface and outer flow, which is an important fac-
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tor in shear layer strength. Additionally, the combined flap motion alters the airfoil’s
camber, which alters the pressure gradient over the airfoil. It can thus be anticipated
that a rotating leading-edge and the change of camber will have significant impact
on all stages in the LEV life cycle.
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4. Sinusoidal Vertical Gust Experiment

In this thesis, two different wind tunnel experiments are performed to assess the
adaptive camber airfoil’s gust load alleviation performance under unsteady condi-
tions. This chapter is concerned with the first experiment, the sinusoidal vertical gust
encounter. The experimental approach is schematically visualized in Figure 4.1.

Objectives
3D flow situation
attached detached
horizontal
velocity deficit individual dyn. | characterisation of individual dynamic
DAl . . response ](m‘d rcs.ponsc. Comp:anmn ln? Sears
ow situation — function and transfer functions
. provided by Spiegelberg [88].
vertical gust
load ) , )
Evaluation of gust load reduction over a wide range of unsteady flow
Exp. setup reduction parameters: Reduced frequency, perturbation height, reduced stiffness,
. . mean angle of attack.
active grid ===

Figure 4.1.: Schematic visualization of the pursued experimental approach.

In the rotating frame of a wind turbine a horizontal velocity deficit expresses itself
as a vertical gust on the blade section. Horizontal velocity deficits are frequently
encountered by wind turbine blades. The cyclic passage of the blade through the at-
mospheric boundary-layer or through the tower shadow corresponds to a horizontal
velocity deficit. Also, horizontal wind gusts or large scale turbulence provoke these
kind of perturbations that are responsible for a majority of the fatigue loading. Ac-
cordingly, the sinusoidal vertical gust presents an important test case for the gust
load alleviation performance on the two-dimensional adaptive camber airfoil. The
first objective of this chapter is to

e evaluate the adaptive camber airfoil’s gust load alleviation performance over a
wide range of unsteady flow parameters.
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All experiments are performed in the University of Oldenburg’s active grid wind tun-
nel. This facility offers the unique opportunity to generate vertical sinusoidal gusts of
variable wavelength. The reduced frequency of the perturbation can be varied while
keeping all other parameters constant. Thereby, the influence of gust frequency, gust
amplitude, reduced system stiffness and mean angle of attack can be studied indi-
vidually. In attached flow conditions, the sinusoidal vertical gust encounter of a rigid
airfoil corresponds to the theoretical formulation of the Sears problem. It is discussed
in section 3.2.5, p. 37 that the corresponding transfer function, the Sears function,
still lacks systematic experimental validation in terms of frequency dependence. The
same holds for the transfer function of the adaptive camber airfoil encountering a
sinusoidal vertical gust given by Spiegelberg [88] and presented in section 3.2.3, p.
31. The experimental setup offers the opportunity to

o verify the first-order transfer functions of the Sears problem on the rigid and

adaptive camber airfoil in terms of reduced frequency dependence.

The experimental setup, comprising the Oldenburg active grid wind tunnel and the
adaptive camber airfoil model, is presented in section 4.1. A description of the ob-
jectives and investigated parameter space is given in section 4.2, followed by an
explanation of the procedure of data acquisition and reduction in section 4.3. The
obtained experimental results are presented in section 4.4.
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4.1. Experimental Setup

First, the active grid wind tunnel at the university of Oldenburg and the generated
dynamic inflow are presented. Then, the adaptive camber airfoil model used in the

experiments is briefly introduced.

4.1.1. Active Grid Wind Tunnel

/
Ax
v'(x,t)
Us e st Ux W
o v
7 E———
L= U./f o)
active grid ¢ with exicitation frequency f

Figure 4.2.: Top view of the experimental setup: The active grid upstream the test section
allows the generation of sinusoidal vertical gusts of variable amplitude and frequency. An
airfoil equipped with adaptive camber mechanism is installed on a wind tunnel balance
downstream the active grid. The gust angle of attack @, is measured with a cross wire prior
to the airfoil experiments at the airfoil’s leading-edge position (x =0, y =0, z = h/2).

Figure 4.2 shows a schematic overview of the experimental setup. The wind tunnel
has a closed test section of w = 1 m width, # = 0.8 m height and [ = 2.6 m length.
An active grid is installed in front of the test section to generate variable, yet repeat-
able turbulence of large scales. The active grid consists of nine vertical and seven
horizontal axes with square flaps. Each axis is driven individually by a stepper mo-
tor according to a control protocol. More information about the active grid and its
performance is given by Knebel et al. [51]. Only the vertical axes of the active grid
are used to generate two-dimensional periodic fluctuations in V' in y-direction, while
blockage and the mainstream velocity U. in x-direction are kept nearly constant.
The velocity fluctuations, from now on referred to as sinusoidal vertical gust, are

approximated by
V' = Vg sin (27 f1) = Vg sin (ot) 4.1)
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The gust has an amplitude of v, and is uniform in z—direction over the wind tunnel
height. Together with the constant mainstream velocity and a small angle approxi-

mation, this results in sinusoidal, two-dimensional angle of attack variations
o' = Oy sin (27 1) = 0l sin (1) (4.2)

The frequency f of the gust and the angle of attack oscillation coincides with the ex-
citation frequency of the active grid. The angular frequency ® used in the theoretical
deviation of first-order transfer function in section 3.2, p. 22 is related to the exci-
tation frequency of the grid by @ = 27 f. The gust amplitude v, and angle of attack
amplitude 0, depend on the amplitude of the oscillation of the active grid middle axis
and are adjustable by changing the active grid’s control protocol. A two-dimensional
airfoil with adaptive camber mechanism is mounted vertically on a three-component
wind tunnel balance Ax = 1.1 m behind the active grid, reaching from wind tunnel
top to bottom. The airfoil can be rotated around its c/4-axis to change its mean angle
of attack ou,. The total fluctuating angle of attack is then

O = Oy + O = Oy + O Sin (27 f1). (4.3)

All parameters in equation 4.3 (04m, & and f) as well as the inflow velocity Us
can be varied individually. This allows a systematic investigation of the influence
of all parameters on the individual airfoil response and on the gust load alleviation
capabilities of the adaptive camber airfoil.

4.1.2. Adaptive Camber Airfoil

A picture of the adaptive camber airfoil model is shown in Figure 4.3. The airfoil
has a Clark Y section with a chord length of ¢ = 0.18 m and span of s = 0.8 m. It is
manufactured from polyamide by direct laser sintering. The coupling mechanism is
completely incorporated in the airfoil. To avoid very short levers and minimize back-
lash, a two rod coupling system is chosen. The restraining spring system, schemati-
cally shown in Figure 4.4, is realized by tension springs. The total system stiffness k
can be varied from 0 to 23 Nm/rad in 16 discrete steps. The maximal pre-cambering
moment is M, = 2.4 Nm. A detailed report on the construction of the model is given
by Brotz [13]. Two different airfoil configurations are tested, from now on referred
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to as configuration @ and configuration @ Both configurations are schematically
shown in Figure 4.4. Configuration @ has a system stiffness of k = 2.88 N/rad and
a pre-cambering moment of My = 0.28 Nm. When no flow is present, the airfoil has
a maximal cambering of ¥y = 15°, limited by mechanical stoppers. Configuration @
is twice as stiff (x = 5.76 Nm/rad). The springs are mounted in the restraining spring
mechanism in such a way that no pre-cambering moment is exhibited (My = 0 Nm).
Without flow being present, the airfoil has the original Clark Y airfoil shape (y =0°).
The airfoil is equipped with two pressure taps at the suction and pressure side, located
at the leading edge flap at x/c = 0.09. Pressure differences are taken at two spanwise
positions y/s = 0.33 and y/s = 0.66, in order to check on the two-dimensionality of
the flow during the unsteady experiments. Steel tubes are glued underneath the air-
foil’s polyamide skin and pressure taps are drilled through the skin and the steel
tubes. The steel tubes are connected to First Sensor HCL differential pressure sen-
sors via plastic hoses. Pressure sensors connected to the suction side possess a full
scale of 25 mbar, those connected to the pressure side have a 12.5 mbar full scale.
The sensor output signals of 20 mV is amplified to the maximal input of the data
acquisition device with in-house fabricated adjustable amplifiers in order to obtain
maximal resolution. The trailing flap angle 7y serves as a measure for the deformation
of the adaptive camber airfoil and is monitored by an ams AS5162 rotary hall sen-
sor. The sensor provides a linear analog output over a full turn of 360 ° and allows
a programming of start and stop positions in order to increase full scale resolution
for smaller measurement ranges. Start and stop positions are set at the maximal and
minimal flap deflections, to optimally exploit the data acquisition device input range.

Figure 4.3.: Picture of the adaptive camber airfoil model used in the Oldenburg active grid
wind tunnel experiments. The two rod coupling mechanism is chosen to minimize backlash
and is restrained by a spring system (not shown).
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K =5.76 Nm/rad
M, =0Nm

(a) Configuration (a) (b) Configuration (b)

Figure 4.4.: Schematic representation of the adaptive camber airfoil’s restraining spring
system: In configuration (a), the springs are mounted asymmetrically leading to a pre-
cambering of the airfoil. In configuration (b), the springs are mounted symmetrically. No
pre-cambering moment is applied and the adaptive camber airfoil has the original Clark Y
airfoil profile.

4.2. Objectives and Investigated Parameter Space

The active grid wind tunnel offers the unique opportunity to vary individual parame-
ters of the unsteady flow, while keeping all other parameters constant. An extensive
investigation is carried out, varying the mean angle of attack oy, the gust amplitude
ag, the gust frequency f, the inflow velocity U.. and the configuration of the adaptive
camber airfoil’s restoring spring system. The rigid and the adaptive camber airfoil are
submitted to equally fluctuating inflow. The individual airfoil response is assessed
by comparing the dynamic lift response to quasi-steady approximations. The gust
load alleviation potential is assessed by comparing the dynamic lift responses of the
rigid and the adaptive camber airfoil. This section provides an overview of all ex-
perimentally varied parameters. Table 4.1 shows all performed measurements. The
experiments are divided into three sets. Each set is carried out for the rigid and the
adaptive camber airfoil, the corresponding objectives are described below.

Set (1) - Influence of the mean angle of attack o,

In set @ the adaptive camber airfoil is investigated in two different configurations
of the restraining spring system, the suppler and pre-cambered configuration @ and
the stiffer configuration @ without pre-camber. In this set, the airfoils are tested over
the whole range of mean angle of attack ¢, . The mean angle of attack is varied from
-10° < ¢, < 20° in steps of 2° by rotating the airfoil around its c/4 axis. At each
,,, the airfoil is submitted to the same dynamic inflow, keeping the gust amplitude
at ag = 6.2° and gust frequency at f = SHz. This is done for two different inflow
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velocities U = 10m/s and U.. = 15m/s, which leads to two different reduced fre-
quencies k and two different reduced stiffnesses k™ for each adaptive camber airfoil
configuration. The intention of this set is twofold: The theoretical transfer functions
are independent of ¢, due to the linearity of the underlying theory, as discussed in
section 3.2.1. The first intention is to verify this assumption. The second intention
is to test the adaptive camber airfoil’s performance over all possible flow regimes
of attached and detached flow. From the experimental data, three different mean an-
gles are identified that represent different flow regimes: o, = 2°, 8° and 14 °. For
o, = 2°, the total fluctuating angle of attack remains completely below the static
stall angle. For o, = 8°, the total fluctuating angle of attack passes the static stall
angle during each load cycle and for , = 14 ° the fluctuating angle of attack re-
mains almost completely in the region of detached flow. At these three o, further
investigations on the influence of the gust amplitude, excitation frequency and inflow
velocity are carried out.

Set (2) - Influence of the gust amplitude @,

In set @ the influence of the gust amplitude is studied. In the other sets, the ex-
citatory gust amplitude is set to &g = 6.2°. The choice for such a high gust angle
amplitude is motivated by the fact that the adaptive camber airfoil needs a certain
driving aerodynamic moment. The theoretical transfer functions are derived using
linear theory of small perturbations. The theory assumes that a small change in angle
of attack o + &g leads to a change in airfoil response, such that the ratio of excitation
and response stays constant. The theoretical transfer function 4 is thus independent
of the gust amplitude ag. Having this in mind the question arises, whether the as-
sumption of small perturbations is fulfilled for a gust amplitude of ag =6.2° and
whether the experimental airfoil response is also independent of ag. For an airfoil in
pure pitching motion it was shown by Halfmann [31] that the influence of the pitch
amplitude is insignificant compared to the influence of mean angle of attack or air-
foil shape. In fact, he even observed a slightly better agreement with theory for high
pitching amplitudes of ap = 13.5° than for smaller amplitudes of ap =6.7°. For a
vertical gust encounter, no experimental data concerning the influence of the gust
angle amplitude ag is available. To fill this gap, measurement set @ is performed.
At five different gust amplitudes ag =4.5°,5.7°,6.6°,7.7° and 8.5° experiments
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No influence according Influence on parameters Parameters used in

to 1% order theory used in 1% order theory 15 order theory
Mean angle Gust Inflow Gust Reduced Reduced Procedure
Set of attack amplitude velocity frequency frequency stiffness and purpose
o, in[°] @, in[°]  U~in[m/s]  fin[l/s] k= $ in [-] Kkt = ﬁ.wn_wm_ in [-]
o, is varied by
Influence of mean angle of attack ¢, pitching the airfoil
config. (a) | config. (b) around its ¢/4 axis. In
10 0.28 1.5 1 3 linear theory, ¢ has
(D -10:2:20 6.2 5 . "
15 0.19 065 | 13 no influence on the
transfer functions.
Influence of gust amplitude @m @, is varied by
configuration ° omm:mw:m the
10 0.28 L5 oscillation amplitude
43, 8c7 12.5 0.23 0.95 of the active grid. In
@ 2,8, 14 6.6,7.7, 15 5 0.19 0.65 linear theory, mw has
8.5 17.5 0.16 0.48 no influence on the
20 0.14 0.37 transfer functions.
Dependence on excitation frequency f k is varied either by
configuration () changing f or Us.
10 2:1:6 0.11..0.34 1.5 For a distinct Us., the
12.5 2:1:6 0.09 ...0.28 0.95 reduced stiffness k+
@ 2,8, 14 6.2 15 2:1:9 0.08...0.23...0.34 0.65 is constant and the
17.5 2:1:6 0.06...0.19 0.48 influence of f can be
20 2:1:6 0.05...0.17 0.37 studied individually.

Table 4.1.: Overview of the parameter variations during the experimental campaign.
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are carried out at a constant gust frequency of f = SHz. The inflow velocity is var-
ied between 10m/s < U, < 20m/s in steps of 2.5 m/s. This results in five different
reduced frequencies and simultaneously in five different reduced system stiffnesses,
as both variables depend on U...

Set @ - Influence of the Reduced Frequency k&

In set @ the influence of the reduced frequency k is studied. The reduced frequency
is proportional to the ratio of the excitation frequency f and the inflow velocity
U. In the case of a rigid airfoil, the transfer function depends on the reduced fre-
quency only. As long as the ratio f/U., stays constant, the transfer function remains
unchanged. In the case of the adaptive camber airfoil, an additional dependence
of the transfer function on the reduced system stiffness k™ exists and the transfer
function depends on the dynamic pressure. The active grid offers the opportunity
to change f independently from the U.. In this way, the reduced frequency k can
be varied without changing the reduced system stiffness k™, which is convenient
for the assessment of the adaptive camber airfoil. Additionally, the influence of f
and U. on k can be studied individually. To do this, the excitation frequency is
changed from 2Hz < f < 6Hz. This is done for five different inflow velocities of
10m/s < U < 20m/s. For U, = 15m/s, additional measurements at excitation fre-
quencies of up to 9 Hz are performed. In this way, set @ forms a good basis to verify
theoretical transfer functions of the rigid and the adaptive camber airfoil. This is par-
ticularly interesting, as the Sears function and the corresponding transfer function on
the adaptive camber airfoil still lack a systematic experimental validation.

4.3. Data Acquisition and Reduction

Measurements linked to the airfoil (pressure transducers and trailing flap angle) are
collected with a NI 6210 A/D converter, operating at an input range of 5 V. Wind
tunnel data are recorded with a NI 6281 A/D converter and wind tunnel balance data
with a NI 6211 A/D converter. The corresponding measurement uncertainties are
given in appendix A.1. All data are sampled at a sampling frequency of f, = 1000Hz
over a period of T = 30s. For stationary measurements, a simple arithmetic mean

is taken to describe the measuring point. For the dynamic measurements, the post
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processing of the raw data is explained in the following section. In section 4.3.1, the
phase averaging and synchronisation procedure is described. The dynamic airfoil
response is characterized using experimental transfer functions. Their derivation
from experimental data is explained in section 4.3.2. For a quantitative assessment of
the adaptive camber airfoil’s load reduction capabilities, the load reduction factor

is defined in section 4.3.3.

4.3.1. Phase Averaging and Synchronization

The flow behind the active grid is periodic with the excitation frequency f of the
active grid. Even though the repeatability from period to period is good, it is super-
imposed by random processes. To find mean values for one load cycle and to im-
prove the signal-to-noise (SNR) ratio, a phase averaging is applied. Each measured
time series X, sampled at a sampling rate f, over a time interval 7, is divided into N
segments. Each segment has the length 7 = 1/f and comprises one load cycle. All
cycles are summed up and averaged, resulting in a phase averaged quantity X

y 1 1 ¥ n—1 n
X<f:0...> = — X(t: ) “4.4)
f) N n; o f
: Measured data for one cycle : Measured datafor one cycle

2 | — Phaseaveraged load cycle 2 | —— Phase averaged load cycle

= Standard deviation g Standard deviation

Z &

B B

Light barrier - Light barrier
0 n 0 n
Sample Sample
(a) Hotwire data (b) Airfoil lift

Figure 4.5.: All acquired data are phase averaged. Light barrier signals from the active grid’s
middle axis, acquired during both hotwire (a) and load measurements (b), allow a synchro-
nization of the airfoil response and the instantaneous angle of attack.
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This is done with hotwire measurements as well as with the subsequently measured
airfoil response. Figure 4.5 shows instantaneous data for one cycle, as well as the
phase averaged value of the same quantity. In Figure 4.5a, hotwire data are shown
and Figure 4.5b shows the airfoil’s lift response. The hotwire data for one load cy-
cle exhibits high scatter due to the turbulent nature of the flow. The phase averaging
separates fluctuations due to random processes from fluctuations present in every
load cycle. The phase averaged data contains only repeatable large scale information
and yields a significant improvement of the signal-to-noise ratio. Integral measured
variables such as the lift, shown in Figure 4.5b, are less sensitive to small scale turbu-
lence. These variables scatter less around their phase averaged mean. The narrower
gray band graphically illustrates the smaller standard deviation at one point in time
from load cycle to load cycle. During both hotwire and airfoil measurements, light
barrier signals from the active grid’s middle axis are taken. Their location allows a
synchronization of the airfoil’s load response and the instantaneous angle of attack.
If not indicated otherwise, all presented data are phase averaged mean values, shifted
to match the phase of a pure sinusoidal change in angle of attack.

4.3.2. Experimental Transfer Functions

The exemplary shown phase averaged data of Figure 4.5 reveals a phase lag between
the instantaneous angle of attack and the dynamic airfoil response. Additionally,
the dynamic airfoil response differs in terms of amplitude from quasi-steady ap-
proximations. This difference is conveniently described with transfer functions. The
derivation of two different experimental transfer functions is described in this sec-
tion: The transfer function of the motion, which characterizes the shape response
of the adaptive camber airfoil, and the transfer function of the load which relates
dynamic lift of the adaptive camber or the rigid airfoil to its quasi-steady counter-
part. The experimentally obtained transfer functions correspond to the theoretically
derived transfer functions of section 3.2.3. An asterisk distinguishes between theo-
retical transfer functions / and experimental transfer functions /™.
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Experimental Transfer Function of Motion /)

The experimental transfer function of motion ), is derived by relating the adaptive
camber airfoil’s fluctuating trailing flap angle v’ to the fluctuating gust angle of
attack o’. When submitted to a fluctuating inflow at the total angle of attack

o(t) = o, + o = o, + 0, sin(r) “.5)

the adaptive camber airfoil de-cambers to a mean trailing flap angle of 7, and oscil-
lates around this mean angle, such that the total trailing flap angle is

Y=",+7 =7, +7sin(0r+@y). (4.6)

Following the definition of the theoretical transfer function 3.2.3, p. 31, the transfer

function of motion ha“, can be written as

7 ellor+ey) v o ) v o
wo= L Y gi(orvey)-ior _ ¥ gy, 4.7)
y == 4 N4 4.
a, et a, a,

The amplitude ratio % and the phase angle ¢, between fluctuating angle of attack
o/ and the fluctuating trailing edge angle ¥ are derived from the phase averaged
measurements. The experimental transfer function of motion 4), corresponds then
to the theoretical transfer function of motion hy derived by Spiegelberg [88]. The
transfer function of motion is the dynamic counterpart to the quasi-steady rate of
de-cambering (dy/da)y. Its magnitude ‘h;‘,‘ can be interpreted as the inverse of
the dynamic stiffness, or rather a dynamic system elasticity. The phase ¢, between
trailing flap response and perturbing angle of attack corresponds to the combined

time delay caused by sensor, controller and actuator in active systems.

Experimental Transfer Function of the Load 7}

The quasi-steady lift L is traditionally displayed over the angle of attack o, while
the dynamic lift Lgy, is naturally displayed over time. When the dynamic lift is trans-
fered to the quasi-steady representation and displayed over the (instantaneous) angle
of attack, as in Figure 4.6a, the difference between quasi-steady and dynamic lift re-
sponse is revealed: The dynamic lift forms an oval loop around the quasi-steady val-
ues. This hysteresis is due to the phase difference ¢y between dynamic lift response
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and instantaneous angle of attack. The hysteresis loop is tilted, which corresponds to
a difference of the quasi-steady and dynamic lift amplitudes qu — Zdyn. Likewise, the
quasi-steady lift can be displayed for a time series of angle of attack o/(¢) over time,
as in Figure 4.6b. In this representation, the phase difference and the difference of
the lift amplitudes can be recognized. Both representations of Figure 4.6 contain the
same information: the quasi-steady lift response Lgs and the dynamic lift response

Lgyy, differ in terms of amplitude Land phase @r.

1 =} |

5 5

j 2 Ldvn § ‘g
b= . 13} =2
= 2L = E
E =

1 < —

- 24 -
Angle of attack a Dimensionlesstime t*
(a) Representation of the dynamic and (b) Representation of the same quantities

quasi-steady lift in terms of angle of attack over the dimensionless time ¢+
.

Figure 4.6.: The experimental transfer function of the load 4] is derived by assigning the
quasi-steady lift approximation to the measured dynamic lift response. The phase angle ¢y,
is the phase shift of the two curves, the amplitude ratio gives the magnitude of the transfer
function /7.

Traditionally, transfer functions relate an input to an output signal. Here, the input
signal is the fluctuating angle of attack o, the output signal is the airfoil’s lift re-
sponse Lgyn. Adopting the approach of the theoretically derived first-order transfer
functions of the load of section 3.2, the dynamic airfoil response is not related to the
fluctuating angle of attack but to the quasi-steady lift response Lgs of the airfoil. In
the quasi-steady assumption, the airfoil’s lift response is proportional to the instan-
taneous angle of attack c(r). This effectively leads to a normalization of the transfer
function. Following the definition of the theoretical transfer function 3.2.3, p. 31, the
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experimental transfer function of the load /j is defined as:

T i(t+qr) T . . 7 .
_ L _ lfyn pllortor)—ior _ LAdYn oL 4.8)

hy E— =
Lyse'® Lgs Lgs
The magnitude of the transfer function of the load corresponds to the ratio of the

dynamic and the quasi-steady lift amplitude

. La
| = === (4.9)
Ly

For values of || < 1, the dynamic lift is smaller than its quasi-steady value. The
quasi-steady lift amplitude iqs is derived from quasi-steady measurements

L .

Ly = 5o O (4.10)

where g—é is the lift curve slope in the linear region of the lift curve and @ is the

gust amplitude. The dynamic lift amplitude Zdyn and the phase angle ¢ between
the fluctuating angle of attack o, and the lift response Lqy, are derived directly from

phase averaged measurements
Lagn(1) = Lagnsin (@t + @p) . .11

For positive values of ¢, the load response leads the excitatory gust input. The
transfer function of the load h; is derived for the adaptive camber airfoil ; ,4 and

the rigid airfoil /2 o individually. hy .q and hy rig are related to the theoretical transfer

*

functions A ,q = hyaa/27 and hj ;,

= hL,rig/ZnT =S, where S is the Sears function.
The experimental and theoretical transfer functions provide phase information in
relation to the gust angle of attack. As the gust travels over the airfoil with U, a
reference point has to be chosen. In the experiments, this reference point is set at the
airfoil’s leading-edge, as hotwire measurements are performed at this position. In the
deviation of first-order transfer functions, the phase reference is traditionally set at
the airfoil’s mid chord. This is accounted for by an additional phase shift, see Figure

3.9, p. 29.
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4.3.3. Load Reduction Factor

A measure for the fluctuation around a mean value is the standard deviation. The
normalized difference in standard deviation of the rigid and the adaptive camber
airfoil’s lift response

9 (Ldyn,rigid) —0 (Ldyn,adaptive)

LR =
0 (Laynrigia)

4.12)

serves as a measure for the effectiveness of the adaptive camber airfoil’s performance
in terms of gust load alleviation, as proposed by Lambie [57]. For a purely sinusoidal
dynamic load response, the standard deviation is connected to the amplitude by the
factor of 4/2 and the load reduction factor reduces to
Zdyn‘rigid Zdyn.adaptive ~ ~
IR— V2 T Ldyn,rigiﬂ — Layn adaptive

Layn rigia Laynrigid
V2

(4.13)

A load reduction factor of LR = 1 means that all fluctuations are alleviated by the
adaptive camber airfoil. For equally fluctuating loads on the adaptive camber and the
rigid airfoil, the load reduction factor takes the value of LR = 0. Negative values of
LR indicate enhanced fluctuating loads on the adaptive camber airfoil, compared to

the rigid reference airfoil.

4.4. Experimental Results

The mean aerodynamic properties of an airfoil in non-uniform flow differ from the
behavior under uniform inflow conditions. For example, gliders perform better in
turbulent than in calm air. The so-called Knoller-Betz effect or Katzmeyr effect was
theoretically described by Knoller [52] in 1913 and experimentally verified by Katz-
mayr [47] in 1922. An airfoil, placed in an air stream, exhibits a directed force. By
definition, the part of this force in flow direction is called drag, the part perpendicular
to the flow direction is called lift. If the flow direction is altered, so is the direction
of lift and drag. The fact that the drag is typically an order of magnitude smaller than
the lift results in a perceived diminuation of the mean drag in a fluctuating air stream,

if the reference system is not varied with the instantaneous angle of attack. This is
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neither the case in a sailplane nor in the experimental setup, where the wind tunnel
balance constitutes the laboratory fixed reference system. The same systematic error
occurs when looking at the lift, but to a smaller extend. For a rigid airfoil, the dif-
ference between mean dynamic and steady lift is negligible. The same holds for the
adaptive camber airfoil, which is justified in appendix C.1. In this study the airfoils
performance is characterized by its lift only. Mean dynamic lift and quasi-steady
lift are very similar on the rigid and the adaptive camber airfoil. A comprehensive
study of the adaptive camber airfoil under quasi-steady conditions was performed by
Lambie [57]. The analysis of the dynamic experimental results is therefore limited
to the fluctuating part, mean values are omitted. Quasi-steady values that serve as a

reference for the dynamic measurements and are shown in appendix B.

The presentation of the experimental results is divided into three parts: In section
4.4.1 the dynamic motion response of the adaptive camber airfoil is shown. When
expressed in terms of the reduced frequency, the dynamic motion response corre-
sponds to the transfer function of motion. The motion response is important for an
interpretation of the adaptive camber airfoil’s load alleviation capabilities. Better
load manipulation is expected for high flap deflections that follow the perturbing
angle of attack with a small phase shift.

In section 4.4.2 the dynamic lift response of the adaptive camber and the rigid air-
foil is presented. When expressed in terms of reduced frequency, the dynamic lift
response corresponds to the transfer function of the lift. For parameters satisfying
the assumptions of thin airfoil theory, the experimental results are compared to the-
oretical transfer functions from literature that are introduced in section 3.2.

The gust load reduction potential of the adaptive camber airfoil is assessed in sec-
tion 4.4.3. This is done by comparing the dynamic lift response of the adaptive and
the rigid airfoil.

All results are presented following the order of the unsteady parameters presented

in section 4.2. Generally, results for the adaptive camber airfoil are represented in
red, the rigid airfoil in blue and the load reduction factor in green.
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4.4.1. Dynamic Motion Response

In this section, the dynamic motion response of the adaptive camber airfoil is as-

sessed using the magnitude of the transfer function of motion |/|, which relates the

fluctuating trailing flap angle y to the perturbing gust angle of attack o. The ex-
perimental \h§,| is obtained from phase averaged data as explained in section 4.3.2
and compared to the theoretical motion response obtained with the description of
Spiegelberg [88], see section 3.2.3. The theoretical /1, depends on the reduced fre-
quency k = % and the reduced system stiffness k™ = ﬁ and is independent
of the gust amplitude ag and the mean angle of attack &g. 2Best load manipulation
is expected for high magnitudes ’hy‘ and small phase angles ¢,. For phase angles
|@y| = m, the working principle of the adaptive camber airfoil is inverted and fluctu-

ating loads are enhanced.

Influence of the Mean Angle of Attack ¢, on the Motion Response

The influence of the mean angle of attack on the experimentally derived motion re-
sponse is illustrated in Figure 4.7 using the measuring points of set @ Values for the
adaptive camber airfoil in configuration @ are shown in Figure 4.7a, values for the
adaptive camber airfoil and configuration @ are shown in Figure 4.7b. The airfoils
were tested over the entire range of mean angles of attack from —10° < ¢, <20°
at two different inflow velocities U, = 10m/s and 15 m/s. According to theoretical
considerations, the motion response is independent of the mean angle of attack ¢,
which does not agree with the experimental findings: |h’{,| depends heavily on .
The dependence is more pronounced for the less stiff configuration . Highest val-
ues of |h;‘,| are found at high ¢, where the flow is presumed to separate from the
airfoil. According to theory,

hy’ is higher for the less stiff configuration () and for
higher inflow velocities U... This behavior is recovered in the experimental data: |h;|
of the adaptive camber airfoil in configuration @ is generally about twice as high for
the stiffer configuration @ For higher U.., the higher aerodynamic moment around
the leading-edge results in higher flap deflection and a higher value of ’hﬂ
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Figure 4.7.: The motion response of the adaptive camber airfoil, quantified by the magnitude
of the experimental transfer function of motion |h’}‘,’ =7/ &g. The total angle of attack is ot =
o, + ag sin (27 ). The gust amplitude is held constant at ag = 6.2°, the gust frequency
is set to f = 5 Hz. This leads to a trailing flap movement of y = ¥sin (27 ft + @), from
which the motion response h’}‘, is derived. Theoretical values of the motion response ’h},‘ for
the respective inflow velocities and airfoil configurations are indicated as thin gray lines.
The quasi-steady lift coefficient Cp, g5 is plotted in the background to provide an orientation
of attached and detached flow regime in the steady case. The region of attached flow is
highlighted with a light gray background. Linear assumptions are justified, if the total angle
of attack oo = ¢t + ag remains in the region of attached flow. This region between —2° <
o, < +2° is highlighted with a dark gray background.

Influence of the Gust Amplitude ag on the Motion Response

The experimentally derived motion response for the parameters corresponding to set
@ is shown in Figure 4.8. The adaptive camber airfoil in configuration @ is sub-
mitted to unsteady flow of variable gust amplitudes ag at a constant gust frequency
f and five different inflow velocities U, yielding five different reduced system stiff-
nesses kT and five different reduced frequencies k. Results for o, = 2° are shown
on the left, results for ¢, = 8° are shown on the right. According to linear theory,
the motion response |hy| increases with increasing U.. (i.e. with decreasing k™ and
decreasing k for one series of bars from left to right) and is independent of ag. The
experimentally obtained values of |h;‘,| for o, =2° agree well with the theoretical
values of ‘hy]. An increase of ‘h;‘ with U.. for one distinct @g is observed. The influ-
ence of ag on the velocity dependence and the order of magnitude of |h;‘,| is small.
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Figure 4.8.: The influence of the gust amplitude ag on the experimentally obtained motion
response ‘h)*,| The results are depicted as a series of bars and dispersed for better visibility
around each investigated excitation amplitude ag. The inflow velocity U.. increases for
one series of bars from left to right, the gust frequency is held constant at f = SHz. The
theoretical values of the transfer function of motion ‘hy , obtained with the description of
Spiegelberg, are depicted in a black box on the left side of each figure. As the underlying
theory is linear, the values of |hy‘ are identical for both ¢, and independent of ag.

At o, = 8°, the values of |h’;,| are generally higher than for o, = 2°, which is in ac-
cordance with the results shown above. The theoretically predicted increase of ‘h;‘,‘
with increasing velocity U is not seen: ‘h;‘ takes a peak value at medium velocities
and decreases again for higher velocities. This is not due to a mechanical resonance,
as the excitation frequency f is held constant in this experimental data set. ¢, = 8°
is located close to the steady stall angle. Non-linear separation effects are highly sen-
sitive to the reduced frequency and the Reynolds number, which both depend on U...
This sensitivity could be the reason for the difference of the velocity dependence of
|| and |1y .

Influence of Excitation Frequency f on the Motion Response

The theoretical motion response of the adaptive camber airfoil ’hy‘ takes the struc-
tural and the aerodynamic properties of the system into account, as it is pointed out in
section 3.2.3, p. 31. The structural properties of the adaptive camber airfoil (with only
the flap’s degree of freedom considered) resemble an ordinary spring-mass-damper
system. These systems typically follow an excitation until their eigenfrequency with
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Figure 4.9.: Magnitude of the theoretical transfer function of motion |hy| for the adaptive

camber airfoil in configuration (a), obtained with the results from Spiegelberg [88]. (a)
graphically illustrates how higher aerodynamic damping shifts the resonance frequency
for increasing inflow velocity to higher values. (b) shows that the influence of the inflow
velocity for one distinct excitation frequency is more important than the influence of the ex-
citation frequency at constant inflow velocity in the experimentally investigated parameter
range. The representation is chosen to match the experimental results.
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Figure 4.10.: The magnitude of the experimental transfer function of motion ’h’)‘, , obtained
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from parameter set (3), displayed as a set of bars around each integer-number excitation fre-
quency. For one set of bars, U increases from 10m/s < U < 20m/s in steps of 2.5 m/s.
The values for U, = 15m/s are depicted in gray to emphasize frequency dependent evolu-
tion at constant reduced system stiffness k.



an increasing response magnitude. Around the resonance frequency, the system re-
sponse experiences a step change in phase and the response magnitude takes a peak
value. The resonance frequency is not only a function of the structural, but also of
the aerodynamic properties of the system. For higher velocities, aerodynamic restor-
ing forces become more important and the aerodynamically damped resonance fre-
quency is shifted to higher frequencies. Figure 4.9a illustrates this behavior for dif-
ferent inflow velocities. When the aerodynamically damped resonance frequency is
crossed, the phase of the motion response (not shown) changes by roughly 7 and
reverses the working principle of the adaptive camber airfoil. A comprehensive rep-
resentation of the dynamics of the system and the importance of the placement of the
system eigenfrequencies in the excitation spectrum is given by Spiegelberg [88], p.
90). In the present study, only excitation frequencies below the flap’s eigenfrequency
are investigated. This is motivated by the desire to optimally exploit the adaptive
camber airfoil’s gust load alleviation capabilities and by the limitations of the maxi-
mal producible excitation frequency.

For the adaptive camber airfoil in configuration @, the calculated flaps eigenfre-
quency is located at fi.s = 13 Hz, without any damping being considered. This sets
the value of the aerodynamically damped resonance frequency well beyond the max-
imal achievable excitation frequency of the active grid of fi,.x = 9Hz. In the investi-
gated frequency region, the adaptive camber airfoil should suppress load fluctuations.
fh;‘,f is supposed to increase with increasing excitation frequency. Figure 4.9b shows
the magnitude of the theoretical transfer function ‘hy‘ in the experimentally investi-
gated parameter range, the representation is chosen to match the representation of the
experimental results. Figure 4.10 shows the corresponding experimentally derived
motion response |h;‘,| obtained with parameter set @ over the excitation frequency
f for o, =2° (left) and «, = 8° (right). The general trend of the experimentally
obtained motion response agrees with theory: |h3*,| increases with increasing f when
approaching the flaps aerodynamically damped resonance frequency. Quantitative
discrepancies in the frequency dependence become obvious when comparing the ex-
perimental results of Figure 4.10 to the theoretical values in Figure 4.9. In Figure
4.9b, where the limiting values are set to match the limiting values of the experi-
mentally derived data, the dependence of the |hy| on f is insignificant compared to
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the influence of U.. In the experimental data, the influence of f is more pronounced
than the influence of U... For ¢, = 2°, the value of |h;‘,| is generally smaller than for
o, = 8°. This is in accordance with the results obtained above, where an increase
of |h’;,| with o, was observed. When looking at a series of bars, the same trend as
above is recovered; the dependence of ’h;‘,’ on U, i. e. reduced stiffness, agrees with
theoretical considerations for o, =2°. At o, = 8°, the agreement is only observed

for small gust frequencies f.

Dependence of the Motion Response on the Reduced Frequency &

For completeness and better comparison with the classical transfer functions for rigid
airfoils, the motion response of the adaptive camber airfoil is presented as a function
of the reduced frequency k. Figure 4.11 shows the magnitude ’h;’ (left) and the
phase (p; (right) of the transfer function of motion for ¢, =2° (a), o, = 8°(b) and
¢, = 8°(c). No major differences of the experimental values |h)*,

and @y are ob-
served between ¢, = 2° and o, = 8°. Even at the highest investigated mean angle
of attack o, = 14° the quantiative evolution of magnitude and phase of the motion
response is similar to o, =2° and ¢, = 8°. The theoretical transfer function cap-
tures the trend of the experimental data for the magnitude |h;| and the phase ¢y. An
increase of the magnitude |h;‘,| is observed with increasing reduced frequency k. The
increase is stronger for higher U.., respectively smaller reduced system stiffnesses
kt. As it is shown before, the dependence of the motion response on f is more
pronounced in the experimental data than in theoretical predictions. This results in
an over prediction of the experimental values for small £ and an under prediction
for high k. The influence of k™, visualized by the distance between the curves of
constant U, shows good agreement between experiments and theory. The phase of
the motion response @y decreases with increasing k. The influence of the inflow
velocity U (and accordingly the reduced system stiffness k) is negligible in the in-
vestigated range of k. Experimental values ¢y and theoretical values @y decrease at
the same rate. A constant offset between experimental and theoretical values of about
(@7 — @y) =~ 20° periods is observed. This offset might be due to the experimental
and post-processing procedure as explained in section 4.3. Angle of attack fluctua-
tions that serve as a phase reference are measured prior to the airfoil experiments in
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Figure 4.11.: The magnitude |h;‘,| (left) and phase @y (right) of the aeroelastic transfer
function as a function of the reduced frequency k for oy =2° (a), aym =8° (b) and
O = 14° (c). Data points for constant Us, (and constant k1) are represented by the same
marker symbols. The corresponding theoretical values are displayed as solid lines, color
coded for the different investigated Us.
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the empty wind tunnel. The phase is assigned by the light barrier signal of the active
grids middle axis, which is collected during both measurements. An unintended dis-
placement of the active grid’s middle axis in-between both measurement campaigns
could be the reason for the constant offset.

Conclusions

Qualitatively,

e the overall agreement between the theoretical motion response 4y and the ex-
perimentally derived motion response hy is acceptable.

The magnitude |h;| increases with increasing k and the phase @y decreases with
increasing k, as predicted by theory. The assumptions of linear theory, that the gust

amplitude ag has a negligible influence on the magnitude |hy , is verified. Under

attached flow conditions at o, = 2°, the dependence of the experimental ‘h’}‘,‘ on U
is captured by theory. This results in a correct representation of the reduced system
stiffness k. Experimental and theoretical |hy| increase with increasing excitation

frequency f, but the quantitative agreement is poor.

e The frequency dependence of the experimental |h3‘,| is significantly more pro-

nounced than in the theoretical prediction.

The discrepancy increases with increasing k. It will be shown in the subsequent sec-
tion that this is not caused by a faulty structural model, but due to a deviating predic-
tion of the driving aerodynamic forces by linear theory.

Experimental and theoretical @, decrease with increasing k at the same rate, but an
offset is observed between experimental and theoretical values. This offset might be
due to the procedure of phase assignment. Although not completely captured by the
theoretical model, the

e cexperimental results of the motion response are promising regarding the adap-
tive camber airfoil’s load alleviation capabilities.

Recall that higher gust load alleviation is expected for higher flap deflections and
small phase angles between excitation and response. The highest motion response is
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observed at high ¢, where the mean load is high and an effective damping of fluctu-
ating loads is especially favorable. It is shown that the motion response ’h;| =7/ ag
is independent of the gust amplitude &g. Higher gust amplitudes that would cause
higher load fluctuations result in higher flap deflections and a more effective load
manipulation. The amplitude of the motion response ]hﬂ increases with increasing
k, i.e. with increasing unsteadiness of the flow. This is also favorable in terms of
gust load alleviation as high frequency perturbations do not contribute to the wind
turbine’s energy output but are responsible for most of the fatigue loads. The phase
@y decreases steadily with increasing k. A rapid change in phase, which indicates the
passage through the flaps aerodynamically damped eigenfrequency and a reversion
of the adaptive camber airfoil’s working principle was not provoked. The adaptive
camber airfoil is thus expected to alleviate fluctuating loads at all investigated pa-
rameter combinations.

4.4.2. Dynamic Load Response

In this section, the dynamic load response of the rigid and the adaptive camber airfoil
is assessed using the magnitude of the experimental transfer function of the load ‘hL | .
The transfer function of the load relates the dynamic lift response Lgy, of an airfoil
in adaptive or rigid configuration to its respective quasi-steady value Lys. The magni-
tude of the dynamic load response corresponds to the amplitude ratio of dynamic and
steady lift response ‘hL| = Zdyn /qu. The theoretical Ay, is derived in section 3.2.3.
For the adaptive camber airfoil, sy ,q is calculated using the results of Spiegelberg
[88]. For the rigid airfoil, Spiegelberg’s solution /1 i, is proportional to the Sears
function S, the classical first-order transfer function of the sinusoidal gust problem.
Experimental and theoretical transfer functions are relied by hz,ad = hy a4/27 and
I i
with 27 such that the representation corresponds to the classical first-order transfer

= hp ig /27 = S. In the representation of the results, the theoretical % is scaled

function. The theoretical 4y ;i depends on the reduced frequency k only, the theoret-
ical Ay a4 depends additionally on the reduced system stiffness k*. The experimental
values of h; are obtained from dynamic and steady wind tunnel balance measure-
ments, cf. section 4.3.1 and are additionally influenced by the mean angle of attack
¢, and the gust amplitude ag. The influence of these additional parameters is dis-
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cussed first. Then, the experimental /] is presented in terms of the reduced frequency
and compared to the theoretical A, for both the adaptive and the rigid airfoil. It will be
shown that first-order theories do not capture the dynamic load response adequately.

Therefore, a comparison to a higher order model is given at the end of this section.

Influence of the Mean Angle of Attack ¢, on the Load Response

Figure 4.12 shows the magnitude of the transfer function of the load ’hL‘ for the
adaptive camber airfoil and the rigid airfoil as a function of the mean angle of attack
¢,,. The dynamic flow parameters correspond to set @ On the left, values for the
adaptive camber airfoil in configuration (a) are shown, the right side shows the same

values for the adaptive camber airfoil in configuration @

27 T T 27 T T
. O 10 m/s, adaptive . ® 10 m/s, rigid
— 0 15 m/s, adaptives, Cp g - ® 15 m/s, rigid CrLas
*= @) *=3
= 15 o0 =
3 3
2 3
o . £
el el
[+ x
S 3
0. | | | |
-10 0 10 20
Mean angle of attack ay, [ ° ] Mean angle of attack ay, [ © |
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vs. rigid airfoil vs. rigid airfoil

Figure 4.12.: Influence of the mean angle of attack ¢, on the dynamic load response |h,*_|
The gust amplitude is held constant at &g =6.2°, gust frequency is set to f = 5SHz. Values
of |hzad| of the adaptive camber airfoil are indicated with open marker symbols, values of
|hz’rig| of the rigid airfoil are represented with filled marker symbols. Each inflow velocity
U. (indicated by the same marker symbol) results in one distinct reduced frequency k and
reduced system stiffness k", c.f. Table 4.1. The steady lift coefficient CpLgs of the rigid
Clark Y airfoil is plotted as a gray thick line in order to provide orientation of the flow
regimes in the steady case. The area of attached flow under steady conditions is highlighted
in light gray, mean angles of attack for which the total fluctuating angle of attack remains
in the region of attached flow are highlighted in dark gray.

The general trend of the load response |hZ| is similar for each parameter combina-
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tion. In the region of moderate ¢, highlighted with a gray background,

hj| de-
creases with increasing ¢,. Maximal values of |h2| are observed at very high and
very low o, where the flow separates from the airfoil. In this region, the added
angle of attack fluctuation provokes dynamic flow separation including the genera-
tion and interaction of large coherent vortices. This phenomenon, known as dynamic
stall, typically provokes high force excursions. Recall that /; relates the dynamic
lift response of an airfoil to the quasi-steady lift of the same airfoil. 4; quantifies
the differences between dynamic and steady lift response, but does not contain any
information about the differences of the rigid and the adaptive camber airfoil. No
significant differences between |h2’ on the rigid and the adaptive camber airfoil in
configuration @ and configuration @ are observed. This indicates that dynamic

inflow has a similar influence on both the rigid and the adaptive camber airfoil.

Influence of the Gust Amplitude ag on the Load Response

The influence of the gust amplitude on the load response is studied using the exper-
imental data of parameter set @ The results are presented in Figure 4.13, where
the magnitude of the transfer function of motion |hZ| is shown over the excitatory
gust amplitude ag. The experimental results show that ag has no influence on the
order of magnitude of |hz

, neither for the rigid, nor for the adaptive camber airfoil.
Considering the influence of U.., by looking at a series of bars, reveals a qualitative
discrepancy between theoretical prediction and experimental results. For the rigid
airfoil, an increase in U, i.e. decrease of k, leads to an increase of the dynamic load
response. The inverse behavior is observed in the experimental data. In the case of
the adaptive airfoil, the simultaneous decrease of k and k* with increasing U.. leads

to a decrease in the motion response ’h;‘,’ In the experimental ’h; , a decrease is

observed for small &g, while for higher ag an increase is observed. This change in
behavior is due to the higher motion response |h)*,| of the adaptive camber airfoil
with increasing gust amplitudes, compare Figure 4.8, p. 71. An equivalent behavior
is observed for o, = 8° and o, = 14° (not shown here) for the rigid airfoil. In the
case of the adaptive camber airfoil, the change in velocity dependence (increase or
decrease within one series of bars) is shifted to smaller @g, but the general trend stays
similar. In all investigated cases, the order of magnitude of the experimental load re-
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Figure 4.13.: Influence of the gust amplitude ag on the load response ’hz‘ for the rigid (a)
and the adaptive camber airfoil (b). The mean angle of attack is set to o, = 2° and the gust
frequency is held constant at f = 5Hz. U.. is varied from 10m/s < U < 20m/s, leading
to a decrease of k and kT for one series of bars from left to right. The corresponding
theoretical values |hL| are given for the rigid and the adaptive camber airfoil on the left of
each figure.

sponse ‘hi’ matches the theoretical values of |hL]. The dependence on the reduced
frequency k due to a change in U.. of the experimental ‘h}:| and the theoretical ’hL’

does not agree.

Influence of the Excitation Frequency f on the Load Response

Figure 4.14 shows the evolution of the theoretical load response |hL’ of the rigid
(left) and the adaptive camber airfoil (right) over the excitation frequency f, color
coded for different inflow velocities from 10m/s < U, < 20m/s. The load response
of the rigid airfoil decreases steadily with increasing f from the quasi-steady value
of |hL7,,-g| =1 at f = OHz. The adaptive camber airfoil’s load response |hL7ad| ex-
hibits a resonance at the aerodynamically damped resonance frequency of the flaps
Jres- For f > fies, the behavior of ]hL7ad| resembles ‘hL,,ig|. For f < fres, which
corresponds to the experimentally investigated frequency range,

hL’adf decreases
more rapidly than |hL7,,<g| and the velocity dependence is inverted. Figure 4.15 il-
lustrates this behavior. The representation in Figure 4.15 is chosen to match the
representation of the experimental results of Figure 4.16. For each integer num-
ber gust frequency f,

hL| is displayed as a series of bars, with U, increasing from
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Figure 4.14.: The influence of the excitation frequency f on the theoretical transfer function
of the load |hL‘ for the rigid and the adaptive camber airfoil. Parameters (chord length, flap
length, reduced stiffness) correspond to the experimental setup. The range of experimen-
tally investigated frequencies is indicated with a gray background. The adaptive camber
airfoil exhibits a resonance at the aerodynamically damped eigenfrequency of the flaps.
Below that frequency ]hL| decreases with increasing f for both the rigid and the adaptive
camber airfoil. At one distinct f, an increase of U, provokes an increase of |h,,-g’ and a
decrease of |hL7ad|-

left (10m/s) to right (20 m/s). Both transfer functions ’hLvr,-g
on the reduced frequency k = mfc/U. In the case of the rigid airfoil,

and |hL7ad | depend

is

hL,rig
a function of k only. The load response of the adaptive camber airfoil |hL,ad| pos-
sesses an additional dependence on the reduced system stiffness k™ o< 1/ U2. Figure
4.15 allows to separate the influence of f and U.. on ’hLJ,-g (k)| = |hrrig (nfc/Uw)‘
and |hL.ad (k, K+)| = |hL7ad (ﬂfc/Uw,l/Ui)|. The load response of both airfoils
decreases with increasing f, the decrease is more pronounced for ‘hLﬂd| than for
|hL,rig ‘ As it was shown above, decreasing k by increasing U.. leads to a decrease of
|hL,”-g‘ for one series of bars.

hL7ad| increases for the same parameters, due to the
additional decrease of x+.

The experimental load response |hz , displayed in Figure 4.16, differs from the the-

oretical ’hL| in both frequency and velocity dependence. For both the rigid (left)
and the adaptive camber airfoil (right), the experimental ’hﬂ increases with increas-
ing excitation frequency. It was shown in section 4.4.1, p. 71 that the experimental
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Figure 4.15.: The theoretical load response ’hL‘ for the rigid (a) and the adaptive camber
airfoil (b), displayed over the excitation frequency f. The representation matches the repre-
sentation of the experimental results for better comparison. ]hL| is displayed as a series of
bars for each integer number excitation frequency. The inflow velocity U. increases from
left to right for each series of bars, resulting in a decrease of the reduced frequency k and re-
duced stiffness k. Values for |hL| at U = 15m/s are emphasized with a gray background
to highlight the frequency dependence at constant k™.
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Figure 4.16.: The experimental load response ’hz‘ for the rigid (a) and the adaptive camber
airfoil (b), displayed over the excitation frequency f. The gust amplitude is set to ag =6.2°,
the mean angle of attack is set to o, =2°. The velocity is varied from 10 m/s< Us, <20m/s
in steps of 2.5 m/s. This modifies the reduced frequency k and in the case of the adaptive
camber airfoil additionally the reduced system stiffness k. The corresponding theoretical
values are displayed in Figure 4.15.
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motion response ‘h;‘,‘ increases stronger with the excitation frequency f than the the-
oretical |hy| This behavior can now be explained. The driving aerodynamic moment
around the leading-edge is proportional to the total load on the airfoil. The poor pre-
diction of the frequency dependence of the load response leads to an equally poor
prediction of the driving aerodynamic moment. This causes the difference between
experimentally observed and theoretical motion response.

At all investigated excitation frequencies,

h2| decreases for one series of bars. This is

not in agreement with theoretical values. A similar behavior is observed for o, = 8°.

Dependence of the Load Response on the Reduced Frequency k

Combining the influence of the inflow velocity U. and the excitation frequency f
leads to the classical representation in terms of the reduced frequency k. Figure 4.17
shows the transfer function of the load for the rigid airfoil ’hLJig‘ and the adaptive
camber airfoil |hL’ad| as a function of k. In Figure 4.17a, the mean angle of attack
issetto o, =2°, in Figure 4.17b to o, = 8° and in Figure 4.17c to ¢;, = 14°. The
corresponding phases ¢; are shown in Figure 4.18.

It is shown above that the theoretical load response |hL| fails to capture the influence
of the reduced frequency, regardless whether U or f are varied. When displayed in
terms of reduced frequency, the fundamental difference between theoretical and ex-
perimental load response becomes even clearer. While theory predicts an decrease of
th‘ with increasing k, the experimental values show an opposite behavior. |hi| in-
creases for both the rigid and the adaptive camber airfoil with increasing k. A similar
discrepancy is observed for the phase of the load response ¢y, . While the discrep-
ancy between experimental and theoretical values in terms of amplitude and phase is
significant, the experimental values show a very similar behavior for all investigated
¢,,. For o, =2° magnitude and phase almost fall in line when displayed over k.
With increasing ¢, the absolute value of the magnitude increases and values for the

phase scatter wider. The global behavior however stays similar.

A systematic measurement error, for example due to the eigenfrequency of the force
balance, can be excluded. The pressure difference at the leading-edge, which is pro-
portional to the total lift, exhibits the same behavior as the load response in terms of
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Figure 4.17.: Magnitude of the load response |hL‘ of as a function of the reduced frequency k
at oy = 2° (a), o = 8° (b) and oy, = 14° (c). Experimental values of the rigid airfoil are
represented by filled marker symbols, values for the adaptive camber airfoil are represented
with open marker symbols. Equal marker symbols stand for equal inflow velocities, i.e.
constant reduced system stiffness of the adaptive camber airfoil. The gust amplitude is set
to &g = 6.2°. The theoretical first-order transfer functions /s corresponds to the Sears
function, hy,q is obtained from the results of Spiegelberg [88]. /7,4 depends on k™ and
thus on Us. For clarity, only /7,4 at Us = 15m/s is shown.

magnitude and phase. Comparison with other authors is difficult, as very few exper-
imental data exists. Hatanaka and Tanaka [33] observed a similar behavior for the
magnitude of the aeroelastic response of a bridge deck.

The theoretical load response is derived using the assumptions of thin airfoil theory.
The Clark Y airfoil fulfills the assumptions usually requested when applying thin air-
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Figure 4.18.: Phase of the load response @y, of as a function of the reduced frequency k for
om =2° (a), o = 8° (b) and oy, = 14° (c). Experimental values of the rigid airfoil are
represented by filled marker symbols, values for the adaptive camber airfoil are represented
with open marker symbols. Equal marker symbols stand for equal inflow velocities, i.e.
constant reduced system stiffness of the adaptive camber airfoil. The gust amplitude is set
to @, =6.2°.

foil theory (thin airfoil of 11 % thickness, small camber of 1.7 %, small mean angle
of attack of o, =2°). Still, the Clark Y airfoil possesses a thickness, camber and
mean angle of attack and the question arises, whether the discrepancy of theoreti-
cal and experimental load response is caused by one of these simplifications. One
possibility to take the airfoil’s thickness, camber and mean angle of attack into ac-
count is the application of a panel code. Similar to thin airfoil theory, panel methods
build on potential flow assumptions and fullfill zero penetration boundary conditions
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at the airfoil’s surface. In contrast to thin airfoil transfer functions, which provide
closed form solutions for small harmonic perturbatioins in frequency domain, panel
methods can be coupled with random perturbations in time domain. Spiegelberg [88]
provides a panel method for the rigid and the adaptive camber airfoil, which is used
to simulate the experimental setup. The geometry of the airfoil resembles the Clark Y
airfoil at o, =2° and the inflow conditions are chosen to match the measured un-
steady inflow in the active grid wind tunnel. The resulting calculated load response
differs only slightly from the theoretical load response ‘hL| obtained by thin airfoil
theory, as reported by Jéager [40]. This indicates that none of the simplifications that
distinguish thin airfoil theory from panel methods is responsible for the deviating
representation of the experimental results.

Figure 4.17 and Figure 4.18 show that the experimentally derived values for |hﬂ and
@/ fall in line for small oy, when displayed over the reduced frequency k. This sug-
gests that k is the correct parameter to describe the problem. The difference between
experimental and theoretical quasi-steady values of |hL| 1o Indicate a faulty scaling
of the problem. The theoretical |hL| approaches a quasi-steady value of |hL| =1
at k = 0. In the experimental setup, the smallest realizable reduced frequency is
k = 0.05. At k = 0.05, the experimental value is ‘h}i| ~ 0.2 with a decreasing trend
for k — 0. The lift response /4, is obtained by relating the dynamic to the quasi-steady
lift. The quasi-steady lift is approximated by Lgs = (dL/da)@,. In agreement with
the assumptions of thin airfoil theory, that the presence of an airfoil does not alter
the surrounding velocity field, the gust amplitude &g is measured prior to the airfoil
experiments in the empty wind tunnel. Obviously, this assumption is violated and
the airfoil ’sees’ a different gust amplitude than the gust amplitude ag of the undis-
turbed flow field. One approach that takes the interaction of a perturbed surrounding
flow and the oncoming gust into account are second-order models. A second-order
transfer function of an airfoil entering a sinusoidal vertical gust is given by Goldstein
and Atassi [29], cf. section 3.2.4, p. 34. The main difference to first-order transfer
functions is the back-coupling of a spatially variable steady velocity field on the un-
steady perturbation. The result of Atassis model [4], tuned with the parameters of the
experimental setup are given in Figure 4.19. The model is applicable for rigid airfoils
only. Accordingly, only the experimental load response of the rigid airfoil |1} ;| is
plotted. Figure 4.19a shows the magnitude |4, | and Figure 4.19b shows the phase of
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Figure 4.19.: Comparison of the rigid airfoil’s experimental load response 4] to a second-
order model of Goldstein and Attassi [29]. (a) Magnitude |Az| and (b) Phase ¢y, . The
airfoil has a mean angle of attack of @, =2° and is submitted to vertical sinusoidal gusts
of amplitude &g = 6.2° and variable reduced frequency k.

the load response.

Other than the load response obtained by transfer functions of first-order, second-
order theory captures the experimental data remarkably well; experimental and theo-
retical values of the magnitude almost collapse. For the phase, an offset of @iy — @h}
is observed. The same offset is observed for the phase of the motion response, cf.
Figure 4.11, p. 75, suggesting a systematic error during phase assignment. The mag-
nitudes of experimental and theoretical values approach the same limit for k — 0,
which indicates a correct scaling of the problem. At the higher mean angle of at-
tack of a,,, = 8°, similar agreement between experimental and theoretical values is
observed.

Conclusions

The first conclusion of this section is that

o first-order transfer functions of the lift response do not reproduce the depen-

dence on the reduced frequency k correctly.

Linear theory predicts a decrease of the dynamic lift amplitude. In experimental
data, an increase of dynamic lift amplitude with increasing k is observed, regardless
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whether U, or f are changed to manipulate k. The only parameter obviously violat-
ing the assumptions of first-order transfer functions is the gust amplitude which is
set to the relatively high value of ag = 6.2°. It was shown with parameter set @ that
the gust amplitude has no influence on the experimental transfer functions. Other
parameters, usually in agreement with thin airfoil theory (airfoil thickness, camber
and mean angle of attack) were taken into account by means of a panel code, but did
not alter the diverging frequency dependence. First-order transfer functions are com-
monly used in industry, especially in flutter calculations. The divergent prognosis of
the airfoil response in terms of frequency is an important result that should be kept
in mind. Despite the fundamental discrepancy between first-order transfer functions
and experimental results, some basic information can be retained, which provide a

good basis for further investigations:

e The reduced frequency k is an appropriate parameter to scale the problem.
e The amplitude of the perturbation has no significant influence.

e The mean angle of attack changes the absolute value of the transfer function,
but has little influence on the dependence on other parameters.

One promising approach for an adequate theoretical transfer function is the second-
order closed form solution proposed by Goldstein and Atassi, which shows good
agreement with experimental results. If a transfer function (experimentally or ana-
lytically) is found, it provides information over a wide range of parameters. Even at
higher mean angles of attack of o, = 8° and o, = 14° and high gust amplitudes,
where the flow around the airfoil is supposed to separate and the physical mecha-
nisms of lift generation change, it follows the same behavior as in the attached flow
regime.

4.4.3. Load Reduction

In this section, the load reduction capabilities of the adaptive camber airfoil are eval-
uated. As a quantitative measure, the load reduction factor LR, cf. section 4.3.3, p.67,
is used. A theoretical value for LR can be derived from the dynamic load response
’hL| and steady calculations. As seen above, theoretical first-order models fail to re-
produce the frequency dependence of the load response correctly. No second-order
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model exists for the adaptive camber airfoil. Therefore, no comparison to theoreti-
cal values is drawn and the analysis is limited on the experimental data only. It was
shown in the preceding sections that the experimental motion response |h;‘,| and the
load response ‘h}i| depend on several parameters (mean angle of attack o4y, gust fre-
quency f, gust amplitude &g). Consequently, the load reduction capabilities of the
adaptive camber airfoil also depend on these parameters. This dependence is shown
first. Then, the adaptive camber airfoil’s load reduction capabilities are assessed as a
function of the reduced frequency.

Influence of the Mean Angle of Attack o, on the Load Reduction

Figure 4.20 shows the load reduction factor LR for the adaptive camber airfoil in
configuration @ (left) and configuration @ (right) over the mean angle of attack
O, using the experimental data of parameter set @ Recall that LR = 1 equals
complete attenuation of fluctuating loads by the adaptive camber mechanism, while
LR = 0 stands for equally fluctuating loads on both the adaptive and the rigid airfoil.
LR remains positive in all cases, indicating a reduction in gust loads by the adaptive
camber mechanism for all investigated parameters.
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Figure 4.20.: The load reduction of the adaptive camber airfoil in configuration (a) (left) and
configuration (b) (right) depends largely on the reduced system stiffness kT and the mean
angle of attack ay,. Higher load reduction is achieved for lower k™, i.e. lower physical
stiffness of the resorting spring system Ky and higher inflow velocities Us.
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LR depends largely on the reduced system stiffness k™ = 2k /pc?U2 of the adaptive
camber airfoil. Lower reduced system stiffness results in a higher quasi-steady rate
of de-cambering dy/da (cf. section C.1, p. 175) and a higher dynamic motion re-
sponse |hy’ (cf. section 4.4.1, p. 69). Accordingly, a more effective manipulation of
fluctuating loads is observed for higher U. and the less stiff configuration @ For
configuration @, kT was chosen such that the airfoil de-cambers completely over
the angle of attack range from —10° < o, < 20° under quasi-steady conditions, cf.
appendix C.1, Figure C.1, p. 176. Smaller k" and accordingly higher LR are possi-
ble, but are limited by the aerodynamically damped resonance of the flaps degree of
freedom, which should be chosen well above the expected excitation frequency. LR
depends significantly on the mean angle of attack o,. A maximum in gust load atten-
uation is obtained at o, = 10° for both configurations of the adaptive camber airfoil.
This is the steady stall angle of the rigid airfoil. Under dynamic inflow conditions,
the fluctuating angle of attack passes the static stall angle and provokes dynamic stall
and high lift excursions on the rigid airfoil. The adaptive camber mechanism effec-
tively damps these load fluctuations and LR takes a peak value. A similarly high load
reduction is also observed at o, < —6°. The dynamic load response |hL| shown in
section 4.4.1, Figure 4.7, p. 70 exhibits peak values in the same region of angle of at-
tack. This indicates the presence of nonlinear dynamic effects not only for very high,
but also very small o,. These non-linear effects seem to have less influence on the
adaptive camber airfoil. In configuration @ a third maximum in load attenuation at
am = 2°. This is the angle of attack at which the adaptive camber airfoil forms the
original Clark Y profile (Y = 0°) under quasi-steady conditions.

Influence of the Gust Amplitude ag on the Load Reduction

The influence of the gust amplitude ag, obtained from the experimental data of the
parameter set @, is shown in Figure 4.21. Values for o, = 2° are shown on the left,
values for 04, = 8° are shown on the right. As for the experimental motion response
’h;’ and the experimental load response ’hﬂ the influence of the gust amplitude ag
plays a minor role on the load reduction capabilities of the system. A slight increase
of the LR with &g is observed for the case of oy, = 2°, which is also observed for
the motion response, cf. Figure 4.8, p. 71. LR is a relative measure that compares the
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Figure 4.21.: The influence of the gust amplitude &g on the load reduction. Values of LR for
the indicated &g are displayed as a series of bars, dispersed for better visibility. For one
series of bars, U.. increases from left to right, leading to a decrease of k and k™ from left
to right. The excitation frequency is constant at f = SHz.

load fluctuations on the adaptive camber airfoil to the load fluctuations on the rigid
airfoil under identic unsteady conditions. An independence of LR and &g results in
higher absolute reduction of fluctuating loads of high amplitude. This is beneficial
for the alleviation of rarely occurring destructive peak loads.

When comparing one series of bars at a certain ag, LR increases with U.., respec-
tively with decreasing k and k™. An equivalent trend was observed for the motion
response of the adaptive camber airfoil at o4, =2°, confirming the existence of a
correlation between motion response and load reduction in the attached flow regime.
When thinking about gust load alleviation on wind turbines, this is a very favorable
result; high velocities, i.e. high dynamic pressures, provoke high load fluctuations at
high mean values. These harmful events are more effectively damped by the adaptive
camber airfoil than the less harmful fluctuations at low dynamic pressures, where the
mean values and the amplitudes of the load fluctuations are small.

Influence of the Excitation Frequency f on the Load Reduction

Figure 4.22 shows the dependence of the gust load reduction LR on the gust fre-
quency f, derived from the experimental data of parameter set @ Values for o, = 2°
are shown on the left, values for o, = 8° are shown on the right. An increase of LR
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Figure 4.22.: Load reduction LR as a function of the excitation frequency f. The gust ampli-
tude is constant at 0l = 6.2°. For each integer number excitation frequency, values of LR
obtained at different Us. are displayed as series of bars. The values of LR at U = 15m/s
are provided with a gray background in order to emphasize the frequency dependence at
one distinct Us, i.e. reduced system stiffness k.

with the excitation frequency f is observed for both mean angles of attack. This
can be explained by looking at the motion response of the adaptive camber airfoil,
cf. Figure 4.10. The motion response increases with increasing frequency due me-
chanical resonance and due to the increasing driving aerodynamic moments: The
aerodynamic moments scale with the total lift. The dynamic lift response, shown in
Figure 4.16, p. 82 increases also with increasing f.

Dependence of the Load Reduction on the Reduced Frequency

Figure 4.23 shows the load reduction factor LR over the reduced frequency k, ob-
tained from the experimental data of parameter set @ atat o, = 2° (a), am = 8° (b)
and o4, = 14° (). A distinct relation between k, k+ and LR is observed for o, = 2°
and o, = 8°. Generally, LR is higher for higher U., i.e. smaller k™ and increases
with k. For oy, =2°, a steady increase of LR with k is observed for all U.. For
om = 8°, an increase of LR with k is only observed for U, > 10m/s. The increase
is small for small £ and becomes more pronounced for higher k. In the case of
U.. = 15m/s, where additional measurements are performed at higher excitation
frequencies, LR decreases again after its maximum is reached. This behavior is not
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Figure 4.23.: The load reduction LR as a function of the reduced frequency k at o, =2° (a),
om = 8° (b) and oy = 14° (¢). Values obtained at one U (i.e. constant reduced system
stiffness) are represented by the same marker symbols. For one U.., f is varied by changing
the excitation frequency f. The gust amplitude is held constant at &g =6.2°.

seen in the motion response. The load reduction factor stays positive in all investi-
gated cases, except for one parameter combination (0, =2°, U, = 10m/s), where
the driving aerodynamic moment was not sufficient to efficiently operate the adap-
tive camber mechanism. For o, = 14° the load reduction stays between 0 and 0.3,
but no distinct dependence on k or k™ is observable. It should be noted that even
in the detached flow regime, no increase of the load fluctuation due to the adaptive
camber mechanism is observed.
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Conclusions

The performance of the adaptive camber airfoil in terms of gust load alleviation is

extremely promising:

e The adaptive camber mechanism effectively reduces fluctuating loads over the
entire investigated parameter range.

Even in the detached flow regime at very high ¢ _, no augmentation of fluctuating

m

loads is observed. Values of up to LR = 0.6 are obtained, meaning that
e The adaptive camber mechanism alleviates up to 60 % of the fluctuating loads.

This is comparable with active systems (van Dam et al. [95]). Due to the passive

nature of the adaptive camber mechanism,

e The adaptive camber airfoil is most effective at parameter combinations pro-
voking harmful load fluctuations, i.e. high U.. and high o,.

High inflow velocities result in higher mean and fluctuating loads that contribute
more to fatigue than fluctuations at smaller inflow velocities. High inflow velocities
also entail higher aerodynamic moments that actuate the adaptive camber mecha-
nism more effectively, leading to higher flap deflections and a higher manipulation
of fluctuating loads. Like high inflow velocities, high mean angles of attack result
in higher mean loads. Peak values of LR are observed at oy, close to the static stall
angle, where dynamic stall typically provokes high force excursions. The experimen-
tal results indicate that the adaptive camber airfoil effectively reduces the effect of
dynamic stall.

LR compares the mean adjusted values of the lift fluctuation and gives no information
about mean values. It should be kept in mind that for a pre-cambered configuration,

e The adaptive camber airfoil generates significantly higher mean loads at non-
critical conditions, i.e. small U, and small .

In this section, no comparison between theoretical values and experimental data is
drawn, due to the differences between the experimental load response ‘hz‘ and the
corresponding theoretical predictions, cf. section 4.4.2, p. 77. It is found that

94



e LR scales with the experimental motion response ‘h,*,‘

for o, =2°, where the fluctuating angle of attack remains completely beyond the
static stall angle. In this region, LR can be predicted by a theoretical model as the
one from Spiegelberg [88], if a correct representation of the dynamic load response
is found.
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S. Sinusoidally Oscillating Airfoil
Experiment

This chapter is concerned with the second wind tunnel experiment performed in the
scope of this thesis, a sinusoidally oscillating airfoil in pure pitch and pure plunge
motion in a constant air stream. The experimental approach is schematically visual-
ized in Figure 5.1.

Objectives
3D flow situation _
attached == detached
blade bend and
is individual dyn.
twist Verification of Theodorsen function on
— response itching airfoil, limits of applicabili
pitching airfoil, limits of applicability
2D flow situation — Investigation of physical mechanisms
airfoil oscillation responsible for gust load alleviation in
load detached flow.
oa Influence of mass inertia on flap
EXp setup reduction system during blade bending,

approximated by pure plunge motion

pitch-plunge rig er=—

Figure 5.1.: Schematic overview of the pursued experimental approach.

Pitch and plunge motion of a two-dimensional airfoil corresponds to the twisting and
bending oscillations of a wind turbine blade. During normal operation, these oscilla-
tions occur due to the cyclic loading resulting from the passage of the blade through
the atmospheric boundary-layer or tower shadow. The cyclic loading contributes to
fatigue life and a diminution of the fluctuation amplitudes is desirable. It is shown in
Chapter 4 that the adaptive camber mechanism effectively reduces these fluctuating
loads, which in turn will lead to smaller blade oscillations during normal operation.
Bending oscillations also occur at off normal operation, for example after the impact
of a strong gust or due to an emergency stop. On an oscillating airfoil with adaptive
camber mechanism, the inertial forces of the flap system contribute to the total sys-
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tem behavior and could either enhance or counteract the driving aerodynamic forces.

The first objective of this experimental investigation is to

e study the influence of mass inertia on the adaptive camber airfoil’s aeroelastic
response.

This is done for a pure plunging motion, which approximates blade bending. It
is shown in Chapter 4 that the first-order transfer function of a sinusoidal verti-
cal gust encounter, the Sears function, does not agree with experimental results. A
two-dimensional airfoil in pure pitching or plunging oscillation corresponds to the

Theodorsen problem. The experimental setup offers the possibility to experimentally

o verify first-order transfer functions and investigate their limits of applicability.

This is done for a purely pitching rigid airfoil. In the attached flow regime, the adap-
tive camber mechanism is primarily pressure driven and its functionality is well un-
derstood. At high angles of attack, viscous forces become predominant. It is shown
in Chapter 4 that the adaptive camber airfoil alleviates gust loads even above the
static stall angle, but no distinct relationship between gust amplitude, reduced fre-
quency, reduced stiffness and adaptive camber airfoil performance is observed. A
third objective is thus to

e investigate the physical processes responsible for gust load alleviation in de-
tached flow.

The experiments are carried out at the TU Darmstadt Eiffel wind tunnel, comprising
a pitch-plunge rig and a time resolved particle image velocimetry system. The chap-
ter begins with a presentation of the experimental setup in section 5.1. The exper-
imental procedure differs significantly between attached and detached flow regime,
both regimes are considered individually. Section 5.2 deals with the attached flow
regime and the influence of mass inertia as well as the verification of first-order
transfer functions. Section 5.3 is concerned with the detached flow regime and the
investigation of the involved physical processes.

98



5.1. Experimental Setup

First the TU Darmstadt Eiffel wind tunnel and its uniform flow properties are briefly
presented. Then the airfoil kinematics generated with the pitch-plunge are defined
and a description of the adaptive camber airfoil model and its instrumentation is
given.

5.1.1. Eiffel Wind Tunnel

Figure 5.2 shows a schematic view of the TU Darmstadt Eiffel wind tunnel. The
inlet has a cross section of 2.2 m x 2.2 m. A nozzle contraction ratio of 24:1 leads to a
cross-section of 0.45 m x 0.45 m in the closed test section. The flow is driven by a fan
and a 20 kW motor located 6 m downstream the test section, allowing maximum flow
speeds in the empty tunnel of up to 60 m/s. Markus [66] reported that the turbulence
level T, is below 0.2 % and the measured flow velocity U (y,z) deviates from the
averaged flow velocity U by less than 1 % at U., ~ 15m/s in the test section.

inlet nozzle ) outlet
—— gg%ttion diffusor —
y — e T
Us
Lo =17 1 | ii i} \
. . fan

seeding \pitch-plunge
injection rig

Figure 5.2.: Schematic view of the low speed open return wind tunnel at TU Darmstadt

5.1.2. Airfoil Kinematics

Figure 5.3 shows a schematic view of the pitch-plunge rig. Two linear actuators
are installed underneath the test section with a maximal stroke of 240 mm and a
maximal speed of 1.7 m/s. The actuators are controlled via LinMot LinTalk software
and their actual position is traced with two acceleration sensors. If both actuators
are in the same vertical position (Ay = 0), their horizontal distance is 0.085 m. The
rigid middle part of the airfoil used in the present study is smaller and is mounted
on the actuators pistons via two aluminum adapters. The upstream motor is fixed to
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the wind tunnel and its piston is only allowed to perform a vertical movement. The
downstream motor can be slightly tilted to account for the change in distance, if the

actuators are in different vertical positions (Ay # 0).

airfoil

aluminum

vertical
e piston ™~

movement

adapter

linear actuator

tilting

(a) Pitch motion (b) Plunge motion

Figure 5.3.: Kinematics of the pitch-plunge rig. The individual control of the two linear actu-
ators allows a variable pitch and plunge motion of the airfoil.

In this study, a pure pitch motion (Figure 5.3a) and a pure plunge motion (Fig-
ure 5.3b) are generated. During pitch motion, the linear actuators are moved sinu-
soidally with different stroke amplitudes and a specified phase such that a sinu-
soidally varying pitch angle o,

o, = @, sin (27 f1) (5.1)

around a fixed elastic axis e is generated. During plunge motion, the actuators are
moved sinusoidally with the same stroke amplitude and without phase shift, resulting
in a plunge angle of attack o of

1 dh

o, = @, sin (27 1) = arctan <_Udt) . (5.2)

Both o, and oy are derived from the motion of the linear actuators and refer to the
angle of attack formed between the inflow velocity U..¢, and the chordwise direction
x of the rigid reference airfoil.
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5.1.3. Adaptive Camber Airfoil Model

Figure 5.4 gives a schematic view of the two-dimensional airfoil model used dur-
ing the experimental investigations. The airfoil has a Clark Y profile with a chord
length of ¢ = 0.12m and a span of s = 0.45m. Its span covers the entire test section
width. The blockage at zero mean angle of attack is 2 % and the maximal block-
age at maximal angle of attack of 20° is 20 %. The airfoil is manufactured from
polyamide by direct laser sintering. Its light weight construction consists of a 0.5 mm
skin, reinforced by a truss structure. The total weight of leading-edge and trailing
flap is m_g = mg < 60g and the centers of inertia are located at Ax g = 1 mm and
Axtg = 3mm from the leading-edge and trailing flap hinges, to reduce the effect of
mass inertia during the experiments. The airfoil’s surface is treated with Rhodamin
6g, which absorbs light at the wavelength of 529.8 nm and fluoresces with 551 nm,
see Kubin and Fletcher [55]. The Rhodamin is dissolved in alcohol and blended with
clear varnish to generate a heat resistant smooth surface. In combination with an op-
tical bandpass filter, surface reflections on the airfoil from the PIV laser light sheet
are efficiently reduced. The restraining spring mechanism is realized by two systems
of 11 leg springs, which can be inserted at each side of the airfoil. Each leg spring
has a spring stiffness of ky; = 0.03Nm/rad. The system stiffness k, = ¥ (k) can
be varied from 0.06 to 0.66Nm/rad in 11 discrete steps. During the experimental
investigation presented in this study, two leg springs oppose the upward rotation of
the flaps and &y = 0.06 Nm/rad. The coupling of leading-edge and trailing flap is re-
alized via an external two-rod system, which is fixed to both sides of the airfoil. By
changing the spring system to a rigid block, the coupling of leading-edge and trailing
flap can be fixed in the original Clark Y position. This corresponds to the reference
configuration referred to as 'rigid’. A picture of the adaptive camber airfoil model in
'rigid’ and *adaptive’ configuration is shown in Figure 5.5. Pressure taps are located
on the leading flap at x/c = 0.06, 0.11 and 0.14 on both pressure and suction side, at
z/s = 0.1 from the middle axis. Tubes of 1 mm diameter are located in spanwise di-
rection in the airfoil skin, directly manufactured by laser sintering. Holes of 0.3 mm
diameter are drilled through the surface of the airfoil and the polyamide tubes. Plastic
hoses are connected to the end of the polyamide tubes and lead the pressure signal to
pressure transducers outside the wind tunnel test section. The position of the trailing
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Figure 5.4.: Side and top view of the adaptive camber airfoil model used during the pitch-
plunge experiments. The leading-edge is coupled to the trailing flap via an external two-rod
coupling mechanism, attached to both sides of the airfoil. The coupling is pre-tensioned
by a spring system (not shown) and the trailing flap angle y is monitored as a measure for
the airfoil deformation by a rotary hall sensor. Pressure taps are located at three chordwise
positions at the airfoil’s leading-edge at z/s = 0.1.

flap is measured with an ams AS5162 rotary hall sensor. The sensor consists of a
circuit board and a magnet that rotates over the circuit board, visible in Figure 5.5b.
A detailed description of the construction of the airfoil can be found in Klyk [50].
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(a) Rigid configuration (b) Adaptive configuration

Figure 5.5.: 2D airfoil model used in the pitch-plunge experiments. (a) Airfoil model in rigid
configuration, the coupling between leading-edge and trailing flap is blocked. (b) Airfoil in
adaptive configuration, with the rotary hall sensor attached to its trailing flap hinge.

5.2. Attached Flow Regime

In section 5.2.1 the objectives and investigated parameter space of the attached
flow experiments are explained, which consist of validating first-order transfer func-
tions on the pitching rigid airfoil and investigating the influence of inertial forces due
to plunging on the functioning principle of the adaptive camber airfoil. Section 5.2.2
shows the procedure of data acquisition and reduction. The section closes with a
presentation of the experimental results in section 5.2.3.

5.2.1. Objectives and Investigated Parameter Space

The objectives of the oscillating airfoil experiments under attached flow conditions
are twofold. On the one hand, the experimental setup offers the opportunity to further
investigate first-order transfer functions that describe the unsteady airfoil response in
the frequency domain. On the other hand, the pitching and plunging airfoil presents
an abstraction of important operating conditions of wind turbines, i.e. a twisting
and bending oscillation of the blades. Oscillating motion induces additional inertial
forces on the flap system of the adaptive camber airfoil and the effect of inertial
effects on the adaptive camber airfoil’s performance is studied. All experimentally
investigated parameter combinations are summarized in Table 5.1, the pursued ob-

jectives are pointed out below.

The experimental parameter set @ serves to verify first-order transfer functions,
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which are introduced in section 3.2, p. 22. This verification is performed for the
rigid airfoil only. A verification for the adaptive camber airfoil is omitted, because
the first-order transfer function for a forced oscillation is not directly accessible in
Spiegelberg’s formulation [88]. The first-order transfer function of the unsteady lift
response of a rigid airfoil in harmonic pitch motion is the Theodorsen function 4y,
cf. section 3.2.2. The direct measurement of unsteady aerodynamic forces on an os-
cillating airfoil is challenging. Due to the low Reynolds number in the experimental
setup, the aerodynamic forces are small and superimposed by inertial forces of the
pitching and plunging motion. In the case of the adaptive camber airfoil, additional
inertial forces of the flap system occur. In this study, the unsteady lift is not mea-
sured directly. During attached flow measurements, the dynamic lift is estimated is
estimated by the pressure difference at the leading-edge Ap. A transfer function for
the pressure distribution can be derived by means of first-order theory, as shown in
section 3.2.2, p. 28, similar to the transfer function of the total lift used in Chapter
4. An integration of Ap yields the total lift L and it is presumed that if the transfer
function of the pressure difference /5, agrees with experimental results, the same
holds for the Theodorsen function /7. The linear nature of transfer functions sug-
gests that the ratio between perturbation and response at a distinct reduced frequency
remains constant, independent of the perturbation height. This assumption is tested
by studying the influence of the pitch amplitude ap on the pressure response, using
the experimental parameter set @ In Chapter 4 it is shown that first-order transfer
functions do not agree with experimental results in the case of a sinusoidal vertical
gust encounter. A hypothesis is conjectured that this disagreement could be due to
the fact that first-order theory neglects the distortion of the steady flow field by a lift
producing airfoil. Whether the altered steady velocity field is the reason for the dis-
agreement between first-order transfer functions and experimental results is tested
with parameter set . Figure 5.6 schematically visualizes the approach. Other than
a flat thin plate at zero angle of attack, the presence of a lift producing airfoil distorts
the surrounding stream lines. For a cambered airfoil, such as the Clark Y airfoil,
the smallest distortion of the velocity field is achieved at the zero-lift angle of at-
tack o, < 0°. At this mean angle of attack, the assumption of undistorted flow is
most likely fulfilled and agreement between theory and experimental results should
be best. With increasing mean angle of attack ¢, > ¢, the presence of an airfoil
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Figure 5.6.: Schematic visualization of the objectives of parameter set @ : First-order trans-
fer functions assume undistorted flow with straight streamlines. The presence of an airfoil
alters the steady velocity field and deflects the stream lines. The limits of applicability of
first-order transfer functions are tested by steadily increasing the airfoil’s mean angle of
attack o .

distorts the surrounding velocity field and deflects the stream lines. The assumption
of an unperturbed surrounding flow field is violated, which could explain a deviation
between and experimental results and theory. The hypothesis is tested by deriving
experimental transfer functions at various ¢, and comparing the result to the theo-
retical first-order transfer function.

The influence of mass inertia on adaptive camber airfoil performance is stud-
ied using parameter set @ While the adaptive camber airfoil is only actuated by
aerodynamic forces for the case of the sinusoidal vertical gust encounter studied in
Chapter 4, additional forces arise from the inertia of the flap system in the case of
an oscillating airfoil. According to Spiegelberg [88], the adaptive camber airfoil’s
inertial forces can be described by the transfer function of a classic linear dynamic
system. This transfer function takes the form (—HZM + inﬁ +K ), where M, D
and K are the structural mass, damping and stiffness matrices of the system, respec-
tively. The mass matrix M depends on the structural properties of the adaptive cam-
ber airfoil. For the complete formulation, the reader is referred to Spiegelberg [88],
equation C.3, p. 157. Figure 5.7 shows influencing parameters on a simplified model
of the adaptive camber airfoil, considering neither coupling of leading and trailing
flap, stiffness nor damping. Each flap exhibits inertial moments Mjpeia, Which can be

decomposed in an inertial moment due to translation My,ns and an inertial moment
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Figure 5.7.: Schematic visualization of the influence of mass inertia on the adaptive camber
airfoil performance. Depending on the structural properties, inertial moments Mj,eria can
enhance or reduce the driving aerodynamic moments Maero-

due to rotation M;q. From the schematic visualization of Figure 5.7 it is evident that
these moments depend highly on the adaptive camber airfoil’s structural properties,
i.e. its flap centers of gravity, the hinge positions, the coupling ratio between leading
and trailing flap but also on the movement pattern. The adaptive camber airfoil’s de-
cambering is determined by the phase and amplitude of both the inertial moments
Minertia and the aerodynamic moment My, around leading-edge. The aerodynamic
moment M., generally follows the aerodynamic angle of attack o with a small
phase shift. This guarantees the working principle of the adaptive camber airfoil. An
increasing « yields an increasing M,ey, that de-cambers the airfoil and leads to de-
creased load pick up. If inertial moments Mipertia are superimposed to Myer, such that
the airfoil’s camber increases with increasing o, the working principle of the adap-
tive camber airfoil is inverted, resulting in enhanced fluctuating loads. On the other
hand, if Miyeria 1S in phase with My, the actuation of the adaptive camber airfoil is
enhanced, which enhances gust load alleviation. While alleviating fluctuating loads
is favorable when encountering a gust, alleviating all load fluctuations could become
problematic in the case of blade bending oscillations. The fluctuating aerodynamic
forces induce a positive aerodynamic damping which is needed in order to quickly
reestablish normal operating conditions and limit fatigue. If bending oscillations are
not damped out by aerodynamic forces, all energy has to be absorbed by the struc-
ture, possibly increasing fatigue. This fact has to be taken taken into account when
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evaluating the benefits of the adaptive camber airfoil in terms of fatigue on an actual
wind turbine. Understanding the interaction between inertial and aerodynamic forces
on an oscillating airfoil is thus necessary to evaluate the adaptive camber airfoil in
the context of wind turbine applications. The aeroelastic response of the adaptive
camber airfoil cannot be accessed directly from the formulation of Spiegelberg for
the case of a forced plunging motion in constant free stream. Therefore, a purely
experimental investigation on how inertial forces alter the adaptive camber airfoil

performance is carried out.
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Table 5.1.: Summary of the experimental parameters.

Verification of 1% order transfer functions

airfoil rigid airfoil only
motion pure pitch
fp [Hz] 2:1:12 2:1:12
U [m/s] 15 15
k [1 0.05...0.3 0.05...0.3
o [°] 2 -4,-2,2,5,8

A [°] 2,4,6 4

Set @ Set @
verification of linearity limits of applicability

Influence of mass inertia on adaptive camber airfoil performance

airfoil rigid vs. adaptive
motion pure plunge

A [Hz] 2:1:12

Us [m/s] 0,15

k [1 0.05...0.3

o, [°] 5

a, [°] 1.5

Set (2)

influence of inertia during pure plunge
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5.2.2. Data Acquisition and Reduction

First, the data acquisition is described, followed by a derivation of the experimen-
tal transfer function of the pressure difference and the experimental transfer
function of the motion response. An estimation of the measurement uncertainties

of all measurands is given in appendix A.2.

Data Acquisition

All measured values (pressure, trailing flap deflection and acceleration of the pitch-
plunge rig) are acquired with a NI 6210 AD converter, operating at an input range of
5V and a sampling rate of f, = 1kHz. Pressure data are acquired using First Sensor
HCL pressure transducers with full scales of 5 mbar (pressure side) and 12.5 mbar
(suction side). The electric full scale output signals of 20mV are augmented to the
maximal input of the AD converter with in-house fabricated adjustable amplifiers
to obtain maximal resolution. The trailing flap deflection is measured using an ams
AS5162 rotary hall sensor. The sensor provides a linear analog output over a full turn
of 360 ° and allows programming of start and stop positions in order to increase full
scale resolution for smaller measurement ranges. Start and stop positions are set at
the maximal and minimal flap deflections, to exploit the data acquisition device input
range optimally.

During quasi-steady reference measurements, the airfoil’s mean angle of attack oy,
is augmented from —10° < oy, < 20° in steps of 1 °. Data are acquired for 7 = 20s
and a simple arithmetic mean is taken to describe each measuring point.

During dynamic measurements, the airfoil is oscillated continuously with a dynamic
angle of attack oy, = adyn sin(27 ft) around a mean angle of attack of ¢ . The dy-
namic angle of attack is generated by a pure pitching motion with a pitching ampli-
tude of Olgyn = 0., or by a pure plunging motion with an amplitude of gy, = 0, . Data
are acquired for 7 = 10s and phase averaged with the oscillation frequency f. The
instantaneous dynamic angle 04y, is obtained from two Freescale Semiconductor
MMA1270KEG acceleration sensors fixed to the linear actuators of the pitch-plunge
rig and serves as the phase reference.
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Experimental Transfer Function of the Pressure Difference th,,

The lift force is not directly accessible in the present experimental setup. The co-
efficient of the pressure difference on the airfoil’s leading-edge Ca, serves as an
estimator for the lift, as proposed by Gaunaa and Andersen [27]. Similar to the pres-
sure coefficient C,, the coefficient of the pressure difference between suction side
(SS) and pressure side (PS) of the airfoil is defined as

Pss = pes

(5.3)
302

Cpp=Cpss—Cpps =

Analog to the transfer function of the load Ay, that relates the dynamic lift response
to a quasi-steady approximation, a transfer function of the pressure difference hc,,
is obtained by relating the dynamic pressure difference Cap gyn to its quasi-steady
counterpart Cap gs -

~ i(wt+
_ Capayn € (ar+oes,)

_7 .
hey, = === ——ar— =hcy,e ™ (5.4)
Cap s ¢

The theoretical transfer function of the pressure difference /c,, is obtained from
the formulation of the unsteady pressure distribution Apgy, on an oscillating airfoil
given by Mateescu and Abdo [68], see section 3.2.2, p.28. The experimental value
of thp is obtained from pressure measurements on the suction and pressure side of
the airfoil at the same chordwise position x/s = 0.11. The quasi-steady value 621,7qs

is obtained by

~ acr
Chpas = g+ Gayn (5.5)

where dC,, /d ot is the slope of the coefficient of the pressure difference in the
region of attached flow, derived from quasi-steady reference measurements and Olgyn
is amplitude of the dynamic angle of attack due to a pitching or a plunging of the air-
foil. The amplitude 62177 dyn and phase qoéAp are derived from phase averaged dynamic
pressure measurements, such that:

CZp,dyn = CZp,dyn sin(27rft + (pé‘Ap) (5.6)
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Experimental Transfer Function of the Motion Response /7,

According to its definition of section 3.2.3, p. 33, the transfer function of motion h,,

relates the fluctuating trailing flap angle ¥’ to the dynamic angle of attack Ogyn:

B y ez(a)t+(0y) _ y 9y
hy= = o — = ¢ 5.7
Odyn € Oldyn

The experimental amplitude 7* is derived from phase averaged measurements

Y =7'sin2nf + (,0;) (5.8)
The phase ¢, is related to the dynamic angle

Qjyn = &jyn sin(2wft), (5.9)

which is obtained from the acceleration sensor signals of the pitch-plunge rig.

5.2.3. Experimental Results

Experimental transfer functions for the pressure difference /c,, are obtained from
phase averaged data as explained in section 5.2.2. The corresponding quasi-steady
reference measurements are given in appendix C.2. The presentation of the results

follows the outline given in section 5.2.1.

Verification of 1°' Order Transfer Functions

Verification of Linearity - Parameter Set

Figure 5.8 compares the experimental and theoretical transfer function of the pres-
sure difference hac, for a rigid airfoil oscillating in pure pitch around its leading-
edge (e = 0) for various pitching amplitudes ap. The theoretical transfer function is
independent of the pitch amplitude &p and the mean angle of attack o, . In the exper-
iments, the airfoil is pitched with various &p around ¢, =2° in a free stream of U, =
15m/s. The magnitude of the transfer function |hac,| is displayed in Figure 5.8a,
the phase @ac, is displayed in Figure 5.8b. According to linear theory, the pitching
amplitude ap has no influence on the transfer function. This is confirmed by the ex-
perimental results and is in good agreement with the findings of Chapter 4 of the
sinusoidal vertical gust encounter and the results of Halfman [31] of a harmonically
pitching NACA 0012 airfoil.

111



1.0 T T T T T
_ .*-—._._':' 0 = | . % E "
= 081 - =l
5 =
o 9
% 0.6 - = Theory | §
gb écp =2° 3
S 04) E— . =
T G=6 2 -
0.2 | | | | | |
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3
Reduced frequency & [ | Reduced frequency & [ ]
(a) Magnitude (b) Phase

Figure 5.8.: Magnitude VlAC,,\ and phase @ac, of the transfer function of the pressure differ-
ence AC, on a continuously pitching rigid airfoil. The airfoil is pitched around its leading-
edge at a mean angle of attack ¢, = +2° with the indicated pitch amplitude ap at an inflow
velocity of U, = 15m/s. Experimental values, indicated by marker symbols, are compared
to a first-order solution given by Mateescu and Abdo [68].

Limits of Applicability - Parameter Set

Figure 5.9 compares the experimental and theoretical transfer function of the pres-
sure difference hac, for a rigid airfoil pitched continuously around its leading-edge
(e = 0) for various mean angles of attack ¢ . The theoretical transfer function is
independent of the mean angle of attack ¢, and the pitch amplitude ap. In the ex-
periments, the airfoil is pitched with &p =4° at Us, =15m/s around different ¢,
in the range of —4° < o < +8°. The magnitude of the transfer function |hac, | is
displayed in Figure 5.9a, the phase @ac, is displayed in Figure 5.9b. At o, = —4°,
magnitude and phase of experimental and theoretical values agree reasonably well.
Note that this is the angle of attack which produces zero mean pressure difference
Cap = 0 under quasi-steady conditions, cf. Figure C.4a, p. 179. With increasing o, ,
the difference between experimental and theoretical values increases. At the high-
est mean angle of attack of ¢, = +8°, significant differences are observed between
experimental values and theoretical prediction. The magnitude \hAc,,| of experimen-
tal and theoretical values shows an opposite frequency dependence and approaches
different values for k — 0. The phase @ac, shows a significant offset between exper-
imental and theoretical values. A very similar behavior is observed for the sinusoidal
vertical gust encounter of Chapter 4, cf. Figure 4.17 and Figure 4.18, p. 85.
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Figure 5.9.: Magnitude VlAc,,\ and phase @ac, of the transfer function of the pressure differ-
ence AC, on a continuously pitching rigid airfoil. The airfoil is pitched around its leading-
edge at the indicated mean angle of attack ¢, with a pitching amplitude &p =4° at an
inflow velocity of U = 15m/s. Experimental values, indicated by marker symbols, are
compared to a first-order solution given by Mateescu [68].

Influence of Mass Inertia on the Adaptive Camber Airfoil’s Performance

Pure Plunge - Parameter Set

Figure 5.10 shows the motion response of the adaptive camber airfoil’s trailing flap
hy to a pure plunging motion. In Figure 5.10a, the flow velocity is set to U, = 0m/s
and the motion response of the adaptive camber airfoil is only due to the inertial
forces of the flap system. The magnitude |/,| increases with increasing plunging fre-
quency f, and the phase @, remains in the range of 0 < ¢, < 7. This is the expected
behavior for a linear spring mass damper system submitted to perturbations with in-
creasing excitation frequencies below its system resonance. In Figure 5.10b, the flow
velocity is set to Us = 15m/s and the motion response of the adaptive camber airfoil
is a result of inertial and aerodynamic forces. As for U, = 0m/s (Figure 5.10a), the
magnitude |/y| increases with increasing reduced frequency, but at a higher rate. The
phase of the motion response ¢y increases for the inflow velocity U = 15m/s from
oy~ —m/2atk=0to ¢y~ —m/4 at k = 0.3. The phase lag between the motion
response and the excitatory plunge angle of attack ¢, remains below |¢y| < /2 and
decreases with increasing k. The magnitude of the motion response increases with in-
creasing k. This indicates that the inertial forces enhance the adaptive camber airfoil’s
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Figure 5.10.: Magnitude and phase of the motion response Ay for U, = 0m/s (a) and U =
15m/s (b). Discrete experimental data are indicated by marker symbols, a cubic spline
interpolation emphasizes the frequency dependence. The investigated plunging frequencies
/i in (a) correspond to the reduced frequencies & in (b). The mean angle of attack is set
to o, = 5°. The plunge motion corresponds to a plunge amplitude of o, = 1.5° at Us, =
15m/s.

gust load alleviation capabilities with increasing k, as most efficient gust load allevi-
ation is expected for high |hy| and small |¢,|. Figure 5.11 shows the corresponding
aerodynamic response of the adaptive camber airfoil and the rigid reference airfoil.
The aerodynamic response is quantified by the coefficient of the pressure difference
between suction and pressure side on the leading-edge Cy,, see equation 5.2.2, p.
110. Note that Figure 5.11a Ashows the amplitude pr an and not the magnitude of the
transfer function |hc,,| = Capy, /Capgs» as @ normalization with Cap,, complicates
a comparison between the rigid and the adaptive camber airfoil. The rigid airfoil’s
EAP 4n INCTEases with increasing reduced frequency k. The adaptive camber airfoil’s
Capqy, decreases with increasing k. This can be attributed to a more efficient manipu-
lation of fluctuating loads with increasing k and is in good agreement with the motion
response of the adaptive camber airfoil shown in Figure 5.10b. Figure 5.11b shows
the phase ¢c,, between Cyp, dyn and the plunging angle of attack ¢, . Both pressure
responses lag the pitching angle of attack (¢ < 0), the de-cambering of the adaptive
camber airfoil introduces an additional phase lag. For k > 0.2, the adaptive camber
airfoil damps the loads so efficiently that é\A,, an 0.1 and no distinct phase can be
assigned.
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Figure 5.11.: Amplitude and phase of the coefficient of the pressure difference on the airfoil’s
leading-edge Cy,, as a function of the reduced frequency. The airfoils are oscillated in a pure
plunge motion at a mean angle of attack o, = 5° with a plunging angle of attack o;, = 1.5°
at an inflow velocity of U, = 15m/s. In the region highlighted in gray at k > 0.2, the
combined influence of inertial and aerodynamic forces actuates the adaptive camber airfoil
so efficiently that no distinct phase can be attributed to the adaptive camber airfoil’s Cpp,.

For an airfoil oscillating in pure pitch motion, inertial forces and the resulting motion
response and aerodynamic response depend highly on the elastic axis e around that
the airfoil is oscillated. Results of an experimental investigation of the dynamic re-
sponse of a pitching airfoil with adaptive camber mechanism are reported by Meiliner
[70].

Conclusions

The verification of first-order transfer functions is performed for the rigid air-
foil only. A systematic investigation of the adaptive camber airfoil is omitted, as no
theoretical transfer function for the forced pitching condition exists. In the case of
a sinusoidal vertical gust encounter, where a theoretical transfer functions for the
adaptive camber airfoil is given by Spiegelberg [88], the theoretical transfer func-
tions of rigid and adaptive camber airfoil follow the same behavior and show the
same discrepancy to the experimental results. It can thus be assumed that the follow-
ing conclusions hold for the adaptive camber airfoil as well.
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First-order transfer functions are derived using the approximation of a thin flat plate
at zero angle of attack that does not alter the surrounding velocity field. If the sur-
rounding velocity field remains unperturbed, the thin flat plate cannot produce a
mean pressure difference or a mean lift.

e Experimental results agree reasonably well with first-order theory, if the per-
turbation is applied around an angle of attack that produces zero mean pressure

difference.

It is shown in Figure 5.8 that the transfer function of an airfoil pitching around

o, = —4° agrees with theoretical predictions. From quasi-steady reference measure-
ments in Figure C.4a, p. 179 it can be seen that o, = —4° is exactly the angle where
AC) gs = 0.

o If the perturbation is applied around a lift producing angle ¢, > o, the ex-

perimentally observed behavior differs from theoretical predictions.

In the case of an airfoil pitching around o, > 5°, significant differences between
experimental and theoretical iiac, are observed. This is a rather high ¢, and the fact
that first-order theory fails to capture the experimentally observed behavior is under-
standable. For the case of the sinusoidal vertical gust encounter of Chapter 4, theo-
retical and experimental values showed the same significant differences at relatively
small mean angles of attack of ¢, = 2°. According to Dowell [22] and Hodges and
Pierce [35], first-order transfer functions are state-of-the-art design tools in flutter
calculation for engineering applications. The experimental results reveal the limits
of applicability of first-order transfer functions and emphasize that first-order trans-
fer functions have to be applied with caution: The generation of a mean lift violates
the assumptions upon which first-order transfer functions are built.

The influence of the mass inertia has major impact on the adaptive camber airfoil’s
performance.

e Pure plunging motion enhances the adaptive camber airfoil’s motion response

and gust load alleviation performance.

Alleviating load fluctuations is the purpose during normal operating conditions. On
a wind turbine blade in bending oscillation, the fluctuating aerodynamic loads are
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opposing the bending motion. Aerodynamic forces induce a positive aerodynamic
damping that attenuates the blade oscillation. If bending oscillations are not damped
out by aerodynamic forces, all energy has to be absorbed by the structure, possibly
increasing fatigue. This fact has to be taken into account when evaluating the benefits
of the adaptive camber in terms of fatigue on actual wind turbines.

5.3. Detached Flow Regime

At high mean angles of attack, the flow separates from the airfoil and viscous forces
become predominant over pressure forces. The pressure difference Ap is no longer
an adequate parameter to estimate the airfoil lift. Neither are first-order transfer func-
tions an adequate tool to predict the unsteady airfoil response. At high mean angles
of attack, dynamic flow perturbations lead to a phenomenon typically referred to as
dynamic stall. Dynamic stall is accompanied by leading-edge vortices (LEV) and
high transient forces, as discussed in section 3.3. Various parameters influence dy-
namic stall and the LEV evolution. The objectives and the investigated parameter
space are explained in section 5.3.1. LEV circulation scales with the dynamic forces
exhibited by the airfoil. The data acquisition and reduction procedures used to
obtain LEV circulation from time resolved particle image velocimetry data are pre-
sented in section 5.3.2. Finally, the experimental results are presented in section
5.3.3.

5.3.1. Objectives and Investigated Parameter Space

As pointed out in section 3.3, the coherent LEV that emerge during dynamic stall
produces highly localized forces at the airfoil’s leading-edge. On the adaptive cam-
ber airfoil, these forces are sufficient to actuate the adaptive camber mechanism. The
LEV themselves are highly sensitive to the conditions at the airfoil’s leading-edge,
i. e. the airfoil’s effective angle of attack. The effective angle of attack changes as
the airfoil de-cambers. Figure 5.12 graphically illustrates the considerations: The
shear layer velocity profile is determined by the relative velocity between outer flow

and airfoil surface AU |g. On the adaptive camber airfoil, the leading-edge rotates

1dy

with a rotational velocity of 3, with y being the trailing flap angle and N the me-
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(a) Rigid (b) Adaptive

Figure 5.12.: The rotation of the adaptive camber airfoil’s leading-edge alters the velocity
difference AU \g over the feeding shear layer. This influences the vortex growth rate.

chanical coupling ratio between leading-edge and trailing flap. This rotation alters
the feeding shear layer strength due to the no-slip boundary condition on the air-
foil surface by AU |g7ad =AU |g7rig — ULg, where Upg is the surface velocity of the
rotating leading-edge that is proportional to %’ and %. The vortex growth rate
I" is determined by AU |g and accordingly both I" and [y = [T'dt are altered by
the adaptive camber airfoil’s flap rotation. In an otherwise identical experimental
setup, a difference in maximal circulation on the rigid and the adaptive camber air-
foil T'max,rigia — I'max,adaptive €an be attributed to the de-cambering of the airfoil. It

follows that

1—‘max,rigid - 1—‘max,adaptive o< /ULEdt oc Ay o< Al (5.10)

where A defines the difference between maximal and minimal value during the com-
plete pitch cycle. On rigid airfoils, the LEV growth rate I" is mainly determined by
the effective angle off attack and thus the motion history. Baik et al. [5] and Widmann
and Tropea [105] kept the effective angle of attack history constant and varied the in-
flow velocity, chord length or percentage of plunging and pitching motion in order to
isolate the effect of reduced frequency k and Strouhal number Sr on the normalized
circulation I'/nU.. The unsteady flow encountered by a wind turbine blade can also
be quantified in terms of k and Sr. On the adaptive camber airfoil, isolating the ef-
fects of reduced frequency k and Strouhal number Sr in a combined pitch and plunge
motion yields several difficulties. Changing the percentage of pitch and plunge mo-
tion leads to different mass inertia effects on the flap system. A change in inflow
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Figure 5.13.: Investigated parameters combinations, displayed in the Strouhal number - re-
duced frequency plane and the corresponding dimensional pitch frequencies f, and pitch
amplitudes ap. The inflow velocity is kept constant at U = 15m/s to keep the adaptive
camber airfoil’s reduced system stiffness constant. The airfoil is oscillated continuously in
pure pitch motion around its ¢/2 axis. The mean angle of attack is o, =14°.

velocity Us, leads to a different reduced stiffness of the adaptive camber airfoil. Both
parameters are suspected to significantly alter the adaptive camber airfoil’s behavior.
In this study, only pure continuous pitching motions around the airfoil’s e = ¢/2 axis
are performed. This elastic axis has the smallest inertia influence on the flap system,
as reported by MeiBner [70]. The inflow velocity is U, = 15m/s and the mean angle
of attack is set to ¢, = 14°. The reduced frequency k is varied by changing only the
pitching frequency and the Strouhal number Sr is varied by changing only the pitch-
ing amplitude. This effectively limits the range of k and Sr but keeps the influence of
mass inertia and reduced stiffness as low as possible. Fully exploiting the dynamic
properties of the pitch-plunge rig yields the parameter combinations given in Figure
5.13. Two different sets are carried out: In set @ k is varied, keeping the Sr constant
at Sr = 0.066. In set @ the Sr is varied and k is set to k = 0.1.

5.3.2. Data Acquisition and Reduction

This section explains how dimensional, two-component, time resolved particle im-
age velocimetry (2D2C TR PIV) data are acquired and processed to obtain two-
dimensional velocity vector fields. From the velocity vector fields, coherent LEV
are identified and their circulation is calculated by integration of the vorticity inside
the LEV boundaries. An estimation of the measurement uncertainties of all acquired

119



measurands is given in appendix A.2.

Data Acquisition

2D2C TR PIV field data are acquired using the measurement system schematically
shown in Figure 5.14. A Litron LDY-303 high speed Nd:YLF dual cavity laser is

R light sheet optic

laser sheet ° U

y field of view y

X [lcamera
B et Bt
| \ . .
=i coupling mechanism
m linear actuators pressure taps
[®) U

(a) Side view (b) Front view

S

Figure 5.14.: Schematic view of the PIV setup. A laser sheet in the x —y plane illuminates
seeding particles in the flow around the airfoil. A camera is located outside the wind tunnel
with its optical axis normal to the laser sheet. The field of view (FoV) comprises the whole
airfoil chord length.

installed outside the wind tunnel. The laser has a wavelength A = 527nm and is
operated in single frame mode at 10 kHz with its maximum output energy. A light
guiding arm guides the laser beam to a light sheet optic installed above the wind
tunnel. A laser sheet of approximately 2 mm thickness is produced at the airfoil’s
quarter span. The laser sheet illuminates DEHS (Di-Ethyl-Hexyl-Sebacat) seeding
particles. The seeding particles are atomized with a mean diameter of 0.9 um in
the settling chamber and transported with the flow in the test section. The flow
field is captured by a Phantom v 12.1 high speed CMOS camera controlled with
Phantom V PCC 2.5 acquisition software. The camera is installed at approximately
0.6 m distance from the laser sheet outside the wind tunnel and is equipped with a
Carl Zeiss Makro Planar 2/50ZF lens and a bandpass filter of 20 nm bandwidth and
532 nm mid-band frequency. Together with the adaptive camber airfoil’s rhodamine
coating, surface reflexions are minimized. The camera’s optical axis is normal to

the laser sheet, capturing the whole airfoil’s chord length with a resolution of 800 x
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600 pixels. The field of view spans 185x140 mm?, which corresponds to a resolution

of approximately 4.3 pixels/mm.

PIV Correlation

The raw images are masked to remove spurious gray scale values due to reflections
on the airfoil’s surface and suppress regions where no seeding particles can be corre-
lated. During the pitch-plunge experiments, the airfoil moves continuously through
the field of view (FoV). In the case of the adaptive camber airfoil, leading-edge and
trailing flap introduce an additional degree of freedom and move independently from
the airfoil kinematics of the pitch-plunge rig. Knowing the kinematics imposed by
the pitch-plunge rig, airfoil shape and trailing flap angle for each instant in time, a
mask is produced in Matlab. After masking the airfoil in all recordings, an adaptive
cross-correlation is performed using PIVview2C. According to Raffel et al. [76] good
correlations are obtained for particle displacements of about 25 % of the interroga-
tion area (IA) size. Since local flow velocities may be significantly higher than the
main stream velocity U.., a relatively large IA size of 256 x 256 pixels is reduced by
a stepwise refinement scheme to an ending IA size of 16 x 16 pixels. This showed to
be a good trade-off between spatial resolution, computing power and invalid vectors.
An IA overlap of 50% leads to a grid spacing of 2 mm. From the raw vector maps, in-
valid vectors are identified with a normalized median test of 3 x 3 IA. Approximately
6 % of the vectors are outliers and are replaced via bi-linear interpolation. From the
obtained vector fields at a sampling rate of f, = 10kHz, an average of three vector
maps is taken, leading to a time resolution of f;.s = 3.33kHz. This eliminates small
scale fluctuations but facilitates the identification of large scale coherent structures,

which is the main goal of this study.

Vortex Identification

The circulation I" of a region of area A, enclosed by a boundary B can be calculated by
integrating the component of the vorticity vector @ = %rotz‘i normal to the considered

area A or by integrating the velocity vector i along the boundary B:

F:/E)-ﬁdA:?{ﬁd)‘c’ (5.11)
A B
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In the two-dimensional x — y plane, the velocity vector # = (u,v) is fully described
by the flow component in x-direction « and the flow component in y-direction v. The
vorticity vector reduces to @, = % (f g—’é + %) . From PIV data, velocity vector fields
i (x,y) are obtained in the x — y plane. To calculate I" of a coherent LEV, the boundary
B or the area A of this coherent LEV have to be known. Integrating @, in the whole
FoV would lead to erroneous results, as the shear layer, the airfoil wake or regions
of detached flow also contain vorticity. Several ways to identify vortex boundaries
exist. Kolar [53] reviewed methods to extract vortex boundaries from the local flow
properties using velocity gradients Vii = du;/dx;. These methods are common in
the post processing of numerical data. In experimentally obtained data, small scale
velocity fluctuations due to measurement errors occur. Vortex identification schemes
based on local methods are highly sensitive for these small scale velocity fluctuations
and the application is challenging. Vollmers [101] reviewed and compared various
algorithms to detect vortices from experimentally obtained velocity fields (PIV). He
confirmed that noisy or fluctuating data are best processed with methods that deal
with a directly measured velocity field rather than with its gradients. One method
that takes the integral flow behavior of the velocity field into account is the vortex
identification method developed by Graftieaux et al. [30]. Two scalar functions I'y
and I, are derived directly from the velocity vector fields. According to Graftieaux,
these scalars do not consider the vortex strength but rather the flow topology. This
makes the method suitable to deal with discontinuities and also robust enough to
handle big amounts of data. The method was successfully applied by Widmann [104]
for a similar experimental setup and will be used in this study to identify vortex core
positions and vortex boundaries. The scalar function I'y and I'; are mathematically
defined as:

_)
1 & (PM, x U, ) 2 5
NP =—Y > 7 " Vin(0,) (5.12)
Nn:l ’W/In ‘|UMn| Nn:]
oLt (PM x (U, — T) ) -2
L(P) = — (5.13)
anl ’W/I,, |UM,1*UP‘
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P is the point in the vector field for that the scalar function is derived. P is located in
the middle of a rectangular domain of N points. M,, is a point inside the considered
rectangle and W/In is the vector between P and M,,. ®,, is the angle enclosed by
W/In and the local flow velocity i (M,,). For a circular vortex, I'; takes its maximal
value of |I'j| = 1 at the vortex center. |I'»| equals 2/7 at a point of pure shear, which
serves to detect the vortex boundary. The algorithm is implemented in Matlab, based
on a software file provided by Endrikat [24] and adopted to match the requirements
of the experimental setup. The algorithm is optimized for circular vortices. In the
experimental data vortices have various shapes. To efficiently detect vortex cores
and boundaries, the typical values of |T'j| and |I",| are adapted and the tracking of
vortex cores in time is implemented. More information about the implementation

and adaption of the vortex identification method can be found in Kehl [48].

5.3.3. Experimental Results

The qualitative observations are similar for all investigated parameter combinations
and first a comparative qualitative LEV evolution during one pitch cycle on the
rigid and the adaptive camber airfoil is given. The qualitative observations are quan-
tified by deriving the normalized circulation of the coherent LEV with the vortex
identification method given in section 5.3.2, p.121. This quantitative LEV evolu-
tion during one pitch cycle is presented for one selected parameter combination of
reduced frequency k and Strouhal number Sr, which corresponds to the center of the
parameter set of section 5.3.1, p.117. The pitch cycles of the remaining parameter
combinations are processed in a similar manner and the influence of reduced fre-
quency and Strouhal number on the normalized circulation is presented at the
end of this subsection.

Qualitative LEV Evolution During one Pitch Cycle

Figure 5.15a shows the dynamic pitch angle of attack o, over the dimensionless time
t™, which is obtained by normalization with the pitching period T = 1/ /,- Note that
@, is the geometric angle of attack enclosed by the main stream direction Us.¢y and
the chordwise direction x’ of the rigid reference airfoil. The pitch cycle begins at the
minimum angle of attack of ¢, min = 8° (t* = 0). The airfoil pitches upwards to its
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maximum angle of attack of 0 max = 20° (tT = 0.5) and afterwards pitches down-
wards to the minimum angle of attack (+* = 1). Coherent vortices are observed in
the region highlighted in white. No coherent vortices are observed in gray colored
regions. Points of interest are labeled from (a) to (e). The corresponding flow situa-
tions on the rigid and the adaptive airfoil are schematically visualized in Figure 5.16
and explained below.
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Figure 5.15.: Evolution of the pitch angle of attack during one pitch cycle (0 <tT =¢/T < 1).
The airfoil pitches continuously around a mean angle of attack ¢, =14 °, with an amplitude
&p = 6°. The cycle starts at minimum angle of attack and follows a harmonic sinusoidal
motion. (a): Important stages in the pitch cycle are labeled and described later. (b): De-
cambering of the adaptive airfoil over one pitch-period, exemplary shown for k = 0.1 and
Sr = 0.066, quantified by the trailing flap angle 7.

The flow structure on the rigid airfoil is similar to that observed by other authors
(for example [15,16,69,71,85]) and resembles the typical vortex life cycle described
in section 3.3.1. At the beginning of the upstroke at ™ = 0, the angle of attack is
small. The flow remains attached to the airfoil surface, which corresponds to (a).
With increasing angle of attack, the shear layer starts to roll up into a coherent vorti-
cal structure at the front part of the airfoil, the so-called leading-edge vortex (LEV)
(b). The LEV grows in size as it convects over the airfoil, with a velocity smaller than
the main flow, staying close to the airfoil surface (c). At the aft part, the LEV inter-
acts with a counter rotating trailing-edge vortex (d). The LEV is deflected from the
airfoil surface and is drawn away by the outer flow. A new coherent LEV is formed
at the leading-edge and a new vortex life cycle of formation, growth and convection
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Figure 5.16.: Schematic representation of the dynamic stall process on the rigid (top) and
the adaptive camber airfoil (bottom). During the pitch cycle, the rigid airfoil experiences
the flow phenomenon typically associated with dynamic stall: a cycle of formation of a
leading-edge vortex (b) growth and convection of the vortex over the airfoil (c), interaction
with the trailing-edge vortex and separation (d), followed by full stall, well behind the static
stall angle (e). The flow around the adaptive camber airfoil features smaller vortices (b-d),
while the airfoil de-cambers, followed by full stall (e).

begins. Stages (a), (b) and (c) are repeated two to three times during 0.15 <+ < 0.5,
before the airfoil stalls completely at stage (e). The full stall persists during down-
stroke. Smaller vortices sprout in the shear layer between undisturbed mean flow and
the stalled region. This vortex layer moves closer to the airfoil as deep stall evolves
to light stall with decreasing angle of attack. The vortices in the vortex layer become
less distinct and the flow reattaches from the leading-edge as the airfoil passes its
minimum angle of attack. A new coherent LEV forms, and the cycle is repeated in
the next consecutive pitch cycle.

The adaptive camber airfoil de-cambers during the pitch cycle, as depicted in Fig-
ure 5.15b. At the beginning of the pitch cycle, the adaptive camber airfoil’s shape is
close to the original Clark Y with a trailing flap angle of about Y = —1°. During the
first half of the upstroke, where the aerodynamic moment around the leading-edge
is not sufficient to effectively actuate the adaptive camber mechanism, the adaptive
camber airfoil’s shape remains unchanged. Midway during upstroke, the adaptive
camber airfoil de-cambers to a trailing flap angle of ¥ = —9°. The adaptive camber
airfoil maintains its shape as the airfoil passes its maximum angle of attack and re-
turns to its original shape during downstroke, proportional to the airfoil pitch motion.
The de-cambering occurs at the phase in the pitch cycle during that vortex formation,
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growth and convection take place on the rigid airfoil (stages (b)-(d)). On the adap-
tive camber airfoil, coherent LEVs with a rounded elliptical shape are formed that
are generally smaller in size. This is in agreement with the findings of Rojratsirikul
et al. and Visbal et al. [81,100] who investigated membrane airfoils mimicking insect
wings. Those membrane airfoils have inverted kinematics, compared to the adaptive
camber airfoil. The membrane wings’ camber increases with increasing angle of at-
tack, yielding an increased effective angle of attack and a stronger shear layer. This
results in likewise stronger vortices and higher lift production compared to a rigid
reference wing.

Quantitative LEV Evolution During one Pitch Cycle

The qualitative LEV evolution described above is similar for all parameter combina-
tions. The qualitative observations are quantified by deriving the boundaries of the
coherent LEV from the velocity vector fields with the vortex detection method of
Graftieaux et al. [30] described in section 5.2.2. The circulation inside the coherent
vortices is integrated and normalized to obtain ['" (¢T) for every snapshot in time of
the pitch cycle. From the time resolved I'" evolution, mean, standard deviation and
maximal values are derived to characterize each k-Sr combination. This procedure is
exemplary shown for one parameter combination of k = 0.1 and Sr = 0.066 (i.e. the
center point in the parameter space of Figure 5.13).

Figure 5.17 exemplary compares time resolved snapshots of the velocity field ob-
tained from PIV data around the rigid (left) and the adaptive camber airfoil (right).
Three instants in time ™ = 0.26, 0.30 and 0.34 are chosen as they illustrate one cycle
of vortex formation, growth and convection on the rigid airfoil. On both the rigid and
the adaptive camber airfoil a coherent LEV is formed at ¢+ = 0.26. This vortex is
highlighted in blue for the rigid and in red for the adaptive camber airfoil. The same
LEYV is highlighted in the snapshots at ¢ = 0.30 and 0.34. On both the rigid and the
adaptive camber airfoil, the LEV grows in time and its center propagates over the
airfoil. The LEV on the rigid airfoil is generally larger than on the adaptive camber
airfoil. Other coherent vortices, dating from a previous cycle of vortex formation,
growth and propagation are detected in the snapshots at ™ = 0.26 and 0.30.

The circulation of a coherent vortex is not necessarily proportional to its size but
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Figure 5.17.: Illustration of one vortex shedding cycle on the rigid airfoil (left) and the adap-
tive airfoil (right). Time resolved snapshots are taken at tT =0.26, 0.30 and 0.34, cor-
responding to the stages of formation, growth and convection of the coherent LEV. The
background is gray scale coded with I'; values and overlaid with the local flow direction.
Every third vector is plotted for clarity. Vortex center and boundary of the coherent LEVs
are obtained by the vortex identification method of Graftieaux et al. [30] and highlighted in
white. The coherent LEV formed at #™ = 0.26 is highlighted in blue on the rigid and in red
on the adaptive camber airfoil on all snapshots.
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obtained by integrating the vorticity inside its boundaries, cf. section 5.3.2, p.121.
Integrating the vorticity of all detected vortices of the vector field yields the total
circulation I of all coherent LEVs for one snapshot in time. Normalization with the
chord length ¢ and the inflow velocity U.. results in the normalized circulation I't

N

=—. .14
T (5.14)

Figure 5.18 shows '™ as a function of ¢ for the rigid and the adaptive camber airfoil.
Figure 5.18a shows the time resolved evolution over one complete pitch cycle. Figure
5.18b gives a close-up view of the vortex shedding region between 0.15 <t < 0.5.
On the rigid airfoil, high variations of the normalized circulation I'" are observed,
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(a) Complete pitch cycle (b) Vortex shedding region

Figure 5.18.: Normalized circulation I'", obtained by integrating the vorticity of all identified
coherent vortices for one snapshot and displayed over the dimensionless time ¢™. The angle
of attack evolution and the region of vortex shedding are highlighted in the background to
provide orientation of the expected flow regime. For clarity, only every second value is
displayed. (a) shows the complete pitch cycle. (b) gives a close up on the vortex shedding
region between 0.15 <t < 0.5.

especially in the vortex shedding region. This is caused by the typical cycle of forma-
tion, growth and convection of large coherent structures, during which I'™ increases
steadily. When the coherent structure reaches the airfoil’s trailing-edge, it interacts
with a counter rotating trailing-edge vortex and is shed. The coherent structure is
convected downstream and leaves the field of view, '™ decreases. A new cycle of for-
mation, growth and convection begins that results in cyclic variations of I'". On the
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adaptive camber airfoil, the variation of I'" is less pronounced. A total of four con-
secutive pitch cycles is evaluated. Macroscopically, an equivalent behavior is seen for
each of the investigated pitch cycles: The rigid airfoil experiences vortex formation,
growth and propagation. The adaptive camber airfoil de-cambers, accompanied by
smaller and less coherent structures. The temporal occurrence of vortex formation,
growth and propagation differs slightly from pitch cycle to pitch cycle. Mean and
maximal values of I't as well as the standard deviation ¢ (I'") are given in Table 5.2
to quantify the repeatability of the events. Although dynamic stall is a highly turbu-
lent phenomenon and the temporally resolved data exhibits a high variability, mean
and maximum values as well as the standard deviation agree well from pitch cycle to
pitch cycle. The qualitative observation that the de-cambering of the adaptive cam-
ber airfoil leads to weaker LEV has now been quantified. Figure 5.18 and Table 5.2
reveal the adaptive camber airfoil’s potential for gust load alleviation under dynamic
stall conditions. Mean and maximal values and the standard deviation of the I'" are
smaller on the adaptive camber airfoil, compared to the rigid reference airfoil. In
section 4.3.3, p. 67, the load reduction LR is defined to be the relative difference in
standard deviation of the fluctuating loads on adaptive and rigid airfoil. LR serves as
a measure for the adaptive camber airfoil’s effectiveness in terms of gust load allevi-
ation: for LR = 1, all load fluctuations are alleviated by the adaptive camber airfoil.
For LR = 0, the adaptive camber and the rigid airfoil exhibit equally fluctuating loads

and for LR < 0, fluctuating loads are enhanced by the adaptive camber airfoil. In a

Table 5.2.: Mean and maximal values as well as the standard deviation of the normalized
circulation I'" during all investigated pitch cycles.

: e I ax o (")
Pitch cycle . . . . . .
rigid adaptive rigid adaptive rigid adaptive
1 1.21 1.07 2.09 1.55 0.27 0.16
2 1.18 1.08 2.15 1.62 0.26 0.18
3 1.20 1.10 2.02 1.61 0.23 0.17
4 1.25 1.10 2.13 1.62 0.22 0.17
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similar manner to LR, the circulation reduction CR is defined as

O-(F:i_gid) - G(F:;iaptive)
CR= -
c7(1—‘rigid)

(5.15)

For the values of G(Fjigid

duction calculates to CR = 0.32 signifying that 32 % of the fluctuating circulation is

) and G(Fafiapﬁve) given in Table 5.2, the circulation re-

alleviated by the adaptive camber airfoil. It can be anticipated that fluctuating loads
are also damped, as Jones and Babinsky [44] found the circulation of coherent LEV
to be directly proportional to the exhibited load. This is a good result in terms of gust
load alleviation. Another favorable result in terms of fatigue is the decreased mean
value of I'+ on the adaptive camber airfoil. Below rated wind speed and in attached
flow regime, a high mean lift is favorable regarding the energy harvest of the wind
turbine. Above rated wind speed and at conditions where dynamic stall typically oc-
curs, high mean loads do not further increase energy harvest but have an increased
contribution to fatigue life.

Influence of the Reduced Frequency and the Strouhal Number on the
Normalized Circulation

An equivalent investigation is carried out for all Strouhal number Sr and reduced
frequency k combinations of Figure 5.13, p.119. The results are displayed in Figure
5.19. Mean values '+ are represented by marker symbols and the standard deviation
o (") by error bars. The circulation reduction CR is indicated for each parameter
combination. Figure 5.19a shows values for the variation of k, obtained from pa-
rameter set @ Figure 5.19b shows values for the variation of Sr, obtained from
parameter set @ Generally, mean values 't and standard deviation o(I'") of the
normalized circulation are smaller on the adaptive camber airfoil, compared to the
corresponding values on the rigid airfoil. The circulation reduction CR takes values
between 0.14 < CR < 0.38, meaning that the adaptive camber airfoil reduces fluctu-
ating circulation between 14 % and 38 %. The adaptive camber airfoil exhibits also
smaller mean circulation I'+ for all investigated k-Sr combinations.

The maximal circulation accumulated in a LEV vortex [ is mainly determined
by the feeding shear layer properties, if LEV detachment is initiated by bluff body
mechanism as reported by Widmann and Tropea [104]. For a rigid airfoil, I},
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Figure 5.19.: Mean and standard deviation of the normalized circulation I'" on the rigid
and the adaptive camber airfoil. (a) shows the dependence on the reduced frequency k at
constant Sr, (b) shows the dependence on the Strouhal number Sr at constant k. Mean
values I'F are represented by marker symbols and standard deviation o (") is represented
by error bars. Uncertainty intervals due to the stochastic nature of dynamic stall are obtained
according to the guidelines of GUM Type A [43] from consecutive measurements of the
same parameter combination, as listed in table 5.2 and represented by colored regions.
The displayed values are dispersed for better visibility, but are obtained at the indicated
parameters.

depends then mainly on the reduced frequency k and the Strouhal number Sr of
the airfoil oscillation. Baik et al. [5] found maximal values of I'},, on a pitching
and plunging flat plate to increase with increasing Strouhal number in the range of
0.1 < Sr < 0.48 and to decrease with increasing k in the range of 0.31 < k < 0.63.
A similar behavior was observed by Widmann and Tropea [105] for 0.24 < k < 0.48
in a comparable experimental setup. For the rigid airfoil, the evolution of T, is
proportional to 't 4+ o(I'") (i.e. the topmost line in Figure 5.19). The experimental
values agree with the findings of Baik et al. [5] and Widmann and Tropea [105] in
terms of k and Sr. On the adaptive camber airfoil, the evolution of I't is not only
influenced by Sr and k but also by its de-cambering.

The trailing flap angle y serves as a measure for the adaptive camber airfoil de-
cambering and is displayed over the dimensionless time ¢* for all investigated pa-
rameter combinations in Figure 5.20. In Figure 5.20a the Strouhal number is held
constant at S = 0.066 and the reduced frequency k is varied (parameter set @). In
Figure 5.20b k is held constant at k = 0.1 and the Sr is varied (parameter set @).
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Figure 5.20.: Trailing flap angle y as a measure for the de-cambering of the adaptive camber
airfoil for the investigated parameters of set (1) (left) and (2) (right), displayed over the
dimensionless time ™. The original Clark Y profile corresponds to ¥ = 0°. Negative y
values correspond to an increased camber (flaps down), positive Y to a decreased camber
(flaps up). The angle of attack « is plotted in the background and provides orientation of
the position in the pitch cycle.

The evolution of 7 is similar for all investigated parameter combinations. At the be-
ginning of the upstroke, the adaptive camber airfoil’s shape resembles the original
Clark Y profile (y = 0°). ¥ remains unchanged until midway through the upstroke
at t* ~ 0.25. v increases until the pitch motion is inverted at t+ = 0.5. As the an-
gle of attack o decreases for t* > 0.5, y decreases proportionally to . The trailing
flap deflection during one pitch cycle AY = Ymax — Ymin depends largely on the Sr-
k combination. While in attached flow regime, the motion response increases with
increasing k according to a power law and depends linearly on Sr, no distinct rela-
tionship is observed between Ay and k or Ay and Sr under detached flow conditions.
At medium k£ = 0.1 and medium Sr = 0.066, the airfoil de-cambers most. The sus-
pected influence of the de-cambering on the LEV evolution is discussed in section
5.3.1, p. 117. It is supposed that the rotation of the leading-edge alters the feeding
shear layer due to the no-slip boundary condition on the airfoil surface and that the
difference of circulation on rigid and adaptive camber airfoil F;ax’ri?d — :;m’adapﬁve
should scale with the adaptive camber airfoil’s de-cambering, i.e. its effective angle
of attack. Figure 5.21 shows Ay for parameter set @ and parameter set @, together
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Figure 5.21.: Trailing flap deflection Ay of the adaptive camber airfoil and the relative reduc-
tion of the fluctuating circulation A" for all investigated parameter combinations.

with the normalized difference of maximal circulation AT

r -T
Al = rnax,rigidJr max,adaptive (5.16)
max,rigid

Ay and ATt show a similar dependence on the reduced frequency k and the Strouhal
number Sr. This confirms the assumption that maximal LEV circulation is reduced
due to a weakening of the feeding shear layer by an upward rotation of the leading-
edge.

Conclusions

The rigid airfoil passes through the cycle of LEV formation, growth, convection and
detachment typically associated with dynamic stall. This is accompanied by high
mean and fluctuating values of the normalized circulation. The adaptive camber air-
foil de-cambers during the phase of vortex formation. Compared to the rigid refer-

ence airfoil,
e smaller and less stable LEV are observed on the adaptive camber airfoil.
The observations are quantified by the normalized circulation I'*:

e Reductions in the fluctuating normalized circulation ¢(I't) of up to 38 % are
observed.
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Since the normalized circulation is directly proportional to the unsteady lift (see
Jones and Babinsky [44]), this is a very favorable result in terms of gust load allevi-
ation.

It is shown in section 4.4.1, p.69 that a distinct relation between the Strouhal number
Sr, the reduced frequency k and the adaptive camber airfoil’s trailing flap deflection
¥ exists in attached flow regime. A different behavior is observed under detached
flow conditions:

e No distinct relation between the reduced frequency k or Strouhal number Sr
and the flap deflection ¥ is observed.

The accumulated circulation in the LEV formed during dynamic stall originates from
the feeding shear layer.

e o(I'"), and hence the fluctuating loads, are more effectively damped for high
flap deflections.

This is in good agreement with the findings during attached flow regime, cf. section
4.4.3, p.89, where the manipulation of fluctuating loads is shown to scale with the
flap deflection ¥. It was shown by Widmann and Tropea [104] that maximal LEV
circulation is determined by the feeding shear layer strength. Comparing the nor-
malized circulation on the rigid and the adaptive camber airfoil for otherwise equal
conditions confirms this finding:

o ]t ax rigid — l"$ ax,adaptive scales with the weakening of the shear layer due to the

upwards rotation of the leading-edge.

Although intentionally designed to operate efficiently in attached flow conditions,
the adaptive camber airfoil proves to alleviate fluctuating loads also in the detached
flow regime. The reduction of fluctuating loads is accompanied by a reduction of the
mean loading, which is especially favorable when considering fatigue.
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6. Summary, Conclusions and Outlook

6.1. Summary

In this thesis a rigid and an adaptive camber airfoil were investigated experimentally
under unsteady conditions. The adaptive camber airfoil was developed at TU Darm-
stadt [38] in a preceding study and consists of a mechanically coupled leading and
trailing flap. The concept entails strong fluid structure interaction, where flow condi-
tions at the leading-edge provoke a change of camber through a combined deflection
of leading-edge and trailing flap. Under quasi-steady conditions Lambie [57] showed
that the adaptive camber airfoil exhibits a decreased lift curve slope. This could be
beneficial in terms of gust load alleviation on wind turbines, as a gust expresses itself
mainly through a change of angle of attack on the blade section. Gusts are by defi-
nition unsteady phenomena and unsteady aerodynamics are known to differ substan-
tially from steady aerodynamics. To provide proof of concept of the adaptive camber
airfoil regarding gust load alleviation under unsteady conditions, a systematic ex-
perimental study was carried out. Flow conditions typically encountered by wind
turbine blades were approximated by generic inflow cases on a two-dimensional air-
foil and tested in different wind tunnel experiments. The passage of the wind turbine
blade through a horizontal velocity deficit was modeled by a sinusoidal vertical gust.
Blade flapping and twisting were modeled by an oscillatory movement of the airfoil.
A wind turbine blade encounters a wide spectrum of unsteady inflow conditions,
described in dimensionless form by the reduced frequency k and the Strouhal num-
ber Sr, which can occur at various mean angles of attack. An extensive parameter
study was performed to characterize influence of all parameters on the rigid and the
adaptive camber airfoil’s dynamic load response. The performance of the adaptive
camber airfoil in terms of gust load alleviation was assessed by comparing the dy-
namic load responses of the rigid and the adaptive camber airfoil. The main findings
of the performed experiments are schematically visualized in Figure 6.1.
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Figure 6.1.: Schematic overview of the obtained experimental results.

From the results of the performed experimental investigation, the initial question:

Does the adaptive camber airfoil alleviate gust loads under unsteady conditions?
can clearly be answered with *Yes’. The adaptive camber airfoil was developed to
operate efficiently under attached flow conditions. Submitted to a sinusoidal vertical
gust, the adaptive camber airfoil alleviated up to 60 % of the gust loading at small
(o, = 2°) and moderate (o, = 8°) mean angles of attack. Gust load reduction was
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unaffected by the gust amplitude ag,




° increased with decreasing system stiffness k,

° increased with increasing reduced frequency k and

) was proportional to the trailing flap deflection 7.

At high angles of attack (o, = 14°), the physical mechanisms of lift generation un-
der unsteady conditions change. Gust load reduction of up to 30 % was achieved, but
no distinct correlation between ag, K, k, v and the gust load reduction performance

was observed. This gave rise to the question:

How does the adaptive camber airfoil alleviate gust loads?

To understand the behavior of the adaptive camber airfoil under high mean angles
of attack the flow field was studied by means of time resolved particle image ve-
locimetry (TR PIV). Dynamic stall conditions were provoked by pitching the airfoil
dynamically around a high mean angle of attack (o, = 14°). Coherent leading-edge
vortices (LEV), believed to be responsible for high force excursions experienced by
rigid airfoils during dynamic stall, were identified from the velocity field data. LEV
were efficiently suppressed by the adaptive camber airfoil. This was attributed to the
upwards rotation of the leading-edge, which changes the effective angle of attack and
thereby alters the properties of the feeding shear layer. Maximal circulation on the
rigid and the adaptive airfoil were compared for the same k and Sr combination. The
difference in maximal circulation on the rigid and the adaptive camber airfoil scaled
with the difference in effective angle of attack on both airfoils. The results support
the statement of Widmann and Tropea [104] that shear layer properties, mainly in-
fluenced by the effective angle of attack, define the maximal circulation of LEVs.
At small mean angles of attack, the frequency dependent unsteady airfoil response
is pressure driven and conveniently described by transfer functions. A comparison
of first-order transfer functions with the experimentally derived individual airfoil re-
sponse showed a significant deviation in the dependence on the reduced frequency.
This was not only observed for the adaptive camber airfoil, but also for the rigid air-

foil and led to the question:

Why is the individual airfoil response not captured by first-order theory?
A thorough literature research yielded that most first-order transfer functions lack a

systematic experimental validation. This is somehow surprising given the wide ap-
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plication of first-order transfer functions in the engineering community. In the case
of the oscillating airfoil, which is described by the Theodorsen function, some ex-
perimental investigations have been carried out. The studies poorly support the the-
oretical Theodorsen function. Also the agreement between the individual studies is
poor. To the authors best knowledge, no systematic experimental investigation of the
sinusoidal gust encounter, i.e. the Sears problem, exists. This might be due to the
fact that the experimental generation of two-dimensional sinusoidal vertical gusts is
challenging. The only experimental study on the aerodynamic response to sinusoidal
vertical gusts was performed in the context of civil engineering on an asymmet-
ric bridge deck by Hatakana and Tanaka [33]. The lift response of the bridge deck
showed a very similar behavior to the observations made during this study: The dy-
namic lift amplitude increased with reduced frequency k from a quasi-steady value
smaller than one, while the Sears function predicts a decrease from the quasi-steady
value of one. This implies on the one hand a faulty scaling, as experimental and the-
oretical transfer functions approach a different quasi-steady value and on the other
hand a non satisfactory mathematical description, as the frequency dependence is
not captured. First-order transfer functions assume an undisturbed constant velocity
field with undistorted streamlines. The presence of a lift producing object violates
these assumptions. Both, the asymmetric bridge deck and the airfoil investigated in
this study (Clark Y airfoil at &, = 2°) produce a mean lift. The literature review
on the Theodorsen problem yielded that most experimental results agree better with
theory if the oscillation is applied around small mean angles of attack where no or
very small mean lift is produced. This led to the assumption that the production of
a mean lift might be responsible for the discrepancies between experimental results
and first-order transfer functions. The assumption was tested on a sinusoidally pitch-
ing airfoil. The pressure difference at the airfoil’s leading-edge was compared to a
corresponding first-order transfer function of the pressure, given by Mateescu and
Abdo[68]: For an oscillation around a mean angle of attack that generates zero pres-
sure difference under quasi-steady conditions, experimental results agreed well with
first-order transfer functions. With increasing mean angle of attack and increasing
mean pressure difference, a deviation between experimental and theoretical values
in terms of reduced frequency dependence and scaling was observed. At o, = 5°

and ¢, = 8°, an inversion of the frequency dependence was seen: The magnitude of
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the experimental transfer function increased from a quasi-steady value smaller than
one, while theory predicts a decrease from the quasi-steady value of one. This re-
sembles the behavior of the load response observed for the sinusoidal vertical gust

encounter.

6.2. Conclusions and Outlook

First-order transfer functions have to be applied with caution. In engineering appli-
cations it is rarely the objective to produce zero mean lift. The oscillating airfoil
seemed to be less sensitive for a violation of the zero mean lift assumption: Signifi-
cant differences between theory and experimental results were observed for o, > 5°,
while the airfoil encountering a sinusoidal vertical gust was not captured by theory
for mean angles as small as ¢, = 2°. Although the results indicate that the produc-
tion of mean lift is responsible for the deviation between theory and experimental
results, this assumption was not verified for the sinusoidal vertical gust encounter.
The experimental verification of the Sears function for a symmetric airfoil at various

o, could provide useful guidelines for the limits of its applicability.

The evaluation in terms of gust load alleviation is uninfluenced by the disagreement
between experimental and theoretical individual airfoil response. Both the rigid and
the adaptive camber airfoil’s behavior deviate in a similar manner from theoretical
predictions. If a theory is found that describes the reduced frequency dependence
of the unsteady load response of rigid airfoils adequately, the adaptive camber air-
foil should be representable by the same means. In the present experimental study
it was shown that the adaptive camber airfoil’s performance in terms of gust load
alleviation is comparable to active systems, while retaining all the advantages al-
ready pointed out by Lambie [57]: The passive nature of the adaptive camber con-
cept makes it more robust to implement, as no sensors, actuators or control schemes
are needed. The restraining spring system can be configured in such a way that the
airfoil produces higher mean lift at low aerodynamic loading, which could increase
energy harvesting at wind speeds below rated speed. At the same time, the mean
lift is decreased for high aerodynamic loading, which could be beneficial in limiting
maximal loading and fatigue. This encourages further investigation of the adaptive
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camber system: The current study was performed at low Reynolds numbers under
two-dimensional unsteady flow conditions, exciting isolated degrees of freedom un-
derneath their resonance frequency. Before submitting the adaptive camber airfoil to
real world operating conditions on wind turbines, some additional points should be
considered:

Two-dimensional aerodynamic investigations

The current experimental investigations were carried out at relatively low Reynolds
numbers (Re ~ 200.000), which is an order of magnitude smaller than the Reynolds
number encountered by blade sections on the outer rotor position of multi-megawatt
turbines. On this part of the rotor the Mach number threshold of M = 0.3 that com-
monly distinguishes incompressible from compressible flow description is scratched.
In incompressible attached flow described by first-order transfer functions, the influ-
ence of the Reynolds number is usually neglected. It was shown in the current exper-
imental investigation that the limits of applicability of first-order transfer functions
might be narrower than it is commonly assumed. An experimental two-dimensional
investigation at higher Reynolds numbers should be carried out.

As it was pointed out by Spiegelberg [88], the placement of the system’s eigenfre-
quencies plays a crucial role in the performance of the adaptive camber airfoil. In
this study only excitation frequencies below the system’s eigenfrequency were in-
vestigated, due to limitations of the active grid and the pitch-plunge rig. Even with a
thorough design it can never be completely excluded that the adaptive camber airfoil
encounters excitation frequencies close to its resonance and an investigation at these

operating conditions should be performed.

Two-dimensional aero-elastic investigations

Besides investigating the resonance of one isolated degree of freedom, the interaction
between different degrees of freedom should be examined. When energy is shifted
from one oscillatory degree of freedom to another, an aeroelastic phenomenon called
flutter can occur. Flutter exists between two airfoil degrees of freedom (i.e. plunge
and pitch) but also for example between the plunging motion of an airfoil and the
rotational oscillation of its trailing flap. An experimental aeroelastic investigation of
the adaptive camber airfoil’s flapping degree of freedom should be carried out, es-
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pecially when considering that state of the art flutter calculations build on the Sears
function.

Rotating frame aerodynamic investigations

The current experimental investigation approximates flow conditions on a rotating
blade by a two-dimensional airfoil section, submitted to two-dimensional perturba-
tions. In the rotating reference frame, additional fictitious aerodynamic forces due to
rotation occur: The centrifugal force is directed in radial direction and points from
the nacelle to the blade tip. The Coriolis force accelerates the fluid from leading to
trailing flap and in direction of the nacelle. The induced cross flow leads to a per-
ceived diminution of the blade thickness. The influence of these additional forces on
the adaptive camber airfoil’s working principle as well as inertial forces due to the
rotation on the flap system have to be investigated.

System integration

It was shown on the plunging adaptive camber airfoil that mass inertia effects en-
hance the adaptive camber airfoil’s working principle up to a point of complete at-
tenuation of fluctuating aerodynamic loads. On a wind turbine blade in bending os-
cillation, which is the corresponding three dimensional scenario, aerodynamic loads
induce positive aerodynamic damping. If all aerodynamic damping forces are alle-
viated, all kinetic energy has to be absorbed by structural damping. To which extent
this fact reduces the benefits of gust load alleviation in terms of fatigue and to which
extend the working principle of the adaptive camber airfoil suppresses bending os-
cillations a priori could be studied in a numeric aeroelastic investigation.

The adaptive camber mechanism changes the aerodynamic properties of the airfoil,
while the aerodynamic properties of a rigid airfoil remain constant over time. State
of the art wind turbines possess complicated control systems that are optimized for
rigid rotor blades. If the wind turbine blade alters its aerodynamic performance ac-
cording to different inflow conditions, control schemes have to be adapted. Pitch
control for example aims to increase the blades load pick up below rated speed and
keep it constant above rated speed. Depending on the configuration of the restraining
spring system, the adaptive camber airfoil has the same effect. The interaction be-
tween pitch control and a wind turbine blade with variable aerodynamic properties
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could be an interesting application for developers of control schemes.

Although there remains much work to be done, this study presents an important mile-
stone on the road from the idea of the adaptive camber airfoil to an installation on
commercial wind turbines. The experimental results are promising and encourage
further investigations of the adaptive camber airfoil as a robust and highly effective
gust load alleviation device.
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Nomenclature

Abbreviations

Symbol Description

ABL Atmospheric boundary-layer
COE Cost of Energy

FoV Field of View

1A Interrogation area

LE Leading-edge

LEV Leading-edge vortex

PIV Particle image velocimetry
TE Trailing-edge

Dimensionless Numbers

Symbol Description

CL Lift coefficient

Cp, Pressure coefficient

Cap Pressure difference coeff.
CR Circulation reduction

Definition
c L
L=703
5US
Ps — P
C,=
P2
2Us
PSs — Pps

o (F?i—gid) -0 (r;iaptive)

CR=
G(F:irgid)
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k Reduced frequency
LR Load reduction

Re Reynolds number

Sr Strouhal number
Greek Symbols

Symbol Description

o Angle of attack, AoA
A Difference

o Shear layer thickness
n Camber

r Circulation

Y Trailing flap angle

K Rotational stiffness
A Relative flap length
A Wave length

v Kinematic viscosity
o Angular frequency

P Mass density

[0) Phase angle

I Scalar function to identify
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vortex centers

Dimensions
LOTOMO
LOTOMO

L

LL!

L2T!
LOTOMO
ML2T2

LL!

LZT—I

ML3

LOTOMO

LOTOMO

Units

oC

m?/s

Nm/rad

Yoc

m?/s
rad/s

kg/m?



I,

Scalar function to identify

vortex boundaries

Roman Symbols

Symbol
P

b

Description

Power

Half chord length, b = ¢/2

Theodorsen function

Chord length
Diameter

Elastic axis
Frequency
Transfer function
Imaginary number
Lift

Moment
Coupling ratio
Pressure
Dynamic pressure
Sears function
Airfoil span

Time period

Time

LOTOMO

Dimensions
ML2T3
L

LOTOMO

LL'!

LOTOMO

MLT2
ML2T2
LL!
ML'T2
MLIT2

LOTOMO

Units

watt

Nm

Pa

Pa
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1%

Superscripts

Symbol

/

Subscripts
Symbol

Y
L

adaptive, ad
aero
dyn
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Steady horizontal velocity LT
Measurement uncertainty

Perturbing vertical velocity LT!

Description
Fluctuating
Experimental
Dimensionless
Time derivative
Phase average

Amplitude

Description

TE angle

Lift

Pressure

Pre-, Initial

Rotational stiffness
Undisturbed

Adaptive camber airfoil
Aerodynamic

Dynamic



eff

LE

max

min

PS

gs

r

rigid, rig
s

SS

TE

Excitation

Effective

Gust

Heaving motion (Plunge)

Leading-edge
Mean
Maximal
Minimal
Power

Pitch
Pressure side
Quasi-steady
Reaction
Rigid airfoil
Static
Suction side

Trailing-edge
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A. Measurement Uncertainties

Each measured variable has an uncertainty due to non-perfect measurement equip-
ment. These uncertainties are obtained according to the guidelines of GUM type B
[43], using the specifications of the measurement devices. For steady experiments,
this is the most important and the only accessible source of uncertainty. During
dynamic measurements, the turbulent nature of the flow introduces an additional
stochastic uncertainty. This uncertainty is conveniently obtained from phase aver-
aged data according to the guidelines of GUM Type A [43]. The combined un-
certainty during dynamic measurements, comprising uncertainties due to the non-
perfect measurement equipment and the turbulent inflow is obtained by the Euclidean
norm of type A and type B uncertainties.

Uncertainties due to Instrumentation - GUM Type B

A directly measured variable x is influenced by each component of the measurement
chain (i.e. sensor, amplifier, AD converter). The standard uncertainty of a directly
measured variable is estimated by taking the relative uncertainty of each component

of the measurement chain p; into account:

M =\ X (A.D)

Some variables are not directly measured, but calculated from several directly mea-

sured variables x;. The standard uncertainty of such a dependent variable f (x;) is
estimated by applying the law of propagation of uncertainties, using the formula

‘ f o \/ Z ax, (x;). (A.2)

Scaling the standard uncertainty % with the expected order of magnitude of the

respective variable |x| yields the uncertainty of the measured variable u,. The same
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holds for a dependent variable:

L (W)
T = f ()]

| f @)l (A.3)

Stochastic Uncertainties - GUM Type A

For unsteady measurements, additional uncertainties due to the stochastic nature of
the turbulent inflow have to be taken into account. From the phase averaged data, the
standard uncertainty ua of a variable x is calculated according to the guidelines of
GUM Type A, [43]

(A.4)

Where N is the number of performed individual load cycles and & (x) is the averaged
standard deviation of the fluctuating mean.
Combined Uncertainty

The combined standard uncertainty T)TC\ is the Euclidean norm of type A and type B

uncertainties:
u upr?2 ug?
== (AT BT (A.5)
|| x| [

Scaling with a typical value for the measured variable x yields the combined uncer-

tainty u, during unsteady measurements.

A.1. Sinusoidal Vertical Gust Experiments

Type B Uncertainties

The lift force L is measured with a wind tunnel balance, consisting of a multiaxial
force sensor K3D120 with a full scale of 500N and an accuracy class of 0.5. Signals
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are amplified by a GSV-1A8 amplifier incorporating an NI 6210 board for AD con-
version with a combined accuracy class of 0.1. Expressing the relative component
uncertainties by their respective accuracy classes yields an uncertainty of the mea-
sured lift L due to the accuracy of the force balance components of

standard uncertainty 818 maximal value of |[L| measurement uncertainty uy,

4.1073 30N +0.12N

ul(L)

The mean angle of attack o, is measured using a Kuebler 8.5850 absolute encoder
with a maximal error of 0.2 ° over a full rotation of 360 ° and converted by a NI 6211
16 bit AD board. A calibration, comprising a linear regression over the total mea-
surement range of +30° leads to an uncertainty for the mean angle of attack a, of

standard uncertainty % typic value of |o,| measurement uncertainty ug,,

1.6-1073 2° +3.2-1073°

A similar procedure is applied for the trailing flap angle 7y, which is measured using
an ams AS5162 rotary hall sensor with a full scale analog output of 5 V. The appli-
cation range is programmed to match the maximal flap deflections of £15°, which
allows to optimally exploit the input range of 5V of the NI 6210 AD board. A cali-
bration, consisting of a linear regression, leads to an uncertainty for the trailing flap
angle y of

standard uncertainty "ng/’l

2.3-1073 15° +0.035°

maximal value of |[y] ~ measurement uncertainty uy

The airfoil is manufactured from polyamide by direct laser sintering with an EOS
formiga pl00. This rapid prototyping machine produces components with a toler-
ance of 1-10~*m. The airfoil chord ¢ is measured with a sliding caliper and the
airfoil span s is measured with a sliding tape. The corresponding uncertainties are

u(c)

standard uncertainty T typic value of [c|]  measurement uncertainty u
6.2-1074 0.18m 1.1-107*m
standard uncertainty %% typic value of |s|  measurement uncertainty u
6.25-1073 0.8m 5:-103m
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The dynamic pressure ¢.. in front of the active grid is obtained from the pressure dif-
ference over the wind tunnel nozzle, measured with two Setra C-239 high accuracy
low differential pressure transducers. Both transducers have a full scale accuracy of
0.073 % and their output signals are converted by a NI 6211 AD board. Considering
only uncertainties associated with the pressure measurement, the uncertainty for the

dynamic pressure g is obtained as

u(geo)
o]
2.3-1073 1800 Pa +4.12Pa

standard uncertainty typic value of |g..|  measurement uncertainty u,,,

The mass density of the air p = p/R(¢)T is calculated using the temperature 7,
ambient pressure p and the gas constant R, which is a function of the humidity ¢
of the air. T is obtained with an EPCOS NTC thermistor which has an accuracy of
AT = £0.3° in the expected temperature range. A temperature compensated Sen-
sortechnics 144S pressure transducer with an accuracy class of 0.1 captures p. An
HIH-4000 humidity sensor of an absolute accuracy of 3.5 % is used to measure ¢.
All signals are sampled with a NI 6281 18 bit AD converter. From the uncertainties
of the dynamic pressure g. and the density of the air p (T, p, ¢) the uncertainty of
the inflow velocity U., is obtained as

uU(Us)
Us|

3.1073 20 m/s +£0.06m/s

standard uncertainty typic value of |U.| measurement uncertainty vy,

The uncertainty of the lift coefficient C;, = L/ (% pU ch) is then estimated by using
the uncertainties of the lift u;, air density u,, inflow velocity uy,, and geometric un-

certainties of the airfoil u, and ug, which yields

standard uncertainty % max. value of |Cz| measurement uncertainty uc,

3-1073 1.2 +3.6-1073

The flow direction is measured with a cross-wire probe. For each wire, the uncer-

tainty in the velocity measurement is calculated individually. According to the man-
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ufacturer of the anemometer, a Dantec Streamline, the anemometer’s accuracy is
high and can be omitted in uncertainty considerations. The most important error oc-
curs during velocity calibration, when the curve fits are linearized. Additionally, the
stochastic error due to resolution of the AD converter is taken into account. The geo-
metric error due to probe positioning and the error due to temperature variation have
an equal effect on each wire. When calculating the gust angle 0., they cancel out
and are therefore omitted. This leads to an uncertainty in the gust angle of

u(@y)

standard uncertainty G|
8

max. value of |ag| measurement uncertainty Ug,

3.1-1072 6.2° +0.2°

Combined Uncertainties

Type A uncertainties due to the stochastic nature of the flow are derived from phase
averaged data. The respective values, as well as the combined uncertainties of all
variables, are summarized in Table A.1.

Table A.1.: Standard uncertainties of variables measured in the Oldenburg experimental setup.
The combined standard uncertainty is obtained from standard uncertainties of type A and
type B.

Standard uncertainty Combined
Type B Type A Combined  uncertainty
up LN uc u
[ [ [ x
Gust amplitude 0 3.1-1072 2:1072 3.7-1072 +0.23°
Inflow velocity Us 3.1073 4-1073 5-1073 +0.1m/s
Lift L 4-1073 3-1073 5-1073 +0.15N
Lift coefficient Cy. 3.1073 1.5-1073 3.3-1073 +4.1073
Trailing flap angle y ~ 2.3-1073 51074 2.4-1073 +0.035°

The dynamic pressure ¢.. is obtained from the pressure difference in the nozzle in
front of the active grid, and sampled with a frequency well below the excitation
frequency of the active grid. Accordingly, no phase averaged data for g.. is available.
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A.2. Sinusoidally Oscillating Airfoil Experiments

Attached Flow Experiments

The inflow velocity U.. in the wind tunnel is adjusted using a Schiltknecht MiniAir60
Micro vane anemometer with a FS of 40 m/s and an accuracy of +1 %FS. The 4V
output signal is aquired with a NI 6009 AD converter at an input range of +5 V. This
leads to an uncertainty of the inflow velocity U of

Standard uncertainty ”(UL“") Max. value of |Us| Meas. uncertainty ug,,

2.2-1072 20 m/s +0.45m/s

The trailing flap angle y is measured using an ams AS5162 rotary hall sensor with
a full scale analog output of 5 V. The application range is programmed to match the
maximal flap deflections of +15° which allows to optimally exploit the input range
of 5V of the NI 6210 AD board. A calibration, consisting of a linear regression, leads

to an uncertainty for the trailing flap angle y of

Standard uncertainty % Max. value of |7 Meas. uncertainty u,

23-1073 15° +3.5-1072°

The static pressure on the airfoil’s surface p; and the dynamic pressure of the
pitot-tube ¢.., are measured with HCL miniature pressure transducers with a com-
bined non-linearity and hysteresis of +0.25 %FS. Transducers on the airfoil’s suc-
tion side have a full scale (FS) of 12.5 mbar. On the airfoil’s pressure side and for the
pitot-static tube, the full scale of the transducers is 5 mbar. The pressure transducers
output signal of 20 mV full scale is amplified to the 5V full scale input of the NI
6210 AD device with an in-house fabricated adjustable amplifier to obtain maximal
resolution. The amplified output signal is calibrated using a CPC6000 mensor pre-
cision pressure controller with a reading accuracy of 0.01 %, consisting of a linear
regression over 15 datapoints with a maximal deviation of 0.1 %.
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Standard Maximal Measurement
u(x)

uncertainty 75° value of |x] uncertainty u,
Ds.SS 5.1-1073 7.2 mbar +3.6- 10~ 2 mbar
Psps and Geo 5.1-1073 2.4 mbar +1.2-10"2mbar

The coefficient of the pressure difference C,, between suction and pressure side

can is obtained by Cpp, = Cp ss —Cpps = w Applying the law of propaga-

q
tion of uncertainties, the uncertainty of Cy,, is calculated to be

Standard uncertainty %ﬁ Max. value of |CAP| Meas. uncertainty uc,,
p
8.3-1073 5 +4.0-1072

The airfoil’s geometric uncertainties arise from manufacturing uncertainties and
measurement uncertainties. The airfoil is manufactured from polyamide by direct
laser sintering with an EOS formiga p100. This rapid prototyping machine produces
components with a tolerance of 10~*m. The airfoil’s chord c is measured with a
sliding caliper with an absolute accuracy of 10~* m and the airfoil’s span s is mea-
sured with a sliding tape with an absolute accuracy of 103 m. Combining the uncer-
tainties due to manufacturing and due to measuring leads to a combined geometric
uncertainty of

Standard Typic Meas.
uncertainty @ value of |x] uncertainty u,
Chord 1.2-1072 0.12m +1.4-107*m
Span 22-1073 0.45m +5.0-103m

The dynamic angle of attack o (¢) of the airfoil is applied via the pitch-plunge rig.
The airfoil is fixed to two LinMotPS01-48x240F-C linear actuators that are oper-
ated via LintMot LinTalk software. According to the manufacturer, the uncertainty
in start and stop positioning is 0.05 mm. This results in an uncertainty of the start
and stop angle of attack of 3- 107> °. No information about the uncertainty of the
position during the prescribed motion is given. Therefore, two Freescale Semicon-
ductor MMA1270KEG acceleration sensors with a measurement range of £2.5 g and
an accuracy of 1.3 %FS are attached to the actuators pistons. ¢ (¢) is obtained from
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the starting position of the linear actuators and the integraded accelerator signals and

can be calulated with an uncertainty of

Standard uncertainty ”(aa((f))l) Max. value of [t (#)| ~ Meas. uncertainty ug;)

1.3-10°2 6° +8-1072°

Detached Flow Experiments

The basis of high quality velocity field measurements by means of PIV is the quality
of the acquired raw images. Surface reflections lead to spurious intensity distribu-
tions and have to be minimized. Sufficient, but not too many seeding particles of
the right size that scatter the laser light have to be introduced in the flow. According
to Raffel [76], the same six or more particles should be mapped in each interro-
gation area (IA) of both acquired frames. In-plane displacement should be in the
order of 0.25 IA, out-of-plane displacement should stay below 25 % of the light
sheet thickness. The particle diameter should span 2-2.5 pixels. This maximizes the
signal-to-noise ratio while minimizing pixel locking errors during cross correlation.
If qualitatively good raw images are acquired, the uncertainty of PIV based veloc-
ity measurements still depends on a variety of parameters; the ability of the seeding
particles to follow the flow, the imaging system, its calibration and the recording
procedure and analysis of the acquired raw data. The uncertainties due to these error
sources are estimated individually, the Euclidean norm of all uncertainties forms the
combined uncertainty of a PIV based velocity measurement.

As for any measured variable, the uncertainty of the obtained velocity field depends
on the combined uncertainty of the measurement equipment ug. This uncertainty
is calculated according to the guidelines of GUM type B [43]. The relative uncer-
tainty of each component of the measurement chain is accounted for by the law of
propagation of uncertainties. In PIV measurements, the velocity is obtained by relat-
ing the spatial distance of a particle Ax in two consecutively acquired frames to the
time interval Ar between the two frames. According to Lazar et al. [60] uncertainties
of Ax arise from uncertainties in the camera and the calibration that relates physical
length to pixel units. Uncertainties of Az arise from uncertainties in the delay gener-
ator and the laser pulse timing. The resulting standard uncertainty of a PIV velocity
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measurement is given by Lazar et al. [60] as

ws@ | (N L (=N s (2N . (LY,
\L’i| = [(L) I/ll+ i3 uLlJr 72 uL2+ 2L ujy

—1\?2
+(5z) b+l

=0.001

(A.6)

where [ is the image length in pixels, L is the image length in meter, L; is the geo-
metric uncertainty of the calibration target, expressed in the image plane length , L,
is the image distortion due to lens aberrations, expressed in image plane length, #;
is the Laser pulse timing, #, is the accuracy of the delay generator, A is the distance
of the measuring plane to the camera lens. Typical values for the experimental setup
are given in table A.2.

Table A.2.: Summary of equipment uncertainty parameters

Parameter Description Value Uncertainty
/ Calibration target length in m 0.12m 1.0-10°m
Ly Geometry of calibration target 519 pixels 1 pixel

L Image distortion due to lens aberration 519 pixels 4.5 pixels

A Distance between lens and image plane 0.6 m 5.0-107%m
H Laser pulse timing 1.0-107*s  1.0-107%s
& Accuracy of delay generator 1.0-107%s  1.5-107%s

PIV is based on the assumption that seeding particles follow the local flow field in-
stantaneously without any relative velocity between seeding particle and surrounding
flow. In reality, there is always a slip between seeding particles and surrounding flow
which results in an uncertainty due to the particle inertia up. The ability of the
particle to follow the fluid motion can be estimated according to Raffel [76] by com-
paring the response times of a particle 7 to the typical flow time ;. The response
time of DEHS seeding particle in the current setup is estimated by Widmann [105].
With a mean diameter of dpgys = 1 um, a density of ppggs = 910kg/m3 and the
dynamic viscosity of the air 4 = 1.846- 10~ 5kgm/s, the response time is calculated

169



as T3 = d%EHS - ppens/ 181 = 2.7 us. The typical flow time is estimated by the con-
vective time of th Kolmogorov length scale ng = c- Re—3/4, where the airfoil’s chord
c is the global length scale and Re the Reynolds number. For a maximal flow velocity
U.. =20m/s, the typical flow time calculates to 7z = 15 us. With 7 > 7, the parti-
cles are assumed to follow the flow without slip and the uncertainty due to particle
inertia is set to up = 0.

The stochastic nature of the flow is responsible for the sampling uncertainty ug.
Depending on the instant in time at which data are acquired, a different value will
be collected. If the values are normally distributed, as it can be assumed in turbulent
flow, standard uncertainty is calculated according to the guidelines of GUM Type A,
[43]

o (i)
JN

where N is the number of collected data points and o (&) is the averaged standard de-

us (i) = (A7)

viation of the fluctuating mean. The uncertainty due to sampling depends largely on
the flow situation. From the acquired temporally resolved velocity fields of the cur-
rent setup, the uncertainty due to sampling is estimated as us < 0.5% in undisturbed
flow and as ug < 3% in regions of separated flow.

The uncertainties due to image analysis uj are as numerous as the applied analysis
algorithms. The image analysis of PIV data incorporates pre-processing algorithms,
interpolation techniques, post-processing and filtering. Pre-processing aims to in-
crease the information content of the acquired raw data. For example, if a seeding
particle is mapped on the border of two IAs, an error intrinsic to the correlation al-
gorithm will occur in the detected displacement. A normalization of the gray scale
data with local intensity variation can help to avoid these errors. Cross correlation
is a statistic method. The highest peak symbolizes the most probable particle dis-
placement. To obtain statistically significant peaks, a certain number of particles has
to be mapped in each IA. Particles can be lost from one frame to the other. Dif-
ferent methods can be applied to increase the information content: In-plane loss of
particles can be accounted for by window shifting. Window deforming can account
for high velocity gradients. The light intensity of scattered particles is Gaussian dis-
tributed. Rastering the mean values on the pixels of an IA leads to an error, which
can be accounted for by sub-pixel interpolation. After correlation, the obtained ve-
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locity field can be validated and filtered with various techniques to identify falsely
obtained correlation peaks. These procedures comprise only a small part of the total
available methods, but illustrate that the obtained combined uncertainty due to im-
age analysis u; depends largely on which and how the above mentioned techniques
are applied. ug is accordingly difficult to estimate. Lazar et al. [60] compared differ-
ent pre-processing, processing and post-processing techniques on the same raw data.
They found deviations in speed data of about 1 % in uniform flow and deviations
of as high as 5-10 % in regions of high velocity gradients for different processing
parameters. Separated flow on a dynamically pitching airfoil is supposed to have
these high gradients. Hence, it is crucial for the comparability of different PIV runs
that the data are treated with the same pre-, processing and post-processing param-
eters. During PIV Challenges [90-92], developers and users apply their correlation
techniques to numerically obtained (and hence known) velocity fields or compare
their results obtained with different algorithms to the same experimental raw data.
Depending on the difficulty of the flow problem, the agreement between correlation
results and numeric data varies. For time-resolved 2D turbulent velocity fields, good
performing correlation algorithms match the generic velocity field with a deviation
of approximately 1 %. In the current setup, the uncertainty due to image processing
is estimated to u; = 5 %.

The combined standard uncertainty of a velocity measurement obtained by PIV
uc is the Euclidean norm of the standard uncertainties due to measurement equip-

ment ug, due to sampling ug and due to image processing uy:

u up?2 ug?2 up?
Y £ g A (A.8)

i~

which leads to a combined uncertainty calculates of the velocity field of

Flow Standard Typic Measurement

regime uncertainty ”l(;') value of || uncertainty ug;
Attached 2.1-1072 20 m/s +0.42m/s
Detached 3.6-1072 20 m/s +0.72m/s
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B. Mean Values of the Dynamic Airfoil
Response

Figure B.1 compares mean values of the dynamic airfoil data to the corresponding
quasi-steady values, taken from parameter set @, Chapter 4. On the left, the lift of
the adaptive camber and the rigid airfoil are presented. On the right, the adaptive

camber airfoil’s trailing flap angle is displayed over the mean angle of attack.

45 T T T T
15 B
Adaptive: open symbols — a, =6.2°, f=5Hz
30|~ Rigid: filled symbols a = U = 15m/s
)
z s
N15 E g of g
£ =
— 2
0 Layn ™| 3
= ;
_15- Vyn |
-15 1 1
-10 0 10 20 -10 0 10 20
Mean angle of attack oy, [°] Mean angle of attaokm [°]
(a) Lift L on the rigid and the adaptive (b) Trailing flap angle y on the adaptive
camber airfoil in configuration (a) camber airfoil in configuration

Figure B.1.: Mean values of the dynamic measurements (marker symbols) compared to steady
values (lines) for the lift L (a) and the trailing flap angle y (b), displayed over the angle of
attack o, . The steady value is shown as a solid line. Dynamic data are represented by
marker symbols for the mean value and error bars for the standard deviation around this
mean value. Steady and dynamic measurements are performed at an inflow velocity of
U = 15m/s. During dynamic measurements, the gust amplitude and excitation frequency
are set to &, = 6.2° and f = 5Hz.

The mean values of the dynamic data and the quasi-steady data show good agree-
ment. The difference between the mean of the dynamic lift Ly, and steady lift Lgg
is very small. Only at very high mean angles of attack a slight difference between
dynamic mean and quasi-steady lift values is observed for both airfoils. Note that the
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result is shown as a dimensional quantity. This allows an additional statement con-
cerning the inflow velocity: The agreement of the mean dynamic and steady values
indicates an identical averaged dynamic pressure during dynamic and steady exper-
iments. This is not evident, as the operation of the active grid alters the blockage in
front of the test section. For the assessment of the adaptive camber mechanism, it
is crucial to keep the dynamic pressure constant, since the reduced system stiffness
depends on it.

Varying other dynamic parameters of the experimental data sets @ and @ leads to
the same result: At moderate angles of attack, all investigated dynamic data possess
the same mean values as their quasi-steady correspondent. Dynamic mean values can
thus be approximated by their quasi-steady counterpart.

174



C. Quasi-Steady Reference Measurements

Quasi-steady results are needed as a reference for dynamic experiments and for a
comparison with the steady thin airfoil model of Spiegelberg [88], which constitutes
the basis of his dynamic model. The intention is not to provide a comprehensive
study of the adaptive camber airfoil under steady inflow, which was performed by
Lambie [57].

C.1. Sinusoidal Vertical Gust Encounter

During quasi-steady measurements, the active grid is mounted in front of the test sec-
tion but is not operating. The mean angle of attack is varied from —10° < ¢, <20°
in 2° increments by pitching the airfoil around its c/4 axis. At each mean angle of
attack, force balance data and the adaptive camber airfoil’s trailing flap angle are
acquired. As the mean angle of attack is increased, the adaptive camber airfoil de-
cambers. This process is illustrated in Figure C.1, which shows the adaptive camber
airfoil’s trailing flap angle y over the mean angle of attack . Results for the pre-
cambered configuration @ are shown on the left, for the stiffer configuration @ on
the right. A trailing flap angle ¥ = 0° corresponds to the original Clark Y shape and
is indicated with a gray line. Positive trailing flap angles correspond to an increased
camber (’flaps down’), negative trailing flap angles to a decreased camber (’flaps
up’). Three different inflow velocities U, = 10, 15 and 20 m/s are tested. The quasi-
steady results confirm the considerations of section 2.2 and the findings from Lambie
[57] and Spiegelberg [88]: For configuration @, the pre-cambering moment leads to
a high camber for negative angle of attack. Because of the small system stiffness,
the adaptive camber airfoil de-cambers at a high rate. At small dynamic pressures,
it de-cambers until the original Clark Y shape (y = 0°), at high dynamic pressures,
it de-cambers completely (y = —15°). Configuration @ is not pre-cambered. The
original Clark Y shape is attained approximately at ¢, = —2°, where no aerody-
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Figure C.1.: De-cambering of the adaptive camber airfoil under steady inflow conditions,
represented by the trailing flap angle y. Flaps down (y > 0) corresponds to an enhanced
camber, original Clark Y shape is at Y = 0 and flaps up (Y < 0) corresponds to a negative
camber.

namic moment around leading-edge or trailing flap exists. The stiffer configuration
of the restraining spring system leads to a smaller rate of de-cambering. Both air-
foils de-camber linearly with increasing ¢, in the angle of attack region associated
with attached flow (—8° < «, < 12°). At very low and very high angles of attack
(o, < —8° ¢, > 12°), where flow separation is supposed to be present, the rate of
de-cambering is smaller than in the region of attached flow.

In the region of attached flow, the rate of de-cambering dy/d« is derived from the
experimental data and compared to the quasi-steady thin airfoil model of Spiegel-
berg. Recall that for an airfoil with fixed spring stiffness x, leading-edge and trail-
ing flap length and elastic axis, dy/d & depends only on the reduced system stiffness
Kkt =2Ky/ c2pU2 and thereby the inflow velocity. Figure C.2 compares the experi-
mentally derived rate of de-cambering to the results obtained with thin airfoil theory.
Values for the adaptive camber airfoil in configuration @ are shown on the left, for
the adaptive camber airfoil in configuration @ on the right. The experimental results
are over predicted by thin airfoil theory, but the trend agrees well. As it is shown by
Lambie [57], the adaptive camber mechanism affects the airfoil’s lift coefficient Cy.
The de-cambering of the adaptive camber airfoil results in a decreased Cy, curve slope
when displayed over the angle of attack. The pre-cambering moment adds an addi-
tional camber and shifts the Cr, curve vertically. Figure C.3 graphically illustrates
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Figure C.2.: The quasi-steady rate of de-cambering d7y/do for the adaptive camber airfoil
in configuration (a) and configuration (b) as a function of the inflow velocity Us.. dy/da
increases with U.., i.e. reduced system stiffness k™.

this effect. Cy, values for the adaptive camber airfoil in configuration @ (left) and
configuration @ (right) are displayed over the angle of attack and are compared to
Cr. values of the rigid airfoil. For the rigid airfoil, identical Cz, curves are obtained at
different velocities. For lucidity, only one curve is shown at U, =15 m/s. In the case
of the adaptive camber airfoil, an increase in dynamic pressure results in a higher
rate of de-cambering, i.e. a smaller reduced system stiffness k. Accordingly, dif-
ferent inflow velocities, represented by different marker symbols, provoke different
Cp-curves. The pre-cambering of configuration @ results in a higher C;, compared to
the rigid Clark Y profile for small ¢, and small U... Cy-curves of the adaptive cam-
ber airfoil and the rigid airfoil intersect, when the adaptive camber airfoil takes the
original Clark Y shape (y = 0°, cf. Figure C.1). At high values of ¢ and high val-
ues of U, the adaptive camber airfoil has a smaller camber (Y < 0°) and produces
less lift than the rigid airfoil. The high rate of de-cambering of the adaptive cam-
ber airfoil in configuration @ leads to a significant decrease in the Cp-curve slope
dCr/da. Configuration @ de-cambers less and its lift coefficient curve is closer to
the rigid airfoil’s Cr-curve.
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Figure C.3.: Steady lift coefficient Cy, for the adaptive camber and the rigid reference airfoil.
The pre-cambered configuration (a) produces a higher lift coefficient. For higher dynamic
pressures (i.e. lower reduced system stiffness) the airfoil de-cambers faster and the lift curve
slope is decreased, compared to the stiffer configuration (b).
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C.2. Sinusoidally Oscillating Airfoil

Figure C.4 shows the quasi-steady response of the rigid and the adaptive camber
airfoil that serves as a reference for the dynamic investigations of the pitching and
plunging airfoil of Chapter 5. Figure C.4a gives the evolution of the coefficient of
the pressure difference Cp,, over the mean angle of attack ¢, Figure C.4b shows the
de-cambering of the adaptive camber airfoil, quantified by its trailing flap angle y.
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2 ~
S 2.0 i{ 10.0 -
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o . B .
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Angle of attack o, [°] Angle of attack o, [°]
(a) Pressure difference coefficient AC, as (b) Trailing flap angle ¥ as a measure for
an estimator for the airfoil’s lift the de-cambering

Figure C.4.: Quasi-steady reference measurements on the rigid and the adaptive camber air-
foil at Uss = 15m/s. The rigid Clark Y airfoil has a flap deflection of y=0°
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