
TOWARDS MODULAR AND FLEXIBLE ACCESS CONTROL
ON SMART MOBILE DEVICES

Vom Fachbereich Informatik (FB 20)
an der Technischen Universität Darmstadt

zur Erlangung des akademischen Grades eines Doktor-Ingenieurs
genehmigte Dissertation von:

Dipl.-Inform. Stephan Heuser
aus Aachen, Deutschland

Referenten:
Prof. Dr.-Ing. Ahmad-Reza Sadeghi (Erstreferent)

Prof. N. Asokan (Zweitreferent)

Tag der Einreichung: 13. Juli 2016
Tag der Disputation: 29. August 2016

System Security Lab
Intel Collaborative Research Institute for Secure Computing

Fachbereich für Informatik
Technische Universität Darmstadt

Hochschulkennziffer: D17

Stephan Heuser:
Towards Modular and Flexible Access Control on Smart Mobile Devices, © July 2016

phd referees:
Prof. Dr.-Ing. Ahmad-Reza Sadeghi (1st PhD Referee)
Prof. N. Asokan (2nd PhD Referee)

further phd commission members:
Prof. Dr. Dr. h.c. Johannes A. Buchmann
Prof. Dr.-Ing. Mira Mezini
Prof. Dr. Max Mühlhäuser

Darmstadt, Germany July 2016

ABSTRACT

Smart mobile devices, such as smartphones and tablets, have become an integral part of
our daily personal and professional lives. These devices are connected to a wide variety of
Internet services and host a vast amount of applications, which access, store and process
security- and privacy-sensitive data. A rich set of sensors, ranging from microphones and
cameras to location and acceleration sensors, allows these applications and their back end
services to reason about user behavior. Further, enterprise administrators integrate smart
mobile devices into their IT infrastructures to enable comfortable work on the go.
Unsurprisingly, this abundance of available high-quality information has made smart

mobile devices an interesting target for attackers, and the number of malicious and privacy-
intrusive applications has steadily been rising. Detection and mitigation of such malicious
behavior are in focus of mobile security research today. In particular, the Android operating
system has received special attention by both academia and industry due to its popularity
and open-source character. Related work has scrutinized its security architecture, analyzed
attack vectors and vulnerabilities and proposed a wide variety of security extensions. While
these extensions have diverse goals, many of them constitute modifications of the Android
operating system and extend its default permission-based access control model. However,
they are not generic and only address specific security and privacy concerns.
The goal of this dissertation is to provide generic and extensible system-centric access

control architectures, which can serve as a solid foundation for the instantiation of use-case
specific security extensions. In doing so, we enable security researchers, enterprise adminis-
trators and end users to design, deploy and distribute security extensions without further
modification of the underlying operating system. To achieve this goal, we first analyze the
mobile device ecosystem and discuss how Android’s security architecture aims to address
its inherent threats. We proceed to survey related work on Android security, focusing on
system-centric security extensions, and derive a set of generic requirements for extensible
access control architectures targeting smart mobile devices. We then present two extensible
access control architectures, which address these requirements by providing policy-based
and programmable interfaces for the instantiation of use-case specific security solutions.
By implementing a set of practical use-cases, ranging from context-aware access control,
dynamic application behavior analysis to isolation of security domains we demonstrate the
advantages of system-centric access control architectures over application-layer approaches.
Finally, we conclude this dissertation by discussing an alternative approach, which is based
on application-layer deputies and can be deployed whenever practical limitations prohibit
the deployment of system-centric solutions.

iii

ZUSAMMENFASSUNG

Smartphones und Tablets sind heute zentrale Bestandteile unseres privaten und beruf-
lichen Alltags. Diese Geräte sind in eine Vielzahl von Internetdiensten eingebettet und
ermöglichen Anwendungen den Zugriff auf und die Verarbeitung von sicherheits- und da-
tenschutzkritischen Informationen. Eine Vielzahl von Sensoren, angefangen bei Kameras
und Mikrofonen bis hin zu Geopositions- und Beschleunigungssensoren, erlauben diesen
Anwendungen und den dazugehörigen Internetdiensten tiefe Einblicke in das Nutzerverhal-
ten. In vielen Branchen gelten Smartphones und Tablets zudem als wichtige Arbeitsmittel.
Es ist daher kaum überraschend, dass Smartphones und Tablets heute ein besonders

beliebtes Ziel für Angreifer darstellen. Dementsprechend hat die Anzahl von bösartigen
und den Datenschutz gefährdenden Anwendungen beständig zugenommen. Das Erkennen
und Entschärfen von derartigem bösartigen Verhalten ist heute ein wesentlicher Schwer-
punkt der Forschung im Bereich sicherer mobiler Systeme. Dem Betriebssystem Android
wird dabei aufgrund seiner Popularität und seines Open-Source Charakters besondere
Aufmerksamkeit gewidmet. Die IT-Sicherheitsforschung hat die Architektur des Betriebs-
systems, bekannte Angriffsvektoren und Schwachstellen genauestens untersucht und eine
Reihe von sinnvollen Sicherheitserweiterungen entwickelt. Trotz der unterschiedlichen Zie-
le dieser Erweiterungen basieren die meisten von ihnen auf spezifischen Modifikationen
des Betriebssystems und seines Zugriffskontrollmodells. Diese Ansätze sind jedoch nicht
generischer Natur und decken nur bestimmte Sicherheits- und Datenschutzprobleme ab.
Das Ziel dieser Dissertation ist es, durch die Entwicklung generischer und erweiterbarer

Sicherheitsarchitekturen einen soliden Grundstein für spezifische Sicherheitserweiterungen
zu legen. Dieser Ansatz erlaubt die Entwicklung und Integration von Sicherheitserweite-
rungen, ohne das Betriebssystem selbst verändern zu müssen. Um dieses Ziel zu errei-
chen, analysieren wir zunächst das digitale Ökosystem von Smartphones und Tablets und
identifizieren dessen inhärente Sicherheitsprobleme. Anschließend beschreiben wir, wie die
Sicherheitsarchitektur von Android diese Probleme zu lösen versucht. Weiterhin untersu-
chen wir bekannte Sicherheitserweiterungen und erstellen auf Basis dieses Wissens eine
Anforderungsanalyse für generische und erweiterbare systemzentrische Zugriffskontrollsys-
teme. Wir entwickeln zwei neuartige Sicherheitsarchitekturen, welche die Umsetzung von
spezifischen Zugriffskontrollmodellen mittels Sicherheitspolicies und durch die Bereitstel-
lung einer programmierbaren Schnittstelle ermöglichen. Anhand von vielfältigen Anwen-
dungsfällen aus den Bereichen kontextbasierte Sicherheit, dynamische Verhaltensanalyse
von Anwendungen und Isolation von Sicherheitsdomänen beschreiben wir die vielseiti-
gen Vorzüge systemzentrischer und erweiterbarer Sicherheitsarchitekturen. Zuletzt stellen
wir einen alternativen Ansatz vor, welcher die Umsetzung von Zugriffskontrollrichtlinien
auf Anwendungsebene erlaubt und immer dann verwendet werden kann, wenn praktische
Aspekte den Einsatz von systemzentrischen Sicherheitsarchitekturen verwehren.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Professor Ahmad-Reza Sadeghi,
for the opportunity of pursuing a PhD in computer science in his research groups at
both Fraunhofer Institute for Secure Information Technology (SIT) and TU Darmstadt. I
am deeply grateful for his guidance as well as countless fruitful discussions about mobile
security. In particular, I would like to thank him for establishing outstanding collaborations
with remarkable IT security researchers which led to a number of interesting projects and
publications in an international environment. Further, I would like to thank Professor N.
Asokan from Aalto University and University of Helsinki, not only for being the second
referee for this dissertation, but also for his collaboration within the Intel Collaborative
Research Institute for Secure Computing, which resulted in several publications. I would
also like to acknowledge Professor Claudia Eckert and Professor Michael Waidner for
offering me my first position in academia at Fraunhofer SIT.
Further, I would like to thank my closest collaborators and co-authors, namely Sven

Bugiel, Christoph Busold, Markus Miettinnen, Praveen Kumar Pendyala, and Jon Rios,
from the System Security Lab at TU Darmstadt, Alexandra Dmitrienko and Bhargava
Shastry from Fraunhofer SIT, as well as William Enck and Adwait Nadkarni from North
Carolina State University, for their collaboration on interesting research projects and
their work on the publications that guide this dissertation. Similarly, thanks go to all
remaining co-authors, namely Ammar Alkassar, Ingo Bente, Henry Carter, Lucas Davi,
Kai-Oliver Detken, Günther Diederich, Gabi Dreo, Josef von Helden, Bastian Hellmann,
Michael Jäger, Kari Kostiainen, Wiebke Kronz, Nicolai Kuntze, Marco Negro, Thien Duc
Nguyen, Marcos da Silva Ramos, Bradley Reaves, André Rein, Elena Reshetova, Malte
Ried, Carsten Rudolph, Julian Schütte, Christian Stüble, Patrick Traynor, Johannes West-
huis, and Jörg Vieweg.
Additional credits go to my colleagues Ferdinand Brasser, Christopher Liebchen, Stefan

Nürnberger and Christian Wachsmann from TU Darmstadt, Kpatcha Bayarou, Andreas
Fuchs, Rachid El Khayari, Ronald Marx, Jan-Peter Stotz, and Timo Winkelvos from
Fraunhofer SIT as well as Patrick Koeberl, Steffen Schulz and Matthias Schunter from
Intel for fruitful discussions about many aspects of mobile security. Similarly, I would like
to thank all remaining colleagues for our productive time together.
My former flatmates René Palige and Nicola Wagner deserve special credit. René and

I shared both ups and downs of our work in applied security research during our time
together at Fraunhofer SIT. I will never forget our countless late-night kitchen table dis-
cussions about any topic imaginable.
I am deeply grateful to my parents and brothers for their unconditional support. Without

them, this dissertation would certainly not have been possible.
Last but not least, I would like to thank Carolin Reitwießner for having my back for

year after year.

v

CONTENTS

1 introduction 1
1.1 Goal and Scope of this Dissertation . 2
1.2 Summary of Contributions . 3
1.3 Outline . 4
1.4 Previous Publications . 4

2 background 7
2.1 Smart Mobile Devices - An Abstract Model 7

2.1.1 Stakeholders . 7
2.1.2 Hardware Architecture of Smart Mobile Devices 9
2.1.3 Software Architecture of Smart Mobile Devices 10

2.2 Access Control . 14
2.2.1 Access Control Matrix . 15
2.2.2 Discretionary and Mandatory Access Control 15

2.3 The Android Operating System . 16
2.3.1 Architecture . 17
2.3.2 Security Considerations . 20

3 attacks an defenses 23
3.1 Adversary Model and Scope . 23
3.2 Attack vectors . 24

3.2.1 Active Deployment . 24
3.2.2 Passive Deployment . 26

3.3 Privilege Escalation . 26
3.3.1 Application-Layer Privilege Escalation 26
3.3.2 Operating System Level Privilege Escalation 27
3.3.3 Sensory Malware . 28
3.3.4 System and Application Updates . 28
3.3.5 User Interface Confusion . 29

3.4 Threat Mitigation . 29
3.4.1 Static Program Analysis . 29
3.4.2 Dynamic Program Analysis . 30
3.4.3 Root Exploit Mitigation . 30
3.4.4 Fine-grained Privilege Separation . 31
3.4.5 System and Application Updates . 31
3.4.6 System-Centric Access Control Refinement 32
3.4.7 Application-Layer Access Control Refinement 35

3.5 Requirements for Extensible Access Control Architectures 36
3.5.1 Observations . 36
3.5.2 Requirement Analysis . 37

4 fine-grained and extensible policy-driven access control 39
4.1 Background on SELinux Type Enforcement 40

vii

viii contents

4.1.1 SELinux . 40
4.1.2 Security Enhanced (SE) Android . 41

4.2 FlaskDroid Architecture . 42
4.2.1 Kernel-layer Type Enforcement . 43
4.2.2 Userspace Security Server . 43
4.2.3 Userspace Object Managers . 43
4.2.4 Access Control Rules . 47
4.2.5 Context Providers . 48
4.2.6 Support for Multiple Stakeholders 49

4.3 Case Studies . 50
4.3.1 Privacy Enhanced Operating System Components 50
4.3.2 Privacy Enhanced Image Media Store 50
4.3.3 Phone Booth Mode . 51
4.3.4 App Developer Policies (Saint) . 52

4.4 Evaluation . 54
4.4.1 Policy Size and Complexity . 54
4.4.2 Effectiveness . 55
4.4.3 Performance . 56

4.5 Conclusion . 57
5 a modular and programmable access control architecture 59

5.1 Background . 60
5.2 ASM Architecture . 61

5.2.1 ASM Apps . 61
5.2.2 ASM Bridge . 63
5.2.3 Callbacks Modifying Data . 64
5.2.4 Hook Types . 65
5.2.5 ASM LSM . 71

5.3 Case Studies . 71
5.3.1 MockDroid . 71
5.3.2 AppLock . 72
5.3.3 App-specific Firewalling . 73
5.3.4 Summary . 74

5.4 Evaluation . 74
5.4.1 Performance Overhead . 75
5.4.2 Energy Consumption . 76

5.5 Conclusion . 77
6 practical use cases 79

6.1 Context-Aware Access Control . 79
6.1.1 Scope . 80
6.1.2 Design . 81
6.1.3 Implementation . 83
6.1.4 Evaluation . 86
6.1.5 Conclusion . 87

6.2 Access Control for Application Behavior Analysis 89

contents ix

6.2.1 Scope . 90
6.2.2 Design . 90
6.2.3 Implementation . 92
6.2.4 Evaluation . 93
6.2.5 Conclusion . 96

6.3 Secure Dual-Use of Smart Mobile Devices 97
6.3.1 Scope . 98
6.3.2 Design . 99
6.3.3 Implementation . 103
6.3.4 Evaluation . 105
6.3.5 Conclusion . 107

6.4 Access Control in Advanced IoT Scenarios 109
6.4.1 Scope . 110
6.4.2 Design . 112
6.4.3 Implementation . 114
6.4.4 Evaluation . 118
6.4.5 Conclusion . 121

7 discussion and conclusion 123
7.1 Dissertation Summary . 123
7.2 Directions for Future Research . 124

8 about the author 127

bibliography 131

L I ST OF F IGURES

Figure 1 Smart mobile device ecosystem . 7
Figure 2 Hardware architecture of contemporary smart mobile devices 10
Figure 3 Software architecture of contemporary smart mobile devices 11
Figure 4 Platform initialization process . 12
Figure 5 Android high-level architecture . 18
Figure 6 Android security architecture . 22
Figure 7 Different approaches for security domain isolation 35
Figure 8 FlaskDroid framework architecture 42
Figure 9 Phone booth mode . 52
Figure 10 Linux Security Modules (LSM) architecture 61
Figure 11 ASM framework architecture . 62
Figure 12 ASM hook invocation . 64
Figure 13 ConXsense framework architecture 82
Figure 14 Android Context Data Collector app 84
Figure 15 Example confused deputy attack . 90
Figure 16 DroidAuditor framework architecture 91
Figure 17 Example collusion attacks . 94
Figure 18 Screenshots of the DroidAuditor client 96
Figure 19 BizzTrust framework design . 98
Figure 20 Trusted Network Connect (TNC) integration 103
Figure 21 Access control on ContentProviders 105
Figure 22 Xapp system model: Entities and interaction 111
Figure 23 Xapp framework design . 112
Figure 24 Xapp framework implementation 115

L I ST OF TABLES

Table 1 Operating system architectures and sales market share 13
Table 2 Example access control matrix . 15
Table 3 Classification of authorization hook semantics required by system-

centric Android security enhancements 37
Table 4 Overview of policy complexity: Comparison of SELinux, SEAn-

droid and FlaskDroid policies . 55
Table 5 List of attacks considered in our testbed 56
Table 6 Performance and memory usage overhead [34] 57
Table 7 Hooks registered by the MockDroidASM app 72

x

Table 8 Performance evaluation - unmodified AOSP, ASM with no reference
monitor, and ASM with a reference monitor app 75

Table 9 Energy consumption overhead of ASM 77
Table 10 Performance evaluation (framework) 118
Table 11 Performance evaluation (case study) 119

L I ST INGS

Listing 1 SELinux allow rule . 40
Listing 2 Example usage of policy Booleans 41
Listing 4 FlaskDroid policy excerpt describing Intents and corresponding op-

erations . 44
Listing 3 FlaskDroid policy excerpt describing application types 45
Listing 5 FlaskDroid policy excerpt describing ContentProviders and corre-

sponding operations . 47
Listing 7 FlaskDroid policy excerpt showing access control rule definitions . . 47
Listing 6 FlaskDroid policy excerpt describing Services and corresponding

operations . 48
Listing 8 FlaskDroid policy excerpt describing context-aware access control . 49
Listing 9 FlaskDroid policy excerpt implementing phone booth mode 53
Listing 10 Example callback prototypes modifying data 65
Listing 11 Resolve Activity hook . 66
Listing 12 AppOps hook for sending SMS . 67
Listing 13 getDeviceId hook . 68
Listing 14 CallLogProvider query hook . 68
Listing 15 Third party hooks . 69
Listing 16 Cypher query to detect the confused deputy attack 92
Listing 17 Cypher query to detect the collusion attack depicted in Figure 17a 94
Listing 18 Cypher query to detect the collusion attack depicted in Figure 17b 95
Listing 19 Cypher query to detect the behavior of the “TheTruthSpy” and

“LetMeSpy” spyware applications 95

xi

1
INTRODUCTION

Smart mobile devices, such as smartphones and tablets, have become an integral part of
our daily lives. These devices serve as central information hubs, which access, collect, store
and process vast amounts of privacy-sensitive data, ranging from contacts information, call
data records to calendar entries. A rich set of sensors allows the user to take photos, record
audio and video, track his geolocation and log his sportive activities. Thanks to the al-
most constant availability of high-speed wireless Internet connectivity these devices are
embedded into cloud-based digital ecosystems of value-added services. While the use of
cellular telephony and text messaging is declining, IP-based mobile communication has
gained traction. Platform providers, such as Google and Apple, have acknowledged this
trend and operate IP-based communication services for email, instant messaging, video
telephony and data sharing. Further, convenient and free personal information manage-
ment services, which provide seamless synchronization of sensitive data between desktop
computers, smartphones, tablets and personal entertainment devices, persuade users to
store and process sensitive personal information in the cloud.
Besides platform providers an increasing number of third-party developers offer special-

ized applications and corresponding Internet services for smart mobile devices. Enterprises
have embraced these apps to increase the productivity of their workforce and to enable
comfortable work on the go by extending the digital boundaries of the enterprise domain
towards the mobile user. Financial services have identified smart mobile devices as ideal
vehicles for the deployment of mobile payment schemes. Furthermore, smartphones and
tablets have evolved into the primary user interface for the Internet of Things (IoT), where
third-party applications and services cooperate with a wide variety of home entertainment
electronics, external sensors, lifestyle products, wearables and e-health devices.
This convergence of functionality into dedicated software components located on one

central mobile device distinguishes smartphones and tablets from traditional computing
platforms, such as desktop PCs and notebooks: Applications deployed on smartphones
and tablets store and process privacy- and security-sensitive assets, which are subject to
the interests of different stakeholders - such as the user, app developers, enterprises and
content providers. These applications further routinely interact with high-level operating
system services as well as other applications to share data and solve complex tasks. Typical
examples are sending geolocation coordinates selected within a maps application, such as
Google Maps, to other persons via an instant messaging app; sharing photos taken with
the camera app with friends using a social networking app; or forwarding sensitive contacts
data selected in the contacts management app via an email client.
On one hand, this architecture of dedicated and reusable software components makes

operating systems for smart mobile devices an ideal target for fine-grained access control
enforcement. The popular Android operating system for example uses a permission-based
access control model, where the user decides which privacy- and security-sensitive op-

1

2 introduction

erations applications are allowed to perform. On the other hand, Android’s permission
system is susceptible to a variety of attacks: Both malicious and privacy-intrusive applica-
tions abuse the fact that users are overburdened with security decisions [79, 80]. Design
and implementation weaknesses lead to confused deputy vulnerabilities, where highly-
privileged applications and system components accidentally leak capabilities to malicious
apps [81, 152]. Finally, colluding malicious applications convey a false sense of security
when inspected individually, but in the background operate in concert to escalate their
privileges [52].

Addressing these concerns is an important aspect of both academic and industrial mobile
security research today. Static and dynamic code analysis both promise to detect malicious
behavior before corresponding applications are deployed on a user’s device. However, re-
lated work has shown that these approaches are susceptible to code obfuscation techniques
as well as logic bombs [201, 271, 139]. Sophisticated information flow control frameworks
use dynamic taint analysis to trace sensitive information while it is processed on the de-
vice. Unfortunately, the existing architectures struggle to adequately address applications
directly modifying volatile memory, for example via native code components [66]. Finally,
related work has proposed both application-layer and system-centric enhancements to An-
droid’s security architecture, which augment the default permission-based access control
model with use-case specific extensions. But while these extensions can effectively address
many of the existing security issues, they are not generic and thus do not scale [34, 119, 14].

1.1 goal and scope of this dissertation

The main goal of this dissertation is to overcome these limitations by designing and imple-
menting modular and flexible access control architectures for smart mobile devices, which
serve as a solid and scalable foundation for the instantiation of use-case specific solutions.
To achieve this goal, we analyze the mobile device ecosystem, which is driven by the in-
terests of multiple stakeholders that need to be considered when designing access control
architectures. We then scrutinize related work on security aspects of smart mobile de-
vices by example of the popular open-source Android operating system and derive generic
requirements for extensible access control architectures.
We apply the gained knowledge by designing and implementing generic and extensible

access control architectures for smart mobile devices. Our FlaskDroid architecture [34]
implements policy-driven access control, where use-case specific security solutions are in-
stantiated by designing corresponding security policies. We then proceed to generalize
this approach in the Android Security Modules (ASM) [119] framework, which provides
a programmable interface for integrating use-case specific access control solutions into the
Android operating system.

We use FlaskDroid and ASM to instantiate selected security extensions proposed by re-
lated work to demonstrate the flexibility of our extensible access control architectures. We
then proceed to describe novel use-cases for system centric access control in more detail:
ConXsense [162] uses FlaskDroid and ASM to provide context-aware access control and
protects users against sensory malware while simultaneously improving device usability.
DroidAuditor [120] adopts the ASM framework to observe and analyze the runtime behav-

1.2 summary of contributions 3

ior of malicious and privacy-intrusive applications. Our TrustDroid architecture [33] and
its commercial BizzTrust variant [229] both use mandatory access control to efficiently
and effectively isolate enterprise and private applications and assets on smart-mobile de-
vices. Finally, we discuss Xapp [36], which is an alternative application-layer approach for
fine-grained access control that strikes a balance between usability, ease of deployment
and security.

1.2 summary of contributions

To summarize, the main contributions of this dissertation are as follows:

Extensible Policy-Driven Access Control on Android. We present a security ar-
chitecture for policy-driven access control on Android. Our architecture, denoted Flask-
Droid [34], extends SELinux [153]/SEAndroid [232] type enforcement towards Android’s
middleware and application layer. By instantiating selected security extensions proposed
by related work we demonstrate the flexibility of our framework.

Modular and Programmable Access Control on Android. While our FlaskDroid
architecture demonstrates that it is feasible to deploy flexible access control using a policy-
driven approach there are use-cases where such a solution is still too restrictive. To ad-
dress this limitation our Android Security Modules (ASM) framework [119] provides a
programmable interface for designing and implementing system-centric access control so-
lutions as Android applications.

Context-aware Access Control. Manually configuring access control policies to in-
crease user privacy is a tedious and time-consuming process. Context-aware access control
architectures aim to use environmental information derived from the onboard sensors to
automatically configure corresponding security policies. Our ConXsense [162] framework
prototypes context-aware access control on Android. It shows how system-centric security
architectures, such as FlaskDroid and ASM, can enforce access control decisions depending
on the perceived risk for device misuse and privacy exposure.

Application Behavior Analysis using System-centric Access Control. While the
primary goal of system-centric access control architectures is to enforce security policies
they can also serve as a useful tool for security analysts investigating malicious applica-
tions. Our DroidAuditor architecture [120] observes application behavior using the ASM
framework [119] and generates a graph-based representation. We evaluate our approach by
analyzing confused deputy and collusion attacks as well as malicious spyware applications
using DroidAuditor.

Access Control for Secure Dual-Use of Smart Mobile Devices. Enterprises have
identified smart mobile devices as useful tools to increase the productivity of their work-
force by enabling comfortable work on the go. To effectively protect enterprise applica-
tions and assets from malicious and privacy-intrusive applications installed by the user it
is desirable to confine them into isolated security domains. The award-winning [250, 230]
BizzTrust [229] solution demonstrates how secure dual-use can be implemented on mobile
devices while taking their inherent energy and computational resource constraints into ac-

4 introduction

count. BizzTrust evolved from our TrustDroid [33] mandatory access control architecture
and is commercially available for selected Android-based smartphones and tablets today.

Access Control in Advanced IoT Scenarios. While it is generally desirable to en-
force access control decisions using a system-centric approach there are situations where
adopting system-centric access control architectures is not yet feasible due to practical
limitations. Consider that the integration of enhanced system-centric access control archi-
tectures mandates the modification of the predeployed operating system. Related work has
proposed alternative approaches, which either rely on inlined reference monitors (IRMs)
that are integrated into application code [16, 289, 54, 53, 199], or use application-layer
deputies for access control enforcement [136]. While IRMs can be bypassed by native code
and break Android’s same-origin policy for application updates, application-layer deputies
can be an effective tool for access control enforcement whenever it is infeasible to modify
the operating system. Our Xapp architecture [36] applies the concept of application layer
deputies to Android in an Internet of Things scenario to enforce access control on resources
shared between multiple mutually untrusted devices.

1.3 outline

This dissertation proceeds as follows: Chapter 2 introduces necessary background knowl-
edge on hard- and software architectures for smart mobile devices, access control and in
particular on Android’s operating system architecture. Chapter 3 discusses related work
on both offensive and defensive Android security research and derives requirements for ex-
tensible access control architectures. In Chapters 4 and 5 we show how our FlaskDroid [34]
and ASM [119] security architectures address these requirements using a policy-driven and
programmable approach towards extensible access control. In Chapter 6 we discuss a set
of practical use-cases for fine-grained access control. In particular, we describe solutions
for context-aware access control [162] (Section 6.1), application behavior analysis [120]
(Section 6.2), security domain isolation [33] (Section 6.3) and secure sharing of resources
between multiple devices [36] (Section 6.4). Finally, Chapter 7 concludes this dissertation.

1.4 previous publications

This dissertation is based on several previously published publications as listed below.
The full list of publications published by the author of this dissertation can be found in
Chapter 8.

Chapter 2 & 3

N. Asokan, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Kari Kostiainen, Elena
Reshetova, and Ahmad-Reza Sadeghi. Mobile Platform Security. Morgan & Claypool,
1st edition, 2013. ISBN 1627050973, 9781627050975. URL http://dx.doi.org/10.2200/
S00555ED1V01Y201312SPT009.

http://dx.doi.org/10.2200/S00555ED1V01Y201312SPT009
http://dx.doi.org/10.2200/S00555ED1V01Y201312SPT009

1.4 previous publications 5

Chapter 4

Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. Flexible and Fine- grained Manda-
tory Access Control on Android for Diverse Security and Privacy Policies. In Proceedings
of the 22nd USENIX Security Symposium, USENIX’13. URL https://www.usenix.org
/conference/usenixsecurity13/technical-sessions/presentation/bugiel.

Chapter 5

Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi. ASM: A Pro-
grammable Interface for Extending Android Security. In Proceedings of the 23rd USENIX
Security Symposium, USENIX’14. URL https://www.usenix.org/conference/usenix
security14/technical-sessions/presentation/heuser.

Chapter 6

Markus Miettinen, Stephan Heuser, Wiebke Kronz, Ahmad-Reza Sadeghi, and N. Asokan.
ConXsense – Context Profiling and Classification for Context-Aware Access Control. In
Proceedings of the 9th ACM Symposium on Information, Computer and Communications
Security, ASIACCS’14. URL http://dx.doi.org/10.1145/2590296.2590337.

Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Ahmad-Reza Sadeghi,
and Bhargava Shastry. Practical and Lightweight Domain Isolation on Android. In Pro-
ceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices, SPSM’11. URL http://dx.doi.org/10.1145/2046614.2046624.

Stephan Heuser, Marco Negro, Praveen Kumar Pendyala, and Ahmad-Reza Sadeghi. Droid-
Auditor: Forensic Analysis of Application-Layer Privilege Escalation Attacks on Android.
In Proceedings of the 20th International Conference on Financial Cryptography and Data
Security (to appear), FC’16. URL http://fc16.ifca.ai/preproceedings/15_Heuser.p
df.

Christoph Busold, Stephan Heuser, Jon Rios, Ahmad-Reza Sadeghi, and N. Asokan. Smart
and Secure Cross-Device Apps for the Internet of Advanced Things. In Proceedings of the
19th International Conference on Financial Cryptography and Data Security, FC’15, 2015.
URL http://dx.doi.org/10.1007/978-3-662-47854-7_17.

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bugiel
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bugiel
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/heuser
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/heuser
http://dx.doi.org/10.1145/ 2590296.2590337
http://dx.doi.org/10.1145/2046614.2046624
http://fc16.ifca.ai/preproceedings/15_Heuser.pdf
http://fc16.ifca.ai/preproceedings/15_Heuser.pdf
http://dx.doi.org/10.1007/978-3-662-47854-7_17

2
BACKGROUND

This section covers necessary background knowledge on access control architectures for
smart mobile devices. We start by introducing a generic security model which takes the
peculiarities of smart mobile devices and the surrounding ecosystem into account. We
proceed to provide a short primer on important access control terminology. Finally, we
discuss the Android operating system architecture, focusing on security and access control
aspects.

2.1 smart mobile devices - an abstract model

In the following, we will introduce a generic security model for smart mobile devices. We
start by introducing important stakeholders present in the smart mobile device ecosystem.
We then proceed to abstractly describe the hard- and software architecture of smart mobile
devices.

2.1.1 Stakeholders

Resources stored on and accessed by smart mobile devices and their applications are
subject to the interests of multiple stakeholders. These interests are not necessarily aligned,
and several important design decisions regarding the hard- and software architecture of
smart mobile devices reflect this aspect.

Smart Mobile Devices

Enterprise
Administators

End Users

Cellular Network
Operators

App Market
Providers

Content and
Service

Providers

Platform
Providers

Device
Manufacturers

App Developers

Figure 1: Smart mobile device ecosystem

7

8 background

Figure 1 depicts the following important stakeholders:

• Platform Providers develop the user-facing operating system (e.g., Android) for
smart mobile devices, which is running on the application processor. Their primary
goal is the protection of the integrity of the operating system software stack. Operat-
ing system integrity is a prerequisite for most security mechanisms present on smart
mobile devices, as we discuss in Section 2.1.3.

• Device Manufacturers produce smart mobile devices and install an operating
system developed by the platform provider as well as system applications on them.
Device manufacturers aim to protect the authenticity, integrity and confidentiality
of the device software. Adversaries who are able to break confidentiality by reverse-
engineering the software stack could gain insights into the intellectual property of
the device manufacturer. Compromise of software integrity and authenticity could
lead to abnormal or even malicious system behavior, increasing the need for support
staff and negatively affecting the manufacturer’s reputation.

• App Developers create applications, denoted apps, for smart mobile devices. De-
velopers aim to protect the integrity of their applications, which mandates integrity
protection of the operating system, and requires user authenticity and accountability.
Without application and operating system integrity users could introduce unforeseen
application behavior. For example, the removal of in-app advertisement might cause
a financial loss for the app developer. User authenticity and accountability are re-
quired for monetizing applications and their services. Furthermore, developers of
closed-source apps aim to preserve source code confidentiality to prevent theft of
their intellectual property.

• App Market Providers distribute apps developed by app developers to smart
mobile devices. App markets typically provide software license management features,
which interact with payment processors and allow app developers to sell apps to users.
They further serve as software lifecycle management hubs and distribute software
updates in a centralized manner. App Market Providers are primarily interested in
user and device authentication as well as user accountability, which are necessary
prerequisites for trading digital goods.

• Cellular Network Operators are responsible for the correct operation of cellular
networks and services. They are interested in user and device authentication, user
accountability and in the protection of the hard- and software integrity of mobile
devices. Unauthorized and unaccountable users and devices within cellular networks
could generate financial loss. Further, devices within the network which do not adhere
to regulatory constraints could affect the availability and correct operation of the
cellular network.

• Content and Service Providers offer specific services (e.g., VoIP telephony) and
digital media (e.g., movies or music) to users of smart mobile devices. These providers
require user and device authentication, user accountability as well as software and

2.1 smart mobile devices - an abstract model 9

hardware integrity. Unauthorized and unaccountable users and devices could gen-
erate a financial loss by using restricted services without reimbursement. Further,
integrity-compromised devices could allow users to circumvent digital rights man-
agement (DRM) mechanisms which impose restrictions on the use of digital media
assets, such as rented books or movies.

• End Users are primarily interested in in protecting the confidentiality and integrity
of privacy- and security-sensitive assets stored on and accessed by their devices and
applications, such as their personal contacts information, call logs, sensory data as
well as payment information (e.g., credit card data).

• Enterprise Administrators integrate corporate- or privately-owned devices into
an enterprise IT infrastructure. They aim to preserve the integrity and confidentiality
of sensitive enterprise assets stored on and accessed by the mobile device. They
further are interested in preserving software and hardware integrity of enterprise-
owned devices as well as user and device authenticity and accountability.

It should be noted that the same logical entity can represent multiple stakeholders.
For example, Apple Inc. represents the device manufacturer, platform and app market
provider as well as the primary content provider for iOS devices. Google Inc., on the other
hand, represents the platform provider, primary app market provider and primary content
provider for the Android operating system.
It is obvious that the goals of these multiple stakeholders are often not aligned. For

example, while content providers aim to protect their digital assets from unauthorized use,
private users might be tempted to disable corresponding media playback restrictions. En-
terprise administrators require software integrity. Private users might attempt to violate
this integrity by gaining administrative “root” privileges, a process also denoted as “jail-
breaking”, in order to enhance the functionality of their devices and to lift usage constraints
imposed by enterprise security policies. Addressing these diverse goals is challenging and
an important motivation for modular and extensible security architectures.

2.1.2 Hardware Architecture of Smart Mobile Devices

Smart mobile devices are designed around energy-efficient System-on-Chips (SoCs), which
condense many required hardware components into one integrated circuit. Contemporary
SoCs for smartphones and tablets are highly complex and typically consist of a fabric
which interconnects separate logical units. First and foremost such a SoC contains a cen-
tral multicore processing unit, a graphics processor and a memory controller, which is
accompanied by a limited amount of volatile and non-volatile memory. These central com-
ponents are augmented by further peripherals, such as additional volatile and non-volatile
memory, a microphone and speaker, display and touchscreen controllers, wireless network
interfaces as well as power management circuitry via I/O interfaces.
Figure 2 abstractly depicts the hardware architecture of a modern smart mobile device.

It should be noted that logical units, albeit implemented on the same SoC, are partially
executed on separate microprocessor or -controller cores. For example, the baseband sub-

10 background

System on Chip

Pe
ri

p
h

er
al

 In
te

rf
ac

es

Pe
ri

p
h

er
al

 In
te

rf
ac

es

WiFi

Subscriber Identity
Module

Internal Non-Volatile
Read-Only Memory

Internal Volatile
Memory

Baseband Subsystem

Application Processor

Memory Controller

External Non-Volatile
Flash Memory

External Volatile
Memory

Multimedia Digital
Signal Processor

DSP

Graphics ProcessorGPU

Microphone

Speaker

User Input

Display

Sensors

Bluetooth

Near Field
Communication

Power Management

Figure 2: Hardware architecture of contemporary smart mobile devices

system, which executes the cellular networking stack, is typically implemented using a
separate processor, denoted baseband processor. This subsystem communicates with the
application processor, which runs the user-facing operating system (e.g., Android or iOS).
This design choice is driven by the necessity to prevent the user-facing operating system
from interfering with the cellular networking stack. This networking stack is subject to
the interests of mobile network operators and has to comply with regulatory standards to
prevent accidental or intentional negative effects on the cellular network.
Furthermore, modern SoCs for smart mobile devices usually include hardware support

for the implementation of a Trusted Execution Environment (TEE). The primary purpose
of a TEE is to provide an isolated code execution environment on the device, which is out of
reach of the operating system running on the application processor. TEEs are for example
used to perform cryptographic operations and store secret keys and data for payment and
digital rights management processes in isolation. Primary beneficiaries of TEEs today are
content and service providers. The underlying hardware security extensions and instruc-
tion set architectures, such as ARM TrustZone [7], provide the required memory isolation
primitives and secure interfaces to SoC-specific I/O hardware (e.g., a TEE-aware inter-
face to the touchscreen controller). TEE software stacks, such as Trustonic Kinibi [268],
build upon these hardware security extensions and provide an execution environment and
programming interface for isolated services.

2.1.3 Software Architecture of Smart Mobile Devices

The software stack of operating systems for smart mobile devices can be described as a
three tier architecture, which consists of the operating system kernel layer, the middle-

2.1 smart mobile devices - an abstract model 11

ware layer and the application layer. In the following, we will describe this abstract model
while focusing on important security aspects. We start by discussing the platform initial-
ization process, which occurs when the device is powered up, and proceed with the kernel,
middleware and application layer. Figure 3 depicts this abstract software architecture.

System Apps Third-Party Apps

Contacts Dialer Social Network
Instant

Messenger Application
Layer

Middleware
Layer

Kernel
Layer

Device Drivers
File

Systems
Scheduler

Memory
Management

TEE
Driver

Baseband
Interface

Access
Control

Inter-Process
Communication

Application
Runtime

Environment

Application
Installer

Application
Lifecycle

Management

Network
Management

Code Libraries
System
Update

Management

Access
Control

Mobile Device
Management

Figure 3: Software architecture of contemporary smart mobile devices

Platform Initialization. When a smart mobile device is powered up a platform initial-
ization process, also denoted bootstrapping or boot process, initializes the hardware before
handing over control to the operating system kernel. Despite ongoing efforts to standardize
this procedure, such as the Unified Extensible Firmware Interface (UEFI) standard [269],
bootstrapping a SoC is still a mostly vendor-specific procedure.
This bootstrapping process plays a vital role in establishing platform security. Ideally,

it ensures that a device is initialized into a well-known state, in which the security mech-
anisms integrated into the hardware architecture and software stack operate as designed.
This property is denoted platform integrity, and can be achieved using concepts developed
by the trusted computing community - namely secure and trusted boot. Both approaches
establish a chain of trust, in which every piece of software executed on the device first
verifies the integrity of other software components before executing them.

Figure 4 depicts an abstract model for platform initialization, which approximates typ-
ical vendor-specific platform initialization procedures. In this model, the initialization
process is implemented using multi-stage boot loaders, which is a standard procedure for
SoCs for smart mobile devices [122]. When the SoC is powered up, it loads an initial
SoC vendor-specific first-stage boot loader from a fixed address in on-chip non-volatile
write-protected memory. This boot loader can typically not be modified or upgraded with-

12 background

Verify and ExecuteVerify and ExecuteVerify and Execute

External Non-Volatile Flash Memory
Internal Read-
Only Memory

Third Stage Boot
Loader

Vendor-agnostic,
e.g., U-Boot

Operating
System Kernel

Vendor-agnostic,
e.g., Linux

First Stage Boot
Loader

Vendor-specific,
Basic

Hardware
Initialization

Second Stage
Boot Loader

Vendor-specific,
Complete

Hardware and
TEE Initialization

Figure 4: Platform initialization process

out exchanging the entire SoC. The first stage boot loader initializes the minimal set of
hardware components required to load the second stage boot loader, for example from
non-volatile rewritable flash memory. Before handing over control to the second stage
boot loader it uses cryptographic mechanisms, such as cryptographic signatures or mes-
sage authentication codes, to verify its integrity and authenticity. It thus ensures that the
second stage boot loader, which can be updated or modified without exchanging the SoC,
has not been tempered with by an adversary.
In the next step, the vendor-specific second stage boot loader completes the initializa-

tion of the SoC hardware, including the cellular radio subsystem. It further initializes
the Trusted Execution Environment (TEE), ensuring its authenticity and integrity us-
ing cryptographic mechanisms. The second stage boot loader finally verifies and loads
the third-stage boot loader, which typically is vendor-agnostic. Linux-based devices for
example often rely on a variant of the popular U-Boot boot loader [90].
Finally, the third-stage boot loader proceeds to load the operating system kernel from

non-volatile rewritable flash memory. Ideally, the third stage boot loader ensures the in-
tegrity and authenticity of the operating system kernel before handing over control. In
turn, the operating system ideally verifies the integrity of each software component loaded
within userland. However, many manufacturers of smart mobile devices do not extend the
chain of trust beyond the initialization of the TEE, and thus allow the user to install
arbitrary operating systems on his device.

Kernel Layer. The kernel of the user-facing operating system (e.g., Android or iOS)
provides necessary primitives for executing multiple software components on the smart
mobile device in a controlled way. In our abstract model, the operating system kernel
is executed on top of the “bare-metal” hardware, which means that it has full control
of the underlying SoC (with the exception of the cellular radio stack executed on the
baseband processor and the TEE). It should be noted that our model does not consider
virtualization, which would introduce another abstraction layer between the hardware and
kernel layer. While there are approaches which employ virtualization to isolate multiple
operating systems deployed by different stakeholders [18, 51, 127, 146], or to remove the
need for a separate baseband processor [118], these approaches are rarely used in practice
due to resource (e.g., processing power and memory) and usability constraints.

2.1 smart mobile devices - an abstract model 13

Almost all operating systems for smart mobile devices in active use today, namely An-
droid, iOS, Windows Phone, Windows 10, Firefox OS, Tizen, Sailfish OS and Ubuntu
Phone, are based on monolithic or hybrid operating system kernels (see Table 1). One ex-
ception is Blackberry OS 10, which is based on a variant of the QNX microkernel operating
system [194]. It should however be noted that with the introduction of the Blackberry Priv
in 2015, Blackberry is starting to lean towards Android as an alternative to the established
QNX-based product line.

Name Primary Developers Kernel Design Sales Market Share
Q4/15 [130]

Android Google Inc. Linux Monolithic 80.7%
iOS Apple Inc. XNU Hybrid 17.7%
Windows Phone Microsoft Windows NT Hybrid 1.1%
Blackberry OS Blackberry Ltd. QNX Microkernel 0.2%
Firefox OS Mozilla Foundation Linux Monolithic < 0.2%
Tizen Linux Foundation, Tizen Asso-

ciation, Samsung, Intel
Linux Monolithic < 0.2%

Sailfish OS Jolla Oy Linux Monolithic < 0.2%
Ubuntu Phone Canonical Ltd. Linux Monolithic < 0.2%

Table 1: Operating system architectures and sales market share

Microkernels by design only execute a minimal set of services - most importantly mem-
ory management and task scheduling - as part of the operating system kernel in a highly
privileged protection domain, and shift additional functionality into services running in
less privileged protection domains [249]. In contrast, monolithic and hybrid architectures
incorporate non-central operating system services, such as device and filesystem drivers as
well as the networking stack, into kernelspace. Thus, from a security standpoint microker-
nel based architectures have a potentially smaller trusted computing base (TCB) footprint.
The trusted computing base describes the hard- and software components which have to
be trusted to preserve the security guarantees of a particular system. On the other hand,
microkernel based operating systems are not supported by a large open-source developer
community. Considering the short-lived development cycles of the underlying SoC hard-
ware, this aspect impedes the development of microkernel-based operating systems for
smart mobile devices in practice.
When comparing operating system kernels targeting smart mobile devices to kernels

for desktops and servers only minor differences are apparent. Android, Firefox OS, Ti-
zen, Sailfish OS and Ubuntu Phone use standard Linux kernels which only contain minor
changes concerning energy management, inter-process communication and security. Fur-
ther, the kernel layer typically provides an operating system specific hardware abstraction
layer (HAL), such as the Android HAL [135], which abstracts from the SoC vendor specific
hardware and device drivers.

Middleware Layer. The middleware layer is located within the userland environment of
smart mobile devices and exposes a well-defined application programming interface (API)
towards apps. It provides the application runtime environment, which is responsible for
controlled app execution and exposes shared code libraries implementing common func-

14 background

tionality. Further, a set of standardized middleware service components are responsible for
application installation and lifecycle management, software updates as well as mobile de-
vice management. These services also serve as an abstraction of kernel-layer functionalities,
such as access to hardware resources and power management functionality.
This convergence of functionality into well-defined high-level services distinguishes op-

erating systems for smart mobile devices from desktop and server operating systems and
serves as a basis for security policy enforcement on the middleware layer. To this end, ref-
erence monitors located inside these service components enforce access control rules which
limit operations on sensitive resources to authorized applications.

Application Layer. Applications are executed using the application runtime environment
provided by the middleware layer. Generally, applications can be grouped into preinstalled
system applications and third-party applications installed by the user. System applications
augment the operating system API and implement additional high-level services expected
to be present on smart mobile devices, such as contacts and calendar databases. Similar
to operating system services implemented on the middleware layer they too enforce access
control rules by means of reference monitors.
In contrast, third-party applications are installed by the user via app markets, such as

Google Play Store [100] or Apple’s App Store [6]. These app markets also serve as cen-
tral distribution points for app updates. The platform provider can limit app distribution
to authorized channels. Apple, for example, enforces that aside from specific enterprise
use-cases [196] apps can only be deployed via the Apple App Store. In contrast, Google
generally allows application sideloading on Android, a term describing application instal-
lation without locking users into a particular app store.
Application distribution via app stores may include an app vetting process, during which

manual and automated tests are performed to check whether or not applications adhere
to certain guidelines. These guidelines on one hand can be geared towards ensuring a uni-
form look and feel of the platform. On the other hand, these guidelines can be part of the
platform security strategy. By adopting static and dynamic code analysis malicious soft-
ware can to some extend be detected before applications are distributed to users. However,
related work has shown that developers of malicious software actively attempt to thwart
static and dynamic code analysis [201, 174]. Accordingly, these mechanisms should only
augment the on-device security architecture.

2.2 access control

We now briefly discuss necessary background knowledge on access control, which is a funda-
mental aspect of operating system security. Access control covers aspects of authentication
and authorization and abstractly describes operations specific authenticated entities, de-
noted subjects, are authorized to perform on other entities or resources, denoted objects.

2.2 access control 15

2.2.1 Access Control Matrix

Lampson describes a formal model for access control based on subjects and objects. His
model describes operations op ∈ OP subjects s ∈ S are authorized to perform on objects
o ∈ O using an access control matrix [145]. Table 2 shows an example of such an access
control matrix which encodes a set of access control rules.

Object o1 Object o2

Subject s1 read ∅
Subject s2 read, write read
Subject s3 ∅ read, write

Table 2: Example access control matrix

In common multiuser operating systems, such as Microsoft Windows, Apple OS X and
Linux, subjects are generally processes operating on behalf of users. Objects are resources,
services or other processes a subject performs operations on. This abstract notion of ob-
jects mandates that operations are object-specific. While generic open, read and write
operations may apply to a variety of objects, such as files, directories and sockets, more
specific operations, such as sendMessage or receiveMessage may only apply to specific
communication mechanisms, such as Inter-Process Communication (IPC) channels.
A set of access control rules AC(s, o, op) = allow|deny can be described using access con-

trol lists (ACLs) or capabilities. An ACL represents a column in the access control matrix
and thus describes access control rules from the perspective of individual objects. For exam-
ple, the ACL for Object o1 in Table 2 is ACLo1 = {{s1 : read}, {s2 : read,write}, {s3 : ∅}}.
In contrast, capabilities represent rows in the access control matrix and describe access
control rules from the perspective of individual subjects. The capabilities of subject s1
thus are CAPs1 = {{o1 : read}, {o2 : ∅}}.

2.2.2 Discretionary and Mandatory Access Control

While the access control matrix defines abstract access control rules for subjects and
objects, it does not define how or by whom these rules are created or which entities
are authorized to modify them at runtime. Related work [219] distinguishes between two
fundamentally different approaches, namely discretionary and mandatory access control,
and we will describe these models in the following paragraphs.

Discretionary Access Control. In discretionary access control (DAC) the owner of an
object, which is initially the creator of this object (or rather his process) defines access
control rules for this object. Access control rules are thus defined at the discretion of
users. Discretionary access control is commonly used as an access control mechanism for
filesystems. For example, Linux as well as most other unix-like operating systems define
three basic operations (read, write and execute) which apply to three groups of subjects
(owner processes, processes of users of the same user group and everyone else). Further, the
Linux kernel exposes interfaces to important kernel functionalities via pseudo filesystems,

16 background

which are subject to discretionary access control as well. Important examples are domain
and network sockets, block and character devices as well as named pipes used for inter-
process communication [154].

Mandatory Access Control. A common issue of discretionary access control is that
this model cannot implement information flow control, which is a security model that
aims to restrict propagation of sensitive information [211]. Allowing a subject to define
access control rules for objects it creates could expose sensitive information contained in
these objects to less privileged subjects. Consider for example a user who stores sensitive
information not to be disclosed to others on a multiuser operating system. Discretionary
access control provides no means to prevent this user from granting read privileges on
this sensitive information to other users. Preventing such undesired information flows is
traditionally the main objective of mandatory access control (MAC).
The term mandatory access control is rooted in multilevel security architectures [178],

where access control rules are defined based on object sensitivity and subject clearance. In
contrast, modern operating system architectures use a broader definition of mandatory ac-
cess control [219]. A common denominator of these mandatory access control architectures
is that a privileged entity, usually the administrator of the system, defines access control
rules which allow specific subjects to perform specific operations on specific objects. These
mandatory access control rules cannot be overruled by the owner of an object or any other
unauthorized entity.

Mandatory access control models for modern operating systems are enforced by system-
centric access control frameworks. First and foremost, they control sensitive operations
within the system call interface of the kernel to userland processes. Furthermore, privi-
leged userland applications which expose sensitive functionality to other processes enforce
mandatory access control rules on IPC transactions. This is especially true for microkernel-
based operating systems, which by design shift significant amounts of sensitive functional-
ity, such as device drivers, to userland processes.
It should be noted that discretionary and mandatory access control are not mutually

exclusive concepts. When both mechanisms are active access control decisions are derived
by combining the results of both models: Only if both a DAC rule ACDAC(s, o, op) = allow

and a MAC rule ACMAC(s, o, op) = allow exist the operation is allowed to proceed. More
formally: AC = ACDAC ∧ACMAC .

The Android operating system, which this dissertation focuses on, employs both discre-
tionary and mandatory access control models to protect security- and privacy sensitive
resources from unauthorized access. In the following section we will briefly describe this
operating system based on our abstract model introduced in Section 2.1.3.

2.3 the android operating system

Android [131] is a Linux-based operating system for smart mobile devices, such as smart-
phones and tablets. It has been developed by the startup Android Inc., which was acquired
by Google Inc. in 2005. Android was released to the public in 2007. The core operating
system is open-source software and denoted as the Android Open Source Project (AOSP).

2.3 the android operating system 17

Android’s underlying Linux kernel is subject to the copyleft GPLv2 license. However, the
userland environment, also denoted as Android’s middleware layer, consists of various
open-source components released under a variety of software licenses. Notably, Android’s
core middleware-layer components are subject to the Apache Software license, which al-
lows device manufacturers to distribute modified and extended Android versions without
publishing the complete source code. Commercial devices distributed under the Android
brand have to adhere to standards described in the Android Compatibility Definitions
Document (CDD) and pass the Android Compatibility Test Suite (CTS) [95].
Device manufacturers ship commercial devices with preinstalled proprietary Google Mo-

bile and Play Service applications. These closed-source apps connect Android devices to
Google’s cloud-based service infrastructure. Notable services are personal information man-
agement (Google Mail, Calendar and Contacts) as well as the social network Google Plus
and the Youtube video sharing portal. Third-party applications are distributed primar-
ily via the Google Play Store app market, previously referred to as the Android Market.
Google charges a fee of USD $25.00 to become a registered Google Play developer as well as
a 30% fee for every transaction processed via Google Play Store. Since 2012, Google also
distributes multimedia content, such as videos, music and eBooks via Play Store. This
tight binding between Google’s cloud-based services and the Android operating system
prompted the European Commission to launch an antitrust investigation against Google
Inc. in April 2015 [72].

2.3.1 Architecture

The Android operating system adheres to the abstract software architecture model de-
scribed in Section 2.1.3. Figure 5 depicts the Android operating system as an instantiation
of our generic model. In the following, we will describe important Android-specific system
components located on the kernel, middleware and application layer.

Kernel Layer. On top of the hardware platform a Linux kernel is responsible for low-
level operating system services, such as memory and process management, file system and
network operations. The Android Linux kernel further introduces changes primarily in the
power management, logging and memory management subsystems of the mainline Linux
kernel. Most importantly, the Android Linux kernel ships with the Binder Linux inter-
process communication (IPC) mechanism, which is a fork of OpenBinder [184]. Binder is
a service-based IPC mechanism which uses remote procedure call semantics and serves as
the default inter-application communication mechanism.

The Android Linux kernel further provides important security primitives which lay the
foundation of Android’s security architecture. In particular, Android enforces process-level
sandboxes using discretionary access control for filesystem level isolation, SELinux [153]
mandatory access control to harden process sandboxes, as well as additional kernel-layer
reference monitors to enforce access control on the network and Bluetooth subsystems. We
will describe these mechanisms in more detail in Section 2.3.2.

It should be noted that while these changes have partially been upstreamed to the
mainline Linux kernel sourcecode, their complete integration is an ongoing project. Ac-

18 background

System Apps Third-Party Apps

Contacts Dialer Social Network
Instant

Messenger Application
Layer

Middleware
Layer

Kernel
Layer

Device Drivers
File

Systems
Scheduler

Memory
Management

TEE
Driver

Baseband
Interface

Linux DAC
SELinux MAC

Binder / Linux
Inter-Process

Communication

Dalvik VM /
ART

Application
Installer

Package
Manager
Service

Connectivity
Service

Code Libraries
System
Update

Management

Activity
Manager
Service

Device Policy
Manager
Service

Figure 5: Android high-level architecture

cordingly, at the time of writing this dissertation the AOSP sourcecode still depends on
custom versions of the Linux kernel.

Middleware Layer. In the userland environment Android’s middleware layer provides a
set of program libraries, such as a C standard library and a Java classpath implementation,
as well as high-level operating system services. These services and libraries implement most
of Android’s Application Programming Interface (API), which is exposed to applications
via well-defined interfaces.

For security reasons privileged security- and privacy-sensitive operations are performed
beyond control of an application’s process. Most of these operations are implemented
in Android’s highly privileged middleware-layer SystemServer process. Examples are An-
droid’s SensorService and LocationManagerService, which provide access to sensor data
and location information, and CameraService, which exposes an interface to the on-device
camera. From a platform security perspective, the most notable Android Services are Activi-
tyManagerService and PackageManagerService. ActivityManagerService manages application
component lifecycle and controls graphical user interfaces, while PackageManagerService is
responsible for application package installation and uninstallation, as well as maintaining
metadata about installed applications and their interfaces. ActivityManagerService further
implements a broker and reference monitor for Binder-based IPC, which we will discuss
in detail in Section 2.3.2.
Finally, the middleware layer provides a standardized execution environment for applica-

tions, either based on the Dalvik virtual machine or, in more recent Android versions, the
Android Runtime Environment (ART). This execution environment as well as important

2.3 the android operating system 19

software libraries are initialized at system boot within the zygote process. The zygote pro-
cess is then at runtime duplicated via a fork operation for every new application instance.

Application Layer. Android applications are primarily developed in Java and compiled
into DEX bytecode, which is optimized for low-memory devices. On the device, this DEX
bytecode is either interpreted or just-in-time compiled to native code using the Dalvik
virtual machine, or ahead-of-time compiled to native code using the Android Runtime
(ART), depending on the version of the Android OS [97]. This design choice makes An-
droid applications generally platform-independent. Nonetheless, app authors can option-
ally implement and ship app components using platform-specific native code, for example
to improve performance. Applications are packaged by the developer into application pack-
age (apk) files, which contain the DEX bytecode, optional native code components and
additional resources, such as text resources or graphical user interface elements. Further,
the application package contains a manifest file, which bundles application metadata, such
as the application name, version number and supported Android versions.
Android applications are designed to communicate with each other and share data.

To this end, third party and system applications as well as Android’s middleware layer
are implemented using a component model, which provides standardized interfaces for
information exchange between application components. As noted before, communication
between components across process boundaries is realized via the Binder inter-process
communication (IPC) mechanism of the underlying Linux kernel. Application components
can be grouped into four distinct categories, which we describe in the following.

• Activities model graphical user interfaces and control logic.

• Services execute tasks in the background without direct user interaction.

• ContentProviders implement an SQL-style interface for storing and accessing struc-
tured data. Their back end storage engines are typically implemented via SQLite
databases [238].

• Broadcast Receivers are mailboxes for Binder IPC messages called Intents.

When an application component invokes another application component it does so by
sending an Intent message to the operating system. This Intent either explicitly describes
the target component and application or contains an abstract definition of the component’s
functionality. For example, an Intent might abstractly describe the operation of displaying
a particular web page. The operating system, namely Android’s ActivityManagerService
and PackageManagerService, resolve the target component and invoke the component on
behalf of the requesting application. In case multiple components are suited to handle
the Intent, for example in case the user has installed multiple web browsers, the user is
requested to choose an application via a graphical user interface.
This IPC-centric development model is a fundamental difference between standard desk-

top and server applications and Android applications: While the former usually have one
specific program entry point, the latter have multiple entry points, namely the aforemen-
tioned application components.

20 background

2.3.2 Security Considerations

Overview.Android enforces a least privilege model on applications. The goal of this model
is to enable fine-grained access control on security- and privacy-sensitive resources and
services. To this end, Android applications as well as operating system services are executed
in isolated least privilege sandboxes, and every access to privacy- and security-sensitive
resources is controlled by a corresponding reference monitor. These reference monitors are
implemented on all layers of the operating system, namely the kernel, middleware and
application layer.

Integrity Considerations. Preserving the integrity of these reference monitors and the
corresponding decision logic it is a fundamental requirement for any operating system
security architecture. As such, we first need to discuss the trusted computing base (TCB)
of the Android operating system. As noted before, the TCB describes the hard- and
software components which have to be trusted to preserve the security guarantees of a
particular architecture.
Since Android deploys reference monitors on the kernel, middleware and application

layer the TCB of the Android operating system consists of the hardware platform, boot
loader (chain), Linux kernel as well as large parts of Android’s middleware and application
layer, namely security-sensitive operating system services implemented within userland.
The trusted computing community has developed a range of techniques to verify and
attest the integrity of the TCB. The actual adoption of these techniques on end-user
devices varies between device vendors. For example, AOSP generally provides means to
verify the integrity of the TCB statically at system startup using secure and authenticated
boot [103]. However, to establish a complete chain of trust support by the SoC vendor is
required, since the platform initialization process of different SoCs varies significantly (see
Section 2.1.3).
Android enforces mandatory code signing not only for operating system updates but also

for system and third-party applications. However, no central public key infrastructure is
used. Instead, application developers (usually) use self-signed certificates and correspond-
ing key pairs to sign their applications before they are published. Accordingly, mandatory
code signing is mainly used to enforce a same-origin policy for application updates. This
same origin policy is enforced by Android’s PackageManagerService and ensures that ap-
plication updates can only be provided by the same app developer.

Kernel-Layer Least Privilege Application Sandboxes. Android isolates applications
and operating system services using kernel-layer least privilege sandboxes, which are based
on the standard Linux process model. Filesystem level isolation is implemented using the
discretionary access control (DAC) model of the underlying Linux kernel. At installation
time, PackageManagerService assigns an individual Linux User ID (UID) and corresponding
private home directory to an application, and every process spawned by the application is
executed using this UID1. Applications signed with the same developer key can optionally
share a UID, which essentially means that these applications share a sandbox. In contrast

1An exception is Android’s isolatedProcess mechanism, which is currently primarily used by web
browsers to isolate untrusted JavaScript code from the web browser’s application sandbox.

2.3 the android operating system 21

to traditional Linux distributions Android by default does not allow the user to execute
processes with administrative “root” privileges.
Android’s DAC-based application sandboxing mechanism is further strengthened by the

adoption of the SELinux [153] kernel-layer mandatory access control architecture, also de-
noted as SEAndroid [232]. Since Android version 4.3 a corresponding access control policy
is generated by the device manufacturer when building the Android OS for a particular
device. This policy restricts system services and only allows operations they fundamentally
require for correct operation to proceed. In contrast, all third-party applications deployed
on standard Android distributions are subject to the same SEAndroid access control pol-
icy. Consequently, additional access control mechanisms are required to enable fine-grained
user-driven control over application privileges.

Permission-based Access Control. Based on the previously introduced least privilege
sandboxes Android implements an access control model which restricts access to privacy-
and security sensitive operating system components and resources to authorized applica-
tions. Android’s access control model uses permissions, which are text strings describing
application capabilities. The Android operating system declares a set of fixed permissions,
which protect access to operating system resources. Important examples are the INTERNET
permission, which allows application processes to open network and domain sockets, or the
READ_CONTACTS and WRITE_CONTACTS permissions, which enable application processes to
access the contacts ContentProvider. Permissions are categorized into five distinct groups:

• Normal permissions protect privacy- or security-insensitive resources and compo-
nents which reside outside of the application sandbox.

• Dangerous permissions protect privacy- or security-sensitive resources and compo-
nents which reside outside of the application sandbox.

• Signature permissions protect resources and components which should only be ac-
cessible by applications signed with the same developer private key as the application
declaring the permissions.

• System permissions protect resources and components designed for access by oper-
ating system components only.

• SystemOrSignature permissions combine the System and Signature protection
level to protect resources and components which should only be accessible by pre-
installed system applications or by applications signed with the same key as the
application declaring the permissions.

Application developers declare at development time which permissions their apps require
and list them in the application manifest file. Until Android version 6.0, permissions were
assigned to applications statically at installation time and could not be revoked at runtime.
Thus, users had to decide between either granting all requested permissions to an app, or
not installing this app. This aspect changed with the release of Android 6.0, where users
can en- and disable individual permissions at runtime. Accordingly, app developers now

22 background

Binder
IPC

System on Chip

Pe
ri

p
h

er
y

In
te

rf
ac

es

Pe
ri

p
h

er
y

In
te

rf
ac

es

WiFi

Subscriber Identity
Module

Internal Non-Volatile
Read-Only Memory

Internal Volatile
Memory

Baseband Subsystem

Application Processor

Memory Controller

External Non-Volatile
Flash Memory

External Volatile
Memory

Multimedia Digital
Signal Processor

DSP

Graphics Processor GPU

Microphone

Speaker

User Input

Display

Sensors

Bluetooth

Near Field
Communication

Power Regulation

App 1
App 2 Application

Layer

Middleware
Layer

Kernel
Layer

Device Drivers

Network
Stack

Scheduler
Memory

Management

TrEE
Driver

Baseband
Interface

Linux DAC
SELinux MAC

Inter-Process
Communication

Application
Installer

Package
Manager
Service

Connectivity
Service

Code Libraries

System
Update

Management

File
System

Activity
Manager
Service

Device Policy
Manager
Service

Application
Sandbox

UID=10001

Application
Sandbox

UID=10002

System Services

Ref. Mon.

System App

Ref. Mon.

Reference Monitor

Reference Monitor

Reference Monitor

Ref. Mon.

Figure 6: Android security architecture

have to handle permission revocation gracefully and expect users to not grant desired
permissions.

Android permissions are generally enforced beyond the application process. Reference
monitors in the Android operating system, most prominently in Android’s system Services
(e.g., ActivityManagerService and PackageManagerService) and preinstalled system applica-
tions, enforce these permissions during Binder IPC between applications at runtime (see
Figure 6). Several permissions protecting low-level services, such as network and Bluetooth
connectivity or access to external storage (e.g., removable Micro SD flash memory), are
enforced by the Android Linux kernel. To this end, Android maps the corresponding per-
missions, such as the INTERNET permission, to Linux Group IDs (GIDs), which are linked
to the application UID at installation time. Reference monitors within the filesystem and
networking subsystems of the kernel at runtime check whether an application holds the
corresponding permission by evaluating the GIDs of the process.
Finally, app developers can declare new permissions to protect their own application

components. These permissions are declared in the manifest file and associated with the
application components they are supposed to protect. App developers can further inte-
grate reference monitors programmatically into their application code to enforce access
control decisions dynamically at runtime on a sub-component level - for example to pro-
tect individual data fields within a ContentProvider.

3
ATTACKS AN DEFENSES

Smartphones and tablets process and store a vast amount of privacy- and security-sensitive
data and provide constant access to the Internet and the telephony network. Malware
abusing vulnerabilities in the operating system can thus directly or indirectly generate
monetary revenue for malware authors, for example by exfiltrating valuable user data,
performing ad fraud, or by establishing calls or sending text messages to premium rate
services [190]. Considering that Android currently is the most widely used operating system
for smartphones and tablets [130] it is not surprising that the number of attacks on Android
has been rising steadily throughout its lifetime [160].
To mitigate such attacks both academia and commercial security solution vendors have

proposed a variety of tools and use-case specific security extensions for Android. Many
of these security extensions augment Android’s default permission-based access control
architecture, as we will show in this chapter. To facilitate the development of such security
extensions without the hassle of modifying the operating system this dissertation seeks to
promote extensible system-centric access control architectures. In the following, we will
derive requirements for such architectures by first introducing a generic adversary model
(see Section 3.1). We proceed to discuss important attack vectors available to the adversary
to deploy malicious code (see Section 3.2) and to escalate its privileges (see Section 3.3).
In Section 3.4, we will discuss mechanisms proposed by related work which aim to detect,
analyze and mitigate these attacks. We conclude this chapter in Section 3.5 by deriving
generic requirements for extensible access control architectures.

3.1 adversary model and scope

This section describes the adversary model adopted within this dissertation. We first de-
termine adversary goals and capabilities, and then define a set of reasonable assumptions
which apply to all system-centric security architectures described within this dissertation.

Adversary Goals and Capabilities. In general, the goal of the adversary is to gain
unauthorized access to security- and privacy-sensitive resources stored on or accessed by
a smart mobile device. Such information comprises sensitive data stored within volatile
or non-volatile memory, or exposed by application and operating system interfaces. Since
this dissertation concerns extensible access control architectures for the Android operat-
ing system our adversary model focuses on local adversaries, which are able to deploy
and execute arbitrary code on the Android operating system executed on the application
processor. Unless otherwise stated, we do not consider remote adversaries using vulner-
abilities in the network stack or protocols. We place no restrictions on the type of code
the adversary can deploy on the target device and allow managed bytecode as well as

23

24 attacks an defenses

native and obfuscated code. Attack vectors to deploy malicious code on a target device
are discussed in the following Section 3.2.

Assumptions. We assume that the adversary is unable to compromise the trusted com-
puting bases (TCBs) of the security architectures presented within this dissertation. This
assumption is reasonable, since by definition, compromise of the TCB will allow the ad-
versary to circumvent security mechanisms implemented within the TCB. In general, the
TCBs for the system-centric security architectures discussed within this dissertation con-
sist of the boot loader (chain), operating system kernel and middleware layer as well as
predeployed system applications. Further, we do not consider program code targeting the
baseband processor, trusted execution environment or other peripherals which have direct
memory access (DMA) to main memory. Such attacks would potentially allow an adver-
sary to modify arbitrary memory structures under control of the Android operating system
and thus to undermine any security mechanisms implemented on this level. We further do
not consider Denial of Service (DoS) attacks, such as applications draining computational
resources or battery power, or applications performing a factory reset of the device if au-
thorized to do so by Android’s security architecture. The mitigation of such DoS attacks
is a problem well beyond the scope of this dissertation.

3.2 attack vectors

Based on the capabilities of the adversary we will now systematically analyze different
classes of attacks targeting privacy- and security-sensitive assets stored on or accessed by
Android-based smart mobile devices. These attacks are based on the assumption that the
adversary has deployed malicious code onto the target device. Related work has identified
multiple attack vectors to deploy malicious code [304]. In general, these attack vectors can
be categorized into two distinct classes, which we describe in the following.

3.2.1 Active Deployment

We consider an attack to use active deployment when it requires user interaction to install
malicious code on his device. Applying this class of attacks to the Android operating
system means that the user has to actively install an application package. He thus has to
acknowledge the permissions requested by the application. To perform an active attack
the adversary thus has to convince the user to install his malicious application. A number
of weaknesses in Android’s security architecture facilitate this process.

General Weaknesses of Android’s Permission System. Related work has scrutinized
Android’s permission system and suggests that prominent issues are a limited understand-
ing of risks associated with permissions [79] and a general overburdening of users with
low-risk warnings. These problems cause users to grant permissions rather liberally [80],
a behavior which is amplified by the fact that app developers routinely request more
permissions than actually required by their applications [78]. It should be noted that over-
privileged applications also violate the principle of least privilege adopted by Android’s
security architecture.

3.2 attack vectors 25

Another important limitation of Android’s permission system stems from the fact that
permissions are granted on the granularity of the Linux User ID (UID) assigned to ap-
plications at installation time. Accordingly, all components of an application are subject
to the same permissions, regardless of the individual code components, their origin and
their purpose. For example, consider a mail client, which legitimately needs access to the
contacts ContentProvider as well as Internet connectivity to fulfill its purpose. However, at
the same time this email client could silently upload all contacts data to a remote server
under control by the malicious app developer. This lack of contextual integrity [281] is
for example exploited by ad libraries, which developers integrate into free applications to
retrieve and display advertisement. Related work has shown that such libraries routinely
abuse the host app’s permissions to silently access privacy- and security sensitive data on
the device [241, 105].

Furthermore, permissions do not provide adequate fine-grained protection of privacy-
sensitive data. Consider non-malicious but privacy-intrusive applications, which legiti-
mately require access to certain records stored in the contacts ContentProvider. For exam-
ple, it has been shown that popular social networking applications, such as “WhatsApp”
and “Path”, access a significant amount of contacts information without allowing the user
to filter unwanted contacts, such as enterprise contacts [22, 76].
Finally, Android allows app developers to specify that his own applications should share

a sandbox. This is realized using Android’s sharedUserid feature [102], which assigns the
same Linux UID to multiple applications signed with the same private key. Since tech-
nically permissions are assigned to Linux UIDs applications sharing the same UID share
their home directories and their permissions. However, the user is not explicitly notified
about this transfer of privileges.

No Central Deployment Authority. Android employs an open software deployment
model and does not restrict users to Google’s own “Play Store” app market. After acti-
vating a specific option in Android’s system settings, users can install applications from
arbitrary sources, such as third-party app markets or web sites. This process circumvents
the (limited) app vetting mechanisms applied in Google Play Store [174] and impedes the
central deployment of security updates and revocation of malicious applications [19].
Further, as described in Section 2.3.2 Android does employ mandatory code signing, but

no central public key infrastructure is enforced upon developers. App signatures are only
used to enforce a same-origin policy on app updates, and app developers generally use
self-signed certificates for their applications. Accordingly, there is no reliable mechanism
in place which prevents malware developers from integrating malicious functionality into
existing application packages after stripping out the original certificate. This process is
known as “application repackaging”, and related work has shown that it is widely used
to integrate malicious code into third-party applications, which are then distributed via
third-party app markets or websites [88, 302, 301, 306, 300, 86]. Similarly, this lack of a
central code signing authority facilitates software piracy.

26 attacks an defenses

3.2.2 Passive Deployment

In contrast to the previously described active deployment mechanisms passive deployment
allows the adversary to install malicious software silently without any user interaction.

Software Vulnerabilities. The adversary can abuse software vulnerabilities in the An-
droid OS and installed applications to deploy and execute code remotely. Related work has
demonstrated that applications which dynamically load code fragments at runtime from
remote servers can be abused to inject malicious code, which can then abuse the host ap-
plication’s permissions to access privacy- and security-sensitive data [189, 75, 73, 138, 156].
Furthermore, adversaries can exploit vulnerabilities in highly privileged software compo-
nents, such as vendor-specific preinstalled system applications [173, 280, 163, 164], to
deploy and execute code silently.

Temporary Physical Access. Finally, another approach to deploy software on a target
user’s device is to gain temporary physical access while the device is unlocked and to
manually install malicious applications without the user noticing.

3.3 privilege escalation

Once the adversary has deployed malicious code onto a target user’s device the deployed
code is limited in its actions by Android’s application sandbox and permission system. To
access protected resources without authorization the adversary can exploit weaknesses in
Android’s security model. This process is called privilege escalation, and we will describe
different variants in the following.

3.3.1 Application-Layer Privilege Escalation

Android’s model of communicating software components executed in isolated least privi-
lege application sandboxes has been shown to be susceptible to application-layer privilege
escalation attacks [52]. Two distinct types of such attacks can be distinguished.

Confused Deputy Attacks. A confused deputy is a piece of software which is authorized
to access protected resources and inadvertently exposes these resources to unprivileged
code [115]. A malicious application can abuse the confused deputy to gain unauthorized
access to protected resources. A wide variety of confused deputy vulnerabilities on An-
droid’s middleware layer, within system applications as well as third-party applications
have been identified by related work. These vulnerabilities allow unauthorized applications
to access protected interfaces for system settings [81], to connect to web servers [152], to
access user credentials [74], to send SMS [52] or even to establish phone calls [68] without
holding appropriate permissions.

Collusion Attacks. In a collusion attack an adversary deploys multiple cooperating
applications on a target device. These applications by themselves appear benign and in-
dividually do not hold potentially dangerous combinations of permissions. At runtime
however these applications coordinate their behavior via overt or covert communication

3.3 privilege escalation 27

channels towards a common goal, such as accessing and exfiltrating privacy-sensitive data.
In the context of the Android operating system, an overt channel is a purpose-built inter-
process communication channel, such as Binder or Linux IPC. In contrast, any high- or
low bitrate inter-process communication channel that has not been specifically designed
for direct communication between applications constitutes a covert channel – for example,
synchronized reading of and writing to Android system settings, log files or data stored
within shared ContentProviders [32, 158]. Related work has demonstrated sophisticated col-
lusion attacks which target credit card payments via smartphones and use covert channels
for communication between colluding applications [218].

3.3.2 Operating System Level Privilege Escalation

Besides executing application-layer privilege escalation attacks malicious applications can
target privileged and vulnerable operating system processes on Android’s middleware and
kernel layer.

Privileged Processes. Android executes a set of highly privileged processes on the mid-
dleware layer. By abusing security vulnerabilities in these processes the adversary can
extend his privileges. Naturally, processes executed with administrative “root” privileges
are of particular interest. Corresponding exploits are commonly known as “root exploits”.
For example, in Android 4.4.3 Google fixed an input validation vulnerability in the storage
volume management daemon, denoted vold. Abusing this vulnerability allowed arbitrary
processes to execute code with root privileges on an Android device [188]. Further exam-
ples are input validation vulnerabilities found in important Java classes, which ultimately
allowed applications to gain administrative root privileges by targeting Android’s System-
Server located at the middleware layer [123, 186].

Further valuable targets for adversaries are Android system components holding system-
level permissions (see Section 2.3.2), which has recently been demonstrated by a set of
vulnerabilities in Android’s mediaserver component. Exploiting these vulnerabilities lead
to arbitrary code execution privileges with system-level permissions [65].
Critical vulnerabilities have also been found in additional software integrated by device

vendors into custom distributions of the open-source Android operating system. Using
static program analysis of vendor-specific Android operating system images Wu et al.
identified overprivileged and vulnerable preinstalled applications [285]. Similarly, Aafer
et al. [2] used static taint analysis to detect privilege escalation vulnerabilities and infor-
mation leaks introduced by the device vendor while customizing the Android operating
system middleware for specific devices.

Linux Kernel. The operating system kernel is executed in a higher privileged CPU mode
than userspace code, such as applications or privileged system processes. It is therefore
a particularly interesting target for adversaries, since kernel-layer privileges allow the ad-
versary to circumvent any security mechanisms implemented within kernel- and userspace.
Note that this includes the kernel-layer SELinux/SEAndroid [153, 232] mandatory access
control frameworks.

28 attacks an defenses

Since Android’s initial release a number of vulnerabilities leading to arbitrary code
execution privileges at the kernel layer have been discovered and fixed. For example, CVE-
2014-3153 [256] describes a vulnerability in the Linux kernel’s syscall interface which can
be used by malicious apps to gain kernel-layer code execution privileges. This vulnerability
was used by the popular towelroot exploit [125] and bypasses even the SELinux mandatory
access control mechanisms deployed in recent Android versions.
Finally, vendor-specific modifications of the stock Android Linux kernel have been shown

to increase its attack surface. Zhou et al. used dynamic program analysis to demon-
strate that vulnerable vendor-specific device drivers in the Linux kernel pose a significant
threat [303].

Higher-privileged CPU Modes. While out of scope of this dissertation, it should be
noted that current CPU architectures used on Android-based smart mobile devices pro-
vide even higher privileged CPU modes designed for virtualization or the implementation
of trusted execution environments. For example, recent ARM CPUs feature a hyp mode
designed for running hypervisors [270]. Vulnerabilities in a corresponding hypervisor can
potentially lead to compromise of the virtualized operating systems running in lower priv-
ileged CPU modes. Furthermore, vulnerable code running in CPU modes designed for
implementing Trusted Execution Environments, such as the secure operation mode on
ARM TrustZone capable SoCs [7], are valuable targets for attackers.

3.3.3 Sensory Malware

Smart mobile devices feature a significant amount of sensors observing the environment.
Among those sensors are microphones and cameras, geolocation, climate and acceleration
sensors. Related work has shown a variety of attacks abusing unrestricted sensor access, for
example to derive sensitive user input, such as passwords, using the acceleration sensor [37,
290, 183, 159] or camera and microphone [228], or to recover credit card numbers from
recorded speech samples [218].

3.3.4 System and Application Updates

Related work has identified that Android’s system update process contains several vulner-
abilities which allow applications to escalate their privileges [286]. These pileup attacks
allow malicious applications to preemptively request undefined permissions or shared UIDs
which will be introduced by subsequent Android versions. By abusing these vulnerabilities
malicious apps can for example gain access to SystemOrSignature level permissions which
are reserved for system applications (see Section 2.3.2) or gain complete access to system
application sandboxes. More recent work discovered data residue vulnerabilities in An-
droid’s application uninstallation process which can cause leakage of app-specific privacy-
and security sensitive data, such as credentials for online services, to malicious apps [297].

3.4 threat mitigation 29

3.3.5 User Interface Confusion

Weaknesses in Android’s Activity management allow malicious applications to inject them-
selves into user interface workflows and to trap the user in full screen applications without
his knowledge [206, 25]. Attacks abusing these vulnerabilities enable malicious applica-
tions to extract sensitive user data, such as login credentials for mobile payment services
or social networks.

3.4 threat mitigation

The amount of threats and vulnerabilities targeting smart mobile devices in general and the
Android operating system in particular, as well as the limited effectiveness of anti-malware
products for these devices [202, 304] has motivated academic and industrial research to
develop novel security mechanisms. In the following, we will provide an overview on cor-
responding related work, giving special attention to enhancements of Android’s access
control mechanisms.

3.4.1 Static Program Analysis

Static analysis tools employ reverse-engineering techniques to reason about program be-
havior without executing a target program. In the Android context, they operate on appli-
cation code, metadata (e.g., the application manifest containing all defined and requested
permissions) as well as bundled resources, such as text files and images. First and foremost,
related work has embraced static analysis to analyze Android applications for potential
security- and privacy violations, undesired leakage of sensitive data, unprotected Binder
IPC interfaces as well as malicious program behavior [20, 187, 67, 175, 44, 78, 155, 84,
9, 292, 87, 104, 106, 82, 305, 295, 279, 142, 8, 11, 177, 176, 141, 83, 41, 157]. Hu et al.
demonstrate how to use static program analysis to verify the integrity of third-party code
libraries [87]. While the detection of repackaged applications [88] is a prominent use-case
for static and hybrid program analysis [55, 302, 301, 42, 56, 47, 48, 111, 150, 200], which
combines static and dynamic analysis techniques, more recent approaches also consider
similarities in application resources, such as text strings or user interface components,
with promising results [294, 137, 43, 223, 243, 235, 93].

The Android sourcecode itself is an interesting target for static analysis as well. As part
of the Stowaway project [78] Felt et al. generated a mapping between Android APIs and
corresponding permissions by manually inspecting the Android sourcecode. In contrast,
the PScout [10] project derived a more precise mapping using automated static program
analysis. More generally, SuSI [198] identifies privacy-critical data sources and sinks in the
Android operating system using a machine-learning approach. EdgeMiner [39] focuses on
security aspects of callback-driven components in Android’s middleware layer. The recently
proposed Kratos [224] architecture uses static code analysis to detect inconsistencies in
permission enforcement between different Android APIs which provide access to the same
functionality.

30 attacks an defenses

In the Android context the proposed static analysis frameworks face several general
challenges. First, static analysis by design only considers program code at the time of
analysis. Applications modifying their code at runtime, for example by downloading addi-
tional DEX bytecode, can conceptually not adequately be addressed. Second, most static
program analysis tools only operate on DEX bytecode and do not consider native code,
and are thus unable to completely analyze a large subset1 of Android applications.

3.4.2 Dynamic Program Analysis

Approaches using dynamic program analysis augment static analysis by observing pro-
gram execution in instrumented environments. In the Android context, common tech-
niques adopted by these tools are hooking of security- and privacy-sensitive application-,
middleware- and kernel-layer components [222, 244, 306], system call tracing [27, 210, 35]
and dynamic taint analysis [66, 299]. Further, several works use virtual machine introspec-
tion on the level of the Dalvik Virtual Machine [148, 151], application process [237], the
QEMU-based Android emulator [248, 291] or a combination of these levels [202]. Some
approaches additionally explicitly integrate network traffic analysis [272, 151]. Finally, re-
lated work has shown that the combination of symbolic application execution and static
taint analysis is a promising approach for the detection of privacy leaks in Android appli-
cations [293].
To improve scalability related work has proposed distributed architectures for dynamic

behavior analysis. Paranoid Android [191] demonstrates how dynamic program analysis
can be offloaded to external servers by mirroring program execution traces to emulated
mobile devices in the cloud. On the other hand, AirMid [167] uses a network intrusion
detection system (NIDS) to identify malicious network traffic of smart mobile devices.
The NIDS component communicates with an on-device agent deployed as part of the
operating system kernel to neuter applications generating malicious network traffic.
Similar to the proposed static analysis tools dynamic program analysis also faces several

challenges. A general concern is that these approaches are prone to logic bombs, where
programs attempt to detect instrumented environments or delay their malicious behavior
to avoid detection while being analyzed [201, 271, 139]. Further, while in the Android
context dynamic taint analysis has been shown to be a promising approach for tracing
explicit information flows in Java-based applications [66, 124], current designs do not
adequately handle native code or implicit information flows, and are susceptible to side-
channel attacks [12].

3.4.3 Root Exploit Mitigation

Fedler et al. discuss the possibility of introducing more fine-grained system-centric control
on native code execution on Android [77]. They propose the adoption of MAC and DAC
policies to control which third-party applications may load and execute third-party native

1While Google does not publish official statistics, recent large-scale studies indicate that up to 37% of
all Android applications use native code [4].

3.4 threat mitigation 31

code at runtime. PREC [121] aims to contain root exploits used by malicious Android
applications. The basic idea is to force applications to adhere to a pregenerated specifica-
tion, which describes system calls executed by the application’s native code components.
At runtime, PREC compares the behavior of native code components with this model
and either completely shuts down or exponentially slows down suspicious app components.
While the authors demonstrate that this exponential slowdown can prevent certain root
exploits relying on the execution of a high amount of syscalls, it is debatable whether or
not this approach can be generalized.

3.4.4 Fine-grained Privilege Separation

Several approaches attempt to integrate more fine-grained privilege separation into the
Android operating system. NativeGuard [242] isolates third-party native code into separate
unprivileged processes subject to strict access control. However, it still allows all calls from
native code to an application’s higher-privileged Java bytecode, which arguably defeats
the purpose of native code isolation. Furthermore, a recent large-scale study on native
code usage in real-world Android applications [4] has shown that depriving native code in
Android apps of all privileges will cause a considerable amount of existing applications to
malfunction.
Compac [276] aims to enforce access control rules on Android components on the sub-

process level. It introduces additional component permissions, which it enforces by runtime
inspection of the call stack. Compac is however susceptible to attacks using native code
or dynamic code execution, and given that users are often overburdened with Android’s
existing permission-based access control model (see Section 3.2.1) it is debatable whether
or not component permission will improve the current situation. Nonetheless, the more
recent FlexDroid [220] architecture similarly imposes a separate set of permissions on
3rd-party code libraries integrated into Android applications. However, their approach,
denoted inter-process stack inspection, uses hardware fault isolation and is resilient to
attacks using native code or dynamic code execution.
Addroid [185], AdSplit [225] and AFrame [296] introduce privilege separation targeting

advertisement libraries. These approaches isolate ad library code from the main application
process and execute them with a limited set of permissions, which effectively mitigates
the risks of ad libraries abusing the host app’s permissions. LayerCake [208] is a more
generic approach which allows developers to securely embed Activities of other applications
(e.g., advertisement clients) or the operating system (e.g., an isolated web viewer Activity)
within the user interfaces of their own apps. Privilege separation is achieved by running the
embedded Activities in separate processes, which are isolated from the original application.

3.4.5 System and Application Updates

Google provides security updates for AOSP and the Nexus series of Android devices.
However, other vendors often do not port these security updates to their device-specific

32 attacks an defenses

versions of the Android OS. PatchDroid [165] addresses this concern by patching relevant
code in volatile memory on devices for which no official security updates are available.

3.4.6 System-Centric Access Control Refinement

Multi-layer Access Control Frameworks. Android Security Framework (ASF) [14]
provides a programmable interface to implement security modules on Android. Similar to
the architectures presented in this dissertation it promotes the need for a programmable
interface for developing reference monitors. It provides the required authorization hooks
in the Android operating system and supports mediation in third-party applications. It
further enables sub-process level enforcement using inlined reference monitors [70] (IRMs,
see Section 3.4.7). It should be noted that ASF has been developed concurrently and
independently of our work and achieves similar goals. However, in ASF the security module
developer is generally completely trusted. Thus, a vulnerable ASF module can undermine
secrecy and integrity of the Android operating system and all installed applications.

Kernel-Layer Mandatory Access Control. Modern operating systems and security
extensions for smart mobile devices employ kernel-layer mandatory access control mecha-
nisms to harden application sandboxes. As described in Section 2.3.2 Android in particular
adopts the SELinux [153] kernel-layer mandatory access control framework. While Shabtai
et al. were the first to propose the adoption of SELinux for Android [221] Google decided
to merge the more recently developed SEAndroid [232] variant to strengthen application
sandboxes. SEAndroid uses domain and type enforcement policies to restrict processes
to operations they fundamentally require, as we describe in more detail in Section 4.1.
Vendor-specific SEAndroid access control policies have been scrutinized by related work,
which identified problematic patterns motivating better tools for SEAndroid policy anal-
ysis and development [207]. One particularly interesting approach is the use of machine
learning techniques to analyze SEAndroid audit logs on a massive scale [274] to improve
the access control policy.
Notably, kernel-layer mandatory access control mechanisms have been embraced by

other operating systems for smart mobile devices as well. SELinux has been prototypically
deployed on the OpenMoko [166] and LiMo (Linux Mobile) platform [298]. In contrast,
the security architecture of Tizen [255] relies on SMACK [216], while Apple iOS adopts
the TrustedBSD framework [277].

Mitigating Application-Layer Privilege Escalation Attacks. Confused deputy and
collusion attacks operate on the application layer and cannot adequately be addressed by
kernel-level access control mechanisms alone. XManDroid [32] uses access control hooks
deployed in sensitive components on both the middleware and kernel layers of the operating
system to generate a global view of application interaction. Using these hooks XManDroid
tracks inter-process communication over both overt and covert communication channels
and generates a graph-based representation. Based on this component interaction graph
XManDroid enforces access control policies targeting both confused deputy as well as
collusion attacks.

3.4 threat mitigation 33

Further, related work has discussed the mitigation of confused deputy and collusion
attacks based on IPC call chain verification. These approaches use similar mechanisms
to trace IPC call chains across process boundaries at runtime [13, 81, 58]. The generated
call chain information can then be used to restrict access to sensitive resources in case
untrusted or underprivileged applications appear on the call chain.

Permission Refinements. APEX [169] integrates revocable permissions as well as con-
text-dependent permission constraints into the Android operating system. It is deployed
by extending Android’s permission logic at the middleware level with additional access
control hooks. Permission assignment can be changed at installation time by the user.
However, enforcement is typically not graceful, which may cause applications accessing
protected APIs while their permissions are revoked to crash [144]. The root cause is that
Android’s app development model until version 6.0 did not require the app developer to
check whether or not an app holds a requested permission at runtime. TISSA [307] and
MockDroid [24] allow users to dynamically revoke privacy-critical permissions gracefully,
which means that instead of denying applications access to privacy- and security critical
resources their access control hooks return bogus or anonymized data. Kirin [69] uses an
alternative approach and checks for dangerous combinations of permissions at installation
time. In case a dangerous combination of permissions is detected it simply denies the
installation of the application.
DeepDroid [275] enforces access control policies on Android applications by dynami-

cally hooking system services and tracing system calls performed by applications. While
dynamically hooking system services using the kernel’s debugging interfaces, such as the
ptrace mechanism, does not require replacing the vendor-specific Android operating sys-
tem, DeepDroid still needs root privileges, a feature which is not available on regular
Android distributions without compromising system integrity.

Application Hardening. Saint [180] allows app developers to integrate sophisticated
access control policies into their applications. A system-centric access control framework
evaluates these policies first at installation time to block the installation of apps which do
not conform to all deployed access control policies, and later dynamically at runtime during
inter-process communication. Saint’s access control policies can be based on application
identity and metadata as well as device runtime configuration.
AppSealer [295] aims to mitigate the threat of application components inadvertently

exported to other applications via Binder IPC interfaces. Such vulnerabilities in applica-
tions can constitute confused deputy attacks in case they leak capabilities to other apps.
AppSealer uses static taint analysis to identify such vulnerabilities in Android application
packages and binary rewriting to generate corresponding security patches without access
to the application sourcecode.
Similar to DeepDroid [275] the FireDroid architecture [210] uses ptrace to instrument

the zygote process and to apply security policies to all installed applications. While it does
not require modifications to the Android distribution or application sourcecode the target
device needs to be rooted.

Information Flow Control. AppFence [124] builds on TaintDroid’s dynamic taint anal-
ysis engine [66] to enforce access control rules targeting privacy-intrusive apps. It pro-

34 attacks an defenses

vides two enforcement mechanisms: First, it replaces privacy- and security-sensitive data
with mock data at runtime if desired, which is comparable to TISSA’s [307] and Mock-
Droid’s [24] access control enforcement mechanisms. Second, it modifies Android’s network
stack to evaluate taint information at runtime and prevents tainted privacy-sensitive data
from being exfiltrated via network sockets.
Aquifer [168] introduces user interface workflow policies to Android. Using a system-

centric access control architecture operating on both kernel- and middleware layer Acquifer
enforces application interaction and information flow policies on users, for example to
impose access and export restrictions on confidential email attachments downloaded via
the email client.

Digital Rights Management. Porscha [179] enforces DRM policies on sensitive data
objects in transit and on Android-based devices. Data in transit is protected using identity-
based encryption [28]. Data stored on the device is protected from illegitimate access
using additional access control mechanisms deployed in modified Android middleware
components and system applications.

Security Domain Isolation. Several approaches aim to isolate different security domains
on smart mobile devices, such as the enterprise and private domain. PINPOINT [203]
introduces namespaces to Android’s middleware layer to enable user-controlled isolation
of applications belonging to different security domains on the application and middleware
layer. MOSES [209] provides security domain isolation on the application-, middleware and
kernel layer based on information flow control using TaintDroid [66], which can however
not adequately address third-party native code.
To provide complete mediation on all layers of the operating system related work has

discussed three basic techniques, which are depicted in Figure 7. Several approaches use
virtualization, either based on bare-metal hypervisors [107], Linux-based paravirtualiza-
tion [18] or the L4 Microkernel [146], to execute complete operating system stacks in
isolated environments. Alternatively, kernel-layer compartments [5, 284, 287] provide sim-
ilar isolation guarantees by executing separate Android middleware- and application-layer
environments using the kernel’s namespace mechanisms. Finally, a set of extensions to An-
droid’s operating system middleware and kernel layer implement security domain isolation
using mandatory access control [33, 214, 133].
Despite their comparatively small TCB footprint both virtualization and kernel-layer

compartments are rarely used in practice on smart mobile devices today. The main reason
is that they require the duplication of large parts of the software stack. In contrast, ap-
proaches integrating sophisticated mandatory access control architectures into Android’s
middleware- and kernel layer have proven to be more practical and are available as com-
mercial solutions today. The TrustDroid architecture [33], which laid the foundation for
the commercial BizzTrust solution (see Section 6.3), as well as the technologically com-
parable Samsung KNOX architecture [214] deployed on select Samsung smartphones use
kernel- and middleware-layer mandatory access control to isolate applications of different
security domains. This trend towards system-centric access control is further acknowledged
by Google’s introduction of “Android for Work” in Android 5.0 [133], which uses similar
mechanisms to isolate applications of different security domains.

3.4 threat mitigation 35

System on Chip

Pe
ri

p
h

er
y

In
te

rf
ac

es

Pe
ri

p
h

er
y

In
te

rf
ac

es

WiFi

Subscriber Identity
Module

Internal Non-Volatile
Read-Only Memory

Internal Volatile
Memory

Baseband Subsystem

Application Processor

Memory Controller

External Non-Volatile
Flash Memory

External Volatile
Memory

Multimedia Digital
Signal Processor

DSP

Graphics Processor GPU

Microphone

Speaker

User Input

Display

Sensors

Bluetooth

Near Field
Communication

Power Regulation

Application
Layer

Middleware
Layer

Kernel
Layer

TCB

TCB

TCB

TCB
Hypervisor
Layer

Virtualization
Kernel-Layer

Compartments
Mandatory

Access Control

Figure 7: Different approaches for security domain isolation

3.4.7 Application-Layer Access Control Refinement

To avoid modification of operating system components related work has proposed the use
of binary rewriting to enforce more strict access control rules on applications. In contrast
to system-centric access control frameworks these approaches do not require changes to
the underlying operating system.

Dr. Android and Mr. Hide [136] proposes a combination of binary rewriting of Android
applications and application-layer deputies. Calls to sensitive APIs are replaced by calls
to a deputy application, which is highly privileged and enforces access control decisions.
The original Android app is then stripped of all legacy permissions. Alternatively, app
developers can directly target the deputy API instead of Android’s own services, which is
a viable alternative for applications targeting multiple operating systems (see Section 6.4).
In contrast, inlined reference monitors (IRMs) [70, 16, 289, 54, 53, 199] integrate additional
access control mechanisms into the application process itself. However, in IRM-based so-
lutions the reference monitor is not more privileged or even logically separated from the
application process it is designed to enforce policies on. Therefore, these approaches are
susceptible to attacks using native code to disable the reference monitor at runtime [113].
Finally, it should be noted that binary rewriting generally breaks Android’s app update
process due to the employed same origin policy (see Section 2.3.2).
Boxify [15] uses a similar approach to Dr. Android and Mr. Hide but does not require any

changes to the application binary. Instead, Boxify uses Android’s isolatedProcess feature,
which spawns permission-deprived sandboxes for individual processes to execute Android
applications within an isolated environment. By redirecting calls to sensitive interfaces,
such as system calls and Binder IPC transactions, via an application-layer deputy Boxify
effectively isolates applications without introducing changes to the underlying operating
system. The independently and simultaneously developed NJAS architecture [26] achieves
similar goals using system call interposition to start a target application under control of
a monitoring app.

36 attacks an defenses

3.5 requirements for extensible access control architectures

Based on our previously described adversary model, attacks on Android’s security archi-
tecture as well as the proposed extensions to Android’s access control architecture we will
now derive requirements for extensible system-centric access control architectures.

3.5.1 Observations

While analyzing the proposed system-centric Android security extensions we observed
that many of them primarily focus on extended access control for application commu-
nication channels, such as Binder and Linux IPC, network sockets or the file system.
Accordingly, while their use cases are diverse, these extensions integrate similar hooks into
Android’s default access control mechanisms. However, the proposed extensions mostly
address domain-specific issues and are not generic.
Table 3 identifies relevant prior work on system-centric process-level access control and

classifies it by authorization hook semantics. Since this dissertation promotes extensible
system-centric access control we operate under the assumption that the operating system
will be modified once to integrate the access control architecture. Accordingly, we focus
on those proposals which must be integrated at build time. Approaches operating on the
sub-process level, which is the designated security boundary for Android applications, are
out of scope of our analysis. Such approaches include those based on inlined reference
monitors, runtime memory instrumentation as well as dynamic taint analysis. We further
do not consider approaches that rely on debugging interfaces, such as ptrace, since their
main contribution is merely an alternative to the modification of central operating system
components to extend Android security.

Nearly all of the corresponding proposals hook into Android’s Binder ICC mechanism
and corresponding enforcement points in ActivityManagerService. The PackageManagerSer-
vice (PMS) is also frequently instrumented to modify application permissions. Permissions
are also occasionally customized by modifying the interfaces to device sensors and system
ContentProviders containing privacy sensitive information (e.g., contacts data). Several
proposals also require authorization hooks for file and network access, which are enforced
in the Linux kernel.
The table also denotes two areas that are nonstandard for OS reference monitors. The

first hook semantics is the use of fake data. That is, instead of simply allowing or denying
a protected operation, the hook must modify the value that is returned. This third option
is often essential for protecting user privacy while maintaining usability via graceful revo-
cation. For example, the geographic coordinates of the North Pole, or maybe coarse city
coordinates can be substituted for the devices actual location. Replacing unique identi-
fiers (e.g. IMEI or IMSI) to combat advertising tracking is a further example. The second
interesting hook semantics is the inclusion of third-party hooks. That is, a third-party
application wishes the OS reference monitor to help enforce its security goals.

3.5 requirements for extensible access control architectures 37

Table 3: Classification of authorization hook semantics required by system-centric Android security
enhancements

Android Package Sensors / Fake System File Network Third
ICC Manager Phone Data Content Access Access Party

System Info Providers Extension
MockDroid [24] X X X X X

XManDroid [32] X X X X X

TrustDroid [33] X X X X X

Porscha [179] X X X X

CRePE [45] X X

Quire [58] X X

Scippa [13] X

TaintDroid [66] X X X X

Kirin [69] X

IPC Inspection [81] X X

AppFence [124] X X X X X X X

Aquifer [168] X X X

APEX [169] X X X

Saint [180] X X X

SEAndroid [232] X X X X

TISSA [307] X X X

PINPOINT [203] X X

3.5.2 Requirement Analysis

Based on the previously described Android operating system architecture, our adversary
model and our observations regarding system-centric security extensions we will now derive
a set of requirements for extensible access control architectures.

1. Generic Authorization Expressibility. Extensible access control frameworks
should enable the implementation of both prior and future security enhancements
for Android. This requirement mandates extended access control mechanisms on all
operating system layers and support for context-aware access control. Generic ex-
pressibility also covers the ability to replace arbitrary data values [24, 307], which
enables graceful enforcement without legacy applications crashing whenever opera-
tions are unexpectedly denied.

2. Preservation of Existing Security Guarantees. Android provides sandboxing
guarantees to application providers. Allowing third-parties to extend Android’s secu-
rity framework potentially breaks those guarantees. Therefore, an extensible access
control architecture should by default only make enforcement more restrictive (e.g.,
fewer permissions or less file system access).

3. Protection of Kernel Integrity. As an explicit extension to Goal 2, we must
maintain kernel integrity. Some existing security extensions require additional access

38 attacks an defenses

control mechanisms within the Linux kernel. We cannot provide the control over
kernel-layer access control mechanisms to third-parties without some controls.

4. Support for Multiple Stakeholders. As described in Section 2.1.1 smart mobile
devices operate in an ecosystem subject to the interests of multiple stakeholders, such
as end users, device manufacturers, enterprise administrators and app store providers.
The interests of these stakeholders do not necessarily align. Extensible access control
architectures should thus be able to consider and consolidate access control rules
deployed by multiple stakeholders. This aspect mandates a consolidation mechanism
to handle conflicting rules. We note that while related work has shown that it is
impossible to provide a generic solution for access control policy consolidation, use-
case specific consolidation strategies are feasible [204, 126].

5. Minimal Resource Overhead. While a certain performance decrease is inevitable
due to the additional mediation extensible access control architectures should mini-
mize the impact on system resources.

In the following Sections 4 and 5 we will discuss two approaches to address these require-
ments. We will first introduce FlaskDroid [34], which prototypes extensible policy-driven
access control on Android. We proceed to generalize this approach in the Android Secu-
rity Modules (ASM) framework [119], which brings programmable access control to the
Android operating system.

4
F INE -GRAINED AND EXTENS IBLE POL ICY -DR IVEN ACCESS
CONTROL

The goal of the FlaskDroid framework presented in this section is to enable the policy-
driven instantiation of security extensions without the need to introduce further changes
into Android’s sourcecode. To achieve this goal, FlaskDroid introduces type enforcement
into Android’s kernel, middleware and application layer – a challenging task due to the
different semantics of these layers. An efficient policy language allows the dynamic in-
stantiation of many of the security mechanisms proposed by related work and discussed
in the previous section. We present our design and instantiate FlaskDroid based on the
SEAndroid project [232], which prototypes SELinux type enforcement [153] on Android’s
Linux kernel layer and has concurrently and independently of our work been integrated
into mainline Android in version 4.3. We demonstrate the extensibility of our approach by
instantiating a set of interesting use cases. Finally, we evaluate FlaskDroid’s performance
impact and security guarantees in an automated test suite.

Contribution. To summarize, our main contributions are as follows:

• Type Enforcement on Android’s Kernel, Middleware and Application
Layer. Our FlaskDroid framework [34] builds on the established SELinux/SEAn-
droid kernel-layer MAC framework [153, 232] and for the first time extends type
enforcement to Android’s middleware- and application layer.

• Policy-based Interface for System-centric Access Control. Our access con-
trol architecture and policy design bridges the semantic gap between kernel- and
userspace data structures and access control mechanisms.

• Instantiation of Use-Case Specific Security Solutions. FlaskDroid for the first
time demonstrates that it is possible to instantiate many existing security solutions
by merely designing a corresponding access control policy.

The rest of this chapter proceeds as follows: Section 4.1 introduces necessary domain-
specific background knowledge on type enforcement in general and SELinux/SEAndroid
in particular. In Section 4.2 we present the design and implementation of our FlaskDroid
architecture, followed by a discussion of practical use-cases we implemented using Flask-
Droid in Section 4.3. We evaluate Flaskdroid’s performance overhead and effectiveness in
Section 4.4. Finally, Section 4.5 provides concluding remarks.

Remark. The results presented in this section were achieved in collaboration with Sven
Bugiel and Ahmad-Reza Sadeghi. In addition, N. Asokan and Steven Smalley were in-
volved in initial discussions of the high-level idea. FlaskDroid’s design was generated in
a joint effort by Sven Bugiel, the author of this dissertation and Ahmad-Reza Sadeghi.
Sven Bugiel was responsible for central aspects of our implementation, while the author

39

40 fine-grained and extensible policy-driven access control

contributed several important Userspace Object Managers, as well as communication inter-
faces between ContextProviders, native code components and the central SecurityServer.
He further designed and implemented our modifications to Android’s AIDL compiler. Per-
formance and policy complexity evaluation are due to Sven Bugiel, while effectiveness
was analyzed by the author of this dissertation. Further, the author was responsible for
the use-cases “Phone Booth Mode” and “Privacy Enhanced Image Media Store”, while
Sven Bugiel contributed “Privacy Enhanced Operating System Components” and “App
Developer Policies (Saint)”.

4.1 background on selinux type enforcement

In this section, we introduce additional background knowledge which is specific to the
FlaskDroid architecture and augments Section 2.3.

4.1.1 SELinux

FlaskDroid is based on SELinux, which is a (primarily) kernel-level mandatory access con-
trol architecture derived from Flux Security Kernel (Flask) [236]. In the Flask architecture,
access control decisions are decoupled from access control enforcement. In SELinux this
concept is realized using a central SecurityServer deployed in the Linux kernel, which is
responsible for the runtime management of access control rules defined in an access con-
trol policy. Various policy enforcement points, denoted Object Managers, place hooks into
security-sensitive subsystems of the Linux kernel and enforce the access control decisions
of the kernelspace SecurityServer.
SELinux supports a variety of access control models, such as type enforcement, role-

based access control or multilevel security. Our FlaskDroid architecture uses type enforce-
ment, a mechanism which describes access control rules based on types assigned to subjects
(i.e. processes) and objects (e.g., specific files). Objects belong to object classes, which are
used to define common operations on them (for example, read and write operations de-
fined for the socket or file object classes). Attributes allow grouping of related types for
convenience. An access control rule defines which operations a subject type is allowed to
perform on a specific object based on the type and class of the object. Listing 1 abstractly
describes an allow rule which grants a set of subject types TSub authorization to perform
a set of operations OC on a set of objects of type TObj and class CObj .

Listing 1: SELinux allow rule based on the SELinux policy language specification [109, 34].

1 allow TSub TObj : CObj OC ; �
SELinux provides limited support for dynamic policies, where access control rules de-

pend on the state of the system. In particular, policy Booleans (see Listing 2) describe
conditions depending on which a rule is considered to be active. A common use for such
policy Booleans is switching between SELinux permissive and enforcing mode: While in
permissive mode SELinux merely writes policy violations into an audit log file, any opera-

4.1 background on selinux type enforcement 41

tion not specifically allowed by an access control rule is prevented while SELinux operates
in enforcing mode.

Listing 2: Example usage of policy Booleans in a SELinux access control policy. Only if the value
of allow_access is true the rule is active [34].

1 bool allow_access =true;
2 if (allow_access) {
3 allow TSub TObj : CObj OC ;
4 }
5 else {
6 ...
7 } �

While SELinux has its roots in microkernel security [236], where many security sensitive
operations are performed in userspace, the primary use of SELinux today is access control
enforcement within the Linux kernel. However, the SELinux architecture provides sup-
port for access control in userspace based on Userspace Object Managers (USOMs). These
USOMs are policy enforcement points for data structures specific to userspace components.
USOMs assign object types to specific objects they manage. For example, in the Android
context the contacts ContentProvider would operate as an USOM by assigning types to the
individual fields constituting a contact record, such as a contact’s name or telephone num-
ber. USOMs enforce access control decisions according to an access control policy managed
by a SecurityServer, which can either be implemented as a separate userspace component
or as part of the existing kernelspace SecurityServer.

4.1.2 Security Enhanced (SE) Android

SEAndroid [232] is a port of SELinux [153] for the Android operating system. Its main
purpose is to harden the operating system against privilege escalation attacks by confin-
ing privileged system processes into least privilege sandboxes and further to strengthen
Android’s default application sandboxes. SEAndroid takes peculiarities of the Android
operating system into account which do not apply to standard Linux distributions. Most
importantly, SEAndroid respects the Android application lifecycle model, where applica-
tion processes are forked from the zygote process, and applies types to processes based
on application package metadata. SEAndroid has been integrated into mainline Android
since version 4.3 and is operating in full enforcement mode since Android 5.0 [101].
SEAndroid initially contained a set of Android-specific mandatory access control mech-

anisms for userspace components, such as mediation for Intents and ContentProviders, an
install-time mandatory access control mechanism to enforce restrictions on application
installation and a permission revocation mechanism [234]. These mechanisms have par-
tially been obsoleted by recently introduced features in mainline Android (e.g., revocable
permissions in Android 6.0 or the unofficial Intent firewall [40]) or abandoned.

42 fine-grained and extensible policy-driven access control

Application
USOMH

o
o

ks

Application
Application
Layer

Middleware
Layer

Kernel
Layer

Syscall
Interface

KSOM

Package
Manager
Service

Middleware
USOM H

o
o

ks Userspace
Security
Server

Policy
Database

Extract App
Developer Policy

H
o

o
ks

Query

Query

Invoke

Invoke

Query

Synchronization via Policy Booleans

Set Context

Context
Provider

App
Developer

Policy

Invoke

SEAndroid
Kernelspace

Security Server

Figure 8: FlaskDroid framework architecture

4.2 flaskdroid architecture

The basic idea of FlaskDroid is to adopt the Flask architecture [236] to Android by deploy-
ing Object Managers in privacy- and security-sensitive components on both the kernel- and
middleware layer to augment Android’s default access control mechanisms. These Object
Managers assign types to the objects they manage. Kernelspace Object Managers (KSOMs)
are responsible for enforcing access control decisions on low-level objects, such as files
and sockets. In contrast, middleware- and application layer Userspace Object Managers
(USOMs) control access to higher-level abstractions, ranging from Android Services and
Intents to individual records stored in ContentProviders.
Whenever applications attempt to access privacy- or security-sensitive objects, our Ob-

ject Managers query a SecurityServer for access control decisions. The SecurityServer eval-
uates the active security policy and instructs the Object Managers to allow or deny the
applications’ requests. This separation between Object Managers and SecurityServers de-
couples access control enforcement from access control decisions.
While recent Android versions employ SELinux type enforcement on the kernel layer to

harden the operating system FlaskDroid extends type enforcement to the middleware- and
application layer. It further provides a unified policy-based interface to define access control
rules. To this end, our SELinux-based policy language introduces new features specific to
Android’s middleware and application-layer semantics and to address our requirements for
supporting multiple stakeholders and context-awareness. Figure 8 provides an overview of
our architecture, and we will explain the individual components in the following.

4.2 flaskdroid architecture 43

4.2.1 Kernel-layer Type Enforcement

Our kernel-layer access control mechanisms are provided by SEAndroid [232]. This design
choice is driven by the following observations:
First, SEAndroid hardens the trusted computing base on the application and middleware

layer against privilege escalation attacks. To do so, it confines both applications and highly
privileged operating system services into isolated kernel-layer least privilege domains which
only have access to resources they fundamentally require for correct operation.
Second, SEAndroid provides the necessary SecurityServer and Object Managers on the

kernel layer. These components prevent applications from subverting our middleware-layer
type enforcement architecture by accessing privacy- or security-sensitive resources via
the operating system kernel. For example, applications could access records stored in a
protected ContentProvider by directly reading the corresponding SQLite database file in
case the discretionary access control rules are not configured correctly. Dynamically aligned
middleware- and kernel layer policies ensure that FlaskDroid protects these resources on
both the kernel- and middleware layer.

4.2.2 Userspace Security Server

Our architecture extends type enforcement to Android’s middleware and application layer,
which are both located in the userspace environment. Accordingly, our architecture man-
dates the presence of a policy decision point for managing access control policies concerning
userspace types. In general, there are two distinct options to implement this functionality.
The first option is to reuse the SecurityServer deployed by SELinux/SEAndroid in ker-

nelspace and to define all access control rules within the corresponding security policy.
While straightforward, this approach shifts policy rules for data structures which semanti-
cally only apply to userspace objects into the kernel. It further introduces context switches
whenever a Userspace Object Manager is invoked. Unsurprisingly, this approach is not being
pursued by related work [261].
Another option is to introduce a separate Userspace Security Server, which is responsible

for managing all access control rules enforced by Userspace Object Managers. In FlaskDroid,
we chose to pursue this second option since it provides a clean separation of duties between
user- and kernelspace. Upon boot, the Userspace Security Server loads all access control
policies deployed by different stakeholders. Userspace Object Managers query the User-
space Security Server via inter-process communication (IPC) interfaces to mediate access
control queries. Our Userspace Security Server resolves policy conflicts and communicates
its decisions to the corresponding Userspace Object Managers. It further provides an Access
Vector Cache, which caches access control decisions to improve performance.

4.2.3 Userspace Object Managers

As noted before, Userspace Object Managers assign types to the objects they manage and
act as policy enforcement points for access control decisions yielded by the Userspace Se-

44 fine-grained and extensible policy-driven access control

curity Server. We will now discuss important Userspace Object Managers implemented in
our architecture.

PackageManagerService. Android applications are distributed as application packages,
and PackageManagerService is responsible for managing these packages on the device. Pack-
ageManagerService upon application installation verifies application signatures and regis-
ters application metadata, such as the application’s components and permissions, with
the Android operating system. Finally, it assigns a Linux User ID (UID) to the appli-
cation, which can later be used to identify the application during IPC. As described in
Section 2.3.1 PackageManagerService performs a component lookup when an application
invokes another application’s component or an operating system component via an Intent.
In FlaskDroid, PackageManagerService operates as a Userspace Object Manager and as-

signs userspace types to application sandboxes. More specifically, PackageManagerService
assigns types to the corresponding Linux UIDs depending on application metadata, such
as the application package name, developer signature or an additional signature embed-
ded into the application package which matches a public key deployed on the device (see
Listing 3). System applications are assigned a consolidated kernel- and middleware type
statically, while third-party apps are labeled at installation time.
As discussed before PackageManagerService is responsible for component lookup when

applications interact via Binder IPC. Recall that PackageManagerService internally resolves
Intent messages based on Intent metadata (see Section 2.3.1). As a Userspace Object Ma-
nager Android’s PackageManagerService filters the list of candidate components according
to policy decisions by the Userspace Security Server, which prevents an application from
invoking another application’s component unless the access control policy explicitly allows
this operation.
Finally, our FlaskDroid architecture allows app developers to include access control poli-

cies concerning their own application components in their Android application packages.
PackageManagerService extracts these policies at installation time and forwards them to
the Userspace Security Server for mediation. This mechanism is required to address scenar-
ios where multiple stakeholders are involved, and we discuss this aspect in more detail in
Section 4.2.6.

ActivityManagerService. Android’s ActivityManagerService is a central system compo-
nent responsible for application Activity lifecycle management as well as Intent handling.
Accordingly, as a Userspace Object Manager it handles Activity and Intent classes. Activi-
ties inherit the type assigned to the UID of the applications they belong to. Intents on
the other hand are assigned a type dynamically at runtime based on Intent metadata, as
shown in Listing 4. ActivityManagerService further enforces access control rules on Activity
operations, such as starting and stopping Activities or moving them to the foreground. Fi-
nally, ActivityManagerService enforces access control on Broadcast Intents, which are Intents
delivered to multiple applications’ Broadcast Receivers. Before delivering these Broadcast
Intents, our modifications to ActivityManagerService filter the list of candidate Broadcast
Receivers according to the access control policy.

4.2 flaskdroid architecture 45

Listing 3: FlaskDroid policy excerpt describing application types. The class definition app_c defines
operations applicable to applications. Applications are assigned the app_unknown_t type
unless otherwise specified [34].

1 // App class definition
2 class app_c { clearAppUserData checkPermission switch };
3
4 // App type definitions
5 type android_t ;
6
7 type app_contacts_t ;
8
9 type app_launcher_t ;
10
11 type app_example_t ;
12
13 type app_enterprise_t ;
14
15 type app_unknown_t ;
16
17 defaultAppType app_unknown_t ;
18
19 // App type assignments
20 appType android_t {
21 Package : package_name = android ;
22 Package : package_name =com. android . keychain ;
23 Package : package_name =com. android . settings ;
24 Package : package_name =com. android . seandroid_manager ;
25 Package : package_name =com. android . providers . settings ;
26 Package : package_name =com. android . systemui ;
27 Package : package_name =com. android . vpndialogs ;
28 };
29
30 appType app_contacts_t {
31 Package : package_name =com. android . contacts ;
32 };
33
34 appType app_launcher_t {
35 Package : package_name =com. android . launcher ;
36 };
37
38 appType app_example_t {
39 Developer : signature =0 xFEF9 ...;
40 };
41
42 appType app_enterprise_t {
43 ExternalSignature : keyFileLocation =/ etc/ enterprise_public_key .file;
44 ExternalSignature : signatureFileLocation = assets / enterprise_signature .

file;
45 }; �

46 fine-grained and extensible policy-driven access control

Listing 4: FlaskDroid policy excerpt describing Intents and corresponding operations. The class
definitions activity_c, intent_c and broadcast_c describe operations applicable to
Activities and (Broadcast) Intents. Intents are assigned the intent_unknown_t type unless
otherwise specified [34].

1 // Activity class definition
2 class activity_c { start stop grantURIPermission finish moveTask };
3
4 // (Broadcast) Intent class definition
5 class intent_c { send receive };
6
7 class broadcast_c { send receive sendSticky receiveSticky registerReceiver

unregisterReceiver };
8
9 // Intent type definitions
10 type intent_start_launcher_t ;
11
12 type broadcast_intent_bootcompleted_t ;
13
14 type intent_unkown_t ;
15
16 defaultIntentType intent_unknown_t ;
17
18 // Intent type assignment
19 intentType intent_start_launcher_t {
20 Action : action_string = android . intent . action .MAIN;
21 Categories : category = android . intent . category .HOME;
22 };
23
24 intentType broadcast_intent_bootcompleted_t {
25 Action : action_string = android . intent . action . BOOT_COMPLETED ;
26 }; �

ContentProviders. ContentProviders expose structured data across application bound-
aries via an SQL-like interface. While not mandatory, most ContentProviders are imple-
mented via SQLite [238] databases. A ContentProvider operating as a Userspace Object
Manager assigns types to the data entries it manages. It further enforces access control on
create, retrieve, update and delete operations. Access control enforcement can be coarse-
and fine-grained: Android’s standardized ContentProvider interface makes it feasible to im-
plement coarse-grained access control (see Listing 5). For example, FlaskDroid can restrict
access to specific operations on the entire ContactsProvider to specific applications. How-
ever, our design also considers fine-grained filtering by assigning types to individual cells
(e.g., name, email address, phone number or postal address of a contact), which further
enables graceful enforcement by returning empty or fake data.

Services. Android Services expose functionality via remote procedure call interfaces to
other applications. Service interfaces are generated from service definitions, which are
specified using the Android Interface Definition Language (AIDL [134]) and define the
signatures of exposed methods. Android’s AIDL compiler at compilation time generates
corresponding Java stub and skeleton code.

4.2 flaskdroid architecture 47

Listing 5: FlaskDroid policy excerpt describing ContentProviders and corresponding operations.
The class definition contentProvider_c defines operations applicable to all ContentPro-
viders. Individual ContentProviders, such as the ContactsProvider, inherit these operations.
Finally, we define individual types for data structures managed by the ContactsProvi-
der [34].

1 // ContentProvider class definition
2 class contentProvider_c { query insert update delete readAccess

writeAccess };
3
4 class contactsProvider_c inherits contentProvider_c ;
5
6 class calendarProvider_c inherits contentProvider_c ;
7
8 // ContactsProvider type definitions
9 type contacts_name_t ;
10 type contacts_email_t ;
11 type contacts_phone_t ;
12 type contacts_postal_t ;
13 type allContactsData_t ; �

To instrument arbitrary Android Services as Userspace Object Managers we adopted an
approach inspired by Dietz et al. [58]: We modified the AIDL compiler to automatically
insert an access control query into generated stub code based on the caller UID, a generic
service_c class as well as a developer-supplied method-specific type specified in the AIDL
file. As demonstrated in Listing 6 FlaskDroid additionally supports manual instrumenta-
tion of Services on the code level as well by defining Service-specific operations. This ap-
proach allows a more straightforward differentiation between operations, which we show
here based on Android’s LocationManagerService. It further enables graceful enforcement
by returning empty or fake data for individual methods.

4.2.4 Access Control Rules

We will now describe the syntax of our middleware-layer access control rules, which is
inspired by the policy syntax adopted by SELinux/SEAndroid. In general, a rule starts
with the keyword allow or deny to designate the rule type. By default, FlaskDroid denies
any access control queries unless a specific allow rule exists. A rule defines a list of subject
types it applies to, as well as relevant object types and the object class. Finally, the concrete
operation(s) which should be allowed (or denied) are listed.
For example, the first rule in Listing 7 allows subject processes of type app_launcher_t

and android_t to start Activities (class activity_c) of object type app_telephony_t,
app_launcher_t, app_example_t, app_enterprise_t and app_unknown_t. The second
rule (Line 3) allows all processes of type android_t, app_contacts_t, app_launcher_t
and app_telephony_t to query the ContactsProvider (class contactsProvider_c) for all
contacts information (type allContactsData_t).

48 fine-grained and extensible policy-driven access control

Listing 6: FlaskDroid policy excerpt describing Services and corresponding operations. The class
definition service_c defines the operations applicable to all Services. Individual Services
inherit these operations. The locationManagerService_c class extends these operations
by a set of operations specific to this particular Service [34].

1 // Service class definitions
2 class service_c {
3 start stop bind callFunction find
4 };
5
6 class locationManagerService_c inherits service_c { getAllProviders

getProviders requestLocationUpdates removeUpdates addGpsStatusListener
sendExtraCommand addProximityAlert removeProximityAlert getProviderInfo

reportLocation isProviderEnabled getLastKnownLocation addTestProvider
removeTestProvider setTestProviderLocation clearTestProviderLocation
setTestProviderEnabled clearTestProviderEnabled setTestProviderStatus
clearTestProviderStatus

7 }; �
Listing 7: FlaskDroid policy excerpt showing access control rule definitions [34]

1 allow { app_launcher_t android_t } { app_telephony_t app_launcher_t
app_example_t app_enterprise_t app_unknown_t }: activity_c {start };

2
3 allow { android_t app_contacts_t app_launcher_t app_telephony_t }

allContactsData_t : contactsProvider_c {query }; �
4.2.5 Context Providers

FlaskDroid supports context-dependent access control rules which are dynamically acti-
vated or deactivated at runtime depending on the security requirements and state of the
device. To this end, Context Provider plugins can be registered with the Userspace Security
Server (see Figure 8). Context Providers can evaluate a variety of information available on
FlaskDroid-based devices, ranging from the current geolocation, date and time to the WiFi
network environment, or even currently running applications or previous policy decisions
by the Userspace Security Server. When a context is activated, the Context Provider forwards
this information to the Userspace Security Server, which activates or deactivates a corre-
sponding set of rules and propagates this information to our kernelspace SecurityServer.
Context Providers thus decouple the context definition and detection from corresponding
access control rules.

Listing 8 demonstrates how context-aware access control is implemented using Flask-
Droid in practice. In this example, a Context Provider recognizes safe environments based
on the current geolocation of the device. When a device enters this location, access con-
trol rules are activated on both the middleware- and kernel layer via policy Booleans.
While the middleware policy Boolean safeEnv_b directly activates specific middleware-

4.2 flaskdroid architecture 49

layer policies, the kernel Boolean enable_ip_sockets_b is propagated to the kernel layer
for enforcement via SEAndroid, in this case to allow applications to use network sockets.

Listing 8: FlaskDroid policy excerpt describing context-aware access control. The context defini-
tion safeEnv_con defines a safe environment. When the corresponding Context Provider
activates the safeEnv_con context, the middleware- and kernel-layer policy Booleans
safeEnv_b and enableIpSockets_b are set, which enable middleware- and kernel-layer
access control rules [34].

1 // Middleware -layer policy Boolean
2 bool safeEnv_b = false;
3
4 // Kernel -layer policy Boolean
5 kbool enableIpSockets_b = false;
6
7 // Context definition
8 context safeEnv_con ;
9
10 // switchBoolean statements define how context definitions relate to policy

Booleans
11 switchBoolean {
12 context = safeEnv_con ;
13 safeEnv_b = true;
14 enableIpSockets_b = true;
15 auto_reverse =true;
16 };
17
18 // Context - dependent middleware policy rules
19 if (safeEnv_b) {
20 ...
21 } �

4.2.6 Support for Multiple Stakeholders

As noted before FlaskDroid allows multiple stakeholders to deploy access control policies to
protect their own resources. For example, the device manufacturer could provide a basic
system policy, while a user might configure additional policies to improve user privacy.
Further, app developers can supply policies within their applications, which are extracted
at installation time by our extensions to PackageManagerService. These policies are however
limited in scope as they are only considered during access control decisions involving the
developer’s app components. This approach allows app developers to optionally define
their own Userspace Object Managers, types and classes and register them for mediation
with the Userspace Security Server via our FlaskDroid software development kit.

Policies deployed by multiple stakeholders do not necessarily align. Consequently, the
Userspace Security Server has to resolve policy conflicts at runtime. Related work has pre-
sented a variety of conflict resolution strategies [197, 161], such as all-allow (all deployed
policies have to grant access) or any-allow (only one deployed policy has to grant access).
While FlaskDroid generally supports different reconciliation strategies, we by default as-
sume a conservative consensus strategy where all deployed policies need to approve.

50 fine-grained and extensible policy-driven access control

4.3 case studies

In this section, we describe a set of practical privacy- and security protecting use-cases
and how they can be instantiated using FlaskDroid.

4.3.1 Privacy Enhanced Operating System Components

Android applications access privacy- and security sensitive data stored on the device via
designated system Services and ContentProviders. While Android provides coarse-grained
protection of sensitive data via permissions it is not possible for a user to restrict access to
individual data fields in system components. For example, an application can either retrieve
all contacts data from the ContactsProvider or no data at all.1 Consider for example that
the popular WhatsApp instant messenger has been shown to upload the phone numbers of
all contacts to its back end servers in order to identify other WhatsApp users [22]. Further,
Android by default does not enforce any permissions on most sensors (e.g., accelerometer
and gyroscope), and related work has shown that these sensors can be abused to derive
sensitive keyboard input [290, 37].
In FlaskDroid, our modified Android SensorService operates as a Userspace Object Ma-

nager and enforces access control on sensors. Using a Context Provider which monitors the
state of the on-screen keyboard and a corresponding access control policy FlaskDroid en-
forces that access to sensors is prohibited while the on-screen keyboard is active. Further,
a user-defined policy instructs the ContactsProvider Userspace Object Manager to only ex-
pose contacts data of friends and families to WhatsApp while filtering out any enterprise
contacts. A graphical user interface inspired by our myTunes architecture [30] provides a
user-friendly way to configure access control rules within the policy without the hassle of
developing corresponding type enforcement policies.

4.3.2 Privacy Enhanced Image Media Store

Modern Android smartphones are equipped with cameras. Photos a user takes may contain
sensitive information, where the sensitivity is defined by the current usage context of the
device. For example, in case a device is used for enterprise and private purposes, photos
taken while located on company premises or during working hours should not be accessible
by private apps. In addition, a user may want to protect his private photos from being
accessed by the employer.
When a photo taken by the user is stored on the device, meta-information about the

photo (filename, location etc.) and the photo file itself are accessible by all apps which can
access the external storage area. While meta-information is stored in the Mediaprovider
ContentProvider, the photo itself is stored on the external storage area of the device, which
is implemented using either an embedded flash module or a removable SD card. Android
uses the VFAT file system for this storage area, which does not provide fine-grained access

1Android’s URI permissions, which are essentially capabilities on individual ContentProvider records,
are a notable exception. However, they are non-generic since they require developer participation.

4.3 case studies 51

control. Recent Android versions emulate this VFAT file system by means of a File System
In Userspace (FUSE) driver [85]. A reference monitor in the kernel checks Linux GID based
permissions (READ_EXTERNAL_STORAGE / WRITE_EXTERNAL_STORAGE) whenever apps try to
access this storage area. Thus, all apps which hold these permission can access all photos.
In FlaskDroid, the sensitivity of a photo is defined by the usage context of the device

while the photo was taken. This information can either be derived from user input by asking
the user whenever a photo is taken, or by context derivation from sensor information (see
Section 4.2.5). We assign a corresponding type to the photo metadata stored by the camera
app in the Mediaprovider, which acts as a Userspace Object Manager.
A technical challenge for access control on the photo files themselves is the fact that

the VFAT file system does not support extended file system attributes, a prerequisite for
storing the SELinux metadata (e.g., types) for file objects. When the VFAT file system
is emulated by the previously described FUSE module, this module can be instrumented
to act as a Userspace Object Manager and to mediate access based on the application and
file type. Alternatively, a file system with support for extended attributes for the external
storage area, as proposed by related work [66], can be used.
It should be noted that when using removable media FlaskDroid’s access control mecha-

nisms can be circumvented by removing the SD Card and accessing it from another device.
This challenge can be addressed by encrypting the contents of the SD Card with a key
bound to the mobile device.

4.3.3 Phone Booth Mode

A user may want to temporarily give his smartphone to another person for the purpose of
making a phone call. In this situation the user provides physical control over his device to
a person he not necessarily completely trusts. This person can access security- and privacy
sensitive data while he has physical access to the phone.
The goal of this use-case is to temporarily lock the device in a secure state in which it

can be handed out to another person for the sake of making a call. In this mode, the phone
is configured to only grant access to telephony-related features and apps (see Figure 9).
Further, access to privacy-sensitive data stored on the phone, such as contacts and call
log entries, is denied.
FlaskDroid’s fine-grained access control within ActivityManagerService enables us to de-

cide whether or not specific applications can be moved into or off the foreground. Flask-
Droid allows the user to activate the “phone booth mode” context by pressing a button.
While this context is active, the access control policy enforces that only the dialer app is
in the foreground. Further, access control rules state that no applications can access the
ContactsProvider or CallLogProvider, as shown in Figure 9. Finally, to leave phone booth
mode the device owner needs to authenticate himself towards the device, for example by
entering his lockscreen PIN number.
Listing 9 presents a summary of the relevant policy. This policy defines a separate

Boolean phoneBooth_b (Line 1) to represent the phone state, i.e., either the phone booth
mode is activated or not. We use a dedicated context phoneBooth_con (Line 3) and corre-
sponding switchBoolean statement (Lines 5-10) to manage this context. Our policy defines

52 fine-grained and extensible policy-driven access control

Home
Calllog

Contacts

CallLogProvider ContactsProvider

Query Query
User activates phone

booth mode

Figure 9: Phone booth mode

that on activation of this switchBoolean statement the phoneBooth_b Boolean is set to
true, and that it automatically resets to false when the phoneBooth_con context is de-
activated. The snippet shows the rules for normal operation of the phone (Lines 12-26),
including querying contacts, switching Activities, etc. However, several operations are only
allowed if the phone is not in phone booth mode (Lines 28-33), meaning that these rules
are disabled if phone booth mode is active (i.e., the phoneBooth_b Boolean is true). The
affected rules address switching of Activities and querying for contacts and call log data.
Since the phone booth mode is activated from within the phone app, which is shown in
the foreground, deactivating these rules forces the phone app to stay in foreground and
prevents it from accessing contacts and call log data.
It should be noted that Android version 5 introduced a similar feature, denoted screen

pinning [99], which locks the user into one specific application until the device owner
unlocks the device. Our FlaskDroid-based instantiation predates this feature and we im-
plemented it merely using a corresponding access control policy and Context Provider.

4.3.4 App Developer Policies (Saint)

Saint [180] is an Android security extension which allows app developers to distribute
access control policies with their applications in order to protect their app components from
illegitimate access by third-party apps. To do so, Saint mediates Binder-based inter process
communication (IPC) using policies based on Source (calling app component and Intent
message), Destination (callee app component), optional Conditions applying to source- and
destination components (e.g., granted permissions) and the State of the device (e.g., state
of network interfaces or geolocation). At runtime, these policy rules are evaluated by
Saint’s policy decision point and enforced on Binder IPC transactions.
To demonstrate their approach the authors define a payment scheme, where a shopping

app ships with a policy which restricts interaction of this shopping app with external appli-
cations, such as password vault, payment or personal ledger applications. Their example
policy uses Conditions to mandate that any potential ledger application must not hold

4.3 case studies 53

Listing 9: FlaskDroid policy excerpt implementing phone booth mode. Rules starting with the
self keyword allow components to perform operations on themselves.

1 bool phoneBooth_b = false;
2
3 context phoneBooth_con ;
4
5 switchBoolean
6 {
7 context = phoneBooth_con ;
8 auto_reverse =true;
9 phoneBooth_b =true;
10 };
11
12 self: app_c { checkPermission };
13 self: activity_c { finish moveTask };
14 self: broadcast_c { receive send };
15
16 allow { app_system_t app_contacts_t app_launcher_t } allContactsData_t :

contactsProvider_c {query };
17
18 allow { app_system_t app_contacts_t app_launcher_t } allCallLogData_t :

calllogProvider_c {query };
19
20 allow { app_system_t app_telephony_t app_contacts_t app_launcher_t } {

app_system_t app_telephony_t app_contacts_t app_launcher_t }: package_c
{ getPackageInfo getPackageInfoWithUninstalled getPackageUID
getPackageGIDs getPackagesForUid getNameForUid getUidForSharedUser
findPreferredActivity queryIntentActivities getInstalledApplications
getInstalledApplicationsWithUninstalled getInstalledPackages
getInstalledPackagesWithUninstalled };

21
22 allow { app_system_t app_telephony_t app_contacts_t app_launcher_t } {

app_system_t app_telephony_t app_contacts_t app_launcher_t }: app_c {
checkPermission };

23
24 allow { app_system_t app_telephony_t app_contacts_t app_launcher_t } {

app_telephony_t app_contacts_t }: activity_c {start };
25
26 allow { app_system_t app_telephony_t app_contacts_t app_launcher_t } {

app_system_t app_telephony_t app_contacts_t app_launcher_t }: activity_c
{ moveTask finish };

27
28 if(~ phoneBooth_b)
29 {
30 allow { app_system_t app_telephony_t app_contacts_t app_launcher_t } {

app_system_t app_telephony_t app_contacts_t app_launcher_t }:
activity_c {start moveTask finish };

31 allow app_telephony_t allContactsData_t : contactsProvider_c {query };
32 allow app_telephony_t allCallLogData_t : calllogProvider_c {query };
33 }; �

54 fine-grained and extensible policy-driven access control

the INTERNET permission, and that a specific vault application must be used. Further, the
policy enforces constraints on the version range of the payment application.

We implemented the Saint example using a corresponding FlaskDroid third-party de-
veloper policy. This policy is distributed with the shopping application. Within the scope
of the policy specific app types are assigned to the password vault, shopping and ledger
applications based on application metadata. Further, the policy assigns types to Intents
exchanged between these applications. Finally, access control rules describe allowed com-
ponent interactions between the shopping app and the specified payment, password vault
and ledger applications via Intents. We refer to our publication [34] for a more detailed
discussion of this use-case and the corresponding policy.

4.4 evaluation

To evaluate our architecture we implemented a FlaskDroid prototype based on SEAndroid
in version 4.0.4 and deployed it on a Samsung Galaxy Nexus smartphone. In this section
we focus on policy complexity, effectiveness and performance aspects.

4.4.1 Policy Size and Complexity

We first established a basic policy, which consists of types, classes and rules required for our
default Userspace Object Managers discussed in Section 4.2.3. Similar to semi-automatic
methods proposed by related work [193, 114] we decided to derive this basic policy by
observing application behavior in human user trials using FlaskDroid’s audit mode, where
access control violations are logged but no access control rules are enforced. This approach
is motivated by the following considerations: First, while Android provides an automated
user interface exerciser denoted monkey, which generates random but valid input signals,
related work has shown that such mechanisms potentially achieve a rather low coverage [89].
Second, modern static analysis tools taking into account Android’s event-driven execution
model were not available at the time FlaskDroid was developed [305, 89].
During our trials users were provided with preconfigured FlaskDroid devices, which

contained test data (e.g., fake contacts) and had access to test accounts (e.g., Email).
We deployed a handcrafted No-allow-rule policy on these devices, which only contains
111 subject/object types, 18 classes and 63 operations necessary for our default User-
space Object Managers (e.g., ContactsProvider, LocationManager, PackageManagerService,
or SensorService), but no access control rules. Users were instructed to perform every-day
tasks (e.g., web browsing, adding and managing contacts, communicating and sharing data
via phone calls, SMS and MMS). Further, users were encouraged to use Android’s IPC
mechanisms, for example by executing complex workflows, sharing data between apps and
using the clipboard.
Based on the observed access control queries we derived a set of 109 access control rules

necessary for correct operation of the device. Combined with the previously described
type, class and attribute definitions these rules constitute our basic policy. Although not
directly comparable, the difference in policy complexity between this basic FlaskDroid

4.4 evaluation 55

Policy Types Attributes Classes Permissions Rules
SEAndroid (Master branch, check-
out 12/04/2012)

232 19 84 249 1359

FlaskDroid middleware MAC (ba-
sic policy from 12/04/2012)

111 9 18 63 109

SELinux reference policy
(v2.20120725, no distribution
option)

661 132 81 239 278

SELinux Fedora 17 (targeted, pol-
icy.27 from 12/04/2012)

3900 313 83 248 103235

SELinux CentOS 6.3 (targeted,
policy.24 from 12/05/2012)

3508 277 81 235 275791

SELinux Debian 6.0.6 (default,
policy.24 from 12/05/2012)

1285 190 77 229 49159

Table 4: Overview of policy complexity: Comparison of SELinux, SEAndroid and FlaskDroid poli-
cies [34]

policy and the default SELinux policy is in the order of several magnitudes (see Table 4).
This indicates that component-based architectures of operating systems for smart mobile
devices facilitate the design of type enforcement policies. Both previous work [298, 166]
and more recent studies analyzing both SELinux and FlaskDroid on Android version 5
and above [233, 31] confirm this observation.

4.4.2 Effectiveness

We evaluated the effectiveness of FlaskDroid based on the security models introduced in
Section 4.3.

Root Exploits. To show that FlaskDroid can be effective against common operating-
system privilege escalation attacks we verified that SEAndroid successfully mitigates the
effect of the mempodroid root exploit. While the exploit succeeds in elevating its process
to root privileges, the process is constrained by the underlying SE Android policy to the
limited privileges granted to the root user [232].

Malicious Apps Executed with root Privileges. SEAndroid has been shown to con-
strain file-system privileges of application processes with root UID. However, on the mid-
dleware layer the root user still inherits all available permissions. To constrain the root
user on the middleware level we introduced a corresponding aid_root_t type and derived
necessary allow rules during user trials. Unsurprisingly, only one allow rule was required
for stable operation, since Android by design aims to minimize the number of processes
executed with root privileges.

Privacy-intrusive Applications. To verify that FlaskDroid effectively mitigates the
threat of over-privileged applications we first deployed a synthetic test application which
accesses the LocationManager, SensorManager and ContactsProvider. We further installed
samples of the Android.Loozfon [247] and Android.Enesoluty [246] malware, which use
their extensive permissions to steal sensitive user information. To test the effects of our

56 fine-grained and extensible policy-driven access control

Attack Test
Root Exploit mempodroid Exploit
App executed by root Synthetic Test App
Over-privileged and Known malware
Information-Stealing Synthetic Test App
Apps WhatsApp v2.8.4313

Facebook v1.9.1
Confused Deputy Synthetic Test App
Collusion Attack Synthetic Test Apps [218]

Table 5: List of attacks considered in our testbed

architecture on real-life applications we further deployed both the popular WhatsApp
instant messenger as well as the Facebook client application on a FlaskDroid-enabled
device. We then manually verified that a corresponding access control policy successfully
prohibited any attempts by the deployed applications to access sensitive data. Further, our
analysis has shown that our graceful enforcement did not cause any unexpected application
crashes.

Application-Layer Privilege Escalation Attacks. As discussed in Section 3.3.1 re-
lated work has shown that the default Android operating system is susceptible to a va-
riety of confused deputy attacks. FlaskDroid can effectively mitigate such attacks using
fine-grained access control on inter-process communication. We selected a confused deputy
present in previous versions of Android’s Settings components [81], which allowed unpriv-
ileged applications to control Bluetooth, WiFi and GPS settings via a Broadcast Intent.
We then verified that FlaskDroid prevents this Intent from being delivered to the Settings
component using a tailored access control policy.
The mitigation of collusion attacks is however generally more involved. We verified that

FlaskDroid can effectively mitigate specific collusion attacks by preventing inter-process
communication between well-known colluding applications. However, the identification of
such collusion attacks is a challenging problem itself, especially when they use covert
communication channels. We discuss this aspect in more detail in Section 6.2, where we
analyze to what extend system-centric access control architectures can be used to detect
and scrutinize such attacks. Further, while related work has demonstrated that it is to some
extend feasible to defend against such attacks via Chinese wall policies [32], achieving a
low false positive rate requires fine-grained information flow analysis on the sub-process
level [158].

4.4.3 Performance

To evaluate the performance impact of FlaskDroid we deployed both the no-allow-rule
policy and the basic policy on a Samsung Galaxy Nexus device. Our results are presented
in Table 6 and show mean execution time and corresponding standard deviation of policy
checks at the middleware layer. Further, we present the average memory consumption of
the SystemServer process containing our Userspace Security Server. When comparing our

4.5 conclusion 57

Mean Execution
Time (in µs)

Standard Deviation
σσσ (in µs)

Memory (in MB)

FlaskDroid
No-allow-rule 329.50 780.56 15.67
Basic policy 452.92 4887.24 16.18

Vanilla Android 4.0.4
Permission check 330.80 8291.80 15.98

Table 6: Performance and memory usage overhead [34]

results with a vanilla Android 4.0.4 distribution our overhead is within acceptable limits.
The high standard deviation is caused by varying system load. Overall, the confidence
interval for our basic policy is 99.33% for a maximum overhead of 2 ms.
Finally, we note that the performance impact of SEAndroid kernel-layer enforcement has

been evaluated by related work [232]. FlaskDroid introduces no changes to the SEAndroid
implementation and only minimal changes to the default SEAndroid policy depending on
the use case. Therefore, these previous results apply to FlaskDroid as well.

4.5 conclusion

In this chapter, we described our FlaskDroid architecture, which prototypes a policy-
driven approach to mandatory access control for the Android operating system. Flask-
Droid extends SELinux/SEAndroid [153, 232] type enforcement to Android’s application
and middleware layer and enables the policy driven instantiation of use-case specific ac-
cess control solutions. Our implementation and evaluation of the FlaskDroid architecture
demonstrate that Android’s API-oriented design is an ideal candidate for the integration
of system-centric mandatory access control.
While our evaluation shows that it is indeed possible to implement a variety of use-cases

using policy-driven mandatory access control FlaskDroid is not without limitations: First,
FlaskDroid imposes type enforcement on developers, which carries a reputation for being
overly complex, especially when considering rather simple use-cases for access control. To
some extend this argument is refuted by our evaluation and related work [298, 166, 233],
which show that the resulting policies are significantly less complex then policies targeting
desktop and server operating systems. Second, while the FlaskDroid architecture generally
supports third-party access control policies deployed by application developers, our imple-
mentation currently only enforces these policies on the application and middleware layer.
We argue that truly extensible system-centric access control architectures should also pro-
vide a strictly controlled interface which allows third parties to configure kernel-layer access
control enforcement at runtime. The Android Security Modules architecture presented in
the following Chapter 5 addresses these challenges by providing a programmable interface
for extending Android’s access control architecture.

5
A MODULAR AND PROGRAMMABLE ACCESS CONTROL
ARCHITECTURE

The previously introduced FlaskDroid architecture implements a policy-driven approach
to bring extensible access control to the Android platform. However, history has shown
that only providing one specific access control solution, for example type enforcement or
capabilities, does not meet the demands of all potential OS customers (e.g., consumers,
enterprise or government). Therefore, a truly extensible OS security interface should be
programmable [278].

The goal of the Android Security Modules (ASM) framework presented in this chapter
is to promote such programmable OS security extensibility on the Android platform. By
providing a programmable interface, ASM enables an extensible access control that allows
not only type enforcement, but also novel security models not yet invented. In short,
ASM seeks to accomplish for Android what the Linux Security Modules (LSM) [283] and
TrustedBSD [277] frameworks have provided for Linux and BSD, respectively: Our ASM
framework provides a set of authorization hooks to build reference monitors for Android
security. We design and implement an open source version of ASM within Android version
4.4.1 and empirically demonstrate negligible overhead when no security module is loaded.
ASM fulfills a strong need in the research community. It provides researchers a standardized
interface for security architectures and will potentially lead to field enhancement of devices
without modifying the system firmware (e.g., BYOD), if adopted by Google.

Contribution. To summarize, our main contributions are as follows:

• Programmable Interface for System-centric Access Control Enforcement.
Our ASM framework brings programmable OS security extensibility to Android. It al-
lows multiple simultaneous security modules, denoted ASM Apps, to enforce security
requirements on the kernel, middleware and application layer.

• Evaluation of Performance and Energy Consumption. By dynamically acti-
vating access control hooks based on the security requirements of individual ASM
Apps our framework minimizes performance overhead.

• Development of Use-Case Specific Security Solutions. We demonstrate the
flexibility of our ASM framework by instantiating a set of security extensions pro-
posed by related work as ASM Apps.

The remainder of this chapter proceeds as follows. Section 5.1 introduces domain-specific
background knowledge. We describe the design and implementation of our ASM framework
in Section 5.2, followed by a discussion of practical use-cases we implemented using ASM
in Section 5.3. Section 5.4 evaluates the performance and energy consumption overhead
of the ASM architecture. Finally, Section 5.5 concludes.

59

60 a modular and programmable access control architecture

Remark. The results presented in this section were achieved in collaboration with Adwait
Nadkarni, William Enck and Ahmad-Reza Sadeghi. The initial idea was developed during
discussions between all involved authors. Adwait Nadkarni and the author contributed
equally to the design and implementation of the ASM architecture. The author was re-
sponsible for evaluation of performance and energy consumption. Use-cases “MockDroid”
and “AppLock” were implemented by Adwait Nadkarni, while the author contributed the
“App-specific Firewalling” use-case as well as additional use-cases described in individual
publications (see Sections 6.1 and 6.2). William Enck and Ahmad-Reza Sadeghi were in-
volved in fruitful discussions and general writing tasks, which improved the quality of our
publication [119].

5.1 background

Our ASM framework follows the methodology of the Linux Security Modules (LSM) [283]
and TrustedBSD [277] reference monitor interface frameworks. Both frameworks have been
highly successful and allow the programmatical instantiation of custom reference monitors.
In Linux, LSM is widely used to extend Linux security enforcement. Version 4.5 of the
Linux kernel source includes SELinux [153], AppArmor [21], Tomoyo [114], SMACK [216],
and Yama [1] LSMs. Unsurprisingly, both LSM and TrustedBSD have been embraced by
platform providers for mobile operating systems. As noted in Section 2.3, Android uses
SELinux since Version 4.3 [101], while the Tizen OS relies on SMACK. TrustedBSD is not
only used by FreeBSD, but also by Apple to implement kernel-level sandboxing in iOS
and Mac OS X [278].
We will now briefly discuss the LSM architecture. In short, LSM provides a uniform

hook-based interface for the implementation of custom access control models within the
Linux kernel. These hooks are deployed within security-sensitive kernel subsystems, such
as the virtual file system, process and memory management. In LSM, access control mod-
els are developed in C code and encapsulated as modules within the Linux kernel. They
are integrated into the operating system at compile time. In mainline Linux as well as
Android’s modified Linux kernel only one of these modules can be active. Upon platform
initialization, this active module registers for hooks it is interested in mediating at run-
time. Figure 10 depicts the mediation process. When an application process performs a
security-sensitive operation, such as opening a file (Step 1), the Linux kernel first evalu-
ates corresponding discretionary access control (DAC) rules (Step 2). In case the DAC
rules allow the operation to proceed, a LSM hook in the relevant subsystem invokes the
LSM framework (Step 3), which in turn triggers a callback to the active security module
(Step 4). This module then decides whether or not the operation is allowed to proceed and
can thus override positive decisions by the DAC framework, making it an ideal platform
to implement mandatory access control models.
However, a fundamental limitation of the LSM architecture is that it only mediates

sensitive operations on the kernel layer. Operating systems for smart mobile devices, such
as Android, however implement a rich userland API, which is located on the middleware
and application layer and offers access to security- and privacy-sensitive high-level services
and resources to applications. The previously discussed FlaskDroid architecture (see Chap-

5.2 asm architecture 61

ter 4) has shown that kernel-level mediation alone is insufficient due to the semantic gap
between kernel-, middleware- and application-layer structures. To address this limitation,
our ASM framework extends the idea of modular and programmable access control from
the Linux kernel to Android’s middleware- and application-layer.

Process 1 Process 3

LSM Architecture

Active LSM
(e.g., SELinux)

(2) Check DAC
Permissions

(4) Query
active LSM

Memory
Management H

o
o

ks
File Systems

H
o

o
ks Process

ManagementH
o

o
ks

Inter-Process
CommunicationH

o
o

ks

Process 2

(3) Query LSM API

(1) Open File

Application
Layer

Kernel
Layer

Figure 10: Linux Security Modules (LSM) architecture

5.2 asm architecture

ASM provides a unified interface for building new reference monitors for the kernel-,
middleware- and application-layer. By doing so, ASM allows reference monitor develop-
ers to focus on their novel security enhancements and not on placing hooks correctly. It
also allows separate scrutiny of authorization hook placement that benefits all reference
monitors built on top of ASM.
Figure 11 shows the ASM framework architecture. Reference monitors are implemented

as ASM Apps. Each ASM App registers for a unique set of authorization hooks, specifying
a callback for each. The ASM Bridge manages registered ASM Apps and receives access
control decision queries (also denoted protection events) from authorization hooks placed
throughout the Android OS. Whenever a hook is invoked, the ASM Bridge queries all active
ASM App callbacks. Since Android places functionality in multiple userspace processes,
authorization hooks only query the ASM Bridge if the hook is explicitly enabled. ASM also
supports authorization hooks within the Linux kernel as well as third-party applications.
To achieve kernel authorization, a special Linux Security Module, denoted ASM LSM,
performs upcalls to the ASM Bridge, again only doing so for explicitly enabled hooks.

5.2.1 ASM Apps

Reference monitors are built as ASM Apps. They are developed using the same conventions
as other Android applications. The core part of an ASM App is a Service component that
implements the reference monitor hook interface provided by ASM. There are three main

62 a modular and programmable access control architecture

ASM App #1Application
Application
Layer

Middleware
Layer

Kernel
Layer

File
System

Content
Providers H

o
o

ks
ASM Bridge

H
o

o
ks

Query

Invoke

Invoke

Query

Query

ASM App #2

ASM
Linux Security

Module

Services

H
o

o
ks

Query

ASM-Aware
ApplicationH

o
o

ks

Networking

H
o

o
ks

Figure 11: ASM framework architecture

functionalities that must be provided within this Service. Finally, the registration interface
of the ASM Bridge is protected by Android permissions.

ASM App Registration. An ASM App must register itself with the ASM Bridge after it
is installed. The time of registration depends on logic in the specific ASM App. For example,
the ASM App could register itself automatically after installation, or it could provide a
user interface to enable and disable it. When the ASM Bridge receives the registration, it
updates its persistent configuration. To activate the ASM App, the device must reboot.
We require a reboot to ensure ASM Apps receive all protection events since boot, which
may impact their protection state.

Hook Registration. The ASM App Service component is started by ASM during the
boot process. At this time, the ASM App registers for reference monitor interface hooks
for which it wishes to receive callbacks. Different hooks incur different overheads. ASM
only enables a reference monitor hook if it is registered by an ASM App. Therefore, ASM
App developers should only register for the hooks required for complete mediation. Finally,
if the ASM App registers for hooks defined by a third-party application (see Section 5.2.4),
the application developer and the ASM App developer must agree on naming conventions.

Handling Hook Callbacks. Once an ASM App registers for a reference monitor interface
hook, it will receive a callback whenever the corresponding protection event occurs. The
information provided in the callback is hook-specific. The ASM App returns the access
control decision to the ASM Bridge. Some hooks allow the callback to replace data values,
which is required for graceful enforcement (see Section 3.5.2). Finally, similar to registra-
tion for third-party hooks, the ASM App developer must coordinate with the application
developer for information passed to the callback.

Registration Protection. Reference monitors are highly privileged. While ASM does
not allow an ASM App to override existing Android security protections, ASM must still
protect the ability to receive callbacks. ASM protects callbacks using Android’s existing
permission model. It defines two permissions: REGISTER_ASM and REGISTER_ASM_MODIFY.

5.2 asm architecture 63

The ASM Bridge ensures that an ASM App holds the REGISTER_ASM permission during
both ASM App registration and hook registration. Finally, since replacing data values in
an access control callback has greater security implications, the ASM Bridge ensures the
ASM App holds the REGISTER_ASM_MODIFY permission if it registers for a hook that allows
data modification. This allows easy ASM App inspection to identify its abilities.

ASM App Deployment. How the ASM permissions are granted has a significant impact
on the practical security of devices. Previous studies [80] have demonstrated that end
users frequently do not read or understand Android’s install time permissions. Therefore,
malware may attempt to exploit user comprehension of permissions and gain ASM App
privileges. In general, our architecture can support a variety of ASM App deployment
models. In the use case where researchers change AOSP source code, these permissions
can be bound to the firmware signing key, thereby only allowing the researchers’ ASM
Apps to be granted access. In the case where ASM is deployed on production devices,
ASM could follow the security model used by the mobile device management API. That
is, a secure setting that is only modifiable by users would enable whether ASM Apps can
be used. An alternative is to use a model similar to Android’s “Unknown sources” setting
for installing applications from alternative sources. That is, unless a secure user setting is
selected, only Google certified ASM Apps can be installed.

5.2.2 ASM Bridge

The ASM Bridge 1) provides the reference monitor interface, and 2) coordinates protection
events that occur in authorization hooks placed throughout the Android OS, as well as
third-party applications. As discussed in Section 5.2.1, ASM Apps notify the ASM Bridge
of their existence via an ASM App registration followed by individual hook registrations.
We now discuss important reference monitor interface considerations.

Per-Hook Activation. All reference monitor interface hooks are deactivated by default.
Each authorization hook maintains an activation state variable that determines whether or
not the ASM Bridge is notified of protection events. This approach eliminates unnecessary
inter-process communication (IPC) and therefore improves performance when no ASM
App requires a specific hook. Likewise, this approach allows ASM to achieve negligible
overhead when no ASM Apps are loaded (see Section 5.4.1).

When an ASM App registers a callback for a deactivated hook, the ASM Bridge acti-
vates the hook by notifying the corresponding authorization hook implementation. ASM
maintains a list of active hooks in each OS component (e.g., OS Service component, OS
ContentProvider component). When a hook is triggered, the OS component creates a corre-
sponding protection event that is sent to the ASM Bridge. When the ASM Bridge receives
the protection event for a hook, it is forwarded to each ASM App that registered for the
hook. Similarly, the ASM LSM in the kernel maintains a separate activation state variable
per hook and performs an upcall for each protection event.

Callback Timeouts. The ASM Bridge is notified of protection events via synchronous
communication. Authorization hooks in userspace communicate with the ASM Bridge using
Binder IPC, and the ASM LSM uses synchronous upcalls, as described in Section 5.2.4.

64 a modular and programmable access control architecture

ASM App #1

Content
Provider H

o
o

ks

ASM Bridge

ASM App #2

(1) hook query

(2) hook query

(3) hook_mod query

+ modified data

allow / deny

(4) allow / deny
+ modified data

Figure 12: ASM hook invocation

The ASM Bridge then uses synchronous Binder IPC to invoke all ASM App callbacks for
the hook corresponding to the protection event. If the ASM App callback implementation
is buggy, the authorization hook may stall execution. Therefore, ASM has the ability to
set timeouts on callback execution. If a timeout occurs, the ASM Bridge conservatively
assumes access is denied.

Master Policy. ASM supports multiple simultaneous ASM Apps, which is motivated by
multi-stakeholder scenarios, e.g. users, administrators, and device manufacturers installing
ASM Apps on a device. When more than one ASM App is active, a reconciliation strategy is
required to handle potential conflicts between access control decisions. The correct conflict
resolution strategy is highly use-case specific. Therefore, providing a general solution is
infeasible [34].
ASM addresses this problem using a master policy that defines policy conflict reconcil-

iation. For our implementation and evaluation, we use a consensus strategy. That is, all
active ASM Apps must grant an access control decision for an action to be allowed. Similar
to FlaskDroid [34], the master policy can be easily modified to support other conflict res-
olution strategies [197, 161]. For example, a priority-based resolution policy hierarchically
orders ASM Apps, and a voting policy allows an action if a specified threshold of ASM
Apps grant it.

5.2.3 Callbacks Modifying Data

Before discussing the reference monitor interface hooks provided by ASM, we must de-
scribe one last concept. While most ASM Apps require a simple allow/deny access control
interface, some may benefit from the ability to modify data values. For example, Mock-
Droid [24] modifies values (e.g., IMEI, location) returned by OS APIs before they are sent
to applications to enable graceful access control enforcement without causing application
crashes. ASM supports data modifications by providing a special hook type.
Each reference monitor interface hook that potentially requires data replacement is split

into two variants: 1) normal, which allows the corresponding callback to simply allow or
deny the event, and 2) modify, which allows the corresponding callback to modify the value
returned by the API, in addition to specifying allow or deny. As mentioned in Section 5.2.1,
modifying data has a greater security sensitivity, and therefore registration of a modify
callback requires the REGISTER_ASM_MODIFY permission.
Figure 12 shows how the ASM Bridge manages normal and modify hooks. To reduce

the overhead of handling authorization hooks, the ASM Bridge is only notified once per

5.2 asm architecture 65

Listing 10: Example callback prototypes modifying data

1 // Callback received by the ASM Bridge
2 int start_activity (inout Intent intent , in String resolvedType , in

ActivityInfo act , int requestCode , int callingPid , int callingUid);
3
4 // Callback to individual ASMs (No modify data)
5 int start_activity (in Intent intent , in String resolvedType , in

ActivityInfo act , int requestCode , int callingPid , int callingUid);
6
7 // Callback to individual ASMs (Modify data)
8 int start_activity_mod (in Intent intent , inout Bundle extras , in String

resolvedType , in ActivityInfo act , int requestCode , int callingPid , int
callingUid); �

protection event. The ASM Bridge then manages the normal and modify versions, returning
the access control decision and modified data value (if needed) to the authorization hook.
Additionally, the ASM Bridge invokes all of the normal callbacks before the modify versions.
This approach allows a performance improvement if a consensus master policy is used (see
Section 5.2.2). In this case, if a normal hook denies access, the modify callbacks do not
need to be called.

Example 1. Listing 10 explains this distinction further via example. The listing shows the
callback prototypes for the start_activity protection event. The first prototype shown,
start_activity, is the ASM Bridge callback used by the authorization hook in the Ac-
tivity Stack subsystem of Android’s ActivityManagerService. This hook is invoked after
Intent resolution but before the chosen Activity component is started. The hook includes 1)
the Intent message from the caller, 2) information about the Activity to be started, 3) the
caller’s identity, and 4) additional information for the current event. By marking the intent
parameter as inout (a directive defined in the Android Interface Definition Language [134]),
the ASM Bridge can modify it.

The ASM Bridge splits start_activity into the normal and modify versions. To ensure
restrictive enforcement, ASM Apps can modify only the extras field supplied by the caller.
It cannot modify information that has been reviewed by the user or the OS, such as the
action string or the target Activity. To ensure this restriction, the ASM Bridge makes the
Intent immutable, but supplies a mutable Bundle of extras extracted from the Intent to
the ASMs registered for the modify data hook. The modified extras received by the ASM
Bridge are then set back to the Intent before the initial callback from the Activity Stack
to the ASM Bridge returns.

5.2.4 Hook Types

ASM provides a reference monitor interface for authorization hooks placed throughout the
Android OS. We now describe five general categories of hooks: 1) lifecycle hooks, 2) OS
Service hooks, 3) OS ContentProvider hooks, 4) third-party app hooks, and 5) LSM hooks.

66 a modular and programmable access control architecture

Listing 11: Resolve Activity hook

1 // Callback received by the ASM Bridge
2 int resolve_activity_mod (inout List < ResolveInfo > resolvedList , in String

resolvedtype , int userId , inout Intent intent , int callingPid , int
callingUid);

3
4 // Callback to individual ASM apps (Modify data)
5 int resolve_activity_mod (inout List < ResolveInfo > resolvedList , in String

resolvedtype , int userId , in Intent intent , int callingPid , int
callingUid , inout Bundle extras); �

Lifecycle Hooks. ASM provides reference monitor hooks for component lifecycle events in
the ActivityManagerService (AMS), the AMS subsystems, and the PackageManagerService
(PMS). Hooks in this category include: resolving Intents, starting activities and Services,
binding to Services, dynamic registration of Broadcast Receivers, and receiving Broadcast
Intents. We demonstrate the lifecycle hook category with the following example. Note that
Example 1 is also a lifecycle hook.

Example 2. The resolve_activity protection event occurs within PackageManagerService.
The ASM authorization hook for resolve_activity is placed in the PMS after the Intent
has been resolved by the OS, but before a chooser with the resolved Activities is presented
to the user. This hook is motivated by systems such as Saint [180] and Aquifer [168], which
refine the list of resolved applications based on access control policies. Note that refining
the chooser list requires data modification, and therefore, resolve_activity is one of few
hooks that only provide a modify version.
Listing 11 shows the callback prototypes defined for resolve_activity. The callback

received by the ASM Bridge from the Android OS contains the list of resolved components.
The ASM Bridge then executes an RPC to the ASM App callbacks registered for this hook.
The RPC provides a modifiable resolved component list and Bundle extras. The other
parameters are immutable. It is important to prevent the ASM from adding new apps to
the list, thereby overriding the OS’s restrictions. Therefore, we compute the set intersection
of the original list and the modified list, and return the result to the authorization hook.
When multiple ASM Apps register for this hook, the ASM Bridge calls the hook callback
for each ASM App, providing the modified data from the previous invocation as input.

OS Service Hooks. Lifecycle hooks include mediation for inter-component communi-
cation using Intent messages. However, ASM Apps also require mediation for OS APIs
providing functionality such as getting the geographic location and taking pictures. An-
droid implements this functionality in different Service components designated as system
Services, e.g., LocationManagerService and SensorService.

ASM uses Android’s AppOps subsystem [147] to place the authorization hooks for many
OS Service hooks. AppOps was introduced to AOSP in version 4.3 and adds authorization
hooks throughout the Android OS. While there have been several popular media stories of
hobbyist developers using AppOps to control per-application permissions, AppOps remains

5.2 asm architecture 67

Listing 12: AppOps hook for sending SMS

1 // Callback received by the ASM Bridge
2 int appops_query (int opcode , int callingUid , String packageName);
3 // Here , opcode = OP_SEND_SMS
4
5 // Callback to individual ASMs
6 int send_sms (int callingUid , String packageName); �

largely undocumented and is not yet available for public use. Based on our code inspection,
AppOps appears to be an effort by Google to provide more flexible control of permission
related events. Surprisingly, the permission revocation feature introduced in Android 6.0 is
however not based on AppOps. Conceptually, AppOps is an Android security enhancement
and could be implemented as an ASM App.
The ASM authorization hooks for Services use the AppOps syntax. AppOps defines op-

codes for different operations, e.g., OP_READ_CONTACTS or OP_SEND_SMS. To identify the
application performing an operation, the Linux UID and the package name of the appli-
cation are used. ASM uses a single authorization hook in AppOps to call the ASM Bridge.
The ASM Bridge decodes the opcode and translates it into an ASM hook.

AppOps supports graceful enforcement. That is, it returns empty data instead of throw-
ing a Security Exception wherever possible. As a result, apps do not crash when they
are denied access to resources. On the other hand, AppOps does not allow data values
to be modified at runtime. Therefore, ASM adds specific data modification hooks. We
also needed to extend AppOps with several hooks for privacy sensitive operations (e.g.,
getDeviceId(), onLocationChanged()). We now discuss two examples, including both
regular AppOps hooks and ASM’s data modification hooks.

Example 3. Listing 12 shows the callback prototype for the AppOps hook for sending an
SMS (OP_SEND_SMS). The ASM Bridge receives the generic appops_query callback and
translates the opcode to the send_sms hook. ASM Apps registered for the send_sms hook
receive a callback whenever an SMS message is sent.

Example 4. Listing 13 shows the callback prototype for the getDeviceId() OS API call
in the PhoneSubInfo (i.e., telephony) Service. The ASM Bridge receives a callback from
the authorization hook and executes the get_device_id_mod callback in ASM Apps. ASM
Apps receiving this callback can return deny or allow. If the return value is allow, the ASM
App can also place a custom value in the first index of the device_ids array. This value
will be sent to the Android application that invoked getDeviceId(), instead of the real
device ID.

Content Provider Hooks. ContentProvider components are daemons that provide a
relational database interface for sharing information with other applications. The ASM
Bridge receives callbacks from the OS ContentProvider components (e.g., CalendarProvider,
ContactsProvider, and TelephonyProvider). Separate hooks are required for the insert, up-
date, delete and query functions. Authorization hooks for insert, update and delete must

68 a modular and programmable access control architecture

Listing 13: getDeviceId() hook

1 // Callback received by the ASM Bridge
2 int get_device_id (int callingUid , out String [] device_ids);
3
4 // Callback to individual ASMs (Modify data)
5 int get_device_id_mod (int callingUid , out String [] device_ids); �

Listing 14: CallLogProvider query hook

1 // Callback received by the ASM Bridge
2 int calllog_query (inout ASMCursor cursor , in Uri uri , in String []

projection , in String selection , in String [] selectionArgs , in String
sortOrder , int callingUid , int callingPid);

3
4 // Callback to individual ASMs (No modify data)
5 int calllog_query (in ASMCursor cursor , in Uri uri , in String [] projection ,

in String selection , in String [] selectionArgs , in String sortOrder ,
int callingUid , int callingPid);

6
7 // Callback to individual ASMs (Modify data)
8 int calllog_query_mod (inout ASMCursor cTemp , in Uri uri , in String []

projection , in String selection , in String [] selectionArgs , in String
sortOrder , int callingUid , int callingPid); �

be invoked before the action is performed, to preserve the integrity of the ContentProvi-
der’s data. In contrast, the query function’s hook is invoked after the execution, to allow
filtering of the returned data.
The ContentProvider query RPC returns a database Cursor object. The Cursor object

is not a parcelable type, and therefore the entire query response is not returned to the
caller in a single Binder message. Therefore, ASM Apps cannot filter the query. To account
for this, we extract the Cursor contents into a parcelable ASMCursor wrapper around a
CursorWindow object to include in the callback to the ASM Bridge.

The following example demonstrates the query interface. ASM currently only provides
normal (i.e., no data modification) hooks for insert, delete, and update.

Example 5. Listing 14 shows the callback prototypes for the CallLogProvider OS ContentPro-
vider. The ASM Bridge receives the original query and the result wrapped in an ASMCursor.
The callback is split into normal and modify hook variants. ASM Apps that register for
the normal hook get read access to the query and the result. ASM Apps registered for the
data modify hook can also modify the ASMCursor object. Both the hooks return allow and
deny decisions via the return value.
Finally, we note that this use of a CursorWindow object to copy the entire ContentPro-

vider query response into the ASM hook may lead to additional overhead when query
responses are large. This is because Android uses a lazy retrieval of Cursor contents, only
transferring portions of the response over Binder IPC as needed. One way to improve ASM

5.2 asm architecture 69

Listing 15: Third party hooks

1 // Callbacks received by the ASM Bridge
2 int hook_handler (in String name , in Bundle b);
3 int hook_handler_mod (in String name , inout Bundle b);
4
5 // Callback to individual ASMs (No modify data)
6 int hook_handler (in String name , in Bundle b);
7
8 // Callback to individual ASMs (Modify data)
9 int hook_handler_mod (in String name , inout Bundle b); �

query performance is to intercept the actual data access via Binder to modify data, rather
than serializing the entire response. However, this will increase the number of callbacks to
ASM Apps, resulting in a trade-off.

Third Party Hooks. ASM allows third-party Android applications to dynamically add
hooks to the ASM Bridge. These hooks are valuable for extending enforcement into Google
and device manufacturer applications (which are not in AOSP), as well as third-party
applications downloaded from application markets (e.g., Google Play Store). Third-party
hooks are identified by 1) a hook name, and 2) the package name of the application
implementing the authorization hook. The complete hook name is a character string of
the format package_name:hook_name. This naming convention provides third parties with
their own namespaces for hooks. Note that third parties do not specify their package name;
ASM obtains it using the registering application’s UID received from Binder.

To receive callbacks for third-party hooks, ASM Apps implement two generic third-party
hook methods, shown in Listing 15. One method handles normal hook callbacks; the other
method handles data modification hook callbacks. When the third-party application’s
authorization hook calls the ASM Bridge callback, it passes a generic Bundle object. The
ASM Bridge forwards the Bundle to registered ASM Apps for access control decisions. As
with other ASM authorization hooks, third-party hooks are only activated when an ASM
App registers for it.

ASM Apps receive hook callbacks for all of their registered third-party hooks via a single
interface (technically two callbacks, as shown in Listing 15). Within this callback, ASM
Apps must identify the third-party hook by name and must interpret the data in the
Bundle based on the third-party application’s specification. We assume that ASM Apps
that register for third-party hooks are aware of the absolute hook name and the contained
attributes. The ASM App returns allow, deny, or allow along with a modification of the
Bundle (for data modification hooks).

Finally, the third-party application developer must implement a special Service com-
ponent to receive hook activation and deactivation callbacks from the ASM Bridge. The
ASM Bridge sends messages to this Service to update the status of a hook. Third-party
application developers must follow the message codes exposed by the ASM framework for
proper hook management.

70 a modular and programmable access control architecture

LSM Hooks. ASM Apps sometimes require mediation of kernel-level objects such as
files and network sockets. ASM cannot define authorization hooks for such objects in
the userspace portion of the Android OS. Instead, authorization hooks must be placed
in the Linux kernel. Fortunately, the Linux kernel already has the LSM reference moni-
tor interface for defining kernel reference monitors. For example, file_permission and
socket_connect LSM hooks mediate file and network socket operations, respectively.
The main consideration for ASM is how to allow ASM Apps to interface with these

LSM hooks. Several potential approaches exist. First, ASM could allow ASM Apps to load
LSM kernel modules directly. This approach is appropriate when the ASM App developer
also has the ability to rebuild the device firmware. For example, one target audience for
ASM is security researchers prototyping new reference monitors. In this case, the ASM
App developer can create userspace and kernel components and provide communication
between the two.
However, we would like to also allow ASM Apps to mediate kernel-level objects without

rebuilding the device firmware. Therefore, a second option is to develop a small mediation
programming language that is interpreted by an ASM LSM. In this model, the ASM App
developer programs access control logic within the interpreted language, and the logic is
loaded along with the ASM on boot. Using an interpreted language would ensure kernel
integrity.
Our current implementation uses a third option. We define a special ASM LSM that

implements LSM hooks and performs synchronous upcalls to the ASM Bridge to complete
the access control decision. Consistent with the rest of the ASM design, the upcall is only
activated when an ASM App registers for the corresponding reference monitor hook. To
integrate our ASM LSM into the kernel without removing SEAndroid, we used an unofficial
multi-LSM patch [217]. We implemented authorization hooks for many commonly used
LSM hooks, including file_permission and socket_connect.

While the upcall approach initially sounds like it would have very slow performance,
our key observation is that many ASM Apps will require very few, if any, LSM hooks.
For example, an ASM App for Aquifer [168] would only require the file_permission and
socket_connect LSM hooks. Section 5.4.1 shows that both of the aforementioned hooks
can be evaluated in userspace with reasonable performance overhead. Furthermore, placing
all ASM App logic in one place (i.e., userspace) simplifies reference monitor design.

To improve access performance for large files, we implemented a cache with an expiration
policy, where file accesses (euid, epid, inode, access_mask) and decisions received from
ASM Apps on those accesses are cached; and are invalidated if the accesses do not repeat
within a timeout period of 1 ms. Since we cache and match the file inode as well as the
accessing subject’s effective Linux user and process id (euid and epid), we do not provide
an attacker the opportunity of taking advantage of a race condition (i.e., requesting for a
file less than 1 ms after its access is granted).
Note that this approach may lead to a case where file access control is too coarse grained

for a particular ASM App. For example, consider a situation where an application on the
device reads a file continuously. An ASM App grants this application access, but if at some
point during these accesses it wants to deny the access to this file, the file_permission
hook is not triggered since the file is read before the timeout expires resulting in cache hits.

5.3 case studies 71

To address this problem, we allow ASM Apps to set this timeout. If multiple ASM Apps
set a timeout, the master policy can determine the timeout, e.g., the smallest timeout.
ASM Apps may also disable the cache, which provides all file access control callbacks to
the ASM, but also degrades the performance of file reads.

5.2.5 ASM LSM

Finally, the ASM LSM provides two security features in addition to the LSM hook upcalls.
First, it implements the task_kill LSM hook to prevent registered ASM Apps from being
killed. Second, it implements the inode_*xattr LSM hooks to provide ASM Apps access
to their own unique extended attribute (xattr) namespaces. That is, an ASM App can use
file xattrs with a prefix matching its package name. No other applications can access these
xattrs. File xattrs are needed by security enhancements such as Aquifer [168].

5.3 case studies

In this section, we evaluate the utility of ASM by implementing existing security solutions
as ASM Apps. We implement and study three examples: 1) MockDroid [24], 2) AppLock [63]
and 3) DroidWall [308].

5.3.1 MockDroid

MockDroid [24] is a system-centric security extension for the Android OS that allows users
to gracefully revoke the privileges requested by an application without the app crashing. To
do so, MockDroid provides a graphical user interface that allows the user to decide whether
individual applications are presented real or fake responses when accessing sensitive system
components.

Original Implementation. MockDroid extends Android’s permissions model for access-
ing sensitive operating system components by providing alternative “mock” versions. When
users install an application, they choose to use the real or mock version of permissions.
Users can also revise this decision later using a graphical user interface. MockDroid stores
the mapping between applications and permissions in an extension to Android’s Package-
ManagerService. This policy store is the primary policy decision point in MockDroid.
MockDroid places enforcement logic in relevant Android OS components, as well as the

kernel. If an application is assigned a mock permission, the Android OS component will
return fake information. For example, if an application attempts to get the device IMEI,
and it is assigned the mock version of READ_PHONE_STATE, then the telephony subsystem
will return a fake static IMEI instead of the device’s real IMEI.

MockDroid also modifies the Linux kernel with enforcement logic. Recall from Sec-
tion 2.3.2 that some permissions are enforced in the kernel based on Linux Group IDs
(GIDs) assigned to applications. MockDroid defines additional GIDs for mock permissions
enforced via GIDs. For example, if the user assigns the mock version of the INTERNET
permission to an application, it is assigned to the mock_inet group instead of the inet

72 a modular and programmable access control architecture

Table 7: Hooks registered by the MockDroidASM app
Operation ASM Hook ASM Callback

IMEI device_id_mod int get_device_id_mod(String fake_imei[])
Location updates on_location_changed_mod int on_location_changed_mod(int uid, Location loc)
Internet Access socket_connect int socket_connect(String family, String type, int uid)
Contacts Query contacts_query_mod int query_contacts_mod(ASMCursor c, String

projection, ...)
Contacts Insert contacts_insert int contacts_insert(Uri uri, ContentValues values)
Contacts Delete contacts_delete int contacts_delete(Uri uri, String selection,

String selectionArgs[], ...)
Contacts Update contacts_update int contacts_update(Uri uri, ContentValues values,

String selection, ...)
Receive Broadcast resolve_broadcast_mod int resolve_broadcast_mod(List resolvedList,

String resolvedtype, ...)

group. To enforce this mock permission, MockDroid modifies the inet runtime check in
Android’s Linux kernel. In the modified check, if the application belongs to the mock_inet
group, a socket timeout error is returned, simulating an unavailable network server.

MockDroidASM. We implemented an ASM App version of MockDroid called Mock-
DroidASM. In addition to ASM permissions for hook registration, MockDroidASM must
register for the PACKAGE_INSTALL hook to receive the package name and the list of re-
quested permissions when each new application is installed. A MockDroidASM GUI also
allows the user to configure which permissions to gracefully revoke from an application
(e.g., INTERNET, READ_PHONE_STATE).

Instead of using additional mock permissions, MockDroidASM registers for the modify
version of ASM hooks that are triggered when an application attempts to access sensitive
system components. Since MockDroidASM needs to modify values returned to apps, it
requests the REGISTER_ASM_MODIFY permission, as described in Section 5.2.3.

Table 7 shows the most important hooks used by MockDroidASM. For example, the
device_id_mod hook allows MockDroidASM to fake the IMEI number of the device. On
the kernel-level, MockDroidASM registers for the socket_connect hook to receive a call-
back when an application tries to connect to a network server. If INTERNET is revoked
by the user, the MockDroidASM returns deny to the ASM LSM, which returns a socket
timeout error to the application.

5.3.2 AppLock

AppLock [63] is an application available on the Google Play Store. It allows users to protect
the user interface components of applications with a password. Users set a password to
access AppLock. They then selectively lock other third-party and system applications
through AppLock’s user interface. When the user tries to open a protected application,
AppLock presents a password prompt, and the user must enter the correct password before
the application can be used.

5.3 case studies 73

Original Implementation. AppLock requests install-time permissions for 1) getting the
list of running apps, 2) overlaying its user interface over other applications, and 3) killing
application processes. While AppLock does not require any modifications to Android’s
source code, it uses energy very inefficiently. It can also be circumvented using an Android
Debug Bridge (ADB) shell (e.g., “am force-stop com.domobile.applock”).
AppLock’s LockService uses a busy loop to continuously query the Android operating

system for the list of running applications while the screen is on. If the top application is
protected by AppLock’s policy, LockService overlays the current screen with a password
prompt user interface. This interface stays on the screen, trapping all input until the correct
password is entered. If the user decides to return from the lock screen without entering
his password, AppLock kills the protected application. We have verified this execution
via static analysis using ApkTool [282] as well as with another monitoring ASM App that
registers for the start_service hook.

AppLockASM. We implemented an ASM App version of AppLock called AppLockASM.
To provide the password-protected application functionality, AppLockASM simply regis-
ters for the start_activity hook. It then receives a callback whenever an Activity compo-
nent is started. When this occurs, AppLockASM displays its own lock screen. If the user
enters the correct password, the start_activity event is allowed. If the user decides not
to enter a password, it is denied. Unlike AppLock, AppLockASM never starts the target
Activity component without the correct password.

5.3.3 App-specific Firewalling

DroidWall [308] is a frontend for the Linux Netfilter packet filter, which enables Android
users to establish firewall rules for individual applications on rooted devices. Using Droid-
Wall, users can for example prevent applications from loading ads from remote servers or
filter network traffic to known web tracking services.

Original Implementation. The original DroidWall app requires that the user first com-
promises the integrity of the Android operating system by rooting his device. This is
required since Android by default does not provide any configuration interface for the
kernel-level firewall. Once root access is acquired, the DroidWall app configures the kernel-
level firewall using the iptables command line frontend. Rules are applied for individual
applications by using the UIDs of applications as a filter argument.

DroidWallASM. We implemented the main functionality of DroidWall using ASM. Our
DroidWall ASM App called DroidWallASM uses the socket_connect hook, which is called
whenever an application opens a socket. It provides the socket type, family, and protocol as
well as the destination address to DroidWallASM, which then at runtime decides whether
or not to allow the connection attempt. In our current implementation, the firewall policy
is specified by the user himself via a graphical configuration interface, which supports both
black - and whitelisting of IP addresses. In an enterprise deployment, the firewall policy
could instead be pushed to the device via a mobile device management solution.
Since filtering network traffic using IP addresses instead of hostnames is cumbersome,

DroidWallASM allows users to alternatively define filter rules using the hostnames of

74 a modular and programmable access control architecture

remote servers. To this end, we placed a hook into Android’s network management daemon,
which is denoted by netd: The get_addr_info hook is triggered whenever applications
resolve hostnames to IP addresses. While DroidWallASM allows every get_addr_info
protection event, it caches which IP addresses belong to which hostnames. Using this
information, DroidWallASM can then selectively block or allow connection attempts to
black- or whitelisted hostnames.

5.3.4 Summary

ASM considerably simplifies development of security modules such as AppLock, Mock-
Droid and DroidWall. For example, the original AppLock app performs its functionality
by starting a Service in an infinite loop, a design that is inefficient in terms of energy as
well as latency. AppLockASM on the other hand needs to simply register for a callback
with the ASM Framework. The AppLock implementation also prompts a lock screen after
the app has already been started, and has to kill the app when the lock screen returns.
This arbitrary killing of apps is prevented in the AppLockASM case, where the callback
happens before the Activity is started, and the Activity starts only if the AppLockASM
allows.
The original MockDroid implementation requires modifications to the PackageManager-

Service, and has to implement an entire parallel mock permission framework. This effort
can be reduced by registering for a small number of ASM hooks, without having to modify
system Services.

Similar to the original MockDroid implementation DroidWall requires the user to first
violate the integrity of the underlying operating system by rooting his device. In contrast,
our DroidWallASM implements the most important aspects of DroidWall, namely filtering
network access on a per-application basis, using hooks provided by the ASM framework.
We are further exploring how to provide a standardized and controlled interface to the
Netfilter packet filter of the Linux kernel to ASM Apps in future versions of the ASM
framework.
A general lesson learned from these case studies is that the ASM architecture enables

developers to easily implement complex system-centric security enhancements without
the need for third party support. This broadens the outreach of ASM, and encourages
third-party developers to engage in the development of sophisticated security solutions for
Android-based smart mobile devices.

5.4 evaluation

To evaluate our ASM framework in practice we implemented a prototype based on Android
4.4.1 AOSP and deployed it on a LG Nexus 4 (GSM) smartphone. In this section, we will
analyze the impact of our framework on both performance and energy consumption.

5.4 evaluation 75

Table 8: Performance evaluation - unmodified AOSP, ASM with no reference monitor, and ASM
with a reference monitor app

AOSP (ms) ASM (ms) Overhead (ms / %)
Protection Event w/o ASM App w/ ASM App w/o ASM App w/ ASM App
Start Activity 19.03± 1.51 20.01± 1.39 22.74± 1.77 0.98(5.15%) 3.71(19.50%)

Start Service 3.89± 0.31 4.6± 0.41 8.42± 0.61 0.71(18.25%) 4.53(116.45%)

Send Broadcast 2.18± 0.24 4.48± 0.69 6.45± 0.55 2.30(105.50%) 4.27(196.71%)

Contacts Insert 121.41± 5.98 120.48± 5.25 135.39± 6.35 −0.93(−0.76%) 13.98(11.51%)

Contacts Query 17.41± 3.88 21.10± 3.13 29.50± 4.36 3.69(21.19%) 12.09(69.44%)

File Read 59.13± 1.97 62.27± 2.86 65.39± 2.93 3.14(5.31%) 6.26(10.59%)

File Write 57.68± 3.01 57.98± 2.76 59.03± 3.60 0.30(0.52%) 1.35(2.34%)

Socket Create 0.65± 0.086 0.79± 0.13 4.26± 0.56 0.14(21.54%) 3.61(555.38%)

Socket Connect 1.61± 0.21 1.65± 0.22 5.13± 0.32 0.04(2.48%) 3.52(218.63%)

Socket Bind 2.00± 0.17 1.93± 0.64 5.15± 0.34 −0.07(−3.5%) 3.15(157.50%)

5.4.1 Performance Overhead

To understand the performance implications of ASM, we micro benchmarked the most
common ASM protection events for the modules presented in Section 5.4.1. We performed
each experiment 50 times in three execution environments: 1) AOSP, 2) ASM with no ASM
App, and 3) ASM with one ASM App. The ASM App only registers for the callback of the
tested protection event; all other callbacks remain deactivated. Since we are only interested
in the performance overhead caused by framework, our test callback immediately returns
allow. Table 8 shows the mean results with the 95% confidence intervals.

Lifecycle Protection Events. To test lifecycle protection events (i.e., start Activity,
start Service, and send Broadcast), we created an Intent message and added a byte array
as its data payload (i.e., extras Bundle). Each test type registered for the modify version
of the ASM hook. We sent the Intent for the respective type, pausing for five seconds
between consecutive executions. Potential areas of overhead for using the hook include:
1) cost of establishing two additional IPCs, 2) marshalling and unmarshalling this data
across the two IPCs, 3) ASM copying the extras Bundle when sending it to the ASM App,
and 4) setting the returned Bundle back to the original Intent. To estimate worst case
performance, we chose a very large array (4 kB) and registered our test ASM for modify
data hooks. This worst case overhead, though relatively high, is not noticeable by the user
due to its low absolute value. Additionally, most applications use files to share very large
data values. We note that while send Broadcast has a high overhead percentage, the wall
clock overhead is in the order of milliseconds, which is negligible overhead for Broadcast
Intents.

ContentProvider Protection Events. Micro benchmarks for ContentProviders were
performed on the ContactsProvider. For this experiment, our ASM App registers for the
contacts_insert callback. It proceeds to insert a new contact (first and last name) into
the ContactsProvider. The overhead observed is 11.51% and negligible in terms of its ab-
solute value. We then registered for the contacts_query_mod hook, and performed a

76 a modular and programmable access control architecture

query on the same contact. Query has a greater overhead, which is attributable to mar-
shalling/unmarshalling the data between the two IPC calls, and serialization of the Cursor
object into a parcelable. A major cause of this overhead is also that the Cursor is not
populated when the query result is returned to the calling application, but is instead filled
as and when the application uses it to retrieved values.

File Access Protection Events. File micro benchmarks tested the file_permission
hook, which uses an upcall from the kernel. To test file access performance, our test app
performs an access (read/write) on a 5 MB file. We pause for a second between successive
executions. For writes, we do not see considerable overhead as the file is written in one
shot to disk. Reads used a 16 kB buffer and the default 1 ms expiration time for caching
access control decisions, as discussed in Section 5.2.4.

Socket Protection Events. For socket operations, we tested the performance overhead
for creating, binding and connecting to an IPv6 socket. Our test ASM App registered for
the socket_create, socket_bind, and socket_connect callbacks. The absolute overhead
is mainly caused by the callback to the userspace, and is a constant overhead for socket
operations.

5.4.2 Energy Consumption

Energy consumption is a growing concern for smart mobile devices. To measure ASM’s
impact on energy consumption, we perform energy measurements in same three test envi-
ronments as performance: 1) AOSP, 2) ASM with no ASM App, 3) ASM with one ASM
App. The ASM App registers for all the hooks from the performance experiments. We
use the Trepn profiler 4.1 [195] provided by Qualcomm to perform power measurements.
Trepn uses an interface exposed by the Linux kernel to the power management IC used
on the System on a Chip to measure energy consumption, a feature that is supported on
a limited set of devices, including the LG Nexus 4. Trepn samples power consumption
measurements every 100 ms. Average values are shown in the Table 9.
We monitor system energy consumption while running the test applications from Sec-

tion 5.4.1. When the hooks are deactivated, we measured an energy consumption overhead
of about 3.34%. Our ASM App used for the performance and energy consumption experi-
ments measured an overhead of about 9.33%. This overhead is caused by the active autho-
rization hooks in the relevant OS components and kernel, as well as the communication
between the authorization hooks, the ASM Bridge, and the ASM App.

It should be noted that performing accurate energy consumption measurements on
smartphones is challenging. While we consider the individual measurements to be accurate,
we acknowledge that the low sampling rate used by the Trepn profiler is problematic.
However, each individual experiment is performed 50 times, therefore we believe Trepn’s
measurements to at least provide a rough estimate of the energy consumption overhead
introduced by ASM.

5.5 conclusion 77

Table 9: Energy consumption overhead of ASM
Environment Average Power Con-

sumption (in mW)
Overhead (%)

AOSP 670.42 -
ASM w/o ASM App 692.83 3.34
ASM w/ ASM App 732.98 9.33

5.5 conclusion

In this chapter, we presented the Android Security Modules framework, a programmable
interface for extending Android’s security architecture. While similar reference monitor
interfaces have been proposed for Linux and TrustedBSD, ASM is novel in how it addresses
the semantically rich OS APIs provided by new operating systems for smart mobile devices
such as Android.
ASM promotes the creation of novel security enhancements to Android without restrict-

ing OS consumers (e.g., consumers, enterprise, government) to specific policy languages
(e.g., type enforcement). In its current state, ASM allows researchers with the ability to
recompile Android to rapidly prototype novel reference monitors without needing to con-
sider authorization hook placement. If ASM is adopted into the AOSP source code, it
potentially allows researchers and enterprise IT to add new reference monitors to produc-
tion Android devices without requiring root access or replacing the firmware, a significant
limitation of existing bring-your-own-device solutions.

6
PRACTICAL USE CASES

In this chapter, we will discuss a set of practical use-cases for system-centric access control.
Section 6.1 demonstrates how the FlaskDroid and ASM architectures presented in Chap-
ters 4 and 5 can improve both security and user experience by enforcing context-aware
access control rules. Section 6.2 proceeds to show the value of deploying system-centric
access control architectures for application behavior analysis. In Section 6.3 we discuss
system-centric access control for security domain isolation based on our TrustDroid [33]
architecture, focusing on its commercial adoption in the award-winning BizzTrust solu-
tion [229]. Finally, in Section 6.4 we present an alternative application-layer access control
architecture which addresses situations where the deployment of system-centric solutions
is currently not feasible.

6.1 context-aware access control

Smart mobile devices, such as smartphones and tablets, have become omnipresent personal
and enterprise assistants. They serve as a primary communication mechanisms, manage
privacy-sensitive data and host a wide variety of personal and enterprise applications.
To increase usability, these devices are equipped with a substantial number of sensors,
which enable installed applications to dynamically react to their environment and to serve
contextual information whenever needed.
The availability of high-quality sensor information both poses challenges and provides

opportunities: On one hand, sensor information is a sensitive resource which needs to be
protected from illegitimate access: As discussed in Section 3.3.3 related work has demon-
strated a variety of attacks using on-device sensors to derive sensitive information while
the device is used in sensitive environments [218, 288, 251, 159]. On the other hand, con-
textual sensor information can be a useful tool to derive security requirements for the
current usage context. Consider for example an enterprise security policy which dictates
that access to the on-device camera and microphone must be restricted while the device is
located on enterprise premises, or devices automatically balancing usability and security
requirements depending on the current risk of device misuse or theft.
Enforcing access control rules depending on the usage context and environment is an ac-

tive area of research, and related work has discussed a variety of corresponding mechanisms.
The proposed approaches range from abstract context-aware role-based access control mod-
els [46, 50], where roles are triggered based on contextual information, to concrete context-
aware access control frameworks targeting mobile devices, where context parameters are
considered as additional conditions during policy decisions [212, 17, 45, 23, 180]. However,
these approaches all use inflexible and predefined policies. Consider for example popular
geofencing mechanisms, which are actively used by mobile device management software
to restrict access to sensitive information stored on or accessed by the device [98, 226].

79

80 practical use cases

Setting up geofences is an elaborate and error-prone process, which does not adequately
address the highly dynamic nature of usage contexts: Geofencing only considers the geo-
graphic location of the device, but not dynamic threats present in the environment, such
as unfamiliar people and their devices.
In this section, we present ConXsense, an alternative approach which enforces access

control rules depending on dynamically established usage contexts. Our solution derives
these usage contexts automatically using machine learning techniques and takes both the
geolocation as well as the familiarity of surrounding devices into account. We integrate
ConXsense with both our FlaskDroid and Android Security Modules access control archi-
tectures to protect sensitive sensor data from illegitimate access. We further show how
contextual information can be used to improve usability while simultaneously protecting
devices against misuse by unauthorized persons.

Contribution. To summarize, our main contributions are as follows:

• Context-Aware Access Control.We present a novel context-aware access control
framework for smart mobile devices. Our architecture bases its access control deci-
sions on automatically generated context classifications derived via machine learning
techniques.

• Protection against Sensory Malware. We demonstrate how context classifica-
tions can be used to protect users from sensory malware.

• Usable Device Lock. We show the value of contextual information for balancing
usability and security aspects of smart mobile devices.

Remark. The results presented in this section were achieved in collaboration with Markus
Miettinen, Wiebke Kronz, Ahmad-Reza Sadeghi and N. Asokan. High-level idea and main
design were proposed by Markus Miettinen, who also implemented all aspects concern-
ing context profiling, classification and evaluation. These aspects are out of scope of this
dissertation and will only briefly be discussed. Wiebke Kronz contributed a social study
concerning contextual security. All aspects concerning access control design, implementa-
tion and evaluation are due to the author of this dissertation. N. Asokan and Ahmad-Reza
Sadeghi were both involved in fruitful discussions and provided feedback which improved
the quality of our publication [162].

6.1.1 Scope

To define the scope and goals of our work we first performed a user survey in April
2013 [162] to identify user concerns regarding contextual sensor information. Our survey
identified two main concerns, which ConXsense aims to address:
The first concern is unauthorized disclosure of security- and privacy-sensitive data. As

discussed previously in Section 3.3.3 related work has demonstrated a variety of attacks
using sensory malware to derive sensitive user data. For example, the on-device camera
allows sensory malware to observe the user’s surroundings [288, 251], while the microphone

6.1 context-aware access control 81

can be used to recover sensitive credit card information from conversations [218]. Further, it
has been shown that it is feasible to extract user credentials entered on a nearby computer
keyboard by evaluating acceleration sensor information on a smartphone or tablet [159].
The second concern is device misuse. Related work has identified that users are not

willing to use complicated idle screen locks to prevent such misuse [38, 227] due to usability
issues. Consider for example an idle lock screen which requires the user to enter a long and
complicated password. Gupta et al. [108] proposed to address this concern by changing
the lockscreen properties based on the current usage context. For example, the operating
system could enforce that the user has to manually unlock his device every time it is used
in an “unsafe” context with high risk of device misuse. In contrast, in order to improve
usability it is reasonable to relax this policy in “safe” contexts.

Requirements. To address these concerns our ConXsense architecture needs to fulfill the
following set of requirements:

• Mitigation of Sensory Malware. ConXsense prevents sensory malware from gain-
ing access to sensitive data by restricting access to sensitive sensor information to a
user’s trusted applications while the device is used within sensitive environments.

• Protection against Device Misuse. ConXsense restricts access to sensitive data
and functionality in situations where it is likely for an adversary to get physical
access to the device. While doing so, ConXsense does not negatively affect usability.

6.1.2 Design

High-Level Idea. Our ConXsense architecture enforces context-dependent access con-
trol on access to sensor information. It further dynamically configures lockscreen policies
depending on the security properties of the current environment. Our architecture uses
supervised learning to derive these contextual security properties. It then enforces corre-
sponding access control decisions with the help of a system-centric access control layer,
such as FlaskDroid or Android Security Modules (see Chapters 4 and 5).
Our architecture is depicted in Figure 13 and comprises four main components. The

Context Data Collector is an application which is installed on a user’s device and collects
contextual observations as well as ground truth data. These observations concern sensor
information, such as the geolocation as well as surrounding devices discovered via WiFi
and Bluetooth sensing. Our Context Profiler then generates corresponding feature vectors
from these observations. Finally, the Context Classifier uses supervised learning based on
the generated context feature vectors and collected ground truth data to train a context
model and classifies the current context. Based on this classification the Access Control
Layer enforces context-dependent access control rules. In the following, we will describe
these components in more detail. Note however that this dissertation focuses on access
control aspects of ConXsense. We thus will only present a brief description of our work on
context detection and classification and refer to our publication [162] for a more detailed
discussion.

82 practical use cases

ApplicationsAccess Control Enforcement

User Input Device Context

Dynamic Context Classification

Access Control
Framework

Context
Profiler

Context
Classifier

Operating
System
Services

WiFi Bluetooth

3rd Party
Applications

Feature
Vectors

Context Classification
and Confidence Value

Context Data
Context

Data Collector

Ground Truth Data

Ground Truth Data

Context Data

Invoke

Query

H
o

o
ks

Settings

Lockscreen
Settings Update

Context
Info

Figure 13: ConXsense framework architecture

Context Data Collector. Our Context Data Collector collects context information. This
information comprises sensory data, such as the GPS-derived geolocation of the device,
nearby Bluetooth devices as well as WiFi access points. The Context Data Collector fur-
ther collects ground truth information from the user, which is required to train our context
models using supervised learning. To this end, the user is periodically requested to catego-
rize the current context as “work”, “private” and “public”. These distinct categories have
been established by our social study mentioned in Section 6.1.1. Further, our study shows
that users experience these categories to be either “safe” and “unsafe”, depending on the
perceived risk for device theft and misuse, and our Context Data Collector requests this
information from the user as well.

Context Profiler. In our architecture the Context Profiler evaluates context observations
collected by the Context Data Collector. To this end, the Context Profiler first evaluates
both GPS geolocation as well as surrounding WiFi access points to identify Contexts of
Interest (CoIs) where a user spends a significant amount of time.

Once CoIs have been established the Context Profiler evaluates both the location context
and the social context of the device. The location context is defined as the CoIs the user
is visiting at a given point in time based on the current WiFi observations and GPS
geolocation of the device. The social context, on the other hand, is based on observations
of surrounding Bluetooth devices. The main idea is to categorize nearby devices as familiar
when they are encountered regularly and for a long period of time. For example, a spouse’s
device which is detected regularly at home will be categorized as a familiar device, whereas
devices encountered while visiting a public space, such as a supermarket, would not be
categorized as familiar.

6.1 context-aware access control 83

Finally, the Context Profiler calculates feature vectors based on the frequency and dura-
tion of CoI encounters and detected familiar devices. These features are labeled according
to the feedback provided by the user to the Context Data Collector and used as training
data for the Context Classifier.

Context Classifier. Our Context Classifier uses the established labeled feature vectors to
train machine-learning based classifiers by means of supervised learning. Once the classi-
fiers are trained, they classify new context observations as “work”, “private” or “public”.
They further estimate the risk for device misuse and apply the “safe” or “unsafe” label
accordingly.

Access Control Framework. To enforce context-dependent access control rules we de-
signed two variants of our access control layer. Our initial solution discussed in our publi-
cation [162] is based on FlaskDroid (see Chapter 4) and uses type enforcement. We later
adapted our solution to the more recent Android Security Modules access control architec-
ture (see Chapter 5), which provides a programmable interface for implementing reference
monitors. Based on the classification of the current context our Access Control Layer re-
stricts access to on-device sensors by third-party applications. In addition, we modified the
Android operating system to allow the Access Control Layer to influence the Lockscreen
behavior at runtime.

6.1.3 Implementation

Context Data Collector. We implemented a Context Data Collector app for Android
which uses a background Service to collect context information in intervals of 60 seconds,
which is a tradeoff between the amount of collected sensor data and the energy consump-
tion of the device. Our Context Data Collector observes location data, WiFi access points
as well as nearby Bluetooth devices. In addition, users provide ground truth data for
training our context models using the Context Data Collector user interface as well as pre-
programmed NFC tags provided to the participants (see Figure 14). Users were instructed
to spontaneously provide ground truth data, and our Context Data Collector reminded
them to do so in case no feedback had been provided during a two hour period. Context
and ground truth data were opportunistically uploaded to a remote server via HTTPS
whenever stable WiFi network connectivity was available.

Context Profiler. Our Context Profiler evaluates the collected context information and
generates feature vectors using Python, bash scripts and awk. It generates GPS and WiFi
CoIs for every user and evaluates Bluetooth observations to identify familiar devices.

Context Classifier. The Context Classifier was implemented based on the Weka data
mining suite [110], which provides implementations for the necessary machine learning
classifiers used during our evaluation of ConXsense (see Section 6.1.4).

Access Control Enforcement. We integrated the FlaskDroid and Android Security
Modules access control architectures with our framework to enforce context-aware ac-
cess control rules. To do so, we first implemented a ContextProvider for the FlaskDroid

84 practical use cases

(a) Feedback using Context Feed-
back Buttons

(b) Feedback using Context NFC
Tags.

Figure 14: Android Context Data Collector app

architecture and defined a corresponding access control policy, which we deployed on a
FlaskDroid-enabled Samsung Galaxy Nexus smartphone running Android 4.0.4. We later
ported the core logic of the ContextProvider to the Android Security Modules architec-
ture and deployed the resulting ASM App on a LG Nexus 4 smartphone running Android
version 4.4.1 and our ASM framework version r1.

FlaskDroid based Instantiation. Our FlaskDroid architecture (see Chapter 4) extends Se-
curity Enhanced Android (SEAndroid) [232] with fine-grained type enforcement on the
middleware- and application-layer. In FlaskDroid, Android middleware components that
provide access to sensitive resources, such as the SensorService which provides access to
sensor information, act as Userspace Object Managers (USOMs). These USOMs enforce
access control on resources they manage. More specifically, USOMs control operations of
subjects (i.e., apps) on objects (e.g., sensor data) based on types assigned to both subjects
and objects.
At boot time, FlaskDroid’s Userspace Security Server parses an Access Control Policy and

proceeds to assign app types (e.g., trusted or untrusted) to all installed apps based on ap-
plication metadata (e.g., package name or developer signature). Apps installed by the user
are assigned types during installation. Whenever apps request access to a USOM, for ex-
ample the SensorService to query the device’s sensors or the CameraService to take pictures,
the USOM queries the Userspace Security Server, which is part of Android’s SystemServer,
for access control decisions. As noted in Section 4.2.5 FlaskDroid supports conditional
access control rules by means of ContextProviders, which evaluate the current context and
enable or disable rules at runtime.

6.1 context-aware access control 85

To meet our goals we thus first implemented a ConXsense ContextProvider. It uses the
context classification information and confidence values provided by the Context Classifi-
er to activate or deactivate conditional rules at runtime and to influence the Lockscreen
behavior. The ContextProvider can be tuned with individual user-, use-case and sensor-
specific thresholds for the expected confidence values. These thresholds could be set, for
example, by specifying a desired maximum false positive rate and adjusting the confidence
threshold accordingly based on the observed historical performance of the Context Clas-
sifier. Further, access to more sensitive context sensors like GPS could require a higher
prediction confidence than less sensitive sensors like the magnetometer.
To mitigate, respectively reduce, the effects of sensory malware (e.g., Placeraider [251]

or SoundComber [218]) access control on the sensors of a device is required. For example,
Placeraider uses the device’s camera and the acceleration sensor to covertly construct 3D
images of the surroundings of the user. We designed a type enforcement policy which filters
queries to FlaskDroid’s CameraService USOM. Furthermore, ConXsense uses FlaskDroid
to filter acceleration sensor events delivered to SensorEventListeners registered by apps
using FlaskDroid’s SensorService USOM. Similarly, the combination of ConXsense and
FlaskDroid can address other variants of sensory malware, such as Soundcomber [218],
by identifying the relevant Android APIs, instrumenting them as USOMs and enforcing
corresponding access control policies.
Finally, to allow for changes in Android’s Lockscreen policy based on the current risk

for device misuse we use the ConXsense ContextProvider to configure Android’s Lockscreen
dynamically at runtime. We modified Android’s Settings component to be notified by our
ContextProvider about changes in the current risk for device misuse via Broadcast Intents.
We further modified Android’s LockPatternKeyguardView, which is a Java class responsible
for displaying the Lockscreen, to query the Settings component for context information.
While the device is used in a context with low risk for device misuse the LockPatternKey-
guardView class automatically dismisses the Lockscreen. Whenever the device is rebooted
or the risk for device misuse changes to high, a low-watermark mechanism ensures that
the Lockscreen is always displayed regardless of the current risk for device misuse. This
mechanism is required to prevent an attacker from bypassing the Lockscreen by changing
the context, emulating a low-risk context or rebooting the device. In addition, to mitigate
the effect of sensory malware which uses the acceleration sensor as a side channel to derive
user credentials (e.g., Lockscreen PIN or password) [290, 183, 37] we use FlaskDroid’s
SensorService hooks to block access to the acceleration sensor by 3rd-party apps while the
Lockscreen is displayed.

Android Security Modules based Instantiation. We ported our initial FlaskDroid-based de-
sign to the more recent ASM architecture, which enforces access control decisions using
hooks integrated into security- and privacy-sensitive operating system components (see
Chapter 5). ASM exposes these hooks to application-layer security modules, denoted ASM
Apps. Our ConXsense ASM App registers itself with the ASM architecture and uses Sen-
sorService hooks to control access to on-device sensors as well as CameraService hooks to
control access to the camera. More precisely, our ConXsense ASM App registers for the
camera, on_location_changed_mod and sensors hooks. We further integrated our previ-

86 practical use cases

ously described changes within Android’s Settings component into ASM to influence the
Lockscreen behavior at runtime depending on the context.

6.1.4 Evaluation

To evaluate our approach the Context Data Collector was deployed on a group of 15 test
users’ Android devices. We collected context and ground truth data for a total period
of 68 days, achieving 844 distinct user days and 3575 labeled data points. The collected
data was evaluated by the Context Profiler, which generated personal context profiles and
context feature vectors.
Our Context Classifier applied three different machine learning algorithms to the labeled

feature vectors established by the Context Profiler. We experimented with a k-nearest
neighbors (kNN) classifier, a Naïve Bayes classifier as well as a classifier based on Random
Forests. The Context Classifier’s task was to predict situations, in which the restrictive
default protection mechanisms (short idle lock timeout, no sensor access for untrusted
applications) could be relaxed. In our use case, the idle lock timeout could be extended
when the device was used in a “safe” context, whereas the sensor access for untrusted
applications could be enabled in “public” environments.
To evaluate the performance of the selected classifiers we considered all users which

uploaded at least five labeled data points for every context class. Our results show that
all selected classifiers achieve a reasonable performance. However, since this dissertation
focuses on access control aspects of ConXsense the following paragraphs will only provide
a qualitative assessment of our results. We refer to our research paper [162] for a more
detailed analysis and discussion.

Protecting against Device Misuse. In this use-case the classifier’s objective was to
identify scenarios with low risk of device misuse in which the Lockscreen policy could
potentially be relaxed. In our experiments all classifiers were able to achieve a true positive
rate of 70% while maintaining a false positive rate of 10%. Accordingly, our modified
Android Lockscreen would have applied a relaxed policy 70% of the times the device was
used in “safe” contexts, and would have incorrectly applied this relaxed policy 10% of
the times while the device was used in “unsafe” environments. While improving this false
positive rate is an open challenge, even in its current state our solution could improve
security for users who would otherwise disable the Lockscreen entirely.
To test our implementation of the context-aware device Lockscreen we modified the

Android operating system to periodically wake the device from sleep and switch on the
screen. We then installed a synthetic malware, which registers SensorEventListeners in
Android’s SensorService to be notified of acceleration sensor readings. By logging and
analyzing the Lockscreen behavior, context information and sensor readings we verified
that the Lockscreen was only automatically dismissed in valid situations and that our
synthetic malware did not receive any sensor readings while the Lockscreen was active.

Protecting against Sensory Malware. In this use case the goal of the Context Classi-
fier was to identify contexts with low privacy exposure where the access control policy on
sensors could be relaxed to grant third-party applications access to all on-device sensors.

6.1 context-aware access control 87

Our experiments show that the Random Forest and kNN classifiers were able to achieve
a true positive rate of 70% while maintaining an acceptable 2 - 3.5% false positive rate.
Thus, only 2 - 3.5% of the times the device was used in a context with high privacy
exposure sensory malware would have been granted access to sensitive sensor information.
In contrast, 70% of the time the device was used in contexts with low privacy exposure
third-party applications would rightly have been granted access to sensor information. To
address the remaining 30% we suggest a manual override mechanism which instructs the
access control layer to temporarily ignore the decision of the Context Classifier. In fact, the
revocable permission architecture introduced in recent versions of the Android operating
system (see Section 2.3.2) is a prime candidate to implement such a solution. This override
would further serve as another labeled data point for the training of our context models
and thus could potentially improve the accuracy of our Context Classifier over time.
We tested our integration of the FlaskDroid and ASM access control architectures into

ConXsense using a slightly modified version of the PlaceRaider malware generously pro-
vided to us by its authors1. By installing the malware on our device and logging context
information and access control decisions we verified that both FlaskDroid and ASM suc-
cessfully filtered all data delivered from Android’s SensorService and CameraService com-
ponents to the untrusted PlaceRaider app when the risk for privacy exposure was high,
thus rendering the attack futile. We further verified that trusted apps could still use the
sensors and the camera. No additional false positives or false negatives emerged during
the evaluation of the Access Control Layer, which is not surprising since it merely enforces
context-dependent access control rules.

6.1.5 Conclusion

In this section, we discussed the ConXsense architecture, which implements context-aware
access control based on our previously introduced FlaskDroid and Android Security Mod-
ules frameworks. ConXsense uses sensor information to automatically classify the current
usage context of the device. Based on this information, our architecture dynamically re-
configures access control rules to better protect security- and privacy-sensitive data in
high-risk situations. Our evaluation shows that our approach can effectively address real-
world security concerns of users, such as malware accessing sensitive sensor information
and device misuse.
To extend our work on context-aware access control the following aspects should be con-

sidered: First, an on-device implementation of the Context Profiler and Context Classifier to
augment our current offline implementation. Second, while our user study identified a set
of practical use-cases for context-aware access control usability aspects of our ConXsense
implementation itself should be evaluated as well. Finally we envision the integration of ad-
ditional contextual information, ranging from sensor data to observations about the user’s
interaction with the mobile device and deployed applications, to improve the performance
of our context model.

1The sample we received is incompatible with recent versions of Android.

6.2 access control for application behavior analysis 89

6.2 access control for application behavior analysis

Smart mobile devices host a vast number of third-party applications of varying quality
and trustworthiness. These applications access, store and process security- and privacy-
sensitive data, ranging from personal contacts, location information to high-profile enter-
prise assets, which makes these devices valuable targets for attacks. Related work has
shown that Android’s default permission-based access control model is susceptible to
application-layer privilege escalation attacks, ranging from insufficiently protected sys-
tem settings [81] to accessing the Internet [152] or sending SMS [52] without holding
corresponding permissions.
On one hand, system-centric access control architectures can mitigate such attacks, but

require carefully designed use-case specific security policies (see Section 4.4.2). On the
other hand, both static and dynamic program analysis promise to proactively detect such
attacks (see Section 3.4.1 and 3.4.2), but either do not adequately address native and
highly obfuscated code, or are susceptible to malware using logic bombs to avoid early
detection [201, 271, 139].
This inability to proactively and reliably detect application-layer privilege escalation

attacks mandates tools for long-term observation and analysis of application behavior. In
this section, we present DroidAuditor, an application behavior analysis toolkit targeting
application-layer privilege escalation attacks. DroidAuditor adopts our Android Security
Modules access control architecture to observe application behavior at all layers of the
Android operating system. Our solution organizes these observations in a behavior graph
and generates an interactive visualization. It further allows security analysts to query this
graph for suspicious patterns using a graph query language.

Contribution. To summarize, our main contributions are as follows:

• Application Behavior Observation using Android Security Modules. We
show that sophisticated access control frameworks, such as the Android Security
Modules framework introduced in Chapter 5, are a valid basis for application behav-
ior analysis.

• Interactive Visualization and Intuitive Analysis. We present the design and
implementation of DroidAuditor, a solution for application behavior analysis based
on interactive behavior graphs.

• Extensive Evaluation.We evaluate our architecture by analyzing application-layer
privilege escalation attacks as well as malicious spyware apps.

Remark. The results presented in this section were achieved in collaboration with Marco
Negro and Praveen Kumar Pendyala. Main idea and high-level design are due to the author.
Marco Negro provided the initial implementation, which was refined by Praveen Kumar
Pendyala and the author. Evaluation was performed by both Praveen Pendyala and the
author. The author was tasked with writing our publication [120] based on initial input
by Marco Negro. Ahmad-Reza Sadeghi provided feedback which improved the quality of
our publication.

90 practical use cases

6.2.1 Scope

The main goals of DroidAuditor are the systematic monitoring of application behavior and
the detection as well as analysis of potential application-layer privilege escalation attacks.
In accordance with our adversary model presented in Section 3.1 we assume the adversary
to be capable of deploying one or more malicious applications on a target user’s device,
for example via social engineering or by gaining temporary physical access to the device.
We further assume that these applications perform application-layer privilege escalation
attacks to expand their initial set of privileges.

Requirements. Given our adversary model and goal, we formulate the following require-
ments for DroidAuditor:

• Application Behavior Observation. DroidAuditor captures a target applica-
tion’s privacy- and security-sensitive behavior in a suitable data structure.

• Application Behavior Analysis. DroidAuditor enables a security analyst to dis-
cover and analyze potential application-layer privilege escalation attacks, such as
confused deputy and collusion attacks.

• Visual Representation of Application Behavior. DroidAuditor generates an
intuitive visual representation of application behavior and potential application-layer
privilege escalation attacks.

• Extensibility. DroidAuditor is modular and allows a query-driven analysis of ob-
served application behavior to enable further use-cases.

6.2.2 Design

The high-level idea of DroidAuditor is to observe application behavior using the system-
centric Android Security Modules (ASM) access control framework presented in Chapter 5.
DroidAuditor stores these observations in a behavior graph, where vertices represent appli-
cations and resources, and edges represent data- or control flows.

(2) READ

(4) WRITE

Launcher App

Malicious App

Web Browser App

(1) EXECUTE

(3) EXECUTE

Contacts

www.malicious.com

Figure 15: Example confused deputy attack, where a malicious app deputizes the web browser to
exfiltrate sensitive contacts information.

Consider the following confused deputy attack: A malicious Android application holds
the READ_CONTACTS permission and abuses the web browser to exfiltrate sensitive contacts
information to a remote server without holding the INTERNET permission. Figure 15 shows

6.2 access control for application behavior analysis 91

this attack as a behavior graph: Upon start (Step 1) the malicious app reads sensitive data
from the ContactsProvider (Step 2). It then starts the web browser via an Intent (Step 3)
and instructs it to exfiltrate contacts data on its behalf. The web browser opens a network
socket to a remote server and uploads the collected contacts information (Step 4) to a
server controlled by the adversary.
DroidAuditor generates such behavior graphs using three main components (see Fig-

ure 16). Whenever Android applications access security- or privacy-critical resources (Steps
1 - 4) the on-device DroidAuditor ASM App is notified by the ASM framework (Step A).
The DroidAuditor ASM App forwards these notifications, denoted protection events, to
the remote DroidAuditor Database via an authenticated and encrypted channel (Step B),
where they are stored in the behavior graph. Finally, security analysts can interact with
the behavior graph using the DroidAuditor Client (Step C).

ApplicationsASM FrameworkDroidAuditor ASM App

Event Cache

ASM Callback Service

Event Uploader

Contacts

H
o

o
k

Network
H

o
o

k

DroidAuditor Client

Visualization

Analysis

(B) Protection Event

DroidAuditor Database

Event Parser

Behaviour Graph

(C) Interaction

(A)
Protection

Event

(1)

(3)

(2)

(4)

App Lifecycle

H
o

o
k

Malicious App

Launcher

Web Browser

Figure 16: DroidAuditor framework architecture

DroidAuditor ASM App. The Android Security Modules framework places hooks in
all security- and privacy-sensitive kernel-, middleware- and application-layer operating-
system components. These hooks generate aforementioned protection events, which the
ASM framework forwards to all installed ASM Apps. Each ASM App can then decide
whether to allow or deny the corresponding operations (see Section 5.2). Our DroidAuditor
ASM App however does not enforce any access control rules, but collects protection events
to obtain a global view of all privacy- and security-critical operations performed by all
applications. Accordingly, it allows every access control query and periodically uploads
cached protection events to the remote DroidAuditor Database.

DroidAuditor Database. The DroidAuditor Database stores security- and privacy-sen-
sitive protection events for offline analysis. It parses events uploaded by the DroidAuditor
ASM App and generates the behavior graph G = 〈V ,E〉: The vertex set V = A ∪R is
composed of two subsets A and R, which represent applications A and resources R. For
each application vertex a ∈ A the DroidAuditor Database stores an identifier as well as
additional metadata, for instance the permissions the application holds. Each resource

92 practical use cases

vertex r ∈ R models a security- or privacy-sensitive operating system resource. Important
examples are Android’s ContactsProvider, LocationManagerService or CameraService, as well
as files and network sockets.
Every edge e ∈ E is directional and describes a data- or control flow between two

vertices vi, vj ∈ V . Each edge contains descriptive metadata, such as the time and date
a flow was observed. Edges are grouped into categories, which model Android component
interaction as well as file system and network operations (CREATE, READ, WRITE, UPDATE,
DELETE, EXECUTE).

DroidAuditor Client. The DroidAuditor Client is a desktop application that interacts
in real-time with the DroidAuditor Database. Its purpose is twofold:
First, the DroidAuditor Client generates an interactive visual representation of the be-

havior graph, which allows security analysts to intuitively gain an understanding of a
target application’s runtime behavior. Analysts can inspect the type and metadata for
each vertex and edge as well as observe changes in the graph over time.
Second, the DroidAuditor Client allows analysts to query the behavior graph for specific

patterns using the Cypher query language [171]. Listing 16 demonstrates how to query
the behavior graph for signs of the previously described confused deputy attack, where
a malicious app deputizes the web browser to exfiltrate sensitive contacts information.
The depicted query identifies subgraphs starting with apps reading the Contacts resource
(Lines 1-2). We only consider applications which then execute the Android web browser
(Line 3) and do not hold the INTERNET permission (Line 5). Finally, this query expects
the web browser to write data to a network socket (Line 4). Matching subgraphs are
highlighted within the DroidAuditor Client.

Listing 16: Cypher query to detect the confused deputy attack

1 MATCH confuseddeputy = (contacts : Resource {type:’contacts ’})
2 - [event1 :READ] -> (app1:App { systemApp :false })
3 - [event2 : EXECUTE] -> (app2:App { package :’com. android .browser ’})
4 - [event3 :WRITE] -> (socket : Resource {type:’socket ’})
5 WHERE NOT ’internet ’ IN app1. permissions �

6.2.3 Implementation

We implemented a prototype of the DroidAuditor architecture using the Java program-
ming language. In the following, we will describe important implementation aspects of the
DroidAuditor ASM App, Database and Client.

DroidAuditor ASM App. The DroidAuditor ASM App has been developed using revi-
sion r2 of the Android Security Modules Framework, which is based on Android 4.4.4. Our
implementation follows the ASM App design discussed in Section 5.2.1, but never denies
any access control queries. Instead, it merely logs every protection event to gain a global
view of all privacy- and security-sensitive operations performed by all applications. The
DroidAuditor ASM App caches these events in memory and serializes them to persistent
on-device storage in regular intervals in JSON format. Whenever adequate and stable WiFi

6.2 access control for application behavior analysis 93

or cellular network connectivity is available, it uploads cached events to the DroidAuditor
Database.

DroidAuditor Database. We implemented the DroidAuditor Database using version
2.1.6 of the sophisticated Neo4j [170] graph database engine. Graph database engines
efficiently store relationships between entities using graphs, and we selected Neo4j mainly
for two reasons: First, it is a stable and mature database engine which has been shown to
scale well and to provide adequate performance, even in the high performance computing
field [62]. Second, Neo4j provides comprehensive developer tools, helper libraries, and
documentation.
While in our current implementation the DroidAuditor ASM App and the DroidAuditor

Database communicate using the Kryonet [245] network communication library over TCP,
DroidAuditor is generic and supports other communication mechanisms as well, such as
the upload of events via HTTPS. Uploaded protection events are interpreted using an
event parser, which generates relevant application and resource vertices as well as edges
representing relationships between them. For network-related protection events, such as
those generated whenever applications connect to remote network servers, the event parser
can additionally perform reverse DNS lookups to determine potential hostnames of these
servers.

DroidAuditor Client. The DroidAuditor Client provides a generic runtime environment
for graph visualization and analysis plugins. It is implemented as a Java Swing application
and communicates with local or remote DroidAuditor Databases. We implemented the
following plugins for the DroidAuditor Client:

Visualization Plugin. The visualization plugin generates an interactive visual representation
of the behavior graph using the GraphStream library [254], which provides native support
for Neo4j. Our implementation allows a security analyst to inspect individual vertices and
edge meta-data as well as to observe changes in the behavior graph over time.

Analysis Plugin. The analysis plugin serves as a frontend for Neo4j’s Cypher graph query
language [171]. It enables a security analyst to interactively query the behavior graph for
application and resource vertices, their properties and relationships, as well as subgraphs
which could represent specific attacks. Whenever a subgraph matches a given Cypher
query, it is highlighted in the behavior graph using the visualization plugin.

6.2.4 Evaluation

DroidAuditor inherits the performance overhead introduced by the underlying Android
Security Modules framework, which has been described in detail in Section 5.4.1. In this
section we thus primarily focus on DroidAuditor’s effectiveness to analyze malicious appli-
cation behavior. To this end, we deployed our previously described implementation of the
DroidAuditor framework on a LG Nexus 4 device. We then installed applications which
implement confused deputy and collusion attacks as well as malicious spyware applications
on the device and analyzed their behavior. This section further discusses to what extend
our architecture can be used to detect operating system level privilege escalation attacks.

94 practical use cases

Listing 17: Cypher query to detect the collusion attack depicted in Figure 17a

1 MATCH collusion1 = (sms: Resource {type:’sms ’})
2 - [event1 :READ] -> (app1:App { systemApp :false })
3 - [event2 : EXECUTE] -> (app2:App { systemApp :false })
4 - [event3 :WRITE] -> (socket : Resource {type:’socket ’})
5 WHERE NOT ’internet ’ IN app1. permissions �
Confused Deputy Attacks. We implemented the confused deputy attack described in
Section 6.2.2, where a malicious application that does not hold the INTERNET permission
deputizes the web browser to exfiltrate sensitive contacts data to a remote server. We then
verified that the query described previously in Listing 16 indeed correctly identifies this
confused deputy attack.

Collusion Attacks. We further implemented two variants of a collusion attack, where
two malicious apps coordinate their actions towards a common goal, which in our example
is to exfiltrate the SMS database over the Internet. The first malicious app only holds the
READ_SMS permission, whereas the second app only holds the INTERNET permission.

In a simple collusion attack two malicious applications communicate using overt chan-
nels, such as Android’s Binder IPC mechanism. Listing 17 shows a Cypher query targeting
this behavior. We query the behavior graph for non-system applications which do not hold
the INTERNET permission (Line 5) and read data from the SMS database (Lines 1 and 2).
We search for paths leading to non-system applications, which send data to a remote server
via a network socket (Lines 3 and 4). The corresponding subgraph is shown in Figure 17a.

WRITE

READ

Launcher App

Malicious App 2

EXECUTE

EXECUTE

SMS

www.malicious.com

Malicious App 1

(a) Collusion using Binder IPC

Malicious App 2

READ

WRITE

Launcher App

Malicious App 1

File

EXECUTE

WRITE

SMS

www.malicious.com

READ

(b) Collusion using the file system

Figure 17: Example collusion attacks where two malicious apps coordinate their behavior to exfil-
trate the SMS database.

In a more obfuscated collusion attack two applications use covert channels, such as a
file shared in the file system, to exchange sensitive data. Note that no direct inter-process
communication between both apps occurs in this scenario. Starting from the previous
query in Listing 17, we add a file resource node to the query which matches files written
to and read from the two colluding applications. Listing 18 shows the resulting query, and
Figure 17b depicts a visualization of the discovered subgraph.

6.2 access control for application behavior analysis 95

Listing 18: Cypher query to detect the collusion attack depicted in Figure 17b

1 MATCH collusion2 = (sms: Resource {type:’sms ’})
2 - [event1 :READ] -> (app1:App { systemApp :false })
3 - [event2 :WRITE] -> (file: Resource {type:’file ’})
4 - [event3 :READ] -> (app2:App { systemApp :false })
5 - [event4 :WRITE] -> (socket : Resource {type:’socket ’})
6 WHERE NOT ’internet ’ IN app1. permissions �

Listing 19: Cypher query to detect the behavior of the “TheTruthSpy” and “LetMeSpy” spyware
applications

1 MATCH spyware1 = (res: Resource { privacySensitive :true })
2 - [event1 :READ] -> (app:App { systemApp :false })
3 - [event2 :WRITE] -> (socket : Resource {type:’socket ’})
4 WHERE NOT event1 . foregroundApp = app. package �

DroidAuditor can similarly be used to detect signs of collusion attacks via other oper-
ating system resources, such as domain or network sockets, ContentProviders or Services.
However, it should be noted that DroidAuditor is limited by the granularity of the underly-
ing ASM framework, which is unable to observe app collusion via hardware side channels,
such as the CPU cache.

Identifying Spyware Applications. To demonstrate that DroidAuditor is a valid ba-
sis for generic application behavior analysis beyond application-layer privilege escalation
attacks we installed two popular spyware applications, namely “TheTruthSpy” [259] and
“LetMeSpy” [149], on a DroidAuditor device. By analyzing the behavior graph we found
that these apps silently access privacy-sensitive resources, such as the CallLogProvider
and MMSSMSProvider as well as LocationManagerService, and upload collected privacy-
sensitive data to a remote server. We further noticed that these apps only have very
limited user interfaces (Activities), which are exclusively used for initial configuration.
To detect such behavior, we first labeled all privacy-sensitive resources in the behavior

graph. In Listing 19, we query the graph for non-system applications accessing these
resources (Lines 1 and 2) and writing data to a remote server (Line 3). The WHERE clause
(Line 4) limits our query to apps which silently access privacy-sensitive resources. Figure 18
shows a screenshot of the DroidAuditor client analyzing the corresponding behavior graph.

Detecting Operating System Level Privilege Escalation. Related work has iden-
tified malicious applications which attempt to compromise the security architecture of
the operating system by exploiting highly-privileged system services or the kernel (see
Section 3.3.2). Signs of successful attacks are, for example, the execution of unknown pro-
cesses with root privileges or applications executing operations they are not authorized
for by the permission system. For example, an application connecting to a network server
without holding the INTERNET permission is an indication of possible operating system
level compromise.

96 practical use cases

Figure 18: Screenshots of the DroidAuditor client. Here, DroidAuditor is used to analyze the be-
havior of the “TheTruthSpy” and “LetMeSpy” spyware applications.

The reliable detection of such attacks is challenging and out of scope of our adversary
model (see Section 3.1), since in general, all security solutions which observe application
behavior on the operating system level can be defeated by malicious applications oper-
ating with the same level of privileges. For example, a strong adversary using kernel or
root exploits can adopt rootkit techniques to compromise the trusted computing base of
the underlying ASM framework without raising suspicion. Nonetheless, DroidAuditor can
potentially be used to identify malicious apps compromising the operating system given a
weaker adversary who is not actively trying to hide his traces.

6.2.5 Conclusion

In this section, we presented DroidAuditor, a toolkit for long-term application behav-
ior analysis using system-centric access control. Our implementation utilizes the system-
centric Android Security Modules access control framework to generate a graph-based
model of application behavior. The preliminary evaluation of our proof-of-concept imple-
mentation demonstrates that modular access control frameworks are a valid building block
for application behavior analysis.
We envision three directions to extend our work. First, an extensive usability study

would allow us to better understand how users and security analysts interact with Droid-
Auditor. Second, the DroidAuditor behavior graph could potentially serve as a building
block for a policy enforcement architecture similar to XManDroid [32], where the behav-
ior graph is stored and evaluated on the mobile device. Finally, integrating dynamic taint
analysis into DroidAuditor, for example using TaintDroid [66], would enable us to aug-
ment the behavior graph with precise information flow data for applications which do not
contain native code.

6.3 secure dual-use of smart mobile devices 97

6.3 secure dual-use of smart mobile devices

When analyzing the adoption of smart mobile devices by enterprise customers, a general
trend towards a single device for both enterprise and private use can be observed [129].
Two prominent paradigms to implement this trend are bring your own device (BYOD) and
corporate-owned, personally-enabled (COPE) devices. In BYOD, enterprise administrators
integrate private employee-owned devices into the enterprise IT architecture. In contrast,
the COPE paradigm dictates that devices are owned and distributed by the employer, who
grants permission for private use to the employee.
Regardless of the particular paradigm isolation of enterprise and private data and ap-

plications on smart mobile devices is of paramount importance to prevent accidental data
leakage. Unsurprisingly, both academic research and commercial vendors have proposed a
variety of security architectures to isolate enterprise and private applications and data. An-
droid in particular has received much attention due to its popularity [130] and open-source
character. The proposed technologies range from isolated enterprise applications [273, 94],
kernel-layer compartments [5, 284] to virtualization-based architectures [107, 146, 18, 127].
While the deployment of isolated enterprise applications is straightforward, they rely on
the security guarantees of the underlying Android operating system, which is concerning
given the amount of well-known attacks (see Chapter 3) and slow deployment of operat-
ing system security updates [260]. Furthermore, this approach generally does not support
the integration of legacy third-party applications into the enterprise domain. In contrast,
architectures based on kernel-layer compartments or virtualization can provide stronger
isolation guarantees. However, their adoption on end-user devices is limited since they
require the duplication of large parts of the operating system software stack, which is
unfavorable given the computation and energy consumption constraints affecting smart
mobile devices (see Section 3.4.6).
The BizzTrust solution discussed in this section tackles these challenges by providing

security domain isolation for legacy Android applications using mandatory access control.
BizzTrust extends our TrustDroid [33] architecture with necessary enterprise features and
predates comparable technologies recently introduced by Google (Android for Work [133])
as well as Samsung (KNOX [214]). Today, the award-winning [250, 230] BizzTrust solution
is an established commercial product available for a range of Android-based smartphones
and tablets.

Contributions. To summarize, our main contributions are as follows:

• MAC-based Security Domain Isolation. BizzTrust provides security domain
isolation using system-centric mandatory access control on Android.

• Secure Network Access. BizzTrust implements secure network access for enter-
prise apps based on concepts developed by the Trusted Computing community.

• Commercial Availability. We discuss interesting aspects of advancing our Trust-
Droid research prototype towards a commercially viable product.

98 practical use cases

Remark. Initial versions of BizzTrust were derived from our TrustDroid architecture [33].
Main idea, design, implementation and security evaluation of TrustDroid are due to Sven
Bugiel. Bhargava Shastry applied Tomoyo Linux to Android and contributed communi-
cation between kernel- and middleware-layer access control mechanisms. The author con-
tributed the design of the application-specific firewall. Alexandra Dmitrienko was involved
in discussions about design decisions. Lucas Davi contributed an analysis of related work
and participated in general writing tasks. Ahmad-Reza Sadeghi was involved in fruitful
discussions and provided feedback, which improved the quality of our publication [119].
The author was further responsible for advancing the TrustDroid prototype towards the

award-winning pre-sales version of BizzTrust. He ported the design and implementation
to more recent Android versions and additional devices. He further refined TrustDroid’s
access control architecture and integrated additional policy enforcement points. Finally,
the author was responsible for integrating BizzTrust with the Trusted Network Connect
(TNC) [263] network admission control technology.

6.3.1 Scope

The main goal of BizzTrust is to prevent illegitimate access from private applications
installed by the user to enterprise applications and data, and vice versa. To do so, appli-
cations are assigned to security domains, such as enterprise and private. Based on these
security domains, BizzTrust enforces a Chinese wall policy [29] to prevent leakage of data
across domains. To enforce this policy BizzTrust uses mandatory access control on all
layers of the operating system (see Figure 19).

Enterprise
Applications

Application
Layer

Middleware
Layer

Kernel
Layer

Private
Applications

A
cc

e
ss

 C
o

n
tr

o
l

Mobile DeviceEnterprise Network

VPN Gateway

Enterprise Servers

Network Admission
Control

Security
Server

Figure 19: BizzTrust framework design

In accordance with our adversary model presented in Section 3.1 we assume that both
users and enterprise administrators can deploy arbitrary Android applications to the device.
Further, we assume that the user is non-malicious and does not aim to intentionally leak

6.3 secure dual-use of smart mobile devices 99

data. This is reasonable since the user could easily transfer data across domains manually,
for example by taking photos of enterprise documents displayed on the screen using an
external camera or by manually transcribing sensitive documents. However, the user might
accidentally install malicious or privacy-intrusive applications.

Requirements. Given our goal we formulate the following requirements for BizzTrust:

• Multi-Layer Isolation. BizzTrust should mediate access to kernel-, middleware-
and application-layer resources and communication mechanisms.

• Legacy Compliance. BizzTrust should allow both users and enterprise administra-
tors to deploy arbitrary unmodified Android applications to their respective isolated
domains.

• Minimal Performance Impact. The performance impact of the BizzTrust archi-
tecture should be minimal and not disturb the user.

6.3.2 Design

In this section, we will discuss the design of our BizzTrust architecture.

High-Level Idea. Our BizzTrust architecture depicted in Figure 19 comprises the fol-
lowing components: First, the middleware-layer SecurityServer serves as the central policy
decision point within BizzTrust and manages all installed applications. Second, a set of
policy enforcement points within Android’s application, middleware and kernel-layer en-
force the Chinese wall policy managed by the SecurityServer. Finally, a Network Admission
Control solution restricts access to the enterprise network to authenticated devices and
provides mobile device and application management.

Security Server. Our BizzTrust SecurityServer associates all installed applications with
their corresponding security domains. On the first boot, the SecurityServer assigns the sys-
tem security domain to all preinstalled system applications. Applications installed by the
user are assigned to the private domain, while authenticated enterprise apps are assigned
to the enterprise domain. The SecurityServer internally stores the binding between applica-
tion package name, assigned Linux User ID (UID) and security domain and synchronizes
this information with the kernel-, middleware- and application-layer policy enforcement
points.
To identify valid enterprise applications during installation our SecurityServer first checks

the integrity and authenticity of such applications. To do so, we integrated hooks into
Android’s PackageManagerService to verify a cryptographic Remote Integrity Metric (RIM)
certificate, which we embed into enterprise application packages, using a Mobile Trusted
Module (MTM) [262]. RIM certificates are similar to industry-standard X.509 certificates,
but their validity can be bound to specific platform security states as defined by the Trusted
Computing Group. Accordingly, we assume that the enterprise operates a corresponding
public key infrastructure (PKI) to deploy applications.
Finally, our SecurityServer is responsible for signaling the security domain of the current

application to the user using visual indicators. Since current Android versions only display

100 practical use cases

one application at any given time, BizzTrust signals the currently active security domain
via Android’s StatusBar component. In addition, we use the RGB notification LED avail-
able on most Android devices to indicate the security domain in case an application is
running in full screen mode where the StatusBar is obscured.

Kernel-Layer Mandatory Access Control. As discussed in Section 2.3.2 Android ex-
ecutes each application inside an isolated sandbox and uses the underlying Linux kernel’s
discretionary access control mechanisms to isolate applications on the file-system layer. Ac-
cordingly, application-private data stored on the internal file system is by default isolated
from other applications unless explicitly specified otherwise by the application developer.
Finally, Android uses a kernel-layer reference monitor to restrict the use of network and
domain sockets to applications holding the INTERNET permission.

This approach is however insufficient for enterprise use-cases: First, Android does not
enforce fine-grained access control on external storage devices, such as removable Micro SD
cards (see Section 4.3.2). Second, app developers might explicitly or accidentally set the
file access permissions of their app-private files to world-writable, which could expose
enterprise data to private applications. Finally, the granularity of Android’s INTERNET
permission is insufficient to prevent socket-based communication between apps of different
security domains.
Kernel-layer mandatory access control (MAC) mechanisms provide the necessary prim-

itives to address these concerns. As described in Section 5.1 the Linux kernel supports
a variety of MAC models, such as label [153, 216] and task-oriented [114] access control,
via the Linux Security Modules (LSM) interface [283]. These MAC models can at run-
time override positive decisions of the default kernel-layer access control model, which in
Android’s case is discretionary access control (see Section 2.3.2).

Adopting kernel-layer mandatory access control to implement fine-grained security do-
main isolation on Android is however not straightforward. The reason is that Android
consists of three distinguished layers, namely the kernel-, middleware- and application
layer. Access control mechanisms deployed on these layers need to operate in concert to
prevent data leakage. For example, an application-layer enterprise ContentProvider, which
is implemented within userspace, can provide access control enforcement on the ContentPro-
vider interface using Android’s default permission model. However, in case the underlying
database file is world-readable, private applications could still access sensitive data via the
kernel layer.

To address this concern, BizzTrust at runtime synchronizes access control rules between
the kernel and the SecurityServer deployed on the middleware layer. To do so, we first inte-
grate a suitable kernel-layer MAC architecture into the default Android Linux kernel. Our
SecurityServer propagates the security domain of applications to our kernel-layer access
control mechanisms based on the Linux UID assigned to individual applications at instal-
lation time. Whenever an application process creates a kernel-layer resource, such as a
file or a socket, the resource inherits the security domain of the corresponding application
process. The kernel-layer MAC mechanisms at runtime uses both the resource and the
application process security domain to decide whether an application process is allowed
to access a resource.

6.3 secure dual-use of smart mobile devices 101

Middleware-Layer Mandatory Access Control. Android components primarily rely
on Binder IPC communication to interact at runtime (see Section 2.3.1). Accordingly,
as a first-step to middleware-layer mandatory access control BizzTrust must prevent ap-
plications from communicating via Binder IPC across domains. To do so, we extended
Android’s default permission-based access control architecture.

Whenever applications establish a communication channel across process boundaries via
Binder IPC, Android’s middleware-layer ActivityManagerService acts as a reference moni-
tor and enforces the default permission model. The primary mechanism for Binder IPC
communication is Intent message passing. Android’s ActivityManagerService is responsible
for correctly routing these Intent messages. We thus modified ActivityManagerService to
enforce our security model on Intent-based communication by dynamically filtering Intent
receivers. For example, whenever a private application sends a Broadcast Intent to all in-
stalled applications, our modified ActivityManagerService will only forward this Broadcast
Intent to system and private applications. Similarly, our modified ActivityManagerService
ensures that enterprise applications can only invoke Activities of other system and enter-
prise applications via Intents. The same concept applies to invocations of Android Services
and ContentProviders across domain boundaries.
Since both enterprise and private applications are allowed to communicate with system

components and vice versa additional access control mechanisms are necessary. Consider
for example that Android’s PackageManagerService centrally stores application metadata,
such as installed applications and their version numbers. From an enterprise perspective, it
is desirable to prevent private applications from learning which applications are deployed
within the enterprise domain. Another example is Android’s AccountManagerService, which
centrally manages credentials for cloud-based services for both enterprise and private ap-
plications.
To prevent such information leakage Android components deployed in the system do-

main are responsible for assigning security domains to resources they manage and to
enforce access control on them. Conceptually, this approach is similar to the Userspace
Object Managers we adopted in our FlaskDroid architecture (see Section 4.2.3)2. More pre-
cisely, when processes instantiate middleware-layer resources, the responsible component
queries the SecurityServer for the security domain of the corresponding application process
and applies the appropriate domain label to the resource. System components are also
responsible for labeling incoming data not bound to application processes. For example,
SMS/MMS messages are assigned to either the private or enterprise domain based on
the security domain associated with the sender’s phone number, as we describe in the
next paragraph. When application processes later attempt to access these resources, the
corresponding system component enforces our Chinese wall policy based on the security
domain label of both the resource and application process.

Application-Layer Mandatory Access Control. Our middleware- and kernel-layer
mandatory access control extensions prevent private and enterprise applications from es-
tablishing communication channels via IPC, the network and the file system. However,
several important system components, which are part of Android’s application program-

2Note that the BizzTrust architecture predates FlaskDroid.

102 practical use cases

ming interface (API), are implemented not as middleware components, but as system
applications deployed on the application layer (see Section 2.3.1). Prominent examples are
the contacts and call log ContentProviders. Both private and enterprise applications have
legitimate reasons to access these ContentProviders.
To address this issue, we extend such components with additional application layer ac-

cess control mechanisms, which enforce access control rules based on the security domain
of the callee. To do so, our design leverages proxy components located within the system
security domain, which can be accessed by both enterprise and private applications. The
proxy implements the corresponding Android API and forwards calls selectively to compo-
nents associated with either the private and enterprise domain depending on the security
domain of the application process. In case a system applications requests access to such
an API, the proxy queries both the private and enterprise domain components and merges
the results.

Secure Network Access. Smart mobile devices used in enterprise use-cases are typically
embedded into an enterprise network infrastructure. Following our Chinese wall model,
BizzTrust ensures that only authenticated users, devices and enterprise applications can
communicate with remote network servers part of the enterprise domain.
Accordingly, BizzTrust establishes a virtual private network (VPN) tunnel to the enter-

prise network infrastructure, which limits access to the enterprise network to authenticated
users. Furthermore, our architecture configures the network packet filter of Android’s Linux
kernel to prevent private applications from accessing the VPN tunnel.
Additionally, our BizzTrust architecture ensures that only authenticated devices which

adhere to a given security policy can establish network connections to the enterprise net-
work. To do so, BizzTrust embraces a concept established by the Trusted Computing
community, namely network admission control based on remote attestation. In particular,
BizzTrust adopts the Trusted Network Connect (TNC) standard [263]. In TNC, a user’s
device, denoted Access Requestor (AR), attests its configuration towards an infrastructure-
side policy decision point, denoted Network Access Authority (NAR) (see Figure 20). If the
attestation procedure yields a positive result, the NAR configures a Policy Enforcement
Point (e.g., a firewall) to grant access to the protected network. Otherwise, access is denied
until the desired state is established.
TNC is a modular standard, where Integrity Measurement Collectors (IMCs) deployed

on the Access Requestor collect use-case specific integrity measurements. These measure-
ments are evaluated by corresponding infrastructure-side Integrity Measurement Verifiers
(IMVs). Matching pairs of IMCs and IMVs are deployed on the TNC client and server and
communicate via the IF-M protocol [265]. TNC server and client exchange aggregated
measurements and access control decisions using the IF-TNCCS protocol [267]. Finally,
the IF-TNCCS protocol is encapsulated using a use-case specific implementation of the IF-
T protocol, for example based on Transport Layer Security (TLS) [57, 264] or Extensible
Authentication Protocol (EAP) [3, 266].

The generic nature of the TNC specification allows the deployment of a variety of
use-case specific IMC-IMV pairs. In our design, we use TNC to attest metadata about
the device and specific Android distribution as well as applications deployed within the
enterprise environment towards the Network Access Authority.

6.3 secure dual-use of smart mobile devices 103

Mobile Device

Network Access
Requestor

(NAR)

Enterprise
Network

TNC Client

Policy
Enforcement Point

Firewall

IF-TNCCS

IF-M

IF-TIF-T

TNC Server

IMCIMCIMCIMC

Configure

Network Access
Authority

(NAA)

Integrity
Measurement

Verifiers (IMVs)

Integrity
Measurement

Collectors (IMCs)

Figure 20: Trusted Network Connect (TNC) integration

6.3.3 Implementation

Our initial implementation of BizzTrust was presented to the public in September 2011 at
the it.sa IT security fair in Nürnberg, Germany. This initial version was based on Trust-
Droid [33] and targeted Android 2.2.1. The author of this dissertation ported BizzTrust
to the more recent Android version 2.3.7 in 2012. Since 2012 Sirrix AG leads the develop-
ment of BizzTrust and commercially distributes more recent versions targeting Android
version 5 and above [229]. BizzTrust today is available for a wide range of smart mobile
devices, ranging from Google’s Nexus line of developer devices to Sony’s Xperia series of
smartphones and tablets. Due to confidentiality agreements this dissertation however can
only provide limited insights into recent developments, and we refer to Sirrix AG for more
detailed information.

Security Server. We implemented the BizzTrust SecurityServer within Android’s System-
Server, where ActivityManagerService and PackageManagerService reside. This approach pre-
vents unnecessary inter-process communication when middleware-layer components, such
as ActivityManagerService and PackageManagerService, invoke the SecurityServer for access
control decisions. We further extended Android’s application programming interface to
enable our middleware- and application-layer access control mechanisms to interface with
our SecurityServer via the Context Java class.
We modified Android’s PackageManagerService to enable the deployment of enterprise

applications. To do so, PackageManagerService at installation time attempts to verify an
app-specific RIM certificate. This certificate is generated using the enterprise’s public
key infrastructure and either deployed as part of the corresponding Android application
package or via a mobile device management solution. To this end, we implemented a
minimalist mobile trusted module (MTM) within Android’s middleware layer. This MTM
is preloaded with the necessary enterprise certificate chain to verify corresponding RIM
certificates. In case the application’s RIM certificate is verified successfully PackageMana-

104 practical use cases

gerService instructs the SecurityServer to assign the application to the enterprise domain
during the installation process. SecurityServer in turn propagates the necessary changes to
our kernel-layer mandatory access control framework and configures the Netfilter network
packet filter via the iptables command line tool.
It should be noted that recent BizzTrust versions adopt an alternative scheme. Current

versions of BizzTrust are centrally managed via a mobile device management solution
based on an enterprise-side Sirrix Trusted Object Manager [231] appliance. This appli-
ance deploys enterprise applications via an authenticated and encrypted mobile device
management channel.

Kernel-Layer Mandatory Access Control. Initial versions of BizzTrust based on
Android 2.2 and 2.3 use Tomoyo Linux [114] version 1.8 to instantiate the required kernel-
layer mandatory access control mechanisms. Tomoyo provides the necessary primitives
to interface with our SecurityServer via the proc pseudo-filesystem of the Linux kernel.
At boot time, the SecurityServer propagates application UIDs and their security domains
via this interface to the kernel-layer. Whenever applications are installed or removed at
runtime our SecurityServer synchronizes the corresponding changes with Tomoyo.

In contrast, recent versions of BizzTrust are based on SELinux [153]/SEAndroid [232]
instead of Tomoyo. The rationale behind this decision is that SELinux is the default kernel-
layer mandatory access control framework of Android since version 4.3 [101]. While our
ASM architecture demonstrates that it is feasible to deploy multiple kernel-layer manda-
tory access control modules (see Section 5.2.4), rebasing BizzTrust on SEAndroid decreases
the required effort for porting BizzTrust to newer Android versions.

Middleware-Layer Mandatory Access Control. Our middleware-layer access control
mechanisms primarily concern Android’s ActivityManagerService, which we instrumented
with additional hooks to query the SecurityServer for access control decisions during Binder
IPC transactions. Most notably we introduced hooks which control applications sending
(Broadcast) Intents, binding to Services, querying ContentProviders or starting other appli-
cations’ Activities. In general our access control hooks are invoked after Android’s default
permission checks have allowed an operation to proceed to avoid unnecessary performance
overhead. Additional access control hooks were introduced into Android’s PackageMana-
gerService, AccountManagerService as well as telephony and text messaging subsystems.

Application-Layer Mandatory Access Control. We modified important Android sys-
tem applications to enforce our Chinese wall access control policy separating the private
and enterprise domain. Most importantly, we modified several system ContentProviders,
such as Android’s default ContactsProvider, CallLogProvider and TelephonyProvider.

Regarding ContentProviders it should be noted that our initial TrustDroid implementa-
tion [33] stored security domain labels alongside their associated data entries within the
corresponding ContentProvider (see Figure 21a). For example, the ContactsProvider uses a
SQLite database back end, and we added additional fields indicating the security domain
of each entry. However, related work has identified that Android’s system ContentProvi-
ders are susceptible to SQL Injection attacks [173], which abuse the fact that SQL queries
are routinely generated from user- or application-controlled input without proper sanitiza-
tion. To prevent potential cross-domain data leaks via SQL injection we decided to instead

6.3 secure dual-use of smart mobile devices 105

adopt the proxy-based approach we discussed in Section 6.3.2 (see Figure 21b). In doing so
BizzTrust ensures that the effects of potential SQL injection vulnerabilities are contained
within the corresponding security domain.

Enterprise
Applications

Private
Applications ContentProvider

Private Data

Enterprise Data

Private Data

Enterprise Data
M

A
C

-b
as

e
d

 F
ilt

e
r

Invoke

Invoke

(a) Access Control on ContentProviders using
MAC-based filtering

Enterprise
Applications

Private
Applications

P
ro

xy
 P

ro
vi

d
e

r

Enterprise
ContentProvider

Private
ContentProvider

Invoke

Invoke

(b) Access Control on ContentProviders using Proxy
ContentProviders

Figure 21: Access Control on ContentProviders.

Secure Network Access. Initial versions of BizzTrust embraced the Trusted Network
Connect (TNC) architecture described in our design in combination with an IPsec VPN
for secure network access. To do so, we first modified Android’s VPN subsystem to support
split tunneling, which allows private applications to access Internet resources while an en-
terprise VPN is established. We then deployed a TNC client and corresponding IMC/IMV
pairs on the BizzTrust device.
Our Java-based TNC client communicates with an open-source TNC server [112] to

attest the state of the BizzTrust device using two IMC/IMV pairs. The first pair authen-
ticates the device based on metadata, such as the unique Android ID, IMEI and the de-
ployed version of BizzTrust. The second IMC/IMV pair collects metadata for applications
deployed within the enterprise domain and can additionally be used to push application
updates to the device. Once the device corresponds to a given infrastructure-side security
policy, access to the internal enterprise network is granted by configuring a Linux-based
infrastructure-side firewall using the Netfilter packet filter.
While BizzTrust’s initial support of the open Trusted Network Connect standard en-

abled integration with a variety of TNC-based network admission control solutions more
recent versions of BizzTrust opt for an alternative approach. Today, BizzTrust devices
are embedded into Trusted Virtual Domains [60], which is a concept for cross-platform
security domain isolation and information flow control. Implementations of Trusted Vir-
tual Domain architectures support a variety of device classes, ranging from desktop PCs
and servers to smartphones and tablets. Server-side support for central management is
provided by the aforementioned Sirrix Trusted Object Manager [231].

6.3.4 Evaluation

Performance Overhead. Our initial implementation of the BizzTrust architecture fun-
damentally inherited the performance and memory overhead of the underlying TrustDroid

106 practical use cases

architecture [33], and we will briefly summarize these results here3. On a HTC Nexus One
smartphone the TrustDroid extensions introduced an average overhead of 0.170 ms (stan-
dard deviation σ = 1.910 ms) during Binder IPC compared to the baseline average of
0.184 ms per call when using Android 2.2.1 without our modifications. The high standard
deviation is caused by high system-load due to heavy multi-threading on the single-core
processor of the Nexus One smartphone. The signature verification during the applica-
tion installation process caused an average 869.750 ms of overhead (standard deviation
σ = 645.313 ms).

Security Consideration. BizzTrust efficiently isolates applications using mandatory
access control. On the kernel-layer, the Tomoyo and SELinux frameworks effectively pre-
vent applications from direct communication via Linux IPC mechanisms, network sockets
and the file system. Our middleware layer enhancements prevent applications from us-
ing Binder IPC to directly communicate. While BizzTrust generally does not prevent
application-layer privilege escalation attacks, such as confused deputy and collusion at-
tacks, it contains their effects to the corresponding security domain.
Our architecture does not consider communication across domains via covert channels.

Given our security model and goals (see Section 6.3.1) excluding such attacks is reason-
able, since to establish a covert communication channel across domains the adversary
would have to deploy applications into both the enterprise and private domain. While the
adversary might use social engineering or other attack vectors (see Section 3.2) to deploy
private applications, our changes to PackageManagerService prevent him from deploying
applications to the enterprise domain. Further, it is reasonable to assume that enterprise
applications would not deliberately provide covert channels for cross-domain communica-
tion since they are inherently trusted by the enterprise. Finally, our network admission
control architecture and per-application packet filter prevent unauthorized users, applica-
tions and devices from accessing the enterprise IT infrastructure.
Finally, we note that while BizzTrust is an effective and efficient mechanism to iso-

late enterprise and private applications on Android based devices there are alternative
approaches which provide even higher isolation guarantees. The reason is that compared
to solutions based on virtualization on minimized operating system kernels and hypervi-
sors [107, 146] or kernel-layer compartments [5, 284] the trusted computing base (TCB)
of BizzTrust is larger (see Section 3.4.6). BizzTrust’s TCB includes Android’s kernel, mid-
dleware components as well as system applications which provide services to both the
enterprise and private domain. Accordingly, BizzTrust exposes a considerable attack sur-
face to applications deployed within the private security domain. However, the proposed
alternative approaches based on virtualization and kernel-layer compartments inherently
duplicate a large part of the software stack, which leads to an increased consumption
of memory and CPU time and ultimately effects battery lifetime. While SoCs for smart
mobile devices today even feature efficient virtualization extensions, adoption of these
mechanisms in practice is still very limited. In contrast, solutions based on system-centric
access control mechanisms, ranging from Android for Work [133] to Samsung KNOX [214]

3Note that due to confidentiality agreements we cannot publish corresponding results for more recent
versions of BizzTrust

6.3 secure dual-use of smart mobile devices 107

and BizzTrust are deployed on millions of devices and partially have been certified for
handling classified confidential resources in highly sensitive environments [117].

6.3.5 Conclusion

In this section, we discussed the BizzTrust security domain isolation architecture. Bizz-
Trust adopts system-centric mandatory access control mechanisms on all layers of the
Android operating system to effectively and efficiently isolate private and enterprise appli-
cations. While the underlying Tomoyo-based multi-layer access control framework was first
presented in our TrustDroid architecture [33] modern versions of BizzTrust adopt and aug-
ment SELinux type enforcement with additional application- and middleware-layer access
control mechanisms.
BizzTrust serves as an example which demonstrates the challenging process of com-

mercializing system-centric access control extensions. Indeed, integrating invasive changes
into Android’s default security architecture exacerbates the process of adapting to new
releases of the operating system. Nonetheless, the success of particular academic security
extensions, ranging from the SELinux/SEAndroid [153, 232] mandatory access control ar-
chitecture to the award-winning BizzTrust security domain isolation solution [250, 230]
demonstrate that despite practical challenges in mobile platform security it is feasible to
advance research prototypes to commercial products.

6.4 access control in advanced iot scenarios 109

6.4 access control in advanced iot scenarios

In the previous sections, we have shown that system-centric access control architectures,
such as FlaskDroid, Android Security Modules and BizzTrust, are suitable solutions for
a variety of interesting use-cases. However, while system-centric solutions have favorable
security properties compared to application-layer approaches, their initial deployment re-
quires a modification of the Android operating system. Thus, these solutions should ideally
be deployed by either Google or the mobile device manufacturer. Unfortunately, only few
academic projects have been embraced by industry. Important examples are the SEAndroid
mandatory access control architecture [232], which today is part of mainline Android, and
TrustDroid [33], which laid the foundations for the commercial BizzTrust solution (see
Section 6.3).
Access control architectures based on application-layer deputies [136] are an interesting

alternative for situations where deployment of system-centric solutions is not feasible.
While they provide lesser security guarantees their deployment is straightforward, since
they do not introduce changes to the operating system (see Section 3.4.7). Further, due to
their design these approaches are ideal candidates for scenarios targeting different hardware
platforms and legacy operating systems.
Consider for example the Internet of Things (IoT), where a variety of different classes

of devices in different form factors, ranging from personal information and entertainment
devices, such as smartphones, tablets, smart TVs and wearables, to automotive head units
for smart cars are being equipped with increasing computing, storage and wireless commu-
nication capabilities. The Internet of Things promises to intelligently interconnect these
devices, which allows applications to adapt to available resources in the environment and
to share their capabilities to improve the user-experience and maintainability significantly:
For example, imagine placing a video call from a smartphone using a nearby Android
TV [96] as a display; a smartphone navigation app using the more precise GPS sensors
and larger display of the head unit available in a modern vehicle; letting a navigation app
direct an autonomous vehicle, or resource-constrained devices outsourcing computationally
expensive tasks (e.g., object recognition) to other more powerful devices.
However, today the ability for such intelligent and adaptive device collaboration falls

short. Current network discovery and media sharing protocols, like UPnP [258], DLNA [59],
Apple Airplay [128] or Samsung AllShare [213], limit themselves to a set of predefined ser-
vices. More sophisticated use-cases for advanced device collaboration, be it in the area
of smart vehicles, smart buildings or personal entertainment, require custom software
components that have to be installed, managed and configured individually on each de-
vice. This is tedious, time consuming, and poses security and privacy risks. More flexible
solutions for collaboration among devices based on migrating code from one device to
another [192, 92, 49, 143] do not adequately address security and privacy concerns.
In this section, we present Xapp, a context-aware service mobility framework, which

enables intelligent and secure resource sharing between advanced IoT devices. Xapp differs
from prior work on distributed cross-device functionality in two major aspects. First, it
provides fine-grained access control on sensitive resources using a lightweight token-based
authentication and authorization system. Our access control architecture uses application-

110 practical use cases

layer deputies and does not require changes to the underlying operating system. Second,
it allows users to keep sensitive assets on their trusted devices. By adopting standard
technologies where possible, Xapp supports multiple COTS operating systems and can be
deployed either as a system-centric platform component or installed as an app without
changes to the underlying operating system.

Contribution. To summarize, our main contributions are as follows:

• Flexible Distributed Services. We design the Xapp architecture, which enables
users to securely run an Android app across multiple devices without having to
install it on each of them individually.

• Intuitive Authentication and Authorization. Xapp provides an authentication
and authorization protocol suite where trust is bootstrapped using Near Field Com-
munication (NFC) for the sake of usability.

• Proof-of-Concept Implementation. We implement a prototype of Xapp on the
service-based R-OSGi [257, 205] software stack, an emerging industry standard which
we extended with mechanisms for fine-grained access control and secure communica-
tion.

Remark. The results presented in this section were achieved in collaboration with Chris-
toph Busold, Jon Rios, N. Asokan and Ahmad-Reza Sadeghi. Main idea and high-level
design are due to the author. Jon Rios provided the initial implementation with additional
contributions by Christoph Busold, who focused in particular on cryptographic protocols.
Evaluation was performed by both Jon Rios and Christoph Busold. The author was tasked
with writing our publication [120] in collaboration with Christoph Busold. Both Ahmad-
Reza Sadeghi and N. Asokan were involved in fruitful discussions and provided feedback
which improved the quality of our publication.

6.4.1 Scope

The main goal of Xapp is the controlled distribution of software modules to multiple
devices in advanced IoT scenarios. These software modules share resources across devices
and are subject to strict access control. To describe Xapp we first present our system
model (see Figure 22), which involves the following entities:

• A host H provides resources R to other devices (e.g., a smart TV sharing its screen,
camera and microphone).

• A manager M issues a cryptographic access token T to grant access to resources
R on a host H to other devices (e.g., the smartphone of the smart TV’s owner).
Accordingly, we assume that every host H trusts its manager M and vice versa.

• A client C initiates communication with H and distributes parts of its application
to H in order to use resources R according to an access control policy specified within
the token T .

6.4 access control in advanced iot scenarios 111

Host H1
(Smart TV)
Host H1

(Smart TV)
Client C2

(e.g., Smartphone)

Manager M

(e.g., Owner‘s Smartphone)

HostH

(e.g., Owner‘s Smart TV)

Client C1

(e.g., Smartphone)

M1,1 M1,2 M2,1 M2,2

Deploys
Modules

Deploys
Modules

Provides Access Token T to
Client

Access Control Layer

M1,3 M2,4M2,3

RA RB RC

𝐀𝐩𝐩1 𝐀𝐩𝐩2

Provides Access Token T to
Client

Figure 22: Xapp system model: Entities and interaction

In our model entities are devices in a network, which are identified by their IP addresses
and can be discovered using a suitable service discovery protocol, such as Simple Ser-
vice Discovery Protocol (SSDP) [258]. An application is partitioned into a set of software
modules M, which represent different tasks implemented by this particular application
and depend on a set of available resources R. This module-based approach is in line with
component-based programming models used, for instance, by the Android operating sys-
tem (see Section 6.4.3).

Refined Adversary Model. Since our Xapp architecture focuses on access control in
distributed environments of multiple communicating software modules we need to refine
our generic adversary model presented in Section 3.1 to include attacks on network com-
munication. In particular, Xapp considers the following adversaries:
External attackers Aext are classical Dolev-Yao adversaries [61]: They do not have access

to any of the devices or application modules M, but have full control over the network and
thus can eavesdrop on, manipulate, inject and replay messages. Such attacks could be used,
for example, to inject malicious code into an application module, which is transmitted to
another device.
Each client C, host H or application module can potentially be an internal attacker

Aint, resulting in two possible scenarios. First, a malicious client C can send a malicious
module to a host H in order to gain unauthorized access to resources R and sensitive
information, or even infect the platform or other modules M on H. Xapp should mitigate
attacks from the malicious module on H or any other application modules M running on it.
Second, a malicious host H, hosting application modules M, may attempt to compromise
the client application, for example by tampering with modules M running on H. Xapp
should support the developer in protecting his application and sensitive user data against
such attacks by storing and processing sensitive data only on the user’s trusted device
(e.g., his smartphone acting as client C).

Requirements. Given our adversary model and goal, we formulate the following require-
ments for Xapp:

112 practical use cases

TI

IF-M

M1 M2
RCMM

M3 M4

(1)
Token [TL]

(2)
Connect

SCE

SCE
(5)Upload Modules

(4) Create Instance

(3)

(6)

Operating System

Client CManager M Host H

L

Operating
System Operating System

Module System
Loader Instance IL

Module System
Client Instance ICModule System

Module
System

Figure 23: Xapp framework design

• Protection of User-private Data. A user’s sensitive data, applications and mod-
ules M located on the user’s own device (client C), are protected from the internal
adversary Aint on a host H.

• Host Protection. Aint can neither compromise other sensitive applications nor
modules M and their data on a connected host H.

• Protected Communication Channels. Aext cannot gain access to any resource
R by eavesdropping on or manipulating the network channel.

• Low Performance Overhead. Xapp does not introduce excessive performance
overhead, meaning minor user interaction and the capability to automatically move
modules M to a host H.

• Platform Independence. Application modules M should run independently of the
underlying hardware and operating system. This requires compatibility with common
operating systems. Ideally Xapp should run as a third party application.

6.4.2 Design

In this section, we present the design of our cross-device application framework Xapp.
It comprises a security architecture for sandboxing modules of different applications and
stakeholders, a generic resource control concept and a token-based authentication and
authorization system.

Architecture Overview and High-Level Idea. Our generic architecture is shown in
Figure 23. On every host H a component called Loader L manages modules M running
on H and their privileges to access resources R on H. This Loader L is initially installed
and configured on each host, either by the device owner or by the device vendor. The
owner takes ownership of L by establishing a shared symmetric key KM between the
manager M (e.g., his smartphone) and L. For our implementation we use a key agreement
protocol over NFC due to the required physical proximity [116]. This approach is similar
to the resurrecting duckling model [240], where physical contact is used to create a binding
between two entities.

6.4 access control in advanced iot scenarios 113

Xapp enables the developer to encapsulate the functionality of an application on a
client C into a set of modules M, which potentially use resources on a remote host H. We
implemented an adaptation of the extended duckling model [239] to control which clients
may upload modules to H, and which resources may be used by a client C. When a client
C wants to use resources R of H, it first requests an access token [TL] from H’s manager
M (Step 1) using the Token Issuing protocol (TI). C authenticates to L using the Secure
Channel Establishment protocol (SCE) with this access token (Step 2), which is forwarded
to the Resource Controller RC (Step 3). Next, L creates a restricted execution environment
IC (Step 4) for modules M uploaded by C (Step 5). Modules which trust each other (e.g.,
modules belonging to the same application) may share an instance. Modules run inside
their instance IC , which provides life-cycle management. L is executed inside a privileged
instance IL with access to all resources.

In Xapp instances are created on demand and removed when they are no longer needed,
e.g., because their modules are removed. To protect H from malicious modules of the
internal adversary Aint, instances IC follow the principle of least privilege, meaning that
direct access to resources is limited to what is basically required by their modules. When
a module aims to access shared resources on H, it queries RC located inside IL (Step 6).
RC mediates access to resources R based on a policy PC,H included in the token [TL], as
described in the following section.

Resource Control Concept. When the manager M creates an authentication token
[TL] for a client C, it can bind an access control policy PC,H to this token. Policies
are forwarded by the Loader L to the Resource Controller RC, which is responsible for
their enforcement on H. A policy consists of a set of individual privileges. Each privilege
Privilege(R, C,H, S) = Yes |No |Ask describes whether or not the instance IC may access
a particular resource R on H, optionally limited to a given state S (e.g., time of day).
The Ask value specifies that H should consult M at runtime when IC tries to access this
resource. Policies can further contain optional lifecycle constraints to address possible re-
source starvation attacks by malicious modules. For example, M can define that a shared
resource is only accessible for a specified amount of time, or that IC should be removed
after a certain time span.
Consider the video call use case, where M creates a policy restricting the access of C’s

instance IC to the camera, microphone and screen of the smart TV H, thereby protecting
the privacy of the smart TV’s owner. Modules installed by C are denied access to other
sensitive resources, such as photos accessible by the TV. Finally, M uses a state-aware
policy to allow IC to access the camera and microphone only when the video call module
is running in the foreground on H, and to automatically remove IC after one hour.

Authentication and Authorization Protocols. Our design includes a flexible and
secure protocol suite providing for authentication of clients, authorization for resource
access and security on the communication links. This protocol suite is based on standard
cryptographic primitives and provides offline verification, i.e., the access control token is
verifiable by H if its manager M is not available. Offline verification can be achieved by
token-based protocols such as Kerberos [172]. However, Kerberos requires a database with
known clients, which is managed outside the protocol. Therefore we designed a custom

114 practical use cases

token protocol, which can handle both ad-hoc as well as long-term clients and at the same
time reduces the complexity of Kerberos. A detailed description of our protocols is out
of scope of this dissertation. Hence, we will only provide an overview and refer to our
publication [36] for a more detailed discussion.

Our protocol consists of two parts (see Figure 23). During the Token Issuing Protocol
(TI) M issues a Token [TL] to C. [TL] is bound to a key KC , which is computed through a
Diffie-Hellman key agreement scheme DH between M and C. C uses [TL] to authenticate
itself to L and to establish a secure channel using the Secure Channel Establishment
Protocol (SCE). It proceeds to request a new execution instance IC . Finally, C uses the
SCE protocol to connect to IC by creating a new token [TIC] encrypted by KC and with a
randomly chosen key KI inside. The only setup requirement is a shared symmetric secret
key between M and H, denoted KM, which is used to authenticate and encrypt tokens
with the help of an authenticated encryption scheme AE. This secret key KM has been
established during the initial pairing between M and H.

Interactive Privilege Evaluation. As described previously resources protected by an
Ask privilege require runtime consultation of the manager M. For that purpose, the rel-
evant host H sends the identity of C and the identifier of the resource R together with
a nonce N to M. To secure the authenticity of M’s responses, M computes a message
authentication code (MAC) over the decision value and the original request including the
nonce N using the shared secret key KM. If H fails to verify this MAC or does not receive
a response at all within a certain time frame, it defaults to deny the request.

Access Revocation. Since our solution focuses on time-limited deployment of cross-
device applications via lifecycle constrains we do not consider revocation in our current
implementation. However, token revocation could be added to Xapp by means of revoca-
tion lists. The integrity and authenticity of revocation lists can be assured using MACs
based on a key derived from KM. Alternatively, we could adopt a token status protocol
comparable to OCSP [215], but since Xapp is designed for offline token validation we deem
revocation lists to be better suited.

6.4.3 Implementation

Our implementation of the Xapp design is based on the Open Service Gateway Initiative
(OSGi) specification [257], which is a widely-deployed platform-independent industry stan-
dard for Java software modularization. We run our implementation on Android, which
serves as an example of a modern operating system for advanced IoT devices. In this
section, we highlight the technical challenges we had to tackle and describe several se-
curity extensions we developed for the R-OSGi remote procedure call (RPC) layer [205].
Figure 24 shows the instantiated components.

Platform Considerations. We implemented the module system based on Apache Fe-
lix [252], which is an open-source implementation of the OSGi specification. OSGi allows
us to easily integrate existing solutions that can extend our framework with further desired
functionality (such as service discovery protocols [71, 258, 253]), which is orthogonal to
our work. OSGi divides applications into modules, called bundles. A bundle is a collection

6.4 access control in advanced iot scenarios 115

IF-M

R-OSGi IPC

Client C Host H

SC

IS RC

R-OSGi SCIPC

RC-P M2L

SCR-OSGi

M1M2-P

IPC IPC Channel M1 Module 1 SC Secure Channel

IS Installer Service M2 Module 2 RC Resource Controller

L Loader M2-P Proxy for Module 2 RC-P Proxy for Resource Controller

Operating SystemOperating System

Module System
Loader Instance IL

Module System
Instance ICModule System

Figure 24: Xapp framework implementation

of self-contained Java packages, arbitrary data and a manifest file. This manifest contains
metadata about the bundle along with its platform requirements, provided services and
dependencies on other bundles. At runtime, bundles interact via OSGi services, which can
be published to and consumed by other bundles.
Further, the adoption of OSGi enables us to seamlessly connect modules on different

devices using the remote service layer of Remote OSGi (R-OSGi) [205]. R-OSGi extends
the concept of services in OSGi to remote services, which can be published to and ac-
cessed from other framework instances, possibly running on different machines. At run-
time, R-OSGi can connect to other hosts running R-OSGi and query them for available
remote services. Finally, the platform independence of OSGi allows us to instantiate our
framework on a wide range of operating systems for advanced IoT devices with different
capabilities, ranging from mobile devices and automotive head units to desktop PCs and
virtual machines in cloud environments. Individual security aspects of the target operat-
ing system (most importantly application isolation and access control) must be considered
when adopting our framework. For example, Android relies on process-level permissions
and per-app sandboxes. On PCs, IBM’s Java JVM 8 provides a multi-tenancy environ-
ment [140], which efficiently isolates Java applications executed in one Java VM and uses
the Java Security Manager [182] for access control. Another approach particularly inter-
esting in the context of cloud computing environments is Maxine Virtual Edition [181],
which instantiates isolated Java runtime environments on top of the Xen hypervisor.

For our prototype implementation we selected Android as the target platform not only
because it is the most popular platform for smartphones and tablets [130], but also because
it is deployed in other IoT market segments, e.g., automotive (Android Auto [132]) and
home entertainment (Android TV [96]). While platform documentation on Android Auto
is currently limited, Android TV is a standard Android distribution optimized for large
screens and thus allows the deployment of Xapp without further modifications.

Loader. The Loader L (see Figure 24) is H’s interface to an external client C and exposes
its functionality to remote and local application modules via R-OSGi remote services. This
allows clients to create, remove, start and stop their instances on a host and to deploy

116 practical use cases

application modules, as explained in the following. The Loader is implemented as a set of
OSGi bundles – most importantly the Installer Service and Resource Controller bundles
– which run inside a privileged instance IL.

Installer Service. The Installer Service IS is used by L to create and remove client in-
stances on H. While the implementation of the Installer Service IS is platform-specific it
communicates via a standard OSGi service interface. On Android, instances are imple-
mented as Android applications and isolated by Android’s default sandboxing mechanism
(see Section 2.3.2). Our Installer Service IS for Android bootstraps new instances from a
template application in the form of an Android Application Package (APK). This APK
includes the Apache Felix OSGi framework and required bundles to communicate with C
(e.g., R-OSGi). Since Android apps are identified by a unique package name the Installer
Service IS rewrites the application package file with a new name and configures parameters
specific to the new instance IC , such as the listening port of R-OSGi.
When app modules are deployed by a client C, the installation of the client-specific

instance IC is ideally performed silently without user interaction once H has validated
C’s access token. Due to Android-specific limitations this is only possible if L is an An-
droid system app: For security reasons third-party apps cannot install or remove other
apps silently on stock Android. More precisely, third-party apps cannot obtain the Syste-
mOrSignature-level INSTALL_PACKAGES permission (see Section 2.3.2). Thus, if the Loader
is installed on a stock Android device, Xapp requires minimal user interaction, since the
user has to approve the installation of IC by clicking a button on H.

Resource Controller. The Resource Controller RC exposes resources of the host H to
a client’s instance IC using a R-OSGi service. RC is executed inside the privileged Loader
instance IL, which holds all permissions required to access security- or privacy-sensitive
resources R (e.g., contacts or camera) exposed to instances I. Access to these resources
is mediated according to the instance-specific access control policy contained within the
token [TL]. The implementation of the Resource Controller is platform-specific, while its
interface is the same on different operating systems.
In general, there are two possible approaches to implement access control on resources:

Either the Resource Controller RC uses the existing platform-specific access control mech-
anisms, or RC implements the required access control hooks itself. Both approaches have
advantages and disadvantages:

In the former case, RC maps privileges to operating system specific access control mech-
anisms. As discussed in Section 2.3.2 Android uses permissions for access control on APIs
as well as discretionary and mandatory access control for kernel-level resources. More ad-
vanced architectures, such as FlaskDroid or Android Security Modules (see Chapters 4
and 5) provide interfaces to influence system-level access control decisions at runtime
and could potentially be integrated with Xapp. However, such an integration would limit
our solution to modified versions of the Android operating system and thus violate our
interoperability requirements.
In the latter case, RC implements access control on resources itself by acting as an

application-layer deputy for the unprivileged instance IC . We selected this approach, since
it allows Xapp to consider fine-grained and state-aware access control policies without

6.4 access control in advanced iot scenarios 117

introducing changes to the underlying operating system. In Section 6.4.4 we will discuss
security implications of this design decision.

Our Extensions to Remote OSGi. Our implementation provides several security ex-
tensions to the Remote OSGi (R-OSGi) framework, as described in the following.
The R-OSGi middleware offers by default only TCP communication and provides no

protection against an external attacker Aext. To enable secure communication between the
Loader instance IL, the client C and his remote instance IC , we extended R-OSGi with a se-
cure network channel (SC), which protects both confidentiality and integrity of messages
using authenticated encryption with a symmetric key (see SCE protocol Section 6.4.2).
To provide efficient communication between different OSGi frameworks in separate sand-
boxed instances on the same host H (e.g., IC and IL), we further implemented an IPC
communication channel using domain sockets.
Further, since the original design of R-OSGi does not differentiate between different

communication channels, a service can only decide whether it will be published via R-
OSGi or not. If so, it is always registered on all available communication channels. This
is insufficient, if one wants to expose a service only via the IPC channel to local instances
running on the same host H. To address this limitation we extended the original R-OSGi
implementation with a filter on communication channels, so that services can choose the
channels they are available on.
Another challenge is that services do not know over which channel and from which

endpoint they were called (i.e., remotely or locally), because this connection between the
function call and the originating channel endpoint is hidden by the abstraction of R-OSGi.
In our model, this information is crucial in order to decide whether access to a service
should be granted or not, depending on the identity of the caller (i.e., modules M of a
client C executed in instance IC). We thus implemented a function to retrieve the identity
of the current caller from R-OSGi. For the IPC channel we get the Linux UID of the
connected process and in case of the secure network channel we extract the identity from
the token that was used during the channel establishment protocol.

Xapp Development Model. To support Xapp, apps need to adhere to the (R-)OSGi
programming model, since Xapp is not limited to one specific operating system. Specifi-
cally, developers need to integrate an OSGi runtime environment into their applications,
such as the open-source implementation Apache Felix [252], on top of which the Xapp
components (mainly R-OSGi and the Loader) as well as application-specific bundles are
executed. Consequently, application modules which should migrate between hosts need
to be implemented as OSGi bundles. These bundles at runtime communicate with other
bundles on the local or remote host via OSGi services. OSGi services are comparable to
Android services in that they adhere to the same RPC communication paradigm. To ease
the work of developers who want to adopt our solution, Xapp provides a set of service
definitions for common resources, such as contacts information, camera and microphone.

118 practical use cases

6.4.4 Evaluation

In this section, we evaluate Xapp in terms of performance, usability, interoperability and
security.

Step Average Time (in ms) Standard Deviation σσσ (in ms)
Signature Updating 230.66 15.38
Instance Installation 995.70 23.54
Instance Startup 672.80 24.81
Packaging 728.80 35.51

Total 2, 627.96 99.24

Table 10: Performance evaluation (framework)

Performance. To evaluate the performance of different Xapp components we deployed our
proof-of-concept implementation on two Samsung Galaxy S3 I9300 smartphones running
Android 4.0.4 (client and manager) and a Nexus 10 Tablet running Android 4.2.1 (host).
All devices communicate using an 802.11bgn WiFi network. We use the industry standard
algorithms AES-256 in EAX mode as authenticated encryption scheme AE and ECDH-256
as key exchange protocol DH.
For the Android-based implementation of the token issuing protocol TI we measured

the elapsed time between starting the communication with the manager M and receiving
the token [TL]. Overall the protocol takes 308.28 (σ = 27.73) ms on average over 20 runs.
For our framework we first performed micro benchmarks to measure the time required

for creating a basic instance containing no bundles. This includes all steps starting from
verifying the access token [TL], creating the application package, installing and finally
starting the instance I. The results are presented in Table 10 and show the average and
the standard deviation σ of the time required to perform all steps over 20 runs. These
numbers are reasonable considering that our implementation has not been optimized for
performance yet, and we refer to our case study below for further discussion of these results.
Further, we verified that the OSGi framework incurs no noticeable performance overhead
at runtime using the Java Linpack benchmark [64] both in a regular Android app and in
a Xapp module. The average performance over 20 runs is 143.15 (σ = 0.13) MFlops and
137.41 (σ = 0.33) MFlops respectively, which shows a small difference of 4.18%.

We also performed micro benchmarks to measure the performance impact introduced
by our access control architecture. In our Android-based implementation we query the
contacts database to retrieve a single contact both in a regular Android app and in a Xapp
module. The process takes on average 17.47 (σ = 4.41) and 65.50 (σ = 3.86) milliseconds
respectively over 1000 runs. The high standard deviation is caused by varying system
load. The difference of around 48 milliseconds introduced by the redirection of calls via
the Resource Controller RC and the access control enforcement is partially caused by
marshalling the data over the domain socket. This overhead can potentially be reduced by
mapping the memory into the process, for example using Binder IPC, instead of copying
the individual contacts data fields.

6.4 access control in advanced iot scenarios 119

Interoperability and Portability. Our design enables the isolation of modules deployed
on any operating system and hardware platform which provide adequate sandboxing and
privilege separation capabilities. Since our framework operates on the application layer, it
requires no changes to the operating system, as demonstrated by our implementation on
Android. When an Android device vendor deploys Xapp, it is even possible to install new
instances without user interaction by installing the Loader as a system app.

It should be noted that while we instantiated our framework on Android, our archi-
tecture only requires a standard-compliant Java Runtime Environment with an OSGi
framework and a platform-dependent isolation and privilege separation mechanism (see
Section 6.4.3). Java is used on a variety of operating systems and platforms, from smart
mobile devices to mainframes, and open-source implementations of the Java Virtual Ma-
chine and OSGi standard are available.

Usability. Pairing of devices via NFC has been adopted for a wide range of consumer
devices, such as printers and Bluetooth speakers. Our performance measurements indicate
that the time required to deploy app modules on one or more hosts (see Tables 10 and 11)
is reasonable considering the alternative, which is to manually search, install and later
uninstall an app on each host. While the definition of access control rules in the manager
app is straightforward, one possible limitation is that with a growing number of rules a
user might be tempted to always allow any requests for access to privileges by a client [80].
However, since the functionality of app modules is limited and tailored to specific use cases,
they only need access to a limited set of resources, which accordingly limits the number
of privileges a manager has to consider.

Proof of Concept: Video Call Application. To demonstrate the advantages and
feasibility of our solution we implemented the video calling use case, where Alice uses her
smartphone (client C) and Hector’s Smart TV (host H) to place a video phone call to Bob.
This use case highlights an advantage of app partitioning over just connecting the TV to
the phone: The video stream does not have to be routed through Alice’s smartphone, but
can be processed and sent to the TV directly by Bob’s smartphone. Furthermore, Xapp
protects Alice’s privacy in case the TV is untrusted, since she does not have to enter her
login credentials on the potentially malicious smart TV. Instead, she can keep sensitive
data (e.g., login credentials or contacts information) on her trusted client device.

Step Average Time (in ms) Standard Deviation σσσ (in ms)
Signature Updating 330.86 12.86
Instance Installation 1, 122.16 32.47
Instance Startup 2, 228.47 48.49
Bundle Transmission 1, 837.77 49.79
Packaging 1, 271.20 81.16

Total 6, 790.46 106.43

Table 11: Performance evaluation (case study)

Table 11 presents the performance evaluation results for creating an instance within this
use case. In contrast to the previously discussed basic instance, these numbers contain a

120 practical use cases

transmission phase, where modules with an overall size of 34.2 kB are sent to the host
and added to the installation package, which increases the startup time. In total, our
unoptimized case study implementation requires about 6.79 seconds to deploy the relevant
app modules, which is comparable to downloading and installing apps via an app market.
Note that a client C can deploy modules on multiple hosts in parallel and in contrast to
classic applications our cross-device apps do not require any further lifecycle management,
such as updates and configuration, on the involved devices.

Security Considerations. We now discuss how the security mechanisms implemented
in Xapp allow us to achieve the security goals defined in Section 6.4.1.
An external adversary Aext needs valid tokens to gain access to either the loader L on

host H or an instance IC deployed by a client C. The initial pairing between H and the
manager M, during which a shared symmetric key KM is established, is performed using
confidential and authenticated communication. In our implementation we establish this
key over NFC, which is resistant against man-in-the-middle attacks due to the required
physical proximity [116]. Without knowledge of the cryptographic key KM, Aext cannot
generate a valid access token [TL] for L. Similarly the properties of NFC also protect
the authenticity of M and C when M issues a confidentiality-protected token [TL] to C.
Without access to the key KC stored in the token [TL] Aext is unable to deploy modules on
H. At runtime, C and IC communicate through an authenticated and end-to-end encrypted
channel. These properties are bootstrapped from the access token [TL] issued to C by M,
which prevents Aext from communicating with the deployed instance.

As noted in Section 6.4.1 either a client C or a host H can act as an internal adversary
Aint. On one hand, H has to be protected from a malicious module deployed by C. To
this end, we designed an access control model that mediates which modules M may access
sensitive resources R on H. To implement this model the host operating system needs to
run modules M deployed in C’s instance IC in an isolated least privilege container. Our
Android-based implementation uses the default UID-based sandboxing mechanism (see
Section 6.4.2), which effectively prevents modules M from accessing sensitive resources R
directly. Instead, Xapp modules M use the Resource Controller RC as a deputy who enforces
the access control policy defined by the manager M. It should be noted that the Resource
Controller RC itself thus is an interesting target for attackers due to its highly-privileged
status. Access control on its interfaces to Xapp modules M as well as other applications is
critical to prevent the introduction of new confused deputy vulnerabilities. To address this
concern the access control policy is protected by our token-based authentication and access
control scheme, which ensures that it cannot be forged or modified by an internal adversary
Aint. Dynamic access control queries evaluated by M at runtime are protected against
impersonation, modification and replay by message authentication codes with nonces.
It should be noted that to implement this access control model we rely on the integrity

and security of (system) software on the host (see Section 6.4.1). This requirement is in-
herent to solutions that operate purely on the application layer. Obviously the internal
adversary Aint could extend its privileges at runtime if he could compromise any privileged
system services. Furthermore, access control solutions based on application-layer deputies,
such as Xapp, cannot provide resilience against confused deputy or collusion attacks. For
example, malicious modules deployed by different stakeholders could combine their priv-

6.4 access control in advanced iot scenarios 121

ileges and use inter-process communication (IPC) to exchange sensitive assets. Reliable
control on IPC would require an extension of the underlying operating system, for exam-
ple based on the FlaskDroid or Android Security Modules architectures discussed in this
dissertation (see Chapters 4 and 5). While this is possible, it would not conform to our
interoperability requirement. Moreover, we note that attacks using side channels are out
of scope of our framework, and stress that these limitations apply to manually deployed
applications as well.
On the other hand, sensitive resources R of a client C need to be protected from a mali-

cious host H. Xapp’s module system encourages developers to enclose sensitive operations
in separate modules. A client can decide where these modules are executed. Thus Xapp
allows clients to ensure that modules accessing or storing sensitive data, such as long-term
credentials or contact information, remain on their trusted devices. Of course the adver-
sary could still exploit software errors, hidden backdoors or bad application design, but
this risk is not higher than for traditional applications.

6.4.5 Conclusion

Computing in personal, commercial and industrial environments is undergoing a paradigm
shift. The advent of the Internet of Things (IoT) enables new use cases, in which classical
computing platforms, smartphones and tablets, wearables and further electronic devices
operate in concert. Application lifecycle management and secure resource sharing become
increasingly important aspects in this area.

In this section, we demonstrated how the Xapp framework for smart and secure cross-
device IoT applications for Android can address these challenges. With Xapp, Android
apps can run distributed on different devices without the need to install them manu-
ally on each device. By using an application-layer deputy our Xapp architecture provides
fine-grained access control on shared resources without introducing changes to the un-
derlying operating system. Our proof-of-concept implementation for a video call use case
demonstrates the practical feasibility of our approach, and we plan to extend our work in
several directions, such as prototyping additional use cases and analyzing the feasibility
of integrating (semi)automatic code-partitioning techniques to provide flexible tools to
developers.

7
DISCUSS ION AND CONCLUS ION

7.1 dissertation summary

In this dissertation, we have discussed extensible system-centric access control architec-
tures for smart mobile devices by example of the Android operating system. After a thor-
ough analysis of security aspects of the Android operating system in Chapter 2 we derived
requirements for extensible system-centric access control architectures in Chapter 3. To
do so, we first defined our adversary model and discussed related work on both offensive
as well as defensive mobile security research. Our analysis revealed that while the existing
system-centric security extensions aim to achieve diverse goals, many of them actually
place similar access control enforcement hooks into all layers of the underlying operating
system. This observation motivated our goal of providing generic and extensible security
architectures for augmenting Android’s permission-based access control model without
introducing further changes to the operating system.

Extensible Policy-Driven Access Control on Android. In Chapter 4, we introduced
a policy-driven approach towards extensible access control, which extends SELinux kernel-
layer type enforcement [153] to the middleware- and application-layer. Our FlaskDroid
architecture [34] serves as an efficient basis for the policy-driven instantiation of use-case
specific security solutions, which we demonstrated by prototyping both novel security
extensions as well as prior work. By analyzing both performance impact and policy com-
plexity we have shown that Android is a suitable target for fine-grained access control
using type enforcement. The main reason is that operating systems for smart mobile de-
vices, such as Android, provide a rich set of high-level system services via well-defined
interfaces, which facilitates the integration of fine-grained access control mechanisms.

Modular Programmable Access Control on Android. In Chapter 5, we applied
lessons learned from extensible operating system security research [278] to Android by
proposing a programmatically extensible access control architecture. Our Android Secu-
rity Modules (ASM) framework [119] demonstrates the feasibility of mediating access
control on all layers of the operating system via a unified middleware-layer interface. Our
evaluation has shown that both energy consumption and performance overhead can be
minimized by activating access control hooks only when they are actually required by the
deployed security modules. We further instantiated both novel use-cases as well as prior
work using ASM to demonstrate the flexibility of our solution.

Practical Use-Cases. Chapter 6 introduced a set of distinct use-cases which we imple-
mented using system-centric access control architectures. ConXsense (see Section 6.1) pro-
totypes context-driven access control on Android. Our architecture demonstrates that both
usability and user privacy can be improved by dynamically configuring security settings
on the device based on the usage context. We instantiated ConXsense on both FlaskDroid

123

124 discussion and conclusion

and ASM to showcase fundamental differences between policy-driven and system-centric
access control by example.

The DroidAuditor architecture [120] introduced in Section 6.2 utilizes the Android Secu-
rity Modules framework for dynamic application behavior analysis. DroidAuditor monitors
application behavior on end-user devices and organizes these observations in a graph-based
database. By example of application-layer privilege escalation attacks as well as malicious
spyware applications we have shown that our approach enables both end-users and secu-
rity analysts to intuitively gain insights into application behavior. Our generic graph-based
approach can further be augmented with events generated by related work on dynamic
program analysis [66].
In Section 6.3, we discussed the BizzTrust architecture [229], which brings security do-

main isolation to Android using mandatory access control. BizzTrust evolved from our
academic TrustDroid prototype [33]. Despite practical concerns regarding the modifica-
tion of central operating system components we were able to transform this academic
Android system security extension into an award-winning [250, 230] and commercially vi-
able product. In this dissertation, we focused on practical challenges that had to be solved
during the productization of our initial design. This process mainly concerned mobile de-
vice management, network admission control as well as adapting our initial middleware-
and kernel-layer access control mechanisms to the peculiarities of recent Android versions.
Finally, it must be acknowledged that despite the favorable security properties of system-

centric access control solutions there are situations where their deployment is currently
not feasible in practice. The main reason is that it is not always possible to modify the
preinstalled operating system. Related work has proposed to address such situations us-
ing binary rewriting and inlined reference monitors (IRMs) [70, 16, 289, 54, 53, 199] to
shift access control enforcement into untrusted application processes. However, IRM-based
approaches cannot provide complete mediation in the presence of native and reflective
code. In Section 6.4, we discussed how our Xapp architecture [36] addresses this concern
using application-layer deputies [136]. We have evaluated Xapp in an advanced Internet-
of-Things scenario, where multiple cooperating but mutually untrusted devices share data
and resources. Our evaluation has shown that within their design-inherent limitations
application-layer deputies can be a viable alternative to system-centric access control.

7.2 directions for future research

Integration of Trusted Computing Technology. Trusted Execution Environments
(TEEs) are central parts of hard- and software security architectures of smart mobile de-
vices today. As discussed in Section 2.1.2 these environments are based on highly-privileged
CPU modes and hardware memory isolation mechanisms (e.g., ARM TrustZone [7]). Their
main goal is the isolated execution and secure storage of sensitive assets outside of the
influence of the main operating system (e.g., Android). TEEs separate code and data of
multiple stakeholders using containers, denoted Trustlets, and we identified two particular
use-cases for integrating TEEs with our system-centric access control architectures.

7.2 directions for future research 125

The first use-case concerns device state attestation and network admission control, which
are important building blocks for secure enterprise use of smart mobile devices (see Sec-
tion 6.3.2). The highly-privileged nature of TEEs enables technologies which attest the
integrity of the trusted computing base (TCB) towards network infrastructure components.
In the context of policy-driven and programmable access control a particularly interesting
problem is the efficient and scalable attestation of access control policy enforcement or
active security modules. Moreover, within our DroidAuditor architecture (see Section 6.2)
TEE technology could be adopted to preserve the integrity and authenticity of appli-
cation behavior observations despite operating system compromise. Integration of these
approaches with network admission control solutions [263] would allow enterprise admin-
istrators to restrict access to security-sensitive information stored within the enterprise IT
infrastructure to devices that adhere to a defined security state.
The second use case concerns access control on Trustlets. TEEs rely on access control

enforcement mechanisms to restrict access to specific Trustlets to authorized applications.
The GlobalPlatform Secure Element Access Control specification [91] standardizes these
access control mechanisms. It stipulates that access control policies are defined within
Trustlets, and that applications communicating with Trustlets are authenticated using
public key cryptography. The GlobalPlatform standard relies on a software component
within the main operating system (e.g., Android) to enforce these access control policies.
Both our FlaskDroid and ASM architectures provide the necessary primitives to implement
the functionality of this Access Control Enforcer (ACE) component. They not only allow
the instantiation of ACE functionality by enforcing corresponding access control rules, but
also provide the means to extend the default application authentication procedure with
advanced features, for example using context-aware access control [162].

System-centric Access Control and Dynamic Information Flow Analysis. Our
system-centric access control architectures operate on the granularity of application pro-
cesses. On one hand, the process is the designated security boundary of Android appli-
cations. On the other hand, this restricted granularity limits the scope of access control
enforcement: In their current states, neither FlaskDroid nor ASM can implement fine-
grained information flow control due to their limited insights into application processes.
As a first step to address this concern related work has proposed to integrate information

flow control into Android [124] based on dynamic taint analysis [66]. The current state of
the art however does not adequately address native and reflective software components,
which enable adversaries to thwart detection of illegitimate information flows. We thus
propose to investigate mechanisms for fine-grained information flow control in the presence
of native and reflective code. Addressing this limitation could pave the way for a set of
novel use-cases for extensible system-centric access control architectures: An integration of
dynamic taint analysis could generally increase the resolution of access control enforcement,
which would enable the development of fine-grained information-flow control and analysis
solutions based on our designs. For example, the ASM-based DroidAuditor application
behavior analysis platform (see Section 6.2) could potentially be extended with more fine-
grained information flow information, which would allow security analysts to gain even
more detailed insights into application behavior.

8
ABOUT THE AUTHOR

Stephan Heuser is a research assistant at the Technische Universität Darmstadt and the
Intel Collaborative Research Institute for Secure Computing (Intel CRI-SC), Germany. He
studied computer science at Technische Universität Darmstadt and received his diploma in
2010. Before changing his affiliation to Technische Universität Darmstadt, he worked as a
research assistant at Fraunhofer Institute for Secure Information Technology in Darmstadt,
Germany. His research focused on security aspects of smart mobile devices in general,
and particularly on the design and implementation of flexible and modular access control
mechanisms for the Android operating system.

awards

• TeleTrust Innovation Award 2012 (BizzTrust)

• Best Paper Award at ASIACCS 2014 (ConXSense)

peer-reviewed publications

Stephan Heuser, Marco Negro, Praveen Kumar Pendyala, and Ahmad-Reza Sadeghi.
DroidAuditor: Forensic Analysis of Application-Layer Privilege Escalation Attacks on
Android. In Proceedings of the 20th International Conference on Financial Cryptography
and Data Security, FC’16. URL http://fc16.ifca.ai/preproceedings/15_Heuser.p
df.

Christoph Busold, Stephan Heuser, Jon Rios, Ahmad-Reza Sadeghi, and N. Asokan.
Smart and Secure Cross-Device Apps for the Internet of Advanced Things. In Proceed-
ings of the 19th International Conference on Financial Cryptography and Data Security,
FC’15. URL http://dx.doi.org/10.1007/978-3-662-47854-7_17.

Alexandra Dmitrienko, Stephan Heuser, Thien Duc Nguyen, Marcos da Silva Ramos,
Andre Rein, and Ahmad-Reza Sadeghi. Market-driven Code Provisioning to Mobile
Secure Hardware. In Proceedings of the 19th International Conference on Financial
Cryptography and Data Security, FC’15. URL http://dx.doi.org/10.1007/978-3-662-
47854-7_23.

Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi. ASM: A
Programmable Interface for Extending Android Security. In Proceedings of the 23rd
USENIX Security Symposium, USENIX’14. URL https://www.usenix.org/conferenc
e/usenixsecurity14/technical-sessions/presentation/heuser.

127

http://fc16.ifca.ai/preproceedings/15_Heuser.pdf
http://fc16.ifca.ai/preproceedings/15_Heuser.pdf
http://dx.doi.org/10.1007/978-3-662-47854-7_17
http://dx.doi.org/10.1007/978-3-662-47854-7_23
http://dx.doi.org/10.1007/978-3-662-47854-7_23
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/heuser
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/heuser

128 Books and Book Chapters

Markus Miettinen, Stephan Heuser, Wiebke Kronz, Ahmad-Reza Sadeghi, and N. Asokan.
ConXsense – Context Profiling and Classification for Context-Aware Access Control. In
Proceedings of the 9th ACM Symposium on Information, Computer and Communications
Security, ASIACCS’14. URL http://dx.doi.org/10.1145/2590296.2590337.

Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. Flexible and Fine-
grained Mandatory Access Control on Android for Diverse Security and Pri-
vacy Policies. In Proceedings of the 22nd USENIX Security Symposium,
USENIX’13. URL https://www.usenix.org/conference/usenixsecurity13/techni
cal-sessions/presentation/bugiel.

Ammar Alkassar, Stephan Heuser, and Christian Stüble. Vertrauenswürdige
Smartphones: Technologien und Lösungen. In Tagungsband zum 13. Deutschen
IT-Sicherheitskongress. URL https://www.trust.informatik.tu-darmstadt.de/pub
lications/publication-details/?no_cache=1&tx_bibtex_pi1%5Bpub_id%5D=TUD-C
S-2013-0142.

Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Ahmad-Reza Sadeghi,
and Bhargava Shastry. Practical and Lightweight Domain Isolation on Android. In
Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and
Mobile Devices, SPSM’11. URL http://dx.doi.org/10.1145/2046614.2046624.

Ingo Bente, Gabi Dreo, Bastian Hellmann, Stephan Heuser, Joerg Vieweg, Josef von
Helden, and Johannes Westhuis. Towards Permission-Based Attestation for the Android
Platform. In Proceedings of the 4th International Conference on Trust and Trustworthy
Computing, TRUST’11. URL http://dx.doi.org/10.1007/978-3-642-21599-5_8.

Kai-Oliver Detken, Günther Diederich, and Stephan Heuser. Sichere Plattform zur
Smartphone-Anbindung auf Basis von TNC. In D.A.CH Security 2011: Bestandsauf-
nahme, Konzepte, Anwendungen und Perspektiven, DACH’11. URL http://www.vogue-
project.de/cms/upload/pdf/DACH2011_VOGUE-Beitrag_final.pdf.

Julian Schütte and Stephan Heuser. Auctions for Secure Multi-party Policy Negotia-
tion in Ambient Intelligence. In Proceedings of the IEEE Workshops of the 25th Inter-
national Conference on Advanced Information Networking and Applications Workshops,
WAINA’11. URL http://dx.doi.org/10.1109/WAINA.2011.98.

books

N. Asokan, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Kari Kostiainen, Elena
Reshetova, and Ahmad-Reza Sadeghi. Mobile Platform Security. Morgan & Claypool,
1st edition, 2013. ISBN 1627050973, 9781627050975. URL http://dx.doi.org/10.2200/
S00555ED1V01Y201312SPT009.

http://dx.doi.org/10.1145/2590296.2590337
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bugiel
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bugiel
https://www.trust.informatik.tu-darmstadt.de/publications/publication-details/?no_cache=1&tx_bibtex_pi1%5Bpub_id%5D=TUD-CS-2013-0142
https://www.trust.informatik.tu-darmstadt.de/publications/publication-details/?no_cache=1&tx_bibtex_pi1%5Bpub_id%5D=TUD-CS-2013-0142
https://www.trust.informatik.tu-darmstadt.de/publications/publication-details/?no_cache=1&tx_bibtex_pi1%5Bpub_id%5D=TUD-CS-2013-0142
http://dx.doi.org/10.1145/2046614.2046624
http://dx.doi.org/10.1007/978-3-642-21599-5_8
http://www.vogue-project.de/cms/upload/pdf/DACH2011_VOGUE-Beitrag_final.pdf
http://www.vogue-project.de/cms/upload/pdf/DACH2011_VOGUE-Beitrag_final.pdf
http://dx.doi.org/10.1109/WAINA.2011.98
http://dx.doi.org/10.2200/S00555ED1V01Y201312SPT009
http://dx.doi.org/10.2200/S00555ED1V01Y201312SPT009

Technical Reports 129

technical reports

Stephan Heuser, Marco Negro, Praveen Kumar Pendyala, and Ahmad-Reza Sadeghi.
DroidAuditor: Forensic Analysis of Application-Layer Privilege Escalation Attacks
on Android. Technical Report TUD-CS-2016-0025, TU Darmstadt, 2016. URL
https://www.trust.informatik.tu-darmstadt.de/research/publications/publi
cation-details/?no_cache=1&tx_bibtex_pi1%5Bpub_id%5D=TUD-CS-2016-0025.

Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi. ASM: A
Programmable Interface for Extending Android Security. Technical Report TUD-CS-
2014-0063, TU Darmstadt, 2014. URL https://www.trust.informatik.tu-darmstad
t.de/publications/publication-details/?no_cache=1&tx_bibtex_pi1%5Bpub_id
%5D=TUD-CS-2014-0063.

Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. Towards a Framework
for Android Security Modules: Extending SE Android Type Enforcement to An-
droid Middleware. Technical Report TUD-CS-2012-0231, TU Darmstadt, 2012a.
URL https://www.trust.informatik.tu-darmstadt.de/publications/publicatio
n-details/?no_cache=1&tx_bibtex_pi1%5Bpub_id%5D=TUD-CS-2012-0231.

Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. myTunes: Se-
mantically Linked and User-Centric Fine-Grained Privacy Control on An-
droid. Technical Report TUD-CS-2012-0226, TU Darmstadt, 2012b. URL
https://www.trust.informatik.tu-darmstadt.de/publications/publication-
details/?no_cache=1&tx_bibtex_pi1%5Bpub_id%5D=TUD-CS-2012-0226.

posters

Stephan Heuser, Bradley Reaves, Praveen Kumar Pendyala, Henry Carter, Alexandra
Dmitrienko, William Enck, Ahmad-Reza Sadeghi, and Patrick Traynor. Phonion: Frus-
trating Telephony Metadata Analysis. In Proceedings of the 31st Annual Computer Se-
curity Applications Conference, ACSAC’15.

Stephan Heuser, Bradley Reaves, Praveen Kumar Pendyala, Henry Carter, Alexandra
Dmitrienko, William Enck, Ahmad-Reza Sadeghi, and Patrick Traynor. Phonion: Frus-
trating Telephony Metadata Analysis. In Proceedings of the 22nd Annual Network and
Distributed System Security Symposium, NDSS’15.

Nicolai Kuntze, Stephan Heuser, Carsten Rudolph, Malte Ried, and Michael Jäger. Evi-
denceCam – Android based approach to provide non-repudiation for digital evidence. In
Proceedings of the 6th IEEE International Workshop on Systematic Approaches to Digital
Forensic Engineering, SADFE’11.

https://www.trust.informatik.tu-darmstadt.de/research/publications/publication-details/?no_cache=1&tx_bibtex_pi1%5Bpub_id%5D=TUD-CS-2016-0025
https://www.trust.informatik.tu-darmstadt.de/research/publications/publication-details/?no_cache=1&tx_bibtex_pi1%5Bpub_id%5D=TUD-CS-2016-0025
https://www.trust.informatik.tu-darmstadt.de/publications/publication-details/?no_cache=1&tx_bibtex_pi1%5Bpub_id%5D=TUD-CS-2014-0063
https://www.trust.informatik.tu-darmstadt.de/publications/publication-details/?no_cache=1&tx_bibtex_pi1%5Bpub_id%5D=TUD-CS-2014-0063
https://www.trust.informatik.tu-darmstadt.de/publications/publication-details/?no_cache=1&tx_bibtex_pi1%5Bpub_id%5D=TUD-CS-2014-0063
https://www.trust.informatik.tu-darmstadt.de/publications/publication-details/?no_cache=1&tx_bibtex_pi1%5Bpub_id%5D=TUD-CS-2012-0231
https://www.trust.informatik.tu-darmstadt.de/publications/publication-details/?no_cache=1&tx_bibtex_pi1%5Bpub_id%5D=TUD-CS-2012-0231
https://www.trust.informatik.tu-darmstadt.de/publications/publication-details/?no_cache=1&tx_bibtex_pi1%5Bpub_id%5D=TUD-CS-2012-0226
https://www.trust.informatik.tu-darmstadt.de/publications/publication-details/?no_cache=1&tx_bibtex_pi1%5Bpub_id%5D=TUD-CS-2012-0226

BIBL IOGRAPHY

[1] Yama LSM. URL: https://www.kernel.org/doc/Documentation/security/Yama
.txt.

[2] Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao Zhang, Kai Chen, XiaoFeng Wang,
Xiaoyong Zhou, Wenliang Du, and Michael Grace. Hare Hunting in the Wild An-
droid: A Study on the Threat of Hanging Attribute References. In Proceedings of the
22nd ACM Conference on Computer and Communications Security, CCS’15. URL:
http://dx.doi.org/10.1145/2810103.2813648.

[3] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz. Extensible Au-
thentication Protocol (EAP). RFC 3748, 2008. URL: http://www.ietf.org/rfc
/rfc3748.txt.

[4] Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Christopher Kruegel, Giovanni
Vigna, Adam Doupe, and Mario Polino. Going Native: Using a Large-Scale Analysis
of Android Apps to Create a Practical Native-Code Sandboxing Policy. In Pro-
ceedings of the 23rd Annual Network and Distributed System Security Symposium,
NDSS’16. URL: https://www.internetsociety.org/sites/default/files/bl
ogs-media/going-native-large-scale-analysis-android-apps-practical-n
ative-code-sandboxing-policy.pdf.

[5] Jeremy Andrus, Christoffer Dall, Alexander Van’t Hof, Oren Laadan, and Jason
Nieh. Cells: A Virtual Mobile Smartphone Architecture. In Proceedings of the 23rd
ACM Symposium on Operating Systems Principles, SOSP’11. URL: http://dx.doi
.org/10.1145/2043556.2043574.

[6] Apple Inc. App Store. URL: https://itunes.apple.com/us/genre/ios/id36?mt
=8.

[7] ARM. ARM Security Technology - Building a Secure System using TrustZone
Technology, 2009. URL: http://infocenter.arm.com/help/topic/com.arm.doc.
prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.p
df.

[8] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, and Konrad
Rieck. DREBIN: Effective and Explainable Detection of Android Malware in
Your Pocket. In 21st Annual Network and Distributed System Security Symposium,
NDSS’14. URL: http://www.internetsociety.org/doc/drebin-effective-and
-explainable-detection-android-malware-your-pocket.

[9] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flow-
Droid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware Taint

131

https://www.kernel.org/doc/Documentation/security/Yama.txt
https://www.kernel.org/doc/Documentation/security/Yama.txt
http://dx.doi.org/10.1145/2810103.2813648
http://www.ietf.org/rfc/rfc3748.txt
http://www.ietf.org/rfc/rfc3748.txt
https://www.internetsociety.org/sites/default/files/blogs-media/going-native-large-scale-analysis-android-apps-practical-native-code-sandboxing-policy.pdf
https://www.internetsociety.org/sites/default/files/blogs-media/going-native-large-scale-analysis-android-apps-practical-native-code-sandboxing-policy.pdf
https://www.internetsociety.org/sites/default/files/blogs-media/going-native-large-scale-analysis-android-apps-practical-native-code-sandboxing-policy.pdf
http://dx.doi.org/10.1145/2043556.2043574
http://dx.doi.org/10.1145/2043556.2043574
https://itunes.apple.com/us/genre/ios/id36?mt=8
https://itunes.apple.com/us/genre/ios/id36?mt=8
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://www.internetsociety.org/doc/drebin-effective-and-explainable-detection-android-malware-your-pocket
http://www.internetsociety.org/doc/drebin-effective-and-explainable-detection-android-malware-your-pocket

132 bibliography

Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’14. URL:
http://dx.doi.org/10.1145/2594291.2594299.

[10] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. PScout: Analyzing
the Android Permission Specification. In Proceedings of the 19th ACM Conference
on Computer and Communications Security, CCS’12. URL: http://dx.doi.org
/10.1145/2382196.2382222.

[11] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven
Arzt, Siegfried Rasthofer, and Eric Bodden. Mining Apps for Abnormal Usage of Sen-
sitive Data. In Proceedings of the 37th IEEE International Conference on Software
Engineering, ICSE’15. URL: http://dx.doi.org/10.1109/ICSE.2015.61.

[12] Golam Sarwar Babil, Olivier Mehani, Roksana Boreli, and Mohamed-Ali Kaafar.
On the Effectiveness of Dynamic Taint Analysis for Protecting Against Private
Information Leaks on Android-based Devices. In Proceedings of the 10th Inter-
national Conference on Security and Cryptography, SECRYPT’13. URL: http:
//ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7223198.

[13] Michael Backes, Sven Bugiel, and Sebastian Gerling. Scippa: System-Centric IPC
Provenance on Android. In Proceedings of the 30th Annual Computer Security Ap-
plications Conference, ACSAC’14. URL: http://dx.doi.org/10.1145/2664243.
2664264.

[14] Michael Backes, Sven Bugiel, Sebastian Gerling, and Philipp von Styp-Rekowsky.
Android Security Framework: Extensible Multi-Layered Access Control on Android.
In Proceedings of the 30th Annual Computer Security Applications Conference, AC-
SAC’14. URL: http://dx.doi.org/10.1145/2664243.2664265.

[15] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp
von Styp-Rekowsky. Boxify: Full-fledged App Sandboxing for Stock An-
droid. In Proceedings of the 24th USENIX Security Symposium, USENIX’15.
URL: https://www.usenix.org/conference/usenixsecurity15/technical-se
ssions/presentation/backes.

[16] Michael Backes, Sebastian Gerling, Christian Hammer, and Philipp von Styp-
Rekowsky. AppGuard - Enforcing User Requirements on Android Apps. In Pro-
ceedings of the 19th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS’13. URL: http://dx.doi.org/10.1007/
978-3-642-36742-7_39.

[17] Guangdong Bai, Liang Gu, Tao Feng, Yao Guo, and Xiangqun Chen. Context-
Aware Usage Control for Android. In Proceedings of the 6th Iternational ICST
Conference on Security and Privacy in Communication Networks, SecureComm’10.
URL: http://dx.doi.org/10.1007/978-3-642-16161-2_19.

http://dx.doi.org/10.1145/2594291.2594299
http://dx.doi.org/10.1145/2382196.2382222
http://dx.doi.org/10.1145/2382196.2382222
http://dx.doi.org/10.1109/ICSE.2015.61
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7223198
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7223198
http://dx.doi.org/10.1145/2664243.2664264
http://dx.doi.org/10.1145/2664243.2664264
http://dx.doi.org/10.1145/2664243.2664265
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/backes
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/backes
http://dx.doi.org/10.1007/978-3-642-36742-7_39
http://dx.doi.org/10.1007/978-3-642-36742-7_39
http://dx.doi.org/10.1007/978-3-642-16161-2_19

bibliography 133

[18] Ken Barr, Prashanth Bungale, Stephen Deasy, Viktor Gyuris, Perry Hung, Craig
Newell, Harvey Tuch, and Bruno Zoppis. The VMware Mobile Virtualization Plat-
form: Is That a Hypervisor in Your Pocket? SIGOPS Operating Systems Review,
44(4), 2010. URL: http://dx.doi.org/10.1145/1899928.1899945.

[19] David Barrera, William Enck, and P.C. van Oorschot. Meteor: Seeding a Security-
Enhancing Infrastructure for Multi-market Application Ecosystems. In Proceedings
of the 2012 IEEE Mobile Security Technologies Workshop, MOST’12. URL: http:
//mostconf.org/2012/papers/9.pdf.

[20] David Barrera, H. Güneş Kayacik, Paul C. van Oorschot, and Anil Somayaji. A
Methodology for Empirical Analysis of Permission-based Security Models and Its Ap-
plication to Android. In Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS’10. URL: http://dx.doi.org/10.1145/1866307.
1866317.

[21] Mick Bauer. Paranoid Penguin: An Introduction to Novell AppArmor. Linux Jour-
nal, (148), 2006. URL: http://www.linuxjournal.com/article/9036.

[22] Francis Bea. WhatsApp reads your phone contacts and is breaking privacy laws,
2013. URL: http://www.digitaltrends.com/mobile/whatsapp-breaks-privacy
-laws/.

[23] Michael Bell and VItali Lovich. Apparatus and methods for enforcement of policies
upon a wireless device. US. Patent 8254902, 2012.

[24] Alastair R. Beresford, Andrew Rice, Nicholas Skehin, and Ripduman Sohan. Mock-
Droid: Trading Privacy for Application Functionality on Smartphones. In Proceed-
ings of the 12th Workshop on Mobile Computing Systems and Applications, HotMo-
bile ’11. URL: http://dx.doi.org/10.1145/2184489.2184500.

[25] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio, Christopher
Kruegel, and Giovanni Vigna. What the App is That? Deception and Countermea-
sures in the Android User Interface. In Proceedings of the 36th IEEE Symposium on
Security and Privacy, S&P’15. URL: http://dx.doi.org/10.1109/SP.2015.62.

[26] Antonio Bianchi, Yanick Fratantonio, Christopher Kruegel, and Giovanni Vigna.
NJAS: Sandboxing Unmodified Applications in Non-rooted Devices Running Stock
Android. In Proceedings of the 5th ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, SPSM’15. URL: http://dx.doi.org/10.1145/
2808117.2808122.

[27] Thomas Bläsing, Aubrey-Derrick Schmidt, Leonid Batyuk, Seyit Ahmet Camtepe,
and Sahin Albayrak. An Android Application Sandbox System for Suspicious Soft-
ware Detection. In Proceedings of the 5th IEEE International Conference on Mali-
cious and Unwanted Software, MALWARE’10. URL: http://dx.doi.org/10.1109/
MALWARE.2010.5665792.

http://dx.doi.org/10.1145/1899928.1899945
http://mostconf.org/2012/papers/9.pdf
http://mostconf.org/2012/papers/9.pdf
http://dx.doi.org/10.1145/1866307.1866317
http://dx.doi.org/10.1145/1866307.1866317
http://www.linuxjournal.com/article/9036
http://www.digitaltrends.com/mobile/whatsapp-breaks-privacy-laws/
http://www.digitaltrends.com/mobile/whatsapp-breaks-privacy-laws/
http://dx.doi.org/10.1145/2184489.2184500
http://dx.doi.org/10.1109/SP.2015.62
http://dx.doi.org/10.1145/2808117.2808122
http://dx.doi.org/10.1145/2808117.2808122
http://dx.doi.org/10.1109/MALWARE.2010.5665792
http://dx.doi.org/10.1109/MALWARE.2010.5665792

134 bibliography

[28] Dan Boneh and Matthew K. Franklin. Identity-Based Encryption from the Weil
Pairing. In Proceedings of the 21st Annual International Cryptology Conference on
Advances in Cryptology, CRYPTO’01. URL: http://dx.doi.org/10.1007/3-540-
44647-8_13.

[29] David F. C. Brewer and Michael J. Nash. The Chinese Wall Security Policy. In
Proceedings of the 10th IEEE Symposium on Security and Privacy, S&P’89. URL:
http://dx.doi.org/10.1109/SECPRI.1989.36295.

[30] S. Bugiel, S. Heuser, and A.-R. Sadeghi. myTunes: Semantically Linked and User-
Centric Fine-Grained Privacy Control on Android. Technical Report TUD-CS-2012-
0226, Center for Advanced Security Research Darmstadt, November 2012.

[31] Sven Bugiel. Establishing Mandatory Access Control on Android OS. PhD the-
sis, Saarland University, 2015. URL: http://nbn-resolving.de/urn:nbn:de:bsz:
291-scidok-63546.

[32] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Thomas Fischer, Ahmad-Reza
Sadeghi, and Bhargava Shastry. Towards Taming Privilege-Escalation Attacks on
Android. In Proceedings of the 19th Annual Network and Distributed System Secu-
rity Symposium, NDSS’12. URL: http://www.internetsociety.org/towards-ta
ming-privilege-escalation-attacks-android.

[33] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko, Stephan Heuser, Ahmad-Reza
Sadeghi, and Bhargava Shastry. Practical and Lightweight Domain Isolation on
Android. In Proceedings of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, SPSM’11. URL: http://dx.doi.org/10.1145/
2046614.2046624.

[34] Sven Bugiel, Stephan Heuser, and Ahmad-Reza Sadeghi. Flexible and Fine-
grained Mandatory Access Control on Android for Diverse Security and Pri-
vacy Policies. In Proceedings of the 22nd USENIX Security Symposium,
USENIX’13. URL: https://www.usenix.org/conference/usenixsecurity13/te
chnical-sessions/presentation/bugiel.

[35] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: Behavior-
based Malware Detection System for Android. In Proceedings of the 1st ACM Work-
shop on Security and Privacy in Smartphones and Mobile Devices, SPSM’11. URL:
http://dx.doi.org/10.1145/2046614.2046619.

[36] Christoph Busold, Stephan Heuser, Jon Rios, Ahmad-Reza Sadeghi, and N. Asokan.
Smart and Secure Cross-Device Apps for the Internet of Advanced Things. In Pro-
ceedings of the 19th International Conference on Financial Cryptography and Data
Security, FC’15. URL: http://dx.doi.org/10.1007/978-3-662-47854-7_17.

[37] Liang Cai and Hao Chen. TouchLogger: Inferring Keystrokes on Touch Screen from
Smartphone Motion. In Proceedings of the 6th USENIX Conference on Hot Topics

http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1109/SECPRI.1989.36295
http://nbn-resolving.de/urn:nbn:de:bsz:291-scidok-63546
http://nbn-resolving.de/urn:nbn:de:bsz:291-scidok-63546
http://www.internetsociety.org/towards-taming-privilege-escalation-attacks-android
http://www.internetsociety.org/towards-taming-privilege-escalation-attacks-android
http://dx.doi.org/10.1145/2046614.2046624
http://dx.doi.org/10.1145/2046614.2046624
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bugiel
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/bugiel
http://dx.doi.org/10.1145/2046614.2046619
http://dx.doi.org/10.1007/978-3-662-47854-7_17

bibliography 135

in Security, HOTSEC’11. URL: https://www.usenix.org/conference/hotsec11/
touchlogger-inferring-keystrokes-touch-screen-smartphone-motion.

[38] Cameron Camp. The BYOD security challenge: How scary is the iPad, tablet, smart-
phone surge?, February 2012. URL: http://www.welivesecurity.com/2012/02/
28/sizing-up-the-byod-security-challenge/.

[39] Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher
Kruegel, Giovanni Vigna, and Yan Chen. EdgeMiner: Automatically Detecting Im-
plicit Control Flow Transitions through the Android Framework. In Proceedings of
the 22nd Annual Network and Distributed System Security Symposium, NDSS’15.
URL: http://www.internetsociety.org/doc/edgeminer-automatically-dete
cting-implicit-control-flow-transitions-through-android-framework.

[40] Carter Yagemann. Intent Firewall. URL: http://www.cis.syr.edu/~wedu/androi
d/IntentFirewall/.

[41] Patrick P.F. Chan, Lucas Chi Kwong Hui Hui, and Siu-Ming Yiu. DroidChecker:
Analyzing Android Applications for Capability Leak. In Proceedings of the 5th ACM
Conference on Security and Privacy in Wireless and Mobile Networks, WiSec ’12.
URL: http://dx.doi.org/10.1145/2185448.2185466.

[42] Kai Chen, Peng Liu, and Yingjun Zhang. Achieving Accuracy and Scalability Si-
multaneously in Detecting Application Clones on Android Markets. In Proceed-
ings of the 36th International Conference on Software Engineering, ICSE’14. URL:
http://dx.doi.org/10.1145/2568225.2568286.

[43] Kai Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang, Nan Zhang, Heqing Huang,
Wei Zou, and Peng Liu. Finding Unknown Malice in 10 Seconds: Mass Vetting for
New Threats at the Google-Play Scale. In Proceedings of the 24th USENIX Security
Symposium, USENIX’15. URL: https://www.usenix.org/conference/usenixse
curity15/technical-sessions/presentation/chen-kai.

[44] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. Analyz-
ing Inter-Application Communication in Android. In Proceedings of the 9th Annual
International ACM Conference on Mobile Systems, Applications, and Services, Mo-
biSys’11. URL: http://dx.doi.org/10.1145/1999995.2000018.

[45] Mauro Conti, Bruno Crispo, Earlence Fernandes, and Yury Zhauniarovich. CRêPE:
A System for Enforcing Fine-Grained Context-Related Policies on Android. IEEE
Transactions on Information Forensics and Security, 7(5), 2012. URL: http://dx
.doi.org/10.1109/TIFS.2012.2204249.

[46] Michael J. Covington, Prahlad Fogla, Zhiyuan Zhan, and Mustaque Ahamad. A
Context-Aware Security Architecture for Emerging Applications. In Proceedings
of the 18th Annual Computer Security Applications Conference, ACSAC’02. URL:
http://dx.doi.org/10.1109/CSAC.2002.1176296.

https://www.usenix.org/conference/hotsec11/touchlogger-inferring-keystrokes-touch-screen-smartphone-motion
https://www.usenix.org/conference/hotsec11/touchlogger-inferring-keystrokes-touch-screen-smartphone-motion
http://www.welivesecurity.com/2012/02/28/sizing-up-the-byod-security-challenge/
http://www.welivesecurity.com/2012/02/28/sizing-up-the-byod-security-challenge/
http://www.internetsociety.org/doc/edgeminer-automatically-detecting-implicit-control-flow-transitions-through-android-framework
http://www.internetsociety.org/doc/edgeminer-automatically-detecting-implicit-control-flow-transitions-through-android-framework
http://www.cis.syr.edu/~wedu/android/IntentFirewall/
http://www.cis.syr.edu/~wedu/android/IntentFirewall/
http://dx.doi.org/10.1145/2185448.2185466
http://dx.doi.org/10.1145/2568225.2568286
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/chen-kai
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/chen-kai
http://dx.doi.org/10.1145/1999995.2000018
http://dx.doi.org/10.1109/TIFS.2012.2204249
http://dx.doi.org/10.1109/TIFS.2012.2204249
http://dx.doi.org/10.1109/CSAC.2002.1176296

136 bibliography

[47] Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the Clones: Detect-
ing Cloned Applications on Android Markets. In Proceedings of the 17th Euro-
pean Symposium on Research in Computer Security, ESORICS’12. URL: http:
//dx.doi.org/10.1007/978-3-642-33167-1_3.

[48] Jonathan Crussell, Clint Gibler, and Hao Chen. AnDarwin: Scalable Detection of
Semantically Similar Android Applications. In Proceedings of the 18th European
Symposium on Research in Computer Security, ESORICS’13. URL: http://dx.doi
.org/10.1007/978-3-642-40203-6_11.

[49] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan Saroiu,
Ranveer Chandra, and Paramvir Bahl. MAUI: Making Smartphones Last Longer
with Code Offload. In Proceedings of the 8th Annual International ACM Conference
on Mobile Systems, Applications, and Services, MobiSys’10. URL: http://dx.doi
.org/10.1145/1814433.1814441.

[50] Maria Luisa Damiani, Elisa Bertino, Barbara Catania, and Paolo Perlasca. GEO-
RBAC: A spatially aware RBAC. ACM Transactions on Information and System
Security, 10(1), 2007. URL: http://dx.doi.org/10.1145/1210263.1210265.

[51] Lucas Davi, Alexandra Dmitrienko, Christoph Kowalski, and Marcel Winandy.
Trusted Virtual Domains on OKL4: Secure Information Sharing on Smartphones.
In Proceedings of the 6th ACM Workshop on Scalable Trusted Computing, STC’11.
URL: http://dx.doi.org/10.1145/2046582.2046592.

[52] Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Marcel Winandy.
Privilege Escalation Attacks on Android. In Proceedings of the 13th International
Conference on Information Security, ISC’10. URL: http://dx.doi.org/10.1007/
978-3-642-18178-8_30.

[53] Benjamin Davis and Hao Chen. RetroSkeleton: Retrofitting Android Apps. In Pro-
ceeding of the 11th Annual International ACM Conference on Mobile Systems, Appli-
cations, and Services, MobiSys ’13. URL: http://dx.doi.org/10.1145/2462456.
2464462.

[54] Benjamin Davis, Ben Sanders, Armen Khodaverdian, and Hao Chen. I-ARM-Droid:
A Rewriting Framework for In-App Reference Monitors for Android Applications.
In Proceedings of the 2012 IEEE Mobile Security Technologies Workshop, MOST’12.
URL: http://mostconf.org/2012/papers/28.pdf.

[55] Luke Deshotels, Vivek Notani, and Arun Lakhotia. DroidLegacy: Automated Fa-
milial Classification of Android Malware. In Proceedings of the 3rd ACM SIG-
PLAN Program Protection and Reverse Engineering Workshop, PPREW’14. URL:
http://dx.doi.org/10.1145/2556464.2556467.

[56] Anthony Desnos. Androguard. URL: https://github.com/androguard/androgua
rd.

http://dx.doi.org/10.1007/978-3-642-33167-1_3
http://dx.doi.org/10.1007/978-3-642-33167-1_3
http://dx.doi.org/10.1007/978-3-642-40203-6_11
http://dx.doi.org/10.1007/978-3-642-40203-6_11
http://dx.doi.org/10.1145/1814433.1814441
http://dx.doi.org/10.1145/1814433.1814441
http://dx.doi.org/10.1145/1210263.1210265
http://dx.doi.org/10.1145/2046582.2046592
http://dx.doi.org/10.1007/978-3-642-18178-8_30
http://dx.doi.org/10.1007/978-3-642-18178-8_30
http://dx.doi.org/10.1145/2462456.2464462
http://dx.doi.org/10.1145/2462456.2464462
http://mostconf.org/2012/papers/28.pdf
http://dx.doi.org/10.1145/2556464.2556467
https://github.com/androguard/androguard
https://github.com/androguard/androguard

bibliography 137

[57] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246, 2008. URL: http://www.ietf.org/rfc/rfc5246.txt.

[58] Michael Dietz, Shashi Shekhar, Yuliy Pisetsky, Anhei Shu, and Dan S.
Wallach. Quire: Lightweight Provenance for Smart Phone Operating Sys-
tems. In Proceedings of the 20th USENIX Security Symposium, USENIX’11.
URL: https://www.usenix.org/conference/usenixsecurity11/quire-lightw
eight-provenance-smart-phone-operating-systems.

[59] Digital Living Network Alliance. Dlna. URL: http://www.dlna.org/.

[60] Alexandra Dmitrienko, Konrad Eriksson, Dirk Kuhlmann, Gianluca Ramunno,
Ahmad-Reza Sadeghi, Steffen Schulz, Matthias Schunter, Marcel Winandy, Luigi
Catuogno, and Jing Zhan. Trusted Virtual Domains – Design, Implementation and
Lessons Learned. In Proceedings of the 1st International Conference on Trusted Sys-
tems, INTRUST’09. URL: http://dx.doi.org/10.1007/978-3-642-14597-1_10.

[61] Danny Dolev and Andrew C. Yao. On the Security of Public Key Protocols. IEEE
Transactions on Information Theory, 29(2), 1983. URL: http://dx.doi.org/10.
1109/TIT.1983.1056650.

[62] David Dominguez-Sal, P. Urbón-Bayes, Aleix Giménez-Vañó, Sergio Gómez-
Villamor, Norbert Martínez-Bazan, and Josep-Lluis Larriba-Pey. Survey of Graph
Database Performance on the HPC Scalable Graph Analysis Benchmark. In
Web-Age Information Management: WAIM 2010 International Workshops: IWGD
2010, XMLDM 2010, WCMT 2010, Revised Selected Papers, IWGD 2010. URL:
http://dx.doi.org/10.1007/978-3-642-16720-1_4.

[63] DoMobile Lab. AppLock. URL: https://play.google.com/store/apps/details
?id=com.domobile.applock.

[64] Jack Dongarra, Reed Wade, and Paul McMahan. Linpack Benchmark – Java Version.
URL: http://www.netlib.org/benchmark/linpackjava/.

[65] Paul Ducklin. The "Stagefright" hole in Android – what you need to know.
URL: https://nakedsecurity.sophos.com/2015/07/28/the-stagefright-hole
-in-android-what-you-need-to-know/.

[66] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun,
Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taint-
Droid: An Information-Flow Tracking System for Realtime Privacy Monitoring
on Smartphones. ACM Transactions on Computer Systems, 32(2), 2014. URL:
http://dx.doi.org/10.1145/2619091.

[67] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A Study
of Android Application Security. In Proceedings of the 20th USENIX Security Sym-
posium, USENIX’11. URL: https://www.usenix.org/conference/usenixsecuri
ty11/study-android-application-security.

http://www.ietf.org/rfc/rfc5246.txt
https://www.usenix.org/conference/usenixsecurity11/quire-lightweight-provenance-smart-phone-operating-systems
https://www.usenix.org/conference/usenixsecurity11/quire-lightweight-provenance-smart-phone-operating-systems
http://www.dlna.org/
http://dx.doi.org/10.1007/978-3-642-14597-1_10
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.1007/978-3-642-16720-1_4
https://play.google.com/store/apps/details?id=com.domobile.applock
https://play.google.com/store/apps/details?id=com.domobile.applock
http://www.netlib.org/benchmark/linpackjava/
https://nakedsecurity.sophos.com/2015/07/28/the-stagefright-hole-in-android-what-you-need-to-know/
https://nakedsecurity.sophos.com/2015/07/28/the-stagefright-hole-in-android-what-you-need-to-know/
http://dx.doi.org/10.1145/2619091
https://www.usenix.org/conference/usenixsecurity11/study-android-application-security
https://www.usenix.org/conference/usenixsecurity11/study-android-application-security

138 bibliography

[68] William Enck, Machigar Ongtang, and Patrick Mcdaniel. Mitigating Android Soft-
ware Misuse Before It Happens. Technical report, Pennsylvania State University,
2008. URL: http://www.enck.org/pubs/NAS-TR-0094-2008.pdf.

[69] William Enck, Machigar Ongtang, and Patrick McDaniel. On Lightweight Mobile
Phone Application Certification. In Proceedings of the 16th ACM Conference on
Computer and Communications Security, CCS ’09. URL: http://dx.doi.org/10.
1145/1653662.1653691.

[70] Úlfar Erlingsson. The Inlined Reference Monitor Approach to Security Policy En-
forcement. PhD thesis, Cornell University, 2004. URL: https://ecommons.corne
ll.edu/handle/1813/5628.

[71] ETH Zürich, Systems Group. jSLP - Java SLP (Service Location Protocol) Imple-
mentation. URL: http://jslp.sourceforge.net/.

[72] European Commission. Antitrust: Commission opens formal investigation against
Google in relation to Android mobile operating system. URL: http://europa.eu/
rapid/press-release_MEMO-15-4782_en.htm.

[73] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd Freisleben,
and Matthew Smith. Why Eve and Mallory Love Android: An Analysis of Android
SSL (in)Security. In Proceedings of the 19th ACM Conference on Computer and
Communications Security, CCS’12. URL: http://dx.doi.org/10.1145/2382196.
2382205.

[74] Sascha Fahl, Marian Harbach, Marten Oltrogge, Thomas Muders, and Matthew
Smith. Hey, You, Get Off of My Clipboard. In Proceedings of the 27th International
Conference on Financial Cryptography and Data Security, FC’13. URL: http://dx
.doi.org/10.1007/978-3-642-39884-1_12.

[75] Luca Falsina, Yanick Fratantonio, Stefano Zanero, Christopher Kruegel, Giovanni
Vigna, and Federico Maggi. Grab’n Run: Secure and Practical Dynamic Code Load-
ing for Android Applications. In Proceedings of the 31st Annual Computer Security
Applications Conference, ACSAC’15. URL: http://dx.doi.org/10.1145/2818000.
2818042.

[76] Federal Trade Commission. Path Social Networking App Settles FTC Charges it
Deceived Consumers and Improperly Collected Personal Information from Users’
Mobile Address Books, 2013. URL: http://www.ftc.gov/opa/2013/02/path.sht
m.

[77] Rafael Fedler, Marcel Kulicke, and Julian Schütte. Native Code Execution Control
for Attack Mitigation on Android. In Proceedings of the 3rd ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, SPSM’13. URL: http:
//dx.doi.org/10.1145/2516760.2516765.

http://www.enck.org/pubs/NAS-TR-0094-2008.pdf
http://dx.doi.org/10.1145/1653662.1653691
http://dx.doi.org/10.1145/1653662.1653691
https://ecommons.cornell.edu/handle/1813/5628
https://ecommons.cornell.edu/handle/1813/5628
http://jslp.sourceforge.net/
http://europa.eu/rapid/press-release_MEMO-15-4782_en.htm
http://europa.eu/rapid/press-release_MEMO-15-4782_en.htm
http://dx.doi.org/10.1145/2382196.2382205
http://dx.doi.org/10.1145/2382196.2382205
http://dx.doi.org/10.1007/978-3-642-39884-1_12
http://dx.doi.org/10.1007/978-3-642-39884-1_12
http://dx.doi.org/10.1145/2818000.2818042
http://dx.doi.org/10.1145/2818000.2818042
http://www.ftc.gov/opa/2013/02/path.shtm
http://www.ftc.gov/opa/2013/02/path.shtm
http://dx.doi.org/10.1145/2516760.2516765
http://dx.doi.org/10.1145/2516760.2516765

bibliography 139

[78] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
Android Permissions Demystified. In Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS ’11. URL: http://dx.doi.org/10.
1145/2046707.2046779.

[79] Adrienne Porter Felt, Serge Egelman, and David Wagner. I’ve Got 99 Problems,
but Vibration Ain’T One: A Survey of Smartphone Users’ Concerns. In Proceedings
of the 2nd ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices, SPSM’12. URL: http://dx.doi.org/10.1145/2381934.2381943.

[80] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and
David Wagner. Android Permissions: User Attention, Comprehension, and Behavior.
In Proceedings of the Eighth Symposium on Usable Privacy and Security, SOUPS ’12.
URL: http://dx.doi.org/10.1145/2335356.2335360.

[81] Adrienne Porter Felt, Helen J. Wang, Alexander Moshchuk, Steven Hanna, and Erika
Chin. Permission Re-Delegation: Attacks and Defenses. In Proceedings of the 20th
USENIX Security Symposium, USENIX’11. URL: https://www.usenix.org/confe
rence/usenixsecurity11/permission-re-delegation-attacks-and-defenses.

[82] Yu Feng, Isil Dillig, Saswat Anand, and Alex Aiken. Apposcopy: Automated Detec-
tion of Android Malware (Invited Talk). In Proceedings of the 2nd International
Workshop on Software Development Lifecycle for Mobile, DeMobile 2014. URL:
http://dx.doi.org/10.1145/2661694.2661697.

[83] Pietro Ferrara, Omer Tripp, and Marco Pistoia. MorphDroid: Fine-grained Privacy
Verification. In Proceedings of the 31st Annual Computer Security Applications Con-
ference, ACSAC’15. URL: http://dx.doi.org/10.1145/2818000.2818037.

[84] Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster. SCanDroid: Automated
Security Certification of Android Applications. Technical Report CS-TR-4991, De-
partment of Computer Science, University of Maryland, College Park, 2009. URL:
http://spruce.cs.ucr.edu/SCanDroid/papers.html.

[85] FUSE Developers. The reference implementation of the Linux FUSE (Filesystem in
Userspace) interface. URL: https://github.com/libfuse/libfuse.

[86] Martin Georgiev, Suman Jana, and Vitaly Shmatikov. Breaking and Fixing Origin-
Based Access Control in Hybrid Web/Mobile Application Frameworks. In Pro-
ceedings of the 21st Annual Network and Distributed System Security Symposium,
NDSS’14. URL: http://www.internetsociety.org/doc/breaking-and-fixing-
origin-based-access-control-hybrid-webmobile-application-frameworks.

[87] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. AndroidLeaks:
Automatically Detecting Potential Privacy Leaks in Android Applications on a Large
Scale. In Proceedings of the 5th International Conference on Trust and Trustworthy
Computing, TRUST’12. URL: http://dx.doi.org/10.1007/978-3-642-30921-2_
17.

http://dx.doi.org/10.1145/2046707.2046779
http://dx.doi.org/10.1145/2046707.2046779
http://dx.doi.org/10.1145/2381934.2381943
http://dx.doi.org/10.1145/2335356.2335360
https://www.usenix.org/conference/usenixsecurity11/permission-re-delegation-attacks-and-defenses
https://www.usenix.org/conference/usenixsecurity11/permission-re-delegation-attacks-and-defenses
http://dx.doi.org/10.1145/2661694.2661697
http://dx.doi.org/10.1145/2818000.2818037
http://spruce.cs.ucr.edu/SCanDroid/papers.html
https://github.com/libfuse/libfuse
http://www.internetsociety.org/doc/breaking-and-fixing-origin-based-access-control-hybrid-webmobile-application-frameworks
http://www.internetsociety.org/doc/breaking-and-fixing-origin-based-access-control-hybrid-webmobile-application-frameworks
http://dx.doi.org/10.1007/978-3-642-30921-2_17
http://dx.doi.org/10.1007/978-3-642-30921-2_17

140 bibliography

[88] Clint Gibler, Ryan Stevens, Jonathan Crussell, Hao Chen, Hui Zang, and Heesook
Choi. AdRob: Examining the Landscape and Impact of Android Application Pla-
giarism. In Proceedings of the 11th Annual International Conference on Mobile Sys-
tems, Applications, and Services, MobiSys’13. URL: http://dx.doi.org/10.1145/
2462456.2464461.

[89] Peter Gilbert, Byung-Gon Chun, Landon P. Cox, and Jaeyeon Jung. Vision: Au-
tomated Security Validation of Mobile Apps at App Markets. In Proceedings of
the 2nd International Workshop on Mobile cloud Computing and Services, MCS’11.
URL: http://dx.doi.org/10.1145/1999732.1999740.

[90] Simon Glass. Das U-Boot – the Universal Boot Loader. URL: http://www.denx.d
e/wiki/U-Boot.

[91] GlobalPlatform Inc. GlobalPlatform Device Technology - Secure Element Access
Control. URL: http://www.globalplatform.org/specificationform.asp?fid
=7768.

[92] Joel Goncalves, Luis Lino Ferreira, Luis Miguel Pinho, and Guilherme Silva. Han-
dling Mobility on a QoS-Aware Service-based Framework for Mobile Systems. In
Proceedings of the 8th International IEEE/IFIP Conference on Embedded and Ubiq-
uitous Computing, EUC’10. URL: http://dx.doi.org/10.1109/EUC.2010.24.

[93] Hugo Gonzalez, Andi A. Kadir, Natalia Stakhanova, Abdullah J. Alzahrani, and
Ali A. Ghorbani. Exploring Reverse Engineering Symptoms in Android Apps. In
Proceedings of the 8th European Workshop on System Security, EuroSec’15. URL:
http://dx.doi.org/10.1145/2751323.2751330.

[94] Good Technology. Good for Enterprise. URL: https://www.good.com/.

[95] Google Inc. Android Compatibility Test Suite (CTS). URL: https://source.and
roid.com/compatibility/.

[96] Google Inc. Android TV. URL: http://www.android.com/tv/.

[97] Google Inc. ART and Dalvik. URL: https://source.android.com/devices/tec
h/dalvik/.

[98] Google Inc. Creating and Monitoring Geofences. URL: http://developer.androi
d.com/training/location/geofencing.html.

[99] Google Inc. Pin and unpin screens - Nexus Help. URL: https://support.google
.com/nexus/answer/6118421.

[100] Google Inc. Play Store. URL: https://play.google.com/store.

[101] Google Inc. Security-Enhanced Linux in Android. URL: https://source.android
.com/security/selinux/.

http://dx.doi.org/10.1145/2462456.2464461
http://dx.doi.org/10.1145/2462456.2464461
http://dx.doi.org/10.1145/1999732.1999740
http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot
http://www.globalplatform.org/specificationform.asp?fid=7768
http://www.globalplatform.org/specificationform.asp?fid=7768
http://dx.doi.org/10.1109/EUC.2010.24
http://dx.doi.org/10.1145/2751323.2751330
https://www.good.com/
https://source.android.com/compatibility/
https://source.android.com/compatibility/
http://www.android.com/tv/
https://source.android.com/devices/tech/dalvik/
https://source.android.com/devices/tech/dalvik/
http://developer.android.com/training/location/geofencing.html
http://developer.android.com/training/location/geofencing.html
https://support.google.com/nexus/answer/6118421
https://support.google.com/nexus/answer/6118421
https://play.google.com/store
https://source.android.com/security/selinux/
https://source.android.com/security/selinux/

bibliography 141

[102] Google Inc. System Permissions | Android Developers. URL: http://developer.
android.com/guide/topics/security/permissions.html#userid.

[103] Google Inc. Verified Boot. URL: https://source.android.com/security/verifi
edboot/.

[104] Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang.
RiskRanker: Scalable and Accurate Zero-day Android Malware Detection. In Pro-
ceedings of the 10th Annual International Conference on Mobile Systems, Appli-
cations, and Services, MobiSys’12. URL: http://dx.doi.org/10.1145/2307636.
2307663.

[105] Michael C. Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. Unsafe Ex-
posure Analysis of Mobile In-app Advertisements. In Proceedings of the 5th ACM
Conference on Security and Privacy in Wireless and Mobile Networks, WiSec ’12.
URL: http://dx.doi.org/10.1145/2185448.2185464.

[106] Michael C. Grace, Yajin Zhou, Zhi Wang, and Xuxian Jiang. Systematic
Detection of Capability Leaks in Stock Android Smartphones. In Proceed-
ings of the 19th Annual Network and Distributed System Security Symposium,
NDSS’12. URL: http://www.internetsociety.org/systematic-detection-cap
ability-leaks-stock-android-smartphones.

[107] Kevin Gudeth, Matthew Pirretti, Katrin Hoeper, and Ron Buskey. Delivering Se-
cure Applications on Commercial Mobile Devices: The Case for Bare Metal Hy-
pervisors. In Proceedings of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, SPSM’11. URL: http://dx.doi.org/10.1145/
2046614.2046622.

[108] Aditi Gupta, Markus Miettinen, N. Asokan, and Marcin Nagy. Intuitive Security
Policy Configuration in Mobile Devices Using Context Profiling. In Proceedings of the
2012 ASE/IEE International Conference on Privacy, Security, Risk and Trust, and
2012 ASE International Conference on Social Computing, PASSAT/SocialCom’12.
URL: http://dx.doi.org/10.1109/SocialCom-PASSAT.2012.60.

[109] Joshua D. Guttman, Amy L. Herzog, John D. Ramsdell, and Clement W. Skorupka.
Verifying information flow goals in Security-Enhanced Linux. Journal on Computer
Security, 13(1), 2005. URL: http://dl.acm.org/citation.cfm?id=1066478.

[110] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H. Witten. The WEKA Data Mining Software: An Update. ACM SIGKDD
Explorations Newsletter, 11(1), 2009. URL: http://dx.doi.org/10.1145/1656274.
1656278.

[111] Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and Dawn Song.
Juxtapp: A Scalable System for Detecting Code Reuse Among Android Applications.
In Proceedings of the 9th International Conference on Detection of Intrusions and

http://developer.android.com/guide/topics/security/permissions.html#userid
http://developer.android.com/guide/topics/security/permissions.html#userid
https://source.android.com/security/verifiedboot/
https://source.android.com/security/verifiedboot/
http://dx.doi.org/10.1145/2307636.2307663
http://dx.doi.org/10.1145/2307636.2307663
http://dx.doi.org/10.1145/2185448.2185464
http://www.internetsociety.org/systematic-detection-capability-leaks-stock-android-smartphones
http://www.internetsociety.org/systematic-detection-capability-leaks-stock-android-smartphones
http://dx.doi.org/10.1145/2046614.2046622
http://dx.doi.org/10.1145/2046614.2046622
http://dx.doi.org/10.1109/SocialCom-PASSAT.2012.60
http://dl.acm.org/citation.cfm?id=1066478
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1145/1656274.1656278

142 bibliography

Malware, and Vulnerability Assessment, DIMVA’12. URL: http://dx.doi.org/10.
1007/978-3-642-37300-8_4.

[112] Hannover University of Applied Sciences and Arts. TNC@FHH | Trust@HsH. URL:
http://trust.f4.hs-hannover.de/projects/tncatfhh.html.

[113] Hao Hao, Vicky Singh, and Wenliang Du. On the Effectiveness of API-level Access
Control Using Bytecode Rewriting in Android. In Proceedings of the 8th ACM
Symposium on Information, Computer and Communications Security, ASIACCS’13.
URL: http://dx.doi.org/10.1145/2484313.2484317.

[114] Toshiharu Harada, Takashi Horie, and Kazuo Tanaka. Task Oriented Management
Obviates Your Onus on Linux. In Japan Linux Conference. URL: https://osdn.j
p/projects/tomoyo/docs/lc2004-en.pdf.

[115] Norm Hardy. The Confused Deputy: (or Why Capabilities Might Have Been In-
vented). ACM SIGOPS Operating Systems Review, 22(4), 1988. URL: http:
//dl.acm.org/citation.cfm?id=54289.871709.

[116] Ernst Haselsteiner and Klemens Breitfuß. Security in Near Field Communication.
In Workshop on RFID Security 2006, RFIDSec’06. URL: http://events.iaik.tu
graz.at/RFIDSec06/Program/papers/002%20-%20Security%20in%20NFC.pdf.

[117] Heise Medien. BSI erteilt vorläufige Zulassung für das SecuTABLET. URL: http:
//heise.de/-3138891.

[118] Gernot Heiser. The Motorola Evoke QA4 - A Case Study in Mobile Virtualization,
2009. URL: https://ssrg.nicta.com.au/publications/papers/Heiser_09:WP:
evoke.pdf.

[119] Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi. ASM:
A Programmable Interface for Extending Android Security. In Proceedings of the
23rd USENIX Security Symposium, USENIX’14. URL: https://www.usenix.org
/conference/usenixsecurity14/technical-sessions/presentation/heuser.

[120] Stephan Heuser, Marco Negro, Praveen Kumar Pendyala, and Ahmad-Reza Sadeghi.
DroidAuditor: Forensic Analysis of Application-Layer Privilege Escalation Attacks
on Android. In Proceedings of the 20th International Conference on Financial Cryp-
tography and Data Security, FC’16. URL: http://fc16.ifca.ai/preproceedings
/15_Heuser.pdf.

[121] Tsung-Hsuan Ho, Daniel Dean, Xiaohui Gu, and William Enck. PREC: Practical
Root Exploit Containment for Android Devices. In Proceedings of the 4th ACM
Conference on Data and Application Security and Privacy, CODASPY’14. URL:
http://dx.doi.org/10.1145/2557547.2557563.

[122] Andrew Hoog. Android Forensics: Investigation, Analysis and Mobile Security for
Google Android. Syngress Publishing, 1st edition, 2011.

http://dx.doi.org/10.1007/978-3-642-37300-8_4
http://dx.doi.org/10.1007/978-3-642-37300-8_4
http://trust.f4.hs-hannover.de/projects/tncatfhh.html
http://dx.doi.org/10.1145/2484313.2484317
https://osdn.jp/projects/tomoyo/docs/lc2004-en.pdf
https://osdn.jp/projects/tomoyo/docs/lc2004-en.pdf
http://dl.acm.org/citation.cfm?id=54289.871709
http://dl.acm.org/citation.cfm?id=54289.871709
http://events.iaik.tugraz.at/RFIDSec06/Program/papers/002%20-%20Security%20in%20NFC.pdf
http://events.iaik.tugraz.at/RFIDSec06/Program/papers/002%20-%20Security%20in%20NFC.pdf
http://heise.de/-3138891
http://heise.de/-3138891
https://ssrg.nicta.com.au/publications/papers/Heiser_09:WP:evoke.pdf
https://ssrg.nicta.com.au/publications/papers/Heiser_09:WP:evoke.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/heuser
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/heuser
http://fc16.ifca.ai/preproceedings/15_Heuser.pdf
http://fc16.ifca.ai/preproceedings/15_Heuser.pdf
http://dx.doi.org/10.1145/2557547.2557563

bibliography 143

[123] Jann Horn. CVE-2014-7911: Android <5.0 Privilege Escalation using ObjectInput-
Stream. URL: http://seclists.org/fulldisclosure/2014/Nov/51.

[124] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and David Wether-
all. These Aren’t the Droids You’re Looking for: Retrofitting Android to Protect
Data from Imperious Applications. In Proceedings of the 18th ACM Conference on
Computer and Communications Security, CCS ’11. URL: http://dx.doi.org/10.
1145/2046707.2046780.

[125] George Hotz. towelroot by geohot. URL: https://towelroot.com/.

[126] Hongxin Hu, Gail-Joon Ahn, and Ketan Kulkarni. Detecting and Resolving Firewall
Policy Anomalies. IEEE Transactions on Dependable and Secure Computing, 9(3),
2012. URL: http://dx.doi.org/10.1109/TDSC.2012.20.

[127] Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan Heo, Chan-Ju Park, Jae-Min Ryu,
Seong-Yeol Park, and Chul-Ryun Kim. Xen on ARM: System Virtualization Using
Xen Hypervisor for ARM-Based Secure Mobile Phones. In Proceedings of the 5th
IEEE Consumer Communications and Networking Conference, CCNC’08. URL:
http://dx.doi.org/10.1109/ccnc08.2007.64.

[128] Apple Inc. Use AirPlay to wirelessly stream content from your iPhone, iPad, or iPod
touch. URL: https://support.apple.com/en-us/HT204289.

[129] Gartner Inc. Gartner Says Tablets Are the Sweet Spot of BYOD Programs, 2014.
URL: http://www.gartner.com/newsroom/id/2909217.

[130] Gartner Inc. Gartner Says Worldwide Smartphone Sales Grew 9.7 Percent in Fourth
Quarter of 2015, 2015. URL: http://www.gartner.com/newsroom/id/3215217.

[131] Google Inc. Android. URL: http://www.android.com/.

[132] Google Inc. Android Auto. URL: http://www.android.com/auto/.

[133] Google Inc. Android for Work. URL: https://www.android.com/work/.

[134] Google Inc. Android Interface Definition Language. URL: https://developer.an
droid.com/guide/components/aidl.html.

[135] Google Inc. Android Interfaces and Architecture. URL: https://source.android
.com/devices/#HardwareAbstractionLayer.

[136] Jinseong Jeon, Kristopher K. Micinski, Jeffrey A. Vaughan, Ari Fogel, Nikhilesh
Reddy, Jeffrey S. Foster, and Todd Millstein. Dr. Android and Mr. Hide: Fine-grained
Permissions in Android Applications. In Proceedings of the 2nd ACM Workshop
on Security and Privacy in Smartphones Mobile Devices, SPSM’12. URL: http:
//dx.doi.org/10.1145/2381934.2381938.

http://seclists.org/fulldisclosure/2014/Nov/51
http://dx.doi.org/10.1145/2046707.2046780
http://dx.doi.org/10.1145/2046707.2046780
https://towelroot.com/
http://dx.doi.org/10.1109/TDSC.2012.20
http://dx.doi.org/10.1109/ccnc08.2007.64
https://support.apple.com/en-us/HT204289
http://www.gartner.com/newsroom/id/2909217
http://www.gartner.com/newsroom/id/3215217
http://www.android.com/
http://www.android.com/auto/
https://www.android.com/work/
https://developer.android.com/guide/components/aidl.html
https://developer.android.com/guide/components/aidl.html
https://source.android.com/devices/#Hardware Abstraction Layer
https://source.android.com/devices/#Hardware Abstraction Layer
http://dx.doi.org/10.1145/2381934.2381938
http://dx.doi.org/10.1145/2381934.2381938

144 bibliography

[137] Sibei Jiao, Yao Cheng, Lingyun Ying, Purui Su, and Dengguo Feng. A Rapid and
Scalable Method for Android Application Repackaging Detection. In Proceedings of
the 11th International Conference on Information Security Practice and Experience,
ISPEC’15. URL: http://dx.doi.org/10.1007/978-3-319-17533-1_24.

[138] Xing Jin, Xuchao Hu, Kailiang Ying, Wenliang Du, Heng Yin, and Gautam Nagesh
Peri. Code Injection Attacks on HTML5-based Mobile Apps: Characterization, De-
tection and Mitigation. In Proceedings of the 21st ACM Conference on Computer and
Communications Security, CCS’14. URL: http://dx.doi.org/10.1145/2660267.
2660275.

[139] Yiming Jing, Ziming Zhao, Gail-Joon Ahn, and Hongxin Hu. Morpheus: Auto-
matically Generating Heuristics to Detect Android Emulators. In Proceedings of
the 30th Annual Computer Security Applications Conference, ACSAC’14. URL:
http://dx.doi.org/10.1145/2664243.2664250.

[140] Graeme Johnson and Michael Dawson. Introduction to Java multitenancy,
2013. URL: http://www.ibm.com/developerworks/java/library/j-multitenan
t-java/index.html.

[141] Jinyung Kim, Yongho Yoon, Kwangkeun Yi, and Junbum Shin. ScanDal: Static
Analyzer for Detecting Privacy Leaks in Android Applications. In Proceedings of
the 2012 IEEE Mobile Security Technologies Workshop, MOST’12. URL: http://
mostconf.org/2012/papers/26.pdf.

[142] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. Android
Taint Flow Analysis for App Sets. In Proceedings of the 3rd ACM SIGPLAN In-
ternational Workshop on the State of the Art in Java Program Analysis, SOAP’14.
URL: http://dx.doi.org/10.1145/2614628.2614633.

[143] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang.
ThinkAir: Dynamic Resource Allocation and Parallel Execution in the Cloud for
Mobile Code Offloading. In Proceedings of the 31st Annual IEEE International Con-
ference on Computer Communications, INFOCOM’12. URL: https://dx.doi.org
/10.1109/INFCOM.2012.6195845.

[144] Kristen Kennedy and Eric Gustafson and Hao Chen. Quantifying the Effects of
Removing Permissions from Android. Applications. In Proceedings of the 2013 IEEE
Mobile Security Technologies Workshop, MOST’13. URL: http://mostconf.org
/2013/papers/25.pdf.

[145] Butler W. Lampson. Protection. ACM SIGOPS Operating System Review, 8(1),
1974. URL: http://dx.doi.org/10.1145/775265.775268.

[146] Matthias Lange, Steffen Liebergeld, Adam Lackorzynski, Alexander Warg, and
Michael Peter. L4Android: A Generic Operating System Framework for Secure
Smartphones. In Proceedings of the 1st ACM Workshop on Security and Privacy in

http://dx.doi.org/10.1007/978-3-319-17533-1_24
http://dx.doi.org/10.1145/2660267.2660275
http://dx.doi.org/10.1145/2660267.2660275
http://dx.doi.org/10.1145/2664243.2664250
http://www.ibm.com/developerworks/java/library/j-multitenant-java/index.html
http://www.ibm.com/developerworks/java/library/j-multitenant-java/index.html
http://mostconf.org/2012/papers/26.pdf
http://mostconf.org/2012/papers/26.pdf
http://dx.doi.org/10.1145/2614628.2614633
https://dx.doi.org/10.1109/INFCOM.2012.6195845
https://dx.doi.org/10.1109/INFCOM.2012.6195845
http://mostconf.org/2013/papers/25.pdf
http://mostconf.org/2013/papers/25.pdf
http://dx.doi.org/10.1145/775265.775268

bibliography 145

Smartphones and Mobile Devices, SPSM’11. URL: http://dx.doi.org/10.1145/
2046614.2046623.

[147] Joseph C. Lehner. AppOpsXposed - AppOps for 4.3+. URL: http://forum.xda-de
velopers.com/xposed/modules/xposed-appopsxposed-appops-4-3-t2564865.

[148] Juanru Li, Yuanyuan Zhang, Wenbo Yang, Junliang Shu, and Dawu Gu. DIAS:
Automated Online Analysis for Android Applications. In Proceedings of the 2014
IEEE International Conference on Computer and Information Technology, CIT’14.
URL: http://dx.doi.org/10.1109/CIT.2014.82.

[149] LIDWIN.PL. Spy Android Phone Let Me Spy - Control your phone online. URL:
http://www.letmespy.com/.

[150] Ying-Dar Lin, Yuan-Cheng Lai, Chien-Hung Chen, and Hao-Chuan Tsai. Identi-
fying Android Malicious Repackaged Applications by Thread-grained System Call
Sequences. Computers & Security, 39, 2013. URL: http://dx.doi.org/10.1016/
j.cose.2013.08.010.

[151] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick Fratan-
tonio, Victor van der Veen, and Christian Platzer. Andrubis - 1,000,000 Apps Later:
A View on Current Android Malware Behaviors. In Proceedings of the 3rd Interna-
tional Workshop on Building Analysis Datasets and Gathering Experience Returns
for Security, BADGERS’14. URL: http://dx.doi.org/10.1109/BADGERS.2014.7.

[152] Anthony Lineberry, David Luke Richardson, and Tim Wyatt. These aren’t the
Permissions You’re Looking for, 2010. URL: http://dtors.files.wordpress.co
m/2010/08/blackhat-2010-slides.pdf.

[153] Peter Loscocco and Stephen Smalley. Integrating Flexible Support for Se-
curity Policies into the Linux Operating System. In Proceedings of the
FREENIX Track: 2001 USENIX Annual Technical Conference, FREENIX’01.
URL: https://www.usenix.org/legacy/publications/library/proceedings/u
senix01/freenix01/full_papers/loscocco/loscocco_html/index.html.

[154] Robert Love. Linux Kernel Development. Addison-Wesley Professional, 3rd edition,
2010.

[155] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. CHEX: Statically
Vetting Android Apps for Component Hijacking Vulnerabilities. In Proceedings of
the 19th ACM Conference on Computer and Communications Security, CCS ’12.
URL: http://dx.doi.org/10.1145/2382196.2382223.

[156] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. Attacks on Web-
View in the Android System. In Proceedings of the 27th Annual Computer Security
Applications Conference, ACSAC ’11. URL: http://dx.doi.org/10.1145/2076732.
2076781.

http://dx.doi.org/10.1145/2046614.2046623
http://dx.doi.org/10.1145/2046614.2046623
http://forum.xda-developers.com/xposed/modules/xposed-appopsxposed-appops-4-3-t2564865
http://forum.xda-developers.com/xposed/modules/xposed-appopsxposed-appops-4-3-t2564865
http://dx.doi.org/10.1109/CIT.2014.82
http://www.letmespy.com/
http://dx.doi.org/10.1016/j.cose.2013.08.010
http://dx.doi.org/10.1016/j.cose.2013.08.010
http://dx.doi.org/10.1109/BADGERS.2014.7
http://dtors.files.wordpress.com/2010/08/blackhat-2010-slides.pdf
http://dtors.files.wordpress.com/2010/08/blackhat-2010-slides.pdf
https://www.usenix.org/legacy/publications/library/proceedings/usenix01/freenix01/full_papers/loscocco/loscocco_html/index.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix01/freenix01/full_papers/loscocco/loscocco_html/index.html
http://dx.doi.org/10.1145/2382196.2382223
http://dx.doi.org/10.1145/2076732.2076781
http://dx.doi.org/10.1145/2076732.2076781

146 bibliography

[157] Christopher Mann and Artem Starostin. A Framework for Static Detection of
Privacy Leaks in Android Applications. In Proceedings of the 27th Annual ACM
Symposium on Applied Computing, SAC ’12. URL: http://dx.doi.org/10.1145/
2245276.2232009.

[158] Claudio Marforio, Hubert Ritzdorf, Aurélien Francillon, and Srdjan Capkun. Analy-
sis of the Communication Between Colluding Applications on Modern Smartphones.
In Proceedings of the 28th Annual Computer Security Applications Conference, AC-
SAC’12. URL: http://dx.doi.org/10.1145/2420950.2420958.

[159] Philip Marquardt, Arunabh Verma, Henry Carter, and Patrick Traynor. (Sp)iPhone:
Decoding Vibrations from Nearby Keyboards Using Mobile Phone Accelerometers.
In 18th ACM Conference on Computer and Communications Security, CCS’11. URL:
http://dx.doi.org/10.1145/2046707.2046771.

[160] McAfee. Threats Report May 2015, 2015. URL: http://www.mcafee.com/us/reso
urces/reports/rp-quarterly-threat-q1-2015.pdf.

[161] Patrick McDaniel and Atul Prakash. Methods and Limitations of Security Policy
Reconciliation. In Proceedings of the 23rd IEEE Symposium on Security and Privacy,
S&P’02. URL: http://dx.doi.org/10.1109/SECPRI.2002.1004363.

[162] Markus Miettinen, Stephan Heuser, Wiebke Kronz, Ahmad-Reza Sadeghi, and
N. Asokan. ConXsense – Context Profiling and Classification for Context-Aware
Access Control. In Proceedings of the 9th ACM Symposium on Information, Com-
puter and Communications Security, ASIACCS’14. URL: http://dx.doi.org/10.
1145/2590296.2590337.

[163] André Moulu. Abusing Samsung KNOX to remotely install a mali-
cious application: story of a half patched vulnerability, 2014. URL:
http://blog.quarkslab.com/abusing-samsung-knox-to-remotely-instal
l-a-malicious-application-story-of-a-half-patched-vulnerability.html.

[164] André Moulu. Remote Code Execution as System User on Android 5
Samsung Devices abusing WifiCredService (Hotspot 2.0), 2015. URL:
http://blog.quarkslab.com/remote-code-execution-as-system-user-on
-android-5-samsung-devices-abusing-wificredservice-hotspot-20.html.

[165] Collin Mulliner, Jon Oberheide, William Robertson, and Engin Kirda. PatchDroid:
Scalable Third-party Security Patches for Android Devices. In Proceedings of the
29th Annual Computer Security Applications Conference, ACSAC ’13. URL: http:
//dx.doi.org/10.1145/2523649.2523679.

[166] Divya Muthukumaran, Joshua Schiffman, Mohamed Hassan, Anuj Sawani, Vikhyath
Rao, and Trent Jaeger. Protecting the Integrity of Trusted Applications in Mobile
Phone Systems. Security and Communication Networks, 4(6), 2011. URL: http:
//dx.doi.org/10.1002/sec.194.

http://dx.doi.org/10.1145/2245276.2232009
http://dx.doi.org/10.1145/2245276.2232009
http://dx.doi.org/10.1145/2420950.2420958
http://dx.doi.org/10.1145/2046707.2046771
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2015.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2015.pdf
http://dx.doi.org/10.1109/SECPRI.2002.1004363
http://dx.doi.org/10.1145/2590296.2590337
http://dx.doi.org/10.1145/2590296.2590337
http://blog.quarkslab.com/abusing-samsung-knox-to-remotely-install-a-malicious-application-story-of-a-half-patched-vulnerability.html
http://blog.quarkslab.com/abusing-samsung-knox-to-remotely-install-a-malicious-application-story-of-a-half-patched-vulnerability.html
http://blog.quarkslab.com/remote-code-execution-as-system-user-on-android-5-samsung-devices-abusing-wificredservice-hotspot-20.html
http://blog.quarkslab.com/remote-code-execution-as-system-user-on-android-5-samsung-devices-abusing-wificredservice-hotspot-20.html
http://dx.doi.org/10.1145/2523649.2523679
http://dx.doi.org/10.1145/2523649.2523679
http://dx.doi.org/10.1002/sec.194
http://dx.doi.org/10.1002/sec.194

bibliography 147

[167] Yacin Nadji, Jonathon Giffin, and Patrick Traynor. Automated Remote Repair for
Mobile Malware. In Proceedings of the 27th Annual Computer Security Applications
Conference, ACSAC ’11. URL: http://dx.doi.org/10.1145/2076732.2076791.

[168] Adwait Nadkarni and William Enck. Preventing Accidental Data Disclosure in
Modern Operating Systems. In Proceedings of the 20th ACM Conference on Com-
puter and Communications Security, CCS’13. URL: http://dx.doi.org/10.1145/
2508859.2516677.

[169] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: Extending An-
droid Permission Model and Enforcement with User-defined Runtime Constraints.
In Proceedings of the 5th ACM Symposium on Information, Computer and Com-
munications Security, ASIACCS’10. URL: http://dx.doi.org/10.1145/1755688.
1755732.

[170] Neo Technology. Neo4j: The World’s Leading Graph Database. URL: http://ne
o4j.com/company/.

[171] Neo Technology. Neo4j’s Graph Query Language: An Introduction to Cypher. URL:
http://neo4j.com/developer/cypher-query-language/.

[172] B. Clifford Neuman and Theodore Tso. Kerberos: An Authentication Service for
Computer Networks. IEEE Communications Magazine, 32(9), 1994. URL: http:
//dx.doi.org/10.1109/35.312841.

[173] Nils (MWR Security). Building Android Sandcastles in Android’s Sandbox,
2010. URL: https://media.blackhat.com/bh-ad-10/Nils/Black-Hat-AD-2010-
android-sandcastle-wp.pdf.

[174] Jon Oberheide and Charlie Miller. Dissecting the Android Bouncer. In SummerCon
2012. URL: https://jon.oberheide.org/files/summercon12-bouncer.pdf.

[175] Damien Octeau, Somesh Jha, and Patrick McDaniel. Retargeting Android Ap-
plications to Java Bytecode. In Proceedings of the 20th ACM SIGSOFT Inter-
national Symposium on the Foundations of Software Engineering, FSE’12. URL:
http://dx.doi.org/10.1145/2393596.2393600.

[176] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick Mc-
Daniel. Composite Constant Propagation: Application to Android Inter-Component
Communication Analysis. In Proceedings of the 37th IEEE International Conference
on Software Engineering, ICSE’15. URL: http://siis.cse.psu.edu/pubs/octeau
-icse15.pdf.

[177] Damien Octeau, Patrick McDaniel, Somesh Jha, Alexandre Bartel, Eric Bod-
den, Jacques Klein, and Yves Le Traon. Effective Inter-component Communi-
cation Mapping in Android with Epicc: An Essential Step Towards Holistic Se-
curity Analysis. In Proceedings of the 22nd USENIX Conference on Security,
USENIX’13. URL: https://www.usenix.org/conference/usenixsecurity13/te
chnical-sessions/presentation/octeau.

http://dx.doi.org/10.1145/2076732.2076791
http://dx.doi.org/10.1145/2508859.2516677
http://dx.doi.org/10.1145/2508859.2516677
http://dx.doi.org/10.1145/1755688.1755732
http://dx.doi.org/10.1145/1755688.1755732
http://neo4j.com/company/
http://neo4j.com/company/
http://neo4j.com/developer/cypher-query-language/
http://dx.doi.org/10.1109/35.312841
http://dx.doi.org/10.1109/35.312841
https://media.blackhat.com/bh-ad-10/Nils/Black-Hat-AD-2010-android-sandcastle-wp.pdf
https://media.blackhat.com/bh-ad-10/Nils/Black-Hat-AD-2010-android-sandcastle-wp.pdf
https://jon.oberheide.org/files/summercon12-bouncer.pdf
http://dx.doi.org/10.1145/2393596.2393600
http://siis.cse.psu.edu/pubs/octeau-icse15.pdf
http://siis.cse.psu.edu/pubs/octeau-icse15.pdf
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/octeau
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/octeau

148 bibliography

[178] Department of Defense. Trusted Computer System Evaluation Criteria, 1985. URL:
http://csrc.nist.gov/publications/history/dod85.pdf.

[179] Machigar Ongtang, Kevin Butler, and Patrick McDaniel. Porscha: Policy Oriented
Secure Content Handling in Android. In Proceedings of the 26th Annual Computer
Security Applications Conference, ACSAC’10. URL: http://dx.doi.org/10.1145/
1920261.1920295.

[180] Machigar Ongtang, Stephen McLaughlin, William Enck, and Patrick McDaniel.
Semantically Rich Application-Centric Security in Android. In Proceedings of
the 25th Annual Computer Security Applications Conference, ACSAC’09. URL:
http://dx.doi.org/10.1109/ACSAC.2009.39.

[181] Oracle. Maxine Virtual Edition - Maxine on Xen. URL: https://kenai.com/proj
ects/guestvm.

[182] Oracle. SecurityManager (Java Platform SE 7). URL: http://docs.oracle.com/
javase/7/docs/api/java/lang/SecurityManager.html.

[183] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang. ACCessory:
Password Inference Using Accelerometers on Smartphones. In Proceedings of the
13th Workshop on Mobile Computing Systems and Applications, HotMobile’12. URL:
http://dx.doi.org/10.1145/2162081.2162095.

[184] Palm Source, Inc. Open Binder. Version 1, 2005. URL: http://www.angryredplan
et.com/~hackbod/openbinder/docs/html/index.html.

[185] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. AdDroid:
Privilege Separation for Applications and Advertisers in Android. In Proceedings of
the 7th ACM Symposium on Information, Computer and Communications Security,
ASIACCS’12. URL: http://dx.doi.org/10.1145/2414456.2414498.

[186] Or Peles and Roee Hay. One Class to Rule Them All: 0-Day Deserialization Vul-
nerabilities in Android. In Proceedings of the 9th USENIX Workshop on Offensive
Technologies, WOOT’15. URL: https://www.usenix.org/conference/woot15/wo
rkshop-program/presentation/peles.

[187] Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan Qi, Rahul Potharaju,
Cristina Nita-Rotaru, and Ian Molloy. Using Probabilistic Generative Models for
Ranking Risks of Android Apps. In Proceedings of the 19th ACM Conference on
Computer and Communications Security, CCS’12. URL: http://dx.doi.org/10.
1145/2382196.2382224.

[188] Fabien Perigaud. Local root vulnerability in Android 4.4.2. URL:
http://blog.cassidiancybersecurity.com/post/2014/06/Android-4.4.3,
-or-fixing-an-old-local-root.

http://csrc.nist.gov/publications/history/dod85.pdf
http://dx.doi.org/10.1145/1920261.1920295
http://dx.doi.org/10.1145/1920261.1920295
http://dx.doi.org/10.1109/ACSAC.2009.39
https://kenai.com/projects/guestvm
https://kenai.com/projects/guestvm
http://docs.oracle.com/javase/7/docs/api/java/lang/SecurityManager.html
http://docs.oracle.com/javase/7/docs/api/java/lang/SecurityManager.html
http://dx.doi.org/10.1145/2162081.2162095
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/index.html
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/index.html
http://dx.doi.org/10.1145/2414456.2414498
https://www.usenix.org/conference/woot15/workshop-program/presentation/peles
https://www.usenix.org/conference/woot15/workshop-program/presentation/peles
http://dx.doi.org/10.1145/2382196.2382224
http://dx.doi.org/10.1145/2382196.2382224
http://blog.cassidiancybersecurity.com/post/2014/06/Android-4.4.3,-or-fixing-an-old-local-root
http://blog.cassidiancybersecurity.com/post/2014/06/Android-4.4.3,-or-fixing-an-old-local-root

bibliography 149

[189] Sebastian Poeplau, Yanick Fratantonio, Antonio Bianchi, Christopher Kruegel, and
Giovanni Vigna. Execute This! Analyzing Unsafe and Malicious Dynamic Code Load-
ing in Android Applications. In 21st Annual Network and Distributed System Secu-
rity Symposium. URL: http://www.internetsociety.org/doc/execute-analyz
ing-unsafe-and-malicious-dynamic-code-loading-android-applications.

[190] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steven Hanna, and David Wag-
ner. A Survey of Mobile Malware in the Wild. In Proceedings of the 1st ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM ’11.
URL: http://dx.doi.org/10.1145/2046614.2046618.

[191] Georgios Portokalidis, Philip Homburg, Kostas Anagnostakis, and Herbert Bos.
Paranoid Android: Versatile Protection for Smartphones. In Proceedings of the
26th Annual Computer Security Applications Conference, ACSAC’10. URL: http:
//dx.doi.org/10.1145/1920261.1920313.

[192] Davy Preuveneers and Yolande Berbers. Context-Driven Migration and Diffusion of
Pervasive Services on the OSGi Framework. International Journal of Autonomous
and Adaptive Communications Systems, 3(1), 2010. URL: http://dx.doi.org/10.
1504/IJAACS.2010.030309.

[193] Niels Provos. Improving Host Security with System Call Policies. In Pro-
ceedings of the 12th USENIX Security Symposium, USENIX’03. URL:
https://www.usenix.org/legacy/events/sec03/tech/full_papers/provo
s/provos_html/index.html.

[194] QNX Software Systems Limited. QNX Operating Systems. URL: http://www.qnx.
com/products/neutrino-rtos/index.html.

[195] Qualcomm. Trepn Profiler. URL: https://developer.qualcomm.com/mobile-de
velopment/increase-app-performance/trepn-profiler.

[196] Dave Rahardja. Distributing Enterprise Apps. In Apple Worldwide Developers Con-
ference, WWDC’14. URL: http://devstreaming.apple.com/videos/wwdc/2014/
705xx0r0x0fsaf5/705/705_distributing_enterprise_apps.pdf.

[197] Vikhyath Rao and Trent Jaeger. Dynamic Mandatory Access Control for Multiple
Stakeholders. In Proceedings of the 14th ACM Symposium on Access Control Mod-
els and Technologies, SACMAT’09. URL: http://dx.doi.org/10.1145/1542207.
1542217.

[198] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A Machine-learning Ap-
proach for Classifying and Categorizing Android Sources and Sinks. In Proceed-
ings of the 21st Network and Distributed System Security Symposium, NDSS’14.
URL: http://www.internetsociety.org/doc/machine-learning-approach-cl
assifying-and-categorizing-android-sources-and-sinks.

http://www.internetsociety.org/doc/execute-analyzing-unsafe-and-malicious-dynamic-code-loading-android-applications
http://www.internetsociety.org/doc/execute-analyzing-unsafe-and-malicious-dynamic-code-loading-android-applications
http://dx.doi.org/10.1145/2046614.2046618
http://dx.doi.org/10.1145/1920261.1920313
http://dx.doi.org/10.1145/1920261.1920313
http://dx.doi.org/10.1504/IJAACS.2010.030309
http://dx.doi.org/10.1504/IJAACS.2010.030309
https://www.usenix.org/legacy/events/sec03/tech/full_papers/provos/provos_html/index.html
https://www.usenix.org/legacy/events/sec03/tech/full_papers/provos/provos_html/index.html
http://www.qnx.com/products/neutrino-rtos/index.html
http://www.qnx.com/products/neutrino-rtos/index.html
https://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler
https://developer.qualcomm.com/mobile-development/increase-app-performance/trepn-profiler
http://devstreaming.apple.com/videos/wwdc/2014/705xx0r0x0fsaf5/705/705_distributing_enterprise_apps.pdf
http://devstreaming.apple.com/videos/wwdc/2014/705xx0r0x0fsaf5/705/705_distributing_enterprise_apps.pdf
http://dx.doi.org/10.1145/1542207.1542217
http://dx.doi.org/10.1145/1542207.1542217
http://www.internetsociety.org/doc/machine-learning-approach-classifying-and-categorizing-android-sources-and-sinks
http://www.internetsociety.org/doc/machine-learning-approach-classifying-and-categorizing-android-sources-and-sinks

150 bibliography

[199] Siegfried Rasthofer, Steven Arzt, Enrico Lovat, and Eric Bodden. DroidForce: En-
forcing Complex, Data-centric, System-wide Policies in Android. In Proceedings of
the 9th International Conference on Availability, Reliability and Security, ARES’14.
URL: http://dx.doi.org/10.1109/ARES.2014.13.

[200] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. Harvesting
Runtime Values in Android Applications That Feature Anti-Analysis Techniques.
In Proceedings of the 23rd Annual Network and Distributed System Security
Symposium, NDSS’16. URL: https://www.internetsociety.org/sites/defaul
t/files/blogs-media/harvesting-runtime-values-android-applications-f
eature-anti-analysis-techniques.pdf.

[201] Siegfried Rasthofer, Irfan Asrar, Stephan Huber, and Eric Bodden. How Current
Android Malware Seeks to Evade Automated Code Analysis. In Proceedings of
the 9th IFIP WG 11.2 International Conference Information Security Theory and
Practice, WISTP’15. URL: http://dx.doi.org/10.1007/978-3-319-24018-3_12.

[202] Vaibhav Rastogi, Yan Chen, and William Enck. AppsPlayground: Automatic Secu-
rity Analysis of Smartphone Applications. In Proceedings of the 3rd ACM Con-
ference on Data and Application Security and Privacy, CODASPY ’13. URL:
http://dx.doi.org/10.1145/2435349.2435379.

[203] Paul Ratazzi, Ashok Bommisetti, Nian Ji, and Wenliang Du. PINPOINT: Efficient
and Effective Resource Isolation for Mobile Security and Privacy. In Proceedings
of the 2015 IEEE Mobile Security Technologies Workshop, MOST’15. URL: http:
//www.ieee-security.org/TC/SPW2015/MoST/papers/s3p2.pdf.

[204] Robert W. Reeder, Lujo Bauer, Lorrie Faith Cranor, Michael K. Reiter, and Kami
Vaniea. More Than Skin Deep: Measuring Effects of the Underlying Model on Access-
control System Usability. In Proceedings of the ACM CHI Conference on Human Fac-
tors in Computing Systems, CHI’11. URL: http://dx.doi.org/10.1145/1978942.
1979243.

[205] Jan S. Rellermeyer, Gustavo Alonso, and Timothy Roscoe. R-OSGi: Distributed
Applications Through Software Modularization. In Proceedings of the ACM/I-
FIP/USENIX 2007 International Conference on Middleware, Middleware ’07.

[206] Chuangang Ren, Yulong Zhang, Hui Xue, Tao Wei, and Peng Liu. Towards Dis-
covering and Understanding Task Hijacking in Android. In Proceedings of the 24th
USENIX Security Symposium, USENIX’15. URL: https://www.usenix.org/confe
rence/usenixsecurity15/technical-sessions/presentation/ren-chuangang.

[207] Elena Reshetova, Filippo Bonazzi, Thomas Nyman, Ravishankar Borgaonkar, and
N. Asokan. Characterizing SEAndroid Policies in the Wild. In Proceedings of the 2nd
International Conference on Information Systems Security and Privacy, ICISSP’16.
URL: http://dx.doi.org/10.5220/0005759204820489.

http://dx.doi.org/10.1109/ARES.2014.13
https://www.internetsociety.org/sites/default/files/blogs-media/harvesting-runtime-values-android-applications-feature-anti-analysis-techniques.pdf
https://www.internetsociety.org/sites/default/files/blogs-media/harvesting-runtime-values-android-applications-feature-anti-analysis-techniques.pdf
https://www.internetsociety.org/sites/default/files/blogs-media/harvesting-runtime-values-android-applications-feature-anti-analysis-techniques.pdf
http://dx.doi.org/10.1007/978-3-319-24018-3_12
http://dx.doi.org/10.1145/2435349.2435379
http://www.ieee-security.org/TC/SPW2015/MoST/papers/s3p2.pdf
http://www.ieee-security.org/TC/SPW2015/MoST/papers/s3p2.pdf
http://dx.doi.org/10.1145/1978942.1979243
http://dx.doi.org/10.1145/1978942.1979243
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ren-chuangang
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ren-chuangang
http://dx.doi.org/10.5220/0005759204820489

bibliography 151

[208] Franziska Roesner and Tadayoshi Kohno. Securing Embedded User Interfaces:
Android and Beyond. In Proceedings of the 22nd USENIX Security Symposium,
USENIX’13. URL: https://www.usenix.org/conference/usenixsecurity13/te
chnical-sessions/presentation/roesner.

[209] Giovanni Russello, Mauro Conti, Bruno Crispo, and Earlence Fernandes. MOSES:
Supporting Operation Modes on Smartphones. In Proceedings of the 17th ACM
Symposium on Access Control Models and Technologies, SACMAT’12. URL: http:
//dx.doi.org/10.1145/2295136.2295140.

[210] Giovanni Russello, Arturo Blas Jimenez, Habib Naderi, and Wannes van der Mark.
FireDroid: Hardening Security in Almost-stock Android. In Proceedings of the 29th
Annual Computer Security Applications Conference, ACSAC’13. URL: http://dx
.doi.org/10.1145/2523649.2523678.

[211] Andrei Sabelfeld and Andrew C. Myers. Language-based Information-flow Security.
IEEE Journal on Selected Areas in Communications, 21(1), 2006. URL: http://dx
.doi.org/10.1109/JSAC.2002.806121.

[212] Norman Sadeh, Jason Hong, Lorrie Cranor, Ian Fette, Patrick Kelley, Madhu
Prabaker, and Jinghai Rao. Understanding and Capturing People’s Privacy Poli-
cies in a People Finder Application. Personal and Ubiquitous Computing, 13, 2009.
URL: http://dx.doi.org/10.1007/s00779-008-0214-3.

[213] Samsung. AllShare Framework. URL: http://developer.samsung.com/allshare
-framework/technical-docs/FAQ.

[214] Samsung. Samsung KNOX. URL: https://www.samsungknox.com.

[215] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509
Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP. RFC
6960, 2013. URL: http://www.ietf.org/rfc/rfc6960.txt.

[216] Casey Schaufler. The Smack Project. URL: http://schaufler-ca.com/.

[217] Casey Schaufler. [PATCH v13 0/9] LSM: Multiple concurrent LSMs, 2013. URL:
https://lkml.org/lkml/2013/4/23/307.

[218] Roman Schlegel, Kehuan Zhang, Xiao-yong Zhou, Mehool Intwala, Apu Kapadia,
and XiaoFeng Wang. Soundcomber: A Stealthy and Context-Aware Sound Trojan
for Smartphones. In Proceedings of the 18th Annual Network and Distributed System
Security Symposium, NDSS’11. URL: http://www.internetsociety.org/doc/so
undcomber-stealthy-and-context-aware-sound-trojan-smartphones.

[219] Secure Computing Corporation. DTOS Generalized Security Policy Specification,
1997.

[220] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Taesoo Kim, and Insik Shin. Flex-
Droid: Enforcing In-App Privilege Separation in Android. In Proceedings of

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/roesner
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/roesner
http://dx.doi.org/10.1145/2295136.2295140
http://dx.doi.org/10.1145/2295136.2295140
http://dx.doi.org/10.1145/2523649.2523678
http://dx.doi.org/10.1145/2523649.2523678
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1007/s00779-008-0214-3
http://developer.samsung.com/allshare-framework/technical-docs/FAQ
http://developer.samsung.com/allshare-framework/technical-docs/FAQ
https://www.samsungknox.com
http://www.ietf.org/rfc/rfc6960.txt
http://schaufler-ca.com/
https://lkml.org/lkml/2013/4/23/307
http://www.internetsociety.org/doc/soundcomber-stealthy-and-context-aware-sound-trojan-smartphones
http://www.internetsociety.org/doc/soundcomber-stealthy-and-context-aware-sound-trojan-smartphones

152 bibliography

the 23rd Annual Network and Distributed System Security Symposium, NDSS’16.
URL: https://www.internetsociety.org/sites/default/files/blogs-media/
flexdroid-enforcing-in-app-privilege-separation-android.pdf.

[221] A. Shabtai, Y. Fledel, and Y. Elovici. Securing Android-Powered Mobile Devices
Using SELinux. IEEE Security Privacy, 8(3), 2010. URL: http://dx.doi.org/10.
1109/MSP.2009.144.

[222] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. “Andro-
maly”: a behavioral malware detection framework for android devices. Journal of
Intelligent Information Systems, 38(1), 2011. URL: http://dx.doi.org/10.1007/
s10844-010-0148-x.

[223] Yuru Shao, Xiapu Luo, Chenxiong Qian, Pengfei Zhu, and Lei Zhang. Towards a
Scalable Resource-driven Approach for Detecting Repackaged Android Applications.
In Proceedings of the 30th Annual Computer Security Applications Conference, AC-
SAC’14. URL: http://dx.doi.org/10.1145/2664243.2664275.

[224] Yuru Shao, Jason Ott, Qi Alfred Chen, Zhiyun Qian, and Zhuoqing Morley Mao.
Kratos: Discovering Inconsistent Security Policy Enforcement in the Android
Framework. In Proceedings of the 23rd Annual Network and Distributed System
Security Symposium, NDSS’16. URL: https://www.internetsociety.org/sites/
default/files/blogs-media/kratos-discovering-inconsistent-security-p
olicy-enforcement-android-framework_0.pdf.

[225] Shashi Shekhar, Michael Dietz, and Dan S. Wallach. AdSplit: Separating Smart-
phone Advertising from Applications. In Proceedings of the 21st USENIX Security
Symposium, USENIX’12. URL: https://www.usenix.org/conference/usenixse
curity12/technical-sessions/presentation/shekhar.

[226] Robert Sheldon. MDM puts mobile geofencing, geolocation services on the
map. URL: http://searchmobilecomputing.techtarget.com/tip/MDM-puts-mo
bile-geofencing-geolocation-services-on-the-map.

[227] Robert Siciliano. More Than 30% of People Don’t Password Protect Their Mobile
Devices, 2013. URL: http://blogs.mcafee.com/consumer/unprotected-mobile
-devices.

[228] Laurent Simon and Ross Anderson. PIN Skimmer: Inferring PINs Through the
Camera and Microphone. In Proceedings of the 3rd ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, SPSM’13. URL: http://dx.doi.org
/10.1145/2516760.2516770.

[229] Sirrix AG security technologies. BizzTrust. URL: https://www.sirrix.com/conte
nt/pages/bizztrust_en.htm.

[230] Sirrix AG security technologies. Sirrix wins again the Innovation Price IT - CeBit
2014: a short review. URL: http://www.sirrix.com/content/news/66024.htm.

https://www.internetsociety.org/sites/default/files/blogs-media/flexdroid-enforcing-in-app-privilege-separation-android.pdf
https://www.internetsociety.org/sites/default/files/blogs-media/flexdroid-enforcing-in-app-privilege-separation-android.pdf
http://dx.doi.org/10.1109/MSP.2009.144
http://dx.doi.org/10.1109/MSP.2009.144
http://dx.doi.org/10.1007/s10844-010-0148-x
http://dx.doi.org/10.1007/s10844-010-0148-x
http://dx.doi.org/10.1145/2664243.2664275
https://www.internetsociety.org/sites/default/files/blogs-media/kratos-discovering-inconsistent-security-policy-enforcement-android-framework_0.pdf
https://www.internetsociety.org/sites/default/files/blogs-media/kratos-discovering-inconsistent-security-policy-enforcement-android-framework_0.pdf
https://www.internetsociety.org/sites/default/files/blogs-media/kratos-discovering-inconsistent-security-policy-enforcement-android-framework_0.pdf
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/shekhar
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/shekhar
http://searchmobilecomputing.techtarget.com/tip/MDM-puts-mobile-geofencing-geolocation-services-on-the-map
http://searchmobilecomputing.techtarget.com/tip/MDM-puts-mobile-geofencing-geolocation-services-on-the-map
http://blogs.mcafee.com/consumer/unprotected-mobile-devices
http://blogs.mcafee.com/consumer/unprotected-mobile-devices
http://dx.doi.org/10.1145/2516760.2516770
http://dx.doi.org/10.1145/2516760.2516770
https://www.sirrix.com/content/pages/bizztrust_en.htm
https://www.sirrix.com/content/pages/bizztrust_en.htm
http://www.sirrix.com/content/news/66024.htm

bibliography 153

[231] Sirrix AG security technologies. TrustedObjects Manager. URL: https://www.si
rrix.com/content/pages/tom_en.htm.

[232] Stephan Smalley and Robert Craig. Security Enhanced (SE) Android: Bringing Flex-
ible MAC to Android. In Proceedings of the 20th Annual Network and Distributed
System Security Symposium, NDSS’13. URL: http://www.internetsociety.org/
doc/security-enhanced-se-android-bringing-flexible-mac-android.

[233] Stephen Smalley. SELinux in Android Lollipop and Marshmallow, 2015.
URL: http://kernsec.org/files/lss2015/lss2015_selinuxinandroidlollip
opandm_smalley.pdf.

[234] Steven Smalley. Middleware MAC for Android, 2012. URL: http://kernsec.org/
files/LSS2012-MiddlewareMAC.pdf.

[235] Charlie Soh, Hee Beng Kuan Tan, Yauhen Leanidavich Arnatovich, and Lipo Wang.
Detecting Clones in Android Applications Through Analyzing User Interfaces. In
Proceedings of the 23rd IEEE International Conference on Program Comprehension,
ICPC’15. URL: http://dx.doi.org/10.1109/ICPC.2015.25.

[236] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David Andersen, and
Jay Lepreau. The Flask Security Architecture: System Support for Diverse Secu-
rity Policies. In Proceedings of the 8th USENIX Security Symposium, USENIX’99.
URL: https://www.usenix.org/conference/8th-usenix-security-symposium/
flask-security-architecture-system-support-diverse-security.

[237] Michael Spreitzenbarth, Felix Freiling, Florian Echtler, Thomas Schreck, and Jo-
hannes Hoffmann. Mobile-sandbox: Having a Deeper Look into Android Applica-
tions. In Proceedings of the 28th Annual ACM Symposium on Applied Computing,
SAC ’13. URL: http://dx.doi.org/10.1145/2480362.2480701.

[238] SQLite Development Team. SQLite. URL: https://www.sqlite.org.

[239] Frank Stajano. The Resurrecting Duckling – What Next? In Proceedings of the 8th
International Workshop on Security Protocols, SPW’01. URL: http://dx.doi.org
/10.1007/3-540-44810-1_27.

[240] Frank Stajano and Ross J. Anderson. The Resurrecting Duckling: Security Issues
for Ad-hoc Wireless Networks. In Proceedings of the 7th International Workshop on
Security Protocols, SPW’00. URL: http://dx.doi.org/10.1007/10720107_24.

[241] Ryan Stevens, Clint Gibler, Jon Crussell, Jeremy Erickson, and Hao Chen. Inves-
tigating User Privacy in Android Ad Libraries. In Proceedings of the 2012 IEEE
Mobile Security Technologies Workshop, MOST’12. URL: http://mostconf.org
/2012/papers/27.pdf.

[242] Mengtao Sun and Gang Tan. NativeGuard: Protecting Android Applications from
Third-party Native Libraries. In Proceedings of the 7th ACM Conference on Security

https://www.sirrix.com/content/pages/tom_en.htm
https://www.sirrix.com/content/pages/tom_en.htm
http://www.internetsociety.org/doc/security-enhanced-se-android-bringing-flexible-mac-android
http://www.internetsociety.org/doc/security-enhanced-se-android-bringing-flexible-mac-android
http://kernsec.org/files/lss2015/lss2015_selinuxinandroidlollipopandm_smalley.pdf
http://kernsec.org/files/lss2015/lss2015_selinuxinandroidlollipopandm_smalley.pdf
http://kernsec.org/files/LSS2012-MiddlewareMAC.pdf
http://kernsec.org/files/LSS2012-MiddlewareMAC.pdf
http://dx.doi.org/10.1109/ICPC.2015.25
https://www.usenix.org/conference/8th-usenix-security-symposium/flask-security-architecture-system-support-diverse-security
https://www.usenix.org/conference/8th-usenix-security-symposium/flask-security-architecture-system-support-diverse-security
http://dx.doi.org/10.1145/2480362.2480701
https://www.sqlite.org
http://dx.doi.org/10.1007/3-540-44810-1_27
http://dx.doi.org/10.1007/3-540-44810-1_27
http://dx.doi.org/10.1007/10720107_24
http://mostconf.org/2012/papers/27.pdf
http://mostconf.org/2012/papers/27.pdf

154 bibliography

and Privacy in Wireless and Mobile Networks, WiSec ’14. URL: http://dx.doi.o
rg/10.1145/2627393.2627396.

[243] Mingshen Sun, Mengmeng Li, and John C. S. Lui. DroidEagle: Seamless Detection
of Visually Similar Android Apps. In Proceedings of the 8th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, WiSec’15. URL: http://dx
.doi.org/10.1145/2766498.2766508.

[244] Mingshen Sun, Min Zheng, John C. S. Lui, and Xuxian Jiang. Design and Imple-
mentation of an Android Host-based Intrusion Prevention System. In Proceedings
of the 30th Annual Computer Security Applications Conference, ACSAC’14. URL:
http://dx.doi.org/10.1145/2664243.2664245.

[245] Nathan Sweet. KryoNet. URL: https://github.com/EsotericSoftware/kryonet.

[246] Symantec. Android.Enesoluty. URL: https://www.symantec.com/security_resp
onse/writeup.jsp?docid=2012-090607-0807-99.

[247] Symantec. Android.Loozfon | Symantec. URL: http://www.symantec.com/secur
ity_response/writeup.jsp?docid=2012-082005-5451-99.

[248] Kimberly Tam, Salahuddin J. Khan, Aristide Fattori, and Lorenzo Cavallaro. Cop-
perDroid: Automatic Reconstruction of Android Malware Behaviors. In Proceed-
ings of the 22nd Annual Network and Distributed System Security Symposium,
NDSS’15. URL: http://www.internetsociety.org/doc/copperdroid-automati
c-reconstruction-android-malware-behaviors.

[249] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems. Prentice Hall
Press, 4th edition, 2014.

[250] TeleTrusT – Bundesverband IT-Sicherheit e.V. ISSE Conference 2012 in Brüs-
sel erfolgreich, TeleTrusT verleiht ’Innovation Award’ an Fraunhofer SIT Darm-
stadt. URL: https://www.teletrust.de/startseite/pressemeldung/?tx_ttne
ws%5Btt_news%5D=501.

[251] Robert Templeman, Zahid Rahman, David Crandall, and Apu Kapadia. Plac-
eRaider: Virtual Theft in Physical Spaces with Smartphones. In Proceed-
ings of the 20th Annual Network and Distributed System Security Symposium,
NDSS’13. URL: http://www.internetsociety.org/doc/placeraider-virtual-
theft-physical-spaces-smartphones.

[252] The Apache Software Foundation. Apache Felix. URL: http://felix.apache.org.

[253] The Apache Software Foundation. Apache Felix UPnP. URL: http://felix.apac
he.org/documentation/subprojects/apache-felix-upnp.html.

[254] The GraphStream Team. GraphStream - A Dynamic Graph Library. URL: http:
/graphstream-project.org/.

http://dx.doi.org/10.1145/2627393.2627396
http://dx.doi.org/10.1145/2627393.2627396
http://dx.doi.org/10.1145/2766498.2766508
http://dx.doi.org/10.1145/2766498.2766508
http://dx.doi.org/10.1145/2664243.2664245
https://github.com/EsotericSoftware/kryonet
https://www.symantec.com/security_response/writeup.jsp?docid=2012-090607-0807-99
https://www.symantec.com/security_response/writeup.jsp?docid=2012-090607-0807-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-082005-5451-99
http://www.symantec.com/security_response/writeup.jsp?docid=2012-082005-5451-99
http://www.internetsociety.org/doc/copperdroid-automatic-reconstruction-android-malware-behaviors
http://www.internetsociety.org/doc/copperdroid-automatic-reconstruction-android-malware-behaviors
https://www.teletrust.de/startseite/pressemeldung/?tx_ttnews%5Btt_news%5D=501
https://www.teletrust.de/startseite/pressemeldung/?tx_ttnews%5Btt_news%5D=501
http://www.internetsociety.org/doc/placeraider-virtual-theft-physical-spaces-smartphones
http://www.internetsociety.org/doc/placeraider-virtual-theft-physical-spaces-smartphones
http://felix.apache.org
http://felix.apache.org/documentation/subprojects/apache-felix-upnp.html
http://felix.apache.org/documentation/subprojects/apache-felix-upnp.html
http:/graphstream-project.org/
http:/graphstream-project.org/

bibliography 155

[255] The Linux Foundation. Tizen | An open source, standards-based software platform
for multiple device categories. URL: https://www.tizen.org/.

[256] The MITRE Corporation. CVE-2014-3153. URL: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-3153.

[257] The OSGi Alliance. OSGi Service Platform Core Specification Release 4, Version
4.2, 2009. URL: https://osgi.org/download/r4v42/r4.core.pdf.

[258] The UPnP Forum. UPnP Device Architecture 2.0, 2015. URL: http://www.upnp
.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf.

[259] TheTruthSpy LLC. Mobile spy app, Android spy, Call recording, Whatsapp spy,
SMS tracker. URL: http://thetruthspy.com/.

[260] Daniel R. Thomas, Alastair R. Beresford, and Andrew Rice. Security Metrics for
the Android Ecosystem. In Proceedings of the 5th ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, SPSM’15. URL: http://dx.doi.org
/10.1145/2808117.2808118.

[261] Tresys Technology. SELinux Policy Server. URL: http://oss.tresys.com/proje
cts/policy-server.

[262] Trusted Computing Group. Mobile Trusted Module Specification, 2008. URL: http:
//www.trustedcomputinggroup.org/files/resource_files/87852F33-1D09-
3519-AD0C0F141CC6B10D/Revision_6-tcg-mobile-trusted-module-1_0.pdf.

[263] Trusted Computing Group (TCG). TNC Architecture for Interoperability, Specifi-
cation Version 1.5, Revision 4, 2012. URL: http://www.trustedcomputinggroup.
org/files/resource_files/DDBB9EF7-1A4B-B294-D03A12D6C4A8B356/TNC_Arch
itecture_v1_5_r4.pdf.

[264] Trusted Computing Group (TCG). TNC IF-T Binding to TLS, Specification
Version 2.0, Revision 8, 2013. URL: http://www.trustedcomputinggroup.org/
files/resource_files/DDBE9B3E-1A4B-B294-D04A6712D58307CD/TNC_IFT_TLS_
v2_0_r8.pdf.

[265] Trusted Computing Group (TCG). TNC IF-M: TLV Binding Specification Version
1.0 Revision 41, 2014. URL: http://www.trustedcomputinggroup.org/files/re
source_files/DDBC8F4D-1A4B-B294-D0E9E54E0BE5CE7C/TNC_IFM_v1_0_r41-a.
pdf.

[266] Trusted Computing Group (TCG). TNC IF-T: Protocol Bindings for Tun-
neled EAP Methods, Specification Version 2.0 Revision 5, 2014. URL:
http://www.trustedcomputinggroup.org/files/resource_files/DDBE6A9A
-1A4B-B294-D0A22F30F722F7C1/TNC_IFT_EAP_v2_0_r5-a2.pdf.

[267] Trusted Computing Group (TCG). TNC IF-TNCCS: TLV Binding, Specification
Version 2.0 Revision 21, 2014. URL: http://www.trustedcomputinggroup.org/

https://www.tizen.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3153
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3153
https://osgi.org/download/r4v42/r4.core.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v2.0.pdf
http://thetruthspy.com/
http://dx.doi.org/10.1145/2808117.2808118
http://dx.doi.org/10.1145/2808117.2808118
http://oss.tresys.com/projects/policy-server
http://oss.tresys.com/projects/policy-server
http://www.trustedcomputinggroup.org/files/resource_files/87852F33-1D09-3519-AD0C0F141CC6B10D/Revision_6-tcg-mobile-trusted-module-1_0.pdf
http://www.trustedcomputinggroup.org/files/resource_files/87852F33-1D09-3519-AD0C0F141CC6B10D/Revision_6-tcg-mobile-trusted-module-1_0.pdf
http://www.trustedcomputinggroup.org/files/resource_files/87852F33-1D09-3519-AD0C0F141CC6B10D/Revision_6-tcg-mobile-trusted-module-1_0.pdf
http://www.trustedcomputinggroup.org/files/resource_files/DDBB9EF7-1A4B-B294-D03A12D6C4A8B356/TNC_Architecture_v1_5_r4.pdf
http://www.trustedcomputinggroup.org/files/resource_files/DDBB9EF7-1A4B-B294-D03A12D6C4A8B356/TNC_Architecture_v1_5_r4.pdf
http://www.trustedcomputinggroup.org/files/resource_files/DDBB9EF7-1A4B-B294-D03A12D6C4A8B356/TNC_Architecture_v1_5_r4.pdf
http://www.trustedcomputinggroup.org/files/resource_files/DDBE9B3E-1A4B-B294-D04A6712D58307CD/TNC_IFT_TLS_v2_0_r8.pdf
http://www.trustedcomputinggroup.org/files/resource_files/DDBE9B3E-1A4B-B294-D04A6712D58307CD/TNC_IFT_TLS_v2_0_r8.pdf
http://www.trustedcomputinggroup.org/files/resource_files/DDBE9B3E-1A4B-B294-D04A6712D58307CD/TNC_IFT_TLS_v2_0_r8.pdf
http://www.trustedcomputinggroup.org/files/resource_files/DDBC8F4D-1A4B-B294-D0E9E54E0BE5CE7C/TNC_IFM_v1_0_r41-a.pdf
http://www.trustedcomputinggroup.org/files/resource_files/DDBC8F4D-1A4B-B294-D0E9E54E0BE5CE7C/TNC_IFM_v1_0_r41-a.pdf
http://www.trustedcomputinggroup.org/files/resource_files/DDBC8F4D-1A4B-B294-D0E9E54E0BE5CE7C/TNC_IFM_v1_0_r41-a.pdf
http://www.trustedcomputinggroup.org/files/resource_files/DDBE6A9A-1A4B-B294-D0A22F30F722F7C1/TNC_IFT_EAP_v2_0_r5-a2.pdf
http://www.trustedcomputinggroup.org/files/resource_files/DDBE6A9A-1A4B-B294-D0A22F30F722F7C1/TNC_IFT_EAP_v2_0_r5-a2.pdf
http://www.trustedcomputinggroup.org/files/resource_files/DDBAD766-1A4B-B294-D067C0B081329709/IF-TNCCS_v2_0_r21-a.pdf
http://www.trustedcomputinggroup.org/files/resource_files/DDBAD766-1A4B-B294-D067C0B081329709/IF-TNCCS_v2_0_r21-a.pdf

156 bibliography

files/resource_files/DDBAD766-1A4B-B294-D067C0B081329709/IF-TNCCS_v2_
0_r21-a.pdf.

[268] Trustonic. Kinibi Trusted Execution Environment (TEE). URL: https://www.tr
ustonic.com/products/kinibi.

[269] UEFI Forum. UEFI Specifications. URL: http://www.uefi.org/specifications.

[270] Prashant Varanasi and Gernot Heiser. Hardware-supported Virtualization on ARM.
In Proceedings of the 2nd Asia-Pacific Workshop on Systems, APSys ’11. URL:
http://dx.doi.org/10.1145/2103799.2103813.

[271] Timothy Vidas and Nicolas Christin. Evading Android Runtime Analysis via Sand-
box Detection. In Proceedings of the 9th ACM Symposium on Information, Computer
and Communications Security, ASIACCS’14. URL: http://dx.doi.org/10.1145/
2590296.2590325.

[272] Timothy Vidas, Jiaqi Tan, Jay Nahata, Chaur Lih Tan, Nicolas Christin, and Patrick
Tague. A5: Automated Analysis of Adversarial Android Applications. In Proceedings
of the 4th ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices, SPSM’14. URL: http://dx.doi.org/10.1145/2666620.2666630.

[273] VMWare, Inc. Airwatch. URL: http://www.air-watch.com/.

[274] Ruowen Wang, William Enck, Douglas Reeves, Xinwen Zhang, Peng Ning, Ding-
bang Xu, Wu Zhou, and Ahmed M. Azab. EASEAndroid: Automatic Policy
Analysis and Refinement for Security Enhanced Android via Large-Scale Semi-
Supervised Learning. In Proceedings of the 24th USENIX Security Symposium,
USENIX’15. URL: https://www.usenix.org/conference/usenixsecurity15/te
chnical-sessions/presentation/wang-ruowen.

[275] Xueqiang Wang, Kun Sun, Yuewu Wang, and Jiwu Jing. DeepDroid: Dy-
namically Enforcing Enterprise Policy on Android Devices. In 22nd An-
nual Network and Distributed System Security Symposium, NDSS’15. URL:
http://www.internetsociety.org/doc/deepdroid-dynamically-enforcing-en
terprise-policy-android-devices.

[276] Yifei Wang, Srinivas Hariharan, Chenxi Zhao, Jiaming Liu, and Wenliang Du. Com-
pac: Enforce Component-level Access Control in Android. In Proceedings of the
4th ACM Conference on Data and Application Security and Privacy, CODASPY’14.
URL: http://dx.doi.org/10.1145/2557547.2557560.

[277] Robert N. M. Watson. TrustedBSD: Adding Trusted Operating System Features to
FreeBSD. In Proceedings of the FREENIX Track: 2001 USENIX Annual Technical
Conference, FREENIX’01. URL: https://www.usenix.org/legacy/publicatio
ns/library/proceedings/usenix01/freenix01/full_papers/watson/watson_
html/index.html.

http://www.trustedcomputinggroup.org/files/resource_files/DDBAD766-1A4B-B294-D067C0B081329709/IF-TNCCS_v2_0_r21-a.pdf
http://www.trustedcomputinggroup.org/files/resource_files/DDBAD766-1A4B-B294-D067C0B081329709/IF-TNCCS_v2_0_r21-a.pdf
http://www.trustedcomputinggroup.org/files/resource_files/DDBAD766-1A4B-B294-D067C0B081329709/IF-TNCCS_v2_0_r21-a.pdf
https://www.trustonic.com/products/kinibi
https://www.trustonic.com/products/kinibi
http://www.uefi.org/specifications
http://dx.doi.org/10.1145/2103799.2103813
http://dx.doi.org/10.1145/2590296.2590325
http://dx.doi.org/10.1145/2590296.2590325
http://dx.doi.org/10.1145/2666620.2666630
http://www.air-watch.com/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-ruowen
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-ruowen
http://www.internetsociety.org/doc/deepdroid-dynamically-enforcing-enterprise-policy-android-devices
http://www.internetsociety.org/doc/deepdroid-dynamically-enforcing-enterprise-policy-android-devices
http://dx.doi.org/10.1145/2557547.2557560
https://www.usenix.org/legacy/publications/library/proceedings/usenix01/freenix01/full_papers/watson/watson_html/index.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix01/freenix01/full_papers/watson/watson_html/index.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix01/freenix01/full_papers/watson/watson_html/index.html

bibliography 157

[278] Robert N. M. Watson. A Decade of OS Access-Control Extensibility. Commu-
nications of the ACM, 56(2), 2013. URL: http://dx.doi.org/10.1145/2408776.
2408792.

[279] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A Precise
and General Inter-component Data Flow Analysis Framework for Security Vetting
of Android Apps. In Proceedings of the 2014 ACM Conference on Computer and
Communications Security, CCS ’14. URL: http://dx.doi.org/10.1145/2660267.
2660357.

[280] Ryan Welton. Remotely Abusing Android, 2015. URL: https://www.blackhat
.com/docs/ldn-15/materials/london-15-Welton-Abusing-Android-Apps-And-
Gaining-Remote-Code-Execution.pdf.

[281] Primal Wijesekera, Arjun Baokar, Ashkan Hosseini, Serge Egelman, David Wag-
ner, and Konstantin Beznosov. Android Permissions Remystified: A Field Study
on Contextual Integrity. In Proceedings of the 24th USENIX Security Symposium,
USENIX’15. URL: https://www.usenix.org/conference/usenixsecurity15/te
chnical-sessions/presentation/wijesekera.

[282] Ryszard Wiśniewski and Connor Tumbleson. android-apktool. URL: http://ibot
peaches.github.io/Apktool/.

[283] Chris Write, Crispin Cowan, Stephen Smalley, James Morris, and Greg
Kroah-Hartman. Linux Security Modules: General Security Support for the
Linux Kernel. In Proceedings of the 11th USENIX Security Symposium,
USENIX’02. URL: https://www.usenix.org/legacy/events/sec02/full_paper
s/wright/wright_html/index.html.

[284] Chiachih Wu, Yajin Zhou, Kunal Patel, Zhenkai Liang, and Xuxian Jiang.
AirBag: Boosting Smartphone Resistance to Malware Infection. In Proceed-
ings of the 21st Annual Network and Distributed System Security Symposium,
NDSS’14. URL: http://www.internetsociety.org/doc/airbag-boosting-smar
tphone-resistance-malware-infection.

[285] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. The Impact
of Vendor Customizations on Android Security. In Proceedings of the 20th ACM
Conference on Computer and Communications Security, CCS’13. URL: http://dx
.doi.org/10.1145/2508859.2516728.

[286] Luyi Xing, Xiaorui Pan, Rui Wang, Kan Yuan, and XiaoFeng Wang. Upgrading Your
Android, Elevating My Malware: Privilege Escalation through Mobile OS Updating.
In Proceedings of the 35th IEEE Symposium on Security and Privacy, S&P’14. URL:
http://dx.doi.org/10.1109/SP.2014.32.

[287] Lei Xu, Guoxi Li, Chuan Li, Weijie Sun, Wenzhi Chen, and Zonhui Wang. Con-
droid: A Container-Based Virtualization Solution Adapted for Android Devices. In
Proceedings of the 3rd IEEE International Conference on Mobile Cloud Computing,

http://dx.doi.org/10.1145/2408776.2408792
http://dx.doi.org/10.1145/2408776.2408792
http://dx.doi.org/10.1145/2660267.2660357
http://dx.doi.org/10.1145/2660267.2660357
https://www.blackhat.com/docs/ldn-15/materials/london-15-Welton-Abusing-Android-Apps-And-Gaining-Remote-Code-Execution.pdf
https://www.blackhat.com/docs/ldn-15/materials/london-15-Welton-Abusing-Android-Apps-And-Gaining-Remote-Code-Execution.pdf
https://www.blackhat.com/docs/ldn-15/materials/london-15-Welton-Abusing-Android-Apps-And-Gaining-Remote-Code-Execution.pdf
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wijesekera
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wijesekera
http://ibotpeaches.github.io/Apktool/
http://ibotpeaches.github.io/Apktool/
https://www.usenix.org/legacy/events/sec02/full_papers/wright/wright_html/index.html
https://www.usenix.org/legacy/events/sec02/full_papers/wright/wright_html/index.html
http://www.internetsociety.org/doc/airbag-boosting-smartphone-resistance-malware-infection
http://www.internetsociety.org/doc/airbag-boosting-smartphone-resistance-malware-infection
http://dx.doi.org/10.1145/2508859.2516728
http://dx.doi.org/10.1145/2508859.2516728
http://dx.doi.org/10.1109/SP.2014.32

158 bibliography

Services, and Engineering, Mobilecloud’15. URL: http://dx.doi.org/10.1109/Mo
bileCloud.2015.9.

[288] Nan Xu, Fan Zhang, Yisha Luo, Weijia Jia, Dong Xuan, and Jin Teng. Stealthy
Video Capturer: A New Video-based Spyware in 3G Smartphones. In Proceedings
of the 2nd ACM Conference on Wireless Network Security, WiSec’09. URL: http:
//dx.doi.org/10.1145/1514274.1514285.

[289] Rubin Xu, Hassen Saidi, and Ross Anderson. Aurasium: Practical Policy Enforce-
ment for Android Applications. In Proceedings of the 21st USENIX Security Sym-
posium, USENIX’12. URL: https://www.usenix.org/conference/usenixsecuri
ty12/technical-sessions/presentation/xu_rubin.

[290] Zhi Xu, Kun Bai, and Sencun Zhu. TapLogger: Inferring User Inputs on Smartphone
Touchscreens Using On-board Motion Sensors. In Proceedings of the 5th ACM Con-
ference on Security and Privacy in Wireless and Mobile Networks, WiSec’12. URL:
http://dx.doi.org/10.1145/2185448.2185465.

[291] Lok Kwong Yan and Heng Yin. DroidScope: Seamlessly Reconstructing the OS and
Dalvik Semantic Views for Dynamic Android Malware Analysis. In Proceedings of
the 21st USENIX Security Symposium, USENIX’12. URL: https://www.usenix.o
rg/conference/usenixsecurity12/technical-sessions/presentation/yan.

[292] Zhemin Yang and Min Yang. LeakMiner: Detect Information Leakage on Android
with Static Taint Analysis. In Proceedings of the 2012 Third World Congress on
Software Engineering, WCSE’12. URL: http://dx.doi.org/10.1109/WCSE.2012.
26.

[293] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X. Sean Wang.
AppIntent: analyzing sensitive data transmission in android for privacy leakage detec-
tion. In Proceedings of the 20th ACM Conference on Computer and Communications
Security, CCS’13. URL: http://dx.doi.org/10.1145/2508859.2516676.

[294] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu. View-
Droid: Towards Obfuscation-resilient Mobile Application Repackaging Detection. In
Proceedings of the 7th ACM Conference on Security and Privacy in Wireless and Mo-
bile Networks, WiSec’14. URL: http://dx.doi.org/10.1145/2627393.2627395.

[295] Mu Zhang and Heng Yin. AppSealer: Automatic Generation of Vulnerability-Specific
Patches for Preventing Component Hijacking Attacks in Android Applications.
In Proceedings of the 21st Network and Distributed System Security Symposium,
NDSS’14. URL: http://www.internetsociety.org/doc/appsealer-automatic-
generation-vulnerability-specific-patches-preventing-component-hijac
king.

[296] Xiao Zhang, Amit Ahlawat, and Wenliang Du. AFrame: Isolating Advertisements
from Mobile Applications in Android. In Proceedings of the 29th Annual Computer

http://dx.doi.org/10.1109/MobileCloud.2015.9
http://dx.doi.org/10.1109/MobileCloud.2015.9
http://dx.doi.org/10.1145/1514274.1514285
http://dx.doi.org/10.1145/1514274.1514285
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/xu_rubin
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/xu_rubin
http://dx.doi.org/10.1145/2185448.2185465
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/yan
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/yan
http://dx.doi.org/10.1109/WCSE.2012.26
http://dx.doi.org/10.1109/WCSE.2012.26
http://dx.doi.org/10.1145/2508859.2516676
http://dx.doi.org/10.1145/2627393.2627395
http://www.internetsociety.org/doc/appsealer-automatic-generation-vulnerability-specific-patches-preventing-component-hijacking
http://www.internetsociety.org/doc/appsealer-automatic-generation-vulnerability-specific-patches-preventing-component-hijacking
http://www.internetsociety.org/doc/appsealer-automatic-generation-vulnerability-specific-patches-preventing-component-hijacking

bibliography 159

Security Applications Conference, ACSAC ’13. URL: http://dx.doi.org/10.1145/
2523649.2523652.

[297] Xiao Zhang, Kailiang Ying, Yousra Aafer, Zhenshen Qiu, and Wenliang
Du. Life after App Uninstallation: Are the Data Still Alive? Data
Residue Attacks on Android. In Proceedings of the 23rd Annual Net-
work and Distributed System Security Symposium, NDSS’16. URL: https:
//www.internetsociety.org/sites/default/files/blogs-media/life-after
-app-installation-data-still-alive-data-residue-attacks-android.pdf.

[298] Xinwen Zhang, Jean-Pierre Seifert, and Onur Acıiçmez. SEIP: Simple and Efficient
Integrity Protection for Open Mobile Platforms. In Proceedings of the 12th Inter-
national Conference on Information and Communications Security, ICICS’10. URL:
http://dx.doi.org/10.1007/978-3-642-17650-0_9.

[299] Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning, X. Sean
Wang, and Binyu Zang. Vetting Undesirable Behaviors in Android Apps with Per-
mission Use Analysis. In Proceedings of the 20th ACM Conference on Computer and
Communications Security, CCS’13. URL: http://dx.doi.org/10.1145/2508859.
2516689.

[300] Wu Zhou, Xinwen Zhang, and Xuxian Jiang. AppInk: Watermarking Android
Apps for Repackaging Deterrence. In Proceedings of the 8th ACM Symposium
on Information, Computer and Communications Security, ASIACCS’13. URL:
http://dx.doi.org/10.1145/2484313.2484315.

[301] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou. Fast, Scalable
Detection of "Piggybacked" Mobile Applications. In Proceedings of the 3rd ACM
Conference on Data and Application Security and Privacy, CODASPY’13. URL:
http://dx.doi.org/10.1145/2435349.2435377.

[302] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting Repackaged Smart-
phone Applications in Third-party Android Marketplaces. In Proceedings of the
2nd ACM Conference on Data and Application Security and Privacy, CODASPY’12.
URL: http://dx.doi.org/10.1145/2133601.2133640.

[303] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and XiaoFengWang.
The Peril of Fragmentation: Security Hazards in Android Device Driver Customiza-
tions. In Proceedings of the 35th IEEE Symposium on Security and Privacy, S&P’14.
URL: http://dx.doi.org/10.1109/SP.2014.33.

[304] Yajin Zhou and Xuxian Jiang. Dissecting Android Malware: Characterization and
Evolution. In Proceedings of the 33rd IEEE Symposium on Security and Privacy,
S&P’12. URL: http://dx.doi.org/10.1109/SP.2012.16.

[305] Yajin Zhou and Xuxian Jiang. Detecting Passive Content Leaks and Pollution in An-
droid Applications. In Proceedings of the 20th Annual Network and Distributed Sys-
tem Security Symposium, NDSS’13. URL: http://www.internetsociety.org/do
c/detecting-passive-content-leaks-and-pollution-android-applications.

http://dx.doi.org/10.1145/2523649.2523652
http://dx.doi.org/10.1145/2523649.2523652
https://www.internetsociety.org/sites/default/files/blogs-media/life-after-app-installation-data-still-alive-data-residue-attacks-android.pdf
https://www.internetsociety.org/sites/default/files/blogs-media/life-after-app-installation-data-still-alive-data-residue-attacks-android.pdf
https://www.internetsociety.org/sites/default/files/blogs-media/life-after-app-installation-data-still-alive-data-residue-attacks-android.pdf
http://dx.doi.org/10.1007/978-3-642-17650-0_9
http://dx.doi.org/10.1145/2508859.2516689
http://dx.doi.org/10.1145/2508859.2516689
http://dx.doi.org/10.1145/2484313.2484315
http://dx.doi.org/10.1145/2435349.2435377
http://dx.doi.org/10.1145/2133601.2133640
http://dx.doi.org/10.1109/SP.2014.33
http://dx.doi.org/10.1109/SP.2012.16
http://www.internetsociety.org/doc/detecting-passive-content-leaks-and-pollution-android-applications
http://www.internetsociety.org/doc/detecting-passive-content-leaks-and-pollution-android-applications

160 bibliography

[306] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. Hey, You, Get Off of My
Market: Detecting Malicious Apps in Official and Alternative Android Markets. In
Proceedings of the 19th Annual Network and Distributed System Security Symposium,
NDSS’12. URL: http://www.internetsociety.org/hey-you-get-my-market-de
tecting-malicious-apps-official-and-alternative-android-markets.

[307] Yajin Zhou, Xinwen Zhang, Xuxian Jiang, and Vincent W. Freeh. Taming
Information-Stealing Smartphone Applications (on Android). In Proceedings of
the 4th International Conference on Trust and Trustworthy Computing, TRUST’11.
URL: http://dx.doi.org/10.1007/978-3-642-21599-5_7.

[308] Rodrigo ZR. Droidwall. URL: https://play.google.com/store/apps/details?i
d=com.googlecode.droidwall.free.

http://www.internetsociety.org/hey-you-get-my-market-detecting-malicious-apps-official-and-alternative-android-markets
http://www.internetsociety.org/hey-you-get-my-market-detecting-malicious-apps-official-and-alternative-android-markets
http://dx.doi.org/10.1007/978-3-642-21599-5_7
https://play.google.com/store/apps/details?id=com.googlecode.droidwall.free
https://play.google.com/store/apps/details?id=com.googlecode.droidwall.free

Erklärung gemäß §9 der Promotionsordnung

Hiermit versichere ich, die vorliegende Dissertation selbstständig und nur unter Verwen-
dung der angegebenen Quellen und Hilfsmittel verfasst zu haben. Alle Stellen, die aus
Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gle-
icher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, Deutschland, Juli 2016

Stephan Heuser

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Goal and Scope of this Dissertation
	1.2 Summary of Contributions
	1.3 Outline
	1.4 Previous Publications

	2 Background
	2.1 Smart Mobile Devices - An Abstract Model
	2.1.1 Stakeholders
	2.1.2 Hardware Architecture of Smart Mobile Devices
	2.1.3 Software Architecture of Smart Mobile Devices

	2.2 Access Control
	2.2.1 Access Control Matrix
	2.2.2 Discretionary and Mandatory Access Control

	2.3 The Android Operating System
	2.3.1 Architecture
	2.3.2 Security Considerations

	3 Attacks an Defenses
	3.1 Adversary Model and Scope
	3.2 Attack vectors
	3.2.1 Active Deployment
	3.2.2 Passive Deployment

	3.3 Privilege Escalation
	3.3.1 Application-Layer Privilege Escalation
	3.3.2 Operating System Level Privilege Escalation
	3.3.3 Sensory Malware
	3.3.4 System and Application Updates
	3.3.5 User Interface Confusion

	3.4 Threat Mitigation
	3.4.1 Static Program Analysis
	3.4.2 Dynamic Program Analysis
	3.4.3 Root Exploit Mitigation
	3.4.4 Fine-grained Privilege Separation
	3.4.5 System and Application Updates
	3.4.6 System-Centric Access Control Refinement
	3.4.7 Application-Layer Access Control Refinement

	3.5 Requirements for Extensible Access Control Architectures
	3.5.1 Observations
	3.5.2 Requirement Analysis

	4 Fine-grained and Extensible Policy-Driven Access Control
	4.1 Background on SELinux Type Enforcement
	4.1.1 SELinux
	4.1.2 Security Enhanced (SE) Android

	4.2 FlaskDroid Architecture
	4.2.1 Kernel-layer Type Enforcement
	4.2.2 Userspace Security Server
	4.2.3 Userspace Object Managers
	4.2.4 Access Control Rules
	4.2.5 Context Providers
	4.2.6 Support for Multiple Stakeholders

	4.3 Case Studies
	4.3.1 Privacy Enhanced Operating System Components
	4.3.2 Privacy Enhanced Image Media Store
	4.3.3 Phone Booth Mode
	4.3.4 App Developer Policies (Saint)

	4.4 Evaluation
	4.4.1 Policy Size and Complexity
	4.4.2 Effectiveness
	4.4.3 Performance

	4.5 Conclusion

	5 A Modular and Programmable Access Control Architecture
	5.1 Background
	5.2 ASM Architecture
	5.2.1 ASM Apps
	5.2.2 ASM Bridge
	5.2.3 Callbacks Modifying Data
	5.2.4 Hook Types
	5.2.5 ASM LSM

	5.3 Case Studies
	5.3.1 MockDroid
	5.3.2 AppLock
	5.3.3 App-specific Firewalling
	5.3.4 Summary

	5.4 Evaluation
	5.4.1 Performance Overhead
	5.4.2 Energy Consumption

	5.5 Conclusion

	6 Practical Use Cases
	6.1 Context-Aware Access Control
	6.1.1 Scope
	6.1.2 Design
	6.1.3 Implementation
	6.1.4 Evaluation
	6.1.5 Conclusion

	6.2 Access Control for Application Behavior Analysis
	6.2.1 Scope
	6.2.2 Design
	6.2.3 Implementation
	6.2.4 Evaluation
	6.2.5 Conclusion

	6.3 Secure Dual-Use of Smart Mobile Devices
	6.3.1 Scope
	6.3.2 Design
	6.3.3 Implementation
	6.3.4 Evaluation
	6.3.5 Conclusion

	6.4 Access Control in Advanced IoT Scenarios
	6.4.1 Scope
	6.4.2 Design
	6.4.3 Implementation
	6.4.4 Evaluation
	6.4.5 Conclusion

	7 Discussion and Conclusion
	7.1 Dissertation Summary
	7.2 Directions for Future Research

	8 About the author
	Bibliography
	Declaration

