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“Success consists of going from failure to

failure without loss of enthusiasm.”

Winston Churchill
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Abstract
This work represents the investigations in imagine properties of inorganic scintillation screens as di-

agnostic elements in heavy ion accelerator facilities, that were performed at GSI Helmholtz Centre for

Heavy Ion Research (Darmstadt, Germany) and TU Darmstadt. The screen materials can be classified

in groups of phosphor screens (P43 and P46 phosphor), single crystals (cerium-doped Y3Al5O12) and

polycrystalline aluminum oxides (pure and Chromium-doped Al2O3). Out of these groups, a selection of

seven screens were irradiated by five different projectiles (proton, nitrogen, nickel, xenon and uranium),

that were extracted from SIS18 in fast (1 µs) and slow (300-400 ms) extraction mode at a specific en-

ergy of Espec = 300 MeV/u. The number of irradiating particles per pulse was varied between 107 and

2 · 1010 ppp and the scintillation response was recorded by a complex optical system. The records served

on the one hand for investigations in the two-dimensional response to the irradiating beam, namely the

light output L, the light yield Y and the characteristics of the beam profiles in horizontal and vertical

direction. On the other hand the wavelength spectrum of the scintillation was recorded for investigations

in variations of the material structure. A data analysis was performed based on a dedicated Python script.

Additionally three conventional methods (UV/Vis transmission spectroscopy, X-Ray diffraction, Raman

fluorescence spectroscopy) were performed after the beam times for investigations in the material struc-

ture. Nevertheless, neither structural variations nor material defects, induced by the ion irradiation,

were proven within the accuracy range of the used instrumentation and the given ion fluences.

Besides the irradiation under varying beam intensity, radiation hardness tests with fast and slow ex-

tracted Nickel pulses at 2 · 109 ppp and a specific energy around Espec ≈ 300 MeV/u were performed and

the scintillation record was used to examine the material stability under long time application. Here, the

light yield Y of the targets was nearly constant or decreased only in the range of 10-15 %, relative to the

initial value. For the targets with single crystal characteristic (P46, YAG:Ce), Y even increased slightly

and than saturated, offering an enhanced mobility of charge carriers under irradiation. The emission

spectra were reproduced continuously and the beam profiles showed good accordance to the reference

methods.

Within all performed beam times, the targets offered a great stability. Non-linear characteristics,

e.g. due to quenching during irradiation at high beam intensities, were not observed. The light yield Y

showed a decreasing tendency as function of calculated electronic energy loss dE/d x . The characteristics

of the calculated beam profiles, as well as the recorded emission spectra did not change significantly. So a

material degradation in the investigated materials was not verified. This observation is confirmed by the

performed material characterization measurements. The need of target replacement, e.g. due to damage,

did not occur and was thus not performed during the complete investigations. As material for future

beam diagnostics of FAIR cerium-doped Y3Al5O12 single crystal with a thickness in the range of 300 µm

is recommended in cross-points between different storage sections, due to the stable imaging properties

for high energy ion beams, even under long-time irradiation. For beam alignment to experimental and

research areas, common Al2O3:Cr is recommended due to the cost advantage.
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Zusammenfassung
Für diese Arbeit wurden die Abbildungseigenschaften anorganischer Szintillatoren unter Bestrahlung mit

hochenergetischen Schwerionen untersucht. Hierfür wurden Messungen am GSI Helmholtzzentrum für

Schwerionenforschung GmbH (Darmstadt, Deutschland) und der TU Darmstadt mit insgesamt sieben

Leuchtschirmen durchgeführt, die sich in drei Gruppen einteilen lassen: Phosphorschirme (P43 und

P46), Einkristalle (Cerium-dotiertes Y3Al5O12) und polykristallines Aluminium Oxid (reines und Chrom-

dotiertes Al2O3). Sie wurden mit fünf Ionensorten (Wasserstoff, Stickstoff, Nickel, Xenon und Uran)

bestrahlt, die einerseits schnell (1 µs) und andererseits langsam (300-400 ms) vom SIS18 mit einer

spezifischen Energie von Espec = 300 MeV/u extrahiert wurden. Die Zahl der Ionen pro Puls wurde im

Bereich zwischen 107 und 2 · 1010 ppp variert und die induzierte Szintillation wurde während der Be-

strahlung mit einem komplexen Kamerasystem aufgenommen. Aus den Daten wurde sowohl die zwei-

dimensionale Leuchterscheinung bestimmt, charakterisiert durch Lichtmenge L, Lichtausbeute Y und

Strahlprofile in horizontaler und vertikaler Ausrichtung. Weiterhin wurde das wellenlängenabhängige

Emissionsspektrum aufgenommen, um Veränderungen in der Materialstruktur zu untersuchen. Im An-

schluss an die Strahlzeiten fand die Datenanalyse mit einem hierfür entwickelten Python Skripts statt.

Weiterhin wurden die Materialien mit konventionellen Methoden (UV/Vis Transmissions Spektroskopie,

Röntgenbeugung, Raman Fluoreszenz Spektroskopie) untersucht. Im Rahmen der Messgenauigkeit kon-

nten bei den gegebenen Fluenzen keine dauerhaften Materialschäden nachgewiesen werden.

Zur zusätzlichen Charakterisierung der Materialstabilität bei längerer Bestrahlung wurden mit allen

Leuchtschirmen Strahlenhärte Tests mit schnell und langsam extrahierten Nickel Pulsen bei 2 · 109 ppp

und etwa Espec ≈ 300 MeV/u durchgeführt. Die Lichtausbeute Y blieb hier entweder konstant oder sank

in einem Bereich von nur etwa 10-15 % des ursprünglichen Werts. Die Leuchtschirme mit Einkristall-

Charakteristik (P46, YAG:Ce) zeigten sogar einen leichten Anstieg von Y , durch eine verbesserte Mo-

bilität der Ladungsträger im Material. Die Emissionsspektren wurden zuverlässig reproduziert und die

Strahlprofile stimmten gut mit denen der Referenzmessungen überein.

Die untersuchten Leuchtschirme verhielten sich während der gesamten Bestrahlung sehr stabil und

zeigten ein lineares Verhalten bei verschiedenen Strahlparametern. Ein Quenching während der Be-

strahlung mit hohen Strahlintensitäten wurde nicht beobachtet. Die Lichtausbeute Y zeigte einen

abnehmenden Trend als Funktion des elektronischen Energieverlusts dE/d x . Weder die berechneten

Strahlprofile, noch die aufgenommenen Emissionsspektren zeigten signifikante Änderungen. Ein Erset-

zen der Leuchtschirme, z.B. wegen Zerstörung, war während der gesamten Messungen nicht nötig. Für

die Verwendung in zukünftigen Strahldiagnose Elementen in FAIR werden zwei Arten von Leuchtschir-

men genannt: Cerium-dotierte Y3Al5O12 Einkristalle mit einer Dicke von etwa 300 µm werden für

die Strahldiagnose an Schnittstellen zwischen verschiedenen Speicherringen empfohlen, da diese selbst

unter Langzeit-Bestrahlung mit hochenergetischen Ionenstrahlen kaum oder unveränderte Abbildungen

produzieren. Für die Strahleinstellungen zu Experimentierplätzen werden die bisher bereits üblichen

Al2O3:Cr Schirme wegen ihres Kostenvorteils empfohlen.
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1 Introduction
In the late 1960s the first German facility for heavy ion acceleration was founded by a collaboration of

local scientists and as a workplace for nuclear science. Since then researchers were able to prove the

existence of six new elements (262
107Bh, 265

108Hs, 266
109Mt, 269

110Ds, 272
111Rg, 277

112Cn) at the GSI Helmholtz Centre

for Heavy Ion Research (short: GSI). This enhanced the fields of nuclear and plasma physics, as well

as material science. Since the commissioning of the heavy ion synchrotron SIS18 and the storage ring

ESR also atomic and fundamental parts of astro physics are investigated at GSI. Furthermore the support

and development for radiation therapy with ions was performed by the facility [1]. Cooperations with

national and international research institutes and other acceleration facilities were established with the

years so that the panorama of provided acceleration and deceleration skills were improved continuously.

Figure 1.1: Existing GSI facility (blue) and construction plan for FAIR beamlines (red) [2], edited by
A. Lieberwirth

However, the limits of the implemented technology are nearly exhausted, so that the FAIR cooperation

was initiated in 2007. The goals of the international project are in principle to increase the range of

present beam parameters, most notably the reachable energy and intensity, and to provide the generation

and acceleration of antiprotons. In this way FAIR should serve for new research projects in quantum and

astro physics and increase the parameters for research in atomic and plasma physics and in material

research [2,3]. A construction scheme of the FAIR accelerator system is shown in red in figure 1.1. The
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blue lines1 illustrate the existing accelerator of the GSI facility. These upgrade plans raise the question of

appropriate diagnostic systems for the future beam parameters. A commonly used instrument to measure

position and size of the accelerated ions is the scintillations screen, moved as an intercepting tool into

the beam. Incident particles stimulate the target material to emit light within the optical region so that

the visible projection should correspond to the transverse parameters of the accelerated beam.

Previous measurements at the linear accelerator UNILAC with different inorganic scintillation materi-

als revealed a dependence of screen response in respect of beam projection (i.e. the projected horizontal

and vertical beam width) and light yield and that the imaging properties are not only a question of

material, but also of the irradiating parameters (charge/mass, irradiation duration) [4–6]. Meanwhile

investigations with slow extracted beams from SIS18 at 300 MeV/u with similar scintillation screens

showed an invariant behavior to the ion bombardment. They offered a linear response to different ion

pulse intensities and a high stability during long time irradiation, even though the beam energy was

orders higher than at UNILAC [7, 8]. These contradictory observations are part of the research in the

scintillator non-proportionality subject, for which different models were published in the past. They are

either based on the choice of ion as projectile [9–15], on the temporal distribution of the scintillation

process [16,17] or on the amount of deposited energy [18–21], and they give continually the occurring

of non-radiative relaxation processes or quenching as origin for the observed scintillation loss.

For FAIR ions beams from protons up to uranium, accelerated with energies between 1 and 29 GeV
u and

with intensities up to 4 · 1013 ppp, are planned [2,3]. These extreme beam parameters are rarely realized

in the world and the response of a material under such irradiation is subject of recent investigations.

Nevertheless, the choice of an appropriate material as scintillators for FAIR beam diagnostics must be

determined. So for the present thesis, measurements were performed with different ion beams (proton,

nitrogen, nickel, xenon, uranium), extracted with E ≈ 300MeV
u energy in fast and slow extraction mode

from GSI synchrotron SIS18. These beams irradiated a choice of inorganic scintillators at the beam

diagnostics test setup (HTP). Taking into account the limited available beam time during the 2013 and

2014 campaign, we limited the number of materials under test to four different inorganic compositions,

from which seven testing screens were installed in the beam line (Gd2O2S:Tb, Y3Al5O12:Ce, undoped

Al2O3 and Al2O3:Cr). The targets were irradiated under varying beam intensities to investigate the

general response behavior. Also the material stability during use as diagnostic element was tested within

a performed hardness test.

The principles of radiation in matter and the process of scintillation will be explained in chap-

ter “2 Physics Background of Beam Interaction with Materials”. Afterwards, four distinct models of

scintillator non-proportionality will be described. Chapter “3 Application of Scintillation Screens in Ac-

celerator Facilities” will describe the basics of heavy ion acceleration facilities and in detail the use of

scintillators in beam diagnostics. Here the choice of materials that were used for investigations are in-

troduced as well. The optical setup that was used to record the material response to the irradiation and

the general experimental setup will be described in chapter “4 Ion Beam Experiments”. Chapter “5 Data

Analysis and Experimental Results” starts with an introduction to the performed calculation and record

analysis. Afterwards the results of the beam time records will be presented. In the résumé a recommen-

dation of scintillation material as diagnostic device for FAIR beam alignment is given. Since characteristic

1 The blue lines as well as the detector symbols in the High Energy Beam Transfer area were added manually by A. Lieber-
wirth
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observations during beam time promoted additional questions, two measurement campaigns outside the

main project were performed and analyzed. They are presented in chapter “6 Accelerator Specific In-

vestigations”. Chapter “7 Characterizing ex-situ Measurements” explains three types of conventional

material analysis methods to characterize the structure and eventually occurring damage of a material.

The methods were performed after beam times with the investigated scintillation targets and the results

are presented. The thesis ends in chapter “8 Conclusion and Outlook” with a summarizing conclusion

and an outlook to possible future investigations.
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2 Physics Background of Beam Interaction with
Materials

2.1 Radiation in Matter

The research of material structure experienced a significant improvement, when Ernest Rutherford irra-

diated a gold foil with particles from a radioactive source [22]. The released α-particles were detected

by the induced scintillation signal on an inorganic phosphor screen (ZnS), placed circularly around the

gold target.

The α-particles had total energies in the range of E '10 MeV. Normalizing to the atomic mass, this

energy accords to the velocity of the projectile and is then called specific energy1 Espec. For the classical

Rutherford scattering experiment the specific energy is calculated with Espec ' 10 MeV/u. The scattering

is caused by the electromagnetic interaction of the projectile with the electron shell of the target. This

principle, that is also responsible for the deceleration is called electronic stopping power and takes place

for (positive) projectiles with Espec > 100 keV/u. It was described closer in 1930s by H. Bethe and later

revised by F. Bloch [23,24]. Projectiles with energies in the upper limit or above the electronic stopping

power are able to overcome the Coulomb barrier. Projectiles with these high energies will obey the

strong interaction [25]. Nevertheless, the projectile energies for the present thesis were chosen within

the range of electronic stopping, where the number of inelastic collisions can be neglected.

The mathematical formulation of the energy loss dEion per path length d x can be found in various

notations, as e.g. in the following way given in [26]:

−
dEion

d x
=

4πNAz2e4

meV 2

Z
A

�

ln

�

2mV 2

I(1− β2)

�

− β2

�

(2.1)

Here z, m and V are charge, mass and velocity of the projectile, β = v
c denotes its relativistic velocity.

Z and A give the atomic and the mass number of the target. NA is the well-known Avogadro-constant

while I represents the mean ionization potential of the target atoms. The latter is usually in orders of

13.5 · Z eV [26].

One conclusion from equation (2.1) is the maximum range of a specific projectile inside the target

material. For ions a non-linear energy loss in matter was found, offering a maximum value, called Bragg

peak [27]. The peak is a result of charge dynamics of the projectile: During passage through a material

of specific density, the atomic shell of the ion loses electrons due to the Bohr’s criterion. As a consequence

the Coulomb force between projectile and the atom nuclei of the target increases. This means an increase

of electrical attraction so that the projectile is decelerated over each partial path d x . An example of the
1 To calculate Espec the total energy E has to be divided by the atomic mass of the projectile. Espec is proportional to the

relative velocity β = v
c .
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Figure 2.1: Bragg peak of Ni ion in P43, calculated with SRIM [27]

Figure 2.2: Example of nuclear vs electronic stopping power for Uranium ions in Chromium-doped Alu-
minum Oxide, calculated with SRIM [27]

Bragg distribution is shown in figure 2.1 for a Nickel ion with specific energy of Espec = 300 MeV/u in a

P43 target with density ρ = 7.21 g
cm3 .

Starting from the 1970s the knowledge about stopping power in material was enhanced, mainly by

Ziegler et. al. [27, 28]. It was discovered that slower projectiles with Espec ≤ 100 keV
u are decelerated

mainly by the repulsing Coulomb force between the ion and the target nucleus. This deceleration effect

is thus called nuclear stopping power. For comparison both types of energy losses are shown exemplary

in figure 2.2. The curves were calculated with SRIM [27] for an Uranium ion in Chromium-doped

Aluminum Oxide. Since the specific energies of the investigated projectiles in the scope of this thesis

were far in the region of electronic stopping, the nuclear stopping will not be examined further here.
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The deposited energy is partially converted into light by a large variety of recombination effects. This

scintillation process is described in the next section.

2.2 Scintillation Process in Inorganic Materials

Scintillation is induced by energy deposition from ionizing radiation and describes the emission of light,

mostly in the ultraviolet or visible part of the spectrum. First observations of the phenomenon were

made by T. Sidot in 1866, during development of a ZnS crystal growing method by sublimation [29,30].

Insulators represent suitable materials and are divided in inorganic and organic (or ’plastic’) scintillators.

Here only the scintillation process in the first type will be explained closer. Organic scintillators react

significantly different. Details can be found in [31,32] and similar literature.

Figure 2.3: Scheme of scintillation process in inorganic scintillators with rare-earth doping, from [33]

The scintillation process is illustrated in figure 2.3. It shows the conversion of energy to photon

emission in the electronic band structure. The general energy bands with energies Ec (core band),

Ev (valence band) and Eg (energy gap, beginning of conduction band) form the vertical axis and the

chronological development of the process is plotted on the horizontal axis. Doping with a rare-earth

element (short: RE) causes an interband between the valence and the conduction band. It corresponds

to the f -orbital of the RE and since the doping is mainly performed with elements of the lanthanide

group, the band is called E4 f . In figure 2.3 scintillators with a RE doping are called extrinsic and are

known for their high scintillation efficiency [33, 34]. Within the present project only extrinsic materials

were used with the exception of one screen (Aluminum Oxide A999, see section “3.3 Classifications of

Inorganic Scintillator Materials”).
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The five steps of scintillation process, visible in figure 2.3, will be described in the following and

represent a summary of [26,33,35].

1. An energy is deposited by irradiation (photonic or corpuscular). After 10-18 s an intrinsic material

is excited quasi instantaneous and electron-hole-pairs are created in the valence band around the

reaction channel. The number of electron-hole pairs Neh depends on the material-specific value

for the energy Eeh. The electrons are lifted into the conduction band, while the holes do remain

in the valence band (energy conversion). The created electrons (and holes respectively) scatter

inelastically and multiply into further electron-hole-pairs, until the Auger threshold is reached. In

extrinsic scintillators it is more probable that the charge carriers will have the energy E4 f of the

interband, because the threshold is lower (see figure 2.3).

2. 10-16-10-12 s after incidence thermalization takes place, which means that electrons lose energy by

the production of phonons (lattice vibration) and therefore get closer to the band gap. The energy

Eg of the band gap is a characteristic value for each material and is directly proportional to the

energy Eeh, that is necessary for the production of electron-hole-pairs (see step 1) [26].

Eeh = constmaterial · Eg (2.2)

In extrinsic materials the electrons are scattered additionally at the rare-earth dopants, so that the

thermalization is continued, until the energy of the electrons becomes smaller than Eg + ERE . The

holes on the other hand gain energy by interacting with the phonons and so approach the band

gap on their way.

3. Due to the thermalization, the energies of the electrons and the holes approach the gap energy Eg .

This makes a permutation within the crystal structure possible, so that defects can occur. This step

is called localization and happens 10-12-10-10 s after energy deposition.

4. When the electrons and holes in an intrinsic scintillator are only separated by the gap energy Eg ,

they are able to form excited pairs, also called excitons. This step takes 10-12-10-8 s. Alternatively

material defects can be created, which trap the charge carriers before their energy exceeds Eg .

Defect formations are described in more detail in the dedicated section “2.5 Defect Formations”.

In extrinsic scintillators, the 4 f band reduces the necessary energy to overcome the insulator gap.

Hence, the electrons can perform forbidden transitions additionally, e.g. 4 f → 4 f or 5d → 4 f

transitions. This leads usually to a delay in the recombination step (phosphorescence). The delay

time can vary between nanoseconds for 5d-4f transition (e.g. in Ce3+-doped materials) and min-

utes for parity-forbidden 4f-4f transition (e.g. in Tb3+-doped materials) [26,33,34]. Steps 3 and 4

characterize the efficiency T of a material to transfer electrons and holes to luminescence centers

and the losses Q due to non-radiative transitions in the material, which again defines the number

of photons Nphotons, that are created per number of electron-hole pairs Neh [26]:

Nphotons

Neh
= T ·Q (2.3)
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5. Minimum 10-10 s after irradiation the previously formed excitons start to recombine and low-energy

photons are emitted. This step is called luminescence and is ideally emitting with a wavelength

distribution in the visible range. Measuring the luminescence, i.e. the number of photons Nphotons,

within a specific range of solid angle Ω, is called light output L:

L =

∫ Ωend

Ωstar t

Nphoton dΩ (2.4)

More details concerning the calculation of L in this thesis will be given in the summary about data

analysis in section “5.2 Offline Analysis of Scintillation Response”.

From equation (2.3) the efficiency of a scintillator, to transform a deposited energy into light, is derived

with [26]:

S =
TQ

cmaterial · Eg
(2.5)

Equation (2.5) reduces the defining parameters for the observed scintillation to values, that are char-

acterized only by the chosen material. Thus S serves as general quantity, to compare different scintillator

materials under equal irradiation conditions. In the present case the yield Y induced by ion irradiation

will be calculated equivalent to equations (2.5) and (2.4):

Y =
L

∆Eper ion
(2.6)

where ∆Eper ion is the deposited energy per single ion.

The maximum value of S can be approximated by [26]:

Smax ≈
0.5 · 106

Eg

�

photons
MeV

�

(2.7)

Equation (2.7) provides the possibility to estimate the gap energy of different materials by measuring

the light yield.

2.3 Franck-Condon Principle

The Franck-Condon principle represents an approach of the quantum mechanical transitions in a ma-

terial [36, 37] and gives an alternative model of scintillation to the previously described. Atoms (and

molecules similarly) are described as harmonic oscillators and their energetic states are described by

wave functions around the configuration coordinate Q. At Q = 0 the ground state of an atom has its

maximum probability, so that the wave function has its defined minimum here. The Franck-Condon

principle describes the lattice vibrations as result from the interaction between electrons and atom lat-

tice. The vibrations are defined simultaneously with the terms vibron and the different vibronic states n,
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in which the system can be located, and they are defined by the local geometry of the harmonic oscilla-

tor. The processes, based on the the Franck-Condon principle, are shown exemplarily in figure 2.4 for a

ground state i to an excited state f and will be described in the following.

Figure 2.4: Excitation and relaxation by Franck-Condon principle, based on [36]

If an energy is absorbed by an atom, it is excited from the ground state to a level in the excited

state. During this transition, a movement of atoms is suppressed, due to the high mass of the nuclei

(semiclassical consideration). Thus, the absorption happens nearly perpendicular in the configuration

diagram and the excited atom ends up in general in a higher vibronic state, as illustrated in figure 2.4.

The semiclassical consideration is valid for the relaxation back into the ground state (i.e. the emission),

as well. Nevertheless, the emission starts in general from the lowest excited state (n f = 0). This means

in turn, that an atom that was excited recently has to reduce its vibronic level first. Such transition

processes are usually non-radiative, which means that no photons are emitted, and they are performed

mainly by two process: either by recombination in or close to the interband or the redundant energy

is transfered to an electron, which is then returning stepwise into the minimum state without radiation

(Auger process). Each non-radiative transition can be considered as loss of luminescence and besides the

here described processes, other kinds of quenching can occur, as explained in the next section.

2.4 Non-proportionality and Quenching

Apart from the general scintillation as result of the previously described process, non-proportionality of

luminescence has been observed and investigated in a wide range of parameters, regarding projectile

type and energy and the choice of target material [9–15,18–21]. Different models have been developed

in order to explain the loss of luminescence to non-radiative relaxation mechanisms in the materials.

This issue is called quenching. Some models are described in more detail in the following sections.
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2.4.1 Radial Dose Distribution of δ-electrons

Around the path of one incident ion (also: ion track) the deposited energy causes the release of high-

energetic electrons. These electrons were called δ-electrons by Meyer and Murray, who found first evi-

dence for them in 1962 [38]. Inside the material the δ-electrons transfer the energy radially with respect

to the ion track in a radius r. The deposited amount of energy per mass element is called dose D(r) (unit:

1 Gy = J
kg) and was described amongst others by Katz et al. [39]. With Z∗2 and β = v

c as the effective

charge and velocity of the projectile, respectively and N as the number of dissociated electrons, D(r) is

written as [39]:

D(r) =

�

Z∗2Ne4

β2mec2

�

·

�

1
1
r + 0.6+ 1.7β

�

︸ ︷︷ ︸

a)

·
1
r2
︸︷︷︸

b)

· exp

�

−
�

r
0.37rmax

�2
�

︸ ︷︷ ︸

c)

(2.8)

Here, e, c and me are the natural constants for elementary charge, speed of light and mass of an

electron. rmax marks the maximum radius, in which δ-electrons are created by the deposited energy

Wmax (in eV). This energy was described for the general case by the Particle Data Group [40], but can

be approximated to a quadratic function of velocity c ·β and the relativistic Lorentz factor γ= 1p
1−β2

of

the projectile with [4]:

Wmax = 2me(c ·β)2 ·γ2 (2.9)

High relativistic projectiles deposit more energy Wmax into the material, which leads to higher maximal

radii rmax . This fact is represented in equation (2.8) with term c), which determines as well the point

where D(r) drops. For medium radii r decreases with term b) and so in principle quadratic. For small

radii r ¦ 0 close to the ion track term a) causes a linear decrease of D(r), especially for non-relativistic

projectiles.

An example for the radial dose distribution is given in figure 2.5. It shows the radial dose distribution

D(r) calculated for water, irradiated with a Ne ion. The black line is here taken from reference [39] and

a maximum radius of rmax = 4.0 mm was calculated for it. For comparison the green, red and blue lines

were included in the figure and their ion energies were here chosen in a way, that the maximum radii of

the resulting δ-electron-cascade correspond to rmax = 0.04 mm, rmax = 0.8 mm and rmax = 20.0 mm,

respectively. As can be seen, the amplitude of D(r) is decreasing with increasing ion energy.

As a reference, the dashed magenta line was plotted additionally in figure 2.5. It illustrates the radial

dose distribution for a Helium ion at 377 MeV/u in water. The calculated maximum radius rmax =
4.0 mm results only from the velocity of the projectile and is thus the same as for Neon ions in water.

The amplitude of D(r) is smaller than for the black line. This illustrates the dependence of the model

from the projectile’s charge Z .
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Figure 2.5: Radial dose distribution of a Ne ion in water. The black line was calculated in reference [39],
while the red, the green and blue line were calculated for comparison with the conditions
given in the legend.

2.4.2 Quenching due to Maximal Energy Density

A similar model like presented in 2.4.1 was developed by the group around Michaelian and Menchaca-

Rocha. They developed a mathematical model to explain the non-linearity of luminescence efficiency of

an inorganic scintillator on basis of limits in energy deposition by secondary electron (EDSE) as similar

notation for δ-electrons [9–11]. The assumption is, that the quenching radius rq around the incident ion

track is not defined by the (mass-dependent) dose, but by a critical density of energy deposition ρq per

volume. In contrary to the Katz model, [10] gives a formula to calculate the maximum radius Rmax the

δ electrons can reach in transversal direction to the ion path. For a dissipated energy of maximum Wmax

(see equation (2.9)), Rmax in cm is given by:

Rmax ≈ aW
5
3

max (2.10)

The coefficient a comes from the mass-range, described in [41]. With density ρtar get (in g
cm3 ), averaged

mass and charge numbers 〈Atar get〉 and 〈Ztar get〉 of the target a is approximated with:

a =
5.025 · 1012〈Atar get〉

0.182ρtar get〈Ztar get〉
8
9

(2.11)
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(a) Regions of deposited energy density, calculated for
800 MeV Ne20 ions in CsI target, from [10]

(b) Calculated energy density, deposited by different
ions at 300 MeV/u in P43 target, the horizontal line
marks an arbitrary chosen quenching density ρq, to
illustrate the different quenching radii rq,ion

Figure 2.6: Distribution of energy density as function of radius r around the ion track

The model basically calculates the maximum of δ-electrons as a function of target material properties.

Neither mass nor charge of the projectile is taken into account in equations (2.10) and (2.11). The only

influence the projectile has on Rmax , is a change of velocity β and Lorentz factor γ.

Assuming the energy loss of the projectile in a target material D as given, the effective charge of the

projectile is squared (compare with equation (2.1)). So D is given in [10] as:

D = NAρtar get

〈Ztar get〉
〈Atar get〉

e4

mec2

Z2
e f f

β2
(2.12)

Then the density of energy deposition ρE(r) as function of transversal radius r is calculated with

ρE(r) =
3D
5r2

�

1−
r

Rmax

�0.0054 · 〈Ztar get 〉+
3
5

(2.13)

An example for ρE(r) was calculated in [10] for Ne ions of approximately 40 MeV/u in a CsI target

and is shown on the left hand side of figure 2.6. Here the horizontal line indicates the quenching density

ρq, which marks for this part the quenching radius rq (illustrated as vertical line).

The area below the quenching density (ρ ≤ ρq) is separated in Ia and Ib and marks the region of

linear scintillation response. Here, Ia corresponds to the region of constant detector response. The

scintillation stops, when r = Rmax is reached. If the deposited or transfered energy per volume exceeds

the quenching density (ρ > ρq), the material fails to convert the abundance of energy into scintillation

and the resulting quenching reduces the light emission. This “region of inefficiency” is marked with II in

figure 2.6a.

The right side of figure 2.6 shows the calculated energy deposition densities ρ(r) for different pro-

jectiles at constant specific energy Espec = 300 MeV/u. Here, the quenching density ρq was chosen
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Figure 2.7: Specific light response for different ions, calculated from arbitrary quenching density ρq in
figure 2.6b. The dotted line shows a manually defined quadratic function and was added to
guide the eye.

arbitrarily to illustrate the development of quenching radius. As shown in the figure and already men-

tioned in [10], rq has a dependence on the atomic number Z of the projectile, so that rq increases for

increasing Z . The region of constant detector response (Ia) is increased with Z as well and so does the

light output of the material. Nevertheless, the increase of light response is not increased linearly. An

example for specific light response was calculated for the arbitrary chosen quenching densities ρq,i in

figure 2.6b and is plotted in figure 2.7. For the chosen projectiles proton, N , Ni, X e and U the light

response increases quadratically, as indicated by the dotted line. The latter was added exemplary.

Altogether the characteristic of the distributions, presented in figure 2.6 shows a significant similarity

to the D(r) in figure 2.5.

2.4.3 Temporal Quenching

Papadopoulos investigated a different limitation of scintillation: He made a fundamental approach by

using the energy loss per unit path length (equivalent to equation (2.1)) [16, 17]. With help of the

differential approach of the temporal distribution of the luminosity d L
d t =

d L
d x · d x

d t he approximated the

rise time of a scintillator in dependence of the deposited energy. The scintillation process is here divided

into two steps:

I) The first step describes the excitation of the scintillator atoms along the ion track analog to the

description of Pédrini [33]. The relaxation of the system can be achieved by photon emission or

any non-radiative quenching process.
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II) The other possibility is the interaction between two excited atoms or an ion with an excited atom.

In this case the target material has to recombine with a foreign electron first, before it can start the

relaxation into the ground state, similar to step I).

Figure 2.8: Specific luminosity d L
d t of Tl-doped CsI as function of particle energy for different incident ions,

adapted from [17]

Figure 2.9: Specific luminosity d L
d t of Tl-doped CsI as function of particle time, for different light (left) and

heavy incident ions (right), adapted from [17]

Regarding the specific luminosity d L
d t as a function of particle energy E, the two described processes in

principle take place consecutively. Up to a specific energy Elummax , where d L
d t has its maximum, ionization

is the dominant process, while excitation is dominating the luminosity for E > Elummax . Figure 2.8 shows
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d L
d t as function of particle energy E for Tl-doped CsI target [17]. As can be seen, Elummax is not a fixed

value of the target material, but depends as well on the type of incident ion.

On the other side, the specific luminosity of a material is not a constant in time, as shown in fig-

ure 2.9 [17] for Tl-doped CsI. The scintillation stops at a determined time after irradiation, which

depends on the choice of the irradiating ion. For protons and He, Papadopoulos shows, that more

light output is observed during excitation at the end of scintillation process and that light output in-

duced by ionization is rather suppressed for these light ions. This distribution is shown on the left hand

of figure 2.9. On the right hand of the figure, the specific luminosity as function of time is shown for

various heavy ions from C to Si. The heavier the incident ion is, the faster the scintillation is taking

place.

As explained later in chapter “4 Ion Beam Experiments” the duration of a irradiating ion pulse is

minimum 1 µs long. This is in fact of orders higher than the temporal distribution, that Papadopoulos

describes. Nevertheless, one of the investigated ion pulses includes at least 106 particles, so that in an

idealized pulse distribution the time between two impacts is maximum 10-12 s = 1 ps, which accords to

the presented model in [17].

2.4.4 Model for Many-Particle Irradiation

The previously introduced models about quenching were all based on the irradiation of the scintillation

target by only one single particle. This is the most unrealistic case in beam diagnostics in heavy ion

accelerators. At GSI fast extracted beam pulses usually contain at least 105 particles per pulse at a

duration2 of e.g. 1 µs. This leads to the need of a quenching model for many-particle irradiation. An

attempt was made by E. Gütlich and can be found in his PhD thesis [4]. It is based on the limitation of

incident dose in a material Dmax (see section 2.4.1) and offers the following statements:

• From equation (2.10) we learned, that the maximal radius Rmax of a δ-electron cascade around

the ion track is increased the faster a bunch of particles is. At the same time, the probability of the

δ-electron cascade of two (or more) simultaneous incoming ions to overlap is increased as well

with increasing particle velocity.

• The particle bunch irradiated the target in a measurable area. This creates the dose per area as

parameter (analog to the model of Katz and Michaelian, described in section 2.4.1). If the ion beam

is focused to smaller areas, the dose per area is increased, so that the probability for overlapping

of the ion tracks is increased as well.

• The scintillation process, described in section 2.2, takes place in time windows of finite-measurable

duration. Each (secondary) particle, that irradiates a material shortly after the first incident par-

ticle, finds an already excited state. The second particles can thus not induce further creation of

electron-hole pairs (suppression of the first step in figure 2.3) and the scintillation process can not

2 More about pulse durations and their dependence on the extraction mode will be described in section “3.1 Heavy Ion
Acceleration”
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be started here. The fraction of the dose rate, that can not be converted, is inverse proportional to

the maximal dose Dmax :

Dsuppress =
D1

Dmax

∑

n

Dn (2.14)

Here D1 means the dose, the first irradiated particle deposits in the material, and Dn are the doses

that correspond to the secondary particles.

A different approach to explain the decrease or loss of scintillation efficiency is the formation of defects

in the materials. Some typically occurring defects are described in the next section 2.5.

2.5 Defect Formations

A crystalline material structure may be regarded as a defined lattice, for simplicity. The lattice is formed

by positive ions as cations and negative ions as anions. Possible symmetries are described in various

ways in literature and the corresponding symmetries for the investigated materials in the present project

will be mentioned in section 3.3.

Figure 2.10: Scheme of the scintillation process as result of electron-hole-pair production in a primitive
crystal system, according to descriptions in literature [26, 33, 35]

In this section the material should be figured as a primitive square-packed lattice, as shown in fig-

ure 2.10. In the figure the big circles, labeled with a minus sign, stand for the anions and the small

circles labeled with a plus sign represent the cations of the crystal. The first three steps of the scin-

tillation process, described in section 2.2 is summarized on the left side of the figure, the blue waves

correspond to an energy ∆E that is introduced into the material. On the right hand side, the recombi-

nation process and the resulting emission of photons (green waves) is illustrated. Furthermore, possible
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material defects are shown. Defects can trap the charge carriers and prevent them from recombination.

They will be described in the following:

The most simple occurring defect is the elastic collision with lattice participant. The resulting vacancies

can be filled by a different atom or an ion of similar charge and are named antisites or, if undesired,

impurities. Antisites induce usually only slight changes in the lattice periodicity. For this reason these

traps, that capture the charge carriers, are called shallow traps [26].

If specifically an electron is occupying an anion vacancy on a lattice place, the defect is called F center3

or color center. The captured electron is prevented from recombination and so from photon emission.

Also, the potential well, that a F center represents, can inflect the energy of a transmitted photon and

thus change its color (shown in figure 2.10 as red wave). Hence, color centers are usually recognized by

a spot of different or dark color on the material surface or by a change of scintillation emission [26].

Especially in alkali halides, where the radii of the lattice participants usually differ significantly, an

anion vacancy represents a potential well. If an excited anion is moved to an interstitial position, the

defect is called Frenkel defect and can lead to the creation of a H center: Here the interstitial anion shares

an electron with one of the neighbored anions and thus forms an X−2 conglomeration. In a H center the

binding electron sits on a lattice place. This kind of center belongs to the category of self-trapped

holes [26].

Another case of self-trapped holes is the Vk center. Here an anion is trapped by a free hole and becomes

apparently positive. In contrary to the previously described H center, an electron is placed here on an

interstitial place. An agglomeration between two neighbored anions starts and forms a X−2 . The time to

create a Vk center is in order of 1-10 ps, which is shorter than the time for recombination of a free hole

with a free electron. For this reason the formation of a Vk center during irradiation is in principle much

more probable than the recombination process [26].

If an anion at a lattice place is substituted, charge neutrality can be achieved as well by the replacement

of cations with equal charge. This special case is called Schottky defect. Alternatively, e.g. in metals,

Schottky defects are created by removing a metal atom at the outer edge of a grid. In an ideal case the

lattice surrounding the vacancy stays unchanged in periodicity.

3 “F” is from german: Farbzentrum
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3 Application of Scintillation Screens in
Accelerator Facilities

The present thesis focuses on the utilization of inorganic scintillation screens as beam instrumentation

tool in accelerator facilities. A selection of four different materials was investigated with respect to their

emission properties during irradiation with heavy ions from SIS18. They can be classified into three

groups, namely P43 phosphor, Ce-doped Y3Al5O12 and Aluminum Oxide ceramics. Their structural and

mechanical properties will be described in section 3.3. Before this an introduction to the principles of

heavy ion acceleration and the necessary characteristics of scintillation screens for beam alignment will

be given.

3.1 Heavy Ion Acceleration

In the scattering experiment of Rutherford [22], the energy of released α-particles was given by the

radioactive decay. This condition motivated the question for improved or alternative acceleration tech-

niques, to perform e.g. material science by atomic research with more than a few MeV particle energy.

The first design of a new accelerator technique was initiated by G. Ising in 1924 [42], using an al-

ternating electrical field1. The principle is based on separated sections, applied with alternating radio

frequency (short: RF field). The sections are called drift tubes and form a LINear ACcelerator or LINAC.

Two adjacent drift tubes have fields with contrary polarity, so that the particles are accelerated by the

space between the drift tubes. This space d between the drifts grows with increasing particle velocity β

for a RF wavelength λ with [45]

d =
1
2
βλ (3.1)

The LINAC concept was realized first of all by Wideröe in 1928 [46]. With this, Wideröe succeeded

to accelerate potassium ions to 50 keV with an applied alternating voltage of 25 kV and so showed

at the same time, that the reachable ion energies of the system can exceed the highest voltage of the

setup. However, a Wideröe structure is strongly limited by the necessary distance d: For high particle

velocities β eq. (3.1) increases to unreachable values and can thus be used only for ion acceleration

to low velocities [45]. A solution to this limitation was presented by Alvarez [47] and applied in an

accelerator facility in Berkeley, USA in 1946 [45, 47, 48]. In this structure the polarities between two

adjacent drift tubes are the same, while the inside of the tubes is field-free. The velocity, that is necessary

to inject particles into an Alvarez structure, starts at 4 % of the speed of light, which is why usually low-

1 First appreciable improvements of dc techniques were made a long time after Rutherford due to research during First
World War. New dc accelerator techniques were developed afterwards by Cockcroft and Walton in 1930 [43] and by Van
de Graaff in 1931 [44]. Nevertheless, the description of the structures would exceed the content of the thesis.
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beta structures such as the Ising-Wideröe accelerator, is mounted in front. On the other hand, particle

velocities up to 60 % of the speed of light can be reached [45].

Nowadays, the first stage of linear acceleration is usually a so called Radio Frequency Quadrupole

(short: RFQ) as proposed by Kapchinskiy and Teplyakov in 1970 [49]. The structure is usually made

of 2 × 2 electrodes, with a sinusoidal shape in beam direction z. The variation of the shape causes an

alternating acceleration and focusing of the particles in longitudinal direction, so that an injected beam

is separated into particle packages, called bunches [45,50]. A typical arrangement of a RFQ is shown in

figure 3.1.

Figure 3.1: Scheme of a RFQ design [45]. The lateral cut on the left side shows the four electrode system,
while the right side shows the sinusoidal modulation in beam direction z.

In absence of (another) longitudinal force or under weak alignment of the bunch phase the particles

will tend to disperse to a coasting beam. Thus, it is an important part to synchronize the phase, i.e. the

velocity of the particles within the bunch during beam alignment. Details about alignment techniques

can be found elsewhere [45,50,51].

At GSI both the RFQ and the drift tube LINAC, as well as a number of single resonators were realized

as part of the UNIversal Linear ACcelerator UNILAC, which makes the system so flexible. Since 1990 the

UNILAC serves as pre-accelerator for the heavy ion synchrotron SIS18 [1].

Figure 3.2: Scheme of a Quadropole design in lateral cut (left side) [45]. The right side shows a typical
alternating gradient (AG) arrangement of 4 quadrupoles, the blue lines illustrate in principle
the focusing of the ion beam in the direction of acceleration z.

The SIS18 (short for SchwerIonen Synchrotron, translation: Heavy Ion Synchrotron) is a synchrotron

ring with 216 m circumference, in which the bunches from the UNILAC are injected. The bunches are

bended on the circuit by using the magnetic field of dipole magnets. Here, the requested beam energy E

(e.g. given in MeV) or specific beam energy Espec (typically given in MeV/u or similar) can be achieved

by low power RF cavities by multiple turns in the synchrotron.
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Also by magnetic forces, quadrupoles are used to focus the ion beam in one plane transversal to the

acceleration. The focusing in the other plane is in general performed by another quadropole element

with 90◦ rotation to the previous one. The arrangement is abbreviated with FODO cell (Focusing, drift

space, Defocusing, drift space). An example of a FODO arrangement is shown on the right hand side of

figure 3.2. The left side of figure 3.2 shows the lateral cut of a single Quadrupole [45].

Small errors on the installed magnets can lead to deviations of the beam from the ideal axis or even

to beam loss. Therefore, it is essential to control the machine parameters simultaneously with the beam

alignment. The use of scintillation screens as diagnostic tool in in this field will be explained in sec-

tion 3.2.

3.1.1 Extraction from Storage Ring

Figure 3.3: Measurement of a Ni beam pulse right after extraction from SIS18. The pulse was separated
into 4 bunches during fast extraction, and a pulse duration of approximately 1 µs is observed.

There are two different techniques commonly used for extraction of a particle beam from a storage

ring. The so called fast extraction makes use of a fast-switching magnet, here called kicker magnet. The

duration of the extracted ion pulse is determined by the rise time of the maximum field value of the

kicker magnet and lies typically between micro- and nanoseconds [52]. The typical duration of a fast

extracted pulse from SIS18 is around 1 µs. Figure 3.3 shows the measured signal, that a fast extracted

Ni26+ beam induced in the diagnostic current transformer in the extraction line of SIS18. The complete

pulse duration was 1.1 µs and exceeded the described scintillation rise time by orders of magnitude (see

section 2.4.3). Nevertheless, the occurring of temporal quenching will be investigated in this thesis.

Slow extraction at SIS18 is performed by controlled excitation of the horizontal betatron amplitudes.

By extracting the particles over multiple turns, the extracted pulse gets a smooth and uniform spill with a

duration of a couple of seconds [53,54]. At GSI slow extracted pulses from SIS18 can be set to durations

between 300 ms and a couple of seconds. Figure 3.4 shows the measurement of the ion beam current

during a beam time in slow extraction mode: The small flat top on the left corresponds to the injection

from UNILAC into SIS18, followed by the acceleration (increasing slope). The beam is generally stored
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in the ring (illustrated by the flat top after acceleration) until the extraction is induced, here within

300 ms. More details about the requested extraction times will be given in the experimental chapters.

Figure 3.4: Measurement of beam current in SIS18, visible is the injection, the acceleration, the beam
storage and the extraction of the beam, the extraction time was here 300 ms

We know from the description of the general scintillation process (section 2.2), that the rise time of

scintillation in inorganic materials can be approximately 10 ps with variation of a factor 100. However,

it is expected that the behavior of the scintillation screens can be used independent of the extraction

mode for beam alignment. To investigate the general differences between both modes as well as any

occurrence of quenching the measurements in slow and fast extraction mode will be performed and

compared for the thesis.

3.2 Scintillators as Diagnostic Tool for Beam Alignment

Due to their capability of absorbing radiative energy and transform it into visible light, scintillators are

a common and simple tool to detect radiation of various kinds. In the following the characteristics, that

define the applicability of a certain scintillation screen, are listed on hand of [35]:

• To gain a high energy deposition according to Bethe-Bloch equation (2.1), the target material

should provide a high density ρ. Typical densities can lie between 2.4< ρ < 8.4 g
cm3 .

• As explained in section “2.5 Defect Formations” the point of quenching is a material specific char-

acteristic. A scintillator should thus be chosen such, that the amount of deposited energy from the

radiation source results in a constant or at least linear response of the scintillation.

• The light yield Y as defined in equation (2.6) should be as high as possible. Y is usually given

in photons per MeV and reach orders of e.g. 51000 photons
MeV for Thallium-doped Natrium Io-

dide crystal [35]. In general the light yield of a medium can be increased by doping with an

activator [34,35,55].

• For practical use of a scintillation screen as diagnostic tool, a fast luminescence decay time should

be provided. As already mentioned, defects can influence the decay and can induce an afterglow.
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The decay times of commercially available scintillation materials span over a wide range from ns

to ms.

• Independent from a high emission efficiency / light yield, a scintillator should have a good sta-

bility under irradiation, in the best case even in strong radiation conditions. The properties of a

scintillation screen should be ideally constant, even under long time irradiation, to provide reliable

responses at each point of a measurement.

• Last but not least the production of a scintillation screen should be feasible and cost-effective and

provide an adequate surface area. Also the handling of the screen, i.e. the mechanical stability and

transportability are important challenges when choosing a scintillator material.

Only mentioned rarely in literature, even though important for a use as diagnostic tool, is a benefit

to provide minimal outgasing under vacuum conditions. This criterion is limiting e.g. the choice of

glue during production of a phosphor screen.

Figure 3.5: Screenshot of scintillation recorded with BeamView software [56] induced by an U beam as
example for beam alignment in accelerator facilities. (1) record (preview), (2) horizontal and
vertical projection, (3) camera selection, (4) iris setting, (5) gray scale value control

In accelerator facilities scintillation screens are nowadays a common tool in beam alignment [56–59].

They are usually installed in an intercepting way in the beam line and the induced scintillation supply

immediate informations about the position and size of the irradiating particle beam. By recording single
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triggered pictures or a video stream with a common CCD camera, an on-line alignment of the beam is

easily possible.

An example of beam record is given in figure 3.5, measured with the GSI software BeamView [56]

during alignment of an uranium beam. The recorded scintillation is shown in the magenta framed

window (1) and overlaid with a grid as tool for centering. The red cross marks the center of the target

and/or beam line. The projections of the beam spot are shown beyond that in horizontal and vertical

direction (2). On the upper left side the camera can be chosen (3) and the iris opening can be set (4).

It is recommended to open or close the iris such that an over-exposure of the camera is avoided. This

feature is controlled in the small window in the middle (5).

Advantages of the applied method lie clearly in the direct and fast2 imaging of the beam. In general,

they can be installed in air or in vacuum without the risk of evaporation, and the emission can be

recorded through a viewport, without the need of an electrical feedthrough. In combination with a

pepper-pot mask, i.e. a plate of radiation hard material (e.g. tungsten) having a matrix of holes, the

angular deviation and the two-dimensional size of the beam can be measured and thus offers a tool for

emittance measurement [58]. In contrary to the similar working profile grids, scintillation screens do

offer a higher transversal resolution, usually limited by the recording camera system. The image of a

homogeneous beam spot, as shown in figure 3.5, can even lead to the impression, that the real beam

is recorded by the camera, instead of the scintillation response. Nevertheless, the screens do not offer

a complete diagnostic solution, since they destroy the recorded beam without providing informations

about the beam intensity. Different devices exist to measure the beam intensity and the used techniques

will be explained in section 4.1.2. In order to develop non-intercepting complete-diagnostics for beam

alignment different research projects exist, as e.g. Beam Induced Flourescence (BIF), Beam Position

Monitors (BPM), Ionization Profile Monitoring (IPM) and Optical Transition Radiation (OTR) [58,60,61]

3.3 Classifications of Inorganic Scintillator Materials

Altogether seven inorganic scintillation targets were investigated. In order to support the design of beam

alignment diagnostics for FAIR, the collection contained phosphor powders as well as single crystals and

two ceramics. They can be classified by three chemical compositions that will be described in the fol-

lowing sections. The targets are present in the phases phosphor powder, single crystal and polycrystalline

ceramic. Due to the necessary dimensions3 of each target, they were installed at the end of the beam

branch in air. For this reason neither the material stability nor the emission characteristics under vacuum

conditions were tested.

3.3.1 P43 Phosphor - Gd2O2S:Tb

The scintillation screens, made of phosphor powder Terbium-doped Gd2O2S, are commonly abbreviated

with P43 phosphor [62]. First distinguished studies about this material were performed in the frame of

2 The necessary camera exposure times are in the region of some hundred ms for typical beam alignment.
3 The natural repulsion of the ions leads to an increasing of beam emittance. However, the last focusing magnet before the

experimental area has a distance of nearly 11 m to the targets. To guarantee the measure of the full beam dimension,
the diameters of the targets screens were chosen in the range of 5 to 8 cm per screen.
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X-ray studies for medical and industrial applications [63,64], where it is still a favored choice as detector

material. Since then research on the luminescence properties with different irradiating projectiles led

to an increasing interest in P43 phosphor screens as detector for radiation [65–67]. Since 1949 the

fabrication process has been improved. In general, the material is mixed with water-binder-solution

and the liquid is decanted and dried out after a settling time. Grain sizes of 25 µm down to 1 µm are

achievable [68].

Due to the promising high scintillation efficiency and the conventional use of P43 phosphor in med-

ical imaging devices, one of the investigated targets was a P43 phosphor screen, provided by ProxiVi-

sion [69]. In the present proceeding, this target will be labeled with the number “#1”. As key parameters

the supplier gives a coating thickness of 50 µm, built by multiple layers. Standard grain size is 2-3 µm.

The decay time down to 1 % of the initial luminescence is given with 2.6 ms and the photon yield in-

duced by electronic irradiation is 60000 photons/MeV. The material density is given with 7.21 g
cm3 [69].

Such a relatively high density results in a high energy deposition, regarding equation (2.1), and thus in

a generation of high light output. Therefore the selection of P43 phosphor as material in a scintillation

diagnostic tool is already favored in accelerator facilities [6–8].

(a) Emission spectra of P43 phosphor given by sup-
plier [69]

(b) Photo of P43 phosphor screen

Figure 3.6: P43 phosphor target #1

Figure 3.6a shows the emission spectrum of P43 phosphor under Radioluminescence, given by the

supplier [69]. It shows a discrete distribution with a clear emission maximum at 545 nm (green region).

This is due to the transition of the Tb dopant from 5D4 to 7F5. Other transitions are induced from 5D4

to 7F6 (485 nm), from 5D4 to 7F4 (590 nm) and from 5D4 to 7F3 (620 nm) [65,70]. Possible transitions

induced by the matrix element Gd3+ are documented by Mares et al. [71], but this luminescence occurs

in UV region and is therefore not recorded by the used experimental setup. Other publications show

similar spectra of P43 phosphor under X-ray [65] and proton stimulation [66].
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The decay time of P43 phosphor lies in the range of ≈ ms, which is comparatively high for a scin-

tillation screen in accelerator application. Da Silva et al. [72] excited different Tb3+ transitions and

measured the corresponding lifetimes of the scintillation output. Their results show that mainly the

green emission at λem = 544.5 nm is responsible for luminescence times of approximately τ ≈ 1.5 ms

and as reason a competition between the 5D4 to 7F5 and the non-radiative 5D3 to 5D4 transition is given.

A shorter transition is observed close to the UV region at λem = 417.5 nm with a luminescence time in

the range of τ≈ 0.3 ms. Here, the responsible transition happens from 5D3 to 7F5 [72]. But as shown in

the emission spectra in figure 3.6a, this transition has a low scintillation efficiency and is therefore rarely

observed in parallel to the rest of the emission of P43 phosphor.

3.3.2 Cerium-doped Yttrium Aluminum Garnets - Y3Al5O12:Ce

Historically the non-silica garnet Y3Al5O12:Ce was developed as host material for LASER industries [73].

It cannot be found in nature and has to be synthesized by a Czochralski process [74]. For this purpose,

iridium is used as crucible container and from a seed grain of Yttrium-aluminum garnet the crystal is

growing in mono-crystal formation. Rod wafers can be cut from this crystal and are used in polished

form in various applications. First commercial use of Czochralski process was performed in 1960s by

Paladino and Roiter [75] as well as by Rubin and Van Uitert et al. for Linde company [76]. A screen,

made of the phosphor powder of Cerium-doped YAG, is called P46 phosphor [62].

The group around Koningstein et al. investigated the crystal structure of different Aluminum Garnets,

including Yttrium Aluminum Garnet in undoped form (YAG) [77, 78]. By Raman and Infrared spec-

troscopy they found that the undoped YAG structure is built as a distorted body-centered cubic system.

Eight units of Y3Al2(AlO4)3 group forming a D2 symmetry around the yttrium ions in the center. The

(AlO4) units are placed around the D2 and build a tetrahedron with S4 symmetry, while the Aluminum

ions (Al or Al2) form a C3i symmetry at 2
3 of the surrounding place of the D2 group. The structure offers

a good stability with respect to its mechanical, thermal and chemical properties and presents a great

ability to include rare-earth dopants [79].

(a) P46 phosphor #2 (b) P46 phosphor #3 (c) YAG:Ce single cr. #4 (d) YAG:Ce s. cr. #5

Figure 3.7: Photos of Y3Al5O12:Ce targets

Since YAG:Ce single crystal represents one of a typical target material, recommended for the detection

of various imaging systems [69,80,81], and after experience of previous beam alignment research [5,6],

altogether 4 target screens made of Cerium-doped Yttrium Aluminum Garnet were chosen for investiga-

tions. One half of the targets were available as conventional single crystal. The other half was present

34



as P46 phosphor and supplied on appropriate sample holders. P46 target #3 was manufactured by

using the waste of the cut process of YAG:Ce single crystal #4 and has thus identical chemical compo-

sition [80]. In table 3.1 the key parameters the four investigated Y3Al5O12:Ce targets are summarized.

For target #4 from SaintGobain the thickness was measured using a caliper to 1.095 mm. Photographies

of the targets are shown in figure 3.7

Table 3.1: Key parameters of investigated P46 phosphor and YAG:Ce single crystal targets given by cor-
responding suppliers [69, 80, 81]

Sample P46 #2 P46 #3 YAG:Ce #4 YAG:Ce #5
Supplier ProxiVision [69] Crytur [80] Crytur [80] SaintGobain [81]

Phase powder crystal powder crystal single crystal single crystal
Density

� g
cm3

�

— 4.55 4.57 4.55
Thickness 50 µm 100 µm 250 µm 1.095 mm*

Decay Time 300.09 ns 60 ns 70 ns 70 ns

Photon Yield
�

103γ
MeV

�

— — 35 8

The values of photon yield in table 3.1 were given by the suppliers, if available, and offer a great

dynamic range. Many investigations in the light output were performed within the last decades due to

the wide use of this crystal in LASER technology. In general a light yield around 20000± 3000 γ/MeV

for Ce-doped YAG is given in publications [82–84].

Figure 3.8: Emission spectra of Ce-doped YAG single crystal, data from Crytur [80]. For a P46 phosphor a
similar spectra is expected.

Figure 3.8 shows the emission spectra of a Ce-doped YAG single crystal as given by Crytur [80]. It

was measured under radioluminescence and shows two emission bands: the main emission has a peak

at 530 nm. From investigations of Zych et al. it is known, that this emission band is characterized by the

grain size of the material and that this part of the distribution is tending to higher wavelengths and lower
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intensity with decreasing grain size [85, 86]. Nevertheless, the emitted color corresponds to the Ce3+

dopant and is broadened to a band, due to spin-orbit interactions of the ground state 4f: The excited

Ce3+ dopant falls from the 5d state into the 4f ground state either into 2F5/2 or into 2F7/2 state [79,87].

A smaller emission band of the spectrum has its maximum in the UV region at 285 nm and is originating

from the matrix material. In literature this emission band is usually mentioned to be suppressed or is not

observed, as e.g. in the publication of Mihóková et al. [87].

3.3.3 Aluminum Oxide Ceramics - Al2O3 and Al2O3:Cr

Since 1969 ceramics, made of chromium-doped aluminum oxide, are nowadays a conventionally used

material in beam diagnostics of accelerator facilities, due to their high efficiency and the stability in

emission and material characteristics, even under vacuum conditions [88]. However, the material needs

to be extracted from mining and so the production of screens reached its limits in the 90s. Since than,

the quest for materials with comparable scintillation efficiencies and radiation hardness are a subject

of recent research. Although offering less efficiency, pure aluminum oxide is a promising candidate as

diagnostic tool due to it’s high stability against ion irradiation [89].

The structural space group of Aluminum Oxide is rhombohedral with a triagonal R3c symmetry. The

point symmetry is of type C3 for Al atoms and of C2 for O atoms. It contains two Al2O3 groups per unit

cell. In the unit cells the Al atoms are placed octahedrally with respect to two O atom layers [90,91].

Two targets made from polycrystalline Aluminum Oxide ceramic were ordered from ceramics man-

ufacturer BCE [92] for investigations. While one target is an undoped material with a given purity of

99.99 % (called: A999), the other ceramic screen is doped with Chromium (called: Al2O3:Cr). For

the latter BCE gives an amount of 0.04 weight-percent Cr doping [93]. Each target has a thickness of

0.8 mm, a diameter of 80 mm and the densities were calculated on the basis of measured weight4 to:

• ρA999 = 3.94 g
cm3

• ρAl2O3:C r = 3.73 g
cm3

The spectral emission of A999 was investigated by Evans [94] and the luminescence spectra, recorded

by photon excitation, are shown in figure 3.9a. The energies, that were used for excitation, are listed

in the legend. The luminescence is a superposition of emissions, resulting from F and F+ centers in the

material and lie mainly in the UV region. This makes it very difficult to investigate the emission spectra

with common optics, and it is supposed that the emission band is recorded only in suppressed form (see

section 4.2.3).

The emission spectrum of Chromium-doped Aluminum Oxide during irradiation with U beam is shown

in figure 3.9b [5]. It is dominated by the red Cr line at λ = 695 nm. This emission comes from the

transition from 2E (lowest excited state) to the ground state 4A2 of the dopant Cr3+ and is unfortunately

relatively long with τ ≈ 3.4 ms [95]. A competing emission is visible at λ = 674 nm. It vanishes during

irradiation due to material degradation [4]. In principle the UV emission of the matrix material (see

figure 3.9a) also happens, but this is of orders lower than the red emission and thus not visible.

4 Thanks to GSI target laboratory
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(a) Excitation spectra of Aluminum Oxide, from [94]. (b) Luminescence spectra of Al2O3:Cr irradiated with Ura-
nium pulses with 4.8 MeV/u [5], the luminescence de-
crease is a result of material degradation.

Figure 3.9: Emission spectra of pure and Cr-doped Aluminum Oxide, as given in literature
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4 Ion Beam Experiments
The extracted ions from SIS18 are aligned through the 170 m long High Energy Beam Transfer line

(HEBT) to the experimental area, called HTP. An overview of HTP is shown in figure 4.1b. Various

diagnostics devices are used in the HTP branch to measure the characteristics of the beam in front of

the scintillation targets. The setup at HTP is described in this chapter. The description is divided in two

parts.

In the first part the parameters of the irradiating beam are presented as well as the devices for mea-

surement of the different beam characteristics will be explained. In the second part the optical system,

that was used to record the scintillation response on the targets is described.

4.1 Beam Parameters and Experimental Setup

For the present work possible quenching effects, caused by increased number of irradiating particles or

shorter pulse lengths were of major interest. At the same time the irradiating ion type was varied, looking

at the response and stability of the different screen materials. Therefore two types of measurements were

basically performed, namely the variation of beam intensity and pulse length at different screens on one

hand and on the other hand the variation of beam ion species on all screen materials. Unless explicitly

mentioned, the energy of requested ion beams were kept fixed for both methods and the ion bunches

were requested in slow and fast extraction mode.

4.1.1 Beam Intensity Variation

In total five different ion types from proton to Uranium (U) were requested from SIS18 with a beam

energy of 300 MeV/u. The beam intensity were varied between 106 and 1010 particles per pulse (short:

ppp) and irradiated the scintillation targets successively. Depending on the recorded luminosity a number

of pulses between 30 and 120 were used for each beam intensity and target combination. An overview

of the performed beam times with varying intensity is given in table 4.1. The numbers given in the first

column will serve as reference for similar tables in the following.

Table 4.1: Overview of requested projectiles at varying beam intensities
projectile Atomic Mass A Atomic Number Z appr. range of requested ppp

#1 proton 1.0 1 5 · 107-1.5 · 109

#2 Nitrogen (N) 14.0 7 107-1010

#3 Nickel (Ni) 58.69 28 107-109

#4 Xenon (Xe) 131.29 54 7 · 107-109

#5 Uranium (U) 238.03 92 2 · 107-108
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(a) GSI facility with location of HTP [96]

(b) HTP setup in detail, the box marks the dedicated setup for the thesis

Figure 4.1: GSI facility and HTP beam line
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The upper limit of requested beam intensity is defined by radiation protection authorities. At the area,

where the measurements were performed, a maximum number of 109 particles per second is allowed to

be requested. An exception of that rule was the Nitrogen beamtime, at which it was decided to change

the pulse frequency, so that beam intensities of 1010 ppp were available for the measurements.

To investigate the stability of the scintillation materials during longtime irradiation, radiation hardness

tests were performed in slow and fast extraction mode. For this purpose a Ni beam was requested

with 300 MeV/u and a beam intensity of 2 · 1010 ppp. The targets were irradiated with approximately

1000 pulses each before a controlled beam break was performed. Another 100-150 pulses were applied

to the targets after the break to check for any permanent modifications of the materials.

Within the present proceeding, the radiation hardness test will be labeled with “#3R”.

4.1.2 Supporting Diagnostics Components

The beam intensity of a fast extracted beam pulse can be measured with help of a resonant transformer

(short: RT; name of device: HTPDT1). It is built of a ferrite toroid with a winding on two sides and

works similar to a resonant L − C circuit [57]: A passing beam pulse induces a damped oscillation with

an amplitude, proportional to the charge Qacc of the pulse. The amplitude of the oscillation can be

measured on a second winding. The number of particles Ipulse can then be calculated by dividing Qacc

over the atomic charge of the ions Z and the elementary charge e. Ipulse is given generally in ppp.

Ipulse =
Qacc

e · Z
(4.1)

In a simple RT the maximum measurable intensity is limited by the electric strength, in the case of

the installed transformer to IRT,max = 1 A. To overcome the limitation a series of resistors is installed in

the HTPDT1 system beam intensity and the measurement ranges Q ranges are chosen automatically by the

control system [97]. The measurement range was logged together with the measured charge Qacc and

the measurement resolution was 10 % of the set measurement range, i.e.

∆Ipulse =
0.1 ·Q range

e · Z
(4.2)

The available RT was designed for intensity measurements of fast extracted pulses from SIS18. Thus,

it has a large damping period T >> 1 µs, resulting in a high resonance frequency ω∝ 1
T of the damped

oscillation [57]. A slow extracted pulse can thus not be measured correctly by this device. For these

measurements, a diagnostic chamber with altogether three different devices is available at HTP. Two of

the devices were used during measurement campaigns and are described shortly in the following:

• An Ionisation Chamber (short: IC; name of device: HTPDI1I) of 6.5 mm depth and filled with a

gas mixture (80 % Argon, 20 % CO2) at atmospheric conditions. The chamber is separated on

each side with 100 µm stainless steel foil from the vacuum. During ionization by the beam, the
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gas releases electrons, that are collected by two electrodes, made of Mylar® and coated with silver.

The measured current is proportional to the beam intensity with an accuracy of 10 % [98].

• A Secondary Electron Emission Monitor (short: SEM; name of device: HTPDI1S) is built here of

three 100 µm thick stainless steel foils. By particle impact electrons are released from the middle

foil and collected by the two outer foils on positive potential. The resulting current is proportional

to the beam intensity [99]. The device has an accuracy of 20 % [98].

Figure 4.2: Limits of the Ionization Chamber (IC) and the SEM in the diagnostic chamber at HTP in depen-
dence of the atomic number Z of the irradiated ion, calculated for different ions at 1 GeV/u
with 1 s extraction time, adapted from [58].

While the IC saturates for heavy ions at beam intensities around 109 particles per pulse the SEM

can measure up to 1011 particles per second [98]. Thus the number of measurable particles per pulse

is strongly limited for the devices and is dependent on the pulse duration, the energy and the atomic

number Z of the incident ion beam. The operation region of IC and SEM are shown in figure 4.2.

Separated measurements at GSI showed, that parts of the read-out system behind the diagnostic cham-

ber were calibrated imprecisely. Thus, the IC was overestimating the real beam intensity by 6 %, while

the SEM underestimated the beam intensity by 8 % [100]. During the performed beam times for this

thesis, the particle measurements from both diagnostic devices were recorded and corrected during anal-

ysis. For further minimization of the systematic error only the beam intensities from the SEM were used,

if possible in the matter of measurement sensitivity.

4.1.3 Target ladder

All investigated scintillation screens were mounted on a target ladder in air, as shown in figure 4.3, with

a bias angle of 45◦ to the beam direction. Appropriate aluminum adapters were used to mount all targets

onto the same surface plane, even if different thickness and diameters were available.
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On the seventh position of the ladder a dedicated alignment screen was mounted, made of Chromium-

doped Aluminum Oxide and with grid lines on the surface. The screen was provided by the GSI beam

instrumentation group and similar targets are installed all over the accelerator facility. The sixth position

of the target ladder was used by another PhD student and is unimportant for the present thesis. No

material was set into the fifth position of the ladder to keep the way free to the beam dump.

Figure 4.3: Target ladder

The scintillation screens had a target diameter between 5 and 8 cm (for details see section 3.3), even

though a smaller diameter would have been sufficient, in terms of material science. However, the last

focusing diameter in the beam line was installed more than 11 m before the target ladder, so that a

strong focusing to less than a few cm or even less than 1 cm was not guaranteed. Additionally, the

chosen diameters offered the possibility to intentionally defocus the beam and so increase the diameter

of the recorded scintillation spot. In turn, the resolution of the recorded images was used in a larger

dynamic range.

The ladder was mounted on a motor drive and the horizontal position was remote-controlled with

IclA easy software from Berger Lahr [101]. A scheme of the used cabling is shown in figure 4.4. The

system offered more than 280000 increments as number of possible positions, so that a centering of the

targets to the recording camera system was guaranteed. The vertical centering of the targets was carried

out before beam times with help of the designed construction scheme and the resulting distances. The

alignment was controlled after mounting with help of BeamView and a centered grid, superimposed over

the camera record.

4.2 Optical Setup

The scintillation response of the targets was recorded with a complex optical system, as illustrated in

figure 4.5. It was installed in backwards direction with a topview on the target surface. The tilting
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Figure 4.4: Cable scheme of motor drive, used for investigations

angle of the target ladder results in a stretched projection of the beam pulse on the targets. The vertical

dimension hor g of the original beam pulse is stretched into hrec with:

hor g = hrec · sin(α)
α=45◦
=

hrecp
2

(4.3)

The recording system contained one camera with a direct two-dimensional view on the target surface

and a spectrometry setup, to investigate the spectral emission. Since both optical setups used cameras

with a CCD chip for image recording, a short introduction to the principle of CCD is given, before the

setups are described.

4.2.1 CCD components

A CCD-chip is a plate made from a semi-conducting material. The plate is usually split in rectangular

regions, the pixels. The typical size for one pixel is ≈ 10 µm. For every incident photon or charge,

electrons are released in the struck pixel. The number of released electrons per photon at a specific

wavelength sets the quantum efficiency η [102].

η=
�

number of produced electrons
number of incident photons

�

per pixel
(4.4)

There are three common ways to read out the resulting current from the CCD, all working with a

configuration of a semi-conducting and a non-light-sensitive material (read-out area) [103].
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Figure 4.5: Mechanical construction of Optical Setup, drafted by employee of the GSI departement for
beam instrumentation (LOBI)

Interline-Transfer (ILT) Next to each semi-conducting row a secondary read-out row is placed. The cur-

rent of the first row is transported to the nearby register-area and from there in a chain-process

to the edge of the CCD chip. This process can lead to interlacing between two promptly recorded

images. Since the register-area is covered or produced by non-light-sensitive material, the effect of

photons that arrive on the chip shortly delayed is minimized (see smearing effect in next point).

The time delay that is needed before start of record for one image is called jitter. For the used CCD

chips of the AVT cameras (“camera #1”) the jitter lies typically between 20 and 100 µs [104,105].

As another disadvantage, this kind of sensor enlarges the non-effective area that the chip covers in

a camera housing.

Frame-Transfer In contrary to the ILT process, the register area occupies a space, that is as big as the semi-

conducting area. So, the occupied space of the CCD system is indeed doubled, but the effective

area of the light-converting chip is maximal.

In chips that use the Frame Transfer method the registering area is not covered and so sensitive

to incident photons. If a photon arrives at the chip during current transfer, the original signal is

over-exposured and leaves a white stripe on the recorded image. This effect is called smearing and

depends on the transfer velocity.

Full-Frame-Transfer The register area is kept minimal here: The released electrons from the semi-

conducting material are transported over the light-sensitive area to the edge of the CCD chip.

Here one register pixel per row collects the current to transport it to the image processing system

at the output.
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The main advantage lies in the minimum sensor size at maximum effective area. Since the Full-

Frame-Transfer usually works of every column at once, also the read out time can be minimized. A

clear disadvantage is the high possibility to show smearing.

The read out-process in digital cameras is influenced by noise, which again is caused by the camera

electronic, mainly the signal-amplifier [106], the current-to-voltage-converter [107] and the read-out-

frequency [103]. This type of noise is called read noise or also readout noise. In principle it has an abso-

lute level and can thus dominate a record especially in image records with low illumination [102, 107].

The readout noise level of a CCD can be measured as minimum recorded signal, when the CCD is not

illuminated [106]. During the beam experiments the measurement of read-out noise was performed

by the record of background images shortly before irradiation of the scintillation screens. The back-

ground images were subtracted later during data analysis in section “5.2 Offline Analysis of Scintillation

Response”.

During chip production the creation of defect pixels can occur by material imperfections, even though

the manufacturers take huge efforts to keep defects at minimum. A distinction is made for defect pixel

in three types [102]:

dead pixel: These pixels are not longer able to release electrons, the induced signal is here in general

zero or at least minimal.

warm pixel: At irradiation more than the standard amount of electrons is released, the signal is thus

shown increased

hot pixel: Independent if irradiated or not, these pixel show a saturated signal

Due to the high-energetic radiation and the short distance of HTP to a beam dump, fast neutrons

can generate defect pixels or intensify their degradation. Nevertheless the record of background images

without controlled irradiation of the scintillation targets by the ion beam offers the advantage to gain a

map of defect pixel for the used CCD camera [108].

Another form of noise per pixel is given by so called “shot noise”. It is caused by the natural randomly

distribution of an illuminating light and the temporal arrival is dominated by Poisson statistics. Thus,

the shot noise is proportional to the square-root of incident signal [106,107]:

σshot ∝
p

number of photons or∝
p

incident photon-signal (4.5)

4.2.2 Camera system to record 2D light output

At position “camera #1” in figure 4.5 a camera either of type AVT Marlin or AVT Stingray was mounted

perpendicular to the target surface. Both contain a 1/2" CCD chip with 8-bit depth and record in

monochrome mode. While AVT Marlin CCD chip provides a maximum image resolution of 656x494

pixel, the AVT Stingray CCD chip has two pixel rows less and thus a maximum image resolution of

656x492 pixel. These resolutions can be achieved in single image mode. When running the camera in

“video mode” an image resolution of maximum 640x480 px can be achieved with a video at 60 frames
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per second. The integrated CCD chips offer a spectral sensitivity, that covers the visual region. The

distribution of the spectral sensitivity is equivalent for both camera types and has its maximum around

500 nm, as shown in figure 4.6a. The data in the figure gives the spectral range from 400−1000 nm, but

looking at the distribution one can assume that the CCD records the photons down to a wavelength of

λ≈ 350 nm.

(a) Spectral sensivity of used AVT cameras, as taken
from technical manuals [104, 105]

(b) Measurement of transmission through used Pen-
tax Iris

(c) Transmission through used Neutral Density filter
Hoya ND03 within the region that was mainly re-
corded by the camera system, in the inset the full
measurement up to 2000 nm is given

(d) Record of trigger for exposure time of camera #1
(blue line) and camera #2 (magenta line) during
slow extraction (green line)

Figure 4.6: Characteristics and triggers of the AVT cameras and optical system

“Camera #1” recorded the two dimensional image, induced on the targets by beam irradiation. The

camera was mounted with an angle of αcam1 ≈ 3.0◦, i.e. an angle of αcam1 to beam ≈ 48.0◦ to the incident

ion beam1. The distance from the lens to the target surface was approximately 40 cm. The camera

exposure time was kept fixed at 400-500 ms during slow and fast extraction mode to record the full scin-

tillation and eventually occurring afterglow phenomena. To control the camera trigger an oscilloscope

was used, that recorded the exposure time of the optical system together with the beam current from

the main control system. An example from the trigger is shown in figure 4.6d. With the same exposure

time background images were recorded shortly before (≈ 0.5− 1 s) the ion beam arrived at the target.

An overview of exposure and extraction times for the performed beam times is given in table 4.2.

1 Equation 4.3 was accordingly changed during analysis.
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A Pentax C1614ER lens with 16 mm focal length was mounted to the camera. The shot noise σshot

(equation 4.5) was kept minimal with the help of a remote controlled iris. The opening or closing of the

iris, respectively, was controlled by a power supply between 1.5 and 5 V and the resulting transmission

factor was measured with increments of 50 mV. As a light source a white LED was used and mounted on

an Ulbricht sphere to ensure a homogeneous illumination. The result is shown in figure 4.6a It shows a

slight hysteresis, depending if the voltage variation is causing a closing or opening of the iris. Between

the measurements a difference of up to 4-5 % in transmission was observed at a supplied voltage of 4.6 V.

Table 4.2: Extraction times tex t r and exposure times tcam1 and tcam2 during the measurements

(a) slow extraction
projectile tex t r [ms] tcam1 [ms] tcam2 [ms]

#1 proton 304 400 400
#2 Nitrogen 400 400 450
#3 Nickel 400 & 450a 400 450

#3R Nickel 300 400 400b

#4 Xenon 304 400 400
#5 Uranium 304 400 400

a 450 ms for A999 target #6
b 400 ms during radiation hardness test

(b) fast extraction
projectile tex t r [µs] tcam1 [ms] tcam2 [ms]

#1 proton 1.105 400 300
#2 Nitrogen 1.105 400 400
#3 Nickel 1.105 400 400

#3R Nickel 1.105 400 450
#4 Xenon 1.105 400 400
#5 Uranium 1.105 400 400

Preliminary experiments under similar conditions as given (like shown in table 4.1) offered a wide

range of luminescence output for the investigated targets. Furthermore it was observed, that the output

range is increased by the variation of ion species [7]. To avoid overexposing of the CCD chip with

minor variation of the camera settings and without loss of two-dimensional resolution at the same time

a neutral density filter Hoya ND03 (1.4 mm thick) was mounted in front of the lens. The supplier

gives a transmission value of 5 % for this filter averaged over a wavelength region between 400 and

700 nm [109]. Nevertheless, the transmission was measured with help of an Perkin Elmer Lambda 900

UV/Vis spectrometer2 in the wavelength range between 200 and 2000 nm. The result is shown in

figure 4.6c for 250 to 850 nm (blue line) and for the full measurement in the inset. Obviously the

transmission shows a huge dynamic in dependence of the wavelength. Especially with beginning IR

region (700 < λ < 800 nm) the transmission starts to rise up to a level of 20 %. Up to 2000 nm the

transmission rises even to 40 %, while below 400 nm it is cut off completely.

The measurement displayed in figure 4.6c was used during offline analysis together with recorded

emission spectra to calculate a realistic value of transmission through the neutral density filter for each

2 A detailed description of the spectrometer will be given in section 7.1
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scintillation target. A summary of the image processing is given in section 5.2 and details are given in

the appendix.

The recorded images of “camera #1” were used for investigations in the light output L, describing a

number equivalent to the number of emitted photons. From L the light yield Y was calculated. Further-

more the profiles distribution in horizontal and vertical direction (beam profiles) were calculated. The

second statistical moments σhorz and σv er t from these distributions served as factor for the calculation

of the horizontal and vertical beam width. The calculations are described closer in section 5.2.

4.2.3 Spectrometric system

With a distance of approximately 55 cm from the targets the second optical setup was installed, in

figure 4.5 labeled with “camera #2”. Here a Horiba CP140-202 spectrometer [110] was installed with

its optical axis perpendicular to the target screens (αcam2 = 45.0◦).

(a) Principle of diffraction of incident light (dotted grey
lines) by a spectrograph, template from [111], edited
by A. Lieberwirth (b) Transmission efficiency [110]

Figure 4.7: Horiba CP140-202 spectrometer

A systematic scheme of the spectrometer principle is shown in figure 4.7a. Photons that enter the

spectrometer (in the figure: dotted gray line) are reflected by a mirror onto a diffraction grating (also:

holographic grating) with aberration correction. The grating is equipped with a high number of equidis-

tant grooves. At the grooves the light waves are reflected with an angle that depends on the wavelength

of incident light and the distance of the grooves. This is the formulation of the diffraction law and it’s

written as [112]:

d · (sinθincident ± sinθemit ted) = n ·λ (4.6)

Here, d is the distance between two single grooves, θincident ,θemit ted are the angle of the incident and

the emitted light, respectively, λ is the specific wavelength of the diffracted light and n is an integer. So,

all light rays with a wavelength, that is not a multiple unit n of the incident wavelength, are destroyed by
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destructive interference. The remaining rays are dispersed with a resolution, that corresponds minimum

to the number of grooves per mm [112].

The diffraction within the spectrometer leads to a loss of light intensity, that is not linear over the

spectral range. The transmission efficiency of the used spectrometer is shown in figure 4.7b. It has a

maximum around 280 nm with 32 % transmission.

The spectral range of the system was calibrated with an OceanOptics CAL2000 Mercury-Argon lamp,

that offers a discrete spectrum in the range of 250 till 920 nm. To avoid blurring by overexposure a

covering slit was mounted at the entrance of the spectrometer. This slit was opened with help of a mi-

crometer screw during calibration until a line resolution of 8.5 nm (FWHM) was reached. To ensure, that

all photons were emitted from a target region with adequate focus, the slit was mounted in horizontal

direction. In vertical direction on the other hand, small variations in the bias of the target ladder could

have resulted in recorded regions out of the optical focus, so that such an alignment was refused.

On the output of the spectrometer (“Focal Plane” in figure 4.7a) a PCO 1600 camera (12.2 mm ×
9.0 mm CCD sensor size, 14 bit resolution, monochrome mode) was mounted with help of a C-mount

adapter plate. The plate reduces the wavelength range to 600 nm and the visible range starts at 217

or 230 nm, depending on the orientation of the plate during mounting. The camera alignment on the

output was chosen such, that the recorded emission spectrum was projected on the longer axis of the

recorded images. The beam profile was meanwhile projected on the smaller axis of the recorded images.

In front of the spectrometer two lenses were used during beam times:

• Linos MeVis Inspec with 50 mm focal length

• Pentax C2514-M with 25 mm focal length

(a) Calculated overall efficiencies for both used setups (b) Spectral efficiencies of single components

Figure 4.8: Transmission efficiencies as function of wavelength for the spectrometric setup.

The glass materials of the used lenses have different transmission coefficients as a function of wave-

length. For both setups the spectral efficiency of the complete system, including lens, spectrometer and

camera, was calculated and the functions are plotted for the Linos and Pentax setup in figure 4.8a. The
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transmission efficiencies of the single components that were used for calculations are plotted in fig-

ure 4.8b). For the PCO1600, the spectral efficiency was taken from the datasheet of the supplier and

extrapolated3 for the range of λ < 400 nm.

The camera system for spectrometry (“camera #2”) was triggered with the same timing signals for

scintillation and background record as the system “camera #1”. The values for set exposure times are

given in tables 4.2a and 4.2b.

4.3 Data Acquisition

With both cameras of the described optical setup the ion induced scintillation of each target screen was

recorded. During each of the beam times, listed in table 4.1, the targets were moved consecutively into

the beam. If the necessary voltage for the iris of camera #1 was not known from previous measurements,

a few pulses were used for calibration. Afterwards records of approximately 30-40 pulses were taken,

triggered by the GSI Timing System. Another trigger signal, that was sent during beam storage in SIS18,

was used to take a background image before each scintillation record. This procedure was repeated for

each target screen under irradiation with different beam intensities. The beam intensities were requested

in dedicated values, generating a well-arranged representation in a logarithmic plot.

The trigger system of camera #1 was used for camera #2 as well, so that both cameras recorded

simultaneously (see figure 4.6d). Only the possible start of record was different between both cameras:

Since the iris of both lenses on camera #2 could only be changed manually, it was kept on a fixed value

during beam times. Thus, the measurements of spectral emission could start with the first beam pulse.

Due to the explained high transmission loss in the spectrometer system and the high bit-size of the chip,

an overexposure during measurement was in principle observed. Moreover, the recorded emission was

rather low and hardly to observe at all for the irradiation with low-Z projectiles or if the scintillation

screen offered a low light output anyways. For these reasons many emission spectra were recorded with

high noise level and the emission of the A999 target #6 could not be investigated at all.

The described acquisition method was performed during measurements in fast and slow extraction

mode, respectively. For the radiation hardness tests, the trigger system was used as described above,

with the difference, that the irradiation of each target was performed for a time span of 45 minutes. In

general this duration corresponded to a number of approximately 1000 pulses. After an irradiation break

of 15 minutes, the investigated target was moved into the beam for another 5 minutes to check for any

permanent variations of the observed emission behavior.

3 find more details in the appendix in listing L.12
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5 Data Analysis and Experimental Results
The seven inorganic scintillation screens were irradiated with altogether five different ion types, ex-

tracted from SIS18 in fast and slow mode (see chapter 3). The particles experience a stripping at the and

of the HTP beam line. Therefore this chapter starts with the presentation of the real particle energies, as

determined for the performed beam times by numerical calculation. In the following the data analysis

performed after target irradiation (offline) is described. The recorded images were normalized to the

settings of the optical system and the scintillation response was determined with respect to the light

output L, the light yield Y and the induced emission spectra. The horizontal and vertical beam profiles

were determined and their statistical moments were calculated. Especially the second statistical moment

σ was analyzed as representative factor for horizontal and vertical beam width. Details about selection

criteria and the usability of the materials in the FAIR diagnostics system are given in the end.

5.1 Irradiation Parameters after Beam Stripping

At the end of the beam line the ions left the vacuum through a 50 µm thick steel foil, traveling through

atmosphere for 72 cm before they reach the scintillation targets. This vacuum window caused a stripping

of the beam charge and a loss of beam energy, due to Bohr’s stripping criterion [27]. During slow

extraction mode the diagnostic chamber with HTPDI1I and HTPDI1S caused additional beam stripping,

which is why these detectors were not used during measurements in fast extraction mode. During beam

time with protons as projectile the diagnostic chamber was not used either, since the stripping caused a

beam loss and no scintillation was observed with inserted diagnostics. Here the beam intensity at HTP

was recorded for each requested beam intensity either before or after scintillation record and compared

with the measurements of a comparable diagnostic tool is SIS section 9 (SIS09DT_ML). After beam time,

the beam loss between SIS18 and HTP was calculated by these measurements and used as factor. This

factor and the measured beam intensities from SIS09DT_ML were then included in the data analysis.

For each measurement the specific energies and averaged charge state at the target surface were

calculated numerically by use of LISE [113] and are given in tab.3le 5.1 on the next page.

On basis of the corrected beam energies per beam times in table 5.1, the total deposited energy per

ion was calculated with LISE [113]. The calculations were performed for each single target specifically,

since they differ from each other with respect to the chemical composition, material density and/or

screen thickness, as explained in section 3.3. The results are listed in tables 5.2 to 5.5 and were used

during analysis to calculate the light yield Y , according to equation (2.6).
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Table 5.1: Numeric calculation of beam energy and averaged charge state, calculations done with
LISE [113]

slow extraction fast extraction
projectile Energy [MeV/u] 〈Q〉 Energy [MeV/u] 〈Q〉

#1 proton 299.24 1.0 200.79 1.0
#2 Nitrogen 297.31 7.0 299.26 7.0

#3 & #3R Nickel 289.33 28.0 297.07 28.0
#4 Xenon 281.12 53.92 294.85 53.92
#5 Uranium 271.74 90.57 292.23 90.63

Table 5.2: Deposited energies per ion in MeV for P43 phosphor target #1 (supplier: ProxiVision [69])
during performed beamtimes

Slow Extraction Fast Extraction
projectile Z Beam Energy [MeV/u] ∆Edep Beam Energy [MeV/u] ∆Edep [MeV]

#1 proton 1 299.24 0.10843 299.79 0.10832
#2 Nitrogen 7 297.31 5.3707 299.26 5.3507
#3 Nickel 28 289.33 88.984 297.07 87.785
#4 Xenon 54 281.12 340.24 294.85 332.43
#5 Uranium 92 271.74 985.78 292.23 956.38

Table 5.3: Deposited energies in P46 phosphor targets per ion in MeV for performed beam times

(a) P46 phosphor target #2 (supplier: ProxiVision [69])
Slow Extraction Fast Extraction

projectile Z Beam Energy [MeV/u] ∆Edep [MeV] Beam Energy [MeV/u] ∆Edep [MeV]
#1 proton 1 299.24 0.084764 299.79 0.084673
#2 Nitrogen 7 297.31 4.1942 299.26 4.1783
#3 Nickel 28 289.33 69.286 297.07 68.335
#4 Xenon 54 281.12 264.15 294.85 257.92
#5 Uranium 92 271.74 763.61 292.23 740.61

(b) P46 phosphor target #3 (supplier: Crytur [80])
Slow Extraction Fast Extraction

projectile Z Beam Energy [MeV/u] ∆Edep [MeV] Beam Energy [MeV/u] ∆Edep [MeV]
#1 proton 1 299.24 0.16954 299.79 0.16936
#2 Nitrogen 7 297.31 8.3909 299.26 8.3590
#3 Nickel 28 289.33 138.74 297.07 136.82
#4 Xenon 54 281.12 529.28 294.85 516.78
#5 Uranium 92 271.74 1531.1 292.23 1483.5

54



Table 5.4: Deposited energies in Y3Al5O12:Ce targets per ion in MeV for performed beam times

(a) YAG:Ce single crystal target #4 (supplier: Crytur [80])
Slow Extraction Fast Extraction

projectile Z Beam Energy [MeV/u] ∆Edep [MeV] Beam Energy [MeV/u] ∆Edep [MeV]
#1 proton 1 299.24 0.42583 299.79 0.42537
#2 Nitrogen 7 297.31 21.088 299.26 21.008
#3 Nickel 28 289.33 349.64 297.07 344.72
#4 Xenon 54 281.12 1337.3 294.85 1304.5
#5 Uranium 92 271.74 3876.0 292.23 3751.7

(b) YAG:Ce single crystal target #5 (supplier: SaintGobain [81])
Slow Extraction Fast Extraction

projectile Z Beam Energy [MeV/u] ∆Edep [MeV] Beam Energy [MeV/u] ∆Edep [MeV]
#1 proton 1 299.24 1.698 299.79 1.6961
#2 Nitrogen 7 297.31 84.349 299.26 84.030
#3 Nickel 28 289.33 1417.6 297.07 1396.1
#4 Xenon 54 281.12 5503.3 294.85 5352.3
#5 Uranium 92 271.74 16172.0 292.23 15555.0

Table 5.5: Deposited energies in Aluminum Oxide Ceramic targets (supplier: BCE [92]) per ion in MeV for
performed beam times

(a) A999 target #6
Slow Extraction Fast Extraction

projectile Z Beam Energy [MeV/u] ∆Edep [MeV] Beam Energy [MeV/u] ∆Edep [MeV]
#1 proton 1 299.24 1.3006 299.79 1.2992
#2 Nitrogen 7 297.31 64.527 299.26 64.280
#3 Nickel 28 289.33 1078.7 297.07 1062.5
#4 Xenon 54 281.12 4162.5 294.85 4051.2
#5 Uranium 92 271.74 12164.0 292.23 11719.0

(b) Al2O3:Cr target #7
Slow Extraction Fast Extraction

projectile Z Beam Energy [MeV/u] ∆Edep [MeV] Beam Energy [MeV/u] ∆Edep [MeV]
#1 proton 1 299.24 1.2312 299.79 1.2298
#2 Nitrogen 7 297.31 61.073 299.26 60.839
#3 Nickel 28 289.33 1020.2 297.07 1004.9
#4 Xenon 54 281.12 3933.4 294.85 3828.8
#5 Uranium 92 271.74 11485.0 292.23 11068.0
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5.2 Offline Analysis of Scintillation Response

The images from camera #1 were used to determine the magnitude of ion induced scintillation. The

image processing started with background subtraction and the normalization of the images to the recor-

ded beam intensity (in ppp). For correct correlation between beam intensity and scintillation image the

timestamps from both records were compared and synchronized by hand. For the following analysis two

quantities were distinguished:

First of all the light output L was calculated. As explained by equation (2.4) (section 2.2), L corre-

sponds to the number of emitted or recorded photons, respectively, per irradiating pulse. Within the

present proceeding L is calculated as the sum of gray scale values λi within a defined ROI (Region Of

Interest):

L =
∑

i

λi =
∑

i∈ROI

λi (5.1)

The calculation of equation (5.1) determines L in arbitrary units. Thus, all values that are derived from

L are given in arbitrary units as well. In figure 5.1a an example is given of a recorded and processed

image. The red line shows the defined ROI and in the outer plots the horizontal (upper plot) and the

vertical projection (right plot) are shown. The projections were calculated as sum of gray scale values

perpendicular to the corresponding dimension. This means that the horizontal projection was calculated

as sum of gray scale values for each single column, while the vertical projection was calculated as sum

of gray scale values for each single row.

During analysis the error ∆L was derived from the noise level and the general degree of damage of

the CCD chip in “camera #1”, i.e. the number of hot pixels in the background records.

Except for beam time #1 (protons) a neutral-density-filter was used to avoid overexposure of the CCD

chip. Thus the calculated light output L was divided by the transmission value. Since the filter has a

great dynamic with respect to the transmission, as shown in figure 4.6c, the values were recalculated by

the recorded emission spectra (see below).

For measurements with varying beam intensities the light output was calculated with (5.1) and then

plotted as a function of number of particles per pulse. Generally a linear dependence of the data was

observed, so that a linear fit algorithm was used to determine the slope mL and the error ∆mL, that

results from the covariance matrix of the fit algorithm (see explanations in appendix “A.1 Parts of De-

veloped Python 2.7 Source Code”). At the same time the algorithm forced the condition for the data

points to intercept the abscissa at zero, so that the influence of readout noise for low beam intensities

was minimized (see section “4.2.1 CCD components”).

As factor for goodness the coefficient of determination R2 was calculated with help of the means of

residuals RSS and the total sum of squares TSS. In common literature R2 is defined as [114,115]

R2 = 1−
RSS
TSS

(5.2)

For the analysis of each data set an accuracy of minimum R2 ≥ 95 % was achieved.
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(a) Example of recorded image of “camera #1”. The
red line represents the ROI, the horizontal and
vertical profile distributions are shown in the up-
per and right plot.

(b) Example of recorded image of “camera #2”. The
upper picture shows the recorded scintillation (in
false color, for better visibility), the lower plot
shows the corresponding horizontal projection.

Figure 5.1: Example of scintillation records during image processing, background was already subtracted.
Both images were recorded during irradiation of P43 phosphor #1 with slow extracted Ura-
nium (beam time #5).

As second quantity of scintillation response the light yield Y was derived. It serves as general quantity

to describe the efficiency of a scintillator and is defined as light output L per deposited energy (see

equation (2.6)). For the measurement of scintillation caused by a single pulse, Y can be calculated with

help of the pulse intensity Ipulse in ppp and the previously determined deposited energies ∆E · Ipulse in

tables 5.2 to 5.5a:

Y =
L

∆E · Ipulse[ppp]
(5.3)

Equation (5.3) was used during data analysis for the performed radiation hardness tests. Here the

error ∆Y was calculated by error propagation of ∆L and the appropriate error of the measurement

system for particle counting. For the measurements with varying beam intensities, the calculated slope

of light output mL as factor for light output per particle was used to determine Y with:

Y =
mL

∆Eion
(5.4)
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By using the slope of light output mL for further calculations, instead of using the light output L itself,

the influence of outliers in the data is minimized.

The background subtraction of at camera #2 worked similar to the procedure at camera #1. As

explained before, the recorded emission spectra were plotted on the horizontal axis of the CCD chip (see

section “4.2.3 Spectrometric system”). To evaluate the wavelength dependent intensity, the horizontal

projection was calculated from the image. This projection was folded with the transmission efficiency of

the spectral system, as shown in figures 4.8a. An example for recorded and calculated emission spectra

is shown in figure 5.1b.

Since the used neutral-density-filter Hoya ND03 of camera #1 offers a huge transmission dynamic as

function of wavelength (see figure 4.6c) deviations from the given standard transmission value of 5 %

are supposed, regarding the emission record of each target. Thus, the recorded spectral emission was

used to determine the transmission value through the neutral-density-filter Hoya ND03 of camera #1 for

each target after ion beam experiments. For this, the spectral emission of each target was folded with

the transmission of the neutral-density-filter (see figure 4.6c) to evaluate the original emission in front

of the filter. The transmission values through the Hoya ND03 were then calculated on hand of the ratio

of scintillation (i.e. sum of area under the spectral emission) and are listed in table 5.6. The values were

integrated into the analysis of camera #1.

Table 5.6: Transmission values through neutral-density-filter Hoya ND03 for investigated targets
target calculated transmission

#1 P43 (ProxiVision) 4.42442816272 %
#2 P46 (ProxiVision) 2.75168906029 %
#3 P46 (Crytur) 4.90802395757 %
#4 YAG:Ce (Crytur) 4.40539168273 %
#5 YAG:Ce (SaintGobain) 4.41627262443 %
#6 A999 (BCE) 7.76548282107 %
#7 Al2O3:Cr (BCE) 10.3383994063 %

A summary of the source code for data analysis is given and explained in the appendix.

5.2.1 Statistical Moments of Profile Distributions

Like in figure 5.1a the two-dimensional response of a target to an irradiating beam can be projected in

horizontal (x axis) and vertical direction (y axis). The corresponding profile distributions can be char-

acterized by their location (here: mean value) and width (here: standard deviation). Additionally the

symmetry (also: skewness) and curvature (also: kurtosis) of the distribution can be investigated. Nev-

ertheless, the two latter factors did not show significant variations during the measurements presented

here, which is why they were not investigated closer. In general, all four values are summarized by the

definition of statistical moments. For any continuous profile distribution they are calculated as reference

to a Gaussian distribution (see figure 5.2) [114].

In the following the mathematical description of the first two statistical moments, as used in this thesis,

will be described. For completeness the third and forth statistical moment will be given in general form
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as well. If not stated otherwise the content was summarized from references [114,116] and [115]. The

equations will be given in form of sum of discrete data points i = 1, . . . , N , as needed for calculations

during offline analysis.

The mean value can be calculated simply as the average, i.e. the sum over all values x i divided by the

total number of data points N :

x =
1
N

N
∑

i=1

x i (5.5)

Figure 5.2: Example of a general Gaussian distribution and the position of the first two statistical mo-
ments mean value x and standard deviation σ

If the distribution deviates from a constant function and accords for example to a Gaussian distribution,

equation (5.5) is expanded by a weighting factor wi. By this each data point is weighted to its function

value with:

x =
1

N
∑

i=1
wi

N
∑

i=1

wi · x i (5.6)

For a standard Gaussian distribution, as shown in figure 5.2, the mean value coincides with zero

(xGauss = 0.0).

With the knowledge of (5.6) the variance σ2 is calculated with:

σ2 =
1

N − 1

N
∑

i=1

(x i − x)2 (5.7)

and from this the standard deviation as square root of equation (5.7):

σ =

√

√

√ 1
N − 1

N
∑

i=1

(x i − x)2 (5.8)
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In this thesis σ is calculated as a measure for the profile width. Similar to the considerations for

equation (5.6) σ needs to be weighted for non-constant distributions and is thus described by:

σ =

√

√

√

√

√

1
N
∑

i=1
wi

·
1

N − 1

N
∑

i=1

wi · (x i − x)2 (5.9)

The first statistical moment (mean value x) gives the position of the center of mass of the recorded

beam. This parameter was kept constant during beam times. In general, variations of the operational

alignment were kept as minimal as possible during beam times and due to previous experiments at

UNILAC [4–6] focus was set on the second statistical moment σ. For the data analysis, the weighting

factor wi in equation (5.9) corresponds to the profile intensity ψi of the position x i of ith pixel. The sum

has to be normalized by the sum of profile intensities and the number of points of the profile distribution

N , so that the normalizing factor in the denominator is than
N
∑

i=1
wi · (N − 1) =

N
∑

i=1
ψi ·

N
∑

i=1
x i = L and so

is equivalent to the light output L. The standard deviation is thus calculated (in horizontal and vertical

direction separately) with:

σ =
1
L

·

√

√

√

N
∑

i=1

ψi · (x i − x)2 (5.10)

For completeness the general calculation formula for the skewness γ is given with:

γ=
1
N

N
∑

i=1

�

x i − x
σ

�3

(5.11)

For standard Gaussian distribution the skewness is calculated to γ = 0.0. The kurtosis κ is calculated

with:

κ=
1
N

N
∑

i=1

�

x i − x
σ

�4

− 3.0 (5.12)

The subtraction of factor 3.0 in equation (5.12) is necessary by definition to result in a kurtosis of

κ= 0.0 for a standard Gaussian distribution.

The recorded images from camera #1 were used for calculation of statistical moments. As described

in section 4.2.2 the tilting of the screens and the camera resulted in a deformation of the recorded

scintillation image. Thus, the vertical axis of the images was compressed by the appropriate angle and

the resulting beam profiles were compared with reference grids in the beam line1. From these profile

distributions the statistical moments were calculated as given in equations (5.6) to (5.12).

As a reference, two MWPCs were used to measure the beam profiles of fast and slow extracted beam

pulses, respectively. Both are built of a number of wires (range of 100 ± 50) in horizontal and ver-

1 The position of the grid is marked in figure 4.1b
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tical direction. The spacing is in the range of 0.5 − 5.0 mm and is increasing from the middle to the

periphery [57,58].

5.3 Variation of the Beam Intensity
The images that were recorded during beam times with different beam intensities in fast and in slow

extraction mode (see table 4.1, page 39) were analyzed as described in the previous section. The cal-

culated results are presented in the next sections with respect to the light output L and the light yield

Y . The calculation of statistical moments did not offer significant variations during beam times, which

is why the calculated profiles of the target response to the irradiating beam (Beam Profile) are discussed

in section 5.3.3. Last but not least, the emitted optical spectra are presented for the phosphor and sin-

gle crystal targets qualitatively in 5.3.4. Here as well, no fundamental changes were observed, neither

during variation of beam intensity nor compared to references from literature.

5.3.1 Light Output L

Figure 5.3 shows the integrated light output L of all investigated target screens as function of number

of particles per pulse. The scintillation was induced by the fast extracted Uranium beam #5 and the

beam intensity was varied between 3 · 106 and 108 ppp (see table 4.1). The error bars for L are in the

range of 5-20 %. For the beam intensities the error bars correspond to 15 %. The bars seem to increase

nonuniformly, but this observation has two origins: On the one hand the error ∆L was estimated on

basis of the degree of overexposure during measurement. During fixed iris setting this factor was indeed

increasing in dependence of number of particles since the mean signal of the recorded images fluctuated

with the real beam intensity of the requested pulses. This leads to an increased light exposure on the

chip for pulses above the averaged beam intensity and thus to an increase of the error ∆L.

On the other hand the logarithmic scaling on both axes leads to an asymmetric illustration of the errors.

This falsification can irritate the reader, but was accepted for the benefit of a clear data representation.

Under the given measurement conditions all target materials respond linear to the number of particles

per pulse. A saturation effect as predicted for ionization by single particle (see sections 2.4.1 and 2.4.2)

or by multiple particles (section 2.4.4) could not be observed.

The measurements offer different slopes mL of the investigated targets for equal beam conditions.

The highest slope is observed for the Ce-doped YAG single crystal #5 (supplied from SaintGobain). This

screen has a thickness of approximately 1 mm so that a large energy deposition∆Eion per ion is resulting,

which is declared as reason for the observed high light output. Nevertheless, the large energy deposition

∆Eion should lead to an increased material damage and so to a higher propability for quenching as well.

This observation failed to appear and the target reacted linearly to the ion irradiation during each beam

setting. Another explanation for the high light output is given by the transparency ot target #5, which

is higher than the phosphor targets with same chemical composition. The general transparency should

facilitate the transmission of photons, generated at the bottom of the target, up to the target surface, so

that they are recorded by the system as well.

In the group of the phosphor screens the P43 phosphor shows the highest light output. Regarding the

Bethe-Bloch equation (2.1) the high material density of ρP43 = 7.21 g
cm3 is responsible for a high value
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Figure 5.3: Light output L of investigated targets induced by fast extracted Uranium beam

of deposited energy Edep. The high light ouput already gives an evidence, that Gd2O2S:Tb inherits a high

scintillation efficiency T (see equation (2.3), page 16) or low energy gap Eg or both. A high scintillation

efficiency of P43 phosphor, compared to other phosphor screens like e.g. P46, was already observed for

X-ray imaging in [117,118].

Furthermore, figure 5.3 gives a comparison between the light output of A999 #6 and Cr-doped Alu-

minum Oxide ceramic #7: The pure Aluminum Oxide shows the lowest light output while Chromium-

doping induces a factor of ≈ 5 more light. This factor was observed in all beam times. As explained

in section 2.2, the dopant makes the scintillation process more efficient due to the possibility of 4f

transitions.

The calculated slopes mL for investigations with fast Uranium beam #5 are listed in table 5.7. The error

∆mL was determined with help of a python module the covariance matrix. R2 denotes the coefficient of

determination as defined by equation (5.2).

Table 5.7: Calculated slopes mL for measurements with fast extracted Uranium beam (see figure 5.3)
target mL ±∆mL R2

#1 P43 4.27 ± 0.093 (2.18 %) 84.20 %
#2 P46 0.778 ± 0.021 (2.65 %) 85.17 %
#3 P46 0.532 ± 0.013 (2.45 %) 86.20 %
#4 YAG:Ce 1.55 ± 0.032 (2.08 %) 90.00 %
#5 YAG:Ce 12.7 ± 0.21 (1.69 %) 89.74 %
#6 A999 0.241 ± 0.0053 (2.20 %) 90.77 %
#7 Al2O3:Cr 1.31 ± 0.038 (2.90 %) 85.71 %
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Figure 5.4: Light output L of P43 phosphor screen #1 induced by all investigated projectiles in slow and
fast extraction mode

Regarding all investigated projectiles, the irradiation of the investigated materials show similar behav-

ior to the one, shown in figure 5.3. A linear response of scintillation light was observed for all targets and

for the irradiation with each investigated projectile, independent if extracted in fast or slow mode. The

results of beam times with other projectiles differ from the results in figure 5.3 by the absolute amplitude

of light output, but show a similar characteristic as function of particles per pulse.

To check the different behavior of light output between irradiation with slow and fast extracted beams,

figure 5.4 shows the light output L for P43 phosphor #1 under irradiation with all investigated projectiles

in slow and fast extraction mode. Here the error bars for the beam intensities correspond to 15 % while

the errors∆L are in the range of 5 and 25 %. As result from the camera exchange the errors for uranium

and xenon beam time appear smaller. The other beam times were recorded with an old camera, that had

already a high number of defect pixels and thus a higher recording error.

All projectiles were requested with the same energy per nucleon under slow and fast extraction mode,

respectively. As explained in section 5.1 the beam is stripped differently during slow and fast extraction

measurements. The beam energy at target surface and the deposited energy in the P43 phosphor target

were calculated numerically with help of LISE [113] and are listed in table 5.2 (page 54). Table 5.8

shows the calculated slopes for figure 5.4.

As observed additionally in figure 5.4 protons induce the lowest light output, so that displacement of

the neutral density filter was necessary to observe the luminescence at an adequate signal-to-noise ratio.

No significant difference was measured between the light outputs, induced by irradiation with slow

and fast extracted beams. However, with increasing atomic number Z of the irradiating projectile more
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Table 5.8: Calculated slopes mL of light output as a function of the ppp for P43 phosphor #1. ∆m was
calculated by help of covariance matrix. The coefficient of determination R2 (eq. (5.2)) is given
in brackets.

projectile mL,slow ±∆mL,slow (R2) mL, f ast ±∆mL, f ast (R2) ratio
mL,slow
mL, f ast

proton (Z = 1) (1.2 ± 0.3) · 10-3 (91.29 %) (1.3 ± 0.1) · 10-3 (99.26 %) 0.92
Nitrogen (Z = 7) (5.3 ± 0.02) · 10-2 (94.99 %) (5.8 ± 0.04) · 10-2 (99.44 %) 0.91
Nickel (Z = 28) 0.637 ± 0.012 (94.05 %) 0.469 ± 0.0027 (99.25 %) 1.36
Xenon (Z = 54) 1.89 ± 0.069 (88.20 %) 1.21 ± 0.023 (96.60 %) 1.56

Uranium (Z = 92) 5.91 ± 0.23 (89.34 %) 4.28 ± 0.12 (84.51 %) 1.38

light output is induced and the differences of emission characteristics between slow and fast extracted

irradiation becomes more obvious.

The observations show that slow extracted beams induce either the same or more scintillation than fast

extracted beams of the same beam intensity. However, the difference of the slopes is smaller than one

would expect due to the difference of extraction times (ratio of pulse durations: ∼ 105). One seperate

measurement series with slow extracted N ions at 500 MeV/u was performed to investigate further in

possible quenching effects. These measurements are described in section 6.2.

5.3.2 Light Yield Y

As explained in section 5.2 the light yield Y was calculated by hand of the slopes mL of light output per

beam intensity (equation (5.4)). Since a change of the optical setup was necessary during proton beam

time (removal of grey filter, see section 4.2.2), the values were normalized to that calculated light yield

induced by Nitrogen. These values showed the highest light yield Y for all investigated targets, so that

the other data values can be regarded as fraction of YN . The normalized data were used to investigate

the dependence of Y on the electronic energy loss dE
d x , which was calculated numerically with LISE [113]

and is listed in tables 5.9, 5.10 and 5.11. The results are shown in figure 5.5. The values for the light

yield of YAG:Ce single crystal #4 during by Nickel beam time could not be analyzed, due to occurring

problems during measurements.

Table 5.9: Electronic energy loss dE
d x and relative light yield Yrel for P43 phosphor target #1 (supplier:

ProxiVision [69])
Slow Extraction Fast Extraction

projectile Z dE
d x el [MeV/µm] Y (relative) dE

d x el [MeV/µm] Y (relative)
#1 proton 1 1.560e-3 1.084 ± 23.4% 1.560e-3 1.069 ± 16.7%
#2 Nitrogen 7 0.0767 1.0 ± 23.9% 0.0765 1.0 ± 16.5%
#3 Nickel 28 1.2438 0.714 ± 24.4% 1.2282 0.495 ± 17.4%
#4 Xenon 54 4.6702 0.556 ± 32.8% 4.5661 0.338 ± 27.4%
#5 Uranium 92 13.4787 0.598 ± 35.9% 13.0485 0.414 ± 37.1%
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Table 5.10: Electronic energy loss dE
d x and relative light yield Yrel for Y3Al5O12:Ce targets

(a) P46 phosphor target #2 (supplier: ProxiVision [69])
Slow Extraction Fast Extraction

projectile Z dE
d x el [MeV/µm] Y (relative) dE

d x el [MeV/µm] Y (relative)
#1 proton 1 1.218e-3 0.814 ± 23.1% 1.218e-3 0.976 ± 16.5%
#2 Nitrogen 7 0.0599 1.0 ± 23.1% 0.0598 1.0 ± 16.5%
#3 Nickel 28 0.9721 0.883 ± 23.5% 0.9594 0.617 ± 17.1%
#4 Xenon 54 3.6519 0.912 ± 34.6% 3.5674 0.490 ± 29.3%
#5 Uranium 92 10.5462 0.729 ± 35.6% 10.1960 0.506 ± 23.6%

(b) P46 phosphor target #3 (supplier: Crytur [80])
Slow Extraction Fast Extraction

projectile Z dE
d x el [MeV/µm] Y (relative) dE

d x el [MeV/µm] Y (relative)
#1 proton 1 1.218e-3 1.491 ± 23.0% 1.218e-3 2.118 ± 16.5%
#2 Nitrogen 7 0.0599 1.0 ± 23.2% 0.0598 1.0 ± 16.6%
#3 Nickel 28 0.9721 0.753 ± 23.5% 0.9594 0.689 ± 17.0%
#4 Xenon 54 3.6519 0.876 ± 33.3% 3.5674 0.581 ± 29.3%
#5 Uranium 92 10.5462 0.572 ± 36.1% 10.1960 0.527 ± 33.5%

(c) YAG:Ce single crystal target #4 (supplier: Crytur [80])
Slow Extraction Fast Extraction

projectile Z dE
d x el [MeV/µm] Y (relative) dE

d x el [MeV/µm] Y (relative)
#1 proton 1 1.224e-3 1.243 ± 23.3% 1.224e-3 1.758 ± 16.5%
#2 Nitrogen 7 0.0602 1.0 ± 23.0% 0.0602 1.0 ± 16.5%
#3 Nickel 28 0.9764 12.390 ± 23.1% 0.9636 10.883 ± 16.8%
#4 Xenon 54 3.6679 1.013 ± 28.4% 3.5830 0.553 ± 24.2%
#5 Uranium 92 10.5926 0.746 ± 35.1% 10.2408 0.652 ± 32.0%

(d) YAG:Ce single crystal target #5 (supplier: SaintGobain [81])
Slow Extraction Fast Extraction

projectile Z dE
d x el [MeV/µm] Y (relative) dE

d x el [MeV/µm] Y (relative)
#1 proton 1 1.218e-3 1.389 ± 23.7% 1.218e-3 1.715 ± 16.5%
#2 Nitrogen 7 0.0599 1.0 ± 23.5% 0.0598 1.0 ± 16.6%
#3 Nickel 28 0.9721 0.795 ± 23.7% 0.9594 0.358 ± 16.8%
#4 Xenon 54 3.6519 0.726 ± 29.3% 3.5674 0.246 ± 22.8%
#5 Uranium 92 10.5462 0.757 ± 36.0% 10.1960 0.724 ± 33.6%

In the plots the following correlations can be identified:

• Fast extraction mode induces similar or lower light yield Y than slow extraction mode.

• The light yield of the phosphor targets shows a decreasing dependence with increasing electronic

energy loss dE
d x . The decrease becomes larger for fast extraction mode, starting with measurements

with Nitrogen beam. Nevertheless, not all values for proton induced light yield confirm this obser-

vation. However, the values were recorded with changes in the optical setup, as explained above,

so that deviations from the observed dependence are not regarded as reliable.
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Figure 5.5: Light yield Y of all targets plotted in dependence of the electonic energy loss dE
d x of the inves-

tigated projectiles in slow (blue dots) and fast (green squares) extraction mode
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Table 5.11: Electronic energy loss dE
d x and relative light yield Yrel for ceramic targets (supplier: BCE [92])

(a) A999 target #6
Slow Extraction Fast Extraction

projectile Z dE
d x el [MeV/µm] Y (relative) dE

d x el [MeV/µm] Y (relative)
#1 proton 1 1.165e-3 1.081 ± 22.2% 1.165e-3 1.295 ± 16.2%
#2 Nitrogen 7 0.0573 1.0 ± 22.5% 0.0571 1.0 ± 16.5%
#3 Nickel 28 0.9295 0.738 ± 22.7% 0.9172 0.492 ± 17.0%
#4 Xenon 54 3.4925 0.790 ± 33.4% 3.4104 0.350 ± 27.3%
#5 Uranium 92 10.0889 0.622 ± 36.1% 9.7482 0.579 ± 30.3%

(b) Al2O3:Cr target #7
Slow Extraction Fast Extraction

projectile Z dE
d x el [MeV/µm] Y (relative) dE

d x el [MeV/µm] Y (relative)
#1 proton 1 1.103e-3 0.705 ± 23.4% 1.10e-3 0.826 ± 16.6%
#2 Nitrogen 7 0.0543 1.0 ± 23.1% 0.0541 1.0 ± 16.4%
#3 Nickel 28 0.880 0.839 ± 24.2% 0.8683 0.662 ± 17.2%
#4 Xenon 54 3.3064 0.859 ± 33.2% 3.2287 0.426 ± 27.0%
#5 Uranium 92 9.5511 0.666 ± 37.6% 9.2286 0.464 ± 39.0%

The data in figure 5.5 does not show a constant dependence as function of electronic energy loss. The

observed behavior of Y is assigned to the non-proportionality of scintillators (see section 2.4), since the

characteristic was already observed: In [10] Menchaca-Rocha compared light yield2 values of an organic

and an inorganic scintillator, respectively, under irradiation with different heavy ions. They developed a

numerical model (EDSE mode, see section 2.4.2) and applied it to the data of a plastic scintillator and

a Thallium-doped CsI target. The data of the inorganic scintillator was measured by Pârlog et al. [119]

under irradiation with different ions from Z = 5− 40 with total kinetic energies up to 1.5 GeV. For this

data Menchaca-Rocha was able to calculate a parameter C(Z) as characteristic factor for the amplitude

of the light yield. The dependence of C on the atomic number Z showed a decreasing behavior for

irradiation with projectiles of Z ≤ 15, followed by a constant behavior. A similar dependence is observed

for the light yield on the electronic energy loss in figure 5.5.

An explanation for the non-proportionality of C(Z) was not formulated by the authors explicitly. Ad-

ditionally, they gave cause for concern about the accuracy of the mathematical model, by explaining the

following: The fit algorithm, applied on the C(Z) data in [10] is weighted much more by the values

from irradiation with high-Z projectiles (Z >> 1), which corresponds to the region of linear scintillation

response. The calculation for lower-Z projectiles and thus the calculated curvature is less accurate, so

that the characteristic of C(Z) is compareable with the light yield behaviour in figure 5.5.

2 In [10] the authors use the term light output, but their description corresponds to the term light yield that is used in this
thesis.
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5.3.3 Beam Profile

The horizontal and vertical projections of the beam images were analyzed with respect to the second

statistical moment σ (see equation (5.9)) to investigate the reproducibility of similar beam images by

different materials.

(a) Irradiation with fast extracted Xenon beam with 1×109 ppp.

(b) Irradiation with fast extracted Nitrogen beam with 1×109 ppp.

Figure 5.6: Projections of beam profile in horizontal (left) and vertical (right) direction of all investigated
scintillation screens, compared with a reference grid.

Figure 5.6 shows a comparison of beam profiles in horizontal (left) and vertical direction (right).

The beam profiles during irradiation with a fast extracted Xenon beam with 1 · 109 ppp are shown in

figure 5.6a. The dotted blue line shows the measurement with a reference grid, the bars indicate the

positions of the grids. In vertical direction, all investigated targets show a good accordance to the ref-

erence and lead to a standard deviation of approximately σv er t ≈ 3.5± 0.6 mm. In horizontal direction

the profile of YAG:Ce single crystal #5 shows a significant broadening at the basis. This broadening

is a general observation for YAG:Ce single crystal #5 and is assigned to the comparatively high screen

thickness (≈ 1 mm, see table 3.1) of the target and its transparency. Here induced photons that scatter
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transversal through the target are detected by the optics and lead to a deformation of the beam image.

The other targets show a calculated standard deviation in the range of σhorz ≈ 3.6± 0.4 mm. In com-

parison, the measurement with the reference grid results in a more or less mathematical value or the

standard deviations of σv er t,grid = 12.7 mm and σhorz,grid = 9.2 mm. The reason for the overestimation

is assumed by the observed high noise level on the outer wire grids. Since the standard variation is

calculated proportional to the position x i of a value ψ (see equation 5.10), the values from the outer

grid wires are weighted stronger and result in an overestimated standard variation. Additionally, some

wires around horizontal position x i = 10 mm were defect during measurement, which is why the beam

profile was shown highly distorted.

For P43 phosphor #1 the calculated standard deviations σhorz and σv er t are plotted as function of

numbers of particles per pulse in figure 5.7 for measurements with fast extracted Xenon beam. As shown

in the plot, the variation with increasing beam intensity is negligible. Any changes in the calculated

beam widths are assigned to fluctuations in operational beam conditions.

Figure 5.7: Horizontal (σhorz) and vertical (σv er t) beam width as a function of number of particles per
pulse, calculated for measurements with P43 phosphor screen irradiated by fast extracted
Xenon beam.

Figure 5.6b shows the beam profiles, induced by a fast extracted Nitrogen beam pulse with 1 · 109 par-

ticles. The profile increase at the basis of YAG:Ce single crystal #5 is observed here in both, in horizontal

and vertical direction, with calculated standard deviations of σhorz ≈ 4.4 mm and σv er t ≈ 4.0 mm.

Also the beam profile of YAG:Ce single crystal #4 is expanded, compared to the phosphor and ceramic

targets, and shows standard deviations of σhorz ≈ 3.0 mm and σv er t ≈ 3.0 mm. However, the other 5

targets show a good accordance to the measurement with the reference grid in the range of measure-

ment accuracy. The calculated standard deviations here are in the range of σhorz ≈ 2.0± 0.4 mm and

σv er t ≈ 1.6± 0.2 mm.
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5.3.4 Emission Spectra

The emission spectrum of each irradiated target was recorded during the beam time, using the equipment

described in 4.2. Figure 5.8 shows a comparison of the emission spectra of targets #2 - #5, which

were all produced of Cerium-doped Y3Al5O12. The emissions were recorded during irradiation with

a slow extracted Uranium beam and averaged over beam intensities between 108 and 109 ppp. The

characteristic emission band in the yellow-green region (λ = 500 − 700 nm) was clearly recorded. As

explained in section 3.3 this emission band is resulting from the 5d to 4f transition. In comparison the

emission of the four targets shows no major difference.

Figure 5.8: Comparison of spectral emission of Y3Al5O12:Ce materials during irradiation with slow ex-
tracted Uranium

Only a slight red-shift is observed in figure 5.8 for the emission spectrum of P46 phosphor #2. This

happened similarly during all performed beam times. The red-shift of P46 phosphor #2 is visible in the

recorded emission spectra of all beam times. Figure 5.9 serves as prove for the observation. In order to

prove that the record was equal for both extraction modes the figure shows the recorded spectra of the

target under irradiation with all fast extracted ion beams. The measurements in slow extraction mode

showed the same spectra. A possible reason for the red-shift is that the doping of this specific target has

a higher amount of Ce4+ ions in comparison to Ce3+ ions. While Ce3+ usually does not change the color

of the matrix material, it was observed already in liquid solutions that Ce4+ ions can change the color to

orange-yellow (wavelength region ≈590 nm) [120]. This difference in the color is already visible by the

eye, as can be seen in the photographs of the investigated targets in figure 3.7.

In figure 5.9 the spectral emission induced by Nitrogen shows a deficit in the IR region, following the

expectation (see 5.3.1) of a low light output induced by nitrogen. The magenta line was added to show

the spectral emission for the target, measured by supplier ProxiVision [69]. The reference in the data

sheet of ProxiVision is given with a low signal, so that the spectrum is only visible in the region between
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λ ≈ 500 nm and λ ≈ 620 nm. Since the emission of the target decreases generally in the IR direction,

the emission up to 700 nm or even 800 nm is not visible in the plot of the supplier. Nevertheless, the

reference was scaled to a maximum value of 1.0 for the purpose of comparison. The magenta line shows

that the emission peak value differs between the supplier’s reference and the measurements induced by

ion irradiation by a value of λ ≈ 24 nm. This shift is another evidence for the influence of the Ce4+

doping on the red-shift of the recorded emission spectrum.

Due to the limits of the optical setup the emission band in the UV region is in principle not visible

in the recorded spectra. Only the YAG:Ce single crystal #5 shows a slight emission here, because the

general light output of the target is several times higher than for the other targets.

Figure 5.9: Emission spectra of P46 phosphor #2 (from ProxiVision) under irradiation with all investigated
projectiles in fast extraction mode. The reference spectra is plotted in pink to show the red-
shift of the targets emission.

Figure 5.10: Recorded emission spectra of P43 phosphor #1, induced by Nickel (left) and Uranium irradi-
ation (right), pulse extraction times are given by legend.
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The emission spectra of P43 phosphor #1, recorded during Nickel beamtime #3 and Uranium beam-

time #5, are shown in figure 5.10. For each extraction mode the spectral record was averaged over beam

intensities between 108 and 109 ppp. Differences between the plots are found to be marginal within the

accuracy of the given setup. The spectra shown in the figure are almost identical to those presented in

literature, e.g. for irradiation with X-rays [65]. In general, the spectral emission of the P43 phosphor #1

did not show any significant variations, so that the references from literature could be verified under

the irradiation with heavy ions. A material modification or even a saturation under the given irradiation

parameters was not proven.
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5.4 Radiation Hardness Tests

The recorded pictures from camera #1 were analyzed as described in section 5.2. Additionally they

were divided by the measured number of particles of the incident pulse to give a value of light yield Y

per pulse. Figure 5.11 shows the light yield Y in dependence of the accumulated number of particles

for the investigated phosphor targets #1 - #3 and the Chromium-doped Aluminum Oxide #7. For the

plots the data points were binned to a beam intensity of approximately 5 · 1010 ppp. The resulting

statistic deviations serve as error bars. During the measurement with P46 phosphor #3 fluctuations in

the operational alignment occurred after the irradiation break, which led also to a change in beam sizes

(see figure 5.12). The deviations from the averaged light yield value led here to significantly increased

error bars.

While for both P46 phosphor screens #2 and #3 the light yield is nearly constant or increases only

slightly, the measured light yield of P43 phosphor #1 decreases quite linearly down to ≈ 96 % of the

initial value. Also, the P43 phosphor #1 is the only target, that shows an evidence for target recovery,

and starts with the initial value of Y after the beam break. The Chromium-doped Aluminum Oxide shows

the largest decrease with ≈ 10 % and saturates on this level after an accumulation of 1012 ppp. This

degree of light yield loss is not observed for the pure Aluminum Oxide target #6, despite of the light

yield drop at 2.1 · 1012 ppp, which was caused by changes in the operational alignment.

In figure 5.12 the calculated second statistical momentsσhorz andσv er t are shown. They are presented

as function of accumulated particles during radiation hardness test in fast extraction. Similar to the

data in figure 5.11 the data were binned to a beam intensity of 5 · 1010 ppp and the resulting statistic

deviations serve as error bars. Here the fluctuations during measurement of P46 phosphor #3 are visible

again after irradiation break, resulting in a change of beam size.

Apart from usual fluctuations of beam size during beam operations, σhorz and σv er t do not change

significantly for four of the seven targets. For P46 phosphor #3 a significant change of beam size is

observed after beam break. This is assigned to fluctuations in operational alignment. The change in

beam operations, that was already observed for A999 #6 in 5.11 might coincide with a significant change

of emittance. This modification is ignored. As only target, the YAG:Ce single crystal #5 shows a decrease

in beam sizes, even though the reference grid did not reveal a change in beam parameters. Here, the

high amount of energy deposition in target YAG:Ce #5 is held responsible, as already discussed in the

former sections. This means, that number of induced local defects in the material must have been higher

than local charge carriers could have healed by a diffusion process. Another evidence for local defects is

given by the light yield of the target that showed a slight decrease in contrast to the other Y3Al5O12:Ce

targets (see figure 5.11).

A nearly identical behavior of all screens can be found in the recorded emission spectra as well. Fig-

ure 5.13a shows the spectral record for P43 phosphor #1 and YAG:Ce single crystal #4. In order to

present a better overview, the spectra of both targets are shown in four dedicated steps of accumu-

lated particles. Both figures originate from measurements in slow extraction mode, because these

measurements lead to a better signal-to-noise-ratio. In the figure the blue shaded spectra illustrate

three emissions during long time irradiation period, while the red shaded spectra were recorded after

beam break. A significant change in the characteristic that would lead to an occurring material modi-
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fication can not be proven. Also during measurements with the other investigated targets a change of

emission spectrum was not observed. In fast extraction mode, variations in the spectra could not be

proven either and the records present almost identical distributions (see also section 5.3.4).
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Figure 5.11: Light yield Y during radiation hardness test with fast extracted Nickel beam #3R. The black
bar denotes the irradiation break of 15 minutes.
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Figure 5.12: Calculated second statistical moments σhorz and σv er t for the accumulated particles in the
performed radiation hardness test with fast extracted Nickel beam #3R.
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(a) P43 phosphor #1

(b) YAG:Ce single crystal #4

Figure 5.13: Emission spectra during radiation hardness test with slow extracted Nickel #3R at numbers
of accumulated particles increasing in four steps.
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5.5 Résumé

The seven investigated scintillation targets, containing phosphor screens, single crystals and polycrys-

talline ceramics, were irradiated by different ions in fast and slow extraction mode, as explained in 4.1.

The offline analysis showed, that all targets answer in a linear light output to all types of irradiated

ions at beam intensities between 107 and 2 · 1010 ppp (see fig. 5.3). A small difference in light output of

each material was observed between irradiation in fast and slow extraction mode, but the factor is small,

compared to the difference in extraction times (see tab. 5.8). No saturation of light output was observed

for increasing beam intensity within the range of measurements during the complete project.

In general, the lowest light output was observed for un-doped Aluminum Oxide (A999 #6). A

Chromium doping of 0.04 weight percent (Al2O3:Cr #7) led to a five times higher light output. Due

to the high amount of deposited energy (originated by the target thickness), the highest light output is

measured with YAG:Ce single crystal #5. In the group of phosphor targets, the highest light output is

observed for P43 phosphor #1 (see tab. 5.7).

The calculated light yield Y is plotted in figure 5.5 as function of electronic energy loss dE
d x . The plot

shows a decrease of Y for high atomic number Z as well as a small difference between measurements in

slow and fast extraction mode, similar to the observations of light output L.

During beam times with all projectiles in fast and slow extraction mode, the emission spectra of the tar-

gets were reproduced similar to those in literature and are thus considered as reliable under irradiation

by ion beams with the given beam parameters.

During dedicated radiation hardness test with fast and slow extracted Nickel beam, the light yield

of the targets was not decreased significantly (see fig. 5.11) . The highest decrease was observed

for Chromium-doped Aluminum Oxide #7 with approximately 11 % loss, relative to the initial light

yield. Nevertheless, the light yield level of Al2O3:Cr after an accumulation of 2 · 1012 particles is still

high, compared to measurements with UNILAC energies (see PhD thesis [89] or publication [121] of

S. Lederer).

The second statistical moments were calculated in horizontal and vertical direction for radiation hard-

ness measurements. Only the YAG:Ce single crystal #5 showed a decrease of beam sizes as function of

accumulated particles, while the measurements with a reference grid did not reveal a significant change

of beam parameters. It is concluded that in this specific target the high amount of deposited energy per

ion pulse created more defects than a diffusion process could recover and that this is also the reason,

why the light yield remained relatively constant during the tests. During measurements with A999 #6

an accidental change of operational alignment was performed, so that the change in light yield and beam

sizes above 2 · 1012 accumulated particles is not taken into account. All other investigated targets show

reliable beam projections even after an accumulation of 2.5 · 1012 particles, and an irradiation break of

15 minutes did not lead to a changed observation.

Regarding the design of beam diagnostic elements for FAIR, scintillation screens are preferred that

offer a good visible beam projection in a wide range of beam intensity. To avoid overexposure of the

recording camera, a screen with low slope mL of light output per irradiated number of particles should

be used. This is the case for the YAG:Ce single crystal #4, produced and supplied by Crytur [80].

The screen responds with a light output, similar to that of Al2O3:Cr #7 (see tab. 5.7) but has a better
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stability in performed radiation hardness tests, as shown in figure 5.14. The projected beam profiles on

YAG:Ce single crystal #4 are increased in the range of approximately 10 % and can thus be regarded

as reliable. The screen thickness should be less than for the investigated YAG:Ce single crystal #5, i.e.

dscreen < 1.0 mm, to avoid over exposure of the recording camera at high ionizing irradiation on the one

hand and falsified beam sized on the other hand.

Figure 5.14: Compared view of light yield as function of accumulated particles for YAG:Ce single crys-
tal #4 and Al2O3:Cr #7 during performed radiation hardness test with fast extracted Nickel
beam #3R.

However, Cerium-doped Y3Al5O12 single crystals are quite expensive. An installation is recommended

in the areas of transition between different FAIR sections, where consecutively high radiation is sup-

posed. The beam alignment to experimental areas is assumed as a straight-forward process, to that here

commonly used Al2O3:Cr are recommended for installation. If the alignment of low ionization (i.e. low

beam intensity or small atomic number Z) is expected, a common P43 phosphor is recommended as

scintillation screen.
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6 Accelerator Specific Investigations
Additional measurements were performed to investigate two different effects which have been observed

during the beam tests. On one hand the commonly used Al2O3:Cr screens showed a surprisingly long

afterglow characteristic during alignment, especially during beam times with heavy ions with high atomic

masses (e.g. uranium). For investigations a few pulses were used from each fast extracted ion beam (see

table 4.1). The pulses were analyzed for the light output directly after irradiation and after a specific

time span (up to 200 ms).

On the other hand dedicated measurements were performed using a slow extracted Nickel beam at

different pulse durations. The scintillation response at constant ion energy and intensity was recorded

and analyzed in order to find an explanation for the observed small difference of light output between

measurements with fast and slow extracted ion pulses.

6.1 Al2O3:Cr Afterglow Measurements

As explained in section 2.5, impurities in a lattice can form traps which increase the phosphorescence in

the material [26]. These traps cause the occurrence of afterglow. The afterglow decreases with a simple

or even multiple exponential decay, as already observed under irradiation of AF995R1 with simulated

cosmic rays [122,123].

To check the afterglow characteristics of the Chromium-doped Aluminum Oxide target #7, dedicated

measurements with all fast extracted ion beams were performed in addition to the main project. For this

the beam spot was recorded with camera #1 (see figure 4.5), using a fixed integration time of 10 ms.

Two images were recorded per incident pulse: The first image covered the target response during or

directly after ion bombardment. This trigger was kept fixed. The second image recorded the remaining

light output at a delayed time after beam extraction from SIS18. The delay was varied between 2 and

200 ms. The integration times of camera #1 were monitored with help of an oscilloscope, as exemplarily

shown in figure 6.1.

The background was subtracted by using a median value of the dark area in the scintillation record,

while the light output L was calculated similar to the description in chapter 5.2. The light output of

the delayed images was divided by the light output of the incident pulse, and the resulting fractions as

function of delay time are shown in figure 6.2. A fit algorithm with multiple exponential functions was

performed, analog to references from literature [122–124]. The results of the exponential fits are given

in the legend of the figure, showing different decay times, i.e. the characteristic time, after which the

light output decreased on 1
e (≈ 36 %) of the initial value.

First of all an afterglow characteristic was confirmed by observations during irradiation with all in-

vestigated projectiles. For measurements with nitrogen, nickel, xenon and uranium, the smallest value

1 Sintered aluminum oxide screen with high density from Desmarquest Co., 99.5 % Al2O3, doped with 0.5 % chromium
oxide (ruby)
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Figure 6.1: Screenshot from camera #1 integration time (blue line) on Tektronix Oscilloscope during mea-
surement of after glow characteristic. The green line represents the beam current measured in
SIS18 during acceleration (flat top, left) and extraction (straight drop in the middle), together
with the standard calibration pulse (end of the line)

Figure 6.2: Comparison of after glow measurements with Al2O3:Cr target #7 for investigated projectiles

of decay time is in the same order for all incident ions with t1 ≈ 1.8± 0.2 ms. The second decay after

t2 ≈ 64± 4 ms is observed during irradiation with Nickel, Xenon and Uranium. For the measurements

with Nitrogen beam, the calculation even leads to decay times of more than 80 ms. The measurements

with proton beam were performed with different values of delay time and are presented only for com-

pleteness. Here at least one decay time (the first mentioned, t = 76 ms) is in the same order, as found
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for irradiation with the other projectiles. Higher decay times were observed in [122, 123] and also by

eye during beam alignment for measurement campaigns. Nevertheless, an appropriate determination of

these higher decay times was not possible with the limits of the used optical setup.

In figure 6.3 the values of 200 ms delay and 100 ms delay time from figure 6.2 are plotted as function of

the atomic number Z . Due to the already explained limitation of the measurement the values for proton

measurements are not shown here. The values for nitrogen, nickel and xenon confirm the dependence

of the light output on the projectile size. The value for uranium measurement at 100 ms delay is in

contrast to the observation, but can be the result of weak iris setting during scintillation record. A slight

over-exposure of the camera during record of the initial light output would result in the observed shift

to higher relative values in figure 6.2. A repetition of these measurements with higher resolution are

recommended to analyze the observations closer.

Figure 6.3: Fraction of Lrel in dependence of atomic number Z at different delay times

6.2 Varying Slow Extraction Time

Comparing the recorded scintillation during performed beam times, the difference in light output, in-

duced by fast and slow extracted beams, were much smaller than the differences between the pulse

durations. In order to give a better comparison between both measurement modes, dedicated experi-

ments with a slow extracted nickel beam have been performed for further investigation in the difference

of scintillation between irradiation with slow and fast extracted beam pulses. For this, the extraction

time was varied between 300 ms and 4 s.2 The specific energy was requested with 500 MeV/u to serve

as alignment and preparation for an adjacent experiment. This energy was kept fix and is thus no im-

portant factor for the investigated characteristics. The targets were irradiated with 50 pulses per chosen

extraction time and the beam intensity was kept fixed at 1.5 · 109 ppp. The integration time of camera #1

was always 50 - 90 ms higher than the extraction time to record the full luminescence at each chosen

2 The exposure time of camera #1 is limited to approximately 4.1 s. Thus, it was not able to perform a full record at higher
extraction times.
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extraction time. Background pictures were recorded after irradiation with the same integration times as

during scintillation record. Camera #2 recorded simultaneously but as in the previous measurements,

no significant observations occurred.

On the recorded images of the beam spot a ROI was chosen to reduce the noise. The remaining area

was normalized by the transmission value of the iris as well as by the beam intensity of the incident

pulse. After background subtraction, the light output L was calculated as sum of gray scale values in the

ROI.

(a) P43 phosphor #1 together with the chosen values
for iris transmission

(b) Al2O3:Cr #7

Figure 6.4: Light output L induced by slow extracted Nickel beam for different requested extraction
times. L is given relative to the maximum recorded value.

Figure 6.4 shows the calculated average of L for each requested extraction time. The errorbars corre-

spond to the calculated variance of L. The increase of errorbars is assigned to a decreasing accuracy of

measured beam intensity for high extraction times. To prove the minor influence of chosen lens closing,

the corresponding transmission value T is given, additionally. As can be seen, the relative light output

increased even if the iris was widened. Theoretically, the division by a higher transmission value should

lead to the decrease of L. However, L is increasing continuously with a non-linear slope. Thus, the

observed behavior can not be assigned to an effect of iris transmission.

Even though the chosen range of extraction times is limited to 4.0 seconds, a saturation effect can

be observed for both plotted targets already. As already explained in the previous section, Chromium-

doped Aluminum Oxide target #7 showed an afterglow effect, that was probably not recorded fully

with the adjusted integration time of tex t r.t ime + 50.0 ms. Nevertheless, the right plot of figure 6.4

shows a saturation of light output L as function of extraction time, that is similar to P43 phosphor #1

shown in the same figure on the left, where the relaxation time of the scintillation is given with only

t relaxation = 2.6 ms.

The observations show that the investigated materials are not able to perform with their full scin-

tillation efficiency under irradiation with shortened beam pulses. This matches the model of temporal

quenching, which was postulated by Papadopoulos [16,17] and explained in section 2.4.3. Since energy

and intensity of the beam pulses were kept constant, the quenching models explained in sections 2.4.1,

2.4.2 and 2.4.4 were not confirmed.
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7 Characterizing ex-situ Measurements
A material can be described by its chemical formula on one hand and on the other hand by the inner

structure. Taking e.g. an ideal crystal, it contains a number of layers k with a discrete distance to each

other and the sector with a minimal value of k is called “1st Brillouin Zone” [36]. The crystal is built of

equidistant unit cells, defined by the three solid angles surrounding the cell’s origin, all in perpendicular

direction [125].

The structural properties of a material have been investigated by three different methods (UV/Vis

transmission, X-ray diffraction and Raman fluorescence spectroscopy), that are shortly described in the

following paragraphs.

7.1 UV/Vis Transmission

Figure 7.1: Scheme of Perkin Elmer Lambda 900 device, used for UV/Vis transmission measurements,
according to [126]

When irradiated by monochromatic light, the atoms in a material can absorb the incident photons

and are lifted from the ground to an excited state (Franck-Condon principle, see section 2.3). In general

a part of absorbed energy is lost, e.g. by thermal movement, and after a short time (typically ns−µs)

the atom relaxes by photon emission of specific wavelength. Absorption measurements, based on this
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principle, belong to the group of spectrophotometry and a typical application is the UV/Vis transmission

spectroscopy. Here the transmission T is deduced from absorption A by [127]:

T =
1

10A
(7.1)

For the present thesis such transmission measurements were performed using a Perkin Elmer Lambda

900 UV/Vis transmission spectrometer [126]. A scheme of the device is shown in figure 7.1. It includes

two calibrated radiation sources: One deuterium lamp, working in UV range, and one halogen lamp for

Vis/IR range. The lamps are switched automatically from one to the other within the UV region by mov-

ing of backwards blocking mirror. During the switching process slight deviations in the calibration can

not be excluded. After the choice of radiation source the light is transmitted through a monochromator

system, which selects the irradiating wavelength. Afterwards a chopper system splits the monochromatic

light by reflecting on different mirrors, so that one beam serves as reference and one beam irradiates the

sample. In the end the transmission is calculated by the system as fraction of both signals. The detector

system provides either a photomultiplier for UV/Vis range or a PbS detector for NIR range, switching au-

tomatically at λ ≈ 860 nm. They can measure in a wavelength range from λ = 200 nm to λ = 2000 nm

with an accuracy of 0.08 nm for UV/Vis range and of 0.32 nm for NIR range. However, the accuracy was

limited by a slit to 1.0 nm during measurements for the present thesis. In general the transmission is

measured with an accuracy of 0.08 %. To improve the homogeneity of the radiation an Ulbricht sphere

is applied in the system.

The transmission of both Ce-doped YAG single crystals #4 and #5 was measured. Due to the lack

of a non-irradiated (pristine) sample, T was compared with the measurement at the edge of the target

screens, where the irradiation and thus also the material damage was minimum. For the Aluminum

Oxide ceramics A999 #6 and Al2O3:Cr #7 it was not possible to measure the light transmission, due

to their high thickness of 0.8 mm and the resulting high opacity. Also the phosphor screens were not

measured, because the targets could not be mounted in the spectrometer without destructive contact to

the target surface.

The result for YAG:Ce single crystal #4 is given in figure 7.2 and shows the optical transmission

from 200 nm till 530 nm. The rest of the measured transmission is not presented, since it does not

offer significant differences between both curves. The inset shows the according absorption spectra,

calculated with equation (7.1). A difference in the order of 3 % is observed for the UV region, but can

also be a result of scatter process at the edge. A significant difference between both measurements that

would lead to evidences of material defect formation was not found. The detected minimum values at

λ ≈ 233 nm, λ = 340 nm and λ = 455 nm are a result of Cerium excitation from 4f to 5d state [83].

Meanwhile the YAG:Ce single crystal #5 appears in principle opaque and is much thicker than YAG:Ce

single crystal #4 (factor ∼ 7.8). This affects the transmission in general and decreases the value for T

as can be seen in figure 7.3. The figure is plotted with similar conditions like figure 7.2. The observed

transmission difference between middle and edge of the target is quite small (< 1 %). Since this target

has a big screen thickness (≈ 1 mm), the measurement of the edge promotes the scattering of photons

at target boundary. Such a scattering is the most probable origin for the increased transmission in this

measurement, so that a change of material properties, e.g. a defect formation, could not be proven by

the measurement.
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Figure 7.2: Optical transmission of Cerium-doped YAG single crystal #4 from Crytur, measured from 200
to 750 nm and from 200 to 2000 nm in the inset. The measurements were performed in the
middle (mainly irradiated part) and at the edge (hardly irradiated part) of the target.

Figure 7.3: Optical transmission of Cerium-doped YAG single crystal #5 from SaintGobain, measured from
200 to 750 nm and from 200 to 2000 nm in the inset. The single crystal was measured in the
middle (mainly irradiated part) and at the edge (hardly irradiated part) of the target.
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7.2 X-ray Diffraction Analysis (XRD)

When X-rays hit a material, they are scattered and either change their wavelength due to Compton

scattering or they are propagated at the same wavelength in a different angle (Thomson scattering).

For the propagation of Thomson scattered X-rays the Bragg law has to be fulfilled, which is defined for

crystalline structures for integers n with [125]

2d sinθ = n ·λ (7.2)

Here d describes the distance between two atoms or crystal planes in the irradiated material and θ

and λ are the scattering angle and wavelength of the scattered light [125]. The integer n is a result of

the Laue condition, that demands that the angle of scattered light must be proportional to an integer

multiple of the reciprocal lattice vector. Hence, the X-rays are only propagated at fixed points of the

crystal. The process results in the observation of discrete patterns that are characteristic for each crystal

structure, and any changes in the measured XRD diffraction pattern can serve as evidence for material

defects, e.g. amorphization or material strain, in the long-order range of the structure [125].

Figure 7.4: Principle of the Stoe 4 circles diffractometer used for XRD measurements [128]

A scheme of the used XRD instrumentation Stoe 4 circles diffractometer is shown in figure 7.4. It

consists of an X-ray tube XRT with fixed position. The anode is made of copper and emits at a wavelength

of 154.18 pm. A X-ray mirror reflects the rays to the sample S. As illustrated in the figure, the sample is

mounted movable, so that different incident angles θ can be investigated. On the other side of S a long

soller slit1 and a monochromator separate the the Cu Kα line and reflects it on the detector D. By moving

D circularly the 2θ dependence is detected, here in a measurement range from 20 till 100◦ [128–130].

The instrumentation was calibrated in reference to a silicon powder, so that the measurement accuracy

can be estimated with ∆(2θ )≤ 0.5◦.

XRD measurements were performed with both Aluminum Oxide targets. In figure 7.5 the measure-

ment for A999 target #6 is shown for the complete range of 2θ . The according layer symmetries are

1 parallel metal plates, that collimate the X-rays in a small divergence, here ∆≈ 0.3◦
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Figure 7.5: Results from XRD measurements for A999 target #6, measured at two different points on the
target surface, in comparison with unirradiated material (pristine). Miller indices are given to
label the measured layers.

Figure 7.6: Detailed view on 2θ = 25.5◦ ((012) layer) and 2θ = 95.2◦ ((226) layer) from figure 7.5. The
deviation of both patterns are a result from the sample mounting during measurements.

given in Miller indices at the peaks. Here, no differences can be observed by the eye, which is why fig-

ure 7.6 offers a detailed view on the layers at 2θ = 25.5◦ and 2θ = 95.2◦. At 2θ = 25.5◦ the lines of Kα1
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and Kα2 transition are overlayed. With increasing angle 2θ both lines are measured in a bigger accuracy

so that they can be distinguished clearly at 2θ = 95.2◦. In comparison both layers were measured in

similar intensities. A small shift in the peak position can be found, similar in direction and order for both

shifts. This observation was found for each peak in the measured diffraction pattern so that the origin of

this "offset" is explained by small deviations in the sample mounting during XRD measurements. Thus,

it can be concluded that the long-range order of the A999 target #6 was not changed by the performed

beam times.

Figure 7.7: Stacked lines plot with y offset of performed XRD measurements on A999 target #6 (lower
three plots, the same as in figure 7.5) and Al2O3:Cr target #7, together with pristine material.
The plot shows the structural change occurring due to Chromium-doping.

The measurement with the Al2O3:Cr #7 showed similar results. For completeness figure 7.7 shows the

performed measurement on both Aluminum Oxide targets as stacked lines plot. The measurements A999

target #6 from figure 7.5 are plotted lowest. The two upper plots show the measurements of irradiated

Al2O3:Cr #7 and the according pristine material. The general structure of Al2O3:Cr #7 is the same as

found for A999 target #6 and the additional lattice symmetries, resulting from the Chromium doping,

are measured as reflexes. Also for this target, a change in the long-range order can be excluded by the

performed XRD measurements.

7.3 Raman Fluorescence Spectroscopy

When photons of low energy scatter inelastically at a crystal unit, a part of their energy will be converted

into excitation of vibrational modes (see also Franck-Condon principle, section 2.3). These modes are

described by the quasi-particles phonons and have usually an energy in the range of meV . This process

changes the electrical susceptibility χ of the crystal and results in Raman, Stokes or Anti-Stokes scat-
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tering [36, 131, 132]. The mode of vibrational excitation can be detected indirectly by measuring the

energetic difference between the incident and the re-emitted photon. Basically, the received spectrum is

independent of the irradiating energy, which is why the measured spectrum is generally given as function

of wavenumbers2 νS or Raman shift in cm−1. The choice of wavelength must be concerned well, since

measurements with light that deposits to much energy on the material lattice will promote fluorescence.

On the other hand phonons can only be released from the material, if the deposited photon energy is high

enough. Nevertheless, measurements, that used different monochrome light sources can be compared

by simple correction with coefficients, that describe the optical resonances of the target material [36].

The measured Raman spectra are characteristic for the short-range order of the investigated crystal

structure. Examples are given in literature e.g. for YAG:Ce single crystals [77, 78, 133] and Aluminum

Oxide [90, 91]. Small deviations from reference spectra can already indicate impurities in the material

or production process. Also they can be an evidence for an induced changed in the material structure.

By measuring the Raman scattered photons in backwards direction, most terms of the Raman tensor

are neglected and it is concluded that the only remaining Raman shift component is increasing under

compressive stress on the material, while the shift is decreased by tensile stress. A detailed calculation

of the Raman tensor and the according variation under performing of stress is found in the publication

of de Wolf [131].

For the present project, the irradiated target samples were measured with a Horiba Jobin-Yvon HR800

System. It works with a laser system consisting of a Helium-Neon laser for irradiation with λ = 633 nm

(red) and an Argon source. For the Argon laser a filter system can be applied to irradiate the samples

either with λ= 514.5 nm (green) or with λ= 488 nm (blue). The resolution of νS is determined mainly

by the focal length of 800 mm [134]. The device was calibrated before measurements with a silicon foil,

that has a well-known Raman peak at νS = 520 cm−1 in absence of material stress [131].

Raman spectra of the irradiated targets were recorded and either compared with an un-irradiated

material (pristine, if available) or with a measurement of the edge zone of the target screen, where

the material damage by ion irradiation was supposed to be minimal. The light source of the Raman

spectrometer was chosen such that optic fluorescence was small during measurements.

Figure 7.8 shows the Raman spectrum of Y3Al5O12:Ce single crystal #4, measured with the red laser

(λ = 633 nm) in the range between 200 and 1200 cm−1. Measurements with the green and the blue

laser were performed as well, but did only show fluorescence. The recorded Raman shifts accord to those

that can be found in literature for un-doped Y3Al5O12 material [78, 91, 133]. They are labeled in the

figure and listed in table 7.1 together with the assigned transition modes. Here, νi means the vibrational

modes.

Some modes, given by Mace et al. [78], were not verified by the measurements with the targets

Y3Al5O12:Ce #2−#5. This can be attributed to two reasons: On the one hand the Raman peaks can be

so weak that they can not be distinguished from the instrument’s noise level. This is most probable for

the modes that were already measured with a weak level in the reference, e.g. at 310 cm−1, 536 cm−1

and 757 cm−1. On the other hand the rare-earth dopant of the targets in the reference consisted of Dy,

Yb and Tb, but not of Cerium, or the measurements in the reference were performed with an undoped

crystal. This results in slightly different crystal structures and as already mentioned in [78] variations in

2 difference between inverse wavelengths
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Figure 7.8: Raman spectra of YAG:Ce #4, measured with a red LASER (λ = 633 nm). The spectra were
measured at the mainly irradiated middle and the minimum irradiated edge of the target.
The values of the observed Raman shifts νS are given in table 7.1.

Table 7.1: Raman modes found for YAG:Ce single crystal #4 as shown in figure 7.8. The observations are
similar for the targets #2, #3 and #5, that have the same chemical composition

Raman Shift νS [cm-1] Assignement
measurement reference [78]

221 219 T2g (Translatory + rotary + ν3)
— 243 T2g (Translatory + rotary + ν3)

263 259 T2g (Translatory + rotary + ν3)
297 296 T2g (Translatory + rotary + ν3)
— 310 T2g (Translatory + rotary + ν3)

342 340 Eg (Translatory + rotary + ν3)
373 372 A1g , T2g (Translatory + rotary + ν3)
404 403 Eg (Translatory + rotary + ν3)
— 530 T2g (ν2)
— 536 T2g (ν2)

547 544 T2g (ν2)
— 564 T2g (ν2)

693 690 T2g (ν1 + ν4)
721 716 Eg , T2g (ν1 + ν4)
784 794 A1g (ν1 + ν4)
859 856 T2g (ν1 + ν4)

the vibrational modes can appear. In summary the measured spectrum in figure 7.8 is in good accordance

with the values in literature [78,91,133].
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Also the Raman spectra of the Y3Al5O12:Ce targets #2, #3 and #5 were measured under the same

conditions as Y3Al5O12:Ce targets #4. They gave peak values at the same position and are not shown

explicitly here to avoid repetition. No change in peak position or shape of the measured modes was found

in comparison to pristine material or measurements at the target edge. This means that the short-range

order of the investigated materials was not modified by the ion irradiation.

The Raman spectra of the aluminum oxide targets A999 #6 and Al2O3:Cr #7 were measured with a

blue laser (λ= 488 nm) and are shown in figures 7.9 and 7.10. Measurements with higher wavelengths

did not deposit enough energy to the material lattice, so that no vibrational mode could be observed.

The vibrational modes were assigned to the peak values in figures 7.9 with help of the reference by

Porto et al. [91]. Table 7.2 gives a comparison between the performed measurements and the values

in the reference. Since in the given accuracy of the instrumentation the Raman shifts were observed at

the same positions for both aluminum oxide screens, it is concluded that the dopant in target #7 has no

influence on the short-range order of the material.

Figure 7.9: Raman spectrum of A999 #6, measured with a blue LASER (λ = 488 nm) at some irradiated
part of the screen and at a dark spot. The blue line belongs to a measurement of a pristine
A999 target for comparison. Vertical lines were added on the measured vibrational modes to
guide the eye.

On base of reference [91] an explanation for the observed vibrational modes is given: Due to the R3c

symmetry, explained in section 3.3.3, only two optical modes can be measured by Raman process: One

is the symmetrical vibration A1g , where the axes oscillate coherent to each other. The other one is the

asymmetrical vibration Eg , where the oscillation of the lattice planes happen orthogonal or incoherent
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Table 7.2: Raman modes found for A999 target #6 as shown in figure 7.9. The observations are similar
for the Chromium-doped Aluminum Oxide targt #7.

Raman Peak [cm-1] Assignements
measurement reference [91] as given in [91]

379 378 Eg (external→ rotation / translation)
417 418 A1g (x x + zz)
430 432 Eg (external→ rotation / translation)
449 451 Eg (external→ rotation / translation)
577 578 Eg (internal)
644 645 A1g (zz)
750 751 Eg (external)

Figure 7.10: Raman spectrum of Chromium-dopted Aluminum Oxide #7, measured with a blue LASER
(λ = 488 nm). The blue line belongs to a measurement of a pristine A999 target for com-
parison. Vertical lines were added on the measured vibrational modes to guide the eye.

to each other. Reference [91] reported on the Raman modes in four different planes to give an exact

assignment of the vibrational modes, regarding to the polarizability tensor of the D3d group [132]:
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(7.3)

Per definition two A1g modes can be measured, where the matrix elements in (7.3) are non-zero at

αx x , αy y and αzz. The Eg modes can be found five times in the Raman spectra: Three of the modes
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are a result of internal or "classical" vibrations, while the remaining two modes are called "external"

vibrations and are a result of a strong and quasi-free move of the Al2O3 atom in the lattice (e.g. rotation

or translation).

The vibrational assignments are given together with the peak positions in table 7.2 and are found

in the measurements (see figure 7.9 and 7.10). In the spectra of the irradiated materials the Raman

peaks for shift values > 500 cm−1 are weak, because the irradiation caused an increased fluorescence

background. A significant change of the peak positions or an increase was not observed, so that a change

of the material structure by the performed ion irradiation was not proven.

Raman spectra of the P43 phosphor target #1 were also measured. They are presented in this thesis,

even though a discussion of the measurement is difficult, due to a small number of references in litera-

ture. The irradiated sample was measured with the red light source (λ = 633 nm) and compared with

the measurement of a pristine sample. Both spectra are shown in figure 7.11. The change of absolute

intensity is disregarded here, since it was influenced easily by change of optical focus. Peak values were

observed at 110 cm-1, 197 cm-1, 430 cm-1 and 456 cm-1 and are comparable with measurements of

Gd2O2S host crystals, recorded by Dr. Yan during his PhD studies [135]. Thus, the measured shifts are

assigned to the medium material Gd2O2S. No significant difference could be found between measure-

ment of the irradiated and the pristine material, that would implicate a material modification by the

performed beam times.

Figure 7.11: Raman spectrum of P43 phosphor #1, measured with a green LASER (λ = 633 nm), com-
pared with the measurement of a pristine sample.
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7.4 Résumé

Within the capabilities of the used instrumentations, all irradiated scintillation targets were investigated

for modifications in the long-order or short-order range, respectively. Three analysis methods were used,

namely UV/Vis transmission spectroscopy, X-ray Diffraction (XRD) and Raman fluorescence spectroscopy,

and the measurements were compared either with a pristine material of the same composition or with

measurements at the edge of the target surface, where the degree irradiation in the material was min-

imal. The recorded patterns were compared and characterized on hand of references in literature, if

available. No significant deviations were observed during measurements that could serve as evidence for

characteristic material defects.

Figure 7.12: Bragg peak of investigated ions in Chromium-doped Aluminum Oxide #7, calculated with
SRIM [27], the vertical line represents the target thickness

However, this result is no surprise, since calculations with SRIM [27] showed that only a fraction of the

ion energy is deposited in the material: As shown in figure 7.12 for the Al2O3:Cr target #7, the Bragg

peaks of all requested ions exceed the material thickness (indicated by the vertical dashed line). The

calculated fraction of deposited energy Edep was thus generally in orders of 0.5 · 10−5 of the complete

ion energy Eion, and it was deposited linearly over the target depth. The resulting amount of deposited

energy ∆E was calculated, using the rectangular spread by the Bragg curves and the target thickness.

The values of ∆E are given with the according curves in figure 7.12.

Furthermore, SRIM was used for simulations of an uranium ion, irradiated at different beam energies

on a Chromium-doped aluminum oxide target. As parameters a layer made of Al2O3 (material density

ρ = 3.73 g
cm3 , 800 µm thick, tilted with 45◦) was defined and the irradiation of 1000 uranium ions in
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the material was calculated. Table 7.3 shows the results for three different specific energy values Espec.

The first row presents the calculation at 300 MeV/u and is thus similar to the conditions in the present

thesis. The energy for the second row was chosen with Espec =86 MeV/u, because the projected range

spreads over the full width of the target. The third row in table 7.3 was calculated with a typical energy

from the pre-accelerating system UNILAC in GSI (see section 3.1).

The table gives the values for the specific energy Espec, the according total energy Etotal of the uranium

ion, the electronic energy loss dE
d x and the energy ∆E, deposited in the target. As can be seen, the energy

loss increases for decreasing ion energy, as result of different stopping power (see section 2.2). The

calculated number of displacements per ion (dpi) shows a damage ratio of only 10 %, compared to the

calculation for UNILAC energy, and thus confirms the observations of the present thesis. Moreover, dpi

shows a dynamic behavior for the calculation with ions at 86 MeV/u: Here SRIM ran into a runtime error,

indicating, that the number of displacements exceeded 200000 [27]. This shows that an irradiation with

this parameters is causing the highest damage ratio in a Al2O3 target, similar to the investigated one.

Table 7.3: Calculation of energy, range and displacements per ion (dpi) of uranium in Al2O3:Cr target #7,
calculated with SRIM [27].

Espec
MeV

u Etotal [GeV] dE
d x

�

MeV
mm

�

∆E [MeV] projected range [µm] dpi

300 MeV/u 71.42 8.636 · 103 6909 >800 17585
86.0 MeV/u 20.47 17.49 · 103 1820421 796.37 >200000
11.4 MeV/u 2.71 43.32 · 103 85210 68.91 160355
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8 Conclusion and Outlook

8.1 Summary and Conclusion

Seven scintillation screens, made of inorganic material, were investigated with respect to their emission

properties during irradiation with high energetic heavy ions. Each screen turns a deposited energy into

photon emission in the visible range of the spectrum. This process, called scintillation, was described

in chapter 2 in terms of electron-hole-pair creation and recombination. The ideal scintillation process

is usually influenced by different aspects, e.g. the occurrence of material defects or the inability for

linear transformation into light under specific irradiation parameters. The resulting change of emission

properties was summarized with the term quenching, from which four dedicated models were described

in chapter 2 as well.

The irradiation of the scintillation screens was performed with different heavy ions of high energy at

GSI Helmholtzzentrum für Schwerionenforschung GmbH in Darmstadt. While the first part of chapter 3

gave an overview into the principles of heavy ion acceleration and the use of scintillation screens as

beam diagnostic tool, the investigated materials were introduced in the second part of the chapter.

The target collection consisted of phosphor screens (P43 and P46 phosphor), single crystals (Cerium-

doped Y3Al5O12) and Aluminum oxides (pure and Chromium-doped Al2O3). They were irradiated with

five different ion types (proton, nitrogen, nickel, xenon and uranium), extracted in fast (1 µs) and

slow (300-400 ms) extraction mode from heavy ion synchrotron SIS18 at a specific beam energy of

Espec = 300 MeV/u. The variation and measurement of irradiation parameters was described in the

first part of chapter 4, while the second part explained the optical setup, used for record of the induced

scintillation. The record included not only the measurement of light output and beam profile, but also

the measurement of emission spectrum during irradiation. The third part of chapter 4 together with the

first part of chapter 5 explained the basic principles of the performed data acquisition and analysis.

After the performed beam times, the light output L, light yield Y (i.e. L per deposited energy and par-

ticle), beam profile and emission spectra were calculated and analyzed from the recorded images. The

results were presented in chapter 5 for measurements with different beam intensities, as well as for two

performed radiation hardness tests with a nickel beam at 300 MeV/u (in slow and fast extraction mode,

each). Chapter 6 described two dedicated measurement campaigns, investigating specific observations

during beam alignment and measurements. Optical methods (UV/Vis transmission, XRD analysis, Ra-

man fluorescence spectroscopy) were applied to the screens after beam times to investigate in structural

changes and possible formation of defects. The measurements and results were summarized in chapter 7.

All target screens showed a linear behavior of light output L to the irradiation with different beam

intensities. This dependence was observed for all performed beam times, independent of the requested

projectile and extraction mode. A saturation of L under multiple-particle irradiation could thus not
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be proven. The calculated profile characteristics in horizontal and vertical direction and the recorded

emission spectra were invariant as well under irradiation with different numbers of particles per pulse.

The analysis of the light yield Y showed a different behavior: With increasing atomic number Z and

so with increasing electronic energy loss dE
d x the light yield decreased in comparison to the measurements

with nitrogen beam. This observation stays in good accordance with the measurements from the proton

beam time, where a change in the optical setup was necessary (removal of neutral density filter). The

origin of the decrease is explained by the quenching model of Michaelian and Menchaca-Rocha (see

section 2.4.2). Here, the recombination of electron-hole pairs to photons is substituted by non-radiative

processes, which results in a non-linear dependence of the scintillation amplitude under irradiation with

different heavy ions.

During radiation hardness tests with slow and fast extracted nickel beams, an increase in the light yield

Y was observed for the targets from supplier Crytur (P46 phosphor #3 and YAG:Ce single crystal #4) and

is explained by diffusion processes of charge carriers in the material. In the meantime, P46 phosphor #2

showed an invariant light yield Y , while in the YAG:Ce single crystal #5 the induced material defects

overcome the charge carrier diffusion and lead to a decrease of Y . After an irradiation break of 15

minutes, followed by another scintillation record for verification, the target materials turned back to the

initial level of light yield. Thus, it is concluded that any changes in the these materials were temporary

permutations during the irradiation.

Meanwhile, the light yield Y of aluminum oxide ceramics decreased during both performed radiation

hardness tests. The decrease was observed for the pure as well as for the chromium-doped aluminum

oxide and saturated for measurements in both extraction modes on a level of 90-97 % of the initial

light yield value. The ceramic with chromium doping degraded faster and saturated on a lower level

(approximately 90 % of initial value) than the pure aluminum oxide. It is known from literature that the

transformation from F to F+ centers, induced by ion irradiation, can reduce the light yield of A999 [89].

For the chromium-doped target, the trap of chromium ions is the most probable reason for the light yield

decrease. After irradiation break the light yield of both targets remained on the value of saturation. The

material properties must have been changed permanently, but from the degree of light yield decrease

we can conclude that the degree of modification in the material is in a small range in both target screens.

Different phenomena during beam alignment were investigated additionally to the main subject of

ion induced quenching behavior. On the one hand, focus was set on the afterglow characteristic of the

Al2O3:Cr target #7. For this, the light yield 2-200 ms after irradiation with fast extracted beam pulses

was determined and compared to the light yield during irradiation. An exponential decay of Y (t) was

found for each of the requested ion types. Even though, the optical setup limits the measurement range

to a few hundred ms after irradiation, the observation implicated a Z dependence of the afterglow and

further investigations are proposed.

The difference of light output, measured in fast and slow extraction mode, was determined to be

much smaller than expected by the differences of pulse duration. Thus, the P43 phosphor #1 and the

Al2O3:Cr #7 were irradiated with a slow extracted nickel beam at 500 MeV/u. The extraction time was

varied between 300 ms and 4 seconds. The light output showed a non-linear behavior as function of
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extraction times, and a saturation for higher extraction times is implicated. Dedicated measurements,

with signal amplifying cameras and measurement ranges up to seconds, would contribute to a further

understanding of the observed phenomenon.

For the choice of a scintillation screen as diagnostic element in FAIR beam alignment, different mate-

rials are recommended: In the intersection parts between consecutive FAIR sections, a continuously high

level of radiation is expected. Access to the areas, e.g. for maintenance of the diagnostic elements, is then

difficult or even impossible. Besides, it is recommended to install only highly radiation hard materials,

that inherit a minimum probability for quenching transitions. For these sections, cerium-doped Y3Al5O12

single crystals should be installed. Using a low thickness (e.g. in the range of 300 µm), these screens

provide a minimal influence on the imaging properties by photon scattering in the material. Referring to

chapter 5, the YAG:Ce single crystal #4 proved a good visible beam projection in a wide range of beam

intensity and a reliable response to ion irradiation even after 2 · 1012 accumulated particles. In contrast

to the phosphor screens, the single crystal offers the additional advantage of easy transport and han-

dling. Nevertheless, YAG:Ce single crystals have a high cost-disadvantage, which is why for extraction

out of the storage rings and for alignment experimental areas Al2O3:Cr is recommended, as already used

commonly. If low ionizing ion beams, i.e. beams with low atomic number of a low number of particles

per pulse, are aligned, a P43 phosphor screen is a better choice as diagnostic element, due to the high

scintillation efficiency.

8.2 Outlook

In summary, a saturation of light output as function of beam intensity was not proven. However, the

occurrence of such a quenching effect can not be excluded and is supposed for irradiation for higher

orders of beam pulse intensity, than available in the performed beam times. Measurements with more

than 1010 ppp are recommended to perform further investigations. At this high energy regime, the

requested projectiles should have an atomic number Z ≥ 50, due to the Z
A dependence of the Bethe-

Bloch-equation (2.1). This proposal is confirmed by exemplarily calculations of different Bragg peaks

with SRIM in Al2O3:Cr #7 (see figure 7.12), showing the increased amount of deposited energy for

irradiation with xenon and uranium.

As shown in figure 2.2 the deposited energy changes into a plateau for beam energies of

Espec > 100 MeV/u. A further increase of beam energy, as supposed for FAIR beam alignment, should

thus lead to an equal or linearly decreased light output during irradiation. Such dependences should

be investigated for a specific choice of targets under ionic irradiation with different energies Espec. As

shown by SRIM-calculations (see figure 6.2) only a fraction of ion energy is deposited in the scintillation

screens. Thus, for experiments with varying ion energies, a projectile with high ionizing potential (e.g.

uranium) is recommended.

Speaking of energy variation, the light yield dependence of the electronic energy loss should be mea-

sured at fixed beam energies. A region behind a fragment separator should be used for measurements,

since the dependence, shown in figure 5.5, could than be presented in a better resolution.

101



Further investigations on the temporal dependence of each, the light output under varying extraction

time and the scintillation afterglow characteristic of Chromium-doped Al2O3 are proposed. Dedicated

measurements, with signal amplifying cameras and time variations up to ranges of a few seconds would

contribute for a further understanding and characterizing of the observed phenomena.

To receive a factor of goodness for transverse beam alignment, the measure of emittance is commonly

performed. The transverse emittance is defined by the position x of a beam particle and the angular

spread of the particles transverse path x ′. Both factors form an ellipse, as shown exemplarily in figure 8.1

for the horizontal plane of a beam. In the vertical plane (y-axis) the emittance looks similar or is mirror-

inverted due to focusing by FODO elements.

Figure 8.1: Examples for transverse emittance, on basis of [45]

The emittance (in one plane) is commonly measured by slit grid devices [57, 58]. The particles are

passing a highly absorbing material through a thin slit. The slit opening is typically in the range of

hundreds of micrometer. The dispersion of the particles is nowadays measured with a SEM-grid in a

discrete distance after the slit. However the resolution of the emittance measurement is limited by the

resolution of the grid taping and the radius of the grid wires. Higher resolutions can be achieved by

replacing the SEM grid by a scintillation screen, as e.g. investigated in the present thesis. Furthermore,

horizontal and vertical beam emittance can be determined in a single measure by replacing the slit

with a pepper-pot-mask 1. Investigations in this subject are thus proposed and since their linearity

under irradiation with high energetic heavy ions was proven in this thesis, P43 phosphor, P46 phosphor,

Cerium-doped YAG single crystal, as well as pure and Chromium-doped Aluminum Oxide screens are

recommended as target screens.

1 A mask of high absorbing material with a number of small holes in micrometer range, remembering on a pepper-pot.
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Appendix

A.1 Parts of Developed Python 2.7 Source Code

A source code was developed in Python (version 2.7) to perform a generalized analysis on the measured

data. To give an overview of the developed data processing, parts of the code will be reported in the

following sections. The source code will not be given in its full amount to avoid an excessive number

of pages with partly repetitive and/or intuitive commands. Instead code blocks will be presented in

summarized style to explain the general motivation of the programming. They will be given in numbered

boxes labeled with Listing. Listings that contain functions or classes will start with the according call of

the function (or class, respectively) and exemplary choice of variables. After one blank line, the definition

of the function (or class, respectively) will be given.

Five aspects of the image processing will be described closer, namely

• Initial Image Processing - Import Recorded Image as Array

• Noise Reduction

• Calculation of Beam Profiles and Statistical Moments

• Plot of Data with Varying Beam Intensity and Linear Regression

• Extrapolation of Spectral Efficiency of PCO1600

Initial Image Processing - Import Recorded Image as Array

The code starts with the sorting of picture pairs into background image and the record of scintillation

(in general abbreviated with spot). This is performed for a row of files in a given directory. An integer

number (index) in the start can be used to choose the picture for start of processing in the directory.

Afterwards both images, background and spot, are imported as array. The dimensions of this array are

given by the chip, i.e. image size of the recording camera, as given in table A.1.

Table A.1: Image size for recording cameras in used record mode
camera image size [pixel]

AVT Marlin 656x494
AVT Stingray 656x492

PCO 1600 1600x1200

Due to the bias angle of the target ladder to the beam direction, the vertical axis of the images were

recorded bigger as they were in reality. Thus, this axis is compressed by help of the Image package from

the Python Image Library (PIL). The code is listed in listing L.1.
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Listing L.1: Read-in process for png files

1 array_spot = read_single_png(file_spot ,tilting_angle=entry.tilting_angle)

2

3 from PIL import Image

4 def read_single_png(fname,workdir=’’,tilting_angle=0.0):

5 plain_img = Image.open(workdir+fname)

6 if ( tilting_angle != 0.0 ):

7 width,height = plain_img.size

8 tilting_factor = 1/numpy.sin(tilting_angle*2*numpy.pi/360.0)

9 new_height = numpy.int(height/tilting_factor)

10 new_img = numpy.asfarray(plain_img.resize((width,new_height)))*

tilting_factor

11 else:

12 new_img = numpy.asfarray(plain_img)

13 return new_img

As shown in row 6 of listing L.1, the axis compression is only executed in case that the parameter for

the bias angle tilting_angle is not equal to zero. Than, a tilting_factor is calculated, according to

equation (4.3) (see section 4.2) and the image is resized by the Image package. The tilting_factor is

again used in row 10 to normalize the resized image (new_img) to the original sum of area and so to the

originally recorded light output L.

Noise Reduction

As explained in section 4.2 the experimental environment has an influence on the measurements. Es-

pecially the CCD chip in the recording camera can show characteristic noise types (see especially sec-

tion 4.2.1). Nevertheless, most characteristics can be deleted from the recorded images, i.e. from the

imported arrays array_spot. The code performs noise reduction in the following order:

1. Background subtraction: array_background is subtracted (directly) from array_spot, as shown

in listing L.2. One requirement is that both arrays need to have the same dimensions. Otherwise a

standard error is raised.

Listing L.2: Detailed description of general calculations

1 subtr_background(array_spot , array_background)

2

3 def subtr_background(ndarray_img ,ndarray_bg):

4 return ndarray_img - ndarray_bg

Some background subtraction methods, different to listing L.2, were tested as well. In the alterna-

tive way, the horizontal and vertical projections of array_spot were calculated first. In a second

step the calculated background profile was subtracted from the beam profile. As shown in fig-

ure A.2 both methods showed the same beam profiles in the end and the same sum of area was

calculated, independent from the chosen method. For the figure, a randomly chosen beam record
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was used and the profiles in horizontal and vertical direction were calculated in both methods.

However, the method of listing L.2 was chosen for the general image processing, because hot and

cold pixels, recognized in the background picture, could be used as general two dimensional map

of defect pixels. This was regarded as advantage in contrary to a preceding calculation of projec-

tions, where on the one hand two dimensional positions of defect pixels will be lost and on the

other hand hot and cold pixels in one row / column of the image would have compensate to a

wrong background level.

Figure A.2: Result of different background subtraction modes for horizontal and vertical profiles, all with-
out set of ROI

2. Region Of Interest (ROI): To reduce the remaining noise after step 1 a two dimensional ROI was set.

For images from camera #1 an ellipse was defined around the beam spot, using the parameters

width and height around a middle point with xmiddle and ymiddle. The code is presented in

listing L.3.

Listing L.3: Cut of a ROI with elliptical shape

1 cut_roi_2d(img=result, middle=roi_middle , width=roi_width , height=roi_height)

2

3 def cut_roi_2d(img,middle,height,width,sensitivity=10):

4 ymiddle,xmiddle = middle

5 mask = numpy.zeros_like(img)

6 y,x = numpy.mgrid[0:img.shape[0],0:img.shape[1]]

7 mask[y,x] = numpy.sqrt( (x-xmiddle)**2/(width/sensitivity)**2 + (y-

ymiddle)**2/(height/sensitivity)**2 ) <= sensitivity

8 return mask*img

Line 6 shows the calculation of meshed grids (numpy.mgrid[start,stop]), which are defined as two

arrays with equidistant cell values. The cell values are equal to the position in the row/column. The

first and third given parameters (here zero) define the value to start the counting over the grid. The
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second and fourth parameters img.shape[0] and img.shape[1] tell where to stop the counting

and simultaneously give the size of the grids. One mesh grid is counted row-wise (increments from

top to bottom), the other one is counted column-wise (from left to right). In the developed code

for image processing, the grids were used as coordinates in y and x direction.

The limits of the ROI were calculated in line 6 by using the mathematical condition of an elliptical

area. Here the sensitivity was introduced, to avoid roughness of the ROI at the border. The

sensitivity was tested with different values and the value sensitivity=10 was found as best

choice for the recorded data. Each point, fulfilling the mathematically condition in line 7, was set

True or 1.0, respectively. Since all other positions of the mask were set to Zero by definition in

line 5 the calculated result mask*img in line 8 corresponded to the ROI cut of the image.

Different methods to cut a ROI of an image were tested and the results are given in figure A.3

for comparison. The figure shows the beam projection in horizontal axis for single images during

nickel and xenon beam times as example. Two different cameras were used for record (AVT Marlin

and AVT Stingray). Even though a lot of pixels were already defect on the CCD of “cam 1”, it

recorded during more than 50 % beam times. Shortly before xenon beam time the replacement of

“cam 1” through “cam 3” became necessary. Pictures from both cameras were used for comparison

of the ROI cut to investigate the result for different noise levels.

Figure A.3: Different methods of ROI set and resulting sum of area, chosen method for the investigations
is ’elliptic ROI’

In the first column of figure A.3, a simple beam projection without cut of a ROI is given as reference.

The second column shows the performed cut with an elliptical ROI, while for the third column a

rectangular ROI was used. The rectangular ROI resulted in a higher value of total area, as result

from remaining noise in the ROI edges. The last row in figure A.3 shows a complete different

method of noise reduction: Here a rectangular ROI was cut from the measurement (i.e. from

array_spot) and a value was subtracted that corresponds to the background outside the ROI, but
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normalized to the ROI area. As can be seen, this algorithm does not result in a completely wrong

sum of area, but a high noise level is left in the foot of the projected profile.

Images from camera #2 (PCO 1600) recorded the emission spectra as function of wavelength and

the ROI was defined as rectangular, as shown in listing L.4 with intuitive parameters.

Listing L.4: Cut of a rectangular ROI

1 result = result[roi_vertical_start:roi_vertical_end ,roi_horizontal_start:

roi_horizontal_end]

3. Normalization to the optical setup: To calculate a factor for the original scintillation output from

the targets, the transmission through the iris and the neutral density filter (if used, see sections 4.2

and 4) were multiplied and the preprocessed array picarray was normalized to it. The code is

shown in listing L.5.

Listing L.5: Calibration to iris setting and neutral density filter

1 entry.overall_calculation_factor = entry.iris_transmission_value * entry.

optical_filter_value

2 optical_scale(result,entry.overall_calculation_factor)

3

4 def optical_scale(picarray,scalefactor):

5 return picarray/scalefactor

Listing L.5 is only important for measurements with camera #1. For camera #2 no

optical filter was used and the iris was not changed during measurements. Here the

entry.overall_calculation_factor was set to 1.0 per default.

From these results, the light output L and the light yield Y were calculated for single pulses, analog to

equations (5.1) and (5.3). The according code is listed below.

Listing L.6: Calculation of light output and light yield

1 light_output = numpy.sum(result)

2

3 deposited_energy = entry.de_dx_total

4 light_yield = (light_output)/(deposited_energy*specific_beam_intensity)

In order to decrease the influence of data outliers, the light yield Y for the measurements with in-

creasing beam intensities was calculated analog to equation 5.4 by use of the determined slope mL. A

description will be given in the next section.

Plot of Data with Varying Beam Intensity and Linear Regression

The calculated results were exported as table into an ASCII file. The table included also the time

stamp of record and the beam pulse intensity. The ASCII file were named group-wise by ded-

icated and user-defined names to avoid repetition. As example: All data of P43 phosphor #1
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recorded with camera #1 during beam time with fast extracted Xenon pulses were named with

p43pv_7e7_fast_cam3-htp_cam3grey. All ASCII files were exported in directories with well-defined

tree structure. The data trees were defined by, date of beam time projectile, specific beam energy as well

as by investigated characteristic (e.g. light output).

Using the preliminary defined file names, the data tables were then imported and plotted in differ-

ent styles (e.g. light output L as function of beam intensity, light yield Y for different targets in slow

extraction mode and so on). In general, the data plots were exported into PNG images.

The method for the plot of one data group is explained in listing L.7. The function called all investi-

gated characteristics, i.e. light output L, light yield Y , beam profiles and the second statistical moments

at once and exported it into a PNG image. For simplicity only the plot method of light output L as

function of number of irradiated particles is shown here and the remaining methods work analog.

Line 3 tests, if the previously explained data tree does contain data or is existing at all. In lines 5 to 7

the data tables are imported from the ASCII files and sorted in increasing order by the beam intensities.

The indices of outliers can be given by the parameter outliers_lightoutput and will be deleted from

the data in line 11. The different data types, according to x , ∆x , y and ∆y values, are defined as

variables in lines 14 to 17. Even though this step is redundant, it gives a better overview. Besides it

can be supportive during an eventual manipulation, e.g. to shift the beam intensities to lower or higher

values due to wrong estimated measurements (see section 4.1.2). The window that contains the plot

(figure) is started in line 21, while line 20 defines the path and file name of the exported data image.

A try-except-block is initiated in line 23. Here the imported data set is given to a dedicated function

linear_fit([...,...],...) for linear data regression (see listing L.8 and according description) and

the calculated parameters (slope popt_lin[0], error of slope err_m_sys and coefficient of determination

cofdet) are used to plot the data points on the one hand and a line, corresponding to the linear regres-

sion, on the other hand. Most of the calculated parameters are exported into an ASCII file and an Excel

data sheet and are printed additionally in the console. If any of the steps in lines 24 to 36 can not be

executed, e.g. due to an error, the conditions of the except block are executed. Here, some messages are

printed in the console, as can be seen in lines 38 and 39.

From line 40 on (outside the try-except-block) some graphical parameters for the figure are defined,

e.g. the title of the plot window and the axis labeling. Line 48 adjusts the whitespace around the plot

window. The parameters were set empirically to use the full size of the exported PNG image effectively.

Line 49 exports the graphical data with a 300 dpi resolution into the path, given in line 20. The window

is closed in line 50.

Listing L.7: Plot algorithm for one data group

1 def plot_group_of_one_target(first_session_element ,outliers_lightoutput=None,

outliers_statmom=None,figsize=(def_figure_width ,0.75*def_figure_width)):

2 # create or find export string (path of files)

3 first_session_element.initexport()

4 # read in and sort data files

5 file_to_plot_lightoutput = open(first_session_element.export_dir_calc+’

lightoutput/’+first_session_element.exportstring_calc+’-lightoutput.txt

’,’r’)
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6 array_lightoutput = numpy.genfromtxt(file_to_plot_lightoutput ,delimiter=’\

t’,usecols=(2,3,4,9,10),names=(’intensity’,’lightoutput’,’lightyield’,’

error_nsr’,’error_intensity’))

7 array_lightoutput = numpy.sort(array_lightoutput ,axis=0,order=’intensity’)

8

9 # remove outliers, given by parameters outliers_lightoutput

10 if (outliers_lightoutput is not None):

11 array_lightoutput = numpy.delete(array_lightoutput ,

outliers_lightoutput)

12

13 # define parameters beam intensity , lightoutput and errors by choice of

column

14 beam_intensities = array_lightoutput[’intensity’]

15 error_x = array_lightoutput[’error_intensity’]

16 lightoutput = array_lightoutput[’lightoutput’]

17 error_y_rel = array_lightoutput[’error_nsr’]

18

19 # figure

20 path_of_figure = first_session_element.export_dir_pictures+’lightoutput/’

+ str(first_session_element.extr_mode) + ’_’ + str(int(

first_session_element.beam_energy/1.0e3)) + ’MeV/’+

first_session_element.exportstring_calc+’-lightoutput.png’

21 plt.figure(figsize=figsize)

22 # linear regression - make it before plot, so that I can use the resulting

equation within legendbox

23 try:

24 popt_lin , lin_fit_func , perr_lin = linear_fit([beam_intensities ,

lightoutput],datayerrors=(error_y_rel*lightoutput),dataxerrors=

error_x,force_zero_intercept=True)

25 (err_m_sys ,err_b_sys), cofdet = perr_lin

26 plt.plot(beam_intensities ,lin_fit_func ,marker=’’,linestyle=’--’,

label=’L=(%.3g$\pm$%.2g)*ppp ($R^2$=%.2f%%)’%(popt_lin[0],

err_m_sys ,cofdet*100.0))

27 deposited_energy = first_session_element.de_dx_total

28 print >>first_session_element.export_file_log ,

first_session_element.exportstring_calc , ’overall lightyield

calculated from slope m divided by (dE/dx * delta x): ’ + str(

popt_lin[0]/(deposited_energy)) # + ’, error: ’ + str(numpy.

diag(pcov_fit)[0]/(deposited_energy))

29 print >>first_session_element.export_file_log , ’y-axis intercept

from lightoutput (if y = m*x+b, than intercept is b): ’ + str(

popt_lin[1]) # + ’, error: %.1f %%’%(100.0*numpy.sqrt(numpy.

diag(pcov_fit))[1]/popt_lin[1])

30 print >>first_session_element.export_file_log , ’x-axis intercept

from lightoutput (if y = m*x+b = 0, than intercept is -b/m): ’

+ str(-popt_lin[1]/popt_lin[0])
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31 # write calculated data to export file

32 write_to_export_table(wb_filename=’file_export_results_lightyield.

xlsx’,targetname=first_session_element.target_name ,projectile=

str(first_session_element.req_ion)+’_’+str(

first_session_element.extr_mode)+’_’+str(first_session_element.

year)+’_’+str(first_session_element.month),z_number=

first_session_element.atomic_number ,slope_l=popt_lin[0],

dep_energy=deposited_energy ,yield_y=(popt_lin[0]/(

deposited_energy)),err_slope_ml=err_m_sys ,rsquared=cofdet,

err_camera=numpy.average(error_y_rel),err_ppp_rel=numpy.average

(numpy.divide(error_x,beam_intensities)))

33 print str(first_session_element.exportstring_calc) + ’ overall

lightyield calculated from slope m divided by (dE/dx * delta x)

: %.2e’%(popt_lin[0]/(deposited_energy))

34 print str(first_session_element.exportstring_calc) + ’y-axis

intercept from lightoutput (if y = m*x+b, than intercept is b):

’ + str(popt_lin[1]) # + ’, error: %.1f %%’%(100.0*numpy.

sqrt(numpy.diag(pcov_fit))[1]/popt_lin[1])

35 print str(first_session_element.exportstring_calc) + ’: x-axis

intercept from lightoutput (if y = m*x+b = 0, than intercept is

-b/m): %.2e’%(-popt_lin[1]/popt_lin[0])

36 print ’\n’

37 except:

38 print ’linear fit failed for lightoutput of ’ + str(

first_session_element.exportstring_calc)

39 print >>first_session_element.export_file_log , str(datetime.

datetime.now()) + ’ - ’ + ’linear fit failed for lightoutput of

’ + str(first_session_element.exportstring_calc)

40 plt.title(str(first_session_element.target_name)+ ’ - ’ + str(

first_session_element.extr_mode)+’ extraction’, **title_font)

41 plt.xlabel(’number of irradiated particles per pulse [ppp]’, **axis_font)

42 plt.gca().set_xscale(’log’)

43 plt.ylabel(’light output $L$ (arb.u.)’, **axis_font)

44 plt.gca().set_yscale(’log’)

45 plt.xticks(**axis_font)

46 plt.yticks(**axis_font)

47 plt.legend(loc="upper left", prop=font_prop)

48 plt.tight_layout(rect=(-0.04,-0.07,1.05,1.05))

49 plt.savefig(path_of_figure ,dpi=300)

50 plt.close()
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In line 24 of listing L.7 the call of a linear regression was introduced as part of a try-except-block. The

command is repeated in line 1 of listing L.8 to give a better overview. For a successful continuation of

the image processing, it is necessary to delete clear outliers from the data. Since the PNG images are

exported in log-log-presentation, negative data values are not shown, which is why a preliminary check

is performed in lines 6 to 10, using the function find_negative_error_values (see set of parameters

in line 4). If the x- or the y-data contain any negative values, a message with the according data indices

will be printed in the console and it is recommended to repeat the plot command after the adjustment

of the parameter for outliers.

At the end of the preliminary check, the data set is given to a dedicated fitting algorithm, called

linear_fit_weight_twodim_bootstrap, which is shown in lines 13 to 93. This function is weighted in

two dimensions by a bootstrap method (for mathematical explanations, see e.g. reference [114]). The

method shifts the given data points by a value, that is maximum as big as the given errors (lines 44

till 59). As can be seen from line 44 on, the absolute value of the shift is generated randomly

and the regression parameters are calculated over a number of 100 sets (line 43). Afterwards, the

slope and intercept (mean_pcov) are calculated as average (line 70). The error of slope and intercept

(perr_bootstrap, i.e. err_pfit) is calculated as standard deviation value within a confidence interval

Nsigma in line 74. Additionally, linear_fit_weight_twodim_bootstrap(...) calculates the coefficient of

determination rsquared_bootstrap, i.e. the factor of goodness of the calculated regression parameters to

the set data points (see [114] and [115] for mathematical details).

Listing L.8: Algorithm of linear regression

1 popt_lin , lin_fit_func , perr_lin = linear_fit([beam_intensities ,lightoutput],

datayerrors=(error_y_rel*lightoutput),dataxerrors=error_x,force_zero_intercept=

True)

2 (err_m_sys ,err_b_sys), cofdet = perr_lin

3

4 def linear_fit(data, p0=None, datayerrors=None, dataxerrors=None,

force_zero_intercept=False ,**kwargs):

5 are_there_more_outliers = find_negative_error_values(dataxerrors ,

datayerrors)

6 try:

7 are_there_more_outliers[0]

8 print ’you have to delete more outliers: ’,

are_there_more_outliers

9 except:

10 pass

11 return linear_fit_weight_twodim_bootstrap(data, p0, datayerrors ,

dataxerrors , force_zero_intercept=force_zero_intercept ,**kwargs)

12

13 def linear_fit_weight_twodim_bootstrap(data, p0=None, datayerrors=None,

dataxerrors=None, force_zero_intercept=False, **kwargs):

14 datax, datay = data

15 if (datayerrors == None):

16 datayerrors = numpy.ones_like(datay)
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17

18 # define function and create first parameter estimation

19 if (force_zero_intercept == False):

20 linear_function = lambda params, x: params[0] * x + params[1] #

create fitting function of form mx+b

21 else:

22 linear_function = lambda params, x: params[0] * x #create

fitting function of form mx

23 errfunc = lambda p, x, y: linear_function(p, x) - y #

create error function for least squares fit

24

25 init_a = 0.5 #find initial value for a (

gradient)

26 if (force_zero_intercept == False):

27 init_b = min(datay) #find initial value

for b (y axis intersection)

28 p0 = numpy.array((init_a, init_b)) #bundle initial values in

initial parameters

29 else:

30 p0 = numpy.array((init_a ,0.0)) #bundle initial values in

initial parameters

31

32 #first calculation of leastsq estimation

33 pfit, pcov, infodict , errmsg, success = leastsq( errfunc, p0.copy(), args

=(datax, datay), full_output=True)

34

35 residuals = errfunc( pfit, datax, datay)

36 s_res = numpy.std(residuals)

37 ps = []

38 ps_cov = []

39 chisq = []

40 rsquared_bs = []

41 rsquared_bs_k = []

42 # 100 random data sets are generated and fitted

43 for i in range(100):

44 if datayerrors is None:

45 randomDelta = numpy.random.normal(0., s_res, len(datay))

46 randomdataY = datay + randomDelta

47 else:

48 randomDelta = numpy.array( [ \

49 numpy.random.normal(0., derr,1)[0] \

50 for derr in datayerrors ] )

51 randomdataY = datay + randomDelta

52 if dataxerrors is None:

53 randomDelta = numpy.random.normal(0., s_res, len(datax))

54 randomdataX = datax + randomDelta
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55 else:

56 randomDelta = numpy.array( [ \

57 numpy.random.normal(0., derr,1)[0] \

58 for derr in dataxerrors ] )

59 randomdataX = datax + randomDelta

60 randomfit , randomcov , randominfodict , randomerrmsg , randomsuccess

= leastsq( errfunc, p0, args=(randomdataX , randomdataY),

full_output=True)

61 ps.append( randomfit )

62 ps_cov.append( randomcov )

63 chisq.append( (errfunc(randomfit , datax, randomdataY)**2).sum() )

64 rsquared_temp = 1-( (randominfodict[’fvec’]**2).sum() / ((

randomdataY -randomdataY.mean())**2).sum() )

65 rsquared_bs.append( rsquared_temp )

66 rsquared_korr_temp = 1-(( (randominfodict[’fvec’]**2).sum() /(len(

randomdataY)-len(p0)-1))/( ((randomdataY -randomdataY.mean())

**2).sum() /(len(randomdataY)-len(p0))))

67 rsquared_bs_k.append( rsquared_korr_temp )

68

69 ps = numpy.array(ps)

70 mean_pfit = numpy.mean(ps,0)

71 Nsigma = 1. # 1sigma gets approximately the same as methods above

72 # 1sigma corresponds to 68.3% confidence interval

73 # 2sigma corresponds to 95.44% confidence interval

74 err_pfit = Nsigma * numpy.std(ps,0)

75

76 # calculation of statistical errors of leastsq fit

77 if force_zero_intercept == True:

78 mean_pcov = 1.0

79 else:

80 ps_cov = numpy.array(ps_cov)

81 mean_pcov = numpy.sqrt(numpy.diag( numpy.mean(ps_cov ,0) ))

82

83 pfit_bootstrap = mean_pfit

84 perr_bootstrap = err_pfit

85 perr_statistic = mean_pcov

86 s_sq_bootstrap = numpy.mean(chisq)

87 rsquared_bootstrap = numpy.mean(rsquared_bs)

88 rsquared_korr_bootstrap = numpy.mean(rsquared_bs_k)

89

90 # function to plot

91 f_plot = linear_function(pfit_bootstrap , datax)

92

93 return pfit_bootstrap , f_plot, (perr_bootstrap , rsquared_bootstrap)
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Calculation of Beam Profiles and Statistical Moments

The two dimensional beam response of the screens, recorded by camera #1, was calculated into the

horizontal and vertical profiles. The code is shown exemplarily in listing L.9 only for the calculation in

horizontal axis. For the vertical axis, the calculation was performed similarly.

The boolean parameter norm is used to normalize the calculated profile to a maximum value of 1.0.

This code was also used to calculate the emission spectra from the images recorded with the PCO 1600

camera.

Listing L.9: Calculation horizontal image projection , for vertical projection the axis choice is ’1’

1 def make_profile_horizontal(picarray ,norm=False):

2 if (norm == False):

3 result = numpy.sum(picarray,axis=0)

4 elif (norm == True):

5 result = numpy.sum(picarray,axis=0)/numpy.max(result)

6 return result

The so calculated beam profiles were analyzed for investigations in the first and second statistical

moments (see section 5.2). The source codes, used for calculations, are given below. The code follows

the mathematical definition, given in equation (5.6) for a one dimensional profile (line 1-3) and a two

dimensional profile (line 5-7). For the one dimensional profile, the position is defined as array with equal

size, as the profile and with equidistant entries (numpy.mgrid, see definition of ROI in listing L.3).

Listing L.10: Weighted mean value of a 1D profile - 1st statistical moment

1 def calc_xmean(profile):

2 result = numpy.sum(numpy.multiply(profile,numpy.mgrid[0:numpy.shape(

profile)[0]]))/numpy.sum(profile)

3 return result

4

5 def calc_2d_xmean(data):

6 position , profile = data

7 result = numpy.sum(numpy.multiply(profile,position))/numpy.sum(profile)

8 return result

For the calculation of second statistical moment σ, the position of the data points is given as number i

and the profile distribution has a specific length of len(profile). The weighting of each point was than

given as profile[i]. The dominator corresponds to the light output, here calculated with numpy.sum(

profile). The code is given in listing L.11 in line 1-9. Here the calculation was not performed in a single

line, to avoid the calculation with negative values (see line 6). For two dimensional profiles the single

line algorithm is used in line 11 till 15, similar to listing L.10.

Listing L.11: Weighted standard deviation of a 1D profile - 2nd statistical moment

1 def calc_stdvariance(profile):

2 return numpy.sqrt(calc_variance(profile))

3 def calc_variance(profile):
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4 mu = calc_xmean(profile)

5 result = 0

6 for i in numpy.argwhere(profile >=0):

7 result = result + profile[i]*(i-mu)**2

8 result = result/numpy.sum(profile)

9 return result

10

11 def calc_2d_stdvariance(data):

12 position , profile = data

13 mu = calc_2d_xmean(data)

14 result = numpy.sqrt(numpy.sum(numpy.multiply(profile,numpy.multiply((

position - mu),(position - mu))))/numpy.sum(profile))

15 return result

Extrapolation of Spectral Efficiency of PCO1600

The used spectrometer setup consisted of different optical components (see section 4.2). The spectral

efficiency of each component (lens, camera CCD and spectrometer) was used to calculate the total

efficiency. Since the single efficiencies started and ended at different points, the total efficiency was

calculated as an extrapolation. The code and explaining comments are given in listing L.12.

Listing L.12: Extrapolation of PC1600 Quantum Efficiency below 400 nm

1 # import of necessary packages

2 import numpy

3 import matplotlib.pyplot as plt

4 import matplotlib.font_manager as font_manager

5 from scipy.interpolate import interp1d

6 from scipy.interpolate import UnivariateSpline

7 # read in transmission -file - used DataGrabber application to create txt-file with

coordinates

8 pco_withmicrolenses = numpy.genfromtxt(’../../various spectras and transmissions/

cameras/pco1600_monochrome_withmicrolensescover.txt’),skiprows=4,names=[’

wavelength’,’intensity’])

9 pco_withmicrolenses_lambda = pco_withmicrolenses[’wavelength’]

10 pco_withmicrolenses_eff = pco_withmicrolenses[’intensity’]

11 # generate interpolation / function of given data for further calculations

12 pco_withmicrolenses_interpol_f = interp1d(x=pco_withmicrolenses_lambda ,y=

pco_withmicrolenses_eff ,kind=’linear’)

13 new_wavelength_range_with = numpy.linspace(pco_withmicrolenses_lambda[0],

pco_withmicrolenses_lambda[-1],num=numpy.shape(pco_withmicrolenses_lambda)[0])

14 with_interpol_array = pco_withmicrolenses_interpol_f(new_wavelength_range_with)

15 # create extrapolation by use of UnivariateSpline , k gives the degree of the

interpolation polynomial

16 with_interpol_expand_f = UnivariateSpline(x=pco_withmicrolenses_lambda , y=

pco_withmicrolenses_eff , k=4)
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17 # set first entry of ’with_interpol_array’ to the same value as second entry (for

some reason, it’s ’nan’)

18 with_interpol_array[0] = with_interpol_array[1]

19 # calculate residuals of original data sheet from calculated Spline to calculate

back to original values later

20 with_interpol_expand_array_residuals = numpy.divide(with_interpol_array ,

with_interpol_expand_f(new_wavelength_range_with))

21 new_wavelength_expand = numpy.insert(new_wavelength_range_with , 0, numpy.arange

(200.0, new_wavelength_range_with[0], step=(new_wavelength_range_with[1]-

new_wavelength_range_with[0])))

22 delta_x_range = numpy.shape(new_wavelength_expand)[0] - numpy.shape(

new_wavelength_range_with)[0]

23 # interpolate expanded wavelength range to Spline function

24 with_interpol_expand_array = with_interpol_expand_f(new_wavelength_expand)

25 # set right part of curve to original values

26 with_interpol_expand_array[(delta_x_range -1):-1] = numpy.multiply(

with_interpol_expand_array[(delta_x_range -1):-1],

with_interpol_expand_array_residuals)

27 # there is a jump of values now! recalculate the left side of Spline-array down

with help of first residual value

28 with_interpol_expand_array[0:(delta_x_range -1)] = with_interpol_expand_array[0:(

delta_x_range -1)]*with_interpol_expand_array_residuals[1]

29 # set first entries (appr. till lambda=300 nm) to a minimum value = value of end

of the curve:

30 with_interpol_expand_array[0:620] = with_interpol_array[-1]

31 # save to txt file

32 numpy.savetxt(fname=open(’pco1600_monochrome_withcover_expanded.txt’,’w’), X=numpy

.array([new_wavelength_expand , with_interpol_expand_array]).T, delimiter=’\t’)

33 # plot foldings together

34 plt.figure()

35 plt.plot(new_wavelength_range_with ,with_interpol_array , label=’with microlenses -

from datasheet’)

36 plt.plot(new_wavelength_expand ,with_interpol_expand_array , label=’with microlenses

- expanded forward to 200nm’)

37 plt.xlabel(’wavelength [nm]’)

38 plt.ylabel(’quantum efficiency’)

39 font_prop = font_manager.FontProperties(fname=’C:\Windows\Fonts\Arial.ttf’, size

=12)

40 plt.legend(loc=’upper right’, prop=font_prop)

41 plt.ylim(0.0,0.75)

42 plt.legend(loc=’best’)

43 plt.tight_layout(rect=(-0.01,-0.02,1.01,1.02))

44 plt.show()

134



A.2 Danksagung

Bei der Erarbeitung meiner Promotion gab es in den letzten vier Jahren viele positive Einflüsse und

zahlreiche Untersützer. Für Beides möchte ich mich an dieser Stelle bedanken. Alle Namen einzeln zu

nennen, würde jedoch nicht nur den Rahmen sprengen: sicherlich würden - ohne böse Absicht - die ein

oder anderen Namen dabei untergehen. Deshalb beschränke ich mich auf die Personen, die entscheidend

beteiligt waren.

Zu allererst möchte ich Prof. Dr. Wolfgang Ensinger danken, der mir zusammen mit Dr. Peter Forck

vom GSI Helmholtzzentrum für Schwerionenforschung GmbH die Arbeit an Projekt ermöglicht hat.

Trotz seiner vielfältigen Aufgaben hat sich mein Doktorvater immer Zeit für die Besprechung meiner

Fortschritte genommen.

An dieser Stelle möchte ich auch Prof. Dr. Oliver Kester für die Erarbeitung des Zweitgutachtens, sowie

die Verlängerung meiner Beschäftigung über die ursprüngliche Projektzeit hinaus danken.

Die Promotion wäre nicht möglich gewesen ohne die Messungen am GSI Helmholtzzentrum für Schw-

erionenforschung GmbH. Für die Einführung in die komplexe Anlage und für viele wissenschaftlich

angeregte Diskussionen möchte ich Dr. Peter Forck danken. Seinem Stellvertreter Dr. Thomas Sieber gilt

besonderer Dank für seine Unterstützung bei meiner Promotionsschrift.

Bei Beata Walasek-Höhne und ihrer Gruppe HEBT Instruments möchte ich mich für die Unterstützung

im Bereich Optik und Szintillationsaufnahme bedanken. Weitere Unterstützung bei der Datanaufnahme

erhielt ich von der Gruppe Data Acquisition and Software unter Tobias Hoffmann und Rainer Haseitl.

Hierfür und für die persönlichen Hilfestellungen während der Strahlzeiten möchte ich mich bei euch

herzlich bedanken. Bei der Auswertung der Daten erhielt ich entscheidende Hilfe von Dr. Andreas Re-

iter, bei dem ich mich hier ebenso bedanken möchte, wie bei Manfred Hartung für die umfangreiche

Konstruktion meiner Kamerahalterung. Für die reibungslose Zusammenarbeit mit der Gruppe Accel-

erator Operations und dem Operateurs-Team des Hauptkontrollraums möchte ich mich hier ebenfalls

bedanken.

Auch Dr. Marcus Schwickert soll hier nicht ausbleiben: Trotzdem er als Leiter der Abteilung LOBI schon

genug ausgelastet ist, nahm er sich stets für sehr hilfreiche persönliche Mitarbeitergespräche Zeit. Dafür

ein großes Dankeschön.

Auch von den Mitarbeitern der Materialanalytik an der TU Darmstadt wurde ich aufgenommen und

unterstützt, wofür ich mich bei der Gruppe bedanken möchte. Besonders hervorheben möchte ich die

Zusammenarbeit mit meinem Kollegen Dr. Stephan Lederer. Ich habe ihn als geistreichen und zuverläs-

sigen Materialwissenschaftler kennen und schätzen gelernt. Die Diskussionen während unserer Projekte

waren immer hilfreich und gaben oft genug einen wichtigen Impuls für den nächsten Schritt.

Zu guter Letzt möchte ich auch meinen Freunden Dank aussprechen. Durch eure Unterstützung seid

ihr für mich in den letzten Jahren zu einer zweiten Familie geworden. Dieser private Ausgleich, aber

natürlich auch eure motivierenden Worte haben mich durch halten lassen, egal ob die Arbeit gerade gut

lief oder sich mühsam dahin schleppte.

Dieses Projekt wurde durch das Bundesministerium für Bildung und Forschung (BMBF Projekt

Nr. 05P12RDRBJ), sowie durch ein Forschungsstipendium des Frankfurt Institute for Advanced Stud-

ies (FIAS) finanziert.

135





A.3 Curriculum Vitae

Personal Data Alice Lieberwirth

Am Birkenwald 2

64390 Erzhausen

Tel.: 06 159/ 71 20 48

E-Mail: a.lieberwirth@gsi.de

born July, 5th 1985 in Frankfurt (Main)

School education

08/2001 – 04/2004 Final school examination - Ernst-Reuter-Schule I, Frankfurt (Main)

08/1995 – 06/2001 Secondary - Ernst-Reuter-Schule II, Frankfurt (Main)

08/1991 – 07/1995 Primary School - Heinrich-Kromer-Schule, Frankfurt (Main)

Academic Studies

09/2004 – 11/2011 Goethe University Frankfurt (Main), Physics (Diploma)

Graduation Studies

since 08/2012 Technische Universität Darmstadt, Material Science deperatement (Material Analy-

sis Group)

137



A.4 Publications, Reports and Proceedings

List of Publications

• A. Lieberwirth, W. Ensinger, P. Forck, S. Lederer: “Response from inorganic scintillation screens in-

duced by high energetic ions”, Nuclear Instruments and Methods in Physics Research Section B: Beam

Interactions with Materials and Atoms (2015), 365, pp. 533 - 539. doi:10.1016/j.nimb.2015.07.111

• S. Lederer, S. Akhmadaliev, J. von Borany, E. Gütlich, A. Lieberwirth, J. Zimmermann, W. Ensinger:

“High-temperature scintillation of alumina under 32 MeV 63Cu5+ heavy-ion irradiation”, Nuclear

Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms

(2015), 359, pp. 161 - 166. doi:10.1016/j.nimb.2015.07.131

• S. Lederer, S. Akhmadaliev, P. Forck, E. Gütlich, A. Lieberwirth, W. Ensinger: “Thermal anneal-

ing behavior of α-Al2O3 scintillation screens”, Nuclear Instruments and Methods in Physics Re-

search Section B: Beam Interactions with Materials and Atoms (2015), 365, pp. 548 - 552.

doi:10.1016/j.nimb.2015.08.024

List of Reports

• A. Lieberwirth, B. Walasek-Höhne, P. Forck, W. Ensinger: “Response of scintillating screens for fast

and slow extracted beams from SIS18”, GSI Scientific Report 2012, p. 283

• A. Lieberwirth, P. Forck, S. Lederer, W. Ensinger: “Light Output of Inorganic Scintillating Screens

induced by Fast and Slow extracted Beams from SIS18”, GSI Scientific Report 2014, p. 424,

DOI:10.15120/GR-2015-1-FG-GENERAL-07

• A. Lieberwirth, P. Forck, S. Lederer, W. Ensinger: “Lumineschence Spectra of Inorganic Scintillating

Screens induced by Fast and Slow extracted Beams from SIS18”, GSI Scientific Report 2014, p. 425,

DOI:10.15120/GR-2015-1-FG-GENERAL-08

• S. Lederer, P. Forck, E. Gütlich, A. Lieberwirth, W. Ensinger: “Luminescence degradation behav-

ior of alumina irradiated with heavy ions of high fluences”, GSI Scientific Report 2014, p. 261,

DOI:10.15120/GR-2015-1-APPA-MML-MR-09

• P. Boutachkov, A. Reiter, C. Andre, H. Bräuning, C. Dorn, P. Forck, E-M. Glück, H. Graf, T. Hoffmann,

V. S. Lavrik, A. Lieberwirth, Y. Shutko, and B. Walasek-Höhne: “In-beam Tests of PMTs and Voltage

Dividers for Particle Detectors at FAIR”, GSI Scientific Report 2014, p. 464, DOI:10.15120/GR-2015-

1-FG-GENERAL-46

List of Proceedings

• A. Lieberwirth, W. Ensinger, P. Forck, B. Walasek-Höhne: “Response of Scintillating Screens to

Fast and slow Extracted ion Beams”, in Proceedings of 2nd International Beam Instrumentation

Conference 2013 (IBIC’13), (J. Martin and G. Rehm, eds.), Oxford (United Kingdom), pp. 553-556.

138

http://dx.doi.org/10.1016/j.nimb.2015.07.111
http://dx.doi.org/10.1016/j.nimb.2015.07.131
http://dx.doi.org/10.1016/j.nimb.2015.08.024


• M. Schwickert, C. Andre, F. Becker, P.Forck, T. Giacomini, E. Gütlich, T.Hoffmann, A. Lieberwirth, S.

Löchner, A. Reiter, B. Voss, B. Walasek-Höhne, M. Witthaus: “Transverse Beam Profiling for FAIR”,

in Proceedings of 2nd International Beam Instrumentation Conference 2013 (IBIC’13), (J. Martin

and G. Rehm, eds.), Oxford (United Kingdom), pp. 232-234.

• P. Forck, C. Andre, C. Dorn, W. Ensinger, R. Haseitl, A. Lieberwirth, S. Lederer, S. Löchner, A.

Reiter, M. Schwickert, T. Sieber, B. Walasek-Höhne, M. Witthaus: “Beam-based Tests of intercept-

ing transverse profile diagnostics for FAIR”, in Proceedings of 5th International Particle Accelerator

Conference 2014 (IPAC’14), (C. Petit-Jean-Genaz and G. Arduini and P. Michel and V. Schaa, eds.),

Dresden (Germany), pp. 3480-3482.

139



Erklärung zur Dissertation

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit den an-

gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen

entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder

ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 7. September 2016

(Alice Lieberwirth)

140


	Abstract / Zusammenfassung
	Introduction
	Physics Background of Beam Interaction with Materials
	Radiation in Matter
	Scintillation Process in Inorganic Materials
	Franck-Condon Principle
	Non-proportionality and Quenching
	Radial Dose Distribution of -electrons
	Quenching due to Maximal Energy Density
	Temporal Quenching
	Model for Many-Particle Irradiation

	Defect Formations

	Application of Scintillation Screens in Accelerator Facilities
	Heavy Ion Acceleration
	Extraction from Storage Ring

	Scintillators as Diagnostic Tool for Beam Alignment
	Classifications of Inorganic Scintillator Materials
	P43 Phosphor - Gd2O2S:Tb
	Cerium-doped Yttrium Aluminum Garnets - Y3Al5O12:Ce
	Aluminum Oxide Ceramics - Al2O3 and Al2O3:Cr


	Ion Beam Experiments
	Beam Parameters and Experimental Setup
	Beam Intensity Variation
	Supporting Diagnostics Components
	Target ladder

	Optical Setup
	CCD components
	Camera system to record 2D light output
	Spectrometric system

	Data Acquisition

	Data Analysis and Experimental Results
	Irradiation Parameters after Beam Stripping
	Offline Analysis of Scintillation Response
	Statistical Moments of Profile Distributions

	Variation of the Beam Intensity
	Light Output L
	Light Yield Y
	Beam Profile
	Emission Spectra

	Radiation Hardness Tests
	Résumé

	Accelerator Specific Investigations
	Al2O3:Cr Afterglow Measurements
	Varying Slow Extraction Time

	Characterizing ex-situ Measurements
	UV/Vis Transmission
	X-ray Diffraction Analysis (XRD)
	Raman Fluorescence Spectroscopy
	Résumé

	Conclusion and Outlook
	Summary and Conclusion
	Outlook

	Bibliography
	List of Figures
	List of Tables
	List of Abbrevations
	Appendix
	Parts of Developed Python 2.7 Source Code
	Danksagung
	Curriculum Vitae
	Publications, Reports and Proceedings

	Erklärung zur Dissertation - Eigenständigkeitserklärung

