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Abstract

The increasing levels of international communication in all aspects of life lead to a growing
demand of language skills. Traditional language courses compete nowadays with a wide
range of online offerings that promise higher flexibility. However, most platforms provide
rather static educational content and do not yet incorporate the recent progress in edu-
cational natural language processing. In the last years, many researchers developed new
methods for automatic exercise generation, but the generated output is often either too easy
or too difficult to be used with real learners. In this thesis, we address the task of predicting
and manipulating the difficulty of text-completion exercises based on measurable linguistic
properties to bridge the gap between technical ambition and educational needs. The main
contribution consists of a theoretical model and a computational implementation for exer-
cise difficulty prediction on the item level. This is the first automatic approach that reaches
human performance levels and is applicable to various languages and exercise types.

The exercises in this thesis differ with respect to the exercise content and the exercise
format. As theoretical basis for the thesis, we develop a new difficulty model that com-
bines content and format factors and further distinguishes the dimensions of text difficulty,
word difficulty, candidate ambiguity, and item dependency. It is targeted at text-completion
exercises that are a common method for fast language proficiency tests. The empirical ba-
sis for the thesis consists of five difficulty datasets containing exercises annotated with
learner performance data. The difficulty is expressed as the ratio of learners who fail to
solve the exercise. In order to predict the difficulty for unseen exercises, we implement the
four dimensions of the model as computational measures. For each dimension, the thesis
contains the discussion and implementation of existing measures, the development of new
approaches, and an experimental evaluation on sub-tasks. In particular, we developed new
approaches for the tasks of cognate production, spelling difficulty prediction, and candidate
ambiguity evaluation. For themain experiments, the individualmeasures are combined into
an machine learning approach to predict the difficulty of C-tests, X-tests and cloze tests in
English, German, and French. The performance of human experts on the same task is de-
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termined by conducting an annotation study to provide a basis for comparison. The quality
of the automatic prediction reaches the levels of human accuracy for the largest datasets.

If we can predict the difficulty of exercises, we are able to manipulate the difficulty. We
develop a new approach for exercise generation and selection that is based on the prediction
model. It reaches high acceptance ratings by human users and can be directly integrated
into real-world scenarios. In addition, the measures for word difficulty and candidate ambi-
guity are used to improve the tasks of content and distractor manipulation. Previous work
for exercise difficulty was commonly limited to manual correlation analyses using learner
results. The computational approach of this thesis makes it possible to predict the difficulty
of text-completion exercises in advance. This is an important contribution towards the goal
of completely automated exercise generation for language learning.



Zusammenfassung

Durch die zunehmende internationale Kommunikation in allen Lebensbereichen werden
Sprachkenntnisse immer gefragter. Traditionelle Sprachkurse konkurrieren mittlerweile
mit zahlreichen Online-Angeboten, die eine höhere Flexibilität versprechen. Die meisten
E-learning-Kurse beruhen jedoch auf eher statischen Lerninhalten und berücksichtigen
noch nicht die jüngsten Entwicklungen der Sprachtechnologie. In den letzen Jahren wur-
den viele neue Methoden zur automatischen Aufgabengenerierung entwickelt, aber die re-
sultierenden Aufgaben sind häufig zu einfach oder zu schwierig um in echten Lernsze-
narien eingesetzt zu werden. In dieser Dissertation geht es darum, die Schwierigkeit von
Sprachlernaufgaben anhand messbarer linguistischer Merkmale automatisch vorherzusa-
gen und anzupassen. Der Hauptbeitrag besteht in der Entwicklung eines theoretischenMo-
dells und seiner Implementierung für die automatische Schwierigkeitsvorhersage von Auf-
gaben zur Textvervollständigung. Die entwickelte Methode ist die erste, die das Qualitäts-
niveau menschlicher Experten für die Schwierigkeitsvorhersage erreicht und für verschie-
dene Aufgabentypen und Sprachen eingesetzt werden kann.

Die theoretische Grundlage für diese Arbeit wird durch die Entwicklung eines neuen
Schwierigkeitsmodells gelegt, das sowohl den Aufgabeninhalt als auch das Aufgabenfor-
mat berücksichtigt und dabei vier Dimensionen unterscheidet: die Textschwierigkeit, die
Wortschwierigkeit der Lösung, die Ambiguität der Lösungskandidaten und die gegenseiti-
ge Abhängigkeit von Teilaufgaben. Im Fokus stehen Aufgaben, die dem Prinzip der redu-
zierten Redundanz folgen und vom Lerner die Vervollständigung eines lückenhaften Textes
erfordern. Die empirische Grundlage besteht aus fünf Datensätzen mit Aufgaben und den
entsprechenden Lösungsergebnissen von Sprachlernern. Die Schwierigkeit einer Aufgabe
ergibt sich aus dem Anteil der Lerner, die die Aufgabe nicht lösen können. Um die Schwie-
rigkeit von neuen Aufgaben vorherzusagen, werden automatische Methoden entwickelt,
die die vier Dimensionen des Modells abbilden. Für jede Dimension werden existierende
Methoden diskutiert und implementiert und neue Ansätze entwickelt und evaluiert. Die
neuen Methoden beinhalten insbesondere Lösungen für die Produktion von Kognaten, die
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Vorhersage von Rechtschreibschwierigkeiten und die Abschätzung der Ambiguität von Lö-
sungskandidaten.

Die vier Dimensionen werden dann in einem maschinellen Lernverfahren zusammen
geführt, um die Schwierigkeit von sogenannten C-tests, X-tests und Cloze Tests für Eng-
lisch, Französisch und Deutsch vorherzusagen. Die menschliche Fähigkeit, die Schwierig-
keit von Aufgaben einzuschätzen wird zudem in einer Annotationsstudie erhoben, um eine
Vergleichsbasis heranziehen zu können. Es zeigt sich, dass die automatische Vorhersage-
qualität der einer erfahrenen Lehrkraft entspricht, wenn die Datensätze groß genug sind.

Die guten Ergebnisse der Schwierigkeitsvorhersage werden schließlich verwendet, um
die Schwierigkeit von Aufgaben automatisch zu justieren. Der neu entwickelte Ansatz zur
Generierung und Auswahl von Aufgaben erzielt hohe Akzeptanzwerte bei pädagogischen
Fachkräften und kann direkt in ihre Arbeitsroutinen integriert werden. Darüber hinaus
werden die Methoden für die Bestimmung der Wortschwierigkeit und der Ambiguität zwi-
schen Lösungskandidaten eingesetzt, um die Schwierigkeit von Aufgabentexten und Lö-
sungskandidaten zumanipulieren. FrühereArbeiten zurAufgabenschwierigkeit warenwei-
testgehend auf manuelle Korrelationsanalysen von Lernerdaten beschränkt. Der automati-
sche Ansatz dieser Arbeit ermöglicht es, die Schwierigkeit von Aufgaben vorab zu bestim-
men. Dies ist ein wichtiger Beitrag auf dem Weg zur komplett automatischen Aufgabenge-
nerierung für Sprachlerner.
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Chapter 1

Introduction

“In the lives of individuals and societies, language is a
factor of greater importance than any other. For the study
of language to remain solely the business of a handful of
specialists would be a quite unacceptable state of affairs.”

— Ferdinand de Saussure

In a labor market that is increasingly globalized, knowledge of foreign languages is more
relevant than ever before. Multilingual skills are also required for private communication as
friendships stretch across geographical and linguistic borders. In addition, almost a million
refugees have been crossing the Mediterranean Sea to seek asylum in Europe in 2015 and
are looking for cheap and fast solutions to acquaint themselves with the new languages.1

The static time frame of conventional language courses is often not compatible with
learners’ unstable working conditions and lifestyles. As an alternative, many learners turn
to online portals for language learning. These portals are becoming increasingly popular
although the provided contents are often rather inflexible and limited.

According to Vygotsky’s zone of proximal development (Vygotsky, 1978), the range of
suitable exercises for a learner is very narrow. Exercises that do not challenge the learner
easily lead to boredom and stagnation, whereas overly complex exercises might result
in frustration. Creating exercises that fit this narrow target zone is a tedious and time-
consuming task. For optimal support of language learning, it is thus important to adapt
the exercise difficulty according to the specific needs of the learner. In order to properly
manipulate difficulty, it is necessary to measure difficulty.

So far, difficulty has mainly been a subjective estimate based on the experience of teach-
ers. However, the teachers already know the solutions and cannot always anticipate the

1997,125 non-European first-time asylum applicants have been reported from October 2014 to September
2015 by Eurostat: http://ec.europa.eu/eurostat/statistics-explained/index.php/Asylum_quarterly_report, ac-
cessed: December 11, 2015
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Chapter 1. Introduction

confusion an exercise might cause for learners. This results in a subjective difficulty estima-
tion that often lacks consistency and can only be evaluated based on posterior performance
measures. As a consequence, the exercises that are used in high-stakes language testing
(the TOEFL test, for example) usually follow a thorough and expensive pre-test protocol for
quality assurance. In less professional testing environments, the exercise selection depends
on the subjective and uncontrolled judgment of individual persons.

Computational methods can provide support for exercise selection. In this thesis, we
focus on text-completion exercises and the goal is two-fold:

(1) to develop automatic methods for difficulty prediction based on objective measurable
properties

(2) to evaluate how difficulty prediction can contribute to automated manipulation of
exercise difficulty.

1.1 Computer-Assisted Language Learning
In the last years, numerous language learning portals and apps have been developed for
multiple languages and some of them reach a huge range of users worldwide. Popular
commercial examples are Rosetta Stone®, busuu and babbel .2 Rosetta Stone® promotes a
“natural” learning approach inspired by L1 acquisition and is mainly based on picture as-
sociation tasks. Busuu follows the idea of social networks and supports the interaction
between language learners and native speakers. Babbel aims at reaching communicative
goals and claims that their exercises provide interactive contextualized content. All three
companies offer free demo versions of their systems, but the full product can only be ac-
cessed through paid accounts. The most established free platform is Duolingo which was
founded after a research initiative at Carnegie Mellon University.3 The business model be-
hind Duolingo is based on the idea that language learners translate content and evaluate
translations of their peer learners for free while learning the language.

The fast success of language learning technology in commercial applications is aston-
ishing. However, all applications still mainly provide pre-fabricated exercises that are man-
ually designed by humans. This static approach can quickly lead to boredom of advanced
learners and is lagging behind the recent developments in natural language processing.
Ideal language learning exercises should be adapted to the learners’ abilities and prefer-
ences and make use of authentic material matching the learners’ interests (Gilmore, 2011).
In order to enable such a fine-grained matching, exercises should be automatically gener-
ated on the fly so that the difficulty can be adjusted. Research in natural language process-
ing for learners is currently developing very fast (see section 2.2). Automatic methods for

2http://www.rosettastone.de, http://www.busuu.com, http://www.babbel.com,
all accessed: November 25, 2015

3http://www.duolingo.com, accessed: November 25, 2015
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1.2. Exercise Difficulty

content selection, exercise generation and feedback generation have improved significantly.
However, most existing approaches for exercise generation exhibit two main shortcomings.
They fail to exert appropriate quality control on the generated exercises and they cannot an-
ticipate the difficulty level (Skory and Eskenazi, 2010). These two aspects are closely related:
exercises that are rated to be of insufficient quality are almost always either too difficult or
too easy. In order to overcome these weaknesses, this thesis presents a new model for pre-
dicting the difficulty of exercises. In a second step, the automatic difficulty estimate serves
as a selection filter for generated exercises and guides difficulty manipulation.

As a general scenario for this thesis, we focus on fast language proficiency tests. At the
beginning of a language learning phase, it is important to analyze the proficiency level of
the learner. For this purpose, the exercises should be in a range of appropriate difficulty.
Exercises that are too easy or too difficult are not discriminative for the proficiency level.
The difficulty datasets that we examine in the thesis have all been created for this scenario.
However, text-completion exercises are used for a wide range of scenarios and our findings
for difficulty prediction can easily be extended to other use cases. The ultimate goal is the
generation of adaptive exercises for self-directed learning. As a first step towards this goal,
we evaluate how difficulty prediction estimates can be used for manipulating the difficulty
of exercises.

1.2 Exercise Difficulty
Natural languages are complex and continually developing constructs that include many
exceptions to the rules. Hence, the potential problems for foreign language learners are
manifold and hard to anticipate. This thesis presents a new difficulty model that captures
many aspects of language learning and is applicable to a range of text-based exercises. The
thesis outline follows the structure of the model.

The developed difficulty model that constitutes the theoretical basis for this thesis is
displayed in figure 1.1. In general, the difficulty of an exercise is determined by the exercise
content and the exercise format (Sigott, 2006). The exercise content is often referred to as
the prompt or the input in other related work. For the exercise types discussed in this
thesis, the exercise content consists of a short text or sentence from a general domain. This
text is transformed into an exercise according to the exercise format. The upper part of the
model in figure 1.1 represents the format factors and the lower part the content factors. The
model is further categorized into four dimensions: the text difficulty , the word difficulty ,
the candidate ambiguity , and the item dependency . The dimensions are exemplified here
following an example for a cloze exercise displayed in figure 1.2. Other exercise types will
be introduced in section 2.3.

3



Chapter 1. Introduction

Figure 1.1: Thesis model for exercise difficulty

Exercise content The exercise content in the example is the sentence “His characteristic
talk, with its keen observance of detail and subtle power of inference held me amused
and enthralled” . The difficulty of the content can be divided into the overall text difficulty
and the particular word difficulty of the solution observance . The model needs to capture
the readability of the text and the familiarity of the solution word for the learner.

Exercise format The difficulty of the format for this exercise depends on the candidate
ambiguity of the answer options instincts, presumption, observance, expiation, and im-
plements . The model needs to capture the difficulty of identifying the correct solution from
the candidates. The item dependency is only relevant for exercises that contain more than
one item such as C-tests and X-tests which will be introduced in section 2.3. Imagine the
word detail in the example would also be replaced by a gap. Selecting the correct solution
for the first gap would then be considerably more difficult. In this scenario, the model needs
to capture whether the difficulty of the current item is influenced by the difficulty of the
surrounding items.

Figure 1.2: Example for a cloze exercise, the solution is observance .

4



1.3. Thesis Outline

Content and format factors can both be further categorized into micro-level and macro-
level processing . This term has been introduced to describe the solving strategies of lan-
guage learners (Babaii and Ansary, 2001). For micro-level processing , the learners only take
the gap itself and the directly neighboring words into account. For macro-level processing ,
they also consider whether the solution candidate fits into the larger sentential context.
Psycholinguistic analyses discuss these strategies in detail and claim that both levels are
required for successful solving (Sigott, 2006; Grotjahn and Stemmer, 2002). In the model,
the outer circle represents macro-level processing and the inner circle represents micro-
level processing. The distinction of the different difficulty dimensions is described in more
detail in chapter 3. The subsequent chapters each focus on one particular dimension and
their implementation as computational measures.

1.3 Thesis Outline
The first two chapters of the thesis narrow down the thesis tasks. Chapter 2 delineates the
field by identifying the educational requirements for language learning exercises and dis-
cussing the strengths and limits of educational natural language processing. Text-comple-
tion exercises are a popular choice for fast placement tests and combine positive educational
properties with technical feasibility. Chapter 3 introduces the difficulty model that forms
the theoretical basis for exercise difficulty prediction. In addition, it provides a specification
of the thesis goals, a description of the difficulty datasets, and a comparison of two theo-
ries for measuring difficulty. The datasets have been obtained from authentic test settings
with the goal of providing a rough estimate of the participants’ language proficiency. Four
datasets target language learners of English, German, and French, and one dataset has been
collected in a language proficiency test with native and near-native speakers of German.

The following three chapters are based on the structure of the difficulty model. Chap-
ter 4 describes the macro-level content dimension of text difficulty . The relationship be-
tween readability and difficulty is analyzed with a focus on the difference between native
speakers and language learners. Chapter 5 comprises work for the micro-level content di-
mension of word difficulty . Words that are similar across languages (called cognates ) facili-
tate word recognition, but complicate word production for learners. We address these two
aspects of word difficulty in the novel tasks of cognate production and spelling difficulty pre-
diction and develop new approaches to solve them. Chapter 6 deals with the two format
dimensions of micro-level candidate ambiguity and macro-level item dependency . We an-
alyze the candidate space and introduce new measures for candidate ambiguity that are
rooted in methods for automatic solving of exercises. In addition, the existing approaches
for the detection of item dependencies are evaluated on the datasets.

In chapter 7, the four difficulty dimensions are combined to predict the difficulty of ex-
ercises. The predictive power is evaluated and compared for three test variants and three

5



Chapter 1. Introduction

languages. The performance of human experts on the same task is determined by conduct-
ing an annotation study to provide a basis for comparison. The quality of the automatic
prediction reaches the levels of human accuracy for the largest datasets. In chapter 8, we
apply the findings for difficulty prediction to the task of difficulty manipulation . The pro-
posed approaches are ready to be directly integrated into language teaching routines and
can contribute to improved exercise generation. Chapter 9 summarizes the findings of the
thesis and provides an outlook to future research directions.

1.4 Contributions
The main contribution of this thesis can be summarized as follows:

A theoretical model and its computational implementation for the automatic predic-
tion of exercise difficulty that is applicable to various languages and exercise types and
reaches human performance levels.

The main contribution is evaluated in detail in chapter 7. As the task of difficulty predic-
tion has rarely been tackled and has not been combined with recent advances in the field
of natural language processing before, several sub-problems needed to be solved leading
to the following contributions. They are distinguished into analyses, measures, resources,
and applications (the corresponding chapter or section is indicated in brackets).

Contributed analyses The following analyses have been performed to build the theoret-
ical basis for the main contribution.

• Analysis of the educational and technological requirements for high quality exercises
for language learning (2).

• Development of a difficulty model that combines individual factors into an integrated
concept of difficulty (3.1).

• Comparison of different approaches for measuring difficulty (3.4).
• Analysis of the psycholinguistic differences between L1 acquisition and L2 learning,
and the computational consequences for L1 and L2 readability (4.3).

• Analysis of the candidate space for different exercises as an indicator of redundancy
reduction (6.1).

• Analysis of item dependencies in text-completion exercises (6.3).

Contributed measures In order to address the difficulty dimensions word difficulty and
candidate ambiguity, new computational measures were required. The new measures are
described and evaluated on sub-tasks in the corresponding chapters and outperform exist-
ing measures.
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• Implementation of existing measures for text and word difficulty (4.1, 5.1). All fea-
tures that do not rely on proprietary resources are publicly available in the DKPro
TC framework (Daxenberger et al., 2014).

• Development of an approach for cognate production to capture an important aspect
of receptive word difficulty (5.2).

• Development of computational measures for predicting spelling difficulty to capture
an important aspect of productive word difficulty (5.3).

• Development of computational measures for evaluating candidate ambiguity for lan-
guage learners (6.2).

Contributed resources The following new resources and extensions of existing datasets
are available for research purposes. An overview page with all links can be found at:
www.ukp.tu-darmstadt.de/research/past-projects/exercise-difficulty-for-language-learning/

• Extension of a dataset of existing cloze exercises (Zweig and Burges, 2012) with diffi-
culty information obtained from language learners (3.3.1).

• Collection of cognate resources for seven language pairs including the languages En-
glish, Czech, Farsi, German, Greek, Italian, Spanish, and Russian (5.2).

• Extraction of English, German, and Italian spelling errors from three corpora of anno-
tated learner essays and determination of the spelling error probability of each word
in the corpora (5.3).

• A new dataset of difficulty predictions for text-completion exercises by three human
experts for 398 items (7.1).

• Extraction of 28,097 English-German synonyms fromUBY (Gurevych et al., 2012) that
are enriched with cognateness and spelling difficulty information (8.1.4).

Contributed applications In chapter 8, the difficulty prediction approach is used for the
goal of automatic difficulty manipulation leading to the following applications.

• A web demo that automatically generates exercises from texts and provides a visual-
ization of the predicted difficulty (8.1.1).

• An approach for automatic exercise generation and selection from a text corpus (8.1).
• An approach for distractor manipulation that is based on the measures for candidate
ambiguity (8.2).

1.5 Publication Record
Parts of this thesis have been previously published at peer-reviewed conferences and in
internationally recognized journals in the fields of natural language processing and com-
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putational linguistics.4 The concept of text difficulty for language learning (chapter 4) is
described in Beinborn et al. (2012). Beinborn et al. (2014b) elaborates on the topic with a
psycholinguistic comparison of L1 and L2 readability. The discussed consequences for L2
readability are an increased focus onword difficulty in general and on cognates in particular
(chapter 5). A computational approach for cognate production (section 5.2) is introduced
and evaluated in Beinborn et al. (2013). Cognates facilitate text comprehension, but trigger
many spelling errors. We developed a computational approach for spelling difficulty pre-
diction and evaluated it on spelling errors extracted from learner corpora in Beinborn et al.
(2016). The difficulty prediction for English C-tests has first been published in Beinborn
et al. (2014a). In Beinborn et al. (2015a) the approach is extended to other exercise types
and languages (chapter 7). As this extension requires a re-evaluation of the candidate space,
new measures for candidate ambiguity have been introduced (section 6.2).

The main thesis content has been presented at an invited talk at the FEAST series at
Saarland University (Forum Entwicklung und Anwendung von Sprach-Technologien). Inter-
disciplinary exchange has been supported by presenting the work at the workshop Vir-
tualisierung von Bildungsprozessen organized by the Forum Interdisziplinäre Forschung , in
the academic network Individualisiertes Sprachenlernen , and at the international confer-
ence Language.Learning.Technology. 2015 (Beinborn et al., 2015b). These events convene
researchers from computer science, linguistics, psychology, and education and produce
synergies by connecting knowledge from different strands of research.

4A detailed list can be found on page 226.
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Chapter 2

Exercises for Language Learning

“Learning another language is not only learning different
words for the same things, but learning another way to
think about things.”

— Flora Lewis

This chapter analyses the expectations for exercises in the area of language learning. The
first section discusses the requirements for high quality exercises. The second section pro-
vides an overview of the possibilities and limitations of educational natural language pro-
cessing. The third section introduces text-completion exercises which are a popular choice
for language proficiency tests.

2.1 Educational Criteria for Language Learning Exercises
In 2001, the European Union published the Common European Framework of Reference for
Languages: Learning, Teaching, Assessment (CEFR) which is considered an important mile-
stone towards international comparability of language skills (Council of Europe: Language
Policy Division, 2011). The CEFR categorizes language proficiency into 6 levels: A1, A2,
B1, B2, C1, C2. A1 indicates beginner knowledge and C2 corresponds to near-native pro-
ficiency. The proficiency levels are expressed as a combination of the four skills reading,
writing, listening, and speaking. Listening and reading are considered to be receptive ac-
tivities (understanding), whereas speaking and writing are productive activities. These ac-
tivities are often trained separately and thus require different types of exercises. We will
focus on textual activities; exercises requiring speech technology such as pronunciation or
dialogue training are beyond the scope of the thesis.
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2.1.1 ExerciseQuality

The quality of exercises has been frequently discussed in the context of language testing
(Hughes, 1989; Grotjahn, 2009). Language testing can be categorized into summative as-
sessment and formative assessment . Summative assessment refers to diagnostic tests which
usually take place after a learning period and categorize the learner’s proficiency at this
specific point in time. In contrast, formative assessment is defined as performance feed-
back during the learning process to assure continuous evaluation (Fulcher and Davidson,
2007). The issue of exercise quality has been thoroughly analyzed for summative assess-
ment which includes placement tests, achievement tests and proficiency tests. These tests
are also called high-stakes tests because the outcome determines whether the learner re-
ceives a required certificate and might even have financial consequences.

A first step towards improving fairness and comparability for language testing was the
introduction of criterion-referenced testing (Glaboniat, 2010). In criterion-referenced testing,
the learner’s result is compared to an evaluation criterion that has been determined prior
to the test. This procedure assures that the result of an individual is evaluated independent
of the results of his peers as in norm-referenced testing. If an individual’s performance is
only judged with respect to an expected performance on a standardized scale, results can
be compared across samples and also across languages. The CEFR has been established as
the standard reference system in Europe and all major language testing institutions have
linked their language certificates to the benchmark descriptions of the CEFR levels.

The exercises in language tests need to fulfill quality criteria such as objectivity, re-
liability and validity which are explained below. In summative assessment, the learner
performance is compared to a desired standard independent of prior knowledge. In forma-
tive assessment, the learning curve of the individual is more relevant and the performance
is compared with the expected performance based on the individual’s previous learning
progress. In the classical setting, a teacher monitors the learning progress and provides
continuous formative assessment by correcting and evaluating the learner’s activities and
adjusting the difficulty of the learning tasks. Since the introduction of computer-based
language learning, formative assessment has received increasing attention.

Quality criteria The three most important quality criteria for assessment are objectivity,
reliability and validity (American Educational Research Association et al., 1999). The fol-
lowing explanations are based on overviews by Hughes (1989) and Grotjahn (2009) who
review these criteria in the light of language testing.

Objectivity of a test can be accomplished if the evaluation of a test is independent from
the test organizer and the corrector. The test conditions should be comparable for all par-
ticipants and the evaluation should be consistent. This means that the same test outcome
should always receive the same grade independent of the corrector. In order to assure objec-
tivity, detailed evaluation guidelines are required to specify which performance is expected
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for which grade. The CEFR has provided guidelines that describe the expectations for the
six proficiency levels. ACEFR manual (Council of Europe: Language Policy Division, 2009)
and the recommendations of the Association of Language Testers in Europe (ALTE)5 help to
link these scales more directly to language tests. Exercises with a closed answer set usually
exhibit higher objectivity because they specify pre-determined answers and leave no room
for interpretation in the evaluation.

Reliability refers to the accuracy and the reproducibility of test results. Reliable tests
rate the language proficiency of a participant consistently and exhibit only a minimal level
of measurement error. If the same participant completes two comparable versions of a
test, the results should be highly correlated. Reliability is thus strongly connected with
objectivity. With the introduction of the CEFR, it has become common practice to analyze
the reliability of high-stakes tests in extensive pilot studies.

Validity is the most complex quality criterion for language tests. According to Brown
(1989, p. 59), “the validity of ameasuremay be defined as the degree to which it is measuring
what it claims to be measuring”. Success in an exercise that is supposed to measure lan-
guage proficiency should thus not depend on general intelligence or world knowledge. As
this concept is rather vague and difficult to operationalize, validity is often further broken
down into criterion validity, content validity, construct validity and face validity. Criterion
validity indicates that the test correlates with an expected outcome. Good placement tests,
for example, should predict the learning success of a participant in a specific course. Con-
tent validity captures the representativeness of the test for the measured construct. For
language testing, content validity can be improved if the exercises are based on a represen-
tative sample of authentic language usage. A test is considered to have high construct valid-
ity if it measures the intended construct. As this is hard to determine, construct validity is
approximated by measuring the correlation of the test with already established measures of
the construct (also called convergent validity ). A language proficiency test should correlate
with the participant’s school grades for this language and with other language proficiency
tests. It should not correlate with variables that are considered to be irrelevant for the con-
struct such as age or sex (divergent validity). Face validity refers to the transparency of the
test and considers the perspective of the test participants. The exercises of a test with high
face validity should be intuitive for the participants and generally be considered as a good
and relevant measure for language proficiency.

Objectivity, reliability and validity are the most important quality criteria for language
tests and exercises. Additional aspects are often summarized as the usability or the econ-
omy of a test. A test that takes ten hours and requires complex equipment is considered
to be less useful than a short and inexpensive test. These criteria have been established
for traditional assessment practice. In the last decade, computer-assisted language learning
and testing started to replace pencil-and-paper tests. As the exercise types and the testing

5http://www.alte.org, accessed: January 21, 2016
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procedures are being adapted to the change of the medium, new requirements for exercise
quality are emerging which are discussed below.

Exercises for computer-assisted language learning The practical developments in com-
puter-assisted language learning (CALL) started rather slowly, although the topic attracted
many theoretical debates (Blake, 2011; Garrett, 2009). In an overview of CALL tools that
make use of natural language processing technology, Amaral and Meurers (2011) describe
only three stand-alone systems (one for Japanese, German, and Portuguese each). In the
last years, the trend is moving from computer-assisted to mobile-assisted language learning
(MALL) and we see a wave of newly emerging applications for language instruction. While
overviews of computer-assisted language learning by Levy (2009), Mitschian (2010), and
Blake (2011) focus mainly on tools serving a single purpose like vocabulary or grammar
training that can be used to complement traditional courses, more recent language learning
applications aim at covering a wider range of language proficiency training. The most
popular examples like Duolingo , busuu , and babbel attract thousands of users who cherish
the non-institutional setup that allows them to integrate language learning into their free
time (Hockly, 2015). Academic research that embeds the mobile technologies into theories
of language learning and evaluates them based on empirical experiments is lagging behind
the fast developments on the application side (Viberg and Grönlund, 2012).

Most research overviews focus instead on institutionalized computer-based language
testing. The most popular language certificates can now be obtained via computer-based
tests (e.g. TOEFL and IELTS for English, TestDaF for German).6 Pathan (2012) lists many
advantages of computer-based testing such as the independence of administrative and lo-
gistic burdens and guaranteed uniform testing conditions. In addition to these practical
advantages, computer-based tests are often praised for achieving a greater authenticity due
to the integration of multi-media exercises (Joseph and Uther, 2009). On the other hand,
electronic tests also pose limitations on the exercise types, for example, due to the size of
the screen (Chinnery, 2006).

Despite the flexibility of the medium, the exercises in language tests and in mobile lan-
guage learning applications are quite static and often simply resemble the exercises in tra-
ditional pencil-and-paper tests. In this case, the main advantage of computer-based lan-
guage learning is the availability of additional data. Keystroke logging and semi-automatic
analyses of processing times and errors allow insights into test-taking strategies from hun-
dreds of participants that were not available in traditional testing. These datasets form a
promising basis for language testing research and will lead to further improvements. The
approach in this thesis shows that the analysis of existing results makes it possible to pre-
dict the difficulty of new tests. This is an important step towards more adaptive exercise
generation.

6www.ets.org/toefl, www.ielts.org, www.testdaf.de, all accessed: January 21, 2016
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The most promising progress in computer-based testing is expected from advances in
automatic scoring for open exercise formats that require free text answers (Douglas and
Hegelheimer, 2007). The delivery of immediate feedback even for complex taskswould open
up many new possibilities. The technology for automatic scoring has seen a lot of progress
(see section 2.2.3). The Educational Testing Service (the leading institution of computer-
based testing in the US) has adopted the policy to score essays by combining the output
of their automatic evaluation system e-rater ® with the evaluation of a human rater (Attali
and Burstein, 2006). This has led to an improvement over the policy of using two human
raters, but still requires a large amount of human effort.

Computer-based learning and testing is often advertised as a means to support self-
directed learning because learners can follow their own pace. However, in order to adapt
the exercises to the needs of the learner, the difficulty of the items needs to match the
learner’s ability. This goal is the underlying paradigm for computer-adaptive testing . The
first computer-adaptive test was introduced already in 1985 and addresses the problem that
most language tests are only informative about high- and low-scoring participants and do
not discriminate well for intermediate levels (Larson and Madsen, 1985). All items of this
test had been evaluated in extensive pre-tests and the difficulty was calibrated using models
from item response theory. During the computer-adaptive test, the items are administered
to the participants depending on their performance on previous items. Participants who
have solved an item are presented with amore difficult item, those who have failed continue
with an easier item. This procedure leads to more individualized and considerably shorter
tests because the participants only need to answer those items that are discriminative for
their ability level (Meunier, 2013). This approach requires a model for the difficulty of all
available items.

After a period that praised computer-adaptive testing as a breakthrough in language
assessment, the interest quickly declined again because of the unfeasible demands. Dou-
glas and Hegelheimer (2007) and Meunier (2013) highlight that item pools need to grow
tremendously in order to satisfy the needs for computer-adaptive testing and still assure
high item variation to undermine cheating attempts. Therefore, most language testing in-
stitutions are hesitating to establish the computer-adaptive testing paradigm. The popular
TOEFL test, for example, does currently not contain any computer-adaptive sections.7 Ano-
table exception is the computer-adaptive Business Language Testing Service (BULATS ) that
assesses the proficiency of English, French, Spanish and German in the business domain
(Perlmann-Balme, 2010).8

Computer-adaptive testing is particularly attractive for the scenario of formative as-
sessment. The idea of providing direct feedback and to adapt the exercises to the learner’s

7Information from the Educational Testing Service by Aiofe Cahill, Managing Research Scientist, and Teresa
Axe, Associate Director Global Education, January 20, 2016.

8http://www.bulats.org, accessed: January 19, 2016
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abilities is in line with the goal of using formative assessment to trigger learning progress.
The leading online course Duolingo already claims to use adaptive learning modules that
take the past performance of the user into account (Settles, 2013). However, Duolingo has
also been criticized for presenting the user with decontextualized sentences (Hockly, 2015)
due to its commercial model of collaborative translation.9 In order to make computer-
adaptive testing more feasible for a wider range of exercises, technical improvements in
automatic scoring and exercise generation are required to overcome the laborious com-
position of manually created item banks. Instead, exercises could be generated on the fly
to closely match the individual requirements of the learner. In section 2.2.2, we see that
the automatic generation of exercises is already possible for some exercise types. However,
predicting the quality and the difficulty of a generated exercise has not yet received enough
attention.

Conclusions We conclude that good exercises should follow the quality criteria objec-
tivity, reliability and validity and should be usable for computer-adaptive testing. The last
condition demands automatic scoring and difficulty estimation of the exercise. A common
obstacle for computer-adaptive testing is the need for large calibrated item pools. If the
difficulty of exercises could be manipulated automatically, this hard constraint would be
alleviated. The following section provides an overview of existing exercise types for text-
based tasks.

2.1.2 Exercise Types

In previous work, text-based exercises have been categorized into hierarchies depending on
the educational knowledge level they address. These hierarchies differ slightly depending
on the purpose of the exercise. Generally, two purposes are distinguished: comprehension
exercises make a presented content more comprehensible and linguistic exercises train a
particular phenomenon to improve the learner’s vocabulary or grammar skills. In the first
case, the learner is encouraged to reflect upon the input to reach a deeper understanding.
The most popular hierarchy for comprehension exercises is Bloom’s categorization of educa-
tional objectives (Bloom et al., 1956). In the second case, the learner focus is directed towards
a certain linguistic phenomenon by highlighting different occurrences, pointing out excep-
tions and encouraging repeated usage. A hierarchy of text-based linguistic exercises has
been provided by Wesche (1996).

Table 2.1 provides an overview of these hierarchies including examples of the corre-
sponding exercise types. The descriptions above refer to the formative goals of the exer-
cise, but both exercise types can also easily be applied in summative testing to evaluate the
learner’s abilities.
9Co-founder Luis van Ahn explains Duolingo ’s commercial model in a TED talk: http://www.ted.com/
talks/luis_von_ahn_massive_scale_online_collaboration, accessed: November 25, 2015
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Objective Typical exercises

Knowledge Who, what, when, where, why, how…? Describe X.
Comprehension Summarize X.
Application How is X an example of Y? How is X related to Y?

Why is X significant?
Comprehension Analysis What are the parts or features of X? Classify X.
Exercises
(Bloom et al., 1956)

Synthesis What would you infer from X? What ideas can you
add to X? How would you design a new X? What
would happen if you combined X and Y? What so-
lutions would you suggest for X?

Evaluation Do you agree that X? What do you think about X?
What is the most important X? Place the following
X in order of priority. How would you decide about
X? What criteria would you use to assess X?

Selective Attention Identification of highlighted words
Linguistic Recognition Matching exercises
Exercises Manipulation Morphological exercises, shuffle exercises
(Wesche, 1996) Interpretation Odd-one-out exercises, tribond exercises

Production Translation, Cloze exercises

Table 2.1: Overview of text-based exercises and the corresponding educational objectives for lan-
guage learning

Comprehension exercises Comprehension exercises encourage the learner to reflect upon
a topic and gain a better understanding. They are often expressed as classical questions
starting with an interrogative pronoun and ending with a question mark.

Bloom classified exercises according to the associated cognitive educational objective.
These objectives can be mapped to classical questions as in the upper part of table 2.1.10

The educational objectives are ordered by increasing complexity and are hierarchically or-
ganized, i.e. higher learning objectives like synthesis and evaluation subsume lower ones
like knowledge and comprehension . The exercise types range from simple factual questions
up to complex essay writing. The evaluation level also encompasses transfer tasks that
encourage the learner to apply the new knowledge and skills in a slightly different context.

The questions described above are targeted at the content of the educational material. In
this setting, the language is only the medium of teaching and the exercises aim at the com-
prehension of the content. In language teaching, textual content often deals with cultural
differences, traditions or historical events in the countries of the target language. How-
ever, the main educational content in language learning is the language itself and although
language proficiency is also implicitly contained in comprehension questions, linguistic
exercises that are explicitly targeted at mastering the language are required as well.

10Compare https://en.wikipedia.org/wiki/Question, accessed: December 9, 2015
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Linguistic exercises Linguistic exercises are applied to train a particular linguistic phe-
nomenon by forcing the learner to use it repeatedly, highlighting different use cases and
pointing out exceptions. This includes grammar exercises which train, for example, the
usage of verb tenses, but also vocabulary exercises which train the usage of new words.

As Bloom’s taxonomy can only vaguely be matched to these exercise types, Wesche
(1996) proposes a slightly different taxonomy to classify text-related vocabulary exercises
according to the required language competence (see the lower part of table 2.1). The tax-
onomy follows again an ascending order of complexity. In exercises for selective attention ,
the words of interest are visually highlighted to guide the learner. The task for the learner
is rather simple and usually consists in reading or noting down these words. In recognition
exercises , the focus elements are provided and only partial knowledge is required from the
learner. A typical example are matching exercises that require the learner to match a target
word with its definition, its translation, a sample context, a picture, or a synonym. In ma-
nipulation exercises , the learner applies morphological operations on a word stem or gram-
matical transformations on a group of words. A typical example are shuffle exercises that
present a group of words (or word stems) in irregular order and ask the learner to pro-
duce the corresponding sentence (Perlmann-Balme, 2010). Interpretation exercises require
deeper semantic analysis of the relationships between words. In odd-one-out questions , for
example, the learner needs to identify one word from a group that does not fit with the
others (Colton, 2002). For example, the word sit is the odd-one-out in the group [walk, sit,
run, jog] because it does not denote a movement of the legs. Tribond questions are similar;
in this case the learner is asked to identify the shared property of a group of associated
words. Wesche (1996) classifies production exercises as the most demanding type because
they require recall and reconstruction. The learner needs to actually produce the item, for
example, as a translation or to fill the gap in a sentence (the latter is commonly known as
a cloze exercise ).

Due to the over-use of structural pattern drills in language education in the 1960s
(Paulston, 1970), linguistic exercises (and in particular grammar exercises) have been stig-
matized as mechanical means of instruction that only train isolated phenomena and do
not contribute to integrative language knowledge (Gartland and Smolkin, 2015). Modern
language teaching curricula recommend to introduce grammar exercises with respect to
communicative needs and not as an independent learning objective (Garrett, 2009). How-
ever, many advocates of computer-assisted language learning have analyzed that extra-
curricular training of isolated linguistic phenomena has a positive effect on language pro-
ficiency (Liou, 2013). Warschauer and Healey (1998) propose a shift towards “integrated
CALL”, i.e. to integrate linguistic exercises into more authentic contexts. In practice, this
could be obtained by combining comprehension exercises and linguistic exercises.

We have seen that comprehension and linguistic exercises can both be mapped to tax-
onomies of cognitive objectives. It is generally assumed that higher cognitive objectives
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correspond to higher exercise difficulty. In the educational literature, the main distinction
is commonly made between recognition and production exercises. In both taxonomies, pro-
ductive exercises are considered to be more demanding than recognition exercises. For
many exercises, the answer format determines whether an exercise requires recognition or
production skills.

Answer formats The complexity of an exercise can be manipulated by the answer for-
mat which can be distinguished into open , half-open and closed (Grotjahn, 2009). In the
case of open exercises, the set of potentially correct answers is large and the corrector has
to interpret the answer provided by the learner. Exercises with open answer formats cor-
respond mainly to the higher levels of Bloom’s taxonomy of educational objectives and
require very detailed guidelines for the learner to understand the demands of the task and
for the corrector to assure reliable scoring. Typical examples for open exercises are free
text answers that express an argument or an opinion.

Most of the linguistic exercises described above are either half-open or closed. In half-
open exercises, only a single answer is correct and it is known to the corrector. In closed
exercises, the correct answer is also available for the test taker who only needs to select it
from a set of options. The most popular closed answer format is the multiple choice option
that presents the correct answer along with several distractors (see the cloze exercise in
Figure 1.2 for an example). For so-called multiple response exercises, more than one option
is correct and the learner should identify all of them. Matching exercises consist of multiple
items and a word bank with all solutions. The learner then needs to match each item with
the corresponding solution. In a simpler variant of closed formats, the learner simply needs
to make a binary decision whether a statement is true or false.

Exercises corresponding to the production level in the taxonomy by Wesche (1996) are
usually designed as half-open or open formats, whereas recognition exercises are per defini-
tion closed formats. In standardized tests, half-open and closed formats are often preferred
over open formats because they ensure higher reliability (Glaboniat, 2010). Comprehension
exercises are usually either closed or open formats. Half-open comprehension exercises are
only reasonable for factual questions.

2.1.3 Conclusions

We have seen that there exists a wide range of text-based exercise types. Each exercise type
serves a slightly different educational objective and requires different skills. The choice of
exercises depends on the learning scenario. From the above analyses, we conclude that the
following desiderata are important indicators for high-quality exercises that can be used
for fast language proficiency tests:

(1) The exercises should fulfill the quality criteria objectivity, reliability, and validity.
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(2) It should be possible to evaluate the exercises automatically.
(3) It should be possible to manipulate the content and the difficulty of the exercise au-

tomatically to support formative assessment.
(4) The exercises should address receptive and productive skills.
(5) Ideally, the exercises should integrate comprehension of authentic texts and training

of linguistic phenomena.

In the following section, we discuss how the requirements correspond with the state of the
art in natural language processing.

2.2 NLP for Language Learning Exercises
Computer-assisted language learning employs a wide range of technologies for language
instruction (see Golonka et al. (2014) for an overview). The most interesting developments
in computer-assisted language learning from a computational perspective are subsumed un-
der the term intelligent computer-assisted language learning (ICALL) . TheComputer-Assisted
Language Instruction Consortium defines ICALL as “an interdisciplinary research field in-
tegrating insights from computational linguistics and artificial intelligence into computer-
aided language learning.”11 The technology aspect of computational linguistics is usually
referred to as natural language processing (NLP) . In a detailed overview, Meurers (2012) lists
only three NLP-based language tutoring systems that aim at autonomous and complete tu-
toring of language learners, namely E-Tutor (Heift, 2010), Robo-Sensei (Nagata, 2009), and
TAGARELA (Amaral and Meurers, 2011). However, he describes many tasks in computer-
assisted language learning that can benefit from the application of natural language pro-
cessing. This section provides an overview of these tasks and groups them into different
stages of language instruction: content selection, exercise generation and learner evalua-
tion.

2.2.1 Exercise Content Selection and Manipulation

One important aspect of preparing successful learning and teaching is the selection of learn-
ing material. In natural language processing, the selection of suitable texts has received
considerable attention, while the selection of other educational resources such as images,
figures and audio/video samples is mainly discussed in pedagogical and inter-cultural stud-
ies.

Especially for language learning, the use of authentic material is encouraged to confront
the learner with real-world language use (Gilmore, 2011). However, authentic material is
often too complex for learners because of the uncontrolled occurrences of unknown words
and constructions. Finding suitable textual resources for educational purposes that fit the

11https://calico.org/page.php?id=363, accessed: October 28, 2015
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learners’ level is a challenging and tedious task. There exist two approaches for automati-
cally determining appropriate content. Readability measures can evaluate the text difficulty
of a large body of texts and select the ones that best fit the intended readability level. Sim-
plification approaches work on a single text instead and modify the most difficult elements
to lower the difficulty of the text. In her thesis, Vajjala Balakrishna (2015) has examined
both approaches in detail.

Readability Research on the development of automatic measures for assessing the diffi-
culty of texts, also referred to as readability, has a long tradition. Early measures for read-
ability like the Flesh-Kincaid Reading Ease (Kincaid et al., 1975) approximate readability only
based on the average word and sentence length of a text. This approach is still quite pop-
ular, although it is a very simplistic approximation of text complexity. More sophisticated
approaches consider a large amount of linguistic features covering morphological, lexical-
semantic, syntactic, and discourse aspects of readability and reach very high prediction
quality (Feng et al., 2009; Vajjala and Meurers, 2012). A detailed description of readability
research for language learners is provided in chapter 4. The automatic measures allow to
instantaneously estimate the difficulty of a large number of texts. The REAP engine (Heil-
man and Eskenazi, 2006) and theCohMetrix system (Graesser andMcNamara, 2004) provide
web demos to estimate the readability for any text.12 For REAP , the output simply consists
of a US school grade for which the text is considered to be appropriate. CohMetrix pro-
vides a very detailed analysis of multiple readability features. However, both systems are
trained for native speakers as target readers and not language learners.13 Unfortunately,
even a text that has been evaluated to exhibit a moderate difficulty on average, might still
be considered as impractical by the teacher because of the presence of constructions that
are not yet mastered by the targeted learners (e.g. passive).

Text simplification In practical scenarios, teachers often manipulate authentic material
by deleting, substituting and re-ordering words or phrases to reduce the lexical and syntac-
tic complexity. The research area of text simplification aims at automatizing this process.
The goal is to transform a complex text into a simpler one using various simplification oper-
ations such as splitting a long sentence into two shorter ones. Siddharthan (2014) provides
a good overview of simplification approaches. The first approaches to text simplification
focused on syntactic simplification based on parse trees and pattern rules for simplifying
the trees. Syntactic simplification of sentences is often also called sentence compression
and can be an important pre-processing step for other tasks like automatic summariza-
tion. More recently, simplification has often been targeted as a monolingual translation

12http://cohmetrix.com, http://reap.cs.cmu.edu, both accessed: November 25, 2015
13Note that (Heilman et al., 2007) aims at determining readability for language learners. However, the findings
do not seem to be incorporated in the web demo.
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task from sentences in the standard Wikipedia to the corresponding sentence in the Sim-
ple English Wikipedia .14 Phrase-based machine translation systems likeMoses (Koehn et al.,
2007) have been quite successful in particular for lexical simplification tasks. Unfortunately,
a simplified version ofWikipedia exists only for English and comparable resources for other
languages are hard to find. The quality of simplification is difficult to measure and there
does not yet exist a good method to reliably compare the state-of-the-art systems. Recent
experiments by Vajjala Balakrishna (2015) show that simplification approaches are not yet
robust enough when applied to different corpora.

Simplification approaches originally targeted younger or language-impaired readers
reading in their mother tongue. Petersen and Ostendorf (2007) and Crossley et al. (2007)
performed semi-automatic corpus analyses of simplified texts and started focusing on the
needs of language learners. However, the usability of simplified texts for language learn-
ing has also been subject to strong debates. Siddharthan (2014) summarizes that the most
frequently expressed concern is that text simplification denies learners the opportunity to
learn from authentic and natural input.

Readability and simplification can be seen as two aspects of text difficulty: measuring
difficulty and manipulating difficulty. Aluisio et al. (2010) aim at identifying the readability
of texts to identify simplification needs for poor readers. Pilán et al. (2014) and Vajjala and
Meurers (2014) proceed similarly, but they focus on the readability of individual sentences
and target language learners. In analogy to the work on readability, this thesis aims at mea-
suring and predicting exercise difficulty to leverage the task of automatically manipulating
exercise difficulty. Text simplification explicitly targets only one direction of difficulty ma-
nipulation, but for adaptive language learning both directions are important. We aim at
making exercises more difficult for advanced learners and less difficult for beginners.

Collins-Thompson (2014) points out that text difficulty is not only determined by the
text, but also by the characteristics of the reader. The same holds for exercise difficulty.
To determine the absolute difficulty of an exercise for a specific reader, her background
knowledge, interests, and learning motivation need to be taken into account. In this thesis,
we approximate the difficulty of exercises relative to a sample of learners. This concept of
difficulty is discussed in more detail in chapter 3.

2.2.2 Exercise Generation

In order to successfully support language learning, it is important to generate exercises that
fit the learner’s background and proficiency level. To facilitate this task, NLP researchers
aim at automating the process at least partially so that the human effort can beminimized to
a final review and selection step. This section provides an overview of existing exercise gen-

14https://simple.wikipedia.org
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eration approaches for comprehension exercises and linguistic exercises. Text-completion
exercises integrate language comprehension and linguistic skills and are discussed sepa-
rately.

Generating comprehension exercises Comprehension exercises are also known as “clas-
sical questions”. Almost all automatic approaches for the generation of comprehension
exercises work sentence-based, i.e. they transform a sentence into the question form by
replacing one of its elements with an interrogative pronoun and reordering the syntactic
structure. Not all sentences of a text are good candidates for a question. Most approaches
first apply term extraction and summarization methods on the document to select the sen-
tences that contain salient information. For the actual transformation of the selected sen-
tences into questions, different methodologies can be applied: pattern-based, syntax-based,
and semantics-based approaches. Pattern-based approaches directly work with surface re-
alizations and are usually combined with a POS-tagger and a named entity recognizer. If
manually designed patterns are detected in the input sentence, a corresponding question is
generated according to predefined templates and rules (Mitkov et al., 2006; Chen et al., 2009;
Rus et al., 2007; Curto and Mendes, 2012). Syntax-based approaches operate on parse trees.
They transform a declarative sentence into an interrogative one by applying grammar rules
such as wh-movement and subject-auxiliary inversion (Heilman and Smith, 2010;Wyse and
Piwek, 2009; Kalady, 2010; Agarwal et al., 2011; Bernhard et al., 2012). Semantics-based ap-
proaches build a semantic representation of the sentence and take this representation as
input for a generation grammar. Yao et al. (2012) use a combination of minimal recursion
semantics and an HPSG generation grammar and use transformations to get from a declar-
ative to an interrogative representation. Olney et al. (2012) maintain a situational model by
building up conceptual maps from the input. They then use templates to generate questions
from the conceptual maps. As the generation mechanisms are quite error-prone, several
systems follow an overgenerate-and-rank approach (Heilman and Smith, 2010; Chali and
Hasan, 2015). They generate multiple questions and apply ranking and filtering techniques
to eliminate the questions that are ill-formed. This leads to a strong improvement of the
quality, but according to the results reported by Heilman and Smith (2010) only 52% of the
top-ranked questions were considered to be acceptable by human judges. In a more recent
evaluation, Chali and Hasan (2015) compared their system, which employed a more sophis-
ticated ranking algorithm, with the system by Heilman and Smith (2010) and reported an
even lower ratio of acceptable questions (below 50% for the 15% top-ranked questions for
both approaches).

The answer for the automatically generated questions of the described approaches can
always be found directly in the text. Bloom’s higher educational objectives require more
complex reflection on the topic and deeper evaluation of arguments and are therefore not
met by the current question generation approaches. One of the first attempts towards
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deeper assessment of reading comprehension is the approach by Ai et al. (2015). They
use relation extraction techniques and paraphrasing patterns to generate multiple-choice
inference questions. The learner is presented with a text and with multiple statements that
express a relation between two entities. The task is to select the statement that expresses a
relation which can be inferred from the information provided in the text.

All of thementioned approaches aim at improving general understanding of texts and do
not specifically target language learners. In 2010, a shared task on automatic question gen-
eration (QG2010) attracted the participation of four research groups. The task consisted in
generating questions for a short text according to a specified question type. Rus et al. (2012)
discuss the results of the subsequent human evaluation and report high average scores for
the quality of the systems. Unfortunately, the majority of generated questions contain syn-
tactic inconsistencies. While these syntactic flaws might be negligible in tutoring systems
for native speakers that focus on the question content, the input needs to be impeccable for
language learners. Flawed questions are more likely to have a negative effect on the learn-
ing progress and on the motivation of language learners. We have seen that generation
approaches for comprehension exercises struggle with syntactic inconsistencies when ap-
plied to new content. Linguistic exercises are usuallymore robust because the same exercise
format can be applied to a large group of words in a repetitive way without adjustments.

Generating linguistic exercises Linguistic exercises can be roughly distinguished into
vocabulary and grammar exercises . The existing approaches to automatic generation of
vocabulary exercises all rely on additional resources that provide information about words
and their relationships with other words. Brown et al. (2005) develop automatic approaches
for six different vocabulary exercises. The tasks include mapping words to a corresponding
definition, to a synonym, antonym, hypernym, or hyponym of the word, or to a suitable ex-
ample context. The exercises are presented in two closed answer formats. In the word bank
format, answers and exercises need to be matched and in the multiple-choice format, the
answer needs to be selected from a set of distractors. The authors find that student perfor-
mance on the automatically generated questions correlates well with the performance on
human-generated questions and on a standardized vocabulary test. In more recent work,
Susanti et al. (2015) follow a similar approach to generate synonym questions but the target
word is presented in an authentic context retrieved from theweb. The contextual evaluation
requires additional word sense disambiguation to select a suitable synonym.

Both approaches above are based on semantic relations fromWordNet (Fellbaum, 1998).
WordNet is a very rich resource, but it necessarily has a limited coverage. To avoid the
dependence on limited resources, Heilman and Eskenazi (2007) base their generation ap-
proach for vocabulary exercises on a thesaurus which is automatically extracted from a text
corpus. See below an example of their questions (the solution is C):
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Which set of words are most related in meaning to reject?
A. pray, forget, remember
B. invest, total, owe
C. accept, oppose, approve
D. persuade, convince, anger

Although the question format is quite static, the exercise can be classified as an interpreta-
tion task and can be generated for many content words. The challenge lies in the generation
of suitable answer sets. The authors use a dependency parser and extract relations between
words based on the measure of mutual information. Words that occur in the same depen-
dency relation with another word are then considered to be related. Heilman and Eskenazi
(2007) asked a teacher to evaluate the generated questions and found that 68% of the ques-
tions were usable. For the unusable questions, the solution was either too difficult due to
ambiguous word relations or too easy. It can be concluded that the quality of automatically
generated vocabulary exercises is higher than for comprehension exercises, but anticipat-
ing and manipulating the difficulty of these exercises appropriately is challenging. Sun
et al. (2011) make a first step towards applying psycholinguistic findings for the manipula-
tion of exercise difficulty. They create simple wordbank exercises that require the learner
to match words with their definition, but they include an additional difficulty factor to the
generation of the wordbank. Based on the observation that Chinese learners struggle with
phoneme-to-grapheme mapping in English, the authors aim at grouping words that look
similar and are closely related in meaning (e.g. transform and transfer ) to raise awareness
for the differences.

Highlighting the contrast between different word forms is also an important aspect of
grammar exercises. Schmidt (1990) analyze the important role of consciousness in second
language learning and argue for a focus on form. Based on this idea, Meurers et al. (2010)
enhance web pages with visual input for language learners. In noticing exercises , they focus
on specific grammatical phenomena (e.g. the difference between gerunds and to-infinitives)
and highlight the different use cases in authentic texts. In addition, they also provide prac-
tice exercises to train the phenomena. Shuffle exercises , for example, present a sentence
or a question in random order and require the learner to re-arrange the words correctly.
Perez-Beltrachini et al. (2012) generate similar shuffle exercises for French. As additional
difficulty, they present the shuffled words as lemmas forcing the learners to pay attention
to word order and inflection at the same time. Aldabe et al. (2006) generate exercises for
training the complex morphology of Basque. They create error correction exercises which
require the learner to recognize the error in a wrong word form, and word formation exer-
cises that provide the lemma and ask the learner to produce the correct inflection for a given
pattern. Bick (2004) uses natural language processing to develop games that ask learners to
label words with classes and sentences with morphological and syntactic features to pass
levels. Almost all of the approaches towards vocabulary and grammar exercises described
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above, additionally implement approaches for generating text-completion exercises which
are explained in more detail below.

Generating text-completion exercises Text-completion exercises combine the training of
vocabulary with the comprehension of context. This is considered to be a more authentic
task than determining semantic relations of isolated words (Smith et al., 2009). The most
popular type of text-completion exercises in natural language processing is the cloze exer-
cise (see figure 1.2). A cloze exercise consists of a sentence in which one word (the key )
has been replaced with a gap and the learner is asked to fill in the gap. In order to simplify
the task, cloze exercises are usually presented in multiple-choice answer format. Cloze ex-
ercises can be generated for a variety of learning goals. Most automatic approaches for
cloze exercises focus on factual comprehension or vocabulary knowledge, but they can also
be used for directly testing linguistic phenomena. Cloze exercises are not the only op-
tion for text-completion exercises. In psychological and educational research, other text-
completion exercise types like theC-test and the X-test have been discussed, but they have
not yet attracted interest in natural language processing research. These exercises are in-
troduced in more detail in section 2.3 as part of the text-completion principle.

Generating a cloze exercise first consists of choosing a key and a corresponding con-
text. In a second step, the wrong answer options (also called the distractors ) are generated.
In most approaches, either the key or the context are already provided depending on the
application scenario.

If the learner should practice specific key terms, corresponding contexts need to be
created for them. Brown et al. (2005) extract the example contexts for a given key from
WordNet and Gates (2011) use definitions from a learner dictionary. Pino et al. (2008) and
Smith et al. (2009) aim at finding suitable contexts for given keys in unstructured text cor-
pora based on pre-defined criteria. Instead of selecting existing sentences, Liu et al. (2013)
explicitly generate typical example context from the Web1T n-grams (Brants and Franz,
2006).

In another scenario, the focus lies on reading comprehension of specific texts. This
means that the context is already provided and the challenge lies in identifying a useful
key, i.e. to determine a good placement for the gap. In this case, a common approach is to
over-generate potential cloze exercises from the given input data and use a classifier trained
on existing human-generated cloze exercises to filter out the flawed instances. Becker et al.
(2012) used a large set of linguistic features to distinguish between high-quality and low-
quality cloze exercises. Niraula and Rus (2015) build on this approach and add an active
learning step that requires human judges to label additional instances to improve the clas-
sifier. These approaches are comparable to the previously introduced overgenerate-and-
rank approaches for comprehension questions (Heilman and Smith, 2010; Chali and Hasan,
2015).
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Once the key and the context are determined, the distractors need to be generated. For
grammatical cloze exercises , this task is relatively easy because they either target closed
classes like prepositions (Lee and Seneff, 2007) or they test regular grammatical processes
like different verb tenses (Meurers et al., 2010; Chen et al., 2006) or morphological inflection
of noun phrases (Aldabe et al., 2006). The distractors are therefore simply ungrammatical
versions of the correct answer. For word knowledge and comprehension exercises, the se-
lection of suitable distractors is more difficult because the candidate set is larger. Suitable
distractors need to be close enough to the correct answer to be a tempting option for the
learner, but may not be a proper solution (Lee and Seneff, 2007). In order to increase the
difficulty of a multiple choice question, the goal is to maximize this “closeness” without
selecting actual solutions. Good distractors are usually from the same word class as the
solution and exhibit comparable usage statistics such as frequency and collocation behav-
ior (Hoshino and Nakagawa, 2007). Brown et al. (2005) and Liu et al. (2005) access the
standard WordNet relations (e.g. hyponymy, hypernomy, synonymy) to determine close
distractors. Heilman et al. (2007), Mitkov et al. (2006), and Sumita et al. (2005) determine
the similarity of words using a thesaurus. Agarwal and Mannem (2011) and Moser et al.
(2012) focus on contextual similarity of the target word and the distractors in a corpus. Sim-
ilarly, Zesch and Melamud (2014) select distractors that are near-synonyms in one context,
e.g. purchase and acquire , but cannot be substituted in another context (e.g. children can
only acquire skills and not *purchase skills). For this approach, a subsequent reliability
check based on context-sensitive lexical inference rules that filters distractors which are
valid solutions is particularly important.

Pino and Eskenazi (2009) develop one of the first approaches to distractor generation that
explicitly targets language learners. They generate distractors that are similar with respect
tomorphology, orthography, or phonetic representation (e.g. shared and shredded ) and also
consider themother tongue of the learner. Yin et al. (2012) and Sakaguchi et al. (2013) gener-
ate exercises based on a corpus of manually annotated learner errors in order to specifically
target learner problems.

Skory and Eskenazi (2010) claim that the quality of exercises is directly related to the
difficulty . They find that the difficulty of open cloze exercises correlates with the read-
ability of the sentence. The variety of approaches to distractor generation for closed cloze
exercises show that the choice of distractors determines the educational goal and has an
influence on the difficulty and the quality of the exercise. Pino et al. (2008) evaluate their
generated exercises with human judges and find that 67% of the generated questions are
directly usable. For grammatical exercises, the quality is even better. Chen et al. (2006)
report that 80% of their exercises are “worthy” and Perez-Beltrachini et al. (2012) find that
even more than 90% of the generated exercises are correct. The evaluation guidelines vary
across the approaches and a direct comparison is not possible. In order to support the usage
of automatic exercise generation approaches, several researchers implemented authoring
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tools to include a human quality check for the generated questions (Liu et al., 2005; Mitkov
et al., 2006; Aldabe et al., 2006). Based on their evaluations, a common source of errors for
inappropriate exercises can easily be identified: exercises are either too easy (for example
due to implausible distractors) or too difficult to solve (due to unresolvable ambiguity).

Conclusions We have seen that automatic exercise generation has been tackled for al-
most all exercise types. Text-completion exercises have been particularly attractive for
several reasons. They are usually designed as closed or half-open exercises that are easy
to score automatically. They integrate comprehension exercises with linguistic exercises
and can therefore be used for a fast estimate of language proficiency. Another important
aspect of text-completion exercises is the ability to manipulate the exercise content and the
exercise format independently. This makes it possible to adjust the exercises to different
learning goals. For example, the range of required comprehension skills could be varied
by using different test types and linguistic skills could be determined by the gap placement
and the choice of answer options (e.g. semantic, syntactic, or morphological distractors).
Most computational research has been restricted to cloze exercises. From an educational
perspective, other text-completion exercise types have been found to be advantageous over
cloze exercises (see section 2.3).

The quality of generated exercises is strongly related to their difficulty. However, gen-
eration approaches cannot yet explicitly manipulate or measure the difficulty due to lack of
objective measures for this task. This thesis aims at modeling the difficulty of exercises for
language learners to provide an objective basis for improving and manipulating exercises
automatically. We have seen that the choice of distractors can have an influence on the
exercise difficulty and further explore this aspect in chapter 6.

2.2.3 Exercise Evaluation

Selecting suitable material and generating useful exercises are important tasks to foster
learner progress. In order to measure the progress and the learning effect of different ex-
ercises, the performance of the learner needs to be evaluated. Natural language processing
techniques can be applied to support three very related tasks: analyzing learner language,
detecting and correcting errors and automated scoring.

Analyzing learner language Exploiting learner corpora to analyze and process learner
language has recently experienced a huge rise. The Learner Corpus Bibliography lists more
than 1,100 bibliographical references, although it is limited to English publications and only
dates back until 1990.15 Most learner corpora contain written or spoken productions from
a group of learners within a specific task setting. Good examples for big learner corpora

15http://www.uclouvain.be/en-cecl-lcbiblio.html, accessed: December 15, 2015
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are the EF-Cambridge Open Language Database (Geertzen et al., 2012) and the MERLIN cor-
pus (Boyd et al., 2014), which are introduced in more detail in section 5.3. Learner corpora
provide empirical evidence for second language acquisition hypotheses and can provide in-
sights into the practical effects of the different paradigms in foreign language teaching. Nat-
ural language processing tools can be very helpful in automatizing the analysis of learner
corpora. Automatic linguistic pre-processing enriches the input with layers of linguistic
annotation (e.g. tagging, morphological analysis, parsing) to prepare it for further analysis
(see Meurers (2015) for a good overview). The main challenge for linguistic pre-processing
is the flawed input produced by the learners. Most tools are trained on standardized and
correct input and are not robust enough to deal with the many errors in learner language
(Ott and Ziai, 2010). More robust approaches are less sensitive to errors in the text, but
come with the disadvantage that the subtleties of learner language might get lost in the
analysis. Depending on the target application, researchers thus have to find a trade-off be-
tween increasing robustness and maintaining a sufficient level of detail for useful analysis
of learner language.

Psycholinguistic research analyzes learner language with respect to acquisition theo-
ries, and pedagogical research focuses on the effect of teaching conditions. In contrast,
approaches towards automatic analyses usually focus on fulfilling a very concrete task. A
typical example is the task of natural language identification . Natural language identifica-
tion aims at identifying the mother tongue (L1) of a learner based on a text written in a
foreign language (L2 ). In 2013, a dataset of English essays written by native speakers of
Arabic, Chinese, French, German, Hindi, Italian, Japanese, Korean, Spanish, Telugua, or
Turkish was compiled for a shared task on natural language identification which attracted
the participation of 29 teams (Tetreault et al., 2013). The quality of the classification sys-
tems was high; 13 teams reached an accuracy of more than 80%. Malmasi et al. (2015) show
that the automatic approaches perform highly above the human upper bound for this task.
The majority of systems relied on n-gram features calculated over words, POS-tags and
characters. In addition, several teams included syntactic and spelling features. It can be
concluded, that the L1 has a measurable effect on the writing style of a learner in a for-
eign language. This highlights the importance of considering transfer effects in language
learning. This aspect will be discussed in more detail in the chapters 4 and 5.

Error detection and correction It is important that learners receive feedback on their
performance in exercises to support continuous learning progress. The direct detection and
correction of errors can prevent the development of language fossilization and structural
problems (Ellis, 1994). For half-open and closed exercise formats, error detection and cor-
rection only involves a comparison of the learner answer with the expected solution. Due
to the direct comparison, structural errors can also be detected and reported if necessary
(e.g. if the learner always provides adjectives instead of adverbs, additional training of ad-
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verb inflection can be recommended). Reliable error correction of open exercises is more
challenging.

While the automatic correction of spelling errors has become an indispensable tool for
most writers, the correction of grammatical and stylistic errors is still challenging. In the
last years, several shared tasks aimed at grammatical error detection and correction. In
the first Helping Our Own (HOO) challenge in 2011, the focus was on correcting scientific
papers by non-native speakers. As this task turned out to be too vaguely defined, the per-
formance of the submitted systems was rather low (Dale and Kilgarriff, 2011). The main
problem of this task was rooted in the dependencies between multiple sources of error
that were not properly reflected in the evaluation. This problem is related to the task of
determining dependencies between exercise items that is discussed in section 6.3. In the
following year, the organizers thus turned to the correction of isolated errors. The sub-
mitted systems should detect preposition and determiner errors in learner essays from the
FCE corpus (Yannakoudakis et al., 2011). This corpus is introduced in more detail in sec-
tion 5.3. The results were slightly better than in the previous task, but even the best systems
detected and corrected less than half of the errors in the test set properly (Dale et al., 2012).
The task of error correction was continued as a shared task at the CoNLL conference in
2013 and 2014 and extended to a wider range of error types (Ng et al., 2013, 2014). As the
task became more complex, the reported performance results for error detection and cor-
rection did not improve much over the years.16 The main strategy for error correction are
hybrid systems that combine rule-based approaches for specific error types with language
models that compare the probability of a learner phrase with the probability of a correc-
tion candidate. Language models for candidate evaluation are also used in section 6.2 in
a slightly different setting. Another popular approach is the usage of machine translation
systems that “translate” learner English into correct English. In 5.2, we use machine trans-
lation technology for the task of cognate production . This shows that methods from natural
language processing that have been developed for one task, can also prove useful for other
tasks with a parallel problem structure.

The main problem with the analysis of learner language is that sentences often contain
several errors which cannot easily be disentangled. Lüdeling (2008) claims that errors in
learner language can only be corrected with respect to a specific target hypothesis and that
this target hypothesis is hard to identify even for experienced linguists.

The multi-faceted research interest in the shared tasks shows that there has been con-
siderable research development in the area of grammatical error correction. However, the
quality is not yet satisfactory enough to apply automatic correction systems in self-directed
learning environments. Native speakers can tolerate quality deficits and still benefit from a
tool. In contrast, language learners rely on impeccable feedback because they do not have
the expertise to re-evaluate the system output.

16The best-performing system at the CoNLL 2014 shared task reached an F0.5 score of 37.33 (Ng et al., 2014).
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Automatic scoring As the automatic correction of individual errors is very challenging,
researchers have focused on providing more general quality feedback for the tasks of pro-
ficiency classification, essay grading, and short answer scoring.

Proficiency classification aims at identifying the proficiency level of a language learner
based on a small sample. The ability to quickly judge the current status of the learner helps
to assign learners to homogeneous groups and to adapt the difficulty of the learning mate-
rial appropriately. Proficiency classification can be performed based on a lexical decision
task that requires the learner to distinguish words from artificial non-words (Lemhöfer and
Broersma, 2012) and based on text-completion tests (see section 2.3). Both tests are closed
formats which can easily be evaluated automatically by comparing the learner answer with
the reference answer. Another typical exercise for proficiency classification are argumen-
tative essays. In this open format, learners are asked to write a free text answer to a given
prompt. Crossley et al. (2012) use lexical features to perform proficiency classification of
learner essays. Their model decides whether an essay was written by a beginning, inter-
mediate, or an advanced learner and classifies 23 out of 33 essays in the test set correctly.
Hancke and Meurers (2013) work with a larger essay set by learners of German and also
a wider range of linguistic features and reach an accuracy of 62.7%. It should be noted
that they classify the essays on the more fine-grained CEFR scale with five categories. For
this task, the relative linguistic quality of the learner essay is compared with essays from a
known proficiency class without judging the absolute quality or the topic of the essay.

A strongly related and more popular task is direct essay grading . For this task, the
linguistic quality of the essay has to be evaluated with respect to the topic suitability of the
essay for a given prompt . An example for a prompt can be seen below:17

The well-being of a society is enhanced when many of its people question authority.
Write a response in which you discuss the extent to which you agree or disagree with
the statement and explain your reasoning for the position you take. In developing and
supporting your position, you should consider ways in which the statement might or
might not hold true and explain how these considerations shape your position.

In related work, prompts are also called tasks, issues or topics. We limit ourselves to the
term prompt to avoid confusion. Dikli (2006) provides an overview of systems for automatic
essay grading. The systems determine the grade for an essay by comparing it to manually
scored essays based on a wide range of linguistic features. The most popular system is the
e-rater ® system that was developed by the Educational Testing Service (Attali and Burstein,
2006). It is used in many testing scenarios to grade the essays of native speakers and lan-
guage learners. However, it is not used as a stand-alone scorer but the output is combined
with human evaluations. In a competition on automated essay grading that was organized

17Taken from: https://www.ets.org/gre/revised_general/prepare/analytical_writing/issue/pool, ac-
cessed: January 19, 2016.
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by the Hewlett Packard Foundation (the Automated Student Assessment Prize ), the best sys-
tems were able to consistently replicate human scores (Shermis, 2014). The drawback of
these systems is that they require manually labeled essays as training data for each prompt.
In order to be able to grade essays for new prompts without hand-labeled data, Zesch et al.
(2015) attempt to grade essays without relying on prompt-specific features . They find that
the prompt-agnostic models perform better on unseen prompts than prompt-specific mod-
els, but the performance losses compared to the performance on known prompts are still
extremely high.

More recently, the focus shifted towards short answer scoring . This task is even more
challenging because the student answer contains less textual data and the grading sys-
tem needs to evaluate factual knowledge and relationships more precisely (e.g. word order,
negations, and agent/patient relations) to compare the answer to a reference answer. Bur-
rows et al. (2014) provide a detailed overview for this task. The results for short answer
scoring vary strongly depending on the dataset.18 Horbach et al. (2013) and Meurers et al.
(2011) present results for scoring answers to reading comprehension written by language
learners and report accuracy values of up to 84%. They argue that their systems can facili-
tate the work of human scorers, but should not yet be used as stand-alone evaluation.

We have seen that the field of processing learner language and evaluating learner per-
formance has advanced tremendously in the last years. Automatic natural language iden-
tification outperforms human experts by far and automatic essay grading systems have
already been introduced into high-stakes testing procedures. They are very useful for large-
scale assessments, but cannot easily be adapted to new tasks yet as they rely on high-quality
training data. For evaluation on more fine-grained levels such as short answer scoring and
grammatical error correction, the automatic systems are steadily improving, but cannot yet
compete with human raters. Closed or half-open exercise formats are therefore the safest
option if fast and reliable scoring is required.

2.2.4 Conclusions

We have seen that natural language processing techniques can contribute to a wide range
of application scenarios in language learning. The automation and dynamic adaptation of
educational tasks is a first step towards formative computer-adaptive testing and individ-
ualized learning support (see condition 2 and 3 for high-quality exercises in section 2.1.2).
Based on the overview of the current state of the art, we decide to focus on half-open and
closed exercise formats because they can be generated and evaluated automatically without
reference answers. We aim at exercises that allow independent manipulation of exercise
content and exercise format to facilitate difficulty manipulation.

18The interested reader is referred to the results of the second phase of the ASAP challenge for short answer
grading (https://www.kaggle.com/c/asap-sas/leaderboard) and to the SemEval shared task on student
response analysis (Dzikovska et al., 2013).
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In section 2.2.2, we have seen that cloze exercises are a popular format for automatic ap-
proaches because they combine technical practicality with educational quality expectations
for exercises. In the cloze paradigm, linguistic exercises are embedded into authentic com-
prehension tasks and can target a variety of skills depending on the choice of the context
and the distractors. In the last years, many variants of cloze exercises have been developed.
All of these exercises ask the learner to complete the missing elements of a text. For a
detailed and fine-grained analysis of language skills, text-completion exercises are usually
not sufficient. They need to be coupled with open formats and exercises that address other
skills such as speaking and listening. However, for a fast estimate of language proficiency,
the use of text-completion exercises has become a commonly used procedure in practice.
The range of text-completion exercises is introduced in more detail in the following section.

2.3 Text-Completion Exercises
In this section, we analyze text-completion exercises in more detail. We first introduce the
reduced redundancy principle which provides the theoretical basis for all text-completion
exercises. We then describe several exercise types that have been developed based on this
principle. Text-completion exercises have been analyzed frommany angles. We summarize
the findings with respect to the properties and the difficulty of text-completion exercises.

2.3.1 Reduced Redundancy Principle

In the long history of second language education and language testing, a central question
has been the definition of the concept of language proficiency . In an attempt to characterize
the “notion of knowing a language”, Spolsky (1969) uses an analogy from communication
theory (Shannon and Weaver, 1949). He describes the concept of redundancy as the obser-
vation that many elements of a message do not directly contribute to the encoded informa-
tion value, or, to phrase it the other way around, the information value of the message is
not affected if redundant elements are removed. While redundancy is considered as useless
in data compression, it is central for communication. Spolsky (1969, p. 8) states:

When one considers all the interference that occurs when natural language is used for
communication, it is clear that only a redundant system would work.

In his study, Spolsky (1969) analyzed how the participants could cope with conditions of
intentionally created interference, which are more commonly termed as noise . He found
that the proficiency level of language learners can be estimated by their ability to deal with
text-completion. While the performance of native speakers is quite robust in situations
of reduced redundancy, language learners have difficulties to restore the information. An
illustrative example for a real-life situation of reduced redundancy is a telephone call. In
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this scenario, the transmission of additional cues such as gestures and facial expressions is
inhibited, making communication a challenging task for language learners.

The observation that the reduced redundancy theory provides a means to measure lan-
guage proficiency corresponded well with a research theory called the unitary trait hy-
pothesis . Oller (1976) claims that second language proficiency should be understood as a
single general trait of cognitive processing underlying all of the four skills reading, writing,
speaking, and listening. These theoretical developments were soon reflected in the design
of corresponding language tests. Klein-Braley (1997) provides a good overview of the oper-
ationalization of the theory and compares different reduced redundancy tests. She distin-
guishes between tests using the acoustic channel (dictation, partial dictation, noise test) and
the visual channel (different variants of text-completion exercises). The tests differ mainly
in the strategy for introducing noise to the message. For the acoustic tests, additional sig-
nals are added to the audio stream. The tests affecting the visual channel are based on texts
with partial deletions. The deleted elements (phrases, words, or partial words) are replaced
with a gap and the learner is asked to fill in the gaps, i.e. to complete the missing words.
We refer to the visual exercises as text-completion exercises.

2.3.2 Types of Text-Completion Exercises

The euphoria for the theoretical model of the unitary trait soon cooled down and the focus
shifted towardsmore communication-oriented language learning theories (Bachman, 2000).
However, the appreciation of the functional test design of text-completion tests and their
reliable and informative results persisted. Today, text-completion exercises are still heavily
used, in particular as placement tests and linguistic exercises. In the following, we introduce
the three test variants cloze test , C-test , and X-test in more detail.

Cloze test Cloze tests have been originally introduced by Taylor (1953) as a measure for
the readability of a text. To produce a cloze test, single words are deleted from a text and
the learner is expected to re-produce them. Instead of manually selecting the words to
be deleted, a random selection based on a fixed deletion rate is recommended. A deletion
rate of seven indicates that every seventh word in the text is replaced with a gap. The
suggestions for the optimal deletion rate vary in the literature, but it is generally agreed
that it is important to provide enough context. Oller (1973) recommends the deletion rate
should be higher than five, Brown (1989) even uses a deletion rate of twelve. Taylor (1953)
argues that a cloze test from a highly readable text should be easier to complete than a
cloze test from a less readable text. While the cloze procedure was never established as
a readability measure, the simple and convenient procedure to transform a text to a test
was soon discovered for language proficiency testing in the context of the text-completion
principle (Oller, 1973; Alderson, 1979).
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Unfortunately, cloze gaps are usually highly ambiguous and the set of potential solu-
tions cannot be exactly anticipated (Horsmann and Zesch, 2014). Educational researchers
have proposed two ways of dealing with this ambiguity: the application of relaxed scor-
ing schemes and the use of distractors. In relaxed scoring , all acceptable candidates for a
gap are considered as correct solutions and not only the original word as in exact scor-
ing (Alderson, 1979). Unfortunately, this scoring method turned out to be quite subjective
and time-consuming as it is not possible to anticipate all acceptable solutions (Raatz and
Klein-Braley, 2002). To circumvent the open solution space, most cloze tests are designed
as closed formats by providing a fixed set of candidates from which the solution needs to be
picked (Bensoussan and Ramraz (1984), see Figure 1.2 for an example). Closed cloze tests
are particularly popular for vocabulary exercises (Skory and Eskenazi, 2010; Dela Rosa and
Eskenazi, 2011). The automatic generation of cloze tests and in particular the selection of
good distractors has been attempted repeatedly in natural language processing (see sec-
tion 2.2.2). However, the focus was restricted to creating correct and solvable cloze items;
the difficulty of the created items was rarely discussed or evaluated.

C-test The C in C-test stands for its origin in the cloze test. Although the cloze test is
widely used, the setup contains several weaknesses such as the small number of gaps and
the ambiguity of the solution. Klein-Braley and Raatz (1984) systematically analyze the
shortcomings of the cloze test in detail. They developed the C-test as an alternative and
claim that it addresses most of the weaknesses of the cloze test (Klein-Braley and Raatz,
1982, 1984). The C-test construction principle produces a higher number of gaps because
every second word of a short paragraph is transformed into a gap. Tests with smaller dele-
tion rates are preferable because they provide more empirical evidence for the students’
abilities on less text. However, they also lead to an unfeasible degree of redundancy re-
duction. To account for this increased difficulty, Klein-Braley and Raatz (1984) propose to
delete only the end of the word. The remaining prefix consists of the smaller “half” of the
word. If three characters are provided, the correct solution has a length of six or seven
characters. A C-test commonly contains 20 gaps and starts with an introductory sentence
to provide context as in the following example:19

The roots of humanity can be traced back to millions of years ago. T primary
evid comes fr fossils – skulls, skel and bo fragments. Scien have
ma tools th allow th to ext subtle infor from anc bones a
their enviro settings. Mod forensic wo in t field a in labora can
n provide a rich understanding of how our ancestors lived.

The given prefix and the length constraint restrict the solution space to a single solution (in
almost all cases) which enables automatic scoring. However, the C-test is a half-open test

19The solutions are : The, evidence, from, skeletons, bone, Scientists, made, that, them, extract, infor-
mation, ancient, and, environmental, Modern, work, the, and, laboratories, now .
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that requires productive skills and cannot be solved by guessing (as opposed to the closed
cloze test).

Since its introduction, the C-test has been researched from many angles (see Grotjahn
et al. (2002) for an overview) and has been tested for many other languages (e.g. German,
French, Italian, Portuguese, Hungarian, Hebrew, Turkish). Thorough analyses indicate ad-
vantages of the C-test over the cloze test regarding empirical validity, reliability, and corre-
lation with other language tests (Khodadady and Hashemi, 2011; Babaii and Ansary, 2001;
Klein-Braley, 1997; Jafarpur, 1995). Reichert et al. (2010) show that C-test performance can
be directly linked to the levels of the CEFR which is the European standard guideline for
language courses. This property has made the C-test particularly popular for placement
tests. Farhady and Jamali (2006) experiment with other deletion rates for the C-test (ev-
ery 3rd, 4th, 5th, 6th word) and found that these variants do not exhibit the same stable
characteristics as the C-test. Tavakoli et al. (2011) examine the effect of genre familiarity
for C-tests and cloze tests and find that language learners have an advantage in solving
the C-test when they are familiar with the topic. To avoid this topic bias, a C-test session
usually consists of five individual C-tests with varying topics.

X-test In order to improve the discriminative power of the C-test, Cleary (1988) intro-
duced a more difficult variant which he called left-hand deletion. The variant is similar to
the C-test, but the first “half” of the word is deleted instead of the end of the word. Later,
Köberl and Sigott (1994) refer to this variant as the X-test .20 The previous example is trans-
formed into X-test below.

The roots of humanity can be traced back to millions of years ago. e primary
ence comes om fossils – skulls, tons and ne fragments. tists have
ny tools at allow em to act subtle ation from ent bones d

their mental settings. ern forensic rk in e field d in tories can
w provide a rich understanding of how our ancestors lived.

In standard C-tests, one of the main challenges consists in selecting the correct inflection
of the solution, especially for languages with a rich morphology. In X-tests, the inflected
ending of the word is provided and thus the focus is shifted towards lexical-semantic chal-
lenges (Scholten-Akoun et al., 2014) . Cleary (1988) and Köberl and Sigott (1994) find that
the X-test is considerably more difficult than the C-test and discriminates better between
the participants. This could be explained by the results of psycholinguistic experiments
that have shown that the information value of the initial part of a word is higher than the
final part (Broerse and Zwaan, 1966) and that words are easier to recall based on their on-
set (Kinoshita, 2000). Another explanation could be the ambiguity of the solution. As word

20In Beinborn et al. (2015a), we used the term prefix deletion test , but X-test is used throughout the thesis to
be more consistent with related work.
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endings vary less than word onsets (at least for the languages under study), many X-test
gaps allow multiple solutions that are equally valid. In a detailed item analysis of cloze
tests, Kobayashi (2002) found that gaps which allow multiple solutions are more difficult to
solve than non-ambiguous gaps. He argued that these items require more cognitive ability
to evaluate the wide range of possible answers. The X-test is thus a good variant to assess
more advanced students up to native speakers.

Terminological conventions In this thesis, we do not distinguish between exercises for
formative assessment and tests for summative assessment as almost all exercises can be
used for both scenarios. The two terms test and exercise will thus be used interchangeably.

The following terms are used to describe text-completion exercises:

• A gap is one item in a text-completion exercise. The first gap in the C-test above is
T and will serve as an example here.

• A solution for a gap is a word that solves the gap correctly. For some gaps, multiple
solutions are valid. The solution for the example gap isThe .

• An answer is a word that has been provided by a participant to fill the gap. For
the example gap, most participants provided the solution The as answer, but some
providedTo . Answers that are non-words are marked with an asterisk, e.g. *Teh .

• The hint of a gap is the part of the word that is already provided. In C-tests, it is the
first “half” of the word (the prefix ,T in the example) and in X-tests the second “half”
(e for the example gap). Cloze tests usually do not display a hint.

• A candidate is a word that fulfills the formal constraints of the gap, i.e. it is part of
the vocabulary, it contains the hint and has the correct length. Candidates for the
example areToe ,Tip ,To ,The ,Tan , …

• A distractor is a candidate for the gap that is not a solution. In closed exercises,
each gap is presented along with a fixed set of candidates. To solve the gap, the
participant needs to distinguish the solution from the distractors. Figure 1.2 displays a
cloze gap with five candidates: the solution observance and the distractors instincts ,
presumption , expiation , and implements .

2.3.3 Properties of Text-Completion Exercises

The strict construction principles for text-completion exercises reduce the influence of the
educator and increase the objectivity. The reliability and validity of text-completion exer-
cises have been subject to many psychological analyses and have shown positive results,
particularly for the C-test. While the reliability of the C-test has been widely acknowledged
(most recently by Khodadady and Hashemi (2011)), the question “what the test actually
measures”, also called the construct validity , has been more conversely debated. Klein-
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Braley (1985, p. 79) argues that the C-test measures general language proficiency, involving
all levels of language:

If the learner’s competence is fully developed he or she will be able to use all levels
of language to restore/reconstruct the text – there will be grammatical, syntactical,
lexical, semantic, collocational, contextual, pragmatic, logical, situational clues (and
no doubt many others).

Sigott (1995) elaborates that C-test integrate vocabulary knowledge with aspects of word-
class specific syntactic competence and sentence-level syntactic competence. Chapelle
(1994) and Singleton and Little (1991), on the contrary, consider the C-test mainly as a
tool for vocabulary research, but their definition of vocabulary is very wide and also com-
prises morphological and syntactic aspects. More recently, Eckes and Grotjahn (2006) show
that the C-test comprises all dimensions of general language proficiency, namely reading,
listening, writing and speaking.

Micro- and macro-level processing In order to find a more common terminology, the
strategies a learner applies for solving a C-test have been categorized as micro-level pro-
cessing and macro-level processing strategies (Babaii and Ansary, 2001). Learners who ap-
ply micro-level processing strategies only consider the gap itself and its direct context for
solving it, while the full sentence or even the full text is taken into account for macro-level
processing. Babaii and Ansary (2001), Babaii and Moghaddam (2006) and Salehi and San-
jareh (2013) examine the test taking strategies for C-tests and cloze tests by conducting
so-called think-aloud protocols with the participants. They encouraged the participants
to verbalize their mental processes during the actual solving attempt. They found that
micro-and macro-level processing strategies are both required for C-test solving to approx-
imately the same extent. Their results indicate a positive relation between test difficulty and
processing strategies: more difficult tests trigger more macro-level processing. Babaii and
Moghaddam (2006) report the impression, that the participants followed a hierarchical ”hy-
pothesis testing“ approach for solving. The participants start guessing the solution based
on micro-level cues and then refine their guesses by insights from macro-level processing
strategies. Grotjahn and Stemmer (2002) further examine this aspect and find evidence
that C-test solving primarily involves micro-level processing and that macro-level process-
ing only plays a minor role. Sigott (2006) refines this conclusion by adding the finding that
more proficient learners apply bothmicro-level andmacro-level processing strategies when
solving a C-test, whereas novice learners only focus onmicro-level cues. This is in line with
Klein-Braley’s claim that proficient learners use knowledge from all levels of language.

Recognition vs production In a related debate, it has been discussed whether C-test solv-
ing is rather a recognition or a production task. Cohen (1984) argues that the given prefixes
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reduce the extent to which productive skills are required. He therefore considers the C-test
to be only a test of reading ability. Harsch and Hartig (2015) show that the C-test results of
students correlate highly with their results for listening and reading tests. They conclude
that the C-test is a very good predictor for receptive language skills. They did not include
any tests of productive language skills in their analyses. Jakschik et al. (2010) transform
the C-test into a true recognition test by providing multiple choice options and find that
this variant is significantly easier than open C-test gaps. This indicates that C-test solving
requires both, receptive and productive skills.

Item dependencies In most text-completion exercises, several gaps occur in one sentence.
As a consequence, many gaps can only be solved if the context has been restored correctly
by solving the preceding gaps. This phenomenon of item dependencies is particularly rel-
evant for psychological analyses based on the item response theory (see section 3.4.2 for
an explanation). The most common models in item response theory assume local indepen-
dence between items. As this is a counter-intuitive assumption for C-tests, Harsch and
Hartig (2010) and Krampen (2014) analyze the occurrences of dependencies between items.
Eckes and Baghaei (2015) and Schroeders et al. (2014) aim at determining better models that
incorporate local dependence with mixed results. This aspect will be discussed in more de-
tail in chapter 6.

It can be concluded that text-completion exercises fulfill the educational criteria to a
satisfactory extent and that they tap both recognition and production skills. The difference
between micro-level and macro-level processing strategies and the effect of item dependen-
cies are important aspects for modeling the difficulty of text-completion exercises.

2.3.4 Difficulty of Text-Completion Exercises

After the introduction of the text-completion principle, several linguistic researchers an-
alyzed the difficulty of the resulting exercises. Sigott (1995) distinguishes between con-
tent and format aspects of difficulty.

Exercise content The content of a text-completion exercise consists of a short text. Tay-
lor (1953) explicitly introduced the cloze test as a measure for readability.21 If a text is
transformed into a cloze test and this cloze test is easy to solve, Taylor claims that the un-
derlying text exhibits high readability. This claim has found many advocates because it
provided a means to evaluate text comprehension. It has also been strongly criticized be-
cause completing a cloze test requires productive skills that are not necessary for reading

21The term readability is commonly used in relatedwork and can be interpreted as the inverse of text difficulty.
It is discussed in more detail in chapter 4.
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comprehension.22 Recently, the research on readability has made significant progress (see
chapter 4) and the cloze procedure is only known as an educational exercise. The relation-
ship between readability and exercise difficulty has been exploited by Klein-Braley (1984)
to predict the mean difficulty for English and German C-tests. She uses a linear regression
equation with only two difficulty indicators: average sentence length and type-token ratio .
She reports good results for various target groups. Dörnyei and Katona (1992) question her
findings because they analyze that the relative mean difficulty of tests is not maintained
across samples. Skory and Eskenazi (2010) analyze the correlation between cloze easiness
with readability scores and with co-occurrence scores. The co-occurrence score is obtained
from a corpus and indicates how often the solution co-occurs with the neighboring content
words in the sentence. They report very low correlation that is not even significant for the
readability scores. Karimi (2011), on the other hand, measure lexical richness of a text as an
indicator of readability and find that lower lexical richness leads to lower C-test difficulty
for Iranian learners.

Readability is averaged over a full text and thus can only predict the overall text diffi-
culty. However, most text-completion exercises consist of several items that exhibit high
variance in the difficulty. Therefore, the focus soon shifted from macro-level to micro-level
difficulty.

Brown (1989) analyzes the difficulty of individual items in English cloze tests and iden-
tifies the word class and the local word frequency as factors correlating with cloze gap diffi-
culty. Abraham and Chapelle (1992) analyze item properties for three variants of cloze test
and find that the effects on difficulty vary for open cloze test and multiple-choice cloze
tests. Unfortunately, they examine only a single test, which makes it impossible to general-
ize their results. Dörnyei and Katona (1992) analyze the performance of Hungarian learners
on English C-tests and find that they can solve gaps with function words more easily than
gaps with content words. Sigott (1995) examines the word frequency, the word class, and
the constituent type of the gap for English C-tests and finds high correlation with the diffi-
culty only for the word frequency. Klein-Braley (1996) identifies additional error patterns
in English C-tests. She focuses on production problems (right word stem in wrong form)
and the phenomenon of early closure , i.e. the solution works locally, but not in the larger
context. Her findings are based on manual data analysis. Similarly, Kobayashi (2002) per-
forms detailed item analysis of cloze tests for Japanese learners of English and finds that
the word familiarity, the word class and the morphological inflection contribute to the item
difficulty.

22Christine Klein-Braley has discussed the relationship of readability and text-completion exercises in detail
in the chapters 11 and 14 of her habilitation Language Testing with the C-Test which she submitted in
1994. Unfortunately, she passed away before her habilitation was published. We managed to get hold of a
preliminary version and profited from the strong linguistic base. Fortunately, her main contributions have
previously been published in several articles and we cite these instead.
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The first automatic approach for item-level difficulty prediction was performed for cloze
exercises. Hoshino and Nakagawa (2008) focus on grammatical distractors and developed
path features that indicate the morphological distance from the distractors to the correct
solution according to pre-defined patterns. In addition, they consider basic word frequency
and length features. They attempt a binary decision between easy and hard items and
ignore items with medium difficulty. Their approach classified only 60% of the questions
correctly. They concluded that better word difficulty features are necessary, but did not
follow up on this issue. Their dataset consists of questions extracted from preparation
books for the TOEIC 23 test that are annotated with difficulty values. Unfortunately, the
origin of the difficulty values cannot be determined. We therefore do not use the dataset
in the thesis. For the sake of completeness, we attempt a comparison to the results by
Hoshino and Nakagawa (2008) in section 7.4.4. An approach for C-test difficulty prediction
that complements the work in this thesis has been performed in Svetashova (2015) and is
described in the sections 3.4 and 7.2.6.

Exercise format Most analyses of exercise difficulty only focus on one specific exercise
type and the exercise format is not considered as an additional variable. However, the
exercise format has a strong effect on the difficulty. The difficulty of different types has been
compared empirically by Köberl and Sigott (1994), Sigott and Köberl (1996), and Jakschik
et al. (2010) indicating that X-tests are more difficult than C-tests and that closed formats
are easier than half-open formats.

For text-completion exercises, three design choices can be distinguished: the answer
format , the gap type , and the deletion rate . The answer format has already been discussed
in section 2.1.2. For closed formats, the answer can be selected from a set of options; for
half-open formats it needs to be produced by the learner. Jakschik et al. (2010) compare
a standard C-test with a closed C-test (multiple choice with five candidates) and find that
the closed version is significantly easier. The absolute difficulty of closed formats strongly
depends on the selection of the distractors. If the distractors can easily be discarded, the
learner can guess the right solution without even knowing it. Accordingly, distractors that
strongly compete with the solution can easily mislead the learner. Distractor selection has
already been discussed in more detail in section 2.2.2.

The gap type determines which portion of the word is deleted. The gap type is usually
kept constant for all gaps of a test to avoid confusing the participants.24 Köberl and Sigott
(1994) analyze four tests each with a different gap type and examine the influence of the
redundancy reduction on the test difficulty for German. In three cases, the end of the word
is deleted (word-final deletion). They experiment with deleting half of the word (the stan-

23http://www.ets.org/toeic, accessed: December 9, 2015
24This holds at least for all publications about text-completion exercises that are cited in this thesis. A mix of
different gap types would probably have a negative effect on face validity.
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dard C-test gap), two thirds, and deleting everything except for the first character. In the
fourth case, the first half of the word is deleted (the X-test gap). The authors show that for
word-final deletion, the difficulty increases with a higher degree of redundancy reduction.
Deleting half of the word results in easier exercises than deleting two thirds which in turn
results in easier exercises than deleting everything but the first character. Interestingly,
they also find that word-initial deletion is more difficult than word-final deletion (deleting
the first half of the word is as difficult as deleting everything but the first character). The
same tendencies can be observed for English tests, but the effects of the gap type are not
as strong as for German (Sigott and Köberl, 1996). These results are consistent with exper-
iments showing that the information value of the initial part of a word is higher than the
final part (Broerse and Zwaan, 1966) and that word-initial priming facilitates production
(Kinoshita, 2000).

On the global test level, the deletion rate determines the distribution of gaps in the text.
The deletion rate has been expressed as a positive integer in previous work.25 A deletion
rate of n signals that every nth word should be transformed into a gap. Higher deletion rates
thus indicate a smaller number of gaps. For cloze tests, Oller (1973) proposes high deletion
rates to provide a sufficient amount of context:

Typically every fifth, sixth, or seventh word is deleted either from a written or spoken
passage. It has been determined that with native speakers deleting words more fre-
quently than one out of five creates a test of such difficulty that much discriminatory
power is lost.

For non-native speakers even higher deletion rates such as deleting every 12th word have
been used (Brown, 1989). In our data, the cloze test items each consist of one sentence
with a single gap. The C-test and the X-test are usually designed with a deletion rate of
two, i.e. every second word is transformed into a gap. This lower deletion rate leads to a
higher number of gaps per sentence and increases the dependency between gaps because
the damaged context of a single gap can only be recreated by solving the surrounding gaps.

An additional aspect for difficulty can be the visual design of the items. Bresnihan and
Ray (1992) and Meißner-Stiffel and Raatz (1996) experiment with different item designs that
indicate the length of the solution with dashes or dots. In C-tests and X-tests, the partici-
pants can infer the interval for the length of the solution word by the length of the provided
part p as [2 |p| , 2 |p| + 1]. However, many participants seem to forget this length princi-
ple while solving the test and provide solutions that are either too long or too short (see
section 6.1). The works mentioned above show that directly visualizing the length principle
facilitates the test for the participants.

25The word “rate” is thus slightly misleading here.
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2.3.5 Conclusion

We have seen that numerous manual analyses have been performed focusing on specific
aspects of difficulty. In real learning scenarios, individual difficulty effects can usually not
be observed independently of other influences. It is therefore important to combine all
aspects into an integrated concept of difficulty. The inferences about difficulty have usually
been drawn from existing results. The next step consists in predicting the difficulty for
unseen exercises.

2.4 Chapter Summary
This chapter has described a wide range of text-based exercises that can be applied in
different learning scenarios. Based on the analyses in this chapter, we conclude that text-
completion exercises are a reasonable choice for fast language proficiency tests. They meet
the educational quality criteria and can be generated and manipulated automatically be-
cause exercise content and exercise format are separable. Half-open text-completion exer-
cises like C-tests and X-tests provide a trade-off between recognition and production exer-
cises and function as an integrative measure of linguistic knowledge and comprehension
abilities. We have seen that approaches to automatic exercise generation have already pro-
vided a wide range of methods for different exercise types. Improving the quality and the
adaptivity of these generated exercises requires a concept for measuring and adapting the
difficulty. Related work has provided analyses of the influence of content and format factors
on the exercise difficulty. In the following chapter, we contribute a model which consoli-
dates the different findings into an integrated concept of difficulty.
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Chapter 3

The Concept of Difficulty

“Divide each of the difficulties under examination into as
many parts as possible, and as might be necessary for its
adequate solution.”

— Rene Descartes

This chapter introduces the theoretical model of difficulty that forms the basis for the com-
putational prediction approach. The analysis of related work in the previous chapter and
the derivation of the difficulty model allow us to determine a more precise formulation
of the thesis goals in the first section. The difficulty of exercises is closely coupled with
the performance of learners. An exercise is considered to be more difficult if less learners
are able to solve it. For a proper analysis of difficulty, we thus need exercise datasets that
contain information about the learner performance. For this thesis, five datasets covering
three languages and three different exercise types have been collected and are introduced
in detail in the second section.

In order to predict and manipulate exercise difficulty, it is necessary to determine a
measure for the concept of difficulty. In the third section, the two most common methods
are compared to analyze their applicability to the datasets and our task.

3.1 Difficulty Model
Difficulty analyses based on observed educational data are common in psychological stud-
ies, but the prediction of difficulty for unseen exercises has not received considerable in-
terest prior to our publications, neither in the field of psychology or linguistics nor in the
area of natural language processing. This is probably due to the inherent interdisciplinary
nature of the task: it requires complex automatic processing techniques, but also a detailed
understanding of the underlying cognitive load and the linguistic phenomena.
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The difficulty model for this thesis is based on the analysis of related work in section 2.3
and displayed in figure 1.1 on page 4. Difficulty is grouped into content and format fac-
tors following the distinction by Sigott (2006). It is then further categorized into the four
dimensions: text difficulty , word difficulty , item dependency , and candidate ambiguity . The
model incorporates the distinction of micro-level and macro-level processing by Babaii and
Ansary (2001). The outer circle including text difficulty and item dependency represents
macro-level processing and is visualized using more saturated colors. The inner circle in-
cluding word difficulty and candidate ambiguity corresponds to micro-level processing .

During micro-level processing, participants deal with local difficulty , and macro-level
processing captures global difficulty . For the content factors, this means that the difficulty
of individual words are local difficulties and the combination of words in a text forms the
global difficulty. For the format factors, this means that the candidate ambiguity of a single
gap contributes to the local difficulty and the item dependency between several gaps to
the global difficulty. The macro-level dimensions are thus not clearly separated from the
corresponding micro-level dimension, they should rather be interpreted as an aggregation
over the local difficulties that also takes the relations between items into account.

3.1.1 Content factors

The content of a text-completion exercise consists of a short text from a general domain.
The difficulty of this underlying text has an influence on the difficulty of text-completion
exercises becausemore advanced language proficiency skills are required to restore the text.

Text Difficulty The close relationship between readability of the underlying text and the
difficulty of the resulting exercise has already been analyzed by Taylor (1953). In a first
approach to difficulty prediction, Klein-Braley (1984) experiments with the two readability
variables average sentence length and type-token ratio and finds that they are good predic-
tors of the mean difficulty. However, her findings are not confirmed in studies by Dörnyei
and Katona (1992) and Skory and Eskenazi (2010). Recently, natural language approaches
towardsmeasuring readability have improved tremendously. Chapter 4 introduces thewide
range of readability features and contains experiments to verify whether the predictive
power of readability features for mean exercise difficulty claimed by Klein-Braley (1984)
can be replicated.

Word Difficulty A text is a conglomerate of words. As each text contains easier and
harder words, each exercise also contains easier and harder gaps. The mean difficulty of
an exercise is thus not informative enough because averaging over all words conceals local
difficulties. The individual item difficulty is strongly linked to the difficulty of the solution
word. Brown (1989) and Sigott (1995) find that the syntactic class and the frequency of a
word correlate with the item difficulty in text-completion exercises. Klein-Braley (1996)
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and Kobayashi (2002) additionally analyze word production problems such as inflection.
Chapter 5 introduces a wide range of word difficulty features and contributes newmeasures
for cognateness and spelling difficulty.

3.1.2 Format factors

The comparison of different exercise types in related work has shown that the exercise
format has a strong influence on the difficulty (see 2.3.4). On the macro-level, the deletion
rate has an influence on the dependencies between items. On the micro-level, the gap
type and the answer format determine the size of the candidate space and the candidate
ambiguity. These dimensions are examined in more detail in chapter 6.

ItemDependency The causes of item dependencies and their effect on item difficulty have
not yet been examined. However, Babaii and Ansary (2001) and Sigott (2006) find that C-
test items which require macro-level processing tend to be more difficult than items that
can be solved using only micro-level cues. Abraham and Chapelle (1992) make a similar
observation for cloze tests. As dependent items induce macro-level processing, we assume
that items with strong dependencies on other items are more difficult to solve. Section 6.3
analyzes this phenomenon in more detail and evaluates measures for item dependency.

Candidate Ambiguity Text-completion exercises differ with respect to the number of so-
lution candidates. A higher degree of redundancy reduction leads to an increased number
of potential solutions. It is assumed that the exercise difficulty is directly related to the de-
gree of redundancy reduction, but this assumption has not yet been closely examined. We
determine the candidate space computationally in section 6.1. In addition to the size of the
candidate space, the candidate ambiguity plays an important role. A learner might fail to
solve a gap despite knowing the solution because a competing candidate is stronger. In 42
gaps of the English C-test training data, an alternative answer is provided more frequently
than the intended solution. Kobayashi (2002) finds that ambiguous cloze gaps are more
difficult to solve although multiple solutions are valid. This indicates that higher candidate
ambiguity is cognitively more demanding for the learners. Computational approaches to
candidate evaluation are introduced in section 6.2.

3.2 Thesis Goals
Almost all previous work on the difficulty of text-completion exercises was limited to cor-
relation analyses of very few manually determined features and focused either on content
or on format factors. This thesis aims at contributing computational approaches for a wide
range of difficulty aspects and motivates the combination of content and format factors.
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The main goal is the application of the resulting model for the difficulty prediction of items
in different exercise types and for multiple languages.

The results of the difficulty prediction approach have partially been published in Bein-
born et al. (2014b) and Beinborn et al. (2015a). To the best of our knowledge, these publica-
tions were the first to report difficulty prediction results for C-tests and X-tests. Svetashova
(2015) later conducted an additional range of analyses for English C-tests and also obtained
good results for difficulty prediction. She particularly analyzed different concepts of mea-
suring difficulty (see section 3.4 and 7.2.6 for details). Being able to reliably measure and
predict the difficulty is the first step towards more focused difficulty manipulation.

To summarize, we set the following goals for the thesis:

(1) Develop measures that can be computed automatically for each of the four difficulty
dimensions.

(2) Build a prediction approach that is based on the measures for the individual dimen-
sions and is able to predict the difficulty of text-completion exercises for several ex-
ercise types and languages.

(3) Apply the difficulty prediction approach for difficulty manipulation.

Chapter 4, 5, and 6 describe the realization of the first goal. The second goal is addressed
in chapter 7 and the third goal in chapter 8.

To tackle these tasks, two pre-conditions need to be met. First, datasets containing
text-completion exercises and information about learner performance for each exercise are
required to train a predictionmodel. Second, it is important to quantify how the learner per-
formance can be interpreted as exercise difficulty. These two pre-conditions are addressed
in the following two sections.

3.3 Difficulty Datasets
In order to predict the difficulty of text-completion exercises and evaluate the quality of
the prediction, datasets with learner performance information are required. As suitable
data was not freely available in digital form, we started collaborations with several testing
institutions and also conducted own data collection studies. Table 3.1 provides an overview
of all datasets. As most of the exercises form part of a language proficiency test, we use
the terms test and exercise interchangeably. The number of participants varies for each test
because the participants were assigned to random combinations of exercises. We therefore
specify the average number of participants per gap. The datasets are described in more
detail below.
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Format Test type Tests Gaps Participants (per Gap)

Half-open

C-test en 20/19 400/375 210
C-test fr 30/10 600/200 24
C-test de 66/16 1320/320 251
X-test de 10/ 4 249/ 99 225

Closed Cloze en 100/100 100/100 21

Table 3.1: Overview of exercise datasets. The / indicates the split into training and test data.

3.3.1 Cloze Test

We use an existing set of cloze exercises from the Microsoft sentence completion chal-
lenge.26 For this dataset, Zweig and Burges (2012) transformed 1400 sentences from 5
Sherlock Holmes novels (written by Arthur Conan Doyle) into cloze tests. In each se-
lected sentence, they replace a low-frequency content word with a gap and provide the
solution along with four distractors. The distractors were generated automatically based
on n-gram frequencies and then handpicked by human judges. It should be noted that
all distractors form grammatically correct sentences and that the n-gram probabilities for
the answer options are comparable. As the original dataset does not contain any diffi-
culty information, we conducted an annotation study. The human upper bound for na-
tive speakers on this task was determined by asking an eloquent native speaker of En-
glish to answer a subset of 50 cloze questions resulting in 100% accuracy. In order to
determine the difficulty for language learners, 20 web surveys were set up each consist-
ing of ten cloze questions (as displayed in figure 1.2). Advanced learners of English were
then asked to answer them on a voluntary basis.27 The participants had heterogeneous
language backgrounds and were asked to self-rate their English proficiency on the CEFR
scale. A description of the scale was provided, but the results and comments indicate
that not all learners were able to identify their proficiency level correctly on the scale.
These classifications are therefore not discussed here, but the data is available at http:
//www.ukp.tu-darmstadt.de/data/c-tests/difficulty-prediction-for-language-tests.

3.3.2 C-test

The data for English and French C-tests was collected in co-operation with the language
center at Technische Universität Darmstadt . The institute uses C-tests as placement tests at
the beginning of each semester to determine the best course level for each student. They
originally followed a manual procedure: the teachers designed a traditional paper and pen-

26http://research.microsoft.com/en-us/projects/scc, accessed: December 15, 2014
27Participants were allowed to answer multiple surveys and were instructed not to use any additional re-
sources.
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cil test, the students filled the gaps, and the teachers scored each test by hand. As typically
more than a thousand students participate in the test each semester, the manual procedure
generated a large amount of repetitive work. To benefit from the advantage that the C-test
is a half-open format which can easily be scored automatically, we created a web interface
for the testing period.28

The web interface The web interface contains an administrative view for the test con-
struction by the teachers and a test view for the students. The test construction is a semi-
automatic process. The teachers provide a text which is automatically transformed into
a C-test. In a second step, the teachers can edit the test if necessary. In particular, they
can encode alternative solutions, e.g. color and colour . In the test view, the students first
provide their personal data and then read the test instructions and a C-test example. Once
they start the test, they have a time limit of 20 minutes to fill in the gaps. The time limit
was chosen to be generous, almost all students finished ahead of time. The consultation
of additional references was not allowed. All participants are students enrolled at the uni-
versity. They have heterogeneous backgrounds regarding their language proficiency and
mother tongue, but the majority is German.

Each placement test consists of fiveC-test paragraphs . Each paragraph forms a coherent
text with three to five sentences and contains 20 gaps. The texts cover different topics to
avoid a domain bias. The teachers intend to arrange the paragraphs with ascending order
of difficulty. In the remainder of the thesis, a C-test refers to a single C-test paragraph.

The student answers are stored in aMySQL database and evaluated automatically. After
the testing period, a report that lists the results for each student is provided for the teachers.
The participants can score a total of 100 points, one point for each correctly solved gap. The
students are then assigned to course levels according to their results. For English, students
who score less than 20 points are considered to be absolute beginners, 20–49 points indicate
a level of B1, 50–64 points correspond to B2, 65–85 to C1, and a result of more than 85 points
corresponds to a course level of C2.29 In addition, the teachers can inspect the individual
results in detail in the administrative view of the interface to analyze borderline cases (see
figure 3.1). The web interface was tested in a pilot phase for English with a subset of the
participants.

English In a first session in April 2013 (S1), 357 participants filled in the same placement
test. In a second session in October (S2), three different placement tests were assigned ran-
domly to 463 new participants. As the pilot phasewas very successful and the teachers were

28The development of the interface was conducted in co-operation with the student assistants Jens Haase and
Fabian Rokohl.

29The thresholds can vary slightly for other languages. Personal communication with Martha Gibson, June
12, 2015.
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Figure 3.1: A screenshot of the administrative view in the web interface. The teachers can inspect
the student answers in detail. Correct answers are highlighted in green and wrong answers in gray.

S1 S2 S3

Number of C-tests 5 15 25
Number of Gaps 100 300 375
Participants 357 462 1041
Participants per Gap 357 154 210

Table 3.2: English C-test data from three sessions

extremely relieved to be freed from the duty of scoring, the automatic procedure was inte-
grated into the course management system of the institute and rolled out to all languages.
In the final setup, the placement tests were composed by randomly choosing C-tests from 5
groups of anticipated difficulty. A random combination of 5 C-tests (one from each group)
was then assigned to 1,050 new participants in the third session in April 2014 (S3). Due
to the random assignment, the number of participants per gap is averaged over all C-tests
for S2 and S3 (see table 3.2). During the pilot phase, we additionally requested background
information from the participants such as their L1. Unfortunately, this request could not
be integrated into S3 due to data protection policies. The linguistic analysis in this thesis is
based on the English C-test data from S1 and S2 unless indicated otherwise. The data from
S3 is held-out test data for the experiments in chapter 7. Six C-tests of S3 that overlap with
tests of S2 and S1 are removed from the test data.

French The French data was collected by means of the same procedure as the English
data, but only in the third session. The participants’ profile is comparable: students with
heterogeneous background who take the placement test in order to participate in a French
language course at the language center of TU Darmstadt . The teachers had roughly es-
timated the difficulty of 40 C-tests to categorize them into five groups of difficulty. Each
placement test then consisted of a random combination of five C-tests; one from each group.
30 C-tests are used for training and 10 for testing.

German As the language center at TU Darmstadt does not conduct placement tests for
German language courses, we obtained additional data from the TestDaF institute. This
institute awards a certificate of German language proficiency which is required for foreign
students who apply for courses at German universities. The test results were collected as
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part of a calibration study for improved test design. Students enrolled in German courses at
the TestDaF institute were asked to participate on a voluntary basis. The data is organized
in sets of 10 C-tests with assumed ascending order of difficulty. The data is described in
detail in Eckes (2011). For the original study, a total of 27 sets have been answered by
5,927 participants from 125 different countries. Only a subset of the data has been released
for usage in this thesis and the information about the participants has been removed for
anonymization.

The dataset used in the thesis comprises ten sets from 2,220 participants. Eight sets are
used for training and two sets are used as held-out test data. In each set, the third and
the eighth C-test are anchor tests that are similar across sets which results in a total of 82
different C-tests. The results for the anchor C-tests are calculated over all ten sets and form
part of the training data. As a consequence, they are of course excluded from the test set.
This partition yields 66 C-tests for training and 16 for testing.

3.3.3 X-test

For the X-test format, we obtained German tests from the center of teachers’ education at
the University of Duisburg-Essen . The tests have been conducted as part of a larger evalua-
tion of the language proficiency of prospective teachers which is described in more detail
in Scholten-Akoun et al. (2014). The participants are a mix of native German speakers and
students with migratory background (24.07%). Their language proficiency is higher than
that of the participants in the other tests.

The data consists of 14 X-tests with 25 gaps each. The 787 participants had to complete
four tests (i.e. 100 gaps) within 20 minutes. The combination of tests was varied. We use
ten X-tests for training and four for testing.

For both German datasets (C-test and X-test), the answers are only available as already
encoded correct/false entries. The original answers have not been stored, so that informa-
tion about the type of errors cannot be derived.

3.4 Measuring Difficulty
Measuring the difficulty of a test is an essential task in the field of psychological and edu-
cational testing to assure the scalability of diagnostic results. One test usually consists of
several items and most approaches distinguish between test difficulty and item difficulty.

This distinction between text difficulty and item difficulty separates items from the con-
text in which they appear. However, items in text-completion exercises are determined by
their context. Not only the difficulty, but also the solution of an item can vary in different
contexts. The item o could easily be solved with of in the context States o America ,
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while it would require further disambiguation in the context write o paper to distinguish
between the answer options on , our , and off .

In this thesis, the distinction between the macro-level test difficulty and the micro-level
item difficulty is thus captured in the representation of the item. For the evaluation of
item difficulty, we aim at a single intuitive measure based on the learner performance for
the respective item. Two main theories can be distinguished to determine the difficulty of
items: classical test theory and item response theory (IRT) .

3.4.1 Classical Test Theory

Classical test theory has a long tradition for the evaluation of human assessments since the
1960s and its measures are still commonly used. The exercises that are examined in this
thesis are prototypical test items that are scored with a binary correct/false decision (en-
coded as 1/0). The teachers evaluated the tests following classical test theory and obtained
an overall test score for a participant i as the proportion of correct answers for the test items
j over the number of items k.

TestScorei =

k
∑
j=1

answerij

k
(3.1)

TestScore =

n
∑
i=1

k
∑
j=1

answerij

n ∗ k
(3.2)

According to classical test theory, this test score (3.1) can be interpreted as an indicator for
the true score for each participant biased by some error (Lord et al., 1968). In our setting,
the true score is supposed to be the language proficiency of the participant.30 The mean test
score can then be obtained by taking the average over all participants (equation 3.2).

The test score is aggregated over all items in the test. In order to analyze individual
items, classical test theory provides the P-value which represents the proportion of correct
answers of all participants i (i = 1, ..., n) for a specific item j:

P -valuej =

n
∑
i=1

answerij

n
(3.3)

30It is assumed that a true score can never be observed because all measurements contain some sort of error.
Analyzing the reliability and validity of the text-completion exercises for the purpose of evaluating language
proficiency is out of the scope of this thesis. However, there exists a wide range of psychological publications
covering these questions. The interested reader is referred to Grotjahn et al. (2002) who provides a summary
and reports generally high values for reliability and validity of the C-test. The C-test has been successfully
applied to assign students to language levels in many institutes and the teachers experience a very high
matching rate.
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The mean test score and the P-value are commonly interpreted as test difficulty and item
difficulty (e.g. Klein-Braley (1984, 1996)). However, both measures rather represent easiness
because higher scores indicate more correct answers, i.e. lower difficulty. In this thesis, the
focus is on the difficulty and not on the performance of individuals. Therefore, the more
intuitive error rate (the proportion of wrong answers) will be used to quantify the difficulty
for items (3.4) and tests (3.5). The error rate can be expressed as the inverse of the easiness
measures.

ErrorRatej =
falseAnswersj
allAnswersj

=
n −

n
∑
i=1

answerij

n
= 1 − P -valuej (3.4)

ErrorRate =
falseAnswers
allAnswers

=
n ∗ k −

n
∑
i=1

k
∑
j=1

answerij

n ∗ k
= 1 − TestScore (3.5)

There are two reasons for choosing this measure. First, it is a more intuitive measure for
difficulty because higher values indicate higher difficulty. Second, it is more common in
the area of natural language processing. Many language technology applications report
the word error rate as a measure of performance (e.g. for machine translation or speech
recognition). In these scenarios, a higher word error rate indicates that the input is more
difficult for the system.

3.4.2 Item Response Theory

The theoretical foundations of item response theory (IRT) were already discussed in the
1950s and 1960s (Rasch, 1960; Birnbaum, 1968), but they experienced a rise in popularity
in the 1980s. Since then, the use of IRT models has become an important measurement
tool, especially in the research on construct validity of tests and adaptive testing. The item
response theory comprises a set of probabilistic models that emerged from the idea that
the test behavior of a person is an indicator for a so-called latent trait which is often also
referred to as the ability of the person (Becker, 2004). The difficulty of an item should
therefore be expressed with respect to the ability that is required to solve it. As discussed
above, the measured ability in our datasets is supposed to be the language proficiency of
the participant.

IRT models describe the individual items of a test by item characteristic functions. In
the most basic one-parametric logistic model (1PL also known as the Rasch model ), the
probability of solving item j depends only on the difference between the participant’s ability
θi and the item difficulty σj (Rasch, 1960). Eckes (2011) uses such a Rasch model to compare
the difficulty of different C-tests and to build a test pool.31 TheRasch model assumes that all

31http://www.ondaf.de, accessed: November 25, 2015
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test items discriminate equally well between the participants. Kamimoto (1993) argues that
this is not the case for C-tests. He analyzes the discriminative power of different gaps in
English C-tests and finds high variance. In order to overcome this weakness, Eckes (2011)
condenses the individual items of a test into a single super-item and only reports the overall
difficulty of the test.

In this thesis, the focus is on the difficulty of individual items. Thus, the two-parametric
logistic model (2PL) Birnbaum (1968) which includes a discrimination parameter βj for each
item is more suitable.32 The item characteristic function for the 2PL model is defined as
follows:

P (answerij = 1) =
eβj(θi−σj)

1 + eβj(θi−σj)
(3.6)

The presented results are calculated using an implementation of the 2PL model in the ltm-
package (version 1.0) for R with the default settings (Rizopoulos, 2006). The parameters are
estimated bymaximizing the approximate marginal log-likelihood. The difficulty of an item
is then expressed as the ability that is required for a participant to have a 0.5 probability
to solve the item correctly. For a better understanding of this difficulty concept, Figure 3.2
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Figure 3.2: Sample item characteristic curves of the 2PL model for three gaps in the English data

shows three item characteristic curves for an easy, a medium and a hard gap as an example.
The item difficulty is the point of inflection in the curve, i.e. -2.8, 0.5 and 1.7 for the items 1,
2 and 3 in the figure respectively. It can also be seen, that gap 2 has a higher discrimination
parameter (i.e. a steeper slope) than the other two gaps.

The IRT models are based on a set of very strong assumptions that are hard to meet by
many datasets (Hambleton and Jones, 1993). In particular, the assumption of local indepen-
dence between the test items is very likely to be violated in our case; at least for exercises
32In the one-parametric logistic model (Rasch model) the item discrimination parameter βj is constant for all
items. For closed exercises with answer candidates (as in the cloze test), a three-parametric logistic model
would be more suitable because it includes an additional “guessing” parameter. For more information on
IRT and the different models, the instructional module by Hambleton and Jones (1993) provides a good start.
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that contain more than one gap in a single sentence (Schroeders et al., 2014). However,
Eckes and Baghaei (2015) show that the effect of local dependence is lower than expected
and that a standard 2PL-Model is sufficient to estimate difficulty. Local dependence will be
analyzed in more detail in chapter 6.

3.4.3 Comparison of Difficulty Measures

For an informed decision about a suitable difficulty metric, we perform a comparative anal-
ysis of the error rate and the 2PL item difficulty on the training data to examine three as-
pects: the range of the difficulty, the reliability across samples and the applicability to small
sample sizes. In addition, we describe an approach that combines measures of classical test
theory and IRT difficulty parameters in so-called performance profiles.
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Figure 3.3: Sorted difficulty parameters for the gaps in the English training data. Error rates are
on the left, 2PL parameters on the right.

Range of difficulty In our English training data, the item difficulty is almost continuously
distributed. In Figure 3.3, the error rates range from 0.01 to 0.99 and the 2PL item difficulty
parameters range from -7.5 to 8.7. In general, the difference between the two difficulty mea-
sures is quite small. If the gaps are ranked according to their error rate and their 2PL item
difficulty, the ranks have a Spearman correlation of 0.92. However, the 2PL model produces
two strong outliers with a difficulty parameter of -119.9 and 120.4 that are not displayed in
the figure because they are far outside the visible axis range. Interestingly, both outliers
have very high error rates (0.93 and 0.96), although they are placed on the opposite ends
of the 2PL difficulty range. We also find items with high error rates that yield “normal”
difficulty parameters (around 8), so these two outliers deserve a closer look:

(1) Early farmers used th natural variations selectively breed wild animals, plants
and even micro-organisms [...]. (this)

(2) [...] that the ability of the planet’s ecosy to sustain and keep up with the
demands of future generations cannot be taken for granted. (ecosystems)
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Gaps 1 2 3 4 5 6 7 8 9 10

Error Rate
Mean 0.83 0.38 0.69 0.27 0.28 0.22 0.80 0.60 0.64 0.07
Standard deviation 0.07 0.06 0.09 0.08 0.11 0.08 0.08 0.09 0.07 0.02
Coefficient of variation 0.08 0.16 0.13 0.28 0.40 0.34 0.10 0.15 0.11 0.29

2PL Item Difficulty
Mean 2.03 -1.13 0.99 -1.48 -1.25 -1.60 1.21 0.45 0.74 -6.29
Standard deviation 0.87 0.58 0.50 0.63 0.66 0.47 0.49 0.48 0.52 5.24
Coefficient of variation 0.43 -0.51 0.51 -0.43 -0.53 -0.30 0.40 1.08 0.71 -0.83

Table 3.3: Difficulty statistics for the first ten gaps of a German test averaged over 10 different
samples

The first outlier reveals an error in the test design because the sentence is not correct. The
preposition to is missing between selectively and breed and either the encoded solution
should be these , or variations needs to be in the singular form variation .33 The partici-
pants had of course no chance to solve this item correctly based on their language profi-
ciency, but some (accidentally) provided the intended solution. This leads to a very irregular
pattern in the data and as a consequence, a negative value is estimated for the discrimina-
tion parameter (i.e. the curve has a negative slope). This indicates, that a participant who
is less proficient in English is more likely to solve the item which sounds implausible but
might actually be a proper interpretation of a faulty test item. In the second outlier, the
high difficulty is due to the ambiguity with the singular form.34 In this case, the difficulty
is estimated to be extremely high because even participants with high ability cannot solve
the item.

Reliability across samples The IRT models are often advertised with the claim that the
person ability and item difficulty parameter estimates are sample-independent (although
this is only true for the simple Raschmodel) and are thereforemore stable than themeasures
from classical test theory when compared across samples. In our German dataset, two tests
have been assigned to ten different samples as anchor tests. This allows us to compare
the reliability of our difficulty measures across samples. Table 3.3 provides the aggregated
difficulty statistics for the first ten gaps of one of these tests (the results for the second test
are comparable). The upper part contains the values for the error rates and the lower part
for the item difficulty parameters of the 2PL model.

It can be seen, that the standard deviations for the 2PL parameters are considerably
higher than for the error rates. This is not easy to interpret because the means are not
calculated on the same range. The coefficient of variation allows for a better comparison be-
tween the two measures because it calculates the ratio of standard deviation and error rate
(higher values indicate more variation). It supports the impression that the 2PL parameters

33This error had not been noticed during the testing phase.
34The singular answer ecosystem is too short for this gap, but the participants do not seem to take this hint
into account.
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vary more across samples than the error rates. As these values are averaged over the sam-
ples, Figure 3.4 provides a visualization of all samples for three gaps with low, medium and
high difficulty. It can be seen, that both measures are quite stable across samples. However,
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Figure 3.4: Stability of difficulty measures across 10 different samples of learners for Gap 1, 2 and
10. Error rates are on the left, 2PL parameters on the right.

the axis range of the 2PL parameters is higher and sample 6 produces a very strong outlier
for gap 10.

Small samples In the literature, it is usually recommended to use IRT models only for
large samples and to rely on classical test theory for small samples, although this is not
yet empirically confirmed (Mead and Meade, 2010). Compared to psychological standards,
all our datasets are very small. It is thus important to examine whether the number of
participants is sufficient to obtain reliable difficulty estimates. Figure 3.5 shows the standard
error of the error rates which is calculated for increasing sample sizes.35 It can be seen that
the standard error is reduced to an acceptable level of 0.05 already with 50 participants.

The standard error of the estimated 2PL item difficulty parameters can also be calculated
for increasing sample sizes. Unfortunately, the estimation process often fails for small sets.
In an experiment, 20 different runs for each sample size were performed but the results
contained so many extreme outliers that the averaged standard errors are too biased to be
informative. It can be concluded, that the 2PL model is not useful for small sample sizes, at
least not for the datasets under study.

Performance profiles We have seen that the classical test theory is an intuitive measure
for assessing the difficulty of an item for a learner group, but the performance of individual
learners is only taken into account in the item response theory. Svetashova (2015) shows

35For each size, the error rate is calculated based on three randomly selected samples of participants from the
first English session and the result is averaged. The results for the other three tests are similar.
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Figure 3.5: Standard error of error rates averaged over all gaps for increasing numbers of partici-
pants

that the same exercise item will be difficult for novice learners and easy for advanced learn-
ers and proposes to incorporate this performance information in the difficulty concept. She
calculates numerous parameters inspired by classical test theory (e.g. percentage of exact
matches) and item response theory (e.g. Rasch coefficients) and additionally includes rela-
tive measures that represent the difficulty of the item relative to the mean difficulty of the
text. All of these measures are calculated with respect to the different CEFR proficiency
levels of the learners (A1–C2) resulting in a total of 440 measures. In order to gain a better
understanding of the correlations between these measures she applies principal compo-
nent analysis and clustering. The clustering results show that a reasonable grouping of
items by their difficulty can be reached by distinguishing between easy items in easy texts ,
easy items in difficult texts , difficult items in easy texts and difficult items in difficult texts .
Svetashova discusses that this indirectly accounts for the proficiency level of the learner
by assuming that difficult texts are generally difficult for novice learners. We have a closer
look at this observation in section 4.2.3. In our difficulty model described in section 3.1, the
difference between macro-level text difficulty and micro-level item difficulty is captured in
the representation of the item and not in the dependent difficulty variable.

Conclusions We have seen that the differences between the classical test theory and the
item response theory are rather small for our data; the two difficulty measures are strongly
correlated. The analyses show that the parameter estimation process for the 2PL model is
likely to produce extreme values for irregular answer patterns and small sample sizes and
in some cases, the estimation process does not even converge. This behavior can provide
useful information for item selection but it is not desirable for the task of difficulty pre-
diction which requires stable difficulty estimates. For our datasets, the error rates are very
stable across samples and for varying sample sizes. In addition, the concept of error rates
is more intuitive and comprehensible for non-experts than the IRT difficulty parameters.
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Format Test type Mean Error Rate Participants

C-test en .38 ± .24 Students at TU Darmstadt applying for English
language courses (≈A1–C1)

Half-
C-test fr .52 ± .26 Students at TU Darmstadt applying for French

language courses (≈A1–C1)
open C-test de .56 ± .26 Participants in German language courses as

preparation for studying in Germany (≈A2–C2)
X-test de .35 ± .22 Native speakers, students at the center of teach-

ers’ education at Univ. Duisburg-Essen (C2)

Closed Cloze en .28 ± .23 Volunteers, mostly students (≈B1–C2)

Table 3.4: Mean error rate and standard deviation for each training dataset

As this can be an important aspect for the acceptance of future applications, the diffi-
culty of an item is expressed by its error rate in the remainder of the thesis. As a conse-
quence, the item difficulty should be interpreted relative to the learner group represented
in the training data. For difficulty analyses that focus more on individual differences, item
response theory or a combinatorial measure like the performance profiles might be a better
choice. Chapter 4 aims at replicating previouswork for predicting themean error rate based
on readability features, and in chapter 7 the individual error rate of each gap is predicted
based on the new difficulty model. Table 3.4 provides an overview of the mean error rates
for the different training datasets. The error rates should not be directly compared across
test types because the participants had different backgrounds.

3.4.4 Measuring PredictionQuality

Throughout the thesis, we perform several prediction experiments. Classification experi-
ments with multiple classes are evaluated using the conventional evaluation metrics preci-
sion (P) , recall (R) , and F1 . If only two classes are distinguished and the classes are balanced,
the results are evaluated based on the accuracy (A) . In the equations below, TP refers to
true positives, FP to false positives, TN to true negatives and FN to false negatives. These
counts can only be determined with respect to one specific class. To evaluate the over-
all performance of the classification, the metrics are reported as weighted average over all
classes.

P =
TP

TP + FP
R =

TP
TP + FN

(3.7)

F1 =
2 ∗ P ∗ R
P + R

A =
TP + TN

TP + FP + TN + FN
(3.8)
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Regression experiments are evaluated using the conventional evaluation metrics Pearson
correlation (Pearson’s r) and root mean square error (RMSE) for linear regression. In the
equations 3.9 and 3.10, n refers to the number of gaps and σ to the standard deviation.

Pearson′s r =
covariance(errorRates, predictions)
σ (errorRates) ∗ σ (predictions)

(3.9)

RMSE =

􏽭
⃓⃓
⃓
⎷

n
∑
i=1

(errorRatei − predictioni)2

n
(3.10)

The significance of Pearson’s r is calculated on the basis of the paired.r function in the
psych-package (version 1.4.5) for R (Revelle, 2014). In some cases, additional metrics are
required. These are introduced in the corresponding sections.

For most experiments, we perform leave-one-out cross-validation . There exist several
methods to evaluate cross-validation results, but many of them can yield misleading results.
We follow the recommendation by Forman and Scholz (2010) and calculate the results only
once over the collected predictions from each fold.

3.5 Chapter Summary
This chapter has introduced the difficulty model that forms the theoretical basis for this
thesis. Exercise difficulty is interpreted as a combination of the four dimensions text diffi-
culty, word difficulty, candidate ambiguity, and item dependency. For the analytical basis
of the thesis, five difficulty datasets have been introduced. Two datasets have been cre-
ated in cooperation with the language centre at TU Darmstadt . Two other datasets have
been obtained from educational researchers at the TestDaF institute and the University of
Duisburg-Essen . The last dataset is a set of existing cloze questions that have been enriched
with error rates from a learner study conducted for this thesis. Based on these datasets, the
main approaches for measuring difficulty could be compared. The results of this compari-
son led to the decision for the error rate as measure of difficulty.

The analysis of related work in the previous chapter and the development of the diffi-
culty model enabled us to provide a more precise determination of the thesis goals. In the
following chapters, each difficulty dimension is analyzed in detail and operationalized into
objective, measurable features that can be determined automatically. In chapter 7, all indi-
vidual measures are combined into an integrative model to tackle the task of gap difficulty
prediction. An elaborate prediction of difficulty facilitates target-oriented difficulty manip-
ulation. Existing strategies for text selection, text manipulation and distractor selection
mainly rely on implicit difficulty assumptions by experts that are not directly measurable
and often do not account for language learners. In chapter 8, we analyze how the integrated
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difficulty prediction approach can contribute to improved text selection. The measures for
word difficulty and candidate ambiguity can guide manipulation strategies for lexical sim-
plification and distractor manipulation respectively.

60



Chapter 4

Text Difficulty Prediction

“Reading is to the mind what exercise is to the body.”

— Joseph Addison

Figure 4.1: Text difficulty: macro-level dimension of the exercise content

For all text-based exercises, the difficulty of the underlying text determines the available
context for the participant. A more challenging text increases the difficulty of the exer-
cise as the participant’s orientation in the text becomes more complicated (compare Brown
(1989)). Research on text difficulty is commonly approximated under its inverse concept of
readability as in the following quote by DuBay (2004, p. 3):

Readability is what makes some texts easier to read than others.

A wide range of approaches have been proposed to measure readability based on the lin-
guistic complexity of the text. Collins-Thompson (2014, p. 98) highlights the importance of
focusing not only on the text, but also on the reader:
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In addition to text characteristics, a text’s readability is also a function of the readers
themselves: their educational and social background, interests and expertise, and mo-
tivation to learn, as well as other factors, can play a critical role in how readable a text
is for an individual or population.

Nevertheless, he treats the terms text difficulty and readability as synonyms to avoid con-
fusion. We follow this convention in this chapter. The first section provides an overview
of existing readability measures and features from all linguistic levels. In previous work, a
strong relation between readability and the difficulty of text-completion exercises has been
claimed (Klein-Braley, 1984). The second section contains experiments for analyzing the
reproducibility of these results for the difficulty datasets used in this thesis. As most re-
lated work has focused on readability of texts in the readers’ L1, we discuss the challenges
for L2 readability in the third section and analyze the influence of two important learner
variables: the L1 and the reading experience. Most arguments in the first and the third
section have already been discussed in Beinborn et al. (2012) and Beinborn et al. (2014b).

4.1 Readability Measures
Readability measures have a long history, especially in the American education research.
The need for these measures is rooted in a very practical task: teachers search for texts that
best fit the knowledge level of their students. According to Vygotsky’s zone of proximal
development (Vygotsky, 1978) the range of suitable texts that a learner can manage without
help is very small. Texts which do not challenge the student easily lead to boredom, whereas
texts with overly complex language might lead to frustration when no tutoring is available.

From a diachronous view, readability measures have continuously takenmore andmore
features into account. Early measures in the 1960s worked only with surface-based features
and manually determined constant coefficients. Later approaches successively added fea-
tures from the lexical, syntactic, semantic, and discourse dimensions as the respective tech-
nologies became available. As the number of features was steadily growing, the need for
machine learning methods emerged. Supervised learning methods use training data from
corpora to determine the significant features for each readability level.36 The most com-
mon readability corpora are based on theWeeklyReader corpus or the Common Core State
Standard .37 The learned feature weights for the training data can then be applied for the
prediction of readability levels of unseen texts. Recently, progress in the field of text clas-
sification has led to a new perspective on readability measures (Collins-Thompson (2014)
provides a good overview). Supervised learning algorithms automatically combine several

36The traditional measures expressed readability in terms of the twelve US school grades. More recent ap-
proaches only distinguish two to four different readability levels.

37http://www.weeklyreader.com/
http://www.corestandards.org/assets/Appendix_B.pdf, both accessed: December 7, 2015
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4.1. Readability Measures

text properties extracted from training data and learn to associate them with the corre-
sponding readability class. Naïve Bayes (Collins-Thompson and Callan, 2005), k-nearest
neighbors (Heilman et al., 2007), and support vector machines (Schwarm and Ostendorf,
2005) have all been tested in previous approaches. This automation has led to an explosion
of the text features that are taken into account. The features can be grouped into various
dimensions focusing on different aspects of the text. In the following, we first introduce
the traditional measures. Then we discuss the lexical, morphological, syntactic, semantic,
discourse, conceptual, and pragmatic aspects of readability and give an overview of the
features that operationalize them. The features range from simple POS-tag counts over
syntactic structures to complex language models and discourse relations. Detailed analy-
ses and results of the individual features can be found in Vajjala Balakrishna (2015), Feng
and Huenerfauth (2010), Pitler and Nenkova (2008), and Graesser and McNamara (2004).

4.1.1 Traditional Readability Measures

Traditional approaches to readability such as the Flesh–Kincaid Grade Level (Kincaid et al.,
1975), the Automatic Readability Index (Smith and Senter, 1967) and the Coleman–Liau In-
dex (Coleman and Liau, 1975) date back even until the 1960s and operate only on two main
features, word length and sentence length. In addition to the length features, the SMOG
grade (McLaughlin, 1969) and the Gunning-Fog Index (Gunning, 1969) also consider the
number of complex words defined as words with three or more syllables. DuBay (2004)
gives a comprehensive overview of traditional readability measures and Benjamin (2011)
evaluates their usability for teachers. These measures have been incorporated into guide-
lines for writing standards and are also implemented in standard word processors. How-
ever, they have also been subject to criticism as they only capture structural characteristics
of the text and can easily be misleading. Consider the following two example texts:

(1) There were ten green bottles hanging on the wall,
ten green bottles hanging on the wall.
And if one green bottle should accidentally fall,
there’d be nine green bottles a-hanging on the wall.

(2) This above all: to thine own self be true,
And it must follow, as the night the day,
Thou canst not then be false to any man.
Farewell, my blessing season this in thee!

Text 1 is a popular children’s song and text 2 is a famous quote from Shakespeare’s play
Hamlet . Both texts consist of two sentences and contain 34 words. Most readers would
probably agree that the first text is significantly easier to read. However, the traditional
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Readability measure Text 1 Text 2

Flesh-Kincaid grade level 6.3 5.6
Automatic readability index 8.0 4.8
Coleman-Liau index 10.3 6.4
SMOG index 4.4 4.4
Gunning-Fog score 8.0 8.0

Table 4.1: Readability scores for text 1 and text 2. The measures return the US grade level that is
typically required to comprehend the text. Higher scores thus express lower readability of the text.

readability measures (see table 4.1) actually indicate the opposite. They return lower read-
ability for text 1 (expressed as a higher grade level) because it contains longer words.38

In order to capture the perceived readability disparity in the two example texts above,
more advanced linguistic features that operate on the actual content are required.

4.1.2 Lexical-Semantic Features

In order to understand a text, a reader first needs to map words to concepts. In a second
step, the word meanings are combined to construct the meaning of complex phrases and
sentences. The difficulty of these two steps can bemodeled by features capturing lexical and
compositional semantics respectively. On a more global level, lexical diversity measures
capture the range of vocabulary in a text.

Lexical semantics Many psycholinguistic studies have shown that frequency effects play
an important role in language comprehension (Brysbaert and New, 2009). High-frequency
words enable faster lexical access and should therefore contribute to higher readability. For
English, the word length used in the traditional measures is in principle a good approxima-
tion of word frequency because frequently used words tend to be rather short compared
to more specific terms (Sigurd et al., 2004). However, we can find many exceptions to this
approximation.39 As an alternative, Dale and Chall (1948) propose the use of word lists
that are based on the frequency of words. If many words of a text do not occur in the list,
they assume higher text complexity. For readability estimates, the number of high and low
frequency words is then aggregated over the whole text. In more recent work, manually
constructed word lists have been replaced with automatically trained language models (see
below).

38It should be noted that the minimum text size recommended for readability measures is 100 words. If we
add the subsequent two verses of each text to reach this number, the tendency of the readability measures
remains the same. We omitted these verses here for the sake of brevity.

39Compare, for example, together (length: 8, frequency in the American National Corpus: 4,004) and
sag (length: 3, ANC frequency: 27). Frequency information is available at http://www.anc.org/data/
anc-second-release/frequency-data, accessed: June 19, 2015
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Compositional semantics Compositional semantics has been addressed by several ap-
proaches, but they have rarely been applied to readability. An exception is the work on
readability of German texts by Vor der Brück et al. (2008) which is based on the semantic
Wocadi-parser (Hartrumpf, 2003). In this approach, the amount of conceptual nodes and
relations in the semantic representation is considered as indicator of semantic complexity.
Their findings indicate that these features correlate well with human judgments of read-
ability. Unfortunately, the parser often fails to build a semantic representation which limits
the robustness of their approach.

Language models Language models are a more robust way to combine lexical and com-
positional semantics. Instead of absolute frequencies as in word lists, language model ap-
proaches are based on word probabilities. The use of language models is a common tech-
nique in speech recognition and machine translation in order to determine the probability
of a term in a given context. Collins-Thompson and Callan (2005) have shown that this
notion of the probability of a term can easily be transferred to readability, since it is gen-
erally understood that a sentence is more readable if it uses very common terms and term
sequences. Higher n-gram models as used by Schwarm and Ostendorf (2005) can even ac-
count for collocation frequencies indicating different usages of content words (e.g. hit the
ball vs. hit rock bottom ). Language models can easily be re-trained for new domains and
new languages and could thus be dynamically adapted to specific learner groups. In most
recent works in natural language processing, written word frequencies are extracted from
theWeb1T corpus based onweb texts (Brants and Franz, 2006) and spokenword frequencies
from the SUBTLEX corpus based on movie subtitles (Brysbaert and New, 2009).

Lexical diversity The lexical diversity determines the vocabulary range of a text. If the
same concept is expressed with different words, the reader has to recognize the similar-
ity relation of the words in order to understand the shared reference. Lexical diversity is
usually measured by the type-token ratio , where type is a word and token refers to the
different usages of the word in the text. Graesser and McNamara (2004) have implemented
the type-token ratio for their readability framework Coh-Metrix and Vajjala and Meurers
(2012) experiment with different variants of it. A low ratio indicates that words are fre-
quently repeated in the text. This characteristic might decrease the stylistic elegance of
the text, but it facilitates text comprehension. Recall the two example texts in the previ-
ous section. The type-token ratio of the rather repetitive children’s song is 0.5, whereas
the more complex Shakespeare excerpt has a type-token ratio of 0.9. The type-token ratio
can thus be a strong indicator for readability which has an influence on exercise difficulty.
Klein-Braley and Raatz (1984) and Karimi (2011) show that lower lexical diversity leads to
lower difficulty of C-tests.
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4.1.3 Syntactic Features

Syntactic features measure the grammatical difficulty of a text. Especially for language
learners, complex syntactic structures aremajor text comprehension obstacles. The surface-
basedmeasures estimate the syntactic difficulty by considering the average sentence length.
A longer sentence might indeed indicate a more complex structure, however, it could also
simply contain an enumeration of concepts. In recent approaches, the grammatical struc-
ture is represented by part-of-speech (POS) patterns and parse trees, as described below.

POS-tagging In readability measures, POS-tagging is mainly used for the distinction be-
tween content and function words . Content words carry lexical meaning, whereas function
words indicate syntactic relations (e.g. articles or conjunctions). A high number of content
words indicates high lexical density (Vajjala and Meurers, 2012). Feng and Huenerfauth
(2010) additionally determine the absolute and relative occurrences of the different POS-
tags in the sentence and find that high usage of nouns and prepositions is an indicator for
increased text complexity. Heilman et al. (2007) highlight the occurrence of different verb
tenses as indicators for text complexity, especially for second language learners. Grammat-
ical constructions are usually acquired step by step and complex structures such as the use
of the passive voice occur in later stages. Infrequent verb tenses might thus strongly inhibit
a learner’s comprehension of the text. Lu (2012) approximates the syntactic complexity by
calculating the verb variation . The verb variation is similar to the more general type-token
ratio , but only includes verbs.

Parsing Another method to assess syntactic complexity are parsing features. Syntactic
parsers analyze the grammatical structure of a sentence and return a formal syntax repre-
sentation. For readability measures, the number and type of noun and verb phrases are con-
sidered relevant (Schwarm and Ostendorf, 2005; Heilman et al., 2007). In addition, Schwarm
and Ostendorf (2005) include the depth of the parse tree and the number of subordinated
sentences in order to model the sentence complexity. Similarly, Vajjala and Meurers (2012)
consider the number of clauses per sentence and the number of subordinations and coordi-
nations. According to Tonelli et al. (2012), a text is easier to read if it exhibits low syntactic
variability, i.e. if the syntactic structure of neighboring sentences exhibits high similarity.
This can be computed by detecting the largest common parse subtree of two sentences.
Babaii and Moghaddam (2006) examine the effect of syntactic complexity on C-test diffi-
culty, but the results are not very conclusive.
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4.1.4 Discourse Features

Discourse features model the structure of the text and particularly analyze cohesion and
coherence . In the readability literature, all inter-sentential relations are qualified as related
to discourse.

Cohesion A text is considered to be cohesive if the individual sentences are reasonably
tied together on the linguistic level. This can be obtained by using cohesive markers such
as connectives. Pitler and Nenkova (2008) build a discourse language model based on the
annotations from the Penn Discourse Bank . This model determines how likely it is for each
grade level that the text contains implicit or explicit discourse relations. Tonelli et al. (2012)
manually create a list of additive, causal, logical, and temporal connectives for Italian. In
addition, they calculate the ratio between causal or intentional particles and causal or in-
tentional verbs. Causal and intentional verbs are identifiedmanually by exploiting category
and gloss information fromWordNet . Flor et al. (2013) measure the degree to which a text
tends to use words that are highly inter-associated in the language as an indicator for lexical
cohesion. They introduce the measure lexical tightness that is based on pointwise mutual
information of words and show that it correlates with the grade level for a text.

Coherence A text is considered to be coherent if the sentences are reasonably linked on
the semantic level. In the readability literature, this is often approximated by the use of
co-references. Graesser and McNamara (2004) analyze co-references in more detail and
determine the relation between two consecutive sentences. They interpret entities that
occur in both sentences (noun overlap) as indicators for coherence. Pitler and Nenkova
(2008) generate entity grids that capture how the center of attention shifts from one entity
in the text to another as postulated in the centering theory (Grosz et al., 1995). Feng and
Huenerfauth (2010) keep track of the number of entity mentions and the pronoun density.
In addition, they assume that a higher number of active entities poses a higher working
memory load on the reader. In order to determine the active entities, they identify lexical
chains . A lexical chain is formed by entities that are linked through semantic relations such
as synonymy or hyponymy. The length and the sentence span of the chain are interpreted
as indicators for text complexity.

4.1.5 Readability for Other Languages

Several researchers also implemented readability calculations for other languages, e.g. for
French (François and Fairon, 2012), German (Hancke et al., 2012; Vor der Brück et al., 2008),
Portuguese (Aluisio et al., 2010), Italian (Dell’Orletta et al., 2014; Tonelli et al., 2012), Swedish
(Pilán et al., 2014; Larsson, 2006), Japanese (Sato et al., 2008), and Arabic (Al-Khalifa and
Al-Ajlan, 2010). In order to do that, it is not enough to simply adapt the features established

67



Chapter 4. Text Difficulty Prediction

for English. The particular characteristics of a given language also need to be considered in
the feature selection. Morphological aspects, for example, are less important for English,
but crucial for agglutinative languages. Some of the features described above rely on the
use of lexical resources such asWordNet and thus limit the applicability to other languages.
In this thesis, we focus on readability measures that are available for English, German,
and French, as these are the languages of our datasets. An overview of the implemented
readability features can be found in the appendix in section A.

4.2 Readability and Reduced Redundancy Exercises
The relationship between readability and text-completion exercises has already been dis-
cussed in chapter 3.1. In chapter 3.4, we have seen that the difficulty of a text-completion
exercise can be measured by the mean error rate which is averaged over all gaps and all
participants. As the exercises in our datasets are used as placement tests for comparing
students, the difficulty of different tests should be balanced. Readability measures can thus
serve as a predictor to determine tests with comparable difficulty.

4.2.1 Correlation of Readability with Difficulty

The first work on the difficulty of C-tests was a correlation analysis of readability features
by Klein-Braley (1984). She correlated the mean difficulty for English C-tests with the read-
ability of the text (Klein-Braley, 1984).40 She focuses on two features: type-token ratio and
average sentence length in words (abbreviated as TTR and XSL) and tests them on C-tests
from two groups: third graders and fifth graders. She reports a Pearson correlation between
difficulty and readability of 0.76 for third graders and of 0.69 for fifth graders. It should be
noted that this correlation was calculated for the full set of each dataset and not tested
on unseen data. In the following experiment, the procedure is repeated for our English,
French and German C-test training datasets. In addition, the results are compared to those
obtained using the wider range of implemented readability features (see section A). In order
to be able to compare with previous work, we also use a linear regression approach here.

Table 4.2 shows the results. In the upper part of the table, only the type-token ratio
and the average sentence length are used as features. It can be seen, that the correlation of
these features with the mean test difficulty of our datasets is considerably lower than the
correlation reported by Klein-Braley (1984). The best results are obtained for the French
dataset. The column Included Features contains the features that have been included into
the regression equation. For French, the average sentence length is not even considered
for the regression equation. For English, the linear regression algorithm falls back to the

40She measured difficulty as the P-value but as it is simply the inverse of the error rate this difference can be
neglected.
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Features Dataset Included Features Pearson’s r

TTR, XSL

C-test en Constant prediction: .37 .00
C-test de TTR, XSL .39
C-test fr TTR .47
Klein-Braley (1984) (3rd grade) TTR, XSL .76
Klein-Braley (1984) (5th grade) TTR, XSL .69

17 (see appendix A)
C-test en AvgWordLengthInSyllables .55
C-test de FeaturesDe .55
C-test fr FeaturesFr .59

Table 4.2: Correlation of readability features with mean difficulty on the training set.
FeaturesDe : AvgWordLengthInCharacters, ChunksPerSentence, NounChunksPerSentence, TTR,
VerbsPerSentence FeaturesFr : AdverbsPerSentence, AvgSentenceLength, AvgWordLengthInSyl-
lables, ChunksPerSentence, NounsPerSentence

baseline of using the average difficulty because both features do not correlate sufficiently
with the difficulty. In the lower part of the table, the set of available readability features
is extended. This leads to a strong improvement, but the results reported by Klein-Braley
(1984) still remain far out of reach.

It should be noted that only few features from the available set of 17 features are in-
cluded in the regression equation (one feature for English and five features for French and
German). The average word length is relevant for all three languages and it is the only
relevant feature for English. The number of chunks per sentence is predictive for French
and German. It approximates the average sentence length but provides more information
about the complexity of the sentence.

4.2.2 Prediction of Mean Difficulty

As noted above, the correlations are calculated on the full training set. This setup has the
disadvantage that it does not provide insights into the predictive power of the features. In
order to overcome this weakness, we perform leave-one-out cross-validation on the dataset.
This means that we train a linear regression model on all C-tests but one, and predict the
mean difficulty of the excluded test with the trained model. We repeat this procedure for
each test in the dataset. The Pearson correlation is then calculated over all individual pre-
dictions. The set of features that are considered by the classifier can be different for each
fold because the regression equation depends on the training set.

The results in the upper part of table 4.3 show that the readability features by Klein-
Braley cannot reliably predict the mean difficulty. Only for the French dataset, the mean
difficulty is predicted relatively well. For English, we even obtain a negative correlation.
We have seen that the best prediction for the training set was a constant difficulty of 0.37.
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Features Dataset Pearson’s r

TTR, XSL
C-test en -.66
C-test de .26
C-test fr .39

17 (see appendix A)
C-test en .04
C-test de .39
C-test fr -.14

Table 4.3: Pearson correlation for mean difficulty prediction based on readability features using
leave-one-out cross-validation on the training set. The feature combination that is used by the
classifier can be slightly different for each fold because it depends on the training set.

In this case, the difficulty prediction is not very informative because it would be constant
for any new test.

Extending the feature set to the full set of readability features leads to improvements
for German. For French, the prediction quality gets worse leading to a negative correlation
value and for English, the correlation between actual and predicted difficulty is close to
zero.

In general, these results show that predicting the mean test difficulty based on stan-
dard readability features is not very promising. The results in Klein-Braley (1984) have
never been verified on unseen data, so they might have been overly optimistic. Another
explanation could be that the mean difficulty is simply not a very useful measure for text-
completion exercises. This aspect is discussed in more detail in the following section.

4.2.3 The Concept of Mean Difficulty

The mean error rate, which has been used as dependent variable in the readability experi-
ments above, is averaged over all gaps in a text. Figure 4.2 visualizes the measure for the 20
texts in the English training dataset. The texts are grouped according to their order of pre-
sentation to the students. One test session consisted of five texts and the teachers intended
to arrange them with ascending difficulty.

The results show that the difficulty estimate of the teachers was not accurate. The first
test of a sequence is indeed easier than the last one, but a true ordering has not been
achieved for any test session. This underlines the need for objective difficulty estimates
to assure proper test conditions. However, the high standard deviations indicate that the
mean error rate is not a very informative measure because each test contains very easy and
very difficult gaps. Imagine an extreme case, in which half of the gaps can be solved by all
learners and the other half by almost no one. The test is then assigned a medium difficulty,
but the results are not useful for discrimination between learners.
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Figure 4.2: Mean error rate and standard deviation for the paragraphs 1–5 of the four tests
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Figure 4.3: Visualisation of error rates for each gap

In the training data, the error rates of the individual gaps range from 0.01 to 0.99 and
are almost continuously distributed. Figure 4.3 shows an example for the high variance of
the gap difficulty within a single paragraph. The error rates in the example are indicated
by the size of the circles: bigger circles visualize higher difficulty. In order to account for
the high variance within tests, it is reasonable to focus on the difficulty of individual gaps.

Readability measures can only contribute as a constant factor to the difficulty of all
gaps. As the difficulty of each individual gap deviates strongly from the mean difficulty,
traditional readability scores do not provide sufficient information. This indicates that the
concept of an average readability of a text that has been established for native speakers
might not be suitable for foreign language learners. The following section provides an anal-
ysis of the reading processes for language learners and the consequences on L2 readability
measures.
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4.3 L2 Readability
Almost all of the approaches to readability discussed in section 4.1 are directed at native
speakers reading in their mother tongue (L1). A naïve approach to readability for language
learners could simply apply the existing L1 models on texts in the foreign language (L2 ,
L3 ,…) to calculate the readability. However, the analyses on text-completion exercises
above indicate that an averaged mean is not informative enough for the reading processes
of language learners. Greenfield (2004) argues that the traditional formulae already give
a reasonable approximation for L2 readability and that their ease of application can make
up for other shortcomings. On the contrary, Carrell (1987) and Brown (1998) raise the
concern that the traditional work on readability cannot capture the different requirements
for L2 readability. They particularly mention the need to consider the reader’s background
knowledge. François and Fairon (2012) stress the importance of multi-word expressions
in L2 readability, but their experiments do not validate this assumption. Heilman et al.
(2007) and Vajjala and Meurers (2012) include measures of syntactic complexity to assess
readability for language learners. However, they find that lexical features outperform the
syntactic features in their experiments.

In order to properly analyze the requirements for L2 readability, we first need to under-
stand how L2 learning differs from L1 acquisition. We then discuss the resulting differences
of L1 and L2 readability in more detail.

4.3.1 L1 Acquisition and L2 Learning

The acquisition of the native language and the process of learning a second language pro-
gress in different ways. The process of language learning is a strongly debated topic in
psycholinguistics. Many terminological distinctions have been attempted and discussed
without reaching common ground (see DeKeyser (2009) for an overview). In the follow-
ing, we focus on L2 learning that starts after the L1 has already been acquired or as Jiang
(2000) defines it: “second language learning with insufficient natural exposure and/or with
established L1 linguistic and semantic systems”. We do not account for L2 acquisition by
bilingual children but focus onmore conscious processes as in standard L2 learning settings.
In order to emphasize the aspect of consciousness in second language learning (Ellis, 1994),
we will distinguish between L1 acquisition and L2 learning . In this section, we elaborate on
several differences with a focus on the lexical comprehension of texts.

L2 input The differences between L1 acquisition and L2 learning already emerge from
the general setting; the basic L1 knowledge is learned from the unstructured input children
receive from their environment. Therefore, their language knowledge is based on experi-
ence with direct day-to-day communication and occurs in very concrete situations. The L2,
on the other hand, is usually learned gradually by instruction (Cook et al., 1979) following
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a more conscious process that also requires more structured input (Schmidt, 1995). The
poverty of the stimulus is a term coined by Chomsky (1965) initially pointing to the quality
of the language input that children receive from their environment during L1 acquisition.
It describes the fact that humans often use incomplete or even ungrammatical sentences
in spoken language. In language learning settings, it is generally assured that learners are
presented with a more controlled use of language and also receive direct error feedback
through corrections. However, Jiang (2000) argues that L2 learners also suffer from the
“poverty of the input”. In his argument, Jiang does not refer to the quality of the input but
to the frequency. Native speakers are confronted with the language they are about to learn
all the time and cannot verbally communicate using another language. L2 learners usually
only receive input in the foreign language during a few hours per week (Nation, 2003) and
are less dependent on it.

It can be concluded that L2 learners have to learn from less frequent, but more con-
trolled language input than native speakers. Thus, the learning process needs to follow
more conscious patterns in order to extract more information from less input. For this aim,
L2 learners have access to a wider range of learning strategies than children that acquire
their L1 (Meara, 1988) and can thus modulate and adapt their learning process. Approaches
to L2 readability should consider these more conscious strategies of dealing with language
input and account for linguistic inferences.

L2 mapping processes The native language is usually acquired in the first years of child-
hood, whereas an L2 is generally learned after the L1. This means that a certain level of
proficiency in the L1 already exists. Psycholinguistic researchers are especially interested
in the differences of language representation in the L1 and the L2. Many experiments with
bilinguals are conducted in order to shed light on the question how the different languages
are managed in the brain.

Two general mapping models for L2 acquisition can be distinguished: lexical associa-
tion and conceptual mapping (see figure 4.4 model 1 and 2). Lexical association is based on
the form of words; learners are assumed to map the L2 form on an existing lexical entry in
the L1. The model of conceptual mapping, on the contrary, is based on the idea that the L1
and the L2 word both independently point to the same conceptual representation. Thus, in
the first model, learners have to map L2 words on L1 words, whereas the second model as-
sumes that learners map L2 words on concepts already associated with L1 words. Kroll and
Stewart (1994) propose the revised hierarchical model that combines the two ideas. They
argue that lexical associations are predominant in early stages of L2 learning and that with
increasing L2 competence more direct conceptual links are established (see Figure 4.4 (3)).
Kroll and Stewart (1994, p. 168) note that this revised hierarchical model can, for example,
explain the finding that translation from L2 to L1 is usually faster than translation from L1
to L2:
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Figure 4.4: Language representation in the minds of language learners. Lexical association (1)
and conceptual mapping (2) were both introduced by Potter et al. (1984). Kroll and Stewart (1994)
combine the two mapping processes into the revised hierarchical model (3) and argue that the
different connections have varying strength (the bold arrows signal strong links, dashed arrows
stand for weaker links).

[…] translation from the first language to the second is conceptuallymediated, whereas
translation from the second language to the first is lexically mediated.

When reading a text in a foreign language, the learner works on L2 words and figures
out their meaning in L1. As this is the lexically mediated direction, lexical aspects are
particularly important for L2 readability. In a refined version of the revised hierarchical
model, Jiang (2000) makes the temporal aspect of lexical development more concrete. He
defines three successive stages ranging from pure lexical association at the beginning to
conceptualmapping at later stages. Lexical association is thus particularly dominant for less
proficient learners. For intermediate to advanced learners both mapping routes – lexical
and conceptual – are activated and are used depending on the given cues. Both mapping
processes should thus be considered for L2 readability.

Cross-lingual influence The mapping models introduced above indicate that L2 learning
is influenced by the background knowledge of the learner. As the L1 is already present,
basic concepts of languages such as the different behavior of word classes or the syntactic
coordination of arguments are already known. In addition, the specific properties of the
L1 influence the acquisition of the L2. These phenomena of cross-lingual transfer have
been thoroughly researched on several dimensions. Odlin (1989) discusses cross-lingual
effects on grammar, vocabulary and pronunciation acquisition. Jiang (2000) focuses on the
negative effects of L1 interference that can be deduced from word choice and usage errors
during production.

Ringbom and Jarvis (2009) distinguish between system transfer and item transfer . In
system transfer, principles for organizing the elements of the L1 are transferred to the L2.
This applies particularly to the morphological behavior of words and to the syntactic com-
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bination of words into phrases. Syntactic constructions in the L2 that are parallel to con-
structions in the mother tongue are more likely to be used by learners (Zobl, 1980). On
the other hand, non-familiar constructions are more likely to cause problems. Kobayashi
(2002) analyzed that Japanese learners struggle particularly with the usage of determiners
in English cloze tests because the concept of determiners does not exist in Japanese. These
transfer patterns are exploited in automatic approaches for L1 identification. For this task,
the structure of texts by language learners is analyzed to predict the L1 of the learner. The
best systems reach an accuracy of 85% and perform considerably better than human experts
(Malmasi et al., 2015). The transfer effect is also reflected in the observation that an L3 (or
L4, L5, …) is usually acquired more easily than an L2 (Cenoz, 2003) because multilingual
learners can already rely on more linguistic knowledge.

Item transfer refers to the direct mapping of L2 and L1 items. It is mainly a phenomenon
in the lexical dimension and particularly important for language comprehension. Ringbom
and Jarvis (2009, p. 11) note:

The cross-linguistic similarities that underlie item transfer are a concretely perceived
similarity of form usually combinedwith an assumed similarity of function ormeaning.
[…] item learning has a predominantly positive effect on learning, notably on learning
for comprehension.

Cross-lingual item transfer is facilitated for language pairs that contain many cognates (El-
lis, 1994). Cognates are words that share a related form with their translation in another
language, e.g., elegance and elegancia in Spanish (see section 5.2 for a more detailed expla-
nation). De Groot and Keijzer (2000) show that cognates are acquired more easily and also
persist longer in memory independent of their frequency. They argue that the form overlap
of the two words is a strong cue for their successful association.

Cross-lingual item transfer is particularly relevant for recognition tasks where the lexi-
cal form is overtly available so that lexical association is strongly facilitated. Reading com-
prehension is a typical example for a recognition task. Other recognition tasks comprise,
for example, the lexical decision whether a word belongs to the language, and L2 to L1
translation. However, the cognate facilitation effect persists even across different alpha-
bets, e.g. for Japanese learners of English (Hoshino and Kroll, 2008), and can also be found
in the productive picture naming task (Kroll and Stewart, 1994; Lotto and de Groot, 1998). It
is assumed that not only the lexical, but also the phonetic similarity of cognates contribute
to these facilitation effects. The numerous findings on cross-lingual influence in language
learning – and in particular on the cognate facilitation effect – highlight the importance of
taking the native language of the learner and also other previously acquired languages into
account for the preparation of suitable reading material.

Reading experience As L2 learners are older than children acquiring the L1, they also
tend to have a more advanced educational background and have already developed higher
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intellectual abilities (Cook et al., 1979). L2 learners often start reading in the foreign lan-
guage very early in the learning process whereas native speakers already have completed
a period of several years limited to verbal communication before they face texts. Thus, L1
readers still have to learn standard text processing, principles of cohesion and coherence
and general linguistic competence, whereas L2 learners can already build on these skills
from their L1 experience. Meara (1988) argues that most studies on lexical development in
children do not manage to disentangle their findings on vocabulary acquisition from cog-
nitive development. For older L2 learners, these processes can be more clearly separated.
L2 readability can thus abstract from factors concerned with matching texts to children’s
intellectual level.

In spite of the intellectual advantages of L2 learners, the vocabulary growth progresses
significantly slower than in the L1 (Webb and Chang, 2012). The acquisition of the standard
syntactic structures in a foreign language can be successfully completed after a certain
period, whereas the vocabulary acquisition is a continuous process. Lervåg and Aukrust
(2010) show that the vocabulary size is a critical predictor for reading comprehension by
L2 learners. These findings indicate that texts for L2 learners can be conceptually more
difficult than for younger L1 readers, but more attention should be given to lexical aspects.

4.3.2 Consequences for L2 Readability

From the discussion above, we conclude that L1 readability approaches cannot be directly
transferred to L2 readability because L1 acquisition and L2 learning are two different pro-
cesses. L1 readers already master the basics of the language before they attempt to read
texts. L2 readers, on the other hand, often fail to build a representation of a text because
they focus on unknown words or constructions.

L1 readability is usually determined for full texts with a minimum length of 100 words.
For the readability calculation, many text features are extracted and usually normalized by
the length of the text. The normalization conceals the local difficulties and aggregates them
into a mean readability measure. For L1 readability, this is a reasonable approach, as read-
ers can consolidate the information in order to facilitate the comprehension of a complex
sentence and to dissolve misconceptions and ambiguities. For L2 learners, local difficulties
can inhibit the comprehension of the full text. If the mapping processes described above
fail to map unknown words on known words or concepts, the learner cannot build a rep-
resentation of the text content because lexical knowledge is crucial for text comprehension
(Laufer and Ravenhorst-Kalovski, 2010). Consider, for example, the following sentence:

He swam up past the boulders made of spongy gishy-gosh and flew right by the herd
of floating feeding fipple-fosh.41

41Retrieved from http://www.magickeys.com/books/noblegnarble/index.html, page 9-10, accessed: June
20, 2013
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This sentence is taken from the book “The Journey of the Noble Gnarble” by Daniel Errico
whichwaswritten for young children. It is thus considered to be adequate for inexperienced
L1 readers. However, this sentence could be problematic for L2 readers, because it contains
two irregular past tensewords (swam and flew ). Thewords boulder , spongy and herd might
also be unknown as they are domain-specific. In addition, the compounds gishy-gosh and
fipple-fosh are made up by the author. They consist of regular English sound patterns,
but do not actually exist. L1 readers can easily accept that these new words denote new
concepts specific to the world described in the book. L2 learners, on the contrary, will try
to map the unknownwords on concepts they already know. As this process is bound to fail,
they will likely get confused about the sentence and blame their insufficient L2 proficiency
instead of simply accepting the new words. In order to avoid that these mapping failures
lead to learner frustration, it is important to account for the local word difficulties. It is
thus reasonable to compute the readability on the sentence level (Volodina and Pijetlovic,
2013) or give feedback on even smaller units.

As we explained above, the learner’s native language background is very important
for determining the difficulty of L2 concepts. Learners with the same mother tongue are
more likely to experience the same comprehension obstacles because they follow similar
analogies. In order to capture the cross-lingual influence, it is necessary to retrieve L2 texts
dedicated to learnerswith a specificmother tongue. In addition, knowledge frompreviously
acquired languages should also be taken into account. Consider the following example:

Definition of moral: Private conduct based on strict adherence to a sanctioned or
accepted code or dogma of what is right or wrong, particularly as proclaimed in a
sacred book, or by a non-secular group or sect.42

This definition of moral describes a very abstract concept using mainly academic words
and is thus hard (or probably impossible) to understand for beginning L1 readers. For L2
learners, it would also be a challenging sentence but they can rely on a bigger set of com-
prehension strategies here. First of all, they are probably familiar with the concept of moral
and already have an approximate definition in mind. This knowledge enables them to map
the words more easily to the known concepts. A German native speaker can easily com-
prehend the words marked as bold because they are cognates and have a similar or even
identical spelling in German. In addition, the underlined words have Latin roots and are
shared among many Western European languages. The learner might have come across
them in a previously learned language or in scientific texts. If all these words are success-
fully resolved due to their lexical similarity to other languages, only very basic vocabulary
remains. If L2 learners combine the cognateness cues with their conceptual understand-
ing, they should be able to comprehend the sentence much better than inexperienced L1
readers.

42Retrieved from http://www.businessdictionary.com/definition/moral.html,19.6.2015
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From the discussion above, we can conclude that readability estimates for language
learning scenarios need to focus more on the individual words than on the aggregatedmean
text complexity. Ideally, the background knowledge of the learners (in particular their L1)
should also be taken into account.

4.4 Chapter Summary
This chapter has first introduced the concept of readability and provided a detailed overview
of existing readability features for multiple linguistic levels. In the second section, the re-
lationship between readability and mean difficulty has been evaluated in the context of
text-completion exercises. The results show that the claims in previous work about the pre-
dictive power of readability features for the difficulty of text-completion exercises are not
supported by our data. In the subsequent analysis, we took a closer look at the high standard
deviations of the error rate. We concluded that the lack of correlation between readability
and difficulty is probably rooted in the phenomenon that the mean error rate conceals local
difficulties and is therefore not informative enough. This aspect was further elaborated in
the third section. In the traditional view on readability, the text difficulty is an aggregated
mean over the elements in the text. This view fits with the holistic comprehension and
interpretation approaches by native speakers but does not necessarily match the processes
of L2 readability. In the third section, the differences between L1 and L2 readability have
been discussed from a psycholinguistic point of view. For native speakers, vocabulary ac-
quisition is already progressed very far when they first attempt reading. The main focus
of L1 readability is thus on matters of text organization to account for the learners’ lack of
reading experience and on the age suitability of the text. In contrast, L2 learners can rely
on reading experience from their L1, but struggle with lexical difficulties. We conclude that
L2 learners rather attempt to understand a text step-by-step and consciously use compre-
hension strategies such as cross-lingual item transfer and contextualized inferences. They
profit from their existing background knowledge, especially regarding the mother tongue
and previously learned languages. As a consequence, L2 readability should focus more on
local word difficulty instead of aggregated means. In previous work on readability, some
aspects of word difficulty have also been considered (e.g. in language model approaches),
but they have been averaged over the whole text. In the following chapter, we aim for a
more explicit operationalization of word difficulty.
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Word Difficulty Prediction

“Words are, of course, the most powerful drug used by
mankind.”

— Rudyard Kipling

Figure 5.1: Word difficulty: micro-level dimension of the exercise content

For language learners, lexical knowledge is considered to be the major factor for text com-
prehension (Laufer and Ravenhorst-Kalovski, 2010). Lervåg and Aukrust (2010) show that
the vocabulary knowledge can predict the growth of reading comprehension skills for learn-
ers and argue that additional vocabulary instruction should be given a high priority in L2
learning. The vocabulary growth in L2 learning proceeds significantly slower than in L1
acquisition and might even reach a dead end, called lexical fossilization (Jiang, 2000).

In the previous chapter, text difficulty was introduced as an aggregated mean over the
elements in a text. For L2 learners, it is important to put the focus on the difficulty of
individual words. The process of learning the basic syntactic structures can be considered
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to be more or less completed at a certain point, but vocabulary acquisition is a continuous
process that remains important even for advanced learners.

However, assessing whether a learner knows a word is not trivial. In the following
quote, Brown et al. (2005, p. 819) summarize the wide range of word knowledge that is
described in a detailed analysis on teaching and learning vocabulary by Nation (1990):

Word knowledge is not all or one. Rather, there are different aspects, such as knowl-
edge of the spoken form, the written form, grammatical behavior, collocation behavior,
word frequency, stylistic register constraints, conceptual meaning and the associations
a word has with other related words.

If there are many factors involved in knowing a word, not knowing a word can have many
reasons. The training data of our text-completion exercises contains a surprisingly high
variety of wrong answers. For the English C-tests, the participants provide on average
19 different answers per gap, ranging from close variants of the solution (e.g. typos) to
completely different words. This supports the assumption that knowing a word is not a
binary feature, but a rather diffuse conglomerate of many aspects.

In the following, we discuss the aspects of word difficulty in more detail and focus on
their operationalization in computational features. We first discuss classical word features
that have already been used quite often and illustrate themwith examples from the training
data. We then focus on two phenomena specific to language learning, namely cognateness
and spelling difficulty. As previouswork addresses these phenomena only partially, we con-
tribute own approaches to measure them. The new approaches are evaluated on additional
corpora to analyze their predictive power.

5.1 Classical Word Features
This section provides a detailed analysis of factors that contribute to word difficulty and
discusses implementations for computational approaches.

5.1.1 Word Familiarity

In natural language processing, it is very common to approximate the probability that a
reader knows a word by the word frequency. More frequent words are considered to be
more likely known. If we compare the solutions of the easiest (1) and the most difficult
gap (2) in our training data, it is obvious that you is easier because it is more frequent than
plentiful and therefore more likely to be known.

(1) If y are looking for new experiences, [...] (you )
(2) [...], people may try self-employment because the opportunities seem plen and

financing is easy to get. (plentiful )
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This effect has also been identified by Kobayashi (2002) in his study on cloze tests. In chap-
ter 4, we have seen that word frequency was first approximated by the word length and in
more recent approaches by word counts in large corpora. The direct use of word counts has
the advantage that it can be adapted to different domains and can thus also predict expert
vocabulary. However, the relevance of the frequency effect has mainly been studied for L1
acquisition and might be less relevant for L2 learning.

As elaborated in section 4.3.1, the L1 is acquired by direct communication and imitation.
More frequent words are heard and used more often and are thus more familiar to the
learner. For L2 learners, it also holds that the probability of previously having encountered
aword is increased if the word is more frequent, but this is not the only factor. L2 learning is
a more conscious process that is usually moderated by the learning material. De Groot and
Keijzer (2000) even argue that the success of learning completely newwords is independent
of the frequency of the concept. In their experiments, they teach artificially created words
to learners and find that the frequency of the source word has no effect on the learning
success nor on the retention of the word. However, the use of artificial words and the strict
experimental conditions do not allow a generalization of their findings. The participants
had no chance to actually encounter or apply the new words outside the laboratory, which
of course rules out frequency effects that are rooted in word usage.

We conclude that frequency can be a strong indicator for word familiarity, but that other
factors also need to be taken into account especially for language learners with insufficient
exposure to the target language.

Polysemy and Concreteness Two other aspects of word familiarity are polysemy and
concreteness . Polysemous words complicate the interpretation of a sentence because they
have to be disambiguated first. For L2 learners, a polysemous word can be particularly
confusing as they might know one sense of the word, but not be aware of the fact that
it can also denote something else. In addition, it has been found that L2 learners cannot
successfully apply guessing strategies for the meaning of an unknown word if the word is
polysemous (Verspoor and Lowie, 2003). Polysemy of a word can also override frequency
information as the different senses are not equally frequent. For example, well is a highly
frequent word, but the occurrence as a noun in the sense of fountain is relatively rare.
High polysemy of words is an indicator of low readability for both L1 and L2 readers, but
the effect on L2 readers is even stronger.

In texts for beginning readers, we typically find a high number of concrete words be-
cause they can more easily be mapped to specific concepts. Concrete words also activate
a richer network of semantic information (e.g. mental imagery or wider contextual infor-
mation) than abstract words (Kaushanskaya and Rechtzigel, 2012). If the word mapping
models described in section 4.3.1 apply, word concreteness should be less important for
L2 learners because they are already familiar with the source concepts (recall the example
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with the definition of moral in section 4.3). The L2 word then only needs to be associated
with the L1 word. However, experiments by De Groot and Keijzer (2000) do not support
this assumption. They show that concrete words are learned faster and retained longer than
abstract words. However, if the abstract words are cognates, the learning success is as great
as for concrete non-cognates. A possible explanation for this finding could be that the two
mapping routes influence each other. If the lexical association is facilitated, the conceptual
influence of the word concreteness is reduced.

In theCohMetrix readability framework (Graesser and McNamara, 2004), polysemy and
concreteness are determined on the basis ofWordNet relations (Fellbaum, 1998). Polysemy
is measured by the number of senses of a word (inWordNet senses are provided as synsets).
For concreteness, they assume thatwordswhich correspond to higher nodes in the ontology
hierarchy are less concrete. They thus count the number of hypernym relations that lead
from the currentword to the root of the hierarchy as indicator for concreteness.43 Aspects of
concreteness havemainly been studied in the area of metaphor interpretation (Turney et al.,
2011). For English, human concreteness ratings can be obtained from the MRC database
(Gilhooly and Logie, 1980) and from a more recent collection by Brysbaert et al. (2014).

5.1.2 Morphology and Compounds

English has a rather shallow morphology compared to many other languages. However,
many errors in the training data are caused by wrong inflection or derivation. In both
examples below, the lemma forms of the words (death , environment ) are provided much
more often than the correct solutions.

(3) There has been a reduction in dea of children. (deaths)
(4) [...] information from ancient bones and their enviro settings. (environmental )

Compound words that consist of several parts e.g. greenhouse are also considered to be
more complex than simple root words because the learner needs to combine the meaning
from the parts. This is particularly relevant for German because it contains a high number
of compounds.

Word splits in text-completion exercises In most text-completion exercises, a part of the
solution word is already provided. This is a helpful hint as it reduces the number of answer
options (see chapter 6), but it can also be misleading if the given part splits the word in an
unfortunate way, as in the following example.

(5) It is not easy to design and build a mac that is both, efficient and durable.
(machine)

43We assume that words that are too concrete, i.e. extremely low in the sense hierarchy, should also be more
difficult (as macaque compared to monkey ), but we have not yet found any studies supporting this hypoth-
esis.
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In this case, the prefix splits the word in the middle of a syllable which results in a phonetic
change and provokes answers with the pronunciation /mæc/ such as *macanics , *macan-
ism , *macanical , macbook , macphone , and macro instead of the original pronunciation
/mæʃ/. Hyphenation dictionaries or rule-based hyphenation approaches can provide in-
formation about syllable boundaries to account for this phenomenon. If the prefix splits a
word at a compound boundary (such as greenhouse), the learner does not receive informa-
tion about the second stem of the word which might also lead to increased difficulty. This
can be checked using decompounding algorithms (Erbs et al., 2015).

5.1.3 Syntactic Behavior and Context Specificity

As the introductory quote by Brown et al. (2005) indicates, word knowledge cannot be
obtained by looking at isolated words. Words always occur in combination with other
words and word difficulty can differ depending on the context and the syntactic behavior
of the word. Heilman et al. (2007) highlight the importance of considering the syntactic
complexity as a difficulty factor for language learners.

Word class The word class has been studied as a difficulty indicator for text-completion
exercises by several researchers, but with mixed results. Several researchers find that func-
tion words are easier to solve than content words (Brown (1989) and Kobayashi (2002) for
cloze tests and Dörnyei and Katona (1992) and Kobayashi (2002) for C-tests), but Klein-
Braley (1996) claims that prepositions are often harder for learners. Sigott (1995), on the
contrary, could not confirm any effect of the word class on C-test difficulty.

Technically, the word class can be determined by applying a part-of-speech (POS) tagger
on the input. Commonly, all articles, prepositions, conjunctions and pronouns are consid-
ered to be function words. Another interesting aspect is the probability of a POS sequence.
Phrases with an adjective between a determiner and a noun (the red house) are more fre-
quent than phrases in which the adjective is placed after the noun (the house red ).44 This
can be determined by counting the occurrences of POS sequences in manually tagged cor-
pora.

Context specificity When reading a foreign text, learners often guess the meaning of
words. These informed guesses are called lexical inferencing (Haastrup, 1991). A learner’s
ability to perform lexical inferencing strongly contributes to her reading comprehension
(Zhang and Koda, 2011). According to the distributional hypothesis , the inferred meaning
of a word largely depends on the context in which the word has been presented (Firth,
1957). This hypothesis has received a lot of attention in the field of meaning acquisition in
the L1 and has caused a theoretical shift towards distributional methods. It also initiated

44Note that the second example is rare, but possible as inWe paint the house red .
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many experimental studies as the one by McDonald and Ramscar (2001) who show that the
similarity of two words is judged differently depending on the context in which they are
presented. Distributional properties can provide an explanation how children overcome
the poverty of the stimulus and manage the rapid acquisition of new words. The sparse
vocabulary knowledge of language learners is a hard obstacle for reading comprehension
(Lervåg and Aukrust, 2010) and they have to rely even more on contextual information for
lexical inferencing. Very specific contexts can narrow down the possible meaning of a word
so that it can easily be guessed by learners. Consider the following example:

(7) The doctor diagnosed him with Ewing’s sarcoma and proposed chemotherapy.

The phrase diagnosed him with is almost always followed by the name of a disease. In
combination with the clue chemotherapy, the reader can guess that Ewing’s sarcoma is
probably a cancer type. This phenomenon can also explain why language learners feel
more comfortable with texts from their expert domain. Even though the text might be
more complex and the vocabulary very infrequent, their high domain knowledge facilitates
the conceptual understanding and thus enables an easier mapping.

The probability of aword in a given context can be determined by higher-order language
models as applied in Schwarm andOstendorf (2005). Additionally, the context specificity can
be operationalized by using a distributional thesaurus (Lin, 1998), collocation frequencies
(Anagnostou andWeir, 2006) and semantic similarity methods (Zesch and Gurevych, 2010).
These approaches provide information about the words that are likely to occur in a given
context. If all the candidate words are semantically close, the context is very specific and the
meaning of an unknown word can probably be approximated more easily. A more detailed
description of approaches for measuring candidate fitness can be found in section 6.2. For
the context specificity of the solution, the bigram and trigram frequency of the word and
the left and right neighbors are calculated.

Lexical inferencing on the basis of context specificity is performed by L1 and L2 learn-
ers and is conceptually mediated. In addition, L2 learners can also rely on the orthographic
similarity of the unknown word to a word in their mother tongue in order to infer the
meaning. The cross-lingual orthographic similarity of two words is called cognateness and
we will elaborate on this feature in the next section. Both guessing strategies – lexical
and conceptual – might of course also lead to wrong mappings and thus to severe misun-
derstanding. In order to provide useful learning materials, it is important to be aware of
these processes and be able to predict comprehension facilitation by cognates or context
specificity as well as probable misconceptions caused by false friends.
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5.2 Cognates
Cognates are words that have a similar lexical form in the L1 and the L2. A strict definition
only considers two words as cognates if they have the same etymological origin, i.e. if they
are genetic cognates (Crystal, 2011). Language learners usually lack the linguistic back-
ground to make this distinction and will use all similar words to facilitate comprehension
regardless of the linguistic derivation. For example, the English word strange has the Ital-
ian correspondent strano . The two words have different roots and are therefore genetically
unrelated. However, for language learners the similarity is more evident than, for example,
the English–Italian genetic cognate father–padre . We thus apply a more operational cog-
nate definition for the language learning setting. We consider as cognates all word pairs
that are sufficiently similar to be recognized as related by language learners. This simi-
larity facilitates the word association independent of other features such as frequency or
concreteness of the word (De Groot and Keijzer, 2000; Lemhöfer and Dijkstra, 2008). In this
section, the importance of cognates for language learning and approaches for measuring
cognateness are discussed. Themain contribution is the introduction of a new approach for
cognate production that works even across different alphabets. The approach is described
and evaluated in depth. This contribution has been published in Beinborn et al. (2013) and
parts of the general discussion can be found in Beinborn et al. (2014a).

5.2.1 Cross-lingual Transfer

For L1 readability calculations, words containing Latin roots will often be considered more
difficult because they are usually longer. In addition, they are mainly used in academic
contexts and thus have a low frequency in general domain corpora. In L2 settings, on
the contrary, these words can facilitate the comprehension for language learners with a
romance language background due to their cognateness . Tharp (1939) already criticizes
that pure frequency counts “ignore the lack of burden of ‘gift’ words” such as cognates.
Ferreira de Souza (2003) studies how cognates contribute to reading comprehension and
finds a positive effect for the tasks of skimming and free written recall. In Uitdenbogerd
(2005), the readability of French books was judged by English native speakers based on the
first 100 words. The results show a correlation between the number of cognates in the text
and its assumed readability. This finding was not considered by recent work on readability
because most approaches targeted native speakers. The cognateness cues contribute to
the advantage of L3 (L4, L5, …) learners over L2 learners mentioned earlier. Multilingual
learners can rely on a wider range of linguistic knowledge and can access a bigger set of
potential cognates in order to facilitate lexical association.

The cognateness of words is thus an important feature for word difficulty. However,
not all cognates actually have the same meaning. So-called false friends look lexically sim-
ilar but mean different things. Famous examples for false friends are the German word
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Czech trigger Translation Other associations

nudle Nudel(n)(15)
švagr Schwager (13)
brýle Brille(12) brüllen (4)
šlak Schlag (12) Schlagsahne(3), schlagen (2)
knedlík Knödel (10) gnädig (3), niedlich (2)
žold Sold (9) Zoll (5),Gold (2), verkauft (2), Schuld (2)
cíl Ziel (9) Himmel (2)
sál Saal (8) Salz (13)
taška Tasche(8) Aufgabe(4),Tasse(4), Taste(2)
skříň Schrein/Schrank (5) Bildschirm/Screen (3),schreien (2)
farář Pfarrer (4) Fahrer (7), fahren (5), Fahrrad (4)
flétna Flöte(4) Flotte(4), fliehen (2)
valčík Walzer (3) Walze(4), falsch (2)
muset müssen (3) Museum (11), Musik (3), Mus(2), Muse(2)
talíř Teller (2) Taler (5), zahlen (3), teilen (2)
knoflík Knopf (1) Knoblauch (11), knifflig (4)
šunka Schinken (1) Sonne(2), schunkeln (2)

Table 5.1: Results of the cognate study: Czech cognates with their correct translations and other
associations named by the participants. The number of mentions are provided in brackets and the
words are ordered by the number of mentions of the correct translation.

Gift (meaning poison and not present ) and the Spanish word embarazada (meaning preg-
nant and not embarrassed ). False friends have the opposite effect on readability; they lead
the reader towards a wrong interpretation of the sentence. Both, true and false cognates
need to be detected and incorporated into readability measures.

5.2.2 Cognate Study

In a small-scale study, we examined whether cognates can facilitate the comprehension
of unknown words even in the absence of context and background knowledge of the tar-
get language. We selected 17 Czech-German cognates and presented to 15 native German
speakers who did not have experience with Eastern-European languages.45 The partici-
pants were asked to name up to 3 guesses for the German translation of the Czech source
word. They were not allowed to use a dictionary or any other linguistic material. Table 5.1
gives an overview of the Czech source words together with the correct German transla-
tions and other German associations named by more than one participant. The results in
table 5.1 show that the participants succeed in guessing the right meaning in most of the
cases. Some of the Czech words are strongly associated with their correct German trans-

45The words were selected from http://de.wikipedia.org/wiki/Tschechische_Sprache#Deutsche_
Lehnw.C3.B6rter_im_Tschechischen, accessed: June 1, 2013
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lations (e.g. nudle–Nudel , švagr–Schwager ) and do not provoke other associations. For
other words, the cognateness relation is not strong enough (šunka–Schinken ) or the cor-
rect cognate is suppressed by stronger false friend associations (e.g. knoflík–Knoblauch ,
muset–Museum ). The results show that the participants were able to guess the correct
meaning of a foreign word without any context information. If they had seen the words
within an understandable context, they would probably have an even better intuition for
the meaning. Consider, for example, the test word muset which is the only verb in the list.
Some participants mentioned after the test that the other cognates had primed them for
noun meaning, which explains the variety of noun associations named here. In a context
that clearly signals the verb property ofmuset , the noun associations would probably have
been suppressed.

Another interesting aspect is the influence of languages besides the L1. As we noted be-
fore, people rely on all previously learned languages when trying to detect cognates. Our
participants all have very good knowledge of English and almost all of them also know
French. In addition, each of them (except for one participant) has studied at least one of
Spanish, Italian or Latin. This is also reflected in the associations. For example, the Ger-
man association Himmel for the Czech word cíl is very likely rooted in the similarity to
the French word ciel or the Spanish word cielo . Both mean heaven in English and thus
trigger the German translation Himmel . The same process might apply when proposing
Salz (Spanish: sal, French: sel, English: salt) for sál . English translationsmight have caused
the associations for Aufgabe (=task) for taška , verkauft (=sold) for žold and Bildschirm
(=screen) for skříň . It should be noted that all the cross-lingual associations lead to wrong
mappings in our examples. These false friend pairs might cause confusion for the learners
and need to be handled separately. Czech is not very close to Western European languages
which are the background languages of our participants. If they had more experience with
Eastern European languages, the cross-lingual mappings could be more successful.

The results of the cognate study show that learners are able to guess the meaning of
words that are related to their own language (or to other languages they already know)
without having received any education in the new language. A more detailed study by
Berthele et al. (2011) comes to the same result. The results confirm the intuition of many
language learners and teachers that cognateness of words facilitates their mapping to L1
words and concepts. The ability to guess unknown words also has an impact on the text
readability (Zhang and Koda, 2011). A text containing many infrequent words can still be
easy to understand for a learner, if the infrequent words exhibit high cognateness.

5.2.3 Measuring Cognateness

Determining the cognateness of a word for a learner requires that it be checked against a
list of known cognates from all the languages that the learner knows. In previous work on
cognates and in our pilot study, the words are manually selected by human experts. How-
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ever, there exist several approaches that can be applied for automatic cognate retrieval. As
each of the following measures for string similarity and phonetic similarity can only cap-
ture a fraction of cognates, they are often applied in combination as features for supervised
machine learning classifiers (Sepúlveda Torres and Aluisio, 2011).

String similarity Many different similaritymeasures have been applied on candidate pairs
to distinguish between cognates and unrelated words. The majority are string similar-
ity measures that assess the orthographic similarity of two words. The longest common
subsequence ratio (LCSR), for example, calculates the ratio of the length of the longest (not
necessarily contiguous) common subsequence and the length of the longer word (Melamed,
1999). Kondrak and Dorr (2004) apply generalizations of LCSR to bigrams and trigrams for
the detection of confusable drug names. Inkpen et al. (2005) andMontalvo et al. (2012) show
that different variations of the Dice measure (introduced by Adamson and Boreham (1974))
return the best results. In this context, Dice is defined as “twice the number of shared letter
bigrams by the total number of bigrams in both words”.

Dice(X , Y ) =
2 ∗ |bigrams(x) ∩ bigrams(y)|
|bigrams(x)| + |bigrams(y)|

(5.1)

(Brew and McKelvie, 1996) proposed the related measure XDice which uses extended bi-
grams, i.e. trigrams without the middle letter. They use the union of bigrams and extended
bigrams, but the description in Inkpen et al. (2005) leads to the conclusion that they apply
the formula only on the extended bigrams without the standard bigrams. In this thesis
and in our publication (Beinborn et al., 2013), we follow the second interpretation to allow
comparison to related work. Other measures for cognate identification focus on the prefix
similarity (Simard et al., 1992) and the consonant similarity (Danielsson and Mühlenbock,
2000).

Phonetic similarity The string similarity measures do not capture similarity in the pro-
nunciation of words very well. Different languages often encode the same phoneme with
different spelling (e.g. the English word rice is pronounced similarly as the German cognate
Reis , but theirDice andXDice values are 0). The phonetic similaritymeasures Soundex (Rus-
sell and Odell, 1918), Editex (Zobel and Dart, 1996) and Aline (Kondrak, 2000) calculate the
similarity of two words by approximating phonetic characteristics. These approaches have
been developed for English and do not scale well for languages with different grapheme to
phoneme alignment. The LexStat measure (List, 2012) aligns the phonetic transcription of
two words to determine their cognateness. The approach relies on phonetic transcription
resources that are only available for a few languages.
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Figure 5.2: Cognate production workflow

Pattern-based approaches Most cognate pairs follow regular production processes as in
vision–visión and tradition–tradición . Not all of these processes can be captured by sim-
ilarity measures; for example, the English–Spanish pair accustomed–acostumbrado has
very low similarity values but can easily be identified as related by language learners. This
phenomenon can be captured by approacheswhich focus on the production rules that trans-
form a word into its cognate in a foreign language. The approach by Mulloni (2007) learns
the edit operation associations from a list of cognates and generalizes them to candidate
rules. Statistical scores are then assigned to each rule to measure the association between
the left-hand side and the right-hand side of the rule. Similarly, Gomes and Pereira Lopes
(2011) use standard character alignment for the extraction and generalization of substitu-
tion patterns and introduce the new measure SpSim . Their results indicate that pattern-
based approaches outperform standard string similarity measures in the task of cognate
identification.

The pattern-based approaches described above all rely on string alignment that is based
on exact matching of characters and can thus not be applied for language pairs with differ-
ent alphabets. In order to overcome this weakness, we developed a new algorithm for cog-
nate production (COP) that can be applied to any language pair sharing cognates (Beinborn
et al., 2013). We describe this approach in more detail in the following subsection.

5.2.4 Cognate Production Approach

In theCOP approach, wemodel the regular production patterns of cognates using character-
based machine translation .

Figure 5.2 gives an overview of theCOP architecture. We use the existing statistical ma-
chine translation engineMoses (Koehn et al., 2007). Themain difference between character-
based machine translation and standard machine translation is the size of the lexicon. The
tokens in COP are character n-grams instead of words; therefore less training data is re-
quired. Additionally, distortion effects can be neglected as reordering of n-grams is not a
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common regular morphological process for cognates.46 Thus, we deal with less variation
than standard machine translation.

Training As training data, we use existing lists of manually collected cognates (see sec-
tions 5.2.5 and 5.2.6 for descriptions of the data) and perform the following pre-processing
steps. All duplicates, multi-words, and all word pairs that are identical in source and target
are removed because they are trivial to find. The remaining words are lowercased and# is
added as start symbol and $ as end symbol of a word. Then all characters are divided by
blanks. Moses additionally requires a language model. We build an SRILM language model
(Stolcke, 2002) from a list of words in the target language converted into the format de-
scribed above. On the basis of the input data, the Moses training process builds up a phrase
table consisting of character sequences in our case. As a result of the training process, we
get a cognate model that can be used to produce cognates in the target language from a list
of input test words.

Cognate production Using the learned cognate model, Moses returns a ranked n-best list
containing the n most probable transformations of each input word. In order to eliminate
non-words, the n-best list is checked against a lexicon list of the target language. Thefiltered
list then represents the set of produced cognates. Note that the list will contain both, true
and false cognates, and needs to be further processed to identify false friends.

Evaluationmetrics In order to estimate the cognate production quality without having to
rely on repeated human judgment, we evaluate COP against a list of known cognates. The
coverage indicates the ratio of source words for which our approach was able to produce
the correct target cognate.

Existing cognate lists only contain word pairs as cognates, but a word might have sev-
eral true cognates. For example, the Spanish word música has at least three English cog-
nates: music ,musical , andmusician . Therefore, even a perfect cognate production process
would not always be able to rank the designated gold cognate at the top position. In order
to account for this issue, we evaluate the coverage using a relaxed metric that counts a pos-
itive match if the gold standard cognate is found in the n-best list of cognate productions.
We determined n = 5 to provide a reasonable approximation of the overall coverage for the
training data and refer to it as Cov@5 .

We additionally calculate the mean reciprocal rank (MRR) as

MRR =
1

|C |

|C |

􏾜
i=1

1

ranki
(5.2)

46We set the distortion limit to zero and use these standard parameters:
-weight-l 1 -weight-d 0 -weight-w -1 -dl 0 -weight-t 0.2 0.2 0.2 0.2 0.2
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where C is the set of input words and ranki is the rank of the correct cognate production.
The MRR is a metric often used in information retrieval for evaluating any process that
produces a ranked list of possible responses. The reciprocal rank is the inverse of the correct
rank. The mean reciprocal rank is the average of the reciprocal ranks of the test list. For
example, if the target cognate is always ranked second-best, then the MRR would be 0.5.47

Note that in the language learning scenario, words that might be associated with the
foreign word by learners, but are actually not true cognates also need to be considered (e.g.
the English word mystic might also be mistakenly associated with música by language
learners). Unfortunately, an evaluation of the false friends produced byCOP is not covered
by those metrics and thus left to an additional analysis performed in section 5.2.7.

5.2.5 Experiments

We conduct a set of experiments that cover different aspects of the cognate production
process. First, we test whether the approach is able to learn simple production rules in a
minimal model. In a second step, we select optimal parameters and test the influence of the
size and quality of the available training data. We then compare the best model to previous
work. These experiments are conducted for the language pair English–Spanish. Results
for other language pairs are discussed in section 5.2.6. All cognate lists are available at
http://www.ukp.tu-darmstadt.de/data/cognate-production.

As this is the first approach to cognate production, we cannot directly compare the
results to a state-of-the-art baseline. A possible baseline could be a random permutation
of characters, but it would lead to useless results. In the last experiment, we compare our
results to the performance of existing algorithms developed for cognate identification. The
experiments are evaluated using coverage and MRR . The upper bound for Cov@5 would
presumably be close to 100% for eloquent bilingual speakers. The upper bound for the
MRR cannot be exactly determined as discussed in the previous section.

Minimal model For a first proof of concept, we test whether COP is in principle able to
capture the production processes from one language to another by using a very controlled
setting. We take a list of ten English–Spanish cognate pairs all following the production
process where ~tion becomes ~ción ; see table 5.2.

We train amodel with theseword pairs and as a result can successfully produce cognates
following the same process, e.g. invitation–invitación . The model is also able to generalize
to unseen character sequences. Even though all examples in the training list either termi-
nate in the sequence ~ition or ~ation , the input fiction correctly produces ficción . We
can conclude thatCOP succeeds in learning the necessary patterns for cognate production.

47The common evaluation metric for machine translation is the BLEU score (Papineni et al., 2002), but this
would be misleading in our setting. BLEU assigns considerably high scores for partial matches which are
not useful for cognate production.
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English Spanish

Training

tradition tradición
application aplicación
organization organización
administration administración
implication implicación
classification clasificación
nation nación
conjugation conjugación
information información
amputation amputación

Test examples
invitation invitación
fiction ficción

Table 5.2: Training lists for minimal model

In the following, we investigate whether COP can also be applied to noisy training data
containing a mixture of many different production processes.

Data We collect and proofread cognates from freely available resources and merge them
with the list used by Montalvo et al. (2012) resulting in a list of 3,403 English-Spanish cog-
nates.48 We split it into a training set (2,403), development set (673), and test set (327). We
train a cognate model on the training set and evaluate the cognate production on the test
set. We compare the results for different parameters: the character n-gram size used for
tokenization, the order of the language model, and the lexicon used for filtering. In addi-
tion, the effect of tuning the model on the development set is evaluated. Table 5.3 shows
the coverage in the 5 best productions and the MRR for each parameter. The results are
discussed below.

N-gram size We start with the n-gram size parameter that determines the tokenization of
the input; the respective format for unigrams, bigrams, and trigrams for theword banc looks
as follows:
unigrams: # b a n c $ bigrams: #b ba an nc c$ trigrams: #ba ban anc nc$
Higher order n-grams in general increase the range of the patterns and thus lead to better
alignment. However, they also require a larger amount of training data; otherwise the num-
ber of unseen instances is too high. In our experiments, bigrams produce slightly better
results than unigrams and trigrams; this is in line with findings by Nakov and Tiedemann

48We used the resources at http://www.cognates.com, http://www.intro2spanish/com/vocabulary/
00-lists/*, and http://www.cognates.org/research/mfcogn.html, all accessed: February 11, 2013.
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Cov@5 MRR

1)
Unigram .63 .43
Bigram .65 .49
Trigram .51 .40

2)
LM-order 5 .68 .48
LM-order 10 .65 .49

3)
Web1T-Filter .68 .52
Wordlist-Filter .65 .54

4) Moses Tuning .66 .54

Table 5.3: Parameter selection forCOP . The settings in bold are kept constant for the other exper-
iments.

(2012). Thus, character bigrams are used in the following experiments. The optimal setting
for this parameter might vary with respect to different languages and datasets.

Language model The next parameter is the language model which determines the prob-
ability of a sequence in the target language, e.g. a model of order 5 considers sequences of
character n-grams up to a maximum length of 5. Order 5 seems to be already sufficient
for capturing the regular character sequences in a language. However, the ranks for the
order-10 model are slightly better and as our vocabulary is very limited, training the big-
ger model can still easily be performed. The language model of order 10 is used for the
remaining experiments.

Lexicon filter For filtering the n-best cognate productions, two different lexicon filter lists
are tested. A relatively broad one extracted from the Spanish Web1T (Brants and Franz,
2006) word counts, and a more restrictive corpus-based list.49

The more restrictive filter decreases the coverage as it also eliminates some correct so-
lutions, but it improves the MRR as non-words are deleted from the n-best list and the
ranking is adjusted accordingly. The choice of the filter constitutes a trade-off between
cognate coverage and the quality of the n-best list. For our language learning scenario,
the more restrictive filter is chosen in order to assure high quality results in expense of
coverage.

Machine translation parameters In the initial experiments, we have set the parameter
weights according to introspection. However, it is common practice to tune the machine

49The stricter word list is available at:
http://www.umich.edu/~archive/linguistics/texts/lexica/span-lex.zip
accessed: December 12, 2015.
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Figure 5.3: COP learning curve

translation parameter weights by applying minimum error rate training (Och and Ney,
2003) using the development set. For comparison, we re-ran the experiments on a tuned
model but the difference is minimal. Tuning optimizes the model with respect to the BLEU
score. For our data, the BLEU score is quite high for all produced cognate candidates,
but it is not indicative of the usefulness of the transformation. A word containing one
wrong character is not necessarily better than a word containing two wrong characters.
This explains why tuning has little effect.

Generally,COP reaches a coverage of about 65%. If an n-best list with the 100 best trans-
lations is considered (instead of only 5), the coverage increases only by less than 1% on
average, i.e. the majority of the correct cognates can be found in the top 5. This is also
reflected by the high MRR . In the following experiments, the optimal parameter setting
(highlighted in table 5.3) is used.

Training data size & quality As we have seen in the experiments in section 5.2.5, COP is
able to learn a production rule from only few training instances. However, the test dataset
contains a variety of cognates following many different production processes. Thus, we
evaluate the effect of the size of the training data on COP . The learning curve in Figure 5.3
shows the results. As expected, both coverage andMRR improve with increasing size of the
training data, but we do not see much improvement after about 1,000 training instances.
Thus, COP is able to learn stable patterns from relatively few training instances.

However, even a list of 1,000 cognates is a hard constraint for some language pairs. Thus,
the following experiments test whether satisfactory results can also be producedwith lower
quality sets of training pairs that might be easier to obtain than a list of cognates.
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Size Cov@5 MRR

Cognates 1,000 .57 .48

Translations
UBY 1,000 .53 .47
UWN 1,000 .50 .43
Bing 1,000 .51 .44

Knowledge-free 1,000 .21 .18

Size Cov@5 MRR

2,403 .65 .54

6,048 .69 .56
10,531 .69 .54
5,567 .64 .54

34,019 .47 .33

Table 5.4: Influence of data quality and size

We extract word pairs from the freely available multilingual resources UBY (Gurevych
et al., 2012) and Universal WordNet (UWN , de Melo and Weikum (2009)). UBY combines
several lexical-semantic resources, but all translations are extracted from Wiktionary .50

UWN is based on WordNet (Fellbaum, 1998) and Wikipedia51 and provides automatically
extracted translations for over 200 languages that are a bit noisier compared to UBY trans-
lations. Additionally, machine translations for all words from an English word list were
queried from the Microsoft Bing translation API.52 In addition, a knowledge-free approach
is tested by pairing all words from the EnglishWeb1T corpus with all words from the Span-
ishWeb1T corpus. In order to limit the number of results to a manageable size, we only use
every fifth word. The translation pairs always share at least one sense, but this is obviously
not the case for theWeb1T pairs, which will be unrelated in most cases.

In order to increase the ratio of possible cognates in the training data, the XDice-
measure is used as a string similarity filter with a threshold of 0.425 on the translation
pairs.53 For the knowledge-free pairs, a stricter threshold of 0.6 is used to account for the
lower quality.

For an impartial quality comparison, the number of training instances is first limited
to 1,000, where (as shown above) the performance increases leveled off. The left part of
table 5.4 shows the results for coverage and MRR . It can be seen that the results for the
translation pairs extracted from UBY , UWN and Bing are only slightly inferior to the use
of manually collected cognates for training. The small differences between the resources
reflect the different level of linguistic control that has been applied in their creation. The
knowledge-free pairs fromWeb1T yield drastically inferior results. We can conclude that
training data consisting of selected cognates is beneficial, but that a high-quality list of
translations in combinationwith a string similarity filter can also be sufficient and is usually

50https://www.wiktionary.org
51https://www.wikipedia.org
52http://www.bing.com/translator
53The threshold was selected by analyzing the collected cognate pairs. About ~80% of the cognate pairs exhibit
an XDice-value above this threshold.
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Cov@5 MRR

Dice .46 .21
XDice .52 .25
LCSR .51 .24
SpSim .52 .22

COP .65 .54

Table 5.5: Comparison of different approaches for cognate production

easier to obtain. However, a string similarity filter can only be applied if the two languages
share the same alphabet or if transliterations can be obtained (see section 5.2.6).

In a follow-up experiment, the full size of each training set is used. As expected, cover-
age and MRR both increase in all settings. Even with the knowledge-free training set that
introduces many noisy pairs, acceptable results can be obtained. This shows that COP can
be used for the production of cognates, even if no language-specific information beyond a
lexicon list is available.

Comparison to previous work In previous work, the task was limited to cognate identi-
fication, i.e. the decision whether a candidate word pair is a cognate pair. Most approaches
based the decision on the output of similarity measures (Kondrak and Dorr, 2004; Inkpen
et al., 2005; Sepúlveda Torres and Aluisio, 2011; Montalvo et al., 2012). COP can now create
a cognate list from a simple source word list because it directly produces the target cognate.

In order to compare the previous approaches to COP , we “produce” the target cognate
for an English word by pairing it with all words from a list of Spanish words.54 All resulting
pairs are considered as candidate pairs for the cognate identification task.

COP is compared to four similarity measures that have been introduced for cognate
identification and were described in section 5.2.3: the three frequently used string simi-
larity measures (LCSR , Dice , and XDice ), which performed well in Inkpen et al. (2005) and
Montalvo et al. (2012), and the productive approach SpSim (Gomes and Pereira Lopes, 2011).
For each source word, the candidate pairs are ranked according to the corresponding simi-
larity score. The target word of the top-ranked pair is then considered to be the produced
cognate. As the similarity measures often assign the same value to several candidate pairs,
we get many pairs with tied ranks, which is problematic for computing coverage and MRR .
Thus, pairs within one rank are randomized and the results are averaged over 10 random-
ization runs.55

54In order to ensure a fair comparison, the Spanish word list that is also used as lexicon filter in COP is used
as vocabulary.

55The average standard deviation is 0.01.

96



5.2. Cognates

Language pair Source Train Test Word list

en–es Cognate data 2,403 327 91,655
es–en UWN + XDice 10,531 327 203,031
en–de UWN + XDice 7,944 100 40,794
en–ru UBY + XDice 4,739 127 32,617
en–el Bing + XDice 3,131 100 120,750
en–fa Bing 20,461 241 84,628

Table 5.6: Source of the cognate training data for each language pair and size of training set, test
set and word list.

Table 5.5 shows the results. The differences between the individual similarity measures
are very small; the string similarity measures perform on par with SpSim . The low MRR in-
dicates that the four measures are not strict enough and consider too many candidate pairs
as sufficiently similar. COP clearly performs better than all other measures for both cover-
age andMRR . The results for the similarity measures are comparable to the knowledge-free
variant of COP (Coverage: 0.47 and MRR : 0.33, compare table 5.4). Obviously, COP better
captures the relevant cognate patterns and thus is able to provide a better ranking of the
production list. However, it should be noted that similarity measures might also be a rea-
sonable choice if translation resources are already available for the language pair and we
only need to distinguish between cognates and non-cognates (Inkpen et al., 2005). Another
advantage of COP is its applicability to language pairs with different alphabets (see the
following section), whereas the similarity measures can only operate within one alphabet.

5.2.6 Multilinguality

The previous experiments showed that COP works well for the production of Spanish cog-
nates from English source words. However, in language learning, all languages previously
acquired by a learner need to be considered, which leads to a large set of language com-
binations. Imagine, for example, an American physician who wants to learn German. She
has studied Spanish in school and the terminology in her professional field has accustomed
her to Greek and Latin roots. When facing a foreign text, she might unconsciously activate
cues from any of these languages.

In the following experiments,COP is tested for other languages with the same alphabet
and across alphabets. In addition, we evaluate howwell the cognates produced byCOP cor-
relate with human judgments.
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Data The test data for all language pairs have beenmanually collected fromweb resources
and have been proof-read by native speakers.56 For the training data, we used translation
pairs from the lexical resource UWN for Spanish and German and from UBY for Russian.
Unfortunately, UWN and UBY contain only a few examples for Greek and Farsi, so the
Bing translations of English source words serve as training data for these languages. In or-
der to improve the quality, we apply an XDice similarity filter on the resulting word pairs.57

TheGerman words are filtered directly, the Russian and Greek words are first transliterated
into the Latin alphabet.58 We asked native speakers to spot-check the transliteration results.
As the Farsi reviewers considered the output of available transliteration engines for Farsi
to be flawed, the training data for Farsi is not filtered. For each language, we also need a
word list that is used to build a character-based language model for training theCOP model
and as the word filter for the produced cognates.59 Table 5.6 provides an overview of the
datasets.

Same alphabet In the first experiment, the cognate production is tested in the reverse
direction to produce English cognates from Spanish source words. The results in table 5.7
(upper part) show that COP works bi-directionally, as the scores for Spanish to English
are comparable to those for English to Spanish. In addition, we train a model for another
Western European language pair, namely English–German. The results are slightly worse
than for English–Spanish which is surprising because English and German are considered
to be more closely related. The worse results are due to our quite restrictive lexicon filter,
which deletes a substantial number of the target cognates from the n-best list. For example,
the German cognatesKarbunkel andFaksimile are actually produced by theCOP model for
the English source words carbuncle and facsimile , but they are not contained in the word
list and are therefore eliminated. We can improve the coverage with a less restrictive filter,
but then the MRR drops because less words are deleted from the n-best list. In language
learning scenarios, assuring high quality is usually considered to be most important; we
therefore recommend opting for more restrictive filters.

Cross-Alphabet Previous approaches to cognate identification only operate on languages
using the same alphabet. As COP is able to learn correspondences between arbitrary sym-
bols, it can easily be applied on cross-alphabet language pairs. In the previous experiments,

56en–de: http://www.german.about.com/library/blcognates_*.htm, en–ru: http://www.quizlet.com/
281607/russian-cognates-flash-cards , en–el: http://www.everything2.com/title/Greek+Cognates,
en–fa: http://www.ebookbrowse.com/farsi-or-persian-cognates-of-english-doc-d97194169, all ac-
cessed: February 11, 2013.

57Threshold for German: 0.425, for Russian and Greek: 0.5
58Using ICU : http://site.icu-project.org/, accessed: February 11, 2013.
59de: http://www.htdig.org/files/contrib/wordlists/, ru: http://www.artint.ru/projects/frqlist/
frqlist-en.php, el: word list extracted from Wikipedia by Torsten Zesch, fa: https://skydrive.live.com/
?cid=3732e80b128d016f&id=3732E80B128D016F!3584, all accessed: February 11, 2013.
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Language pair Cov@5 MRR

Same alphabet
en-es .65 .54
es–en .68 .48
en–de .55 .46

Cross-alphabet
en–ru .59 .47
en–el .61 .37
en–fa .71 .54

Table 5.7: COP results for other languages

cognate pairs that have exactly the same string representation have been excluded. For
cross-alphabet pairs, this is not directly possible. Thus, the task is to tackle both standard
transliteration (as in the English–Greek pair atlas–άτλας)60 and cognate production (as in
archangel–αρχάγγελος)61.

COP is tested with Russian (ru), Greek (el), and Farsi (fa). The lower part of table 5.7
lists the results. Given that those language pairs are considered to be less related than
English–Spanish or English–German, the results are surprisingly good. In particular, the
production of Farsi cognates works very well even though the training data has not been
filtered. Table 5.6 shows that the English–Farsi training data is much larger than the train-
ing data for the other language pairs. In the previous experiments, we have seen that bigger
training datasets lead to better results. It seems that the size of the training data can balance
the quality flaws in this case. For Greek, we observe a combination of high coverage and
low MRR . This indicates that the gold word is produced by COP but other productions are
ranked higher. A closer look at the errors reveals that COP often produces Greek words in
several declinations (e.g. nouns in genitive case) which do not match the designated gold
cognate and lead to a worse ranking of the correct target. This problem could be mitigated
with a more restrictive lexicon filter.

From the results, we conclude thatCOP also works for other languages and even across
alphabet boundaries. We are convinced that the settings should still be tuned to each lan-
guage pair before applying the approach to real-world tasks. For example, the quality of
the training data and the word lists differ strongly in our experiments (which can also be
inferred from the varying sizes listed in table 5.6).

For an impression of the cognates produced by COP , we compiled a short list of in-
ternational words that are likely to occur in all languages under study. Table 5.8 lists the
top-ranked productions. Note that the gaps in the table are often cases where the absence
of a cognate production is an indicator of COP ’s quality. For example, the Greek words

60The transliteration of άτλας is átlas .
61The transliteration of αρχάγγελος is archággelos .
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English Spanish German Russian Greek Farsi

alcohol alcohol alkohol алкоголь αλκοολικό لکلا

coffee café — кофей — هوهق

director director direktor директор — رید

machine machina maschine махина μηχανή نیشام

music músico musik — μουσικής یقیسوم

optimal óptimo optimal оптимальный — بولطم

popular popular populär популярный — بوبحم

theory teoría theorie теория θεωρία یروئت

tradition tradición tradition традиция — تنس

Table 5.8: Multilingual cognates for English source words produced by COP

for director , popular , and tradition are not cognates of the English words but have a very
different form. However, this is not true for the word coffee .

It should be noted that COP also produces false friends. Being able to produce both
types can be useful for language learning scenarios. Cognates can facilitate comprehension
processes, but false friends will lead to confusion. Cognates can thus be used for lexical
simplification, whereas false friends can be used for generating challenging exercises that
train learners to understand the different meaning between the word in their L1 and the
false friend. In order to make use of both types in practical settings, a classification into
cognates and false friends needs to be performed.

5.2.7 Classifying true and false cognates

In order to balance the cognate aspect, COP needs to be combined with a feature detecting
false cognates (commonly known as false friends). False friends detection can be framed as
inter-lingual semantic similarity. Determining the semantic similarity between two words
is a well-known task in natural language processing (e.g. car and vehicle are closer than
car and banana). For false friends detection, similarity needs to be determined across lan-
guages. Inkpen et al. (2005) simply check whether the two words are translations of each
other in a dictionary.

Mitkov et al. (2008) classify cognate candidates into cognates and false friends using
the multi-lingual resource EuroWordNet (Vossen, 1998). They apply path-based measures
to determine whether two words are semantically similar. Candidates that are close in
the resource are considered to be cognates, whereas distant words are classified as false
friends. As this approach depends on the coverage of a multi-lingual resource, distribu-
tional methods have been tested as an alternative. The assumption is that words which
are semantically similar tend to co-occur with the same words. Mitkov et al. (2008), Nakov
(2009), and Ljubešic et al. (2013) all use approaches that aim at representing the meaning
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of words by vectors of other words and experiment with different co-occurrence counts
and vector representations. Each of the distributional methods for false friends detection
still requires a translation step at some point. Either the candidate words or the distribu-
tionally close words need to be translated for the inter-lingual comparison. Recent work
on cross-lingual word embeddings (Klementiev et al., 2012) can provide an alternative for
determining semantic similarity for false friends detection, but the approach relies on par-
allel corpora. In language learning scenarios, high quality needs to be assured. For our
text-completion datasets, the focus is on English–German cognates because they are the
most common language pair in the exercises. As many resources are available for these
two languages , we analyze a resource-based approach for false friends detection here. We
use our COP model to produce German cognates for entries in the English word list and
vice versa.62 In the English–German direction, we produce at least one cognate for 14,386
source words and in the other direction for 7,178 source words. As each source word can
have several cognates (see section 5.2.4), we focus on the top three productions for each
word. It should be noted thatCOP sometimes only produces one or two potential cognates.
Overall, we examine 16,539 potential cognates for German and 10,016 for English and split
the pairs into cognates and false friends using two different resources.

Resources We access the multilingual resource OntoWiktionary through the UBY inter-
face (Meyer and Gurevych, 2012). OntoWiktionary contains word senses for lexical entries
in English and German and provides cross-lingual links between the entries. We consider
all word pairs that share at least one sense as cognates, and all other word pairs as false
friends. Words that cannot be found in the resource are labeled as “unknown”. In addition,
we use an approach for false friends detection that has been developed by the student Tim
Feuerbach.63 The approach relies on the dictionary Ding which has been constructed by
Frank Richter.64

Results The results for classifying the COP productions into cognates and false friends
are listed in table 5.9. It can be seen that the coverage of OntoWiktionary is not satis-
factory for this task as 70–80% of the pairs cannot be resolved. The Feuerbach approach
always returns a decision, so coverage is not an issue. The Ding resource also contains
inflected forms which explains the higher ratio of cognates. Both resources have been
constructed by humans, therefore the quality of identified cognates can be considered to be
high. A first spot check reveals that many false friends such as orgy–Orgel (en: pipe organ),

62The German word list we use is more controlled than the English one which explains the difference in size.
63We organized a shared task for false friends detection in the practice class of the lecture “Natural Language
Processing and e-Learning” at TU Darmstadt in the summer term of 2015. The approach by Tim Feuerbach
obtained the best results on the test set. It is available at https://github.com/timfeu/cognate-classifier,
accessed: March 7, 2016

64https://www-user.tu-chemnitz.de/~fri/ding/, accessed: March 7, 2016
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en–de de–en

Source words 40,794 109,582
Source words with COP productions 14,386 7,178
COP productions with rank<=3 16,539 10,016

OntoWiktionary Cognates 1,194 ( 7%) 1,132 (11%)
False Friends 2,242 (14%) 1,881 (19%)
Unknown 13,103 (79%) 7,003 (70%)

Feuerbach Cognates 5,105 (31%) 3,811 (38%)
False Friends 11,434 (69%) 6,205 (72%)

Table 5.9: Results of classifying COP productions into cognates and false friends using OntoWik-
tionary and the approach by Tim Feuerbach. Productions that are not contained in OntoWik-
tionary are labeled as “Unknown”.

match–Matsch (mud), and sticky–stickig (stuffy) are correctly identified. However, a more
detailed error analysis of the false friends decision of the two approaches reveals that the
cross-lingual links are insufficient in both resources. Many word pairs that are obviously
cognates such as duplicity–Duplizität , ecumenic–ökumenisch , and partially–partiell are
also labeled as false friends because the resources simply do not contain the translation.
Distributional approaches that work with large text corpora could help to overcome these
coverage problems, but the output quality of distributional approaches is less controlled
and they also require a translation step at some point in the process. We therefore decide
to stay with the more conservative approach and use the output of the Feuerbach approach
as cognate inventory for the experiments in chapter 7. For future work, multilingual sense-
disambiguated word embeddings might be a more promising approach for a better trade-off
between coverage and quality (Šuster et al., 2016). It might also be helpful to reduce the
words to their stems as these might be easier to compare across languages. For example,
the cognate japanisch (Japanese) produced from the source japan is not completely correct,
but it should probably not qualify as a false friend either as it will still lead the learners to
the correct meaning.

5.2.8 Modeling human associations

In order to examine how well COP reflects human associations, we aim at producing cog-
nates for the Czech words from the pilot study. COP is trained on a combination of man-
ually collected Czech–German cognates65 and translation pairs from UBY filtered with a
very lenient string similarity filter (XDice ≥ 0.2). The number of training instances is rather

65These cognates were extracted from http://www.phil.muni.cz/german/mediaev/histsem/dt-tsch-HS.
htm and http://de.wikipedia.org/wiki/Tschechische_Sprache#Deutsche_Lehnw.C3.B6rter_im_
Tschechischen, accessed: February 11, 2013.
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Czech Human associations (de) COP productions (de)

nudle Nudel (15) nudel , nadel , ode
švagr Schwager (13) sauger , schwager , berg
šlak Schlag (12), Schlagsahne (3), schlagen (2) stak
brýle Brille (12), brüllen (4) brille , brie
cíl Ziel (9), Himmel (2) set , zelle , teller
žold Sold (9), Zoll (5), Gold (2), verkauft (2), Schuld (2) sold , gold , geld
sál Salz (13), Saal (8) set , san , all , saal
taška Tasche (8), Aufgabe (4), Tasse (4), Taste (2) task , as , tick
skříň Schrein (5), Bildschirm/Screen (3), schreien (2) —
flétna Flöte (4), Flotte (4), Pfannkuchen (2), fliehen (2) flut , filet
muset Museum (11), müssen (3), Musik (3), Muse (2), Mus (2) mus , most , muse , mit
valčík Walze (4),Walzer (3), falsch (2) —
talíř Taler (5), Teller (2), zahlen (3), teilen (2) teller , taler , ader
šunka schunkeln (2), Sonne (2), Schinken (1) sun
knoflík Knoblauch (11), knifflig (4), Knopf (1) —

Table 5.10: COP productions for the words in the pilot study. COP only returns lowercased words
by default.

small, as a language reform in the 19th century eliminated many Czech words with Aus-
trian or German roots that were common in spoken Czech.66 Consequently, the model does
not generalize as well as for other language pairs (see the column COP Productions in ta-
ble 5.10).67 However, it correctly identifies cognates like nudel , brille , and sold which are
ranked first by the human participants. As we argued above, COP also correctly produces
some of the “wrong” associations, e.g. gold or taler . Thus, COP is to a certain extent able
to mimic the association process that humans apply when identifying potential cognates.

Cognates in text-completion exercises In reading comprehension, cognates are known
as facilitators because their meaning can be deduced from the form similarity to a word in
the mother tongue (Ringbom and Jarvis, 2009). We therefore assumed that cognate gaps
are easier to solve. However, the training data reveals that they are more likely to trigger
production problems.

An indicator for production problems is the answer variety of a gap. If a gap has a
high answer variety (i.e. the participants provided a high number of different answers), the
learners struggled to produce the right answer correctly. The solutions for the 20 gaps with
the highest answer variety (33 or more different answers) in the training data of the English
C-tests all have a Latin stem: appropriate, skeletons, tempting, extract, ancient, private,

66See for example http://mluvtecesky.net/en/introduction/country_language/language_history, ac-
cessed: March 3, 2016.

67Coverage (0.4) and MRR (0.27) are not representative as the test set is too small.
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design, concentrations, state-of-the-art, scientists, modern, examined, constant, essen-
tial, stable, entering, basis, synthetic, cost, demands . In contrast, the 20 gaps with the
lowest answer variety (5 or less different answers) are very basic vocabulary: longer, coffee,
coffee, in, water, very, give, you, for, people, living, other, number, water, water, from,
over, you, over

The production problems might be related to the rare character combinations and the
lower frequency of words with Latin stem. In addition, these words might not be part of
the students’ active vocabulary and are only guessed because they occur as cognates in the
students’ L1. This assumption is supported by the fact that many of the cognate answers
contain the right stem but resemble orthographic principles from other languages, e.g. for
skeletons we find *skellets, *skelleton(s), *skelets, *skelletts, *skeletton(s), *skeltons,
*skeletes , and *skelette(s).68 A similar observation has been made by Nicolai et al. (2013).
They identify misuses or misspellings of cognates as a feature for the task of natural lan-
guage identification. We have a closer look at spelling difficulties in the following section.

5.2.9 Conclusions

In the previous sections we have introduced a new approach for character-based machine
translation that requires only a small amount of training data and is able to produce cog-
nates for many language pairs including languages with different alphabets. An inspec-
tion of the results indicates that this approach succeeds well in capturing morphological
patterns. This finding has been used in subsequent works by Scherrer and Sagot (2014),
Scherrer and Erjavec (2015), and Ling et al. (2015) and is considered to be beneficial for
machine translation. The productive morphological processes could also be used to gener-
ate neologisms (e.g. for name creation). If few resources are available, COP can be a good
starting point to obtain cognates. However, it requires additional editing steps to further
improve the quality and to distinguish between true and false cognates. In practical lan-
guage learning scenarios, we can usually rely on translation resources. In this case string
similarity measures provide a good approximation for cognateness. However, the coverage
can be improved if string similarity measures are coupled with measures capturing mor-
phological processes like SpSim and COP .

5.3 Spelling Difficulty
The irregularities of spelling have been subject to debates for a long time inmany languages.
Spelling difficulties can lead to substantial problems in the literacy acquisition and to severe
cases of dyslexia Landerl et al. (1997). Learning orthographic patterns is even harder for
foreign language learners because the phonetic inventory of their mother tongue might

68DE: Skelett , FR: squelette , ES: esqueleto , NL: skelet
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be quite different. Thus, they have to learn both: the new sounds and their mapping to
graphemes. English is a well-known example for a particularly inconsistent grapheme-to-
phoneme mapping. For example, the sequence ough can be pronounced in six different
ways as in though , through , rough , cough , thought and bough .69

Spelling problems in text-completion exercises In the training data of the exercises, we
also find a plethora of spelling errors. The gap appropriate for example triggers 67 differ-
ent answers, among them spelling errors such as *appropiate , *approprate , *approriate .
Spelling errors are usually considered as normal errors in text-completion exercises, be-
cause the generous time limit allows the students to revise their solutions (Raatz and Klein-
Braley, 2002) and the line between a variant of the solution and a wrong solution cannot be
clearly drawn. This makes spelling difficulty an important aspect of gap difficulty. In this
section, we analyze whether the spelling difficulty of a word can be predicted. This contri-
bution has been published in Beinborn et al. (2016). The data and the code is available at
www.ukp.tu-darmstadt.de/data/spelling-correction/spelling-difficulty-prediction/.

Related work Most work related to spelling in natural language processing has focused
on error correction (see section 2.2.3 and the overviews by (Ng et al., 2013, 2014)). Analyses
of spelling problems have mainly been performed for the purpose of improving spelling
corrections. Deorowicz and Ciura (2005) identify three types of causes for spelling errors
(mistyping, misspelling and vocabulary incompetence) and model them using substitution
rules. Toutanova andMoore (2002) use the similarity of pronunciations to pick the best cor-
rection for an error resulting in an improvement over state-of-the-art spell checkers. Boyd
(2009) build on their work but model the pronunciation of non-native speakers, leading to
slight improvements in the pronunciation-based model. The goal for this thesis is slightly
different: we want to predict spelling difficulties for language learners.

Modeling the spelling difficulty of words could also have a positive effect on spelling
correction because spelling errors would be easier to anticipate. Another important line of
research is the development of spelling exercises. A popular recent example is the game
Phontasia (Berkling et al., 2015). It has been developed for L1 learners but could probably
also be used for L2 learners. In this case, the findings on cross-lingual transfer could be
integrated to account for the special phenomena occurring with L2 learners.

5.3.1 Measuring spelling difficulty

Analyses of English spelling difficulties have a long tradition in pedagogical and psycholin-
guistic literature, but to the best of our knowledge the task of predicting spelling difficulty

69IPA pronunciations according to https://en.wiktionary.org: /ðoυ/, /θɹu/, /ɹʌf/, /kɔf/, /θɔt/, and /baυ/
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has not been tackled before. In this section, we operationalize the analytical findings on
spelling difficulty into features that can be derived automatically.

In general, three sources of spelling errors can be distinguished: i) errors caused by
physical factors such as the distance between keys on the input device or omitted character
repetitions, ii) errors caused by look-ahead and look-behind confusion (e.g. puclic–public ,
gib–big ), and iii) errors caused by phonetic similarity of letters (e.g. vowel confusion vis-
able–visible). Baba and Suzuki (2012) analyze spelling errors committed by English and
Japanese native speakers using keystroke logs and find that the first two types are usually
detected and self-corrected by the learner whereas phonetic problems remain unnoticed. In
the text-completion exercises, the learners are encouraged to review their answers, so the
focus should be on the type of spelling errors that usually remain undetected by learners.

Several analyses focus on phonetic ambiguity as an important factor of spelling diffi-
culty. Frith (1980), for example, compares the spelling errors of good and poor readers and
shows that the good readers only produce phonetic misspellings whereas the poor readers
(which she called mildly dyslexic) often produce non-phonetic misspellings. As foreign lan-
guage learners are not commonly dyslexic, our focus lies on the phonetic problems. Cook
(1997) compares English spelling competence for L1 and L2 users. She confirms that the
majority of spelling errors by all three groups (L1 children, L1 adults, L2 adults) are due
to ambiguous sound–letter correspondences. Peereman et al. (2007) provide a very good
overview of factors influencing word difficulty and also highlight the importance of con-
sistent grapheme–phoneme correspondence.

In the following, we describe seven features that we implemented for spelling difficulty
prediction: two word difficulty features (length and frequency) and five phonetic features
(grapheme-to-phoneme ratio, phonetic density, character sequence probability, pronunci-
ation difficulty and pronunciation clarity).

Traditional word features for spelling The two standard features word length and word
frequency , that have been introduced in section 5.1, have proven to be good baselines for
the spelling scenario. Medero and Ostendorf (2009) analyze vocabulary difficulty based on
information found in Wiktionary and find that short length and high frequency are good
indicators for simple words, confirming previous work. Put simply, the probability of pro-
ducing an error is increased by the number of characters that need to be typed. For frequent
words, the probability that the learner has been exposed to this word is higher and therefore
the spelling difficulty should be lower. We determine the length of a word by the number
of characters and the frequency is represented by the unigram log-probability of the word
in theWeb1T corpus (Brants and Franz, 2006).

Orthographic depth Dela Rosa and Eskenazi (2011) analyze the influence of word com-
plexity features on the vocabulary acquisition of L2 learners and show that words which
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follow a simple one-to-one mapping of graphemes to phonemes are considered to be easier
than one-to-many or many-to-one mappings as in knowledge .70 The orthographic depth can
be expressed as the grapheme-to-phoneme ratio (the word length in characters divided by
the number of phonemes). For English, we calculate the number of phonemes based on the
phonetic representation in the Carnegie Mellon University Pronouncing Dictionary .71 For
Italian and German, a comparable pronunciation resource is not available. However, as the
orthography of these two languages is more regular than for English, the pronunciation of a
word can be approximated by rules. We use the grapheme-to-phoneme transcription of the
text-to-speech synthesis software MaryTTS version 5.1.1 (Schröder and Trouvain, 2003) to
determine the phonetic transcription for Italian andGerman. Wewill refer to transcriptions
obtained from these resources as gold transcriptions.

Phonetic density The phonetic density has also been mentioned as a potential cause for
spelling difficulty, but it has not yet been studied extensively (Joshi and Aaron, 2013) .
It is calculated as the ratio of vowels to consonants. Both extremes – words with very
high density (e.g. aerie) and very low density (e.g. strength ) – are likely to cause spelling
difficulties.

Character sequence probability We assume, that the correspondence of graphemes and
phonemes in a word is less intuitive if the word contains a rare sequence of characters
(e.g. gardener vs. guarantee). To approximate this, we build a language model of char-
acter trigrams that indicates the probability of a character sequence using the framework
berkeleylm version 1.1.2 (Pauls and Klein, 2011). The quality of a language model is usu-
ally measured as the perplexity, i.e. the ability of the model to deal with unseen data. The
perplexity can often be improved by using more training data. However, in this scenario,
the model is supposed to perform worse on unseen data because it should model human
learners. In order to reflect the sparse knowledge of a language learner, the model is trained
only on the 800–1000 most frequent words from each language. We refer to these words as
the basic vocabulary .72

Pronunciation Difficulty Furthermore, we try to capture the assumption that a spelling
error is more likely to occur if the grapheme–phoneme mapping is rare as inWednesday .
The sequence ed is more likely to be pronounced as in simple past verbs or as in Sweden .

70Grapheme length: 9, phoneme length: 5
71http://www.speech.cs.cmu.edu/cgi-bin/cmudict, accessed: December 5, 2015
72We use the following lists:
English: http://ogden.basic-english.org
German: http://www.languagedaily.com/learn-german/vocabulary/common-german-words
Italian: https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/Italian1000
All accessed: February 5, 2015
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We approximate this by building a phonetic model using Phonetisaurus , a tool that is based
on finite state transducers which map characters onto phonemes and can predict pronun-
ciations for unseen words.73

Analogous to the character-based language model, the phonetic model is also trained
only on words from the basic vocabulary in order to reflect the knowledge of a language
learner. Based on this scarce data, the phonetic model only learns the most frequent charac-
ter-to-phonememappings and assigns higher phonetic scores to ambiguous letter sequences.
We use this score as indicator for the pronunciation difficulty .

Pronunciation clarity Even if the learner experiences low pronunciation difficulty, she
might still come upwith a wrong pronunciation. For example, many learners are convinced
that recipe should be pronounced /ɹɪsaɪp/. To model the discrepancy between expected and
true pronunciation, we calculate the Levenshtein distance (Levenshtein, 1966) between the
produced pronunciation by the phonetic model and the gold transcription as pronunciation
clarity .

In summary, seven features have been implemented for the purpose of spelling difficulty
prediction: two traditional features (length and frequency) and five phonetic features (or-
thographic depth, phonetic density, character sequence probability, pronunciation difficulty
and pronunciation clarity). To the best of our knowledge, the task of predicting spelling
difficulty is a new task. The orthographic depth and the phonetic density are common pho-
netic features that have been calculated before. The other three phonetic features are new
contributions of this thesis. We use existing concepts from natural language processing in
a new way to predict spelling difficulty. In particular, the idea of using extremely limited
training data (and thus restricting the quality of the models) in order to simulate learner
knowledge is a new approach.

5.3.2 Corpora

In order to evaluate the described model for predicting spelling difficulty, we need suitable
data. For this purpose, we extract spelling errors from three corpora of annotated learner
essays. The corpora contain annotations for a wide range of errors including spelling, gram-
mar, and style categories. The EFC and the FCE corpus contain essays by learners of English
and the Merlin corpus contains essays by learners of German and Italian.74

EFC The EF-Cambridge Open Language Database (Geertzen et al., 2012) contains 549,326
short learner essays written by 84,997 learners from 138 nationalities. The essays have
been submitted to Englishtown , the online school of Education First . For 186,416 of these

73http://code.google.com/p/phonetisaurus, accessed: January 20, 2015
74It also contains essays by Czech learners, but this subset is significantly smaller than the ones for the other
two languages and is therefore not used here.
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essays, teachers provided correction annotations. We extract 167,713 annotations with the
tag SP for spelling error.75 To our knowledge, this is by far the biggest available corpus
with spelling errors from language learners.

FCE The second dataset is part of the Cambridge Learner Corpus and consists of learner
answers for the First Certificate in English (FCE ) exam (Yannakoudakis et al., 2011). It con-
tains 2,488 essays by 1,244 learners (each learner had to answer two tasks) from 16 nation-
alities. The essays have been corrected by official examiners. We extract 4,074 annotations
with the tag S for spelling error.

Merlin The third dataset has been developed within the EU-project MERLIN (Boyd et al.,
2014) and contains learner essays graded according to the Common European Reference
Framework (CEFR). The 813 Italian and the 1,033 German samples have been obtained
as part of a test for the European language certificate (TELC). A subset of 752 German es-
says and 754 Italian essays was annotated with target hypotheses and error annotations by
linguistic experts. We extract 2,525 annotations with the tag O_graph from the German
essays and 2,446 from the Italian essays. Unfortunately, the correction of the errors can
only be extracted if the error annotation is properly aligned to the target hypotheses which
is not always the case. We ignore the errors without correction, which reduces the set to
1,569 German and 1,761 Italian errors. In the following, we refer to the German subset as
M-DE and the Italian subset as M-IT .

5.3.3 Spelling Error Extraction

As the corpora use different annotation formats and guidelines, we implement an extraction
pipeline to focus only on the spelling errors. We apply additional pre-processsing and
compute the spelling error probability as an indicator for spelling difficulty.

Pre-processing We remove all spelling errors that only mark a change from lowercase
to uppercase (or vice versa) and numeric corrections (e.g. 1 is corrected to one) as these
are rather related to stylistic conventions than to spelling. We lowercase all words, trim
whitespaces and only keep words which occur in a word list and consist of at least three
letters (to avoid abbreviations like ms , pm , oz ).76

Spelling error probability For this evaluation, we take an empirical approach for quanti-
fying error probability. A spelling error s is represented by a pair consisting of a misspelling
e and the corresponding correction c. The error frequency fe of a word w in the dataset D

75Some corrections have two different tags; we only extract those with a single SP tag.
76We use the word list package provided by Ubuntu for spell-checking: http://packages.ubuntu.com/de/
precise/text/, languages wamerican, wngerman, wfrench, accessed: April 15, 2016
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EFC FCE M-DE M-IT

Words
All 7,388,555 333,323 84,557 57,708
Distinct 23,508 7,129 3,561 3,760

Spelling Errors
All 133,028 3,897 1,653 1,904
Distinct 7,957 1,509 719 747

Ratio Errors/Words Distinct .34 .21 .20 .20

Table 5.11: Extracted words and spelling errors after pre-processing

is then determined by the number of times it occurs as a correction of a spelling error in-
dependent of the actual misspelling. The number of spelling errors SD in the dataset is
determined by summing over the error frequencies of all words in the dataset. To quantify
the distinct spelling errors, we count all words with fe≥ 1 once.

s = (e, c) (5.3)

fe(w) = 􏾜
si ∈D

|w = ci | (5.4)

SD = 􏾜
wi ∈D

fe(wi) (5.5)

The numbers of extracted words and errors are summarized in table 5.11. It can be seen
that the EFC corpus is significantly bigger than the other corpora. The spelling errors in
the EFC corpus are spread over many words leading to a higher ratio of erroneous words
over all words.

The pure error frequency of a word can be misleading, because frequently used words
are more likely to occur as a spelling error independent of the spelling difficulty of the word.
Instead, we calculate the spelling error probability for each word as the ratio of the error
frequency over all occurrences of the word (including the erroneous occurrences).

perr (w) =
ferr (w)
f (w)

(5.6)

The words are then ranked by their error probability to quantify spelling difficulty.77 This is
only a rough approximation that ignores other factors such as repetition errors and learner
ability because detailed learner data was not available for all corpora. In future work, more
elaborate measures of spelling difficulty could be analyzed (see for example Ehara et al.
(2012)).

77In the case of tied error probability, the word with the higher error frequency is ranked higher. In the case
of an error frequency of zero for both words, the word with the lower correct frequency is ranked higher.
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Corpus high error probability low error probability

EFC departmental, spelt, invincible boy, car, crime
FCE synthetic, millennium, mystery weeks, feel, rainbow
M-DE tschüss, nächsten, beschäftigt damit, machen, gekauft
M-IT messagio, lunedí, caffè rossi, questo, tempo

Table 5.12: Examples for high and low spelling error probability

Training and test data An inspection of the ranked error probabilities gives the impres-
sion that the spelling difficulty of a word is a continuous variable. However, the number
of spelling errors is too small to sharply distinguish between a spelling error probability of
0.24 and of 0.26, for example. Instead, we only focus on the extremes of the scale. The n
highest rankedwords are considered as samples for high spelling difficulty and the n lowest-
ranked words form the class of words with low spelling difficulty. As additional constraint,
the errors should have been committed by at least three learners in the EFC dataset and
by two learners in the other datasets. For the EFC dataset, we extract 500 instances for
each class, and for the FCE dataset 300 instances. 200 instances (100 per class) are used for
testing in both cases and the remaining instances are used for training. We find an overlap
of 52 words that have a high spelling error probability in both English datasets. As the
Merlin corpus is significantly smaller, we only extract 100 instances per class for German
and Italian. 140 instances are used for training and 60 for testing. Table 5.12 provides some
examples for high and low spelling error probabilities.

5.3.4 Experiments

The following experiments test whether it is generally possible to distinguish between
words with high and low spelling error probability using the features described above. The
classifiers are trained using support vector machines as implemented in Weka (Hall et al.,
2009). The features are extracted using the DKPro TC framework (Daxenberger et al., 2014).
Significance is calculated using McNemar’s test (McNemar, 1947).

Feature Analysis In a first step, the predictive power of each feature is evaluated by per-
forming ten-fold cross-validation on the training set. The results in the upper part of ta-
ble 5.13 are quite similar for the two English corpora. Around 80% of the test words are
classified correctly and the most predictive features are the word length and the pronunci-
ation difficulty. It should be noted that the two features are correlated (Pearson’s r: 0.67), but
they provide different classifications for 131 of the 800 EFC instances in the cross-validation
setting. The results for Italian are slightly worse than for English, but show the same pattern
for the different features. For German, the features pronunciation difficulty and frequency
perform slightly better than the length feature. The two features orthographic depth and
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EFC FCE M-DE M-IT

Random Baseline .500** .500** .500** .500**

Orthographic Depth .482** .462** .427** .622**
Phonetic Density .483** .349** .564** .508**

Individual Character Sequence Probability .706** .642** .736 .563**
Features Pronunciation Clarity .635** .677** .722 .683

Pronunciation Difficulty .792** .792** .828 .731
Frequency .634** .742** .778 .728
Length .809 .827 .747 .769

Combined
Length + Frequency + Pronunciation Diff. .822 .832 .828 .792
All Features .835 .847 .814 .778

Table 5.13: Feature analysis for spelling difficulty using 10-fold cross-validation. The prediction
results are expressed as accuracy. Significant differences compared to the result with all features
are indicated with **(p<0.01).

EFC FCE M-DE M-IT

Random baseline .500 .500 .500 .500
Length + Frequency + Pronunciation Difficulty .840 .865 .766 .817
All Features .840 .870 .800 .815

Table 5.14: Spelling difficulty prediction on the test set for both corpora. The prediction results
are expressed as accuracy.

phonetic density are not predictive for the spelling difficulty and only perform on chance
level for all four datasets. We additionally train a model build on the three best performing
features length, frequency, and pronunciation difficulty as well as one using all features. It
can be seen that the results improve slightly compared to the individual features. Due to
the rather small datasets and the correlation between the features, the differences between
the best performing models are not significant.

In general, the accuracy results are comparable across languages (78–85%) indicating
that it is possible to distinguish between words with high and low spelling error probability.
In the following, we test whether the models can generalize to the unseen test data.

Prediction Results After these analyses, the two combined models are evaluated on the
unseen test data. The results in table 5.14 show that the models scale well to the test set and
yield accuracy results that are slightly better than in the cross-validation setting. Again,
the results of the two combined models are not found to be significantly different. There
are two explanations for this. On the one hand, the test set is quite small (200 instances
for English, 60 instances for German and Italian) which makes it difficult to measure sig-
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Train Corpus Test Corpus
EFC FCE M-DE M-IT

# inst. 200 200 60 60

EFC 800 .840 .772 .703 .634
FCE 600 .764 .870 .767 .766

M-DE 140 .659 .829 .800 .796
M-IT 140 .397 .540 .780 .815

Table 5.15: Spelling difficulty prediction on the full set across corpora. The prediction results are
expressed as accuracy. The number of instances is indicated in brackets for each dataset. The two
classes are equally distributed.

nificant differences. On the other hand, this result indicates that length, frequency and
pronunciation difficulty are very predictive features for the spelling difficulty and the other
features only have insignificant effects. The finding that longer words are more likely to
produce misspellings is not surprising. For deeper psycholinguistic analyses it might be
useful to balance the spelling data with respect to the word length. In such a scenario, pho-
netic aspects would presumably become more important. However, as we want to model
the probability that a learner makes a spelling error, we need to take the length effect into
account as an important indicator.

Cross-corpus comparison The above results have shown that the prediction quality is
very similar for the two English corpora. To analyze the robustness of the prediction ap-
proach, we compare the prediction quality across corpora by training on all instances of
one corpus and testing on all instances of another corpus. We also include the German
and Italian corpus to this cross-corpus comparison to evaluate the language-dependence of
spelling difficulty.

The results in table 5.15 show that the accuracy for cross-corpus prediction generally
decreases compared to the previous results of in-corpus prediction (which are listed in the
diagonal of the result matrix), but still remains clearly above chance level for English and
German. In contrast, training on the Italian corpus leads to bad results for the two English
corpora. It is interesting to note that a model trained on the German spelling errors per-
forms better on the FCE words than a model trained on the English errors from the EFC
corpus. The FCE and the Merlin corpus have been obtained from standardized language
examinations whereas the EFC corpus rather aims at formative language training. In the
second scenario, the learners are probably less prepared and less focused leading to more
heterogeneous data which could explain the performance differences across corpora.
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Correct Brazilian Mexican Chinese Russian German

attention
atention(27) atention(13) attaention(1) attantion(5) —
attencion(10) attencion(1) atttention(1) atantion(1) —
atencion(3) attentio(1) — atention(1) —

departmental
departament(10) department(1) deparment(2) — —
departamente(1) — deparmental(1) — —
departaments(1) — deprtment(1) — —

hamburger
hamburguer(2) hamburguer(2) hamburg — —
hamburguers(2) — hamburgs(1) — —

engineer
engeneer(17) enginner(25) engneer(5) engeneer(14) ingeneur(2)
ingineer(2) engeneer(8) engeneer(4) engeener(3) engeneer(2)
ingener(2) engenier(4) enginner(3) ingener(2) ingeneer(2)

marmalade — — — — marmelade(3)

Table 5.16: Most frequent misspellings for selected examples

5.3.5 Error Analysis

For a more detailed analysis, we take a closer look at the mis-classifications for the EFC
dataset. In a second step, we analyze spelling errors with respect to the L1 of the learners.

Mis-classifications The following words were classified as having high error probability,
but have a low error probability in the corpus data: references, ordinary, universal, up-
dates, unrewarding, incentives, cologne, scarfs, speakers, remained, vocals . It seems
surprising that all those words should have a low error probability. A possible explanation
could be that the words had been mentioned in the task description of the essays and are
therefore frequently used and spelled correctly. Unfortunately, the task descriptions are
not published along with the corpus and we cannot take this factor into account.

The words that were erroneously classified as words with low spelling error probability
are generally shorter: icy, whisky, cried, curry, spelt, eight, runway, tattoo, daughter,
farmers, discreet, eligible, diseases, typical, gallery, genre, mystery, arctic, starters,
stretch, rhythm . In several cases, we see phenomena for which features are available, e.g.
a low vowel-consonant ratio in stretch and rhythm , an infrequent grapheme-to-phoneme
mapping in genre , a low character sequence probability in tattoo . Unfortunately, these
features seem to be overruled by the length feature.

In other examples, we observe phenomena that are specific to English and are not suffi-
ciently covered by our features such as irregular morphology (icy, spelt, cried ). This in-
dicates that features which model language-specific phenomena might lead to further im-
provements.
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Influence of the L1 As phonetic features have a strong influence on spelling difficulty, we
assume that the L1 of the learners plays an important role. For example, arctic is misspelled
as *artic , gallery as *galery andmystery and typical are spelled with i instead of y . These
misspellings correspond to the correct stem of the respective word in Spanish, Italian and
Portuguese. In the following, we thus have a closer look at the influence of the L1.

The EFC corpus comprises essays from a very heterogeneous group of learners, but 71%
of the annotated essays are written by learners from five nationalities, namely Brazilian,
Chinese, German, Mexican, and Russian. For comparative analyses, we also extracted the
spelling errors specific to each of these five nationalities. Table 5.16 shows anecdotal ex-
amples of cross-lingual influence on spelling difficulties. For the word attention , it can be
seen that the Russian learners are tempted to use an a as second vowel instead of an e .
For the Brazilian and Mexican learners, on the other hand, the duplication of the t is more
problematic because doubled plosive consonants do not occur in the orthography of their
mother tongue. L1-specific errors are often due to the existence of similar words – so-called
cognates – in the native language of the learner. The word departmental is particularly
difficult for Brazilian and Chinese learners. While most Brazilian learners erroneously in-
sert an a due to the cognate departamento , none of the Chinese learners commits this error
because a corresponding cognate does not exist. The Brazilian and Mexican misspellings
of hamburger can also be explained with the cognateness to hamburguesa and hambúr-
guer respectively. A g followed by an e is pronounced as a fricative /x/ in Spanish and
not as a plosive /ɡ/. This indicates that the phonetic features should model the differences
between the L1 and the L2 of the learner.

The word engineer provokes a large variety of misspellings. A common problem is the
use of e as the second vowel, which could be explained with the spelling of the cognates
(br: engenheiro , de: Ingenieur , ru: инженер transliterated as inzhener ). However, the
misspelling by the Mexican learners cannot be explained with cognateness because the
Spanish spelling would be ingeniero . The spelling of marmalade with an e seems to be
idiosyncratic to German learners.

The above analyses are only performed on an anecdotal basis and need to be backed up
with more thorough experimental studies. The examples support the intuitive assumption
that cognates are particularly prone to spelling errors due to the different orthographic and
phonetic patterns in the L1 of the learner. This can explain the relation observed between
cognates and productive difficulties in the text-completion exercises which was discussed
in the previous section. The learners in the EFC corpus also differ in proficiency (e.g. Ger-
man learners seem to be more advanced than Brazilian learners) which might also have an
influence on the spelling error probability of words. However, it is complicated to disen-
tangle the influence of the L1 and of the L2 proficiency based on the current data and we
leave this analysis to future work.
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5.3.6 Conclusions

We have seen that the traditional word features length and frequency are a good approx-
imation for spelling difficulty, but they do not capture phonetic phenomena. The newly
developed feature pronunciation difficulty can close this gap and complements the tradi-
tional features for spelling difficulty prediction. We conclude that the spelling error proba-
bility of a word can be predicted to a certain extent. The prediction results are stable across
corpora and can even be used across languages. Further improvement could probably be
reached by modeling language-specific features (e.g. morphology) and by taking the L1 of
the learner into account. Our main goal is the prediction of exercise difficulty. We have
seen that the orthographic depth and the phonetic density do not seem to be very relevant
for spelling. In chapter 7, we evaluate whether the remaining five spelling features can
contribute predictive power to exercise difficulty prediction.

5.4 Chapter Summary
This chapter has introduced measures for approximating the difficulty of words for lan-
guage learners. In an overview of existing measures, traditional word features that measure
word familiarity, morphological complexity, and syntactic behavior have been explained.
In order to account for cross-lingual item transfer, the cognateness of words needs to be
considered. We presented a new approach for cognate production that works for many
languages including language pairs with different alphabets.

Insights into the training data of the exercise datasets have shown that productive diffi-
culties resulting in spelling errors play an important role. We discussed the concept of
spelling difficulty and identified the major causes. Existing features have been combined
with three new phonetic features to predict the spelling difficulty of words in a corpus of
learner essays. In chapter 7, we evaluate to which extent these word difficulty features
contribute to the difficulty of exercises.

This chapter focused on local difficulty. An overview of the implemented word difficulty
features can be found in the appendix in section B. However, all of the discussed word
difficulty features can of course also be aggregated over all words in a text, if necessary.
A corresponding readability feature could thus be derived by measuring the proportion of
words in the text that exhibit a certain feature (e.g. the ratio of cognates over all content
words in the text).

116



Chapter 6

The Influence of the Exercise Format

“I didn’t fail the test, I just found 100 ways to do it wrong.”

— Benjamin Franklin

Figure 6.1: The exercise format

The difficulty of an exercise is determined by the exercise content and the exercise format.
The previous two chapters focused on the exercise content: the difficulty of the underlying
text and the individual words in it. However, the same content can be transformed into
exercises with different levels of difficulty depending on the exercise format. In this chapter,
we analyze three phenomena that are related to the exercise format: the candidate space,
the candidate ambiguity, and the item dependency.

In section 2.3.4, we have seen that the main format factors for text-completion exercises
are the gap type, the answer format, and the deletion rate. These three factors determine
the degree of information reduction that is applied on the original text. The learner needs
to re-create the reduced information to solve the exercise.
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Spolsky (1969, p. 6) describes information as “a reduction in uncertainty by eliminating
certain possibilities”. As a corollary, reduced information increases the number of possibil-
ities. Natural language provides information using redundant ways so that native speakers
can cope with a certain degree of redundancy reduction in noisy input. Language learners,
on the other hand, perceive redundancy reduction directly as information reduction and
therefore as an increase of possibilities. Spolsky shows that a higher degree of redundancy
reduction leads to higher difficulty.

Previous work on text-completion exercises has shown that the gap type has an influ-
ence on the difficulty of an exercise. For C-test and X-text gaps, 50% of the word is deleted
to create a gap and 100% for cloze test gaps. Köberl and Sigott (1994) additionally exper-
iment with deleting 25% and 33% of the word. They find that a gap is more difficult if a
larger proportion of the word is deleted. This is in line with the assumption that a higher
degree of redundancy reduction leads to increased difficulty.

However, the authors show that the position of the deletion also plays a role. In their
experiments, word-initial deletion (as in the X-test) leads to more difficult gaps than word-
final deletion (as in the C-test). Consider the word coruscate , for example. For the C-test
gap coru , the solution is the only candidate, but for the X-test gap cate , 36 candi-
dates can be found. These findings lead to the assumption that the degree of redundancy
reduction should not only be determined based on the proportion of deleted characters. In-
stead, we propose to measure the degree of redundancy reduction directly by the increase
of possibilities, i.e. the average number of candidates for a gap. The first section presents
an approach to calculate the average candidate space for each gap type.

The candidate space can be controlled by the answer format. For closed exercises, the
size of the candidate space is constant at the number of provided answers. However, exer-
cises with a constant number of candidates can still vary in difficulty. The raw number of
candidates is not informative enough because it does not account for the suitability of the
candidates. We need to estimate which candidates are more likely to compete with the right
solution. In the second section, we discuss approaches for measuring this phenomenon of
candidate ambiguity .

On a more global level, the deletion rate has an influence on the exercise difficulty. A
lower deletion rate produces more gaps which results in a higher degree of redundancy
reduction. The C-tests and X-tests are designed with a deletion rate of two, thus every
second word is transformed into a gap. This increases the item dependency because the
damaged context of a single gap can only be recreated by solving the surrounding gaps.
In the third section, we perform an analysis of the dependencies between items and their
predictability based on linguistic features.

The influence of the format factors might differ with respect to the target language of
the exercise. In this chapter, all format analyses are compared for English, German and
French.
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Language Words Avg. word length

English (American) 99,171 8.5 ± 2.6
French 139,719 9.6 ± 2.6
German 332,263 12.0 ± 3.5

Table 6.1: Vocabulary size and average word length for different languages

6.1 The Candidate Space
The candidate space is a good indicator for the degree of redundancy reduction that is
caused by different gap types. It can be determined by calculating the candidates for each
word in the vocabulary and then averaging the results. We compare the candidate space
for the three languages English, French and German and the two test types C-test, X-test
and cloze test. The results have previously been published in Beinborn et al. (2015a).

As vocabulary for the three languages, the word list package provided by Ubuntu for
spell-checking is used.78 In principle, any word list could be used, but we aimed at hav-
ing a common source for all three languages. It should be noted that the size of the lists
varies depending on the morphological richness of the language; the German list is more
than three times bigger than the English one (see table 6.1). The second language-specific
difference is the word length which is considerably higher for German. This is mainly due
to the existence of compounds that concatenate two or more words into one.

A word in the vocabulary is a candidate for a gapped word in a C-test if it starts with
the same prefix and has the correct length. As the prefix length is dependent on the word
length (equation 6.1), the second constraint is redundant. The C-test candidate space CS
for a gapped word g is then determined by all words w in vocabulary V that have the same
prefix. If g = x1x2...xn:

prefix(g) = x1...xn÷2 (6.1)

CSg = 􏿖 􏿺∀w ∈ V ∣ prefix(w) = prefix(g)􏿽 􏿖 (6.2)

CS =
∑

wi ∈ V
CSwi

|V |
(6.3)

The last equation determines the average candidate space for vocabulary V . For X-test
candidates, we need to compare the end of the word instead of the prefix. Table 6.2 shows
the average number of English, French and German candidates for the three test types.

78http://packages.ubuntu.com/de/precise/text/, languages wamerican, wngerman, wfrench, accessed:
April 15, 2016
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Chapter 6. The Influence of the Exercise Format

Cloze C-test X-test

en 5 20.2 ± 29.0 102.5 ± 219.4
fr 5 22.2 ± 28.1 234.1 ± 397.0
de 5 28.0 ± 62.1 83.1 ± 200.4

Table 6.2: Average candidate space for different test types and different languages

It can be seen that the different size of vocabulary discussed above consequently leads to
differences in the size of the average candidate space for the C-test. For German, the average
number of candidates is thus higher than for French and English respectively. As expected,
it can also be seen that the number of candidates for the X-test is higher than for the C-test
as in the coruscate example above. However, it is interesting to observe that the candidate
space for the X-test is not related to the vocabulary size. In this case, the candidate space
for German is smaller than for the other two languages. This indicates that German word
endings are more diverse.

For all averages, the standard deviation is extremely high which shows that the candi-
date space varies strongly for the different words in the vocabulary. One important factor
for this variation is the length of the word. If we remove one letter from the coruscate ex-
ample and look at the C-test gap cor instead, the candidate space increases from 1 to 36
candidates. We examine the influence of the word length in more detail, and calculate the
average candidate space for all words with the same length. The vocabulary V in equation
6.3 is thus reduced to the words of the examined length.
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Figure 6.2: Average candidate space for C-test gaps for different languages with respect to word
length

Candidate space for different languages Figure 6.2 visualizes the average candidate space
for the different languages with respect to word length. It can be seen that for English

120



6.1. The Candidate Space

the candidate space is maximized for extremely short words and decreases rapidly with
increased word length. In comparison, the French and the German candidate spaces are
more balanced: the number of candidates is lower for short words, but higher and more
constant for longer words. This reflects the differences in averageword length (see table 6.1)
which are due to a more complex morphology in French and German.
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Figure 6.3: Average number of English candidates for different gap types with respect to word
length

Candidate space for different gap types We also calculated the candidate space for the
different gap types. Figure 6.3 visualizes the candidate space for the different gap types for
English. The differences between the exercise types are similar for French and German.
The number of candidates for our cloze test with five candidates (the solution and four
distractors) is by definition always five. For open cloze tests, the computational candidate
space for each gap would be equal to the size of the vocabulary. Compared to the C-test,
the candidate space for the X-test is extremely large, in particular for words with medium
length (five to nine characters).

Previous work has shown that the X-test is considerably more difficult than the C-test.
From the results above it is tempting to conclude that this difference is due to the increased
candidate space. However, following this hypothesis, the cloze tests should be fairly easy
given the consistently small candidate space. The obtained error rates and the feedback of
our test participants do not support this assumption. This gives rise to the idea that the
candidate space considered by the learner differs from the computational one.

Candidate evaluation by learners When solving open formats, the learners cannot con-
sider the full candidate space; only the words that are in the active vocabulary of the learner
are accessible. In addition, the context can lead to priming effects and the test situation
might alter the stress level of the participant and apply further restrictions.
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Figure 6.4: The candidates for the gap appro : The computational candidate space is on the left,
the answers provided by the students are on the right.

From the above arguments, one would expect that the learner’s candidate space is
smaller than the objective candidate space. However, we need to take into account that
learners also consider wrong options, as in the example for the gap appro in Figure 6.4.
The computational candidate space on the left consists of only 9 candidates, but the par-
ticipants provided 68 different answers along with the solution appropriate (and only four
of them intersect with the candidate space). It can be assumed that this does not even
cover the complete candidate space for learners, as candidates that have been ruled out
as incorrect by the learners are not accessible for us. The individual candidate space that
is explored by a single learner is probably smaller than all the provided learner answers.
Nevertheless, this example highlights the importance of modeling productive difficulties
for test types with open answer format as discussed in chapter 5. In addition to the spelling
variants, many wrong answers violate the length principle : 50% of the wrong answers in
the English C-tests are actually longer or shorter than allowed. Weaker students tend to
provide more false length answers (Pearson’s r between overall score and number of false
length answers: -0.67). However, the relative number of false length answers with respect
to all wrong answers is higher for stronger students (Pearson’s r between overall score and
proportion of false length answers relative to all wrong answers: 0.3). Three main reasons
for answers that violate the length principle can be identified. In many cases, the answer
seems viable for the context and more easily accessible to the student than the solution.

(1) This global skill set ensures a bright future and an inter and more enriching
life path.

In addition to the solution interesting (29), the student also provided the answers interna-
tional (48) and intercultural (11) quite often. Both seem contextually okay, and are seman-
tically primed because they also occur at other positions in the paragraph. However, they
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are both too long by one letter. A second reason is related to the morphological inflection;
the student finds the correct lemma but fails to add the correct ending, i.e. an adjective is
provided instead of an adverb, a singular is provided instead of a plural or an adjective is
provided in the base form instead of the comparative form.

(2) And in har times like these, [...]

In this example, the students provide the answer hard (72) more often than the correct
solution harder (48), although it is too short. In the third case, the student does not know the
answer and provides just anything that remotely fits in order to not leave the gap blank.79

Bresnihan and Ray (1992) show that students perform better on the C-test if the length
of the solution is graphically indicated by dashes or dots. This supports the assumption,
that a violation of the length principle of a provided solution is often not noticed in the
standard version of the C-test. As counting characters is a cognitive task that is not related
to language proficiency, some test designers decide to relax the length principle and also
accept longer or shorter answers if they are viable solutions. This could be modeled by
adding a length tolerance to the calculation of the candidate space. However, adding a
length tolerance would inflate the number of candidates that need to be evaluated.

For the closed cloze test, the candidate space is obviously constant, as it is determined
by the number of provided answer options. The learners seem to consider even fewer can-
didates, on average only three of the five provided answers are actually selected. However,
even the advanced learners commented that they experienced the task as very difficult.
This indicates that the raw number of candidates is not a sufficient indicator for difficulty.
It is also necessary to evaluate how well the candidate fits the gap and whether it competes
with the correct solution.

79We assume, that the student might be aware of the length violation in the third case, while it is not noticed
in the other two cases. However, we have no evidence for that in the data and cannot distinguish between
them.
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6.2 Candidate Ambiguity

Figure 6.5: Candidate ambiguity: micro-level dimension of the exercise format

The main challenge for solving a text-completion exercise consists in identifying the
most suitable candidate in the candidate space. Learners combine micro-level and macro-
level processing strategies for this task: they evaluate the candidate with respect to the
direct neighbors but also consider the sentential context (compare section 1.2). The suit-
ability of the candidate with respect to the context is often called the fitness of the candidate
(Sinha and Mihalcea, 2009).

Evaluating the probability that a word occurs in a certain phrase is a standard task
in natural language processing (e.g. machine translation, speech recognition). For these
tasks, human performance is usually considered to be the gold standard for the automatic
approaches. The models are tuned and adjusted to reach human-like results. In learning
settings, however, the human performance is flawed because of limited knowledge and lack
of experience. In this section, a reverse approach is attempted: strategies from automatic
solving are applied to model human difficulties. This approach is based on the assumption
that exercises for which the automatic approaches fail indicate a deviation from the stan-
dard case. It can be assumed that specific knowledge is required to solve these exercises
and that they will also be challenging for language learners who have limited knowledge.

6.2.1 Evaluating Micro-Level Ambiguity

Our computational evaluation of candidates in the micro-level context is mainly based on
frequency effects, comparable to the evaluation of the context specificity in section 5.1.3.
In chapter 5, only the correct solution of a gap was evaluated. To compare the fitness of
the solution with the fitness of other candidates, it is necessary to compare the frequency
effect for all candidates and create a ranking. The candidates are ranked according to their
unigram, bigram and trigram frequency. The number of candidates above a threshold is
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Figure 6.6: The search space for the sentence Pure wa has n smell, ta , or co . In
this simplified example, the solution is always the topmost candidate and the displayed candidate
space is reduced.

then taken as an indicator for the size of the candidate space for this gap.80 A higher can-
didate space is expected to indicate higher difficulty. The rank of the solution among the
candidates indicates the candidate fitness of the solution and the level of ambiguity between
the candidates. If the solution is ranked lower than the competing candidates, the gap is
expected to be more difficult to solve.

Another aspect leading to higher candidate ambiguity can be a high string similarity
between a candidate and the solution. For example, many participants confused base and
basis in the English C-tests. We calculate the maximum string similarity between the so-
lution and each candidate based on the longest common subsequence ratio (Melamed, 1999)
to account for this aspect of candidate ambiguity.

The approaches for evaluating micro-level ambiguity are integrated into the model for
exercise difficulty. Their influence on difficulty prediction is evaluated in chapter 7.

6.2.2 Evaluating Macro-Level Ambiguity

For the evaluation of candidate fitness with respect to the macro-level context, we need to
take the context into account. Consider the following cloze exercise:

(1) The stage lost a fine , even as science lost an acute reasoner, when he
became a specialist in crime.
[actor, estate, hunter, linguist, horseman]

The solution actor for the gap in the example is primed by the context stage . For the
automatic evaluation of the context fitness of a word, two main approaches can be distin-
guished: language models and semantic relatedness. Both are usually applied to automati-
cally solve tasks that require sentence completion. For the difficulty prediction scenario, we
test whether wrong completion choices of the automatic approaches could predict solving

80For the experiments, the threshold is set to 0 for simplification, but it could be tuned to the learner group.
A threshold of 0 leads to longer processing times which might be inappropriate in real-life settings.
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difficulties of humans. In this section, we focus on the solving methodology. The predictive
power of the approaches for exercise difficulty is evaluated in chapter 7.

LM-based approach A probabilistic language model (LM) calculates the probability of
a phrase based on the frequencies of lower order n-grams extracted from training data
(Stolcke, 1994). This can be used to predict the fitness of a word for the sentential context.
For example, Bickel et al. (2005) evaluate the use of probabilistic languagemodels to support
auto-completion of sentences in writing editors. In the completion scenario, only the left
context is available, whereas the text-completion exercises also provide the right context
of the gap. Zweig et al. (2012) thus model the problem of solving cloze tests as a lexical
substitution task. The part to be substituted is a gap and the set of substitution candidates is
already provided by the exercise candidates which only need to be ranked.

The language model fitness of candidate c for sentence s is determined by the log-
probability of the language model for the sentence in which the gap is replaced with c.
For solving a cloze exercise, the candidate with the maximum fitness is selected. For the
half-open exercise formats C-test and X-test, modeling the task ismore complicated because
the sentential context is not static. It needs to be determined by solving the surrounding
gaps. This can lead to strong dependencies between items, e.g. solving a subsequent item
is facilitated if the previous one has been solved correctly. The full search space of possible
sentences with all candidate combinations for each gap grows exponentially with the num-
ber of gaps in the sentence (see Figure 6.6). We thus use a pruning step after each gap that
scores the generated sub-sentences using a language model and only keeps the n best. For
our experiments, the threshold n is set as follows: n = min(10000, 10#Gaps). This threshold
was determined by the assumption that each gap should add at most ten candidates to the
combinatorial space. The maximum of 10,000 options is set to facilitate the computation
for very long sentences. For most sentences, the maximum is not reached. The generated
sentences are ranked by their log-probability in the language model and the highest-ranked
sentence is chosen. Each gap is then solved with the candidate that occurs in this chosen
sentence. If several sentences obtain the same probability, one is chosen at random. This
strategy is repeated ten times and the results are averaged.

In the following experiment, we use 5-gram language models that are trained on mono-
lingual news corpora using berkeleylm with Kneser-Ney smoothing .81 Zweig et al. (2012)
train a large n-gram model on 19th century novels from Project Gutenberg . They use texts
from the same domain to reduce the perplexity of the model for the Sherlock Holmes sen-
tences. However, as language learners are not very likely to have read 19th century liter-
ature, we train our language model on more general news sentences from the Leipzig col-
lection (Quasthoff et al., 2006) to simulate learner knowledge.

81http://code.google.com/p/berkeleylm, accessed: January 4, 2015
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Semantic relatedness approach Language models cannot capture relations between dis-
tant words in the sentence. To account for this constraint, Zweig et al. (2012) include infor-
mation from latent semantic analysis (Deerwester et al., 1990). For this method, every word
is represented by a vector of related words that is calculated on the basis of training data.
The semantic relatedness between two words can then be expressed by the cosine similarity
of the two vectors.

Zweig et al. (2012) calculate the relatedness of a candidate for a sentence based on a
latent semantic analysis index of the domain-specific corpus of 19th century novels. As
argued above, learners of English probably do not have experience with texts from this
era. We therefore approximate their general domain knowledge with an explicit semantic
analysis index (Gabrilovich and Markovitch, 2007) calculated on Wikipedia .82 Similar to
Zweig et al. (2012), the candidate fitness is determined by summing over the cosine similar-
ity between the vector representation c⃗ of the candidate c and the vector representation w⃗
of every content word w in the sentence. The semantic relatedness (semRel) of candidate c
with wordw and the semantic fitness of candidate c for sentence S are calculated as follows:

semRel(c,w) =
c⃗ ⋅ w⃗

‖c⃗‖ ‖w⃗‖
(6.4)

semFitness(c, S) = 􏾜
wi ∈ contentWords(S)

semRel(c,wi) (6.5)

A gap is solved by choosing the candidate with the maximum fitness. The semantic relat-
edness cannot be calculated for function words because they do not carry any semantic
content. In addition, most semantic approaches can only be calculated for lemmas. Due to
these two restrictions, the semantic relatedness approach cannot be used for solving C-tests
and X-tests because it does not provide any information for choosing function words and
inflections.

Zweig et al. (2012) combine the two approaches to maximize the solving ability for cloze
tests. As our focus is not on reaching maximum accuracy but on modeling the solving
abilities of human learners, we did not optimize our models for 19th century texts. We
trained them on recent texts from the news domain instead. To the best of our knowledge,
results for automatic solving of C-tests and X-tests have not yet been reported. In order
to get an impression of the solving ability of the approaches above and to compare them
to the human performance, we discuss the accuracy below. The results are compared to a
baseline that always selects the most frequent candidate without considering the context
and to the average human results. The accuracy of human solving is provided by the mean
test score of all participants (see section 3.4.1) and should not be compared across test types

82The index was retrieved from https://public.ukp.informatik.tu-darmstadt.de/baer/wp_eng_lem_
nc_c.zip, accessed: November 25, 2015.
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Human Baseline LM-based Semantic

C-test en .68 .11 .76 -
C-test fr .48 .10 .79 -
C-test de .45 .09 .76 -
X-test de .64 .09 .73 -
Cloze en .70 .21 .28 .32

Table 6.3: Solving accuracy for the different candidate evaluation strategies

as the participant groups had different backgrounds and different language proficiency (see
table 3.4). The results of the semantic approach are only provided for the cloze test because
it cannot be calculated for function words and inflected words which are very frequent in
C-tests and X-tests.

Results The accuracy of the automatic solving strategies and the average human per-
formance in table 6.3 shows that the LM-based solving strategy strongly outperforms the
baseline and can also beat the average human learner for the open test formats.

Even the large candidate space of the X-test can be disambiguated quite well. However,
all results are significantly below the human upper bound of native speakers (which is close
to 1.0 for all exercises). This leads to the assumption that failure of the automatic approaches
could be a good indicator for difficult gaps.

For the cloze tests, the candidate ambiguity seems to be more challenging. The LM-
based candidate evaluation only performs slightly better than the baseline due to the fact
that the context frequency of the candidates has been controlled in this dataset. The seman-
tic relatedness approach works better, but also fails to select the correct candidate in most
cases. This is probably due to the specific domain of the cloze tests. Sherlock Holmes novels
are fictional and often contain outdated vocabulary. The semantic relatedness calculated
onWikipedia does not seem to reflect this domain very well.

Not surprisingly, our results for the cloze tests are worse than those obtained with mod-
els trained on task-specific data in previous work.83 However, the focus is not on developing
a perfect solving method, but on modeling the difficulty for the learner. A question is less
likely to be solved if the context fitness of a distractor is rated higher than that of the so-
lution. Consequently, the solving approaches are transformed into features for difficulty
prediction that return the rank of the solution among the candidates. An overview of the
implemented features can be found in the appendix in section C.

83The best approach by Zweig et al. (2012) reaches an accuracy of 0.52.
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6.3 Item Dependencies

Figure 6.7: Item dependencies: macro-level dimension of the exercise format

The previous section has shown that the context plays an important role for the eval-
uation of the candidates. For many gaps, the direct micro-context can provide sufficient
information for the solution, but in some cases the whole sentential context needs to be
taken into account. In C-tests and X-tests, every second word is transformed into a gap
and thus the context is restricted. In order to solve a gap, the participants need to restore
the context by solving the surrounding gaps. This process can create dependencies between
gaps as in the following example:

(1) Led by ambitious private companies, w are entering the early stages of the
migration of o species away from Earth and o adaption to entire new
worlds. (we , our , our )

The first gap is ambiguous in the local context and can either be filled with we or who . If
the participant makes the wrong choice, the correct solution our for the other two gaps is
hard to determine. Many researchers acknowledge that processing on the sentence or the
text level is more challenging than micro-level processing (Babaii and Ansary, 2001; Sigott,
2006). We therefore assume that gaps which are highly dependent on other gaps are more
difficult to solve because they require macro-level processing. In this section, we analyze
approaches for modeling and predicting item dependencies.

6.3.1 Determining Dependencies

In previous work, dependencies between items have usually been examined based on the
Q3 statistic (Yen, 1984). In this section, we follow the explanation by Krampen (2014) which
provides a good overview. For the Q3 model, we first estimate a standard Rasch-model
(Rasch, 1960) for the data to determine the person parameters (see section 3.4.2 for a more
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detailed explanation). For each personv–itemi combination, the difference e between the
observed value X and the value expected by the model E(X ) can then be calculated (equa-
tion 6.6). These differences are called residuals . In order to determine the dependencies
between pairs of items i and j, the Pearson correlation r of the residuals of the two items is
calculated (equation 6.7) which is called the Q3 model.

evi = Xvi − E(Xvi) (6.6)

Q3ij = revievj (6.7)

In the case of local item independence , this correlation should be close to zero. The correla-
tion is directional, i.e. a positive value indicates positive dependence between the two items
and vice versa. Two items have been considered as dependent items in previous work if
they exhibit an absolute correlation value higher than 0.2 (Krampen, 2014; Yen, 1984).

Assessing local dependence for items in C-tests has received a lot of interest from the
psychological perspective. This is due to the fact that the standard Rasch model assumes
local independence between the items. Intuitively, the C-test violates this assumption and
thus requires more sophisticated models (i.e. testlet or copula models). Schroeders et al.
(2014) analyze local dependencies for German C-tests but find that they have only little
effect on the models (p. 414):

Due to the small amount of LID [ = local item dependence] in the observed data, it was
not possible to demonstrate the pros and cons of the different models that take into
account the inter-dependencies compared to the Rasch model.

Eckes and Baghaei (2015, p. 93) come to similar conclusions:

Therefore, it seems safe to conclude that the degree of local dependence present in the
C-test studied here should not be a matter of much concern.

In both cases, the authors seem to be surprised by their findings. In contrast, Harsch and
Hartig (2010) and Krampen (2014) find moderately high dependencies between English C-
test items and also examine potential causes. They find that the highest dependencies be-
tween gaps can be found for neighboring gaps and for cases in which the same word is
transformed into a gap twice. They raise the hypothesis that dependencies between items
are often due to linguistic phenomena. For example, in idioms like knock on wood or se-
mantically close words like skeletons and bones, it can be assumed that the second gap is
easier to solve if the first gap has been solved correctly.

The opposing findings above could indicate that the phenomenon of item dependencies
differs for English and German. In the following experiments, we examine item dependen-
cies for the English, German and French C-test data and for the German X-test data and
analyze whether it is possible to predict local dependence based on linguistic features. The
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Dependent Pairs Positive r Negative r

Ctest_en 5.9 61.7 38.3
Ctest_de 7.3 72.8 27.2
Ctest_fr 21.9 59.9 40.1
Xtest_de 14.9 76.9 23.1

Table 6.4: Percentages of pairs of dependent gaps in training data and the percentages of negative
and positive residual correlations in these dependent gap pairs

Neighbors Same Word

Ctest_en 24.7 7.1
Ctest_de 13.3 1.5
Ctest_fr 11.8 1.6
Xtest_de 16.7 2.0

Table 6.5: Percentages of neighboring gaps and word repetitions in the dependent pairs with pos-
itive residual correlation

previous analyses are all based on small datasets with very few texts compared to the larger
datasets in this thesis.

Results Table 6.4 shows how the dependencies between gaps vary for the different exer-
cise datasets. The French C-tests and the X-test trigger a higher ratio of dependent gaps.
This indicates that the participants need to take more context into account to solve them.
For all four datasets, the residual correlation of dependent gaps is more frequently posi-
tive than negative. Harsch and Hartig (2010) only analyzed positive correlations as item
dependencies because they indicate that solving the first gap facilitates solving the second
gap or that failing the first gap makes it harder to solve the second gap. We follow this
interpretation and focus on the positively related gaps.

Harsch and Hartig (2010) claim that most dependencies can be explained by the fact
that the two gaps are either neighboring gaps or refer to the same word. The results in
table 6.5 show that these two phenomena explain only 30% of the dependencies for English
and less than 20% for the other datasets. A first spot-check of the data for more sophisti-
cated linguistic reasons for the dependencies does not reveal any obvious causalities. We
run a second analysis to examine whether the detected dependencies remain stable across
samples.

6.3.2 Dependencies Across Samples

In the German dataset, two texts have been answered by ten different samples of learners
which allows us to compare the reliability of measures across learner samples (see sec-
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Sample 1 2 3 4 5 6 7 8 9 10

Text 3 27 67 31 20 12 9 63 11 19 17
Text 8 15 52 10 16 15 11 30 15 15 8

Table 6.6: Number of dependent gap pairs (out of 380 pairs) for German C-tests across different
samples

tion 3.4). For each learner sample, we determine the Q3 statistic for the 380 pairs of gaps
in each text. The results in table 6.6 show that the number of dependent gap pairs varies
strongly across samples. There does not exist a single pair of gaps that is classified as depen-
dent in every sample. On the contrary, there are cases in which a pair occurs with negative
residual correlation in one sample and with positive residual correlation in another. These
results indicate that the measured dependencies between gaps are more dependent on the
sample than on the underlying text. Section 3.4 showed that the error rates for the gaps in
these texts remain quite stable across the samples. The samples are thusmore homogeneous
with respect to difficulty than with respect to gap dependencies.

6.3.3 Predicting Dependencies

According to the results above, we conclude that dependencies cannot be predicted based
on linguistic features in our datasets, at least not according to the recommended Q3 mea-
sure. However, we have also seen that dependencies between gaps do occur quite often,
in particular for French and German. As a consequence, we approximate the influence of
potential dependencies on the difficulty using a few more shallow features.

A sentence that contains many gaps is usually more complex and a gap occurring to-
wards the end of a sentence, is more likely to be influenced by incorrectly reconstructed
context. The position of the gap, the number of gaps and the number of preceding gaps in
the sentence and in the paragraph are thus calculated as features for difficulty prediction.
In order to account for word repetitions, a boolean feature indicates whether the same solu-
tion also occurs in another gap. The neighbor effect can be approximated by the probability
of the trigram spanning the previous gap and the current gap and the trigram spanning the
current gap and the following gap.

For English, we additionally check for gaps with the prefix th because they enable many
reference words such as this , that , there , then , these , those , they , and their . The student
needs to perform co-reference resolution in order to select the correct word. These ref-
erential gaps usually cannot be solved on the basis of the micro context. For French and
German, we did not identify a corresponding prefix with comparable referential ambiguity.
An overview of the implemented features can be found in the appendix in section D.
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6.4 Chapter Summary
In this chapter, we analyzed the format dimensions candidate ambiguity and item depen-
dency. We computed the candidate space of different exercise types and compared it across
three languages. From an analysis of the candidate space for language learners, we con-
cluded that the absolute size of the candidate space is less relevant than the ambiguity of
the candidates. We discussed measures for evaluating micro-level and macro-level ambigu-
ity. The two macro-level measures have been adapted from existing sentence-completion
approaches. The solving capabilities of the approaches are comparable to human learners.
This observation leads to the assumption that the candidate evaluation strategies could be
used to predict learner difficulties. This aspect is evaluated in the following chapter.

Previous work regarding item dependencies in text-completion exercises led to the as-
sumption that dependencies are caused by linguistic features. We analyzed the dependen-
cies in our datasets and showed that the common measure for item dependency does not
produce stable results across samples. This indicates that a relation between item depen-
dency and linguistic features cannot be confirmed because the linguistic features remain
constant for each sample. As this finding contradicts intuitive assumptions, more research
especially in the area of psychometrics is required. It is likely that item dependencies are
more closely related to the sample than to the text. As a compromise, we model item de-
pendency with rather shallow gap position features and account for neighbor effects. In
the following chapter, the predictive power of format factors on the difficulty of items in
text-completion exercises will be evaluated in more detail.
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Chapter 7

Exercise Difficulty Prediction

“It is a test of true theories not only to account for but to
predict phenomena.”

— William Whewell

Figure 7.1: Exercise difficulty

In the previous chapters, the difficulty of text-completion exercises has been analyzed from
several perspectives that are now combined in a four-dimensional difficulty model. This
chapter contains experiments that evaluate whether the model can predict the difficulty
of gaps in unseen exercises. The model is evaluated for five datasets covering different
languages and different test types. The datasets are described in chapter 3. The experiments
have previously been described in Beinborn et al. (2014b) and Beinborn et al. (2015a).

For a more detailed understanding of the difficulty of the task, we first present the re-
sults of a human annotation study. In the following sections, we analyze whether auto-
matic methods can reach the predictive power of humans when assessing the difficulty of
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unknown C-tests, X-tests, and cloze tests. We start with the C-test because it is the most
frequent exercise type in the datasets.

7.1 Human Difficulty Prediction
Matching the difficulty of an exercise to an intended target group is a tedious and time-
consuming task for teachers if they rely solely on their teaching experience. As they al-
ready know the correct solutions, they might not always be able to anticipate the confusion
an exercise might cause for learners. In order to examine the human ability to predict the
difficulty on the item-level, we conducted an annotation study using the English C-test
training data. In section 4.2.3, we have seen that the teachers misjudged the mean diffi-
culty of the tests and did not arrange them in an ascending order of difficulty as intended.
However, following the discussion in chapters 4 and 5, the mean difficulty might just not
be the appropriate concept because it neglects the variance between the items. We asked
three teachers to assign a difficulty category to each gap in the training data of the English
C-tests according to the following scheme:

1: Very easy gap (error rate ≤ 0.25)
2: Easy gap (0.25 < error rate ≤ 0.5)
3: Medium gap (0.5 < error rate ≤ 0.75)
4: Difficult gap (error rate > 0.75)

A gap is annotated correctly if the human-assigned class matches the actual error rate as
defined in chapter 3.

Participants The participants are three English teachers from the language center at TU
Darmstadt who are experienced test designers. All of them are female and have at least nine
years of English teaching experience. Two of them are native speakers of English and one
is German. The teachers were already familiar with the dataset because they had selected
the texts for the student placement test.

Results The three annotators obtain comparable accuracy: each of them correctly predicts
approximately 50% of the gaps (see Table 7.1). We find no obvious bias in the annotations,
difficulty is both under- and overestimated. If we combine the human prediction by taking
the median of the three annotators, 53.4% are annotated correctly.84 These results show that
even experienced teachers are not able to foresee all factors that influence the difficulty of
a gap.

84In case of a tie between two classes due to a missing annotation from one annotator, the higher class is
assigned.
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A1 A2 A3 Median A1–A3

Correct prediction 200 209 192 213
Over-estimation 90 99 83 101
Under-estimation 107 89 118 84
NA 2 2 6 1
Accuracy .50 .52 .48 .53

A1, A2 A2, A3 A1, A3 All three

Fleiss’ κ .31 .37 .39 .36

Table 7.1: Results of the human annotation

In order to analyze whether the mis-predictions can be explained by structural patterns,
we additionally calculate the inter-annotator agreement of the human annotation based
on the Fleiss’ κ . This metric estimates the degree of agreement compared to pure chance
agreement in case of random annotation. It is calculated using version 0.84 of the irr -
package for R (Gamer et al., 2012). As the three annotators are quite homogeneous in
experience, the low agreement in the last row of table 7.1 was not expected by them. The
Fleiss’ κ for the three annotators is 0.36, the pairwise comparison ranges from 0.31 to 0.39.
A closer look at the data reveals that only for 38.6% of the gaps, all three annotators agreed
with each other. For only 25.3% of the gaps, all three annotators agreed with each other
and with the actual measured error rate. For comparison, we also evaluated the annotation
as a binary task, i.e. we merged the easy classes 1 and 2 and the hard classes 3 and 4. In
this case, the Fleiss’ κ rises from 0.36 to 0.47. Each annotator annotates 77% of the gaps
correctly when applying the more coarse-grained scheme. As this is still not very accurate,
we have a closer look at the class distribution.

Human Median
Instances 1 2 3 4

Actual Class

1 172 118 48 6 0
2 107 24 59 23 1
3 77 7 34 29 6
4 41 2 8 26 7

Table 7.2: Confusion matrix for human median prediction

Table 7.2 is a confusion matrix for the prediction when taking the median of the anno-
tators. It shows that the annotators struggle in particular with predicting the most difficult
gaps (class 3 and 4). In general, the mediocre human accuracy and the low inter-annotator
agreement support the assumption that human difficulty prediction is quite subjective and
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indicates that reliable objective prediction methods can prove helpful. In the following
sections, we evaluate the performance of an automatic prediction approach.

Note that the automatic prediction is compared with the actual error rates, not with the
classes annotated by the humans. Thus, it is theoretically possible to outperform human
performance with automatic methods and provide a potentially useful support tool for test
designers.

7.2 Predicting C-Test Difficulty
In this section, we present the results for gap difficulty prediction for English, French, and
German C-tests.

7.2.1 Experimental Setup

In a first step, the most suitable parameters for the prediction experiments are determined
on the training data (section 7.2.2 and section 7.2.3). As the datasets are rather small, the
settings are evaluated with leave-one-test-out cross-validation . This means that a classifier is
trained on all C-tests except one and the resultingmodel is then used to predict the difficulty
of the gaps of the excluded test. This procedure is repeated for every test in the dataset. As
already explained in chapter 4, the results of the prediction are only calculated once over
the collected predictions of each fold as recommended by Forman and Scholz (2010).

Data We use the C-test datasets described in chapter 3. Table 3.1 and 3.4 provide the
main statistics for the datasets. We first evaluate different task setups and perform feature
analysis on the training data. The predictive power of the difficulty model is then evaluated
on the held-out test data (section 7.2.4). To approximate the performance on bigger training
sets, we finally conduct leave-one-test-out cross-validation on the combined set of training
and test data.

Cross-validation In Beinborn et al. (2014b), the leave-one-out cross-validation experi-
ments were performed on single gaps, i.e. the classifier was trained on all gaps except one
and tested on the remaining gap. This setup was chosen to increase the training data, but it
has an important weakness. As one text contains several gaps, there might occur an over-
fitting effect to the text properties. In addition, it is an unlikely scenario that a test designer
wants to predict the difficulty of a single gap while already knowing the difficulty of the
remaining gaps in the text. In Beinborn et al. (2015a), we thus switched to a more realistic
evaluation setting with leave-one-out cross-validation on tests instead of gaps which is also
applied for the experiments in this thesis.
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Level Dimension Feature C-test en C-test de C-test fr X-test de Cloze en

M
A
C
R
O

Text Difficulty

AvgSentenceLength 3 3 3 3 3
AvgWordLengthInCharacters 3 3 3 3 3
AvgWordLengthInSyllables 3 3 3 3 3
ChunksPerSentence 3 3 3 3 3
VerbVariation 3 3 3 3 3
TypeTokenRatio 3 3 3 3 3

Item Dependency

LeftTrigramLogProbability 3 3 3 3
NumberOfGapsInCoverSentence 3 3 3 3
NrOfPrecedingGaps 3 3 3 3
NrOfPrecedingGapsInCoverSentence 3 3 3 3
OccursAsGap 3 3 3 3
PositionOfGap 3 3 3 3 3
RightTrigramLogProbability 3 3 3 3

M
IC

R
O

Word Difficulty

COPCognate 3 3 3
GapIsADJ 3 3 3 3
GapIsADV 3 3 3 3
GapIsART 3 3 3 3
GapIsCONJ 3 3 3 3
GapIsNN 3 3 3 3
GapIsNP 3 3 3 3
GapIsPP 3 3 3 3
GapIsPR 3 3 3 3
GapIsV 3 3 3 3
IsAcademicWord 3
IsCompound 3 3 3 3 3
IsCompoundBreak 3 3 3 3
IsDerivedAdjective 3 3 3 3
IsFunctionWord 3 3 3 3
IsInflectedAdjective 3 3 3 3
IsInflectedNoun 3 3 3 3
IsInflectedVerb 3 3 3 3
IsLemma 3 3 3 3
IsReferentialGap 3
IsSyllableBreak 3 3 3 3
IsWordWithLatinRoot 3
LMProbability 3 3 3 3 3
LMProbabilityOfPrefix 3 3 3
LMProbabilityOfPostfix 3
LMProbabilityOfSolution 3 3 3 3
LeftBigramLogProbability 3 3 3 3 3
LengthOfSolutionInCharacters 3 3 3 3 3
LengthOfSolutionInSyllables 3 3 3 3 3
NrOfUbySenses 3 3 3 3
OccursAsText 3 3 3 3
PhoneticDifficulty 3
PhoneticClarity 3
PosProbability 3 3 3 3
RightBigramLogProbability 3 3 3 3 3
TrigramLogProbability 3 3 3 3 3
UbyCognate 3 3 3 3
UnigramLogProbability 3 3 3 3 3

Candidate Ambiguity

BigramSolutionRank 3 3 3 3 3
EsaSolutionRank 3
LmSolutionRank 3 3 3 3 3
MaxStringSimWithCandidate 3 3 3 3 3
NrOfBigramCandidates 3 3 3 3
NrOfCandidates 3 3 3 3
NrOfTrigramCandidates 3 3 3 3
NrOfUnigramCandidates 3 3 3 3
TrigramSolutionRank 3 3 3 3 3
UnigramSolutionRank 3 3 3 3 3

Number of Features 59 54 51 54 23

Table 7.3: Features for the difficulty prediction experiments 139
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Features In Beinborn et al. (2014b) and Beinborn et al. (2015a), we used a large set of read-
ability features (28) because they have been identified as important indicators for difficulty
in previous work. As readability features are averaged over all elements in the text, the
values of these features are constant for all the gaps of one test. Readability features are
thus not very informative for the current task because we analyzed that the gap difficulty
varies strongly also within texts (see chapter 4). In some cases, the readability features
might even have a negative effect. In the error analysis of Beinborn et al. (2015a), we no-
ticed that the classifier produced negative difficulty estimates for all gaps in a test. As the
error rate cannot fall below zero in practical settings, this prediction result indicates that
the classifier interprets the gaps as significantly easier than all gaps seen in training. This
effect was provoked because the underlying text exhibited very high readability compared
to the texts in the training data.

The experiments in chapter 4 have shown that the correlation of readability features
with the mean difficulty is very low for all C-tests in the training set. We therefore only
use a few standard readability features for the following experiments. For the other three
dimensions, all described features that are applicable have been chosen.

Table 7.3 provides an overview of the features included in the difficulty model. Missing
features for German and French are due to missing resources. Detailed descriptions of the
features can be found in the appendix. The features are extracted using DKPro TC (Daxen-
berger et al., 2014) and the results are calculated using support vector machines inWeka (Hall
et al., 2009).

7.2.2 Regression vs Classification

The difficulty of a gap can be expressed on a continuous scale (e.g. the error rate) or on a
discrete classification scale as in the scheme for the human annotation study in section 7.1.
We assumed that the difficulty classes would be easier to interpret for the teachers than
the fine-grained numerical scale. However, as the actual error rates are continuously dis-
tributed, gaps that are close to the class boundaries are more likely to be mislabeled in
this setting. Therefore, we also test regression prediction using the actual error rates in-
stead of the class labels. As we examine a linear relationship using the same scale, we use
Pearson’s r between the error rates and the predicted difficulty as evaluation metric. Spear-
man’s r models monotonic relationships which would be less accurate for this task, but the
differences are negligible.

In order to get a better impression of the usefulness of the prediction, we additionally
calculate the quadratic weighted κ which considers the classes on an interval scale. If the
actual class is 2, a prediction of class 3 or 1 is considered to be slightly better than a predic-
tion of class 4. We use the same implementation of the measure as in Zesch et al. (2015). To
compare the performance for the classification and regression task, we also calculate the

140



7.2. Predicting C-Test Difficulty

Classification Regression
P R F1 q.w. κ r RMSE q.w. κ

en

Majority/mean baseline .19 .43 .26 .00 .00 .25 .00
Sigott baseline .25 .40 .29 .00 .12 .26 .11
Frequency baseline .19 .43 .26 .00 .39 .24 .28
Difficulty model .43 .46 .44 .36 .50 .23 .44
Human median .56 .53 .54 .59 — — .59

de

Majority/mean baseline .10 .29 .14 .00 .00 .26 .00
Sigott baseline .42 .36 .33 .20 .39 .24 .22
Frequency baseline .31 .38 .34 .45 .54 .22 .43
Difficulty model .43 .43 .43 .49 .60 .21 .52

fr

Majority/mean baseline .09 .30 .14 .00 .00 .27 .00
Sigott baseline .34 .43 .37 .45 .53 .23 .43
Frequency baseline .35 .44 .38 .55 .59 .22 .51
Difficulty model .45 .45 .45 .56 .67 .21 .60

Table 7.4: Results for leave-one-test-out cross-validation on the training set for regression and
classification prediction (both trained with support vector machines). Classification results are the
weighted average of precision (P), recall (R) and F1-measure over all four classes. Regression results
are the Pearson correlation (r ) and the root mean squared error (RMSE). The quadratic weighted
κ is calculated for both modes to enable comparison.

quadratic weighted κ for the regression predictions by mapping the numerical predictions
back into classes according to the scheme explained in the previous section.

Results Table 7.4 shows the results for leave-one-test-out cross-validation on the train-
ing data in the classification and the regression setup. The κ values enable the comparison
of the regression and the classification approach. It can be seen that our model performs
slightly better in the regression setup. In chapter 3 we have analyzed that the error rates
are continuously distributed. We will therefore focus on regression prediction for the re-
mainder of the thesis. The decision to model the problem as a regression task is probably
not the last word on the subject. If bigger datasets become available, more fine-tuning of
the learning parameters can probably lead to improved performance and more informed
decisions. The choice between classification and regression also depends on the intended
use case of the developed model (see chapter 8).

In table 7.4, we compare our model against the human performance for English and
three baselines. A naïve one that predicts the majority class for classification and the mean
value for regression, a frequency baseline that only considers the unigram probability of
the solution, and the Sigott-baseline which uses the features proposed by Sigott (1995): the
frequency of the solution, the word class of the solution, and the constituent type of the
phrase containing the gap. Sigott (1995) determines the frequency of the solution word

141



Chapter 7. Exercise Difficulty Prediction

using counts from the SUSANNE corpus,85 but in our experiments the more representative
Web1T corpus is used for all frequency calculations (Brants and Franz, 2006). It can be
seen that the majority/mean baseline yields bad results for all three languages. This can be
explained with the observation that the difficulty is almost continuously distributed. The
majority/mean baseline always returns the same difficulty value for every gap, which has a
negative effect on the quadratic weighted κ . In the following, the results for each language
are described in more detail.

English For English, the difficulty model clearly outperforms all baselines. The quadratic
weighted κ indicates that the results for the Sigott-baseline are not useful. The frequency
baseline performs slightly better with a quadratic weighted κ of 0.28. The full model yields
a Pearson correlation of 0.50 between predicted and true error rates and a κ of 0.44. This can
be seen as a useful approximation of difficulty, but the averaged prediction of the human
experts is more accurate.

German For German, the baselines yield more reasonable results. In particular, the fre-
quency baseline is quite strong with a Pearson correlation of 0.54 which is better than the
best result for English. The prediction performance of our difficulty model outperforms the
baselines considerably with a Pearson correlation of 0.60 and a κ of 0.52.

French For French, we obtain by far the best results. Both the Sigott-baseline and the fre-
quency baseline already provide a good approximation for the difficulty. The full difficulty
model yields a Pearson correlation of 0.67 and a quadratic weighted κ of 0.60 which is even
better than the human difficulty prediction for English.

Discussion In summary, our model outperforms the baselines for all three languages and
the accuracy of the difficulty prediction is comparable to humans. We have seen that the
prediction works better for the French and German dataset although more resources are
available for English. These differences seem to be strongly connected to the relation be-
tween word frequency and item difficulty. For French and German, word frequency alone
is already a good approximation for item difficulty. For English, this is not the case and
there are at least two possible explanations for this.

First, the frequency effect might be concealed by candidate ambiguity. In section 6.1,
we have seen that the candidate space for short English words is considerably larger than
for short French and short German words. In section 5.1, we have discussed that high-
frequency words are usually shorter in English. These two findings indicate that gaps with
high-frequency solutions have a higher candidate ambiguity in English. Re-consider the
referential gap th : many of the possible answers (e.g. this , that , there , then , these , those ,

85http://www.grsampson.net/RSue.html, accessed: December 7, 2015
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en de fr

all features .50 .60 .67
only micro .48 .59* .68**
only macro .36** .36** .32**

without text difficulty .47** .60 .68*
without word difficulty .38** .37** .34**
without candidate ambiguity .47** .60 .66
without item dependency .50 .61** .67

Table 7.5: Regression results for different feature groups. Significant differences of Pearson’s r
compared to the result with all features are indicated with *(p<0.05) and **(p<0.01).

they , their ) are highly frequent, but choosing the adequate solution for the context from
the 62 available candidates will be difficult for the learner.

Second, the background knowledge of the learners and the learning experiences might
be more heterogeneous than for the other two languages and therefore more difficult to
model. English influence is ubiquitous in entertainment, research, and media. Learners
of English are thus more likely to have encountered words from the target language than
learners of French or German. They might have developed expert vocabulary in a certain
domain of interest (e.g. computer technology), but still not be familiar with basic words
from other domains. This effect is related to the topic bias which is discussed in more detail
in chapter 8.

In the following, we perform a more detailed analysis of the automatic prediction ap-
proach to better understand the influence of the different difficulty factors. For clarity, we
do not add the results for RMSE and quadratic weighted κ to the tables. However, they can
be inferred from the provided scatter plots of the predictions.

7.2.3 Feature Analysis

Having established a fixed evaluation setting, we analyze the performance of the differ-
ent feature groups. The significance of the differences to the results with all features are
calculated using the paired.r function in version 1.4.5 of the psych-package for R (Revelle,
2014).

Processing Levels The results in the upper part of table 7.5 show that the gap difficulty is
mainly determined by the features representing micro-level processing. This is not surpris-
ing as these features are calculated for each gap, whereas many of the macro-level features
are constant for all gaps in the paragraph. The predictive power on the micro-level of our
approach is a strong improvement over a previous prediction approach by Klein-Braley
(1984) that only attempted to predict paragraph difficulty (compare chapter 4). For English
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Dimension en de fr

Text Difficulty

AvgSentenceLength AvgSentenceLength TypeTokenRatio
AvgWordLengthInSyllables AvgWordLengthInCharacters
ChunksPerSentence ChunksPerSentence

TypeTokenRatio

Word Difficulty

Word Class
GapIsV GapIsADJ GapIsArt

GapIsADV GapIsNP
IsFunctionWord

Production

IsCompound IsLemma IsCompound
NrOfSenses COPCognate LMProbabilityOfPrefix
OccursAsText LMProbability LMProbabilityOfSolution
Phonetic Similarity NrOfSenses OccursAsText

Familiarity
UnigramLogProbability UnigramLogProbability LengthOfSolutionInSyllables

UnigramLogProbability

Context
LeftBigramLogProbability TrigramLogProbability LeftBigramLogProbability

RightBigramLogProbability

Candidate Ambiguity

NrOfBigramCandidates NrOfBigramCandidates NrOfBigramCandidates
NrOfCandidates NrOfCandidates
TrigramSolutionRank NrOfUnigramCandidates
UnigramSolutionRank BigramSolutionRank

Item dependency

OccursAsGap PositionOfGap NrOfGapsInSentence
IsReferentialGap RightTrigramLogProbability
LeftTrigramLogProbability
RightTrigramLogProbability

18 15 17

Table 7.6: Selected features based on theWrapperSubsetEval -evaluator with the SMOreg -classifier
and BestFirst -search as implemented inWeka (Hall et al., 2009).

and French, the results for the prediction using only the micro-level features are even better
than the ones obtained with the full model.

Dimensions The lower part of table 7.5 shows the results for ablation tests with the four
feature dimensions. It can be seen that the word difficulty features are by far the most im-
portant ones. Leaving out the other dimensions has almost no effect on the result. This
supports previous theoretical research claiming that the solution word itself and its micro
context are most relevant for the solving processes (Sigott, 2006). However, the word diffi-
culty dimension is also the largest dimension (see table 7.3). The differences in the results
could thus simply be caused by the varying number of features. We thus elaborate on this
issue and perform feature selection.

Feature Selection We perform feature selection on the training set using the Wrapper-
SubsetEval -evaluator with the SMOreg -classifier and BestFirst -search as implemented in
Weka (Hall et al., 2009). Table 7.6 lists the selected features for each language. It can be
seen that although the number of features is reduced by more than 50%, all dimensions are
represented in the selected features. This could be explained by the observation that some
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en de fr

Train-Test
all features .37 .64 .69
only micro .39 .61** .70
selected features .39 .61** .72

LOO-all
all features .48 .62 .67
only micro .48 .59** .70**
selected features .50 .62 .71**

Table 7.7: Prediction results on the test set (Train-Test) and leave-one-test-out cross-validation on
all C-tests (LOO-all) with all features, only micro-level features and selected features. Significant
differences of Pearson’s r compared to the result with all features are indicated with *(p<0.05) and
**(p<0.01).

features within one dimension tend to be correlated. We conclude that the dimensions in
our model represent the factors that have an influence on the difficulty of text-completion
exercises quite well. It should be noted though that the number of selected micro-level
features is approximately twice as high as the number of macro-level features. This sup-
ports the impression from the ablation tests that micro-level features and in particular the
word difficulty dimension are the most important factor for difficulty. The following sec-
tion examines how well the model built on the training set scales for prediction on the test
set.

7.2.4 Prediction Results

Theupper part of table 7.7 shows the prediction results for the test set. In addition, the lower
part reports results for performing leave-one-test-out cross-validation on the union of the
training and the test set to analyze the performance of the model with a larger amount
of training data.86 For French and German, the results are even better than the ones on
the training dataset. It can also be seen that the prediction quality of the train-test setting
reaches the same level as the leave-one-test-out cross-validation on the full set. This indi-
cates that the model generalizes very well for these two languages. For English, the results
are worse. In particular, the results of the train-test setting are very low. This indicates that
the content of the training set might differ more strongly from the test set than in the other
two languages. We will analyze this in more detail in the following section.

Interestingly, the differences between the different feature sets are only marginal and
are not significant in most cases. The results show that satisfactory prediction results can
also be obtained with a smaller subset of the features. For English and French, the results

86It should be noted that in this setting, the training data on which we perform the feature selection is also
included in the test setting. The results of the model with selected features for the leave-one-test-out vali-
dation on all tests should therefore be interpreted with caution. We only include them for completeness.
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improve slightly when using only the selected features. With larger datasets, more fine-
tuning of the features and their parameters would be possible, but in our case this would
lead to over-fitting. In general, the results confirm the assumption that micro-level features
and in particular word difficulty features are most predictive for gap difficulty. We discuss
this observation in more detail in section 7.6 with respect to all datasets. As the prediction
results for C-tests reveal some weaknesses in the approach, we take a closer look at the
errors in the following section.

Figure 7.2: Prediction results for English C-tests using leave-one-test-out cross-validation on the
training set. The symbols indicate the difficulty class that was annotated by the human experts.

7.2.5 Error Analysis

For a better understanding of the relation between human and automatic predictions, the
plot in figure 7.2 combines both results for English. The position in the plot indicates the
relation between the true error rate and the automatic prediction, and the symbol represents
the corresponding human annotation. The vertical lines indicate the class boundaries. In
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Figure 7.3: C-test prediction results for the train-test setting using all features. Instances with an
absolute difference of predicted and actual error rate ≥0.5 are colored red.

the case of perfect annotation, only green circles would be found in the first quartile, yellow
squares in the second, orange diamonds in the third, and red circles in the fourth quartile. In
the case of perfect automatic prediction, the regression equationwould have a slope of 1 and
pass through the point of origin. The plot reveals that the regression equation predicts the
right tendency, but tends to underestimate difficult gaps. The human annotators perform
well for the easiest gaps (class 1, green circle), but also struggle with the prediction of the
more difficult gaps.

As additional information, figure 7.3 visualizes the predictions for all three languages
in the train-test setting. It can be seen that the better prediction quality for German and
French is reflected in a small number of prediction outliers (red circles). In contrast, the
low prediction quality for the English test set results in a high number of outliers. Fig-
ure 7.2 showed that under-estimation of hard gaps was a problem in the training set. For
the prediction of the test set, over-estimation of the difficulty is more severe. The quality
differences between the prediction for English and for the other two languages are not easy
to explain. As an introspective speculation, we assume that the background knowledge of
the participants and their learning experience are more heterogeneous for English. Unfor-
tunately, the datasets do not contain enough information about the participants to verify
this assumption. We have also seen that the results for English increase strongly for the
leave-one-test-out cross-validation on all tests compared to the train-test setting. This in-
dicates that the test set contains some unseen idiosyncratic properties that are smoothed
out in the merged set. We have a closer look at the outliers in the train-test setting to
understand the most frequent causes for wrong predictions.

Over-estimation Three structural causes for over-estimation of difficulty can be found:
priming effects, named entities and hyphenated words. Priming effects occur in all three
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languages when a seemingly difficult word is provided correctly by the participant because
it is already mentioned beforehand in the text. This phenomenon is captured by the feature
OccursAsText , but cases of priming occurred only seldom in the data. The other two causes
for over-estimation are only found in the English data. For three gaps, the solution consists
of a named entity (Mahatma Gandhi, Nelson Mandela and Deutsche Bahn) which is
known to the participants, but does not occur in the vocabulary of the model. A feature
for entity recognition exists, but the training data did not contain any named entities, so
the model does not account for them. A similar problem occurs with hyphenated words
(colour-blind, non-violent, carbon-free). It can be seen, that the teachers deviated from the
original length constraint here and applied it only on the second part of the compound. As
these kind of compounds have not been seen in the training set, our approach estimates
the difficulty for the word carbon-free , while it should rather consider only the difficulty of
the word free .

Compounds, named entities and priming effects could all be better integrated into our
model. With a larger amount of training data containing these phenomena, the approach
should then be able to adjust the difficulty predictions for these cases accordingly.

Under-estimation In the few cases where the model strongly under-estimates the diffi-
culty of a gap, the high error rate is usually caused by local ambiguity that misleads the
participants to choose the simpler alternative. For English, the is provided instead of this,
let instead of leave, and for French, ces is provided instead of car. This preference should
be captured by ranking the candidates according to their unigram probability, but appar-
ently this ranking feature is not weighted strongly enough based on the training data. For
the leave/let example, the provided solution violates the length constraint because it is too
short. It is therefore not included in the computational candidate set. A solution could be
to relax the length constraint and increase the candidate space for the model.

Two cases of under-estimation are caused by a common spelling difficulty that should
be covered by our model. For a German gap, the participants provide das instead of dass,
and for English, of is provided instead of off. The solutions are basic vocabulary and are
very short words, therefore the spelling ambiguity does not receive enough weight.

Interestingly, the analysis of the outliers revealed a few errors in the test design for
English. The teachers had to encode the solution of the gaps manually in the web interface
which led to some typing errors. In these cases, the error rate accumulates to 1.0, although
many participants provided the correct solution. As the input to the prediction system
contains the correct solution, the difficulty estimate is lower than the observed error rate.
Our difficulty approach is the first step towards automatic design and selection of suitable
C-tests as is further discussed in chapter 8. A higher amount of automation in the process
will help to minimize the effect of human error and lead to cleaner data which can in turn
then improve the prediction quality.
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7.2.6 Comparison to related work

The partial publication of our results in Beinborn et al. (2014b) encouraged further C-test
experiments. Svetashova (2015) works with 20 English C-test paragraphs from placement
tests at the University of Tübingen and conducts a large range of analyses that shed more
light on the difficulty construct. In elaborate clustering experiments, she compares error
rates and IRT parameters and also considers the difficulty of the text passage containing
the item.

In contrast to our work, she incorporates the proficiency level of the participant directly
into the difficultymeasure by analyzing performance profiles (see section 3.4). Svetashova’s
analyses show that the items in her dataset should best be represented by four classes:
easy items in easy texts , easy items in difficult texts , difficult items in easy texts and difficult
items in difficult texts . This classification goal differs from our approach where the text
containing the item is integrated as a dimension in the difficulty model and not interpreted
as a prediction label.

For difficulty prediction, Svetashova approximates the item difficulty with a larger range
of readability features than in our experiments (including sentence-level readability) and
she also adds psycholinguistic word ratings from the MRC database (Gilhooly and Logie,
1980). Her results show that the readability classification of easy and difficult texts works
well, but the distinction between easy and difficult items is harder. When using the same
difficulty measure as in this thesis, she obtains results that are comparable to the ones in
Beinborn et al. (2014b) for classification and slightly better for regression.

The findings by Svetashova and our analyses in chapter 4 indicate that a two-step clas-
sification which first identifies the macro-level difficulty of the C-test and then zooms in
on the difficulty of the individual items might be a reasonable approach for future work.
Another aspect of this idea is discussed in section 7.6.

7.3 Predicting X-test Difficulty
In this section, we evaluate the difficulty prediction approach for the German X-tests. X-
tests are considerably more difficult than C-tests and can be used to assess more proficient
learners up to native speakers.

7.3.1 Experimental Setup

The experimental setup for the X-tests is comparable to the C-tests. We perform leave-one-
test-out cross-validation on the different tests and report the same evaluation metrics. The
feature set is the same as for the German C-tests. However, a few adjustments are necessary
because the test designers for the X-test explicitly encode several possible solutions in a list.
Theword difficulty features are calculated for the first element of the list as it is the preferred
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X-test de Pearson’s r

LOO-train

mean baseline .00**
frequency baseline .12**
Sigott baseline .18**
all features .33
only micro .28
only macro .32
without text difficulty .28
without word difficulty .35
without candidate ambiguity .32
without item dependency .38

Train-Test all features .34
LOO-all all features .35

Table 7.8: Regression results for leave-one out cross-validation on the X-test training set with differ-
ent feature groups. Significant differences of Pearson’s r compared to the result with all features
are indicated with *(p<0.05) and **(p<0.01). The lower part of the table contains the results for the
train-test setting and for leave-one-test-out cross-validation on the union of training and test set.

solution. For the candidate features, the rank of the highest ranked solution is returned. In
addition, some features need to be adjusted to account for the fact that the second part of
the word is now provided as a hint.

7.3.2 Prediction Results

The prediction quality for the X-tests is significantly lower than for the C-tests. The results
in table 7.8 show that our approach can beat all baselines, but the correlation is not as high
as for the C-tests. In addition, the prediction varies only insignificantly for the different
feature groups. This indicates that the learning effect of the different features is rather
small. More detailed feature selection experiments are therefore not meaningful.

The results for the train-test setting and for the leave-one-test-out cross-validation on
all tests are also on a surprisingly low level compared to the results for the C-test. In the
following error analysis, we aim at a better understanding of these performance differences.

7.3.3 Error Analysis

The X-test dataset differs from the C-test datasets with respect to three characteristics: the
size, the test type, and the participants’ background.

Size The X-test dataset consists of only 14 tests (348 gaps) in total which is a very small
number for any machine learning approach. Given this small size, the lower prediction
quality is generally not surprising. The visualized predictions in figure 7.4 show that the
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Figure 7.4: X-test prediction results for the train-test and the LOO-all setting using all features.
Instances with an absolute difference of predicted and actual error rate ≥0.5 are colored red.

quality is not necessarily as bad as the numbers indicate. We observe only very few outliers
and the general tendency of the prediction is correct, but the variation is too high. We
see that with more data in the leave-one-test-out cross-validation on all tests, the spread
of variations is slightly adjusted towards the middle. This leads to the assumption that
the prediction quality will improve with a larger amount of training data. Bigger datasets
would then also enable a more fine-grained feature analysis and parameter fine-tuning.

Test type For the X-test, the second part of the word is provided as hint. To date, there
exist only very few research analyses for this test type (Cleary, 1988; Köberl and Sigott, 1994;
Scholten-Akoun et al., 2014) and none of them take a computational perspective. The main
line of argumentation for the increased difficulty of the X-test contrasts the focus on lexical-
semantic elements in the X-test as opposed to morphological and syntactic elements in the
C-test. In order to properly select a solution, the participants need to take more macro-level
context into account. For C-test difficulty prediction, the strongest predictive power was
gained from the micro-level features. A better approach for X-tests might be the evaluation
of semantic relations on the macro-level. A first approximation to this phenomenon is the
feature that ranks the candidates based on their semantic relatedness to the context (which
was introduced in chapter 6.2). However, we did not apply it to the X-test because it is not
defined for function words.

Participants The participants for the German X-test dataset are all native or near-native
speakers of German. As a consequence, the learners should not have any problems with
word familiarity in most cases. An analysis of the outliers indicates that the difficulty of
compounds like Lernstoff , Unterrichtssituation , Motivationsformen and Lehrkonzept is
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slightly over-estimated. Compounding is a creative process leading to an infinite number
of potential words in German. The compounds described above have a very low frequency,
however, the parts of the compound are rather frequent, particularly for students enrolled
in education studies. Therefore, they can easily derive the compound from the context. The
frequency effect which was quite strong for the C-tests is thus less relevant for this dataset.
This supports the hypothesis described above that the semantic candidate ambiguity should
be studied in more detail for the X-test format. In order to enable more elaborate experi-
ments for the analysis of features and learner factors, larger datasets with X-test data would
have to be created.

7.4 Predicting Cloze Test Difficulty
Cloze tests are the most popular type of text-completion exercises. As the open cloze test is
too ambiguous to allow automatic scoring, most computer-assisted learning environments
use a closed version of cloze exercises with multiple choice options for the answer. The
format of the cloze exercises thus differs significantly from the C-test and the X-test. This
section analyzes whether our prediction approach can also be applied to cloze tests.

7.4.1 Experimental Setup

The experimental setup for the difficulty prediction of cloze exercises is comparable to the
previous experiments, but the feature set is smaller. Many of the features for C-tests and
X-tests are not applicable for the cloze dataset. The cloze questions consist of individual
sentences with a single gap, therefore dependencies between items cannot occur and all
features related to item dependency are irrelevant. We also do not need to check for syllable
and compound breaks because cloze gaps do not include a hint for the solution. The size of
the candidate space is constant because the participants always see five answer options and
the POS-tag for gaps is controlled, so we can omit the features related to these phenomena.
We can also ignore all features related to production problems because the cloze test is a
recognition task.

7.4.2 Prediction Results

The cloze dataset is even smaller than the X-test dataset; only 100 gaps are available for
training and again 100 for testing. The results in table 7.9 show that the small training size
impedes a comprehensive feature analysis on the training set. The performance of different
feature groups varies, but the differences are not significant due to the small dataset. Only
the difficulty prediction based solely on macro-level features can be ruled out. This is in line
with the findings for C-tests that micro-level features better capture the difficulty of items.
For cloze tests, this effect seems to be even stronger. As the cloze exercises in our data
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Cloze-test en Pearson’s r

LOO-train

mean baseline .00**
frequency baseline .22**
all features .41
only micro .36
only macro -.19**
without text difficulty .40
without word difficulty .19**
without candidate ambiguity .38

Train-Test all features .26
only Micro .26

LOO-all all features .37
only Micro .35

Table 7.9: Regression results for leave-one-test-out cross-validation on the cloze training set with
different feature groups. Significant differences of Pearson’s r compared to the result with all fea-
tures in the corresponding setting are indicated with **(p<0.01). The lower part of the table con-
tains the results for the train-test setting and for leave-one-test-out cross-validation on the union
of training and test set.

consist only of a single sentence, this is not surprising. However, previous work focused
on readability as an indicator for cloze difficulty (Skory and Eskenazi, 2010; Klein-Braley,
1984).

The results for the leave-one-test-out cross-validation on the training set show the same
tendencies as for the C-test. The micro-level features and in particular the word difficulty
features are most predictive for cloze item difficulty. With a Pearson correlation of 0.41, the
results are clearly worse than those obtained for the C-test.

The poor prediction results on the test set reveal that the model is over-fitted to the
training data. When the size of the training data is doubled in the setup for leave-one-test-
out cross-validation on the full set, the prediction results improve again but remain on the
same low level as the results for the X-test.

It should be noted that the macro-level features perform even worse than in the pre-
vious experiments. This shows that the relation between readability and the difficulty of
text-completion exercises seems to be less relevant for multiple-choice cloze exercises. The
difficulty of an item depends less on the available context and more on the competition
between the provided answer options. We have a closer look on the prediction quality and
identify the prediction outliers in the following section.

153



Chapter 7. Exercise Difficulty Prediction

Figure 7.5: Cloze test prediction results for the train-test setting and leave-one-out cross-validation
on all items using all features. Instances with an absolute difference of predicted and actual error
rate ≥0.5 are colored red.

7.4.3 Error Analysis

Figure 7.5 shows the relation between the actual error rate and the predictions based on
the full model for the train-test setting and the leave-one-test-out cross validation on all
instances (LOO All). It can be seen that strong outliers are not the problem. In general,
the model consistently under-estimates the difficulty. In table 3.4, we have seen that the
mean error rate in the cloze training data is 0.28 with a standard deviation of 0.23. In the
test data, we find similar values: a mean error rate of 0.26 with a standard deviation of 0.22.
This range of difficulty can explain why the model almost only predicts difficulty values
below 0.6. However, in practical settings information about the extreme values on the scale
(the easiest and the most difficult gaps) is usually most interesting because extreme items
are not very discriminative and should be used with caution. In future work with larger
datasets, it would be useful to focus more on the extremes of the difficulty scale.

Another aspect that could contribute to the consistent under-estimation of the model
is the guessing factor. The cloze questions have five answer options, so each participant
has a 0.2 probability to select the right answer simply by chance. As each gap has only
been answered by 20–22 participants, the guessing factor might have a strong effect on
the error rate for some gaps in the training data leading to error rates that are not a good
representative of the difficulty. However, the extreme outliers in the prediction are also
influenced by other factors. In the following examples, the knowledge of the learner is not
modeled appropriately. The number of times a candidate was selected by the participants
is indicated in brackets.
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(1) When I saw him that afternoon so enwrapped in the at St. James’s Hall, I
felt that an evil time might be coming upon those whom he had set himself to hunt
down.
[music (3), doorway (8), store-room (1), stream (0), shadows (9)]

(2) For half an hour I sat with ears.
[straining (1), extended (4), widened (10), closed (5), bent (1)]

(3) They meet, they write, there is a complete between them.
[understanding (8), problem (0), repose (0), explanation (1), conversation (12)]

The first example has an error rate of 0.9 because the participants favor the candidates
shadows and doorway over the solution music . This can be explained by a lack of world
knowledge: the participants probably do not know that St. James’s Hall was a popular
concert hall. The model does not properly capture this lack of knowledge and the semantic
and the language-model based candidate ranker both rank the correct solution first. In
example 2, the distractors widened , closed , and extended are all selected more often by
the participants than the correct solution straining which is chosen only once. In example
3, the distractor conversation is selected more often than the solution understanding . In
both cases, the participants do not seem to be familiar with the collocation that is evident
for native speakers. These three examples highlight the importance of modeling language
learners differently than native speakers as discussed in chapter 4.

In the following two examples, the participants’ choices are spread over several candi-
dates probably due to a lack of comprehension of the context.

(4) He had trained it, probably by the use of the which we saw, to return to him
when summoned.
[milk (6), sarcasm (2), shrubs (3), guilt (3), emotions (6)]

(5) To do this was quite beyond my power, and I could only hope that by I might
in ten years’ time save enough to enable me to put up my plate.
[sunset (1), excavation (6), torture (2), economy (5), pondering (6)]

In the first example, the reference it cannot be resolved. If the participants had known
that the antecedent is a snake, selecting the solutionmilk would probably have been easier.
Reference resolution has not been an issue in the training data andmilk is a very easy word,
therefore the model underestimates the difficulty.

In the second example, the context actually provides cues for the solution economy such
as save enough and ten years’ time so that the candidate rankers rank it first. However, the
phrase to put up one’s plate is extremely rare and might have confused the participants.

We have seen that the readability features had not contributed significantly to the diffi-
culty of the training data. These two examples indicate that the complexity of the sentence
does have an effect on the difficulty of a cloze exercise. However, the choice of distractors
can conceal the sentence complexity. If the distractors are very improbable, the participants
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can guess the correct solution even if they do not understand the meaning of the sentence.
This highlights the importance of a combined evaluation of content and format factors for
difficulty prediction as in our model.

7.4.4 Comparison to related work

In section 2.3.4, we described a previous attempt to cloze difficulty prediction by Hoshino
and Nakagawa (2008). Unfortunately, their original train and test datasets are not avail-
able anymore. Nevertheless, we attempt to compare our approach to their results. They
used 208 cloze exercises from a TOEIC preparation book and extracted the 80 easiest (er-
ror rate smaller than 0.361) and the 80 hardest questions (error rate higher than 0.5) from
it. The dataset that we received from Ayako Hoshino contains 702 questions. For each
question, the solution is presented with three distractors. If we extract the easy and hard
questions following their approach, we receive 213 hard and 213 easy questions. As the
original subset cannot be determined anymore from the provided information, we use the
full set. We run the same feature set as for the Sherlock Holmes dataset and perform the
binary classification in a ten-fold cross-validation setting as Hoshino and Nakagawa (2008).
Without further tuning or feature selection, our approach reaches an accuracy of 67.84%
using support vector machines as implemented inWeka (Hall et al., 2009). The best classi-
fier reported by Hoshino and Nakagawa (2008) reaches an accuracy of 60.63%. This shows
that our approach outperforms the state-of-the-art approach on comparable data although
their cloze questions differ significantly from the ones in our dataset. For the majority
of the TOEIC questions, all four candidates have the same word stem and only differ in
their grammatical categories. This aspect of grammatical candidate ambiguity has not been
targeted by our candidate rankers, but it is implicitly captured by the language model ap-
proach. With a stronger focus on grammatical difficulty, even better results are probable
for this dataset.

7.5 Learning Curve
The error analyses of the different prediction tasks indicate that the size of the training
set plays an important role for the prediction quality. In order to verify this argument, we
calculate a learning curve. We use the training data of the German C-tests because it has
the largest size and is thus most suitable for analyzing size effects.

Experimental setup Using the standard feature set described above, we perform leave-
one-test-out cross-validation with increasing sizes of the training set. For every n from 2
to 66, a subset of n C-tests is picked randomly from the training data and we calculate the
result for leave-one-test-out cross-validation. In order to account for outliers, we repeat
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Figure 7.6: Learning curve for leave-one-test-out cross-validation with increasing size of training
data for the German C-tests. The prediction results are reported as Pearson’s r and quadratic
weighted κ and are averaged over three runs.

this process for three runs. In figure 7.6, the results for Pearson’s r and quadratic weighted
κ are averaged over the three runs for each n.

Results The results of the learning curve experiment show that with a training set of less
than 20 tests, the standard deviations are quite high for the three runs. This indicates that
the prediction results are not very stable for these sizes. Satisfactory prediction quality can
only be reached with a training set of at least 30 tests. Only the French and the German
C-tests fulfill this criterion for the half-open exercise types (see table 3.1). This explains the
slightly inferior results for the other exercise types. In our experiments, we did not attempt
to tune prediction parameters because it is only meaningful with datasets that are several
magnitudes bigger than the ones that are currently available. This leads to the optimistic
expectation that strong performance improvements are possible in the future based on the
findings in this thesis.

The learning curve also shows that the Pearson correlation and the quadratic weighted
κ are highly correlated. This finding and the visualization of the predictions in the regres-
sion plot strengthens the impression of high prediction quality that is not always guaran-
teed by high correlation values alone.

7.6 The Influence of the Exercise Text
The prediction experiments for all datasets have shown that the features related to the
global properties of the underlying text (the macro-level features) are not very predictive
of the item difficulty. This contradicts previous work and also the subjective intuition that
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completing a complex text is more difficult than completing an easy text. However, we can
find an obvious explanation for these findings.

All texts in our datasets have been carefully selected (and in some cases also modified)
by a group of experts. The C-tests and the X-tests have been used in authentic test settings;
thus the quality of the test had to be guaranteed. As a consequence, all texts in the datasets
are of high quality and adequate difficulty and the variance of readability is rather low.
If the learners had been confronted with a wider range of texts, readability effects would
probably be more evident. Imagine, for example, completing a C-test that is based on a
patent description or on a stock report. We assume that this would be an almost impossible
challenge even for native speakers.

In the experiments, we have predicted the difficulty for already existing exercises. As
a next step, we aim at generating new exercises that match the quality expectations of
experienced test designers. To reach this goal, we need to carefully select adequate texts.
As the readability factors are only insufficiently represented by the training data, we need
to apply additional readability filters before applying our difficulty model. We will explain
this process in more detail in the following chapter.

7.7 Chapter Summary
In this chapter, the computational realizations of the four difficulty dimensions have been
combined into a single model to predict the item difficulty of text-completion exercises.
The approach has been evaluated on five datasets covering three languages and three test
types. The best results have been obtained for German and French C-tests. The prediction
quality for X-tests and cloze tests is lower. Detailed error analyses and the calculation of a
learning curve have shown that these performance differences are mainly due to the size
of the datasets.

We have shown that automatic difficulty prediction is possible with satisfactory quality.
Based on the findings in this thesis, it can be expected that automatic prediction approaches
can reach even higher quality in the future if the parameters of the model are fine-tuned
on bigger datasets.
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Chapter 8

Difficulty Manipulation

“Conquering any difficulty always gives one a secret joy,
for it means pushing back a boundary-line and adding to
one’s liberty.”

— Henri-Frédéric Amiel

Generating a text-completion exercise is supposed to be a simple, automatic procedure that
transforms a text into an exercise. However, the responsible designers of placement tests
report that themajority of exercises are not usable in practical settings because the difficulty
is not appropriate. The main challenge lies in selecting a suitable text basis for the exercise.
The educators need to analyze many text candidates and adjust them manually to fit their
needs.

In the previous chapter, we have seen that the prediction approach presented in this
thesis can predict the difficulty with acceptable accuracy. This chapter aims at using the
difficulty prediction for further automation of exercise selection and manipulation. Fol-
lowing the difficulty model, we distinguish between the manipulation of content and the
manipulation of format factors.

In a first step, we implement a web demo that automatically generates a test from a text
and predicts its difficulty. It is comparable to a rough difficulty estimate by a teacher and
can help in the manual content selection process. In a second step, we develop an automatic
approach for content selection and evaluate it with human experts. In addition, we provide
a synonym dataset for lexical substitution that is enriched with word difficulty information.
For the format factors, we focus on the manipulation of distractors because the ambiguity
between the solution and the distractors is the main source of difficulty for cloze exercises.
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8.1 Manipulating Exercise Content
In chapter 7, we have seen that the difficulty of an exercise is mainly determined by the
exercise content. Exercise difficulty can thus bemanipulated by changing the content. Texts
from educational resources guarantee high text quality and adequate topics, but are often
perceived as artificial due to oversimplification. Authentic texts, on the other hand, are
more likely to contain linguistic flaws, inadequate content or constructions that are too
difficult for the learners. In section 2.2.1, we have seen that text simplification approaches
are not yet very robust. Fortunately, textual material is available in abundance and most
language learning scenarios are not limited to using one specific text. As a consequence,
manipulating exercise content can be interpreted as a content selection task.

Although the difficulty of selecting suitable content is commonly acknowledged, there
exist no guidelines for the quality assurance process. Klein-Braley (1997) admits that text
selection cannot be a random process because the text needs to be self-contained. In per-
sonal communication, educators explained that they rely on common sense, intuition, and
experience to find and adapt a suitable text. In addition, they adhere to the following rules
of thumb:

• The exercise should contain a topic from a general domain that does not require any
expert knowledge to avoid a domain bias.

• Texts that contain many named entities, numeric expressions, or subjective argu-
ments are typically not usable because they require factual background knowledge.

• The difficulty of the exercise should be appropriate.

As our approach for difficulty prediction can serve as a fast diagnostic tool for the last
condition, we implemented it as a web demo.

8.1.1 Web Demo for Test Generation

The web demo is available at: http://spz-etest.ukp.informatik.tu-darmstadt.de:9000/ctest
It displays a simple input window for text (see Figure 8.1). A generation function transforms
the text into a C-test that can be directly used with students. This service has already been
provided by previous tools,87 but our demo offers an important additional feature: a second
output mode provides a difficulty visualization for the gaps.

Each gap is presented with a label and the color of the label indicates the difficulty. For
the color-coding, the prediction values are mapped into difficulty classes according to the
scheme in section 7.1. Gaps that have a predicted difficulty smaller than 0.25 are visualized
with a green label and gaps with a predicted difficulty between 0.25 and 0.5 with a yellow
label. In chapter 7, we have seen that the occurrence of hard gaps is rather infrequent. In

87http://lingofox.dw.com/index.php?url=c-test, accessed: December 2, 2015
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Figure 8.1: Web demo for difficulty prediction

order to improve the usability of the tool, we merge the difficulty classes three and four
and visualize all gaps with a predicted difficulty higher than 0.5 with a red label. The demo
is currently realized only for the C-test because it is the most popular exercise type for
the co-operating educational institutions (the language center at TU Darmstadt and the
TestDaF institute). It could easily be extended to X-tests and cloze tests.

The web demo serves as a first direct tool for teachers that can already alleviate the
content selection. The next step consists in further automation of the content selection
process. The main advantage of automatic evaluation over human evaluation is the pro-
cessing speed. Using the methods developed in this thesis, we can examine a large set
of texts from a corpus and determine their suitability for language learning exercises. In
the following, we describe a test selection pipeline for English C-tests that could easily be
adapted to other languages and to the generation of other test types.

8.1.2 Selection Pipeline

The following pipeline can be applied to any text corpus. The corpus is pre-processed us-
ing the Stanford segmenter and named entity recognizer (Manning et al., 2014), and the
TreeTagger POS-tagger (Schmid, 1999).
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Text reduction As C-tests consist only of a single paragraph with three to five sentences,
the texts in the corpus first need to be reduced to the required size. A very rigid approach
that only selects the first paragraph of each article is chosen for that goal. If the first para-
graph is too short, subsequent paragraphs are added until reaching the desired length.
Paragraphs are not split to make sure that the text is coherent and comprehensible. All
paragraphs from the middle or the end of the articles are ignored to avoid unresolvable
backward references.

Qualitycheck In a subsequent quality check, strict filters are applied on the selected para-
graphs. Texts with named entities or capitalized words are ignored because the named en-
tities might be unknown to the learner. Only one numeric expression is allowed for each
text to avoid overly technical content. In addition, we also filter texts that contain first
person pronouns and quotation marks because they tend to be more subjective. The length
reduction and the filters are very restrictive to assure high quality tests. It is very likely that
suitable texts are also discarded due to these checks. If quality is already assured by a more
careful corpus selection or by a human post-editing step, the filters could be readjusted to
be more lenient.

Difficulty Prediction After the corpus has been reduced to a subset of suitable texts, the
remaining texts are transformed into C-tests. The difficulty of each gap is then predicted
based on the full model for English. Depending on the final application, the difficulty of the
results can be manipulated by filtering out tests with too many (or too few) difficult gaps.
For the current pipeline, the tests are written in an HTML output format that visualizes
the difficulty of the gaps with colors (as in the output of the web demo in figure 8.1). If
a more fine-grained difficulty analysis is required, it is also possible to directly output the
regression value. This could be useful if the language proficiency from the target learner
group differs from the learner group in the learned model. For example, if the test designers
anticipate higher proficiency, they could simply subtract a constant from the regression
prediction to receive a more probable estimate.

8.1.3 Evaluation of Content Selection

For a better understanding of the usability of the test selection process, human experts are
asked to evaluate the output.

Experimental setup Thegeneration pipeline employs several quality filters. However, the
usability of the output depends to a large extent on the quality of the selected corpus. In
order to reduce the topic bias, the text corpus should contain texts from a general domain.
The most popular English corpora contain news texts reporting on current events. Un-
fortunately, news texts are time-dependent and often require background knowledge that
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Figure 8.2: Example for human evaluation

language learners might not have. Instead, we use a sub-corpus ofWikipedia consisting of
2,615 articles that were selected by humans as being of high quality and importance.88 From
these articles, the pipeline extracts 28 texts to be of sufficient linguistic quality, generates
corresponding C-tests, and predicts the difficulty. In the evaluation, we aim at determining
the usability of the resulting C-tests for real scenarios.

Participants The participants are three English teachers from the language center at TU
Darmstadt who are experienced test designers. All of them are female and have at least
nine years of English teaching experience. Two of them are native speakers of English and
one is German. The same teachers also participated in the annotation study in section 7.1.

Evaluation setup Each of the 28 C-tests is presented including the difficulty visualization
(see figure 8.2). The teachers are informed that the difficulty estimates are predicted auto-
matically and might not be accurate. For each C-test, the teachers are asked the following
questions:

Would you use this C-test as a placement test?

(1) Yes.
(2) Yes, with minor modifications:
(3) No.

If the teachers select No , they are asked to elaborate on the reasons.

Why not? You can select multiple answers:

88Available from http://www.evanjones.ca/software/wikipedia2text.html, accessed: November 19, 2015
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Figure 8.3: Results of the human evaluation for text selection

(1) The linguistic quality of the test is not sufficient.
(2) The topic of the test is too specific.
(3) The test is too easy.
(4) The test is too difficult.
(5)

An additional question asked whether the rejected test could be used for another group
of learners, but only one of the teachers actually answered this question. It is therefore
omitted from the evaluation.

Results As can be seen from the plot in figure 8.3, the agreement for this task is very low.
The Fleiss’ κ is only 0.17 for the three annotators. However, the agreement for rejecting
a test is quite high. If the two labels Yes and Yes, with minor modifications are merged, the
Fleiss’ κ increases to 0.41. We can see that the annotators approach the task with different
granularity. A1 recommends to edit most C-tests, whereas A2 is willing to accept 14 tests
directly. This shows that the test selection is a very subjective task even for experienced
teachers.

In addition to the three labels for the decision, figure 8.3 also plots the number of texts
for which the teachers selected the optionThe topic of the test is too specific . It can be seen,
that this explanation accounts for almost all of the rejected tests. The tests were either
considered to be too religious or philosophical (Creationism , Free Will ) or too technical
(Power Plugs ,Mass–Energy Equivalence). As the placement test is taken by a large group
of students with very heterogeneous backgrounds, religious topics might introduce a do-
main bias or might even be considered as offending. All three evaluators have a background
in the humanities. This might cause a bias towards rating topics as being too technical. As
the linguistic quality was never criticized, it seems that our strict quality filters are work-
ing well. For future applications, it is important to also account for topic preferences. This
could either be realized by selecting amore suitable text corpus or by adding topic modeling
to the quality filters.
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Tavakoli et al. (2011) show that the learner’s familiarity with the text genre and domain
has an effect on the exercise difficulty. For self-directed learning, this indicates that the
learner can cope with higher difficulty if the exercise is situated in her domain of expertise.
The learners who contributed to the thesis datasets had very heterogeneous backgrounds,
so it is not possible to account for individual preferences. We only approached a common
trait of the group by modeling the cognateness of the words with German for the English
and French datasets and with English for the German datasets because the majority of the
learners know these languages. In order to adapt the difficulty model to a specific target
group or to an individual learner, the difficulty model needs to be coupled with a learner
model that accounts for individual differences such as domain knowledge and learning
styles.

The evaluation further shows that only one of the unaccepted tests was rated as too
difficult by A3 and two were rated as too easy by A2. The teachers aim at a wide range of
difficulty because they want to account for many student levels. Section 4.2.2 described that
the teachers aim at arranging five tests with ascending difficulty. Comments like Maybe, as
second text of 5 indicate that they directly try to classify the texts into one of the positions.
The teachers were also encouraged to mark problematic gaps as can be seen in figure 8.2.
These markings and the free comments indicate that the teachers actually considered the
difficulty prediction as an important guideline and focused more on the gaps highlighted
in red, see the examples below. The annotators were the same as those that struggled to
estimate the gap difficulty correctly in section 7.1. This could explain why they are likely
to rely on the prediction.

Teacher comments for modifications:

• Use as low-medium by taking out/replacing two of the red gaps
• Maybe. Use for hardest text but take out/replace a couple red gaps, probably too

tricky overall.
• Take out red gap and use as mid-intermediate.
• Have no idea what “compu ” is.
• Find synonym for compulsory.

Overall evaluation of usability After evaluating all 28 C-tests, the teachers were asked
for an overall rating of the usefulness of the approach.

How did you experience the difficulty predictions?

(1) They were helpful.
(2) They were distracting.
(3) They were not helpful, but also not distracting.
(4)
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Two teachers stated that the difficulty predictions were useful and one of them chose the
open option and commented that they were quite accurate . The teachers were also asked if
they would prefer more fine-grained information about the difficulty. All three agreed that
the current format is sufficient. For the last three questions, we allowed free text answers.
All teachers agreed that the system is useful and that not knowing the answer actually
helped with the evaluation of the tests. They were positive about the approach and would
like to use it in practice, see the comments below:

Do you think the automatic test generation is useful?

• Yes, will save loads of time guessing/estimating which texts are easier/harder +
putting them in the right order.

• Yes.
• Yes, as a basis for generating texts/tests.

In this evaluation scenario, you do not directly see the answers for the gaps. How does
this affect your evaluation of the quality and the difficulty of the test?

• Not at all. I need to see if I can answer the red gaps.
• This is positive. It gives a more accurate view of authentic test conditions + difficulty.
• Better for me this way. Easier to assess the difficulty. I find it much easier to mod-

ify texts that are already gapped than to start from scratch with gapping so this
program would be very useful.

Do you have any other comments?

• We would definitely use the programme for our placement tests, I think.
• I think this could be a very useful tool for the SPZ.89

• We generally stick to “general” scientific texts + avoid the humanities.

The overall rating was thus very positive. The last comment points to the problem with the
selection of topics that had already been mentioned above.

One of the teachers complained that the gap dres was labeled as being easier than
the gap vin in an article about sushi, although dressing has a lower frequency. However,
it is a cognate and quite frequent in German, while the word vinegar does not have any
corresponding German forms and might actually be more difficult. This example supports
the assumption that the teachers cannot always anticipate all difficulty factors.

8.1.4 Manipulating Word Difficulty

The free comments in the teacher evaluation showed that most modifications of the gener-
ated C-tests would consist in substituting a word that is considered to be too difficult with
a simpler synonym. This is a common task in natural language processing which is known
as lexical simplification . In his overview of simplification approaches, Siddharthan (2014)

89SPZ is an abbreviation for Sprachenzentrum meaning language center.
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claims that “the ability to map words to meaning is the main difference between poor and
skilled readers” and that the word choice is therefore the major source for text complexity.
Most lexical simplification systems are build around the assumption that more frequent
words are easier (De Belder and Moens, 2012). Unfortunately, the degree of simplification
that is obtained by replacing a word with a synonym is difficult to measure. In several an-
notation studies, human evaluators were asked to rate the complexity of a word in context.
The agreement values for this task are commonly rather low (Specia et al., 2012). In addition,
the human raters are usually native or near-native speakers of the language with standard
reading abilities. This conveys the implicit assumption that the typical target groups for
lexical simplification such as children, dyslexic readers and non-native speakers all have
the same simplification needs. In the chapters about text and word difficulty (4 and 5), we
have seen that specific factors need to be taken into account for language learners.

Manipulating recognition difficulty Language learners have the benefit that they can
rely on their knowledge of at least one additional language (their L1) when learning a for-
eign language. This has the effect that words which have cognates in the known language(s)
facilitate the comprehension for the learner. This finding provides a new means for manip-
ulating the difficulty of recognition tasks which has not been considered in previous work
on simplification. In the lexical substitution dataset by De Belder and Moens (2012), for
example, the word severely is annotated as being more difficult than the potential substi-
tutes dramatically and critically . For German learners, the latter two words are cognates
which facilitates the inference of meaning while severely has no corresponding cognate
translation. Complex words can thus be substituted with a synonym that is a cognate for
the learner to alleviate reading comprehension. In analogy, reading tasks can be compli-
cated by using a higher ratio of words which are idiosyncratic in the target language so
that their meaning cannot be guessed by the similarity to known words. This concentra-
tion on unfamiliar word stems can lead to a more focused increase of vocabulary. In order
to highlight the differences between the languages that the learner already knows and the
target language, the usage of false friends can be helpful. However, in this scenario it is
important that the context explicitly marks the different meaning of the word so that the
learner realizes the contrast.

Manipulating production difficulty The analysis of the datasets used in this thesis in
chapter 5 has shown that although cognates facilitate recognition , they also lead to produc-
tion errors due to two reasons. Cognates are more difficult to spell because they often have
Latin roots that do not necessarily fit the regular spelling patterns of the target language.
In addition, the learners might not explicitly know the word in the target language and
erroneously apply the spelling of the cognate in their L1.
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Frequency Cognateness Spelling Difficulty

speculation venture 2,395,509 8,064,420 true false high high
apathy numbness 607,273 478,109 true false high high
rival competitor 3,495,097 2,746,376 true false low high
attraction magnet 4,490,790 2,454,624 true true high low

Table 8.1: Lexical substitution examples

Synonym list In order to account for the phenomena mentioned above, we provide a
resource that can be used for more targeted lexical substitution. We extract synonyms from
UBY (Gurevych et al., 2012) and enrich each word with information about cognateness
and spelling difficulty based on the automatic methods described in chapter 5. In order
to support language recognition, words can then be substituted with synonyms that are
cognates. Similarly, words can be substituted with synonyms that are easier to spell to
facilitate language production. However, the substitutions should be based on word sense
disambiguation to assure that the meaning is appropriate. Strict meaning preservation is
not necessarily required in language learning but completely meaningless phrases should
be avoided.

In the four examples in table 8.1, the first word is always a cognate in German. The
first two examples come from different frequency bands. Speculation and venture are both
very frequent, but it can be assumed that speculation is easier to understand for German
students. Apathy and numbness are both infrequent and are probably not in the active vo-
cabulary of beginning and intermediate learners, but the meaning of apathy can be derived
due to the cognateness. In the last two examples, the focus is on the spelling difficulty.
Rival and magnet are both easier to spell than their synonyms. If teachers are aiming to
reduce the probability of spelling errors, substitutions can be performed according to this
criterion. Especially the last example also highlights the importance of word sense disam-
biguation. Only a few contexts allow to substitute attraction with magnet , thus, lexical
substitution should not be performed without word sense disambiguation.

8.1.5 Conclusions

The evaluation of our approach for test generation provides a promising outlook. The in-
consistent difficulty predictions by the teachers described in section 7.1 have shown a need
for more objective difficulty estimates. The evaluation reveals that our tool can provide a
solution that receives high acceptance and is considered useful by the participating prac-
titioners. In order to use the automatic test generation directly without a human quality
control, topic preferences need to be taken into account. For the modification of generated
tests, the teachers often provided only small changes concerning the substitution of indi-
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vidual words. We generated a synonym list that is enriched with cognateness and spelling
difficulty information that can be used for learner-focused lexical substitution.

8.2 Manipulating Exercise Format
The difficulty of the same exercise content varies depending on the selected exercise format.
In section 2.3.4, we discussed the influence of the deletion rate and the gap type on the
difficulty. A smaller deletion rate means a higher number of gaps on less text which leads
to higher item dependency and higher difficulty. The C-tests and the X-test are generated
with the lowest possible deletion rate of two, i.e. every second word is transformed into a
gap. The gap type can differ with respect to the portion of the word that is deleted (50% for
C-tests and X-tests, 100% for cloze tests) and the position of the deletion (the last part of
the word for C-tests and the first part of the word for X-tests). In general, higher deletion
portions are more difficult and deleting the beginning of the word is more difficult than
deleting the end (Köberl and Sigott, 1994).

The difficulty of exercises is also influenced by the available candidates. A lower num-
ber of possible candidates leads to lower difficulty because the probability of guessing the
right solution is increased. For closed cloze exercises, the candidate space is fixed by the
number of provided distractors. In this case, the most important factor for the difficulty
is the ambiguity between the distractors and the solution. Distractors that can easily be
ruled out facilitate an exercise, whereas tempting distractors confuse the learner and make
the exercise more difficult (see section 7.4). Cloze difficulty can thus be manipulated by
selecting distractors that increase (or decrease) the candidate ambiguity.

In order to analyze this claim, we focus on the cloze exercises with the highest and
lowest difficulty. We aim at adjusting the difficulty of these examples towards the middle
by finding substitution candidates for the distractors that alter the candidate ambiguity.
Distractor selection is a complex task (see section 2.2.2) and a large-scale evaluation study
is out of the scope of this thesis. We focus on a few selected examples as a proof of concept
instead.

Example selection We extract the easiest gaps with an error rate ≤ 0.1 from the cloze
dataset and only select those for which the two ranking features (the semantic score and
the language model probability, see chapter 6) rank the solution on rank 1. For the result-
ing 14 questions, it is quite likely that the low difficulty was caused by the low candidate
ambiguity . In addition, we extract the hardest gaps (error rate ≥ 0.5) and select the six gaps
for which all candidates are ranked higher than the solution.

The ranking features evaluate the context fitness of the candidates based on a language
model and on the semantic relatedness. If the context fitness of the solution is lower than
that of the candidates, the difficulty of the gap is increased. In order to manipulate the diffi-
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culty, we aim at increasing the candidate ambiguity for the easy questions and decreasing
it for the hard questions.

8.2.1 Manipulating Distractors

The process of manipulating the distractors consists of two phases: generating substitution
candidates for the existing distractors and evaluating their effect on the candidate ambigu-
ity.

Generating substitution candidates The process of distractor selection is challenging be-
cause it needs to be assured that the distractor is not a proper solution for the gap. In
addition, the cloze dataset was built with the requirement that all distractors should be
grammatical in the context of the gap (Zweig and Burges, 2011). For the original dataset,
these conditions had been assured by human post-editors who validated the distractors.

We aim at manipulating the candidate ambiguity without violating these constraints.
We thus try to replace a distractor with words that are grammatically and semantically
close to the human-validated original. This closeness can be approximated using a distri-
butional thesaurus that groups words together which often occur within the same context.
For each candidate of the selected questions, we extract 15 potential replacements that are
distributionally close to the source from the JoBimText application (Biemann and Riedl,
2013).90 We use a pre-computed model based on dependency parses. As this model only
contains lemmas, a pre-computed trigram-based model serves as a fall-back solution for
finding substitutions if the original distractor is inflected. We then filter the obtained re-
placements and remove all words that are distributionally close to the solution. In addition,
all replacements that are equal to one of the original distractors are also removed.

Evaluating substitution candidates Candidate ambiguity is evaluated using the two rank-
ing features based on the semantic relatedness and the language model probability intro-
duced in section 6.2. For the easy questions, the candidate fitness of the replacement candi-
date should be higher than that of the solution in order to increase the candidate ambiguity
and thus increase the difficulty. As the experiments have shown that the semantic ranker
tends to be a better estimate for the candidate ambiguity of the cloze exercises (see sec-
tion 6.2), we select the substitution candidate that maximizes the semantic relatedness. If
no candidate is ranked higher than the solution, the process is repeated with the language
model score. Using this process, 37 substitutions for the 56 distractors of the 14 easy cloze
exercises are identified. For 19 distractors, no suitable substitution could be selected. The
following easy gap serves as an example for the proposed substitutions:

90http://maggie.lt.informatik.tu-darmstadt.de:10080/jobim, accessed: December 7, 2015, used models:
stanford , trigram

170

http://maggie.lt.informatik.tu-darmstadt.de:10080/jobim


8.2. Manipulating Exercise Format

It was not until we had reached home that I began to the true state of affairs.
Original distractors: [realize , haunt , ravage , undermine , outrun]
Proposed substitutions: haunt /influence , ravage/cause , outrun/defeat

For the hard questions, the goal is to reduce the candidate ambiguity without using absurd
solutions that are easily identifiable as incorrect. We apply the same process, but the in-
verse requirement for the ranking. Only nine substitutions could be identified for the 24
distractors of the six difficult exercises. It is particularly interesting that for three of the
six exercises no substitution candidate could be selected. The process of generating sub-
stitution candidates terminated successfully, but all potential substitution candidates were
ranked lower than the solution. This indicates that the context fitness of the solution is
already very low and the cloze exercise might simply be difficult to solve independent of
the distractors.

In order to assure that the distractor constraints are not violated by the substitutions,
two native speakers were asked to proof-read the 17 exercises for which substitutions could
be generated.

8.2.2 Quality Evaluation of Distractors

Wepresent the solution, the original distractors and the generated distractors of the 17 cloze
exercises as equal candidates to two native speakers of English. The difference between the
candidates is not indicated. For each of the candidates, the evaluators A1 and A2 are asked
to judge in two steps whether the candidate fits the gap i) grammatically and ii) seman-
tically. The goal is that all candidates are grammatical, but only the solution to the cloze
exercise should fit semantically. The annotators were instructed to apply strict judgments.
They should judge the grammaticality of a candidate independent of its meaning. They
should mark a candidate as semantic fit if they could easily construct the meaning of the
sentence including the candidate. A candidate that is a semantic fit can thus be considered
as a solution for the exercise.

In all cases, the annotators correctly identify the solution to fit grammatically and se-
mantically. However, for the distractors the two annotators disagree considerably regard-
ing grammaticality (Cohen’s κ: 0.05) and semantic fit (Cohen’s κ : 0.7)) as can be seen in
the tables 8.2 and 8.3.

Grammaticality A1 marks all candidates (original and generated) as grammatical except
for one generated substitution. A2 follows a stricter line and labels 33 candidates as un-
grammatical including several of the original distractors. She seems to consider additional
aspects such as selectional preferences for her judgment. As the original distractors had
already been labeled as grammatical by other human annotators in the study by Zweig and
Burges (2011), we only rely on the judgment by A1 for grammaticality. Thus, only one of
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EasyQuestions HardQuestions
Instances A1 A2 Instances A1 A2

Solution 14 14 14 3 3 3
Original Distractors 56 56 43 12 12 10
Generated Substitutions 36 35 19 8 8 6

Table 8.2: Evaluation of grammaticality: number of candidates that were labeled as grammatical
by the annotators. In the ideal case, all candidates should be grammatical.

EasyQuestions HardQuestions
Instances A1 A2 Instances A1 A2

Solution 14 14 14 3 3 3
Original Distractors 56 1 4 12 9 2
Generated Substitutions 36 3 3 8 4 2

Table 8.3: Evaluation of semantic fit: number of candidates that were labeled as semantic fit for
the sentence. In the ideal case, only the solutions should be labeled as semantic fit.

the generated substitution candidates (criticism ) can be considered strictly ungrammatical
for the context (it should be the plural criticisms).

Semantic fit Even the original set of candidates seems to contain distractors that are so-
lutions for the exercise. For the easy questions, A1 labeled one of the 56 original distractors
as semantic fit and A2 four others. Three out of the 37 generated substitutions are labeled
as semantic fit by both annotators and are therefore invalid distractors.

For the three hard exercises, both annotators label two out of twelve original distractors
to fit semantically. As these two distractors belong to different exercises, at least two of the
hard exercises are highly ambiguous even for native speakers. A1 perceives even higher
ambiguity and labels nine of the original distractors to fit semantically. This explains the
high error rates for these exercises. It also shows that the candidate rankers capture the
right tendency by ranking the solution on rank 5.

As a consequence, the substitution candidates for ambiguous distractors are of course
also likely to be ambiguous. The results for the three hard exercises are inconclusive. For
the first exercise, all generated distractors are considered to fit semantically into the context
by both annotators, for the second none of the generated distractors fit semantically and
for the third exercise the annotators disagree.

Consequences The above results show that the substitution generation approach pre-
serves the grammaticality of the candidates in almost all cases. Avoiding that the generated
substitutions fit semantically is slightlymore complicated, particularly if this constraint was
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already violated by the original distractor. In future approaches, a more rigorous validity
check using textual entailment approaches needs to be applied (Zesch and Melamud, 2014).
In order to avoid ambiguity, the generated substitutions are slightly adjusted before pre-
senting them to non-native speakers. The ungrammatical distractor criticism is changed
into the grammatical plural criticisms . The current pipeline did not include a proper agree-
ment check, but this could easily be added. For the easy exercises, three of the generated
substitutions need to be removed because both annotators agree that they are correct an-
swers.

(1) He was a solicitor and was my room as a temporary convenience until his
new premises were ready.

(2) The probability was, therefore, that she was the truth, or, at least, a part of
the truth.

(3) They undoubtedly showed that the was much deeper than was at first conjec-
tured.

(4) I stared at it , not knowing what was about to issue from it.

The substitution holding for the distractor serving is excluded for exercise 1, learning (for
surveying ) is excluded from exercise 2, and earth (for moon ) from exercise 3. One of the
hard exercises (exercise 4) is excluded completely because the original and the generated
distractors are too ambiguous. The context for this exercise is not very restrictive and
allows too many answers. These amendments result in 16 exercises with on average three
substituted distractors.

8.2.3 Difficulty Evaluation of Distractors

The exercises with the substituted distractors are set up in a web survey similar to the
ones in the previous cloze study described in section 3.3.1. The exercises were answered
by 20 non-native speakers of English who had not taken part in the previous study. The
majority of the participants were German and their proficiency level was comparable to
the participants of the previous study.

Results The intended adjustment of the difficulty could not be confirmed by the study.
Only for two of the fourteen easy exercises and for one of the two hard exercises, a change
in the error rate could be observed. They are listed below, the first two are the easy exer-
cises that have become more difficult and the last one is the hard exercise that has become
easier. For the other exercises, the difference between the error rate of the original and the
manipulated exercises was smaller than 0.2.
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(1) The stage lost a fine , even as science lost an acute reasoner, when he became
a specialist in crime.
Presented options: [scientist (5), hunter (0), actor (15), land (0), horseman (0)]
Performed substitutions: linguist /scientist , estate/land
Original error rate: 0.05, new error rate: 0.25

(2) A few good and the reputation which I had won in the hospital brought me
rapidly to the front, and during the last few years I have made him a rich man.
Presented options: [knives (1), criticisms (3) , cases (13), dinners (2), landlords (0)]
Performed substitutions: taunts/criticisms
Original error rate: 0.1, new error rate: 0.35

(3) That cold , , ironical voice could belong to but one man in all the world.
Presented options: [relaxed (9), hungry (1), rented (0), disorganized (0), incisive (10)]
Substitutions: serene/relaxed , self-contained /rented , inflexible/disorganized
Original error rate: 0.82, new error rate: 0.5

It can be seen, that the increased error rate can be directly attributed to the substitution sci-
entist in example (1) and criticisms in (2). In example (3), replacing the originally tempting
distractor self-contained with rented caused the biggest effect. The substitution relaxed did
not decrease the difficulty. For these three exercises, the difficulty manipulation worked
well, but it did not have an effect on the other eleven exercises. We discuss potential rea-
sons for this below.

Discussion We identify three possible explanations for the observation that only few diffi-
culty changes could be observed in the study. First, the selection of substitution candidates
with the distributional thesaurus leads to a very limited candidate set. If the original dis-
tractors were not well chosen, substitutions that occur in the same context are equally bad.
The candidate rankers would probably perform better when selecting the substitution from
a bigger set of candidates. However, in this setting, better quality assurance using textual
entailment approaches as in Zesch andMelamud (2014) is required to eliminate substitution
candidates that solve the gap correctly.

Second, our candidate rankers do not capture selectional preferences of verbs very well
which can result in rather unsuitable distractors, e.g. the distractor hanging for the context
I rushed out, loudly for my stepfather is not distracting from the correct solution
calling because it is not likely to occur with loudly nor with a for complement. Out of the
eleven easy questions for which no manipulation effect was observed, eight use verbs as
distractors. The selectional preferences of the distractors thus need to be more controlled.
However, the more the distractor matches the context, the more likely it is an actual solu-
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tion. Meeting this fine line to generate difficult cloze distractors is thus a very challenging
task.

Third, the intended increase of difficulty might actually be realized, but the effect is not
measurable. A similar argument has already been discussed in Zesch and Melamud (2014).
In case the manipulated distractors do distract the learner more but the correct solution is
selected anyway, the difference is not evident. In order to avoid this for future studies, the
learners could be asked to indicate their certainty for each exercise. All participants in the
study have been learning English for at least five years (60% for more than 10 years). The
results thus might have also been caused by a floor effect,i.e. the exercises are generally too
easy for the participants.91

8.3 Chapter Summary
In this chapter, the findings for difficulty prediction have been used for the goal of diffi-
culty manipulation. A web demo that visualizes the output of test generation and diffi-
culty prediction for any text has been implemented and is publicly available at http://spz-
etest.ukp.informatik.tu-darmstadt.de:9000/ctest. For difficulty manipulation of C-tests, a
pipeline that selects texts from a corpus, generates tests, and predicts the difficulty has
been developed. In an evaluation study, the output of the pipeline was rated by teachers.
More than half of the generated tests were considered to be usable in real-world placement
tests and the overall ratings were promising. For future improvements of the approach,
topic selection and lexical substitution should also be considered. To this end, a resource
consisting of synonyms enriched with cognateness and spelling difficulty annotation was
created and made publicly available.92 For difficulty manipulation of cloze tests, the selec-
tion andmanipulation of distractors is crucial. We propose to substitute existing distractors
to adjust the difficulty of extremely hard and extremely easy exercises. The substitutions
are generated using a distributional thesaurus and their candidate fitness is evaluated us-
ing the candidate ambiguity rankers described in chapter 6. The grammaticality and the
semantic fit of the substitutions were evaluated by two native speakers. The results show
that grammaticality of the substitutions can mostly be preserved. Avoiding that the substi-
tutions fit semantically is more complicated. The exercises were also tested with language
learners, but the manipulation effect on the difficulty could only be shown for a few exam-
ples. The distractor manipulation could be improved by modeling selectional preferences
of verbs and applying less restrictive candidate generation in future work.

91http://link.springer.com/referenceworkentry/10.1007%2F978-1-4419-1698-3_230, accessed: January
27, 2016

92At http://www.ukp.tu-darmstadt.de/data/c-tests/difficulty-prediction-for-language-tests
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Chapter 9

Conclusions

”
Die Schwierigkeiten wachsen, je näher man dem Ziele

kommt.“
— Johann Wolfgang von Goethe

The final chapter summarizes the findings of the thesis and provides an outlook to promis-
ing research directions that could arise from this work.

9.1 Summary
This thesis has shown that it is possible to predict the difficulty of text-completion exer-
cises automatically with high accuracy reaching human performance levels. The presented
approaches are already considered as useful by educational practitioners for designing lan-
guage proficiency tests. With further engineering and fine-tuning, the developed tech-
nology can also be used to directly generate exercises for self-directed learning scenarios
without human intervention. In the following, the main findings of each chapter are sum-
marized and their potential implications for future work are pointed out.

Chapter 2 provided an overview of the state of the art in computer-assisted language
learning and educational natural language processing with two main conclusions. First,
text-completion exercises are a popular choice for language proficiency tests. They com-
bine educational quality expectations with technological practicality. Second, an approach
for measuring and adapting exercise difficulty automatically is required to take exercise
generation to the next level.

Chapter 3 presented the new difficulty model that forms the theoretical basis for this
thesis. The model interprets exercise difficulty as a combination of content and format fac-
tors and is further categorized into the four dimensions of text difficulty, word difficulty,
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candidate ambiguity, and item dependency. The goal for the thesis was refined as the devel-
opment of computational measures for each of the dimensions and their integration into
an approach for difficulty prediction. For the empirical basis of the thesis, five difficulty
datasets have been introduced. A data-driven comparison of two existing theories led to
the decision for the error rate as indicator of difficulty.

Chapter 4 provided an analysis of the text difficulty dimension. A readability experi-
ment has shown that the claims in previous work about the predictive power of existing
readability features for the difficulty of text-completion exercises are not supported by our
data. A psycholinguistic comparison of L1 and L2 readability indicates that the traditional
view on readability fits the holistic comprehension and interpretation approaches by native
speakers, but does not necessarily match the more conscious processes applied by language
learners. As a consequence, computational approaches need to focus more on local diffi-
culties. This is an important finding for future work in readability, and it has already been
considered by Pilán et al. (2014).

Chapter 5 introduced measures for approximating the difficulty of words for language
learners. We developed an approach for alphabet-agnostic cognate production to account
for cross-lingual item transfer. It uses character-level machine translation to model mor-
phological processes across languages. This approach has recently also been adopted by
Scherrer and Sagot (2014), Scherrer and Erjavec (2015), and Ling et al. (2015) and is consid-
ered to be beneficial for machine translation. In order to successfully integrate the cognate
approach into real-world applications, quality control and the accurate distinction between
true and false friends need to receive more attention. To account for productive word diffi-
culties, we developed an approach for measuring spelling difficulty that relies on new pho-
netic features. For the evaluation of the approach, spelling errors have been extracted from
a corpus of learner essays. We made the datasets for the cognate and spelling experiments
publicly available.93 In future work, the insights into word difficulty and the corresponding
features can also contribute to related tasks such as spelling correction, lexical substitution,
writing assistance, and natural language identification.

Chapter 6 focused on the format dimensions candidate ambiguity and item dependency.
For the evaluation of candidate ambiguity, two measures for automatic solving of exercises
were analyzed and adapted tomodel the difficulty for language learners. The idea of limiting
the training data of computational models to simulate the limited knowledge of learners is
a new twist that runs counter to the general assumption that bigger is better. An analysis
of item dependencies across samples has shown that existing measures do not capture the

93An overview page with all links can be found at http://www.ukp.tu-darmstadt.de/research/
past-projects/exercise-difficulty-for-language-learning/
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intuitive concept of item dependency properly. The assumption that item dependencies
are caused by linguistic features was not borne out by our data and has therefore not been
captured in computational measures. Instead, rather shallow position and neighbor effects
were included. The findings could explain inconclusive results by Schroeders et al. (2014)
and Eckes and Baghaei (2015). However, the hypothesis that item dependencies are related
to linguistic features is too strong to be ultimately rejected and remains a research topic for
psychometricians. Future research will hopefully shed light on this issue.

Chapter 7 contains the main contribution of this thesis. The four difficulty dimensions
are combined into a single model to predict the item difficulty of text-completion exercises.
The evaluations show that the automatic prediction reaches the performance of a single
human expert if enough training data is available. As our approach is trained on real error
rates and not on human annotations, more fine-tuned approaches should be able to out-
perform human experts. The automatic difficulty prediction has three advantages over the
judgment by human experts. It is based on objective measurable properties, it is consistent,
and it is faster.

Chapter 8 analyzed applications of the difficulty prediction approach for the goal of diffi-
culty manipulation. We implemented a web demo and a novel approach for test generation
and selection from a corpus that was positively evaluated by language teachers. Further
modification and adaptation of exercises can be improved with our generated resource for
lexical substitution targeted at language learners. For the difficulty manipulation of cloze
tests, an approach for distractor generation and evaluation has been developed that is based
on the implemented candidate rankers. The evaluation with users has shown that this ap-
proach works for some examples, but needs to be further refined and combined with other
approaches for distractor generation. In particular, progress in the automatic analysis of
semantic relations and selectional preferences of verbs can lead to improvements for this
task.

In this thesis, we have developed computational features that aremotivated by psycholin-
guistic theories. In future work, the computational approaches can in turn contribute em-
pirical results to improve theories about language learning.

9.2 Outlook
Most of the measures developed in this thesis profited from natural language processing
techniques that have been developed for other tasks. Accordingly, our contributions to
difficulty prediction can hopefully also lead to further improvements in related tasks. Word
difficulty measures can be exploited to improve readability and simplification systems. The
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analyses on cross-lingual transfer can lead to improved natural language identification and
exercise generation that considers the background knowledge of the learner. The compu-
tational approaches for evaluating candidate ambiguity for language learners might foster
improvements in learner-specific sentence completion and other writing assistance tools.

Computer-assisted language learning is a truly interdisciplinary research area attract-
ing interest from educational researchers, psychologists, linguists, and of course computer
scientists. It is our strong conviction that real progress can only be made when knowl-
edge from the different disciplines is consolidated. This thesis has contributed to interdis-
ciplinary collaboration by modeling psycholinguistic findings as computational measures.
The analysis of item dependencies is strongly influenced by psychometric approaches and
the results have already generated interest from psychological researchers and raised new
research questions. Making our approach available as a web demo was greatly appreci-
ated by educational researchers and practitioners. Integrating their feedback could lead to
technical improvements for future projects in educational natural language processing.

The main contribution of this thesis is the implementation of an approach for auto-
matic difficulty prediction of exercises. The consequent next step after automatic difficulty
prediction is tackling more focused exercise generation.

Improving exercise generation In the past, exercise generation approaches have been
built to explore technical feasibility rather than to match educational needs. In order to
support learning, the generated exercises need to fit the learner’s proficiency and should be
targeted at the learning goals. In chapter 8, we have already explored first attempts towards
informed difficulty manipulation. Our difficulty model provides the opportunity to antic-
ipate the difficulty of exercises without testing them directly on learners. The approaches
for content selection, lexical substitution, and distractor manipulation all need to be ex-
plored further and will benefit from technological advances. Content selection needs to be
controlled by topic and genre modeling, lexical substitution by word sense disambiguation,
and distractor manipulation by textual entailment approaches to generate better exercises
that are targeted towards the learners’ needs.

The direct reference points for future work regarding the individual measures have al-
ready been pointed out above. The following paragraphs discuss two more general lines of
research that could be pursued from here by taking contrasting perspectives.

Widening the focus In many parts of this thesis, we have focused on very specific phe-
nomena. The high prediction quality has been confirmed for several datasets, but all of
them contain text-completion exercises in Western-European languages. An interesting
next step would be to widen the focus and extend the approach to languages from other
language families and other exercise types. Open exercises, task-based and communicative
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learning, and interactive approaches have a higher reputation from an educational point-of-
view than the more static exercises that are favored by computer scientists. In future work,
the difficulty concept thus needs to be adapted to account for exercises outside the text-
completion paradigm. The findings of this thesis could be combined with recent progress
in the field of essay grading and short answer scoring. In addition, the approaches need to
be integrated with speech technology to address the full skill set of language learning.

With the ongoing trends of massive open-online courses, computer-based assessment,
and big data analytics, more and in particular bigger datasets will become available. The
example-based error analyses in this thesis can then be replaced with large-scale parameter
tuning to adjust the difficulty concept to the specific tasks at hand and further improve the
performance of exercise difficulty prediction.

Narrowing the focus In contrast to the line of research described above, the opposite di-
rection also promises interesting insights. In the thesis, we have seen that the background
of the learner plays an important role, for example, for cross-lingual transfer. Our datasets
contain information from many heterogeneous learners at one point in time. Difficulty is
thus interpreted as an aggregated mean over all learners and is approximated by linguistic
properties of the exercise. For future work, it would be interesting to evaluate the difficulty
of an exercise with respect to the learner’s ability. For this kind of research, longitudinal
performance data from more focused target groups or even from individual learners is re-
quired. In order to properly predict learner performance, the difficulty model then needs to
be combined with a learner model that represents the learner’s proficiency and also other
characteristics such as personal preferences, learning style, and domain knowledge. The
main challenge here consists in dynamically updating the difficulty estimate of an exercise
according to the learner’s progress and to the learning goals. Another important factor
that we neglected in this thesis is the role of the teaching style. Different educational the-
ories and cultural preferences lead to different didactic approaches which in turn have an
influence on the competence of the learner and the experienced difficulties. Being able
to generate exercises with fine-grained adaptivity that can be used directly for individual
language training will strongly increase the acceptance and also the educational benefit of
technological approaches.

Supporting multilingualism is a high priority for the European Union : “One of the EU’s
multilingualism goals is for every European to speak 2 languages in addition to their mother
tongue.”94 This ambition is based on the motivation that language skills foster inter-cultural
understanding in our modern, heterogeneous societies. We hope that the results of this
thesis can contribute to the integration of technology into language learning scenarios and
lead to more flexible learner support.

94See http://europa.eu/pol/mult/index_en.htm, accessed: December 17,2015
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Appendix

A Readability Features
For our work on exercise difficulty, we focus on the readability features that have been
found to be most predictive in previous work. Complex inter-sentential relations can be
neglected because the texts in our data are all very short (three to five sentences). In ad-
dition, we apply the constraint that the features should be applicable for English, German
and French. We provide a short summary of the implemented features which can be found
at: https://github.com/dkpro/dkpro-tc/tree/master/dkpro-tc-features-readability

The input data is already tokenized. For POS-tagging, lemmatization and chunking, the
Treetagger modules are used with corresponding models for English, German and French
(Schmid, 1999). For English and German, named entity recognition is performed using the
Stanford Named Entity Recognizer (Manning et al., 2014).

A.1 Surface

• AvgSentenceLength: Average sentence length in words.
• AvgWordLengthInCharacters: Average word length in characters.
• AvgWordLengthInSyllables: Average word length in syllables.The syllables are de-
termined based on a method implemented by Torsten Zesch in https://github.com/
dkpro/dkpro-core/tree/master/de.tudarmstadt.ukp.dkpro.core.readability-asl.

A.2 Lexical-Semantic

• TypeTokenRatio: Ratio of types and tokens.
• VerbVariation: Ratio of verb types and verb tokens.
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A.3 Syntactic

• UniqueEntitiesPerSentence: Average number of unique entities per sentence. As the
texts contain only very few named entities, all noun chunks are also considered as
entities in line with Feng et al. (2009).

• NounChunksPerSentence: Average number of noun chunks per sentence.
• VerbChunksPerSentence: Average number of verb chunks per sentence.
• PrepositionalChunksPerSentence: Average number of prepositional chunks per sen-
tence.

• AdverbalChunksPerSentence: Average number of adverbal chunks per sentence.
• SBarsPerSentence: Average number of sbars per sentence.
• ChunksPerSentence: Average number of chunks per sentence.
• NounsPerSentence: Average number of nouns per sentence.
• AdjectivesPerSentence: Average number of adjectives per sentence.
• AdverbsPerSentence: Average number of adverbs per sentence.
• VerbsPerSentence: Average number of verbs per sentence.

A.4 Discourse

• PronounRatio: Ratio of pronouns and tokens.

B Word Difficulty Features
For the task of exercise difficulty prediction in chapter 7, we implemented the following
word difficulty features. The exercise data is already tokenized. For POS-tagging, lemma-
tization and chunking, the TreeTagger modules are used with corresponding models for
English, German and French (Schmid, 1999). The probability of n-grams is calculated based
on theWeb1T corpus for all three languages (Brants and Franz, 2006). Other resources are
specified in the description of the corresponding feature.

B.1 Word Familiarity

• WordLengthInCharacters: The length of the word in characters.
• WordLengthInSyllables: The length of the word in syllables. The syllables are de-
termined based on a method implemented by Torsten Zesch in https://github.com/
dkpro/dkpro-core/tree/master/de.tudarmstadt.ukp.dkpro.core.readability-asl.

• Polysemy: Number of senses for theword in the resourceUBY (Gurevych et al., 2012).
• UnigramProbability: The log-probability of the word. For the calculation of the
Sigott-baseline in chapter 7, the absolute frequency is used as specified by Sigott
(1995).
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B.2 Morphology and Compounds

• IsLemma: The word is in lemma form.
• IsInflectedNoun: The word is a noun and not in lemma form.
• IsInflectedAdjective: The word is an adjective and not in lemma form.
• IsDerivedAdjective: The word is a derived adjective (e.g. understandable ).
• IsInflectedVerb: The word is a verb and not in lemma form.
• IsCompound: Theword is a compound. Compounds are determined using the jword-
splitter: https://github.com/danielnaber/jwordsplitter

• IsCompoundBreak: The hint splits the word at a compound break.
• IsSyllableBreak: The hint splits the word within a syllable. Syllables are determined
using an implementation of the latex hyphenation rules by Christian M. Meyer and
an hyphenation dictionary for English. Christian M. Meyer provides the following
references: “The implementation follows Frank M. Liangs hyphenation algorithm
(Liang, 1983), which is also an integral part of the TeX typesetting system. Mathias
Nater provides a good overview of the algorithm, see: http://tug.org/tex-hyphen/
pdf/hyphenator.pdf”. The hyphenation dictionary is available at http://hindson.com.
au/info/free/free-english-language-hyphenation-dictionary(accessed: December 7, 2015).

B.3 Syntactic Behavior and Context Specificity

• TrigramLogProbability: The log-probability of the micro context. The micro context
consists of the left and right neighbor of the word.

• LeftBigramLogProbability: The log-probability of the left bigram of the micro con-
text.

• RightBigramLogProbability: The log-probability of the right bigram of the micro
context.

• POSProbability: The probability of the POS sequence of the micro context.
• IsFunctionWord: The word is a function word.
• IsADJ, IsAdv, IsArt, IsConj, IsNN, IsNP, IsPP, IsPr, IsV: The word is an adjective /
adverb / article / conjunction noun / proper noun/ preposition / pronoun / verb.

• IsADJC, IsADVC, IsNC, IsNN, IsPC, IsSBar, IsVC: The word occurs in an adjective /
adverbal / noun / prepositional / sbar / verb chunk. These features are only used for
the baseline calculation in chapter 7. Sigott (1995) specified the phrase type in which
a word occurs as important feature for difficulty prediction. In our analyses of the
training data, we did not find such a correlation and therefore do not use the feature
for our own approach.
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B.4 L1 influence

• UbyCognate: The maximum XDice score between the word and the translations of
the word retrieved from UBY (Gurevych et al., 2012).

• COPCognate: A cognate of the solution exist in a list retrieved from the cognate
production algorithm COP (Beinborn et al., 2013) and filtered as explained in section
5.2.4. This feature is not available for French.

• IsAcademicWord: The solution can be found in a list of academic words. This fea-
ture is only available for English. The word list is merged from two different aca-
demic word lists that are recommended for English: the COCA list of academic words
(http://www.academicvocabulary.info/samples/general-core.pdf) and the Coxhead list
(http://www.victoria.ac.nz/lals/resources/academicwordlist).

• HasLatinRoot: The solution can be found in a list of words with Latin roots (https://
en.wikipedia.org/wiki/List_of_Latin_words_with_English_derivative, accessed: De-
cember 15, 2015). This feature is only available for English.

B.5 Spelling Difficulty

The models for the following features are only trained on the 800–1000 most frequents
words of each language. This Basic Vocabulary is extracted from existing word lists.95.

• CharacterLMprobability: Probability of the character sequence of the word accord-
ing to a character-based languagemodel trained using the framework berkeleylm ver-
sion 1.1.2 (Pauls and Klein, 2011).

• LMprobabilityOfPrefix: Probability of the character sequence of the prefix. This is
only used for C-tests.

• LMprobabilityOfSolution: Probability of the character sequence that needs to be
filled in by the participant.

• LMprobabilityOfPostfix: Probability of the character sequence of the postfix. This is
only used for X-tests.

• OccursAsText: The word occurs previously in the text (not as a gap).
• PhoneticDifficulty: The phonetic score returned by the grapheme-phoneme align-
ment algorithm Phonetisaurus (http://code.google.com/p/phonetisaurus, accessed: March
12, 2015). The algorithm is trained on words from the Basic Vocabulary . The gold
graphemes for the English words are obtained from the CMU pronunciation dictio-
nary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict, accessed: December 5, 2015)

95en: http://ogden.basic-english.org
de: http://www.languagedaily.com/learn-german/vocabulary/common-german-words
fr: http://www.101languages.net/french/most-common-french-words
it: https://en.wiktionary.org/wiki/Wiktionary:Frequency_lists/Italian1000
all accessed: September 17, 2015)
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and the transcriptions for the German and Italian words have been queried from
the text-to-speech synthesis system MaryTTS version 5.1.1 (Schröder and Trouvain,
2003).

• PhoneticClarity: The similarity between the predicted pronunciation by Phoneti-
saurus and the true pronunciation as found in the resources described above.

C Candidate Ambiguity Features
The following features have been implemented to assess candidate ambiguity. The frequen-
cies for the unigram, bigram, and trigram candidates are obtained from theWeb1T corpus
for all three languages Brants and Franz (2006). The thresholds are set to zero for our ex-
periments, but the value could be tuned to the learner group.

C.1 Micro-level fitness

• NrOfCandidates: The number of candidates in the vocabulary. As vocabulary for the
three languages, we use the word list package provided by Ubuntu for spell-checking
(http://packages.ubuntu.com/de/precise/text/).

• NrOfUnigramCandidates: The number of candidateswith a probability above a given
threshold.

• NrOfBigramCandidates: The number of candidates for which the bigram probability
of the candidate and the word left to the gap is above a threshold.

• NrOfTrigramCandidates: The number of candidates for which the trigram probabil-
ity of the micro context (the candidate with the left and right neighbor) is above a
threshold.

• UnigramSolutionRank: The rank of the solution within the unigram candidates that
are ranked by descending probability.

• BigramSolutionRank: The rank of the solution within the bigram candidates ranked
by descending probability.

• TrigramSolutionRank:The rank of the solution within the trigram candidates ranked
by descending probability.

• MaxStringSimilarityWithCandidate: The maximum string similarity between the
solution and each candidate based on the longest common subsequence ratio (LCSR).

C.2 Macro-level fitness

• LmRankOfSolution: The rank of the solution within the candidates that are ranked
by descending log-probability of the language model for the full sentence in which
the gap is replaced with the candidate. See the previous section for a more detailed
description.
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• EsaRankOfSolution: The rank of the solution within the candidates that are ranked
by descending relatedness of the candidate with the sentence. Relatedness is calcu-
lated based on the ESA-index as described in the previous section. This feature is only
applicable to the cloze dataset because it does not work for function words.

D Item Dependency Features
The following features have been implemented to account for item dependency. The input
data is already tokenized and the gaps are marked. The probability of n-grams is calculated
based on theWeb1T corpus for all three languages (Brants and Franz, 2006).

D.1 Position

• PositionOfGap: The position of the gap (indicated as the number of tokens).
• NrOfGapsInSentence: The number of gaps in the same sentence as the current gap.
• NrOfPrecedingGapsInSentence: The number of gaps that precede the current gap in
the same sentence.

• NrOfPrecedingGaps: The number of gaps that precede the current gap in the docu-
ment.

D.2 Neighbor Effects

• LeftTrigramLogProbability: The log-probability of the trigram that spans over the
gap and two words left to the gap. With a deletion rate of two as in our data, this
trigram includes the previous gap.

• RightTrigramLogProbability: The log-probability of the trigram that spans over the
gap and two words right to the gap. With a deletion rate of two as in our data, this
trigram includes the following gap.

• OccursAsGap: The same words occurs as a gap somewhere else in the text.

D.3 Referentiality

• IsReferentialGap: The prefix consists of th . This feature is only available for English.
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