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Abstract

Java has been a target for many zero-day exploits in the past years. We investigate one
category of vulnerabilities used by many of these exploits. Attackers make use of so
called unguarded caller-sensitive methods. While these methods provide features that
can be dangerous if used in malicious ways, they perform only limited permission checks
to restrict access by untrusted code. We derive a taint-analysis problem expressing how
vulnerabilities regarding these methods can be detected automatically in the Java Class
Library before its code is being released to the public.

Unfortunately, while describing the analysis problem is relatively simple, it is challenging
to actually implement the analysis. The goal of analyzing a library of the size as the Java
Class Library raises scalability problems. Moreover, analyzing a library while assuming
attackers can write arbitrary untrusted code results in mostly all parts of the library
being accessible. Most existing approaches target the analysis of an application, which is
less of a problem, because usually only small parts of the library are used by applications.
Besides the fact that existing algorithms run into scalability problems we found that
many of them are also not sound when applied to the problem. For example, standard
call-graph algorithms produce unsound call graphs when only applied to a library. While
the algorithms provide correct results for applications, they are also used when only
a library is analyzed—the incompleteness of the results is then usually ignored. The
requirements for this work do not allow to ignore that, as otherwise security-critical
vulnerabilities may remain undetected.

In this work we propose novel algorithms addressing the soundness and scalability
problems. We discuss and solve practical challenges: we show a software design for the
analysis such that it is still maintainable with growing complexity, and extend an existing
algorithm to enrich results with exact data-flow information enabling comprehensible
reporting.

In experiments we show that designing the analysis to work forward and backward from
inner layers to outer layers of the program results in better scalability. We investigate
the challenge to track fields in a flow-sensitive and context-sensitive analysis and discuss
several threats to scalability arising with field-based and field-sensitive data-flow models.
In experiments comparing these against each other and against a novel approach proposed
in this work, we show that our new approach successfully solves most of the scalability
problems.
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Zusammenfassung

In den vergangenen Jahren ist Java zu einem beliebten Ziel für Angreifer geworden,
insbesondere durch den Einsatz von Zero-Day Exploits. In dieser Arbeit betrachten
wir eine spezielle Art von Sicherheitslücken, die in vielen dieser Angriffe ausgenutzt
wurde: sogenannte Unguarded Caller-Sensitive Methods. Diese Methoden bieten sicher-
heitsrelevante Funktionalitäten an, sichern die Verwendung dieser aber zugleich nur
eingeschränkt ab. Im Verlauf dieser Arbeit leiten wir eine Problemstellung für statische
Programmanalysen ab, um Sicherheitslücken dieser Art in der Java Klassenbibliothek
automatisiert erkennen zu können.
Die Implementierung einer statischen Analyse für diese Problemstellung stellt eine

große Herausforderung dar. Das Ziel eine Bibliothek in Größenordnungen wie der Java
Klassenbibliothek zu analysieren, führt zu Problemen bezüglich der Skalierbarkeit naiver
Implementierungen. Insbesondere die notwendige Annahme, dass ein Angreifer beliebi-
gen Code schreiben kann, führt zur Erreichbarkeit nahezu aller Teile einer Bibliothek.
Analysiert man hingegen eine Applikation, so ist in der Regel nur ein kleiner Teil der
Bibliothek erreichbar, da häufig nur wenige der zur Verfügung gestellten Funktionalitäten
verwendet werden. Neben diesen Problemen stellten wir außerdem fest, dass die meisten
Algorithmen für den gegebenen Anwendungsfall unvollständige Ergebnisse liefern. Dies
betrifft zum Beispiel Call-Graph Algorithmen. Beim Einsatz für Applikationen liefern
diese korrekte Ergebnisse, jedoch werden diese auch eingesetzt, wenn ausschließlich eine
Bibliothek analysiert werden soll—die Unvollständigkeit der Ergebnisse wird dann häufig
ignoriert. Die Anforderungen in dieser Arbeit erlauben es allerdings nicht diese zu
ignorieren, da sonst sicherheitskritische Lücken übersehen werden könnten.

Wir stellen neue Algorithmen vor, um sowohl die Vollständigkeit als auch Skalierbarkeit
statischer Programmanalysen zu erreichen. Dabei werden Herausforderungen, die sich bei
der praktischen Umsetzung ergeben, diskutiert und gelöst: Wir zeigen ein Softwaredesign,
welches die Wartbarkeit der Analyse auch mit zunehmender Komplexität sichert, und
erweitern einen bestehenden Algorithmus so, dass Ergebnisse alle Informationen enthalten
die nötig sind, um Datenflüsse nachvollziehbar darzustellen.

In Experimenten zeigen wir, dass die Aufteilung der Analyse in einen vorwärts und einen
rückwärts gerichteten Teil, die jeweils in der Mitte eines Programmablaufs starten, Vorteile
bezüglich Skalierbarkeit bietet. Wir untersuchen im Detail, welche Herausforderungen
sich durch die Berücksichtigung von Feldzugriffen ergeben, wenn die Analyse gleichzeitig
flow-sensitive und context-sensitive aufgebaut wird. Wir betrachten hierzu field-based
und field-sensitive Modelle und vergleichen Ansätze beider Modelle miteinander, sowie mit
einem neuen Ansatz, den wir in dieser Arbeit vorstellen. Die Ergebnisse der Experimente
zeigen, dass dieser neue Ansatz viele Skalierbarkeitsprobleme der bestehenden Ansätze
erfolgreich lösen kann.
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1. Introduction

In the years 2012 through 2013 the world has seen a significant increase in attacks
exploiting vulnerabilities of the Java platform. F-Secure reports in the second half of 2012
“Java was the main target for most of the exploit-based attacks we saw during the past
half year” [5] and in the first half of 2013 “Java-targeted exploits accounted for about one
third of the detections reported” [6]. Moreover, F-Secure reports that “CVE-2012-4681
and CVE-2012-5076 vulnerabilities alone account for 9% of the malware identified by
the top 10 detections” [5]. These two vulnerabilities belong to a category that is later
described as Unguarded Caller-Sensitive Method Calls [14].
In fact, many more vulnerabilities found in the Java platform are instances of this

problem category. Many of them are exploited by zero-day exploits, i.e., they have
been exploited in the wild before being patched. Moreover, most exploits are able to
gain full control over the Java Virtual Machine (JVM) and therefore over the executing
environment, too. Exploits gain all privileges granted to the user running the JVM
process. Adding to this, attacks via Java Applets embedded in websites may not be
noticed by users and only require that a user opens the infected website in a browser.

Consequently, unguarded caller-sensitive method calls became a substantial menace to
the security of the Java platform. The amount of vulnerabilities found lead to advices that
users should disable or uninstall Java web-browser plugins (e.g., by the US Department
of Homeland Security1). Indeed, this mitigates the risk that most of the vulnerabilities
posed, because they allow bypassing the Java Security Model. The Java Security Model
is by default only used as a sandbox for Java Applets and Java Web Start applications,
therefore, the advice to disable these avoids the main threat. However, this solution
obviously removes functionality provided by these as well and consequently is not a
viable option for all users. In particular, it does not avoid the threat posed to other Java
applications making use of the Java Security Model. Java has become such an important
platform that simply disabling or removing it is also nearly impossible: according to
Oracle 89% of desktops in the U.S. run Java.2
Avoiding Java by switching to alternative platforms is also technically not a viable

solution. Most alternative language platforms do not incorporate any security model
at all. The platform closest to Java is the .NET platform providing a security model
inspired by the one of Java. The applied concepts are nearly the same, which means
the risk of potential vulnerabilities is also the same. The fact that Java vulnerability
reports dominate the news is probably not because Java is less secure, but that the
Java Security Model is used more often compared to the security model of .NET. Other
language platforms rely on external security mechanisms or do not address use cases

1https://www.us-cert.gov/ncas/alerts/TA13-051A
2http://www.java.com/en/about/
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1. Introduction

requiring a security model. The latter seems unlikely as many application scenarios do
actually require a security model, despite the fact that most implementations today do
not use one. For example, any application incorporating a plug-in system allowing the
installation of third-party developed plug-ins. The user might trust the developer of
the main application, but usually does not know and therefore not trust third parties.
Nevertheless, such plug-ins are usually not checked by the main developer nor is the user
able to do so. Consequently, plug-ins are installed and run with full privileges of the
main application, despite often being only in need of a very small set of privileges. This
clearly violates the principle of least privilege [66] and results in an unnecessarily large
risk to the user. Reasons platform designers do not include a security model might be
that getting a security model right is a tough challenge as the example of Java shows or
that security is prioritized lower than other features.
Only recently with the growing markets of smartphones two new large platforms

incorporated new security models. Apps on iOS and Android are treated untrusted and
are granted permissions during their installation making it transparent to the user which
risks are faced by running the app. Permissions are always assigned to the app as a
whole allowing for simpler checks and are compared to Java’s permissions rather coarse
grained. More fine grained permissions would reduce the risks accepted by users, but
also reduce the usability of the whole system as users ultimately have to decide to grant
or deny a permission.
Considering the examples discussed, it is important to incorporate security models.

But, attacks have shown that these are hard to get right. Resulting from this challenge
two fields of research have formed: 1) those concentrating on designing security models
such that they are easy to use, making it less likely to introduce vulnerabilities, and 2)
techniques on hardening existing security models. In a long-term consideration, the former
is clearly important. However, the latter is required today as we already have vulnerable
security models. Also, the latter helps improving the widely negative perception of
current security models, which is important to motivate platform designers to adopt new
models.

In this thesis we focus on hardening existing security models by the example of the Java
Security Model. A commonly applied approach at hardening existing security models are
code reviews. But, detecting vulnerabilities manually can be hard and is an error-prone
task as the past has shown. Findings of vulnerabilities in early Java versions raised the
awareness of potential security issues, still new vulnerabilities were introduced later. For
example, CVE-2012-4681 is based on a new class introduced with the Java 1.7 release.

When manual detection fails due to large and complex structures an obvious solution is
to assist the detection process by tools or fully-automate the detection. In this work, we
will elaborate on the possibilities of using static program analysis to guide code reviews
and detect vulnerabilities fully automatically. Throughout this work we will implement
such an analysis called FlowTwist. The implementation of the analysis requires to solve
various challenges, the most prevalent one being scalability. We will investigate these
challenges and evaluate state-of-the-art techniques and novel solutions at the use case of
detecting unguarded caller-sensitive method call vulnerabilities [14]. These vulnerabilities
have been overlooked regularly in the past.
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This type of vulnerability is a subset of the so called confused-deputy vulnerabilities.
Confused-deputy vulnerabilities arise when privileges of untrusted code are elevated by
trusted code without performing sufficient input validation. Caller-sensitive methods
are particularly prone to confused-deputy vulnerabilities, because callers may implicitly
elevate privileges without being aware that they do. Moreover, confused deputies can be
created by a refactoring that is otherwise assumed to be semantics preserving.
The detection of these vulnerabilities can be formulated as a two-fold taint-analysis

problem. The first part of the problem describes whether attackers can control the
inputs to a caller-sensitive method, i.e., it is an integrity problem. The second part
describes whether values returned by a caller-sensitive method leak to an attacker, i.e.,
it is a confidentiality problem. Integrity and confidentiality problems are each known
taint-analysis problems. However, they are usually treated separately, whereas in this
special case both have to be addressed at the same time. In experiments we will see that
traditional approaches fail to scale if addressing both problems at the same time and
that a novel formulation as inside-out taint analysis improves the scalability significantly.

The prevalent challenge when implementing a static program analysis for the problem
is the size of the Java Class Library (JCL) shipped with Java. Many existing static
program analysis are designed to be applied to applications and usually exclude the JCL
from their analysis scope. We show that including it, and even only analyzing the JCL,
increases the size of the problem by several orders of magnitude. Additionally, many
more challenges unsolved by state-of-the-art approaches besides scalability need to be
addressed.

The first challenge we will address is the need of a sound call-graph algorithm. Existing
call-graph algorithms assume that they are applied in a whole-program analysis scenario.
This assumption does not hold in our case as we only analyze the JCL without having
a specific application using it. Moreover, we have to assume attackers to write any
possible client application and cannot assume an attacker to abide by conventions and
guidelines. We will describe an attack scheme called trusted-method chaining that cannot
be detected when using state-of-the-art call-graph algorithms. To cope with the different
scenario—analyzing only a library—we will adapt two existing call-graph algorithms:
Class-Hierarchy Analysis [17] and Variable-Type Analysis [73].

As foundation for the analysis implementation we use the IFDS framework [61]. This
framework provides a clean separation between the processing of data-flow facts and the
propagation of facts, summarization of methods, and their interprocedural connections.
However, implementations processing data-flow facts still tend to grow with the complexity
of the analysis and language features addressed. We observed in our own as well as other
analysis implementations that these become hard to maintain, test, and reuse. To solve
this we propose an extension separating different concerns of the implementation.
Unfortunately, the IFDS framework among other frameworks lacks support of being

able to provide information to report along which statements a data flow is possible.
We extend the algorithm of the IFDS framework to include necessary information and
reconstruct paths of possible data flows.
We implement the analysis as a novel inside-out analysis consisting of two analyses

that we synchronize with each other, increasing scalability significantly as we show in
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1. Introduction

experiments. In addition, we apply this analysis to several versions of Java and show
that it is capable of detecting vulnerabilities.
At this stage the analysis does not handle fields in a sound manner. Therefore, we

continue discussing possibilities of modelling fields in a data-flow analysis in detail and
evaluate their effects on the scalability of the analysis. Interestingly, less precise field-
based models do not result in a more scalable analysis than field-sensitive models. We
identify several constructs appearing in code that pose threats to scalability. We then
introduce a novel field-sensitive model and an extension to the IFDS framework that is
designed with the goal of avoiding these threats.

This thesis is structured as follows. Chapter 2 discusses necessary background and
presents the problem statement of this work. The IFDS framework, described in Sec-
tion 2.5, is used as foundation to implement the analysis for the defined problem. Chapter 3
describes this analysis and the challenges that arise when implementing it, as well as
the solutions to those challenges. The analysis requires sound call-graph algorithms for
library-only analysis, which we discuss in Section 3.1. A discussion of how the analysis
can be implemented ensuring its maintainability is done in Section 3.2, and extensions
allowing the reconstruction of paths in Section 3.3. The novel formulation of the analysis
as inside-out taint analysis is presented in Section 3.4 and the analysis is evaluated in
Section 3.5. Limitations of the current state of the analysis and directions for future work
are given in Section 3.6. Work related to the taint analysis is discussed in Section 3.7.
We follow with a detailed discussion of models to track fields in data-flow analyses
in Chapter 4, these are two field-based models in Section 4.1, a field-sensitive model
using k-limiting in Section 4.2, and a novel field-sensitive approach called Access-Path
Abstraction in Section 4.3. In Section 4.4 those models are compared with each other in
experiments. Then we follow with a discussion of additional related work in Section 4.5
and describe steps that should be taken next in Section 4.6. We close this thesis with a
summary in Chapter 5.

4



2. Background and Problem Statement

In the following we describe necessary background of the Java Security Model, show
how it can and has been attacked in the past, derive a problem formulation that can be
addressed by static program analysis, and outline challenges that have to be addressed
by such a program analysis. We continue with a description of the IFDS framework.
This framework will be used as foundation for the taint analysis we build and describe
throughout this work.

2.1. The Java Security Model
The Java Security Model, often referred to as sandbox, allows the execution of untrusted
code without posing risks to the executing environment, i.e., malicious code can be
executed safely. Java code is run on a Java Virtual Machine (JVM) and cannot directly
interact with the execution environment. All actions that interact with the environment
outside the JVM require the execution of native code, e.g., reading and writing files,
receiving keyboard events, drawing on the screen, etc. Consequently, the access to native
code is restricted, i.e., untrusted code is not allowed to include its own native code,
and native methods of the Java Class Library do not perform sensitive actions or are
guarded by access-control checks. These are realized by calls to checkPermission of the
set SecurityManager before calls to native methods. If permissions are not granted the
called check method throws an exception changing the control flow to avoid execution of
the restricted native code.
The Java Security Model uses stack-based access control, i.e., a permission check

decides if access should be granted depending on the current call stack. For that, each
frame on the call stack has a certain set of permissions. These permissions have been
assigned when the code corresponding to a stack frame was loaded. During a permission
check the intersection of all permissions of the code on the call stack is computed. If
the required permission is contained in the intersection access is granted, otherwise an
exception is thrown.

In practice, not every native method is guarded by an immediate preceding permission
check. For example, the class FileOutputStream checks if code is allowed to write a
file when the constructor is called once, but not every time the native method writing a
byte to the file is called. This practice moves the ability to perform potentially harmful
actions away from the native code towards the Java code itself. Moreover, holding a
reference to an instance of FileOutputStream already grants the capability to write the
file. Constructs forming similar capabilities are common in Java, such that it becomes
difficult to judge which references untrusted code is allowed to hold and which not.
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As in any other capability based system, it is required that classes privileged to reference
an instance representing a capability do not leak these to unprivileged classes. In the
Java Class Library capabilities are protected mostly with mechanisms of the language
itself, i.e., type safety, unforgeable references, and visibility constraints of methods and
fields. In addition, the developers of Java created the concept of restricted packages.
Classes located in a blacklisted restricted package cannot be referenced statically (if a
SecurityManager is present), which is enforced by the class loading mechanism.

A threat to all the above defense mechanisms is reflection. Reflection allows to break
visibility constraints and to reference classes of restricted packages. Consequently, parts
of reflection are treated as capabilities as well and guarded by checks.

In addition to the documented [30] stack-based permission checks, a different and less
restrictive type of check can be found in the implementation of the Java Class Library.
These less restrictive checks do not check permissions of the whole call stack, but only
specific frames of the call stack, e.g., only the immediate caller. Methods performing
such a limited check are denoted as caller-sensitive methods (and are annotated as such
with @CallerSensitive since version 1.7 update 25).

Some of the methods annotated as caller sensitive retrieve their callers to check
their permission, which is suspected to be faster than full stack access-checks. Others
retrieve their caller to implement convenient behaviors. For example, when loading
ResourceBundles, these are resolved relative to the immediate callers. Another example
are methods of the reflection API that check package visibility constraints not against the
whole code on the call stack, but only against the immediate caller to ensure equal visibility
constraints as if the caller would statically link against the call target. Nevertheless,
in most cases caller-sensitive checks are used solely as permission check, in addition to
full stack permission checks, or as suspected faster alternative to a full stack permission
check. Caller-sensitive permission checks are implemented by retrieving the x-th callers
ClassLoader. If this ClassLoader is the bootstrap ClassLoader, i.e. the one which
loads all code of the Java Class Library, access is granted, otherwise not. Note that
granting access to all classes of the Java Class Library is equally done for full stack
permission checks as all permissions are granted to them anyways.

The Java Security Model does not only provide functionality to restrict access, but also
provides possibilities to trusted code to elevate privileges. This is important, because
otherwise untrusted code would not be able to do anything observable, e.g., if untrusted
code wants to draw something on the screen it needs to call the Java Class Library
providing drawing functionality. This functionality is guarded by a permission check
walking the stack on which the untrusted code is, too. In this case, trusted code needs to
elevate the privileges of its callers. Moreover, code elevating privileges of callers takes
responsibility that inputs are validated and performed sensitive actions are limited to a
harmless subset. Privileges are elevated by calling doPrivileged on AccessController.
Effectively, a permission check will then only walk the stack until finding the stack frame
of the doPrivileged call.

While for stack-based permission checks the elevation of privileges is made explicit by
a call to doPrivileged, privileges can be elevated implicitly for caller-sensitive methods.
Code part of the Java Class Library that calls a caller-sensitive method implicitly elevates
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the privileges of any transitive callers as those are not being checked for permissions, but
only the immediate caller.3 The implicit elevation is problematic, because developers may
implicitly elevate privileges without being aware that they do. A Java developer may call
a caller-sensitive method without knowing that the called method behaves caller sensitive.
This can lead to privilege elevations being introduced easily by new functionality or even
by code refactoring that is otherwise considered as a semantics-preserving change.
With the understanding how the Java Security Model is working in theory, we will

discuss in the next section potential attacks against it as well as a real zero-day exploit.

2.2. Exploiting Confused Deputies
We previously discussed that the Java Security Model allows privilege elevation. Any
privilege elevation that can be used by attackers to perform sensitive actions that they
should not be allowed to, i.e., an illegal privilege elevation, leads to a confused-deputy
vulnerability. The trusted code elevating privileges is called a confused deputy. It is a
deputy, because it can be used to execute actions on the attackers behalf.
In the years 2012 through 2013 we saw a lot of exploits exploiting confused-deputy

vulnerabilities that are based on caller-sensitive methods. F-Secure reported that “CVE-
2012-4681 and CVE-2012-5076 vulnerabilities alone account for 9% of the malware
identified by the top 10 detections” [5]. Both are based on unguarded caller-sensitive
methods.
CVE-2012-4681, among others, contains a confused deputy calling Class.forName.

Class.forName allows untrusted code to reflectively retrieve references to classes that are
shipped with the untrusted code or classes of the Java Class Library that are not located
in restricted packages. If Class.forName is called by trusted code, it can also retrieve
references to restricted packages and other trusted code. Hence, attackers that can only
provide untrusted code try to locate trusted code that calls Class.forName on their
behalf to get access to references that are otherwise denied. Such trusted code is called
a confused deputy. The confused deputy that is used by CVE-2012-4681 is the static
and public method findClass of class ClassFinder that was first shipped with Java 1.7.
The code of that method is shown in Figure 2.1. The first invocation of Class.forName
passes a previously retrieved ClassLoader instance. This invocation will correctly
throw a SecurityException if untrusted code tries to retrieve a restricted-package
class. Subsequently, the thrown SecurityException will be caught and Class.forName
will be invoked again. On that second call no ClassLoader is passed and instead its
immediate callers ClassLoader is used, i.e., the ClassLoader of ClassFinder. Using
this ClassLoader, access will always be granted, including access to restricted package
classes, as ClassFinder is loaded by the bootstrap ClassLoader. An attacker can control
the parameter forwarded to Class.forName and gets its returned value, therefore, the
attacker is in full charge of exploiting the capabilities provided by Class.forName. For
example, an attacker can retrieve a reference to classes located in restricted packages.

3This example assumes that the immediate caller is checked for simplicity. Analogous examples can be
constructed for caller-sensitive methods checking their x-th transitive caller.

7



2. Background and Problem Statement

public static Class findClass ( String name)
throws ClassNotFoundException {

try {
ClassLoader loader = Thread . currentThread ()

. getContextClassLoader ();
if ( loader == null) {

// can be null in IE (see 6204697)
loader = ClassLoader . getSystemClassLoader ();

}
if ( loader != null) {

return Class. forName (name , false , loader );
}

} catch ( ClassNotFoundException exception ) {
// use current class loader instead

} catch ( SecurityException exception ) {
// use current class loader instead

}
return Class. forName (name );

}

Figure 2.1.: ClassFinder.findClass Introduced in Java 1.7

These packages contain classes holding dangerous capabilities, e.g., sun.misc.Unsafe
provides capabilities to directly manipulate memory on the heap. Usually classes in
restricted packages do not perform permission checks on their own and rely on the
protection that untrusted code cannot reference them. A class that has been used to
disable the Java Security Model in the discussed exploit is sun.awt.SunToolkit. This
class provided a method4 effectively overriding security checks for a reflective invocation.

2.3. Deriving the Static Analysis Problem
Previously, we have seen a real attack against the Java Security Model. We will now
generalize this attack and define an attacker model to derive a problem that can be
addressed by static program analysis. The Java Security Model implements two kinds of
permission checks: stack based and caller sensitive. Privileges are elevated differently
for these, and consequently we can distinguish confused-deputy vulnerabilities into two
categories as well. One, in which the privileges are elevated by a call to doPrivileged
and one, in which an intermediate trusted caller forwards inputs and outputs of a caller-
sensitive method. In this work we focus on the latter category and will investigate
detection possibilities of unguarded caller-sensitive method vulnerabilities.

We assume that an attacker can provide arbitrary code that is executed within a Java
Virtual Machine as untrusted code, i.e., it is not assigned any permissions. An attack is

4We are referring to method getField here. Note that this method has been removed in later updates
of Java.
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Figure 2.2.: Schematic Representation of an Attack’s Call Stack

successful if some untrusted code is able to perform a security-sensitive action provided
by a caller-sensitive method that would not be allowed if the attacker directly called the
method.
A schematic representation of such an attack is shown in Figure 2.2. As previously

introduced, caller-sensitive methods check the privileges of an immediate caller only.
Therefore, for a successful attack a privileged caller is required. As code provided by the
attacker is not privileged, this caller must be part of the Java Class Library. Furthermore,
this caller must be callable by an attacker or must be called by some transitive caller
that is callable by an attacker.
If a method is callable by an attacker depends on multiple factors: its own visibility,

the visibility of the declaring class, if untrusted code is allowed to introduce classes in
the package of the declaring class (prohibited in restricted packages and others, e.g.,
java.*), whether an instance of the declaring class or a subclass can be instantiated
by an attacker or is leaked by some other accessible method. Moreover, determining
accessibility requires a sophisticated static analysis already. For simplicity at this stage,
we approximate accessibility. We assume a method to be accessible if its declaring class is
public and not located in a restricted package and the methods modifier is either public
or protected, whereas for the latter the declaring class has to be non-final.

For a successful attack it is required that the attacker can (1) control the parameters
passed to the caller-sensitive method and (2) retrieve a reference to the returned value.
Moreover, this must be possible in a single execution. If parameters can be controlled via
one execution path and return values can be retrieved via another execution path, the
attack is not successful. Consider for example the caller-sensitive method Class.forName.
If an attacker can control only the parameter, then a reference to an arbitrary class may
be created, but is harmless as the attacker is unable to invoke any methods on that class
without retrieving the reference to the class first. Contrary, if the attacker cannot control
the parameter, but retrieves the returned class reference, then only methods invoked on
that predefined class may be invoked. We assume that in this case the returned class
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reference does not provide any capabilities (which is not guaranteed, but considered out
of scope for this thesis).
Note that not all caller-sensitive methods require that an attacker is capable of (1)

and (2) to be exploitable. For example, Field.set(Object, Object) does not have a
return value at all. For this method an attack is already successful if an attacker can
control the input to the method.

However, the goal of this thesis is to assess the feasibility of detecting confused-deputy
vulnerabilities by static analysis. Therefore, we focus on the harder problem: we define
the static analysis problem to require (1) and (2) at the same time. This is a harder
problem to solve than only considering (1) or (2) in isolation. Moreover, considering only
(1) or (2) is a sub-problem of (1) and (2) and can be solved by reusing the static analysis
we build for (1) and (2).

The problem of checking if values flow from one statement to another is known as a
taint-analysis problem. In a taint analysis values at some source are being tainted and
then the analysis checks whether any values flowing into some sink are tainted. If they
are, then a connection between source and sink is reported. The problem we described
here consists of two taint-analysis problems: (1) and (2) are each one taint-analysis
problem.
To summarize, the goal of this thesis is the assessment of the feasibility of detecting

confused-deputy vulnerabilities by static analysis. Such a static analysis should identify
paths from an attacker-callable method to a caller-sensitive method through which an
attacker can control the parameter passed to and retrieves the returned value of the
caller-sensitive method. Note that for the analysis the attackers code itself is not required
and it is enough to only analyze the code of the Java Class Library.

2.4. Challenges and Contributions
In this thesis we investigate whether it is possible to implement a static program analysis
to detect unguarded caller-sensitive method vulnerabilities. We will primarily focus on
research problems regarding the implementation of this analysis. For example, we will
not incorporate a complete model of permission checks covering all variations that can be
found in the Java Class Library, nor will we model each caller-sensitive method in its full
extent. We will see that it is required for such an analysis to solve multiple challenges
not solved by state-of-the-art approaches. The hardest challenge is scalability. The Java
Class Library is commonly excluded from evaluations of existing approaches and we will
show in experiments that including it results in scalability problems. Moreover, targeting
the Java Class Library alone poses scalability problems already.

Sound Library Call Graph As of today, many call-graph algorithms exist for applications.
Some require to include all application dependencies, others are capable of abstracting
over libraries the application depends on. But, no algorithms explicitly target the use case
of analyzing a library without having an application using it. Techniques generating an
over-approximation of all possible applications exist that allow the usage of existing call-
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graph algorithms for applications. However, even with these techniques most algorithms
are unsound as they ignore the openness of the type hierarchy. This results in the analysis
missing vulnerabilities that exploit a technique called trusted-method chaining. We
will discuss the problem and adaptations of existing call-graph algorithms solving it in
Section 3.1.

Maintainability The IFDS framework provides a well designed isolation of its algorithm
implementation and the client implementation. This is achieved by an interface for flow
functions that are implemented by the client. While this is a good solution initially,
implementations of flow functions tend to grow with the complexity of situations addressed
by the client. We found that existing approaches tend to ignore this design issue resulting
in hard to maintain, hard to test, and impossible to reuse implementations. Facing this
problem in our own implementation as well, we provide a solution that separates concerns
as described in Section 3.2.

Reporting We chose to implement a static analysis based on the IFDS framework
(discussed in Section 2.5). The IFDS framework represents the analysis problem as graph
reachability problem. Nevertheless, it does not allow to answer along which path through
the program a value may flow from an attacker to a caller-sensitive method. This leaves
the analysis hardly useful for developers. They may be notified that vulnerabilities exist,
but can not be informed where it is. We introduce an extension to the IFDS framework
in Section 3.3 allowing to reconstruct paths.

Scalability An analysis for the Java Class Library faces the inherent problem that all
attacker accessible methods are entry points, which are more than 45,000 methods. In
most experiments, we will later see that an analysis is unable to terminate in time or
runs out of memory, if huge portions of the Java Class Library become reachable. Having
many entry points scattered around the whole Java Class Library makes most parts
reachable. In Section 3.4 we will address this problem by a novel approach solving the
analysis problem from the inside to the outside.

Field Sensitivity The first solutions to the scalability challenge described in Chapter 3
do not handle fields in a sound manner. This is induced by the fact that handling fields
in a context-sensitive and flow-sensitive analysis is inherently hard—it is actually an
undecidable problem as discussed in Section 4.3.3. In experiments we will see that neither
field-based nor field-sensitive state-of-the-art approaches are able to scale to the size of
the Java Class Library. We will discuss approaches for field-based and field-sensitive
analyses in Chapter 4 and propose a novel algorithm based on the IFDS framework
making a significant step towards a scalable field-sensitive approach in Section 4.3.
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2.5. The IFDS Framework
The static analysis that we will build in this thesis uses the IFDS framework as foundation.
The IFDS framework by Reps et al. [61] is an algorithm to solve interprocedural, finite,
distributive, subset (IFDS) problems. Moreover, it is a polynomial-time algorithm
for finding context-sensitive and flow-sensitive solutions of interprocedural data-flow
problems, given that the data-flow facts can be represented by a finite set and data-flow
functions are distributive over set union. Given these constraints, Reps et al. have shown
that the problem can be represented as special graph reachability problem, whereas one
wants to find interprocedurally realizable paths.

We have chosen the IFDS framework as base for the static-analysis implementation,
because it is a commonly used approach to taint analysis, fast, scalable, and precise.
There are dozens of alternatives that could be chosen as foundation as well. Though,
most algorithms are in their core behavior a fixpoint iteration over some data-flow facts,
and only vary in typical choices for data-flow facts, possible meet operators for joins in
the control-flow graph, and tricks to reuse intermediate analysis results. Hence, the IFDS
framework is only one viable choice among many. However, the IFDS framework has the
advantage that an open source implementation—the Heros project5—is available [11].
Heros implements the IFDS algorithm with the practical extensions introduced by Naeem
et al. [50]. In the following description of the IFDS framework these extensions will be
included already.

The IFDS framework separates the algorithmic part and the analysis problem specific
part. It requires as input an interprocedural control-flow graph (ICFG) and an interface
implementation providing flow functions for edges in the ICFG. The ICFG can be provided
by most analysis frameworks, whereas the flow functions depend on the analysis problem
that should be addressed and have to be implemented for each specific analysis. Flow
functions take some data-flow fact and generate a set of new data-flow facts. Moreover,
flow functions describe the effect of statements on the analysis model. The analysis model
consists of the data-flow facts that can be chosen arbitrarily, given that there are only a
finite amount of distinct data-flow facts. Hereafter, we will write fact when referring to a
data-flow fact. An example ICFG is shown in Figure 2.3 consisting of two methods foo
and bar. Note that calls to source and sink are pruned here for simplicity. The IFDS
framework distinguishes four types of edges in the ICFG: normal control-flow edges, call
edges from a call site to the callee, return edges from an exit statement to the return site
(the statement succeeding a call site), and call-to-return edges that are control-flow edges
from call sites to return sites.
The IFDS algorithm’s goal is to compute summaries for methods to summarize the

effect of all flow functions in that method: given a fact at the beginning of the method,
what facts hold at the exit of that method. Summaries themselves can then be applied for
call sites like flow functions are applied for regular statements. The algorithm iteratively
generates so called path edges that grow step by step until they reach from the beginning
of the method to the exit and become a summary. Processing is performed in a fix-

5https://github.com/Sable/heros
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point-iteration style: path edges are taken from a worklist, new path edges are generated
and placed in the worklist, until no new path edges emerge and the worklist is empty.
Basically, path edges describe which facts are reachable at which statements. Moreover,
if processing started at some source and a sink becomes reachable via a path edge, then
a data-flow was possible from the source to the sink.
In the following, we will go through the processing the IFDS algorithm performs at

the example shown in Figure 2.3. The respective path edges computed for the example
are illustrated in Figure 2.4.
Let’s assume that the client of the IFDS framework wants to track a tainted value

returned by method source to find out whether it is passed as parameter to method sink.
The analysis is bootstrapped by specifying an initial seed at statement #1.6 Technically,
this is done by creating a path edge from the 0 fact to itself at a given statement. The 0
fact is a tautology that always holds and is used to generate other facts. A path edge is
an edge from a source statement and a source fact to a target statement and a target fact.
We use the following notation for path edges: 〈#Source Statement, Source Fact〉 →
〈#Target Statement, Target Fact〉. Hence, the path edge created in the bootstrapping
phase is 〈#1,0〉 → 〈#1,0〉. New path edges that have not been encountered before are
put into a worklist. The algorithm proceeds by taking path edges from this worklist until
none are left.

For each path edge taken from the worklist, the ICFG is consulted to provide succeeding
statements of the path edge’s target statement. In the example, the initial path edge
will be taken and its target statement #1 is succeeded by #2. The IFDS framework will
ask the client to provide a flow function for the ICFG edge leading to the succeeding
statement. Then, it invokes that flow function with the current target fact, in the running
example this is the 0 fact. Such a flow function should now generate a fact representing
that variable a is tainted, as it is assigned the return value of the call to source. For
each fact returned by the flow function a new path edge will be created and put into the
worklist. In this case, the framework creates the path edge 〈#1,0〉 → 〈#2, a〉. Note that
the source statement and source fact is never changed when processing intraprocedural
edges.

Continuing, the same step of the algorithm will be applied. A path edge is taken from
the worklist: the one just generated. Its succeeding statements will be looked up from
the ICFG and the client will be asked to provide a flow function for the respective ICFG
edges. At #2 and a given fact representing variable a to be tainted, a flow function should
return facts for variables a and b. For b, because it is assigned the tainted value of a,
and again a, because the variable is only read but not overwritten and still contains the
tainted value. Consequently, the path edges 〈#1,0〉 → 〈#3, a〉 and 〈#1,0〉 → 〈#3, b〉 are
added to the worklist.
Next, for the former path edge with the target fact a the flow function for the call

edge from #3 to #5 should return an empty fact set, as a is not passed to bar. For the
latter path edge with the target fact b the flow function should return a fact representing

6Without the practical extensions by Naeem et al. every statement would be considered as initial seed.
Subsequently, flow functions would filter statements that do not generate facts.
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a = source()#1:

b = a#2:

c = bar(b)#3:

sink(c)#4:

foo() {

}

while(...)#5:

e = null#6:

e = d#7:

return e#8:

bar(d) {

}

Normal Edge Call-to-Return Edge
Call Edge Return Edge

Figure 2.3.: Interprocedural Control-Flow Graph

a = source()#1:

b = a#2:

c = bar(b)#3:

sink(c)#4:

foo() {

}

while(...)#5:

e = null#6:

e = d#7:

return e#8:

bar(d) {

}

Normal Edge Call-to-Return Edge
Call Edge Return Edge
Path Edge

〈#1,0〉 → 〈#1,0〉

〈#1,0〉 → 〈#2, a〉

〈#1,0〉 → 〈#3, a〉
〈#1,0〉 → 〈#3, b〉

〈#1,0〉 → 〈#4, a〉
〈#1,0〉 → 〈#4, b〉
〈#1,0〉 → 〈#4, c〉

〈#5, d〉 → 〈#5, d〉
〈#5, d〉 → 〈#5, e〉

〈#5, d〉 → 〈#6, d〉
〈#5, d〉 → 〈#6, e〉

〈#5, d〉 → 〈#7, d〉

〈#5, d〉 → 〈#8, d〉
〈#5, d〉 → 〈#8, e〉

Figure 2.4.: Path Edges Computed by IFDS for the Example Illustrated in Figure 2.3
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the formal parameter d of bar. In the case of processing a call edge, no succeeding
path edge is created. Instead, the source statement, source fact, and call site of the
current path edge is registered with the set of incoming edges of method bar for fact d:
Incoming(〈#5, d〉) ∪ = 〈#1,0, #3〉. This information will be used at the return edge to
continue building matching path edges on the caller side. To initiate the analysis on the
callee side, a self-loop path edge is created 〈#5, d〉 → 〈#5, d〉.
Now, the algorithm proceeds as before: a path edge is taken from the worklist and

subsequent path edges are created for facts returned by the respective flow functions.
This creates the path edges 〈#5, d〉 → 〈#6, d〉 and 〈#5, d〉 → 〈#8, d〉. Subsequent, from the
former the path edge 〈#5, d〉 → 〈#7, d〉 is created. At #7 facts for variables d and e are
generated, yielding the path edges 〈#5, d〉 → 〈#5, d〉 and 〈#5, d〉 → 〈#5, e〉. The former
path edge has been processed already, therefore, it is not added to the worklist. Note that
the restriction to have a finite number of facts guarantees termination of the algorithm
for loops and recursion, because at some point no new path edges can be generated. The
latter path edge yields the subsequent path edges 〈#5, d〉 → 〈#6, e〉 and 〈#5, d〉 → 〈#8, e〉.
At statement #6 variable e is overwritten, thus, the fact representing this variable to be
tainted is killed. Consequently, no fact e reaches statement #7.

We end up with two path edges pointing to the return statement, these are 〈#5, d〉 →
〈#8, d〉 and 〈#5, d〉 → 〈#8, e〉. Both are stored as summaries for bar, i.e., any caller
providing the source fact d can immediately apply facts d and e at its respective return
edges without re-analyzing bar. In our case there was no summary when bar was called
by foo, yet. However, we registered the caller with the Incoming set. At the time a new
summary is stored, this set is consulted to retrieve callers and continue at the caller side
by applying the summaries for the respective return edges. Moreover, the summaries
sources are both 〈#5, d〉, therefore Incoming(〈#5, d〉) is retrieved. The triple 〈#1,0, #3〉
retrieved allows to create path edges continuing the analysis on the caller side. In the
example, a flow function maps the returned fact e to c and discards d. Therefore, the
path edge 〈#1,0〉 → 〈#4, c〉 is created. Note that by matching the call-site reference in
the stored incoming triple with the return edge’s corresponding call site the analysis
ensures context sensitivity. Moreover, facts are only returned to callers that actually
provide the necessary incoming facts instead of to all callers.

In contrast to the original IFDS framework without the practical extensions, only the
reachable subset of the so called exploded supergraph was computed. This is not only
faster and more memory efficient, it also allows to detect leaks easier. In fact, every
processed path edge targeting a potential leaking statement is reachable by at least one
initial seed, therefore immediately represents a leak. In the running example, we can
detect the possible leak, when processing path edge 〈#1,0〉 → 〈#4, c〉.
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The taint analysis we are going to build for the analysis problem described in Section 2.3
is named FlowTwist. This name resulted from the idea to define the analysis as inside-out
analysis consisting of two sub-analyses: one detecting flows for the integrity problem and
one detecting flows for the confidentiality problem. We will later synchronize these two
analyses to increase the scalability of the overall approach, basically reflecting that flows
are twisted.
For the analysis we use data-flow facts representing that a variable is tainted, as we

did in the introduction of the IFDS framework in Section 2.5. Note that we apply the
analysis to an intermediate representation of Soot that is called Jimple. Jimple is a
three-address code representation. Therefore, we do not have to model the operand stack
that Java Bytecode uses, enabling us to write much simpler flow-function implementations.
Implemented flow functions handle the source of data-flow facts and check if they reach
specific sinks. The definition of sources and sinks depends on the variation that is used.
We will cover this later in Section 3.4. Furthermore, flow-function implementations handle
assignments between variables, calls, and returns. Data-flow facts include information
about the runtime type of a tracked value allowing to kill taints if a tracked variable
is being casted to a mismatching type. We handle StringBuilder and StringBuffer
specifically. These types are used by developers, but also by the compiler, for string
concatenation, which is often used in the problem we focus on. If a field is tainted, we
conservatively assume this field to be tainted on all instances, but do not pass data-flow
facts representing fields interprocedurally (tracking fields is itself a tough challenge and
is discussed in detail in Chapter 4). If a tainted value is stored in an array, we do not
evaluate the index of the element in which it is stored, but conservatively assume all
elements of the array to be tainted. Therefore, if some element of the array is overwritten
by an untainted value, we do not kill the data-flow fact for the array. We do not evaluate
conditions, i.e., we always assume all branches could be taken.
Permission checks are performed in various ways in the Java Class Library. While

stack-based permission checks are usually defined in the class SecurityManager, we found
that caller-sensitive methods are frequently guarded by calls to checkPackageAccess of
class ReflectUtil. We model both variants and kill data-flow facts on paths through
calls to respective check methods.
Before we discuss the inside-out formulation of the analysis, we focus on important

prerequisites: the need for call-graph algorithms that produce sound results when applied
to only a library in Section 3.1; a software design allowing to implement the analysis such
that its code is maintainable, testable, and reusable in Section 3.2; and an extension to
the IFDS framework allowing to reconstruct paths of possible data flows in Section 3.3.
Then, in Section 3.4 we introduce the inside-out formulation of the analysis and evaluate
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the analysis with respect to its scalability and ability to detect known vulnerabilities in
the Java Class Library in Section 3.5. We continue with a discussion of limitations and
directions of possible improvements regarding the precision of the analysis in Section 3.6
and close the chapter with a discussion of related work in Section 3.7.

3.1. Call-Graph Algorithms for Libraries7

Existing call-graph algorithms, such as CHA [17], RTA [8], XTA [74], VTA [73], and
k-CFA [67], are designed for use with applications in a whole-program analysis set-up.
Several approaches exist that allow the use of these algorithms on partial programs [2, 1,
74]. But, when referring to partial programs, these works intend to provide solutions to
analyzing applications while not considering libraries they depend on, e.g., the language’s
class library. The reverse case, in which only the library is analyzed without knowing the
concrete client applications that may use it, is rather different and none of the approaches
can be used.

Before discussing reasons for unsoundness of call-graph algorithms8 in partial program
analysis, we have to define what we consider a sound call graph when only analyzing
libraries. The call graph should contain a call edge for each call target that can occur
at runtime for arbitrary client applications, whereas the call site and the call target are
part of the library code. Hence, we do not require call edges from the application code to
the library. However, due to assuming all possible client applications any method of the
library code that is callable by a client application must be considered an entry point.
While call-graph algorithms usually assume a whole-program analysis, approaches

exist allowing their use for partial programs, too. These approaches provide stubs for
the program parts not analyzed. For example, FlowDroid [7] models the lifecycle of
Android apps to be able to analyze an app without the need to also analyze the Android
framework. The Android framework calls an app via several callbacks, i.e., there is not a
single entry point into the execution of the program via a main method. By generating
an artificial main method that over-approximates the life cycle and the invocation of
callbacks, FlowDroid can run a whole-program analysis. Moreover, instead of changing
existing algorithms to deal with multiple entry points into the program, FlowDroid
generates a single entry point. Similarly, Rountev and Ryder [62] present a fragment class
analysis for testing. They also generate an artificial main method that over-approximates
behavior of a test suite to measure test coverage with respect to polymorphism. These
ideas can be used when analyzing a library in isolation, i.e., an artificial main method
calling all public library methods in arbitrary orders provides an over-approximation of
all possible client applications calling into the library.

However, there are two additional reasons for call-graph algorithms being unsound in
library-only analysis:

1. the algorithms assume all type instantiations are known,
7This section is based on content of work published as [57], whereby the presented contributions differ.
8We do not discuss native code or reflection here that are common sources of unsoundness for call-graph
algorithms, too.
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2. and the algorithms assume that the type hierarchy is not extended.

Not all call-graph algorithms have assumptions like the one mentioned first, but the
second assumption is made by all algorithms except very imprecise ones.
The first assumption can be found, for example, in RTA, XTA, VTA, and k-CFA.

Class-Hierarchy Analysis (CHA) assumes for a call site that all sub types of the receiver’s
static type can be call targets, given that they implement the called method. Rapid
type analysis (RTA) improves on this behavior by only considering call-target types
that have been instantiated in the analyzed program. This assumption is valid if the
whole-program is analyzed. It is also valid, if only client applications are analyzed,
exploiting the separate compilation assumption [2] that assumes the library has been
compiled independently of the application and can therefore not instantiate types defined
in the application. However, this assumption is not valid when analyzing libraries in
isolation, because applications can instantiate library types. The assumption of RTA
that all instantiations are known is therefore unsound. XTA, VTA, and k-CFA make
analog assumptions about instantiations leading to unsoundness as well.

The second assumption does not hold for library-only analysis: a client application may
extend types defined in the library. However, it does hold for application-only analysis,
because the types defined by the application are unknown by libraries and can therefore
not be extended by the library code. The reason for the latter assumption leading to
missing call edges is not obvious. We will try to make it clear by discussing a real attack
in Section 3.1.1. Static analysis trying to identify such exploited vulnerabilities will fail,
because of the missing call edges as we will discuss further in Section 3.1.2. Subsequently,
we introduce adaptions of CHA in Section 3.1.3 and VTA in Section 3.1.4 eliminating
both sources of unsoundness. In Section 3.1.5 we will compare the call graphs produced
by the adapted algorithms in experiments with the JCL.

3.1.1. Trusted-Method-Chaining Attack
The attack scheme we will discuss here is called trusted-method chaining, because it
tries to chain trusted methods, such that they perform a sensitive action for an attacker.
Recall that the Java Security Model relies on stack-based access control checking the
permissions associated with the current call stack9. If the call stack consists only of
trusted code all access is granted. The vulnerability we will discuss here is documented
in CVE-2010-0840.10

The goal of the attack is to deactivate the Java Security Model using a reflective call.
That call includes a permission check, which would normally deny access. But, in the
attack the call stack is arranged such that no untrusted code is on the call stack at the
time of the permission check.

9We discuss the attack as an example to get around stack-based permission checks, however, the attack
can also be used to get around caller-sensitive checks.

10Technical details of CVE-2010-0840 can also be found at https://www.microsoft.
com/security/portal/threat/encyclopedia/entry.aspx?Name=Exploit%3AJava%
2FCVE-2010-0840 and http://slightlyrandombrokenthoughts.blogspot.de/2010/04/
java-trusted-method-chaining-cve-2010.html
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java.beans.Expression

Object getValue()
/*other methods*/

attacker.Link

/*other methods*/

«interface»
java.util.Map.Entry

Object getValue()
/*other methods*/

getValue() is
not implemented
by attacker.Link

Library Code
Attacker Code

Figure 3.1.: Trusted Method Chaining Attack

The idea is to call a trusted method performing a sensitive action in a context, in which
it was not planned to be usable. This method is getValue of class Expression. An
Expression object wraps a reflective call that is performed the first time when getValue
is called. The attacker will not call getValue, but will delegate this to other trusted code.
Of course, developers of the JCL have taken care not to call getValue on an Expression
object on behalf of untrusted code.
But, they call getValue on an object of type Map.Entry, which can be considered

harmless. Now, if an attacker defines a new type Link that extends Expression and
implements the interface Map.Entry the implementation of Expression.getValue be-
comes the implementation of Map.Entry.getValue as illustrated by Figure 3.1. Hence,
calls to Map.Entry.getValue actually call Expression.getValue at runtime, given that
the receiver that is statically typed Map.Entry contains an instance of type Link.
What is missing for a successful attack is some trusted code accepting a parameter

of type Map.Entry and invoking getValue, whereas only trusted code is on the call
stack. Such a situation can be found in the AWT/Swing library shipped within the JCL.
AWT/Swing is a framework to build graphical interfaces. It uses a separate thread for
rendering and processing of input events, hence it processes tasks that can be created by
other threads.

In Figure 3.2 we show the code set-up necessary to exploit this thread. The Link object
instantiated in Line 2 passes its constructor arguments to its super class Expression and
upon invoking getValue sets the SecurityManager to null, effectively disabling the
Java Security Model. The Link instance is placed inside a set, which will be returned in
Line 7 upon invoking entrySet on a custom HashMap (Line 4). This HashMap is placed
inside the JList instance (Line 3). When JList renders its content, it will call toString
for each contained element. HashMap does not have its own toString implementation,
therefore, AbstractMap.toString will be called, which in turn uses entrySet to retrieve
a set of all entries. The toString implementation constructs a string of all key-value pair
entries, i.e., it calls Map.Entry.getValue. The only instance in the map is actually of
type Link, thus it ends up calling Expression.getValue, which performs the reflective
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1 HashSet <Map.Entry <Object ,Object >> set = new HashSet < >();
2 set.add(new Link( System .class , " setSecurityManager ", null ));
3 JList list = new JList(new Object [] {
4 new HashMap <Object , Object >() {
5 @Override
6 public Set <Map.Entry <Object , Object >> entrySet () {
7 return set;
8 }
9 }

10 });
11 JFrame frame = new JFrame ();
12 frame. getContentPane (). add(list );
13 frame. setSize (50, 50);
14 frame. setVisible (true );

Figure 3.2.: Set-Up for the Attack

java.lang.SecurityManager.checkPermission(Permission)
java.lang.System.setSecurityManager(SecurityManager)
java.beans.Expression.invoke()
java.beans.Expression.getValue(Object)
java.util.AbstractMap.toString()
...
javax.swing.JList.paint(Graphics)
...
java.awt.EventDispatchThread.run()

Figure 3.3.: Call Stack at the Permission Check

call to overwrite the security manager. As mentioned, this call is guarded by a permission
check. However, the call stack at that time contains only trusted code part of the JCL
as illustrated in Figure 3.3.
The attack illustrates that it is quite easy for developers of the JCL to overlook that

the code they just wrote may allow chaining of trusted methods, as the attack combines
methods of possibly completely different parts of the library that happen to have the
same signature. The Java Security Model only considers the permissions assigned to the
types declaring a method on the call stack. Ideally, it would also include the runtime
type on which the methods have been invoked to mitigate this threat. Alternatively,
the developers could be assisted by static analysis tools. The latter approach has the
advantage that it maintains backward compatibility. However, with existing techniques
static analysis tools will fail, as we will discuss in the next section.
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3.1.2. Unsoundness of Call-Graph Algorithms
The described attack makes use of a confused-deputy vulnerability that ideally should
be detectable by static analysis. However, it is not, when using existing call-graph
algorithms. This results from the problem that these algorithms assume that the type
hierarchy of the analyzed program is not extended by applications not in the scope of
the analysis. Unfortunately, extending the type hierarchy is the key idea of the attack.

In the example, call-graph algorithms will miss the call edge to Expression.getValue
at the call site that statically calls Map.Entry.getValue, because the sub type Link is
not part of the library. Note that both the call site and the call target are nevertheless
part of the library’s code. With respect to our definition of a sound call graph, existing
call-graph algorithms are therefore unsound.
However, there are some existing imprecise algorithms that would include these call

edges. Such algorithms resolve call targets by only using the method’s name (and
signature) and ignore types of the receivers. These algorithms are originally designed
for programs written in functional languages, in which no receiver type is available for
a function invocation. For object-oriented languages these call-graph algorithms are
known to produce imprecise call graphs. An example for such an algorithm is denoted as
Gselector in [33]. More precise algorithms, such as CHA, RTA, XTA, VTA, k-CFA will
all miss call edges.

3.1.3. Adaptation of the Class-Hierarchy-Analysis Algorithm
The Class-Hierarchy-Analysis algorithm (CHA) [17] does not rely on type instantiations
and considers all defined types as potential call targets, given that they are sub types of
the receiver’s static type. Hence, to get a sound version of CHA for library-only analysis,
we only have to adjust the set of entry-point methods and address the second source of
unsoundness: the ability to extend the type hierarchy. As entry points we consider all
methods that are callable by an attacker (cf. Section 2.3). Again, we over-approximate
this set of methods and include a method if its declaring class is public and the methods
modifier is either public or protected, whereas for the latter the declaring class has to be
non-final.
To address the issue that the type hierarchy can be extended, we have to employ

method-signature-based resolution of call targets. Fortunately, we only have to do this
if the receiver’s static type is an interface type, because Java does not allow multiple
inheritance. If it is not an interface we can fall back to the default of CHA: resolving
calls to all sub types of the receiver’s static type that declare the called method.
For illustration, again consider Figure 3.1. The attack is only possible, if an attacker

can craft a sub type of two types defined in the library and a method implemented in
one of the types becomes the implementation for a method declared by the other type.
Moreover, at least one of these types must provide a method implementation to be useful
for the attack, i.e., it must be a concrete class or an abstract class. Java does not allow
multiple inheritance, therefore, the other type can only be an interface. Consequently,
we have to include all concrete method implementations as call targets that match the

22



3.1. Call-Graph Algorithms for Libraries

called method name and signature of a called interface method.
If the receiver’s static type is a concrete class or abstract class this is not necessary.

Sub types of the receiver crafted by the attacker cannot substitute the called method’s
implementation by another implementation of the library.11 Of course, an attacker could
provide its own implementation of the method in a sub type. However, this method’s
implementation is then not part of the library and not required to be included according
to our previous definition of a sound call graph. Note that an attack will also not be
successful in this case, because the untrusted code provided by the attacker would be
present on the call stack.

3.1.4. Adaptation of the Variable-Type-Analysis Algorithm
The Variable-Type-Analysis algorithm (VTA) [73] constructs a type propagation graph,
representing which variables may contain what types at runtime. Each variable, i.e., each
local variable and each parameter, is represented by a node in the graph. Furthermore,
each field is represented by a node whereas base values are ignored (cf. Section 4.1),
and for each method two nodes are created representing the this and return value,
respectively.

The graph contains edges for each assignment in the program. For an assignment a=b
a directed edge from the node representing b to the node representing a is created. For
field reads/writes edges from/to the node representing the field are created to/from the
node representing the variable. Using a conservative call graph as basis, e.g., a call graph
generated by the Class-Hierarchy-Analysis algorithm (CHA) [17], call sites are connected
to called methods as follows: nodes of actual parameters are connected to nodes of formal
parameters, the receiver’s node to the node representing this in the callee, and from the
callee’s return value’s node back, if the call’s result is assigned to a variable. For each object
instantiation the type of the instantiated object is associated with the node representing
the variable the new instance is assigned to. We write reaching_types(n) = {A} for the
statement n = new A. In the next step, types are propagated along the directed edges
throughout the whole graph. Finally, the algorithm knows all potential runtime types
that each variable could contain and uses that information to resolve calls at call sites
constructing a call graph that is more precise than the conservative call graph used as
the basis (e.g., CHA).

When analyzing libraries in isolation, there are three sources of unsoundness in VTA:

1. the conservative call graph used as a basis itself may be unsound for analyzing
libraries in isolation,

2. client applications may call library methods passing arbitrary sub types of the
declared parameter types,

3. client applications may define types that are sub types of multiple types defined in
the library.

11Java 8 allows default method implementations in interfaces, but these cannot be used as implementation
for methods declared abstract in another super type.
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Table 3.1.: Measurements of the Adapted Call-Graph Algorithms
Call-Graph Edges Run Time in Seconds

CHA VTA CHA VTA

Original Version 4 371 465 2 600 177 141 193
Extended Entry Point Sets 3 123 771 402
Extended Entry Point Sets and Signature Resolution 6 173 528 3 950 874 233 508

We address the first source by using the adaptation of CHA discussed in the previous
section. To address the second source, we introduce a special type AnySubTypeOf(A)
representing that type A or arbitrary sub types of type A can be present. We associate
each parameter’s node of a method that can be called by client applications with
that special type. Hence, for a parameter p of type A, we set reaching_types(p) =
{AnySubTypeOf(A)}. To address the third source, we apply method signature resolution
at call sites, in which the receiver’s reaching type set contains the new special type
and the statically declared type is an interface type, analog to our adaptation for CHA.
Moreover, method signature resolution is only used if the receiver can be provided by the
client application. If the receiver’s type is not an interface type, the algorithm considers
all reaching types, and all sub types of the type specified by the new special type.

As for the adaptation of CHA, we assume that the client application can call all public
methods and protected methods of non-final public classes.

3.1.5. Experiments
We applied the call-graph algorithms discussed to the Java Class Library version 1.7
to measure the effects of the proposed adaptations. We are interested in answering the
following research questions:

RQ1: How many more call edges do the produced call graphs contain after the adaptation?

RQ2: How does the adaptation affect the run time of the algorithms?

We used the CHA and VTA implementations of Soot [77] and adapted CHA to
perform method signature-based call-target resolution when the declared type of a call
receiver is an interface type. We adapted the VTA implementation in two steps: first,
we treat all public and protected methods as entry points and introduce the new type
AnySubTypeOf(A); in a second step we add signature-based call-target resolution. Both
versions of CHA and all three versions of VTA, the original version, the one after applying
the first change, and the one after applying the second change, are used in experiments.

All experiments were conducted on a machine running OS X 10.10 with a 8-core Intel
Xeon E5 3.0 GHz processor and 32 GB memory. As Java Runtime Environment we used
the Oracle Java 1.8.0 update 40 release with a heap size set to a maximum of 10 GB.

The results of the experiments are shown in Table 3.1. For CHA the number of edges
in the call graph increases by about 1.8 million when including signature-based resolution
and the run time increases by 70 seconds. Note that the measured run time includes call
graph construction and the initialization phase of Soot, i.e., loading the Java Bytecode
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into memory and transforming it to the Jimple intermediate representation is included.
For VTA we first show the results for the original version. Note that this produces
more incomplete results than the original version of CHA: the reaching_types sets of
parameters of methods not called from within the library are empty, because no types
from allocation sites are propagated there. This results in many calls not resolved to any
call-targets at all. Hence, the number of call-graph edges for the original version of VTA
is incomplete, even when knowing the complete type hierarchy, but not all entry points.
By applying the first step of changes we solved this resulting in a call graph that has
half a million more edges.

With respect to soundness, the original version of CHA and VTA with extended entry-
point sets are similar:12 both miss edges resulting from the incomplete type hierarchy.
Comparing the result of VTA with the result of CHA, we can conclude VTA’s call-graph
is more precise with roughly 1.2 million edges less. After applying the second step of
changes to VTA it produces sound results. The computed call graph contains 3.9 million
edges. As we observed for CHA, the run times of VTA increase when applying the
adaptations, too. We can also observe that VTA is slower than CHA, which is not
surprising given that CHA only considers the type hierarchy and does not propagate
type sets as is done by VTA.
In conclusion, the proposed adaptations increase the number of call-graph edges by

40−50% and run times of the initialization phase by 65−260%. However, it was expected
that our changes—effectively adding missing elements to the results of the call-graph
algorithms—result in more computational effort. For analysis that do require a sound call
graph this cost is unavoidable, e.g., for analysis detecting security related vulnerabilities.
For use cases that do not consider malicious client applications it may be preferable to
use the default CHA algorithm or the VTA version including the first adaptation step
that redefined the set of entry points. Results will then not be sound, but depending
on the use case this may not be relevant at all, and therefore, not worth the additional
computational effort.

3.2. Maintainability13

The development of static analyses is a challenging task. It is—like most software devel-
opment tasks—an incremental process. New requirements arise and existing requirements
change during the development and in most cases it is not obvious how the final result
will look like. So, learning from the software-engineering field, separation of concerns
and reusability are key to efficiently develop these analyses.

Naturally, it is impracticable to start implementing an analysis from scratch. Analysis
frameworks such as Soot [77], WALA [20] or OPAL [22] provide basic functionality to be
reused by specialized analyses. To aid the analysis developer’s task these frameworks
provide abstractions and intermediate representations to avoid the need of dealing with
low-level problems. On top of that, framework-like algorithms like the IFDS [61] and

12The CHA implementation of Soot is not sensitive to a definition of entry points.
13 This chapter is based on and contains verbatim content of work previously published as [43].
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IDE [65] algorithms provide means to divide large problems into smaller parts enabling
developers to focus only on analysis problem specific tasks.
However, the amount of work to develop a specialized analysis still is tremendous.

The considerations that have to be made for the analysis have to be encoded in the
abstractions of the framework it is build upon. As soon as the analysis grows in its
implementation it may become hard to maintain. Something that started as a prototype
becomes too complicated to change. Features tend to become intertwined making the
reuse of an analysis feature a challenging task, although many aspects of static analyses
are identically handled across multiple analyses addressing different problems.

We found this to also be the case while developing the analysis for the confused-deputy
problem. In the following, we therefore discuss a design approach that effectively separates
different analysis aspects and implementations that are otherwise often interwoven.
We focus on IFDS and IDE analysis problems, i.e., the discussed design approach is
immediately applicable to data-flow analysis based on IFDS or IDE. In addition, the
concepts are transferable to any analysis based on the principle of gen and kill functions.
We will use examples taken from the development of FlowTwist in discussions.

3.2.1. State of the Art
The implementation of static analyses with IFDS [61] or IDE [65] require the definition
of so-called flow functions (cf. Section 2.5). Flow functions define the effects that specific
edges in the interprocedural control-flow graph have on an incoming data-flow fact. A
fact can be anything that needs to be tracked in the specific analysis, e.g. a value coming
from user input. A flow function may generate new facts, pass over existing facts or
specify that the incoming fact will not hold at the edges destination, commonly referred
to as killing the fact.
For example, consider the previously described data-flow analysis that tracks values

potentially controlled by an attacker to security-sensitive methods. When the flow
function is called to evaluate an assignment statement where a tracked value is on the
right hand side of the assignment, the flow function should return the incoming fact,
because the variable of the right hand side is still carrying the tracked value, as well as a
new fact representing the variable of the left-hand side of the assignment, because it is
now carrying that value as well. In the opposite case, when a variable gets overwritten
with a constant, the flow function should kill the fact representing the variable on the
left hand side of the assignment.

In Heros there are two interfaces that have to be implemented in order to specify flow
functions (cf. Figure 3.4). The first interface is FlowFunctions, which provides instances
of the second interface FlowFunction that handle specific edges in the interprocedural
control-flow graph. Edges are categorized by this procedure into normal edges, call edges,
return edges, and call-to-return edges. Normal edges represent intraprocedural flow like
assignments, conditions and loops. Call edges span from a call site to the first statement
of a called method. Return edges reach from an exit point of the method back to the
return site, i.e., the statement succeeding the call site the method call originated from.
Call-to-return edges span over the call.
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public interface FlowFunctions <Stmt , Fact , Method > {
FlowFunction <Fact > getNormalFlowFunction (

Stmt current ,
Stmt successor );

FlowFunction <Fact > getCallFlowFunction (
Stmt callSite ,
Method calleeMethod );

FlowFunction <Fact > getReturnFlowFunction (
Stmt callSite ,
Stnt calleeMethod ,
Stmt exitStmt ,
Stmt returnSite );

FlowFunction <Fact > getCallToReturnFlowFunction (
Stmt callSite ,
Stmt returnSite );

}

public interface FlowFunction <Fact > {
Set <Fact > computeTargets (Fact sourceFact );

}

Figure 3.4.: Flow Function interfaces of the Heros framework to be implemented by
specific analyses

This way IFDS and IDE algorithms allow the analysis developer to focus on the effects
of each edge in isolation and therefore describe the behavior of the analysis very naturally.
Nevertheless, even in this small focus on a single edge the implementation can become
very complex with growing requirements to handle more and more specific situations.

In a complete analysis, its developer has to handle many more features of the language
aside from assignments. This includes reading and writing instance fields and static
fields, cast expressions, boxing and unboxing of types, exceptions, reflection, mapping of
actual parameters to formal parameters at call edges and return values at return edges.
Moreover, it might be too costly to precisely analyze the behavior of data structures that
are used in the program, therefore the effects of these might be addressed by specification.
This is commonly the case for arrays and collections. Depending on the type of analysis,
it might also be necessary to handle the construction and concatenation of Strings, for
instance using the StringBuilder class of Java. Furthermore, when not analyzing the
complete program including its used libraries and the runtime library, flow functions
have to account for the effect on facts passed over calls to library functions. Similarly,
there might be definitions summarizing the effects of functions implemented in other
languages, e.g. native code. Besides handling all these language features, flow functions
also need to be aware of special function calls in the context of the analysis. For instance,
an analysis tracking user input might kill facts when input data is treated with a special
sanitization function.

During the development of FlowTwist, we went through the experience that implemen-
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public interface Propagator <Stmt , Fact , Method > {
boolean canHandle (Fact fact );
KillGenInfo <Fact > propagateNormalFlow (

Fact sourceFact ,
Stmt current ,
Stmt successor );

KillGenInfo <Fact > propagateCallFlow (
Fact sourceFact ,
Stmt callStmt ,
Method destinationMethod );

KillGenInfo <Fact > propagateReturnFlow (
Fact sourceFact ,
Stmt callSite ,
Method calleeMethod ,
Stmt exitStmt ,
Stmt returnSite );

KillGenInfo <Fact > propagateCallToReturnFlow (
Fact sourceFact ,
Stmt callSite );

}

Figure 3.5.: Propagator Interface

tations respecting all of those concerns in a single flow function become hard to maintain,
difficult to test, and impossible to reuse. In addition to our own experience, we looked at
implementations of other developers finding that this seems to be a common result, e.g.,
FlowDroid [7] a data and information flow analysis for Android based on Heros contains
more than 400 lines of code for handling normal flow functions alone, not counting code
of called helpers. We thus propose to separate the different concerns of a flow function
better and present our proposal to do this in the next section.

3.2.2. Design
We want to achieve that different concerns can be expressed in different isolated classes.
Ideally, each concern being one implementation of the FlowFunction interface. But, it
is not possible to easily separate all concerns as some concerns depend on others. For
example, in a taint analysis one concern of a flow function is the propagation of facts
through assignments so that facts holding at the right hand side get propagated to the
left hand side. At the same time, we might have another concern that we never want to
track values of primitive data types. Therefore, facts are killed if they are propagated
through a cast expression or being unboxed. However, there is a dependency between
these two concerns, because we do not want to propagate any fact at an assignment if a
second concern claims the fact should be killed instead.
In order to separate concerns of a flow function, we introduce a new interface

Propagator shown in Figure 3.5. Each implementation of that interface reflects one
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Figure 3.6.: Schematic View of the Propagator Phases

specific concern. Bundled together these Propagator implementations will behave like
an implementation of the Heros interface FlowFunction. Thus, our approach represents
a functional equivalent to the FlowFunction interface while at the same time separating
concerns from each other. The new data structure KillGenInfo is used as the return
type instead of a set of facts. In Heros a concern that does not affect the source fact has
to return the source fact and does not return the source fact if it wants to signal the fact
should be killed. We opt for a more explicit API explicitly communicating a kill of a
fact. Therefore, we use the KillGenInfo data structure. The data structure is a named
pair holding a boolean flag indicating if the source fact should be killed and a set of facts
that should be generated, which does not require to include the given source fact.
To deal with dependencies between concerns, we group instances of the Propagator

interface into multiple phases, whereas each phase can contain multiple Propagators
as shown in Figure 3.6. Processing of Propagators of the same phase are not allowed
to affect each other, while the processing of each phase depends on the result of its
preceding phase. Actually, if any Propagator of a phase decides that the source fact
should be killed, the succeeding phases will not be processed at all. But, Propagators of
the same phase will still be processed independently, meaning Propagators of a single
phase may be processed in arbitrary orders or even in parallel. The input fact is the
same source fact for all phases and does not depend on the generated facts of preceding
phases. Each Propagator may generate new facts. At the end of the process the union
set over all facts propagated by all phases is built. Therefore, the processing in phases is
not a processing pipeline, i.e., the input of a phase is not the output of the preceding
phase. However, the execution of a succeeding phase depends on the preceding phase. In
the illustrated example, a Propagator of Phase 2 decides to kill the input fact resulting
in Phase 3 not being executed at all.

To adapt Heros-style FlowFunctions to our phases-propagators design, we developed
the processing of phases as implementation of the FlowFunction interface as shown in
Figure 3.7. Phases are defined as a two-dimensional array of type Propagator. The
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Set <D> computeTargets (D source ) {
boolean killed = false ;
Set <D> gens = new HashSet <D >();
for(Propagator <D >[] phase : phases ) {

for(Propagator <D> propagator : phase) {
if( propagator . canHandle ( source )) {

KillGenInfo kgi = propagate *( source , ...);
killed |= kgi.kill;
gens. addAll (kgi.gens );

}
}
if( killed )

break ;
}
return gens;

}

Figure 3.7.: Processing of Phases

first dimension reflects each phase while the second dimension contains the Propagator
instances of each respective phase. The inner loop collects generated facts by the
Propagator instances of a phase. The outer loop cycles over all phases until all of them
are processed or some Propagator returns that the source fact should be killed.

An example configuration for a data-flow analysis whereas the phases are implemented
in form of a two-dimensional array is shown in Figure 3.8. In the presented example,
the first phase contains Propagators reflecting the sanitization of data flows, i.e. it
may kill facts under certain conditions. If a fact survives that phase, the second phase
handles data-flow propagation, i.e., assignments, field processing, calls, etc. The last
phase contains a Propagator that is generating a report if a fact has reached a sink, i.e.
the analysis found a data flow from a source statement to a sink statement.

In this example, it becomes obvious that the separation of concerns is helpful. Some of
the Propagator implementations are very general ones that can be reused across many
different analyses. For instance, the Propagators of the second phase can be used for
any data-flow analysis, while the Propagators in the first and last phase may be different
for other analyses. It might be even the case that more (or less) phases are required for
different analyses. Note that this can be done as easy as adding an element to the array.
In conclusion, our design easily separates different analysis concerns, but centralizes their
combination to this end that a specific analysis can be formed by constructing a phase
array from existing Propagator implementations. Thus it allows reusing Propagator
implementations.

3.2.3. Discussion
We initially became aware of the problem that implementations of flow functions become
hard to maintain and hard to test when we started to implement FlowTwist. At some
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phases = new Propagator [][] {
{

new PrimitiveTypesKiller (),
new PermissionCheckPropagator (),
/* ... */

},
{

new AssignmentPropagator (),
new FieldAccessPropagator (),
new StringBuilderPropagator (),
/* ... */

},
{

new SinkHandler (),
/* ... */

}
};

Figure 3.8.: Phase Configuration

point we changed its design to the design presented here. In the following we discuss the
experiences we gathered after that design change on an analysis on which we continued
development for over three years already.
FlowTwist handles data flows of arbitrary types, except primitive data types, which

are always filtered. This means that the propagated facts represent whether variables are
tainted by unsafe input data. The analysis contains an implementation of the Propagator
interface that handles assignments, calls, and returns. We have to track Strings, therefore
we used two separate Propagator implementations to handle StringBuilder and other
operations on String, for example String.valueOf. The Propagator implementation for
StringBuilder detects if taints are passed into a StringBuilder instance and generates
facts now tracking the respective StringBuilder instance. If a String is generated
from a tracked StringBuilder instance the generated value is being tracked. Using the
suggested design, this rather special treatment of a specific type is encapsulated in a
separate class. In a straight-forward implementation this treatment would be scattered
all over a flow function implementation as it requires to detect different interactions, i.e.
arguments passed to StringBuilder objects (via call edges) as well as retrieving values
from StringBuilder objects (via return edges).
FlowTwist also uses Propagator implementations specific to its analysis problem,

like the handling of source statements, i.e., initially mapping zero facts to taint facts,
implementations for killing facts passed over permission checks, and lastly implementations
to detect taint facts reaching sink statements.
For experiments and to evaluate multiple approaches, FlowTwist consists of multiple

variations of the analysis as we will discuss later in Section 3.5. One configuration repre-
sents the full-featured analysis. Another smaller configuration is used in an experiment, in
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which less statements of interest are considered to perform experiments on the scalability.
This variation does not affect how assignments have to be processed, but requires slight
changes in the source and sink handling. In a straightforward implementation this
variation would have to be encoded by multiple conditions checking which variation is
currently used, which will be scattered across the whole flow function implementation.
By using the suggested design, there are just two slightly different versions of the phase
configuration like the one shown in Figure 3.8.
Another more challenging variation configures the analysis so that it is performed

only in a forward direction through the interprocedural control-flow graph, while in
the full-featured analysis it starts in the middle of the program performing a backward
and a forward analysis. Performing the analysis backward through the interprocedural
control-flow graph requires a different processing of assignments, calls, and returns.
While starting the analysis in the middle of the program requires a different handling
of source and sink statements as well. Here again, we were able to reuse Propagator
implementations, e.g., the processing of forward edges, across the variations and separate
differences encapsulated in isolated classes. We define each variation as a two-dimensional
phases configuration array.

The reuse case within one analysis problem through variations might be a special case
for the FlowTwist project. Therefore, we conducted a small case study and tried to reuse
implementations for a different analysis problem. Namely, we implemented an analysis to
detect SQL-Injection, Command-Injection, and XSS vulnerabilities in web applications
(also used for experiments in Section 4.4). These problems are data-flow problems
and therefore require handling of assignments, calls, returns, etc. As we separated the
implementation for these concerns from the part specific to the analysis problem, we were
able to reuse these Propagator implementations. Actually, it turned out that the only
Propagator implementations we have to exchange by other implementations are the ones
concerned with source, sanitization, and sink handling. This means that we were able
to handle a very different analysis problem just by providing a new phase configuration.
Even better, the code bases for both problems will not divert as they can be naturally
kept in the same project as there is only one single place where dependencies between
these are configured: the phase configuration.
While we implemented the suggested design as part of an analysis using Heros, it

would also be possible to integrate the phase processing in Heros itself and provide the
Propagator interface to the specific analysis implementations. There is one drawback
that has to be considered when doing this. In the current state, Heros allows caching of
FlowFunction implementations. The cache is used to determine if for the same edge the
analysis was already asked to create a FlowFunction instance. Potentially, this can be
used to precompute all flow functions for the whole program. Nevertheless, for a concrete
fact the flow function has to be evaluated eventually. In our experience, this evaluation
is the expensive processing part compared to the creation of a FlowFunction instance,
because in most scenarios it is not possible to determine that a flow function for a specific
edge will always generate some specific fact or always kill the incoming fact. Most of the
times, such decisions depend on the concrete source fact passed into the flow function.
In summary, at the cost of a cache lookup a class instantiation is saved on cache hit, i.e.,
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foo(a) {

if(...)

b=a

else

c=a

c=b

return c
}

value(a1) = a

value(b1) = b

source(b1) = b=a

· · ·
pred(a2) = a1

pred(b1) = a2

pred(a3) = a1

pred(c1) = a3

pred(c2) = b1

a1

a2

b1

a3

c1

c2

c2

Fact along Flow Function Fact along Summary Edge

(a)

bar(a) {

if(...)

b=a

else

b=a

return b
}

pred(a2) = a1

pred(b1) = a2

pred(a3) = a1

pred(b2) = a3

neigh(b1) = b2

a1

a2

b1

a3

b2

b1

(b)

Figure 3.9.: Fact Propagation in the IFDS Algorithm
(the relations predecessor and neighbors are shortened here as pred and neigh)

an analysis with many cache misses might even be faster without the cache. Therefore,
we recommend to integrate our proposed design allowing to separate concerns.

3.3. Reconstructing Paths14

The IFDS framework transforms data-flow problems to graph reachability problems, yet
it does not provide precise paths through the interprocedural control-flow graph via
which a data flow is possible. This is due to the fact that it constructs path edges that at
the end of processing a method become summary edges. Path edges are not connected
to preceding path edges, therefore, they do not contain information about statements
in-between their source and target statements. If the control flow contains branches, it is
impossible to know which branch has been taken.

In the example in Figure 3.9a, only one branch propagates a potential taint from the
parameter to the returned value. Yet, in the summary edge information about possible
alternative flows (or in this case their non-existence) is lost. But, not only information
about these intraprocedural paths are lost, also information about the interprocedural
edges the analysis takes is lost, because the summaries abstract over called procedures.
Moreover, an IFDS-based analysis is only able to report whether a data-flow path exists
to some sink, but not any intermediate statements.

14 This chapter is based on and contains verbatim content of work previously published as [44].
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3.3.1. Storing Predecessors in Dataflow Facts
To be able to reconstruct paths, we adapt in FlowTwist the model of data-flow facts such
that they track the path along which they are propagated. A natural approach to taint
analysis with the IFDS framework is to use the identifiers of variables as propagated data-
flow facts. However, to enable path tracking we need a more extensive fact representation.
We propagate facts of type Fact instead and define several relations on this type:

value : Fact→ V ariable

source : Fact→ Statement

predecessor : Fact→ Fact

neighbors : Fact→ P(Fact)

The relation value maps each fact to the related tainted variable. The relation source
maps a fact to a statement at which the fact was generated. The relation predecessor
links to the fact from which a flow function generated the current fact. Effectively, this
creates a chain of facts, allowing to traverse the complete flow for a fact reported at an
arbitrary sink. The relation neighbors links to similar facts, i.e., facts with the same
value, at positions where flows are merged. Following examples will illustrate why this
model is simpler than storing multiple predecessors.
Figure 3.9a shows the propagated facts when modeled as described. Note that some

propagated facts are left out to simplify the illustration. Consider how the fact that
predecessor(c2) is b1 and not c1 encodes that the flow is only possible along one branch
in foo. The chaining of facts does not preclude the algorithm from computing summary
functions, which is important for the scalability of the IFDS framework. In the example,
the summary edge represents that if a tainted variable is passed as argument to foo, then
the fact c2 holds, i.e., c is tainted, when the method returns. The summary abstracts
of the intermediate facts a1, a2, and b1, but nevertheless the chain of predecessor links
allows to later reconstruct the path along these facts through the reference to c2, which
is included in the summary.
To illustrate the role of the neighbors relation, consider the example in Figure 3.9b.

Here, the facts b1 and b2 both are present at the same statement and both represent the
fact that variable b is tainted. Moreover, these facts should be merged into a single one
as otherwise from this point on, every propagation is computed two times for similar
facts. This effect multiplies further for every branch taken, yielding a clear threat to the
scalability of the analysis. IFDS is restricted to set union as a merge operator, and is
thus unable to identify “similarity” of data-flow facts. Therefore, we extend the IFDS
algorithm to recognize if a fact is propagated along an edge for which previously a fact
was propagated with the same value. If this occurs, the second propagated fact is set to
be a neighbor of the first propagated fact and the second fact is not propagated further.
In contrast to creating predecessor links it is not possible to encode this behavior in a flow
function. However, the IFDS algorithm can be extended by simply wrapping calls to the
Propagate procedure [61] as shown in Algorithm 1. Given the fact d2 to be propagated,
PropagateAndMerge checks whether there is a fact d′2 stored in the set Seen for which

34



3.3. Reconstructing Paths

Algorithm 1 Change to Support Neighbors in IFDS
procedure PropagateAndMerge(〈sp, d1〉 → 〈n, d2〉)

1: if ∃d′2 | value(d2) = value(d′2) ∧
〈sp, d1〉 → 〈n, d′2〉 ∈ Seen then

2: neighbors(d′2) := neighbors(d′2) ∪ d2
3: else
4: Insert 〈sp, d1〉 → 〈n, d2〉 into Seen
5: Propagate(〈sp, d1〉 → 〈n, d2〉)
6: end if

end procedure

the value is the same as the value of d2. If such a fact d′2 exists, then d2 is added to
its neighbors and not propagated further; otherwise d2 is added to the set Seen and
propagated.
We do not use the predecessor relation to store information about a merge, as it

increases complexity of handling summary edges. In the example, for function bar we
would have to create two summary edges: one for the fact b1 and one for fact b2. For
each caller of the function these have to be recognized as representing the same value,
i.e., adding both as predecessors. Using the neighbors relation allows to store only one
summary edge, i.e., for the first fact propagated to the return statement. Nevertheless,
the path through the second fact can be equally reconstructed as it is stored as a neighbor
of the first.

3.3.2. Traversal of the Predecessor Chain
Finally, paths can be reconstructed by traversing the predecessor chains. However, due
to merging of data-flow facts at method start points reconstructed paths are context-
insensitive, i.e., some reconstructed paths are infeasible. Flows of multiple callers are
merged at the beginning of a called method. At the end of the called method flows to
return sites of all callers exist. However, there is no connection between a call edge and a
return edge when traversing the predecessor chain. Therefore, traversing the predecessors
can yield invalid paths entering a method via one call edge and returning from the
method via a return edge to a different method than from which the called method was
entered. To get only feasible, context-sensitive paths we model a virtual call stack while
traversing the predecessor chain.

Instead of placing function names on the call stack, however, we use the concrete call
sites to encode the call stack. The code shown in Figure 3.10 illustrates why concrete call
sites are required. In that example a path from a parameter of foo to its return value is
only possible via the call site labeled l2, but not via l1. Note that path reconstruction
traverses the chain backwards, i.e., it starts at the returned variable c, then visits the
predecessor x1 that has the predecessor a2 and the neighbor of x2, which in turn has the
predecessor b3. Hence, if not using a call stack, both transitive predecessors—a2 and
b3—have to be considered yielding paths from parameter a to c and from parameter
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foo(a, b) {

if(...)

l1: bar(a)

else

l2: c = bar(b)

return c
}

bar(x) {

return x
}

pred(a2) = a1

pred(b2) = b1

pred(a3) = a1

pred(b3) = b1

pred(x1) = a2

neigh(x1) = x2

pred(x2) = b3

pred(c) = x1

relatedCallSite(c) = l2

callStackEffect(c) = Push
callStackEffect(x1) = Pop
callStackEffect(x2) = Pop

a1, b1

a2, b2

a3, b3

x1

x2

x1

c

Fact along Intraprocedural Flow Function
Fact along Interprocedural Flow Function

Figure 3.10.: Path Reconstruction Must be Context-Sensitive
(the relations predecessor and neighbors are shortened here as pred and neigh)
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b to c, whereas the former is infeasible. By maintaining a call stack while traversing
predecessors, we will know that we entered bar via call site l2 and may only continue
with x2 when leaving bar.

The question is how to retrieve concrete call sites along the paths. Using the relation
source does only help for call edges, because return edges start at an exit statement and
end at a return site; the call sites themselves are not included. To address the need of
storing the call sites we extend our model of facts by the following relations.

relatedCallSite : Fact→ Statement

callStackEffect : Fact→ [None | Push | Pop]

For facts propagated along a call or return edge, relatedCallSite maps to the related
call site and callStackEffect is used to store the effect on the simulated call stack, when
traversing a fact. For intraprocedural control-flow edges, callStackEffect maps to None.
The construction of all paths for a fact f is implemented by the worklist algorithm

shown in Algorithm 2. While paths are constructed by traversing the predecessor chain
of facts, their corresponding call stacks are computed as well. By simulating the call
stack in parallel for each path the algorithm ensures that constructed paths only return
to callers through which they entered a method (Line 23).

3.3.3. Simplifications to Improve Scalability
We have mentioned the importance of being able to merge similar facts and reuse summary
edges to allow the IFDS framework to be scalable, i.e., we merged facts if their value
relation yield equal results and ignore other relations. Moreover, the IFDS framework
would not scale if we formulated it in a way that multiple paths cannot be joined again.
However, by enumerating all possible paths we try to do exactly this, thus this step would
not scale without some simplifications. The first simplification was already presented
implicitly, as only paths are constructed for which it is known that there is a data flow, i.e.,
by only traversing the data-flow facts generated in the first place. However, experiments
have shown that this is not enough.
A second simplification is to include into a path only those facts f , whereas value(f)

points to a different variable than its successor, meaning the paths will only include facts
and statements at which the tainted variable is assigned to another variable, used as
argument of a call or being returned (Line 9 in Algorithm 2).

This reduces the number of paths that have to be constructed, as branches not using a
tainted variable do not result in additional paths. We think this simplification is useful also
from a usability perspective, as it discards facts in reported paths that are not necessary
to comprehend the reported data flow. Note that this simplification is encapsulated in the
implementation of firstIntroductionOf and can therefore be easily loosened or tightened,
e.g., through an implementation that returns only facts at interprocedural edges.
A third simplification is an additional cycle-elimination criterion supplementing the

natural cycle-elimination criterion that does not include the same facts twice in a path
(Line 10). During experiments we found huge sub-type hierarchies, which recursively call
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Algorithm 2 Algorithm to Compute Paths
procedure computePaths(f)

1: declare WorkList : {[Fact]×[CallSite]×{Function}}
2: declare Paths : {[Fact]×[CallSite]}
3: Insert 〈[f ], ∅, ∅〉 into WorkList
4: while Worklist 6= ∅ do
5: Select and remove an item 〈[f1 . . . fn], [cs1 . . . csm], cf〉 from WorkList
6: if fn = 0 then
7: Insert 〈[f1 . . . fn−1], [cs1 . . . csm]〉 into Paths
8: else
9: foreach p ∈ firstIntroductionOf(fn) do
10: valid := p 6∈ [f1 . . . fn]
11: if callStackEffect(p) = None then
12: cs := [cs1 . . . csm]
13: else
14: rcs := relatedCallSite(p)
15: decls := initialDeclarations(calledFuncs(rcs))
16: switch e := callStackEffect(p) do
17: case e = Push
18: cs := [cs1 . . . csm, rcs]
19: valid := valid ∧ ((cf ∩ decls) = ∅)
20: cf := cf ∪ decls
21: case e = Pop
22: cs := [cs1 . . . csm−1]
23: valid := valid ∧ (csm = rcs)
24: cf := cf \ decls
25: end switch
26: end if
27: if valid then
28: Insert 〈[f1 . . . fn, p], cs, cf〉 into WorkList
29: end if
30: od
31: end if
32: od
33: return Paths

end procedure
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Algorithm 2 Algorithm to Compute Paths (Continued)
procedure firstIntroductionOf(f)

34: declare WorkList : {Fact}
35: declare Result : {Fact}
36: declare Visited : {Fact}
37: WorkList := neighbors(fn) ∪ fn
38: while Worklist 6= ∅ do
39: Select and remove an item g from WorkList
40: p := predecessor(g)
41: if p = ∅ ∨ value(g) 6= value(p) then
42: Insert g into Result
43: else
44: foreach n ∈ neighbors(p) ∪ p do
45: if n 6∈ Visited then
46: Visited := Visited ∪ n
47: WorkList := WorkList ∪ n
48: end if
49: od
50: end if
51: od
52: return Result

end procedure
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themselves (e.g. implementations of the decorator pattern). In many cases, precise type
information is missing, causing conservative approximations to assume call edges to all
sub types. Data-flows through such hierarchies result in a combinatorial explosion during
path construction. This is because the algorithm will consider each possible sorting order
in which the sub types can call each other as a separate path.
The cycle-elimination criterion to not include the same fact twice does not help here,

as it only prevents including the same function of the same sub type multiple times.
Therefore, we introduce an additional criterion preventing the inclusion of paths calling
a function recursively multiple times. This criterion is reflected in the algorithm using
the variable cf denoting called functions.

We evaluated path reconstruction as part of the inside-out taint analysis. The evaluation
and its results are discussed in Section 3.5.

3.4. Inside-Out Taint Analysis15

The analysis problem described in Section 2.3 consists of an integrity and a confidentiality
problem. Moreover, it is an integrity problem if an attacker can control the value passed
to a sensitive method as parameter, and it is a confidentiality problem if the value
returned by the sensitive method is leaked to the attacker.
Taint analysis is a common approach to detect integrity problems or confidentiality

problems each at a time. But, some sensitive methods are only vulnerable if an integrity
and confidentiality problem is present at the same time. As we will discuss in the
following, this requires a small change to state-of-the-art taint analyses.
The goal of a taint analysis is to identify whether it is possible that a value defined

by a source is flowing to some sink. This is done by tainting the value at the source
and then tracking variables it is assigned to through the programs control-flow graph. If
considering only the integrity problem, a taint analysis has to consider each parameter
of an attacker-callable method as source and the parameter of the sensitive method
as sink. For the confidentiality problem, the return value of the sensitive method is
the source and sinks are return statements of attacker-callable methods. Clearly, if
we want to detect both problems at the same time, we have to detect flows from the
parameter of an attacker-callable method to a security-sensitive method, changing from
its parameter to its return value, and tracking this value back to the return value of the
same attacker-callable method. Moreover, for a context-sensitive analysis it has not only
to be the same attacker-callable method, but also the same virtual call stack for the
flow towards and away from the sensitive method. We will use such a taint analysis as
baseline in experiments, and will see that it scales worse than an inside-out approach.

To motivate an inside-out approach, let’s first consider the sub graphs of the programs
control-flow graph that will be visited while processing taint analyses for the integrity
and confidentiality problem separately: it is likely that the sub graph is smaller for
the confidentiality problem than for the integrity problem. The reason is that for the
confidentiality problem the analysis starts only at sensitive methods, while for the integrity
15 This chapter is based on and contains verbatim content of work previously published as [44].
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Figure 3.11.: Overview of Steps Performed

problem it starts at all parameters of attacker-callable methods. The chance to hit a
sink is also higher for the confidentiality problem as all attacker-callable methods are
potential sinks, and for the integrity problem there is only a small amount of sinks, i.e.,
the Java Class Library contains 89 sensitive methods. The imbalance of the problems is
higher the more attacker-callable methods are available. In the Java Class Library we
have to consider at least over 45,000 public methods.

If considering the analyses problems separately, we can apply a simple trick to improve
the scalability of the analysis for the integrity problem: we simply reverse the problem
and apply a backward analysis starting at the sensitive method tracking taints backward
through the control-flow graph to parameters of attacker-callable methods. But, this trick
cannot be applied for the adapted taint analysis that detects integrity and confidentiality
problems at the same time. This analysis starts and ends at attacker-callable methods,
therefore, reversing the analysis direction does not improve the situation.

We suggest to have two separate analyses, one reversed analysis for the integrity problem
and one for the confidentiality problem. Moreover, this requires a post-processing step
that matches results of both analyses with each other via their virtual call stack. Results
without a match are discarded as not exploitable. Two results match if they have the
same virtual call stack. As discussed in Section 3.3, a call stack is already computed as
part of reconstructing the paths of a reported flow and can be used for the matching. In
addition, we will introduce a way to synchronize both analyses to improve their scalability
by early terminating an analysis if no taint flow is possible in the other analysis.

3.4.1. The Approach in a Nutshell
The approach can be divided into four steps as illustrated in Figure 3.11. In the first step
the static-analysis framework Soot [77] is used to read Java Bytecode and to transform it to
an intermediate three-address representation called Jimple. In that step it also computes
an Interprocedural Control-Flow Graph (ICFG). In the next step, the IFDS framework
(described in Section 2.5) uses the ICFG to compute data-flow facts along edges of the
ICFG. The IFDS framework is applied two times: one time for the integrity problem;
and another time for the confidentiality problem. The IFDS framework implementation
is extended and the data-flow facts are modelled such that they support reconstruction
of exact paths along which the data-flow facts were propagated (cf. Section 3.3). These
paths are reconstructed in the third step. However, we call these paths semi-paths as
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Figure 3.12.: Flows Must Reach an Outer Layer and Be Transitively Calling a Sensitive
Method

they represent only the integrity or confidentiality part of a complete path. In the last
step, semi-paths are matched by their call stack to generate complete paths.

In the following we discuss the required concepts to combine both analyses into an inside-
out taint analysis. As the analyses start in the middle of a programs execution, we require
support for unbalanced return flows, which we discuss in Section 3.4.2. Subsequently, we
discuss the matching of semi-paths in Section 3.4.3. We continue with synchronizing the
analyses in Section 3.4.4 and evaluate the approach in Section 3.5.

3.4.2. Unbalanced Return Flows
Neither in its original version [61] nor in its extended version [50] does the IFDS framework
support unbalanced return flows. Unbalanced return flows occur when processing a return
of a method for which no matching previous call was processed. In a typical context-
sensitive analysis starting at the outer layer of an API, calls are always processed before
returns. But in our case the analyses start on the inside of the API, which naturally calls
for supporting such unbalanced return flows.

Algorithm 3 shows our extension to the IFDS framework to enable unbalanced return
flows. In line 22 through 31, the original algorithm loops over all incoming edges and
propagates return flows accordingly. Our modification adds lines 31.1 through 31.7. In
line 31.1 we check, if the algorithm is currently in an unbalanced situation. This is
the case when d1 is the tautological fact 0, which always holds, and when there is no
incoming edge into d1 for the current function’s starting point sp. If identified to be in
an unbalanced situation, the algorithm computes and propagates return flows to each
possible call site. Note that in situations where the analysis returns from a method m in
an unbalanced way and then processes a call to m again, say with a fact d1, then this will
lead to a situation whereas the incoming-set of 〈sp, d1〉 is not empty, which is why in this
case the analysis will perform a normal balanced return, maintaining context sensitivity,
returning only to the appropriate call site.

3.4.3. Creating and Matching Semi-Paths
If working in a regular outside-in manner, a taint analysis would start at sources on the
outer level of the API, through some sensitive method such as Class.forName(..) and
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Algorithm 3 Extension to Support Unbalanced Return Flows
(line numbers match the complete representation of the IFDS algorithm shown in Figure 4 of [50])

procedure ForwardTabulateSLRPs
. . .

11: Select and remove an edge 〈sp, d1〉
π−→ 〈n, d2〉 from WorkList

. . .
22: foreach 〈c, d4〉 ∈ Incoming [〈sp, d1〉] do

. . . //unchanged handling of balanced return flows
31: od
31.1: if d1 == 0 ∧ Incoming [〈sp, d1〉] = ∅ then
31.2: foreach c ∈ callSitesCalling(procOf(sp)) do
31.3: foreach d5 ∈ returnVal(〈ep, d2〉, 〈c, d1〉) do
31.4: Propagate(〈sprocOf(c),0〉

c−→ 〈returnSite(c), d5〉)
31.5: od
31.6: od
31.7: end if

. . .
end procedure

then back to the original method at which the analysis started. That way, the analysis
can report a possible flow as soon as it reaches this starting point again. The inside-out
analyses cannot adopt the same strategy as both—the one for the integrity problem and
the one for the confidentiality problem—are inside-out analyses: they start at some inner
layer of the program being analyzed and should report potential flows only, if respective
flows reach some outer layer for both problems.

We consider results by each of the two analyses as candidates. If they can be combined
with a candidate of the respective other analysis they will be reported as result for
the overall problem. A candidate has to fulfill two conditions: (1) it must reach an
attacker-callable method; (2) that function must be a transitive caller of the sink.

The need for condition (2) is illustrated in Figure 3.12. Assume we start an inside-out
analysis at function d. This function returns unbalanced to function c. Function c calls
b, from which the flow returns balanced (context-sensitively). Subsequently, the flow
returns unbalanced to a. Condition (1) holds for functions a and b. Yet, reporting at
b does not make sense, because if b gets called by untrusted code there is no program
flow to d as b will return to the untrusted code. This is where condition (2) comes to
play. It only holds for a and c, but not for b. So, a flow is only reported at a. Note that
condition (2) can be easily checked: It will hold if and only if the function is entered by
an unbalanced return.
Once a candidate is found, the algorithm traverses the predecessor chain of facts (cf.

Section 3.3) to construct a semi-path through the program along which a flow exists. It
is a semi-path, because it only contains one way from a source to a sink. To construct
complete paths the semi-paths produced by the two analyses in isolation need to be
matched. This has to happen with awareness of context, as it otherwise leads to paths
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that are infeasible at runtime. This context is the call stack, which has to be the same to
match semi-paths. For the example flow illustrated in Figure 3.12, the call stack would
be [a, c, d]. Note that the call to b is not on the final call stack. It is pushed on the
call stack, but then also removed immediately.

Once all semi-paths are constructed, pairwise matches according to their respective call
stacks are built and the reversed semi-path of the confidentiality sub-analysis is appended
to the semi-path of the integrity sub-analysis. The two thus concatenated semi-paths
form a complete path:

Paths = {[f1 . . . fn, gm . . . g1] :
i ∈ Integrity-Results ∧
c ∈ Confidentiality-Results ∧
〈[f1 . . . fn], csi〉 ∈ computePaths(i) ∧
〈[g1 . . . gm], csc〉 ∈ computePaths(c) ∧
csi = csc}

3.4.4. Dependent Analyses
As discussed in Section 3.3, the enumeration of all possible semi-paths is a critical threat
to the scalability. In the following we show how both sub-analysis can be made dependent
on each other, such that candidates for the matching will only be reported if they exist
for both the integrity and confidentiality problem. This avoids enumerating semi-paths
for which no matching counterpart will exist anyway. As pointed out in former sections,
semi-paths of both sub-analyses will only match if the call stack is equal. For this
matching only unbalanced return edges are relevant as only these are visible on the final
reconstructed call stacks. Balanced return edges will be pushed on the stack also, but in
contrast to unbalanced returns these will be removed off the stack again when processing
call edges. We exploit this behavior by synchronizing the two sub-analyses on their
unbalanced returns, i.e., either analysis should not perform an unbalanced return until
the other sub-analysis encounters an unbalanced return to the same call site as well.
Implementing this idea requires an addition to the IFDS framework. We wrap all

data-flow facts in a tuple Fact × Statement, whereas the first element is the original
data-flow fact and the second a call site used for the synchronization. Flow functions
themselves remain unchanged. They receive only the first element of the tuple as
argument. Subsequently, tuples are generated from facts returned by the flow function:

wrappedFlow(〈n, 〈f, s〉〉) = {〈d, s〉 : d ∈ flow(〈n, f〉)}

where flow is an arbitrary flow function. When seeding initial facts as starting point for
the analyses, the statement s of the tuple is set to the sink. On unbalanced returns, this
statement is replaced by the call site related to that return edge. Importantly, though
unbalanced returns are not propagated immediately, unless the other sub-analysis has
also reached an unbalanced return with a tuple referencing the same call statement.
If there is yet not such a return, the current sub-analysis will pause the return edge,
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3.4. Inside-Out Taint Analysis

Algorithm 4 Extension to the IFDS Algorithm Making two Analysis Dependent on
Each Other

declare leaks : {Statement}
declare paused : {Statement×PathEdge}
procedure ForwardTabulateSLRPs

. . .
11: Select and remove an edge 〈sp, 〈d1, s〉〉

π−→ 〈n, 〈d2, s〉〉 from WorkList
. . .

31.1: if d1 == 0 ∧ Incoming [〈sp, d1〉] = ∅ then
31.2: foreach c ∈ callSitesCalling(procOf(sp)) do
31.3: foreach d5 ∈ returnVal(〈ep, d2〉, 〈c, d1〉) do
31.4: leaks := leaks ∪ s
31.5: edge :=

〈sprocOf(c), 〈0, c〉〉
c−→ 〈returnSite(c), 〈d5, c〉〉

31.6: if s ∈ otherAnalysis.leaks then
31.7: otherAnalysis.resume(s)
31.8: Propagate(edge)
31.9: else
31.10: paused := paused ∪ 〈s, edge〉
31.11: end if
31.12: od
31.13: od
31.14: end if

. . .
end procedure

procedure resume(s)
40: foreach 〈s′, edge〉 ∈ paused : s′ = s do
41: Propagate(edge)
42: paused := paused \ 〈s′, edge〉
43: od

end procedure
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parking it in an internal worklist. Paused edges are resumed by the other sub-analysis if
encountering the same return, or simply never in case the same return is never reached.
In the latter case, this means that there is only an integrity or confidentiality problem,
but not both. The extension to the IFDS algorithm for this is shown in Algorithm 4
and replaces the extension for unbalanced returns shown in Algorithm 3. The internal
worklist of each solver is called leaks. The algorithm terminates once the worklists of
both sub-analysis are empty, disregarding the existence of paused edges.

3.5. Evaluation
We performed experiments to compare the proposed inside-out analysis approach with a
pure forward analysis in terms of required memory and execution time. In an additional
evaluation setting, we seek to answer whether confused-deputy vulnerabilities can be
detected by static analysis at all. Specifically, the experiments address three research
questions:

RQ1: Does the inside-out analysis scale better in terms of memory requirements than a
pure forward analysis?

RQ2: Is the inside-out analysis faster than a pure forward analysis?

RQ3: Can the analysis detect confused-deputy vulnerabilities in the Java Class Library?

3.5.1. Execution Time and Memory Requirements
In the first evaluation setting we compare the inside-out analysis approach with a pure
forward analysis to answer RQ1 and RQ2.

Set-Up

We apply the two versions of the proposed inside-out analysis—with independent and
dependent sub-analyses—and a pure forward analysis—the baseline—to the problem of
confused deputies in the Java Class Library (JCL) of Java 7 update 25. We use two
set-ups for the experiments.

The first set-up focuses on call sites of the JCL method Class.forName(String), for
which confused-deputy vulnerabilities (e.g. CVE-2012-4681 and CVE-2013-0422) have
been exploited in the past. Untrusted code may call Class.forName, but is not allowed
to retrieve references to classes located in restricted packages, e.g., sun.*. We use in
total 134 call sites of forName as sinks.16 Sources are parameters to all methods callable
by untrusted code, i.e., methods that are either public or protected and declared in a
non-final public class not inside a restricted package. For the baseline analysis, we further
restrict sources to parameters of type String passed to methods that do transitively call

16We filtered call sites of Class.forName that immediately use constant parameters. Such constructs
occur frequently in parts of the JCL as in earlier days static references to the Class object of a class
were provided by using a call to Class.forName instead of using the later introduced class constant.
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a sink. This reduces the number of sources for this analysis to 2,306. This reduction of
considered sources is necessary, as otherwise the pure forward analysis would not succeed
within up to six hours.

The first experiment set-up considers a rather small number of sinks. The second set-up
considers significantly more sinks. Oracle introduced the annotation @CallerSensitive
to annotate methods performing permission checks of their immediate callers only. In
total, there are 89 such methods. In the second experiment set-up, we consider the
subset of @CallerSensitive methods that may be subject to both an integrity and
confidentiality problem, i.e., those that have a receiver or parameters and a return value.
There are 64 such @CallerSensitive methods, which results in a total of 3,656 call sites
considered as sinks.

Both versions of the inside-out analysis and the baseline use the same data-flow facts,
flow functions, and construct paths for precise reporting. As both the inside-out and the
pure forward analyses share their flow function definitions, they report the same results
and are equally precise.

All analyses of the experiments were executed on a machine with a 4-core Intel Xeon
X5560 CPU running at 2.80 GHz and 32 GB of RAM. The used operating system is
Debian squeeze version 6.0.6 running a 2.6.32-5-xen-amd64 kernel. Each analysis was
executed in a fresh JVM process. We measured the run time behavior with different
maximum heap sizes. We decreased the maximum heap size available for the Java VM
(-Xmx) by 1 GB starting at 10 GB until we encountered OutOfMemoryErrors. For each
memory setting we ran five analyses in a row and average their results by use of the
arithmetic mean. If an analysis does not succeed in six hours we abort it.

Results

The results of the first experiment using call sites of Class.forName are shown in
Figure 3.13. All approaches terminate successfully for heap sizes of at least 6 GB. The
pure forward baseline encounters OutOfMemoryErrors for heap sizes of 5 GB and less,
while the inside-out analyses still terminate successfully. For heap sizes of smaller than
3 GB Soot fails to generate an interprocedural control-flow graph and quits with an
OutOfMemoryError, precluding the analyses from completing.
The execution time of all analyses starts to increase significantly, when approaching

the minimum required heap size. For a heap size of 10 GB, the execution time of the
baseline analysis is 170 seconds longer than for the independent inside-out approach and
200 seconds longer than for the dependent inside-out approach. The difference increases
to a 5 times longer execution time at 6 GB heap size for the baseline.
In Figure 3.14 the execution time of the analyses is shown for each performed step,

whereby path creation denotes the semi-path creation and combination into complete
paths. The three plots on the left show results for the first experiment set-up. As
expected the initialization step has equal execution times in all analyses as their design
has no effect on that step. Also most of the time is consumed by the initialization for
larger heap sizes. The IFDS step consumes significantly more execution time than the
path creation. For the dependent inside-out analysis the values for path creation are too
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Figure 3.13.: Mean Execution Time over Maximum Heap Size in the Class.forName
Experiment Set-Up

small (around 270ms) to appear in the presented plot. We encountered in this experiment
only a rather small number of resulting semi-paths that needed to be constructed and
matched. We expect the path creation step to become a scalability problem, when more
semi-paths result from the IFDS step (cf. Sections 3.3.3 and 3.4.4). In the results of the
second experiment this will become apparent.

The results for the second experiment using call sites of @CallerSensitive annotated
methods are shown on the right-hand side of Figure 3.14. Only the independent and
dependent inside-out analyses are shown, because the pure forward baseline analysis
was not able to terminate in 6 hours for a heap size of 10 GB; even the IFDS step did
not terminate within that time. On the contrary, the independent inside-out analysis
is able to perform the IFDS step in roughly 100 seconds, but it fails to compute all
semi-paths for all tested heap sizes. Hence, no data for path construction and total
analysis execution time can be given in the plot for this analysis. This result confirms
our assumption that semi-path construction does pose a bottleneck. Only the dependent
inside-out analysis terminates successfully in 570 seconds of total execution time at a
heap size of 10 GB. Moreover, the dependent inside-out analysis successfully eliminates
candidates for semi-paths that will not have a match, reducing the effort of the path
creation step. The minimum heap size requirement for the dependent inside-out analysis
in this experiment set-up is about 3 GB larger than in the first experiment set-up.
To conclude, the results of the first experiment already indicated the answer to both

research questions. However, the second more realistic experiment set-up gives a clear
answer: the inside-out analysis approach scales better and performs faster than the pure
forward baseline analysis.
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3.5.2. Detecting Confused-Deputy Vulnerabilities
In the second evaluation setting we seek to answer RQ3. For this we apply the dependent
inside-out analysis to the Java Class Library of all publicly available versions of Java 1.6
and Java 1.7.

Set-Up

We use the dependent inside-out analysis as described in the previous experiment setting.
We apply the analysis to all publicly available versions of Java 1.6 and Java 1.7, i.e., the
initial release of Java 1.6 through update 45 and the initial release of Java 1.7 through
update 80. Note that releases starting from Java 1.6 update 51 and Java 1.7 update 85
were not publicly released and are only available through the Java SE Support program.
Furthermore, not all updates are released being the reason for holes in the otherwise
continuously numbered updates.

For the experiment the analysis is applied to the Java Class Library of each considered
Java version and reported paths are stored in a database. A simple web based tool
was used to classify reported paths as true or false positives. False negatives were only
evaluated with respect to two vulnerabilities we were aware of in advance. For some
versions of Java roughly 10,000 paths are reported creating a considerable amount of
classification effort. To reduce the effort we extended the web based tooling to assist in
the process. We split paths at interprocedural edges to identify whether intraprocedural
parts of a path are identical across consecutive versions of Java for the same methods.
If intraprocedural parts of a path are identical and the code of the respective method
did not change it has to be classified only once. In addition, if an intraprocedural
part of a path is classified as false positive, then the whole path is considered a false
positive. We recognized that starting a review of paths at the method containing the
caller-sensitive method and then working from the inside to the outside—just as the
analysis itself progresses—reduces the amount of methods to be reviewed significantly.
While 10,000 paths reported sounds a lot, consider that the number of paths created
increases exponentially the longer a chain of called methods is, because in many cases
multiple branches in the control-flow graph and call graph can be taken. However, if
a data-flow can be identified as false positive close to the caller-sensitive method all
variations of paths through this data-flow are classified as well. This results in hundreds
and thousands of paths being eliminated by classifying a single method as, for example,
correctly checking inputs and permissions.

Results

The results of our experiments are summarized in Figure 3.15. The updates of Java
version 1.6 are shown in order of their release dates, respectively for Java 1.7. Java 1.6
was first released in May 2007 and the last update made publicly available was in April
2013. Java 1.7 was first released in July 2011 and beginning from October 2011 there
were parallel releases of updates for Java 1.6 and 1.7. The Figure lists all correct reports
by the dependent inside-out analysis, with gray bars indicating that the vulnerability is
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Figure 3.15.: Vulnerabilities Reported by FlowTwist for Java 1.6 and Java 1.7

reported for updates of Java 1.6, black bars for Java 1.7, respectively. The first column
shows the class name, in which the vulnerable caller-sensitive method is called, and the
last column shows the CVE identifier that we tried to identify for each vulnerability.
The first two shown vulnerabilities are the ones we have been aware of before imple-

menting the analysis and running the experiments. We also discussed the first one to
motivate the need of the analysis itself in Section 2.2. Moreover, reporting both confirms
that the analysis is capable of detecting the vulnerabilities it was implemented for. In the
first vulnerability the caller-sensitive method Class.forName is exposed to an attacker
via the class ClassFinder. This class was first introduced in the initial release of Java 1.7.
Its method findClass calls the caller-sensitive method while forwarding parameters and
the returned value (cf. Figure 2.1). The vulnerability is identified by CVE-2012-4681 and
was fixed in Java 1.7 update 7 by adding a call to ReflectUtil.checkPackageAccess
in the beginning of method findClass.
The vulnerability listed second involves a call to Class.forName located inside class

MBeanInstantiator. Again, a trusted method calls the caller-sensitive method and
forwards the parameter and the returned value. However, an attacker cannot call this
method directly as it is only visibility to classes of its own package. Nevertheless, the
analysis successfully identifies that the method is called by another public method. This
method forwards the parameter and returned value, too. Thus an attacker can use it to
transitively invoke the caller-sensitive method. The vulnerability is reported for Java 1.6
and Java 1.7 and identified by CVE-2013-0422. It was fixed in Java 1.6 update 41 and
Java 1.7 update 15 by adding a call to ReflectUtil.checkPackageAccess.

The next 7 vulnerabilities listed and detected by the analysis are correctly reported as
vulnerable, because they all dispose a call to the caller-sensitive method Method.invoke.
This sensitive method allows to reflectively invoke a method. The method to be invoked
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is encapsulated in an object of type Method. To reflectively call this method parameters
have to be passed to invoke. These define the receiver object of the method call and the
actual parameters. However, when a static method is being reflectively called via this
API, then the parameter defining the receiver object is simply ignored. All 7 classes are
part of the com.sun.org.glassfish.external.statistics.impl package and declare
a public method taking arguments used for Method.invoke to define the called method
and actual parameters. However, it does not take arguments for a receiver object.
Instead, as receiver object the current instance is used. Probably, the developer of the 7
classes expected that by using this as receiver object, only methods of these 7 classes
can be invoked. However, this is not the case, because the receiver object is ignored
when invoking static methods, thus any static method can be invoked as well. The
vulnerabilities are all identified together as CVE-2012-5076 and have been fixed in Java
1.7 update 9. Interestingly, they were not fixed by changing the code, but by declaring
packages with prefix com.sun.org.glassfish.external. as restricted packages.
The next vulnerability is located in class DataFlavor, which is part of the AWT

framework shipped with Java. It is exposing a call to Class.forName, but this time the
version of the method that takes three parameters. Like the version with one parameter,
it takes the name of a class for which it then returns a reference. In addition, it takes
as argument a ClassLoader instance. If null is given for the ClassLoader parameter,
then the method behaves similar to the version with one parameter and uses the caller’s
class loader. However, in that case it performs a stack-based permission check. Hence, it
cannot be exploited by an attacker passing null as argument. In DataFlavor the current
context’s class loader is retrieved and used as argument, while an attacker can control the
parameter defining the name of the class reference that is returned. Note that untrusted
code itself is not able to retrieve the current context’s class loader, thus an attacker needs
some trusted confused deputy taking care of this step. The code in DataFlavor did not
perform any additional checks until it was fixed in Java 1.7 update 45 by adding a call to
ReflectUtil.checkPackageAccess. The vulnerability is identified by CVE-2013-5849.
Note that this code was vulnerable for several years before it has been patched. One
reason might be that no one was expecting code of the user-interface framework AWT to
use and therefore not to expose security-sensitive functionality.
The last reported vulnerability in java.beans.Beans is, to our knowledge, not ex-

ploitable. Nevertheless, we think it is very suspicious, because the performed checks look
more like coincidence than planned security checks. Figure 3.16 shows an excerpt of the
code. If the public static method instantiate is called with a prepared string for the
argument beanName, this string flows into the argument of the call site Class.forName,
if the local variable of the used ClassLoader is null. Initially the value of the used
ClassLoader is defined by the passed argument, thus can be controlled by an attacker. If
the ClassLoader is passed as null, the code tries to get the system class loader. In case
it is not allowed to retrieve this ClassLoader, a SecurityException is thrown, which,
in turn, is handled by just doing nothing. Doing nothing also implies that the local
ClassLoader variable is not reassigned and therefore still null. Thus, Class.forName
will be invoked with the attacker controlled argument and an instance of a class the
attacker wanted to get is returned. Luckily, the call to retrieve the system class loader
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public static Object instantiate (
ClassLoader cls , String beanName , ... ) {

// ...
if (cls == null) {

try {
cls = ClassLoader . getSystemClassLoader ();

} catch ( SecurityException ex) {
// We’re not allowed to access the system
// class loader . Drop through .

}
}
// ...
if (cls == null) {

cl = Class. forName ( beanName );
}
// ...
result = cl. newInstance ();
// ...
return result ;

}

Figure 3.16.: Suspicious Security Check

will never actually throw a SecurityException, as it only checks the permission of the
immediate caller, i.e., instantiate in this case, which, being a JCL method, is always
privileged. Because the check will never fail, the catch block and the branch containing
the call site Class.forName is thus dead code. Nevertheless, this dead code is dangerous.
Slight changes to the performed check that might throw exceptions in the future will
result in Beans.instantiate(...) becoming exploitable. Note that this vulnerability
is reported for all updates of Java 1.6, but for none of those for Java 1.7. This is because
the call to Class.forName was replaced by a call to ClassFinder.findClass in Java
1.7.

With this experiment we wanted to answer, whether we can find vulnerabilities in the
Java Class Library using a static analysis. The results clearly show that this is possible
with our analysis. It located vulnerabilities that have been overlooked for several years,
despite the code being actively used. In particular, even after zero-day exploits for some
vulnerabilities have been used in the wild and the security awareness must have been
raised, it still took a long time before the other remaining vulnerabilities have been found
and fixed.
We did not focus on the precision of the approach, as our goal was to verify that a

static analysis can be implemented and applied to the problem at all. However, we will
continue with a discussion of our insights we learned when classifying reported paths.
Despite the huge amount of unique paths—for some versions of Java roughly 10,000—that
have been reported by the analysis, we only classified a total of 76 methods as impossible
to address all of them. For some cases we could easily identify that a path through a
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method is impossible, but there have also been cases for which we admit that we do not
have the expertise to judge if it is vulnerable. The Java Class Library bundles many
libraries and features together into one and it was simply impossible to understand the
internals of all of them in a reasonable amount of time. In cases in which we could not
find a clear judgement, we conservatively—with respect to the evaluation—assumed a
path to be not vulnerable.
The most common case for false reports was that we do not evaluate conditionals.

While this is in most cases not a problem, there is one frequent case that should be
addressed in the future. Before performing stack-based permission checks it is a common
pattern to check if a security manager is set. Hence, the current security manager is
retrieved and checked if it is not null. Only if it is not null the permission check is
performed. The analysis simply assumes all branches can be taken, thus it always finds
one path through the program on which the permission check is not included. In the
future, this could be easily avoided by assuming a security manager is always set, which
is a valid assumption for the use case addressed.

Another source for false positives is the assumption that caller-sensitive methods can
be exploited when attackers can control inputs to it and receives outputs. While this is a
valid over-approximation to assess the performance and scalability of an analysis, it does
not result in only real vulnerabilities being reported. The most frequent example is the
caller-sensitive method Class.forName in the version that takes three parameters. It
takes a ClassLoader as parameter and uses this instance to retrieve a class reference
for a given class name. Attackers are not allowed to get references to privileged class
loaders, thus being able to control the class-loader input to Class.forName does not
pose a vulnerability that can be exploited without an additional vulnerability leaking
such a class loader. Moreover, it is more of interest to find invocations of Class.forName
for which the class loader is retrieved by trusted code and not provided by the attacker.
We have also seen false positives resulting from imprecision of the call graph. We

investigated possibilities of more precise call graphs for such cases, but usually concluded
that the information necessary is not available or very hard to compute statically.
However, including information about types for correlated calls [55] in data-flow facts
could potentially remove many of such false paths. We will discuss this possibility in
more detail in Section 3.6.
Some paths were not exploitable, because they start with a method that is callable

by an attacker, but an instance of the class declaring this method is not available to an
attacker. This can be the case when constructors are not visible or perform permission
checks on their own. However, if an instance of such a type is provided to an attacker
via other methods, the paths could be used. To address this in the future, FlowTwist
can be adapted to be used as escape analysis identifying whether required instances are
leaked to an attacker.
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3.6. Limitations and Possible Improvements
The current implementation of the analysis does not take all language features of Java
into account. Features that are not or only partially considered are instance fields, static
fields, exceptional flows, native code, and reflection. We will discuss possibilities of
handling instance fields in Chapter 4.
Modelling static fields is different than modelling instance fields. Static fields are not

connected to an instance of an object. Therefore, facts representing that a static field
is tainted can be modelled like field-based models for instance fields (cf. Section 4.1).
However, in experiments we will show that a field-based approach for instance fields does
not scale (cf. Section 4.4). Hence, the same field-based approach will likely not scale for
static fields as well. A less precise approach to static fields is to simply assume a static
field being tainted, if there is at least one tainted value being written to it at any time.
Basically, this treats such static fields as additional sources of data flows, but degenerates
the analysis to be flow-insensitive with respect to static fields. Possible solutions to this
problem should be assessed by future work.
The call graph created by Soot’s CHA and VTA implementations that we adapted

as described in Section 3.1 do not include edges of exceptional flows. This results in an
incomplete view of the program. While including exceptional flows increases the size of
the call graph significantly, it is unlikely for the given use case that the exclusion of these
edges hides vulnerabilities. Theoretically, values returned by caller-sensitive methods
can be propagated via exceptional edges when they are stored in a thrown exception.
However, we have not seen that this is done in the Java Class Library. Nevertheless, the
analysis could be adapted to raise warnings when tainted values are stored in exceptions
to soundly over-approximate this theoretical threat. Note that only interprocedural,
exceptional edges are not considered in the current state. The interprocedural control-flow
graph we use already includes intraprocedural edges from try-blocks to catch-blocks.
Hence, the analysis is able to detect vulnerabilities in those.

The analysis does not analyze native code, nor does it use any predefined information
that summarizes the effect of a native method on a data-flow fact. In many cases
native code is used to perform security-sensitive actions, e.g., all methods defined in
sun.misc.Unsafe. Therefore, these methods are usually guarded by permission checks,
e.g., caller-sensitive checks. Consequently, the analysis treats these as sinks trying to
identify whether confused deputies provide unchecked access to these. Moreover, the
analysis does not analyze caller-sensitive methods considered as sinks themselves and as
such does not require to analyze native code in most cases. However, this is not the case
for all native code. Methods such as System.arraycopy do not perform security related
actions nor do they require a permission check. A complete analysis should include
summaries for such methods that describe the effects on data-flow facts input to a native
method. In future work, summaries can be either generated by another analysis for
native code, i.e., for C and C++ code, or they can be manually defined to complement
the current analysis of this work.
Another feature not addressed in the current state is reflection. Similar to native

code, methods of the reflection API are considered as sinks in most cases. Performing
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reflective calls requires respective permissions, in particular if the call circumvents visibility
constraints, e.g., calls a private method from within another class. The analysis assumes
the untrusted attacker not to have these privileges granted. Still, an attacker can use
reflective calls not circumventing visibility constraints. But, in this case the attacker
could also perform the call statically. Consequently, by assuming an attacker being able to
write arbitrary client applications the analysis problem covers this case already. However,
reflective calls performed by code of the Java Class Library itself are not covered in the
current state and can result in flows missed by the analysis.

In experiments we have seen paths that were reported despite them being impossible
at runtime. In particular, we observed paths through the type hierarchy of ClassLoader.
Paths were possible through self-calls being resolved by the call-graph algorithms to all
possible sub types of ClassLoader. Being conservative, the call-graph algorithm can in
many cases not come to a better result. However, if paths are routed through multiple
self-calls it can happen that a call is at one time resolved to sub type A, and in a second
self-call to sub type B. Clearly, this could be avoided: when for the first call taken in
the path the sub type is resolved to be A, then this must still hold for the second call in
the same path and cannot be B. Rapoport et al. described this scenario as correlated
method calls [55]. They propose an analysis based on the IDE framework [65]. Their
analysis definition can be used to transform any analysis based on the IFDS framework
into an IDE analysis that respects correlated calls. Unfortunately, the correlated-calls
analysis has not yet been evaluated on large programs. Hence, it is unknown how it will
affect the scalability of the present taint analysis. In future work both analyses should be
integrated with each other to evaluate the impact on scalability and precision of reported
paths.

Other false reports we have seen in experiments were due to not evaluating conditionals.
In particular, these resulted from null checks against the set security manager. A simple
pre-analysis could track the use of the set security manager and replace all expressions
checking the respective value against null by a constant boolean value. This would be
an easy solution eliminating paths through branches that are not possible. Moreover,
it is imaginable to take this one step further. In general, the current domain chosen
for data-flow facts can be extended to include models of additional values, e.g., those
used in conditionals, up to modeling the entire heap. While this may eliminate false
reports by eliminating branches, it can have a positive effect on the scalability as less
parts of the program need to be analyzed. Contrary, it can also have a negative impact
on the scalability, because the amount of unique data-flow facts to be processed increases.
Future work should evaluate, whether good trade-offs between both aspects can be
chosen. Note that by modeling more and more of the heap in data-flow facts, the analysis
becomes more similar to the analysis concept known as abstract interpretation [15].
Abstract interpretation is commonly used for symbolic execution and not known to
scale well. However, adaptations have been described showing that it can also be used
with more lightweight domains [23]. Hence, future work could also try to approach the
analysis problem from the direction of starting with a complete heap model, and reducing
information included in data-flow facts step by step.
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3.7. Related Work
We organize the discussion of related work into two categories: work addressing partial
program analysis, in particular library-only analysis, and work addressing static analysis
for security.

3.7.1. Algorithms for Library-Only Static Analysis
In Section 3.1 we discussed that sound call-graph algorithms for analyzing only libraries
are not available. Furthermore, the lack of techniques when analyzing only libraries
manifests also for other areas such as points-to analysis. There are existing work that
seem to address the problem, but usually miss some of the issues we covered in this work.
The research area addressing program fragment analysis is related, but approaches in
that area cover analyzing an application only, while ignoring the code of libraries.

Points-to Analysis

Points-to analysis is an extensively investigated field of research that resulted in various
approaches [72, 63, 70, 71, 79, 80, 83]. Despite that, we are not aware of works discussing
how to apply points-to analysis when analyzing only libraries. In particular, in such a
scenario not all allocation sites can be known. The correct result to what a parameter of
a method callable by an application may point to is therefore not well defined. Moreover,
what result is useful may depend on the use case the points-to analysis is applied to.
For example, one could use a single allocation site to represent unknown allocation sites
outside the library, or multiple distinct allocation sites for distinct entry points into the
library. While the former is cheaper to compute and useful to answer may alias problems,
the latter yields wrong results. Contrary, for must alias problems the former is wrong.
One of the latest advances in this field is by Dietrich et al. who present a points-to

analysis via transitive closure structure [19]. Their solution assumes that an oracle
providing information regarding bridge relations (representing matching load and store
field instructions) ahead of time is present. They argue that such an oracle can always
be defined and present several choices of possible oracles that vary in computational cost
and resulting precision. Note that while they evaluate on only a library, which verifies
the scalability of their approach, they do not discuss what results are correct in cases a
variable may point to an unknown allocation site outside the library.

Rountev and Ryder [64] describe an approach to construct summary information
for libraries, assuming all possible client applications. The summaries can be applied
when constructing points-to information for a client application. They show that results
computed by their approach are equal to those computed by a whole-program analysis.
They assume clients to be able to use all exported variables. While explicitly stating that
these include function references, they do not discuss what function references have to be
included. However, this definition is important to achieve sound results and as discussed
in Section 3.1.1 an incomplete definition for analyzing only libraries is usually used.

Allen et al. [3] discuss how they can compute points-to information when a Java library
is to be analyzed in isolation. Their core idea is to determine the so-called most general
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application (MGA) that subsumes all possible applications. Yet, they lack a discussion
what the correct result of a points-to analysis should be in different use cases, and simply
provide a solution for one kind of use case only. Their solution uses a single abstract
allocation site per statically declared type of an entry point. Therefore, it can be used
to answer may alias problems, but not must alias problems. From their description it
seems the approach misses call edges due to possible library extension as discussed in
Section 3.1.1, which would be a violation of their MGA assumption.

Points-to information is usually computed together with call graphs and the adaptations
for call-graph algorithms we discussed in Section 3.1 can potentially be also used to adapt
points-to algorithms discussed here.

Program Fragment Analysis

Program fragment analysis refers to analysis techniques capable of analyzing only parts of
a program. Unfortunately, existing work in this field of research only addresses scenarios
in which the analyzed part is the application. Contrary, we address in this work the
opposite case: analyzing a library while not knowing the client application.
Ali and Lhoták present the tool Cgc, capable of creating sound call-graphs without

analyzing library code [2]. It makes use of the separate compilation assumption, i.e., that
the library has been compiled without access to the code of the application, limiting the
ways the library code can interact with the applications code, e.g., it cannot instantiate
application classes (except via reflection for which the results are unsound). Building
upon this work, the authors introduce the tool Averroes that is able to generate
placeholder code behaving as an over-approximation of the original library code [1].
This allows to use any whole-program call-graph algorithm on the application and the
generated placeholder, while still benefiting from having to analyze a much smaller code
base compared to considering the application including the original library code.
Rountev and Ryder [62] present a fragment class analysis for testing. By generating

a main method that over-approximates the behavior of a test suite they are able to
apply existing whole-program analyses on a programs fragment. However, their approach
addresses the computation of test coverage only, allowing assumptions specific to this use
case that do not hold in general.

3.7.2. Static Analysis Addressing Security Problems17

Several static analyses have been proposed and developed in the past that address
security related problems. We will first discuss analyses to detect redundant and missing
permission checks. Then analyses to identify confused-deputy and collusion attacks in
Android apps. We continue with taint analyses and information-flow analyses addressing
various security problems.

17 This section is based on and contains verbatim content of work previously published as [44].
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Permission Analysis

Bartoletti et al. [9] use a control-flow analysis to discover permission checks that are
redundant, i.e., they will always fail or always succeed. In their approach, they first
represent a Java program as a simplified control-flow graph consisting only of permission
check, call, and return nodes. Then, on this representation they perform two analyses:
a denied permissions analysis and a granted permissions analysis. The results of both
analyses can then be used to identify redundant checks. The scope of the approach is
limited to analyzing applications.

Besson et al. [10] propose a call-graph algorithm that computes a permission-annotated
call graph for the Common Language Runtime (CLR), but their approach should be
applicable to Java, too. The technique is capable of analyzing libraries in isolation, while
assuming client applications to be potentially malicious. They use artificial nodes in
their call graph to abstract from concrete client applications. In addition, they represent
unknown types defined by the client application by an artificial sub type. However, it is
not apparent if they use that information when resolving call targets (cf. Section 3.1).
The permission-annotated call graph can be used to guide code reviews. They argue
that it is suspicious, if multiple paths can be taken through the call graph to reach a
security-sensitive method and these paths differ in permissions that are checked. While
this provides an interesting insight, it is still required to manually validate such reported
paths, because it might be perfectly fine to require less permissions on a path if along
this path only a restricted subset of the functionality is accessible.

Koved et al. build an analysis to determine the permission requirements of an applica-
tion or library [41]. They motivate the need of such an analysis by developers and system
administrators who want to run applications with no more permissions than necessary to
reduce possible attack vectors and to follow the Principle of Least Privilege [66]. Similar
to previous work, they compute a call graph enriched with information about permissions
called Access Rights Invocation Graph (ARIG) in their work. In contrast to previous
work, they use a more precise technique to construct the call graph based on CFA [67]
and in addition apply a context-sensitive and flow-sensitive interprocedural data-flow
analysis to compute the access rights required at each program point.

In a follow-up work [54], the ARIG was supplemented by an interprocedural, context-
sensitive, flow-sensitive, and field-sensitive taint analysis to identify unsanitized input
variables used inside of privileged code. This work addresses a problem that is very close
to the problem of detecting controllable inputs to unguarded caller-sensitive methods:
it considers stack-based permission checks. Unfortunately, the analysis is not described
in a level of detail that allows reproducing and comparing results. The approach was
evaluated on (parts of) applications including some parts of the Java Class Library.

Except for the last work, the discussed approaches provide results that can be used in
code reviews and to provide some assistance when defining policies providing minimal
privileges to a program. These approaches share that their results are reported on a very
abstract representation, i.e., as an annotated call graph. The work discussed last as well
as the taint analysis we implemented in this thesis aim at providing more fine grained
results identifying paths through a program on the abstraction level of statements. While
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in this work we focus on unguarded caller-sensitive methods, the analysis can be adapted
to detect illegal elevations of privileges by calls to doPrivileged and missing stack-based
permission checks. The analysis problems are very similar and only definitions of sources,
sinks, and permission checks have to be adjusted, while the rest of the implementation can
be reused. However, elevation of privileges is different than for caller-sensitive methods.
Instead of having some trusted caller on the path, it s required that a doPrivilege call
is on the path. This can be addressed, for example, by including in data-flow facts a set
of permissions that have been enabled when passing an invocation of doPrivileged.

Confused-Deputy and Collusion Attacks

While our analysis approach is the first to address confused-deputy problems in Java, the
problem has been widely discussed in the setting of Android security. In Android, apps
are given capabilities by assigning them static permissions at installation time. After
having been granted a capability, an app must take care not to expose this capability
through APIs that might be callable from unauthorized third-party apps. Exposing
such APIs causes a confused-deputy problem. In situations in which the API is exposed
on purpose, one speaks of a “collusion attack” in which both the caller and the callee
app conspire against the user, for instance to leak contact information to the internet,
with the caller app having the contact permission and the callee app having the internet
permission only.
Woodpecker [31] is a tool-based approach for finding accidental capability leaks in

Android applications, particularly tuned towards pre-installed apps on stock smartphones.
It identifies capability leaks as paths from an app’s public API to certain sensitive
Android-API methods. A leak is reported if the path includes no permission checks.
Woodpecker implements a forward analysis only starting at all of the app’s entry points; it
does not check if the values returned from a sensitive low-level API are actually returned
to the caller. The tool is not implemented within a program-analysis framework but
rather as a “mixture of Java code, shell scripts and Python scripts” over an off-the-shelf
disassembler. Due to this design, Woodpecker is context-insensitive.
CHEX [47] is an approach with a similar goal to Woodpecker but is implemented on

top of the Watson Libraries for Analysis (WALA) [78], which allows it to conduct a
context-sensitive analysis (0-1-CFA). CHEX further includes an advanced modeling of
the Android execution lifecycle, which is important to gain recall. As Woodpecker, also
CHEX performs a forward analysis only, without tracking return values of sensitive APIs.
Zhou and Jiang [86] developed an approach to find unprotected content providers

in Android apps. Malware apps can misuse such content providers to steal or modify
data managed by the vulnerable app. As such, their tool ContentScope also needs to
determine both an integrity problem (to identify potential for data modification) and a
confidentiality problem (to identify data leakage). Interestingly, the details given on the
analysis suggest, though, that ContentScope only tracks malicious input to the content
providers’ low level APIs but does not, in fact, check whether leaked values are returned
back to the attacker. It is not apparent from their description why they do not have
to consider returned values. Maybe they rely on the purpose of content providers to
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return data objects and thus assume returned values are always provided to an attacker.
In Java, with methods such as Class.forName, the situation is entirely different: here
many returned Class objects may not actually leak to malicious callers and are only
used internally by the Java Class Library, i.e., they do actually not pose an exploitable
vulnerability.

Marfori et al. [48] try to assess the gravity of the problem of collusion attacks in the
Android space by developing an approach that allows researchers to assess the potential for
such attacks on a large scale. The approach over-approximates the potential by analyzing
static permissions and direct API calls only; it implements no data-flow analysis.

Octeau et al. [53] developed Epicc, a static-analysis tool to detect the targets of inter-
component communication (ICC) calls in Android, for instance using the popular “Intent”
API. Epicc can be used to resolve and match ICC calls in general, allowing researchers
to determine which apps can call one another, and with which messages. Analyses for
collusion attacks can build on Epicc’s results. Epicc mainly consists of a string analysis
and does not track flows of attacker-controlled or private data.

Bugiel et al. [12] developed a system to detect and mitigate Android collusion attacks
at runtime.

Taint Analysis

Many taint analyses have been developed over the past few years, focusing on different
programming languages and security-sensitive APIs. We here focus on approaches for
Java and Android. All analyses presented track flows forward from a given set of sources
in an attempt to find a path to a set of sinks.
The static taint analysis tool TAJ (Taint Analysis for Java) [76] is implemented in

WALA [78] and focuses on web applications. As part of a commercial product it possesses
a certain degree of maturity: For instance, it scales to large applications by using a
priority-driven call-graph construction which provides intermediate partial results based
on a priority function. Tripp et al. specifically adapted the tool to analyze Java EE
applications; hence, it is able to handle Java beans and frameworks configured by XML
files. Further optimizations of the runtime include the parsing of the artifacts that
are used as source to generate code instead of analyzing the generated code. WALA
also supports unbalanced analysis problems, however supports only forward analyses in
general. To the best of our knowledge, the solution to unbalanced analysis problems has
never before been formalized.

Andromeda [75], another tool from Tripp et al. used in a commercial product, is also
a static taint analysis for web applications. Because alias analysis and even (partial)
call-graph generation are invoked on demand, it is very scalable. It utilizes Framework
For Frameworks (F4F) [69], a taint analysis specifically designed for frameworks like
Apache Struts or Spring. Additionally Andromeda is capable of performing incremental
analyses on updated web applications. For resolving aliases, it uses a context-sensitive
on-demand alias analysis.
FlowDroid [24] is the currently most precise taint analysis for Android. To improve

recall, it thoroughly models Android’s execution lifecycle. To obtain precision, it uses a
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fully context and flow-sensitive formulation within the IFDS framework, along with an
on-demand pointer analysis inspired by the one of Andromeda.

Information-Flow Analysis

Information-flow analysis distinguishes itself from taint analysis by also tracking implicit
information flows. Information-flow analysis focuses on confidentiality problems, i.e., it
tries to detect if sensitive information is leaked to some attacker. It assumes an attacker
being able to observe how a program is executed. For example, if some action is only
performed when some conditional evaluates to true and the attacker can observe this
action, then the attacker can infer that the conditional was true. Moreover, from this
observation the attacker can infer the possible values of variables used in conditionals.
Hence, an attacker can learn sensitive information without these being leaked directly.
Information-flow analysis can be seen as an extension to taint analysis and is therefore
related to our work. However, an information-flow analysis is not required for the
problem we addressed. For example, knowing the class returned by some Class.forName
statement does not provide any value to an attacker without getting a reference to the
class. Moreover, we can distinguish the approaches by the goal of an attacker: learning
secret information in the case of information-flow analysis and retrieving a handle to
some sensitive object in the case of this thesis.
Genaim et al. [28] claim to have implemented the first information flow analysis

for Java bytecode. It is implemented with the static analyzer Julia [39]. The taint
information propagated consists of a single boolean value which is very lightweight, but
not sufficient for many fields of application. Their approach is able to detect implicit
flows in loops and exceptions while preserving flow- and context-sensitivity. All fields are
treated as static class variables, making the approach field based.
Hammer et al.[34] present a flow-, context- and object-sensitive information flow

analysis for Java applications based on program dependence graphs. JOANA (Java
Object-sensitive ANAlysis) [32] is an evolution of Hammer’s analysis. It has been extended
to deal with possibilistic and probabilistic leaks in concurrent Java programs [29].
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Static program analyses usually have to consider values being assigned to and read from
local variables and fields. While local variables are often simple to track, the systematic
handling of fields can be complex. Techniques for modeling fields can be distinguished
into field-based and field-sensitive approaches. Field-based techniques model a field access
a.f simply by the field’s name f, plus potentially its declaring type—a coarse grain
approach that ignores the base value a’s identity. Field-sensitive techniques, on the other
hand, include the base value a in the static abstraction, potentially increasing analysis
precision as the same fields belonging to different base values can be distinguished.
While many existing analyses restrict their field-sensitivity to a single level, more

precise analyses represent static information through entire access paths: a base value
followed by a finite sequence of field accesses [75, 7, 16]. The use of access paths can
increase precision, but can cause the analysis to not terminate, if recursive data structures
such as linked lists cause access paths to grow indefinitely.
A common approach to deal with infinite chains of field accesses is k-limiting [38],

which includes only the first k nested field accesses in the abstraction, omitting all others.
If fields are read, the analyses frequently assume that any field accessible beyond the
first k fields may relate to the tracked information. Hence, k-limiting introduces an
over-approximation that becomes less precise for smaller values of k. In contrast, a
high k value means the analysis will distinguish more states. In this work, we present
experiments, which show that analyses can run out of gigabytes of main memory when
analyzing real-world programs even with small k values.

We present Access-Path Abstraction, a novel and generic approach for handling field-
sensitive analysis abstractions without the need for k-limiting. To keep access paths finite
and small, at control-flow merge points Access-Path Abstraction represents all those
access paths that are rooted at the same base value through this base variable only.
In a summary-based inter-procedural analysis this produces fewer and more reusable
summaries: a procedure summary for a base value a can represent information for all
access paths rooted at a. To maintain the precision of field-sensitive analyses, Access-Path
Abstraction reconstructs the full access paths on demand where required.

In the following, we will discuss two potential variations of a field-based analysis in
Section 4.1, and the limitations of the k-limiting approach to field-sensitive analysis in
Section 4.2. Afterwards, we present Access-Path Abstraction as a novel extension to the
IFDS framework in Section 4.3. We compare all discussed approaches in experiments in
Section 4.4. In Section 4.5 we discuss additional related work on field-sensitive models and
related work presenting concepts similar to those applied in Access-Path Abstraction. We

18 This chapter is based on and contains verbatim content of work previously published as [45].
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static main () {
X x = source ();
A a1 = new A();
A a2 = new A();
a1.f = x;
X y = a2.f;
sink(y);

}

(a)

static main () {
X x = source ();
A a = new A();
B b = new B();
a.f = x;
b.g = a;
X y = foo(b);
sink(y);

}
static X foo(B b) {

A a = b.g;
return a.f;

}

(b)

static main () {
X x = source ();
A a = new A();
C c = new C();
a.f = x;
C y = bar(c);
sink(a.f);

}
static C bar(C c) {

return c;
}

(c)

Figure 4.1.: Examples Illustrating Field-Based Taint Propagation

close this chapter in Section 4.6 with a discussion of next steps and further improvements
of the proposed approach.

4.1. Field-Based Analysis
Field-based analyses treat fields independently of the objects they belong to. They track
a field as soon as a tracked value is assigned to it, independent of the object instance the
field belongs to. When a value is read from a tracked field, then this read value has to be
tracked too. However, this is also the case if the base values through which the field is
referenced are not the same when writing and reading the same field. In consequence, a
field-based model is an over-approximation that can introduce false data flows. In the
following, we will discuss two variations of field-based models: the model as it is typically
chosen in existing approaches, and an alteration of that model to improve the scalability
of an analysis using it.

4.1.1. Classical Field-Based Model
An analysis domain D for a field-based analysis comprises all local variables L of all
program’s methods and all fields F declared in the program, so D = L ∪ F . While
a field-based analysis can be sound, not considering the base value will often lead to
imprecision, as illustrated by the following example.

Example 1. In Figure 4.1a, field a1.f is assigned the tainted value of x. Field a2.f
never gets tainted at runtime. Nevertheless, the analysis will taint it, because it models
the data-flow fact as A.f. Knowing that some A.f is tainted, it has to conservatively
assume that a2.f could reference a tainted value. Subsequently, the analysis will taint y,
thus the over-approximation by the model results in a false positive.
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The previous example illustrates that the field-based model is a rather simple and
imprecise model. But, simple does not necessarily mean that it is efficient with respect
to scalability to large programs. Actually, the simplicity of the model results in data-
flow facts spreading through large portions of the analyzed program. Facts have to be
propagated to called methods, if the called method declares a parameter of a non-primitive
type, or the method is non-static, i.e., there is a receiver. This results from the possibility
that the tainted field could be transitively referenced via a parameter or the receiver
object. The same is true for returned values over return edges. To illustrate this for a
parameter, consider the following example.

Example 2. In Figure 4.1b the tracked value x is stored in field f, which is declared
by type A. The variable a, via which field f was referenced, is stored in b.g. Method
foo is called and the variable b is passed as argument to foo. Inside foo field g is read
from the passed argument. Then field f is being read and finally method foo returns the
value being tainted in the beginning.

To know that field f could reference a tainted value, the analysis has to propagate the
fact representing A.f into foo, even though no value of type A is being used as argument.
With the fact A.f inside foo the analysis considers the returned value to be tainted.
Finally, it successfully reports a flow from source to sink.

In this example, the fact was required to be passed over to method foo, but the
example can be adapted as shown in Figure 4.1c to illustrate a case in which field-based
facts unnecessarily spread across analyzed programs.

Example 3. In Figure 4.1c the tainted value is again stored in a.f. However, variable
a itself is not stored in a field this time. Some value stored in c that is in no relation
to the tainted value is propagated as argument to method bar. However, the data-
flow fact A.f is propagated into bar, because it is unknown if a value of type C could
reference transitively a value of type A. If method bar itself would call other methods,
the field-based fact A.f would have to be propagated to those as well.

In experiments (cf. Section 4.4) we will see that the problem illustrated in the previous
example is real: facts do indeed spread through large portions of the analyzed program
and this results in scalability issues.

4.1.2. Field-Based Model using a Set of Types
Motivated by the observation that field-based facts spread throughout the analyzed
application, we introduce an alternative field-based model using a set of types in addition
to the field name. Note that this does still not include any base values, therefore, this
model can be considered to be field based, too. In this model, the analysis domain D
comprises all local variables L and a pair (f, T ), whereas f ∈ F is a field name and T is a
set of types. If a tainted local is assigned to a field, the analysis creates a fact represented
by a pair with the field name of the field the value is assigned to. The set of types in the
pair is initially set to the declaring class of the field. If some value of a type contained in
the set is assigned to some field, then the declaring class of that field is added to the set.
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«any»
Candidate Type

«class»
Fact’s Type

«class»
Runtime Type

(a)

«class»
Fact’s Type

«class»
Candidate Type

«class»
Runtime Type 1

«class»
Runtime Type 2

(b)

«class»
Fact’s Type

«interface»
Candidate Type

«class»
Runtime Type

(c)

Figure 4.2.: Cases of the Type Check at Interprocedural Edges

Basically, the set represents all types that potentially hold a transitive reference to an
object with the tracked field.

Example 4. Again, consider the example illustrated in Figure 4.1b. The tainted value
x is stored in a.f. The data-flow fact generated this time is (A.f, {A}). When variable a
is stored in b.g, the fact is updated to (A.f, {A, B}), representing that the tainted field
may be referenced (transitively) via types A and B.

This alternative model, while being more complex and generating more unique facts,
allows more restrictive checks at interprocedural edges. Facts are only passed to a method,
if a type check against the type of the method’s receiver or type of some parameter
holds. For return edges, the type check must hold for the receiver’s type or the return
type of the method. In the following, we denote as candidate type the receiver’s type,
parameter’s type, or the return type of a called method or of a return edge, respectively.
The type check succeeds in three cases that are depicted in Figure 4.2.

Case (a) At least one of the fact’s types is a sub type of the candidate type.
Note that the runtime type of the base value holding the tracked field is guaranteed
to be a sub type of the fact’s type, therefore, the tracked value could potentially be
passed over the interprocedural edge.

Case (b) At least one of the fact’s types is a super type of the candidate type.
In this case the runtime type of the object directly or transitively referencing
the field can also be a sub type of the candidate type, requiring it to be passed
over interprocedural edges. But, it could also be in no direct typing relation to
the candidate type. Without knowing the exact runtime type, we have to over-
approximate and always assume the former to be the case, i.e., always propagate
fact’s over the interprocedural edge.

Case (c) None of the fact’s types has a direct relation to the candidate type and the
candidate type is an interface type.
This check can be refined as follows if the complete type hierarchy of the fact’s
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type is known:19 If there can be a runtime type that is a sub type of the fact’s type
and at the same time a sub type of the candidate type, the fact has to be passed
over the interprocedural edge.

Example 5. Again, consider the example shown in Figure 4.1b and assume types A and
B do not have any sub typing relation with each other. As discussed before, the analysis
generates the fact (A.f, {A, B}) after storing a in b.g. The type of the parameter of foo,
namely type B, is part of the fact’s type set {A, B}, therefore, the fact is propagated into
foo. Hence, this variation of the field-based model is still able to successfully detect the
leak in this example.

Example 6. Next, consider the example illustrated in Figure 4.1c. After storing the
tainted value in a.f, the fact (A.f, {A}) is generated. Then, method bar is invoked. This
method declares a parameter of type C. Assuming types A and C do not have any sub
typing relation and C is not an interface, then the type check against the type set of
the parameter fails. Hence, the fact is not propagated into method bar. This is sound,
because we know that via C the field containing the tainted value cannot be referenced.
If it could be referenced, the type set of the fact would contain type C.

4.2. Field-Sensitive Analysis using K-Limiting
A more precise alternative is to model field accesses as access paths. An access path
consists of a base value—a local variable visible in the current method’s scope (including
its parameters and the receiver this)—followed by a sequence of field accesses. In a taint
analysis, an access path typically models a sequence of field accesses through which a
tainted memory location can be reached. Such a model is called a field-sensitive model
and is usually more precise than a field-based model. In Figure 4.1a a field-sensitive
analysis would taint the access path a1.f but not a2.f. When processing the statement
y = a2.f, no taint will be reported for y, avoiding a false warning.
Unfortunately, the described data-flow domain is unbounded. Assume a further

assignment a3.g = a1 at the end of the code in Figure 4.1a. In order to maintain
precision the analysis must propagate the taint from a1.f to a3.g.f, resulting in an
access path of length 2. If proper care is not taken, loops can yield access paths of an
unbounded length. Also analyzing recursive data structures, e.g., doubly-linked lists,
may yield unbounded access paths such as l.next.prev.next.... Although l.next
and l.next.prev.next refer to the same object, most analyses are unable to identify
this equivalence.

Formally, for a field-sensitive taint analysis the data-flow domain is identifiable as the
set

D := {(x0, . . . , xk) | k ∈ N, x0 ∈ L, xi ∈ F , ∀i ≥ 1}.

19If the type hierarchy can be extended, because a library or partial application is analyzed, the refined
check would introduce unsoundness similar to the cases discussed in Section 3.1.
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This domain of potentially infinite size contradicts the requirements of IFDS and other
data-flow analysis frameworks that guarantee termination only for finite data-flow do-
mains.
To obtain a finite domain, it is common practice to artificially bind the sequence of

field accesses to a fixed length by limiting k in the domain definition to a given natural
number. If an access path is generated of length larger than k, the access path is reduced
to its first k fields and suffixed by a wildcard operator (usually depicted by *). This
wildcard operator denotes that any field could contain a tracked value. This is known as
k-limiting [38]. Analyses have to suitably alter the processing of bounded access paths to
retain soundness, i.e., they have to include a special handling for the wildcard operator.

Note that the wildcard operator indicates that the analyses has performed at least one
over-approximation, i.e., the original access path was at least of length k + 1. But, it is
unknown if it could have also been of length k + 2, therefore, the wildcard operator can
never be removed in subsequent generated facts and allows not only reading any field,
but also reading an arbitrary number of fields. Hence, limiting k obviously introduces an
over-approximation.
Decreasing the selected k value increases the over-approximation and lowers the

precision. Increasing the k value enables the analysis to distinguish more states, however,
at the cost of defeating its scalability due to potential state explosion. Our experiments
(presented in Section 4.4) show that even for small k values analyses can run out of
gigabytes of main memory when analyzing real-world programs.

There are three main root causes for the scalability problems:

(a) wildcard operators allow to read arbitrary fields, therefore, many values have to be
tracked unnecessarily,

(b) for each unique access path with which a method is called one summary has to be
created, and

(c) due to an explosion of different states to be considered.

The following three examples illustrate the root causes.

Example 7. When nesting a tainted value in at least k + 1 fields, a wildcard operator
will be introduced. These are necessary for soundness of the analysis, but are a threat to
scalability and introduce false warnings. They affect scalability, because they produce a
potentially large amount of invalid data flows that the analysis has to compute. These
data flows can span large portions of the program that become reachable only due to the
over-approximation.
Generating an access path of a length larger than k is obviously more likely, if the

value for k is smaller. However, there is no finite k that can guarantee that an access
path of length k + 1 will not be reached in an application. Consider Figure 4.3a for
an illustration of such a case. In the first while loop the tainted value is continuously
wrapped in field g, yielding taints a.g.f, a.g.g.f, a.g.g.g.f, etc. Assume that it is
statically impossible to decide the outcome of the call to unknown, thus it has to be
assumed the loop will be executed infinitely many times. Consequently, an access path
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A a = new A();
a.f = source ();
while ( unknown ()) {

A b = new A();
b.g = a;
a = b;

}
while ( unknown ()) {

a = a.g;
}
y = a.x;
sink(y);

(a) Wildcard Operators

void foo () {
A a = new A();
a.f = source ();
A b = id(a);
sink(b.f);

}
void bar () {

A a = new A();
a.g = source ();
A b = id(a);
sink(b.g);

}
X id(A p) {

return p;
}

(b) Multiple Summaries

A a = new A();
a.f = source ();
while ( unknown ()) {

A b = new A();
if( unknown ())

b.f = a;
else

b.g = a;
a = b;
b = null;

}

(c) State Explosion

Figure 4.3.: Examples of Threats to Scalability

of length k + 1 will be generated eventually and replaced by its representation using
the first k fields and a wildcard operator. Now, the second loop is reading field g and
will eventually consume all the fields in the access path generated in the loop before,
leaving an access path consisting only of the wildcard operator a.*. From this access
path any field can be read, including field x, which generates the fact y.*. In this case the
over-approximation yields a false data flow from source to sink. Moreover, in practice
it will also yield many invalid data flows, because from y.* any field can be read, too.

Example 8. Methods that represent an identity function w.r.t. the tainted value must
be re-analyzed for each possible call site. For illustration, consider the code in Figure 4.3b.
Assume a class A with two fields f and g. Method foo taints a.f, which a field-sensitive
analysis will model by the access path a.f. This access path flows as a parameter into
method id. Typical summary-based analyses will translate the abstraction a.f to the
scope of the callee, yielding p.f. Next, the analysis will create a procedure summary
for id, indicating that it taints retVal.f if p.f was tainted. Now, consider the second
calling context for id within bar, which passes a tainted value a.g. Again, this value
is translated into p.g. Since the computed summary for p.f is not applicable to p.g,
the analysis will process the id-procedure again, although id returns the parameter
unchanged. While the analysis effort is trivial in this example, the method id could in
reality have many more statements and may call many other methods, while remaining
an identity function, i.e., opaque, w.r.t. the tainted value. Such methods can be quite
frequent in an application.

Example 9. Each unique access path must be propagated resulting in an explosion of
the propagated facts. For illustration consider the code in Figure 4.3c. Assume that we
cannot statically decide the values to which the while and if conditions will evaluate,
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i.e., both branches are possible for each condition. Each loop iteration thus propagates
from a to b.f and b.g. Hence, it may generate the access paths a (no loop iteration),
a.f and a.g (one iteration), a.f.f, a.f.g, a.g.f, and a.g.g (two iterations), and so
on. Given a maximum access path length of k and F the set of fields written inside
the loop, this yields

∑k
n=0 |F |n different access paths. In IFDS the merge operator at

control-flow merge points is restricted to set union. Thus, the amount of considered facts
is not reduced and all unique access paths are propagated.

In our experiments we observed all three scenarios to occur and to affect scalability
significantly. Although, the cases illustrated using loops are more common to occur as
recursive implementations. Consider a call that requires a virtual dispatch at runtime.
In static analysis it is usually not known to which concrete method the call will be
dispatched, thus it is assumed it could be any sub type implementing the declared
method. If multiple of those implementations recursively invoke the same method this
manifests a loop. In addition, it manifests branches in the paths considered by the
analysis, because the recursive calls will be resolved to all sub types, too. The result is a
code construct similar to the one illustrated in Figure 4.3c.

4.3. Field-Sensitive Analysis using Access-Path Abstraction20

We propose Access-Path Abstraction, a framework for field-sensitive data-flow analysis
based on the IFDS framework, hereafter denoted as IFDS-APA. Instead of limiting the
length of access paths, IFDS-APA ensures that access paths will not grow infinitely
by breaking cycles in the control-flow graph. The foundational model of IFDS-APA
is precise and sound, but requires to solve an undecidable sub-problem. To solve this
sub-problem, an over-approximation is introduced that enables a configurable tradeoff
between precision and scalability. Instead of over-approximating by limiting the length
of an access path as performed in k-limiting based approaches, IFDS-APA allows to
configure how many call-levels context-sensitivity with respect to fields is maintained.

In experiments with k-limiting based approaches we identified three cases—discussed
in the previous section—that affect scalability of the analysis. Therefore, IFDS-APA is
designed with three goals in mind:

1. Do not analyze parts of a program that are only reachable, because approximations
assume arbitrary fields to be tainted.

2. Construct summaries that abstract over a whole set of access paths, e.g., if a
method is invoked with an access path a.f, create a summary for a.* instead that
can be used by callers passing a.f, or a.g as arguments.

3. Avoid state explosions that result from branches and cycles in the control-flow
graph that write fields in arbitrary orders.

20The approach presented here is not the same as in [45]. Moreover, the state presented here can be
considered as a continued increment of the previously published version.
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b.f = a

a, x1 . . . xn

a, x1 . . . xn

b, x1 . . . xnf

(a) Field Write Modifier

a.f = null

a, x1 . . . xn

a, x1 . . . xn f̂

(b) Field Exclude Modifier

b = a.f

a, x1 . . . xn

a, x1 . . . xn

b, x1 . . . xnf

(c) Field Read Modifier

Figure 4.4.: Usage of Field Modifiers for Field Write and Field Read Instructions

A challenge for any field-sensitive analysis is ensuring finite length of its access paths.
Infinite access paths can only be created in cyclic program flow, assuming code of
programs to consist only of a finite number of instructions. In each cycle of the program
flow we place a so called abstraction point. Precisely, these are placed at each entry to a
method, each entry to a loop, and each return site. Abstraction points store the access
paths of facts propagated to them. After each abstraction point the analysis proceeds
with an empty access path. Hence, it is guaranteed that access paths can only have finite
length. If reading a field, IFDS-APA consults the last passed abstraction point if it
had an incoming access path providing evidence that to this field some tainted value
was written before, thus can be read now. Only if this is the case the analysis proceeds,
otherwise it pauses at the field read instruction, waiting for an incoming access path with
the matching field to arrive at the abstraction point. Such an access path may never
arrive, thus the analysis eventually terminates without continuing at that instruction.
Hence, the analysis avoids analyzing parts of the program that are not reachable by
tainted values.
This basic description of the concept behind IFDS-APA omits many details. In

the following, we will elaborate step by step that the analysis constructs a context-free
grammar, in which abstraction points can be seen as non terminals and their incoming
access paths as production rules. We will see that asking previous abstraction points
to provide an access path containing a field is basically a disjointness test between
the grammar the analysis computes and a grammar balancing field writes and reads.
Furthermore, this disjointness test is known to be an undecidable problem, thus we will
introduce a configurable over-approximation allowing us to solve it.

4.3.1. The Analysis Domain
The analysis domain D is defined as

D := {l, a | l ∈ L, a ∈ AccessPaths}
AccessPaths := x1 . . . xk | k ∈ N, xi ∈ AbstractionPoints ∪Modifiers

whereas k is theoretically unbounded, L is the set of locals (including parameters and
this), AbstractionPoints is the set of abstraction points, and Modifiers is the set of
possible field accesses. We distinguish three kinds of field accesses: writing a field, reading
a field, and excluding a field. While the former two are intuitive, the need for the latter
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is not obvious, but will become clear in later examples. Hereafter, we write f to denote
the field write modifier writing field f ∈ F , f to denote the field read modifier reading
field f ∈ F , and f̂ to denote the exclude field modifier excluding field f ∈ F . Thus, the
set Modifiers is defined as

Modifiers := {f | f ∈ F} ∪ {f | f ∈ F} ∪ {f̂ | f ∈ F}.

The analysis changes the given fact at field read and write instructions as illustrated in
Figure 4.4: it appends a field write modifier if the fact’s base value is the value written
to a field; it appends an exclusion modifier if the fact’s base value is the base value of a
written field; it appends a read modifier if the fact’s base value is the base value of a read
field. Consequently, here an access path represents a history of field accesses, instead of
the common definition to represent a sequence of fields via which some tracked value
can be referenced. Note that from a history of field accesses it can be computed via
which fields a tracked value can be referenced. We will illustrate this with an example.
Assume a program writes a tracked value to field f , then the base value of that field is
written to field g. This yields the access path f g. When from a base value with that
access path field g is read, then the returned value will be associated with the access
path f gg. While the definition of an access path as a history of past field accesses
may seem unnecessary at first, consider that it allows to define method summaries very
natural. Assume that field g of some parameter is read in a method. The value read is
then returned by the method. Thus we can summarize this method with respect to field
accesses by the access path g. Moreover, this summary is independent from callers, and
can be applied by concatenating it to the access path of some caller, e.g., a caller with
access path f g for the value used as parameter.
An abstraction point—as introduced before—is placed on cyclic paths of the control

flow. Moreover, for each fact’s base value reaching such a point in the control-flow graph
a unique instance of that abstraction point is created. Each abstraction point stores its
own set of incoming facts:

Incoming(A) ⊂ AccessPaths, ∀A ∈ AbstractionPoints.

After an abstraction point A, the analysis proceeds with the fact’s access path consisting
only of A.
The constructs thus far can also be represented as context-free language. We will

write this language as context-free grammar G that is commonly defined as 4-tuple
G = (V,Σ, R, S), whereas V is a finite set of non-terminal characters or variables. Σ
is a finite set of terminals disjoint from V . R is a set of production rules from V
to V ∪ Σ, and S ∈ V is the start symbol. In IFDS-APA this 4-tuple is defined as
(AbstractionPoints,Modifiers,Rules, s), whereas we use a less restrictive definition and
allow the start symbol to be s ∈ AccessPaths. The set of production rules is defined as

Rules := {A→ a | A ∈ AbstractionPoints, a ∈ Incoming(A)}.

Note that the set of production rules with abstraction point A on their left hand side is
identical to the set Incoming(A). Hence, a production rule is created for each unique fact
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reaching an abstraction point. Therefore, the analysis actually constructs the context-free
grammar while it proceeds. At any point in the program at which a fact with access
path s is given the context-free grammar represents the language L(s) that specifies the
possible sequences of field accesses that can reach this point.

4.3.2. Validity of Data Flows
Yet, we just appended field modifiers to the access path at field read and field write
instructions. Hence, we allowed that a tracked value is stored to some field f and then
some other field g is read, resulting in an access path f g. However, this data flow is
invalid with respect to some tracked value. For example, when storing a tracked value in
field f , we cannot read the same tracked value from a different field g. An access path,
as we defined it here, consists of a sequence of field accesses, denoted by field modifiers.
Hence, we can use this access path to decide, if a data flow is valid, i.e., if some tracked
value could be retrieved via the access path’s sequence of field accesses. For this, we
define another context-free language. This language should represent all valid sequences
of field modifiers, i.e., each field read has to be preceded by writing the same field before,
and if there was another field written in-between then from this field had to be read
already, too. This specification is very similar to ensuring that each opened bracket has
been closed again, whereby opening brackets represent writing to a field and closing
brackets represent reading from a field. The brackets analogy is a classical example for
the use of context-free grammars, e.g., it can be written as

B → (B) | ε

However, the analysis needs to distinguish different fields and should match only write
and read instructions of the same field with each other. Hence, in the brackets analogy
we actually have to distinguish different kinds of brackets, e.g.,

B → (B) | [B] | {B} | ε

Continuing, a data flow allows to write a field, read from it, write a different field, and
read it again. This also makes sense for the brackets analogy and can be reflected by a
sequence production rule:

B → BB | (B) | [B] | {B} | ε

We want to use the language to check validity of data flows at arbitrary positions in the
program, moreover, it should be valid to write a field without yet reading it. This can
also be reflected in the analogy by allowing opening brackets that are not closed:

B′ → (B′ | [B′ | {B′ | BB′ | ε
B → (B) | [B] | {B} | ε

Finally, the analogy does not have a counterpart for the introduced exclude field modifier.
Recall from the illustration in Figure 4.4 that field exclusions are placed whenever a
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field of the tracked base value is overwritten. Consequently, it should not be allowed
to place a field exclude modifier subsequent to a field write modifier for the same field,
because this means the tracked value stored in the field has been overwritten with some
other value. However, it is okay to exclude fields other then the one written last. The
context-free language for the analysis can be defined as L(B′) with production rules:

B′ → B′ε ε 6∈ F
B′Excl → f̂ B′Excl ∀f ∈ F , f 6= Excl

| fB′f ∀f ∈ F
| BExclB

′
Excl

| ε

BExcl → fBf f ∀f ∈ F
| f̂ BExcl ∀f ∈ F , f 6= Excl

| BExcl f̂ ∀f ∈ F , f 6= Excl

| ε

In the definition of the production rules we use an index to indicate that a specific field
has been written and that no exclusion of the same field is allowed to follow as next
terminal. Observe that the sequence of field modifiers abĉbd̂a ∈ L(B′) is part of the
language, whereas abbâa 6∈ L(B′) is not.
Now, we can define if a data flow with access path α at some point in the program

is valid. It is valid if the language the analysis generates is not disjoint of the language
L(B′):

validF low(α) := L(α) ∩ L(B′) 6= ∅, α ∈ AccessPaths

To avoid that the analysis continues with invalid data flows and therefore analyzes
unreachable parts of a program, this check is performed at each field read and each field
write that performs an exclusion. Note that appending a field write modifier does not
require a check, because it is guaranteed to succeed the check if the previous access path
has been valid.

To construct reusable IFDS summaries the analysis starts with the empty access path
ε at the beginning of each method. Moreover, it does not include the abstraction point
placed at the start point of the method. However, for the check whether the current data
flow is valid, it has to incorporate the context of the methods callers. These callers have
been registered in the incoming set of the abstraction point APSP placed at the start
point of the method. Hence, for a fact at some program point with access path α the
data flow is verified by checking validF low(APSP α).

Example 10. We will illustrate the defined analysis at the example illustrated in
Figure 4.5. Assume we want to detect whether the value returned by method source
flows into sink. Hence, the analysis is bootstrapped at the call site of source tainting
the base value x with an empty access path ε. The tainted value is stored in field f
of variable a generating the fact a, f . Afterwards, the control flow branches: in one
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branch the field g is written, in the other field h. The respective facts are then passed
as arguments to foo. The corresponding incoming access paths are registered in the
incoming set of the abstraction point SPfoo at the beginning of foo. Note that for
start point abstraction points, the abstraction point of the calling context is included
in the production rules. In the example, we use an artificial calling context start point
SPZERO, because we bootstrapped the analysis inside the control flow of method main,
i.e., main has actually no callers. The analysis starts the processing of foo with an empty
access path ε. Entering the do-while loop, field g is read. At this point, the analysis
checks whether the current data flow is valid: validF low(SPfoog). After applying the
production rules SPfoo→ SPZEROf g and SPZERO→ ε it is easy to see that the resulting
access path f gg is part of the language L(B′), thus the data flow is valid. Note that the
data flow is only valid for one of the call sites in main, i.e., by using the production rule
SPfoo→ SPZEROf h we get the access path f hg that is not part of L(B′). Depending
on the order of the analysis processing through the control-flow graph, it is possible that
the field read is reached before the incoming access path yielding a valid data flow is
available. In such a case the analysis pauses at the field read instruction, because the
data flow is not yet valid. It will become valid and processing is resumed as soon as the
other branch is being processed. Therefore, the test if the data flow is valid has to be
performed again or updated, when new production rules are generated.
Next, the analysis reaches the abstraction point JS placed inside the cyclic control-

flow path at the while statement. The current access path g is therefore registered
in the incoming set of JS. The analysis continues with an access path reset to only
consist of the latest passed abstraction point JS. This fact reaches the instruction
reading field f, at which the access path JSf is created and checked whether it is valid:
validF low(SPfooJSf ). The data flow is valid, thus the summary JSf is generated for
method foo after processing the return statement. The fact with which the analysis
continued after JS is also propagated back to the beginning of the loop. It reaches the
instruction reading field g, therefore, the access path JSg is generated and the data
flow is checked to be valid: validF low(SPfooJSg). Observe that JS has only a single
production rule JS → g, which yields the access path SPfoogg that is not valid as there
is no caller writing field g two times, which is required to satisfy the constraint posed by
the intersection with language L(B′). Assuming there would be such a caller, we would
register in the incoming set of JS the access path JSg. This yields a production rule
representing that field g can be read infinite many times. Moreover, the analysis would
still be able to terminate, as no further processing of the loop has to occur.
Finally, the summary for method foo is applied at its call sites. But, we already

noticed the summary was only possible for one of the two call sites, i.e., it should only
be applied for the first call site to yield a context-sensitive result. Moreover, summaries
are only applied if the access path before the call concatenated with the summaries
access path is a valid flow. In the example, the analysis checks for the first call site
validF low(SPZEROf gJSf ) and for the second call site validF low(SPZEROf hJSf ).
As discussed before, only the former check succeeds. To break cycles that could exist
through returning recursively, the analysis places an abstraction point after return edges
at the return site. In the example, such abstraction points are represented as RS1 and
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void main () {
x = source ();
a.f = x;
if( unknown ()) {

b.g = a
d = foo(b);
sink(d);

}
else {

b.h = a;
e = foo(b);
sink(e);

}
}

X foo(b) {
do {

b = b.g;
} while ( unknown ());
c = b.f;
return c;

}

SPZERO :

RS1 :

RS2 :

SPfoo :

JS :

x, ε
a, f

b, f g
d,RS1

b, f h

b, ε

b, g ; b, JSg

c, JSf

SPZERO → ε

RS1 → f gJSf

RS2 →

SPfoo → SPZEROf g

| SPZEROf h

JS → g

Abstraction Points Generated Facts Production Rules

Figure 4.5.: Example of Facts Propagated by IFDS-APA

RS2, but only RS1 is reachable. For RS1 the analysis registers as incoming access path
the access path before the call concatenated with the access path of the summary. Finally,
the analysis is able to successfully detect a data flow from source to the first call site of
sink and correctly does not report a flow to the second call site of sink.

4.3.3. Undecidability of Context-Sensitive and Field-Sensitive Analysis
In the definitions in the previous section we silently ignored that we are actually facing
an undecidable problem. Testing disjointness of two context-free languages is an unde-
cidable problem [36, Theorem 8.10 on p. 202]. The introduced validity check performs
a disjointness test of two languages. One of these languages is constructed while the
analysis proceeds and the other ensures that only fields can be read that have been
written before. The latter can obviously not be expressed in a regular language and is
actually a context-free language. But, also the former language is a context-free language.
Production rules for abstraction points at the beginning of a method and abstraction
points in loops are always left-linear rules, i.e. there is never a terminal left of any
non-terminal. However, this is not necessarily the case for abstraction points at return
sites. Production rules at return sites consist of a part reflecting the access path before
the call and one part summarizing the callee. Now, for a recursive method a production
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X bar(x) {
a.f = x;
if( unknown ())

a = bar(a);
b.g = a;
return b;

}

RSbar : RSbar → f f g

| fRSbarg

x, ε
a, f

a,RSbar

b, RSbarg

Abstraction Points Generated Facts Production Rules

Figure 4.6.: The Grammar Computed by the Analysis Forms a Context-Free Language

rule of the abstraction point at the return site contains a non-terminal representing the
return site’s abstraction point itself, whereas some access path before and after that
non-terminal may exist. Therefore, such production rules are neither guaranteed to be
left-linear nor right-linear. In consequence, the resulting grammar is not guaranteed to
form a regular language.

Example 11. This can also be seen in the code illustrated in Figure 4.6. Before the
recursive call the access path f is computed. If not taking the recursive branch, the
summary f g is generated. When taking the recursive branch, this summary is applied
yielding the production rule RSbar→ f f g by concatenating the access path before
the call f and the summary f g. After the call site the analysis continues processing
with the access path RSbar. It is appended g, yielding a second summary for bar:
RSbarg. This second summary is applied at the call site too, yielding the production rule
RSbar→fRSbarg. The behavior in this example that there are exactly as many writes to
field f as writes to field g cannot be expressed with a regular language.

It is important to mention that the analysis is not undecidable because of how it is
defined, but that the problem we try to solve is itself proven to be undecidable [60].
Therefore, there cannot be any context-sensitive and field-sensitive analysis definition
that computes an exact solution to the problem. Reps used in [60] linear context-free
languages to represent the general problems of modelling calling contexts, and field
accesses, respectively. When modelling both in a single analysis at the same time, he
proved that it becomes undecidable by reducing the problem to Post’s Correspondence
Problem, which is known to be undecidable [36, Theorem 8.8 on p. 196]. Note that while
he proved a simplified version to be undecidable, the analysis problem for real programs
and languages is even harder, because we actually need non-linear context-free languages
instead of linear ones. This results from the fact that on a single program execution
path a value can be written to a field, read from the same field, then written to another
field, and read again. Using a linear language it is only possible to express that fields
are only written until reaching some point after which only field reads can occur. This
difference makes it infeasible to base solutions on known techniques that tackle Post’s
Correspondence Problem, e.g., the work by Zhao [84].
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4.3.4. Addressing the Undecidability
To avoid the undecidability, we over-approximate one of the context-free languages by a
regular language. Note that the disjointness of a regular and a context-free language is
decidable [36, Theorem 6.5 on p. 135], thus it is not required to over-approximate both
context-free languages.

We can either over-approximate the language generated by the analysis or the language
used to check if data flows are valid. The main purpose of the latter language is to check
that for each read a write is present. An over-approximation would weaken this constraint
failing the whole purpose of the language’s use. In contrast, an over-approximation of the
former language will mostly affect precision of production rules at return sites, because
these are the only ones that cannot be represented as regular language.

Example 12. We will illustrate the potential precision loss at the code shown in
Figure 4.7. Without over-approximation, the analysis computes two production rules
that are not left-linear: RSmain→f fRSfoog and RSfoo→fRSfoog. The former can
be rewritten to be left-linear easily, if the latter is left-linear. Moreover, the latter
production rule does make the language context-free and we need to over-approximate
it to gain a regular language. We will use a different representation21 to illustrate the
idea of possible over-approximations. First, we represent the production rule as f f ngn.
A possible regular over-approximation is then given by the regular expression f+g∗,
because L(f f ngn) ⊂ L(f+g∗). This over-approximation considers some data flows to
be realizable, whereas they are actually not. For example, the access path f g is not part
of L(f f ngn), but is part of L(f+g∗).
However, we can find over-approximations that are more precise, e.g., f |f f+g+.

Moreover, the precision of an over-approximation can be increased arbitrarily many times.
This can be done by including specific instances of the language L(f f ngn) for small
values of n (we will call this unfolding), and only over-approximating the language for
greater values:

L(f f ngn) ⊂ . . . ⊂ L(f |f f g|f f f+gg+) ⊂ L(f |f f+g+) ⊂ L(f+g∗)

4.3.5. Relative Precision Compared to K-Limiting
Example 12 presents the idea that the precision of the over-approximation can be
configured. This is similar to k-limiting that allows to configure the access-path length
that should be tracked precisely, before an over-approximation is applied. However, the
applied over-approximations are conceptually different making them hard to compare.
k-limiting might induce over-approximations at any place in the program. Even without
cycles in the control-flow graph, it is possible that more than k fields are written
subsequently resulting in a precision loss. With cycles in the control-flow graph, e.g., by

21This representation is commonly used for regular expressions: fn represents terminal f repeated n
times; f+ represents terminal f repeated at least once; f∗ represents terminal f repeated arbitrarily
often; the vertical bar | is used to denote alternatives.
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void main(x) {
a = source ();
b.f = a;
c.f = b;
v = foo(c);
w = v.g;
y = x.g;
z = y.g;
sink(z);

}

X foo(h) {
if( unknown ())

return h;
else {

i = h.f;
j = foo(i);
k.g = j;
return k;

}
}

SPZERO :

RSmain :

SPfoo :

RSfoo :

SPZERO → ε

RSmain → f f

| f fRSfoog

SPfoo → SPZEROf f

RSfoo → f

| fRSfoog

a, ε
b, f
c, f f
v,RSmain

w,RSmaing
y,RSmaingg
z,RSmainggg

h, ε

i, f
j, RSfoo

k,RSfoog

Abstraction Points Generated Facts Production Rules

Figure 4.7.: Example for Lost Precision if Using an Over-Approximation
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loops in the program, it is possible that access paths grow larger than length k resulting
in a precision loss as well. In IFDS-APA no over-approximation is applied for non-cyclic
control-flow graphs and in presence of cycles only if recursive calls induce context-free
rules. For the example illustrated in Figure 4.7, both approaches may yield false data
flows due to an over-approximation. Using k-limiting an over-approximation may be
applied before calling method foo, induced by nesting the tracked value in field f more
than k times. Due to the introduction of a wildcard operator, it will then be possible to
read arbitrary fields, not only field g. The precision in this case depends on the value
chosen for k and how many times field f is written. Using IFDS-APA the precision does
not depend on how many times field f is written. The over-approximation may allow to
read field g more often than field f has been written, but only field g. By unfolding the
context-free rule k times in the regular over-approximation as shown in Example 12, it
can be controlled that the context-sensitivity of the recursive call is maintained for k
calls, before precision is lost.
In summary, we argue that the precision of IFDS-APA is better than the one of

k-limiting in most application scenarios. For both approaches there is a configurable
trade-off between their precision and scalability. Large values for k in k-limiting result in
a large amount of states, whereas unfolding rules results in a large amount of production
rules for IFDS-APA. Both effects have a negative impact on the scalability of the
analyses.

4.3.6. Regular Over-Approximation of Context-Free Grammars
The precise over-approximation of context-free languages by a regular language is a well
known field of research and many works on this topic have been published [21, 26, 49,
52, 51]. Even though some approaches allow iterative refinement of their constructed
approximations (cf. Example 12), we chose a simple algorithm [52] for our prototype
implementation. This algorithm has the advantage that it affects only a local part of
the grammar and that the rewritten grammar is still comprehensible for a human. It
does introduce only one additional non-terminal per non-terminal present in a strongly
connected component that has to be approximated. Recall that the analysis constructs
the grammar step by step while it proceeds through the control-flow graph. Thus, the
over-approximation of that grammar needs to be incremental dealing with new rules
being added to it or it has to be applied to the grammar each time we perform a validity
check of a data flow. Additionally, the outcome of a validity check may change when a
new production rule is added to the grammar. Hence, also this validity check should
be incremental, which is easier to achieve if only small parts of the grammar change.
Nevertheless, theoretically it is possible to use arbitrary approximation techniques with
the analysis.
The algorithm rewrites rules of non-terminals that are part of strongly connected

components in the graph spanned by production rules. In this graph, each node is a
non-terminal, whereas edges represent the reachability of other non-terminals through ap-
plication of production rules. Hence, for a production rule A→ α0B1α1B2 . . . αn−1Bnαn,
Bi ∈ AbstractionPoints, and αi ∈ Modifiers∗ the graph contains the edges (A,B1),
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(A,B2), . . ., (A,Bn). We use the algorithm by Gabow [25] to detect strongly connected
components (SCCs). After we identified SCCs, we filter all SCCs that do only contain
left-linear production rules, whereas left-linearity is determined by considering only the
non-terminals of the SCC as non-terminals and treating other non-terminals as they
would be terminals. Formally, we define the set of SCCs in the grammar G that have to
be approximated as

ContextFreeSCCs(G) := {SCC | ∀SCC ∈ SCCs(G) ∃A ∈ SCC :
x1 . . . xn ∈ Incoming(A),
xi 6∈ SCC, xj ∈ SCC,
1 ≤ i < j ≤ n}

The transformation rewriting the production rules of a SCC to form an approximated
regular language consists of two steps:22

1. For each non-terminal A ∈ SCC, introduce a new non-terminal A′ 6∈ Abstraction-
Points and add the following rule to the grammar: A′ → ε.

2. Consider each rule with left-hand side A ∈ SCC:

A→ α0B1α1B2α2 . . . Bmαm

with m ≥ 0, B1, . . . , Bm ∈ SCC, α0, . . . αm ∈ (Modifiers ∪ (AbstractionPoints −
SCC))∗, and replace it by the following set of rules:

A→ Bmαm

B′m → Bm−1αm−1
...

B′2 → B1α1

B′1 → A′α0

(in the case where m = 0, this set of rules merely contains A→ A′α0.)

Informally, after finishing to apply a rule of non-terminal A, we will always switch to
non-terminal A′. Thus, the non-terminals introduced by the transformation represent
that the rule application is finished.

Example 13. We will illustrate the transformation by an example. The context-free
grammar G shown in Figure 4.8a can be viewed as graph shown in Figure 4.8b. This graph
contains two SCCs: {V,W} and {X,Y, Z}. However, after we filter SCCs containing
only left-linear rules, only one SCC remains: ContextFreeSCCs(G) = {{X,Y, Z}}. In
the first step of the transformation, we create non-terminals X ′, Y ′, Z ′ and for each a rule
22The algorithm is defined by [52] and shown as they defined it, but with the difference that we exchange

some definitions by terms of the analysis domain. In addition, we adjusted the algorithm to create
left-linear rules instead of right-linear rules.
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V →Wf | f
W → V g

X → fY g | gW f

Y → XhZg

Z → Y g

(a) Context-Free Gr.

V

W

X Y

Z

V →WfW → V g

X → gW f

X → fY g

Y → XhZg

Y → XhZg Z → Y g

(b) Non-Terminal Reachability Graph

V →Wf | f
W → V g

X → Y g | X ′gW f

Y → Zg

Z → Y g

X ′ → ε | Y ′

Y ′ → ε | X ′f | Z ′

Z ′ → ε | Xh

(c) Regular Approx.

Figure 4.8.: Over-Approximation by a Regular Language

to ε. In step two, each rule of the non-terminals X,Y, Z is considered. Rule X → fY g
is rewritten as X → Y g and Y ′ → X ′f . Informally, we can map X to Y g and after
Y has been substituted—hence we are at non-terminal Y ′—we map to X ′f and signal
by reaching X ′ that X has been substituted. The next rule X → gW f is rewritten as
X → X ′gW f immediately signaling by switching to X ′ that X has been substituted.
Note that we treat W here as any other terminal, because it is not part of the SCC.
The rule Y → XhZg is rewritten to Y → Zg, Z ′ → Xh, and X ′ → Y ′. Finally, rule
Z → Y g stays unchanged, but adds an additional rule Y ′ → Z ′. The complete regular
grammar approximating grammar G is shown in Figure 4.8c.

While this transformation does not yield the most precise approximation, it has some
useful properties allowing us to implement an incremental version of it. It only touches
production rules of non-terminals part of a SCC. Any production rules pointing into a
SCC are not affected by the transformation, also the newly introduced non-terminals are
never referenced from the outside of the SCC.

Rules added to an approximated SCC can be simply transformed by step 2 not affecting
others. Only if added rules create a new SCC that has not been there, all production
rules of that SCC have to be transformed by applying steps 1 and 2. If a SCC is extended
to a new non-terminal by an added rule, only rules regarding that non-terminal have
to be reconsidered, i.e., rules of that new non-terminal, as well as rules pointing to that
new non-terminal. A new rule can also merge multiple SCCs into one, which is handled
analogously.
For each non-terminal A of an extended SCC we apply steps 1 and 2, if A has not

been part of an approximation before. Otherwise, we apply the following step to update
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existing rules of A. For an existing rule of the form

A→ α0B1α1B2α2 . . . Bmαm

with m ≥ 0, B1, . . . , Bm ∈ SCC, α0, . . . αm ∈ (Modifiers∪ (AbstractionPoints− SCC))∗,
we know that α0 must be empty and that B1 is part of a previously approximated SCC
(it may be a non-terminal introduced by step 1), because it was produced by applying
step 2. Step 2 only produces left-linear rules that have exactly one non-terminal of the
approximated SCC at their leftmost position. The rule may contain some Bi with i > 1,
if Bi was previously not part of the approximated SCC and therefore treated as it was a
terminal. In this case we have to update the rule, otherwise we leave the rule unchanged.
Updating is done by the following steps that are similar to step 2, but not identical:

1. Remove rule A→ α0B1α1B2α2 . . . Bmαm if m > 1

2. Add rules

A→ Bmαm

B′m → Bm−1αm−1
...

B′2 → B1α1

(in the case where m = 0 or m = 1, do not add any rules.)

Note that the last step adds the same rules as step 2 of the transformation introduced
before, but not the very last rule. This last rule B′1 → A′α0 is known to exist already,
because A and B1 have been part of a previously approximated SCC.
We also update rules of A′ for each A part of the SCC by applying the same steps.

However, if it is the rule A′ → ε, we do not change it at all.

Proof of Equality. We will show now that applying the incremental update yields the
same result as if applying the original transformation. For a given rule

A→ α0B1α1B2α2 . . . Bmαm

with m ≥ 0, B1, . . . , Bm ∈ SCC, α0, . . . αm ∈ (Modifiers∪ (AbstractionPoints− SCC))∗,
we can apply the original transformation, which yields:

A→ Bmαm

B′m → ε | Bm−1αm−1
...

B′2 → ε | B1α1

B′1 → ε | A′α0

A′ → ε
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Without loss of generality, assume by adding some new rule the existing SCC is extended
to SCC ′ = SCC ∪ {Ci,j | 0 ≤ i ≤ m, j ≥ 1, Ci,j 6∈ SCC}. Assuming the non-terminals
new to the SCC have been part of the original production rule we substitute

αi = βi,0Ci,1βi,1Ci,2βi,2 . . . Ci,nβi,n

with βi,0 . . . βi,n ∈ (Modifiers ∪ (AbstractionPoints− SCC ′))∗. We write |αi| to denote n.
By applying the substitution to the transformed rules we get

A→ Bmβm,0Cm,1βm,1Cm,2βm,2 . . . Cm,|αm|βm,|αm|

B′m → ε | Bm−1βm−1,0Cm−1,1βm−1,1Cm−1,2βm−1,2 . . . Cm−1,|αm−1|βm−1,|αm−1|
...

B′2 → ε | B1β1,0C1,1β1,1C1,2β1,2 . . . C1,|α1|β1,|α1|

B′1 → ε | A′β0,0C0,1β0,1C0,2β0,2 . . . C0,|α0|β0,|α0|

A′ → ε

Reflecting the extension of the SCC, we apply the incremental update routines, which
gives
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A→ Cm,|αm|βm,|αm|

C ′m,|αm| → Cm,|αm|−1βm,|αm|−1

...
C ′m,2 → Cm,1βm,1

C ′m,1 → Bmβm,0

B′m → ε | Cm−1,|αm−1|βm−1,|αm−1|

C ′m−1,|αm−1| → ε | Cm−1,|αm−1|−1βm−1,|αm−1|−1

...
C ′m−1,2 → ε | Cm−1,1βm−1,1

C ′m−1,1 → ε | Bm−1βm−1,0

...

B′2 → ε | C1,|α1|β1,|α1|

C ′1,|α1| → ε | C1,|α1|−1β1,|α1|−1

...
C ′1,2 → ε | C1,1β1,1

C ′1,1 → ε | B1β1,0

B′1 → ε | C0,|α1|β0,|α1|

C ′0,|α1| → ε | C0,|α1|−1β0,|α1|−1

...
C ′0,2 → ε | C0,1β0,1

C ′0,1 → ε | B1β0,0

A′ → ε

To verify equality, we apply the substitution of αi to the rule we started with and get

A→β0,0C0,1β0,1C0,2β0,2 . . . C0,|α0|β0,|α0|

B1β1,0C1,1β1,1C1,2β1,2 . . . C1,|α1|β1,|α1|

B2β2,0C2,1β2,1C2,2β2,2 . . . C2,|α2|β2,|α2|
...

Bmβm,0Cm,1βm,1Cm,2βm,2 . . . Cm,|αm|βm,|αm|
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Applying on this initial rule the non-incremental transformation steps to approximate
SCC ′ yields the exact same rules as with the incremental step.

4.3.7. Disjointness of Regular and Context-Free Grammars
With an over-approximation of the language computed by the analysis the disjointness of
that language and the context-free language L(B′) becomes decidable. We will discuss in
the following an algorithm to compute the disjointness. A requirement for this algorithm
is that it can deal with incremental updates, because the language computed by the
analysis will be continuously updated with new production rules. Moreover, results of
a disjointness check may change when new rules are added. However, rules may only
be added or replaced by rules over-approximating an existing rule. Moreover, if the two
languages are not disjoint, it is guaranteed that they will not be disjoint after an update.

While disjointness of a regular and a context-free language is known to be a decidable
problem [36, Theorem 6.5 on p. 135], no algorithms are provided for the problem. However,
we can decompose the disjointness test into an intersection problem and an emptiness
check of the language resulting from the intersection. The simplest way to compute the
intersection of a regular language and a context-free language is by transforming them
to a finite state automaton and a pushdown automaton, respectively. The intersected
language consists of transactions that are possible in both automata. Moreover, the
intersection yields another pushdown automaton [36, Theorem 6.5 on p. 135]. Conversely,
the emptiness check is easier to perform on a context-free grammar [35, Section 7.4.3
on p. 296]. The emptiness check can be performed by checking if the start non-terminal
is generating. A non-terminal is generating if it contains a rule that does not contain
non-terminals or only non-terminals that are generating.

In summary, the analysis computes a language in grammar form that is approximated
in grammar form as well. The balanced language L(B′) is given in grammar form, too.
Both have to be transformed to automata representations. In these it is simple to compute
the intersection yielding a pushdown automaton. Finally, for the emptiness check we have
to transform this automaton to grammar form. Switching between representations makes
it difficult to react to incremental updates in the language computed by the analysis, it
also makes the implementation conceptually more complex, and therefore prone to errors.
Ideally, we would like to perform the whole computation in grammar form.

Unfortunately, best to our knowledge there exists no intersection algorithm in grammar
form. But, there exists an algorithm of unknown source23 that describes a possible
emptiness check on a pushdown automaton, saving at least one transformation. This
algorithm divides transactions in three categories depending on how they manipulate
the pushdown-automaton’s stack: no manipulation, pushing on the stack, or popping
from the stack. The algorithm combines consecutive transactions until no more new
combinations are possible. But, it combines transactions only if at least one of them
does not manipulate the stack, or if the first pushes on the stack and the succeeding
transactions pops matching symbols from it. Eventually, there are no more combinations
23Algorithm found in answer on Stack Exchange: http://cstheory.stackexchange.com/a/32055 (last

visited: March, 2016)
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possible. Then, if there is a transaction from a start state to a final state the language
represented by the pushdown automaton is not empty, otherwise it is empty.

The existing approaches to the problem require some transformation between language
representations and do not fit the problem at hand very well. The existing approaches
solve the disjointness problem in the general case. However, we face a rather special
disjointness case in which the context-free language L(B′) is always the same. Knowledge
about this specific language can be exploited by an algorithm designed solely for the
specific problem at hand. Therefore, we propose a new algorithm that immediately
computes the disjointness in grammar form. The algorithm is inspired by the described
emptiness check on pushdown automata.

Disjointness with L(B′) The idea behind the algorithm is to organize production rules
according to how they manipulate the stack as in the emptiness check for pushdown
automata. The stack in this case is not the stack of a pushdown automaton, but some
virtual access path. Nevertheless, we will refer to that virtual access path as stack in
the following to avoid ambiguities. In that analogy write field modifiers are pushing on
the stack, read field modifiers are popping from the stack, and exclude field modifiers do
not manipulate the stack. Following the analogy, the algorithm combines consecutive
production rules until eventually no more new rules can be created. Two production
rules are consecutive, iff A → Bα and B → Cβ, for A,B,C ∈ AbstractionPoints and
α, β ∈ Modifiers∗.

Example 14. We will start with an example to give an intuition for the algorithm
and formally define the algorithm and taken steps afterwards. Assume the analysis has
computed the following grammar

A→ Af | Bĝ
B → Bf f | g

and is at some point at which it checks the validity of a data flow with access path
Ag, i.e., it checks validF low(Ag). The language is already regular, thus we skip over-
approximation and continue with the disjointness algorithm. The algorithm combines
consecutive production rules creating new production rules until no new production rules
can be created. First, it matches production rules not modifying the stack with other
rules. The rule A → Bĝ does not modify the stack. It is combined with B → Bf f
yielding the new production rule A→ Bf f . Note that we can omit the exclusion of field
g here, because we know that field f is written before and excluding g does not have any
effect. We also try to combine A→ Bĝ with the rule B → g, but this yields A→ Bgĝ
that is guaranteed to always produce invalid data flows, therefore, we drop that rule.
Next, we combine rules popping from the stack with rules pushing on the stack. The rule
A→ Af is popping from the stack and is combined with pushing rules B → Bf f and
B → g. The former yields A→ Bf f f , whereas we simplify the rule to A→ Bf . The
latter yields A→ gf that is guaranteed to be invalid, thus it is dropped. The algorithm
can now match the popping rule A→ Af with the new created pushing rule A→ Bf
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yielding A→ B. This resulting rule can be combined with B → g yielding the new rule
A→ g. This rule can be used to answer if Ag is a valid data flow: it maps the access
path to gg, thus the data flow can be trivially judged as valid.

A requirement of the algorithm is that we can divide production rules according to how
they affect the stack: they do not change the stack, they push on the stack, or they pop
from the stack. Actually, the analysis may produce production rules that do push and
pop within a single rule. In a pre-processing step we will rewrite such rules yielding rules
that clearly belong to one of the three categories. The pre-processing removes consecutive
modifiers that are guaranteed to be part of L(B′), e.g., consecutive field writes and field
reads that match. The following rules formally define these simplifications. For each
sub-sequence of a production rule that matches one of the following sequences, replace
the sub-sequence with the respective simplification:

f f 7→ ε f ∈ F
f̂1 . . . f̂ng 7→ g g 6= fi, fi ∈ F , g ∈ F

f ĝ 7→ f f ∈ F , g ∈ F

After applying the simplifications, production rules are guaranteed to not contain field
write modifiers followed by field read modifiers, because if they were matching they were
removed by the simplification; if they do not match they represent invalid flows and as
such would not have become production rules in the first place. But, production rules
may still contain read field modifiers followed by write field modifiers. We split such rules
by introducing a new artificial non-terminal. A production rule

A→ Bf1 . . . fmg1 . . . gn

is replaced by two new production rules

A→ [A : g1 . . . gn ]g1 . . . gn

[A : g1 . . . gn ]→ Bf1 . . . fm

whereas B can be empty or a non-terminal and [A : g1 . . . gn ] is the artificial non-terminal
uniquely identified by non-terminal A and the rule suffix g1 . . . gn , i.e., the artificial
non-terminal may be shared between multiple rewritten production rules of non-terminal
A that have the same suffix. Now, production rules are guaranteed to be either pushing
on the stack, popping from the stack, or not manipulating the stack.

After the pre-processing, the algorithm proceeds by combining consecutive production
rules. Rules are combined, if at least one of the production rules is not manipulating
the stack, or if the first rule is popping from the stack and the second is pushing on
the stack (recall that the analysis creates rules with non-terminals being left oriented,
therefore, the second rule is creating modifiers that modify the access path before the
first rule’s modifiers with respect to program execution). We apply the simplifications
introduced above to the rules resulting from this combination. Resulting rules may be
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invalid. We filter a rule A → Bα as guaranteed to yield only invalid data flows, if α
contains a sequence matching any of

f g f 6= g, f ∈ F , g ∈ F
f̂ f f ∈ F
f f̂ f ∈ F

Applying the simplification and filtering guarantees again that combined rules are either
pushing on the stack, popping from the stack, or not manipulating the stack.
The algorithm continues combining consecutive production rules until one of two

termination criteria is satisfied: (1) no new production rules can be formed, or (2) a
production rule maps the initial access path to a sequence that does not contain non-
terminals, nor read field modifiers. If criteria (1) is satisfied the data flow corresponding
to the checked access path is invalid. If criteria (2) is satisfied, the data flow is valid.
An invalid data flow may become valid, when new production rules are added to the

language. However, the described algorithm can easily reflect this, as it simply adds the
new production rule and combines it with existing rules preceding and succeeding it until
one of the termination criteria is satisfied again.
Yet, we omitted a discussion of two cases: non-linear production rules and prefixes

of write field modifiers that do not have a matching field read modifier, but are part of
L(B′).

Non-Linear Production Rules The result of the over-approximation may contain non-
linear production rules of the form A → BαCβ, for A,B,C ∈ AbstractionPoints and
α, β ∈ Modifiers∗. In that case we first proceed with combining rules of C with rules of
respective non-terminals C may map to, and add the prefix Bα to all resulting rules. For
example, assume C contains the rule C → Dδ, D ∈ AbstractionPoints, δ ∈ Modifiers∗,
then we get A→ BαDδ. For some rule C → γ, whereas γ ∈ Modifiers∗ we get A→ Bαγ,
i.e., a linear rule for which the algorithm is applied as introduced before.

Prefix of Write Field Modifiers The language L(B′) allows prefixes of write field
modifiers to be usable for valid-flow checks at arbitrary statements of the program
execution. But, in the algorithm we did not take prefixes into account, yet. This can be
best seen at a simple example.

Example 15. Assume the analysis has computed the following grammar

A→ Bf f

B → g

that is already regular. Furthermore, assume the analysis requires to check whether
validF low(Af ) holds. Obviously, the check should succeed, because gf f f is clearly part
of the given language and part of L(B′). Nevertheless, the algorithm for disjointness will
not find this, because it does not combine the production rules A→ Bf f and B → g,
as they are both pushing on the stack.

89



4. Field-Aware Analysis

We can take prefixes into account as follows. For some access path Aα (A ∈
AbstractionPoints and α ∈ Modifiers∗) to be checked for validity, if the algorithm finds
a production rule A → Bβ, such that βα does only contain write field modifiers after
applying the simplifications and B ∈ AbstractionPoints, then let validF low(Aα) be true
iff validF low(B) is true.
In Example 15, the test for validF low(Af ) will yield the pushing rule A → Bf f ,

whereas f f f 7→ f only contains field write modifiers. Therefore, validF low(Af ) holds
iff validF low(B) holds, which is the case as B → g fulfills termination criteria (2) of the
algorithm, i.e., it maps to a constant term only containing write field modifiers.

Discussion The termination of the proposed algorithm is guaranteed, even in the
presence of loops in the production rules (cf. Example 14). Due to not combining rules
pushing on the stack with each other and not combining rules popping from the stack
with each other, it is guaranteed that loops will not be unfolded infinitely often. Yet,
combining popping rules with pushing rules results in loops being unfolded as often as
required. While one loop with rules pushing on the stack and another loop with rules
popping from the stack may yield infinitely many possible data flows, the algorithm will
only consider unfolding the loops once, because any subsequent iteration will not yield
new combined production rules.

All combined production rules can and should be cached in an implementation. While
the analysis proceeds subsequent validity checks are likely to be reducible to previously
checked terms as subsequent access paths have production rules mapping to abstraction
points visited before. While subsequent access paths will have additional modifiers as
suffix, combined rules for the prefix of the access path are already known and can be
reused by the algorithm.
Note that the algorithm is a potential subject to state explosions as it combines

production rules in all possible ways. However, this threat is minimized as much as
possible by only combining popping and pushing rules as well as by simplifying and
filtering combined rules reducing the amount of states to be considered.

4.4. Experiments
We performed experiments to compare all discussed approaches with each other. These
are two field-based approaches and two field-sensitive approaches. We use the classical
field-based model denoted as FBClassic and discussed in Section 4.1.1 as baseline for the
comparison against the field-based model using sets of types denoted as FBSet, which we
proposed in Section 4.1.2. As baseline for the field-sensitive approach we use a k-limiting
based analysis implementation denoted as FSk and discussed in Section 4.2. We compare
it against our proposed approach denoted as IFDS-APA and discussed in Section 4.3.
All implementations share the same code base (cf. Section 3.2) and are equal with the
exception of the respective data-flow domains.

Specifically, the experiments performed address the following three research questions:
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RQ1: Given a fixed heap size, which analyses can successfully analyze the benchmark
subjects?

RQ2: How fast are the analyses?

RQ3: How do the analyses behave with respect to their scalability?

4.4.1. Set-Up
The experiments carry out taint analyses, for which we use the implementation of
FlowTwist as discussed in Chapter 3. The implementation can be used to conduct
general-purpose data-flow analysis as discussed in Section 3.2.
We use FlowTwist for three different experimental set-ups. In the first two set-ups

we use an adaptation of FlowTwist to detect SQL injection, command injection, path
traversal, and unchecked redirection vulnerabilities. We apply the analysis to the Stanford
SecuriBench [46] dataset consisting of seven web applications. In the first set-up we
use only the bare web applications, while we include their dependencies (and the Java
Class Library) in the second set-up. For the first two set-ups a pure forward analysis
is conducted. In a third set-up we use the original FlowTwist implementation, which
conducts a synchronized forward and backward taint-analysis to detect confused-deputy
vulnerabilities within the Java Class Library (JCL) 1.7.0, e.g., any call to the method
Class.forName(String cls), where (1) the String cls is user-controlled, and (2) the
return value flows back to the user. This set-up uses a call graph starting at all of the
JCL’s public methods, leading to a much larger coverage of the JCL’s methods than with
SecuriBench.

The applications within the SecuriBench suite vary from 32 to 445 classes and 4,191 to
52,089 lines of code per project. We found it much more relevant, though, to characterize
the projects by the number of edges of their respective interprocedural control-flow graphs
(ICFGs), which are shown in the second row of Table 4.4.

The ICFGs are relatively small if the web applications are considered in isolation, but
their size grows significantly if all dependencies are also considered (cf. Table 4.5). We
counted only those control-flow edges that are contained in methods that are transitively
reachable from within the web applications.

All experiments were conducted on a machine running OS X 10.10 with a 8-core Intel
Xeon E5 3.0 GHz processor and 32 GB memory. As Java Runtime Environment we used
Java 1.8.0 update 40 with a heap size (-Xmx) set to a maximum of 25 GB.

4.4.2. Results24

For RQ1 we seek to answer which approaches can at all analyze which benchmarks within
the allotted 25 GB of maximum heap size. To address this, we ran all approaches on all
benchmarks. All approaches are able to analyze all projects of SecuriBench excluding
24The experimental set-up is similar to the one in [45]. However, results presented here differ, because

the version of IFDS-APA presented here is not the same. It turned out that the version presented in
[45] is actually an under-approximation.
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Table 4.1.: Code Excluded from the Analysis Scope
Packages Classes

java.awt Container
java.util All
java.util.concurrent All
java.util.regex All
java.beans All
javax.swing.text.html All
org.enhydra.instantdb.db All
sun.net.www.* All

Table 4.2.: Run Times in Seconds (Excluding Libraries)
Approach blueblog jboard pebble personalblog roller snipsnap webgoat

FBClassic 0.78 0.02 9.70 0.07 0.32 1.36 0.17
FBSet 0.55 0.02 0.64 0.09 0.05 0.82 0.10
FSk=0 0.42 0.01 0.72 0.08 0.07 0.35 0.13
FSk=1 0.20 0.01 0.48 0.05 0.05 0.20 0.10
FSk=2 0.25 0.01 0.41 0.05 0.05 0.26 0.09
FSk=3 0.34 0.01 0.42 0.05 0.05 0.22 0.09
FSk=4 0.42 0.01 0.42 0.05 0.05 0.22 0.10
FSk=5 0.51 0.01 0.41 0.05 0.05 0.22 0.09
IFDS-APA 0.52 0.01 1.01 0.10 0.10 0.39 0.17

the libraries the projects depend upon. But, if including the dependencies of the projects
only the analysis based on a k-limiting model is able to analyze some of the projects and
all other analyses run out of memory. The k-limiting approach only terminates for k set
to 0 and only for the projects blueblog, pebble, personalblog, roller, and webgoat. For any
other k value the analysis runs out of memory as well. For the third set-up, in which we
applied the synchronized forward and backward analyses to the whole Java Class Library,
all approaches run out of memory.
Unfortunately, these results do not allow a detailed answer to RQ3. Therefore, we

modify the second set-up: Instead of including all dependencies of the SecuriBench
projects we include all, but exclude some packages from the analysis scope. The excluded
code is listed in Table 4.1. The excluded packages were selected by observing that both
field-sensitive analyses spend significant more time for these than other packages before
running out of memory. All excluded code contains wide type hierarchies that we already
identified as threat to scalability (cf. Example 9).
Run times for the analyses applied to SecuriBench excluding libraries are shown in

Table 4.2 and including libraries in Table 4.3. Experiments that ran out of memory are
denoted as OoM.

RQ1 We can observe that FBClassic does not terminate on any project when including
libraries. FBSet does terminate only for blueblog and webgoat. The k-limiting based
analysis terminates on all projects for k = 0 and k = 1, but runs out of memory on project
roller for k ≥ 2. Four more projects run out of memory for k ≥ 7 and only blueblog and
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Table 4.3.: Run Times in Seconds (Including Libraries)
Approach blueblog jboard pebble personalblog roller snipsnap webgoat

FBClassic OoM OoM OoM OoM OoM OoM OoM
FBSet 13.72 OoM OoM OoM OoM OoM 24.22
FSk=0 20.78 100.45 65.60 88.03 126.90 111.04 17.17
FSk=1 15.93 65.66 42.37 65.58 296.96 90.90 16.96
FSk=2 17.34 94.06 65.70 96.91 OoM 130.70 17.26
FSk=3 17.65 117.93 93.19 147.89 OoM 180.07 17.74
FSk=4 18.79 172.17 151.79 209.85 OoM 271.88 17.93
FSk=5 19.35 291.49 274.31 315.66 OoM 482.29 18.40
FSk=6 20.20 525.24 589.05 540.18 OoM OoM 18.59
FSk=7 21.11 OoM OoM OoM OoM OoM 18.51
IFDS-APA 11.40 151.33 88.06 177.37 204.22 240.91 10.52

Table 4.4.: Visited Edges (Excluding Libraries)
Approach blueblog jboard pebble personalblog roller snipsnap webgoat
#Edges 8 529 14 154 67 488 11 391 82 264 137 532 15 122

FBClassic 58% 5% 64% 18% 31% 24% 80%
FBSet 33% 2% 27% 14% 3% 9% 27%
FSk=0 33% 2% 27% 14% 3% 10% 27%
FSk=1 32% 2% 26% 14% 2% 7% 27%
FSk=2 33% 2% 26% 14% 2% 7% 27%
FSk=3 33% 2% 26% 14% 2% 7% 27%
FSk=4 33% 2% 26% 14% 2% 7% 27%
FSk=5 33% 2% 26% 14% 2% 7% 27%
IFDS-APA 33% 2% 28% 14% 2% 8% 27%

webgoat can be analyzed for large k values (we ran experiments by incrementing k and
stopped at k = 15, for which the analysis still terminated successfully). IFDS-APA
terminates for all projects.

RQ2 All analyses can analyze the SecuriBench projects excluding libraries in a few
seconds. While trends can be observed, e.g., FBSet is faster than FBClassic, the analyses
are faster then the deviation in run times we observed between multiple runs of the same
experiment. Hence, we will discuss run times on the projects of SecuriBench including
libraries. It is observable that the run time of FSk decreases from FSk=0 to FSk=1 on
most projects, while it increases from FSk=1 to FSk=2 and continuous to increase with
increasing values for k. IFDS-APA is faster than FSk upon some threshold of k, whereas
this threshold varies between the projects. However, all analyses that do not run out
of memory are able to terminate in a few minutes and therefore are applicable in most
usage scenarios (e.g., running the analysis as part of a nightly build job).

RQ3 We want to understand better how the analyses behave for programs of different size
and used libraries. To answer RQ3 we measured how many edges of the interprocedural
control-flow graph (ICFG) have been visited by each analysis. This measurements for
SecuriBench excluding libraries are shown in Table 4.4. While FBSet, FSk and IFDS-
APA compute similar reachable graphs, we can see that FBClassic visits many more edges.
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Table 4.5.: Visited Edges (Including Libraries)
Approach blueblog jboard pebble personalblog roller snipsnap webgoat
#Edges 692 484 2 353 761 1 769 457 2 194 344 2 891 553 2 683 740 734 346

FBClassic OoM OoM OoM OoM OoM OoM OoM
FBSet 13% OoM OoM OoM OoM OoM 15%
FSk=0 25% 38% 38% 39% 37% 39% 25%
FSk=1 13% 19% 17% 20% 18% 19% 13%
FSk=2 13% 19% 17% 20% OoM 19% 13%
FSk=3 13% 19% 17% 20% OoM 19% 13%
FSk=4 13% 19% 17% 20% OoM 19% 13%
FSk=5 13% 19% 17% 20% OoM 19% 13%
FSk=6 13% 19% 17% 20% OoM OoM 13%
FSk=7 13% OoM OoM OoM OoM OoM 13%
IFDS-APA 13% 19% 17% 19% 18% 20% 13%

Table 4.6.: Propagated Data-Flow Fact (Excluding Libraries)
Approach blueblog jboard pebble personalblog roller snipsnap webgoat

FBClassic 41 974 1 265 1 300 888 10 420 67 855 278 818 28 553
FBSet 23 298 670 65 875 9 855 8 101 71 043 14 515
FSk=0 12 721 672 74 179 9 830 11 013 43 135 17 894
FSk=1 24 509 672 80 604 9 818 9 737 28 261 17 393
FSk=2 37 352 672 81 185 9 818 9 737 30 284 17 393
FSk=3 47 866 672 81 680 9 818 9 737 31 083 17 393
FSk=4 59 215 672 81 715 9 818 9 737 31 083 17 393
FSk=5 70 608 672 81 715 9 818 9 737 31 083 17 393
IFDS-APA 9 249 664 80 396 9 341 8 654 27 965 16 244

Table 4.7.: Propagated Data-Flow Fact (Including Libraries)
Approach blueblog jboard pebble personalblog roller snipsnap webgoat

FBClassic OoM OoM OoM OoM OoM OoM OoM
FBSet 868 366 OoM OoM OoM OoM OoM 2 890 875
FSk=0 1 886 050 8 729 121 6 298 422 8 338 351 11 217 861 10 348 798 1 863 053
FSk=1 1 504 975 5 408 848 3 641 850 5 527 881 24 800 402 7 496 115 1 563 877
FSk=2 1 626 767 7 627 455 5 512 455 8 060 877 OoM 11 184 193 1 645 135
FSk=3 1 697 348 9 426 749 7 486 560 11 893 042 OoM 14 830 570 1 650 986
FSk=4 1 761 299 13 395 061 11 787 521 16 618 480 OoM 21 127 658 1 698 693
FSk=5 1 827 422 21 572 632 21 205 601 24 852 096 OoM 35 427 822 1 712 613
FSk=6 1 893 100 37 169 322 40 351 662 40 829 220 OoM OoM 1 724 049
FSk=7 1 958 780 OoM OoM OoM OoM OoM 1 736 034
IFDS-APA 512 437 2 304 776 1 430 491 2 211 013 3 064 090 2 866 567 607 135
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Moreover, our hypothesis that we can prevent the field-based model to produce data-flow
facts that spread throughout large parts of the analyzed program is experimentally
confirmed as FBSet reduces the amount of visited edges by more than a half on most
projects.
The visited edges of each analysis for projects of SecuriBench including libraries are

shown in Table 4.5. The number of ICFG edges—shown in the second row—is significantly
larger compared to the set-up excluding libraries. FSk=0 visits about double the number
of edges than FSk=1. For k values larger than 1 we observe virtually no difference in
visited edges and also IFDS-APA visits roughly the same amount of edges.

In addition to visited edges, we measured the number of propagated facts, i.e., we
counted each unique data-flow fact passed over an edge summed over all edges. The
results are shown in Table 4.6 and Table 4.7 for SecuriBench projects excluding and
including libraries, respectively. While visited edges shows how much becomes reachable
of the programs ICFG, the number of data-flow facts propagated takes also into account
how many unique data-flow facts are generated. For example, we can observe that
increasing the value for k does not affect the number of propagated facts beyond some
threshold, when analyzing jboard, pebble, personalblog, roller, snipsnap, and webgoat
excluding their libraries. However, it keeps increasing significantly for the blueblog project
with increasing values for k. Moreover, blueblog contains some code that repeatedly
writes tainted objects to fields. This code results in more unique access paths being
created the larger the limit for the access-path length gets. We can also observe that
IFDS-APA requires less data-flow facts to be propagated than FSk, which is to be
expected as access paths are abstracted after abstraction points resulting in less data-flow
facts being generated.

Consider now the propagated data-flow facts when including libraries: we can observe
that FBSet propagates less data-flow facts than FBClassic, even though it creates more
unique data-flow facts due to its model containing more information. This results from
the previous observation that only roughly half the number of edges are visited.
Similar to the observations from looking at the run times, we can observe that from

FSk=0 to FSk=1 the values decrease, whereas they increase from FSk=1 to FSk=2 and
keep increasing with increasing values for k. While less of the ICFG becomes reachable
with increasing values for k the amount of different data-flow facts that have to be
considered explodes fast. In particular, this can be observed for the projects jboard,
pebble, personalblog, and roller. The difference in the number of propagated facts between
IFDS-APA and FSk becomes also more significant when including libraries.

4.4.3. Discussion
From the results of the experiments we can conclude that FBSet clearly improves over
FBClassic. While the reachable graph is roughly halved in its size the increase in data-flow
facts being generated does not result in a noticeable drawback. Hence, we recommend
using our adapted model if a field-based analysis should be implemented. However, we
recommend not using a field-based model at all. Even though it is an imprecise model
we cannot confirm that it scales better than a field-sensitive approach.
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For the field-sensitive analyses the experiments do not show a clear winner. Both
approaches terminate on all projects for small values of k. However, we did not yet
consider precision, apart from a theoretical discussion in Section 4.3.5, and can therefore
not argue that IFDS-APA is comparable to, for example, FSk=3 with respect to precision.
If choosing k to be larger or equal to 1 both approaches visit similar amounts of edges.
As expected and described in the discussion of scalability problems, the k-limiting based
analysis creates large amounts of data-flow facts with increasing values for k. These result
in many data-flow facts being propagated and eventually that the analysis runs out of
memory. IFDS-APA terminates successfully on all projects and requires significantly less
data-flow facts to be propagated. We designed IFDS-APA with three goals in mind: (1)
do not analyze parts of the program if these are only reachable due to over-approximations,
(2) construct reusable method summaries, and (3) avoid state explosions. Experiments
confirm that compared to k-limiting as baseline, we achieved (1) and (2). Measurements
of the visited edges show that IFDS-APA always visited less edges than FSk, and the
number of propagated data-flow facts is significantly smaller. The latter results partially
from the reusable summaries, and partially from avoiding state explosions. Hence, we
can confirm that we also achieved (3). However, we observed one remaining source for
state explosions in IFDS-APA. We captured the code construct posing state explosions
in an artificial benchmark. The benchmarks are shown and discussed in Appendix A. We
assume this source can be eliminated in future work and discuss necessary changes in
Section 4.6.1.

We identified additional aspects of the analysis implementation that can be improved
to increase scalability further, thus it may be possible to scale IFDS-APA up to the size
of the Java Class Library. We will discuss these in Section 4.6.

4.5. Related Work
We here relate to field-sensitive data-flow analyses and how they approach the problem of
modeling fields, and to existing work on abstract summaries. The approach we contributed
in Section 4.3 is similar to concepts of the so called context-free-language reachability
problem, thus we also relate to some works in this field.

4.5.1. Field-Sensitive Data-Flow Models
The access-path model is broadly used within analyses, such as alias analyses [16] or
taint analyses [7, 75].

One attempt by Deutsch [18] to circumvent the limit of the access-path model was to
use a symbolic representation of an access path in which reoccurring field accesses are
grouped into a single symbolic one. The symbolic notation is close to a regular expression
over the fields. For example, if two aliased values are both repeatedly written to a field
f in the same loop, Deutsch’s approach is able to learn that a.fn and b.fn may be
aliased, whereas n is some arbitrary number of times the aliased values are nested. The
advantage of the approach is that it is known that the nesting has happened the same
times for both values and that only the n-th nesting is aliased with each other. While
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1 B bar(B b) {
2 while ( unknown ()) {
3 b = b.f;
4 }
5 B c = b.f;
6 return c;
7 }

(a)

1 B baz(B b) {
2 while( unknown ()) {
3 if( unknown ())
4 b = b.f;
5 else if( unknown2 ())
6 b = b.g;
7 else if( unknown3 ())
8 // ...
9 }

10 return b;
11 }

(b)

1 main () {
2 Object x = source ();
3 A a = new A();
4 A b = new A();
5 a.f = x;
6 b.f = a;
7 B c = foo(b);
8 Object d = c.g;
9 sink(d);
10 }
11 B foo(A x) {
12 A a = x.f;
13 Object b;
14 if( unknown ())
15 b = a;
16 else
17 b = foo(a);
18 B c = new B();
19 c.g = b;
20 return c;
21 }

(c)

Figure 4.9.: Examples Used to Introduce Generalized Access Graphs

this is a solution to overcome k-limiting in this special case, it does not solve the general
case. If only one value is considered, n has no more meaning. This results in a simple
over-approximation comparable to a variant of k-limiting as it is applied in FlowDroid.

FlowDroid [7] is a taint analysis for Android applications. In addition to limiting the
access path to be at most of size k, FlowDroid collapses sub-paths between two equal
field accesses in an access path. If a sub-path is collapsed, FlowDroid flags that this sub
path may be repeatedly read. This is an over-approximation and may result in fields
being read for which a taint has never been written.

Geffken et al. [27] propose an inter-procedural side-effect analysis that is also capable
of providing points-to information. To ensure field-sensitivity, they extend Deutsch’s
symbolic access path to a generalized access graph, which models field accesses as a
directed graph; reappearing field accesses by the same statement correspond to cycles in
the graph. These graphs can be represented similar to finite-state automaton and also
in examples they frequently use regular expressions to denote access graphs. Modelling
access paths as access graphs ensures that the data-flow fact domain is finite. It is an
interesting approach that could have been part of our experiments, thus we will discuss
their approach in more detail here than other related work.
Consider the example shown in Figure 4.9a. The approach by Geffken et al. will

compute a summary for method bar by propagating a data-flow fact consisting of a

97



4. Field-Aware Analysis

generalized access graph rooted at parameter b. After the first loop iteration the fact will
contain a graph representing that variable b could point to the value of parameter b, if
the loop was not executed at all, or to b.f3. The index is used to distinguish statements
at which a field has been read, i.e, field f has been read in the statement of Line 3. Note
that in [27] a superscript notation is used instead of the subscript/index notation we use
here to distinguish the representation from footnotes. The computed graph is equivalent
to the regular expression b.f3?. After another iteration over the loop the graph becomes
b.f3

∗. In the graph, each statement reading a field is represented by one node. The
analysis remembers at which node in the graph it currently is, and when another field
is being read at some statement a directed edge to the respective node is added to the
graph. In the example, the same statement is used to read field f again. Hence, an
edge from the node representing the statement in Line 3 to itself is added. Thus, the
analysis is able to detect that f can be read arbitrary often by the loop. The graph does
not change anymore for additional loop iterations and a fixpoint is reached, because no
additional edges are added. Propagating this graph now to the statement in Line 5, the
analysis will add an edge to another node representing that field f is being read. Note
that it is another node, because it is another statement reading the same field. The
resulting graph is equivalent to b.f3

∗.f5. The result for method bar is that the returned
value can point to fields of the parameter that can be accessed via any access path in the
language L(b.f3

∗.f5).
Generalized access graphs represent a smart alternative to k-limiting that seems not

to introduce over-approximations. However, as we learned from [60] and discussed
in Section 4.3.3 a context- and field-sensitive analysis is undecidable. In addition,
generalized access graphs represent regular languages, but we argued in Section 4.3.3
that the representation of accessed fields requires a context-free language. This mismatch
can be explained when considering the handling of summaries in the analysis proposed
by Geffken et al.
To illustrate this handling, consider the example shown in Figure 4.9c. Assume the

analysis starts with analyzing method foo. This method reads field f before an optional
recursive call to itself, and writes field g afterwards. The analysis will wait at the recursive
call until summaries are available for foo, i.e., it computes summaries as part of a fixpoint
iteration similar to the processing of the IFDS framework. The non-recursive summary
that will be computed provides information that the returned value is new18, i.e., the
object instantiated in Line 18. In addition, it contains points-to information that new18.g
points to x.f12. This summary is now applied at the call site in Line 17 and yields a new
summary for foo with an updated generalized access graph for the points to information.
The returned value is the same, i.e., it is new18. The updated points-to information is
that new18.g points to x.f12

+. Applying this updated summary again for the recursive
call does not yield a change in the summary and a fixpoint is reached for foo.
Note that the final summary is not a precise description of the method’s behavior.

Moreover, observe that foo will always read field f as many times as it writes field g.
However, this is not reflected in the summary. If we continue the analysis for method
main, it will actually report that a connection between source and sink exists. This
report is a false positive that directly results from the over-approximation the handling
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of summaries introduces.
This is not a specific drawback of their approach, but a general result of the proof that

the problem to be solved by the analysis is actually undecidable. IFDS-APA will report
false warnings for similar cases as well. With respect to precision, both approaches are
conceptually similar. However, we discussed possibilities to increase the precision by
using configurable algorithms for the language over-approximation.
In terms of scalability, we expect an analysis based on generalized access graphs to

perform worse than IFDS-APA. We illustrated in Figure 4.3c a simple code structure
that results in state explosions when using k-limiting. We show in Figure 4.9b an
adaptation of the same example to illustrate that similar problems arise when using
generalized access graphs. Depending on the order in which statements are processed by
the analysis, it may propagate data-flow facts representing graphs equal to b, b.f4, b.g6,
b.f4?, b.g6?, b.f4.g6, b.g6.f4, etc. As for k-limiting, the problem becomes worse with
a growing amount of different fields being accessed. We discussed before that we actually
observed code structures like this in real code, thus this is not only a theoretical problem.
In [27] generalized access graphs were only evaluated on very small programs, the

largest program consisting only of 121 methods. We expect explosions in the number
of states to be considered when analyzing larger programs. In addition, the analysis
as defined by the authors always computes data-flow facts for the whole program, i.e.,
they do not restrict the analysis to focus only on small parts of an application that are
reachable by tainted values. Our experiments have shown that this has a negative impact
on scalability. In summary, we do not expect an analysis using generalized access graphs
to scale.

4.5.2. Abstract Summaries
In [13] Chandra et al. introduce a technique of generalization to produce summaries
which are applicable to many data-flow facts. As the proposed tool Snugglebug reasons
about weakest preconditions along the control flow to reach a certain statement, their
data-flow domain consists of conditions. Hence, their generalization technique differs
significantly from ours.

The framework proposed by Yorsh et al. [82] is a more theoretical approach on how to
gain more concise summaries by composing the flow-functions and their preconditions.
As examples they conduct a typestate analysis and constant propagation. Within
their typestate analysis they reason about fields by using 1-limiting, within constant
propagation they do not handle fields.

Landi and Ryder [42] used in their alias analysis an approach for which they abstracted
access paths as non-visible inside callees. Using this technique the analysis results for the
procedure become reusable across multiple calling contexts. When evaluating returns
they restore access paths according to the respective calling contexts. This technique is
very similar compared to Access-Path Abstraction that abstracts over an access path at
abstraction points. Moreover, when considering only abstraction points at the beginning
of a method, the approaches behave nearly identical. However, Access Path Abstraction
uses additional abstraction points in loops and at return sites. The approach by Landi and
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Ryder does not include a similar concept, therefore, they still require over-approximations
to limit the size of access paths in the presence of cyclic program flows and are prone to
the state-explosion issues we described for k-limiting.
Jensen et al. [37] represent in their data-flow facts the whole state of the heap. As

they point out, this makes summaries nearly impossible to be reused. To obtain more
reusable summaries, they therefore represent properties of the heap as unknown and
recover properties as soon as they are accessed. They call this concept lazy propagation
as properties are propagated into callees on-demand. When applying summaries they
replace unknown properties by the values available in the calling context. The idea of
abstracting at calls and recovering abstracted state is very similar to ours. However, we
are the first to show that if applying it at loops and return edges as well one can remove
the need of techniques such as k-limiting to ensure access paths do not grow indefinitely.

4.5.3. Context-Free-Language Reachability
A context-free-language reachability problem (CFL-RP) can be seen as a graph reachabil-
ity problem, in which paths are only considered to connect two nodes if the concatenation
of the labels on the edges of the path is a word in some context-free language [59].
Reps has shown that several analysis problems can be treated as CFL-RP, amongst
others he used it to establish context-sensitive paths, to model valid field accesses, and
proved that both at the same time is undecidable [60]. Sridharan et al. [71] formulate
Andersens points-to analysis [4] as CFL-RP, i.e., they say a variable assigned by a field
read instruction may point to an object assigned to the same field if the base values alias.
This alias relation requires a context-free language, as base values themselves can be
assigned to fields. Addressing performance and memory requirements, their on-demand
analysis starts with a regular over-approximation of the context-free language to get an
imprecise result fast that is refined in further steps. This guarantees that some result
is always available, even if the computationally more expensive computation using the
context-free language is not able to terminate in time. The regular language basically
assumes base values of the same field write and field read instructions for the same field
being aliased, thus it is a field-based analysis using the regular language. Their analysis
using the context-free language is flow-insensitive, context-insensitive, and field-sensitive,
hence, it addresses a smaller problem as we approached in this work.
Xu et al. [81] propose a points-to analysis using CFL reachability problems for field-

sensitivity and context-sensitivity, whereas they approximate in case of recursive calls.
Different to our approach is that they use independent languages to model the calling
context and to model the heap structure, i.e., field accesses. Paths in the so called
interprocedural symbolic points-to graph are matched against both languages, whereas
in our approach we use one language that describes context-sensitive paths itself and
that is extended step by step while the analysis progresses, and a second language to
describe valid heap structures, similar to the language Xu et al. proposed.
There are many more works expressing analysis problems as CFL-reachability prob-

lems [58, 56, 85, 80]. Different to our work is that CFL-RP is used to filter invalid paths
in a supergraph representing the whole analyzed program, whereas we express possible
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program paths themselves as a language that we intersect with another language to rule
out invalid field accesses. IFDS-APA has the advantage that it does not compute a
supergraph expressing the whole program first only to remove invalid paths from the
graph later. Moreover, it does not include invalid paths in the first place and constructs a
language instead of a supergraph. Note that our experiments have shown that computing
the supergraph necessary for CFL-RP is already a problem: basically this supergraph is
equivalent to the results of a k-limiting based taint analysis whereas k = 0. The analysis
FSk=0 did run out of memory when analyzing the Java Class Library, i.e., traditional
CFL-RP based analyses cannot be applied.

4.6. Next Steps
Results of the performed experiments show that we did not solve the scalability problem
in its full extent, yet. However, experiments did also not indicate that the scalability
problem is unsolvable and we believe that with additional refinements FlowTwist can
finally scale to the size of the complete Java Class Library and at the same time use a
sound model for fields. In the following, we discuss steps that should be taken next for
further improvements.

4.6.1. Improvements to the Disjointness Algorithm
During experiments we noticed that the way we handled non-linear production rules in
the disjointness algorithm (cf. Section 4.3.7) results in many states being duplicated.
Recall that for a non-linear production rule A→ BαCβ, for A,B,C ∈ AbstractionPoints
and α, β ∈ Modifiers∗ we prefixed all combined rules of C with Bα. Moreover, rule
combinations of C are computed for every unique prefix occurring. While at first this
seems to be acceptable, it turned out that in practice this produces a lot of states.
To illustrate the combinatorial problem, let’s assume that C contains a production
rule C → DE, for D,E ∈ AbstractionPoints. Consequently, the algorithm proceeds
to combine rules of E and prefixes results by BαD, i.e., the occurrence of multiple
non-linear rules results in longer and longer prefixes. Even worse, when recursive calls
occur that have multiple possible call targets the analysis can run into situations in which
non-terminals are added to prefixes in arbitrary orders. As a result prefixes of all possible
orders are generated.
In the following, we will outline an alternative to the handling of non-linear rules in

the disjointness algorithm. The idea is to create conditional rules that are only applicable
if some prefix writes fields consumed by some term representing the condition. We will
illustrate the idea by an example shown in Figure 4.10. Nodes in this graph represent
non-terminals and edges production rules. Edges are labelled with the right side of the
production rule the edge represents. Assume the algorithm starts with the rule S → CZ.
It now proceeds with combining rules of C and Z independently. This generates the
rules Y → g and C → Ag. The algorithm recognizes that Z can be mapped transitively
to some term that does not contain non-terminals and is either empty, or representing
a rule popping from the stack. In that case, the algorithm is allowed to continue with
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non-terminals occurring left of Z in some rule. In our example this is C that has the
pushing rule C → Ag that can be combined with the popping rule Y → g and the rule not
manipulating the stack X → ε. The combination yields Y → [Ag]A and X → [Ag]Ag,
respectively. These rules are only applicable if they are prefixed by Ag, which we denote
by [Ag]. When continuing to combine rules any existing condition has to be kept, yielding
the rules Y → [Ag]hf and Z → [Ag]h. Now, the initial rule S → CZ, which does not
manipulate the stack can be combined with Z → [Ag]h yielding S → h, if C fulfills the
constraint [Ag]. For C we have the rule C → Ag, therefore it fulfills the constraint. Note
that in S → h we do no longer include the constraint [Ag], because it has been satisfied
by the prefix (that we therefore also remove in the resulting rule).
Compared to the handling of non-linear rules as described in Section 4.3.7, we are

now able to reuse combined rules that do not depend on prefixes. In addition, prefixes
used as conditions will always be rules pushing on the stack and not the immediate
prefix observed in some non-linear rule. Therefore, the combinatorial problem is reduced,
because multiple non-terminals that can be applied in arbitrary orders will be skipped.
This can be observed in the running example: instead of using C as condition we used Ag.
In addition, when we start the algorithm with a second rule T → DZ and D has a rule
D → C, then we first combine rules of each non-terminal independently yielding D → Ag.
Hence, D immediately satisfies the constraint [Ag] and we can apply Z → [Ag]h yielding
T → h.
We hypothesize that this improvement should solve the scalability issues observed

during experiments. However, in future work we need to implement the outlined concept
and experimentally confirm this hypothesis.

4.6.2. Tracking Type Boundaries
While performing experiments with the proposed inside-out analysis, we noticed that
tracking the type of tainted variables allows to avoid many flows resulting in a significant
increase in scalability of the analysis. Knowing the type of a tracked value it is possible
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to kill a data flow at type casts that are known to fail at runtime. Such situations appear
surprisingly often. We identified one frequent cause for invalid casts: the imprecision
of the call graph. For example, assume a method with a generic return type and a call
site of that method, whereas the receiver’s type is statically known to substitute the
generic type by some specific type. At the respective return site the return value will be
cast to that specific type. Note that the cast expression is omitted in the source-code
representation, but is present in the bytecode due to type erasure in Java. A taint flowing
unbalanced through the method will also be propagated to the return site with the cast
expression, but this cast may be invalid for some tracked types. Similar cases can happen
for balanced flows as well.

With the use of IFDS-APA we lost the ability to easily track types of a tainted value.
When writing a tainted value to a field, the analysis continues tracking the base value
of the field that has a different type. Nevertheless, when the field is being read the
analysis should recover the type information that was available for the value stored in the
field. Unfortunately, this type information has to be represented in the data-flow domain
somehow. So in addition to field modifiers it is necessary to include two type modifiers:
one modifier specifying a known type, and another modifier used at cast expressions that
requires the presence of a specific type.
At the source of a tainted value the exact type of that value is usually known. But,

the type of a value is usually unknown for arbitrary positions in the program flow. In
many cases only an upper type bound can be statically inferred. Cast expressions can
lower this upper type bound, potentially resulting in a type bound that no existing type
can satisfy, effectively killing the data flow.

In addition, it can also be beneficial to track lower type bounds. Knowing the precise
type of a tainted value at a source allows to kill the data flow at invalid downcasts, i.e.,
the lower type bound becomes a super type of the upper type bound. Lower type bounds
can be increased, if the tainted value is used as receiver of a method call and the method
the call is dispatched to is a method overwritten by a sub type, i.e., it is known that the
receiver cannot be that sub type.

It is possible to encode type boundaries as terminals in addition to the field modifiers
in L(B′), because the type information is stored and restored together with field read
and field write modifiers. Moreover, if a field is being written the type information is
redefined and previous type definitions are only restored after the same field is read.

However, arbitrary extensions to the context-free language describing additional infor-
mation that must hold for valid flows are not possible in general. We already compared
the matching of field modifiers to the balanced parenthesis problem. Assume an extension
requires to match patterns as in this problem. We illustrate this extension by terminals (
and ). If the patterns of the extension should be allowed to appear interwoven with the
balancing problem of the field modifiers, e.g., the following should be a valid path (f )f ,
then the problem becomes undecidable as Reps has shown [60].
Observe that the patterns are not interwoven for the type boundaries, thus the

extension described here is possible. However, if this extension does also provide the
desired improvement of the analysis’ scalability needs to be validated experimentally.
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4.6.3. Precision and Alias Analysis
In the scope of this work we did not evaluate the precision of the proposed models to track
fields. Two steps have to be addressed before a precision evaluation can be performed:
the integration of path reconstruction with IFDS-APA and the integration of an alias
analysis.

In Section 3.3 we have added the ability to reconstruct paths to the IFDS framework.
We also extended the IFDS framework with abstraction points to implement a field-
sensitive model denoted as IFDS-APA. Yet, we have not integrated both extensions
with each other, such that when using IFDS-APA paths may be reconstructed that are
actually invalid, because the reconstruction mechanism is yet not aware of the validity
checks that intersect with the context-free language L(B′). While this is conceptually
possible, it integrates with many internal aspects of the implementation and constitutes
quite some engineering effort.
A fair precision comparison between the proposed analysis and a field-based analysis

requires incorporating an alias analysis. In the current progress of the analysis we focused
on scalability first, which is alone a tough challenge as experiments showed, and therefore
did not yet include an alias analysis. This actually yields unsound results as flows through
aliased variables may be missing. Including an existing alias analysis is rather simple,
given the alias analysis is sound for analyzing a library in isolation. An alias analysis can
be invoked from within the implementation of flow functions handling field read and write
instructions. Yet, an alias analysis itself will face scalability issues, if it is flow-sensitive,
field-sensitive and context-sensitive. However, the proposed approach IFDS-APA itself
can be used as a foundation to implement such an alias analysis. Arzt et al. describe
as part of their work on FlowDroid [7] how an on-demand alias analysis can be built
on top of the IFDS framework. They integrate that alias analysis with their forward
analysis that is also based on the IFDS framework. Whenever required, the forward
analysis spawns a backward analysis to search for aliases using the current context of
the forward analysis. Both analysis, the forward and backward analysis, use a variant of
k-limiting to model field accesses. Therefore, both are subject to precision loss and state
explosions. However, both could be based on top of IFDS-APA to benefit from the
contributions in this work. Späth et al. continued the idea of FlowDroid’s alias analysis.
Their implementation called Boomerang [68] is integrated with the IFDS framework
and is separated from any specific analysis implementation. Boomerang replaces the
k-limiting model with a model based on access graphs [18, 40] increasing the precision of
the results significantly. Discussions with Späth as well as early results of a prototype
confirm that IFDS-APA can be integrated with Boomerang.
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In this work we pursued several aspects of implementing and designing static program
analysis. We focused, in particular, on the scalability of taint analysis when analyzing
a library in isolation. Throughout the thesis we used as motivating use case the goal
of detecting unguarded caller-sensitive method vulnerabilities. We identified several
challenges that arise when trying to implement such an analysis: the requirement of a
sound call-graph algorithm, maintainability of the implementation, collecting information
necessary to produce comprehensible reports, handling of fields, and most challenging
solving all of these while the analysis has to scale to the whole Java Class Library.

Sound Library Call Graph Many existing approaches use state-of-the-art call-graph
algorithms to analyze only library code and ignore that call graphs generated by these
algorithms are missing edges. We showed an attack scenario that particularly benefits from
this unsoundness of the algorithms as it exploits vulnerabilities that cannot be detected
by static analysis using such call-graph algorithms. We proposed simple adaptations of
two commonly used algorithms—CHA and VTA—yielding sound results.

Maintainability While implementing the analysis the code written was structured well at
first, given that the IFDS framework forces the programmer to implement flow functions
separated from other problems. But, with growing complexity and more and more
language features considered by the analysis these flow functions got many different
responsibilities. We proposed a new layer of abstraction that allows to separate code
for each responsibility. This design is again independent of the specific analysis we
implemented and can be reused by any analysis using the IFDS framework.

Reporting We extended the IFDS framework to build predecessor chains between data-
flow facts. These chains can be traversed to reconstruct paths via which a vulnerability
can be exploited. We provide these extensions as part of the Heros implementation of
the IFDS framework, hence they can be reused by every analysis using Heros. Moreover,
the proposed solution is a general solution that does not depend on our specific analysis
problem nor its analysis implementation.

Scalability and Field Sensitivity By designing the analysis as inside-out analysis con-
sisting of synchronized forward- and backward-analyses we were able to successfully
analyze the Java Class Library. However, this was only successful as long as fields were
only considered intraprocedurally. By modelling fields via field-based or field-sensitive
approaches our experiments showed that no approach is able to scale to the large Java
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Class Library. We proposed an alternative field-based model and showed that it is an
improvement over the field-based model as it is classically defined. We implemented a
k-limiting based field-sensitive model that is commonly adapted by field-sensitive analyses.
We identified several scenarios in which this model fails to scale. With these in mind,
we designed a novel algorithm using abstraction points. In experiments and artificial
benchmarks we can show that this new approach can handle most of the scenarios well,
while k-limiting cannot. We presented directions for further improvements that may
allow to also handle the remaining scenarios.
In summary, we presented solutions to soundness of call graphs, maintainability of

analysis implementations, and reporting. Scalability of an analysis for the goal at hand
turned out to be a much larger problem than expected in the beginning. While we were
not able to provide a complete solution to it, we took several important steps towards
reaching our goal and are closer to reaching it then ever before. Furthermore, we outlined
improvements that have the potential of achieving the goal in the future.
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A. Benchmarks Provoking State Explosions

During experiments we identified several structures in code that pose scalability threats
and derived benchmarks from these that are listed in the following. All benchmarks
can be configured in their complexity by increasing the amount of fields, sub types, and
invocations. Elements that can be repeated are named a, b, c, etc. and marked by a
comment “// ...”. In all benchmarks an analysis should assume an attacker to call
the method main with arbitrary parameters. One of these is passed to Class.forName
as parameter and from there the return value has to be tracked that will eventually be
returned by main. All benchmarks make use of the following data structure:
public static class DataStructure {

Class <?> result ;
DataStructure a;
DataStructure b;
DataStructure c;
// ...

}

Note that in the benchmarks we write ds.a = ds, whereas we actually want to express
the following behavior:
DataStructure tmp = new DataStructure ();
tmp.a = ds;
ds = tmp;

We can use the short syntax for our analysis implementation as it does not exploit
the knowledge that the local ds used on the left and right hand-side of the assignment
must point to the same object. In fact, the analysis implementation will keep a data-
flow fact representing that ds is tainted and will generate a second independent fact
representing that after the assignment the field a of ds is tainted. The handling for
field-read instructions is analog.
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A. Benchmarks Provoking State Explosions

A.1. Intraprocedural Loop
This benchmark writes and reads fields in a loop, whereas in each iteration the performed
operation can be writing or reading any field. While IFDS-APA can solve this very
easily a k-limiting based approach will generate

∑k
n=0 |F |n different access paths for F

being the set of written fields.
public static Class <?> main( String name)

throws ClassNotFoundException {
DataStructure ds = new DataStructure ();
ds. result = Class. forName (name );

while (new Random (). nextBoolean ()) {
switch (new Random (). nextInt ()) {
case 1: ds.a = ds; break ;
case 2: ds = ds.a; break ;
case 3: ds.b = ds; break ;
case 4: ds = ds.b; break ;
case 5: ds.c = ds; break ;
case 6: ds = ds.c; break ;
// ...
}

}

return ds. result ;
}
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A.2. Field Accesses Before Recursive Calls

A.2. Field Accesses Before Recursive Calls
This benchmark writes and reads fields before a recursive call. Note that the type of
foo at runtime is statically unknown, hence calls to all sub types of IFoo have to be
taken into account. As in the intraprocedural benchmark a k-limiting based analysis
generates

∑k
n=0 |F |n different access paths for F being the set of written fields. Due

to the abstraction point placed at the beginning of a method IFDS-APA can handle
this case similar to the intraprocedural one, but with the difference that one abstraction
point per sub type is participating in the cycle instead of only one at the beginning of an
intraprocedural loop.
public static interface IFoo {

DataStructure before ( DataStructure ds);
}

public static Class <?> main( String name , IFoo foo)
throws ClassNotFoundException {

DataStructure ds = new DataStructure ();
ds. result = Class. forName (name );
return foo. before (ds). result ;

}

public static class A implements IFoo {
public IFoo foo;
public DS before (DS ds) {

if (new Random (). nextBoolean ()) ds = ds.a;
if (new Random (). nextBoolean ()) ds.a = ds;
if (new Random (). nextBoolean ()) ds.a = null;
if (new Random (). nextBoolean ()) ds = foo. before (ds);
return ds;

}
}

public static class B implements IFoo {
public IFoo foo;
public DS before (DS ds) {

if (new Random (). nextBoolean ()) ds = ds.b;
if (new Random (). nextBoolean ()) ds.b = ds;
if (new Random (). nextBoolean ()) ds.b = null;
if (new Random (). nextBoolean ()) ds = foo. before (ds);
return ds;

}
}
// ...
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A. Benchmarks Provoking State Explosions

A.3. Field Accesses After Recursive Calls
This benchmark writes and reads fields after a recursive call. Note that the type of
foo at runtime is statically unknown, hence calls to all sub types of IFoo have to be
taken into account. As in the intraprocedural benchmark a k-limiting based analysis
generates

∑k
n=0 |F |n different access paths for F being the set of written fields. Due to

the abstraction point placed at return sites IFDS-APA can handle this case similar to
the intraprocedural one, but with the difference that one abstraction point per sub type
is participating in the cycle instead of only one at the beginning of an intraprocedural
loop.
public static interface IFoo {

DataStructure after( DataStructure ds);
}

public static Class <?> main( String name , IFoo foo)
throws ClassNotFoundException {

DataStructure ds = new DataStructure ();
ds. result = Class. forName (name );
return foo.after(ds). result ;

}

public static class A implements IFoo {
public IFoo foo;
public DS after(DS ds) {

if (new Random (). nextBoolean ()) ds = foo.after(ds);
if (new Random (). nextBoolean ()) ds = ds.a;
if (new Random (). nextBoolean ()) ds.a = ds;
if (new Random (). nextBoolean ()) ds.a = null;
return ds;

}
}

public static class B implements IFoo {
public IFoo foo;
public DS after(DS ds) {

if (new Random (). nextBoolean ()) ds = foo.after(ds);
if (new Random (). nextBoolean ()) ds = ds.b;
if (new Random (). nextBoolean ()) ds.b = ds;
if (new Random (). nextBoolean ()) ds.b = null;
return ds;

}
}
// ...
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A.4. Multiple Call Sites and Field Accesses Before and After Recursive Calls

A.4. Multiple Call Sites and Field Accesses Before and After
Recursive Calls

This benchmark writes and reads fields before and after a recursive call. Again a k-
limiting based analysis generates

∑k
n=0 |F |n different access paths for F being the set

of written fields. While this benchmarks seems to be similar, it requires a different and
more complex handling by IFDS-APA than the previous ones. When reading a field it
could be the case that this field has been written before in any called method, but it can
also be written in any callee.
public static interface IFoo {

DataStructure before ( DataStructure ds);
DataStructure after( DataStructure ds);

}

public static Class <?> main( String name , IFoo foo)
throws ClassNotFoundException {

DataStructure ds = new DataStructure ();
ds. result = Class. forName (name );

ds = foo. before (ds);
ds = foo.after(ds);
ds = foo. before (ds);
ds = foo.after(ds);
ds = foo. before (ds);
ds = foo.after(ds);
// ...
return ds. result ;

}

public static class A implements IFoo {
public IFoo foo;
public DS before (DS ds) {

if (new Random (). nextBoolean ()) ds = ds.a;
if (new Random (). nextBoolean ()) ds.a = ds;
if (new Random (). nextBoolean ()) ds.a = null;
if (new Random (). nextBoolean ()) ds = foo. before (ds);
return ds;

}
public DS after(DS ds) {

if (new Random (). nextBoolean ()) ds = foo.after(ds);
if (new Random (). nextBoolean ()) ds = ds.a;
if (new Random (). nextBoolean ()) ds.a = ds;
if (new Random (). nextBoolean ()) ds.a = null;
return ds;

}
}
// ...
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A. Benchmarks Provoking State Explosions

Table A.1.: Run Time for Intraprocedural Loop Benchmark in Seconds
Number of Fields

Approach 5 6 7

FSk=0 < 0.1 < 0.1 < 0.1
FSk=1 < 0.1 < 0.1 < 0.1
FSk=2 0.1 0.1 0.1
FSk=3 0.2 0.3 0.4
FSk=4 0.5 0.7 1.0
FSk=5 1.2 2.0 3.4
FSk=6 3.9 10.0 24.6
FSk=7 19.9 61.8 170.3
FSk=8 105.1 > 300 > 300
IFDS-APA < 0.1 < 0.1 < 0.1

Table A.2.: Run Time for Field Accesses Before Recursive Calls Benchmark in Seconds
Number of Fields

Approach 4 5 6

FSk=0 < 0.1 < 0.1 0.1
FSk=1 0.1 0.2 0.2
FSk=2 0.5 0.6 0.9
FSk=3 1.7 3.6 8.9
FSk=4 14.2 69.5 > 300
FSk=5 260.3 > 300 > 300
FSk=6 > 300 > 300 > 300
IFDS-APA 6.1 260.5 > 300

A.5. Benchmark Results
We analyzed the benchmarks using the k-limiting based analysis and the IFDS-APA
based analysis as described in Section 4.4 and measured the run times. The results for
the first benchmark consisting of an intraprocedural loop are shown in Table A.1. As
expected IFDS-APA can handle this situation well, whereas k-limiting becomes slower
with increasing values for k.

Results for the second benchmark are shown in Table A.2. Again, k-limiting behaves
as expected with increasing run times for larger values for k. But, also IFDS-APA shows
increasing run times. These result from the problem discussed in Section 4.6.1 and can
likely be solved by the alternative implementation proposed there.
Results for the third benchmark are shown in Table A.3 and are as expected: k-

limiting’s run times increase with higher values for k and IFDS-APA shows stable run
times. This benchmark is not affected by the problem described in Section 4.6.1, because
in this benchmark field-read instructions can only matched to field writes via called
methods, which in this case happens only via regular, and linear production rules.
For the fourth benchmark we show results in Table A.4. We can observe again that

k-limiting has increasing run times if the number of fields is increased, whereas it shows
stable run times if only the number of call sites increases. Run times of IFDS-APA
increases in both cases. Note that we can again point to Section 4.6.1 as a potential
solution to this, as non-linear rules are involved in both cases.
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A.5. Benchmark Results

Table A.3.: Run Time for Field Accesses After Recursive Calls Benchmark in Seconds
Number of Fields

Approach 7 8 9

FSk=0 0.1 0.1 0.1
FSk=1 0.1 0.1 0.2
FSk=2 0.3 0.4 0.5
FSk=3 0.9 1.3 1.7
FSk=4 3.2 4.4 7.1
FSk=5 14.7 27.0 50.6
FSk=6 104.3 225.2 > 300
FSk=7 > 300 > 300 > 300
IFDS-APA 0.4 0.5 0.5

Table A.4.: Run Time for Multiple Call Sites and Field Accesses Before and After
Recursive-Calls Benchmark in Seconds

Number of Fields / Number of Call Sites
Approach 3/4 3/6 3/8 4/2 4/4 5/2

FSk=0 0.1 0.1 0.1 0.1 0.1 0.1
FSk=1 0.2 0.2 0.2 0.2 0.2 0.2
FSk=2 0.5 0.5 0.6 0.8 0.8 1.2
FSk=3 2.5 2.5 2.5 4.0 4.2 10.4
FSk=4 9.0 9.2 9.3 48.0 48.2 236.4
FSk=5 70.8 71.4 73.7 > 300 > 300 > 300
FSk=6 > 300 > 300 > 300 > 300 > 300 > 300
IFDS-APA 2.7 13.2 40.9 55.2 > 300 > 300
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