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ABSTRACT

Monitoring and control systems have played a central role in industry and everyday
life, often in a non-intrusive manner. Yet, they will become more ubiquitous, au-
tonomous and distributed, with the rapid development of the envisioned technologies
of "smart homes", "smart cities" and "industry 4.0". All these new technologies are
built upon the enabling technology of Wireless Sensor Networks (WSNs). Their success
depends to a large extent on the communication capability of WSNs. Fast reaction and
feedback is a common characteristic of these technologies, therefore, how to achieve
low-latency, high-reliability and flexibility in WSN communication is a key challenge,
and a decisive success factor.

WSN refers to a network that connects a number of low-cost, low-power sensor
nodes which have sensing and/or actuating capabilities, and can communicate with
each other over short distance via a low-power radio. The predominant advantages that
WOSN offers are 1) distribution and fault tolerance in communication and sensing/ac-
tuation by leveraging large number of sensor nodes, 2) cost reduction by removing the
cables of communication and power supply, and 3) flexibility in the deployment of
tiny cableless sensor nodes. However, one main drawback of the wireless technology,
in contrast to the mature wired counterpart, is the much weaker communication
capability — the combined result of stronger interference in the wireless channel, the
weak signal strength of low-power radios and the complexity in the scheduling of
multi-hop wireless communication.

The main goal of the thesis is to facilitate the transition from wired technology
to wireless technology for industrial automation. Specifically, I provide solutions for
improving and guaranteeing Quality of Service (QoS) in WSN communication.

I tackle the problem for two scenarios where the network topology is either known
or not. When the network topology is known, I adopt an approach of reservation-based
scheduling, i.e., through centralized scheduling of communication opportunities, in or-
der to optimize various communication metrics. In the thesis, I propose a very efficient
multi-channel scheduling algorithm that gives nearly optimal latency performance
(within 1.22% of the optimum) for the tree-based convergecast, which is by far the
predominant communication pattern, especially for monitoring applications. I also
propose very efficient multi-channel scheduling algorithms that offer high schedulabil-
ity and low overhead for multi-flow periodic real-time communication on an arbitrary
network topology with multiple gateways. Such a communication pattern is typical of
a multi-loop control system.

On the other hand, if the network topology is unknown or changes very dynamically,
I optimize the QoS in communication by exploiting concurrent transmission on the
physical layer, which is routing-free by nature. First, I proposes a simple model for
concurrent transmissions in WSN which accurately predicts the success or failure in
the packet reception. Then I design the Sparkle protocol for highly reliable, low latency
and energy efficient multi-flow periodic communication. Finally, it presents the Ripple
protocol for high throughput, reliable and energy efficient network flooding using



pipeline transmissions and forward error correction, which significantly improves the
state-of-the-art.

Although the thesis assumes WSN as the communication technology and industrial
automation as the application scenario, it is by no means restricted to these settings
since the proposed solutions can be applied to other wireless networks and other
scenarios with similar communication patterns and QoS concerns.
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ZUSAMMENFASSUNG

Uberwachungs- und Steuerungssysteme sind von zentraler Bedeutung sowohl in der
Industrie als auch im alltédglichen Leben. Oftmals arbeiten sie in kaumwahrnehmbarer
Art und Weise. Dennoch werden sie mit der rasanten Entwicklung der aufkommenden
Technologien "Smart Homes", "Smart Cities" und "Industrie 4.0" noch allgegenwaér-
tiger, autonomer und verteilter. All diese neuen Technologien basieren auf drahtlosen
Sensornetzen (WSNs). Ihr Erfolg hangt zu einem grofien Teil von der Kommunika-
tionsfahigkeit von drahtlosen Sensornetzen ab. Schnelle Reaktion und Riickkopplung
sind eine gemeinsame Charakteristik dieser Technologien, weshalb das Erreichen einer
geringen Latenz, einer hohen Zuverldssigkeit sowie Flexibilitdt bei der Kommunika-
tion in drahtlosen Sensornetzen eine grofie Herausforderung und ein entscheidender
Erfolgsfaktor ist.

Ein drahtloses Sensornetz reprasentiert ein Netzwerk bestehend aus einer Reihe von
kostengiinstigen Sensorknoten mit wenig Leistung, welche iiber Mess- und/oder Ak-
tuatorfahigkeiten verfiigen. Diese Knoten kommunizieren drahtlos miteinander tiber
kurze Distanzen mittels eines leistungsschwachen Funkmoduls. Die Hauptvorteile,
die ein drahtloses Sensornetz bietet sind 1) verteilte und fehler-tolerante Kommunika-
tion und Messungen/Regelungen aufgrund der grofsen Anzahl von Sensorknoten,
2) Kostenreduzierung durch Entfernen der Verkabelungen fiir Kommunikation und
Energieversorgung und 3) Flexibilitdt bei der Anbringung von winzigen drahtlosen
Sensorknoten. Ein Hauptnachteil der drahtlosen Technologie im Gegensatz zum
ausgereiften drahtgebundenen Gegenstiick ist jedoch die viel schwichere Kommu-
nikationsfahigkeit — der kombinierte Effekt von stirkerer Interferenz beim drahtlosen
Medium, die schwache Signalstdrke der leistungsschwachen Funkmodule und die
Komplexitdt beim Koordinieren der drahtlosen Kommunikation mit mehreren Zwis-
chenempfangern.

Das Hauptziel dieser Dissertation ist es, die Transition von der drahtgebundenen
zur drahtlosen Technologie im Rahmen der industriellen Automatisierung zu erle-
ichtern. Im Einzelnen stelle ich Losungen bereit, um die Dienstgiite (QoS) bei der
Kommunikation in drahtlosen Sensornetzen zu garantieren und zu verbessern.

Ich 16se das Problem fiir zwei Szenarien, bei denen die Netzwerktopologie en-
tweder bekannt oder unbekannt ist. Im ersteren Fall wende ich einen Ansatz basierend
auf festgelegter Koordinierung an, d.h. die Kommunikation wird mittels eines zen-
tralisierten Algorithmus bestimmt, um verschiedene Kommunikationsmetriken zu
optimieren. In dieser Dissertation stelle ich einen sehr effizienten, mehrkanaligen Ko-
ordinierungsalgorithmus vor, der nahezu optimale Latenzperformance (innerhalb von
1,22% des Optimums) fiir den baumbasierten Sammelempfang ermoglicht, welcher
bei weitem das am hdufigsten verwendete Kommunikationsmuster darstellt, beson-
ders fiir Uberwachungsapplikationen. Dariiber hinaus prasentiere ich sehr effiziente,
mehrkanalige Koordinierungsalgorithmen, welche hohe Koordinierungsfahigkeit und
geringen Overhead fiir periodische Echtzeitkommunikation mittels mehreren Daten-
fliissen in einer beliebigen Netztopologie mit mehreren Gateways bieten. Ein solches
Kommunikationsmuster ist typisch fiir ein Steuerungssystem mit mehreren Schleifen.



Andernfalls, wenn die Netzwerktopologie nicht bekannt ist oder sich sehr dy-
namisch dndert, optimiere ich die Kommunikationsdienstgiite durch Ausnutzen der
simultanen Ubertragung auf der physikalischen Ebene, die von Natur aus kein Rout-
ing erfordert. Zuerst schligt ich ein einfaches Modell fiir simultane Ubertragungen
in drahtlosen Sensornetzen vor, welches den Erfolg oder Nicht-Erfolg des Zustellens
eines Paketes zuverldssig vorhersagt. Danach entwickle ich das "Sparkle"-Protokoll
fuir hochst zuverlassige, energie-effiziente periodische Kommunikation mit mehreren
Datenfliissen bei geringer Latenz. AbschliefSend présentiere ich das "Ripple"-Protokoll
fiir hohen Datendurchsatz sowie zuverldssiges und energie-effizientes Netzwerk-
Flooding mittels Pipeline-Ubertragungen und Vorwirtsfehlerkorrektur, welches den
bisherigen Stand der Technik signifikant verbessert.

Obwohl die Dissertation von drahtlosen Sensornetzen als Kommunikationstech-
nologie und industrieller Automatisierung als Anwendungsszenario ausgeht, sind die
vorgestellten Losungen nicht auf diese Annahmen beschrédnkt. Sie konnen auf andere
drahtlose Netze und andere Szenarien mit &hnlichen Kommunikationsmustern und
Dienstgiiteanforderungen tibertragen werden.
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INTRODUCTION

1.1 MOTIVATION

Wireless Sensor Networks (WSNs) are a technology that is undergoing rapid devel-
opment. It was born as the result of the vision of ubiquitous computing, the rapid
progress in miniaturization of Integrated Circuits (IC), Micro-electro-mechanical Sys-
tems (MEMS) and low power wireless communication technology [ASSCoz]. A WSN
is typically composed of a number of small devices, called sensor nodes, which are
small low-power computer systems with constrained computation power and memory,
often equipped with various sensors and actuators. The combination of the capabili-
ties of sensing/actuating, computation and communication makes WSN a versatile
general-purpose system for numerous applications.

WSNs have been successfully applied to a large amount of interesting applications,
such as environmental and habitat monitoring, smart houses, medical assistance, traffic
monitoring, and battlefield surveillance, as well as industrial automation, to name a
few. Industrial automation is in general a very challenging scenario for WSNs because
both high reliability and stringent deadline requirements of packet delivery need to
be satisfied simultaneously. In addition, some applications of industrial automation
may have further requirements on high energy efficiency or large throughput. If the
communication requirements cannot be satisfied, the control systems will not perform
as expected, which will cause failure in production, and in the extreme case even cause
injury and casualty to humans. This explains the reason why the industrial automation
society is nowadays still largely relying on wired technology such as Fieldbus and
real-time Ethernet [Thoos, MToy], and the penetration of WSN technology is limited
to applications, of which the Quality of Service (QoS) requirements are relatively
relaxed.

The WSN technology provides many advantages in comparison with its wired
counterpart. The most obvious and direct one is that it totally or to a large extent saves
the wiring cost. Though it is argued in [AGB11] that quite some actuators in process
automation today are pneumatic and these actuators must be powered by the main
grid since the wireless sensor nodes are unable to provide sufficient energy for them,
it is typically much easier to wire power than to wire communication. The removal
of wiring saves not only large investment, but also much space and weight, which is
especially precious in locations such as aircrafts [YB11]. Second, after the removal of
cabling, the flexibility in the deployment of sensor nodes greatly improves, especially
at places where it is hard or even impossible to do wiring, e.g., on the rotating parts
of manufacturing robots. As a result, many secondary process variables that have
long been unmeasurable can now be easily measured. Also temporal measurements
that are experimental or diagnostic can now be easily carried out [AGB11]. Both new
possibilities of measurement will contribute to the quality of industrial automation.
Third, quite often the network structure of WSNs is ad-hoc and the large number
of sensor nodes provide fault tolerance to a system. This will facilitate a more and
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more distributed architecture in industrial automation. Finally, WSNs can be more
energy efficient than the wired counterpart due to the broadcasting nature of wireless
communication. The small energy consumption may even be totally covered by energy
harvesting, especially because the sensor nodes are quite often deployed near working
places where large quantity of energy in different forms such as vibration, pressure
and high temperature, is available [CCo8]. The highly energy efficient technology of
WSN is more sustainable and beneficial to the environment.

In fact, the wiring saving and the distribution of system architecture are two con-
tinuous evolutions from the initiation of industrial automation. The first automation
systems were based on mainframe computers, star-like connected with devices via
miles of cables, but it only allowed for polling communication initiated by the central
computer [SWo7]. Today’s standard technology of Fieldbus or Ethernet based automa-
tion systems use fewer cables and allow devices to communicate with each other in
a more distributed fashion. I can predict that in the future automation systems may
be totally cableless, and the communication will be more distributed as the devices
become more autonomous, and can perform local control based on the ambient infor-
mation. These highly autonomous systems are indispensable for the realization of the
ideas of "smart homes", "smart cities" and "industry 4.0".

However, the flexibility in deployment, high level of distribution, low power con-
sumption and low production cost of WSNs comes at the price of weak communication
capability. This is arguably the biggest obstacle to the wide adoption of WSNs in
industrial automation. The de facto low-power radio standard IEEE 802.15.4 [Soco6]
operates mostly in the freely available and therefore strongly interfered 2.4 GHz
Industrial, Scientific and Medical (1ISM) band, which exacerbates the interference prob-
lem. For instance, in the same frequency band, the transmission power of the almost
ubiquitous IEEE 802.11 (WiFi) can be hundreds of times higher than that of IEEE
802.15.4 [METo08]. Although there are technologies available and upcoming, e.g.,
Ultra-wideband (UWB) communication, which are not limited to the ISM band, they
are immature or not in wide use. A large amount of wireless devices work only in the
2.4 GHz ISM band and we have to live with the technology for a long time. Therefore,
it is important to design protocols that interconnect these devices. Apart from that,
the throughput, latency and reliability of the low-power wireless communication are
far worse than those of the wired technology. Let alone, for relatively large wireless
networks, multi-hop communication is unavoidable. The performance degrades due
to the increase of hops and the mutual interference among sensor nodes. Hence, how
to guarantee a sufficient communication QoS for industrial automation in a very noisy
radio frequency band with low-power radios becomes a very challenging problem.

1.2 COMMUNICATION REQUIREMENTS OF INDUSTRIAL AUTOMATION

For all industrial automation systems except the most trivial, communication is
indispensable. This is due to the following facts: 1) the sensor data of monitoring
systems need to be delivered to the control center, which is typically not co-located
with the sensors; 2) the controllers, sensors and actuators of control systems can not be
positioned at the same place, but sensors and actuators have to be in physical proximity
to the process they are interfacing with. Currently, nearly all industrial monitoring
and control systems are digital systems. This means that the signals (messages) between
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the controllers, sensors and actuators are quantized and the systems are largely
discrete-time systems, i.e., the communication and the activation of controllers occur
periodically. Besides, event-based communication may happen aperiodically. In this
thesis, I will only focus on digital systems.

1.2.1  Communication Delay and Period

The performance of monitoring and control systems depends to a large degree on the
system delay. For monitoring systems, it refers to the time span between the sensing
of the related information and the delivery of it to the display units. For control
systems, it refers to the time span between the sensing of the related information
and the corresponding actuation. Although the system delay also depends on other
parameters such as the execution time of the control algorithm, it can never be smaller
than the communication delay. In this thesis, I only focus on the typical digital systems
with sampling periods that are larger than or equal to the system delay, i.e., these
systems have implicit or restricted deadline according to the real-time computing
jargon. In case that the sampling period is smaller than the system delay, one can also
analyze the system performance and stability. However, techniques such as pipeline
transmission need to be applied since the new round of communication is activated
before the old one finishes.

Generally, for both monitoring and control systems, a shorter sampling period (or a
higher sampling rate) typically improves the system performance at the cost of more
resource consumption, such as computation, communication and energy. Therefore,
how to pick a suitable sampling period is a trade-off.

Since there is no stability problem, the sampling period of monitoring systems can
be solely determined by the user requirement. For example, in a chemical reaction
system, the liquid level alarms typically allow lower delay than the measurements of
the slowly varying temperature. On the other hand, for control systems, overly large
periods not only deteriorate the performance, but may also cause system instability.
According to the Nyquist sampling theorem, for a signal band-limited to fg, the
sampling rate should be at least 2fg. This rule is not very useful for control systems,
since 1) the system model is normally approximations; 2) the system has noise and
disturbance and 3) the input signals such as steps are not band-limited. There exist a
few best practices for the selection of sampling periods [SS11]. One example is that
the sampling period T should be selected in the range of

1 1

T TAr 7/
a0f. = < 70f.

(1.1)

where f. is the closed-loop bandwidth, i.e., the frequency at which the closed-loop
gain has decreased by 3dB, or is about 70% of the DC gain. Specifically, I propose two
general approaches for industrial wireless communication in this thesis. The approach
of centralized scheduling has at least 10 milliseconds communication delay if the
industrial standard of WirelessHART [HARo7] is applied, which has a slot length of
10 milliseconds. Thus, it is suitable for control systems with closed-loop bandwidth
lower than 10 Hz. The approach of concurrent transmission pushes the minimum
communication delay to about 1 millisecond. Accordingly, it is suitable for control
systems with closed-loop bandwidth lower than 100 Hz.
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There is a large amount of industrial control systems suitable for the wireless
communication proposed in this thesis. Almost all process control systems fall in
this category, because the control variables have rather slow dynamics and typically
require no shorter than 1 second of sampling period. For example, the flow rate, which
is a fast control variable in process control, needs a sampling period of 1 to 3 seconds
while the temperature only needs a sampling period of 10 to 180 seconds [LZ06]. On
the contrary, the proposed wireless communication is unsuitable for motion control
applications that control the position, speed and acceleration of mechanical systems
with electric motors. These control systems are so-called isochronous real-time systems
and have typical sampling period of 250 pus to 1 ms [PNog].

The communication delay of a control system is composed of two parts: the sensor-
to-controller delay and the controller-to-actuator delay. If the sensors and the controller
are time synchronized and the sensor data is time-stamped, the sensor-to-controller
delay can be compensated by an estimator that reconstructs the undelayed plant
states [ZBPo1]. Hence, it is preferable to place the controller in proximity to the
actuators to reduce the controller-to-actuator delay.

1.2.2  Communication Reliability

In addition to the communication delay requirement, the communication reliability
requirement is also key to the performance of monitoring and control systems. Similar
to the effect of communication delay, a higher communication reliability improves
the system performance, while a lower communication reliability may cause control
system instability.

The concrete requirement of reliability depends on the type of the application and
the type of the message. For example, an emergency alarm signifying a variable over
the set limit should be transmitted reliably to the controller in a short deadline so that
the emergency reaction can be reliably triggered, for safety operation guarantees. It is
much more dangerous to miss an emergency alarm than a periodic sensor reading.

Traditional wired solutions such as Fieldbus provide perfect reliability, hence com-
munication reliability is not an issue at all. However, shifting to wireless commu-
nications, it is impossible to have perfect reliability while giving delay guarantee
at the same time. Therefore, the so-called communication and control co-design is
of increasing importance. Recent research demonstrates that by applying advanced
control algorithms, the communication reliability requirement of control systems can
be greatly reduced. For example, Li et al. [LMW ™ 16] observe that a control design
combining an observer based on the extended Kalman filter and the model prediction
control can effectively compensate the communication loss. A case study based on the
simulation of an exothermic chemical reaction plant shows that the control system
performs satisfactorily even with 60% packet loss on both of the sensor-to-controller
and controller-to-actuator communication. Moreover, the loss of the actuation com-
mands has larger impact on the system performance than the loss of the sensor data.
Additionally, there is a trade-off between the sampling period and the communication
reliability requirement for control systems. A control system can work stably under
a lower reliability requirement by shortening the sampling period [ZBPo1]. Gener-
ally, the solutions proposed in this thesis should offer high enough communication
reliability for most industrial automation applications.
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1.3 GOALS

The communication pattern of industrial automation, whether it is used for monitoring
and supervision, or for controlling, is typically periodic. The focus of the thesis
is to optimize and to guarantee QoS in periodic multi-hop WSN communication,
especially to achieve high reliability, high throughput and high energy-efficiency in
communication while satisfying the requirements on hard deadline, thereby helping
to remove the main obstacle in the application of WSNss to industrial automation
and bringing us closer to the destination of wide adoption of WSNs in industrial
automation. The general goals of the thesis are to:

1. Propose novel algorithms and protocols for the combined goals of performance
optimization and hard deadline guarantee in industrial WSNs.

2. Verify and evaluate the effectiveness of the proposed algorithms and protocols
through simulation and real-world experiments.

3. Push forward the performance in comparison to the state-of-the-art solutions.

1.4 CONTRIBUTIONS

The contributions of the thesis are mainly in optimizing performance while guarantee-
ing hard deadlines of periodic multi-hop communication in WSNs, which is essential
for the wide adoption of WSNs in industrial automation.

Specifically, the contributions can be divided into two parts: 1) improving QoS in
WSN communication with centralized scheduling, and 2) improving QoS in WSN
communication by exploiting concurrent transmissions.

1.4.1 Improving Communication QoS with Centralized Scheduling

WirelessHART [HARoy] is the most popular industrial standard of wireless sensor
networks for industrial automation. The key feature of WirelessHART is that it is a
Time Division Multiple Access (TDMA) protocol which allows the simultaneous use of
multiple orthogonal channels, but disallows spatial reuse of the same channel. The
spatial reuse of the same channel refers to using the same channel simultaneously
on more than one link that are spatially separated enough such that the mutual
interference cannot destroy any of the transmissions. The feature of disabling spatial
reuse is essential to ensuring high reliability in communication — a must for indus-
trial automation, because on the one hand, the dynamic change of wireless channel
condition makes the guarantee of spatial separation a heavyweight process and on
the other hand the mutual interference among concurrently scheduled links needs
to be minimized. In addition, disabling spatial reuse simplifies the WirelessHART
scheduling.

WirelessHART specifies the basic communication paradigm, but leaves open the
concrete scheduling algorithms for the TDMA protocol [CNM10]. Thus, how to design
a suitable TDMA scheduling is the first step in employing WirelessHART. This thesis
proposes highly effective and lightweight scheduling algorithms for two categories
of communications that are widely used in industrial automation: 1) tree-based



INTRODUCTION

periodic data collection and data distribution *, and 2) mesh-based periodic multi-flow
communication where a flow refers to an end-to-end pair. Typically, the industrial
monitoring and supervision applications assume the first communication pattern
while the industrial control applications assume the second communication pattern.
Nevertheless, the first communication pattern may also be used for industrial control
applications.

My main contributions to the tree-based periodic data collection and data distribu-
tion [YHz12b] are two fold:

1. I derive an Integer Programming (IP)-based optimal solution to the minimum
length scheduling by taking into account the resource limitations of the maximum
buffer size of each node and the total number of channels available. The mini-
mum length scheduling uses the minimum number of TDMA slots for a cycle of
communication, thus it also achieves the maximum throughput and minimum
latency.

2. Since the optimal solution relies on IP, which is NP-hard, it is only feasible
in very small networks. For bigger networks, we have to rely on heuristics.
I present a flexible framework for the convergecast/distribution scheduling
problem. Based on that, I propose the novel busy-sender-first heuristic which is
significantly better than the state-of-the-art heuristic in both schedule length and
memory consumption as well as being conceptually much simpler.

My main contributions to the problem of periodic mesh-based multi-flow communi-
cation with hard deadlines [YH12a] are as follows:

1. I investigate a general system model — arbitrary topology, arbitrary number of
gateways, multi-path routing, and end-to-end flows with arbitrary period and
hard deadline requirements. Based on this system model, I propose a general
framework for scheduling algorithms.

2. I adapt algorithms from the area of multi-processor real-time scheduling to
my problem, and identify the best scheduling heuristic Least Laxity First (LLF)
with high schedulability rate, low execution time and low memory overhead at
intermediate nodes during network operation.

3. I design a simple yet effective opportunistic aggregation scheme that works seam-
lessly with any scheduling algorithm. It substantially increase the schedulability
rate.

4. To minimize the overhead of the schedule table, I propose a scheme called
repetitive scheduling which also works seamlessly with any scheduling algorithm.
It incurs negligible schedulability penalty for the case of implicit deadline (i.e.,
when the period and the deadline of a flow are equal, which is typically the case),
but results in very small and scalable size of the schedule table and execution
time of a scheduling.

1 I differentiate between the term data distribution and data dissemination, where data distribution refers
to the case that a central node sends different data to other nodes in the network, and data dissemination
refers to the case that a central node sends same data to other nodes in the network. Therefore, data
dissemination can be viewed as a special case of data distribution
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1.4.2 Improving Communication QoS with Concurrent Transmission

The physical layer technology of concurrent transmission that appeared recently was
shown to be a promising mechanism for low latency and high reliability communi-
cation in WSNs. It was first demonstrated by the seminal network flooding protocol,
Glossy [FZTS11] to be able to achieve high reliability, low latency and accurate time
synchronization simultaneously.

In this thesis, I first investigate the underlying principles of concurrent transmis-
sion in WSNs and propose a simple model for it that can accurately predict the
reception/loss of concurrent transmissions [YH13]. Then I design the Sparkle pro-
tocol [YRH14], which extends the concurrent transmission mechanism, which is
originally designed for one-to-all broadcast, to the application of periodic multi-flow
communication. The periodic multi-flow communication is end-to-end and is the
typical communication pattern of industrial control. Furthermore, Sparkle can control
the performance of each communication flow independently with the help of a novel
feedback control mechanism. Finally, I propose the Ripple protocol [YH15], which
improves the network flooding protocols Glossy and Splash [DCL13a] significantly in
terms of throughput and energy efficiency by combining the pipeline transmissions
on multiple channels and the efficient Reed-Solomon erasure code.

energy consumption
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Figure 1.1: QoS comparison between Glossy and Sparkle for end-to-end communication. The
QoS metrics of Sparkle are better than those of Glossy, respectively.

My main contributions in this part of the thesis are as follows:

1. I propose an accurate prediction model for the reception/loss of concurrent
transmissions, which provides a valuable tool for protocol design and simulation
of concurrent transmission in WSNs.

2. I propose Sparkle, a WSN control network design based on concurrent transmis-
sion, tailored to periodic multi-loop control systems. It optimizes each end-to-end
communication flow by performing "feedback control" on the flow. In Sparkle, I
introduce WSNShape, a unique topology control technique, that is able to find a
reliable end-to-end stripe (instead of a not so reliable single path) based only
on the capture effect. I demonstrate through testbed evaluation that Sparkle
satisfies the high reliability requirement while in average saves 80% of energy
consumption and improves on the latency for 5%, compared to Glossy. The QoS
comparison between Sparkle and Glossy is illustrated in Fig. 1.1.
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Figure 1.2: QoS comparison among Glossy, Splash and Ripple for flooding communication. A
QoS working point corresponds to four line segments closing in a loop. Ripple has
a working region while the other two protocols have a single working point. Except
the axis reliability, the values on the other axes are better when they are smaller.

3. I propose Ripple, which extends the Glossy network flooding with pipeline
transmission on multiple channels and forward error correction. I demonstrate
through testbed evaluation that Ripple significantly improves on the throughput
over 80Kbits/s, a threefold increase compared to the best-case of Glossy. At
the same time, Ripple also increases the energy efficiency by a factor of three,
compared to Glossy. By tuning the transmission interval, Ripple balances be-
tween high reliability and high throughput, suiting a large spectrum of QoS
requirements. Finally, applying Reed-Solomon erasure code to Ripple pushes
the reliability over that of Glossy, very near to 100%, at the cost of reduced
throughput over plain Ripple, but the throughput still doubles, or even triples
that of the state-of-the-art data dissemination protocol Splash. The working
regions of Ripple, Glossy and Splash, in terms of QoS metrics are illustrated in
Fig. 1.2.

1.5 OUTLINE

The thesis contains in total 6 chapters. The structure is outlined in Fig. 1.3 and is
structured as follows.

Chapter 1 "Introduction” motivates the thesis by describing the QoS problem in
applying WSN technology to industrial automation. Then it discusses the main goals
and contributions of the thesis.

Chapter 2 "Related Work" summarizes the related work in three categories: 1) the
status of WSNs for industrial automation, 2) the scheduling for tree and mesh-based
wireless sensor networks. These two network topologies are typical and general
enough for industrial automation, and 3) the related work on the physical layer tech-
nique of concurrent transmission and its effect in improving QoS in communication.
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Figure 1.3: Outline of the thesis.

Chapter 3 "Problem Statement" proposes a number of key problems that I identify in
the related work and that I am going to tackle in this thesis.

Chapter 4 "Realtime Scheduling of WirelessHART-based Sensor Networks" deals with
the TDMA scheduling for the WirelessHART protocol, which is the de facto wireless
standard for industrial automation.

Chapter 5 "Improving QoS for Industrial Automation with Concurrent Transmission"
deals with the application of the promising physical layer technique of concurrent
transmission to WSNSs. It is shown through testbed evaluation that with concurrent
transmission I can achieve significant improvement in QoS compared to the state-
of-the-art of Glossy, such as high throughput, high reliability, low latency and high
energy efficiency which is essential for industrial automation. I propose the periodic
multi-loop control network Sparkle with flow-based QoS control as well as the high
throughput, high reliability and high energy-efficiency network broadcast protocol
Ripple.

Chapter 6 "Conclusions and Outlook" concludes the thesis and identifies a number of
interesting open problems about the industrial WSNs for future research.

9






BACKGROUND AND RELATED WORK

I survey the related work of this thesis from three aspects. First, I investigate the
current status of WSN for industrial automation. Here, I look at a selected number of
interesting applications, as well as two prominent industrial standards. They serve
as the motivation and represent the state-of-the-art of the deployment of WSN in
industrial automation, from which I can identify the drawbacks of existing solutions
and ways to rectify them. The thesis focus is on two research areas: the centralized
TDMA scheduling and the physical layer technique of concurrent transmission. Hence,
the second and the third aspects of the related work survey each of them respectively.

2.1 THE CURRENT STATUS OF WIRELESS SENSOR NETWORKS FOR INDUSTRIAL
AUTOMATION

Wireless sensor networks have been increasingly applied to industrial automation
in recent years. In the following, I survey a number of important works on practical
WSN deployments for industrial automation and two prominent industrial standards.
These works and standards reflect the current status of wireless sensor networks for
industrial automation.

2.1.1  Practical WSN Technologies for Industrial Automation

The WSN deployments for industrial automation can be generally divided into two
categories: 1) communication with deadline guarantees, and 2) best effort communica-
tion.

2.1.1.1  WSN Deployments with Deadline Guarantees

The number of works falling in this category is very limited. But deadline guarantee
in communication is necessary for industrial automation applications with stringent
latency constraints, such as process control and robot control. Otherwise the control
system may not be able to satisfy the required performance and may even become
instable. This will results in unsatisfactory end-products and in the extreme case, even
cause human injury or casualty. Deadline guaranteed communication in WSN is a
main focus of this thesis. All protocols proposed in the thesis belong to this category.

A representative work is the GINSENG project [OBB* 13, SBR10]. It proposed the
GinMAC protocol [SBR10], a tree-based TDMA protocol for industrial automation,
which was originally designed for process automation in oil refineries. The protocol
guarantees timely delivery of the sensing and actuation data while optimizing relia-
bility and energy consumption. It is suitable for single-rate monitoring and control
applications.

GIinMAC assumes a fixed tree topology with one sink at the root, where each
non-root node of the tree may be occupied by a sensor, an actuator, a combined
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sensor and actuator, or a pure relay. Some degree of flexibility in scheduling can be
provided by assuming a tree bigger than the actual topology. The TDMA scheduling is
static, and is determined offline. The schedule is divided into two parts: the upstream
slots, used for the communication from the sensors to the sink, and the downstream
slots, used for the communication from the sink to the actuators. The upstream and
downstream slots are of three types: the basic slots contain the minimum number of
slots for the upstream and downstream traffic; the additional slots are used to improve
the reliability, i.e., when transmissions in the basic slots fail, the additional slots can
compensate for that; moreover, the unused slots save energy, because in these slots
radios are turned off.

GinMAC has limited flexibility in scheduling because it needs to guarantee the hard
deadline of data delivery. It uses only one channel, thus under-uses the resource of
multiple physical channels provided by the IEEE 802.15.4 standard [Soco6], which
could be used to improve throughput and latency. The tree topology does not provide
route redundancy, contrary to the mesh topology, although the paper allows spatial
transmission diversity, i.e., forming multiple trees with the same set of nodes. Finally,
GIinMAC is not fully adaptive to node join and leave.

2.1.1.2  WSN Deployments with Best-effort Communication

There are quite a number of WSN deployments with best-effort communication.
These protocols may not be suitable for real-time monitoring and control applications
because they provide no hard deadline guarantees. However, they are sufficient for
other applications that have relaxed delay requirements. Some representative works
are as follows.

The Flush protocol has been designed for the structural health monitoring of the
Golden Gate Bridge [KPC*o7, KFD"o7]. It supports the multi-hop source to sink
(end-to-end) efficient bulk data transfer with perfect reliability. With the deployment
on the Golden Gate Bridge, it proves effective even for a very long 48-hop line topology.
Flush uses pipeline packet transmission with the unique feature of hop-by-hop in-
network rate control. The rate control requires that each node dynamically identifies
the interfering nodes and determines the transmission rate based on parameters
reported by its successor node. The rate control algorithm follows two rules: 1) a node
should only transmit when its successor is free from interference, and 2) a node’s
sending rate cannot exceed the sending rate of its successors. However, Flush only
deals with line topology as only one flow is active at a time. Finally, how to perform
routing is not covered in the work.

RACNet is a sensor network for monitoring a data center’s environmental condi-
tion [LLL*09]. It is a very dense WSN with multiple gateways, where each sensor node
needs to periodically deliver sensor data to a gateway. The underlying communication
protocol is called Wireless Reliable Acquisition Protocol (WRAP), a best effort data
collection protocol which combines centralized and distributed mechanisms to achieve
scalability and responsiveness. The topology control of WRAP is initiated by the
gateways, each running on a different channel for load balancing purpose. Each node
listens to the coordinated beaconing broadcasted level by level from the gateways and
then selects the best parent. Finally a tree is formed at each gateway where all links
are bidirectional. WRAP also implements a distributed algorithm to balance between
different trees. The load balancing is performed at the tree with the largest total hop
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count — a node in the largest tree will probabilistically leave the tree and joins a tree
smaller than average. For data collection, WRAP implements a token-based congestion
avoidance mechanism. Specifically, a token is passed in the depth-first order from the
root of a tree (a gateway node). A node holding the token is allowed to transmit and
packets get aggregated at intermediate nodes. Furthermore, WRAP controls the data
streaming rate with similar mechanism to that of Flush [KFD*oy]. Finally, to improve
end-to-end reliability, WRAP implements a Negative Acknowledgement (NACK)-based,
end-to-end data recovery scheme, initiated by the gateways. Evaluation results show
that as the aggregate amount of traffic grows, WRAP achieves higher data yields than
the open-loop Collection Tree Protocol (CTP) [GFJ"o9] and higher total throughput
than the Rate-Controlled Reliable Transport Protocol (RCRT) [PGo7].

Ceriotti et al. [CCD " 11] proposed a WSN application of adaptive lighting control for
road tunnels. Only the data collection part of the whole control process is implemented
in WSN, i.e., collecting the luminance levels at different positions all along a tunnel.
Based on the collected data, a control algorithm sets the lighting intensity of lamps
properly in order to meet the legislated curve of the luminance. The downstream
data, i.e., the lighting intensity commands are transmitted in a wired network from
the Programmable Logic Controller (PLC) to the equipments. Two types of traffic
are supported by the WSN: the data collection and the data dissemination. The
data collection uses multiple sinks, where each sink periodically and independently
builds a collection tree. Each node chooses a parent with the smaller node-to-sink
routing cost. High data reliability is achieved with a hop-by-hop recovery scheme.
The dissemination protocol allows one-to-many communication from the sinks, by
employing a Trickle-like scheme [LPCSo4]. It is used to change the light sampling
frequency or to modify MAC parameters. Although the data collection is best-effort,
it satisfies the communication requirements of the adaptive lighting control with the
relaxed control period of 30 seconds. For a control system with shorter control period
such as process control, the protocol may be insufficient.

@scale [DLT " 12] presented a year-long deployment of 455 wireless plug-load electric
meters in a large commercial building. The communication requirement is basically
reliable data collection. Specifically, each wireless electric meter needs to deliver a
measurement packet every 20 seconds to the datacenter located in the open Internet
Protocol version 6 (IPv6) Internet. The peculiarity of @scale is its pure IPv6-based three
tier architecture, including 1) the metering tier that is made up of the wireless electric
meters, 2) the back haul tier that is made up of multiple Load Balancing Routers (LBRs),
and 3) the datacenter tier which runs as a hosted web application. Each wireless electric
meter uses an IPv6/6LoWPAN (IPv6 over Low power Wireless Personal Area Networks)
stack to connect to an LBR, from which the User Datagram Protocol (UDP) data packets
travel over an IPv6 tunnel from the building to the Internet. Finally they reach the
database located in the datacenter. Instead of using communication protocols tailored
to a WSN application, @scale uses the Internet Protocol (IP) architecture. As a result,
the LBRs are transparent to the other tiers which allows the users to deploy new
meters and LBRs to increase both the network and backhaul capacity. Furthermore,
the LBRs and all meters form a single IPv6 subnet where efficient any-to-any IPv6
routing over constrained links is possible. But the data collection period is of tens of
seconds, much longer compared to the protocols proposed in this thesis. Additionally,
how the wireless LBRs do load balance and interference avoidance is not covered.
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2.1.2 The Industrial WSN Standards

The industry shows great interest in applying WSN to industrial automation. I am
aware of two WSN standards for this purpose: the WirelessHART [HARo7] and the
ISA100.11a [ISA08] standards. The WirelessHART standard was first released by the
HART Communication Foundation (HCF) in the HART Field Communication Protocol
Specification, Revision 7.0 [HCFo7]. The ISA100.11a was ratified as an International
Society of Automation (ISA) standard in 2009 [ISAog].

Both standards have a lot in common. The physical layers of both use the IEEE
802.15.4 standard in the ISM 2.4 GHz frequency band [Soco6]. The Media Access
Control (MAC) layers are both based on TDMA (Time Division Multiple Access)
protocol and channel hopping. To diminish the internal interference, both standards
disallow spatial reuse of the same channel at the same time. The TDMA protocol
enables the guarantee of latency. The channel hopping improves the robustness of the
system since it avoids operating for long time on severely interfered channels. For
the routing layer, both use the fault-tolerant mesh topology. A centralized network
manager is in charge of the slot scheduling in both standards.

Nevertheless, the WirelessHART and ISA100.11a standards have a number of differ-
ences, which are listed in the following.

1. WirelessHART devices are nodes that must have the routing capability while
ISA100.11a devices can be pure sensors and actuators without routing capabil-
ity [PC11, NRR12].

2. The network layer of WirelessHART mainly deals with routing in mesh networks.
Similar functionalities are performed by the data link layer in ISA100.11a, while
its network layer makes use of the Internet Engineering Task Force (IETF) IPvé6
and 6LoWPAN.

3. WirelessHART specifies the slot time to be 10 ms and the ISA100.11a supports a
configurable slot time.

4. WirelessHART uses the HART AL for its application layer and ISA100.11a has a
more flexible and abstract application layer.

Due to the earlier release time of WirelessHART and the relative simplicity and
concreteness, currently WirelessHART has far more standard-compliant product
manufacturers than ISA100.11a.

However, in both standards, the functionality of the network manager, i.e., how to
perform slot scheduling and channel hopping is not specified in detail. This thesis
investigates these problems for a tree convergecast setting and a very general mesh
multi-flow communication setting.

2.2 NETWORK SCHEDULING
The network layer of WirelessHART has specified two types of routing: the graph
routing and the source routing [CNM1o0].

> Graph Route. A graph route is a subset of the directed links and devices that
provides redundant communication routes between a source and a destination
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device. The actual route taken is based on current network condition when the
packet is conveyed from the source to the destination.

> Source Route. A source route is a single directed route (devices and links) between
a source and a destination device. The source route is statically specified in the
packet itself.

To perform graph routing, a node needs to store the next-hop routing information for
a graph ID if it is on the routing graph. When a node gets a packet, it retrieves the
graph ID and then routes the packet to the next-hop node. On the other hand, for
source routing, all routing information is contained in the data packets. No routing
information needs to be stored at intermediate nodes. Both routing mechanisms
are powerful but abstract. WirelessHART has specified the "interface" but not the
"implementation”, i.e., the detailed scheduling algorithms that produce the routing
are missing in the standard. The thesis focuses on the graph routing since it causes
less overhead for relatively static communication requirement which is mostly the
case for industrial automation. Specifically, the thesis provides effective algorithms
for the TDMA scheduling of tree-based convergecast and mesh-based multi-flow
communication. The former communication pattern is typical for monitoring systems
while the latter is typical for control systems.

There are plenty of works on TDMA scheduling for wireless sensor networks with
concerns on communication latency. I highlight two categories that are related to
industrial automation: 1) minimum length scheduling, the goal of which is to achieve
minimum number of slots for a round of communication (e.g., each end node needs
to transmit a packet to the gateway in a round), and 2) deadline guaranteed scheduling,
the goal of which is to guarantee that all deadline requirements on communication
are satisfied.

2.2.1  Minimum Length Scheduling

Convergecast is the most common communication pattern in wireless sensor networks,
where a number of source nodes want to send packets to the gateway (sink) node.
The minimum length scheduling for convergecast [GZHo8, EV10, RCBG1o, 7ZOS* 10,
7ZSJoga] uses the minimum number of slots for a round of communication. It is also
the scheduling that gives the maximum sampling rate and it normally provides high
throughput. Therefore, it is ideal for monitoring applications which rely on converge-
cast and in which features such as maximum sampling rate and high throughput are
desired.

The works of Gandham et al. [GZHo08] and Ergen et al. [EV10] investigate the
problem of single-channel convergecast scheduling. The first work assumes that the
interference range of a node is the same as the communication range. It proposes a
distributed scheduling algorithm for tree networks where each node generates exactly
one packet. The schedule length of the proposed algorithm is at most max(3ny —1, N)
slots and the lower bound of schedule length is proved to be max(3nx — 3, N), where
Ny is the maximum number of nodes in any subtree and N is the total number of
nodes in the network. Furthermore, it provides a distributed scheduling algorithm
for general networks which requires at most 3N slots and in average 1.5N slots. In
contrast, the second work assumes a general interference model represented by an
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interference graph. It first proves that the problem of convergecast scheduling for
tree networks with an arbitrary conflict graph is NP-complete. Then, it proposes two
centralized scheduling algorithms drawn from the coloring problem: the node-based
scheduling and the level-based scheduling. The evaluation results show that the level-
based scheduling works better for topologies with higher density of packets farther
away from the sink while the node-based scheduling works better for topologies with
equal packet density across the network or higher packet density at low levels.

The works of [RCBG10, ZOS ™ 10, ZSJoga] investigate the problem of multi-channel
convergecast scheduling. The Packets in Pipe (PIP) protocol by Raman et al. [RCBG10]
achieves the minimum schedule length for multi-hop line networks with one source
and one sink. The number of channels required is determined by the mutual interfer-
ence between the nodes. Normally four to five are sufficient. The work by Zhang et
al. [ZOS"10] achieves very high throughput by applying the optimal scheduling and
separating the packet copying between the microcontroller and the radio transceiver
from the packet transmission. It provides an optimal scheduling algorithm for tree
networks where each node generates exactly one packet in each period and there are
enough orthogonal channels. The optimal schedule length has taken into account the
slots for two-way packet copying and is equal to max(3ny — A, N) where where ny is
the maximum number of nodes in any subtree and N is the total number of nodes
in the network. A = 1 if the largest two subtrees have the same number of nodes
and A = 2 otherwise. Another work of Zhang et al. [ZS]Joga] offers the state-of-the-art
solution for multi-channel scheduling of tree networks. It proves that the minimum
schedule length is equal to max(2nyx — 1, N) and offers a polynomial time algorithm
for minimum length scheduling when given D channels where D is equal to the tree
depth. It also presents the state-of-the-art scheduling heuristic for the case that the
channel count is less than D. The heuristic produces near-optimal schedule length,
but is relatively complex in concept.

2.2.2  Deadline Guaranteed Scheduling

Network control systems normally have hard-deadline constraints for communication,
therefore the research on deadline guaranteed scheduling is a must for these systems.
One of the earliest works on the guarantee of communication deadline in wireless
sensor networks is by Caccamo et al. [CZSBoz]. It proposes a protocol for scheduling
hard-deadline periodic messages and soft-deadline aperiodic messages. It builds on
a cellular structure of network where neighboring cells use different frequencies to
avoid mutual interference. Nodes within a cell are fully connected, and they run the
Earliest Deadline First (EDF) algorithm for implicit medium access of the intra-cell
messages. The inter-cell messages are ordered by earliest deadline at router nodes
and are scheduled periodically in fixed frames exclusive for directional inter-cell
communication. For better performance, a scheme is designed to let the aperiodic mes-
sages reuse the reserved frames which are left unused by the hard-deadline messages.
The simulation shows that these designs of real-time scheduling have significantly
improved the performance of system throughput and latencies of aperiodic messages.
Another example of real-time scheduling in wireless sensor networks is the so-called
real-time query scheduling by Chipara et. al [CLRoy]. It investigates single gateway
networks with arbitrary communication and interference graphs. Single channel based
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spatial reuse is used for communication. A query is actually a periodic tree-based
convergecast with aggregation. Each query has a deadline and a priority. Two queries
are conflict-free if their schedules are separated by at least a certain number of slots.
The simulation results show that the slack stealing query scheduling algorithm is
effective by combining the benefits of high throughput and deadline guarantees.

2.2.3 General System Model for Network Scheduling

Wi"e"?i”‘nk Routing path or collection tree

;: /

S /
4 /
/

O Sensor node

A Gateway

<> Network Manager

Backbone connection

Figure 2.1: General system model for network scheduling.

The general system model for the centralized network scheduling in this thesis is
shown in Fig. 2.1. I have formulated an abstract yet powerful system model. The WSN
is composed of a number of static/mobile sensor nodes and one or more gateways
(sinks). The gateways are connected through a backbone network, which is usually a
reliable, high-throughput and low-latency wired network, to a network manager. The
network manager is the single central unit, responsible for routing and scheduling.
After it has computed the scheduling table, the network manager disseminates it to
the whole network through the gateways. At runtime, the sensor nodes periodically
deliver the packets to the gateways according to the scheduling, if the communication
pattern is convergecast. If the communication pattern is flow-based (end-to-end), the
end nodes serving as sensors deliver the sensing packets periodically to the gateways,
which function as controllers. Then the gateways will deliver the command packets
periodically to the end nodes serving as actuators, according to the scheduling.

2.3 CONCURRENT TRANSMISSIONS IN WIRELESS SENSOR NETWORKS

Wireless sensor networks for industrial automation is a field under active research.
Some industrial standards such as WirelessHART [HARo7] and ISA100 [ISA08] have
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appeared. A few academic projects have also been reported, such as the GINSENG
project [OBB" 13], and the TRITon project [CCD " 11]. All of them use static or semi-
static routing for communication, which unavoidably incurs routing overhead, cannot
promptly adapt to the quick change of wireless channel and is inherently not robust
to node and link failures.

The recently proposed network flooding protocol Glossy by Ferrari et al. [FZTS11]
demonstrates that concurrent transmission in WSNs can achieve the hard and quite
often contradictory goals of high reliability, low latency, low energy consumption
and accurate time synchronization all at the same time for multi-hop one-to-all
communication. It is also robust to node and link failures due to the node diversity.
These features match the communication requirements of industrial automation very
well. Therefore, this thesis also focuses on exploiting the technique of concurrent
transmission to improve the communication QoS in WSN.

2.3.1 Related Work based on Concurrent Transmissions in WSN

A few interesting protocol designs are based on concurrent transmission in WSN. They
either improve on the original Glossy protocol in terms of communication quality or
propose novel services which use Glossy as the communication primitive.

After the Glossy protocol, Ferrari et al. subsequently proposed the Low-power
Wireless Bus (LWB) [FZMT12], a protocol that supports one-to-many, many-to-one
and many-to-many communication by exploiting the concurrent transmission of
Glossy. LWB serves as the wireless counterpart of the Fieldbus which is normally
used to connect PLCs (Programmable Logic Controllers), sensors and actuators for
device level communication in a plant. The goal of LWB is to achieve communication
reliability (dependability) and latency guarantees. The main feature of LWB is that
the communication schedule is flooded to all nodes by a centralized host and the
communication requests are flooded to the host through contention. In comparison
with a number of existing protocols, LWB offers higher throughput, despite that it
uses less power.

Doddavenkatappa et al. proposed Splash [DCL13a], a protocol for fast data dissemi-
nation in WSN. Instead of the topology-unaware flooding as done in Glossy, it uses a
CTP-like [GFJ T 09] collection protocol to build the tree structure for flooding. Then, it
incorporates a number of techniques — transmission density diversity, opportunistic
overhearing, channel cycling, XOR coding and local recovery for higher throughput
and reliability in data dissemination. Through testbed evaluation, Splash is shown to
be over an order of magnitude faster in data dissemination than the state-of-the-art
data dissemination protocols such as DelugeT2 [HCo4].

Doddavenkatappa et al. proposed another protocol P3 [DC14], which is used for
reliable end-to-end bulk data transfer. Similar to Splash [DCL13a], P3 makes use
of pipeline transmission, channel cycling and constructive interference. The unique
feature is that it can achieve a continuous end-to-end packet transmission, obtaining
an average throughput of 178.5 Kbits/s, approaching the data rate of 250Kbits/s of
the IEEE 802.15.4 standard. To prepare for the continuous packet transmisison, P3
needs to collect all link states at the gateway node. With a global view of the network
topology, it identifies a number of node-disjoint paths from a source to a destination
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node. Then the paths are divided into two areas, and the source node alternately
transmits packets into either of them.

A common drawback of Splash and P3 is the heavyweight process of collecting
the global view of network topology at the gateway and disseminating the node-
based channel assignment. Additionally, these overheads are not counted in the final
calculation of the performance metrics. For example, in a network of 100 nodes, it takes
more than 100 seconds to measuring and collecting the link quality measurements as
reported in [DC14]. The time is simply too long to assume that the topology will keep
stable in the duration. These overheads are avoided in the one-to-all data broadcast
protocol Ripple, proposed in this thesis, which uses the novel packet-based channel
assignment.

2.4 SUMMARY

In this chapter, I have surveyed the current status of WSN for industrial automation,
from both perspectives of deployments and industrial standards. Then, I surveyed
the state-of-the-art TDMA scheduling and the state-of-the-art protocols based on
concurrent transmission, which greatly improve the communication QoS in WSN.
Based on the related work, I will identify a number of key problems in the next
chapter. This thesis tries to tackle these problems. In addition, the related work also
provides the state-of-the-art solutions, with which my solutions should compare.
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After surveying the related work in the last chapter, I have identified two general
methods for improving the communication QoS of WSN for industrial automation.
First, I can perform more effective and more lightweight TDMA scheduling to improve
the realtime capability of industrial WSNs. Second, I can apply the physical layer
technique of concurrent transmission to improve various performance metrics of
industrial WSNs.

3.1 HOW TO IMPROVE COMMUNICATION QOS WITH CENTRALIZED SCHEDULING

As stated in the last chapter, WirelessHART is a widely adopted industrial standard
for WSN:s. Its concurrent use of multiple channels improves the system throughput
and its disallowance of spatial reuse of the same channel leads to minimization of
internal interference and reduced overhead in tracking network state. WirelessHART
does specify the functionality of centralized TDMA scheduling but leaves the detailed
algorithm open. Chapter 4 of the thesis will focus on the TDMA scheduling for the
WirelessHART protocol.

Monitoring applications are an important category of industrial automation deploy-
ments. Quite often, a tree topology is first formed which connects all the sensors to
the gateway node at the tree root, before the data collection is performed. A natural
question is how to perform the scheduling so that the minimum length scheduling is
obtained or approximated. The state-of-the-art solution of the so-called tree converge-
cast for the WirelessHART protocol is proposed by Zhang et al. [ZSJoga]. However,
though it produces near-optimal schedule length, it has a high complexity. A question
to ask is:

> Is there a heuristic that performs better than the state-of-the-art one by Zhang et
al. [ZSJoga] in terms of shorter schedule length and less memory consumption
at intermediate nodes?

The problem will be investigated in Sec. 4.1 and the overall answer is yes.

Besides monitoring, the other important category of industrial automation de-
ployments are the control applications. The communication pattern featuring such
applications is periodic multi-flow communication and the goal is to satisfy the dead-
line requirement for each communication flow. I assume nothing about the network
topology, i.e., the network has the most general mesh topology. A specialized form of
the WirelssHART scheduling was investigated in the work by Saifullah et al. [SXLC1o0].
It assumes that there is one gateway in the network and the controller is placed at
the gateway. Furthermore, a number of flows (each control loop is mapped to a flow)
are to be scheduled where each flow corresponds to the transmission from a sensor
node to the gateway and then from the gateway to an actuator. Each flow is activated
periodically with potentially different period and has a hard deadline. The problem is
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shown to be NP-hard in [SXLC10] and it proposed an effective heuristic Conflict-aware
Least Laxity First (CLLF) which gives the best schedulability.

In this thesis, I investigate a more general problem setting — I allow for multiple
gateways and multi-path routing. Based on this problem setting, I will investigate the
following problems:

> What is the most effective scheduling heuristic in terms of schedulability with
short execution time and less memory consumption at intermediate nodes?

> Does the CLLF heuristic still perform well in the aforementioned mesh setting?

> Control packets are generally very short. How will packet aggregation help in
improving the schedulability?

> Since the schedule table needs to be transmitted to nodes in the network and to
be stored by them, it is imperative to minimize its size. What is an effective way
to minimize the schedule table size?

In Sec. 4.2, I will investigate these problems and propose effective algorithms and
heuristics for them.

3.2 HOW TO IMPROVE COMMUNICATION QOS WITH CONCURRENT TRANSMIS-
SION

As discussed in the last chapter, concurrent transmission can be exploited to achieve
high packet reliability, low communication latency, low energy consumption and
accurate time synchronization simultaneously in WSNs. These features match the
general communication requirements of industrial automation very well. Therefore,
Chapter 5 of the thesis will focus on improving communication QoS with the physical
layer technique of concurrent transmission.

Practical implementations of concurrent transmission exist, yet their performance
is not well understood due to the lack of expressive models that accurately predict
the outcome of packet reception. This poses an obstacle to better utilizing concurrent
transmission. Thus, the modeling problem of concurrent transmission that I address
in Sec. 5.1 is:

> On which factors does the reception of concurrent transmission depend? Can
I create a simple model that can accurately predict the outcome of concurrent
transmissions?

The original protocol Glossy which shows the efficacy of concurrent transmission
is designed for one-to-all network-wide flooding. The communication paradigm of
one-to-all communication does not match the common communication paradigms
of industrial automation, which include quite often all-to-one communication for
monitoring and one-to-one communication for control. All-to-one communication
can be realized with multiple one-to-one communication, therefore, I will focus on
one-to-one communication based on concurrent transmission in the thesis.

A naive implementation of one-to-one communication based on concurrent trans-
mission can be done by performing a network-wide Glossy flooding initiated by the
source node as done in the LWB protocol [FZMT12]. However, such network-wide
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flooding involves all nodes in the network, which results in unnecessarily high energy
consumption. Another way to tackle the problem is to measure the network topology
as done in the protocol P3 [DC14], then select only the "necessary" nodes for one-to-one
communication. The topology measurement needs to be done continuously, which
causes large overhead, but may still be unable to cope with the quick change of the
wireless channel and network state. Furthermore, different control loops may have
different communication requirements and these requirements may also change at
runtime. Always over-provision may not be ideal. Thus, I need to perform "feedback
control”" on the quality of one-to-one communication. In Sec. 5.2, I will explore the
following problems:

> How to perform energy-efficient and reliable one-to-one communication based
on concurrent transmission while being very adaptive to the wireless channel
and network state change?

> How to perform "feedback control" on the QoS of one-to-one communication?

The one-to-all communication of Glossy successfully improves reliability, latency
and energy efficiency in communication simultaneously. Moreover, it has the potential
to improve throughput, since only one packet is flooded in each Glossy round. If
I would flood more frequently in each round, I could significantly improve the
throughput of the system. This is demonstrated by the Splash protocol [DCL13a],
which makes use of pipeline transmission on multiple channels. However, Splash
relies on the CTP protocol to measure the network topology, based on which it
assigns channels statically to each node. Again, this heavyweight process needs to
be performed continuously, but may still be unable to cope with the quick change
of the network state. Furthermore, I find occasionally that the Glossy may provide
unsatisfactory reliability (with packet reception rate < 90%). A natural way to improve
the reliability is to use source coding. In summary, the following two problems will be
investigated in Sec. 5.3:

> Pipeline transmission on multiple channels greatly improves the throughput
of Glossy. How can I perform a lightweight channel assignment which has
negligible penalty on the throughput?

> How can the reliability of Glossy be guaranteed /maximized without sacrificing
its low latency advantage?

3.3 SUMMARY

This chapter discusses the deficiencies in existing works and the possibilities for

improvement. I have identified a number of key problems that I am going to investigate.

I provide solutions to the problems in the following chapters. The problems are tackled
with two methodologies. The first methodology is about improving communication
QoS with centralized TDMA scheduling, which is the main topic of Chapter 4. The
second is about improving communication QoS with concurrent transmission, on
which Chapter 5 focuses.
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IMPROVING QOS OF INDUSTRIAL WSN WITH CENTRALIZED
SCHEDULING

This chapter deals with the slot scheduling of TDMA-based protocols for wireless
sensor networks. The goal of the scheduling is to optimize or to guarantee quality
of service (QoS) in industrial WSNs. The basic assumption of the TDMA scheduling
is that it uses multiple orthogonal channels but disallows spatial reuse. This is the
assumption adopted by WirelessHART [HARo7y], the goal of which is to fully utilize
the precious channel resource while to minimize the interference that may be brought
by the spatial reuse.

The evaluation of the scheduling is based on simulation. The reason is that I
want to only focus on the quality of the scheduling, which is well defined in my
case. Therefore a simulation based evaluation assures that it is independent of the
behaviors of the other parts of the system. Two pieces of work are presented in this
chapter: a) tree-based multi-channel convergecast scheduling [YH12b] and b) TDMA
scheduling for multi-loop periodic control systems of arbitrary topology [YH12a]. The
first work can be applied for single-rate monitoring and control systems with one
gateway. Although I only deal with convergecast and convergecast corresponds to the
upstream communication (the sensing process) in a control system, the scheduling
for the downstream communication (the actuation process) can be easily obtained
by reversing the schedule. The second work can be applied to multi-rate monitoring
and control systems with one or more gateways. The scheduling goals of both works
are different: the first one aims at finding the minimum length scheduling while the
second one aims at meeting the hard deadline requirements.

4.1 TREE-BASED MULTI-CHANNEL CONVERGECAST SCHEDULING
4.1.1 Introduction

The technological progress in Wireless Sensor Networks has enabled their transition
from research environments to industrial application domains such as monitoring
and control [SBR10]. These applications are characterized by reliable exchange of
periodic data with strict QoS requirements, such as short delay. Standards such as
WirelessHART [HARo7], designed specifically for industrial automation, echo the
trend.

WirelessHART organizes the sensor nodes into tree or mesh topology and schedules
the transmissions using TDMA; the schedule is computed by a centralized network
manager and uses multiple orthogonal channels to enable simultaneous transmissions.
In order to minimize the interference caused by concurrently scheduled links, Wire-
lessHART abandons spatial reuse and allows only one link to be active on each channel
in each timeslot. While it provides a scheduling framework, the actual implementation
of scheduling algorithms is left open.
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In general, the objectives of minimizing latency and maximizing throughput and
reliability requires that scheduling algorithms should be adapted to the given network
topology and application domain. Here, I assume a tree-based routing, which is
very common for industrial automation because almost all such applications need a
centralized controller that handles the control logic. A typical example is the so-called
single-rate control system [FPW9o8]. It performs sensing, controlling and actuation with a
fixed system rate. In this thesis, I focus on the resulting Tree Convergecast Scheduling
with Multiple Channels (TCMC) problem.

Definition 1 (Tree Convergecast Scheduling with Multiple Channels). A part or all
of the sensor nodes in a WSN of tree topology generate one packet at the beginning
of each period. The packets need to be delivered to the Gateway (GW) using a given
number of orthogonal channels. A valid scheduling is the scheduling of a superframe,
at the beginning of which all nodes reporting to the GW have one packet in the
buffer, and at the end of which all packets have arrived at the GW. Furthermore, the
superframe is composed of a number of timeslots, in each of which there is at most
one link active on each channel.

In a single-rate control system, not only the sensing, but also the actuation phase can be
scheduled with TCMC since the latter is actually an reverse procedure of convergecast.
Regarding communication latency, data throughput and system sample rate, minimum
length scheduling achieves the optimum for all three metrics, as it minimizes the
schedule length measured as number of timeslots. By taking into account the resource
consumption of WSN, I propose two other scheduling goals — minimum length and
channel scheduling and minimum length and buffer size scheduling. The former refers to
the scheduling that, given a fixed buffer constraint, attains the minimum scheduling
length while using the smallest possible number of channels. The latter refers to
the case that, given a fixed number of channels, attains the minimum scheduling
length while requiring smallest worst-case buffer size at sensor nodes. Note, I focus
on the problem of minimum scheduling length without taking the packet loss into
consideration. The packet reliability and its interplay with the schedule length are left
as future works.

A number of solutions to the TCMC problem have been proposed in the literature.
Yet, the existing solutions perform either far from the optimal, and/or are very
complex to implement. My contributions are as follows:

1. I derive an Integer Programming (IP)-based optimal solution to the minimum
length and buffer size scheduling and the minimum length and channel scheduling.

(Sec. 4.1.3)

2. I formulate TCMC scheduling as a decision problem, then create a general
scheduling framework that is flexible and requires minimal code modification for
implementing different scheduling strategies. (Sec. 4.1.4)

3. I propose and implement four heuristics within my framework. I demonstrate
that my novel busy-sender-first heuristic not only performs significantly better
than the state-of-the-art heuristic in both schedule length (the busy-sender-first
heuristic is within 1.22% of the optimum) and memory consumption, but also is
conceptually much simpler and easier to implement. (Sec. 4.1.4 and Sec. 4.1.5)
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4. Based on my results, I derive guidelines on the optimal configuration of number of
channels and topology of the routing tree. (Sec. 4.1.5)

4.1.2 Related Work

The superset of the TCMC problem—TDMA-based convergecast—has been extensively
surveyed in [IGK11], which classifies the scheduling algorithms/heuristics according
to different assumptions, design objectives and design constraints.

TCMC scheduling has been studied in detail in a series of works by Zhang et al.

[ZSJogb, SZ]Jog, ZSJoga, ZS]J13]. These provide the basis and starting point for my
work. In particular, the optimal scheduling for the simple case of line and balanced
binary tree is derived, and insights into the general case of arbitrarily structured trees
are given. Important findings are as follows:

1. The minimum length and channel scheduling algorithms of line and balanced binary
tree topologies are devised.

2. The minimum schedule length of the general tree topology is equal to max{2n; —
1, N}, where n; is the number of nodes in the largest subtree and N is the total
number of nodes (excluding the GW).*

3. Given D (the tree depth) channels, a minimum length scheduling of general tree
topology can be obtained with a polynomial time algorithm, even under the
single-packet-buffer assumption, where each non-root node can store at most one
packet.

4. The 1P formulation of minimum length scheduling for general tree topology is
proposed.

5. A scheduling heuristic is presented for general tree topology with channel count
less than the tree depth D. The state-of-the-art heuristic produces near-optimal
schedule length 2, but has a high complexity. Initially, it needs packet priority

assignment as preparation; to schedule each slot, it performs 3 steps one by one:

schedule sink children, connectivity keeping and priority schedule. I will show that my
busy-sender-first heuristic is much simpler, requiring only a sort on the candidate
transmissions for the scheduling of a slot, but performs better in terms of shorter
scheduling length and less buffer consumption.

6. Various theoretical bounds on scheduling length and channels are given for
general tree topology.

Optimal convergecast scheduling of a tree network with an arbitrary interference
graph, by using one channel and spatial reuse is proved to be NP-hard as the graph
coloring problem can reduce to it [EV10]. However, to my knowledge, whether the
TCMC scheduling is NP-hard or not is still unknown. Therefore, I need to rely on
heuristics for TCMC scheduling when the number of channels is between 2 and D — 1
(both ends inclusive).

1 N and n; are used with the same meanings throughout Sec. 4.1.
2 I reimplement the heuristic based on the current Matlab code provided by the authors, which is quite
different from the description in [ZSJoga].
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Due to the NP-hardness of scheduling a tree topology network with arbitrary
interference graph and one channel, [EV10] employs two coloring heuristics based on
node-coloring and level-coloring. It is reported that the latter performs better when the
network has higher density of packets at higher levels; otherwise the former performs
better. I adapt their two coloring methods to my TCMC setting and propose two
heuristics correspondingly — the node-coloring and the level-coloring heuristics. In my
evaluation, the latter heuristic always outperforms the former.

4.1.3  Optimal Scheduling with Integer Programming

In this section, I recapitulate the optimal solution to minimum length scheduling based
on IP [SZ]og, ZSJoga, ZS]13]. Then I propose another formulation of the same problem
without using the auxiliary variables. Finally, I put forth my extension of the solutions
to the minimum length and buffer size scheduling as well as the minimum length and
channel scheduling problems.

4.1.3.1  Common Constraints of TCMC Schedulings

The following constraints and their corresponding expressions in inequalities are
common to the TCMC scheduling with different objectives. p((u) denotes the number
of packets buffered at node u at the beginning of slot t. s¢(u,v) denotes the scheduling
of a link (u,v) in slot t; s¢(u,v) = 1 if the link is scheduled, otherwise s¢(u,v) =0 . To
formulate the problem, I need an upper bound T for the schedule length, which can
be obtained based on analysis or any scheduling heuristic (not necessary optimal). I
assume that the GW has the node ID 0.

1. Begin and end conditions: 8 is the set of all source nodes. At the start, there
is no packet at the GW and one packet at each u € 8. At the end, the GW has
collected all the packets and all other nodes have empty buffer.

Po(0) =0, polu) Vue s
( (4.1)

—1,
pr(0) =18, pr(w) =0, Vu#0

2. Primary conflicts at non-leaf nodes: as the secondary conflicts, i.e., those caused
by the links which share no common nodes but interfere with each other if
scheduled simultaneously on the same channel, is eliminated because no spatial
reuse is allowed (4.4), I only need to resolve the primary conflicts at any non-leaf
node u. In (4.2), C,, denotes the set of the children of u. f(u) is the parent of u.

0< Z s¢(v,u) +s¢(u, f(u)) <1, Vnon-leaf node u, Vvt
veCy

(4.2)

3. Change of buffer size after each timeslot: the change of the buffer size at a node
u after timeslot t is subject to the conservation of packets.

pt(w) =peg(w) + Z se(v,u) —s¢(u, f(u)), vu,vte{l, .., T}
veCy

(4-3)

4. Constraints of orthogonal channels and buffer size: there are at most C transmis-
sions in a timeslot, where C is the total number of channels. Also the maximum
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number of packets that can be buffered at a node (except GW) is constrained
by a value Q. Note that, in the case of single-packet-buffer (Q = 1), the IP
degenerates into Binary Integer Programming (BIP) as all variables p¢, s¢ only
take value of o or 1. It is normally much more efficient than the corresponding
IP problem, as efficient methods for solving BIP are available. However, general
BIP problems are still NP-hard.

Z s¢(uw,v) < C, Vlinks (w,v),vte{l,..,T}
(wv) (4-4)
pe(u) <Q, Yu # 0, Vit

4.1.3.2  Scheduling Objectives Expressed as Optimization Goals

For the minimum length scheduling, an IP solution is proposed in [SZJog]. It introduces
auxiliary variables z; € {0, 1}, which are 1 or o depending on whether there are
transmissions in slot t. The optimization is expressed in (4.5). Using the auxiliary
variables z;, the minimization ensures there are no idle slots.

-
minimize tzy
; (4-5)

s.t. constraints 4.1, 4.2, 4.3, 4.4, st(u,v) < z¢, V link (u,v).

The same scheduling objective can also be expressed without z¢ and the correspond-
ing constraints of s¢(u,v) < z¢:

.
minimize Z Z 2s¢(u,0) (4.6)

t=1uechildren(GW)

Theorem 1 (The optimization of Eq. 4.6 gives a minimum length scheduling). If a
scheduling satisfies the optimization goal (4.6), it is a minimum length scheduling.

Proof. 1 prove by contradiction. Suppose there is another scheduling which uses T’
slots where T < Tand Y |_; 3 2s/(1,0) > Y 1_, 3. 2ts¢(1,0), then

T T

T/ T/
> ¥ 20 € XY 2w = 32T sffu o< 32 =271 2
t=1 u t=1

t=1 u t=1 u

In addition, any scheduling must end with transmitting a packet to the GW, oth-
erwise, there are packets buffered in the network and the scheduling is incomplete.
Therefore, 27 < Y [_; Y 2%s¢(u,0) < 27! —2. This contradicts the supposition
T <T. -

Practically the coefficient 2* in (4.6) gets large too quickly for an optimization
software to perform IP correctly when it schedules a tree with many nodes.

I extend (4.5) to the IP solution of minimum length and buffer size scheduling. It serves
as the optimal baseline for evaluating my heuristics. I introduce one more variable p
denoting the maximum buffer size consumed. Obviously I have T < p < nj, ny being
the number of nodes in the largest subtree, thus the optimization goal first prefers
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a shorter schedule length and only under the same schedule length will it prefer a
smaller maximum (worst-case) buffer size.

-
minimize ny-t-z¢+p
; (4.7)

s.t. in additionp¢(u) < p, vt €{0,..., T—1}, Vu #£0

The formulation for minimum length and channel scheduling is obtained by setting
T to the minimum length max{2n; — 1, N} (this is the minimum length when given
enough channels [SZ]Jog, ZSJoga, ZSJ13]) and making the number of channels C a
variable. Then obviously the optimization goal is simply:

minimize C (4-8)

4.1.4 Suboptimal Scheduling with Heuristics

Although the IP scheduling gives the desirable optimal solution, its computation time
goes up exponentially, since IP is an NP-hard problem. Thus, it is only applicable
when it is carried out infrequently and the network has a very small number of nodes.
To schedule a relatively large network, or to stay adaptive to the quick change of
routing topology, I have to rely on suboptimal heuristics, which run in polynomial
time, but do not guarantee the solution optimality. I will present four heuristics — one
originates from the famous critical path scheduling [KW59]; two are adapted from the
coloring-based heuristics for single-channel convergecast scheduling in [EV10]; finally,
the last one with the best performance comes from the intuition that the hotspot
nodes with more transmissions left and more conflicts with other transmissions
should be prioritized. Later, I extensively evaluate these heuristics together versus the
state-of-the-art heuristic of [ZS]Joga, ZS]J13] and the optimal IP scheduling.

4.1.4.1  The General Framework for Convergecast Scheduling

The convergecast scheduling can be viewed as a decision problem: it has the begin
and the end states described in (4.1). A state S is a vector containing the buffer state
p(ni) of each node n;. A node’s buffer state is simply the number of packets buffered
irrespective of the contents of these packets as they makes no difference to the
scheduling algorithms. Specifically, S = [p(m ), p(M2), ... p(nN )} where the tree has
N nodes. That is to say that two states are equal if and only if every node has the same
number of buffered packets. The scheduling in a timeslot transitions the system from
one state to another. At any state S, there are a number of possible state transitions,
determined solely by the state S (Markovian property). A scheduling can be viewed
as a transitional sequence starting from the begin state Sy, and finishing with the
end state S, (Fig. 4.1). Because each transition has the cost of one slot, a minimum
length scheduling is a shortest path from Sy to S.. However, as the number of states
can be exponential, such a path is not trivial to find. Suppose the distances of nodes
ny,ny, ..., nN to the GW are hy, hy, ..., hy, if each node has one packet for delivery
in each superframe, the number of all states is no more than 1‘[{11 (hy + 1), the total
number of states taking into account the position of each packet.
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Figure 4.1: Convergecast scheduling as a decision problem. Each transition corresponds to the
scheduling in a timeslot.

Viewing the convergecast as a decision problem leads me to the creation of a general
framework for it (Alg. 1). Any two schedulings only differ in how they build the
candidate set Q¢ (nodes qualified for scheduling) and choose the schedule set S¢ (nodes
being scheduled, S; C Q).

Algorithm 1: The convergecast scheduling framework.

Data: Convergecast scheduling problem
Result: A feasible schedule
1 fill the buffer of each node with the generated packets;
// schedule timeslot t
2t=1;
3 while not all packets have arrived at the GW do
4 | build candidate set Q¢ from the nodes with at least one packet in the buffer and
satisfying all additional constraints;
// select Sy C Qi subject to all scheduling constraints
5 schedule schedule set Sy = select_schedule_set(Q¢);
6 | update buffer size of the sender and receiver nodes;
s | t=t+1;

Wireless sensor nodes are normally memory-constrained, thus it makes sense to
discuss about scheduling under buffer size constraint. I explore two variants: a) single-
packet-buffer, and b) multi-packet-buffer. Nodes of the former variant can contain no
more than one packet while nodes of the latter have unlimited buffer size. By properly
building Q¢, a scheduling heuristic is applicable to any buffer constraint without
further modification. In the single-packet-buffer case, Q¢ consists of any node with
non-empty buffer whose parent must have empty buffer. In the latter case, simply all
nodes with non-empty buffer are included. In the evaluation, I find this significantly
affects the runtime of heuristics. It runs faster under the single-packet-buffer setting,
because the size of Q¢ is normally much smaller.
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4.1.4.2 Heuristics for TCMC Scheduling

In this section, I describe my four heuristics for TCMC scheduling in detail: max-
distance-first, node-coloring, level-coloring and busy-sender-first. They are equally applica-
ble if some sensor nodes are pure relays.

MAX-DISTANCE-FIRST HEURISTIC The idea is the same as the famous critical path
scheduling [KW59], which always schedules the task that heads the longest processing
chain. Thus, max-distance-first will transmit the packet farthest from the GW whenever
possible, given a transmission chance (Alg. 2). Note hops(n;) is the hop distance of
node n; to GW.

Algorithm 2: max-distance-first: Sy = select_schedule_set(Q¢).

1 sort Q¢ in the decreasing order of hops(n;);
2 select a set S¢ of non-conflicting nodes in the order of the sorted Q. until Sy is full
or no more non-conflicting node is available;

Given N nodes, each with a packet to send, the worst-case total transmission times of
convergecast among all possible spanning trees is M, being O(N?), when the tree
is a line. With a constant number of channels, the schedule length is also O(N?2). Since
Q¢ has size O(N), the sort takes time of O(N - logN). In total, the max-distance-first has
the time complexity O(N3 -logN).

NODE-COLORING HEURISTIC Inspired by the node coloring idea from [EV10], the
heuristic first assigns different colors to nodes in primary conflict, then it schedules
nodes with different colors in different timeslots circularly. In each timeslot, besides
the nodes of a certain color, all other non-conflicting nodes are scheduled greedily as
well. [EV10] suggested to color the nodes in the non-increasing order of node degree.
I want to point out that assigning color to nodes to eliminate secondary conflicts
is actually an edge-coloring problem. According to Vizing’s theorem [Dieos], the
minimum number of colors to edge-color a simple graph G is either A(G) or A(G) + 1
where A(G) is the maximum node degree of G. The colors required for a tree topology
is exactly A(G) because this is the case for any bipartite graph following Konig’s
theorem [Dieos]. The coloring can be performed by doing a level-based traversal on
the tree and coloring the incoming links of every node encountered. To my TCMC
scheduling, this means, with enough channels to eliminate secondary conflicts, each
node in a tree can be scheduled once every A timeslots, no matter how big the tree is.

Yet enough channels are not always available. The node-coloring heuristic needs to
restrict the number of nodes of the same color by the total number of channels during
the coloring process (Alg. 3). Considering nodes with more primary conflicts first
complies with the common practice of considering high-degree nodes first in coloring.
After each node is assigned a color, the network is ready to be scheduled with Alg. 4.
The complexity of the first for loop in Alg. 4 is O(N) as the loop checks no more than
N nodes. Thus, the time complexity of the whole heuristic is O(N?.(N+N-logN)) =
O(N3. logN). Assume M is the total number of colors, the upper bound of the
scheduling length is M - N because a superslot contains at most M timeslots and in
each superslot, at least one packet is delivered to the GW.
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Algorithm 3: node-coloring: node coloring.

Data: C : total number of channels available, T: the routing tree
Result: Each node is assigned a color
// tree pruning
1 do post-order traversal on T, compute the expected total transmission times of each
node, prune the node and the related link if the value is o;
// conflicts(ni) = [{children(n;)}U{parent(n;)} U{siblings(ni)}\ {GW}
2 sort all nodes in decreasing order of conflicts(n;) and increasing order of
hops(n;) for each node ny;
3 for each node n; do
4 c=1;
5 while assigning color ¢ to node n; causes primary conflict or number of nodes with
color c > C do
6 | c=c+]1

7 assign c to node ny;

8 c=0;
9 M is the total number of colors used;

Algorithm 4: node-coloring: Sy = select_schedule_set(Q¢).

1 fori=1to M do

// increase color c circularly, M is the total number of colors
2 c=(c mod M) +1;

// modes. denotes the set of nodes in Q: with color c

3 if nodes. not empty then

4 add nodes. to Sy;

L break;

// modeso. denotes nodes in Q¢ with a differnt color than ¢
6 sort nodes, in increasing order of hops(n;), decreasing order of degree(n;);
7 for each node ni € nodes, and scheduling it leads to no conflict and |S¢| < C do
8 L add n; to S¢;
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LEVEL-COLORING HEURISTIC Inspired by the level coloring idea from the same
work [EV10], the heuristic first performs color assignment to levels. In the TCMC
setting, if I eliminate the secondary conflicts, a tree level only conflicts with the
two neighbouring levels. Therefore the minimum total number of colors M can be
computed with Eq. 4.9. I can prove the minimum as no more than C levels of the same
color is allowed and the neighbouring levels cannot be assigned the same color. Alg. 5
performs the coloring. Similarly, a superslot is composed of a sequence of timeslots of
each possible color. In a timeslot of color ¢, I attempt to select a node from each level
of color c. Additional nodes are added as long as the resulting set is non-conflicting
and smaller than C (Alg. 6). Same as node-coloring, the time complexity of level-coloring
heuristic is O(N3 - logN) and the upper bound of the scheduling length is M - N.

1 if D=1
M=4¢2 if2<D<C (4-9)
(2] ifD>C

Algorithm 5: level-coloring: level coloring.

Data: C : total number of channels available, T: the routing tree
Result: Each level is assigned a color
1 prune tree T as in the node-based heuristic;
// D is the tree depth after pruning
// M is the total number of colors computed by Eq. 4.9
2 ford=1toD do
3 L assign color ¢ = [(d—1) mod M] + 1 to level d;

4 c=0;

Algorithm 6: level-coloring: Sy = select_schedule_set(Qy).

1 fori=1to M do

2 c=(c mod M) +1;

3 nodes. = select one node from each level of color ¢ and in Q. In the same
level, a node with a higher node degree is preferred;

4 if nodes. not empty then

L add nodes. to Sy;

6 break;

7 sort nodes, (other nodes in Q) in increasing order of hops(n;) and decreasing
order of degree(n;);
for each node ni € nodes, and scheduling it leads to no conflict and |S¢| < C do

L add n; to S¢;

O @

BUSY-SENDER-FIRST HEURISTIC Though max-distance-first heuristic has the clear
intuition of prioritizing packets farther away from the GW, such "fairness" may not
give the minimum schedule length. It is more important to evacuate the data as fast
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max-distance-first busy-sender-first
clala|b|bjla|b|a]|b
d d|c

Figure 4.2: A sample tree topology, for which max-distance-first performs sub-optimally.

as possible by parallelizing as many transmissions as possible. For this purpose, I
find it is very effective to prioritize the busy sender, the node in Q with the largest
number of remaining transmissions. Such scheduling has the intuition to relieve
any hot-spots, which may become the bottleneck and harm the parallelism as they
normally cause more conflicts with transmissions of other nodes. Fig. 4.2 gives an
example of a simple topology, with 2 channels, 5 timeslots are required by max-
distance-first, however, if I prioritize nodes with more unscheduled transmissions by
applying busy-sender-first, 4 timeslots are enough. Different from the former heuristics,
busy-sender-first uses dynamic information of a node: 1) the unscheduled transmissions
of a node, 2) the sum of the unscheduled transmissions of all conflicting nodes.
Besides, priority is given to high level nodes in order to prevent a gap, i.e., the
lower levels having empty buffers while high levels having non-empty buffers. The
scheduling heuristic is listed in Alg. 7. In the listing, tx_unscheduled(n;) denotes
node n;’s unscheduled transmissions; conflict_tx_unscheduled(n;) denotes the sum
of the unscheduled transmissions of all conflicting nodes (conflict_nodes(ni) =
children(ni) Uparent(ni) Usiblings(ni) \ {GW}).

conflict_tx_unscheduled(n;) = Z tx_unscheduled(n)

neconflict_nodes(ny)

Same as max-distance-first, this heuristic has the time complexity O(N3 -logN). The
heuristic is also directly applicable to any mesh topology without further modification.

Algorithm 7: busy-sender-first: S¢ = select_schedule_set(Q¢).

1 sort Q¢ in the decreasing order of tx_unscheduled(n;), decreasing order of
conflict_tx_unscheduled(n;) and decreasing order of hops(n;);

2 select a set S¢ of non-conflicting nodes in the order of the sorted Q¢ until S is full
or no more non-conflicting node is available;

4.1.5 Evaluation

In this section, I evaluate the four heuristics proposed and the state-of-the-art time-
and channel-optimal convergecast heuristic from [ZSJoga, Z5J13] (henceforth, I call it
convergecast heuristic for short), as well as the IP-based optimal scheduling. The evalu-
ation focuses on two metrics: scheduling length and maximum buffer size. Furthermore, I
also explore the tradeoff between number of channels and schedule length, as well as
the impact of topology on schedule length. All heuristics and the IP scheduling are
implemented in Java. In addition, I use the MOSEK Optimization Library [MOS] for
solving IP problems.
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4.1.5.1  Evaluation of Heuristics and IP Scheduling

I carried out two experiments: experiment A evaluates the heuristics in comparison
with the optimal IP solution for small trees (< 30 nodes) and experiment B evaluates
the heuristics with small to large trees (2 to 1024 nodes).

The optimal solution is obtained by solving the IP-based minimum length and buffer
size scheduling. As IP is generally NP-hard, I only evaluate random trees of limited
size in experiment A, i.e., with 5 to 30 nodes. For each size, I generate 10 random
trees, on which I run the 5 heuristics and the IP scheduling. To better evaluate the
heuristic with increasing number of nodes, I carry out more extensive evaluation in
experiment B, with trees of 2™, n € {1,2,...,10} nodes. For each tree size, I randomly
generate 50 trees, on which I run the 5 heuristics, but not the IP scheduling, since
it would be computationally too expensive. In both experiments, for each generated
tree, the heuristics and the IP scheduling run under the setting of different number of
channels (2 to D, the tree depth) and two buffer constraints (single-packet-buffer and
multi-packet-buffer).

SCHEDULING LENGTH In experiment A, the IP scheduling provides the minimum
schedule length, to which the performance of the various heuristics is normalized. In
experiment B, as the computation time of IP scheduling is too long for large trees,
instead of normalizing the schedule length of a heuristic to the minimum schedule
length, I normalize it to the schedule length lower bound. Given channel count and single-
/multi-packet-buffer setting, the tight schedule length lower bound can be obtained with
the Corollary 4 in [ZSJoga]. Consequently, the normalized schedule length may be
overestimated and the actual performance of heuristics can only be better than is
shown in the plots.

From Fig. 4.3 and the experimental results in detail I can observe the following
points.

1. Generally, in both experiments, each heuristic performs consistently: max-distance-
first, node-coloring, level-coloring, convergecast and busy-sender-first, in the order
of increasing performance. The only exception is in experiment B, where the
level-coloring is a bit better than convergecast when the trees are over 512 nodes,
which suggests giving equal scheduling chance to nodes at different levels may
be beneficial for large trees.

2. The average schedule lengths of the last three heuristics always satisfactorily
stay within 5% of the minimum length or the lower bound, qualifying them to be
used in real-world scheduling; max-distance-first has the worst average schedule
length performance, but it is still within 45% of the optimum (part of the plots
are not shown due to space limit).

3. The relative difference in performance is bigger under the multi-packet-buffer
setting. This is because the single-packet-buffer setting is more restrictive and
gives less freedom in selecting nodes to be scheduled.

4. My unique busy-sender-first heuristic performs significantly better than all the
others, including the state-of-the-art convergecast, with the smallest average
result, smallest worst-case result and smallest standard deviation in all cases. Its
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Figure 4.3: Schedule length of experiment A and B. In (a) and (b), the results are normalized
to those of the optimal IP scheduling; in (c) and (d), they are normalized to the
schedule length lower bounds. The standard deviations are shown for the two best
heuristics for better comparison, but are omitted for the other three heuristics for
clearer plotting. Curves are moved a bit to make the errorbars discernible.
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average performance is always within 1.22% of the minimum length or the lower
bound while the performance of convergecast stays only within 1.78%. And the
performance advantage of the busy-sender-first in comparison to the second-best
convergecast is increasing with number of nodes (Fig 4.3(c),(d)). Taking a closer
look into the schedules of experiment A, I find that busy-sender-first attains the
minimum length for 98% of all schedules, and for the other 2% cases, it uses only
one more timeslot. Also the worst-case performance of busy-sender-first is far
better than others: at worst busy-sender-first uses 4.6% and 8.3% more timeslots
than the references in experiment A and B, while the second-best convergecast
uses 13% and 21.8% more timeslots. These results unambiguously displays
busy-sender-first’s excellent performance in schedule length as a heuristic.
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Figure 4.4: Maximum bulffer size of experiment A and B. In (a), the results are normalized to
those of the optimal IP scheduling; in (b), they are in the unit of packets. The curves
in (a) are moved a bit to make the errorbars discernible.

MAXIMUM BUFFER SIZE Only the results under the multi-packet-buffer setting are
presented, as under the single-packet-buffer setting, the maximum buffer size is always
1. In experiment A, the IP scheduling provides the minimum reference, to which the
performance of all heuristics are normalized; in experiment B, as it is impossible to get
the optimum maximum buffer size in reasonable time and there is no derivable lower
bound for it, I display the results in raw values of packets. I can observe from Fig. 4.4
the following points.

1. The performance of memory consumption generally keeps the same order as the
scheduling length, i.e., max-distance-first, node-coloring, level-coloring, convergecast
and busy-sender-first in increasing order. But in experiment A (Fig. 4.4(a)), the av-
erage memory consumption and standard deviation show that the performance
of busy-sender-first and convergecast are similar.

2. As confirmed by both experiments, the memory consumption of max-distance-first
goes up fastest with the number of nodes. The reason is that generally packets in
high levels are prioritized, leading to the fact that memory consumption at a GW
child is statistically proportional to the number of nodes in the corresponding
subtree (the curve of max-distance-first in Fig. 4.4(b) is almost linear).
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Figure 4.5: The tradeoff between channels and schedule length under single-packet buffer and
multi-packet-buffer setting. Schedule length is normalized to the optimum length
max{2n; —1,N}L

3. The curve of busy-sender-first in Fig. 4.4(b) is the flattest among all, which means
that with the increase of nodes the maximum buffer size goes up more slowly than
the others. For example, at 2 nodes, busy-sender-first needs on average half the
buffer size of max-distance-first and the same amount as convergecast, while at
1024 nodes, it only needs 15% of the former and 87% of the latter.

4. Although busy-sender-first performs the best, it still uses more than twice of the
optimal buffer size in experiment A. In contrast to schedule length, there seems to
be bigger room for improvement regarding memory consumption.

On average, the busy-sender-first heuristic needs a buffer size of about 46 packets for
a network with 512 nodes — a sufficient upper bound of the scale of a network for the
purpose of industrial automation. Since a packet is no more than 127 bytes, this takes
less than 6K bytes which can be fit into the 10K bytes Random Access Memory (RAM)
of the most widely used TelosB mote [Moto4].

4.1.5.2  Tradeoff between Number of Channels and Schedule Length

The available wireless channels are very often a more stringent and precious resource
than buffer space. With the experiment results of the busy-sender-first in experiment B, 1
evaluate the tradeoff between number of channels and schedule length. I normalize
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the schedule length to the optimum value max{2n; — 1, N}, the shortest schedule
length possible given enough channels. In Fig. 4.5(a) and (c), I show the tradeoff
between average schedule length and number of channels of each tree size under the
single-packet-buffer and the multi-packet-buffer setting respectively (the 10 lines from
top to down correspond to 1024 to 2 nodes respectively). In Fig. 4.5(b) and (d), I show
scatterplots that capture the dataset of all (number of channels, schedule length) pairs
of all tree sizes. The results for two buffer settings are almost the same. As expected,
the marginal improvement of schedule length decreases with the number of channels.
On average, starting with 1 channel, 2 channels almost halves the schedule length
while 3 channels further decreases the schedule length to 1/3. On average, even with a
big network of 1024 nodes, 3 channels already decrease the schedule length from 5.28
times to 1.77 times of the optimum while the worst-case decreases from 6.72 times to
2.24 times. With 7 channels, for all evaluated trees with up to 1024 nodes, I always
obtain the optimum schedule length, which shows that the 16 orthogonal channels
specified by the IEEE 802.15.4 standard is sufficient for the scale of a control network.
In general, for a network with no more than 1024 nodes, given 3 to 4 channels will
push the schedule length below twice the optimum. More channels will further reduce
the length, but the marginal improvement decreases.

4.1.5.3 The Impact of Tree Topology on Scheduling Length

The configuration of tree topology has a great impact on scheduling length. For
instance, given a network of N nodes and D channels, if it is balanced, the optimal
schedule length is exactly N; if the GW has only one subtree, then the optimal schedule
length is 2N — 1. The difference is almost a factor of two. If less than D channels are

available, according to the Corollary 4 of [ZSJoga], the schedule length lower bound is

L> [ﬁTN +$ — 17, where C is the number of channels and D is the average depth

of all nodes, assuming multi-packet-buffer. Dimax = % if the network is a line and

Dmin = 1if all nodes are one hop away from the GW. Thus the difference in schedule
length can be as big as NTH times.

Table 4.1: Quality of various hypotheses about topology choice. The left values are the perfor-
mance on the learning dataset of 16-node trees. The right values are the performance

on the test dataset of 15-node trees. "positive", "negative" and "neutral" means a
scheduling confirms, rejects or neither confirms nor rejects a hypothesis.

Hypothesis (tree a and tree b) | positive % | negative % | neutral %

1: Ba < Pv = La <Ly 63.9164.6 | 12.6111.4 23.5124.0
22D <Dp=La<ly 93.1191.9 | 1.612.1 5.316.0
3: Dqg <Dy = La <Ly 71.5170.4 | 8.418.5 20.1121.1

4:Da<Dp=La<Ly
else Do < Dp = Lq <Ly 94.6193.6 | 1.712.1 3.714.3

else fa < Po = La <Ly

To learn the impact of the configuration of the topology on the schedule length, I
enumerate all rooted trees of 16 nodes with the Beyer-Hedetmieni algorithm [BH8o].
These 634,847 trees encompass all possible tree topologies. I further restrict the trees
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to those whose maximum degree is no more than 4 because real-world WSN nodes
can only have a limited number of links to other nodes (530,657 trees are qualified).
Then I use busy-sender-first to schedule the trees under the condition of 2 channels and
multi-packet-buffer. Three important topology metrics are investigated:

1. Balance Factor (3: the percentage of nodes in the biggest subtree. § = .

RS [%, 1], where % denotes a highly balanced tree — every node is directly
connected with the GW; 1 denotes the unbalanced situation of the only subtree.

2. Average Depth D : average depth of all nodes to the GW. It appears in the
schedule length lower bound.

3. Tree Depth D: the tree depth.

Intuitively, smaller B, D and D would result in short schedule length. But what is the
best combination of metrics? With the learning dataset of all qualified 16-node trees, I
evaluate all combinations of the 3 metrics and find that my Hypothesis 4 works best
(Table 4.1 contain the hypotheses based on single metric and the best combination of
the 3 metrics). The hypothesis is equivalent to the guideline in topology choice: given
a number of nodes, I first choose a spanning tree with small D; if D is the same, I
prefer a tree with small D; if D is still the same, I choose a tree with small 3, which is
confirmed 94.6% and is rejected 1.7% of the times by the learning dataset. Moreover,
the test dataset of all 15-node trees (197,306 trees) with the same aforementioned
properties also confirms the superiority of this hypothesis (values on the right side in
Table 4.1).

4.1.6  Conclusion

Applying WSN in industrial automation settings requires fast and reliable converge-
cast. I focus on the scheduling of tree-based multi-channel convergecast without spatial
reuse (TCMC), a key component of WSNs, which is directly applicable to standards
such as WirelessHART and ISA100.11a. I have extended the optimal IP-based solution
to the minimum length and buffer size scheduling and the minimum length and channel
scheduling. Because the optimal TCMC scheduling algorithm is not yet found, given a
limited number of channels, scheduling has to rely on efficient heuristics. I have pre-
sented a unique perspective of viewing the TCMC scheduling as a decision problem
and created a general and flexible framework for scheduling heuristics. Furthermore,
I propose 4 heuristics, among which busy-sender-first attains a schedule length that
is within 1.22% of the minimum length, significantly better than the state-of-the-art
heuristic in [ZS]Joga, ZSJ13]. It also incurs slightly less memory consumption. Another
big advantage of the busy-sender-first heuristic is its conceptual simplicity and the
resulting simplicity in implementation, in comparison with the state-of-art heuristic.
Besides, I evaluate the tradeoff between number of channels and scheduling length
and give guidelines on the choice of number of channels. Last, I propose an effective
method for choosing the configuration of the tree topology based on evaluation on all
rooted trees of same number of nodes, which leads to short schedule length.
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4.2 TDMA SCHEDULING FOR PERIODIC CONTROL SYSTEMS OF ARBITRARY
TOPOLOGY

4.2.1 Introduction

Control systems are ubiquitous in industry and everyday life. They can be as simple
as a thermostat that automatically adapts the room temperature or as complex as
the European power network that coordinates the production and consumption
of electricity continuously, as well as maintaining the safe operation of the large
distributed system [AMo8].

In this work, I focus on the scheduling of TDMA-based wireless sensor networks for
industrial automation featuring periodic control. Example of periodic control systems
are assembly lines for car manufacturing and the condition control (e.g., pressure,
temperature) of a chemical reaction in order to obtain quality end-products efficiently.
This type of system is composed of one or more control loops, each of which performs
the control periodically on one output variable (e.g., temperature). In each period, a
control loop performs sensing, computation and actuation with the goal of making the
real output follow the desired output (Fig. 4.6).

desired output (O error Controller Actuator - output
S (computation) (actuation) rocess

Sensor (sensing)

Figure 4.6: A control loop periodically performs sensing, computation and actuation.

Because periodic control systems are normally hard real-time systems, i.e., each
activation of a sensing-computation-actuation loop must finish before a hard deadline,
the network design must correspondingly guarantee hard end-to-end transmission
latencies. Since the wireless communication has lower reliability, lower throughput and
larger latency, compared to the wired communication, how to schedule the networks
so that the hard deadlines and reliability of retransmissions are guaranteed at the
same time is very challenging.

My work is based on a very general communication model of multi-rate periodic
control systems. It allows arbitrary topology, multiple gateways, multiple flows with
arbitrary period and deadline requirements where each flow can have multiple routing
paths. Under such a model, I apply the Single Controller Activation (SA) scheduling,
i.e., scheduling the controller-to-actuator transmissions after the sensor-to-controller
transmissions, as I argue that it is more desirable than the Multiple Controller Activation
(MA) scheduling, i.e., scheduling each sensor-to-actuator path independently. The main
contributions of this work are as follows.

1. I propose a general framework for scheduling algorithms. Based on that, I
implement a number of fixed and dynamic priority scheduling algorithms
borrowed from multi-processor real-time scheduling and existing works on
TDMA scheduling, adapted to my system model (Sec. 4.2.4).
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2. Through extensive evaluation, I identify the best algorithm Least Laxity First
(LLF) in terms of high schedulability rate, low execution time and low memory
overhead for network operation (Sec. 4.2.5.2).

3. I design a simple opportunistic aggregation scheme that works seamlessly with any
scheduling algorithm and I demonstrate that it significantly increases schedula-
bility (Sec. 4.2.4.4 and Sec. 4.2.5.3).

4. I design a unique scheme called repetitive scheduling that works with any schedul-
ing algorithm under the condition that the periods are harmonic. It is very
effective for the case of implicit deadline (meaning deadline is equal to period)
which incurs only minimal penalty on schedulability, but has the ideal prop-
erty of highly scalable execution time and schedule table size (Sec. 4.2.4.5 and

Sec. 4.2.5.4).
4.2.2  Related Work

The research that deals with a problem most similar to ours is a series of works by
Saifullah et al [SXLC10, SXLC11a, SXLC11b]. They discuss the TDMA scheduling
problem of WirelessHART networks with multiple channels and no spatial reuse.
It assumes a network of arbitrary topology and one gateway. A number of flows
(control loops) are to be scheduled where each flow corresponds to the transmissions
from a node (sensor) to the gateway (controller) and then to another node (actuator).
Each flow is activated periodically and has a hard deadline. [SXLC10] shows that a
control loop can also have multiple paths by mapping each path to an independent
flow, which needs multiple activation of the controller (MA scheduling). A model of
multi-path control loop that is more realistic and offers higher transmission reliability
is to schedule the controller-to-actuator transmissions after all sensor-to-controller
transmissions, which only needs one activation of the controller (SA scheduling). I use
this model and additionally, I allow more than one gateways for better performance.

The WirelessHART scheduling problem is proved to be NP-hard by [SXLC1o]. It
gives a branch-and-bound optimal scheduling algorithm but it is only feasible for
networks of very small size. Then, [SXLC10] introduces the Conflict-aware Least Laxity
First (CLLF) heuristic which has performance dominating the other algorithms. I have
adapted CLLF to my problem setting and have evaluated it together with a set of
other algorithms. I find that CLLF has incurred much higher computational overhead
than the best algorithm LLF, despite delivering worse performance. I have performed
an extensive evaluation on each scheduling algorithm by using both ideal and realistic
link models, with varying number of flows, total utilization of the network and number
of channels.

An end-to-end latency analysis of the fixed priority scheduling algorithms for the
WirelessHART scheduling problem is given in [SXLC11a], which incorporates the
most up-to-date advance in response time analysis. [SXLC11b] discusses the priority
assignment for real-time flows. It proposes an optimal algorithm based on local search
for any given worst case latency analysis and then provides an efficient heuristic.
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4.2.3 System Model

This section describes the TDMA-based wireless sensor network model for multi-
rate periodic control systems. Specifically, I extensively discuss the topology, the link
quality, the communication, and the routing models associated with the system model.

4.2.3.1  Topology Model

The topology of a wireless network for a periodic control system is modeled as an
undirected simple graph G = (V, ), where V is the set of nodes and € is the set of
undirected links 3. Furthermore, V = NUM, where N is set of motes (a mote is a
sensor, an actuator or a pure relay, all with the ability to relay packets), and M is the
set of gateways. An element e € € has a corresponding link quality (packet reception
rate) between o and 1. I assume any two gateways are connected to each other with
perfect link quality of 1 and zero latency. This is a simplification of the real-world
scenario in which gateways are access points to the wired network infrastructure.

4.2.3.2  Link Quality Model

Simulating link quality in practice requires setting up a realistic radio propagation
model. The so-called log-normal model is the preferred one due to its accuracy in the
large-scale fading, which is typical in industrial factory environments [RM89, ZKo4,
TJV'08]. For each pair of nodes (at least one is non-gateway), I compute link quality
in this way, and I keep a link only when the link quality is above 50%.

The path loss of log-normal model can be computed as follows:

d
PL(d) = PL(do) + 101 - 1ogm(d—o) +Xo (4.10)

where PL(d) is the path loss of signal strength at distance d, PL(do) is the path loss at
the reference distance do, 1 is the path loss exponent and X is a zero-mean Gaussian
random variable with standard deviation o. The term X, is due to the shadowing
effect [Rapo1]. I set reference distance dp = 15m, path loss at reference distance
PL(15) = 71.84 dBm, path loss exponent 1 = 2.16 and o = 8.13, all obtained by the
extensive real-world measurement in [TJV*08]. These are the average parameters
of 2.4 GHz frequency in normal in-door factory environment for both cases of
Line-of-sight (LOS) propagation and Non-line-of-sight (NLOS) propagation.
Thus the reception power P(d) at distance d is

P(d) = P —PL(d) (4.11)

where P, is the transmission power. The typical IEEE 802.15.4 radio chip CC2420
[CC213] has Py in the range of —25dBm to 0 dBm. I choose 0 dBm in my evaluation
since it provides the highest packet reliability when spatial reuse is disabled. Under a
clear environment, the noise floor of the CC2420 radio is about —98 dBm. Hence, I can
compute the Signal-to-noise Ratio (SNR) as:

Y =P(d) —Pn =P(d) +98 (4.12)

For simplicity, I use the undirected link model, but my work can be easily extended to the more realistic
directed link model.
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and Symbol Error Rate (SER) as:

SER = %erfc (61 = BZ)>

V2

by means of the empirically determined accurate TOSSIM model [LLWCo3] where
1 =0.9794 and 3, = 2.3851. Finally, I get the Packet Reception Rate (PRR)

(4.13)

PRR = (1 — SER)?! (4.14)

where 1 is the packet length measured in bytes. An IEEE 802.15.4 frame contains a
preamble of 4 bytes, 1 byte Start Frame Delimiter (SFD), 1 byte of frame length and
PHY Service Data Unit (PSDU) of variable length up to 127 bytes. I set 1 to 133 bytes in
order to take into consideration the worst-case scenario.

4.2.3.3 Communication Model

I have opted for the TDMA protocol in my communication model since it provides
deterministic latency. In order to minimize the internal interference due to concurrently
scheduled links, I disable the spatial reuse in the same fashion as WirelessHART does.
Assume that there are C orthogonal channels in total (e.g., for IEEE 802.15.4, C = 16),
which means the number of concurrently scheduled links should not be greater than
C. Although links between gateways are assumed to have zero latency and 100% link
quality, the link between a gateway and a mote, or between two motes, is generally
imperfect and it takes one slot to send a packet through such a link. Moreover, each
gateway or mote is equipped with one half-duplex radio which cannot send and
receive simultaneously.

I discuss the most common and simplest case in which a feedback loop is activated
periodically and has Single Input and Single Output (SISO), i.e., one sensor and one
actuator. 4 I call the communication of a loop a flow.

Because the TDMA protocol is applied, it is natural to model the communication as
a discrete-time system. A unit time is set to be the duration of a slot. Denote the period
of flow f as p, where p is a positive integer. The sensor samples at times k - p, where
k=0,1,2,.. Time k- p is the instant at which the flow f is activated for the kth time.
As pointed out in [ZBPo1], which analyzes a constant network-induced latency model,
if the control laws are time-invariant, there is no need to differentiate the sensor-to-
controller latency d*¢ and the controller-to-actuator latency d““. Hence, I use the sum
flow latency d = d*¢ 4- d°“ for analyzing communication schedulability. I abstract the
latency requirement of flow f to be d < diax, where dimax is the maximum allowable
latency. [ZBPo1] illustrates with an example that the system can tolerate a flow latency
d larger than p while being still stable when the period p is small enough. However,
when p gets large, the dimqx gets smaller than p. It is determined by the analysis on
the stability and performance of the feedback loop, and can be lower, equal or larger
than the period p.

Additionally, flow reliability also needs to be guaranteed. To obtain stability and
satisfactory performance of a feedback loop, the flow reliability r should be above

My scheduling algorithms can be easily extended to the Multiple Inputs and Multiple Outputs (MIMO)
setting.
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a lower bound T1in, i.e.,, T 2 Tmin. For control applications, normally the reliabil-
ity lower bound 1,,in does not need to be so high as in monitoring applications
[ZBPo1, MPFJ10]. Routing can influence both flow latency and flow reliability; how-
ever, tackling this issue is beyond the scope of this thesis.

4.2.3.4 Routing Model

I consider a multi-path scheme for modeling the routing of a flow to ensure flow
reliability. That is, when the lower bound requirement of a flow, r > 1,,in, cannot be
satisfied by a single sensor-to-actuator path (sa-path), then multi-path routing might
sort this problem out. A flow f is split into two parts: one comprising those paths
starting at the sensor and ending at an arbitrary gateway, and another one comprising
those paths starting at an arbitrary gateway and ending at an actuator. Specifically, the
flow f is divided into a sensor-to-controller flow f5¢ (sc-flow) and the controller-to-actuator
flow ¢ (ca-flow). The paths in f*¢ are called sc-paths, and denoted by 7€, where
i =1,2,...,; while the paths in f¢¢ are called ca-paths, and denoted by ﬂjca, where
j = 1,2,...,. Note that a flow may have different number of sc-paths and ca-paths.
When the sensor data arrives at a gateway through an sc-path, the control algorithm is
ready to run. Once the control algorithm has finished execution, the output is sent to
the actuator through a ca-path. The proposed routing model is general enough, and
works in a variety of concrete situations.

My next step is to decide on a scheduling strategy based on the following aspects:
flow reliability, control algorithm executions, and flow latency. Suppose flow f have
n sa-paths o, 7y, ..., Th—1. > Each sa-path m; is composed of an sc-path 7{¢ and a
ca-path 7{¢. Note that the gateway end-points of the two paths may be different, since
I assume full connection between gateways.

Now I consider two scheduling models: SA scheduling and MA scheduling. SA
specifies that the control algorithm runs only once for each activation of the flow, after
the transmissions on all sc-paths. Then the controller output is sent on all ca-paths.
MA schedules independently different sa-paths, and the same control algorithm runs
n times, as many times as there are paths. For each sa-path, the algorithm runs once
the corresponding sc-path finishes transmissions.

I analyze the SA and MA models in terms of the three aforementioned issues to
decide which of them is better.

SC ca
To

senso ntro/l].ex/_\ac\hmtor
\_/O
T3¢ ¢
Figure 4.7: An end-to-end flow with two sa-paths 7y and 77, where ¢ and r{“ are the
reliabilities of the sc-path and the ca-path of the sa-path 7, respectively.

1. Flow reliability. Given a two-path routing such as the one in Fig. 4.7, the flow
reliabilities of the models SA and MA are:

The concept of an sa-path is not really needed in the SA model and makes no sense when the number of
sc-paths and ca-paths are different. I introduce it only for the sake of comparing the SA and MA models.
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rSA = 1= (1 =78 (1= v [T = (1 =7§%) (1 —7§)]

TMA 1 (1155159 (1 —r5¢r§9) (4-15)
The difference between the two reliabilities is:
A MA e (1 —r3) (1T —r§Y) +r3ri (1 —rg9)(1—73) >0 (4.16)

This shows that the SA model provides equal or higher reliability in the case of two
paths. The result can be extended to n paths as follows.

Theorem 2 (SA model has reliability greater than or equal to MA model). For a flow
with 1. > 1 routing paths, the end-to-end reliability of the SA model is greater than or equal to
that of the MA model, i.e., 5™ > vMA,

Proof. In the SA model, the probability that a sensor packet arrives at the controller is
1— ]_[{1;01 (1 —71$¢). This is also the probability of an actuator packet to be transmitted
on each ca-path. Under the MA model, the probability of an actuator packet to be
transmitted on the ith ca-path is r{¢. Since r € [0,1], 1 — H?:_()] (1—r)=>1-01—

13¢) = 17¢. Therefore, rSA > pMA, O

o
3
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Figure 4.8: Difference in flow reliability of the SA and MA models, 154 — rMA,

To illustrate the difference between the two models in terms of flow reliability, I
consider the case in which all sc- and ca-paths have the same reliability r. In this
particular example, PA_MA (T =2 -1 — (1= 1 plot in a graph the
difference (Fig. 4.8) varying r € [0, 1] and n € {2, ..., 10}. I observe that, as the number
of paths n — oo, the maximum difference in reliability has upper bound 1. The big
difference is obtained at small 7.

2. Number of execution times of the control algorithm. For the SA model, each
activation of a flow requires one execution of the control algorithm. For the MA
model, it requires n executions of the control algorithm, where n is the number
of sa-paths. Thus, SA is more favorable, especially for a computationally expensive
control algorithm.

3. Flow latency. Given the same multi-path routing of a flow, the best-case flow
latency of the SA model is equal to the sum hop count of the longest sc-path and the
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longest ca-path, max{hops (7€)} + max{hops(n]?a)}, where hops(-) denotes the hop
i j

count of a path. On the other hand, the best-case flow latency of the MA model is
equal to the hop count of the longest sa-path, max{hops(7{¢) 4+ hops(7t{®)}. In this
1

regard, the MA model is better. However, normally the routing problem is to find
the lowest cost path satisfying a certain flow reliability level. Given the same routing,
the SA model offers higher flow reliability. Furthermore, it allows finer granularity
in path selection, meaning that when the flow reliability cannot be satisfied, instead
of adding a new sa-path in the MA model, the SA model may add an sc-path or a
ca-path. Therefore, the actual flow latency of the SA model may be even lower than
that of the MA model.

Taking into account all of the above aspects, I prefer the SA scheduling model and
use it consistently in this work.

4.2.4 TDMA Scheduling Algorithms

After I have established the system model, I now discuss the algorithms for scheduling
TDMA transmissions. First I propose the framework for TDMA scheduling, viewing
it as a multiprocessor scheduling problem. Then I describe a number of algorithms
to be evaluated, and finally, I propose two concrete techniques: namely, opportunistic
aggregation and repetitive scheduling which work seamlessly with any scheduling
algorithm. As confirmed later by evaluation, the opportunistic aggregation significantly
increases the schedulability while the repetitive scheduling significantly reduces the
schedule table size and the execution time of the scheduling when the periods are
harmonic and the deadlines are implicit.

4.2.4.1  The Framework of Scheduling Algorithms

Multiprocessor scheduling deals with the problem of assigning a set of tasks (sporadic
or periodic) to a number of processors so that each task meets its deadline. My TDMA
scheduling problem can be formulated as a multiprocessor scheduling problem where
tasks can be of different granularities, such as the transmissions of a flow, of an sc- or
ca-path, or of a link, and processors correspond to the available wireless channels. If
there are N processors, the number of simultaneously scheduled tasks is at most N.
Analogously, given N channels, the TDMA scheduling allows at most N transmissions
in the same slot as the spatial reuse is disabled. However, my TDMA scheduling
exhibits one peculiarity: any two scheduled links in the same slot cannot be in primary
conflict, i.e., they cannot share a common node (with the exception of opportunistic
aggregation). This implies that two tasks may be mutually exclusive, i.e., only one of
them can be scheduled at a time.

There are two categories of multiprocessor scheduling algorithms: partitioned and
global. The first one assigns a task statically to a processor, while the latter permits
tasks to freely migrate between processors [DB11a]. Since migration corresponds to
scheduling two consecutive transmissions on a path on two channels, and the cost of
migration is negligible in my case, global scheduling should perform better. Thus I
only investigate algorithms of this category.

Alg. 8 gives a high-level description of the general scheduling algorithm framework.
Different algorithms follow the same steps, and they only differ from one another in
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Algorithm 8: The scheduling algorithm framework.

Data: C: number of channels available

1 perform the schedulability test;
2 for slot =0 to hyperperiod —1 do
collect all released transmissions;
order them according to a fixed priority rule;
from high to low priority, schedule at most C non-conflicting transmissions;
if deadline is missed then

L return infeasible;

N o U s W

if scheduling is complete then
9 L return feasible;

the way the released transmissions are prioritized where a released transmission refers
to a transmission that can be scheduled in the next slot. First of all, a schedulability test
is performed, and if it fails, i.e., a problem is definitely unschedulable, the algorithm
stops. For the schedulability test, two checks are carried out:

1. Deadline Check. The deadline of a flow must be no smaller than the sum hop
count of the longest sc-path and the longest ca-path.

2. Utilization Check (skipped for opportunistic aggregation). The utilization of a

flow f is defined as %, where hops(f) is the number of transmissions
for each activation of f and period(f) is the flow period. The total utilization of
all flows should not be larger than the number of channels. This is an obvious

necessary schedulability test [Hory4].

If both tests are passed, it starts to perform scheduling. Although it is theoretically
possible that a feedback loop has the deadline larger than the period, I impose that
deadlines are less than or equal to periods, since: 1) if the periodic control system is
feasible with the deadline larger than the period, a system would as well be feasible
with a larger period but a restricted or implicit deadline (deadline < period), which
saves transmission cost; 2) according to [CGo6], a synchronized (initially all tasks
are released simultaneously), implicit- and restricted-deadline periodic taskset is
schedulable, if it is feasible for a hyper-period, which is defined as the least common
multiple of all task periods. Moreover, if deadlines were arbitrary, although the
scheduling is still periodic after some point in time, this instant can not be accurately
determined [CGo7].

If the test outcome is positive, then the scheduling algorithm starts, and all released
transmissions for the current slot are collected. However, there is one restriction: for
one activation of a flow, the transmissions on the ca-flow are not released until all
transmissions on the sc-flow are finished.

The Fig. 4.9 illustrates a scheduling problem with two channels. It serves as a
running example for the explanation of the various scheduling algorithms. I have
mentioned previously that algorithms differ in the way they prioritize tasks; the
following subsection classifies and describes algorithms according to this criterion.
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Figure 4.9: The example scheduling problem: a grid network of 15 nodes. gy, g1 are gateways.
Two flows fy (sensor sg, actuator ag), f1 (sensor s1, actuator aq) are to be scheduled.
fo has two sa-paths (oo = 735 + 75 and o1 = 73§ + 75§). f1 has one sa-path
(10 = m35 +7155) . The periods and deadlines of fy and f; are po = 10,dp = 10
and p; = 20, d; = 9 respectively.

4.2.4.2  Fixed Priority Scheduling Algorithms

Fixed priority scheduling algorithms assign fixed priorities to tasks in the initialization
phase, therefore no runtime information is required for priority comparison. Generally,
the scheduling quality of fixed priority scheduling algorithms is worse than that of
dynamic priority scheduling algorithms [DB11a], but they have the advantage of the
possibility of schedulability analysis.

RATE MONOTONIC The Rate Monotonic (RM) algorithm is a classical algorithm
[Liuoo], which assigns higher priority to tasks of shorter period. I map the transmis-
sions of a flow to a task. The flows of shorter period are assigned higher priorities.
Fig. 4.10 shows that the transmissions of f; is delayed in slot 1 because of its lower
priority.

packet release time

(0
00 b rzzA kﬁ 7771 l \l/ packet deadiine

l ooy sensor to controller transmissions

01 Tm imﬂ

[Z2277] controller to actuator transmissions

10 TSIN??I l
0246 8101214161820

Figure 4.10: Scheduling with RM. The x-axis indicates slot ID.

DEADLINE MONOTONIC The Deadline Monotonic (DM) algorithm is another clas-
sical algorithm [Liuoo], which assigns higher priority to tasks with shorter relative
deadline (do, d; in my example). Same as the RM algorithm, I map the transmissions
of a flow to a task. Therefore, f; is prioritized as shown in Fig. 4.11

PROPORTIONAL DEADLINE MONOTONIC The Proportional Deadline Monotonic
(PDM) algorithm is proposed by [SXLC1o]. I have adapted it to my system model.
In comparison with RM and DM, the tasks have finer granularity — I map the
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Figure 4.11: Scheduling with DM. The x-axis indicates slot ID.

transmissions of an sc- or ca-path to a task. The priority of each path is set according
to the proportional deadline.

- subflow deadline

pathlength 417)

The smaller the value, the higher the priority. The subflow deadline of an sc- or
ca-path is defined as the relative flow deadline minus the hop count of the longest ca-
or sc-path, respectively.

Given the example problem, for flow f(, the proportional deadlines of the four
paths are:

_ do —max{hops(m5§), hops(mg§)} _ 10 — max{4, 2} _

pd(7gg) hepelos - X
pd(ss) = 27 max{h;f;ﬁg% hops(mg§)} _ 10— rnzax{Z, 4 _,

For flow f1, the proportional deadlines of the two paths are:

SC J— —
pd(mio) hops(73§) 2 35
dy —hops(m3g) 9-2
ca — J—
pdimio) hops(7§§) 2 35

I can observe from Fig. 4.12, in the scheduling, 7§{ has higher priority than 7§g. In
addition, the paths of f; have lower priority than that of fo.

4.2.4.3 Dynamic Priority Scheduling Algorithms

Dynamic priority scheduling algorithms determine the priority of a task at runtime,
and they generally provide better scheduling quality than fixed priority scheduling
algorithms.
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Figure 4.12: Scheduling with PDM. The x-axis indicates slot ID.

CONFLICT-AWARE LEAST LAXITY FIRST The Conflict-aware Least Laxity First
(CLLF) algorithm is proposed by [SXLC1o0]. It is the least laxity first scheduling al-
gorithm adapted to WirelessHART scheduling problem by taking into account the
conflicts between pending transmissions. Because it needs to look into unreleased
transmissions, it is computationally more expensive. The authors report that it per-
forms significantly better than the other scheduling algorithms evaluated. Since I use
a different system model, I have adapted the algorithm to my setting — by properly
computing the deadline of a transmission. The scheduling is shown in Fig. 4.13.

T packet release time
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Figure 4.13: Scheduling with CLLFE. The x-axis indicates slot ID.

As an example, I take a look at the scheduling of slot 4. The released transmissions
are @(noo),g—ﬂ"(nm) and c_g1>(7t10). The scheduling window for @(7{00) is [4,6]
which means the transmission must happen no earlier than slot 4 and no later than
slot 6. Its conflicting transmissions set (the pending transmissions whose release
time falls within the scheduling window and involving the sending node) has one
element g’oﬁ(m o) with scheduling window [5, 7]. Therefore, the laxity of transmission
m(ﬂoo) is 2 (the smallest of the laxities of window [4, 6] and [4, 7]. Both have laxity 2).
The scheduling window for 9_11)“(7501 ) is [4, 8]. It has only one conflicting transmission
cﬁ (1110) with window [4, 6]. Its laxity is 2 (window [4, 6] and [4, 8] have laxities 2 and
3). The scheduling window for (ﬁ (1t10) is [4, 6]. It has no conflicting transmissions
because no transmissions involving node c fall in the window. Thus the laxity is 2. To
schedule transmissions, I prioritize those with smaller laxity. Since the laxities of the
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three transmissions are the same, I select ﬁ(ﬂoo) and c_g1> (7110) as they have smaller
deadline (6 < 8).

EARLIEST DEADLINE FIRST The Earliest Deadline First (EDF) algorithm is a popu-
lar dynamic priority scheduling algorithm [Liuoo]. It prioritizes the jobs (instances of
tasks) with earlier absolute deadlines. I map the transmissions of an sc- or ca-path in
one period as a job. Suppose flow f have sc-paths 7} and ca-paths 717%(1,j =0, 1,...).
And the relative flow deadline is d. The relative deadhnes of an sc- and a ca-path are
defined as follows:

deadline(rm¢) = d — max{hOPS( I}
(4.18)

deadline(mt us Y=d

Then, I can compute the absolute deadline of the kth (k =0, 1, ...) activation of a
path. Suppose p is the period. ©

abs_deadline(m(¢, k) = k- p + deadline(m5¢) — 1

S
;a : ca (419)
abs_deadline(nj“, k) = k- p + deadline(mjy®) — 1

Given the example problem, I have the absolute deadlines of all jobs in Tab. 4.2.
The scheduling result of Fig. 4.14 shows that the priorities of various paths follow the
absolute deadlines. For example, at slot 1, 7175 has lower priority than the other two
active paths (735 and 73) because the absolute deadlines of the three paths are 5,5
and 6, respectively.

SC ca SC ca SC ca
path o0 o0 o1 7051 o | ™o

period id ol 1|o|l1]0o| 1|01

0
absolute deadline || 5|15 |9 |19 | 5| 15| 9| 19| 6 8

Table 4.2: The absolute deadlines of the activations of the sc-/ca-paths.
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Figure 4.14: Scheduling with EDF. The x-axis indicates slot ID.

LEAST LAXITY FIRST The Least Laxity First (LLF) algorithm is another popular
dynamic priority scheduling algorithm [Liuoo]. The basic idea is to prioritize the

6 The —1 in Eq. 4.19 is due to that time slot id starts with o.
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jobs with smaller laxity left. For my problem, I compare the laxities of all released
transmissions where the laxity is defined as the absolute deadline of the transmission
minus the current time. For a released transmission of a given hop in an sc- or ca-path,
its absolute deadline is computed as the absolute deadline of the path (Eq. 4.19) minus
the remaining number of hops in the path. If two released transmissions have same
laxity, I compare the number of conflicting transmissions left (cfl_left) which is defined
as the sum of remaining number of transmissions on all conflicting links and itself
till the end of the scheduling. The links with larger cfl_left are prioritized. The reason
for doing so is that such links are probably bottlenecks and may harm parallelism of
transmission as discussed in the busy-sender-first algorithm for tree-based convergecast
(c.f. Sec. 4.1). [YH12b].

The scheduling on the example problem is shown in Fig. 4.15. Let us look at the
scheduling in slot 3. At the moment, 7§ has finished transmissions, but 7§ has not.
Therefore, there is no active transmission on the former path. The active transmission
of 3§ is c.g1> , which has absolute deadline 5. The active transmission of 73§ is also (ﬁ ,
but its absolute deadline is 6. The two transmissions have laxities 2 and 3 respectively.
The cfl_left of both are 6 (the sum of remaining transmissions on cg7, l;):, s1¢ and g;f).
Because they are in conflict, only 7§ is scheduled.
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Figure 4.15: Scheduling with LLF. The x-axis indicates slot ID.

EARLIEST PROPORTIONAL DEADLINE The Earliest Proportional Deadline (EPD)
algorithm is also introduced by [SXLC10]. It is a dynamic priority scheduling algorithm
which prioritizes jobs with small sub-deadlines, where sub-deadline is defined as
the time till the deadline of a job divided by the processing cost needed to finish
the job. For my problem, the transmissions in an sc- or ca-path are mapped to a job.
Sub-deadline is defined as the remaining slots till the path deadline divided by the
remaining number of transmissions in the path. Suppose k is the current period id. s
is current slot id.

bs_deadli SC k) — 1
sub_deadline(m¢) = abs_dea me(.ﬂl - )= +.
number of transmissions leftin ﬂfc
] abs_deadline(ﬂ]?“, k)—s+1 (4.20)
sub_deadline(m; %) =

number of transmissions leftin 7t].C a
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The scheduling is shown in Fig. 4.16. Taking slot 1 as an example, I have

abs_deadline(myg,0) —1+1  5—1+1

sub_deadline(mgg) = 3 = 3 =25
bs_deadli 35,0) —T1+1 —1+1

sub_deadline(nsS) = —-= cd 1n63(7ro] J-1+1 5 3 R g
bs_deadli ,0)—1+1 6 —T1+1

sub_deadline(n3§) = abs_deadline(mo, 0) — 1+ ¢

1 1

by referring to Tab. 4.2. Therefore, m§g and 73§ are scheduled.
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Figure 4.16: Scheduling with EPD. The x-axis indicates slot ID.

EARLIEST DEADLINE ZERO LAXITY The Earliest Deadline Zero Laxity (EDZL) algo-
rithm is an effective dynamic priority scheduling algorithm proposed by Lee [Leeg4].
It results in the same schedule as EDF until a situation is reached when a job will
miss its deadline unless it executes for all of the remaining time up to its deadline
(zero laxity). EDZL gives such a job the highest priority. For my problem, I implement
EDZL as a mixture of EDF and LLF. If two jobs both have laxity greater than o and
have unequal deadlines, EDZL works the same as EDF, otherwise, it works the same
as LLE.

The scheduling is shown in Fig. 4.17. Let us take a look at the scheduling of slot
o. 3G has deadline 5 (the latest time that transmissions in this path should finish)
and laxity 4 (the released transmission sod should not be scheduled later than 4, in
order not to miss the deadline). 7§ has deadline 5 and laxity 2. }§ has deadline 6
and laxity 4. Therefore, regarding pr10r1ty, TRY > TR > T3 G- Therefore 737 and 73§
are scheduled.

4.2.4.4  Scheduling with Opportunistic Aggregation

As explained above, a scheduling problem is definitely infeasible with C channels if
the total utilization is greater than C. But packet aggregation can push the feasible
total utilization over that limitation. Besides, a scheduling problem may be infeasible
no matter how many channels are available, because the deadlines are too strict. As
an example, consider 2 flows sharing a common path of h(h > 2) hops. If the 2 flows
are synchronized, i.e., packets are released at the same time, and the deadlines are h,
the problem is obviously infeasible because it takes at least h + 2 slots to finish the
transmissions. But, if packet aggregation is allowed, the deadlines of h can be met.
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Figure 4.17: Scheduling with EDZL. The x-axis indicates slot ID.

Normally, TDMA protocols used for monitoring and controls (e.g., WirelessHART)
have slot duration long enough for the transmission of a packet of the maximum size.
And the packets of real-time control systems are generally very short, containing a
few boolean, integer or floating point values, thus it is possible to aggregate a number
of packets into one.

I design a scheme called opportunistic aggregation which works seamlessly with any
scheduling algorithm. The feature of opportunistic aggregation is that, instead of
scheduling according to priority (line 5 of Alg. 8), I execute Alg. 9 to determine which
packets are to be scheduled and aggregated. The piece of code assumes the ideal case
that unlimited number of packets can be aggregated. This gives the upper bound on
the capability of opportunistic aggregation. In real implementation, I can easily add
the restriction that the aggregated packet cannot be over a maximum size. Line 3 to 6 is
the logic for packet aggregation — it is performed when the sender of a transmission
is already scheduled, but the receiver is free (not scheduled) or the same link has been
scheduled. Line 7 to 11 is the logic for scheduling a transmission on a link whose
sender and receiver are both free. Another modification is in the schedulability test.
I need to remove the utilization check as the total utilization may be larger than the
number of channels available.
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Figure 4.18: Scheduling with LLF plus opportunistic aggregation. The x-axis indicates slot ID.

Applying LLF with opportunistic aggregation to the example problem, I have the
schedule in Fig. 4.18. I can see that opportunistic aggregation take effect in slot o, 3, 4,
5 and 10. In slot o, the same packet is sent on both links 503 and sob simultaneously.
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Algorithm 9: The logic of opportunistic aggregation.

Data: T : released transmissions ordered by priority, C : number of channels
1 m=20;
2 for each transmission t in the sequence of T do
// S: the set of scheduled senders, R: the set of scheduled
receivers, L: the set of scheduled links
if t.sender € S then

3

4 if (t.receiver € S and t.receiver ¢ R) or (t.sender — t.receiver) € L then
5 schedule t, do aggregation;

6 R = R+ t.receiver, L = L+ (t.sender — t.receiver);

7 else

if m < C and t.sender ¢ R and t.receiver ¢ S and t.receiver ¢ R then

9 schedule t;

10 S =S+ t.sender,R = R+ t.receiver,L = L + (t.sender — t.receiver);
11 m=m+1;

In slot 3, two packets from different flows are aggregated and sent on link cgj. In slot
5, two packets from different flows are aggregated on node g and sent on links gaj
and gh simultaneously.

4.2.4.5 Repetitive Scheduling for Systems with Harmonic Periods

The TDMA scheduling of a periodic control system as described in this thesis is
carried out at a central network manager and then sent to each mote. Each mote needs
to store the part of the schedule table related to it. Therefore, I should not ignore the
communication cost for downloading the schedule table and the memory cost for its
storage.

Suppose the communication and storage cost of each table entry (one unaggregated
packet transmission) is constant, then the sum cost of both are O(H - U), where H is the
hyper-period, and U is the total utilization. H - U is equal to the number of table entries.
H is equal to the least common multiplier of all periods, H = lem(po, p1, ..., PN—1),
where N is the total number of flows. It can be as large as the products of all periods
[ [; pi when any two periods are co-prime. However, if the periods are harmonic, i.e.,
a period is divisible by any period that is smaller than it, then H is equal to the
maximum period, H = max;{pi}, for i € {0, 1, ..., N — 1}, leading to very small cost.

If a system has harmonic periods, I can further heavily reduce the communication
and storage costs by scheduling it in such a manner that the schedule of each flow
repeats in every period (like the schedule in Fig. 4.10). I call it repetitive scheduling. The
other type that schedules every slot in a hyper-period is called hyper-period scheduling.
The former has the total communication and storage costs O() ; hops(fi)) where
hops(fi) is the total number of hops in a flow f; and it is independent of H. The
latter has much larger costs, O(H-U) = O()_; % -hops(fi)). Therefore, the cost saving

can be as large as ﬁpi} fold. Another bonus is that the execution times of both

schedulings are proportional to the storage costs, respectively. But there is a trade-off
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— the repetitive scheduling has more restriction on the schedule, while may harm
schedulability.

I give a method (Alg. 10) to do repetitive scheduling that works seamlessly with
any scheduling algorithm. It schedules flows in the increasing order of period length.
Because the periods are harmonic, if the scheduling of a flow meets the deadline for
one period, it should always meet the deadline throughout the hyper-period. The
method works independent of whether packet aggregation is applied or not.

Algorithm 10: The logic of repetitive scheduling. pi’s are harmonic.

Data: a hyper-period scheduling algorithm A

1 collect all periods of N flows po,p1, ..., PN—1;

2 find distinct values from py,i € {0, ..., N — 1}, and order them as
Po<Pl < <Pm_1-rM<N;

3 fori=0toM—1do

4 L schedule all flows of p! for one period using A;
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Figure 4.19: Repetitive scheduling with LLF (no aggregation). The x-axis indicates slot ID.

Applying repetitive scheduling of LLF on the example problem, I get the schedule
in Fig. 4.19. Different from the scheduling in Fig. 4.15, the schedule for fy in two
periods are exactly the same.

4.2.5 Evaluation

With randomly generated networks, I evaluate the performance of various scheduling
algorithms, in order to identify the one with the best performance. Then I evaluate
the effects of opportunistic aggregation and repetitive scheduling. The performance
metrics of interest are schedulability rate, and practical ones such as execution time and
memory consumption of an algorithm as well as schedule table size.

4.2.5.1 The Evaluation Process

In order to explore a large space of scheduling problems and observe the correlation
of performance metrics with different variables, I vary a number of variables in the
evaluation, including 1) different random topologies, 2) number of flows, 3) total
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utilization, 4) implicit (deadline = period) or restricted deadline (deadline < period) 7
and 5) number of channels. The evaluation process is as follows:

TOPOLOGY GENERATION. Randomly generate a topology with 100 motes uniformly
distributed within a square space (100 topologies are evaluated). Place 2 gateways
to the centers of the left and the right half plane. Link qualities are determined
according to the link quality model in Sec. 4.2.3.2. 8

FLOW GENERATION. Generate a random number F € {1, 2, ...,50} of flows (for each
topology, I evaluate 5 different flow settings). ¢

ROUTING. Find two vertex-disjoint reliable paths for each flow. The sc-routing (from
sensor to gateway) is done by first finding the most reliable path. Then remove
all nodes on the path except the sensor (source), find again the most reliable path
from the sensor to the other gateway. These two sc-paths are disjoint except at
the sensor node. After that, I restore the original topology and find two disjoint
ca-paths in the same way. Correspondingly, the two ca-paths are disjoint except
at the actuator node (destination). Note an sc-path may share intermediate nodes
with a ca-path. But the routing method has no single-point-of-failure in the sense
that one node failure (an intermediate node or a gateway) will not cause the
breakdown of the connection of a flow.

PERIOD AND DEADLINE SELECTION. Generate a random expected total utilization
U € (0,Umqx) for the whole network, where U,qx = 16 when no packet
aggregation is applied as this is the upper bound given 16 channels *°, otherwise
Umax = 25, which is the empirical upper bound for opportunistic aggregation.
Alg. 11 is used to uniformly distribute U among all flows and set the period p;
of a flow f;. p; is chosen to be smallest value such that u; < 1y where u; and 1y
are the actual utilization and the expected utilization of the flow, respectively
(for each configuration of flows, I evaluate 10 different Us). For the comparison
between repetitive scheduling and hyper-period scheduling, a period p; must
be harmonic, i.e., p; = 25,k € {1,2,...} and p; < 8192. For other evaluations, p;
is a factor of 10000. Then choose an implicit or a restricted deadline. Alg. 11
makes use of the UUniFast taskset generation algorithm [BBos, DB11b], which
can efficiently generate task sets with uniformly distributed utilization.

SCHEDULE WITH VARIOUS NUMBER OF CHANNELS. Given 1,2,4,8 and 16 chan-
nels, schedule the problem. For the comparison of various algorithms, I run this
step with all algorithms. Otherwise, I run it with the best scheduling algorithm
LLFE

Note that, in real applications, normally the period of a flow is first specified by
the control system requirements, then the routing is performed. As I want to control
the total utilization, in order to investigate how it correlates with the scheduling
performance, I reverse the two steps.

7 The deadline of a flow must not be less than the sum of the longest sc-path and ca-path.
8 Empirically, the generated networks have mean node degree of 5.5.
9 I require each flow to have two disjoint paths. This may not be feasible for all flows, therefore I may
actually come up with less flows.
10 Remind that the IEEE 802.15.4 standard has 16 orthogonal channels in the 2.4 GHz band.
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Algorithm 11: The algorithm for choosing flow periods.

-

N

N U1 A W

10
11
12
13
14

15
16
17
18

19

Data: U: expected total utilization, N: number of flows
Result: The period p; for each flow f;

// umax — hops(fi)
i

//

Tin_period(f;) 1S the maximum utilization of a flow fji,

determined by the routing.
umex =% . u™** is the maximum total utilization.

sumU = min(U, U™); discard = 0;
while true do

fori=0toN—1do
if i==N—1 then
‘ nextSumu = 0;
else
// r is a random number, 1 € (0,1)
L nextSumU = sumu - r/(N=1-1).
u; = sumlU — nextSumlU;
if uy > uf™* then
discard + +;
if discard == discard_limit then
L return generation failure

continue while;

sumU = nextSumU;

if harmonic periods then

| pi=min{p | p > [hops(fi)/ui],p =25k e1,.,13},Vi
else

L pi = min{p | p = [hops(fi)/ui], 10000 = 0 (mod p)}, Vi;

return generation success
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RM | DM | PDM | CLLF | EDF | LLF | EPD | EDZL
implicit | 28.9 | 28.7 | 31.7 | 2917.0 | 26.2 | 52.6 | 29.2 | 27.8

restricted | 8.8 | 9.1 9.4 2885 | 84 | 145 | 88 8.3

Table 4.3: The mean execution time (in ms) of the 8 algorithms (hyper-period scheduling, w/o
opportunistic aggregation).

4.2.5.2  Hyper-period Scheduling without Packet Aggregation

In this subsection, I evaluate the hyper-period scheduling without packet aggregation.
My goal is to find the best scheduling algorithm and investigate the practical aspects
of its performance such as the execution time and memory consumption.

COMPARISON OF VARIOUS ALGORITHMS Fig. 4.20 shows the cumulative schedu-
lability rate (the percentage of the instances that are schedulable, i.e., all deadlines can
be met) of the 8 algorithms given different number of channels. Tab. 4.3 shows the
mean execution time of them.

LLF has the highest schedulability rate in almost all channel settings. EDZL also
gives very good schedulability rate, being only slightly worse than LLF (the difference
is within 1%). In comparison with the fastest algorithm, LLF takes about 1.7x to 2x the
execution time. But in average it takes less than 53 ms, fast enough even for frequent
on-line re-scheduling. Therefore, the LLF is the best algorithm among all, and in
following evaluations, I will choose it implicitly.

Different from what is reported in [SXLC10], CLLF doesn’t have better schedulability
rate than the others ', especially for the restricted deadline. In addition, it has the
problem that giving more channels may sometimes decrease the schedulability rate
(compare the results of 8 and 16 channels). Another drawback is that it is much slower,
takes about 20x to 55x more time than LLE. Therefore, CLLF is not desirable.

The fixed priority scheduling algorithms (RM, DM and PDM) perform slightly worse
than the dynamic priority scheduling algorithms for the implicit deadline. However,
for the restricted deadline, I should avoid fixed priority scheduling algorithms because
their performance is significantly worse.

THE CORRELATION BETWEEN SCHEDULABILITY RATE WITH NUMBER OF CHAN-
NELS AND TOTAL UTILIZATION Fig. 4.21 displays how schedulability rate changes
with the number of channels and the total utilization. It shows that

1. Given a total utilization value, the schedulability rate increases with the number
of channels. However, the marginal improvement decreases (also shown by Fig.
4.20). My explanation is that some scheduling problems, are infeasible no matter
how many channels are assigned. To make such problems schedulable, I should
reduce primary conflict (e.g., by using packet aggregation) and shorten routing
paths.

2. The schedulability rate decreases monotonically with the total utilization for a
fixed number of channels. This matches the intuition more busy networks are

11 Note, my system model is a bit different from theirs. I use the SA model, but their work uses the MA

model (c.f. Sec. 4.2.3.4).
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Figure 4.20: Schedulability rate of the 8 algorithms (hyper-period scheduling, w/o opportunis-
tic aggregation).
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Figure 4.21: How schedulability rate changes with the number of channels and total utilization
(hyper-period scheduling, w/o opportunistic aggregation). A point (x,y) on the
curves corresponds to the schedulability rate (y) of all scheduling problems which
have its total utilization falling in the range of (x —0.25,x + 0.25] and have a
certain number of channels. The separation of two neighboring points on a curve
is 0.5 in x-axis.
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less schedulable. Given the same total utilization, the restricted deadline case is
significantly less schedulable than the implicit deadline case. And it has a wider
transitional region of utilization in which the schedulability rate change from
100% to 0%. In addition, the plots match the theory that schedulable problems
have the total utilization less than or equal to the number of channels.
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Figure 4.22: Execution time (hyper-period scheduling, w/o opportunistic aggregation). A
point (x,y) on the curves corresponds to the mean execution time (y) of all
schedulable problems with number of transmissions in (x — 0.5 -10%,x + 0.5 -
10%],x ={0.5,1.5,...,10.5} - 10%.

EXECUTION TIME Fig. 4.22 shows that execution time generally increases with
the number of transmissions in a hyper-period, with a speed faster than linear. In
addition, for the same number of total transmissions, implicit deadline requires a
relatively larger execution time. From the dataset, I find the extreme value is 1.4 sec,
still acceptable for frequent on-line rescheduling.

THE WORST-CASE BUFFER CONSUMPTION OF NETWORK OPERATION Because
wireless sensor nodes normally have very limited memory resource, I need to inves-
tigate the memory consumption on the motes during the network operation. The
metric of interest is the maximum buffer consumption, which is measured in number
of packets and is defined as the maximum number of packets buffered at a mote
during the network operation. I do not consider the gateways, as they can be wired
and mains-powered, therefore their memory resource is not so limited.

From the scheduling results, I find that the maximum buffer consumption generally
goes up with the number of flows and the total utilization linearly. Furthermore, given
the same scheduling problem, the maximum buffer consumption also goes up with
the number of channels linearly. This is explainable by the reasoning that more flows
and more transmissions per timeslot lead to more competition for the same links,
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therefore, packets are more likely to be buffered at motes. More channels allow more
parallelism in transmissions which leads to more dynamical behavior of the memory
consumption.
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Figure 4.23: The box plots of maximum buffer consumption (hyper-period scheduling, w/o
opportunistic aggregation). The central line is the median.

Recall that the evaluated networks have 100 motes, and up to 50 flows. The scale
can be viewed as an upper bound for the industrial automation applications. From
the box plots in Fig. 4.23, I can see the median maximum buffer consumption is less
than 6. In the worst-case, 19 packets are buffered. Since a packet is no more than 127
bytes, this takes less than 2.5K bytes which can fit into the 10K bytes RAM of the most
widely used TelosB mote [Moto4].

4.2.5.3 Hyper-period Scheduling with Opportunistic Aggregation

Now I evaluate how opportunistic aggregation affects scheduling.

SCHEDULABILITY RATE Fig. 4.24 compares the cumulative schedulability rate for
the modes with opportunistic aggregation and without. Fig. 4.25 shows how the
schedulability rate changes with the total utilization when opportunistic aggregation is
applied, which should be viewed in comparison with Fig. 4.21. From the figures, I
observe that for both deadline setups, opportunistic aggregation significantly improves
the schedulability rate by 17% to 81%. The relative improvement for the implicit
deadline is larger than that of restricted deadline. This is probably because the
implicit deadline is less restrictive, giving opportunistic aggregation more room for
improvement. Opportunistic aggregation is very effective in combating the primary
conflicts, by resolving the competition for a sender to a large extent. The aggregation
rate, i.e., the percentage of the packets that are aggregated among all packets, of the
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Figure 4.24: Schedulability rate (hyper-period scheduling, with opportunistic aggregation vs.
w/0).

cases of the implicit/restricted deadline are 22% and 17% respectively. Surprisingly,
with a moderate aggregation of packets, I increase the schedulability rate significantly.

From Fig. 4.25, I see that opportunistic aggregation really pushes the maximum
schedulable total utilization to a value much higher than the number of channels C,
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Figure 4.25: How schedulability rate changes with number of channels and total utilization
(hyper-period scheduling, with opportunistic aggregation).

especially for the case of implicit deadline. It breaks the otherwise valid constraint
totalutilization < C. If there is no packet aggregation, the schedulability rate of
16 channels only slightly improves that of 8 channels (Fig. 4.21). On the contrary,
opportunistic aggregation gives large improvement from 8 to 16 channels for the case
of implicit deadline, which much better exploits the precious channel resource.

EXECUTION TIME [ find that with opportunistic aggregation, the scheduling in
average takes 14% to 29% less time than without. This is counter-intuitive, because in
the former case, to schedule a slot, I need to check every released transmission, while
for the latter case, when all scheduling chances (equal to the number of channels) are
used up, I don’t need to check further. The shorter execution time is however due
to the higher throughput for the mode of opportunistic aggregation. The released
transmissions finish earlier and therefore fewer timeslots need to be scheduled.

Fig. 4.26 shows the change of the mean execution time with the number of trans-
missions in a hyper-period. Same as the mode without opportunistic aggregation, the
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Figure 4.26: Execution time (hyper-period scheduling, with opportunistic aggregation).

execution time increases with the number of transmissions, but with an almost linear
speed.

THE WORST-CASE BUFFER CONSUMPTION OF NETWORK OPERATION Same as
the case without opportunistic aggregation, the maximum buffer consumption gen-
erally goes up with the number of flows and the total utilization linearly. Given the
same scheduling problem, the maximum buffer consumption also goes up with the
number of channel linearly.

Fig. 4.27 gives the box plots for the maximum buffer consumption. The median
value is less than 7. In the worst case 27 packets are buffered, small enough (< 3.5K
bytes) to fit into the RAM of a TelosB mote. Therefore, in trading for the significant
improvement in schedulability rate and execution time, the penalty on the buffer
consumption is minimal.

4.2.5.4 Comparison of Repetitive Scheduling and Hyper-period Scheduling

Now I evaluate the advantage of the low overhead (in schedule table size and execution
time) of the repetitive scheduling and the trade-offs it incurs in comparison with the
hyper-period scheduling.

SCHEDULABILITY RATE Fig. 4.28 compares the schedulability rates of the repetitive
scheduling and the hyper-period scheduling. It demonstrates that for the implicit
deadline, repetitive scheduling decreases the schedulability rate only slightly in
comparison with the hyper-period scheduling. Especially when no opportunistic
aggregation is applied, both have almost the same schedulability rate. Therefore, the
slight penalty is well worth the large cost reduction in execution time, communication
and storage, which will be shown later. But for the restricted deadline, the repetitive
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Figure 4.27: The box plots of maximum buffer consumption (hyper-period scheduling, with
opportunistic aggregation).

scheduling causes a large decrease in schedulability rate, over 50%. Fortunately, most
control systems have implicit deadline requirements, making repetitive scheduling
very attractive.

LOW OVERHEAD OF THE REPETITIVE SCHEDULING Fig. 4.29 compares the num-
ber of entries in the respective schedule tables of the repetitive scheduling and the
hyper-period scheduling for the same scheduling problems. Because the communica-
tion and storage cost is proportional to the number of entries, I see tremendous cost
reduction under the repetitive scheduling. A good property of repetitive scheduling is
the scalability of the cost — it almost remains constant while the cost of the hyper-
period scheduling increases linearly. In the evaluated problems, the maximum number
of table entries are 1330 and 147,811 for the two scheduling schemes respectively. Each
entry may contain the following fields: slot id (2 bytes), channel id (4 bits), sender (1
byte), receiver (1 byte) and flow id (6 bits). In total, it takes no more than 5 bytes per
entry. Thus, the maximum schedule tables would be 53.2 and 5,912.4 kbits respectively.
With a convergecast throughput of 203kbit/s as achieved by [ZOS*10], it is feasible
to frequently refresh the schedule table with the repetitive scheduling while it takes
much longer (100x) with the hyper-period scheduling if not impossible.

Fig. 4.30 shows another great advantage of repetitive scheduling — short execution
time. The plots show the mean execution time of the scheduling versus the total
number of transmissions in a hyper-period. I see that with the increase of the number of
transmissions, the execution time increases linearly under the hyper-period scheduling
while it almost stays constant (very scalable) under repetitive scheduling. **

12 For the restricted deadline, I observe similar results of table size and execution time.
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Figure 4.28: Schedulability rate (repetitive scheduling vs. hyper-period scheduling).

4.2.6  Conclusion

I have investigated the centralized TDMA scheduling of wireless sensor networks for
multi-rate periodic control systems assuming a very general system model. Through
extensive evaluation, I have identified LLF as the best scheduling algorithm with
regard to high schedulability rate, low execution time and low memory overhead.
I have proposed two new scheduling schemes — opportunistic aggregation and
repetitive scheduling that work seamlessly with any scheduling algorithm and are
easy to implement. The former significantly increases the schedulability rate while
the latter incurs very low and scalable schedule table size and execution time. I
demonstrate that LLF in combination with them, provides a practical solution to
on-line centralized TDMA scheduling for WSN-based periodic control systems.

4.3 SUMMARY

Tree-based convergecast is a universal communication paradigm. It can be widely used
as the underlying communication mechanism for single-rate industrial monitoring
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Figure 4.29: Number of entries in the schedule table (repetitive scheduling vs. hyper-period
scheduling).

and control systems. Since the optimal solution for the minimum length scheduling is
not yet available, effective heuristics are indispensable. The thesis proposed the very
effective busy-sender-first heuristic, which is within 1.22% of the minimum schedule
length. Compared to the state-of-the-art heuristic [ZSJoga], it has significantly shorter
schedule length, is more simple in concept and in implementation, and incurs slightly
less memory consumption. I also give guidelines on choosing good topologies for tree
convergecast. By also taking into account a reliable tree topology, I can find an optimal
solution for the tree-based convergecast problem.

For multi-rate industrial monitoring and control systems, the TDMA scheduling
in the second part of the chapter can be applied. Since the problem is shown to be
NP-hard, effective heuristics are unavoidable. I discovered a very good scheduling
heuristic LLF which achieves the highest schedulability rate among all heuristics
evaluated. I also proposed two new scheduling schemes: opportunistic aggregation
and repetitive scheduling which work seamlessly with any heuristic. The first scheme
significantly increase the schedulability rate and the second incurs very low and
scalable communication, storage and computation overhead.
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Figure 4.30: Execution time (repetitive scheduling vs. hyper-period scheduling).

In all, my contributions in this chapter make TDMA scheduling more practical for
industrial WSNs.



IMPROVING QUALITY OF SERVICE FOR INDUSTRIAL
AUTOMATION WITH CONCURRENT TRANSMISSION

This chapter deals with modeling concurrent transmission [YH13] in wireless sensor
networks and improving quality of service (QoS) of communication with concurrent
transmission for industrial automation. The chapter is composed of three parts. The
first part provides a comprehensive understanding of concurrent transmission in WSN.
I first give a measurement-based model of one-hop delay of the Glossy implementation
of concurrent transmission on widely used Telosb nodes. Based on that, I propose
an accurate reception prediction model for concurrent transmission, which serves
as a complete toolset for predicting concurrent transmissions for a single hop and
a multi-hop network. The second part introduces the concurrent transmission tech-
nique to periodic multi-rate monitoring and control systems. I propose the protocol
Sparkle [YRH14], which achieves high packet reliability, high energy efficiency as
well as near-optimal and deterministic latency. Sparkle has a flexible and extensible
architecture that supports arbitrary and independent QoS control mechanisms for all
communication flows. I show that by adaptively selecting the transmission power and
a suitable level of WSNShape — a topology control technique based on the capture
effect, I can satisfy the design goal of a preset reliability while massively reducing
energy consumption. The last part of the chapter improves on the concurrent transmis-
sion based network flooding protocol Glossy. The proposed Ripple protocol [YH15]
can be ideally applied for bulk data dissemination such as broadcasting TDMA sched-
ules, code or multimedia data. Ripple adds to Glossy pipeline transmission and error
coding. The pipeline transmission on multiple channels employs a novel packet-based
channel assignment and raises the throughput and energy efficiency multifold. The
error coding pushes the packet reliability over that of Glossy, close to 100%. In addi-
tion, by tuning the transmission interval, Ripple can balance between throughput and
reliability, suiting a large spectrum of applications with various QoS requirements.

5.1 AN EFFECTIVE MODEL FOR CONCURRENT TRANSMISSION
5.1.1 Introduction

As discussed in Chapter 2 Background and Related Work, WSNs are increasingly de-
ployed in commercial and industrial applications with stringent requirements on
communication latency and reliability. At the same time, the network nodes are
expected to last for months or years without maintenance. Optimization of energy
consumption is related to all parts of a WSN. Of particular importance are wireless
communication techniques that operate with as low power as possible and advanced
duty cycle algorithms. However, saving energy at all cost can lead to low throughput,
high packet latency and low packet reliability: the exact opposite of what the above
applications require.
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Glossy [FZTS11] provides a promising technique to deal with the dilemma by
exploiting Constructive Interference (CI), i.e., a number of nodes transmit the same
packet at roughly the same time so that the signals add up constructively at the
receiver. The spatial redundancy in combination with CI offers very high reliability
and almost optimal latency. However, to obtain CI, an extremely tight synchronization
among concurrent transmissions is a must. How well this can be achieved in real-
world implementation is unclear. When the very tight synchronization is not met,
capture effect still occurs with high probability, thus may still enable successful
concurrent transmission. Yet, it is also unclear how the capture effect behaves in IEEE
802.15.4 WSNs. More general, we lack a complete view on the nature of concurrent
transmission: this is the main contribution of Sec. 5.1.

My contribution is three-fold:

1. I experimentally examine the implementation of CI. In particular, I derive an
accurate statistical model for the one-hop delay. I find that when the relative
frequency skew of the radio oscillators on different concurrent transmitters is
large and the packet length is long, it is hard to obtain CI even for the single hop
setting.

2. I show by means of experiment under which conditions the capture effect takes
place. I find that capture happens when a strong signal arrives no later than one
preamble duration after the weak signal to which the receiver is synchronized. I
identify a transitional region of three bytes in which capture can be observed
to different degrees. No capture effect can be observed after this transitional
region.

3. By jointly considering CI, capture effect and Signal to Interference plus Noise
Ratio (SINR)/Symbol Error Rate (SER), I propose an accurate model for the
prediction of the success of packet reception during concurrent transmission. I
validate my model by experiment with up to six concurrent transmitters and
show its high prediction quality.

5.1.2 Related Work

The first step to better exploit concurrent transmission in WSNSs is to understand
and model it. A seminal work studying concurrent transmission in WSN empirically
is by Son et al [SKHo6]. The paper describes a series of experiments carried out
with the CC1000 radio [CC107] and their results proved that the SINR determines
Packet Reception Rate (PRR) in concurrent transmission and that the capture effect
is significant. Despite the relevance of the outcome of these tests, the influence of
packet arrival timing on the capture effect was not addressed in this work, which is
investigated in this thesis. My concurrent transmission prediction model builds on
the SINR/PRR relationship, whose accuracy is confirmed in [M]JDo8a] for different
number of interferers, multiple channels, and different transmission powers. Moreover,
my experiments have been performed with the broadly used TelosB motes, equipped
with an IEEE 802.15.4 compatible CC2420 radio chip [CC213]. As CC1000 radio
employs a different modulation scheme, Frequency Shift Keying (FSK), and has lower
data rate (< 76.8 kbit/s) than the IEEE 802.15.4 standard, some of the conclusions in
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[SKHo6] may not be applied to the IEEE 802.15.4 standard. For example their claim
about the non-additivity of the interference of concurrent transmissions is refuted by
[MJDo8b] for the CC2420 radio.

To my knowledge, [DMEST08] is the first work that identifies constructive inter-
ference (CI) by showing the superposition of up to a dozen of highly synchronized
hardware Acknowledgement (ACK) packets can be decoded correctly. My study of
CI draws primarily on the Glossy [FZTS11] open source implementation. This is the
seminal work which laid the foundation of designing and implementing CI in WSN. I
unambiguously show that CI boosts packet reliability by carefully placing four nodes
so that their signal strengths are roughly the same at the receiver. In this way, I keep
SINR below —34dB for their concurrent transmission despite capture effect. With such
low SINR I expect 0% PRR, but the actual PRR is 94%. I carefully model the one-hop
delay experimentally by dividing it into 3 components: transmission duration, data
latency and software delay. However, software delay exhibits a larger variance in my
case than reported in [FZTS11]. My concurrent transmission prediction model makes
use of the theoretical waveform analysis for CI, presented in [WHM " 12].

Capture effect in WSN is studied in [WW] 05, LWog]. They analyze the phenomena
of strong-first and strong-last capture in the CC1000 and the CC2420 radios. I go one
step further and show that the capture effect happens for certain when the strong
signal arrives no later than preamble duration after the weak signal. Furthermore, it
extends for another 3 bytes to different degree, after which no capture effect occurs.

My prediction model employs an SINR/BER (Bit Error Rate) model given by the IEEE
802.15.4 standard [Soco6], which assumes the interfering signal to be similar to the
additive white Gaussian noise. It is suggested in [ZHZ " 11] that the SINR/BER model
is actually dependent on channel model.

5.1.3 Constructive Interference

When using the CI technique, it is of utmost importance to respect time synchro-
nization in the transmission of concurrent identical packets. According to [FZTS11,
WHM Tt 12], time displacement between multiple packets should be no longer than
o0.5us, half of the Direct Sequence Spread Spectrum (DSSS) chip duration as specified
in the IEEE 802.15.4 standard [Soco6].

In this section, I first show experimentally that CI really boosts concurrent trans-
mission reliability in a significant way. Then, I investigate the one-hop delay of the
state-of-the-art CI implementation Glossy [FZTS11] by measuring the Start Frame
Delimiter (SFD) timing of the participating nodes. The goal is to check how good is
the synchronization accuracy as well as the quantity and the reason for its variance.
I derive a statistical model of one-hop delay, which can be applied to facilitate the
protocol design and simulation based on CI.

5.1.3.1 Experiment Setup for Studying Constructive Interference

The experiment setup is shown in Fig. 5.1. The code is adapted from the publicly
available Glossy implementation. An initiator node i and N responder nodes (all
TelosB motes [PSCos]) are placed roughly 1 meter apart and communicate in 250ms
lapses. A period starts when node i transmits a ping packet with the highest power
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Figure 5.1: Experiment setup for studying Constructive Interference.

possible (given the short distance and line-of-sight, the responders almost certainly
hear the packet). There are two types of periods: concurrent tx period and individual
tx period. The first one accounts for three quarters of all cases, during which the
responders (node n; to nyn) repeat the packet from node i concurrently. I call the
repeated packet the pong packet. The individual tx period appears every second,
during which each responder is asked to repeat in round-robin fashion while the
others are required to keep silent. It takes N seconds until the individual tx period of
a certain responder repeats. The reason for doing so is to measure the signal strength
of each responder at the receiver continuously. In addition, the success or failure in
reception of the concurrent transmissions and the noise floor are recorded at node 1.

I use a logic analyzer of 24 MHz sampling rate to capture the SFD activity of the
CC2420 radio chips of all nodes. According to the datasheet of CC2420 [CC213], in the
receive mode, the SFD pin rises once the SFD byte has been completely received and
falls only after the last byte of MAC Protocol Data Unit (MPDU) has been received. In
transmit mode, the SFD pin rises when the SFD byte has been completely transmitted
and falls when the complete MPDU has been transmitted. In general, I can take
the SFD pin rise/fall as the start/end of packet transmission/reception. In each
experiment, I sample the SFD pin of each node for 10'° times. The total time span is
about 7 minutes *, during which over 1600 rounds of ping-pong transmissions are
performed.

5.1.3.2 The Packet Reliability Boosts of CI

Experiments have been carried out with 4 responders. I carefully adjust node position
so that the responder signal strengths are similar at the initiator, falling in a small range
from —57dBm to —60dBm. In total, I have collected results for over 1200 concurrent
transmissions of packet size 126 bytes. If there were no CI, the strongest transmission
would be regarded as the signal and the others as the interference (the so-called capture
effect will be elaborated later). In this case, I compute from Received Signal Strength
Indicator (RSSI) readings that the SINR has a mean value of —3.01dB and a negligible
standard deviation of 4 - 10~ '*dB. The SINR/PRR relation is depicted in Fig. 5.2 using
the SINR/BER formula taken from the IEEE 802.15.4 standard (Eq. 5.8) [Soco6]. This
relation predicts that the expected PRR is 0% while the measured one is 94%. This
evidences unambiguously the occurrence of constructive interference and its capability
of improving signal strength and thus PRR. Moreover, measurements confirm that

100 samples

24770 samples/second — 416.667 seconds = 6.94 minutes
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the range of the transmission timing of all responders is never over 0.5us in the short
experiment period of about 7 minutes.
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Figure 5.2: The SINR-PRR relation for IEEE 802.15.4 standard (when the packet length is 126
bytes).

5.1.3.3 Modeling One-hop Delay of Glossy
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Figure 5.3: The SFD activities of a ping-pong round.

In this section, I model Glossy’s one-hop delay as well as the resulting temporal
displacement between two arbitrary nodes. The displacement determines whether the
condition of constructive interference can be met or not.

I investigate the problem with the experiment described in Sec. 5.1.3.1 with one
initiator and three responders. The four motes are randomly chosen from a large set
of motes. For each ping-pong round, I expect to observe the SFD activities as shown in
Fig. 5.3. Four SFD level change times are recorded for each node (the initiator as well
as the responders), namely tq, t2, t3 and t4. For the initiator, the four t;s represent the
beginning and the end of the ping packet transmission and the beginning and the
end of pong packet reception, respectively. On the contrary, for the responders they
represent the beginning and the end of the ping packet reception and the beginning
and the end of the pong packet transmission respectively *. Timings are measured
with a logic analyzer of 24MHz sampling rate, which has a measurement precision of
41.7ns.

I model one-hop delay A by looking at its 3 components: the tx duration, the data
latency and the software delay. The measurements are done for packet lengths of

More accurately, the rx/tx begins 5 bytes before the SFD changes as I need to take the preamble and SFD
byte into account.
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10 and 126 bytes, respectively. Note that I ignore the propagation delay due to the
short distance between the initiator and responders. But it can be easily added to the
modeling.

5.1.3.4 Transmission Duration T
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Figure 5.4: Distribution of transmission duration.

Time measurement for a 1 + 1 byte transmission (1l is the MPDU length, the time
elapsed between SFD rising and falling is exactly 1 + 1 bytes) is depicted in Fig. 5.4.
Given a node and packet length, the transmission duration remains reasonably stable,
as it is distributed in no more than 3 consecutive sample bins (the distance between 2
bins being 41.7ns). However across the nodes, there are large differences. Theoretically,
the duration of a 1 4 1 byte transmission should be 8(1+ 1)/250K = 32(1 4 1)us. But
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actually, the oscillators of different radios have different degrees of frequency skew.
From Fig. 5.4(a) and (b), I observe that the mean tx duration of node i < n; <nz <ny
for both short and long packets, which shows the skew can be modeled as a constant
for a node in a short period of time. So, I revise the model as 32(%), where k is
the frequency skew measured in ppm. From the statistics of mean transmission time,

I can calculate the constants k in Tab. 5.1.

Table 5.1: Frequency skew k of the radio oscillator of each node.
node H 1 ‘ ng ‘ n; ‘ ns

k (ppm) || -66.9 -79.0 | -91.7

-92.2

Recall that the duration between SFD rising and falling measures the time for
transmission of 1+ 1 bytes. In addition, there are the rx/tx turnaround time (6 bytes
according to [CC213]), the time for transmission of preamble (4 bytes) and SFD byte
in each packet transmission before the SFD rising. Therefore, I model the transmission
duration as follows:

1412
T=32 <1+k10—6> 5-1)

Thus, the difference of the tx duration Dt between two nodes with frequency skew
k] ’ kz is

1 1
Dr=320+12) (1 +k1-1076 1 +kz-106>

(ko —kq)-107° (5-2)
T+ (k1 +kz)-10-¢
~32(1+12) (k2 —kq)-107°

;332(14—12)(

The frequency skew has a deteriorating effect on CI, i.e., Dt goes up linearly with 1,
which means later bytes in the concurrent packets may have larger time displacement
with respect to each other. It is possible that at the packet start, symbols add up
constructively, but to the end, the CI condition is no longer met.

5.1.3.5 Data Latency L

I define data latency as the time difference between the end of packet transmission
and the end of packet reception (A7, A3 in Fig. 5.3), i.e., the difference between the
times that the SFD pins of the sender and receiver nodes fall. 3

Fig. 5.5 depicts the CDF of the measured data latency A and A3. Ay exhibits similar
distribution for different responders within a small range of 0.21us (5 sample periods).
On the contrary, Az measured between nodes ni,n;,n3 (as sender) and node i (as
receiver) shows two types of distribution. A3 measured with node n; has the same
narrow distribution as A, while the other two have wider distribution. I argue the
reason is that, in the experiment, irrespective of whether CI takes place, capture effect

Note, this definition is slightly different from the data latency definition in the CC2420 datasheet, where
it is defined as the time from complete transmission of the SFD byte until complete reception of the SFD
ignoring propagation delay. The typical value is 3us.

79



8o

IMPROVING QOS OF INDUSTRIAL WSN WITH CONCURRENT TRANSMISSION

always takes place, i.e., the receiver’s radio synchronizes with the sender whose signal
is the strongest heard, which happens to be always node n;. This is specifically known
as power capture [INWJ*o5]. Even if the responders are placed next to each other and
have the same tx power and the same distance to the initiator, the non-symmetric
radiation pattern of the antenna and small-scale multi-path fading cause nonetheless
different but stable reception powers. The capture effect is caused by the continuous
SFD search implemented in CC2420 [CC213].

node nl
node n2
node n3
node nl

node n2

node n3

44 46

Figure 5.5: CDF of data latency Ay and Az (when the packet length is 126 bytes). The plots
when the packet length is 10 bytes are very similar.

Statistically, the data latency can be modeled as a random variable L, with mean
value u; = 3.79us and variance 0'% = 0.0019.

5.1.3.6  Software Delay S

Software delay is defined as the time delay between the moment in which a node
receives the entire packet and the moment in which it starts retransmitting the
packet 4. It is called compensated software delay (ts,,) in [FZTS11]). This is computed
as A, = t3 —t, measured at the responders minus the time for transmitting 11 bytes
(turnaround/calibration time, plus the transmission time for the preamble and the
SED byte). Although Glossy has tried very hard to make the software delay constant,
it still has considerable randomness.

Fig. 5.6 displays that the software delay at the 3 responders follow a very similar
distribution with mean value ps = 23.28us and variance G% = 0.008. The reason of
the relative big standard deviation is due to the low clock frequency, which is equal to
4MHz, hence the time measurement and compensation precision is about 0.24 ps.

More accurately, the moment the radio starts calibrating Voltage Controlled Oscillator (VCO) before
transmission.



5.1 AN EFFECTIVE MODEL FOR CONCURRENT TRANSMISSION

1r PR

0.4r

0.3r

I_
0.2r . l—

0.1

node n1
node n2
node n3

1

0 i i i i i i i i
23.05 23.1 23.15 232 2325 233 2335 234 2345 235 2355

1S

Figure 5.6: CDF of the software delay S (when the packet length is 126 bytes). The plots when
the packet length is 10 bytes are very similar.

5.1.3.7 One-hop Delay A
Modeling the one-hop delay A of Glossy offers me clues on how well CI can be

implemented. For a relay node, A is defined as the difference between the moment a
packet starts being transmitted by an up-level node and the moment it starts being
relayed. The up-level node is the one from which the highest signal strength is heard
among all concurrent transmitters (e.g., in Fig. 5.3, A is equal to t3 at a responder
minus t; at the initiator).

The one-hop delay is the sum of transmission duration T, data latency L and
software delay S.

1+12
A_T+L+S—32<W>+X (5-3)

where X is a random variable with mean value ux = pur 4+ us = 27.07us, and variance
0% = 0% 4+ 0% = 0.0099. It is L and S lumped together, because they can be considered
independent, after examination of the correlation coefficient. Hence, the difference
of A between two nodes, Do = Dt + Dx. Furthermore, since X of two nodes are

independent, I have

1 1
Da =3201+12) <1 +ki-107¢ 1 +k2'10_6) Y

~32(0+12) (ka2 — ki) - 1070 +Y

(5-4)

where Y is a random variable with mean value py = Ous and variance G% = Zai =
0.0198, where k1, k; are the frequency skews of the two nodes. The randomness of A
mainly comes from the tx duration T and the software delay S, since the data latency
variance is less than a quarter compared to S.

I assume the worst scenario possible. Suppose a topology such as the one depicted
in Fig. 5.7. Nodes a and c transmit a packet at exactly the same time, b can only hear
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Figure 5.7: Topology to analyze worst-case timing for constructive interference in two hop
scenario.

a, d can only hear ¢ and e can hear both b and d. Node a and b have k = 40ppm, node
c and d have k = —40ppm (the CC2420 datasheet [CC213] specifies that the difference
in frequency skew between two nodes is no larger than 80ppm), and 1 = 127 bytes. I
want to study if CI happens at e, i.e., the two packets add up constructively.
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Figure 5.8: The distribution of transmission finish time of packets from b and d.

Suppose a and c start transmission at time o, then the instant when b or d starts
transmission can be modeled as a one-hop delay random variable (A), and the instant
when b or d stops transmission as a random variable A+ T (one-hop delay plus a
transmission duration). Ignoring propagation delay, either packet arrives at e during
these points in time. The distributions of the transmission ending time of packets from
b and d at e are graphed in Fig. 5.8. We can guarantee constructive interference if the
temporal displacement between packets from b and d are less than or equal to 0.5us.
The probability is only 6.6%.

Since the distance between the peaks of the two distributions in Fig. 5.8 is propor-
tional to (14 12)( Fk_]]o,é; — Hk']]o,f;) ~ 2(1+12) - k, either a small k or a small 1 will
improve the probability of CI (the two distributions move to the figure center).

In summary, it is hard to guarantee CI, when the packet is long and the oscillators
have extreme frequency skews. Therefore, to reduce the variance due to tx duration T,
I have to use small packets, because I normally have no control on the frequency skew
of the radio chip, which is determined by manufacture and temperature. To reduce the
variance due to software compensation, I may use Microcontroller Units (MCUs) that
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have clock of higher frequency and better stability. This allows for higher compensation
precision and accuracy. In addition, as proposed in [WHC"13], I can use the new
generation chip integrating MCU and radio because the synchronized clock will
eliminate the communication time uncertainty between the two modules. Fortunately,
the capture effect helps to improve packet reliability and it leads to successful reception
when the strongest packet is higher than the sum of the others over a certain degree
(e.g., 2dB for the IEEE 802.15.4 radio, as shown in Fig. 5.2). Moreover, one node
having higher power than the others in a number of concurrent transmitters has the
advantage that the receivers will likely synchronize to the same node, thus avoiding
the accumulation of one-hop delay.

5.1.4 Capture Effect

Capture effect is the ability of the radio to receive a strong signal despite interfer-
ence from other concurrent transmissions. When the stringent time synchronization
condition of less than 0.5us cannot be met, it is still very probable that capture effect
happens since it has much looser time synchronization requirement. Namely, the time
synchronization of capture effect needs to be only less than the preamble duration T,
(128us for the IEEE 802.15.4 radio) as shown below.

5.1.4.1 Experiment Setup for Studying Capture Effect

The differences in the experiment setup to that of Sec. 5.1.3.1 are: a) after the responders
receive the ping packet, they delay it for a random time uniformly distributed between
o to 360us before resending; b) in this experiment, ideally I want to measure the arrival
times of all concurrent pong packets. However, this is almost impossible since all these
packets are mixed up. Given the fact that the distances between the initiator and the
responders are small (about 1 meter) and similar to one another, I can equivalently
measure the transmission start times.

5.1.4.2 Two Methods for Measuring Transmission Start Time

I propose two possible methods for measuring transmission start time: one is hardware-
based and the other is software-based. The first one uses a logic analyzer to measure
SED level changes. However, using this method might not be feasible when the
responders are located far from each other or the number of responders is high 5. In
such cases, a software-based method is preferred.

I have developed a software method to capture tx start and rx end times taking
advantage of the fact that the SFD pin of the CC2420 chip is connected to timer B of
the MSP430F1611 MCU [Tex11] of the TelosB motes. Then, at each responder, I record
the time difference between the end of the ping packet reception and the start of the
pong packet transmission associated with a packet sequence number. Conceptually, it
can be regarded as the fx start time because the responders should get the packets at
almost the same time.

To get a high measurement precision, I source timer B with the 4yMHz Digitally
Controlled Oscillator (DCO), the main clock of the MCU, which gives a measurement

5 A logic analyzer has limited number of channels.
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precision of approximately 0.24us. But the DCO is very sensitive to temperature and
voltage change. To mitigate its frequency skew, I calibrate it periodically with the
stable 32KHz crystal on the board after each ping-pong round.
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Figure 5.9: Time measurement comparison between software and hardware methods (ratio =
software reading / hardware reading).

In order to evaluate the quality of the software method, I perform the ping-pong
experiment for over 1200 times and measure the time difference between the end of the
ping packet reception and the start of the pong packet transmission at the responders
with both methods. The results for 4 nodes are shown in Fig. 5.9. I observe that 50%
of the measurements have an error not bigger than 0.3% and in the worst case, the
measurement has an error of the order of 0.4%. Because the time difference between
packet reception and retransmission (including the intentional delay up to 360us) is
less than 740us, the error should be within £2.96us. This accuracy is not suitable for
measuring constructive interference, but it is enough for measuring capture effect.

5.1.4.3 The Relation between Transmission Timing and Capture Effect

In this section, I show how the tx timing influences capture effect and thus the PRR.
Fig. 5.10 shows the results corresponding to 3 runs of the 2-responder experiment.
The packet length is short (10 bytes) or long (126 bytes), the preamble length L, is 4
or 6 bytes. In each run, I perform 30,000 rounds of ping-pong transmission. Ideally,
I want to measure the signal strength of each responder at the time of concurrent
transmission, but this is impossible since signals are added up. However, in the quiet
802.15.4 channel #26 band and the quasi-static office environment, the signal strength
of a responder can be regarded as slowly varying. Thus, I substitute the signal strength
of a certain responder at the time of concurrent transmission with the mean value
of signal strengths measured during the individual fx periods within +30 seconds.
The noise floor is the mean noise measured within +1 second. The x-axis of Fig. 5.10
represents the difference in tx time of node nq and n;, i.e.,, Ay = tn, —tn,. The y-axis
represents the PRR, calculated for every 5us bins.
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Figure 5.10: The relation of tx time difference A¢ = t, —tnn, and PRR, R;i: mean RSSI (dBm)
measured at node n;, L,: preamble length in bytes, 1: packet length in bytes.
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Given the preamble length L, = 4 bytes, different packet lengths exhibit the same
behavior (Fig. 5.10(a) and (b)). When A; < 128us (4 bytes), the PRR is almost perfect
and when A¢ > 128us, the PRR decreases to o in about 96us (3 bytes). Besides,
preamble length is set to 6 bytes and the experiment is performed again. In this case,
the perfect PRR region expands over Ay = 192 (6 bytes), but it still falls to o in 3 more
bytes.

My explanation for these results is the power capture effect and n; has higher
signal strength than n; (R7 > Rz). When A¢ < 0, the packet from ny is received due
to the stronger-first capture effect [IWWJ " 05], i.e., the radio at i is synchronized with the
earlier and stronger packet from n;. However, for the CC2420 radio, I observe that
the capture effect extends at least to Ay = T, i.e., the strong signal comes no later
than the preamble duration after the weak signal. This is because the CC2420 radio
continuously synchronizes with the zero-symbols in the preamble and searches for
the SFD byte [CC213]. It resynchronizes to a stronger signal before it detects the SFD.
A stronger signal coming after the SFD detection may not lead to resynchronization.
If so, it will lower the SINR and increases the probability of packet loss.

In summary;, if the tx time of the strong signal minus that of the weak signal is
less than or equal to the preamble duration, i.e., Ay < T, then the capture effect is
sure to occur. The capture effect also occur to some degree if T, < Ay < T, + 96us.
When the strong signal comes later than the weak signal for over L, + 3 bytes, i.e.,
At = Ty + 96us, the capture effect does not occur.

5.1.5 A Packet Reception Model for Concurrent Transmission

To build a packet reception model, I need to understand how the process of concurrent
transmission works. Whether a packet is received or not is the consequence of the
combined result of the following three effects:

1) Capture effect. When the first packet arrives, the receiver’s radio synchronizes
with it. Within the preamble duration (conservative estimation), if a packet with a
higher signal strength than the sync packet (the packet to which the receiver’s radio
has synchronized) arrives, it will capture the radio. This implies that the radio re-
synchronizes to the new packet and the preamble duration at the receiver restarts.
In the case of n concurrent packets, the maximum preamble length at the receiver
can be as large as n - T, bytes, when the packets arrive in the separation of preamble
duration T, and the later packets have higher signal strength than the previous. Being
conservative, I assume any packet coming after the preamble duration will not capture
the radio even if it had a higher strength than that of the sync packet.

2) Constructive interference. If a packet has the same content as the sync packet and
the time displacement between these two at the receiver is less than or equal to the
half of chip duration T, then they add up constructively, thus increasing the signal
strength.

3) SINR/SER model. The symbol error is probabilistically determined by the SINR.
The packets that form CI with the sync packet, add to the signal by a factor depend-
ing on the temporal displacement while those that do not, add to the interference,
which reduces symbol error rate. In addition, the background noise should also be
considered.
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Algorithm 12: The packet reception model of concurrent transmission.

Data: O: node set; t(n;): the fx start time of node n;; s(n;): the signal strength of node n;;
f: the noise floor; M: the SINR/SER model.
Result: A boolean value indicating whether a packet is received or not.
1 sort O in ascending order by t(n;). Suppose O = {ny, .., nn} in order;
// search for symc node
2 sync node ¢ = nj, preamble time p = t(ny);
fori=2to N do

3

4 if t(niy) —p < T, then

5 if s(ny) > s(c) then

6 L c=ng,p=tny);

7 else

8 L break; // no more capture

9 assign nodes from ny till c to signal set S or interference set I depending on
tle) —tny) <0.5-Te;
10 calculate SINR with Eq. 5.6 and Eq. 5.7, SER = M(SINR), PRR = 1;
u for ny in O after ¢ do
12 calculate t(ni) —t(n{_;) in number of symbols m, PRR = PRR - (1 — SER)™;
13 assign node n; to S or I depending on whether t(n;) —t(c) < 0.5-T¢;
14 update SINR, SER;

15 set tx end time for each node e(n;) = t(ni)+ packet duration;
16 forn; =nj toc do

17 update PRR till time e(n;);

18 remove ny from S or I;

19 update SINR, SER;

20 return a random number v € [0,1) < PRR;

Putting these three effects all together, I propose a model/algorithm ¢ capable of
predicting the result of packet reception of concurrent transmission, which is listed in
Alg. 12.

The algorithm is efficient in terms of computation time since it is of the order of
O(N), N being the number of concurrent transmitters. I use the RSSI measurements
to calculate SINR. For a node n;, its signal strength is

S(Tli) — ]ORSSIi/1O_]Of/1O (55)

where RSSI; is the RSSI measurement when only n; is transmitting. I use the mean
RSSI over +30 seconds for higher accuracy. f is the noise floor measurement. I use the
mean noise floor over +£1 second. To compute the signal strength of the signal set S,
given the sync node c (the set contains all nodes whose packets add up constructively
with ¢, including c), I use the equation

2
s(S,¢c) = [Z Vvs(n)-cos (t(n)T—t(c) 7r>] (5.6)

nes

The model assumes that the concurrent packets are overlapping, i.e., the last packet starts before the first
packet ends, in order not to over-complicate the description. It is trivial to extend the model for the other
case.

87



88

IMPROVING QOS OF INDUSTRIAL WSN WITH CONCURRENT TRANSMISSION

where t(n) is the arrival time of the packet from node n. The reasoning draws mainly
on the waveform analysis outlined in [WHM ™ 12]. Then SINR is

s(S, c)

SINR = .

where I is the interference set, the complement set of S.
In the validation of the model, I use the SINR/SER relation deduced from the
SINR/BER relation in IEEE 802.15.4 standard [Soco6].

16

_i l k(16 20-SINR-(1—-1)
BER =2 1 > (-1 <k>e x (5.8)

SER =1—(1—BER)? (5.9)

To test the prediction quality of my packet reception model, I assess it with eight ex-
periments of over 30,000 transmission rounds each. These experiments are performed
for 2 and 6 concurrent transmissions with either same (level 31) or different tx powers
(for 2 responders, the powers are 31 and 11 respectively; for 6 responders, the powers
are 31, 27, 23, 19, 15, 11 respectively) 7 and with long (126 bytes) or short (10 bytes)
packet length. The results are depicted in Fig. 5.11.

I define as positive when a successful reception has been predicted as such. Thus,
true positive rate is the percentage of actually received packets that have been predicted
as received while true negative rate is the percentage of actually lost packets that have
been predicted as lost.

true positive rate = Pr(packet predicted as received | packet actually received)
true negative rate = Pr(packet predicted as lost | packet actually lost)
(5.10)

My model exhibits a high prediction quality, having a true positive and true negative
rate over 70%. Furthermore, it has higher accuracy in predicting lost packets than
received packets and, in many cases, it has almost 100% true negative rate. This is
due to the conservative way capture effect has been modeled, i.e., capture effect only
happens within preamble duration of the sync packet. The prediction quality for two
concurrent transmissions (true positive/negative rate is greater than or equal to 90%)
is better than that for six transmissions. It is due to the inaccuracy of the SINR/SER
model, especially in the transitional region (SER change from o to 1). SINR are more
often encountered in this transitional region in the six-transmitter setting than in
the two-transmitter one. This can be confirmed by checking the mean SINR value
of concurrent transmissions depicted in Fig. 5.11. Here, mean SINR is greater than
3dB for the two-transmitter setting and it is under 0.5dB for the six-transmitter one.
SINR is computed by considering those nodes in S as the signal node and the others
as interference nodes. Also, the imperfect prediction quality might be caused by the
inaccuracy in RSSI reading [CT11].

The power levels 31, 27, 23, 19, 15, 11 correspond to transmission power 0,—1,—3,—5,—7,—10 dBm
respectively [CC213].
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Figure 5.11: Prediction quality of 2 and 6 concurrent transmitters. E/D stand for equal/differ-
ent tx power. S/L stand for short/long packet.
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5.1.6  Conclusion

With my work, I provide a comprehensive understanding of the concurrent transmis-
sion in WSNs. I give theoretical explanations on the nature of constructive interference
and capture effect, and validate these experimentally.

I model the one-hop delay of the state-of-the-art CI implementation Glossy and
show the problem in achieving CI using commodity sensor nodes. My measurements
show that the temporal displacement of one-hop delay between two arbitrary nodes is
a random variable with standard deviation 0.14us and mean value which can be as
high as 0.36us in the worst case for a packet length of 127 bytes (cf. IEEE 802.15.4) and
a relative frequency skew of 80ppm between the radio’s oscillators (cf. CC2420). I can
conclude that CI is not easy to obtain with the currently available commodity sensor
nodes, since it requires the temporal displacement between transmission to be lower
than 0.5us. However, I expect that a hardware based implementation of retransmit
will fully eliminate the software delay. Thus, the one-hop CI can be guaranteed. The
extend to which the temporal displacement accumulates with the number of hops in
real-world applications is waiting to be investigated.

In contrast, successful reception due to the capture effect is far easier to achieve
because it only requires that the strong signal arrives no later than the preamble
duration (128us for the IEEE 802.15.4 radio) after the weak signal and a sufficiently
high SINR.

The accurate reception prediction model proposed provides a complete toolset
for predicting concurrent transmissions for a single hop and a multi-hop network.
The models and insights gained are valuable for simulation and protocol design of
concurrent transmission in WSN.

5.2 SPARKLE: A NETWORK DESIGN EXPLOITING CONCURRENT TRANSMISSIONS
FOR ENERGY EFFICIENT, RELTABLE, ULTRA-LOW LATENCY
COMMUNICATIONS IN INDUSTRIAL CONTROL

5.2.1 Introduction

Wireless sensor networks offer great potential, and yet also great challenges for
industrial automation and control applications. Despite the fact that some pioneering
works in academia and a few industrial standards have appeared, to the best of my
knowledge, no large scale application of WSN in industrial automation has yet taken
place.

Recently, the Glossy protocol [FZTS11] showed the possibility of obtaining determin-
istic low latency, high reliability and high synchronization precision simultaneously
by applying the technology of CI. These features match the requirements of control
networks so good that Glossy can offer a sound basis for it. Based on Glossy, I design
and implement Sparkle, a periodic multi-loop control network where each control loop
is mapped into one or more communication flows (same as I did in Sec. 4.2.). The
novelty of Sparkle is that I perform "control" on each flow (say flow a — b, a and
b being two end nodes), with the goal that the QoS (quality of service) metrics of
the flow satisfy given requirements or are optimized. For that purpose, I need the
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cooperation of the opposite flow (flow b — a) to perform feedback control based on
the measurements at the destination.

Specifically, I show that by effectively controlling the network topology and transmis-
sion power (tx power) of a flow, the QoS metrics of reliability, energy consumption and
latency can be further improved simultaneously, compared to Glossy. I propose a novel
technique for topology control, WSNShape, which uses the capture effect [WW] " 05] to
find a number of reliable paths between the source and the destination of a flow and
then activate nodes on one or more of these paths. As shown by evaluation, it greatly
reduces energy consumption and very probably also improves end-to-end reliability
and latency. Additionally, I experimentally show that the transmission power also
affects the QoS metrics significantly and the Glossy protocol without WSNShape may
not be reliable enough for control networks.

Based on these findings, I design and implement the "controller" of Sparkle,
PRRTrack, which adaptively switches between operation modes of different trans-
mission powers and WSNShape levels. Experiments on two real-world testbeds show
that the requirement on reliability is satisfied, the latency is reduced, and the energy
consumption is greatly improved over today’s state-of-the-art techniques.

5.2.2 Related Work

Constructive interference, i.e., the concurrent transmission of the same packets by
multiple transmitters can achieve almost optimal latency, high reliability and time
synchronization of ps accuracy [FZTS11]. Since these features match the requirements
of automation and control systems perfectly, I choose Glossy as the starting point to
design my flow-based communication system Sparkle. When concurrent transmissions
of different packets take place, one packet may overpower the others and be successfully
received. This is called capture effect. The capture effect in WSN was first discussed by
[WW]JTo5]. A recent work, Chaos [LFZ13a] shows the universality of the capture effect
in WSN and employs it to implement an efficient all-to-all aggregative communication.
WSNShape, the topology control technique of Sparkle, also makes use of the capture
effect, and is therefore instantly reactive to node or link failure.

To optimize the energy efficiency of the end-to-end communication primitive im-
plemented with the Glossy flooding technique, [CCT*13] uses the hop count from
the source node as a metric for forwarder selection (topology control). It is shown
to reduce the energy consumption by 30%. In contrast, I use the capture effect for
forwarder selection, which leads to energy savings of about 80% to 90% together with
better reliability and lower latency in networks of similar size. In addition, I assume
nothing about the symmetry of the network (e.g. the hop count from node a to b is
the same as from b to a), and the two directional flows between a pair of nodes are
independently controlled.

In all, as far as I am aware of, Sparkle is the first wireless control network based
on the technology of concurrent transmission [FZTS11][YH13], resulting in a system
that has excellent performance in communication reliability, latency and energy
consumption, as well as unprecedented robustness to node or link failure.
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5.2.3 The Architecture of Sparkle

Sparkle employs a protocol similar to TDMA, which is normally used by wireless
control networks, as it allows for deterministic scheduling and relatively deterministic
QoS performance. The architecture makes independent QoS control of each end-to-end
flow possible.

5.2.3.1  Mapping the Communication of Control Systems to Flows

Sparkle supports arbitrary communication requirements of periodic multi-loop control
systems. For the simplest case of a Single Input and Single Output (SISO) control loop,
it requires that periodically a packet with sensor data is transmitted from a sensor to
a controller, and then a packet with actuation data is transmitted from the controller
to an actuator. If I implement the controller on either the sensor, or the actuator,
then I only need to maintain one QoS conformable flow, i.e., from the sensor to the
actuator. On the other hand, if I implement the controller on a separate node, then
two flows need to be maintained, i.e., from the sensor to the controller and from
the controller to the actuator. For the more complex case of Multiple Inputs and
Multiple Outputs (MIMO) control loop, I need to maintain multiple flows from every
sensor to the controller and from the controller to every actuator. Besides, Sparkle
also supports the communication of data collection and dissemination commonly
required by monitoring applications. As mentioned before, to control a flow, I need
the cooperation of the opposite flow for delivering control commands.

5.2.3.2 Frame Structure

A Sparkle frame is composed of a sync slot, a number of data slots and zero or one
control slot (Fig. 5.12). In each slot, a flooding is performed with a source node (aka.
initiator), a transmission power and a set of participating nodes.

sync slot data slot #1 dataslot#2 | - control slot/idle

Figure 5.12: A Sparkle frame.

The purpose of sync slots is to obtain network-wide time synchronization, in which
an authority node (normally located in the network center for a short average distance
to all other nodes) floods a short sync packet over the network with the Glossy protocol.
Since a sync packet is very short (10 bytes in our implementation), it has a very high
chance of being correctly received by all nodes, if I use a proper transmission power.
The network-wide time synchronization is a prerequisite for the data communication
in Sparkle. The next data slots are used for the communication of arbitrary flows.
Different flows may have different period length, dependent on the requirement of the
control system. The control slots are used for the QoS control of the flows. Whether
a set of flows (with arbitrary period length) are schedulable in Sparkle can be easily
determined by the Earliest Deadline First (EDF) scheduling algorithm, which gives the
optimal solution for the Sparkle scheduling as it can be mapped to a uniprocessor
scheduling problem [Liuoo]. A necessary condition of the schedulability is that the
total utilization of all slots is no more than 1.
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5.2.3.3 Controlling the QoS Metrics of a Flow

Sparkle is capable of performing different QoS control for different flows. Normally,
the QoS controller of a flow is located at the destination node. It keeps track of the
QoS metrics of the flow and sends out control commands to the source node or the
whole network in the control slots of the opposite flow when necessary (e.g., setting
transmission power or activating/deactivating nodes for a flow). This design decision
has the advantage of easy implementation and independent performance control for
each flow, even for a pair of opposite flows. The detailed control scheme of Sparkle
will be expounded later.

5.2.4 How Network Parameters Affect Performance

In this part, I investigate experimentally in real-world testbeds how the transmission
power and network topology affect the QoS metrics of reliability, latency and energy
consumption. The so-called WSNShape technique is a novel topology control method
that uses the capture effect to find reliable paths from the source to the destination of a
flow. It is very effective in finding reliable paths, compatible with the Glossy protocol
as it requires no unicast transmission, and is much more lightweight and faster than
ordinary routing protocols. Furthermore, it is resilient to node failure, which is not
provided by the normal routing protocols.

5.2.4.1 Different Transmission Powers

The evaluation results in the Glossy paper [FZTS11] indicated that a higher transmis-
sion power gives lower latency and higher reliability. However, my evaluation on the
two TUDuNet testbeds [GBKVL12] shows that a higher transmission power may lead
to lower reliability when the network connectivity is very high.

TUDuNet includes two testbeds called Piloty and Arena respectively. The former
has 63 TelosB nodes [PSCo5s] (n; to ne3, 55 are active), located in various offices on
two floors of the CS building at TU Darmstadt, spanning a volume of 30 x 20 x 8 m3.
The latter has 60 TelosB nodes (n1001 to n1060, 42 are active), forming a 5 x 12 grid,
located in a large room with line-of-sight between any two nodes, spanning a volume
of 31 x 7 x 3m3. To compare different powers fairly, I let a source node perform Glossy
flooding to all other nodes in the network, by setting the transmission power of all
nodes to 0dBm and —15dBm alternately per second. In this way, I exclude the effect
of the relatively slow channel variation of static WSN. Each active node acts once as
the source.

My results in Fig. 5.13 show that in the Piloty testbed, in almost all cases, the PRR is
better when the higher transmission power is chosen. However, in the Arena testbed,
quite often the higher transmission power gives lower reliability. The conclusion of the
Glossy paper that the latency is lower under a higher transmission power is generally
supported by my experiments [FZTS11]. Intuitively, it is due to the smaller hop count.

I argue that the reason that very often a lower transmission power improves PRR
in the Arena testbed is a higher network connectivity than that in the Piloty testbed.
For instance, in one experiment run in the Arena testbed, I found that at 0dBm, in
average 33.04 nodes are one hop away from the source, while at —15dBm, only 19.25
nodes are one hop away. Furthermore, one node has a PRR of 79% and 99% at 0dBm
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Figure 5.13: The relation between PRR and end-to-end latency at different transmission powers.
A point in the scatter plot is the metrics at 0dBm and —15dBm, for a given source
and destination pair.

and —15dBm, respectively. At 0dBm, the node is for most of the time (62%) two hops
away, hence it suffers from the low SNR caused by the large number of concurrently
transmitting nodes at hop one. In contrast, that 0dBm has generally better PRR than
—15dBm in the Piloty testbed is due to a lower connectivity when compared to that
of the Arena testbed. The node density of the former per m? is only one ninth of
the latter, and the separation of walls and floors further reduces the connectivity.
This brings to light that anticipating a proper transmission power with respect to
packet reliability is very hard. To do so, predicting the channel condition and taking
the reception model of concurrent transmissions into account would be required (cf.
Sec. 5.1). One practical way of overcoming this problem is to empirically determine
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the transmission power. Finally, the phenomenon that a high transmission power may
cause low reliability also evidences that topology control is necessary.

5.2.4.2 Network Shaping with WSNShape

Control networks normally feature one-to-one communication, which is a special case
of the one-to-all communication intrinsically supported by Glossy. If I could find a
stripe of nodes between the source and destination for a flow, and only perform Glossy
flooding among these nodes, energy consumption would be significantly reduced
since lots of nodes are deactivated, and hopefully there would be still enough nodes
in the stripe to take the advantage of the high reliability of constructive interference.
However, I face two obstacles in network shaping, i.e., how to find the stripe: 1) Glossy
is a routing free protocol and derives its advantages in reliability and latency from this
teature. Therefore, network shaping with traditional routing protocols is incompatible
with Glossy. 2) Since the channel condition is time-variant, I should continuously
perform network shaping, which requires the process to be very lightweight and fast.
My novel WSNShape technique overcomes the two obstacles by effectively utilizing
the capture effect.

Path Identification The most important step of WSNShape is path identification,
i.e., to find the reliable paths between the source and destination of a flow. I use the
control slots of the flow for this purpose (Fig. 5.12). The process is as follows:

1. Activate all nodes in the network.

2. The source sets the bit corresponding to itself in the path-ident packet and
broadcasts it. The path-ident packet contains basically a bit set of N bits where
N is the number of nodes in the network 8.

3. Any node relays the packet exactly once in the way as Glossy. One difference
is that instead of rebroadcasting the packet unmodified, the node sets the bit
corresponding to itself in the path-ident packet before rebroadcasting.

4. If a packet is correctly received at destination, the packet can be used to recon-
struct a path from the source to the destination.

Path Identification is Effective and Lightweight

b d
a f
c e
layer 1 layer 2 layer 3

Figure 5.14: An example of path identification. a —+ b — e — f is an identified path.

8 A control network normally has less than 100 nodes which takes only a dozen of bytes. If the network
size is much bigger than the path length, I should enumerate the node ID of each hop rather than using
a bit set.

95



96

IMPROVING QOS OF INDUSTRIAL WSN WITH CONCURRENT TRANSMISSION

The capture effect implies that if a number of nodes transmit different packets
concurrently and a packet is correctly decoded by the receiver, the packet should
come from the node whose signal is the strongest at the receiver. Given that all nodes
transmit with the same power, theoretically, I can infer that if a path is identified with
the above process, then every link of the path, say x — y, has the smallest signal loss
among all links going into the node y, and the path has the shortest number of hops
from the source to the destination.

Conceptually I build a network of K layers, where layer o only has the source node,
and layer i contains all nodes that receive the packet after i relays. Each node in layer
i—1 has a directional link to each node in layer i. Fig. 5.14 shows a path identified
from source a to destination f in an example network. Then, the signal loss of b — e is
smaller than ¢ — e, because node b and c are both one hop away from a and transmit
simultaneously. Similarly, the signal loss of e — f is smaller than d — f. The shortest
number of hops can be obtained taking into account the network is layered and
directional. Although I cannot say that the identified path has the globally smallest
cumulative path loss, as each link is locally optimal, practically, the path should be
reliable and short.
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Figure 5.15: The CDF of the identified paths and the number of nodes in each of them, P is
the path identification rate. Tx power = 0dB.

To evaluate the quality of path identification, I test it on a number of flows with
source and destination far apart on two floors in the Piloty testbed. A control slot
is applied for each flow every 6s. The results for flows n33 <+ ngo are shown in
Fig. 5.15, which are similar to that of the other flows. The path identification is very
effective, both flows have a path identification rate P (the percentage of times that a
path is successfully found between two nodes for all path identification tries) of over
99%. This confirms that the capture effect is universal in WSN [LFZ13a]. This has the
advantage that the path identification is inherently resilient to node failure, which is
not available in the normal routing protocols. Since the capture effect is universal, as
long as the network is connected, the sudden failure of a few nodes will not cause
failure in path identification. The path identification is also lightweight and fast. For
both testbeds, the size of the path-ident packet is rather small, of 16 bytes, which has
both advantages of short radio-on time and high reception rate. However, the results
also show the discrepancy between the experimentation and theory. In the testbed
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evaluation, I find that the distribution of the identified paths is concentrated on a few
short paths (the most common 3 paths together have probability > 90%), but has a
long tail (29 and 12 paths are identified for both flows respectively). I argue that the
reason that many paths of different length are identified is mainly due to the time
variation of the wireless channel. Yet it is favorable as it provides me with the chance
to attain high reliability by combining multiple good paths. Furthermore, I confirm
that despite the increase of path length, the path identification remains effective when
I use a smaller transmission power.

WSNShape Protocol After I have identified the reliable paths, I am ready to utilize
them to improve the QoS. The WSNShape protocol takes a parameter of path count
C, which is the number of different paths I combine to form a stripe. C can be oo,
meaning that all paths should be combined. The WSNShape protocol performs the
following steps for a flow continuously:

1. Path Identification. As described above, paths are continuously identified in the
control slots.

2. Path Combination. At the destination node I use a sliding window of size
M, holding the most recent M paths identified (the default value is M = 100,
keeping a history of 10 to 20 min). After a new path is put into the sliding
window, I perform a sort on the paths in the decreasing order of path frequency.
Then I combine the C most common paths to form a stripe °.

3. Stripe Activation. If the nodes in the stripe have been changed, the destination
node floods it in the form of bit map in the next control slot of the opposite flow.
To guarantee a high probability of reception, the packet is flooded three times.
When a node receives the stripe, it checks whether it is in the stripe or not. Based
on that, it activates or deactivates itself (sleeps) in the future data slots for the
flow.

Since the WSN nodes are generally resource constrained devices with limited RAM
and computational capability, I need to optimize the data structure of the sliding
window. Although a relatively large number of path samples (up to 100) are preserved,
normally the number of different paths is an order of magnitude less. Therefore, I use
a linked list to keep these samples. A node in the linked list consists of a path and
the number of occurrence of it. The data structure is efficient in terms of both storage
and computation. In the next section, I will evaluate how the WSNShape performs
compared to the baseline Glossy.

5.2.5 Performance Comparison of Different Sparkle Operation Modes

A Sparkle operation mode is a given combination of a transmission power and a
topology control. As shown by extensive evaluation in this section, different opera-
tion modes have different performance trade-offs in reliability, latency and energy
consumption. Eight operation modes are investigated, which have different topology
control or transmission power as listed in Tab. 5.2. The evaluation gives insight into
the performance of different operation modes, providing fundamentals for the design
of an adaptive scheme.

9 In my implementation, the statistics starts when 10 paths are identified.
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Operation Mode Topology Control Transmission Power
BL-HI All nodes active 0dBm
BL-LO All nodes active —15dBm
NS-1 WSNShape with path count C =1 0dBm
NS-2 WSNShape with path count C = 2 0dBm
NS-3 WSNShape with path count C =3 0dBm
NS-4 WSNShape with path count C =4 0dBm
NS-5 WSNShape with path count C =5 0dBm
NS-ALL WSNShape with path count C = oo 0dBm

Table 5.2: Eight Sparkle operation modes

5.2.5.1 Evaluation Setup

In the evaluation, the Sparkle frame has a period of 1s. In each one-hour run, I evaluate
6 flows simultaneously. The 6 flows are 3 pairs of opposite flows (e.g., a <> b is a
pair). Each flow needs to transmit a packet per second (corresponding to a control
system with period of 1s). Thus, the frame is composed of 8 slots — one sync slot,
6 data slots, and one control slot which is circularly used by each flow to identify
paths and to broadcast the stripe of WSNShape for its opposite flow. To save energy,
all packets except the stripe broadcast are transmitted only once. The stripe broadcast
is transmitted 3 times. The stripe for a given path count is broadcast whenever it
is updated. The data packet has a length of 126 bytes. Furthermore, in each slot,
a node turns off the radio when it has transmitted for the given number of times
(once or thrice) or it has been on for 40ms. The same as before, to fairly compare
different modes, the network circularly runs in each mode for Ts. This is controlled
by the sync-seq, a counter contained in the sync packet, incremented after each frame.
After the network is bootstrapped, each node should share the same sync-seq. It also
controls which flow should use a certain control slot. The program is implemented on
the Contiki OS [DGVo4].

I evaluate two types of flows: 1) long flow, with end nodes far apart and 2) unreliable
flow, where the flow itself or the opposite flow has low reliability (< 90%) in the
default BL-HI mode (same as the default Glossy flooding). ° These flows represent
the worst evaluation scenario since path identification for them should be relatively
ineffective. However, for all flows, the path identification is successful. The long flow
set includes 6 flows (3 pairs) for the Piloty and Arena testbeds each. The unreliable
flow set includes 22 flows (11 pairs) for the Piloty testbed and 24 flows (12 pairs) for
the Arena testbed.

5.2.5.2 Performance Comparison

The QoS metrics of a number of typical flows are depicted in Fig. 5.16 and the average
values of the QoS metrics over all flows are shown in Tab. 5.3. I focus on the trade-off
of 3 metrics: 1) PRR, the end-to-end reliability of packet delivery of a flow, 2) Action

These pairs of flows are identified by the experiments in Sec. 5.2.4.1 for evaluating the effects of
transmission power.
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Figure 5.16: Some typical results from the evaluation of Sparkle modes. The points highlighted
with a green circle have good reliability (PRR > 95%). Latencies are normalized
to that of BL-HI.
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Table 5.3: The statistical QoS results of various Sparkle modes. The column "adaptive" refers
to the combination of BL-HI, BL-LO, Ns-2 and Ns-ALL. All metrics are in percentage.
Good PRR means PRR > 95%.

BL-HI | BL-LO | NS-1 | NS-2 | NS-3 | NS-4 | NS-5 | Ns-ALL | adaptive

Good PRR Rate 58.62 | 55.17 | 56.90 | 68.97 | 77.59 | 81.03 | 81.03 | 86.21 98.28

Normalized Latency | 100.00 | 169.26 | 91.81 | 92.91 | 93.13 | 92.79 | 93.06 | 93.93 -

Active Slot Rate 100.00 | 100.00 | 6.66 | 9.14 | 11.62 | 13.28 | 14.58 | 18.23 -

Best Reliability Rate | 18.97 | 17.24 | 24.14 | 25.86 | 27.59 | 43.10 | 34.48 | 36.21 75.86

Slot Rate (ASR), the number of active data slots over the number of all data slots for
a flow and 3) normalized latency, the average end-to-end latency normalized over
the value of the mode BL-HI. The active slot rate should be the same as the average
percentage of active nodes, which is roughly proportional to the energy consumption.

Reliability In average, the reliability of all WSNShape modes except Ns-1 is better
than that of the baseline modes BL-H1 and BL-LO (Tab. 5.3). The mode Ns-ALL is generally
the best. The situation that Ns-1 is significantly worse than the other WSNShape
modes evidences the advantage of constructive interference of multiple transmitters
in boosting reliability. It shows that the concurrent transmission based network with
only a few concurrent transmitters is more reliable than the traditional network based
on single-path routing, even if the path is reliable. On the other hand, if the number
of concurrent transmitters is very high (mode BL-HI), the reliability may decrease.
Furthermore, there is at least one flow for which a certain mode is better than all
the others (Fig. 5.16). Thus, there is no winner in all cases and the relative reliability
among various modes can be arbitrary for individual cases. However, statistically, I
can have the following reliability model:

R(Ns-ALL) > - -+ > R(Ns-i) > R(Ns-j) > - -+ > R(Ns-2) > R(BL-HI) > R(Ns-1) > R(BL-LO)
(5.11)

where R(-) is the reliability of a mode, and i =j + 1.

Moreover, if I can always choose the best mode among BL-HI, BL-LO, Ns-2 and
Ns-ALL, over 98% of the cases, I can obtain good reliability (> 95%, sufficient for
most control systems). I include BL-HI and BL-LO because they are same as Glossy,
but running at different powers. I include Ns-2 and Ns-ALL because the first is the
concurrent transmission mode with the highest energy efficiency while the second
is the concurrent transmission mode with the highest reliability. The only case that
good reliability is unattained is the pathological case shown in Fig. 5.16(f) where only
one path can be identified for the flow and none of the modes reaches good reliability.
This motivates me to design an adaptive scheme which can adaptively choose among
the four modes.

Additionally, I list in Tab. 5.3 the Best Reliability Rate, which is the percentage of
times that each mode achieves the highest reliability of all evaluated modes. The values
do not sum to 100% because multiple modes may achieve the same highest reliability.
The corresponding value under "adaptive" denotes the percentage of times that any of
the four modes — BL-HI, BL-LO, Ns-2 and Ns-ALL achieves the best reliability.
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End-to-end Latency As listed in Tab. 5.3, the average latency of the WSNShape
modes are 6% to 8% shorter than that of the BL-HI, and generally the latency increases
slightly with the path count C. This shows another advantage of limited concurrent
transmissions. The moderate number of concurrent transmitters increases SNR and
thus PRR in comparison to the large number of concurrent transmitters in the mode
BL-HI. Therefore, statistically fewer rounds of retransmissions are needed till a packet
successfully reaches the destination. The latency of the BL-LO mode is about 69%
longer than that of the BL-HI mode, because the lower transmission power increases
the hop count. In general, the end-to-end latency is near optimal. The largest average
latency and hop count of a flow under the low transmission power of —15dBm are
33.7ms and 7.0, respectively. The values under the high transmission power of 0dBm
are 18.9ms and 3.7, respectively. The latencies are very small considering the large
packet size of 126 bytes whose transmission takes more than 4ms per hop. In addition,
Sparkle can provide the hard deadline guarantee by turning off the radio after the slot
duration has finished (slot duration = 40ms in my implementation).

Energy Consumption The actual energy consumption should be roughly propor-
tional to the ASR. Obviously ASR = 100% in the baseline modes because all nodes are
active. The various WSNShape modes Ns-1 to Ns-ALL save as much as 93% to 82% of
energy compared to the baseline modes. This is due to the large amount of inactive
modes. Intuitively, the saving decreases with the path count C. Although the ASR
value of the two baseline schemes is 100% in both cases, I expect that BL-LO consumes
more energy than BL-HI, since the former has a much longer latency which increases
the radio-on time significantly. This more than compensates the slight saving brought
by the low transmission power. In summary, I can give an energy consumption model:

E(BL-LO) > E(BL-HI) > E(NS-ALL) > --- > E(Ns-i) > E(NS-j) > --- > E(NS-1) (5.12)

where E(-) is the energy consumption of a mode, and i =j + 1.

Summary In general, the reliabilities of the WSNShape modes improve with the
path count C. The trade-off is that the latencies and energy consumptions (ASR)
of them increase with C (Tab. 5.3). Compared to the Glossy protocol (with different
transmission powers), WSNShape with C > 2 brings improvement in reliability, latency
and energy consumption simultaneously. The energy saving is significant, over 80%.
The improvement in latency is slight, only a few percent. Regarding reliability, Ns-ALL
is generally the best mode. But the relative reliabilities of different modes could be
arbitrary for a flow. However, if I can adaptively choose the most reliable mode among
BL-HI, BL-LO, Ns-2 and Ns-ALL, far better performance can be achieved than sticking to
any specific mode, which is the main topic of the next section.

5.2.6 PRRTrack: Adaptively Minimizing Energy Consumption while Meeting Reliability
Requirement

A useful control system must be stable and have a satisfactory performance, which
normally requires that each flow has latency below and reliability above preset val-
ues [ZBPo1]. In this section, I design and evaluate an automatic scheme, PRRTrack, a
component of Sparkle that adaptively switches between different operation modes,
with the goal of minimizing energy consumption while meeting the reliability re-
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quirement. In case the reliability requirement cannot be satisfied by any of the modes,
PRRTrack achieves the best-effort performance by keeping a flow operate in the most
reliable mode for most of the time. The testbed evaluation shows that PRRTrack
effectively achieves its design goal together with the advantage of improved latency.

5.2.6.1 The Design of PRRTrack

The main idea of PRRTrack is simple: if the current mode satisfies the reliability
requirement, it tries to find a more energy-efficient one, otherwise it tries to find one
that satisfies the reliability requirement. Given the model of relative energy efficiency
of the various operation modes, the process to find a more energy-efficient mode is
straightforward. But on the other hand, since no deterministic model of the relative
reliability is available, the process to find a mode satisfying the reliability requirement
is based on trial-and-error.

The control logic of PRRTrack is realized at the destination node of a flow. It performs
two activities: first, it maintains the recently identified 100 paths for WSNShape;
second, it keeps track of the current PRR by calculating the reception rate of the recent
100 data packets of a flow. Also, in the manner of feedback control, it gives proper
commands of mode switch based on the difference between the current PRR and the
reliability set-point.

Reliability cannot be satisfied by any more energy
efficient mode. Switch to the old good mode.

Use the default 1.4

mode BL-HI. Reliability is satisfied

‘ find a reliability ~ for time L by a mode. J find a more energy
‘satisfying mode (FR) ‘ efficient mode (FE)

start

Ise, switch to another mode.
Test the more energy

No mode satisfies reliability. efficient modes in order, and
Switch to the most reliable one.  if one of them satisfies reliability
for time L, try to find a even more
energy efficient one.

Hold time L has passed.

hold on the current
mode (HM)

Figure 5.17: The operation mode switch process of PRRTrack.

The operation mode switch process of PRRTrack is illustrated in Fig. 5.17. I only
switch among the four modes BL-HI, BL-LO, Ns-2 and Ns-ALL, since I prefer to minimize
mode switches. I revise my energy model from (5.12):

E(BL-LO) = E(BL-HI) > E(NS-ALL) > E(Ns-2) (5.13)

5.2.6.2 Implementation

The implementation details of PRRTrack are as follows. The control slots are used for
path identification and mode switch commands. The path-ident packets are sent by
the source node once every 10s if there is no pending mode switch command, which
is sent by the destination node whenever necessary. Included in the mode switch
command is the stripe for WSNShape, if the mode is a WSNShape one. Since the
mode switch features trial-and-error, in my implementation it may lead to temporary
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Figure 5.18: The reliability of PRRTrack vs fixed mode. Reliability requirement R = 90%. HM
stands for "hold on the current mode"; FE stands for "find a more energy efficient
mode" and FR stands for "find a mode satisfying the reliability requirement".

PRR decrease when I probe a new mode. In the chosen configuration, this may cause
decreased performance of about 100s (the test duration, e.g., Fig. 5.18(c)). If the control
system is sensitive to that, I could implement the PRRTrack more conservatively
by probing a mode in the control slots before actually switching the data slots to
that mode. This will give better reliability performance at the cost of more energy
consumption due to the higher overhead of control slots and slower mode switch
reaction. Whenever I switch to a different mode, I flush the sliding window for PRR
re-calculation.

5.2.6.3 Evaluation

For the evaluation of PRRTrack, I compare the performance of Sparkle with PRRTrack
to that of Sparkle with the fixed mode BL-HI (same as the default Glossy flooding). In

each round of the evaluation, I run both programs for 3 hours each. Similar to Sec.

5.2.5.1, 3 pairs of opposite flows are evaluated in each round. For each of the Piloty
and Arena testbeds, I evaluate 12 random pairs of opposite flows.

The evaluation results of two representative flows in the Piloty testbed are shown in
Fig. 5.18. I show the averaged PRR from the program start. From Figures 5.18a and
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5.18b I observe that if I stick to the BL-HI mode, neither of the two flows can satisfy the
reliability requirement of PRR > R with R = 90%. Furthermore, the PRR values are
not stable. There are long periods in which the PRR goes up or down steadily. From
Figures 5.18c and 5.18d I see that if PRRTrack is applied, the reliability requirement
can be satisfied and the PRR values are much more stable.

In the case of Fig. 5.18(c), I observe that after the PRRTrack starts, I transition
immediately into the state FR (FR stands for "find a reliability satisfying mode"). Then
I test the modes Ns-2, Ns-ALL, BL-HI and BL-LO one by one, in the decreasing order
of energy efficiency, to find a reliable one, but none of them satisfies PRR > 90% for
1000s (L = 1000s). Therefore, I switch to the most reliable mode at that time, BL-HI,
and hold on it for 1000s. After the hold time, I transition back to the state FR. But now
BL-HI can meet R for over 1000s, therefore I later transition to the state FE (FE stands
for "find a more energy efficient mode"), to find a more energy-efficient mode. Now I
land in the mode Ns-aLL, which is not only more energy-efficient, but also reliable
enough. But from time to time (after about every 1000 sec), I try the more efficient
Ns-2 for 100s, to find a potentially reliable and more energy-efficient mode. However,
until the end of the program, this probing is unsuccessful. The situation in Fig. 5.18(d)
is simpler. After I switch to the mode Ns-2, the reliability requirement can always be
satisfied, therefore, I stay in the mode as it is already the most energy-efficient one.

Table 5.4: The energy consumption and latency of PRRTrack vs. those of the fixed mode.
Energyy, is the energy consumption of data slots. Energy. is that of control slots.

Fixed mode BL-HI (3 hours) PRRTrack (3 hours)
Energyq4(J) | Energy.(]J) | Latency(ms) | Energyq(J) | Energy.(J) | Latency(ms)
flow nag <> ne3 1008.27 o 18.09 196.21 24.11 16.15
flow N6 > ngy 1009.68 o 16.11 109.21 23.17 14.45

To measure the energy consumption of the radio component, which accounts for
the predominant part of energy consumption of my system, I use Energest, a software-
based method for energy measurement provided in Contiki [DOTHoy]. For higher
precision, I consider the different current consumptions of listen mode and transmit
mode with various transmission powers provided by the CC2420 datasheet [CC213].
As listed in Tab. 5.4, the energy saving of the PRRTrack is huge. For two pairs of flows
N6 <> Ng3 and N <> ng1, including the control overhead (that of control slots), it
uses only 22% and 13% of that of the fixed mode BL-HI, respectively **. The control
overhead amounts for about 1/5 of the energy consumption. Additionally, PRRTrack
also improves the average end-to-end latency by about 10%. Over all 24 pairs of flows,
the average energy saving is 84% and the latency improvement is 5%.

5.2.7  Conclusion

I have presented Sparkle, a communication network for periodic multi-loop con-
trol systems with high packet reliability, very low energy consumption, as well as

I'look at the energy consumption of a pair of opposite flows together instead of separately because to
achieve reliable transmission on one flow, I need the cooperation of some control slots of its opposite
flow.
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near-optimal and deterministic communication latency. To my knowledge, this is
the first control network based on concurrent transmission. Sparkle has a flexible
architecture that supports arbitrary and independent QoS control mechanisms for all
communication flows. The novel WSNShape is a topology control technique based
on the capture effect. It leads to huge saving of energy consumption as well as to
high probability of improvement in reliability and latency, compared to the Glossy
protocol. By combining different levels of WSNShape and transmission power, I derive
various operation modes featuring different energy and performance characteristics.
Then I design a control scheme PRRTrack, that can adaptively switch between these
operation modes. Through extensive evaluation on real-world testbeds, I confirm that
my scheme PRRTrack satisfies the design goal of preset reliability while in average
massively reducing the energy consumption by 84%. In addition, it also reduces the
latency by 5%.

5.3 RIPPLE: HIGH-THROUGHPUT, RELTABLE AND ENERGY EFFICIENT NETWORK
FLOODING IN WIRELESS SENSOR NETWORKS

5.3.1 Introduction

The Glossy protocol [FZTS11] is multi-hop network flooding protocol of high reliabil-
ity, low latency and low energy consumption. Yet it can be further improved in two
aspects: (1) the potential throughput of the IEEE 802.15.4 standard is not fully utilized;
(2) it is not robust to interference. Since it only uses one physical channel, the network
is susceptible to interference on that channel. High-throughput and robustness to
interference are indispensable for some applications, e.g., one-to-all multimedia broad-
cast. This thesis proposes a new network broadcast protocol, called Ripple, which
improves Glossy in these two aspects. Additionally, it supports a flexible configuration
of throughput and packet reliability, making itself suitable for a large spectrum of ap-
plications with various QoS requirements. Furthermore, it is far more energy efficient
than Glossy, and achieves higher packet reliability than Glossy through forward error
correction.

Ripple has two novel features over Glossy: pipeline transmission and erasure coding.
Instead of flooding one packet over the network in each round as Glossy does, the
pipeline transmission floods a number of distinct packets on multiple channels in each
round. In a Glossy round, a node may receive the same packet multiple times, where
the redundant receptions do not contribute to throughput; while in a Ripple round,
a node receives different packets and each contributes to the throughput. By using
only two channels, I can practically eliminate the mutual interference among different
packets being transmitted simultaneously on the same channel. Different from the
traditional node-based channel assignment [RCBG10, DCL13b], Ripple uses a novel
packet-based channel assignment. This saves the need for a channel assignment phase,
which requires a specialized protocol and carries extra overhead as in, for instance,
the Splash protocol [DCL13b]. Although it significantly increases the throughput,
the pipeline transmission also decreases the chances to receive a certain packet. To
compensate for that, I apply the optimal Reed-Solomon (RS) erasure code [Rizgy],
which encodes k packets into n packets for arbitrary n > k. If any k of the n packets
are received, the original packets can be decoded and restored. Moreover, using



106

12

IMPROVING QOS OF INDUSTRIAL WSN WITH CONCURRENT TRANSMISSION

multiple channels helps to improve the robustness to interference in the 2.4 GHz ISM
band. Even if part of the channels are fully jammed, erasure coding can guarantee
good reception of original messages as long as the packet reception rate is higher
than the code rate. Although the aim of Ripple is high throughput and high reliability
network broadcast, rather than fully reliable data dissemination, it still makes sense to
compare Ripple with protocols for reliable data dissemination, since Ripple achieves
over 99% reliability when applying forward error correction. Compared to the state-of-
the-art data dissemination protocol Splash, Ripple obtains two to three times higher
throughput.

The rest of the section is organized as follows: Sec. 5.3.2 discusses the related
work. Sec. 5.3.3 elaborates on the design of Ripple. Sec. 5.3.4 analyzes the theoreti-
cal throughput gain achievable by Ripple, compared to Glossy. Sec. 5.3.5 performs
some preliminary experiments on the implementation choices and the guidelines for
choosing Ripple parameters. Sec. 5.3.6 shows the evaluation results of Ripple on three
testbeds. Finally, Sec. 5.3.7 concludes the section.

5.3.2 Related Work

Ripple draws primarily on the seminal work of Ferrari et al., Glossy [FZTS11]. Glossy
is a network flooding protocol exploiting the physical layer feature of constructive
interference. It achieves low latency, high reliability and time synchronization of ps
accuracy simultaneously. Ripple enhances Glossy by adding pipeline transmissions
on multiple channels, which improves throughput and energy efficiency, as well as
incorporating forward error correction, which improves packet reliability.

The general idea of employing pipeline transmission on multiple channels to
improve throughput is not new. By doing so, PIP [RCBG10] increased the end-to-end
throughput of a multi-hop line topology and Splash [DCL13b] enlarged the network
throughput of Cl-based data dissemination. The Ripple protocol differs from these
two protocols in that it assigns a channel to a packet instead of to a node. Therefore,
PIP and Splash both require a one-shot or continuous phase that assigns channels
to nodes. For instance, Splash uses the CTP protocol to derive the level of a node,
and assigns a fixed channel to each level before performing pipeline transmissions.
This incurs extra overhead, which is not described in [DCL13b]. In contrast, Ripple’s
packet based channel assignment does not call for such a phase. As long as the nodes
are time synchronized, they can switch channels correctly.’* The result is that Ripple
is more adaptive to topology change, more compatible with the routing-free nature
of Cl-based protocols, and has two to three times larger throughput than that of
the state-of-the-art data dissemination protocol Splash (10 Kbits/s) even after error
correction. Thus, it transitively outperforms the popular data dissemination protocol
Deluge T2 [HCo4].

Packet corruption often happens in concurrent transmissions and forward error
correction can help to improve the packet reliability significantly [PJJ* 14]. My work is
the first to apply the efficient Reed-Solomon erasure code [Rizg7] to concurrent trans-
missions in WSN. The RS code can be tuned according to communication reliability
and can thus satisfy any requirement concerning this issue.

I perform continuous hop estimation at each node to further improve the performance, but it is done at
no extra cost. This process is described in Sec. 5.3.3.1
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5.3.3 The Design of Ripple

In each Glossy round, one packet is flooded from the initiator node to the whole
network, which is similar to a circular wave expanding on a water surface. This
feature limits the throughput, especially when the hop-diameter of the network is
large. Ripple addresses this problem by flooding multiple packets in each round.
Conceptually, it resembles a train of circular waves expanding simultaneously.

If multiple packet floodings all use a single channel, the simultaneous transmissions
of different packets will interfere with each other. To avoid it, Ripple uses multiple
channels cyclically. When two packets of the same channel are simultaneously active,
there is enough distance between them to prevent mutual interference.

5.3.3.1 Protocol Design

I elaborate on the design of Ripple in this part. First, I describe the frame structure.
Next I discuss the slot scheduling of a node. Then I describe the hop estimation that
avoids cascading packet loss, and finally, I describe the RS erasure code.

FRAME STRUCTURE A Ripple frame consists of one sync round and a number of data
rounds. In the sync round, an authority node 3 performs a Glossy flooding of a very
short sync packet so that all nodes get synchronized with it. Theoretically, the sync
round is not necessary, because I could reuse the data packets for synchronization at
no extra cost. However, I decide to keep it since I need reliable and highly accurate
synchronization for the correct operation of the pipeline transmissions. The flooding
of very short sync packets meets my requirement, incurring only a negligible cost of
frame length, but providing a dependable basis for the correct operation of Ripple.
The data rounds are used for one-to-all data broadcast. In each data round, a batch of
data packets are flooded in pipeline.

A B A B A
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Figure 5.19: An example of the slot scheduling in a data round. The distance between the ini-
tiator node and the relay node is 3 hops. 3 channels are used and the transmission
interval is i = 1.

13 The authority node can be different to the initiator node.
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SLOT SCHEDULING IN DATA ROUNDS In the network, the initiator node broad-
casts the data packets on the available channels sequentially and cyclically. All the
other nodes are relay nodes and retransmit each distinct data packet received just once.
The slot scheduling is essential for the pipeline transmissions on multiple channels. I
illustrate this concept in Fig. 5.19. Note, a slot refers to the communication duration of
one data packet.

The initiator broadcasts a batch of packets circularly on the available channels every
i+ 1 slots in a data round, where 1 is called transmission interval and defines how
fast the initiator performs pipeline transmissions (i > 1). Each relay continuously
estimates the hop distance to the initiator, which is described in the next subsection.
From the estimated hop distance, a relay determines a relay window of i+ 1 slots for
each packet, corresponding to i+ 1 reception chances (Fig. 5.19). To receive a packet,
the relay switches to the channel of the packet before the start of the relay window. If
the packet is received and there are remaining slots in the relay window, the node
relays it immediately on the same channel in the next slot, e.g., pkt #1 and pkt #3 in
Fig. 5.19. The case that a packet is received but there is no more slot for retransmission
is illustrated by pkt #2. At the end of the relay window, irrespective of the result of
the packet reception, the node switches immediately to the channel of the next packet,
preparing for its reception.

The initiator turns off the radio after a packet transmission to save power, then it
writes the frequency of the next channel to the radio chip (at instants labeled with
A in Fig. 5.19). This helps to save the turn-around time since at the next turn-on
instant, it will directly switch to the correct channel. The turn-on of the radio for
packet transmission (at instants B) is controlled by a timer with an interval of i 4 1
slots. A timer of the same interval is also needed at a relay. When it is fired (at instants
C, the middle point of the last reception chance), the relay checks whether a packet
reception or transmission is ongoing. If this is the case, it switches to the channel of
the next packet as soon as the current reception or transmission finishes. Otherwise, it
immediately switches channel, which helps to avoid the cascade effect of a packet loss.

HOP ESTIMATION In order to receive as many packets as possible, a relay node
needs a good estimation of the hop distance to the initiator. The logic underpinning
hop estimation is shown in Alg. 13.

Algorithm 13: Estimation of the hop distance to the initiator.

Data: i: transmission interval
1 Initialize the estimated hop distance d. to a value larger than the network diameter;
2 for Each data round do
Cyclically shift the channels once;
Start the batch transmissions;
if Receive the first packet of the batch and the measured distance d < de + 1 then
| Add d to the FIFO set D;

7 if Receive the last packet of the batch and the first packet is lost and the measured distance
d > de +1 then
8 L Add d to the FIFO set D;

9 Update the estimated hop distance with de = argmax, #({j:j € D,k <j < k+1i});

[ N
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At the start of the Ripple protocol, each relay node initializes the estimated hop
distance d. to a sufficiently large value (Line 1). Then, at the end of each data round, I
update the estimation based on the received packets. The basic idea is that, in order
to be adaptive to the change of the topology, I collect the measured distances in a
FIFO set of fixed size, and then, based on the distribution of collected distances, I give
an appropriate estimate (Line 9). To get an unbiased estimation, I only look at the
samples of the first and the last packet of each batch. The reason is that if the current
estimated hop is too small, then the last packet will probably give a sample of larger
distance because it is only loosely restricted by the end time of the data round. On the
contrary, if the current estimate is too big, then the first packet will probably give a
sample of smaller value as all nodes start the data round simultaneously. The packets
in the middle are restricted in both ends by the slot scheduling and thus, they are
unsuitable for estimation. I cyclically shift the channels once at the beginning of each
data round (Line 3) since the estimated hop distances also depend on the channel, and
therefore, I want to give each channel the same chance to be sampled. The algorithm
is very effective, and it even gives better performance than the estimation based on
the sync rounds that uses the same packet length as that of the data packets. But long
sync rounds would waste too much time.

REED-SOLOMON ERASURE CODE I recapitulate the RS erasure code used in Ripple.
For more detail, please refer to [Rizg7]. The IEEE 802.15.4 standard specifies a 16-bit
Cyclic Redundancy Check (CRC) for packet verification [Soco6]. Hence, I can model
the communication channel as erasure, i.e., the packets passing the CRC check are
correctly received while the others are completely lost.

The RS erasure code is a (n, k) linear block code, where k packets are encoded at
the initiator into n packets. If k or more packets are received, a receiver can recover
the k original packets. The RS code is based on the Vandermonde matrix. Specifically,
a (n, k) linear code can be represented as

y =Gx (5.14)

where x is a k x 1 source data, G is a n x k matrix and y is the n x 1 encoded data.
In order to represent the components of x and y in the same number of bits, the
arithmetics are performed in the Galois field GF(p®), with p prime and s > 1. In
addition, I use systematic RS code, meaning G consists of two parts, the k x k identity
matrix Ij and the (n — k) x k Vandermonde matrix V.

G= (i’/‘) (5.15)

V can be represented in the form of

1 2 k—1

o o 0
1 o o2 o ok
V= 2 2 (5.16)
2 k—1
T ok Xn—x 7 Xk

where «1,..., %, are nonzero elements of GF(p*). The reason I can recover the
source packets from any k received packets is that any k rows from G are linearly
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independent. According to the properties of a Galois field, k —1T <p®—Tandn—k <
%, L have kimax = p* — 1 and nyax = 2(p® —1). I choose p = 2 and s = §, which
means I perform GF arithmetics on bytes. This has as advantages that the computation
time is faster and that the overhead is acceptable in terms of the look-up tables for
speeding up the arithmetics. For this choice of p and s, I have kpnax = 255 and
Nmax = 910, i.e.,, I can encode at most 255 source packets into 510 packets in a batch.
Any combination of n and k with n < nmax and k < kmax is allowed. Considering
that normal sensor nodes have only a dozen kilobytes of RAM and that the maximum
IEEE 802.15.4 packet size is 127 bytes, p = 2 and s = 8 can be universally used for any
application.

5.3.4 Throughput Gain in Theory

In this section, I deduce the theoretical throughput gain of Ripple compared to Glossy
under the assumption of perfect packet reliability, considering both cases with and
without error coding. For both Glossy and Ripple, suppose that the throughput under
perfect reliability is P, then the throughput under the reliability R will be P’ =P - R.

5.3.4.1 Ripple without Error Coding

I first compute the theoretical throughput of Glossy. Suppose the network diameter
(the maximum hop distance from any node to the initiator node) is h. The slot time is
ts1ot, Which is the sum of the transmission time of a packet and the turn-around time,
i.e., the interval between the end of a packet transmission and the start of a packet
relay. Then, to make sure that each node receives the packet, the round time should
be at least h - ts10¢. Thus, the throughput of Glossy, Pg105sy, is at most

1
Pglossy = }—lpackets/slot (5.17)

In contrast, Ripple floods multiple packets in a round. Suppose that a batch of k
packets are flooded in each round with k > 1, and a packet is flooded every i+ 1 slots.
Then, the initiator takes at least k(i + 1)ts1o¢ for the communication. The same occurs
with each relay, although the communication time of a relay node may be delayed
with respect to that of the initiator (see Fig. 5.19). Thus, the throughput of Ripple,
Pripple, is at most

k
Prippte = k(i+1)

= i—:— ] packets/slot (5.18)

The gain in throughput of Ripple compared to that of Glossy is

Prip‘ple h
G= = - 1
Porossy 141 (5.19)

If the pipeline transmissions are carried out at the highest speed i = 1, then G = % > 1
when h > 2, which is typically the case in a multi-hop network. The throughput
Pripple = % packets/slot when i = 1 is intuitively the optimum value of one-to-all
broadcast when the transceivers are half-duplex.
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5.3.4.2 Ripple with Error Coding

As mentioned before, the pipeline transmissions in Ripple can potentially decrease the
packet reliability compared to Glossy when the transmission interval i is small. The
main reason is that there are fewer chances (slots) to receive a packet. To compensate
for that, I apply the RS code. The code rate v, which is the ratio of the number of source
packets to the number of encoded packets, is a value between o and 1, and should be
selected according to the packet reliability of the network.

Same as before, I assume the network diameter is h and a batch of k packets are to
be broadcast in each round with transmission interval i. Then n = ¥ encoded packets
should be flooded in each round. Since sensor nodes are resource-constrained, I cannot
ignore the time incurred by erasure coding and decoding. Following the analysis
of the encoding and decoding time of the RS erasure code in [Rizg7], I estimate the
throughput as follows. Because I use systematic code, for a batch of k packets, I need
to produce (n —k) encoded packets. The time to produce a packet is proportional
to the packet length 1 times the number of source packets k, which is reasonable
as the encoding depends on each source packet. Since the slot time ts1,¢ is roughly
proportional to packet length 1, the total encoding time can be modeled as

tenc = Cek(n - k)tslot (5-20)

where c. is a constant. On the other hand, given a large packet size and a big batch
size k, the time to reconstruct a missing source packet is equal to cq - k - ts10t, Where
cq is a constant. The values c. and cq will be measured for TelosB nodes in Sec. 5.3.5.2.
Because the number of missing source packets m is such that m < min{k,n —k},*
then the decoding tgec is upper-bounded and

tdec =Cda-k-m-ts10t < cq-k-minfk,n — Kk} tsiot (5.21)

The initiator and each relay take at least n(i + 1)ts10¢ time for the communication
of a Ripple round. Therefore, by taking into account the error correction time, the
throughput of Ripple becomes

k
P}'gisppl e = AT Tt packets/slot (5.22)

where t.q is the highest value of the encoding and decoding times, measured in
number of slots and

teq = max{cq - min{k,n —k},ce(n —k)} - k slots (5.23)

The throughput gain compared to Glossy is

GRS_ k-h . h
— n(l+]) + tea o #+max{cd .mjn{]/%—]}/ce(% _])}k (524)

The throughput gain is thus reduced compared to the case without error correction.
When r =1, Eq. (5.24) reduces to Eq. (5.19), that is, the case without error correction.
This result suggests that I should not use a very big batch size k, because the encod-
ing/decoding time will almost linearly reduce the throughput for big k. The benefit

14 Otherwise the set of source packets can not be fully restored.
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of error coding is that near-to error-free communication can be achieved if r is set to
be smaller than the lowest flooding reliability to any node. A big advantage of Ripple
(for both cases with and without error coding) is that the throughput is independent
of the network size h.

5.3.5 Preliminary Experiments

In this section, I investigate the implementation of an accurate and precise timer for
slot scheduling, the overhead of the RS erasure code, and the expected reduction on
packet reliability by Ripple. These results provide reasons for my implementation
choices and guidelines for the selection of Ripple parameters. The hardware and
software platforms for my implementation are TelosB mote and Contiki OS. In the
later experiments, I always use the maximum packet size of 127 bytes.

5.3.5.1 Timers for Slot Scheduling

The slot scheduling in Ripple was introduced in Sec. 5.3.3.1. Stable and precise timers
are essential. Hence, I use the hardware timers of the MCU and implement the actions
in the Interrupt Service Routine (ISR). I have two options in the selection of the source
clock for the timers.

1. The timers are sourced by the DCO, which is also the main clock used by CPU.
The DCO has a frequency of 4 MHz and is periodically calibrated by the crystal
oscillator.

2. The timers are sourced directly by the 32 KHz crystal oscillator on board.

The DCO timer has 128x faster clock than the crystal timer, which allows for more
precise control of timing. However, the frequency of DCO is notoriously instable. It
drifts with temperature up to —0.43%/°C and with voltage of power supply up to
10%/V [Tex11]. In contrast, the frequency tolerance of the crystal oscillator is only
+20 ppm (a ppm is 0.0001%), which is far more stable [SG11]. To compensate for the
instability of DCO, I calibrate it periodically to the crystal. The initiator is calibrated
both at the start of each round and after each packet transmission. A relay is only
calibrated at the start of each round due to the gapless transmission and reception of
packets.

I evaluate the performance of these two types of timer because it is key for the
correct behavior of slot scheduling. I perform Ripple with a batch size of 20 and
measure the intervals between two consecutive instants labeled B at the initiator, and
between two consecutive instants labeled C at the relays as illustrated in Fig. 5.19.
The experiment uses six randomly selected nodes, one initiator and five relays. The
timings are measured by a logic analyzer sampling at the frequency of 16 MHz on the
pins set in the ISRs of the timers.

Fig. 5.20 shows that the crystal timer is far more stable than the DCO timer at
individual nodes, as well as across nodes. The deviation of the intervals can be as
large as 8o us for the DCO timer. This means that if the batch size is 30, then the
cumulative time offset of two nodes can be as large as 2.4 ms, which takes longer
than half of the slot time of the longest packet. This may cause the relays to switch
channel either too early or too late with respect to the initiator, leading to unnecessary
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Figure 5.20: The distribution of time intervals of two types of timers.

packet loss. The time granularity of the 32 KHz crystal (1 tick) is 30.5 ps, similar to
the transmission time of a byte (32 ps), which is fine enough. Therefore, for Ripple on
TelosB motes, I implement the timers for slot scheduling with the Timer_A1 in the
MCU MSP430F1611 sourced by the 32 KHz on-board crystal oscillator [Tex11].

5.3.5.2  The Runtime and Memory Ouverhead of the Erasure RS Code

In the evaluation I increase the number of source packets k from 1 till the mote is
out of memory. And for each k, I evaluate different number of encoded packets n
from (k + 1) till out of memory. For decoding, I randomly choose k packets out of the
n encoded packets as the input to the decoder, since a successful decoding needs k
encoded packets, and I record m, the number of source packets to be restored.

RUNTIME OVERHEAD As shown in Fig. 5.21, the encoding and decoding times fit
fairly well the theoretical models of Eq. (5.20) and (5.21). I approximate the slot time
ts10t Of L byte packets by 32 - 1us, ignoring the time for packet preamble and software
delay in Glossy. *> A more accurate model could be derived from [YH13], but it would
overcomplicate the analysis. I determine empirically the values of c. and cq4 to be
Ce =0.14 and cq = 0.17.

MEMORY OVERHEAD The RS code encodes k packets into n packets. Since it is
systematic, it takes n - 1 bytes for packet storage. For encoding, the generating matrix
G takes n - k bytes. In addition, the lookup tables for logarithm, exponentiation and
inverse operations on GF(q) take 5q — 2 bytes. Therefore, the encoder, in total, takes
n(k+1) + 1278 bytes.

The decoder decodes n packets into k packets. Analogously, it takes n - | bytes for
storing the packets, n - k bytes for the generating matrix G and 5q — 2 bytes for the
lookup tables. Additionally, it needs k* more bytes for the decoding matrix, which
maps k received packets to k source packets. During the decoding operation, I need
m - 1 bytes for the temporary storage of the m source packets to be restored. Therefore,

15 It is appropriate for the large 1 = 127 used in the experiments.
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Figure 5.21: Encoding and decoding times of the RS erasure code. They satisfactorily match
the models of Eq. (5.20) and (5.21).

the decoder has bigger memory overhead. It takes, in total, l(n +m) + k(n + k) + 1278
bytes, where m = min{k, n —k}.
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Figure 5.22: Memory overhead of the RS erasure code (maximum n for a given k without

memory overflow). For analytical results, I suppose memory size is equal to
10 kilobytes.

Fig. 5.22 shows the measured maximum n for a given k for decoding before memory
overflow, as well as the analytical results for encoding and decoding. The figures
provide guidelines for choosing k and n. The measured decoding memory overhead

is larger than the analytical result, which is mainly due to the additional overhead of
Contiki OS in RAM.

5.3.5.3 The Reduction on Packet Reliability of Ripple

As explained before, the reduced chances for packet reception in Ripple may decrease
packet reliability compared to Glossy. Here I explore the expected degree of the
reduction. For that purpose, I perform Glossy floodings cyclically on the 16 channels
in 2.4 GHz of IEEE 802.15.4 on the Arena testbed at TU Darmstadt [GBKVL12]. One
packet is flooded in each round and each relay node only retransmits the packet once.
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Figure 5.23: The expected packet reliability of Ripple compared to Glossy under different relay
window size. Arena testbed, tx power = o dBm.

I collect hop distances to the initiator for each node and notice that the hop distance
of a node is time variable on the same channel. Also, the distributions of the hop
distances of the same node are different on different channels. To measure the expected
degree of penalty on packet reliability under the case that I have the best static estimate
of hop distance, I compute the percentage of packets received if I limit the relay
window (reception chances) to a number of consecutive slots. Fig. 5.23 shows that
when the relay window is equal to 2 slots (corresponding to transmission interval
i=1), the reliability of Ripple compared to Glossy is over 80% for most nodes, and
in the worst case is still about 60%. Furthermore, if the relay window is increased
to 3 slots (i = 2), the worst-case reliability of Ripple compared to Glossy goes up to
90%. My results further indicate that the reduction on reliability is smaller for smaller
packet sizes. This shows that, with the increase of transmission interval, the reliability
of Ripple improves quickly and approximates that of Glossy. This is Ripple’s inherent
trade-off between throughput and reliability.

5.3.6  Testbed Evaluation

I perform my evaluation on three testbeds of different size and topology: the Arena and
Piloty testbeds at TU Darmstadt [GBKVL12], and the Flocklab at ETH Zurich [LFZ" 13b].
The three testbeds have 57, 41 and 31 nodes, respectively. The main evaluation results
are:

1. Two channels are sufficient for good performance of Ripple.

2. The baseline Ripple (without error coding) offers 2 to 3 times better throughput
and energy efficiency, compared to Glossy.

3. Ripple with RS code achieves nearly 100% packet reliability, outperforming
Glossy. The throughput is two to three times as large as that of the state-of-the-
art data dissemination protocol Splash.

4. The measured throughput of Ripple is 80% to 90% of the analytical results.

The memory footprints of Glossy, Ripple and Ripple with RS code are listed in
Tab. 5.5. The extra RAM overhead of the baseline Ripple is moderate. Ripple with RS
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code incurs more RAM overhead due to the RS code, still it fits in the 10K RAM of
TelosB mote.

Table 5.5: Memory footprint comparison of Glossy, Ripple and Ripple-RS.

Program Glossy | Ripple (k = 20) | Ripple-RS (k = 10,n = 20)
Code size (bytes) || 16186 19838 23710
RAM (bytes) 449 546 1839

5.3.6.1 The Impact of Channel Number on Ripple
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Figure 5.24: The impact of channel number on the reliability of Ripple. Transmission interval
i=1.1In (a), level 1 is the initiator, level x are those nodes that are (x — 1) hops
away from the initiator. Different shapes in (a) stand for different channels.

Ripple uses multiple channels to lower the mutual interference among simultaneous
transmissions of different packets. The more channels I use, the less the mutual
interference should be. This is reflected in Fig. 5.24(a): with transmission interval i = 1
and a single channel, the strongest interference to a receiver comes from the active
transmitters located one hop away. Given y channels, the strongest interference comes
from y(i+ 1) — 1 hops away, which decreases very fast with the number of channels
and transmission interval due to path loss.

I want to find out what is a practically sufficient number of channels. I run Ripple
on the Piloty testbed (with the initiator at a corner, tx power t = —7 dBm and i = 1).
Fig. 5.24(b) shows that with one channel, the interference is very strong, causing
all nodes to have PRR below 55%. However, with two channels, PRR significantly
improves, and is such that over 60% of the nodes have PRR over 9o%. Further increase
of the number of channels does not improve PRR. However, a potential advantage of
a large number of channels is that the performance will degrade more smoothly when
one channel is jammed or strongly interfered. Anyhow, for a good performance of
Ripple, two channels are sufficient.
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Figure 5.25: Performance of Ripple vs. Glossy for different transmission intervals (i).

5.3.6.2  Performance of Ripple without Error Coding

I compare the performance between Ripple and Glossy on three testbeds when there
is no error coding. I use a middle transmission power t in order to get a network of
relatively large diameter. The testbeds have different diameters h (listed in Fig. 5.25),
which is defined as the distance to the initiator such that each node in the network
has a distance less than or equal to h for over 95% of the cases when running Glossy
(with the parameter maximum transmission times equal 2). h is used to determine the
duration of a Glossy round and a Ripple round. The batch size is k = 20. The initiator
node is at a corner of the network. The IEEE 802.15.4 channel #26 is used by Glossy,
and two channels #26 and #25 are used by Ripple. Each run of Glossy or Ripple takes
30 minutes. I leverage the novel hardware-based high resolution power sampling
provided by Flocklab [LFZ" 13b] to get an accurate comparison of energy efficiency
between the two protocols. I choose a sampling rate of 14,400 Hz.

The evaluation results are depicted in Fig. 5.25. In general, Ripple significantly
increases the throughput compared to Glossy. ' When the transmission interval

In the computation of throughput of Ripple, I have considered the synchronization overhead, which
takes less than 1% of the time.
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Figure 5.26: Performance of Ripple with RS code vs. Glossy for different transmission intervals
(1). Note, the figures (b)-(d) are of different scales to Fig. 5.25(a)-(c).

is i = 1, the improvements on the three testbeds are between 2.2x to 3.0x. The
throughput improvement increases with the network diameter and decreases with
i (recall that Ripple sends one packet every i+ 1 slots). Moreover, the end-to-end
reliability generally increases when 1 gets bigger, and this increase is particularly fast
for i < 3. With the further increase of i to h — 1, Ripple converges to Glossy. Therefore,
a nice feature of Ripple is that by tuning the transmission interval, I can trade between
high throughput and high reliability, which can suit a large spectrum of network
broadcast applications with different QoS requirements.

Fig. 5.25(d) compares the energy efficiency of Glossy and Ripple. The metric chosen
is the energy per bit, i.e., the total energy consumed by the whole network over the
total number of bits of the distinct packets received by all nodes. Ripple is over 3 times
more energy efficient than Glossy when i = 1. With the further increase of 1, it uses
more energy, but it is still more energy efficient than Glossy even at i = h — 1 where
the reliability and throughput of the two protocols are similar. The higher energy
efficiency of Ripple is expected due to the higher throughput in the same radio-on
time.
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5.3.6.3 Performance of Ripple with RS Erasure Code

If the reliability requirement is higher than what can be offered by the baseline Ripple,
I can apply error coding. Protocols based on concurrent transmission such as Ripple
display a large amount of corrupted packets, which are mainly due to the imperfect
constructive interference. For the three testbeds, the packet corruption rate (corrupted
packets over all packets passing preamble and SFD checks) ranges from 10% to 30%
(Fig.5.26(a)). I use the RS erasure code to compensate for that. In the evaluation, I
encode 10 source packets (k) into 20 packets (n) in each batch. The error coding
improves the reliability, but the trade-off is that it decreases the throughput due to the
coding redundancy (n > k), and the extra time for encoding and decoding. Except for
the application of the RS code, the evaluation setting is the same as before.

Through experiments, I found that the worst-case encoding and decoding times are
both 52 milliseconds, when k = 10, n = 20 and packet size is at maximum. Therefore,
in each batch, I assign an extra 52 ms for the encoding and decoding of the RS code.
Considering that transmitting a packet of maximum length takes about 5 ms, the
encoding/decoding of such a packet takes 5.2 ms, roughly the same time as the
communication.

The performance of Ripple with RS code is shown in Fig. 5.26(b)-(d). Its predominant
feature is the extremely high end-to-end reliability. For all three testbeds, the PRRs are
better than those of Glossy and very near to 100% at big transmission intervals. Ripple
with RS code may attain the sweet spot of higher reliability and larger throughput
than Glossy (Fig. 5.26(c)). Compared to the state-of-the-art data dissemination protocol
Splash, which achieved a throughput of 10 Kbits/s as reported in [DCL13b], Ripple
obtains two to three times higher throughput when the transmission interval i < 2,
at the slight cost of 1% reduction in reliability. The throughput also transitively
outperforms that of the popular data dissemination protocol Deluge T2, which is
outperformed by Splash for over 10 times, as reported in [DCL13b]. Another advantage
of Ripple in comparison with the other data dissemination protocols is that Ripple
has bounded end-to-end latency due to the time bounded data rounds. This makes
Ripple suitable to latency-sensitive applications, such as industrial automation.

However, the decrease in throughput is quite big compared to the baseline Ripple.
One reason is the long encoding/decoding time. The throughput can be improved
by using sensor nodes with faster CPUs (the Ripple implementation on TelosB uses
a CPU clock of 4 MHz) or by selecting a higher code rate matching the end-to-end
communication quality.

5.3.6.4 Comparison of Evaluation and Theory

The theoretical throughput derived in Sec. 5.3.4 is the upper bound that Ripple can
achieve. Fig. 5.27 depicts how close the evaluation results can come to the theory.
The measured throughput achieves 80% to 90% of the theoretical throughput on all
three testbeds. The 10% to 20% decrease is due to multiple factors: 1) the overhead
of the sync rounds, 2) the guard interval at the beginning of the data rounds, and
3) most importantly, the implementation differing from the analytical assumption in
that the data rounds on all nodes are synchronized. This last factor leads to easier
implementation but causes some constant time overhead in each data round. In future
work, I will investigate displaced data rounds on different network levels. My results
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exhibit a distinct trend: the measured throughput approaches the theoretical value
when either the transmission interval goes up or when the RS code is applied. The
underlying reason is the same in both cases — when the duration of a data round
increases, the constant overhead of the synchronized data rounds becomes negligible.
Furthermore, as expected by the theory (c.f. Sec. 5.3.4), the throughput of Ripple is
independent of the network size h.
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Figure 5.27: The ratio of the measured average throughput to the theoretical average through-
put as derived in Sec. 5.3.4. The parameters used in the computation of the
theoretical throughput are: the packet size | = 127 bytes, the slot time tg1o¢ = 4.62
ms, the encoding/decoding time t.4 = 52 ms and the reliability R is the measured
PRR.

5.3.7 Conclusion

Ripple is a high-throughput, reliable and energy efficient network flooding protocol for
WSNs. It is based on the physical layer feature of constructive interference, and adds
pipeline transmission on multiple channels and error coding to the state-of-the-art. The
pipeline transmission raises the throughput over 8o Kbits/s in the testbed evaluation,
a threefold increase compared to Glossy. It comes close to the theoretical upper bound
of half-duplex radios. Ripple also increases the energy efficiency by a factor of three,
compared to Glossy. By tuning the transmission interval, Ripple balances between
high reliability and high throughput, suiting a large spectrum of QoS requirements.
To make Ripple suitable for reliable data dissemination, I can apply Reed-Solomon
erasure code to it. This pushes the reliability over that of Glossy, very near to 100%,
but at the cost of reduced throughput over plain Ripple. Still, the throughput doubles,
or even triples that of the state-of-the-art data dissemination protocol Splash. Finally,
contrary to Glossy, the throughput of Ripple is shown by analysis and evaluation to
be independent of network size.

5.4 SUMMARY

Concurrent transmission is a physical layer technique with high potential in improving
quality of service in wireless communication. Its strength is drawn mainly from the
constructive interference (constructive addition of the signals from multiple transmit-
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ters) and the receive diversity, where multiple receivers are allowed to hear from the
same set of transmitters at the same time. Concurrent transmission is helpful to wire-
less communication because the traditional one-to-one communication is unreliable.
This is particularly true for wireless sensor networks. Therefore, the key to reliable
low latency communication is to abandon the Single Transmitter Single Receiver (STSR)
communication paradigm and to adopt the transmit/receive diversity. Suppose m
transmitters and n receivers are active at the same time, there are effectively m-n STSR
links active simultaneously. The large amount of links can adequately compensate the
high loss rate of each link.

This chapter starts with the modeling of concurrent transmission which deepens our
understanding of it and provides a useful tool for the prediction of packet reception.
After that it demonstrates that concurrent transmission can be successfully applied to
multi-rate periodic monitoring and control systems. The proposed Sparkle protocol
can adaptively control the QoS of end-to-end communication flows by controlling
the topology with capture effect and by controlling the transmission power. Finally
I propose the Ripple protocol, which significantly improves the QoS of one-to-all
broadcast by incorporating pipeline concurrent transmission on multiple channels
and error coding. A prominent advantage of concurrent transmission is that it is
routingless and is therefore more robust, reliable and resilient while incurring no
routing overhead. The technique has recently appeared and is gradually maturing.
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CONCLUSIONS AND OUTLOOK

6.1 CONCLUSIONS

The main focus of this thesis is on improving QoS in communication for industrial
wireless sensor networks. The deficiency in QoS in communication is the biggest
obstacle to the goal of wide adoption of WSN in industrial automation. In this thesis,
I have proposed solutions that advance the state-of-the-art, and thus bring us a step
further to the goal.

The thesis enhances QoS in communication by performing research in two areas.
The first area is the centralized scheduling for WirelessHART protocol and the second
area is using concurrent transmission for routing-free reliable, low-latency and energy
efficient communication.

Regarding centralized scheduling, I first investigate the problem of WirelessHART-
based convergecast/distribution scheduling. I propose a novel busy-sender-first heuris-
tic that is based on the simple idea of prioritizing the busy sender, i.e., the node with
the largest number of remaining transmissions. It is demonstrated by extensive simula-
tion to be significantly better than the state-of-the-art heuristic in both schedule length
and memory consumption. Second, I investigate a very general scheduling problem
of periodic mesh-based multi-flow communication with hard deadlines. I propose a
lightweight and effective scheduling heuristic Least Laxity First (LLF), which offers
the highest schedulability rate among all heuristics evaluated, very low execution
time and memory overhead. Furthermore, I propose the opportunistic aggregation
scheme which works seamlessly with any heuristic and substantially increase the
schedulability. I also propose the repetitive scheduling scheme that is also compatible
with any heuristic, and leads to low and scalable cost of schedule table and execution
time. It works ideally when the periods of all flows are harmonic and their deadlines
are implicit (equal to the respective periods).

The recently appeared transmit/receive diversity technique of concurrent trans-
mission in WSN has shown great potentials in improving QoS in communication of
WSN. The thesis is the first effort in applying concurrent transmission to industrial
WSN. For better understanding of the various physical layer phenomena behind
concurrent transmission, I propose an accurate prediction model for packet reception.
Then I propose Sparkle, a WSN control network based on concurrent transmission,
for periodic multi-loop control systems. It controls the communication QoS of each
flow by combining an efficient topology control based on capture effect with the trans-
mission power control. Finally, I propose Ripple, which extends the Glossy network
flooding with pipelined concurrent transmission on multiple channels and forward
error correction. It significantly improves on the throughput, energy efficiency and
reliability, compared to the state-of-the-art protocol Splash and Glossy. All the works
on concurrent transmission are verified by evaluations on public available real-world
testbeds.
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Generally, both parts of the thesis have demonstrated that IEEE 802.15.4 based
WSN, despite its limited capability in communication, can be effectively applied to
industrial automation with strict requirements on communication QoS, through high
quality scheduling heuristics and the physical layer diversity technique of concurrent
transmission.

6.2 OUTLOOK

The thesis contributes in facilitating the application of WSN to industrial automation.
However, the problem has not yet been fully solved. This problem and the more
general problem of how to improve QoS in wireless communication will have a
fundamental impact on the future of communication. In the following, I enumerate a
number of interesting and important open problems that are to be investigated:

1. How do different wireless standards compare with each other? I am not aware of
a complete comparison of different wireless standards for industrial applications
in terms of different QoS metrics, such as latency, throughput, reliability and
energy efficiency. Quite often, the researchers presume a standard, such as
IEEE 802.15.4 or IEEE 802.11. Such choices are somehow arbitrary. A complete
comparison of wireless standards can substantiate or disprove a choice.

2. How can we support priority arbitration in wireless communication? The widely

used Controller Area Network (CAN) bus for automotive and industrial automa-
tion applications has a unique feature of message priority arbitration. It works
as follows: the transmissions of different messages are synchronized on the start
bit. The arbitration is performed on the message identifier following the start bit,
where a bit zero dominates a bit one. For each station, the transmission and listen
happen at the same time. If a node hears a different bit from the corresponding
one in its message identifier, it loses the right to continue to send [LMTos].
Therefore, with priority arbitration, the CAN bus can give guarantees on message
priority.
The feature of priority arbitration are important for industrial applications. For
example, some control loops may be more important than the others for the
correct operation of a system. The priority arbitration is much more difficult to
realize in the wireless communication than in the wired communication because
the channel activity perceived by different nodes are different. Therefore, a
perfect solution such as that of CAN bus may be unavailable. Some solutions for
wireless networks do exist. The MAC layer solution of [PKBo3] assigns different
waiting time to nodes of different priorities after the channel is detected as
free. This solution may incur long time overhead. The physical layer solution
by Huang et. al [HYX13] is more efficient, but it needs two radios for simulta-
neous transmission and listen. How to design an effective priority arbitration
mechanism in wireless communication is worth investigation.

3. How can we support both event-based and periodic traffic? In industrial mon-
itoring and control systems, the periodic traffic such as the transmission of
sensor data may co-exist with the event-based traffic such as alerts. Periodic
traffic can normally be pre-scheduled since it is static or semi-static while the
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event-based traffic is unpredictable. How to support these two types of traffic in
the same system is an open problem. It is related to the last problem of priority
arbitration since the event-based traffic normally has higher priority than the
periodic traffic.

. How to utilize multi-radio technology to improve latency and throughput in
wireless communication? The predominant sensor nodes available today are
equipped with only one radio. Therefore, the minimum communication latency
of a packet through n hops will be n times of the transmission duration of the
packet. The maximum throughput over multi-hop will be half of the data rate of
the radio. However, as illustrated in [KAHHo06], a multi-radio WSN can reduce
the latency to roughly n times of the transmission duration of a packet header,
by using multiple channels. I argue that the throughput can be increased for
n fold in such a setting and if the network is highly time synchronized, the
latency can be even decreased to n-bit time. Thus the latency and throughput
can be both heavily improved, which makes the industrial wireless networks
more competitive to the wired counterpart by approaching or even surpassing
its performance.

In conclusion, the optimization and guarantee of QoS metrics are key to the adoption
of wireless technology in industrial automation. The thesis shows that real-time
scheduling and concurrent transmission provide two enabling technologies for this
purpose. The evaluation on real-world testbeds confirms their excellent performance
and foresees a bright future for the full penetration of wireless technology in industrial
automation.
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