
Robust Adaptation and Learning Over Networks

vom Fachbereich 18
Elektrotechnik und Informationstechnik
der Technischen Universität Darmstadt

zur Erlangung der Würde eines
Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Dissertation

von
M.Sc. Sara Al-Sayed

geboren am 16.06.1986 in Kairo (Ägypten)
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Simon Rosenkranz, Tim Schäck, Ann-Kathrin Seifert, Waqas Sharif, Adrian Šošić,
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Kurzfassung

Im Zentrum dieser Dissertation stehen robuste adaptive Netzwerke. Es werden robuste

Adaptionsstrategien entwickelt zur Lösung typischer Netzwerk-Inferenzprobleme, wie

verteilte Schätzung und Detektion unter Impulsrauschen. Wie im Bereich der draht-

losen Kommunikation üblich, kann Impulsrauschen durch einen stochastischen Prozess

beschrieben werden, dessen Realisierungen seltene, zufällige Samples enthalten, deren

Amplitude deutlich größer ist, als unter nominalen Bedingungen zu erwarten wäre.

Eine attraktive Eigenschaft derartiger robuster adaptiver Verfahren ist, dass weder für

ihren Entwurf noch für ihren Betrieb eine exakte Kenntnis der Rauschverteilung nötig

ist: Die robusten adaptiven Verfahren sind in der Lage letztere im laufenden Betrieb

zu erlernen und ihre Parameter entsprechend anzupassen. Da die Verfahren nicht auf

dem Einsatz einer zentralen Einheit (fusion center), sondern lediglich auf lokaler In-

teraktion der Knoten und einer verteilten Verarbeitung der Daten beruhen, erhöhen

sie die Zuverlässigkeit des Netzwerks sowie dessen Ausfallsicherheit bei Knoten- und

Verbindungsfehlern, Skalierbarkeit und Effizienz im Umgang mit Ressourcen. Verteilte,

kooperative Datenverarbeitung findet Anwendung in vielen Bereichen, darunter draht-

lose Sensornetzwerke zur Beobachtung von smart-homes, zur Umweltüberwachung,

Qualitätssicherung und militärischen Aufklärung, sowie im Gesundheitswesen.

Da adaptive Systeme, die auf dem Prinzip der kleinsten mittleren quadratischen Ab-

weichung beruhen, unter nicht gaußverteiltem Rauschen eine stark verminderte Leis-

tung aufweisen, nutzen die in dieser Arbeit entwickelten robusten adaptiven Verfahren

stattdessen nichtlineare Techniken der Datenverarbeitung und robuste Statistiken um

die schädlichen Effekte des Impulsrauschens abzuschwächen. Zu diesem Zweck wird

ein robuster adaptiver Filteralgorithmus entworfen, der eine adaptive, nichtlineare

Fehlerkennlinie verwendet. Letztere wird dabei als konvexe Kombination zuvor fest-

gelegter Basisfunktionen gewählt, wobei die Kombinationsgewichte zusammen mit der

Schätzung der gesuchten Parameter so angepasst werden, dass in jeder Iteration die

mittlere quadratische Abweichung von der optimalen Fehler-Nichtlinearität minimiert

wird.

Anschließend wird ein robuster adaptiver Diffusionsalgorithmus vom Typ “adapt-then-

combine” entwickelt, der eine Erweiterung seines allein operierenden Gegenstücks

darstellt und sich zur Lösung von Schätzproblemen in Netzwerken mit von Impul-

srauschen behafteten Beobachtungen eignet. Jeder Knoten des Netzwerks lässt dabei

eine Kombination der Schätzungen seiner Nachbarn eine Iteration eines lokalen ro-

busten adaptiven Filters durchlaufen, um so die Effekte der Datenverunreinigung
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abzuschwächen. Dies führt zu einer besseren Gesamtleistung, die im stationären Zu-

stand der von zentralisierten Systemen entspricht. Schließlich wird der robuste Dif-

fusionsalgorithmus auf die Lösung verteilter Detektionsprobleme in Netzwerken mit

Impulsrauschen erweitert. Die von dem robusten Algorithmus generierten Schätzun-

gen werden dabei als Basis für den Entwurf robuster lokaler Detektoren verwendet,

wobei die Form der Teststatistik und die Vorschriften zur Berechnung der Schwellen-

werte durch eine Analyse der Dynamik des Algorithmus motiviert sind. Jeder Knoten

im Netzwerk kooperiert mit seinen Nachbarn und nutzt deren Schätzungen zur Aktu-

alisierung seines lokalen Detektors. Auf diese Weise verteilen sich die Informationen

über das Ereignis von Interesse im Netzwerk, was zu einer höheren Detektionsleistung

führt.

Mit Hilfe eines auf dem Prinzip der Energieerhaltung aufbauenden Verfahrens (energy

conservation framework) wird das Verhalten der entwickelten Algorithmen im transien-

ten und stationären Zustand analysiert. Zudem wird die Leistung des Algorithmus im

Kontext der verteilten Detektion untersucht. Umfangreiche numerische Simulationen

von Szenarien mit Impulsrauschen zeigen sowohl die Robustheit der vorgeschlagenen

Verfahren im Vergleich zu aktuellen Algorithmen, als auch eine gute Übereinstimmung

von Theorie und Praxis.



V

Abstract

This doctoral dissertation centers on robust adaptive networks. Robust adaptation

strategies are devised to solve typical network inference tasks such as estimation and

detection in a decentralized manner in the presence of impulsive contamination. Typ-

ical in wireless communication environments, an impulsive noise process can be de-

scribed as one whose realizations contain sparse, random samples of amplitude much

higher than nominally accounted for. An attractive feature that these robust adaptive

strategies enjoy is that neither their development nor operation hinges on the avail-

ability of exact knowledge of the noise distribution: The robust adaptive strategies are

capable of learning it on-the-fly and adapting their parameters accordingly. Forgoing

data fusion centers, the network agents employing these strategies rely solely on local

interactions and in-network processing to perform inference tasks, which renders net-

works more reliable, resilient to node and link failure, scalable, and resource efficient.

Distributed cooperative processing finds applications in many areas including wireless

sensor networks in smart-home, environmental, and industrial monitoring; healthcare;

and military surveillance.

Since adaptive systems based on the mean-square-error criterion see their performance

degrade in the presence of non-Gaussian noise, the robust adaptive strategies developed

in this dissertation harness nonlinear data processing and robust statistics instead to

mitigate the detrimental effects of impulsive noise. To this end, a robust adaptive

filtering algorithm is developed that employs an adaptive error nonlinearity. The error

nonlinearity is chosen to be a convex combination of preselected basis functions where

the combination coefficients are adapted jointly with the estimate of the parameter of

interest such that the mean-square-error relative to the optimal error nonlinearity is

minimized in each iteration.

Then, a robust diffusion adaptation algorithm of the adapt-then-combine variety is

developed as an extension of its stand-alone counterpart for distributed estimation over

networks where the measurements may be corrupted by impulsive noise. Each node

in the network runs a combination of its neighbors’ estimates through one iteration

of a local robust adaptive filter update to ameliorate the effects of contamination,

leading to better overall network performance matching that of a centralized strategy

at steady-state.

Finally, the robust diffusion adaptation algorithm is extended further to solve the

problem of distributed detection over adaptive networks where the measurements may

be corrupted by impulsive noise. The estimates generated by the robust algorithm
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are used as basis for the design of robust local detectors, where the form of the test-

statistics and the rule for the computation of the detection thresholds are motivated

by the analysis of the algorithm dynamics. Each node in the network cooperates

with its neighbors, utilizing their estimates, to update its local detector. Effectively,

information pertaining to the event of interest percolates across the network, leading

to enhanced detection performance.

The transient and steady-state behavior of the developed algorithms are analyzed in

the mean and mean-square sense using the energy conservation framework. The per-

formance of the algorithm is also examined in the context of distributed detection.

Performance is validated extensively through numerical simulations in an impulsive

noise scenario, revealing the robustness of the proposed strategies in comparison with

state-of-the-art algorithms as well as good agreement between theory and practice.
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Chapter 1

Introduction

Many a modern-day data processing application is characterized by the data being

spatially dispersed among networked agents and requiring decentralized processing, be

it for storage or privacy constraints. Wireless sensor networks are a prime example,

finding applications in many areas including smart-home, environmental, and industrial

monitoring; healthcare; and military surveillance [CES04]. The nodes in the network

are typically quite simple of design and have limited storage, communication, and

computation capabilities. Networks of the sort are inundated with statistical data

processing tasks, such as estimation, detection, filtering, smoothing, clustering, and

classification [BSD13, VV11]. Distributed cooperative processing presents itself as a

viable paradigm for the resolution of these tasks. Forgoing data fusion centers and

relying solely on local interactions and in-network processing to perform these tasks

renders networks more reliable, resilient to node and link failure, scalable, and resource

efficient [STC+13]. Often, the data is of a time-varying nature. Hence, nodes need

to learn and track underlying changes on-the-fly and adapt their collective behavior

accordingly, in mimicry of biological systems [BS07], where simple local behavioral

rules lead to the emergence of organized global behavior [CDF+03]. In this respect,

adaptive networked engineering systems manifest dynamic cognitive behavior [Hay12].

Noise in engineering jargon refers to intrinsic or extrinsic random fluctuations disrupt-

ing the normal operation of the system1. Wireless environment surveys have shown

the noise to be often impulsive in nature. An impulsive noise process can be described

as one whose realizations contain sparse, random samples of amplitude much higher

than nominally accounted for. Impulsive noise may be natural, due to atmospheric

phenomena, or man-made, due to either electric machinery present in the operation en-

vironment, or multipath telecommunications signals [BKR97,Mid99,ZKCM12,ZB02].

Statistical signal processing techniques based on second-order statistics of the data

are a relic of the era of linear systems, reflecting an excusable bias towards Gaussian-

ity [EP06]. Nevertheless, general error criteria have been considered for a long time,

albeit in the context of Gaussian processes in early works [She58,Bro62,Zak64,Ger69].

General error criteria were shown to be more fitting for non-Gaussian noise scenar-

ios [SN93]. In practice, exact knowledge of the noise distribution is unavailable. Robust

statistics offers an attractive framework to deal with noise uncertainty and departure

1See [Coh05] for a historical account of noise and the birth of the study of stochastic processes.
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from nominal system design assumptions [HR09, HRRS86], paving the way for engi-

neering robust signal processing and communications systems [KP85,KP83].

This dissertation focuses on the topic of robust adaptive networks, with the aim of

devising robust adaptation strategies to solve typical network inference tasks in the

presence of impulsive contamination.

1.1 Contributions

The following is a list of the original contributions presented in this dissertation:

- A robust adaptive filtering algorithm of the least-mean-squares (LMS) type was

developed that employs an adaptive error nonlinearity. The error nonlinearity

was chosen to be a convex combination of preselected basis functions where the

combination coefficients are adapted jointly with the estimate of the parameter

of interest such that the mean-square-error (MSE) relative to the optimal error

nonlinearity is minimized in each iteration. While knowledge of the nature of

the noise, impulsive or otherwise, serves to guide the choice of basis functions,

exact distributional knowledge is not required since the robust algorithm is

capable of learning it on-the-fly and adapting its parameters accordingly. The

transient and steady-state behavior of the robust adaptive filtering algorithm

were analyzed in the mean and mean-square sense using the energy con-

servation framework. The computational complexity was summarized. The

performance of the algorithm was validated extensively in numerical simulations.

- A robust diffusion adaptation algorithm of the adapt-then-combine (ATC)

variety was developed as a natural extension of its stand-alone counterpart

for distributed estimation over networks where the measurements may be

corrupted by impulsive noise. Each node in the network runs a combination

of its neighbors’ estimates through one iteration of a local robust adaptive

filter update to ameliorate the effects of contamination. The robust adaptive

update rule again employs an adaptive error nonlinearity that is a convex

combination of preselected basis functions where the combination coefficients

are adapted jointly with the estimate of the parameter of interest such that

the MSE relative to the local optimal error nonlinearity is minimized in

each iteration. The transient and steady-state behavior of the algorithm
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were analyzed in the mean and mean-square sense using the energy conser-

vation framework and performance was validated through numerical simulations.

- The robust diffusion adaptation algorithm developed was extended further to

solve the problem of distributed detection over adaptive networks where the

measurements may be corrupted by impulsive noise. The estimates generated by

the robust algorithm are used as basis for the design of robust local detectors,

where the form of the test-statistics and the rule for the computation of the detec-

tion thresholds were motivated by the analysis of the algorithm dynamics. The

transient behavior of the algorithm was analyzed using the energy conservation

framework. The detection performance was also established. The performance

of the algorithm was validated through numerical simulations.

1.2 Publications

The period of doctoral candidacy has culminated in the following publications:

Internationally Refereed Journal Articles

- S. Al-Sayed, A. M. Zoubir, and A. H. Sayed, “Robust distributed estimation by

networked agents,” submitted to IEEE Trans. Signal Process., 2016.

- S. Al-Sayed, A. M. Zoubir, and A. H. Sayed, “Robust adaptation in impulsive

noise,” IEEE Trans. Signal Process., vol. 64, no. 11, pp. 2851–2865, Jun. 2016.

Internationally Refereed Conference Papers

- S. Al-Sayed, A. M. Zoubir, and A. H. Sayed, “Robust distributed detection over

adaptive diffusion networks,” Proc. IEEE Int. Conf. Acoust. Speech Signal Pro-

cess. (ICASSP), Florence, Italy, May 2014, pp. 7233–7237.

- S. Al-Sayed, A. M. Zoubir, and A. H. Sayed, “An optimal error nonlin-

earity for robust adaptation against impulsive noise,” Proc. IEEE Workshop

Sig. Proc. Adv. Wireless Comm. (SPAWC), Darmstadt, Germany, Jun. 2013,

pp. 415–419.
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International Conference Papers

- M. R. Balthasar, S. Al-Sayed, S. Leier, and A. M. Zoubir, “Optimal area coverage

in autonomous sensor networks,” Proc. Int. Conf. Underwater Acoust. (UA2014)

(invited paper), Rhodes, Greece, Jun. 2014, pp. 431–438.

1.3 Dissertation Overview

Ch. 2 fixes the notation used throughout the text and presents an overview of the

ideas central to the dissertation: adaptive filtering with error nonlinearities, robust

estimation, and distributed adaptation over networks. The exposition is rather lengthy,

and serves to motivate and contextualize the contributions in this dissertation, string

together the central ideas, and highlight the state-of-the-art in its subject area.

In Ch. 3, the first contribution is presented. The single-agent robust adaptive filtering

algorithm is developed, analyzed, and simulated.

In Ch. 4, the second contribution is presented. The robust diffusion adaptation algo-

rithm for distributed estimation over networks is developed, analyzed, and simulated.

In Ch. 5, the third contribution is presented. The robust diffusion adaptation algorithm

for distributed detection over networks is developed, analyzed, and simulated.

A summary is presented and conclusions are drawn in Ch. 6. Directions for future

research are also outlined.
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Chapter 2

Preliminaries and State-of-the-Art

In addition to fixing the notation used throughout the text, this chapter presents an

overview of the ideas central to the dissertation: adaptive filtering with error nonlinear-

ities (Sec. 2.2), robust estimation (Sec. 2.3), and distributed adaptation over networks

(Sec. 2.4). The exposition is rather lengthy, and serves to motivate and contextualize

the contributions in this dissertation, string together the central ideas, and highlight

the state-of-the-art in its subject area.

2.1 Notation

Lowercase letters are reserved for scalars and vectors, uppercase for matrices; bold-

face font is reserved for random variables, and normal font for deterministic variables.

The time index appears in parenthesis for scalars, and in the subscript for vectors

and matrices. All vectors are column vectors. The single exception to this rule is

the row regression vector, for convenience of presentation. Transposition, inversion,

pseudoinversion, and the trace and gradient operators are denoted by (·)T , (·)−1, (·)†,
Tr(·), and ∇x, respectively; and the Euclidean norm is denoted by ‖·‖. Expectation is

denoted by E. The notation 1 and I denotes the all-one vector and identity matrix of

appropriate sizes, respectively; if the size is not clear from the context, it will appear

explicitly as a subscript. The Kronecker product between two matrices is denoted by

⊗. The operator col {·} stacks its arguments vertically; the operator diag {·} is used

bidirectionally to either form a diagonal matrix from its arguments, or recover the

vector comprising the diagonal of its matrix argument; and the operator vec(·) stacks

the columns of its matrix argument on top of one another in a vector, vec−1(·) being

the inverse operation. A list of notation and main symbols used throughout the text

can be found at the end of the dissertation.

2.2 Adaptive Filtering With Error Nonlinearities

2.2.1 Data Model and Estimation Problem

At each time index i ≥ 0, a noisy real-valued scalar measurement d(i) is made of an

unknown deterministic real-valued M ×1 parameter vector wo. The measurements are
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related to the parameter via a stochastic linear regression model of the form:

d(i) = uiw
o + v(i), i ≥ 0. (2.1)

The real-valued scalar measurements {d(i)} are realizations of the random process

{d(i)} specified in (2.1), where the {ui} represent known real-valued row regression

vectors, or regressors, of size M . The joint random process {d(i),ui} is assumed to be

zero-mean wide-sense stationary. The second-order moments are denoted by:

σ2
d , Ed2(i) (scalar) (2.2)

Ru , EuTi ui (M ×M) (2.3)

rdu , Ed(i)uTi (M × 1) (2.4)

For convenience, the covariance matrix Ru is assumed to be positive definite, i.e.,

Ru > 0. Hence, it is invertible. The sequence {v(i)} represents a real-valued scalar

zero-mean independent and identically distributed (i.i.d.) process with variance:

σ2
v , Ev2(i). (2.5)

The random variables ui and v(j) are assumed to be independent for all i and j.

Given realizations {d(i), ui}, the objective is to estimate the parameter vector wo,

subject to some error criterion. The parameter vector wo is going to be referred to

in the body of the text interchangeably as the weight vector since its entries weight

those of the regressor ui. Linear relations of the form (2.1) can be used to model both

autoregressive (AR) and moving-average (MA) processes [Sch91]. In order to see this,

consider realizations {d(i)} of a zero-mean AR process of order M , {d(i)}, which is

represented by the following relation:

d(i) =
M∑
m=1

amd(i−m) + v(i), i ≥ 0 (2.6)

where {am} are the model parameters and {v(i)} represents a zero-mean i.i.d. process

with variance σ2
v , with v(i) assumed independent of past outputs {d(i−m)|m ≥ 1}.

By collecting the M most recently observed outputs up to time index i−1 into a 1×M
regression vector ui:

ui , [d(i− 1) d(i− 2) . . . d(i−M)] (2.7)

and the model parameters {am} into an M × 1 weight vector wo:

wo , col {a1, a2, . . . , aM} (2.8)
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Figure 2.1: Finite-impulse-response (FIR) model identification problem.

it can be seen that (2.6) can be written equivalently as (2.1), where one wishes to

estimate wo given data {d(i), ui}. Speech and audio signals can be modeled as AR

processes in linear predictive coding applications [Hay01], for instance. On the other

hand, an MA process is described as follows. Given an input sequence {u(i)} that is

a realization of a zero-mean wide-sense stationary random process {u(i)}, the output

of an MA model of order M in response to the input sequence is represented by the

following relation:

d(i) =
M−1∑
m=0

bmu(i−m) + v(i), i ≥ 0 (2.9)

where {bm} are the model parameters and {v(i)} represents a zero-mean i.i.d. process

with variance σ2
v , with v(i) assumed independent of the input u(j) for all i and j. By

collecting the M most recent inputs up to time index i into a 1×M regression vector

ui:

ui = [u(i) u(i− 1) . . . u(i−M + 1)] (2.10)

and the model parameters {bm} into an M × 1 weight vector wo:

wo , col {b0, b1, . . . , bM−1} (2.11)

it can be seen that (2.9) can be written equivalently as (2.1), where one wishes to

estimate wo given data {d(i), ui}. Data satisfying the model (2.9) arise essentially in

finite-impulse-response (FIR) model identification problems (see Fig. 2.1) in diverse

applications such as communication channel estimation [Hay01], line or acoustic echo

cancellation [Kel70,BGM+01], and noise cancellation [WGM+75].

2.2.2 Adaptive Filtering Algorithms

In order to estimate the weight vector wo, the data {d(i), ui} can be fed into an adap-
tive FIR filter, one with adjustable coefficients or tap weights that are updated re-
cursively via a so-called stochastic-gradient algorithm. The algorithm processes the
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data {d(i), ui} in real-time and outputs a sequence of weight estimates {wi}, which
constitutes the values assumed by the time-varying vector of filter coefficients. If the
algorithm parameters are chosen appropriately, then, given sufficient time, the weight
estimates {wi} eventually converge to wo. Several stochastic-gradient algorithms have
been developed to solve this estimation problem, to varying degrees of estimation ac-
curacy and computational complexity [Say03,Hay13,WS85]. Of interest here, however,
is the class of algorithms whose update equations take the following form. For i ≥ 0,
starting from some initial condition w−1:

e(i) = d(i)− uiwi−1 (2.12a)

wi = wi−1 + µuTi h
(
e(i)
)

(2.12b)

where h(·) is an error nonlinearity whose interpretation is going to be elaborated upon

shortly, and µ is a positive step-size parameter chosen in such a way as to ensure

stability. Fig. 2.2 illustrates the structure suggested by the discussion, in the context

of the FIR model identification problem from Sec. 2.2.1 and Fig. 2.1. The quantity

e(i), referred to as the output estimation error, represents the offset at time index i

between the measured system output or reference signal d(i) and the output of the

adaptive filter d̂(i) = uiwi−1. This error signal is then used to update the adaptive

filter coefficients or weight estimate from wi−1 to wi, through an error nonlinearity

h(·). If the algorithm parameters are chosen appropriately, then as i→∞, the weight

estimate wi tends to wo, the error signal e(i) to the noise signal v(i), and the adaptive

filter output assumes values close to the system output. Effectively, the adaptive filter

can be said to behave similarly to the system being probed, insofar as the adaptive

filter has at least as many taps as the FIR model. Indeed, rigorous analysis of the

class of algorithms described by (2.12) would establish the foregoing argument, as will

subsequently be shown. First, however, the form (2.12) for adaptive filters with error

nonlinearities will be motivated in an estimation-theoretic context [Say03].

Let d be a zero-mean real-valued scalar random variable with variance σ2
d:

Ed = 0, σ2
d = Ed2 (2.13)

and let u be a zero-mean real-valued random vector of size 1×M with a positive-definite

covariance matrix Ru:

Eu = 0, Ru = EuTu (2.14)

Moreover, let the M×1 cross-covariance vector of d and u be denoted by rdu , EduT .

Consider the problem of estimating d from u in a linear fashion, subject to some error

criterion, by means of the following estimator:

d̂ = uwo (2.15)
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System

Figure 2.2: Structure for adaptive finite-impulse-response (FIR) model identification.

where wo is the M × 1 weight vector that minimizes the designated error criterion. To

this end, define a differentiable, convex loss function ρ : R → R. The convexity of ρ

implies that it has global minima and no local minima. The weight vector wo is chosen

as the solution to the following optimization problem:

min
w

J(w) , E ρ(d− uw) (2.16)

where J : RM → R denotes the cost function to be minimized, and the expectation is

evaluated over the joint multivariate distribution of d and u, with probability density

function (pdf) fd,u(d, u). The argument of ρ above, d−uw, is to be interpreted as the

error in estimating d as d̂ = uw. Different choices of ρ lead to different error criteria

with respect to w.

Examples:

1. The choice ρ(x) = x2 leads to the mean-square-error (MSE) criterion:

J(w) = E (d− uw)2 . (2.17)
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2. The choice ρ(x) = |x| leads to the mean-absolute-error criterion:

J(w) = E |d− uw| . (2.18)

Even though ρ(x) in this case is not differentiable at x = 0, one can invoke

instead the generalized derivative such that ρ′(x) = sign(x) [Cla90], where

sign(x) ,


+1, if x > 0
0, if x = 0
−1, if x < 0

. (2.19)

�

In the minimum mean-square-error (MMSE) estimation problem (ρ(x) = x2), the

optimal weight vector wo that solves (2.16) can be obtained in closed form in terms of

the moments Ru and rdu, namely, as the solution to the so-called normal equations:

Ruw
o = rdu. (2.20)

Since the covariance matrix Ru is assumed to be positive definite, the solution wo can

be obtained as wo = R−1
u rdu. Matrix inversion is a costly operation computationally,

however, and challenging for ill-conditioned matrices Ru. Alternatively, one can resort

to iterative procedures to solve the MMSE estimation problem. As a matter of fact,

it is generally not possible to solve (2.16) in closed form, making iterative procedures

a viable solution alternative in the general case. Starting from an initial guess for

wo, w−1, such procedures generate iterates {wi, i ≥ 0} recursively until convergence to

wo. In particular, the update equation of a steepest-descent method has the following

recursive form:

wi = wi−1 − µ [∇wJ(wi−1)]T , i ≥ 0, w−1 = initial condition (2.21)

where ∇wJ(w), a row vector, denotes the gradient of the cost function J(w) with

respect to the weight vector w; and µ is a positive step-size parameter, chosen small

enough to ensure stability. Since

[∇wJ(wi−1)]T = E
(
−uTh(d− uwi−1)

)
(2.22)

where h denotes the derivative of ρ: h = ρ′, the steepest-descent method for solving

(2.16) is ultimately given by

wi = wi−1 + µE
(
uTh(d− uwi−1)

)
, i ≥ 0, w−1 = initial condition (2.23)

Some obvious difficulties arise when attempting to implement the steepest-descent

method (2.23). Firstly, exact knowledge of the moment E
(
uTh(d− uw)

)
for w =



2.2 Adaptive Filtering With Error Nonlinearities 11

w−1, w0, w1, . . . is required for implementation, necessitating knowledge of the joint pdf

fd,u(d, u). This knowledge is rarely available in practice, or the moment itself might

be difficult to calculate for general nonlinearities h. The MMSE case is one notable

exception that will be addressed shortly. Secondly, even when the required statistical

knowledge is available, the statistics may vary with time, which implies that the optimal

solution wo will vary accordingly. It is necessary in this case to have a mechanism in

place to learn those statistics and track them as they change. In order to overcome the

aforementioned difficulties, the gradient vector in the steepest-descent update equation

(2.23) can be replaced by some stochastic approximation of the moment in question

based on streaming data {d(i), ui}, satisfying the model (2.1), for example. The result-

ing methods are generically referred to as stochastic-gradient algorithms since the esti-

mates employed for gradient approximation inevitably introduce random fluctuations

into the procedure that are referred to as gradient noise [Say03]. Some approximations

are surely better than others, and the resulting performance degradation can be quanti-

fied analytically as basis for comparison of the different stochastic-gradient algorithms

with the original steepest-descent method, as well as with one another—this will be

the subject of Sec. 2.2.3. In addition to providing estimates for the gradient vector,

relying on streaming data equips the iterative procedure with learning and tracking

capabilities so that it can truly adapt to drifts in the underlying statistics. A straight-

forward approximation of the transposed gradient vector (2.22) at time index i can be

obtained by dropping the expectation operator and employing the instantaneous value

in terms of the available data d(i) and ui:[
∇̂wJ(wi−1)

]T
= −uTi h

(
d(i)− uiwi−1

)
. (2.24)

Substituting (2.24) into the steepest-descent method (2.23) results in the adaptive

filtering algorithm (2.12), where the data {d(i), ui} satisfy the model (2.1).

Special choices of the error nonlinearity h(·) lead to well-known algorithms in the

adaptive filtering literature. Table 2.1 lists some of those algorithms along with the cost

functions used to motivate their form through instantaneous stochastic approximation

of the corresponding gradient expressions. These are the

1. least-mean-squares (LMS),

2. sign-error LMS,

3. least-mean-fourth (LMF),

4. least-mean mixed-norm (LMMN), and

5. robust mixed-norm (RMN) algorithms

—the latter two utilizing some constant 0 ≤ δ ≤ 1.
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Table 2.1: Adaptive Filtering Algorithms With Error Nonlinearities

Algorithm Error Nonlinearity h
(
e(i)
)

Cost Function J(w)

LMS e(i) E (d− uw)2

sign-error LMS sign
(
e(i)
)

E |d− uw|
LMF e3(i) E (d− uw)4

LMMN δe(i) + (1− δ) e3(i) δ E (d− uw)2 + 1
2

(1− δ)E (d− uw)4

RMN δ sign
(
e(i)
)

+ (1− δ) e(i) δ E |d− uw|+ 1
2

(1− δ)E (d− uw)2
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The aforementioned algorithms approximate the optimal weight vector wo iteratively

subject to different error criteria. Hence, they are expected to behave differently under

different signal conditions. Some of the properties of those algorithms are going to be

touched upon briefly.

1. LMS algorithm: Based on the MSE criterion, the LMS algorithm was devel-

oped in the seminal work [WH60] by Widrow and Hoff in 1960. It has been

popular ever since owing to its simplicity and low computational complexity.

2. Sign-error LMS algorithm: The algorithm was proposed in the early works

[CM81, Dut82, Ger84] as a computationally simpler, albeit slower, alternative

to the LMS algorithm in adaptive filtering applications since the number of

multiplications in digital implementation are slashed by half through the use of

shift registers. However, in addition to its computational simplicity, the sign-

error LMS algorithm has been shown to be more robust than the LMS algorithm

when the noise distribution is heavy-tailed [SN93]. This latter aspect will be

clarified in Sec. 2.2.4.

3. LMF algorithm: A member of the family of least-mean 2p-norm algorithms

(p ≥ 1), the algorithm was developed in [WW84], where it was also shown to

outperform the LMS algorithm in the presence of uniform or Bernoulli noise or

sinusoidal interference.

4. LMMN algorithm: Based on a convex combination of mean-square- and

mean-fourth-error costs, the LMMN algorithm aims to trade off the performance

of the LMS and LMF algorithms [CTC94, TC96]. It exhibits performance su-

perior to both algorithms when the noise signal is a combination of Gaussian

noise and shorter-tailed noise such as uniform or Bernoulli noise. An adaptive

construction for the combination factor δ was proposed in [PC95,PC96].

5. RMN algorithm: Based on a convex combination of mean-absolute- and

mean-square-error costs, the RMN algorithm aims to trade off the performance

of the LMS and sign-error algorithms [CA97]. It exhibits performance superior

to both algorithms when the noise signal is a combination of Gaussian noise

and heavier-tailed noise. An adaptive construction for the combination factor δ

based on robust statistics was proposed in the same work.

The LMS Algorithm

It is instructive to treat the MMSE problem, which culminates in the LMS algorithm

according to the previous discussion, in some detail in order to highlight some of the

aspects involved in the development and analysis of adaptive filtering algorithms. To

this end, consider the MSE cost function

J(w) = E (d− uw)2 . (2.25)
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The gradient of (2.25) is given by

∇wJ(w) = −2 (rdu −Ruw)T (2.26)

where

rdu = EduT , Ru = EuTu > 0. (2.27)

Hence, minimizing (2.25) iteratively using the steepest-descent method entails the fol-

lowing update equation:

wi = wi−1 + µ (rdu −Ruwi−1) , i ≥ 0, w−1 = initial condition (2.28)

where the factor 2 was absorbed into the step-size µ. This is to say that at each time

index i, the iterate wi is obtained from wi−1 by updating the latter in a direction oppo-

site to the transposed gradient evaluated at wi−1, or equivalently, along the direction

of steepest descent. Such a choice for update direction constitutes only a necessary

condition for wi to converge to wo as i→∞. A sufficient condition for convergence is

obtained by proper selection of the step-size µ. Namely, letting w̃i , wo − wi denote

the offset between the optimal weight vector wo of the iterate at time i, and since the

optimal weight vector wo satisfies the normal equations

Ruw
o = rdu (2.29)

then subtracting both sides of (2.28) from wo and using (2.29) leads to the following

weight-error recursion:

w̃i = (I − µRu) w̃i−1. (2.30)

From (2.30), it can be seen that the convergence of the iterate wi to wo (or the weight-

error vector w̃i to 0), irrespective of the initial condition w−1, is ensured by the stability

of the matrix (I − µRu), which requires selecting µ to satisfy

0 < µ <
2

λmax

(2.31)

where λmax denotes the maximum eigenvalue of its symmetric matrix argument. The

convergence behavior of the weight-error vector w̃i evolving according to (2.30) can be

easily shown to be exponential and controlled by the modes {1− µλm} or the time

constants
{
− 1

2 ln|1−µλm|

}
, where λm, m = 1, . . . ,M , are the eigenvalues of Ru, and

ln(·) is the natural logarithm—see [Say03] for more details. The performance of the

steepest-descent method can also be characterized by its learning curve or MSE curve

J(i) , J(wi−1), i ≥ 0 (2.32)

= E (d− uwi−1)2

= σ2
d − rudR−1

u rdu + w̃Ti−1Ruw̃i−1
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Figure 2.3: Typical mean-square-error (MSE) learning curve for the steepest-descent algo-
rithm (2.28).

, Jmin + w̃Ti−1Ruw̃i−1

where Jmin denotes the minimum cost:

Jmin = J(wo) = σ2
d − rudR−1

u rdu. (2.33)

By choosing the step-size µ to satisfy 0 < µ < 2
λmax

, then J(i)→ Jmin as i→∞. The

convergence can be easily shown to be exponential and monotonic. A typical learning

curve is shown in Fig. 2.3.

Running (2.28) to compute wo requires exact knowledge of the moments Ru and rdu,

however. In many applications, this information is either missing or time-varying.

Available are rather realizations {d(i), ui} of the random variables {d,u}, satisfying

the model (2.1), for example. In order to address these situations, the moments Ru

and rdu may be replaced with stochastic approximations thereof. One possibility is to

use an instantaneous approximation of the moments, i.e.,

rdu ≈ d(i)uTi , Ru ≈ uTi ui. (2.34)

Replacing the moments rdu and Ru in the steepest-descent method (2.28) by their
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Figure 2.4: Typical ensemble-average mean-square-error (MSE) learning curve for the LMS
algorithm (2.35). The data {d(i), ui} have the same underlying statistical profile used to
generate the learning curve in Fig. 2.3.

approximations (2.34) leads to the LMS algorithm:

wi = wi−1 + µuTi [d(i)− uiwi−1] , i ≥ 0, w−1 = initial condition (2.35)

The resulting stochastic-gradient algorithm is effectively capable of learning the statis-

tics of the process {d(i),ui} over time and tracking changes in the parameter wo as

well. Analogously to the MSE learning curve (2.32) of the underlying steepest-descent

method, one can construct the MSE learning curve for the LMS algorithm. In the

absence of the statistics {σ2
d, rdu, Ru}, and recalling that the output estimation error

is given by e(i) = d(i) − uiwi−1, the curve can be approximated for sufficiently small

step-size µ by the sample-average over L experiments—see [Say03, Appendix 9.E]:

Ĵ(i) ,
1

L

L∑
`=1

(
e(`)(i)

)2
, i ≥ 0 (2.36)

where the superscript (`) denotes the realization by the `th experiment of the process

{e(i)}. A typical such ensemble-average learning curve is shown in Fig. 2.4.

�
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Algorithms of the form (2.12) have also been devised in a different spirit as variations

over the LMS algorithm that lend themselves to simple digital implementations. The

sign-error LMS algorithm is a case in point. Other examples include the dual-sign LMS

algorithm [SJ89, Mat91] and the power-of-two error LMS algorithm [XL86, Ewe92].

On the other hand, an LMS algorithm implementation where the error signal e(i)

undergoes a quantization operation can also be modeled by the form (2.12), with h(·)
assuming a saturation-type nonlinearity [Ber88]. Irrespective of the myriad purposes

they serve, the aforementioned constructions are interesting in their own right since

their performance analyses have enriched the literature over the years, contributing

invaluably to the repertoire of techniques towards the analysis of elaborate adaptive

filtering algorithms.

Due to their stochastic, nonlinear, and time-varying nature, the analysis of adaptive

filtering algorithms is not straightforward. Algorithms of the form (2.12) count among

the most challenging to analyze due to the presence of the error nonlinearity. Perfor-

mance analysis is the subject of the next section.

2.2.3 Primer on Performance Analysis

The goal of performance analysis is to address the following questions:

- Steady-state performance: How close is the limiting value of the sequence of the

weight estimates {wi} to the optimal weight vector wo?

- Stability: What are the conditions for convergence?

- Transient behavior: In what manner does convergence occur? How fast is con-

vergence?

Due to their stochastic, nonlinear, and time-varying nature, exact analysis of adaptive

filters is generally not possible [Say03]. Conventionally, assumptions are introduced to

facilitate analysis. Several analysis frameworks have been developed in the literature,

including

- independence analysis,

- averaging analysis, and

- the ordinary-differential-equation (ODE) method.

For a detailed treatment, see [Say03] for independence analysis, and [KY03, BMP87]

for averaging analysis and the ODE method.
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In this section, the steady-state mean-square performance analysis of adaptive filters

with error nonlinearities is reproduced following [ANS01,ANS03,Say03]. Only as many

independence assumptions as necessary are introduced to make analysis tractable such

that the theoretical results yielded by the analysis maintain their validity for a broad

range of applications. Subsequently, the optimal error nonlinearity that leads to best

steady-state performance is re-derived. The reason why the derivation of steady-state

performance expressions and subsequent optimization thereof are repeated here are

fivefold:

- to bring together in one place all the assumptions made in [ANS01,ANS03,Say03]

towards the derivations;

- to provide a clearer derivation of the lower bound on steady-state performance;

- to offer a glimpse into the analysis of adaptive filters, hopefully inciting an ap-

preciation for the challenges involved in the analysis of the more intricate robust

adaptive filtering algorithm that is to be developed in the next chapter;

- to survey and compare alternative techniques and assumptions towards the anal-

ysis of adaptive filters with error nonlinearities; and

- to establish a link to maximum-likelihood estimation and robust estimation.

Now we can proceed with the analysis. First, the adaptive filtering algorithm (2.12) is
to be modeled as a stochastic difference equation where all quantities that appear are
treated as random variables:

e(i) = d(i)− uiwi−1 (2.37a)

wi = wi−1 + µuTi h
(
e(i)

)
(2.37b)

The initial condition w−1 is regarded as a random vector as well that is independent

of all {d(i),ui,v(i)}.

Performance Measures

One performance measure is the steady-state MSE :

MSE , lim
i→∞

E e2(i) (2.38)

in terms of the output estimation error e(i) = d(i)−uiwi−1. Were the weight estimator

wi−1 to converge to the optimal weight vector wo, as would the original steepest-

descent method, then the error signal e(i) would coincide with the noise signal v(i)

at steady-state, and the steady-state MSE, with the noise variance σ2
v . Since the

stochastic-gradient algorithm introduces gradient noise into the recursion, however,
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the steady-state MSE assumes a value larger than σ2
v by a quantity referred to as the

steady-state excess MSE (EMSE). To see this, consider the weight-error vector:

w̃i , wo −wi (2.39)

and the a priori estimation error:

ea(i) , uiw̃i−1 (2.40)

which measures the offset between the term uiw
o and its estimator uiwi−1 prior to

adaptation. Then, it follows from the data model (2.1) that

e(i) = d(i)− uiwi−1

= uiw
o + v(i)− uiwi−1

= ea(i) + v(i) (2.41)

Since by the data model assumptions in Sec. 2.2.1 v(i) is independent of ea(i), and

since it is zero-mean, then it holds that

E e2(i) = E e2
a(i) + σ2

v . (2.42)

Defining the steady-state EMSE as the steady-state mean-square value of the a priori

estimation error:

EMSE , lim
i→∞

E e2
a(i) (2.43)

the steady-state MSE is then given by

MSE = EMSE + σ2
v . (2.44)

Another performance measure is the steady-state mean-square deviation (MSD), de-

fined as

MSD , lim
i→∞

E ‖w̃i‖2 . (2.45)

The steady-state MSD measures the offset between the optimal weight vector wo and

the estimator wi in the mean-square sense at steady-state.

�

Variance Relation

In the course of adaptive filter analysis, substantial use is made of weighted squared

Euclidean norms. For an M × 1 vector x and M ×M symmetric nonnegative-definite

weighting matrix Σ, the weighted squared Euclidean norm of x is defined compactly as

‖x‖2
Σ , xTΣx. (2.46)
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The standard squared Euclidean norm of x is recovered by the choice Σ = I and

denoted simply as ‖x‖2. It will be shown later that the various performance measures,

such as the steady-state EMSE and MSD, can be conveniently expressed as weighted

squared Euclidean norms of the weight-error vector w̃i.

Subtracting both sides of the adaptive update equation (2.37b) from the optimal weight

vector wo leads to

w̃i = w̃i−1 − µuTi h
(
e(i)

)
. (2.47)

Equating the weighted squared Euclidean norms of either side of (2.47) and taking

the expectation with respect to the distribution of the joint random process {d(i),ui}
results in the following weighted variance relation:

E ‖w̃i‖2
Σ = E ‖w̃i−1‖2

Σ − 2µE eΣ
a (i)h

(
e(i)

)
+ µ2 E ‖ui‖2

Σ h
2
(
e(i)

)
(2.48)

where

eΣ
a (i) , uiΣw̃i−1, (2.49)

denoting the weighted a priori estimation error.

An adaptive filter is said to be at steady-state when it holds that

E ‖w̃i‖2
Σ = E ‖w̃i−1‖2

Σ = r <∞, as i→∞, (2.50)

where r is a nonnegative constant. Evidently, transient analysis of the adaptive filter

needs to be undertaken in order to determine the range of values of the step-size µ over

which the variance E ‖w̃i‖2
Σ remains bounded and converges to a finite value. Indeed,

in [ANS01], one such mean-square stability condition was established. Hence, assuming

the value of the step-size µ was chosen to ensure mean-square stability such that the

adaptive filter eventually reaches steady-state, then, taking the limit as i→∞ of both

sides of (2.48) results in the following steady-state weighted variance relation:

µE ‖ui‖2
Σ h

2
(
e(i)

)
= 2E eΣ

a (i)h
(
e(i)

)
, as i→∞. (2.51)

�

Performance Evaluation

Since e(i) = ea(i) + v(i), the relation (2.51) can be expressed in terms of ea(i) and

solved for the steady-state EMSE, limi→∞ E e2
a(i). In order to proceed with the solution,

however, simplifying assumptions are necessary for the evaluation of the moments on

either side of the relation (2.51). The first two assumptions below, AG and AU, were

used in [ANS01,ANS03]:
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- AG: At steady-state, the a priori estimation errors
{
ea(i), e

Σ
a (i)

}
are zero-mean,

jointly Gaussian random variables.

- AU: At steady-state, the random variables ‖ui‖2
Σ and h2

(
e(i)

)
are uncorrelated,

i.e.,

lim
i→∞

E ‖ui‖2
Σ h

2
(
e(i)

)
= Tr(RuΣ) lim

i→∞
Eh2

(
e(i)

)
. (2.52)

- The error nonlinearity h is differentiable, its derivative denoted by h′. Moreover,

h is strictly monotonically increasing, i.e., h′ > 0.

Although the third assumption on the differentiability and strict monotonicity of h

was not mentioned explicitly in the cited works, it is necessary for the application of

Price’s theorem [Pri58], as can be appreciated from Appendix A.1. Assumption AG

(“G” for Gaussian) is reasonable for long adaptive filters since the random variables{
ea(i), e

Σ
a (i)

}
would thus amount to sums of a large number of random variables, so

their distribution could be approximated as Gaussian by a central-limit argument—

see [Say03, P. 485]. Assumption AU (“U” in reference to the regressors {ui}), on the

other hand, is a weaker form of the independence assumption, where the regressor

sequence {ui} is assumed to be i.i.d. Assumption AU is also more realistic the longer

the adaptive filter and the smaller the step-size µ.

For the evaluation of the moment on the right-hand side of the relation (2.51), As-

sumption AG is appealed to, which facilitates the application of a result of Price’s

theorem [Pri58], namely, Result 3 in Appendix A.1, summarized here. For scalar real-

valued zero-mean jointly Gaussian random variables x and y that are independent of

a third scalar real-valued zero-mean random variable z, and for a function f(y + z)

that is differentiable with respect to y, it holds that

Exf(y + z) =
Exy
Ey2

· Eyf(y + z). (2.53)

Applying this result to the moment on the right-hand side of the relation (2.51) and

recalling that v(i) is independent of ea(i) leads to the following simplification:

E eΣ
a (i)h

(
e(i)

)
= E eΣ

a (i)ea(i) ·
E ea(i)h

(
e(i)

)
E e2

a(i)
. (2.54)

The expression on the right-hand side of (2.54) can be simplified further by invoking

another result of Price’s theorem, namely, Result 1 in Appendix A.1, summarized here.

For scalar real-valued zero-mean jointly Gaussian random variables x and y, and for

a function f(y) that is differentiable with respect to y, it holds that

Exf(y) = Exy · E df

dy
. (2.55)
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Applying this result to the moment E ea(i)h
(
e(i)

)
in (2.54), also invoking the fact that

v(i) is independent of ea(i), results in

E ea(i)h
(
e(i)

)
= E e2

a(i)Eh′
(
e(i)

)
. (2.56)

Finally, invoking Assumption AU to evaluate the moment on the left-hand side of the

relation (2.51), and using (2.54) and (2.56), the steady-state weighted variance relation

becomes

2 lim
i→∞

E eΣ
a (i)ea(i) lim

i→∞
Eh′

(
e(i)

)
= µ Tr(RuΣ) lim

i→∞
Eh2

(
e(i)

)
(2.57)

or, equivalently,

lim
i→∞

E eΣ
a (i)ea(i) =

µ

2
Tr(RuΣ) lim

i→∞

Eh2
(
e(i)

)
Eh′

(
e(i)

) . (2.58)

Let the symbol ζ be shorthand for the steady-state EMSE of the adaptive filter. That

is, ζ = EMSE = limi→∞ E e2
a(i). Hence, setting Σ in (2.58) to the identity matrix

yields the following expression for the steady-state EMSE:

ζ =
µ

2
Tr(Ru) lim

i→∞

Eh2
(
e(i)

)
Eh′

(
e(i)

) . (2.59)

In order to derive an expression for the steady-state MSD, (2.58) and (2.59) are first

combined, giving

lim
i→∞

E eΣ
a (i)ea(i) = ζ · Tr(RuΣ)

Tr(Ru)
. (2.60)

For the simplification of the moment on the left-hand side of (2.60), another assumption

is called for:

- At steady-state, w̃i−1 is independent of ui.

This assumption is less restrictive than the independence assumption, where the re-

gressor sequence {ui} is assumed to be i.i.d. Referred to as Assumption AI in [ANS03],

the independence assumption implies that w̃i−1 is independent of ui for all i, and not

just at steady-state. Assumption AI was used in [ANS03] to derive an expression for

the steady-state MSD. Although unrealistic in AR and MA process modeling applica-

tions (see Sec. 2.2.1), since successive regressors share common entries and cannot be

statistically independent, Assumption AI significantly simplifies the transient analysis

of adaptive filters and leads to results that match well with practice when the step-

size µ is sufficiently small [Say03]. For the purposes of steady-state analysis, however,
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the weaker assumption that w̃i−1 and ui are asymptotically independent may be used

instead, from which follows that

lim
i→∞

E eΣ
a (i)ea(i) = lim

i→∞
E ‖w̃i−1‖2

ΣRu
. (2.61)

Recalling that the steady-state MSD is given by limi→∞ E ‖w̃i‖2, then, combining

(2.59), (2.60), and (2.61), and setting Σ = R−1
u results in

MSD =
Mζ

Tr(Ru)
=
µ

2
M lim

i→∞

Eh2
(
e(i)

)
Eh′

(
e(i)

) , (2.62)

showing that the steady-state MSD and EMSE are related through appropriate scaling.

2.2.4 MSE-Optimal Error Nonlinearity

In [ANS01], the error nonlinearity h that minimizes the steady-state EMSE (2.59) or

equivalently, the steady-state MSE (2.44) was derived. In this section, this optimal

error nonlinearity is re-derived using the same approach as in [ANS01], albeit based

on the minimization of the steady-state MSD (2.62). The two optimization problems

are equivalent under the assumption that w̃i−1 and ui are asymptotically independent.

The reason for preferring the steady-state MSD as the performance measure to be

minimized here is because it lends itself to a more intuitive derivation of the optimal

error nonlinearity.

First, it is to be noted that the steady-state MSD cannot be reduced beyond a lower

bound in terms of the Cramér–Rao bound. The derivation of this lower bound, denoted

as λ, can be found in Appendix A.2. It then follows that

lim
i→∞

Eh2
(
e(i)

)
lim
i→∞

Eh′
(
e(i)

) ≥ 2

µM
λ , α. (2.63)

Next, the ratio on the left-hand side of (2.63) is expressed in a less cluttered notation.

Under Assumption AG on the Gaussianity of ea(i), the moments

Eh2
(
e(i)

)
and Eh′

(
e(i)

)
(2.64)

derive their time variation from their dependence on the zero-mean a priori estimation

error ea(i) only through its time-varying variance E e2
a(i). For example, for any function

g : R→ R, the moment E g
(
e(i)

)
is given by

E g
(
e(i)

)
=

∫ ∞
−∞

∫ ∞
−∞

g(ea + v)
1√

2π E e2
a(i)

exp

[
−e2

a

2E e2
a(i)

]
fv(v) dea dv (2.65)
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where fv(v) denotes the pdf of the noise random variable v(i) for all i, the noise

random process being stationary. Since at steady-state, the variance E e2
a(i) would have

converged to the steady-state EMSE, ζ, then, one can regard the output estimation

error sequence {e(i)} as having converged in distribution to a random variable e?

(e(i)
d→ e?) of mean zero and variance equal to the steady-state MSE, ζ+σ2

v , and with

pdf fe?
(
e?
)

[PP02]. Using this reasoning, it is justified to rewrite (2.63) as

Eh2
(
e?
)

Eh′
(
e?
) ≥ α. (2.66)

Akin to [ANS01], if the error nonlinearity h(·) is chosen as

ĥ(·) , −αf
′
e?(·)
fe?(·)

(2.67)

then the resulting ratio in (2.66) will achieve the lower bound α, and accordingly,

the steady-state MSD will achieve the lower bound λ. The proof from [ANS01] is

reproduced in Appendix A.3, where an additional assumption is imposed on the limiting

error distribution, namely, that

lim
e?→±∞

f ′e?(e
?) = 0. (2.68)

By using the expression for the optimal error nonlinearity ĥ in (2.67) in the adaptive

filtering algorithm (2.12), one can see that the constant factor α will appear multiplied

with the step-size µ, in which case α can be absorbed into µ so that the optimal error

nonlinearity effectively takes on the following form:

ho
(
e(i)
)
, −

f ′e(i)

(
e(i)
)

fe(i)

(
e(i)
) . (2.69)

It is essentially a time-varying nonlinearity, which converges to −f ′
e?

(·)
fe? (·) at steady-state,

and results in the following form for the MSE-optimal adaptive filtering algorithm:

wi = wi−1 + µuTi

[
f ′e(i)

(
e(i)
)

fe(i)

(
e(i)
)] . (2.70)

For future reference, all the assumptions that have been used to derive the MSE-optimal

error nonlinearity ho in this section are compiled here:

- The noise process {v(i)} is zero-mean i.i.d. and independent of the zero-mean

regressor sequence {ui}.
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- AG: At steady-state, the a priori estimation errors
{
ea(i), e

Σ
a (i)

}
are zero-mean,

jointly Gaussian random variables.

- AU: At steady-state, the random variables ‖ui‖2
Σ and h2

(
e(i)

)
are uncorrelated.

- At steady-state, w̃i−1 is independent of ui.

- lime?→±∞ f
′
e?(e

?) = 0, where fe?(e
?) is the limiting pdf of the output estimation

error sequence {e(i)} (e(i)
d→ e?).

- The error nonlinearity h is differentiable and strictly monotonically increasing.

Alternative Derivations

Other optimal error nonlinearities were derived in the literature under different sets

of assumptions, analysis techniques, and optimization criteria. Table 2.2 lists some

examples from the works [DM94,ANSK00], where

f ′e(i)|w̃i−1

(
e(i)
)

(2.71)

denotes the pdf of the output estimation error e(i) conditioned on the weight-error

vector w̃i−1. The form of the conditional expectation terms in question is

E
[(
h(k)
(
e(i)
))n∣∣w̃i−1

]
(2.72)

with h(k) denoting the kth derivative of h. Linearization analysis, used in the works

[Dut82, WW84, Set92, DM94], for example, involves the expansion of the error non-

linearity h(k)
(
e(i)
)

in a Taylor series around e(i) = v(i) (or ea(i) = 0) for all i and

retaining only the first few lower-order terms. Obviously, the results derived from such

analysis are more accurate towards steady-state and for sufficiently small step-size µ

such that the steady-state EMSE of the adaptive filter is negligible. In conditional

analysis under a Gaussian assumption on the input u(i), the output estimation error

e(i) conditioned on the weight-error vector w̃i−1 is Gaussian. Conditional analysis was

employed in the works [CM90, MC87, Ber88, Mat91, BB90, WKL91], revealing greater

accuracy than linearization analysis over a wider range of adaptation conditions. As

for the optimization criterion that is customarily adopted in the literature, steady-state

performance is the objective to be optimized for a given convergence rate; variational

calculus is the optimization method of choice.
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Table 2.2: Alternative Derivations of Optimal Error Nonlinearity

[DM94] (arbitrary input) [DM94] (i.i.d. Gaussian in-
put)

[ANSK00]

Form −f ′v

(
e(i)
)

fv

(
e(i)
) −

f ′
e(i)|w̃i−1

(
e(i)
)

fe(i)|w̃i−1

(
e(i)
)

+µσ2
uf
′′
e(i)|w̃i−1

(
e(i)
) − f ′v

(
e(i)
)

fv

(
e(i)
)

+µ
2

E‖ui‖4
E‖ui‖2

f ′′v

(
e(i)
)

Assumptions 1) The noise process {v(i)} is
zero-mean i.i.d. with symmetric
pdf and independent of the zero-
mean regressor sequence {ui}.
2) The weight-error vector w̃i−1 is
independent of the regressor ui.
3) The error nonlinearity h is
sign-preserving, odd-symmetric,
monotonically increasing, and
twice differentiable.
4) The step-size µ is sufficiently
small.

1) The noise process {v(i)} is
zero-mean i.i.d. with symmetric
pdf and independent of the re-
gressor sequence {ui}.
2) The input sequence {u (i)}
is zero-mean i.i.d. Gaussian with
variance σ2

u.
3) The error nonlinearity h is
sign-preserving, odd-symmetric,
monotonically increasing, and
twice differentiable.
4) Conditional expectation terms
of the form (2.72) are indepen-
dent of the weight-error vector
w̃i−1.

1) The noise process {v(i)} is
zero-mean i.i.d. with symmetric
pdf and independent of the zero-
mean regressor sequence {ui}.
2) The weight-error vector w̃i−1 is
independent of the regressor ui.
3) The error nonlinearity h is
sign-preserving, odd-symmetric,
monotonically increasing, and
twice differentiable.
4) The step-size µ is sufficiently
small.

Analysis Linearization analysis Conditional analysis Linearization analysis

Optimization Variational calculus Variational calculus Variational calculus
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By inspecting the optimal error nonlinearities in Table 2.2, the following observations

can be made:

- The nonlinearity derived in [ANSK00] is the same as the one derived in [DM94]

for arbitrary input when the step-size µ is sufficiently small—the additional term

that appears in the denominator of the first results from retaining additional

terms from the Taylor series expansion.

- For sufficiently small step-size µ such that the steady-state EMSE of the adaptive

filter is negligible compared to the noise variance, the nonlinearity derived in

[ANSK00] is the same as the one derived in [DM94] for i.i.d. Gaussian input

up to a proportionality constant. Both nonlinearities reduce to that derived

in [DM94] for arbitrary input when the the step-size µ is even smaller.

One remark is in order concerning the properties of the error nonlinearity h under which

the analysis in the works [DM94,ANSK00] was undertaken. When the noise pdf fv(v) is

symmetric, i.e., Ev2q−1(i) = 0, q = 1, 2, . . ., usually the error nonlinearity h is chosen to

be sign-preserving. The sign-preservation property then ensures that successive weight

estimates {wi} descend the error surface J(w) [Set92,TC96,ANSK00].

The assumptions adopted in the works [DM94, ANSK00] towards the derivation of

the optimal error nonlinearity are generally more restrictive than those adopted in

[ANS01] and summarized in this section. The less restrictive the assumptions, the more

accurate the results for general input and noise properties as well as error nonlinearities.

Furthermore, the analysis in [ANS01], reproduced in Sec. 2.2.3, does not rely on the

linearization approach in [DM94, ANSK00] that has culminated in the optimal error

nonlinearity

hlin(x) , −f
′
v(x)

fv(x)
, x ∈ R (2.73)

for sufficiently small step-size µ. By avoiding linearization, the steady-state results

in [ANS01], reproduced here, exhibit greater accuracy over a richer class of error non-

linearities while leading to an optimal error nonlinearity that is more attuned to the

spirit of adaptive filtering and which reduces to (2.73) at steady-state. The particular

error nonlinearity (2.73) arises in the related context of maximum-likelihood estima-

tion. This connection will be expounded upon in a later note. Now, however, some

light will be shed on aspects of optimal error nonlinearity implementation.

�
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Implementation

The optimal error nonlinearity (2.69) does not lend itself to practical implementation in

the absence of knowledge of the noise distribution. To see this, note that the pdf of the

output estimation error e(i) = ea(i) + v(i) under Assumption AG on the Gaussianity

of the a priori estimation error ea(i) and the independence of ea(i) from v(i) can be

expressed as

fe(i)

(
e(i)
)

=
1√

2π E e2
a(i)

exp

[
−e2(i)

2E e2
a(i)

]
∗ fv

(
e(i)
)

(2.74)

where ∗ denotes convolution. It is then clear that knowledge of the moment E e2
a(i) for

all i is required for the calculation of fe(i)

(
e(i)
)

in addition to knowledge of the noise

pdf fv(v), both being, for all practical purposes, unattainable. In [DM94], adaptive

estimation of the output estimation error pdf fe(i)

(
e(i)
)

using a Middleton Class A

semi-parametric model [Mid77], jointly with the adaptive estimation of the weight vec-

tor wo, was proposed. However, the parameters of the model have a statistical–physical

interpretation that renders their online estimation from streaming data challenging. In

a similar vein, it was proposed in [ANS01] to approximate the output estimation error

pdf fe(i)

(
e(i)
)

by a truncated Edgeworth expansion [Nut85], which amounts to an ap-

proximation of the optimal error nonlinearity (2.69) via a polynomial of finite degree

of only the odd powers of the output estimation error e(i), where the coefficients turn

out to be defined in terms of its cumulants. While the latter approach offers a unify-

ing view of some familiar adaptive filtering algorithms with error nonlinearities, such

as the LMS, LMF, least-mean 2p-norm, and LMMN algorithms (see Table 2.1), lend-

ing insight into their optimality, no guidelines are listed for the implementation of an

adaptive procedure based on the approximation that would deliver good performance.

The approach in this dissertation is also semi-parametric, albeit grounded in a familiar

concept in robust estimation, whose explanation is deferred to Sec. 2.3. First, however,

we establish a connection to maximum-likelihood estimation.

�

Connection to Maximum-Likelihood Estimation

Consider a batch of N noisy measurements of the parameter wo, d(i), i = 0, . . . , N −1,

according to the data model (2.1). Collecting the N measurements, known regressors,

and noise samples into vectors and matrices,

dN−1 ,


d(N − 1)
d(N − 2)

...
d(0)

 , UN−1 ,


uN−1

uN−2
...
u0

 , vN−1 ,


v(N − 1)
v(N − 2)

...
v(0)

 , (2.75)
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the batch data model can be written more compactly as

dN−1 = UN−1w
o + vN−1. (2.76)

Following the data model assumptions from Sec. 2.2.1, the noise process
{v(i), 0 ≤ i ≤ N − 1} is zero-mean i.i.d. with variance σ2

v , fv(v) being the pdf of the
noise random variable v(i). Additionally, it is assumed that the regressors ui and uj
are drawn independently for all i 6= j, i, j = 0, . . . , N−1. Let f

(
d(0), . . . , d(N−1);wo

)
denote the likelihood function of the observations d (0) , . . . , d (N − 1). The likelihood
function is parametrized by wo. Given the independence of the observations, the log-
likelihood function can be written out as

ln f
(
d(0), . . . , d(N − 1);wo

)
= ln

N−1∏
i=0

fv
(
d(i)− uiwo

)
=

N−1∑
i=0

ln fv
(
d(i)− uiwo

)
(2.77)

The maximum-likelihood (ML) estimate of wo from the observations is obtained by

maximizing the log-likelihood function:

wML ∈ arg min
w

N−1∑
i=0

− ln fv
(
d(i)− uiw

)
. (2.78)

Assuming fv(·) is differentiable, f ′v(·) denoting the derivative, and letting ψv(·) denote

the derivative of − ln fv(·), known as the score function:

ψv(x) =
d {− ln fv(x)}

dx
= −f

′
v(x)

fv(x)
, x ∈ R, (2.79)

then wML should satisfy

N−1∑
i=0

−ui ψv
(
d(i)− uiwML

)
= 0. (2.80)

Note that the score function (2.79) is the same as the optimal adaptive filtering error

nonlinearity (2.73) spewed by linearization analysis. In the following examples, the

results are specialized to two noise distributions while highlighting the connection to

adaptive filtering with optimal error nonlinearities.

Examples:

1. For Gaussian noise, the pdf is given by

fv (v) =
1√

2πσ2
v

e
− v2

2σ2
v (2.81)
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and the score function by

ψv(x) =
x

σ2
v

. (2.82)

The maximum likelihood estimate wML minimizes the cost function

JN(w) ,
1

N

N−1∑
i=0

(
d(i)− uiw

)2
. (2.83)

By the weak law of large numbers, as N →∞, the cost function approaches

J(w) , E (d− uw)2 (2.84)

based on which the LMS algorithm is motivated. That is, the LMS algorithm

constitutes an adaptive solution to the ML estimation problem under Gaussian

noise.

2. For Laplace noise, the pdf is given by

fv (v) =
1√
2σv

e−
√

2|v|
σv (2.85)

and the score function by

ψv(x) =

√
2

σv
sign(x). (2.86)

The maximum likelihood estimate wML minimizes the cost function

JN(w) ,
1

N

N−1∑
i=0

|d(i)− uiw| . (2.87)

By the weak law of large numbers, as N →∞, the cost function approaches

J(w) , E |d− uw| (2.88)

based on which the sign-error LMS algorithm is motivated. That is, the sign-

error LMS algorithm constitutes an adaptive solution to the ML estimation

problem under Laplace noise.

2.3 Robust Estimation

In order to solve the ML estimation problem, the score function ψv(·) needs to be com-

puted based on knowledge of the noise distribution. This knowledge is rarely available

in practice, if at all. More often than not, the noise is assumed to be Gaussian, usually
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for mathematical tractability. An example by Tukey [Tuk60] revealed how an estima-

tor for a distribution parameter based on a Gaussian assumption can prove drastically

inefficient when the sample is contaminated by outliers, or the distribution happens

to be heavier tailed than the Gaussian, the two being practically synonymous [HR09].

In order to overcome this problem, one may consider a parametric approach, where

some non-Gaussian distribution for the noise is assumed (t-distribution or generalized

Gaussian distribution, for example), but whose parameters need to be estimated. The

problem with this approach is that its range of validity is limited to scenarios where the

true noise distribution is close to the one assumed; therefore, it is natural to expect the

performance of the resulting ML estimator to be only as good as the underlying mod-

eling assumption. Another approach is semi-parametric or non-parametric estimation

of the noise distribution, allowing a rather general representation for the underlying

noise model. Gaussian mixture modeling or Middleton Class A modeling, the latter

being a form of statistical–physical modeling, are examples for the semi-parametric

approach. Kernel density estimation is an example for the non-parametric approach.

Yet another approach bridging the parametric on the one hand and the semi- or non-

parametric on the other hand is that of robust statistics [ZKCM12]. Distributional

robustness is the primary concern: A robust estimator is one that is relatively insensi-

tive to deviations from an underlying nominal distribution, usually, but not necessarily,

the Gaussian—in other words, resistant to the presence of outliers. A robust estimator

should enjoy reasonably good efficiency at the nominal model and stability, such that

small deviations do not degrade performance significantly; however, larger deviations

should not result in breakdown [HR09]. The field of robust statistics was pioneered

by Tukey [Tuk60], Huber [HR09], and Hampel [HRRS86], and is exemplified by the

following two approaches [SV02]:

- the Huber minimax approach – quantitative robustness [Hub64,HR09]; and

- the Hampel approach based on influence functions – qualitative robustness

[Ham68,HRRS86].

Huber’s minimax approach is summarized here, since the approach developed in this

dissertation draws on it. The concept of M-estimation is briefly introduced next as a

generalization of ML estimation.

2.3.1 M-estimation

Consider the following batch data model for a general signal in additive noise:

d(i) = si(θ) + v(i), i = 0, . . . , N − 1 (2.89)
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where {v(i), 0 ≤ i ≤ N − 1} is a zero-mean i.i.d. noise process with underlying pdf f

(shorthand for fv(v) to reduce notational clutter in this section only); and the signal

{si(θ), 0 ≤ i ≤ N − 1} is parametrized by the unknown vector θ. The parameter θ is

to be estimated from the N observations d (0) , . . . , d (N − 1). The data model (2.89)

can be specialized to the linear regression data model (2.76) by setting θ = wo and

si(w
o) = uiw

o given known regressors {ui, 0 ≤ i ≤ N − 1}.

The ML estimate of θ from the observations is obtained by maximizing the log-

likelihood function:

θML ∈ arg min
θ

N−1∑
i=0

− ln f
(
d(i)− si(θ)

)
. (2.90)

Assuming f is differentiable, then θML is the solution of the following system of equa-

tions
N−1∑
i=0

ψ
(
d(i)− si(θ)

)
∇θsi(θ) = 0 (2.91)

in terms of the score function ψ = −f ′

f
. In M-estimation, − ln f(·) is replaced with

a function ρ(·) that behaves similarly—see Fig. 2.5 for some symmetric examples.

Assuming ρ is differentiable, ϕ = ρ′ denoting its derivative, then the M-estimate for θ

is obtained by solving the following system of equations:

N−1∑
i=0

ϕ
(
d(i)− si(θ)

)
∇θsi(θ) = 0. (2.92)

Procedures such as modified residuals or iteratively re-weighted least-squares can be

used to solve (2.92) [HR09]. Caution should be practiced when selecting an initial

point for the procedures when using redescending M-estimators, for which the score

function ϕ(x) returns to zero away from the origin (x = 0), such as Tukey’s biweight

M-estimator or Hampel’s redescending M-estimator, plotted in Figs. 2.5h and 2.5j,

respectively. One can use a non-robust estimator for θ as initial point, for instance.

The properties of M-estimators can be found in [HR09].

Let’s focus in particular on the simple location estimation problem, where si(θ) = θ ∈
R, i = 0, . . . , N − 1. Letting d denote the random variable whose realizations are the

observations

d(i) = θ + v(i), i = 0, . . . , N − 1, (2.93)

then θ represents the location parameter of the shifted pdf f(d − θ), which we would

like to estimate. Denoted by θ̂N , where the dependence on the number of samples is

made explicit, the M-estimate for θ satisfies

N−1∑
i=0

ϕ
(
d(i)− θ̂N

)
= 0. (2.94)
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Figure 2.5: Exemplary ρ functions (left) and corresponding ϕ functions (right).

Under certain conditions on the pdf f and the selected score function ϕ,
√
N θ̂N was

shown to be asymptotically, as N →∞, normal with asymptotic variance

γ(f, ϕ) =
Eϕ2

(Eϕ′)2 . (2.95)
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Figure 2.6: Minimax-optimal M-estimation nonlinearity over ε-contaminated Gaussian
model.

The minimax approach to robust M-estimation consists in defining a neighborhood

around the nominal, typically Gaussian, model, as well as a quantitative performance

measure, such as the asymptotic variance of the M-estimator, and minimizing the worst

value attained by the measure over the neighborhood. As a choice for neighborhood,

consider the following class of ε-contaminated zero-mean Gaussian pdf:

Fε =
{
f |f = (1− ε)N (0, σ2

v) + εfC , fC ∈ FC
}

(2.96)

where FC is the class of symmetric contaminating pdfs and ε ∈ [0, 1] reflects the degree

of contamination. The minimax problem is therefore formulated as

min
ϕ

max
f∈Fε

γ(f, ϕ) (2.97)

and the solution, (f ?, ϕ?), was shown by Huber [Hub64,HR09] to be given by the least

favorable density in Fε (that which minimizes the Fisher information matrix [Kay98b])

and the clipping function

ϕ?(x) =

{ x
σ2
v
, |x| ≤ κσ2

v

κ sign(x), |x| > κσ2
v

(2.98)

with the parameters κ and ε related by

2
fG(κσv)

κσv
− 2FG(−κσv) =

ε

1− ε
(2.99)

where fG and FG denote the zero-mean Gaussian pdf and distribution with variance

σ2
v , respectively. The clipping function (2.98), plotted in Fig. 2.6, basically bounds the

effect of outlying observations.
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Robust estimation procedures have enjoyed growing popularity in applications where

the measurements are corrupted by impulsive noise. An impulsive noise process can be

described as one whose realizations contain sparse, random samples of amplitude much

higher than nominally accounted for and, hence, best modeled by heavy-tailed distribu-

tions. Impulsive noise may be natural, due to atmospheric phenomena, or man-made,

due to either electric machinery present in the operation environment, or multipath

telecommunications signals [BKR97, Mid99, ZKCM12, ZB02]. In the next subsection,

the connection between M-estimation and robust adaptive filtering is highlighted.

2.3.2 Robust Adaptive Filtering

The approach detailed in the previous section can be carried over, with some varia-

tion, to regression—that is, to robustly estimate wo in (2.76) [HR09]. As far as the

popular LMS algorithm for the adaptive estimation of wo is concerned, the presence

of impulsive noise in the measurements degrades the adaptive filter’s performance in

terms of stability and steady-state behavior [Ber08]. Several LMS-type algorithms

have been developed that are robust against impulsive noise, including mixed-norm

algorithms [CA97, BPT+03, BMC07], and algorithms that employ normalized LMS

(NLMS)-type updates or adjustable step-sizes [VRBT08, GGSB00]. Apart from these

algorithms, two other approaches have dominated the literature on robustness to im-

pulsive noise: one based on robust statistics [HR09, HRRS86, ZKCM12], and another

based on order statistics [DN03].

The approach based on robust statistics in [ZCN00] replaces the MSE cost function with

another appropriately designed error function, resulting in an M-estimation approach.

Minimizing the mean Huber’s M-estimate error function via stochastic gradient descent

methods results in an LMS-type algorithm with an error-clipping nonlinearity of the

form (2.98). The error-clipping threshold was computed adaptively and concurrently

with the algorithm in order to track the time-varying statistics of the non-stationary

error signal, relying on past estimates [ZCN00].

In comparison, the approach based on order statistics applies, at each time index, a

mean, median, or α-trimmed mean filter on a window of current and past data in order

to compute the LMS-type update at that particular time index [HC92]. This amounts

to data smoothing, which alleviates the impact of impulsive noise.

A recurrent feature of the LMS-type algorithms outlined so far is that their updates

are generally nonlinear functions of the error signal. Nonlinear processing thus presents

itself as critical in combating the effects of impulsive noise.
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The choice of the nonlinearity in the cited works does not generally ascribe to optimality
criteria. The problem of optimal nonlinearity design was addressed in Sec. 2.2.4. Opti-
mal design techniques, however, are hampered by their prerequisite of exact knowledge
of the noise probability density function, which is rarely available in practice. In Ch. 3,
a robust adaptive filtering algorithm is developed that estimates semi-parametrically
the optimal error nonlinearity jointly with the parameter of interest for improved sta-
bility and steady-state performance in impulsive noise environments. Ultimately, the
algorithm is of the form:

e(i) = d(i)− uiwi−1 (2.100a)

wi = wi−1 + µuTi hi
(
e(i)
)

(2.100b)

with the understanding that hi
(
e(i)
)

is a time-varying, adaptive error nonlinearity. It

is important to mention here that the analysis of the resulting algorithm cannot be

conducted in a similar fashion as in [ANS01, ANS03, Say03]. One complication that

arises from the coupling of the two estimation problems is the difficulty in evaluating

the two moments

Eh2
i

(
e(i)

)
and Eh′i

(
e(i)

)
(2.101)

in closed form using the integral expression in (2.65). The success of the analysis of

the original algorithm (2.12), reproduced in Sec. 2.2.3, actually hinges on the ability

to evaluate the integral in closed form for a number of error nonlinearities and noise

distributions. Therefore, in Ch. 3, linearization analysis will be conducted to derive

stability bounds and steady-state performance expressions under certain conditions.

The results will be verified numerically through simulations. In Chs. 4 and 5, the robust

adaptive filtering algorithm is extended to solve the problem of robust distributed

estimation and detection over adaptive networks. Adaptive networks are introduced

in the next section.

2.4 Distributed Adaptation and Learning Over

Networks

2.4.1 Network Model

The focus in this dissertation is on connected networks composed of N nodes. A

connected network is one where each pair of nodes in the network are connected by at

least one path. A path may possibly span multiple hops through intermediate nodes.

A pair of nodes that are connected to one another directly through a single-hop path

are referred to as neighbors. The neighborhood of node k, k = 1, . . . , N , is the set of
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Figure 2.7: Exemplary connected network highlighting node k’s neighborhood and the
weights {a`k, ak`} used to scale the data exchanged between nodes k and l.

all nodes, including itself, that it is connected to. It is denoted as Nk. The degree

of node k is the cardinality of its neighborhood, denoted by nk = |Nk|. The network

topology is described by a graph with N vertices representing the nodes and a set of

edges representing the links connecting neighbors with each another. The graph is

assumed to be undirected so that if node k is a neighbor of node `, then node ` is also

a neighbor of node k, k, ` = 1, . . . , N .

Only neighbors are able to exchange data with each other over the link connecting

them. The data exchange between neighboring nodes k and l is governed by a pair of

nonnegative scalar weights {a`k, ak`}, where a`k designates the weight used by node k

to scale the data it receives from node ` and ak` designates the weight used by node `

to scale the data it receives from node k. The weights {a`k, ak`} may be different, and

one or both may be zero. They can be interpreted as the levels of confidence nodes k

and l attach to one another’s data. Effectively, data exchange between neighbors may

be bidirectional, unidirectional, or non-existent [STC+13,Say14b,Say14a].

Fig. 2.7 illustrates an exemplary connected network and highlights node k’s neighbor-

hood as well as the weights {a`k, ak`} used to scale the data exchanged between nodes

k and l. Despite the absence of self-loops, each node is its own neighbor.

2.4.2 Data Model and Problem Formulation

At each time index i ≥ 0, each node k in the network has access to a noisy real-

valued scalar measurement dk(i) relating to an unknown deterministic real-valued M×1

parameter vector wo. The measurements are related to the parameter via a stochastic

linear regression model of the form:

dk(i) = uk,iw
o + vk(i), i ≥ 0 (2.102)
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where uk,i is a real-valued known row regression vector, or regressor, of size M ;

and vk(i) is real-valued scalar measurement noise. The joint random process

{dk(i),uk,i,vk(i)} is assumed to be zero-mean wide-sense stationary with the following

properties:

- The regressors {uk,i} are spatially and temporally independent. The covariance

of the regressor uk,i is denoted as Ru,k and is positive definite, i.e., Ru,k > 0.

- The noise random variables {vk(i)} are spatially and temporally independent.

The variance of the noise random variable vk(i) is denoted as σ2
v,k.

- The random variables uk,i and v`(j) are independent for all k, `, i, and j.

The aim is for each node k to adaptively estimate the weight vector wo, availing itself

of its own streaming data as well as its neighbors’:
{
{d`(i), u`,i} , ` ∈ Nk

}
. While each

node can individually run an instance of an adaptive filtering algorithm of the form

(2.12), for example, it is to be expected that cooperation among the nodes can be

beneficial, reducing the effects of gradient noise inherent to such an algorithm on the

quality of each node’s estimate. This aspect will become clear in the next section.

2.4.3 Diffusion Adaptation Algorithms

In order for each node to estimate the weight vector wo in cooperation with its neighbors

based on the adaptive filtering algorithm with error nonlinearity (2.12) studied in

Sec. 2.2, one so-called diffusion strategy that the nodes can employ is the Adapt-then-

Combine (ATC) diffusion strategy. First, consider the nonnegative scalar weights {a`k}
introduced in (2.4.1) and assume they are chosen by the designer to satisfy the following

properties, for each node k = 1, . . . , N :

a`k ≥ 0, a`k = 0 if ` /∈ Nk,
∑
`∈Nk

a`k = 1. (2.103)

Collecting the weights {a`k} into an N × N matrix A such that the kth column of

the matrix consists of the weights {a`k, ` = 1, . . . , N}, then the last property in (2.103)

translates into saying that the entries of each column of the matrix A add up to one:

1TA = 1T . (2.104)

Since its entries are also nonnegative, the matrix A is then left-stochastic. Now, the

ATC diffusion strategy, illustrated in Fig. 2.8, is presented. For i ≥ 0, starting from
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Table 2.3: Combination Policy Examples

Name Rule (` ∈ Nk, ` 6= k)∗

Uniform a`k = 1/nk

Laplacian a`k = 1/nmax

Maximum-Degree a`k = 1/N

Metropolis a`k = 1/max (nk, n`)

Relative-Degree a`k = n`/
∑

m∈Nk nm

Relative Degree-Variance a`k = n`σ
−2
v,`/

∑
m∈Nk nmσ

−2
v,m

Relative-Variance a`k = γ−2
` /

∑
m∈Nk γ

−2
m

Adaptive Relative-Variance a`k(i) = γ̂−2
`k (i)/

∑
m∈Nk γ̂

−2
mk(i)

∗ For all rules, ∀ k, a`k = 0, if ` /∈ Nk; akk = 1−
N∑̀
=1

a`k.

some initial condition wk,−1, each node k updates its previous estimate wk,i−1 for the

weight vector wo using the following update equations:

ATC diffusion :


ek(i) = dk(i)− uk,iwk,i−1

ψk,i = wk,i−1 + µku
T
k,ihk

(
ek(i)

)
wk,i =

∑
`∈Nk

a`kψ`,i
(2.105)

where hk(·) is node k’s error nonlinearity, and µk is its step-size parameter. Basically,

at each time index i, each node k updates its current estimate wk,i−1 in an adaptive

filtering fashion through the output error ek(i) in terms of its own data uk,i and dk(i),

forming an intermediate estimate, ψk,i. Each node k then collects the intermediate

estimates from its neighbors in Nk, and weights them according to some combination

policy satisfying (2.103), hence forming the final estimate wk,i. One property of a left-

stochastic combination policy that is crucial to the behavior of the diffusion adaptation

algorithm (2.105), as will be appreciated in Chs. 4 and 5, is that its spectral radius

(maximum-magnitude eigenvalue) is one. Table 2.3 lists some examples of combination

policies. In the second row from the bottom of the table, γk , µkσ
2
v,k Tr(Ru,k) for the

relative-variance rule, and in the last low, this quantity is estimated adaptively by

each node for each of its neighbors, giving rise to the adaptive relative-variance rule—

see [Say14a] for implementation details. Note that setting A = I entails that each node

revert to non-cooperative, stand-alone adaptation.

The algorithm (2.105) can be seen as a special case of an algorithm employing a generic
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Figure 2.8: Adapt-then-combine (ATC) diffusion strategy.

update vector in the adaptation step:{
ψk,i = wk,i−1 − µkŝk,i(wk,i−1)
wk,i =

∑
`∈Nk

a`kψ`,i (2.106)

The generic update vector ŝk,i(wk,i−1) may represent the stochastic gradient of a local,
agent-specific cost function in a multi-agent network, for example. The algorithm
(2.106) was studied extensively in [CS15a, CS15b]. According to these works, one of
the prerequisites for the estimates {wk,i} to converge to the desired weight vector wo

in the mean-square sense is that there exist an M × 1 deterministic vector function
sk(w) such that, for all M × 1 vectors w in the filtration F i−1 generated by the past
history of iterates {wk,j} for j ≤ i− 1 and all k, the following holds:

E {ŝk,i(w)|F i−1} = sk(w) (2.107a)

sk(w
o) = 0 (2.107b)

The works [CS15a, CS15b] are far richer, however, in that they study the behavior of

the generic algorithm (2.106) when it does not necessarily hold that a solution w? exists

such that sk(w
?) = 0 for all k. In particular, the limit point of the estimates {wk,i} is

characterized in [CS15a,CS15b], as well as the stability, learning behavior and rate, and

steady-state performance of the algorithm. In addition to that, two other distributed,

cooperative strategies are considered, namely, the adapt-then-combine (CTA) diffusion

strategy and the consensus strategy. Interestingly, it is shown that these strategies

enable each node in the network, through local interactions and in-network processing,

to achieve the same level of performance as that of a centralized strategy corresponding

to a fully connected network. The focus in this dissertation, however, is on the ATC

diffusion strategy since it has been shown to outperform the others [TS12,Say14a].
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A special case of both (2.105) and (2.106), by setting hk
(
ek(i)

)
= ek(i) and

ŝk,i(wk,i−1) = −uTk,i [dk(i)− uk,iwk,i−1], is the ATC diffusion LMS algorithm, with the

following update equations:{
ψk,i = wk,i−1 + µku

T
k,i [dk(i)− uk,iwk,i−1]

wk,i =
∑
`∈Nk

a`kψ`,i (2.108)

Naturally, there are also the CTA diffusion and consensus variants of this algorithm.

All three strategies were studied extensively in [Say14b,Say14a]. The benefit of cooper-

ation among the nodes of the network manifests itself clearly in LMS adaptation using

(2.108), for example. Let’s assume the data {dk(i), uk,i} satisfy the model (2.102) but

that the covariance matrices {Ru,k} are not positive definite for any of the nodes, i.e.,

Ru,k > 0 does not hold for any k = 1, . . . , N . Then, a node running the LMS algorithm

individually may not be able to uniquely estimate the desired weight vector wo since

there are infinite solutions to the normal equations

Ru,kw
o = rdu,k (2.109)

in this case and only partial information available locally at each node k, where rdu,k ,

Edk(i)uTk,i. However, it was shown in [Say14a], for example, that it need only hold

that
∑N

k=1Ru,k > 0, a global observability condition, for all the nodes to be able to

recover wo uniquely if they run a distributed, cooperative strategy such as (2.108).

The choice ŝk,i(wk,i−1) = −uTk,i [dk(i)− uk,iwk,i−1] in the algorithm (2.106) can be

viewed as setting the update vector to the transposed stochastic gradient of a local

MSE cost function:

Jk(w) , E
(
dk(i)− uk,iw

)2
. (2.110)

As a matter of fact, as shown in [Say14b,CS12,Say14a], for data {dk(i), uk,i} satisfying

the model (2.102), the estimates {wk,i} arising from (2.108) converge in the mean-

square sense to the unique minimizer of the global MSE cost

Jglob(w) ,
N∑
k=1

E
(
dk(i)− uk,iw

)2
, (2.111)

which is the desired weight vector wo. As hinted at before, costs more general than

the MSE cost can be accommodated as well by setting

ŝk,i(wk,i−1) =
[
∇̂wJk(wk,i−1)

]T
(2.112)

where ∇̂wJk(w) is an approximate stochastic gradient of some general local cost func-

tion Jk(w). If each of the local cost functions is minimized by the weight vector wo,

and if the global cost

Jglob(w) ,
N∑
k=1

Jk(w) (2.113)
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is strongly convex, such that the weight vector wo is its unique minimizer, then the

algorithm  ψk,i = wk,i−1 − µk∇̂wJk(wk,i−1)
wk,i =

∑
`∈Nk

a`kψ`,i (2.114)

generates estimates {wk,i} that converge in the mean-square sense to wo [CS15a,

CS15b].

LMS-based diffusion strategies for distributed adaptation can also see their performance

degrade in the presence of impulsive noise. In [CST11], a robust diffusion estimation

algorithm was realized by using the adaptive projected subgradient method [YO05,

TSY11], culminating in a combine-project-adapt protocol, where the output errors at

each node are projected onto halfspaces defined by Huber’s M-estimate error function

(2.98). For the method’s implementation, however, some parameters need to be tuned

in accordance with the practitioner’s knowledge of the noise distribution. In the course

of this dissertation, this knowledge is assumed to be lacking, prompting a more robust

construction.

The robust algorithm where the optimal nonlinearity is estimated from streaming data,

jointly with the parameter of interest wo, of the form (2.100), can also be embedded

into an ATC diffusion strategy of the form
ek(i) = dk(i)− uk,iwk,i−1

ψk,i = wk,i−1 + µku
T
k,iĥk,i

(
ek(i)

)
wk,i =

∑
`∈Nk

a`kψ`,i
(2.115)

Such an algorithm is developed and analyzed in Ch. 4, harnessing the powerful tech-

niques devised throughout the cited literature. Though of the generic algorithmic

form (2.106), the algorithm (2.115) cannot be analyzed in as similar a fashion as

in [CS15a,CS15b]. One complication that arises from the coupling of the two estima-

tion problems is the difficulty in identifying the aforementioned deterministic vector

function sk(w) and its properties, a feature that has facilitated the analysis of the algo-

rithm (2.106) considerably. As with the stand-alone robust counterpart developed and

analyzed in Ch. 3, linearization analysis will be conducted to derive stability bounds

and steady-state performance expressions under certain conditions. The results will be

verified numerically through simulations.
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Chapter 3

Robust Adaptation for Single Agents

In this chapter, a robust adaptive filtering algorithm is developed that estimates semi-

parametrically the mean-square-error–optimal error nonlinearity (2.69) jointly with the

parameter of interest for improved stability and steady-state performance in impulsive

noise environments. Comprehensive theoretical performance analysis as well as numer-

ical simulation of the resulting robust adaptive rule are conducted.

In Sec. 3.1, the robust adaptive filtering algorithm is developed. In Sec. 3.2, mean and

mean-square analysis of the algorithm’s performance is conducted using the energy

conservation framework [ANS03, Say03]. In Sec. 3.3, simulation results are presented.

Conclusions are drawn in Sec. 3.4.1

3.1 Robust Adaptive Filtering

3.1.1 Data Model and Problem Formulation

The goal is to adaptively estimate an unknown deterministic real-valued M × 1 pa-

rameter wo from available data
{
{d(i), ui} , i ≥ 0

}
. The data are related to wo via the

linear regression model:

d(i) = uiw
o + v(i) (3.1)

where the {d(i)} are real-valued scalar measurements, and the {ui} are real-valued row

regression vectors of size M . The data {d(i), ui} arise from realizations of jointly wide-

sense stationary zero-mean random processes {d(i),ui}. The regressors have covariance

matrix Ru = EuTi ui > 0, while the noise process {v(i)} is a real-valued zero-mean

impulsive white process with variance σ2
v . It is assumed that the noise probability

density function (pdf), fv(v), is symmetric, i.e., Ev2p−1(i) = 0, p = 1, 2, . . .. The

random variables ui and v(j) are assumed to be independent for all i and j.

The least-mean-squares (LMS) filter is a stochastic gradient algorithm based on mini-

mizing the mean-square-error (MSE) cost function:

J(w) , E
(
d(i)− uiw

)2
. (3.2)

1This chapter is based on the journal article:
S. Al-Sayed, A. M. Zoubir, and A. H. Sayed, “Robust adaptation in impulsive noise,” IEEE Trans. Sig-
nal Process., vol. 64, no. 11, pp. 2851–2865, Jun. 2016.
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With the output error defined as e(i) , d(i)− uiwi−1, the LMS recursion is given by

wi = wi−1 + µuTi e(i), i ≥ 0 (3.3)

where µ is a small positive step-size parameter.

In robust adaptive filtering [ZCN00,GGSB00,VRBT08], the cost function (3.2) is mod-

ified to

Jρ(w) , E ρ
(
d(i)− uiw

)
(3.4)

where ρ : R→ R is some M-estimate (maximum-likelihood–type) function [HR09]. As-

suming ρ(x) is differentiable, the steepest-descent recursion that attempts to minimize

(3.4), subject to a suitable choice of the initial condition, takes the form:

wi = wi−1 − µ
(
∇wJ

ρ(wi−1)
)T
. (3.5)

Let h(x) , dρ(x)
dx

, referred to as the score function. Qualitative robustness is ensured

if the score function h(x) is bounded and continuous [HR09]. This means that small

changes in x do not lead to big changes in h(x). By forgoing the expectation in (3.5),

the resulting stochastic instantaneous approximation of (3.5) is

wi = wi−1 + µuTi h
(
e(i)
)
. (3.6)

The LMS recursion (3.3) is recovered when ρ(x) = x2

2
. It was shown in [DM94] that

the optimal score function that minimizes the steady-state MSE is

hopt
1 (x) = −f

′
v(x)

fv(x)
(3.7)

where the notation g′(x) stands for dg(x)
dx

. In this case, the LMS algorithm is MSE-

optimal when {v(i)} is Gaussian, with the 1
σ2
v

proportionality constant absorbed into

the step-size parameter µ. However, the LMS algorithm is suboptimal when the noise is

non-Gaussian [Say03,SV02]. Yet, in order to design the filter optimally using (3.7), the

noise pdf must be known exactly, which rarely holds in practice. Under less restrictive

assumptions, the authors in [ANS01] derived an optimal score function that holds over

a wider range of adaptation and not only at steady-state, leading to the choice:

hopt
2,i (x) = −

f ′e(i)(x)

fe(i)(x)
(3.8)

in terms of the pdf of the error signal, e(i). This function is more intuitive in an

adaptive setting, and reduces to hopt
1 (x) at steady-state.
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In [TBG00] and [BZ02], in the context of offline robust estimation, where the practi-

tioner has access to a batch of data, the optimal score function hopt
2,i

(
e(i)
)

was approx-

imated by an iteration-dependent function, hi
(
e(i)
)
, that is a linear combination of B

preselected basis functions:

hi
(
e(i)
)

= αTi ϕi (3.9)

where

αi , [αi(1), . . . , αi(B)]T (3.10)

is the vector of combination weights, and

ϕi ,
[
φ1

(
e(i)
)
, . . . , φB

(
e(i)
)]T

(3.11)

is the vector of basis functions evaluated at the residual error. The vector αi is chosen

to minimize the MSE between the true and approximate score functions:

αopt
i , arg min

αi
E
(
hopt

2,i

(
e(i)

)
− hi

(
e(i)

))2

. (3.12)

In the online adaptive context pertinent to this work, it is imperative to compute αi

adaptively and jointly with wi. This is treated in Sec. 3.1.2, where in the process of

deriving the adaptive update for αi the condition

Eφb(x)hopt
2,i (x) = Eφ′b(x) (3.13)

for any b will be exploited. Condition (3.13) follows from integration by parts of the

left-hand side of (3.13) and using (3.8), under the assumption (see Appendix A.4 for

the derivation):

lim
x→±∞

φb(x)fe(i)(x) = 0. (3.14)

The choice of basis functions should conform to prior knowledge about the nature of

the noise in the data model (3.1) [TBG00,BZ02,HR09,HRRS86], if available. Since it

is known the noise can be of an impulsive nature, a sensible choice that scales down

impulsive samples and trades off robustness with LMS performance under Gaussian

noise would be φ1(x) = x and φb(x), b = 2, . . . , B, some bounded nonlinear functions.

One example would be the hyperbolic tangent basis:

φb(x) = tanh
(
(b− 1)x

)
, b = 2, . . . , B. (3.15)

where tanh(·) above and sech(·) for future reference denote the hyperbolic tangent and

secant functions, respectively. Both functions are plotted in Fig. 3.1. Replacing h(x)

in (3.6) by the approximation of the optimal score function in (3.9), the recursion now

becomes

wi = wi−1 + µuTi

B∑
b=1

αi(b)φb
(
e(i)
)
. (3.16)
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Figure 3.1: Function plots: (a) hyperbolic tangent: f1(x) = tanh(x) and (b) hyperbolic
secant: f2(x) = sech(x).

Some remarks are in order before proceeding with the development of the robust algo-

rithm. First, the entries of αi will be required to be nonnegative. This is because the

error nonlinearity in (3.6) or (3.9) should be, generally, sign-preserving so that succes-

sive iterates descend the error surface [Set92, TC96, ANSK00]. Moreover, the authors

of [BZ02] imposed a convexity constraint on the entries of αi for B > 1 in the offline

estimation context, illustrating performance gains. A similar convexity constraint on

the entries of αi will be considered, i.e., the entries of αi will be nonnegative and add

up to 1.

Remark 1. In the work [ASZS13], a more restrictive choice was considered for the

basis functions other than φ1(x) = x and (3.15). Specifically, B basis functions that

arise from zero-mean Gaussian pdfs with distinct variances were selected:

φb(x;σ2
b ) =

x

σ2
b

, b = 1, . . . , B. (3.17)

Let

s , ϕ′i =

[
1

σ2
1

, . . . ,
1

σ2
B

]T
. (3.18)



3.1 Robust Adaptive Filtering 47

Replacing h(x) in (3.6) by the approximation (3.9), and using (3.17) and (3.18), the

recursion would instead become

wi = wi−1 + µ
(
αTi s

)
uTi e(i). (3.19)

Observe that the resulting recursion amounts to an LMS implementation with a vari-

able step-size (VSS-LMS), where µ(i) , µ
(
αTi s

)
. This algorithm is referred to it as

RVSS-LMS, with “R” standing for robust. Several VSS-LMS variants have been de-

veloped in the literature in order to improve the tradeoff between misadjustment and

convergence rate compared to LMS [KJ92,AM97,PC99,SSS04,ZLCH08]. In [ASZS13],

on the other hand, the variable step-size was designed with the intent of enhancing the

robustness of the LMS filter against impulsive noise. The selection of {σ2
b} to aptly

model the impulsive noise necessitates knowledge of the impulsive noise variance. If

this knowledge is not available, then prior to running RVSS-LMS, the noise variance

has to be estimated and {σ2
b} chosen over some appropriate range.

3.1.2 Joint Parameter Adaptation

In this section, a technique from [TYS10] is applied to solve (3.12) adaptively, subject

to the aforementioned constraints on αi. Let Ω+ ,
{
α ∈ RB

+|αT1 = 1
}

, where RB
+

is the set of B × 1 vectors on the set of nonnegative real numbers R+ and B > 1.

The case B = 1 will be addressed later. We seek the solution to the following convex

optimization problem:

min
α∈Ω+

E
(
hopt

2,i

(
e(i)

)
−ϕTi α

)2

. (3.20)

We would like to transform (3.20) into a more tractable form that eliminates the con-

straints. First, we ignore the nonnegativity constraint on the entries of α and later ad-

just the solution to accommodate this requirement. Hence, let Ω ,
{
α ∈ RB|αT1 = 1

}
,

and introduce the projection operator PΩ from RB onto Ω:

PΩ(β) =

(
I − 11T

B

)
β +

1

B
∀ β ∈ RB. (3.21)

Every α ∈ Ω can be represented as α = PΩ(β) for some β ∈ RB. We are therefore

motivated to introduce the unconstrained optimization problem:

min
β∈RB

J(β) , E
(
hopt

2,i

(
e(i)

)
−ϕTi PΩ(β)

)2

. (3.22)

Let

Π , I − 11T

B
. (3.23)
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The gradient of the cost function J(β) is given by

∇βJ(β) = −2E
[(
hopt

2,i

(
e(i)

)
−ϕTi PΩ(β)ϕTi Π

]
= −2

{
E
[
hopt

2,i

(
e(i)

)
ϕTi
]
− PTΩ (β)

(
EϕiϕTi

)}
Π

= 2
[
PTΩ (β)Rϕi − Eϕ′Ti

]
Π (3.24)

where we have appealed to (3.13), Rϕi , EϕiϕTi , and the vector ϕ′i is given by

ϕ′i = col {φ′1(i), . . . , φ′B(i)} . (3.25)

The steepest-descent recursion that solves (3.22) is therefore of the form:{
βi = βi−1 − 2τ(i)Π [RϕiPΩ(βi−1)− Eϕ′i]
αi = PΩ(βi)

(3.26)

where τ(i) is a nonnegative step-size sequence, the computation of which is discussed

further ahead. Note that if β−1 is chosen from Ω, then it is ensured that βi ∈ Ω for all

i. This follows from the fact that, for any vector x of size B, it holds that 1TΠx = 0.

Therefore, the recursion in (3.26) becomes

αi = αi−1 − 2τ(i)Π (Rϕiαi−1 − Eϕ′i) , α−1 ∈ Ω. (3.27)

The moments Rϕi and Eϕ′i in (3.27) may be estimated concurrently by means of the
following smoothing recursions:

R̂ϕi = νR̂ϕi−1
+ (1− ν)ϕiϕ

T
i (3.28)

ϕ̂′i = νϕ̂′i−1 + (1− ν)ϕ′i (3.29)

with ν ∈ (0, 1) and usually close to one. In this case, we replace (3.27) by

αi = αi−1 − 2τ(i)Π
(
R̂ϕiαi−1 − ϕ̂′i

)
, α−1 ∈ Ω. (3.30)

We are now in a position to incorporate the nonnegativity constraint on the entries of

αi at each iteration. One way to accomplish this task approximately is to start from

an initial condition α−1 ∈ Ω++ ,
{
α ∈ RB

++|αT1 = 1
}

, where RB
++ is the set of B × 1

vectors on the set of positive real numbers R++, and construct the step-size sequence

in (3.30) as follows:

τ(i) , τ ·

 min {αi−1(b)|1 ≤ b ≤ B}∥∥∥2Π
(
R̂ϕiαi−1 − ϕ̂′i

)∥∥∥
∞

+ ε

 (3.31)

where τ ∈ (0, 1) and ε > 0 are constants, with the latter chosen very small to prevent

division by zero; and ‖.‖∞ denotes the maximum absolute entry of its vector argument.
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Remark 2. The case B = 1 for whichever choice of φ1(x) ≡ φ(x) amounts to α(i) = 1

for all i and can still be addressed by relations (3.30) and (3.32)–(3.34). The analysis

of the resulting algorithm was treated in [ANS01,ANS03,Say03]. The LMS algorithm

is recovered when φ(x) = x.

Remark 3. The constant factor τ in (3.31) helps control the convergence rate of
the basis function weights αi. One can also consider adjusting this factor so that
αi converges in step with the weight vector wi. Doing so helps ensure that the error
nonlinearity h(i) is given ample time, yet not exceedingly long, to learn the noise distri-
bution. Since according to the mean weight-error recursion (3.49) given further ahead,
the convergence rate of the adaptive algorithm is dictated by the matrix I − µp(i)Ru,
with p(i) defined in (3.46)–(3.47), it is deduced that, for sufficiently small step-size µ,
the slowest adaptation mode is 1− µp(i)λmin(Ru). Hence, introducing a time-varying
factor, τ̆(i), in place of τ , the former may be set to the sigmoid function evaluated
at a stochastic approximation for p(i)λmin(Ru). This construction would suggest the
following alternative to (3.31)—simulations in the last section of this chapter illustrate
this implementation:

λ̂(i) = νλ̂(i− 1) + (1− ν)
‖ui‖2

M
(3.32)

τ̆(i) = sgm
[(
αTi−1ϕ̂

′
i

)
λ̂(i)

]
(3.33)

τ(i) = τ̆(i) ·

 min {αi−1(b)|1 ≤ b ≤ B}∥∥∥2Π
(
R̂ϕiαi−1 − ϕ̂′i

)∥∥∥
∞

+ ε

 (3.34)

where sgm(x) , 1
1+e−x

∈ (0, 1). Since p(i) > 0 and Ru > 0 by the model assumptions

and (A4 )—see Sec. 3.2, τ̆(i) effectively takes on values in the range (0.5, 1). The

estimate for λ̂(i) in (3.32) is reasonable for regressor covariance matrices Ru with

relatively small eigenvalue spread. The resulting algorithm is listed in Table 3.1.

3.2 Performance Analysis

The stability and steady-state performance of the robust algorithm under the data

model introduced in Sec. 3.1.1 will now be analyzed. Let w̃i , wo − wi denote

the weight-error vector, which is a random quantity. In order to make the analy-

sis tractable, some simplifying assumptions need to be introduced; similar assumptions

are typical in analyses of adaptive implementations due to the nonlinear and stochastic

nature of the update relations:

- (A1 ) The regressors {ui} are independently and identically distributed (i.i.d.),

which implies that ui and w̃i−1 are independent of each other for all i.
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Table 3.1: Robust Adaptive Filtering Algorithm

Initializations: B, {φb(x)}, Π, α−1 ∈ Ω++, R̂ϕ−1 , ϕ̂′−1, ν, λ̂(−1), ε, µ. Start with w−1 = 0. For every
time index i ≥ 0, repeat

Error nonlinearity update:

e(i) = d(i)− uiwi−1 (3.35a)

φb(i) ≡ φ
(
e(i)

)
, b = 1, . . . , B (3.35b)

ϕi = col {φ1(i), . . . , φB(i)} (3.35c)

R̂ϕi
= νR̂ϕi−1

+ (1− ν)ϕiϕ
T
i (3.35d)

φ′b(i) ≡ φ′b
(
e(i)

)
, b = 1, . . . , B (3.35e)

ϕ′i = col {φ′1(i), . . . , φ′B(i)} (3.35f)

ϕ̂′i = νϕ̂′i−1 + (1− ν)ϕ′i (3.35g)

δi = 2Π(R̂ϕiαi−1 − ϕ̂′i) (3.35h)

λ̂(i) = νλ̂(i− 1) + (1− ν)
‖ui‖2

M
(3.35i)

τ̆(i) = sgm
[(
αT
i−1ϕ̂

′
i

)
λ̂(i)

]
(3.35j)

τ(i) = τ̆(i) ·
(

min {αi−1(b), 1 ≤ b ≤ B}
‖δi‖∞ + ε

)
(3.35k)

αi = αi−1 − τ(i)δi (3.35l)

h(i) = αT
i ϕi (3.35m)

Adaptive update:
wi = wi−1 + µuTi h(i) (3.36)

- (A2 ) αi is independent of ui, v(i), and w̃i−1 for all i.

- (A3 ) The step-size µ is sufficiently small.

- (A4 ) The basis functions {φb(x)} are sign-preserving, odd-symmetric, monoton-

ically increasing, and twice differentiable.

The first assumption is reasonable under small step-size µ [Say03]. The second as-

sumption is reasonable under small step-size µ, more so when ν is close to 1, and

asymptotically, as i → ∞ [KJ92]. Note that, as the filter progresses towards steady-

state and the estimator wi approaches wo, the error signal e(i) approaches v(i). Under

such conditions, it is reasonable to expect the second condition to hold since αi will be

largely determined by the process v(i), which is independent of ui and w̃i−1. Moreover,

since αi varies slowly by virtue of its convexity as well as the boundedness of τ̆(i) on

(0.5, 1), we can assume αi to be independent of v(i) towards steady-state. Clearly,

the accuracy of the performance expressions that are derived in the sequel under these

assumptions will be dependent on how well these conditions hold. Some differences

between actual performance in simulations and predicted theoretical performance are

expected due to the approximations. The differences will tend to be smaller for small
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step-sizes and fewer basis functions.

From model (3.1), it holds that e(i) = ea(i) + v(i), where ea(i) = uiw̃i−1 is the a

priori estimation error. We recall the stochastic recursion corresponding to (3.16):

wi = wi−1 + µuTi h(i) (3.37)

where

h(i) =
B∑
b=1

αi(b)φb
(
e(i)

)
. (3.38)

Subtracting both sides of (3.37) from wo leads to

w̃i = w̃i−1 − µuTi h(i). (3.39)

In the sequel, we approximate h(i) using a second-order Taylor series approximation
of the basis functions {φb(x)} around ea(i) = 0 for all i ≥ 0 as

h(i) =
B∑
b=1

αi(b)φb
(
e(i)

)
≈

B∑
b=1

αi(b)φv,b(i) + ea(i)
B∑
b=1

αi(b)φ
′
v,b(i)

+
1

2
e2
a(i)

B∑
b=1

αi(b)φ
′′
v,b(i) (3.40)

where

φv,b(i) ≡ φb
(
v(i)

)
(3.41)

φ′v,b(i) ≡ φ′b
(
v(i)

)
(3.42)

φ′′v,b(i) ≡ φ′′b
(
v(i)

)
(3.43)

3.2.1 Mean Behavior

Taking the expectation of both sides of (3.39),

E w̃i = E w̃i−1 − µEuTi h(i). (3.44)

Evaluating the last expectation in (3.44) using (3.40),

EuTi h(i) =

(
B∑
b=1

Eαi(b)Eφ′v,b(i)

)
RuE w̃i−1. (3.45)
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In (3.45), in addition to (A1 ) and (A2 ), (A4 ) on the odd-symmetry of the basis
functions {φb(x)} was invoked, along with the assumptions on the noise samples v(i)
being independent with zero odd moments, and independent of uj for all i and j. Using
the following definitions:

ϕ′v , col
{
Eφ′v,1(i), . . . ,Eφ′v,B(i)

}
(3.46)

p(i) , EαTi ϕ′v (3.47)

where the subscript i has been dropped from ϕ′v since the moment is time-invariant for

wide-sense stationary noise processes, we can rewrite (3.45) as

EuTi h(i) = p(i)RuE w̃i−1. (3.48)

The mean weight-error recursion (3.44) then becomes

E w̃i = [I − µp(i)Ru]E w̃i−1. (3.49)

Let {λm(Ru)}, m = 1, . . . ,M , denote the eigenvalues of Ru. Note that by (A4 ),

p(i) is positive for all i. From [Say03] and [CS11], one sufficient condition for the

asymptotic unbiasedness of (3.49), i.e., limi→∞ E w̃i = 0 irrespective of the initial

condition, is for there to exist a time index i∗1 and a number 0 < θ1 < 1, such that

|1− µp(i)λm(Ru)| ≤ θ1 < 1 for all i > i∗1 and all m = 1, . . . ,M . This translates into

the requirement:
1− θ1

λmin(Ru)
≤ µp(i) ≤ 1 + θ1

λmax(Ru)
(3.50)

where λmin(·) and λmax(·) denote the minimum and maximum eigenvalues of their

matrix arguments, respectively. For example, if Ru = σ2
uI, then this condition requires

selecting µ small enough to ensure

1− θ1

σ2
u

≤ µp(i) ≤ 1 + θ1

σ2
u

. (3.51)

More generally, to ensure that the lower bound in (3.50) is smaller than the up-

per bound, we need to require the condition number of Ru, denoted by % ,

λmax(Ru)/λmin(Ru), to satisfy
%− 1

%+ 1
< θ1 < 1. (3.52)

Note that the ratio on the left is always strictly smaller than one for finite %. For the

conditions in (3.51) or (3.50) to be realized, we need to ensure that p(i) is bounded

for all i. This follows from the boundedness of the two moments Eαi and ϕ′v. While

the boundedness of Eαi is warranted by convexity, the boundedness of the latter can

be guaranteed through appropriate choice of the basis functions {φb(x)}. For example,

for the choice φ1(x) = x and φb(x) = tanh
(
(b− 1)x

)
, b = 2, . . . , B,

ϕ′v =
[
1,E sech2

(
v(i)

)
, . . . ,E (B − 1) sech2

(
(B − 1)v(i)

)]T
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which is bounded since f(x) = sech(x) is bounded in x—see Fig. 3.1.

The sufficient stability condition in (3.50) or (3.51) has little practical relevance given

that the moment p(i) is time-varying. A tighter sufficient condition can be motivated

as follows. First, let φ′v,b , Eφ′v,b(i) for all b, where the time index has been dropped

from the time-invariant moment. Then, define

bmin , arg min
b

φ′v,b, bmax , arg max
b

φ′v,b. (3.53)

Note that

min
α∈Ω+

αTϕ′v = φ′v,bmin
, max

α∈Ω+

αTϕ′v = φ′v,bmax
, (3.54)

since the solutions of either linear program are the vertices of the (B − 1)-dimensional

polytope α ∈ Ω+ where αTϕ′v is minimized or maximized, respectively. By employing

the minimum and maximum values in (3.54) as lower and upper bounds on p(i), it

follows that, for all i and m,

|1− µp(i)λm(Ru)| ≤ max {|1− µωmin| , |1− µωmax|} (3.55)

where

ωmin , φ′v,bmin
λmin(Ru), ωmax , φ′v,bmax

λmax(Ru). (3.56)

Hence, a sufficient condition for the asymptotic unbiasedness of (3.49) is

|1− µωmin| < 1, |1− µωmax| < 1. (3.57)

These two conditions are satisfied if µ is chosen such that

0 < µ <
2

ωmax

. (3.58)

The mean stability condition for the LMS algorithm can be recovered from (3.58) when

B = 1 and φ(x) = x such that ωmax = λmax(Ru) [Say03]:

0 < µ <
2

λmax(Ru)
. (3.59)

3.2.2 Variance Relation

The weighted energy-conservation relation [ANS03,Say03] corresponding to the weight-

error recursion (3.39) is given by

‖w̃i‖2
Σ = ‖w̃i−1‖2

Σ − 2µuiΣw̃i−1h(i) + µ2 ‖ui‖2
Σ h

2(i) (3.60)



54 Chapter 3: Robust Adaptation for Single Agents

where Σ is a symmetric nonnegative-definite weighting matrix that we are free to

choose. Taking the expectation of (3.60) yields the weighted variance relation:

E ‖w̃i‖2
Σ = E ‖w̃i−1‖2

Σ − 2µEuiΣw̃i−1h(i)︸ ︷︷ ︸
1©

+µ2 E ‖ui‖2
Σ h

2(i)︸ ︷︷ ︸
2©

. (3.61)

The moments 1© and 2© need to be evaluated. As for 1©, referring to (3.40),

EuiΣw̃i−1h(i) =
B∑
b=1

Eαi(b)Eφ′v,b(i) · E w̃T
i−1ΣuTi uiw̃i−1

= p(i)E ‖w̃i−1‖2
RuΣ (3.62)

where we have appealed to (A1 ), (A2 ), and (A4 ), in addition to the model assump-

tions; and used (3.47). As for 2©, by squaring both sides of (3.40), discarding powers

of ea(i) higher than 2, multiplying with ‖ui‖2
Σ, taking the expectation and invoking

(A1 ), (A2 ), and (A4 ), in addition to the model assumptions, it follows that

E ‖ui‖2
Σ h

2(i) = E ‖ui‖2
Σ · E

(
B∑
b=1

αi(b)φv,b(i)

)2

+ E ‖ui‖2
Σ e

2
a(i) ·

{
E

(
B∑
b=1

αi(b)φ
′
v,b(i)

)2

+ E

(
B∑
b=1

αi(b)φv,b(i)

)
·

(
B∑
b=1

αi(b)φ
′′
v,b(i)

)}
(3.63a)

= s(i) Tr(RuΣ) + t(i)E ‖w̃i−1‖2
E‖ui‖2ΣuTi ui

(3.63b)

where

s(i) = E
(
αTi ϕv,i

)2
= Tr(RαiRϕv) (3.64)

t(i) = E
(
αTi ϕ

′
v,i

)2
+ E

(
αTi ϕv,i

) (
αTi ϕ

′′
v,i

)
(3.65)

= Tr(RαiRϕ′v +RαiRϕvϕ′′v )

with the vector ϕv,i given by

ϕv,i = col {φv,1(i), . . . ,φv,B(i)} (3.66)

and the vector ϕ′′v,i by

ϕ′′v,i = col
{
φ′′v,1(i), . . . ,φ′′v,B(i)

}
(3.67)

and with

Rαi , EαiαTi (3.68)

Rϕv , Eϕv,iϕTv,i (3.69)
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Rϕ′v , Eϕ′v,iϕ′Tv,i (3.70)

Rϕvϕ′′v , Eϕv,iϕ′′Tv,i (3.71)

where the subscript i has been dropped from the latter three time-invariant moments.
The boundedness of s(i) and t(i) follows from the boundedness of αi as well as the
noise moments in question. Using (3.62) and (3.63b), the weighted variance relation
(3.61) can be written as

E ‖w̃i‖2
Σ = E ‖w̃i−1‖2

Σ′ + µ2s(i) Tr(RuΣ) (3.72)

Σ′ = Σ− 2µp(i)RuΣ + µ2t(i)E ‖ui‖2
Σ u

T
i ui (3.73)

Two cases can be outlined.

3.2.2.1 Special Case—Gaussian Regressors

The case of Gaussian regressors simplifies the analysis since the fourth-order moment
E ‖ui‖2

Σ u
T
i ui in (3.73) can then be evaluated in closed form. A change of coordinates

will prove handy. Let Ru = UΛUT be the eigendecomposition of Ru, where Λ is
diagonal with the eigenvalues λm(Ru), m = 1, . . . ,M , and U is an orthogonal matrix
whose columns are the corresponding eigenvectors. Furthermore, let w̄i , UT w̃i,
ūi , uiU , and Σ̄ , UTΣU . The weighted variance relation (3.72)–(3.73) can then be
transformed into

E ‖w̄i‖2
Σ̄ = E ‖w̄i−1‖2

Σ̄′ + µ2s(i) Tr(ΛΣ̄) (3.74)

Σ̄′ = Σ̄ − 2µp(i)ΛΣ̄ + µ2t(i)
(
Λ Tr(ΛΣ̄) + 2ΛΣ̄Λ

)
(3.75)

where, in (3.75), we exploited the property that E ‖ūi‖2
Σ ū

T
i ūi evaluates to Λ Tr(ΛΣ̄) +

2ΛΣ̄Λ for Gaussian regressors [Say03]. Note that if we choose Σ̄ in (3.75) to be a
diagonal matrix, then Σ̄′ will be a diagonal matrix as well. The equation can therefore
be expressed more compactly in terms of the diagonal entries of the matrices on either
side. Let σ̄ , diag

{
Σ̄
}

and λ , diag {Λ}. Diagonalizing (3.75), the weighted variance
relation (3.74) for Gaussian regressors can be expressed as

E ‖w̄i‖2
σ̄ = E ‖w̄i−1‖2

F̄iσ̄
+ µ2s(i)

(
λT σ̄

)
(3.76)

F̄i = I − 2µp(i)Λ + 2µ2t(i)Λ2 + µ2t(i)λλT (3.77)

where the notation ‖X‖2
y is used as shorthand for ‖X‖2

diag{y}, with X and y being a

matrix and a vector of appropriate dimensions, respectively.

3.2.2.2 General Regressors

More generally, when the regressors are not necessarily Gaussian, we let σ , vec(Σ)
and ru , vec(Ru). Vectorizing (3.73) and exploiting the property vec(XΣY ) =
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(
Y T ⊗X

)
σ, with ⊗ denoting the Kronecker product, the weighted variance relation

(3.72)–(3.73) for general regressors can be expressed as

E ‖w̃i‖2
σ = E ‖w̃i−1‖2

Fiσ
+ µ2s(i)

(
rTu σ

)
(3.78)

Fi = I − 2µp(i) (I ⊗Ru) + 2µ2t(i)E
([
uTi ui

]T ⊗ [uTi ui]) (3.79)

where the notation ‖X‖2
y is now being used as shorthand for ‖X‖2

vec−1(y).

3.2.3 Steady-State Performance

Let

MSE , lim
i→∞

E e2(i) (3.80)

and

EMSE , lim
i→∞

E e2
a(i) (3.81)

where EMSE stands for excess mean-square error. It holds that MSE = EMSE + σ2
v .

Let

E ‖w̃∞‖2
Σ , lim

i→∞
E ‖w̃i‖2

Σ . (3.82)

Then, one can also define the mean-square deviation (MSD):

MSD , lim
i→∞

E ‖w̃i‖2 = E ‖w̃∞‖2 (3.83)

and the EMSE may be expressed, under (A1 ), as

EMSE = E ‖w̃∞‖2
Ru
. (3.84)

3.2.3.1 Special Case—Gaussian Regressors

Referring to the weighted variance relation (3.76)–(3.77) and taking the limit as i→∞,

under the assumption that the moments Eαi and Rαi approach some constant values

Eα∞ and Rα∞ , respectively, it holds that

E ‖w̄∞‖2

(I−F̄∞)σ̄ = µ2s(∞)
(
λT σ̄

)
(3.85)

where

F̄∞ , lim
i→∞

F̄i

= I − 2µp(∞)Λ + 2µ2t(∞)Λ2 + µ2t(∞)λλT (3.86)
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and

p(∞) , lim
i→∞

p(i) = EαT∞ϕ̄′v (3.87)

s(∞) , lim
i→∞

s(i) = Tr(Rα∞Rϕv) (3.88)

t(∞) , lim
i→∞

t(i) = Tr(Rα∞Rϕ′v +Rα∞Rϕvϕ′′v ) (3.89)

In the following, the matrix F̄∞ is assumed to be stable. Since MSD = E ‖w̃∞‖2 =

E ‖w̄∞‖2, then, substituting σ̄ =
(
I − F̄∞

)−1
1 in (3.85) results in

MSD = µ2s(∞)λT
(
I − F̄∞

)−1
1 (3.90)

which evaluates to

MSD = µ
s(∞)

p(∞)
·

M∑
m=1

1

1−µ t(∞)
p(∞)

λm(Ru)

2− µ t(∞)
p(∞)
·
M∑
m=1

λm(Ru)

1−µ t(∞)
p(∞)

λm(Ru)

. (3.91)

Similarly, for the EMSE, by substituting σ̄ =
(
I − F̄∞

)−1
λ in (3.85), we obtain

EMSE = µ
s(∞)

p(∞)
·

M∑
m=1

λm(Ru)

1−µ t(∞)
p(∞)

λm(Ru)

2− µ t(∞)
p(∞)
·
M∑
m=1

λm(Ru)

1−µ t(∞)
p(∞)

λm(Ru)

. (3.92)

The MSD and EMSE expressions for the LMS algorithm are given by [Say03]:

MSDLMS = µσ2
v

M∑
m=1

1
1−µλm(Ru)

2− µ
M∑
m=1

λm(Ru)
1−µλm(Ru)

(3.93)

EMSELMS = µσ2
v

M∑
m=1

λm(Ru)
1−µλm(Ru)

2− µ
M∑
m=1

λm(Ru)
1−µλm(Ru)

(3.94)

For small step-size µ such that µ t(∞)
p(∞)

λm(Ru) � 1 for all m = 1, . . . ,M , expressions

(3.91) and (3.92) simplify to

MSD ≈
µM s(∞)

p(∞)

2− µ t(∞)
p(∞)

Tr(Ru)
(3.95)

EMSE ≈
µ s(∞)
p(∞)

Tr(Ru)

2− µ t(∞)
p(∞)

Tr(Ru)
(3.96)
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Remark 4. Consider the following exact steady-state variance relation [Say03, Theo-

rem 6.4.1], adapted to our robust algorithm:

µE ‖ui‖2 h2(i) = 2E ea(i)h(i), i→∞. (3.97)

Consider as well the following assumption in addition to (A1 )–(A4 ):

- (A5 ) The quantities ‖ui‖2 and h2(i) are asymptotically uncorrelated.

Then, evaluating (3.97) leads to the same expression for the EMSE as in (3.96), without

the need for a Gaussian assumption on the regressors. �

For even smaller step-size µ such that the O(µ2) terms in (3.86) may be ignored,

F̄∞ ≈ I − 2µp(∞)Λ, (3.98)

which is stable if

0 < µp(∞) <
1

λmax(Ru)
, (3.99)

and (3.95) and (3.96) become

MSD ≈
µM s(∞)

p(∞)

2
, EMSE ≈

µ s(∞)
p(∞)

Tr(Ru)

2
. (3.100)

3.2.3.2 General Regressors

Similarly, we obtain

MSD = µ2s(∞)rTu (I − F∞)−1
1 (3.101)

EMSE = µ2s(∞)rTu (I − F∞)−1 ru (3.102)

where

F∞ , lim
i→∞

Fi

= I − 2µp(∞) (I ⊗Ru) + 2µ2t(∞)E
([
uTi ui

]T ⊗ [uTi ui]) (3.103)

which is assumed to be stable, provided that the matrix E
([
uTi ui

]T ⊗ [uTi ui]) is

finite.

For small step-size µ such that the O(µ2) term in (3.103) may be ignored,

F∞ ≈ I − 2µp(∞) (I ⊗Ru) , (3.104)

where the same stability condition (3.99) applies, and (3.101) and (3.102) become

identical to those in (3.100).
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Remark 5. One must clarify in what sense the algorithm developed here is robust to

impulsive noise. This property follows from the fact that the algorithm is designed to

approximate the MSE-optimal error nonlinearity (3.8) from [ANS01]. It is noteworthy

that the steady-state mean-square performance expressions in (3.100) under small step-

size match those in [ANS01] for the class of smooth nonlinearities when e(i) ≈ v(i)

(see Eq. (65) in [ANS01]). The latter were shown in [ANS01] to be minimized by the

choice of nonlinearity (3.8).

Remark 6. As previously mentioned in Remark 2, the LMS algorithm is recovered

when B = 1 and φ(x) = x. It can be verified that in this case, p(i) = t(i) = 1 and

s(i) = σ2
v for all i. By substituting these values into (3.91)–(3.92), (3.95)–(3.96), and

(3.100), the well-known steady-state mean-square performance expressions for the LMS

algorithm are recovered [Say03].

Remark 7. For the verification of the steady-state mean-square performance expres-

sions derived in this subsection, p(∞), s(∞), and t(∞) need to be evaluated according

to (3.87)–(3.89). The moments pertaining to the noise process v(i) can be evaluated

subject to knowledge of its distribution. The steady-state first- and second-order mo-

ments of the vector of basis function weights αi, Eα∞ and Rα∞ , however, need to be

approximated. One way to do so is through Monte Carlo simulation. Another way

is to approximate the limiting value α∞ by the constrained solution to the normal

equations:

α∞ ≈ arg min
α∈Ω+

αTRϕvα− 2αTϕ′v. (3.105)

Note that the optimization problem in (3.105) is the same as in (3.20) with the output

error signal e(i) substituted with the noise signal v(i) and subject to (3.13). The

steady-state moments Eα∞ and Rα∞ may then be approximated by the instantaneous

values α∞ and α∞α
T
∞, respectively.

3.2.4 Mean-Square Behavior

The recursion for the weighted variance relation (3.72) is not self-contained. For small

step-size µ, theO(µ2) term in (3.73) may be ignored, and the weighted variance relation

(3.72) becomes

E ‖w̃i‖2
Σ = E ‖w̃i−1‖2

Σ − 2µp(i)E ‖w̃i−1‖2
RuΣ + µ2s(i) Tr(RuΣ). (3.106)

According to the Cayley–Hamilton Theorem [ANS03, Say03], it holds that RM
u =

−c0I − c1Ru − . . . − cM−1R
M−1
u , where c(x) , det(xI − Ru) = co + c1x + . . . + xM ,
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det(·) denoting the determinant of its matrix argument, so that

E ‖w̃i−1‖2
RMu

= −
M−1∑
m=0

cmE ‖w̃i−1‖2
Rmu

. (3.107)

Writing out (3.106) for Σ = I, Ru, . . . , R
M−1
u results in the following state-space model:

Wi = BiWi−1 + µ2s(i)Y (3.108)

where the state-vector Wi and the vector Y are given by

Wi ,


E ‖w̃i‖2

E ‖w̃i‖2
Ru

...

E ‖w̃i‖2
RM−1
u

 , Y ,


Tr(Ru)
Tr(R2

u)
...

Tr(RM
u )

 , (3.109)

and Bi by (3.110) at the bottom of the page. Eq. (3.108) represents a nonlinear time-

invariant state-space model, where the first and second entries in the state-vector Wi

represent the transient MSD and EMSE, respectively.

Remark 8. Referring again to (3.61), if we invoke (A5 ) in addition to (A1 )–(A4 ) to

evaluate E ‖ui‖2
Σ h

2(i), we get

E ‖ui‖2
Σ h

2(i) = s(i) Tr(RuΣ) + t(i) Tr(RuΣ)E ‖w̃i−1‖2
Ru

(3.111)

—see (3.63b) for comparison—where s(i) and t(i) are still given by (3.64) and (3.65).
An alternative weighted variance relation to (3.72)–(3.73) is therefore given by

E ‖w̃i‖2
Σ = E ‖w̃i−1‖2

Σ′ + µ2s(i) Tr(RuΣ) (3.112)

Σ′ = Σ− 2µp(i)RuΣ + µ2t(i) Tr(RuΣ)Ru (3.113)

and the resulting state-space model by

Wi =
(
Bi + µ2t(i)YeT2

)
Wi−1 + µ2s(i)Y (3.114)

where e2 is the all-zero vector of length M and second entry equal to 1. Note that the

state-space model (3.108) can be recovered from (3.114) by ignoring the O(µ2) term

multiplying the state-vector Wi−1.

Bi ,


1 −2µp(i) 0 . . . 0 0
0 1 −2µp(i) . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 −2µp(i)

2µc0p(i) 2µc1p(i) 2µc2p(i) . . . 2µcM−2p(i) 1 + 2µcM−1p(i)

 (3.110)
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3.2.5 Mean-Square Stability

It is observed from (3.108) that one sufficient condition for mean-square stability, i.e.,

E ‖w̃i‖2 and E e2
a(i) tend to some finite constant values irrespective of the initial con-

dition, w−1, is for there to exist a time index i∗2 and a number 0 < θ2 < 1, such that

|λmax(Bi)| ≤ θ2 < 1 for all i > i∗2. Let C be the companion matrix of Ru. It follows

that Bi = I − 2µp(i)C, with eigenvalues 1 − 2µp(i)λm(Ru), m = 1, . . . ,M . Hence,

mean-square stability conditions can be deduced that are a factor 2 tighter than the

mean-stability conditions in (3.50) and (3.58). Combining with the assumption of suf-

ficiently small step-size that led to the recursion (3.106) and hence, model (3.108), it

is concluded that sufficiently small µ helps ensure mean-square stability.

3.2.6 Algorithm Complexity

The robust adaptive filtering algorithm in Table 3.1 involves the following operations

per iteration:

- 3M +B3 + 4B2 + 5B + 5 multiplications

- 3M +B3 + 2B2 + 3B − 1 additions

- 1 division

- 2 sorting operations (O(B log2B))

- 2B + 1 function evaluations or table lookups

Excluding the function evaluations or table lookups, the total number of operations is

O(6M +B3). For comparison, the LMS algorithm involves 2M +1 multiplications and

2M additions per iteration, implying that the robust algorithm introduces O(2M+B3)

additional complexity per iteration.

3.3 Simulation Results

A system identification setup is considered, where the aim is to estimate a randomly

initialized unit-norm wo of size M = 10. The regressors {ui} are i.i.d. zero-mean

Gaussian vectors with covariance matrix Ru = diag
{
σ2
u,1, . . . , σ

2
u,M

}
, where

{
σ2
u,m

}
are drawn independently and uniformly over [5, 15) dB. The noise samples {v(i)} are

drawn independently of the regressors and are i.i.d. Considered is an ε-contaminated
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Gaussian mixture model for the noise, which is a typical one for impulsive noise. The

pdf is given by

fv(v) = (1− ε)N (0, σ̄2
v) + εN (0, κσ̄2

v),

where σ̄2
v is the nominal noise variance, ε is the contamination ratio, and κ� 1. The

case ε = 0 signifies uncontaminated Gaussian noise. The effective noise variance is given

by σ2
v = (1− ε) σ̄2

v +εκσ̄2
v . The initial estimate for wo is set to w−1 = 0. For the robust

algorithm in Table 3.1, the initial estimate α−1 is set to 1
B
1 for whichever choice of B,

the number of basis functions. For the smoothing operations, ν is set to 0.9 and initial

conditions to zero. The parameter ε is set to 10−6. All simulation results in this section

are obtained by averaging over 1000 experiments. The following set of basis functions

is employed, unless mentioned otherwise: φ1(x) = x and φb(x) = tanh
(
(b − 1)x

)
,

b = 2, . . . , B.

First, the effect on the learning and steady-state behavior of the number of basis

functions used is investigated. The nominal noise variance is σ̄2
v = −10 dB, ε = 0.1,

and κ = 100. First, the performance of the robust algorithm for different number of

basis functions B is compared with that of the LMS algorithm at the same adaptation

rate, i.e., equal step-size µ = 1× 10−3. The resulting learning performance is depicted

in Fig. 3.2a in terms of the transient MSD. The corresponding steady-state MSDs,

obtained by averaging the last 100 samples of the respective MSD curves, are plotted

in Fig. 3.2b, along with their theoretical counterparts according to (3.93), (3.91), and

(3.87)–(3.89) for verification. The moments Eα∞ and Rα∞ are approximated in two

ways—see Remark 7 in Sec. 3.2.3: the first approximation is where CVX is used to

solve (3.105) [GB14]; and the second is based on Monte Carlo (MC) simulation. The

robust algorithm is seen to converge to steady-state slower than the LMS algorithm

for the same step-size. On the other hand, the robust algorithm outperforms the LMS

algorithm in terms of steady-state performance. Moreover, increasing the number of

basis functions appears to speed up convergence and worsen steady-state performance.

The first approximation of the moments Eα∞ and Rα∞ does not lead to a tight fit

between theory and simulation. This is to have been expected since the approximation

does not account for the particular manner in which the basis function weights αi

are adapted according to (3.30) and (3.32)–(3.34) to solve (3.20). The second, Monte

Carlo-based approximation of the moments, on the other hand, produces a tighter fit

between theory and simulation, albeit exhibiting a discrepancy towards bigger values

of B. Increasing the number of basis functions improves the ability of the algorithm

to approximate the optimal nonlinearity (3.8) with better accuracy, which reflects

positively on the performance of the algorithm. On the other hand, adding basis

functions increases the number of parameters that need to be adapted, which degrades

performance. Therefore, there is a compromise between convergence and performance,
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as is typical for such scenarios.

Now, the performance of the robust algorithm for different number of basis functions

B is compared with that of the LMS algorithm at the same initial convergence rate,

for which µrob = 1× 10−3 and µLMS = 2.7× 10−4. The resulting learning performance

is depicted in Fig. 3.3a in terms of the transient MSD. The corresponding steady-state

MSDs, obtained by averaging the last 100 samples of the respective MSD curves, are

plotted in Fig. 3.3b, along with their theoretical counterparts. The LMS algorithm is

seen to converge slower than the robust algorithm to worse steady-state performance.

Moreover, increasing the number of basis functions appears to speed up convergence

and worsen steady-state performance.

Depicted in Figs. 3.4a and 3.4b is the transient MSD performance of the LMS and

robust algorithms with B = 2 basis functions when the measurements are corrupted

by contaminated Gaussian noise, at σ̄2
v = −10 dB, with different contamination ratios

ε, and κ = 100. The adaptation rate of both algorithms is kept constant for all ε and is

chosen in such a way so that the convergence time of the robust algorithm is the same

as that of the LMS algorithm in Fig. 3.4a at ε = 0 (no contamination): µLMS = 8×10−4

and µrob = 1 × 10−3. The corresponding steady-state MSDs, obtained by averaging

the last 100 samples of the respective MSD curves, are plotted in Fig. 3.5a, along with

their theoretical counterparts. The corresponding ratio s(∞)
p(∞)

is plotted in Fig. 3.5b:

While for the LMS algorithm, this ratio is simply equal to the effective noise variance,

σ2
v (see Remark 6); for the robust algorithm, the ratio is computed using the second,

Monte Carlo-based approximation of the moments Eα∞ and Rα∞ . It is seen that an

increase in the contamination ratio slows down the convergence of the robust algorithm,

compared with the LMS algorithm, where convergence is seen to speed up. On the

other hand, it is evident that the algorithm is less sensitive than the LMS algorithm

to increasingly impulsive noise.

We now investigate the performance of the algorithm under a colored regression se-

quence u(i) in view of the deployment of the time-varying factor τ̆(i) for the adaptation

of the step-size τ(i) to update the basis function weights αi—see (3.32)–(3.34). The

colored regression sequence is obtained by filtering an i.i.d. zero-mean Gaussian ran-

dom process with variance σ2
u through a first-order autoregressive model with transfer

function
√

1−a2

1−az−1 , where a is the coefficient of the AR(1) process, reflecting the degree of

correlation. We consider a = 0 (white regression sequence), 0.4, and 0.8 and two signal-

to-noise (SNR) ratio scenarios under Gaussian noise (ε = 0) and B = 5 basis functions:

σ2
u = 10 dB and σ̄2

v = −10 dB (high SNR); σ2
u = 0 dB and σ̄2

v = 0 dB (low SNR).

The step-sizes in the two scenarios are µ = 1 × 10−3 and µ = 5 × 10−3, respectively.

The results for the two scenarios are illustrated in Figs. 3.6 and 3.7. While Figs. 3.6a
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and 3.7a depict the resulting simulated MSD learning curves as well as the theoretical

MSD learning curves according to (3.114) and theoretical steady-state MSDs according

to (3.91), Figs. 3.6b and 3.7b depict the mean transient behavior of the factor τ̆(i).

Since the difference between the theoretical MSD learning curves (3.114) and (3.108)

was observed to be negligible, only the former is plotted. The moments Eαi and Rαi

involved in the calculation of the moments p(i) and s(i) according to (3.47) and (3.64),

respectively, are approximated via Monte Carlo simulations. It is seen from Figs. 3.6a

and 3.7a that despite the slower convergence of the algorithm with increasing correla-

tion level, the steady-state performance remains unaffected. However, the factor τ̆(i)

is seen from Figs. 3.6b and 3.7b to converge at roughly the same time irrespective of

the correlation level, and in synchrony with the algorithm under the white regression

sequence (a = 0). This is consistent with the implementation under consideration in

(3.32)–(3.33), which for sufficiently small step-size µ drives τ̆(i) to adapt at the same

rate as the average convergence mode of the algorithm. Regarding the agreement be-

tween the simulated and theoretical transient MSD learning curves in Figs. 3.6a and

3.7a, it is seen that in the high-SNR scenario, where the nonlinearity of the algo-

rithm is prominent in the first stages of adaptation, the theoretical curves, based on

the second-order Taylor approximation of the nonlinearity (3.40), deviate from their

simulated counterparts in transience. This is not the case, however, in the low-SNR

scenario. It is also noteworthy that the simulated and theoretical steady-state MSDs

are in agreement across the correlation levels under consideration, despite the analy-

sis having been conducted under the independence assumption (A1 ) on the regressors

{ui}. Now, in order to appreciate the robustness of the proposed τ̆(i) construction

(3.33), the performance of the robust algorithm with B = 5 basis functions is exam-

ined under contaminated Gaussian noise, with ε = 0.1 and κ = 1000, at σ̄2
v = 0 dB, and

using the colored regression sequence u(i) with correlation level a = 0.4. For compari-

son, three other constructions for τ̆(i) are considered: one employing (3.33), where λ̂(i)

is set instead to λmin(Ru), assuming it is known; and another two constructions where

τ̆(i) is set to constant values, 0.05 and 0.99. The step-size is chosen to be µ = 5×10−3.

The results are plotted in Fig. 3.8, where Fig. 3.8a depicts the resulting MSD learning

curves and Fig. 3.8b, the mean transient behavior of the factor τ̆(i). While the adaptive

construction (3.33) incurs no performance loss despite the approximation used for the

slowest convergence mode, it also enjoys a stabilizing effect, which comes at the price

of complexity: Setting the τ̆(i) factor, for reasons of simplicity, to a constant value that

might be too high for the impulsive noise environment curbs the ability of the robust

algorithm to learn the underlying distribution, leading to unpredictable performance.

Finally, in Figs. 3.9a and 3.9b, the performance of the robust algorithm of Table 3.1

is compared with others in the literature in severe noisy environments, similar to the
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one proposed in [CA97], for an i.i.d. unit-variance regression sequence, i.e., Ru = IM .

In addition to the LMS algorithm, considered are the sign-LMS [Say03], robust mixed-

norm (RMN) [CA97], and least-mean M-estimate (LMM) [ZCN00] algorithms. While

the sign-LMS algorithm is of the same order of complexity as the LMS algorithm, the

RMN and LMM algorithms both introduce O(Nw log2Nw) additional complexity per

iteration relative to the LMS algorithm, excluding function evaluation or table lookup,

where Nw is the window-length parameter of the respective algorithm. In Fig. 3.9a,

the MSD learning curves are plotted for measurements corrupted by uncontaminated

Gaussian noise (ε = 0) at σ̄2
v = 0 dB. The steady-state MSDs for these algorithms have

been equalized: µrob = µLMS = µLMM = 1×10−2, µsign-LMS = 8×10−3, µRMN = 3×10−3.

The window length for the RMN and LMM algorithms is set to 10. For the LMM

algorithm, the clipping threshold is adapted such that the outlier probability does

not exceed 0.01; and the smoothing parameter for the estimation of the output error

variance based on the normalized median absolute deviation [RC93] is set to 0.9. Also

plotted is the learning curve given the optimal nonlinearity, calculated according to

(3.7), using the same step-size as the robust algorithm. In Fig. 3.9b, the same curves

are plotted for measurements corrupted by contaminated Gaussian noise, with ε = 0.1

and κ = 1000. The step-sizes for these algorithms are the same as those in Fig. 3.9a at

ε = 0 (no contamination). According to Fig. 3.9a, at ε = 0, the learning curve of the

LMM algorithm coincides with that of the LMS algorithm. As a matter of fact, given

this scenario and choice of LMM algorithm parameters, the LMM algorithm behaves

like the LMS algorithm. The parameters actually act in its favor in this scenario: The

LMM algorithm selects between the LMS algorithm and an error clipping function at

each time index. The selection is based on comparing the error magnitude with a

threshold. The threshold is the magnitude of a Gaussian random variable, as a model

for the error signal, the probability of exceeding which should not exceed a certain

limit preset by the practitioner, here 10 %. This implies that the threshold might be

high for Gaussian noise, but low for a heavy-tailed pdf. Hence, if the error signal is

almost never clipped, the LMM algorithm behaves like the LMS algorithm. Note that

in order to calculate the threshold, the LMM algorithm requires an estimate of the

error variance, which is estimated over a window whose length is also chosen by the

practitioner. In the absence of prior knowledge about the noise distribution in order

to guide the selection of these tuning parameters, the performance of the algorithm

is rendered sensitive to changing conditions. Indeed, the performance of the LMM

algorithm is inferior to all but the LMS algorithm when the noise is contaminated

while all parameters remain fixed. On the other hand, the RMN algorithm employs an

adaptive convex combination of LMS and sign-LMS updates, steered by an assessment

of the instantaneous reference signal, rather than the error signal. This construction

renders the algorithm performance sensitive to the statistics of the regression signal and
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the system to be identified. It can therefore be appreciated from Figs. 3.9a and 3.9b

that for slower convergence in nominal noise conditions, the robust algorithm developed

here achieves the best steady-state performance in the severe noisy environment under

consideration.

In conclusion, we remind the reader that robustness in the offline batch setting is

associated with a tradeoff: good performance in the presence of contamination at the

expense of some mean-square performance loss under Gaussian noise. Given that in

adaptive filtering convergence rate is yet another performance measure to contend

with, then it should be expected that for the same target steady-state mean-square

performance under Gaussian noise, the convergence rate will have to be compromised

relative to the LMS algorithm.

As a final illustrative example for the behavior of the robust algorithm in compari-

son with the other algorithms considered here, the convergence rates under equalized

steady-state MSDs are compared given Laplace noise, which is heavier tailed than

Gaussian noise and whose pdf is given by

fv(v) =
1√
2σv

e−
√

2|v|
σv .

We consider σ2
v = 10 dB. Noting that hopt

1 (x) for Laplace noise is given by
√

2
σv

sign(x),

the following set of basis functions is considered: φ1(x) = x and φ2(x) = sign(x).

The step-sizes are chosen as µrob = µsign-LMS = 5 × 10−3, µLMS = 1.25 × 10−3, and

µLMM = 1.55 × 10−3. All other parameters are set to the same values as before. The

resulting MSD learning curves are plotted in Fig. 3.10. Since the RMN algorithm failed

to converge within the same time frame as the other algorithms, its learning curve

is not displayed. Also plotted is the learning curve given the optimal nonlinearity,

hopt
1 (x) =

√
2

σv
sign(x), using the same step-size as the robust algorithm, which is also

the same as that of the sign-LMS algorithm in this example; so the effective step-size

is µopt = 1√
5
µrob, leading to slower convergence. It can be seen that the robust and

sign-LMS algorithms behave similarly and converge at the same time, while the LMS

algorithm converges slower.

3.4 Conclusion

A robust LMS-type adaptive algorithm was developed that employs an adaptive error

nonlinearity. The error nonlinearity was chosen to be a convex combination of prese-

lected basis functions where the combination coefficients are adapted jointly with the
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weight vector such that the MSE relative to the optimal error nonlinearity is minimized

in each iteration. While knowledge of the nature of the noise, impulsive or otherwise,

serves to guide the choice of basis functions, exact distributional knowledge is not re-

quired, which endows the algorithm with robustness and flexibility. The transient and

steady-state behavior of the algorithm were analyzed in the mean and mean-square

sense using the energy conservation framework subject to a set of reasonable assump-

tions given the nonlinear and stochastic nature of the algorithm. The performance

of the algorithm was illustrated in simulation in an impulsive noise scenario. The

computational complexity of the algorithm was summarized, revealing that the robust

algorithm introduces O(2M +B3) additional complexity per iteration compared to the

LMS algorithm.
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Figure 3.2: (a) Transient and (b) steady-state MSD performance of the LMS algorithm
(black) compared with that of the robust adaptive algorithm (red) using the same step-size
µ and for an increasing number of basis functions B. The measurements are corrupted by
contaminated Gaussian noise, with ε = 0.1 and κ = 100, at σ̄2

v = −10 dB. The dashed lines in
Fig. 3.2b represent the theoretical steady-state MSD according to (3.93), (3.91), and (3.87)–
(3.89). The moments Eα∞ and Rα∞ are approximated in two ways: the first approximation
is based on solving (3.105) and the second is based on Monte Carlo (MC) simulation.
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Figure 3.3: (a) Transient and (b) steady-state MSD performance of the LMS algorithm
(black) compared with that of the robust adaptive algorithm (red) at equal initial convergence
rates and for an increasing number of basis functions B. The measurements are corrupted
by contaminated Gaussian noise, with ε = 0.1 and κ = 100, at σ̄2

v = −10 dB. The dashed
lines in Fig. 3.3b represent the theoretical steady-state MSD.
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Figure 3.4: Transient MSD performance of the (a) LMS algorithm and (b) robust adaptive
algorithm with B = 2 basis functions where the measurements are corrupted by contaminated
Gaussian noise, at σ̄2

v = −10 dB, with different contamination ratios ε, and κ = 100. The
adaptation rate of both algorithms is kept constant for all ε and is chosen in such a way so
that the convergence times of the robust algorithm and the LMS algorithm are the same at
ε = 0 (no contamination).



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

−30

−25

−20

−15

−10

−5

ε

S
te

a
d
y
−

S
ta

te
 M

S
D

 (
d
B

)

LMS and Robust Algorithms Under Contaminated Noise

 

 

LMS

LMS − Theo. (Eq. (93))

Robust AF

Robust AF − Theo. 1 (Eqs. (91), (87)−−(89), (105))

Robust AF − Theo. 2 (Eqs. (91), (87)−−(89), MC)

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−12

−10

−8

−6

−4

−2

0

2

4

6

8

ε

s
(∞

)
p
(∞

)
(d
B
)

 

 

LMS

Robust AF

(b)

Figure 3.5: (a) Steady-state MSD performance of the LMS algorithm (black) compared with
that of the robust adaptive algorithm (red) with B = 2 basis functions. The measurements are
corrupted by contaminated Gaussian noise, at σ̄2

v = −10 dB, with increasing contamination
ratio ε, and κ = 100. The adaptation rate of both algorithms is kept constant for all ε and
is chosen in such a way so that the convergence times of the robust algorithm in Fig. 3.4b
and LMS algorithm in Fig. 3.4a are the same at ε = 0 (no contamination). The dashed lines

represent the theoretical steady-state MSD. (b) The corresponding value of the ratio s(∞)
p(∞)

for increasing contamination ratio ε.
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Figure 3.6: (a) Transient MSD performance of the robust algorithm with B = 5 basis
functions under colored regression sequence with different degrees of correlation a in a high-
SNR scenario: σ2

u = 10 dB and Gaussian noise with σ̄2
v = −10 dB. The dashed lines represent

the theoretical transient and steady-state MSD performance. (b) Temporal evolution of
E τ̆(i).
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Figure 3.7: (a) Transient MSD performance of the robust algorithm with B = 5 basis
functions under colored regression sequence with different degrees of correlation a in a low-
SNR scenario: σ2

u = 0 dB and Gaussian noise with σ̄2
v = 0 dB. The dashed lines represent the

theoretical transient and steady-state MSD performance. (b) Temporal evolution of E τ̆(i).
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Figure 3.8: (a) Transient MSD performance of the robust algorithm with B = 5 basis func-
tions under colored regression sequence (a = 0.4) with σ2

u = 0 dB and different constructions
for the time-varying factor τ̆(i). The measurements are corrupted by contaminated Gaussian
noise, with ε = 0.1 and κ = 1000, at σ̄2

v = 0 dB. (b) Temporal evolution of E τ̆(i).
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Figure 3.9: MSD learning curves for the LMS, sign-LMS, robust mixed-norm (RMN),
least-mean M-estimate (LMM) algorithms, and the robust algorithm developed here where
the measurements are corrupted by (a) uncontaminated Gaussian noise and (b) contaminated
Gaussian noise, with ε = 0.1 and κ = 1000, at σ̄2

v = 0 dB. The step-sizes for these algorithms
are the same as those in Fig. 3.9a at ε = 0 (no contamination). Also plotted is the learning
curve given the optimal nonlinearity, using the same step-size as the robust algorithm.
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Figure 3.10: MSD learning curves under equalized steady-state MSDs for the LMS, sign-
LMS, least-mean M-estimate (LMM) algorithms, and the robust algorithm of this work,
with basis functions φ1(x) = x and φ2(x) = sign(x), where the measurements are corrupted
by Laplace noise with σ2

v = 10 dB. Also plotted is the learning curve given the optimal
nonlinearity, using the same step-size as the robust algorithm.
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Chapter 4

Robust Adaptive Estimation Over
Networks

In this chapter, the problem of distributed estimation over adaptive networks in the

presence of impulsive noise is considered. To this end, each node in a graph topology

cooperates with its neighbors, diffusing information through the network, in order

to estimate parameters of interest using local neighborhood measurements that are

corrupted by impulsive noise.

In Ch. 3, a robust adaptation strategy for stand-alone agents in the presence of impul-

sive noise was developed. In this chapter, the more challenging multi-agent scenario

is studied, where a collection of agents are now coupled by the topology and work

together to solve the estimation task in the presence of impulsive contamination across

the network. Thus, a robust distributed adaptation strategy is called for.

By extending the framework of Ch. 3, a robust diffusion algorithm is developed in this

chapter with automatic tuning and adaptation abilities; one that seeks the unknown

parameter while at the same time, by means of an embedded step, identifying the

optimal error nonlinearity for enhanced robustness. The performance of the resulting

algorithm is examined and supporting simulations are provided.

In Sec. 4.1, the robust algorithm developed in Ch. 3 is extended to solve the problem

of robust distributed estimation over adaptive networks, and subsequently analyzed in

Sec. 4.2 using the energy conservation analysis framework [Say03,Say14b,Say14a]. In

Sec. 4.3, simulation results are presented. Conclusions are drawn in Sec. 4.4.1

4.1 Distributed Estimation

4.1.1 Data Model and Problem Formulation

Considered here is a network composed of N nodes distributed over some region in

space. Two nodes that can exchange data are said to be connected. The set of nodes

1This chapter has served as basis for the journal article:
S. Al-Sayed, A. M. Zoubir, and A. H. Sayed, “Robust distributed estimation by networked agents,”
submitted to IEEE Trans. Signal Process., 2016.
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connected to node k, including itself, is referred to as its neighborhood, and is denoted

by Nk. The degree of node k, denoted by nk, is the number of its neighbors. At each

time index i ≥ 0, each node k has access to a real-valued scalar measurement dk(i)

relating to an unknown real-valued vector parameter wo of size M according to

dk(i) = uk,iw
o + vk(i) (4.1)

where uk,i is a real-valued row regression vector of size M ; and {vk(i)} is a real-

valued scalar wide-sense stationary zero-mean impulsive noise process with variance

σ2
v,k. The random processes {dk(i)} and {uk,i} are zero-mean and jointly stationary.

The regressors uk,i and u`,j are spatially and temporally independent for k 6= ` or

i 6= j, where the covariance matrix of uk,i is denoted as Ru,k = EuTk,iuk,i and assumed

to be positive definite. The random variables vk(i) and v`(j) are also spatially and

temporally independent for k 6= ` or i 6= j. It is assumed that the noise probability

density functions (pdfs), fvk(v), are symmetric for all k, i.e., Ev2p−1
k (i) = 0, p = 1, 2, . . .

Moreover, the random variables uk,i and v`(j) are independent for all k, `, i, and j.

The aim is for the nodes to adaptively estimate wo, availing themselves of the data

collected from their neighbors in order to minimize the following global mean-square-

error (MSE) cost function:

J(w) ,
N∑
k=1

E
(
dk(i)− uk,iw

)2
. (4.2)

In [CS10, STC+13, Say14b, Say14a], the following adapt-then-combine (ATC) least-

mean-squares (LMS) diffusion estimation algorithm was developed to minimize (4.2).

Consider an N ×N matrix A with nonnegative real entries a`k satisfying

a`k = 0 if ` /∈ Nk, 1TA = 1T . (4.3)

Let ek(i) , dk(i) − uk,iwk,i−1 denote the output error of the kth node at time index

i. The update equations of the algorithm for each node k for i ≥ 0 are given by

[CS10,STC+13,Say14b,Say14a]:{
ψk,i = wk,i−1 + µku

T
k,iek(i)

wk,i =
∑
`∈Nk

a`kψ`,i (4.4)

where µk is a small positive step-size parameter; and the initial condition wk,−1 may

be chosen arbitrarily. At each time index i, each node k updates its current estimate

wk,i−1 in an LMS fashion using its own data uk,i and dk(i), forming an intermediate

estimate, ψk,i. Each node k then collects the intermediate estimates from its neighbors

in Nk, and weights them according to some combination policy satisfying (4.3), hence
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forming the final estimate wk,i. In a manner similar to the single-agent case discussed

in Ch. 3, the performance of algorithm (4.4) may degrade in the presence of impulsive

noise. The purpose here is to devise a distributed version that is robust to such noise

processes.

4.1.2 Robust Diffusion Adaptation

Motivated by the discussion in Ch. 3, one may introduce an agent-dependent and

time-varying error nonlinearity, hk,i
(
ek(i)

)
, into the adaptation step:

ψk,i = wk,i−1 + µku
T
k,ihk,i

(
ek(i)

)
(4.5)

and select it to be a linear combination of Bk ≥ 1 preselected sign-preserving basis

functions, i.e.,

hk,i
(
ek(i)

)
= αTk,iϕk,i. (4.6)

Here, the vectors αk,i and ϕk,i have length Bk, and they consist of nonnegative combina-
tion weights at time index i and the values of the preselected basis functions evaluated
at ek(i), namely,

αk,i , [αk,i(1), . . . , αk,i(Bk)]
T (4.7)

ϕk,i ,
[
φk,1
(
ek(i)

)
, . . . , φk,Bk

(
ek(i)

)]T
(4.8)

If node k were to run the stand-alone counterpart of the adaptive filter in (4.5), by

setting wk,i to ψk,i, then the optimal nonlinearity that minimizes node k’s MSE is given

by [ANS01]:

hopt
k,i (x) = −

f ′ek(i)(x)

fek(i)(x)
(4.9)

in terms of the pdf of the error signal, where the notation g′(x) stands for dg(x)
dx

. Since

the pdf is not available in practice, the nonlinearity is chosen instead according to

(4.6), and the vector αk,i is found by minimizing the MSE between hk,i
(
ek(i)

)
and the

optimal nonlinearity:

αopt
k,i , arg min

αk,i
E
(
hopt
k,i

(
ek(i)

)
− hk,i

(
ek(i)

))2

. (4.10)

For online adaptation purposes, each node k estimates αopt
k,i adaptively and jointly with

wo, by recourse to a stochastic-gradient recursion for (4.10) and subject to a convexity

constraint on the entries of αk,i, i.e., they are constrained to be nonnegative and add up

to one, to ensure boundedness. Following the same derivation as in Ch. 3 in the single-

agent case, we arrive at the multi-agent robust version of the diffusion strategy (4.4)
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listed in Table 4.1, where now hk(i) is being used instead of the more explicit notation

hk,i
(
ek(i)

)
used in (4.5). The ensuing moments, Rϕk,i , Eϕk,iϕTk,i and Eϕ′k,i, where a

primed vector denotes entry-wise differentiation, are estimated in (4.13d) and (4.13g)

by means of smoothing recursions, where νk ∈ (0, 1) is a constant, usually chosen close

to one; ε > 0 is a very small constant to prevent division by zero; sgm(x) , 1
1+e−x

∈ (0, 1) is the sigmoid function; and ‖.‖∞ denotes the maximum absolute entry of its

vector argument. Moreover, we have Πk , I − 11T

Bk
, of size Bk, and

Ω++,k ,
{
α ∈ RBk

++|αT1 = 1
}

(4.11)

where RBk
++ is the set of Bk × 1 vectors on the set of positive real numbers R++.

For impulsive noise scenarios, a sensible choice of basis that scales down impulsive

samples and trades off robustness with LMS performance under Gaussian noise is

φk,1(x) = x for all k and φk,b(x), b = 2, . . . , Bk, some bounded nonlinear functions, e.g.,

the hyperbolic tangent basis:

φk,b(x) = tanh
(
(b− 1)x

)
, b = 2, . . . , Bk. (4.12)

Remark 9. The case Bk = 1 for all k for whichever choices of {φk,1(x)} amounts

to αk(i) = 1 for all k and i. The analysis of the resulting algorithm was treated

in [CS15a,CS15b]. The diffusion LMS algorithm is recovered when φk,1(x) = x for all

k.

4.2 Performance of Robust Diffusion Estimation

Algorithm

In this section, the performance of the robust diffusion estimation algorithm is analyzed

subject to the data model described in Sec. 4.1.1. Let w̃k,i , wo−wk,i denote node k’s

weight-error vector at time index i. The following assumptions are introduced, which

are analogous to (A2 )–(A4 ) from Ch. 3:

- (D-A1 ) αk,i is independent of u`,i, v`(i), and w̃`,i−1 for all k, `, and i.

- (D-A2 ) The step-sizes {µk} are sufficiently small.

- (D-A3 ) The basis functions {φk,b(x)} are sign-preserving, odd-symmetric, mono-

tonically increasing, and differentiable.

Assumption (D-A1 ) is reasonable under small step-sizes {µk}, more so when the {νk}
are close to one, and asymptotically, as i→∞ [KJ92]—see Ch. 3 for further discussion.
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Table 4.1: Robust Diffusion Estimation Algorithm

Initializations: A, ε, Bk, {φk,b(x)}, Πk, αk,−1 ∈ Ω++,k, R̂ϕk,−1
, ϕ̂′k,−1, νk, λ̂k(−1), µk for every node

k. Start with wk,−1 = 0 for every node k. For every time index i ≥ 0, repeat

Error nonlinearity update: for every node k, repeat

ek(i) = dk(i)− uk,iwk,i−1 (4.13a)

φk,b(i) ≡ φk,b
(
ek(i)

)
, b = 1, . . . , Bk (4.13b)

ϕk,i = col {φk,1(i), . . . , φk,Bk
(i)} (4.13c)

R̂ϕk,i
= νkR̂ϕk,i−1

+ (1− νk)ϕk,iϕ
T
k,i (4.13d)

φ′k,b(i) ≡ φ′k,b
(
ek(i)

)
, b = 1, . . . , Bk (4.13e)

ϕ′k,i = col
{
φ′k,1(i), . . . , φ′k,Bk

(i)
}

(4.13f)

ϕ̂′k,i = νkϕ̂
′
k,i−1 + (1− νk)ϕ′k,i (4.13g)

δk,i = 2Πk(R̂ϕk,i
αk,i−1 − ϕ̂′k,i) (4.13h)

λ̂k(i) = νkλ̂k(i− 1) + (1− νk)
‖uk,i‖2

M
(4.13i)

τ̆k(i) = sgm
[(
αT
k,i−1ϕ̂

′
k,i

)
λ̂k(i)

]
(4.13j)

τk(i) = τ̆k(i)
min {αk,i−1(b), 1 ≤ b ≤ Bk}

‖δk,i‖∞ + ε
(4.13k)

αk,i = αk,i−1 − τk(i)δk,i (4.13l)

hk(i) = αT
k,iϕk,i (4.13m)

Adaptation step: for every node k, repeat

ψk,i = wk,i−1 + µku
T
k,ihk(i) (4.14)

Combination step: for every node k, repeat

wk,i =
∑
`∈Nk

a`kψ`,i (4.15)

4.2.1 Error Recursions

We recall the update equations for each node k:

ψk,i = wk,i−1 + µku
T
k,ihk(i) (4.16)

wk,i =
∑
`∈Nk

a`kψ`,i

where hk(i) = αTk,iϕk,i. We introduce the error quantity

ψ̃k,i , wo −ψk,i. (4.17)

We further introduce the following quantities, which collect variables from across the

network:

hi , col {h1(i), . . . ,hN(i)} (4.18)
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w̃i , col {w̃1,i, . . . , w̃N,i} (4.19)

ψ̃i , col
{
ψ̃1,i, . . . , ψ̃N,i

}
(4.20)

U i , diag {u1,i, . . . ,uN,i} (4.21)

Ru , diag {Ru,1, . . . , Ru,N} (4.22)

M , diag {µ1IM , . . . , µNIM} (4.23)

A , A⊗ IM (4.24)

Then, exploiting (4.3), the recursions in (4.16) lead to

w̃i = AT w̃i−1 −ATMUT
i hi. (4.25)

From model (4.1), it holds that ek(i) = ea,k(i) + vk(i), where ea,k(i) = uk,iw̃k,i−1 is

the a priori error of node k. In the sequel, each hk(i) is approximated, similarly as in

Ch. 3, using a first-order Taylor series approximation of the basis functions {φk,b(x)}
around ea,k(i) = 0 for all i ≥ 0 as follows:

hk(i) =
B∑
b=1

αk,i(b)φk,b
(
ek(i)

)
≈

B∑
b=1

αk,i(b)φv,k,b(i) + ea,k(i)
B∑
b=1

αk,i(b)φ
′
v,k,b(i)

= αTk,iϕv,k,i + ea,k(i)α
T
k,iϕ

′
v,k,i (4.26)

where

φv,k,b(i) ≡ φk,b
(
vk(i)

)
, b = 1, . . . , Bk (4.27)

ϕv,k,i = col {φv,k,1(i), . . . ,φv,k,Bk(i)} (4.28)

4.2.2 Mean Performance

Taking the expectation of both sides of (4.25),

E w̃i = ATE w̃i−1 −ATMEUT
i hi. (4.29)

We now evaluate EUT
i hi using (4.26) under (D-A1 )–(D-A3 ). First, recall the model

assumptions on the regressors {uk,i}, namely, that they are spatially and temporally

independent. Likewise, the noise samples {vk(i)} are spatially and temporally inde-

pendent with symmetric pdfs and independent of the regressors. It follows that uk,i

and w̃k,i−1 are independent for all k and i so that

EuTk,ihk(i) = pk(i)Ru,kE w̃k,i−1 (4.30)
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where

pk(i) = (Eαk,i)T
(
Eϕ′v,k,i

)
, (Eαk,i)T ϕ′v,k. (4.31)

The time subscript i has been dropped from ϕ′v,k , Eϕ′v,k,i since the moment is time-
invariant for wide-sense stationary noise processes. Introducing the following matrices:

Pi , diag {p1(i), . . . , pN(i)} (4.32)

Pi , Pi ⊗ IM (4.33)

it follows that

EUT
i hi = RuPiE w̃i−1. (4.34)

The mean weight-error recursion (4.29) then becomes

E w̃i = AT [I −MRuPi]E w̃i−1. (4.35)

In [CS11, Lemma 2], the authors derived sufficient conditions for the asymptotic unbi-

asedness of the weight estimates {wk,i} given weight-error recursions of a general form

similar to (4.35). In particular, the weight estimates {wk,i} are asymptotically unbi-

ased for all nodes k = 1, . . . , N , if there exists a time index i∗, a number 0 < θ < 1, and

a submultiplicative norm ‖·‖ such that
∥∥AT [I −MRuPi]

∥∥ ≤ θ < 1 for all i > i∗. We

can outline two special cases where this condition is satisfied in terms of well-known

norms. First, since the matrix A has nonnegative entries and satisfies 1TA = 1, then

the maximum absolute row sum, or ∞-norm, of AT is
∥∥AT∥∥∞ = 1. The same holds

for the matrix AT . A sufficient condition for asymptotic stability can then be derived

as ‖I − µkpk(i)Ru,k‖∞ ≤ θ < 1, for some θ and for all k and i > i∗. Another sufficient

condition can be derived in terms of the 2-norm. Since ‖A‖1 = 1 (maximum absolute

column sum), it follows that the spectral radius of A is equal to one. Then, if A is

symmetric, its spectral radius and 2-norm coincide, i.e., ‖A‖2 = 1. Let {λm(Ru,k)},
m = 1, . . . ,M , denote the eigenvalues of Ru,k. A sufficient condition for asymptotic

stability can then be derived by requiring |1− µkpk(i)λm(Ru,k)| ≤ θ < 1, for some θ

and for all m, k, and i > i∗.

4.2.3 Mean-Square Performance

The following additional assumption is made:

- (D-A4 ) For sufficiently large i, the process {αk,i} is i.i.d. for all k, where the

first- and second-order moments Eαk,i and Rαk,i , Eαk,iαTk,i have reached finite

constant values denoted by

Eαk,∞ , lim
i→∞

Eαk,i, Rαk,∞ , lim
i→∞

Rαk,i . (4.36)
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This assumption is for mathematical tractability. Simulations indicate that with the

τk(i) construction we have devised, αk,i converges in step with wk,i.

We rewrite the adaptation step in (4.16) as

ψk,i = wk,i−1 − µkĝk,i(wk,i−1) (4.37)

in terms of the update vector

ĝk,i(wk,i−1) = −uTk,ihk(i)
≈ −uTk,i

[
αTk,iϕv,k,i + ea,k(i)α

T
k,iϕ

′
v,k,i

]
(4.38)

The update vector ĝk,i(wk,i−1) is written explicitly in terms of wk,i−1, since it depends

on hk(i) ≡ hk,i
(
ek(i)

)
and ek(i) = dk(i) − uk,iwk,i−1. In the following lemma, it will

be shown that ĝk,i(wk,i−1) satisfies certain properties.

Lemma 1 (Update Vector Properties). Under the model assumptions, (D-A1 )–

(D-A4 ), and the Taylor series approximation (4.26), the approximate update vector

ĝk,i (4.38) for each k and sufficiently large i satisfies the following properties:

Randomness: There exists an M × 1 deterministic vector function gk(w) such that,

for all M × 1 vectors w in the filtration F i−1 generated by the past history of iterates

{wk,j} for j ≤ i− 1 and all k, it holds that

E {ĝk,i(w)|F i−1} = gk(w). (4.39)

Moreover, for all k, there exist βk ≥ 0 and σ2
g,k ≥ 0 such that for all w ∈ F i−1, it holds

that

E
{
‖ĝk,i(w)− gk(w)‖2

∣∣F i−1

}
≤ βk ‖wo −w‖2 + σ2

g,k. (4.40)

Lipschitz: There exist λU,k ≥ 0 for all k such that for all x, y ∈ RM and all k, it holds

that

‖gk(x)− gk(y)‖ ≤ λU,k ‖x− y‖ (4.41)

where the subscript “U” in λU,k refers to the latter determining the upper bound.

Strong monotonicity: There exist λL,k > 0 for all k such that for all x, y ∈ RM and

all k, it holds that

(x− y)T [gk(x)− gk(y)] ≥ λL,k ‖x− y‖2 (4.42)

where the subscript “L” in λL,k refers to the latter determining the lower bound. �
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Proof. See Appendix A.5. �

The arguments in the appendix show that

gk(w) = −pk(∞)Ru,k (wo −w) (4.43)

for each k, where

pk(∞) , lim
i→∞

pk(i) = (Eαk,∞)T ϕ′v,k. (4.44)

Since expression (4.43) shows that gk(w) is differentiable for all k, the following prop-

erty, equivalent to the Lipschitz and strong monotonicity properties, can be established.

Let the M ×M matrix Dk denote the gradient of the vector function gk(w), i.e.,

Dk , ∇wgk(w) = pk(∞)Ru,k. (4.45)

Then, the matrix Dk is bounded for all k as

λL,kIM ≤ Dk ≤ λU,kIM (4.46)

where λL,k and λU,k were shown in Appendix A.5 to be given by

λL,k = pk(∞)λmin(Ru,k) (4.47)

λU,k = pk(∞)λmax(Ru,k) (4.48)

where λmin(·) and λmin(·) denote the minimum and maximum eigenvalues of their square

matrix arguments, respectively. Let φ′v,k,b , Eφ′v,k,b(i) for all k and b. Then, it holds

by virtue of the convexity of the entries of αk,i for all k and i that

min
1≤b≤Bk

φ′v,k,b ≤ pk(∞) ≤ max
1≤b≤Bk

φ′v,k,b. (4.49)

Hence, λL,k and λU,k in (4.46) can be replaced with

λ̄L,k ,

(
min

1≤b≤Bk
φ′v,k,b

)
λmin(Ru,k) (4.50)

λ̄U,k ,

(
max

1≤b≤Bk
φ′v,k,b

)
λmax(Ru,k) (4.51)

for all k since

0 < λ̄L,k ≤ λL,k, λ̄U,k ≥ λU,k. (4.52)

Now, let

vgk,i(w) , ĝk,i(w)− gk(w) (4.53)

represent the noise incurred by stochastic approximation for each node k and any
w ∈ F i−1. We refer to it as the update noise vector. Then, the update equations
(4.16) with the adaptation step reformulated as in (4.37) and using (4.53) become

ψk,i = wk,i−1 − µk
[
gk(wk,i−1) + vgk,i(wk,i−1)

]
(4.54)

wk,i =
∑
`∈Nk

a`kψ`,i
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Subtracting from wo and exploiting (4.3) results in the following form for the error
recursions:

ψ̃k,i = w̃k,i−1 + µk
[
gk(wk,i−1) + vgk,i(wk,i−1)

]
(4.55)

w̃k,i =
∑
`∈Nk

a`kψ̃`,i

We recall the mean-value theorem for any real-valued M -dimensional differentiable

vector function f(x), with M -dimensional vector argument x, and any M -dimensional

vectors x1 and x2 [Pol87]:

f(x2) = f(x1) +

[∫ 1

0

∇xf(x1 + t∆x)dt

]
∆x (4.56)

where t ∈ [0, 1] is a scalar variable and ∆x , x2 − x1. We invoke the result on gk(w)

with x = w, x1 = wo, and x2 = wk,i−1 to obtain:

gk(wk,i−1) = gk(w
o)

−
[∫ 1

0

∇wgk(w
o − tw̃k,i−1)dt

]
w̃k,i−1

= −Dkw̃k,i−1 (4.57)

where we used the fact from (4.43) that gk(w
o) = 0, as well as (4.45). Using (4.57),

the error recursions (4.55) become

ψ̃k,i = [I − µkDk] w̃k,i−1 + µkv
g
k,i(wk,i−1) (4.58)

w̃k,i =
∑
`∈Nk

a`kψ̃`,i (4.59)

Using the following definitions:

vgi (wi−1) , col
{
vg1,i(w1,i−1), . . . ,vgN,i(wN,i−1)

}
(4.60)

D , diag {D1, . . . , DN} (4.61)

the recursions (4.58)–(4.59) lead to the network weight-error recursion

w̃i = AT [I −MD] w̃i−1 +ATMvgi (wi−1). (4.62)

Traditionally in the energy conservation framework [Say08,CS10,Say14b], one evaluates
the weighted variance relation associated with (4.62) by equating the squared weighted
Euclidean norms of both sides with respect to a symmetric nonnegative-definite weight-
ing matrix Σ that we are free to choose, taking the expectation, and using (4.53) and
(4.39) to write

E ‖w̃i‖2
Σ = E ‖w̃i−1‖2

Σ′ + E
∥∥ATMvgi (wi−1)

∥∥2

Σ
(4.63)

Σ′ = [I −MD]AΣAT [I −MD]
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where we used the fact that the matricesM and D are symmetric and block diagonal.

Since, however, the update noise vector is characterized in terms of an upper bound

on its variance according to (4.40), it is more convenient to work with a set of inequal-

ity recursions based on (4.58)–(4.59) to bound the mean-square performance of each

node—see Theorem 1 further ahead.

To this end, first note that in view of (4.59) being a convex combination of
{
ψ̃`,i

}
, by

Jensen’s inequality [BV04] it can be established for all k that

‖w̃k,i‖2 ≤
∑
`∈Nk

a`k

∥∥∥ψ̃`,i∥∥∥2

. (4.64)

Next, a variance relation for (4.58) is established by equating the squared Euclidean
norms of both sides, conditioning on F i−1, taking the expectation, and using (4.53)
and (4.39):

E
{∥∥∥ψ̃k,i∥∥∥2∣∣F i−1

}
= ‖w̃k,i−1‖2

Σk
(4.65)

+ µ2
k E
{∥∥vgk,i(wk,i−1)

∥∥2∣∣F i−1

}
where

Σk = (I − µkDk)
2 . (4.66)

Taking the expectation again, with respect to F i−1, leads to

E
∥∥∥ψ̃k,i∥∥∥2

= E ‖w̃k,i−1‖2
Σk

+ µ2
kE
∥∥vgk,i(wk,i−1)

∥∥2
. (4.67)

In order to bound (4.67), we need to bound the matrix Σk, as well as the term

E
∥∥vgk,i(wk,i−1)

∥∥2
. While the latter is bounded by the property (4.40), the following

lemma bounds the matrix Σk.

Lemma 2 (Bounds for Σk). The matrix Σk for all k is symmetric, nonnegative

definite, and satisfies

0 ≤ Σk ≤ κ2
kIM (4.68)

where

κk , max
{∣∣1− µkλ̄U,k∣∣ , ∣∣1− µkλ̄L,k∣∣} . (4.69)

Proof. See Appendix A.6. �

Using (4.68) and (4.40), (4.67) can be replaced with

E
∥∥∥ψ̃k,i∥∥∥2

≤
(
κ2
k + µ2

kβk
)
E ‖w̃k,i−1‖2 + µ2

kσ
2
g,k. (4.70)
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Introducing the following network mean-square-error vectors:

Yi , col

{
E
∥∥∥ψ̃1,i

∥∥∥2

, . . . ,E
∥∥∥ψ̃N,i∥∥∥2

}
(4.71)

Wi , col
{
E ‖w̃1,i‖2 , . . . ,E ‖w̃N,i‖2} (4.72)

and the matrices

Γ , diag
{
κ2

1 + µ2
1β1, . . . , κ

2
N + µ2

NβN
}

(4.73)

Ω , diag {µ1, . . . , µN} (4.74)

Σg , diag
{
σ2
g,1, . . . , σ

2
g,N

}
(4.75)

then (4.64) and (4.70) imply that

Yi � ΓWi−1 + Ω2Σg1 (4.76)

Wi � ATYi (4.77)

where � denotes entry-wise comparison. Since the entries of the matrix A are non-

negative, we can combine the inequalities (4.76)–(4.77), which leads to the following

relation for sufficiently large i:

Wi � ATΓWi−1 + ATΩ2Σg1. (4.78)

In the following theorem, we use (4.78) to prove that under a certain condition on the

step-sizes {µk}, the mean-square error vector Wi is bounded as i → ∞. This result

will be used subsequently to evaluate the steady-state error expressions for sufficiently

small step-sizes.

Theorem 1 (Mean-Square Stability). If the step-sizes {µk} satisfy the following

condition:

0 < µk < min

{
2λ̄U,k

λ̄
2
U,k + βk

,
2λ̄L,k

λ̄
2
L,k + βk

}
(4.79)

for all k, then it holds that

lim sup
i→∞

‖Wi‖∞ ≤
max

1≤k≤N
µ2
kσ

2
g,k

1− max
1≤k≤N

(κ2
k + µ2

kβk)
. (4.80)

Proof. The proof follows that of Theorem 1 in [CS12] closely. �

Expression (4.80) bounds the mean-square error of the worst-performing node in the

network. It can further be established that for sufficiently small step-sizes, each wk,i

for all k will get close to wo at steady-state. This can be shown by assuming that the
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step-sizes are small enough such that the nonnegative factor κk defined in (4.69) can

be expressed as

κk = 1− µkλ̄L,k. (4.81)

Substituting (4.81) into the upper bound in (4.80) and ignoring the O(µ2
k) terms in the

denominator, it can be readily established that

lim sup
i→∞

‖Wi‖∞ = O(µmax) (4.82)

where µmax , max1≤k≤N µk.

Bearing this result in mind, the update noise vector in (4.62) can be approximated at

steady-state in terms of its N blocks as

vgk,i(wk,i−1) ≈ vgk,i(w
o)

= ĝk,i(w
o)− gk(wo)

= ĝk,i(w
o)

= −uTk,iαTk,iϕv,k,i (4.83)

for each k, and its covariance matrix is given by

Rg ≈
{
Evgi v

gT

i

} ∣∣∣∣
wi−1=1N⊗wo

= diag {s1(∞)Ru,1, . . . , sN(∞)Ru,N} (4.84)

under the model assumptions, (D-A1 ), and (D-A4 ), where

sk(i) = Tr(Rαk,iRϕv,k) (4.85)

sk(∞) , lim
i→∞

sk(i) = Tr(Rαk,∞Rϕv,k) (4.86)

with Rϕv,k , Eϕv,k,iϕTv,k,i, where the time subscript i has been dropped from the latter

time-invariant moment.

Therefore, an approximate weighted variance relation for (4.63) that holds at steady-
state is

E ‖w̃i‖2
Σ ≈ E ‖w̃i−1‖2

Σ′ + Tr(ΣATMRgMA) (4.87)

Σ′ = [I −MD]AΣAT [I −MD] (4.88)

In the following, we denote by bvec(X) for an arbitrary square matrix X with block
entries of size M × M each the vector obtained by vectorizing each block entry of
the matrix and then stacking the resulting columns on top of each other. Let σ ,
bvec(Σ). We also state the following properties in terms of the block Kronecker product
[KNW91]:

bvec(XΣY ) =
(
Y T ⊗b X

)
σ

Tr(ΣX) =
[
bvec(XT )

]T
σ (4.89)
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Hence, vectorizing (4.87)–(4.88) leads to

E ‖w̃i‖2
σ ≈ E ‖w̃i−1‖2

Fσ +
[
bvec(ATMRgMA)

]T
σ (4.90)

where the matrix F of size M2 ×M2 is given by

F = ([I −MD]A)⊗b ([I −MD]A) , (4.91)

and where we are using the notation ‖X‖2
Σ and ‖X‖2

σ interchangeably. The recursion

(4.90) converges to a steady-state value if the matrix F is stable, which is ensured if

the step-sizes are chosen according to

0 < µk <
2

λ̄U,k
(4.92)

for each k—see [ASZSon,CS12,Say14b], which is guaranteed for sufficiently small step-

sizes and also by condition (4.79).

Let

E ‖w̃∞‖2
σ , lim

i→∞
E ‖w̃i‖2

σ . (4.93)

Taking the limit of (4.90) as i→∞,

E ‖w̃∞‖2
(I−F)σ ≈

[
bvec(ATMRgMA)

]T
σ. (4.94)

The node and network mean-square deviations (MSDs) and excess MSEs (EMSEs) can
be computed by appropriate selection of the free parameter σ in (4.94). For example,
the MSD of node k can be computed by weighting E ‖w̃∞‖2 with a block matrix that
has an identity matrix at the (k, k)th block and zeroes elsewhere; and the EMSE of
node k can be computed by weighting E ‖w̃∞‖2 with a block matrix that has Ru,k at
the (k, k)th block and zeroes elsewhere. The MSD and EMSE of node k are hence
given by

MSDk , E ‖w̃k,∞‖2 (4.95)

≈
[
bvec(ATMRgMA)

]T
(I −F)−1 qk

EMSEk , E ‖w̃k,∞‖2
Ru,k

(4.96)

≈
[
bvec(ATMRgMA)

]T
(I −F)−1 rk

with

qk , bvec(diag {ek} ⊗ IM) (4.97)

rk , bvec(diag {ek} ⊗Ru,k) (4.98)



4.2 Performance of Robust Diffusion Estimation Algorithm 91

being the vectorized versions of the aforementioned weighting block matrices, where
ek is the all-zero vector of length N and kth entry equal to 1. The network MSD and
EMSE are defined as the average MSD and EMSE across all nodes, respectively:

MSD ,
1

N

N∑
k=1

MSDk =
1

N
E ‖w̃∞‖2 (4.99)

EMSE ,
1

N

N∑
k=1

EMSEk (4.100)

=
1

N
E ‖w̃∞‖2

diag{Ru,1,...,Ru,N}
Note that the invertibility of the matrix (I −F) in (4.95) and (4.96) is guaranteed by

the stability of F .

Remark 10. As previously mentioned in Remark 9, the diffusion LMS algorithm

is recovered when Bk = 1 and φk,1(x) = x for all k. It can be verified that in

this case, pk(i) = 1 and sk(i) = σ2
v,k for all k and i. By substituting these val-

ues into the expression for D in (4.45) and (4.61) and that for Rg in (4.84), and

then substituting into (4.95)–(4.96) and (4.99)–(4.100), the well-known steady-state

mean-square performance expressions for the diffusion LMS algorithm are recovered

[CS10,STC+13,Say14b,Say14a].

4.2.4 Comparison With the Diffusion LMS Algorithm

It is instructive to compare the optimal steady-state mean-square performance, mini-
mized with respect to the combination policy {a`k}, of the diffusion LMS and robust
diffusion algorithms for connected networks, i.e., there is a path connecting any pair of
nodes in the network, where the step-sizes {µk}, regressor covariance matrices {Ru,k},
and noise pdfs {fvk(v)} are the same across the nodes, i.e., µk ≡ µ, Ru,k ≡ Ru, and
fvk(v) ≡ fv(v) for all k. It follows that the moments {sk(∞)} and {pk(∞)} are the
same across the nodes: sk(∞) ≡ s(∞) and pk(∞) ≡ p(∞) for all k. In this case, fol-
lowing [ZS12, CS15a, CS15b, Say14a], for sufficiently small step-sizes, the steady-state
mean-square performance is equivalent across the nodes up to O(µ), for both the dif-
fusion LMS and robust diffusion algorithms, with the optimal MSD and EMSE for the
diffusion LMS algorithm given by

MSDopt,dLMS =
µMσ2

v

2N
(4.101)

EMSEopt,dLMS =
µTr(Ru)σ

2
v

2N
(4.102)

and for the robust diffusion algorithm by

MSDopt,d-rob =
µM

2N
· s(∞)

p(∞)
(4.103)

EMSEopt,d-rob =
µTr(Ru)

2N
· s(∞)

p(∞)
(4.104)
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which shows the same N -fold performance improvement with respect to the stand-

alone counterpart as the diffusion LMS algorithm [ASZSon]. These optimal MSDs and

EMSEs are achieved, for example, by the Metropolis rule:

aopt
`k =


1

max{nk,n`}
, ` ∈ Nk\ {k} ,

1−
∑

m∈Nk\{k}
aopt
mk, ` = k. (4.105)

The reader is referred to [ZS12,CS15a,CS15b,Say14a] for further details on the proce-

dure that led to the optimal combination policy (4.105).

4.3 Simulation Results

We consider a network of N = 20 nodes, seeking to estimate a unit-norm signal

vector wo of size M = 5. The performance of the ATC diffusion LMS algorithm

[CS10, STC+13, Say14b, Say14a], the ATC diffusion LMS algorithm with an adaptive

combination policy [YS13,Say14b], and the ATC robust diffusion estimation algorithm

developed in this work will be compared. The regressors {uk,i} and noise samples

{vk(i)} are drawn independently of one another, independently across time and space,

and identically distributed across time: the regressors from a multivariate zero-mean

Gaussian distribution with covariances {Ru,k}, and the noise samples according to an

ε-contaminated Gaussian mixture model with pdf

fvk(v) = (1− ε)N (0, σ̄2
v,k) + εN (0, κσ̄2

v,k)

where
{
σ̄2
v,k

}
are the nominal noise variances. Herein, κ is set to 100. The network

topology, regressor covariance traces, and nominal noise variances are shown in Fig. 4.1.

The weighting coefficients a`k are chosen according to the relative-degree rule, i.e., a`k =

n`/Σm∈Nknm. The step-sizes {µk} are set to be the same across the nodes. While the

adaptation rate of the diffusion LMS algorithm with the adaptive combination policy

is the same as that of the diffusion LMS algorithm with the static combination policy,

the adaptation rate of the robust algorithm was adjusted to achieve the same steady-

state network performance as the diffusion LMS algorithm with the static combination

policy for the case of no contamination (ε = 0) for fair comparison: µdLMS = 0.02

and µd-rob = 0.02. For the robust algorithm, we consider two basis functions for every

node k, i.e., Bk ≡ B = 2 for all k, where φk,1(x) = x and φk,2(x) = tanh(x). The

initial estimates of the basis weights, αk,−1, are set to 1
B
1 for every node k. For the

smoothing recursions, zero initial conditions are assumed, and νk is set to 0.9 for every

node k. Finally, ε is set to 10−6. All simulation results are obtained by averaging over

200 experiments.
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Network Topology
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Figure 4.1: Network topology, node nominal noise variances σ̄2
v,k, and regressor covariance

traces Tr(Ru,k), for N = 20 nodes.

The transient network MSD and EMSE for the aforementioned algorithms in the pres-

ence of uncontaminated Gaussian noise (ε = 0) are plotted in Figs. 4.2a and 4.2b, re-

spectively. The corresponding steady-state MSDs and EMSEs of each node, obtained

by averaging the last 100 samples of the respective curves, are plotted in Figs. 4.2c

and 4.2d, respectively. Also plotted throughout are the theoretical steady-state MSD

and EMSE of the robust algorithm according to (4.95)–(4.96) and (4.99)–(4.100) for

verification; the limiting values of the moments Eαk,i and Rαk,i for every k are ap-

proximated using the respective sample average over the last 100 samples and across

the experiments. The same curves in the presence of contaminated Gaussian noise,

with ε = 0.1 and κ = 100, are plotted in Figs. 4.3a–4.3d. In the absence of contam-

ination, the diffusion LMS and the robust diffusion algorithms perform just as well.

The diffusion LMS algorithm with the adaptive combination policy outperforms both

since network statistical knowledge is being estimated and incorporated into the algo-

rithm on-the-fly. The robust diffusion algorithm outperforms both in the presence of

contamination, however.

Depicted in Figs. 4.4a and 4.4b are the steady-state network MSD and EMSE of the al-

gorithms, obtained by averaging the last 100 samples of the respective curves, when the

measurements are corrupted with contaminated Gaussian noise with increasing con-

tamination ratio ε and κ = 100. Also plotted are the theoretical steady-state network

MSD and EMSE of the robust algorithm according to (4.99)–(4.100) for verification. It



94 Chapter 4: Robust Adaptive Estimation Over Networks

Estimation Performance Under Gaussian Noise
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Figure 4.2: Figs. 4.2a and 4.2b: Simulated network MSD and EMSE learning curves (solid
lines) and theoretical steady-state MSD and EMSE (dashed lines) for diffusion LMS (black),
diffusion LMS with an adaptive combination policy (black, circled), and the robust algorithm
(red) with B = 2 basis functions across the nodes under uncontaminated Gaussian noise
(ε = 0). While the adaptation rate (equal across the nodes) of diffusion LMS with the
adaptive combination policy is the same as that of diffusion LMS with the static combination
policy, the adaptation rate of the robust algorithm was adjusted to achieve the same steady-
state network performance as diffusion LMS with the static combination policy. Figs. 4.2c
and 4.2d: Simulated and theoretical (solid and dashed lines, respectively) steady-state MSD
and EMSE across the individual nodes for diffusion LMS (black), diffusion LMS with an
adaptive combination policy (black, circled), and the robust algorithm (red).

is obvious that only the robust algorithm remains relatively insensitive to the increase

in contamination.
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Estimation Performance Under Contaminated Noise
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Figure 4.3: Figs. 4.3a and 4.3b: Simulated network MSD and EMSE learning curves (solid
lines) and theoretical steady-state MSD and EMSE (dashed lines) for diffusion LMS (black),
diffusion LMS with an adaptive combination policy (black, circled), and the robust algorithm
(red) with B = 2 basis functions across the nodes under contaminated Gaussian noise, with
ε = 0.1 and κ = 100. The adaptation rates are the same as in Figs. 4.3a–4.3b. Figs. 4.3c and
4.3d: Simulated and theoretical (solid and dashed lines, respectively) steady-state MSD and
EMSE across the individual nodes for diffusion LMS (black), diffusion LMS with an adaptive
combination policy (black, circled), and the robust algorithm (red).

4.4 Conclusion

A robust diffusion adaptation algorithm of the ATC variety was developed for dis-

tributed estimation over networks where the measurements may be corrupted by im-

pulsive noise. Each node in the network runs a combination of its neighbors’ estimates

through a robust adaptive filter to ameliorate the effects of contamination, leading to

better overall network performance matching that of a centralized strategy at steady-
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Figure 4.4: Simulated and theoretical steady-state network MSD (4.4a) and EMSE (4.4a)
(solid and dashed lines, respectively) for diffusion LMS (black), diffusion LMS with an adap-
tive combination policy (black, circled), and the robust algorithm (red) with B = 2 basis
functions across the nodes. The measurements are corrupted with contaminated Gaussian
noise with increasing contamination ratio ε and κ = 100. The adaptation rate (equal across
the nodes) for each algorithm is kept constant for all ε and is chosen as follows: While the
adaptation rate of diffusion LMS with the adaptive combination policy is the same as that of
diffusion LMS with the static combination policy, the adaptation rate of the robust algorithm
was adjusted to achieve the same steady-state network performance as diffusion LMS with
the static combination policy at ε = 0 (no contamination).

state. The robust adaptive update rule employs an adaptive error nonlinearity. The

error nonlinearity was chosen to be a convex combination of preselected basis functions

where the combination coefficients are adapted jointly with the weight vector such that

the MSE relative to the local optimal error nonlinearity is minimized in each iteration.

While knowledge of the nature of the noise, impulsive or otherwise, serves to guide

the choice of basis functions, exact distributional knowledge is not required, which

endows the algorithm with robustness and flexibility. The transient and steady-state

behavior of the algorithm were analyzed in the mean and mean-square sense using the

energy conservation framework subject to a set of reasonable assumptions given the

nonlinear and stochastic nature of the algorithm, rendered even more complicated by

the coupling of the estimation problems across the network. The performance of the

algorithm was illustrated in simulation in an impulsive noise scenario, revealing the

robustness of the proposed diffusion strategy, which outmatched even the LMS-based

diffusion strategy employing a noise-adaptive combination policy.
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Chapter 5

Robust Adaptive Detection Over Networks

In this chapter, the problem of distributed detection over adaptive networks in the

presence of impulsive noise is considered. To this end, each node in a graph topology

cooperates with its neighbors, diffusing information through the network, in order to

detect events using local neighborhood measurements that are corrupted by impulsive

noise.

In Ch. 4, a robust diffusion adaptation algorithm was developed for parameter estima-

tion purposes in the presence of impulsive contamination across the network. In this

chapter, this algorithm is extended to a detection context, where the algorithm serves

as basis for the construction of robust adaptive test-statistics and detection thresholds.

The performance of the resulting algorithm is examined and supporting simulations

are provided.

In Sec. 5.1, the robust diffusion adaptation algorithm developed in Ch. 4 is ex-

tended to solve the problem of robust distributed detection over adaptive networks,

and subsequently analyzed in Sec. 5.2 using the energy conservation analysis frame-

work [Say03,Say14b,Say14a]. In Sec. 5.3, simulation results are presented. Conclusions

are drawn in Sec. 5.4.1

5.1 Distributed Detection

5.1.1 Data Model and Problem Formulation

The same network model as in Ch. 4 is considered here, but the data model is slightly

different. At each time index i ≥ 0, each node k has access to a real-valued scalar

measurement dk(i) arising from realizations of the random process dk(i). These mea-

surements relate to an unknown real-valued vector parameter wo of size M according

to

dk(i) = uk,iw
o + vk(i) (5.1)

where uk,i is now a known deterministic real-valued row regression vector of size M ; and

vk(i) is a real-valued scalar wide-sense stationary zero-mean impulsive noise process

1An early short version of the work in this chapter was presented at ICASSP 2014 [ASZS14].
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with variance σ2
v,k. The random variables vk(i) and v`(j) are spatially and temporally

independent for k 6= ` or i 6= j. It is still assumed that the noise probability density

functions (pdfs), fvk(v), are symmetric for all nodes k, i.e., Ev2p−1
k (i) = 0, p = 1, 2, . . .

Model (5.1) was used in [CS11]; however, in [CS11], the noise was restricted to being

Gaussian distributed.

The objective is for every node in the network to establish the presence or absence of

a known signal given noisy observations, which constitutes a simple binary hypothesis

test:

wo =

{
0 under H0

ws under H1

(5.2)

where ws is known. The approach from [CS11] is followed.

The data from all nodes 1, . . . , N at time index i are arranged into vectors and matrices

as follows:

di = col {d1(i), . . . ,dN(i)} (5.3)

Ui = col {u1,i, . . . , uN,i} (5.4)

vi = col {v1(i), . . . ,vN(i)} (5.5)

Rv = diag
{
σ2
v,1, . . . , σ

2
v,N

}
(5.6)

Then, the data di, Ui, and vi is collected from all time indices i, i−1 . . . , 0 in the same

manner to obtain

d0:i = col {di,di−1, . . . ,d0} (5.7)

U0:i = col {Ui, Ui−1, . . . , U0} (5.8)

v0:i = col {vi,vi−1, . . . ,v0} (5.9)

Rv,0:i = diag {Rv, . . . , Rv} (5.10)

The data model (5.1) may therefore be expressed compactly as

d0:i = U0:iw
o + v0:i. (5.11)

5.1.2 Neyman–Pearson-Based Detection

Based on the Neyman–Pearson (NP) criterion [Kay98a], the detector that maximizes

the detection probability Pd,i given a target false-alarm probability Pf is the likelihood-

ratio test leading to a comparison test of the form

Ti(d0:i)
H0

≶
H1

γi. (5.12)
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If the noise random vector v0:i is Gaussian distributed, i.e., v0:i ∼ N (0, Rv,0:i), then

the test-statistic Ti(d0:i) is given by [CS11,Kay98a]

Ti(d0:i) = wTs U
T
0:iR

−1
v,0:id0:i. (5.13)

The threshold γi is computed from the target false-alarm probability as γi = σi Q
−1(Pf ),

where Q(·) is the right-tail Gaussian probability function

Q(x) =
1√
2π

∫ ∞
x

e−
t2

2 dt (5.14)

and σ2
i = wTs U

T
0:iR

−1
v,0:iU0:iws.

Assuming the matrix U0:i, of size (i+1)N×M , is full-rank with M ≤ N , the minimum-

variance unbiased (MVU) estimator of wo given d0:i in (5.11) is given by the Gauss–

Markov theorem [Say03]:

wmvu
i =

(
UT

0:iR
−1
v,0:iU0:i

)−1
UT

0:iR
−1
v,0:id0:i. (5.15)

Thus, the NP-optimal test-statistic in (5.13) under Gaussian noise can be rewritten in

terms of wmvu
i in (5.15) as

Ti(w
mvu
i ) = wTs U

T
0:iR

−1
v,0:iU0:iw

mvu
i . (5.16)

Note that wmvu
i in (5.15) is the solution to a weighted least-squares problem:

wmvu
i = arg min

w
‖d0:i − U0:iw‖2

R−1
v,0:i

. (5.17)

5.1.3 Robust Diffusion Detection Algorithm

The computation, at each node in the network, at time index i of the NP-optimal test-

statistic Ti(d0:i) or Ti(w
mvu
i ), using (5.13) or (5.16), respectively, and the MVU estima-

torwmvu
i , using (5.15), requires that each node have access to the data {dk(j), uk,j, σ2

v,k}
from all nodes 1, . . . , N and all time indices j = 0, . . . , i. Since a node can only com-

municate with its neighbors, adaptive diffusion algorithms present themselves as a

viable technique for the approximation of wmvu
i at each node in the network in a dis-

tributed fashion by means of local interactions and in-network processing, as explained

in [CS10,CS11,STC+13,Say14b,Say14a]. However, the algorithms developed in [CS11]

work well for distributed detection under the Gaussian assumption on the measure-

ment noise. Here, a more robust adaptive diffusion algorithm is considered, based on

the stand-alone counterpart in Ch. 3, and it is shown how to extend the distributed

formulation of [CS11] to accommodate impulsive noise scenarios.
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Table 5.1: Robust Diffusion Detection Algorithm

Initializations: ws, A, ε, Bk, {φk,b(x)}, Πk, αk,−1 ∈ Ω++,k, R̂ϕk,−1
, ϕ̂′k,−1, νk, λ̂k(−1), µk, ϕ′0,k,

R̂w̃k,−1
= 0, Pf,k for every node k. Start with wk,−1 = 0 for every node k. For every time index i ≥ 0,

repeat

1. Run one iteration of the Robust Diffusion Estimation Algorithm in Table 4.1.
2. Decision: for every node k, repeat

(a) Test-statistic:
If i < M − 1, set Qk,i to IM . Otherwise, if i ≥M − 1,

µk(i) = µk

(
αT
k,iϕ

′
0,k

)
Qk,i =

 i∑
j=0

µk(j)uTk,juk,j

 i∑
j=0

µ2
k(j)uTk,juk,j

−1 (5.19)

Tk,i = wT
s Qk,iwk,i (5.20)

(b) Threshold:

p̂k(i) = αT
k,iϕ̂

′
k,i (5.21a)

ŝk(i) = αT
k,iR̂ϕk,i

αk,i (5.21b)

R̂A=I
w̃k,i

=
[
I − µkp̂k(i)uTk,iuk,i

]
R̂A=I

w̃k,i−1

[
I − µkp̂k(i)uTk,iuk,i

]
+ µ2

kŝk(i)uTk,iuk,i (5.21c)(
σ̂A=I
k,i

)2
= wT

s Qk,iR̂
A=I
w̃k,i

Qk,iws (5.21d)

γk,i =
1
√
g
σ̂A=I
k,i Q−1(Pf,k,i) (5.21e)

(c) Test:

Tk,i
H0

≶
H1

γk,i (5.22)

Effectively, at each time index i, each node has an estimate wk,i for wo, which is not

necessarily the MVU estimate. Nodes can then compute local test-statistics Tk,i(wk,i)

that will be defined further ahead. The resulting algorithm is listed in Table 5.1. All

parameters are defined analogously to those in Table 4.1 while

ϕ′0,k , col
{
φ′k,1(x = 0), . . . , φ′k,B(x = 0)

}
. (5.18)

Note that the factors
{

1
σ2
v,k

}
that turn up in the local gradients that are computed

based on (5.17) have been absorbed into the step-sizes {µk}. In order to derive the

appropriate test, we focus our attention on the adaptation step for the kth node:

ψk,i = wk,i−1 + µku
T
k,i

Bk∑
b=1

αk,i(b)φk,b
(
ek(i)

)
. (5.23)

Linearizing the sign-preserving, monotonically increasing error nonlinearities
φk,b
(
ek(i)

)
, b = 1, . . . , Bk, by a Taylor series around ek(i) = 0 gives φk,b

(
ek(i)

)
≈
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φ′k,b(x = 0)ek(i), b = 1, . . . , Bk. The adaptation and combination steps in the algo-
rithm can be combined as

wk,i ≈
∑
`∈Nk

a`k
[
I − µ`

(
αT`,iϕ

′
0,`

)
uT`,iu`,i

]
wk,i−1 (5.24)

+
∑
`∈Nk

a`kµ`
(
αT`,iϕ

′
0,`

)
uT`,id`(i).

Let µk(i) = µk
(
αTk,iϕ

′
0,k

)
, Ck,i = I − µk(i)uTk,iuk,i, and Ek = diag {ek}, where ek is the

all-zero vector of length N and kth entry equal to 1. By induction based on (5.24), it

can be verified that wk,i ≈ Kk,id0:i, where

Kk,i =

[∑
`∈Nk

a`kµ`(i)U
T
i E`

∑
`∈Nk

a`kC`,iK`,i−1

]
. (5.25)

At this point, the assumption is made that the independent, non-identically distributed

random entries of d0:i with finite means and variances satisfy the Lindeberg condition

such that the Lindeberg–Feller Central Limit Theorem holds asymptotically, as i→∞
[Lin22]. In other words, let

∆2
i ,

i∑
j=0

N∑
k=1

E
(
dk(j)− Edk(j)

)2
(5.26)

and suppose that for every ε′ > 0, the following condition holds:

lim
i→∞

1

∆2
i

i∑
j=0

N∑
k=1

E
[(
dk(j)− Edk(j)

)2 · 1{|dk(j)−Edk(j)|>ε′∆i}
]

= 0 (5.27)

where 1{...} is the indicator function. Then the distribution of the random variables
1

∆i

∑i
j=0

∑N
k=1

(
dk(j) − Edk(j)

)
converges towards the standard normal distribution

N (0, 1). From this assumption, it follows that the estimators {wk,i} are asymptotically

approximately Gaussian distributed. In this case, if Kk,i is full-rank with M ≤ N , and

motivated by (5.11) and (5.13), a near-optimal NP detector at the kth node is given

by

Tk,i(wk,i)
H0

≶
H1

γk,i (5.28)

with the local test-statistic given by

Tk,i(wk,i) = wTs Q
opt
k,iwk,i (5.29)

where

Qopt
k,i = (Kk,iU0:i)

T (Kk,iRv,0:iK
T
k,i

)−1
. (5.30)

The threshold at the kth node, γk,i, is to be computed in a distributed manner as well

in terms of the target false-alarm probability. This is addressed in Sec. 5.2.
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In order to reduce the communication and computational burden at each node, we may

approximate Qopt
k,i in (5.30). If the diffusion operation is overlooked by setting A to the

identity matrix in (5.25), a reasonable substitute for Qopt
k,i under small step-sizes {µk}

is

Qk,i =

(
i∑

j=0

µk(j)u
T
k,juk,j

)(
i∑

j=0

µ2
k(j)u

T
k,juk,j

)−1

(5.31)

for i ≥ M − 1, assuming invertibility, which is guaranteed if the basis functions are

monotonically increasing and if the following matrix is full-rank:

Uk,0:i , col {uk,0, . . . , uk,i} . (5.32)

For i < M − 1, Qk,i is set to IM . The derivation can be found in Appendix A.7.

The two running sums in (5.31) can be computed recursively. Since the inverted ex-

pression in (5.31) constitutes a running sum of rank-one matrices, we may appeal to the

Sherman–Morrison formula for matrix inversion to simplify the computation [HJ90].

5.2 Performance of Robust Diffusion Detection Al-

gorithm

In this section, the detection performance of the robust diffusion detection algorithm

is analyzed subject to the data model described in Sec. 5.1.1. Let w̃k,i , wo − wk,i

denote node k’s weight-error vector at time index i. The following assumptions are

made:

- (D-A1 8) αk,i is independent of v`(i) and w̃`,i−1 for all k, `, and i.

- (D-A2 8) The step-sizes {µk} are sufficiently small.

- (D-A3 8) The basis functions {φk,b(x)} are sign-preserving, odd-symmetric, mono-

tonically increasing, and differentiable.

Note that the assumptions (D-A1 8)–(D-A3 8) are similar to (D-A1 )–(D-A3 ) that were

used in Sec. 4.2 in the performance analysis of the robust diffusion estimation algorithm,

with the exception that the deterministic regressors do not appear here.
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5.2.1 Error Recursions

We recall the diffusion recursions for each node k:

ψk,i = wk,i−1 + µku
T
k,ihk(i) (5.33)

wk,i =
∑
`∈Nk

a`kψ`,i

which lead to the following network weight-error recursion:

w̃i = AT w̃i−1 −ATMUTi hi (5.34)

where

Ui = diag {u1,i, . . . , uN,i} (5.35)

and the rest of the quantities are defined analogously to Sec. 4.2 through (4.18)–(4.20),

(4.23), and (4.24).

5.2.2 Mean Performance

Taking the expectation of both sides of (5.34),

E w̃i = ATE w̃i−1 −ATMUTi Ehi. (5.36)

From model (5.1), it holds that ek(i) = uk,iw̃k,i−1 + vk(i). Moreover, each hk(i) can

be approximated using a first-order Taylor series approximation of the basis functions

{φk,b(x)} around uk,iw̃k,i−1 = 0 for all i ≥ 0 as follows:

hk(i) =
B∑
b=1

αk,i(b)φk,b
(
ek(i)

)
≈

B∑
b=1

αk,i(b)φv,k,b(i) + uk,iw̃k,i−1(i)
B∑
b=1

αk,i(b)φ
′
v,k,b(i) (5.37)

where φv,k,b(i) is given by (4.27). Taking the expectation,

Ehk(i) = pk(i)uk,iE w̃k,i−1 (5.38)

where, in addition to (D-A1 8)–(D-A3 8), we invoked the model assumptions on the noise
samples vk(i) being spatially and temporally independent with symmetric pdfs for all
k; and pk(i) is given by (4.31). Introducing the following matrices:

Pi , diag {p1(i), . . . , pN(i)} (5.39)

Pi , Pi ⊗ IM (5.40)
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it follows that

Ehi = UiPiE w̃i−1. (5.41)

The mean weight-error recursion (5.36) then becomes

E w̃i = AT
[
I −MUTi UiPi

]
E w̃i−1. (5.42)

We again refer to [CS11, Lemma 2] for sufficient conditions for the asymptotic

unbiasedness of the weight estimates {wk,i}. In particular, the weight estimates

{wk,i} are asymptotically unbiased for all nodes k = 1, . . . , N , if there exists a

time index i∗, a number 0 < θ < 1, and a submultiplicative norm ‖·‖ such that∥∥AT [I −MUTi UiPi]∥∥ ≤ θ < 1 for all i > i∗. Similarly as in the prequel, special cases

can be outlined where this condition is satisfied in terms of well-known norms.

5.2.3 Mean-Square Performance

The weight-error covariance matrix at time index i is defined as

Rw̃i , E (w̃i − E w̃i) (w̃i − E w̃i)
T . (5.43)

From (5.34), (5.42), and (5.41), it follows that

Rw̃i = ATRw̃i−1
A−ATE

(
w̃i−1h

T
i

)
UiMA (5.44)

−ATMUTi E
(
hiw̃

T
i−1

)
A

+ATMUTi E
(
hih

T
i

)
UiMA

+AT
(
E w̃i−1E w̃T

i−1

)
PiUTi UiMA

+ATMUTi UiPi
(
E w̃i−1E w̃T

i−1

)
A

−ATMUTi UiPi
(
E w̃i−1E w̃T

i−1

)
PiUTi UiMA

with Rw̃−1 = 0, if wk,−1 = 0 for all k. A couple of terms need to be evaluated:

1. Evaluating E w̃i−1h
T
i :

Invoking (D-A1 8)–(D-A3 8), in addition to the model assumptions, it holds for

any pair k and ` ∈ {1, . . . , N} that

E w̃k,i−1h`(i) = p`(i)E
(
w̃k,i−1w̃

T
`,i−1

)
uT`,i (5.45)

so that

E w̃i−1h
T
i =

(
Rw̃i−1

+ E w̃i−1E w̃T
i−1

)
UTi Pi. (5.46)
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2. Evaluating EhihTi :

a) Diagonal entries – Eh2
k(i):

By squaring (5.37) and invoking (D-A1 8)–(D-A3 8), in addition to the model

assumptions, it follows that

Eh2
k(i) = sk(i) + tk,k(i)uk,iE

(
w̃k,i−1w̃

T
k,i−1

)
uTk,i (5.47)

where

sk(i) = Tr(Rαk,iRϕv,k) (5.48)

tk,k(i) = Tr(Rαk,iRϕ′v,k
) (5.49)

with

Rαk,i , Eαk,iαTk,i (5.50)

Rϕv,k , Eϕv,k,iϕTv,k,i (5.51)

Rϕ′v,k
, Eϕ′v,k,iϕ′Tv,k,i (5.52)

where ϕv,k,i is given by (4.28); a primed vector denotes entry-wise differentiation;

and the time subscript i has been dropped from the latter two time-invariant

moments.

b) Off-diagonal entries – Ehk(i)h`(i), k 6= `:

Invoking (D-A1 8)–(D-A3 8), in addition to the model assumptions, it follows that

Ehk(i)h`(i) = tk,`(i)uk,iE
(
w̃k,i−1w̃

T
`,i−1

)
uT`,i (5.53)

where

tk,`(i) = E
(
αTk,iϕ

′
v,k,i

)
E
(
αT`,iϕ

′
v,`,i

)
(5.54)

since, under (D-A1 8), αk,i and α`,i are independent for k 6= `. Define

Si , diag {s1(i), . . . , sN(i)} (5.55)

and the matrix Ti whose (k, `)th entry is tk,`(i). It follows that

EhihTi = Si + Ti �
[(
UiRw̃i−1

UTi
)

+

(
Ui
(
E w̃i−1E w̃T

i−1

)
UTi
)]

(5.56)

where � is the Hadamard (entry-wise) matrix product.

Substituting (5.46) and (5.56) into (5.44), the covariance recursion becomes

Rw̃i = ATRw̃i−1
A−ATRw̃i−1

UTi PiUiMA (5.57)

−ATMUTi PiUiRw̃i−1
A
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+ATMUTi SiUiMA
+ATMUTi

[
Ti �

(
UiRw̃i−1

UTi
)]
UiMA

+ATMUTi
[
Ti �

(
Ui
(
E w̃i−1E w̃T

i−1

)
UTi
)]
UiMA

−ATMUTi PiUi
(
E w̃i−1E w̃T

i−1

)
UTi PiUiMA,

with Rw̃−1 = 0.

5.2.4 Detection Performance

In order to evaluate the asymptotic detection performance of the algorithm, as i→∞,

the following additional assumption, similar to (D-A4 ) in Sec. 4.2.3, is made:

- (D-A48) For sufficiently large i, the process {αk,i} is i.i.d. for all k, where the

first- and second-order moments Eαk,i and Rαk,i have reached finite constant

values, as defined in (4.36).

The following lemma establishes the limiting value of Qk,i for all k when the regressors

are regarded as having been drawn from a distribution. That is, the following additional

assumption is made:

- (D-A58) The regressor sequence {uk,i} for each node k is a realization of an

i.i.d. random process {uk,i} with second-order moment denoted as Ru,k =

EuTk,iuk,i and assumed to be positive definite. Moreover, the vectors uk,i and

αk,i are assumed to be asymptotically independent for all k.

Lemma 3 (Limiting Value of Qk,i). Asymptotically, as i→∞, under (D-A48) and

(D-A58), the random matrix Qk,i can be approximated by a deterministic constant

matrix:

lim
i→∞

Qk,i = ηkIM (5.58)

where

ηk , lim
i→∞

Eµk(i)
Eµ2

k(i)
(5.59)

with µk(i) = µk
(
αTk,iϕ

′
0,k

)
and ϕ′0,k given by (5.18).

Proof. See Appendix A.8. �
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It is worth noting that the constants ηk, for all k, have no bearing on the resulting

detection performance. For sufficiently large i, the test-statistics Tk,i(wk,i) ≈ ηkw
T
s wk,i

are distributed as

Tk,i(wk,i) ∼ N (ηkw
T
s Ewk,i, σ

2
k,i) (5.60)

where σ2
k,i = η2

kw
T
s Rw̃k,iws, with Rw̃k,i denoting node k’s weight-error covariance matrix

at time index i:

Rw̃k,i , E (w̃k,i − E w̃k,i) (w̃k,i − E w̃k,i)
T . (5.61)

Hence, the detection, false-alarm, and miss probabilities at each node k and time index
i are asymptotically given by

Pd,k,i = Q(
γk,i − ηkwTs ws + ηkw

T
s E w̃k,i

σk,i
) (5.62)

Pf,k,i = Q(
γk,i + ηkw

T
s E w̃k,i

σk,i
) (5.63)

and Pm,k,i = 1 − Pd,k,i. Given target false-alarm probabilities at each node k and

time index i, under the assumption of asymptotic unbiasedness of the weight estimates

{wk,i}, the corresponding detection thresholds may subsequently be approximated, in

a distributed manner, as

γk,i =
1
√
g
σ̂A=I
k,i Q−1(Pf,k,i) (5.64)

where
(
σ̂A=I
k,i

)2
= wTs Qk,iR̂

A=I
w̃k,i

Qk,iws, with R̂A=I
w̃k,i

given by the following recursion:

R̂A=I
w̃k,i

=
[
I − µkp̂k(i)uTk,iuk,i

]
R̂A=I
w̃k,i−1

[
I − µkp̂k(i)uTk,iuk,i

]
+ µ2

kŝk(i)u
T
k,iuk,i, R̂A=I

w̃k,−1
= 0. (5.65)

The estimated moments p̂k(i) and ŝk(i) are stochastic approximations of their true

counterparts, reusing smoothed estimates from the algorithm:

p̂k(i) = αTk,iϕ̂
′
k,i, ŝk(i) = αTk,iR̂ϕk,iαk,i (5.66)

A sketch of the derivation can be found in Appendix A.9.

For comparison, the least-mean-squares (LMS)-based algorithm uses the following re-
cursion [CS11]:

RA=I
w̃k,i

=
[
I − µkuTk,iuk,i

]
RA=I
w̃k,i−1

[
I − µkuTk,iuk,i

]
+ µ2

kσ
2
v,ku

T
k,iuk,i, RA=I

w̃k,−1
= 0. (5.67)

The correction factor g−
1
2 accounts for the gain incurred by the diffusion process and

can be estimated offline (cf. [CS11]).
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5.3 Simulation Results

The network and simulation setups are the same as those in Ch. 4, except that the same

set of regressors is maintained throughout the experiments, with the nodes seeking to

detect a unit-norm signal vector ws of size M = 5. The target false-alarm probabilities

Pf,k,i are set to 10−2 for every node k and time index i. The diffusion LMS-based

detection algorithm and the robust diffusion detection algorithm are compared. All

parameters are the same as in Sec. 4.3. The factor g was estimated offline and found

to be 20. All simulation results are obtained by averaging over 10, 000 experiments.

In Fig. 5.1, the resulting best-case, average, and worst-case performance of both al-

gorithms across the network is displayed for various degrees of contamination and

κ = 100. While achieving better detection performance overall, the robustness of the

algorithm developed in this work figures prominently with respect to the false-alarm

performance.

5.4 Conclusion

The robust diffusion adaptation algorithm developed in Ch. 4 was extended in this

chapter to solve the problem of distributed detection over adaptive networks where the

measurements may be corrupted by impulsive noise. The weight estimates generated

by the robust algorithm are used as basis for the design of robust local detectors,

where the form of the test-statistics and the rule for the computation of the detection

thresholds were motivated by the analysis of the algorithm dynamics. Each node in

the network cooperates with its neighbors, utilizing their estimates, to update its local

detector. Effectively, information pertaining to the event of interest percolates across

the network, leading to enhanced detection performance. Exact knowledge of the noise

distribution is not required since the robust diffusion detection algorithm is capable of

learning it on-the-fly and adapting its parameters accordingly. The transient behavior

of the algorithm was analyzed using the energy conservation framework subject to a set

of reasonable assumptions given the nonlinear and stochastic nature of the algorithm.

The detection performance was also established. The performance of the algorithm

was illustrated in simulation in an impulsive noise scenario, revealing the robustness of

the proposed diffusion detection algorithm, particularly in terms of false-alarm rate.
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Figure 5.1: Best-case (Figs. 5.1a and 5.1b), average (Figs. 5.1c and 5.1d), and worst-case
(Figs. 5.1e and 5.1f) detection and false-alarm performance across the network of diffusion
LMS-based detection (black) and robust diffusion detection (red) with B = 2 basis functions
across the nodes. The measurements are corrupted with contaminated Gaussian noise with
increasing contamination ratio ε and κ = 100. The adaptation rate (equal across the nodes)
for each algorithm is kept constant for all ε and is chosen such that the robust algorithm
achieves the same steady-state network estimation performance as diffusion LMS at ε = 0
(no contamination).
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Chapter 6

Summary, Conclusions, and Future
Research Directions

6.1 Summary and Conclusions

First, a robust adaptive filtering algorithm of the least-mean-squares (LMS) type was

developed that employs an adaptive error nonlinearity. The error nonlinearity was

chosen to be a convex combination of preselected basis functions where the combination

coefficients are adapted jointly with the weight vector such that the mean-square-

error (MSE) relative to the optimal error nonlinearity is minimized in each iteration.

While knowledge of the nature of the noise, impulsive or otherwise, serves to guide the

choice of basis functions, exact distributional knowledge is not required since the robust

algorithm is capable of learning it on-the-fly and adapting its parameters accordingly.

Then, a robust diffusion adaptation algorithm of the adapt-then-combine (ATC) variety

was developed as a natural extension of its stand-alone counterpart for distributed es-

timation over networks where the measurements may be corrupted by impulsive noise.

Each node in the network runs a combination of its neighbors’ estimates through one

iteration of a local robust adaptive filter update to ameliorate the effects of contam-

ination, leading to better overall network performance matching that of a centralized

strategy at steady-state. The robust adaptive update rule again employs an adaptive

error nonlinearity that is a convex combination of preselected basis functions where

the combination coefficients are adapted jointly with the weight vector such that the

MSE relative to the local optimal error nonlinearity is minimized in each iteration.

Finally, the robust diffusion adaptation algorithm developed was extended further to

solve the problem of distributed detection over adaptive networks where the measure-

ments may be corrupted by impulsive noise. The weight estimates generated by the

robust algorithm are used as basis for the design of robust local detectors, where the

form of the test-statistics and the rule for the computation of the detection thresholds

were motivated by the analysis of the algorithm dynamics. Each node in the network

cooperates with its neighbors, utilizing their estimates, to update its local detector. Ef-

fectively, information pertaining to the event of interest percolates across the network,

leading to enhanced detection performance.
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The computational complexity of the robust algorithm was summarized, revealing that

it introduces O(2M + B3) additional complexity per iteration compared to the LMS

algorithm. The transient and steady-state behavior of the robust algorithm in both its

stand-alone and distributed varieties were analyzed in the mean and mean-square sense

using the energy conservation framework subject to a set of reasonable assumptions

given the nonlinear and stochastic nature of the algorithm, rendered even more com-

plicated by the coupling of the estimation problems across the network in multi-agent

scenarios. The performance of the algorithm was also examined in the context of dis-

tributed detection. Comprehensive simulations in an impulsive noise scenario served

to illustrate the performance of the algorithm for single- and multi-agent adaptation,

revealing the robustness of the proposed strategies. Good agreement between theory

and practice was obtained.

6.2 Future Research Directions

Transient analysis without appeal to linearization. In the analysis of the robust

algorithm in its stand-alone and distributed varieties in Chs. 3–5, we appealed to

a truncated Taylor series approximation for the basis functions constituting the error

nonlinearity. This so-called linearization approach leads to results that are in agreement

with practice towards steady-state and for sufficiently small step-sizes. Ideally, one

would like to be able to analyze the transient behavior of the nested algorithm more

accurately so as to draw valuable insight into its dynamics. Such insight would guide

the selection of the algorithm parameters for performance enhancement, or even reveal

ways in which the implementation of the algorithm can be simplified. One work where

accurate modeling of coupling in an algorithm was possible is [TYS10], using the energy

conservation framework. In the stochastic approximation literature, algorithms with

state-dependent noise are typically analyzed using averaging analysis or the ordinary-

differential-equation (ODE) method [KY03], where their stability and convergence are

established in an almost-sure or weak sense, which does not necessarily imply mean-

square stability. Perhaps these methods can be combined with energy-based arguments

towards more accurate analysis of nested algorithms.

Relaxation of error nonlinearity restrictions. In the analysis of the robust algo-

rithm in its stand-alone and distributed varieties in Chs. 3–5, the basis functions were

assumed to be sign-preserving, odd-symmetric—in view of the symmetry assumption

on the noise probability density function (pdf), monotonically increasing, and twice
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differentiable. These restrictions are naturally inherited by the error nonlinearity con-

structed from the basis functions. In this respect, the analysis provided in this disser-

tation does not encompass some error nonlinearities that have proved their merit in

mitigating impulsive disturbances, such as those of redescending nature. Additionally,

some of the minimax error nonlinearities yielded by distribution-free approaches to ro-

bustness over broader noise distribution classes (see [SV02, PT79]) admittedly do not

lend themselves to analysis under the restrictions imposed here.

Relaxation of local observability condition to global observability condition.

In the course of the analysis of the robust diffusion adaptation algorithm, a local

observability condition was imposed on every node in the network. As a matter of

fact, this condition can be relaxed to one of global observability, so that nodes with

partial information can still recover the parameter of interest, permitting a measure of

flexibility and diversity in the network. The analysis of the algorithm after a sufficiently

large number of iterations can henceforth be conducted using the relaxed assumption

by appealing to a Jordan canonical decomposition of the combination policy matrix

and subsequent transformation of the network weight-error recursion, in a manner

similar to [Say14a,CS15a,CS15b]. Such a transformation would flesh out the intricate

relationship between network topology and steady-state performance.

Locally optimum detection. Since the form of the optimal adaptive filtering error

nonlinearity relates quite closely to that of the test-statistic for locally optimum detec-

tion [Kay98a], it would be interesting to appropriate the robust algorithm developed

in this dissertation for the context of locally optimum detection in non-Gaussian noise

and examine its performance [Kas88].

Network-MSE–optimal agent-specific error nonlinearities. The robust diffu-

sion adaptation algorithm developed in this dissertation has each agent employ its

local-MSE–optimal error nonlinearity in the hope that the network performance would

be enhanced as a result. A more powerful design should stem from optimizing the

network MSE with respect to each of the agents’ error nonlinearities. It is as yet un-

clear if such an approach could spur a distributed, cooperative, adaptive strategy for

nonlinearity synthesis on-the-fly.
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A.1 Price’s Theorem

Let x and y be scalar real-valued zero-mean jointly Gaussian random variables with

their correlation denoted by ρ = Exy. Then, according to Price’s Theorem [Pri58],

for any function f(x,y), the following equality holds:

∂nE f(x,y)

∂ρn
= E

(
∂2nf(x,y)

∂xn∂ yn

)
(1)

in terms of the n-th and 2n-th order partial derivatives, assuming the derivatives and

integrals in question exist. Two results, stated in [Say03, P. 333] and summarized here,

are of interest:

Result 1: Assume that f(x,y) has the form f(x,y) = xg(y) and choose n = 1.

Then, it holds that ∂Exg(y)
∂ρ

= E dg
dy

. Integrating both sides over ρ leads to

Exg(y) = Exy · E dg

dy
. (2)

�

Result 2: Since from Result 1 it holds that Eyg(y) = σ2
y · E

dg
dy

, where σ2
y = Ey2, it

can further be established that

Exg(y) =
Exy
σ2
y

· Eyg(y). (3)

�

Result 3: Assume further that x and y are independent of a third scalar real-valued

zero-mean random variable z. Then, as a consequence of Result 2, it holds that

Exf(y + z) =
Exy
Ey2

· Eyf(y + z). (4)

�
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A.2 Lower Bound on MSD in (2.62)

First, note that under the assumptions outlined in Chapter 2, it cannot be estab-

lished that the adaptive filtering algorithm (2.37) leads to an asymptotically unbiased

estimate of the optimal weight vector wo, i.e., limi→∞ Ewi = wo, or equivalently,

limi→∞ E w̃i = 0. More assumptions are called for to establish asymptotic unbiased-

ness, as will be seen in Chapter 3. There, conditions for mean stability and asymptotic

unbiasedness are derived. For now, suffice it to say that in [ANS01], a condition for

mean-square stability of the adaptive filtering algorithm (2.37) was derived. As is

well-known, mean-square stability implies mean stability [PP02].

Hence, assume that for all i ≥ 0, Ti(w
o) , wi − wo + wo is a biased estimator for the

parameter wo. Let the bias be given by bi(w
o) = Ewi − wo. The estimator Ti(w

o)

can then be regarded as an unbiased estimator of a function of the parameter wo, say

gi(w
o), such that

gi(w
o) = ETi(wo) = bi(w

o) + wo. (5)

Then, recalling that w̃i = wo −wi, and noting that its covariance is given by

Rw̃i , E (w̃i − E w̃i) (w̃i − E w̃i)
T

= E (wi − Ewi) (wi − Ewi)
T

, Rwi

= E
(
Ti(w

o)− ETi(wo)
)(
Ti(w

o)− ETi(wo)
)T

(6)

which is the covariance of the estimator Ti(w
o), it follows that a lower bound for Rw̃i

is the Cramér–Rao lower bound [Kay98b]:

Rw̃i ≥ [∇wogi(w
o)] I−1

F,i (w
o) [∇wogi(w

o)]T

= [I +∇wobi(w
o)] I−1

F,i (w
o) [I +∇wobi(w

o)]T (7)

where IF,i(w
o) is the Fisher information matrix, defined in what follows. Let

f
(
d(0), . . . , d(i);wo

)
denote the likelihood function of the observations d(0), . . . , d(i),

which satisfy the data model (2.1). The likelihood function is parametrized by wo.

Assume that the following regularity condition holds for all wo:

E∇wo ln f
(
d(0), . . . ,d(i);wo

)
= 0. (8)

Then, the Fisher information matrix is given by [Kay98b]

IF,i(w
o) = −E∇2

wo ln f
(
d(0), . . . ,d(i);wo

)
. (9)
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Since the matrices on either side of the inequality in (7) are nonnegative definite, their
respective diagonal entries are nonnegative, from which follows that

E ‖w̃i − E w̃i‖2 = Tr(Rw̃i)

≥ Tr
(

[I +∇wobi(w
o)] I−1

F,i (w
o) [I +∇wobi(w

o)]T
)
. (10)

Adding the squared bias term

‖bi(wo)‖2 = ‖E w̃i‖2 (11)

to either side and using bias–variance decomposition [Kay98b], it follows that, for all

i ≥ 0,

E ‖w̃i‖2 ≥ Tr
(

[I +∇wobi(w
o)] I−1

F,i (w
o) [I +∇wobi(w

o)]T
)

+ ‖E w̃i‖2 . (12)

Since at steady-state, as i→∞,

E w̃i = E w̃i−1 = r (13)

E ‖w̃i‖2 = E ‖w̃i−1‖2 = MSD (14)

where r is some constant vector, then this implies that there exists a time index i∗

sufficiently large such that for all i ≥ i∗, the following inequality holds:

E ‖w̃i‖2 ≥ Tr
(

[I +∇wobi∗(w
o)] I−1

F,i∗(w
o) [I +∇wobi∗(w

o)]T
)

+ ‖E w̃i‖2

≥ Tr
(

[I +∇wobi∗(w
o)] I−1

F,i∗(w
o) [I +∇wobi∗(w

o)]T
)

(15)

In other words, the steady-state MSD is lower-bounded as

MSD ≥ λ (16)

where

λ , Tr
(

[I +∇wobi∗(w
o)] I−1

F,i∗(w
o) [I +∇wobi∗(w

o)]T
)
. (17)

A.3 Derivation of Optimal Error Nonlinearity

It was established in Sec. 2.2.4 that the following relation holds:

Eh2
(
e?
)

Eh′
(
e?
) ≥ α (18)

where α > 0.

It was claimed in [ANS01] that if the error nonlinearity h(·) is chosen as

ĥ(·) , −αf
′
e?(·)
fe?(·)

(19)

then the resulting ratio in (18) will achieve the lower bound α. The proof from [ANS01]

is reproduced here.
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Proof. The ratio Eh2
(
e?
)
/Eh′

(
e?
)

will be evaluated for the choice of error nonlinearity
(19). Using integration by parts, the moment in the denominator can be expressed as

Eh′
(
e?
)

=

∫ ∞
−∞

h′(e)fe?(e) de

= h(e)fe?(e)
∣∣∞
−∞ −

∫ ∞
−∞

h(e)f ′e?(e) de (20)

For the choice (19), this gives

E ĥ′
(
e?
)

= −αf ′e?(e)
∣∣∞
−∞ + α

∫ ∞
−∞

(
f ′e?(e)

)2

fe?(e)
de (21)

which under the assumption

lim
e?→±∞

f ′e?(e
?) = 0 (22)

evaluates to

E ĥ′
(
e?
)

= α

∫ ∞
−∞

(
f ′e?(e)

)2

fe?(e)
de. (23)

On the other hand, for the same choice (19), the moment in the numerator evaluates
to

E ĥ2
(
e?
)

= α2

∫ ∞
−∞

(
f ′e?(e)

fe?(e)

)2

fe?(e) de

= α2

∫ ∞
−∞

(
f ′e?(e)

)2

fe?(e)
de (24)

Hence,

E ĥ2
(
e?
)

E ĥ′
(
e?
) = α. (25)

That is, the lower bound is attained. �

A.4 Condition (3.13)

Using (3.8) we have

Eφb(x)hopt
2,i (x) =

∫ ∞
−∞

φb(x)hopt
2,i fe(i)(x) dx

= −
∫ ∞
−∞

φb(x)
f ′e(i)(x)

fe(i)(x)
fe(i)(x) dx
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= −
∫ ∞
−∞

φb(x)f ′e(i)(x) dx

= −φb(x)fe(i)(x)
∣∣∞
−∞

+

∫ ∞
−∞

φ′b(x)fe(i)(x) dx

= Eφ′b(x)

where in the last line we exploited the assumption

lim
x→±∞

φb(x)fe(i)(x) = 0. (27)

A.5 Proof of Lemma 1

Randomness: Writing out the approximation of the update vector ĝk,i in (4.38) in
terms of w ∈ F i−1,

ĝk,i(w) ≈ −uTk,i
[
αTk,iϕv,k,i + uk,i (w

o −w)αTk,iϕ
′
v,k,i

]
. (28)

Hence, for sufficiently large i, under the model assumptions and (D-A1 )–(D-A4 ), it
holds that

E {ĝk,i(w)|F i−1} = −pk(∞)Ru,k (wo −w) (29)

, gk(w)

proving (4.39), where

pk(∞) , lim
i→∞

pk(i) = (Eαk,∞)T ϕ′v,k (30)

and pk(i) was defined in (4.31). Now let

vgk,i(w) , ĝk,i(w)− gk(w). (31)

Taking the conditional expectation of the squared Euclidean norm of both sides of (31),

E
{∥∥vgk,i(w)

∥∥2∣∣F i−1

}
= E

{
‖gk(w)‖2

∣∣F i−1

}
+ E

{
‖ĝk,i(w)‖2

∣∣F i−1

}
(32)

− 2E
{
ĝk,i(w)Tgk(w)

∣∣F i−1

}
.

As for the first term in (32), referring to (29),

E
{
‖gk(w)‖2

∣∣F i−1

}
= p2

k(∞) ‖wo −w‖2
R2
u,k
. (33)

Similarly for the third term in (32),

E
{
ĝk,i(w)Tgk(w)

∣∣F i−1

}
= E

{
‖gk(w)‖2

∣∣F i−1

}
= p2

k(∞) ‖wo −w‖2
R2
u,k

(34)



120 Appendix

which is nonnegative. As for the second term in (32), referring to (28),

E
{
‖ĝk,i(w)‖2

∣∣F i−1

}
= E

{
‖uk,i‖2

[
αTk,iϕv,k,i + uk,i (w

o −w)αTk,iϕ
′
v,k,i

]2∣∣F i−1

}
= E ‖uk,i‖2 E

(
αTk,iϕv,k,i

)2
+ ‖wo −w‖2

E‖uk,i‖2
uTk,iuk,i

E
(
αTk,iϕ

′
v,k,i

)2
(35a)

= sk(∞) Tr(Ru,k) + tk(∞) ‖wo −w‖2

E‖uk,i‖2
uTk,iuk,i

(35b)

under the model assumptions and (D-A1 )–(D-A4 ), where

sk(i) = E
(
αTk,iϕv,k,i

)2
= Tr(Rαk,iRϕv,k) (36)

sk(∞) , lim
i→∞

sk(i) (37)

and

tk(i) = E
(
αTk,iϕ

′
v,k,i

)2
= Tr(Rαk,iRϕ′v,k

) (38)

tk(∞) , lim
i→∞

tk(i) (39)

with

Rϕv,k , Eϕv,k,iϕTv,k,i (40)

Rϕ′v,k
, Eϕ′v,k,iϕ′Tv,k,i (41)

where the time subscript i has been dropped from the time-invariant moments. Note

that the moments pk(i), sk(i), and tk(i) for all k and i are nonnegative. In particular,

the moment pk(i) is positive under the model assumption on the noise pdfs being

even-symmetric, under assumption (D-A3 ) on the basis functions {φk,b(x)} being odd-

symmetric and monotonically increasing, and under the convexity of the entries of αk,i.

Substituting (33), (35b), and (34) into (32),

E
{∥∥vgk,i(w)

∥∥2∣∣F i−1

}
= p2

k(∞) ‖wo −w‖2
R2
u,k
− 2p2

k(∞) ‖wo −w‖2
R2
u,k

+ tk(∞) ‖wo −w‖2

E‖uk,i‖2
uTk,iuk,i

+ sk(∞) Tr(Ru,k)

≤ tk(∞) ‖wo −w‖2

E‖uk,i‖2
uTk,iuk,i

+ sk(∞) Tr(Ru,k)

≤ tk(∞)
∥∥E ‖uk,i‖2 uTk,iuk,i

∥∥ · ‖wo −w‖2 + sk(∞) Tr(Ru,k) (42)

Making the identifications

βk , tk(∞)
∥∥E ‖uk,i‖2 uTk,iuk,i

∥∥
σ2
g,k , sk(∞) Tr(Ru,k) (43)

for each k, the property (4.40) is proved.
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Lipschitz: Evaluating the left-hand side of (4.41) and using (29),

‖gk(x)− gk(y)‖ ≤ pk(∞) ‖Ru,k‖ ‖x− y‖
= pk(∞)λmax(Ru,k) ‖x− y‖ (44)

Noting that the moment pk(i) is positive for all k and i and that λmax(Ru,k) is also

positive for all k since Ru,k > 0, then property (4.41) is proved to hold by making the

identification

λU,k , pk(∞)λmax(Ru,k). (45)

Strong monotonicity: Evaluating the left-hand side of (4.42) and using (29),

(x− y)T [gk(x)− gk(y)] = pk(∞) ‖x− y‖2
Ru,k

≥ pk(∞)λmin(Ru,k) ‖x− y‖2 (46)

Noting that the moment pk(i) is positive for all k and i and that λmin(Ru,k) is also

positive for all k since Ru,k > 0, then property (4.42) is proved to hold by making the

identification

λL,k , pk(∞)λmin(Ru,k). (47)

�

A.6 Proof of Lemma 2

Since the matrix Dk = pk(∞)Ru,k is symmetric, the matrix Σk = (IM − µkDk)
2

is symmetric; it is also nonnegative definite. From (4.46) and (4.52), it holds that

λ̄L,kIM ≤ Dk ≤ λ̄U,kIM , such that

IM − µkDk ≥
(
1− µkλ̄U,k

)
IM (48a)

IM − µkDk ≤
(
1− µkλ̄L,k

)
IM (48b)

and, hence,

λ(IM − µkDk) ≥ 1− µkλ̄U,k (49a)

λ(IM − µkDk) ≤ 1− µkλ̄L,k (49b)

Since

λ(Σk) = [λ(IM − µkDk)]
2 ≥ 0, (50)

then, by (49a)–(49b),

λ(Σk) ≤ max
{∣∣1− µkλ̄U,k∣∣2 , ∣∣1− µkλ̄L,k∣∣2} = κ2

k, (51)

which is equivalent to (4.68), where κk was defined in (4.69). �
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A.7 Derivation of Qk,i in (5.31)

Setting A to the identity matrix in (5.25) leads to

Kk,i =
[
µk(i)U

T
i Ek µk(i− 1)Ck,iU

T
i−1Ek . . . µk(0) (Ck,i . . . Ck,1)UT

0 Ek

]
(52)

so that

Kk,iU0:i =
i∑

j=0

µk(j) (Ck,i . . . Ck,j+1)uTk,juk,j (53)

and

Kk,iRv,0:iK
T
k,i = σ2

v,k

i∑
j=0

µ2
k(j) (Ck,i . . . Ck,j+1)uTk,juk,j (Ck,i . . . Ck,j+1)T . (54)

For small step-sizes {µk}, we employ the approximation:

Ck,i . . . Ck,j+1 ≈ I −
i∑

m=j+1

µk(m)uTk,muk,m. (55)

Therefore, for small step-sizes {µk}, expressions (53) and (54) can be approximated as

Kk,iU0:i ≈
i∑

j=0

µk(j)u
T
k,juk,j (56)

Kk,iRv,0:iK
T
k,i ≈ σ2

v,k

i∑
j=0

µ2
k(j)u

T
k,juk,j (57)

Since constants multiplying each test-statistic Tk,i, such as σ2
v,k, do not affect the re-

sulting detection performance, the choice of Qk,i in (5.31) is justified.

A.8 Proof of Lemma 3

Recall that

Qk,i =

(
i∑

j=0

µk(j)u
T
k,juk,j

)(
i∑

j=0

µ2
k(j)u

T
k,juk,j

)−1

(58)

for i ≥ M − 1, where the matrix Uk,0:i = col {uk,0, . . . ,uk,i} is assumed to be full-
rank and the basis functions are assumed to be monotonically increasing to guarantee
invertibility above. Under assumption (D-A48), there exists a time index i∗ such that
the moments Eµk(i) and Eµ2

k(i) would have reached finite constant values for all i ≥ i∗

denoted by

Eµk(∞) = µk (Eαk,∞)T ϕ′0,k (59)

Eµ2
k(∞) = µ2

k

(
ϕ′T0,kRαk,∞ϕ

′
0,k

)
(60)
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where Eαk,∞ and Rαk,∞ were defined in (4.36). Then, under (D-A48)–(D-A58), the

process
{
µk(i)u

T
k,juk,j

}
is i.i.d. and, hence, Qk,i can be expressed as

Qk,i =

(
i∗−1∑
j=0

µk(j)u
T
k,juk,j +

i∑
j′=i∗

µk(j
′)uTk,j′uk,j′

)
(61)

·

(
i∗−1∑
j=0

µ2
k(j)u

T
k,juk,j +

i∑
j′=i∗

µ2
k(j
′)uTk,j′uk,j′

)−1

=
(
∆

(1)
k,i∗−1 + (i− i∗ + 1)Eµk(∞)Ru,k

)(
∆

(2)
k,i∗−1 + (i− i∗ + 1)Eµ2

k(∞)Ru,k

)−1

where ∆
(1)
k,i∗−1 and ∆

(2)
k,i∗−1 represent summations over transient terms and are finite.

It follows that

lim
i→∞

Qk,i =
Eµk(∞)

Eµ2
k(∞)

IM = ηkIM . (62)

�

A.9 Derivation of (5.65)—Recursion for R̂A=I
w̃k,i

Note that the covariance recursion in (5.57) cannot be computed in a distributed fashion

across the nodes. In addition to that, it involves the computation of the moments pk(i),

sk(i), and tk,`(i), for all k and `. The approximate recursions in (5.65), for each node

k, can be arrived at by setting A in (5.57) to the identity matrix and replacing the

matrices Pi, Si, and Ti with stochastic approximations P̂i, Ŝi, and T̂i. The matrices

P̂i and Ŝi are diagonal with entries p̂k(i) and ŝk(i), respectively, given by (5.66), for

k = 1, . . . , N . On the other hand, the (k, `)th entry of the matrix T̂i is set to

t̂k,`(i) = p̂k(i)p̂`(i). (63)

Noting that

T̂i �X = P̂iXP̂i (64)

for any N×N matrix X, the covariance recursion in (5.57), with A set to I, is therefore

approximated by

R̂A=I
w̃i

=
[
I −MUTi P̂iUi

]
R̂A=I
w̃i−1

[
I − UTi P̂iUiM

]
+MUTi ŜiUiM. (65)

The matrix equation in (65) is block diagonal with the kth equation given by (5.65).
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List of Abbreviations

i.i.d. independent and identically distributed

pdf probability density function

AR autoregressive

ATC adapt-then-combine

CTA combine-then-adapt

EMSE excess mean-square error

FIR finite-impulse response

LMF least-mean-fourth

LMM least-mean M-estimate

LMMN least-mean mixed-norm

LMS least-mean-squares

MA moving-average

MC Monte Carlo

MVU minimum-variance unbiased

ML maximum-likelihood

MMSE minimum mean-square-error

MSD mean-square deviation

MSE mean-square error

NP Neyman–Pearson

NLMS normalized least-mean-squares

RMN robust mixed-norm

SNR signal-to-noise ratio
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List of Notation and Symbols

R set of real numbers

R+ set of positive real numbers

R++ set of nonnegative real numbers

RN set of vectors of size N on R
RN

+ set of vectors of size N on R+

RN
++ set of vectors of size N on R++

x boldface lowercase letter denotes a random scalar or vector

X boldface uppercase letter denotes a random matrix

x normal-font lowercase letter denotes a scalar or vector

X normal-font uppercase letter denotes a matrix

x(i) scalar quantities are indexed using parenthesis

xi vector quantities are indexed using subscripts

X > 0 X is positive definite

X ≥ 0 X is nonnegative definite

(·)T matrix transposition

(·)−1 matrix inversion

(·)† matrix pseudoinversion

Tr(·) matrix trace

‖x‖ Euclidean norm of x

‖x‖2 squared Euclidean norm of x

‖x‖2
Σ weighted squared Euclidean norm of x, xTΣx

‖X‖2 2-induced norm of A (maximum singular value of A)

‖X‖1 1-induced norm of A (maximum absolute column sum of A)

‖X‖∞ ∞-induced norm of A (maximum absolute row sum of A)

λmax(A) maximum eigenvalue of A

λmin(A) minimum eigenvalue of A

λn(A) eigenvalues of N ×N matrix A, n = 1, . . . , N
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col {·} stacks its arguments vertically

diag {·} - forms a diagonal matrix from its arguments
- recovers the vector comprising the diagonal of its matrix argument

vec(·) vectorizes its matrix argument, stacking columns on top of one another

vec−1(·) inverse operation of vec(·)
bvec(·) block-vectorizes its matrix argument

bvec−1(·) inverse operation of bvec(·)
X ⊗ Y Kronecker product of X and Y

X ⊗b Y block Kronecker product of X and Y

X � Y Hadamard (entry-wise) product of X and Y

1N all-one vector of size N (suppressed if obvious)

IN identity matrix of size N (suppressed if obvious)

f ′(x) first derivative of scalar or vector function f(x), x ∈ R
f ′′(x) second derivative of scalar or vector function f(x), x ∈ R
∇xf(x) gradient of scalar or vector function f(x) with respect to vector x

(operating on a column vector producing a row vector)

|·| absolute value function

exp(·) natural exponential function

ln(·) natural logarithm function

tanh(·) hyperbolic tangent function

sech(·) hyperbolic secant function

sgm(·) sigmoid function, sgm(x) , 1
1+e−x

E expectation operator

fx(x) probability density function (pdf) of the random variable x

N (0, σ2) Gaussian distribution with mean 0 and variance σ2

Q(·) right-tail Gaussian probability function, Q(x) = 1√
2π

∫∞
x
e−

t2

2 dt

x , y x is defined as y

x ≡ y x is identically equal to y
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O(N) of the order of N

wo optimal weight vector

d(i) reference signal at time index i

ui regressor at time index i (row vector)

v(i) measurement noise at time index i

wi weight estimate at time index i

w̃i weight-error vector at time index i

e(i) output estimation error at time index i

ea(i) a priori estimation error at time index i

Ru covariance matrix of the regression data

σ2
v noise variance

Nk neighborhood of node k

nk degree of node k

a`k weight used by node k to scale the data it receives from node `

A combination policy matrix

dk(i) reference signal of node k at time index i

uk,i regressor of node k at time index i (row vector)

vk(i) measurement noise of node k at time index i

wk,i weight estimate of node k at time index i

w̃k,i weight-error vector of node k at time index i

ek(i) output error of node k at time index i

ea,k(i) a priori error of node k at time index i

Ru,k covariance matrix of the regression data of node k

σ2
v,k noise variance of node k
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