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Differential geometry is a powerful tool in various branches of science, especially in theoretical physics. Ordinary differential 

geometry requires differentiable manifolds. This research paper shows how concepts of differential geometry can also be applied to 

pure topological spaces. Such  a theory is based on concepts like cohomology theory. It allows to define a curvature operator also on 

pure topological spaces without connection. The main advantage of this theory is that the only required information about the 

topological spaces is the structure of these spaces. A formulation of quantum gravity is also possible with this theory. 
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1.      INTRODUCTION 
 
Since differential geometry is applied very successful in sciences like theoretical physics (e.g. general 

relativity, gauge theory), computer graphics and many more, there are no significant doubts about the 

logical structure of this branch of mathematics. However, differential geometry is based mainly on the 

requirement of the smooth -manifold. Also the theory of Lie groups which is used very frequently in 

theoretical physics bases on smooth manifold. Despite the great success of this concepts there is 

remaining a disadvantage which is the failure of derivatives at certain regions of the manifold. Such  a 

problem is avoided in discrete differential geometry due to the fact that only finitely many objects (e.g. 

simplices) are used. However, many structures cannot be modeled sufficiently accurate with discrete 

differential geometry. Another possibility of introducing a differential even if the manifold is not 

differentiable in ordinary analysis is Nonstandard analysis (Schmieden 1958). 

 
This research paper focuses also on the unification of quantum theory with general relativity. There is 

still not found a way how to quantize general relativity (Hamber 2009).  The reason is because of the 

singularity at the Big Bang that is predicted by the classical general relativity theory which is based on 

the geometry of smooth manifolds. Heisenberg’s incertainty principle  with momentum 

uncertainty  and length resolution  states that for the continuum limit, i.e. ,  the incertainty 

of momentum becomes infinite which is clearly unphysical. To solve this problem, various theories of 

quantum gravity were proposed. An example of such a theory is String theory (Schwarz 2007)  that 

assumes that elementary particles are not pointlike such that . Other approaches of quantum 

gravity are Loop Quantum Gravity (Ashtekar 1987)  and Causal Dynamical Triangulation (Loll 1998).  

These theories provide a discretization of spacetime, where Causal Dynamical Triangulation relies on 

discrete differential geometry. There are still no experimental validations of these theories and 

therefore the plausibility of these theories is still an open question in theoretical physics. 

 
Also an open question is how to define a proper directional derivative in general manifolds or even in 

topological spaces. Formal descriptions of manifolds are existing in mathematics literature; one of 

these are pseudogroups (Golab 1939).  Another formal description of manifolds is synthetic differential 

geometry (Katz 1970).  This research paper shows how topological spaces can be formalized with the 

use of semigroups and category theoretical elements. With the definition of the E-semigroups calculus 

on general topological spaces can be performed. The groups are called E groups because the letter

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/76650756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
/users/911
https://thewinnower.com/papers/3339-foundations-of-e-theory#submit
https://thewinnower.com/papers/3339-foundations-of-e-theory#submit
mailto:patrick.linker@t-online.de
https://dx.doi.org/10.15200/winn.145350.06184
https://creativecommons.org/licenses/by/4.0/


LINKER The Winnower JANUARY 22 2016 2 

FOUNDATIONS OF E-THEORY : MATHEMATICS 

 

 

 

 
 

“E” is an acronym of the word “Equalizer”; one can also call this theory “Equalizer-Theory”. After the 

basic definitions and theorems about such topological spaces the application to quantum gravity is 

shown. It will be shown the following 

 
Theorem 1.1: A quantum gravity theory is possible without singularities. 

 
The proof of this theorem is given in section 2 of this research paper. 

 
 

 
2.     THEORETICAL CONCEPT 

 

The E-Theory is based only on topological spaces  that have finite cardinality. Here, the main 

ingredient of the E-Theory are the E-semigroups (groups without the inverse and identity property). 

 
 
 

Definition 2.1: May be  a semigroup, where operations between elements 

 are only multiplications. If the maximum number of 

indices that are attached on an element of  is , this semigroup has the characteristic . The 

semigroup  is called an E-semigroup if the following properties are satisfied: 

 

(i)                     or more general ; here the elements  are 

called generators of  

 

(ii)          The group  contains the empty element  with  and arbitrary . 

 

(iii)                If there is an equality in indices, i.e.  then  

 

(iv)        The semigroup is commutative.  
 

 
 
 

Property (iii) of the definition 2.1 contains the equalizer property: The set                    is clearly not 

empty for  and if the element  has two or more factors  that are equal, it 

holds . E-semigroups are strongly related to relations between objects. 

 
 
 

Example 2.2: The set of all possible (generalized) relations between  objects which also includes the 

objects is an E-semigroup of characteristic .  
 
 

 
A very important fact is that E-semigroups can formalize topological spaces. 

 
 

 
Lemma 2.3: Let  be a topological space which can be covered by minimal closed subsets , i.e. 

 and  cannot be subdivided into smaller subsets. Then it exists a functor 

between the category of topological spaces  and the category of E-semigroups . 

 

Proof: A closed subset  has a boundary  that can be determined by computing the following map: 
 

. Since  is a minimal subset, it can be regarded as an element of . An E-semigroup of
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characteristic n has only one element            with                                                    due to property (iii) of 

definition 2.1.  Therefore, one can define an isomorphism  where  is the E-semigroup 

associated with subset . The set of all elements  

can be obtained by removing one generator from the factorization of ; this map is denoted by . 

Finally, one can construct a commutative diagram: 

 

 
 

and therefore the functor  exists.  
 
 

 
From Lemma 2.3 a calculus on topological spaces can be defined that is similar to the calculus on 

manifolds (exterior calculus). 

 
 
 

Lemma 2.4: For every closed subset  that covers a topological space  a long exact sequence 

 with  

can be constructed if  for arbitrary . 

 

Proof: If  for arbitrary , there is no empty element contained in the sets  for 

 due to the equalizer property. Hence, every element of is well-defined. Defining the map  

as   where the superscript     denotes that this index is omitted. 

Then it is easy to show that it holds the exactness condition .  
 

 
 
 

Clearly one can apply a functor                    with a group     to the exact sequence constructed in Lemma 

2.4. This leads to an exact sequence in functions on a topological space (by respecting Lemma 2.3). 

Such  an operation is very similar to the conversion of the simplicial complex to the deRham complex; a 

Hodge dual can be defined analogously. 

 

From ordinary differential geometry it is known that for a scalar  it follows  with the 2- 

form torsion tensor  and for a vector  it follows  with the 2-form curvature tensor  

if  is the exterior covariant derivative. Both quantities are based on the loss of exactness in a chain 

complex. Since the E-Theory related to topological spaces is based on a chain complex, one can 

define a curvature in topological spaces. 

 
 
 

Theorem 2.5: A curvature value  (the analogous quantity is the curvature 2-form in differential 

geometry) can be assigned to every closed subset . 

 
Proof: The exact sequence of Lemma 2.4 requires that the E-semigroup has no nonempty equalizers. If 

there are nonempty equalizers, the chain complex  loses the exactness. 

Now one can define an indicator function  that is applied on a E-semigroup element. This indicator 

function has always the value 1 with exception if it is applied on an empty element; this indicator 

function has the value 0 when applied on an empty element. therefore, this indicator function measures
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the presence of equalizers. The curvature value can be obtained by computing the inexactness 

function . Here, the indicator function is evaluated on the element , because it 

represents (by applying the functor  used in Lemma 2.3) the whole closed subset . Equation (*) 

can also be written as  since the inexactness function lies also on 

. Comparing this equation with the equation  with curvature operator  of 

differential geometry leads to the choice that it can be set ; it holds , 

because the element  has to be well-defined (in other words: this element is not the empty 

element).  
 
 

 
Theoretical frameworks given in this section of this research papers can be used to rewrite General 

relativity in a form such that it can be quantized without UV-divergences. It is clear that the action 

functional of General relativity has the form  with a coupling constant  

and tetrads . Original General relativity has well-defined distance and angle values, whereas 

general topological spaces have not such values. To assign distance measures to a general 

topological space governed by E-semigroups (as described in Lemma 2.3) it is assumed that the two 

neighboring closed subsets  are separated exactly one Planck length (or one Planck time).  With 

this assumption one can get rid of pure geometrical quantities like the tetrads. 

 
 

 
Proof of Theorem 1.1: The integration over spacetime is replaced by summation over all closed 

subsets of the topological space. Also the tetrads and connections are deformed in a manner such that 

the physical spacetime coincides with a topological space governed by E-semigroups. Hence, the 

Lagrangian density can be rewritten as , where  is the curvature tensor after 

the deformation process and  is a modified coupling constant. The sum  can be interpreted 

as the average curvature value times 16 and hence it makes sense to redefine the action of General 

relativity in the following way: . Here,  is a new coupling constant. Finally, the 

Feynman path integral for quantum gravity has the form: 

 

 
 

The set denotes the set of all possible E-semigroup generators and has the cardinality . For 

compact topological spaces,  is finite if  is also finite. For the standard E-Theory it is assumed that 

the sum over  can be omitted, because  (since the Minkowski spacetime has 4 topological 

dimensions).  

 
 

 
The E-Theory applied to gravity is a quantum field theory that is based on the non-homogeny of 

spacetime; by Noether’s theorem it is a theory that does not conserve energy and momentum. 

 
 

 
3.     CONCLUSIONS 

 
With the use of commutative semigroup theory, a quantization of gravity is possible due to the 

introduction of a curvature measure. Such  a theory has only equalizers as a degree of freedom that are 

simply Boolean variables (is there an equalizer in semigroup element or not?). This makes the theory 

easy to implement in computer simulations. A disadvantage of this theory is that the new action which
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is linked to the loss of exactness in a chain complex has a small deviation from the original General 

relativity. 
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