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Abstract

The Internet faces ever faster and stronger dynamics in the behavior patterns
of its users and hence, in the imposed load and traffic. However, the various
‘mechanisms’ used within the Internet—communication protocols and their
functional components, overlays, middleware, etc.—cannot be sufficiently ad-
apted at runtime: parameter adaptation is common practice, but the replace-
ment of a mechanism by one that is functionally similar yet more approp-
riate—for the benefit of performance and quality—is rare. Those rare cases are
tediously engineered case by case since on-the-fly transitions between similar
mechanisms are not promoted by today’s Internet construction principles.
In light of the considerations above, the present whitepaper advocates

mechanism transitions as a fundamental new principle for the Internet and
makes inroads into its modeling and specification.
The quest for a fundamentally more flexible Internet is not only fueled

by trends regarding users and applications ‘above’, but also by innovations
in the network technology ‘below’: Software-defined systems and networks
emerge as an enabling technology for more flexibility, but cannot be suffi-
ciently leveraged for more flexibility in the Internet as a whole.
The German Collaborative Research Center MAKI investigates appropriate

models, concepts and methods as well as prerequisites and benefits in re-
gard to mechanism transitions in the Future Internet. The present whitepaper
comprises approaches to the modeling and specification of such mechanism
transitions, both from a structural and a behavioral perspective, as developed
over the last three years. The various other aspects of MAKI, such as inves-
tigations of particular sets of mechanism or monitoring and control aspects,
are not covered here. The whitepaper starts by providing a more detailed
discussion of the quest for Internet mechanism transitions and of related is-
sues. It continues by introducing the basic MAKI architecture and terminology
in comparison to those of the OSI standard and the Internet. In the sequel,
different approaches to the general structural and behavioral modeling and
specification of mechanism transitions are presented, as developed and used
in MAKI. The presented research contributions were created with different
purposes and focuses in mind; they represent important steps forward on our
path towards a consolidated framework for mechanism transitions. In other
words, they make inroads into a highly dynamic Future Internet that can cope
with ever increasing dynamics.
We will use terminology from the ISO OSI standard as a starting point for

introducing our terms and concepts. For readers with limited knowledge in
this underlying standard, we provide a short OSI terminology primer in the
appendix.
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1 MECHANISM TRANSITIONS: A NEW PARADIGM

1 Mechanism Transitions: A New Paradigm

The Internet is known for its perpetual bandwidth famine: an increase in
bandwidth provision is always followed by an increase in bandwidth demand—
not to the least due to ‘hungry’ new application types (e.g., online games, P2P
sharing, mobile video). In recent years, this well-known phenomenon was
overlaid with a considerable increase in the variety and dynamics of these
bandwidth demands. This latter effect is due to more heavily fluctuating in-
dividual usage patterns (a consequence of the growing peak demand of indi-
vidual applications in response to the bandwidth famine), much aggrevated
by a correlation with crowd hotspots or crowd use patterns.
For better understanding, the following example illustrates this effect.

A user may receive just a few sparse notifications on her smartphone while
driving her car; seconds later, she may come to a full stop at a train cross-
ing, turn to her device and trigger both a high resolution video stream and a
file synchronization with the cloud in parallel. Firstly, such steep changes in
bandwidth and other QoS demands have become common for end users of
the general Internet and lately even of the mobile Internet. (Not long ago,
bulky network traffic was the domain of confined and well-equipped enter-
prise networks.) Secondly, these fluctuations become much more dramatic
if crowd hotspots emerge: in the example, many cars may have to stop and
queue at the same train crossing, probably causing almost synchronous jumps
in network demand. (Similar patterns may occur at other small or large crowd
hotspots, such as commute hubs, city centeres, sports venues, etc.). Thirdly, a
trigger of a video stream or file download as in the above example may even
concern the same source as an example of a crowd use pattern: a viral so-
cial media posting, live screening of a sports event, a security critical patch,
etc. The example discussed in this paragraph serves as a short and simple
illustration of the much increased Internet user dynamics that we face. Of
course, high dynamics across the Internet as a whole also appear as higher
fluctuations in the resources available to serve the fluctuating demands of a
particular individual user or user crowd.

1.1 Resulting Future Internet Challenge

As the aforementioned example shows, the ‘load on the Internet’ may fluc-
tuate by several orders of magnitude within fractions of a second. The struc-
ture and behavior of the network that has to master these dynamics, how-
ever, seems to be—relatively speaking—‘carved in stone’: Apps are compiled
and linked with predetermined middleware components, leaving little room
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1.1 Resulting Future Internet Challenge

for dynamic adaption, and lower layers are not built for on-the-fly reconfig-
uration either. Dynamic parameter adjustment within a given configuration
is wide spread, but only two kinds of true dynamic reconfiguration—i. e., of
mechanism transition—have gained a certain degree of common use over the
last decades:

• Some heavy-bandwidth apps feature a built-in choice between several
transport protocols. For instance in the context of video streaming, scal-
able video coding may seem to be a very adaptive approach as well, but
it is largely a means for adapting the users’ load, not the network be-
havior; at least, it ‘makes the best’ of a reduced load when forcing the
user to accept it.

• The standardized network interface provides an abstraction layer be-
tween IP and the available MAC and physical layer connections (e. g.,
WiFi, G3/G4); the choice is usually made by the OS and often fixed at
app startup time for the entire session; this is about to change along
with the advent of G5 mobile networks, TCP handover, and multipath-
TCP—and thereby the advent of dynamic handover among MAC layers,
or concurrent use of several MAC layers, at runtime.

The latter of these developments is currently still the only one of wide-spread
interest in which a runtime choice among several alternative options is made
continuously, at runtime, in a way that allows all applications to benefit. As
such, it is a unique sample realization of dynamic mechanism transition in
the current Internet. This being said, it shows that there are no established
principles nor general concepts and methods that support mechanism tran-
sitions. Moreover, it is a rather simple, dedicated, and specifically engineered
case.
In summary of the above, one can state that (i) the dramatically increasing

dynamics of the Internet leads to a quest for dynamic switching between
protocols and other schemes, while (ii) only few, rather simple examples of
corresponding approaches exist today, (iii) little knowledge exists about the
relationship between ‘conditions’ (e. g., network load, signal strengths) and
performance of individual protocols or communication schemes, (iv) cross-
layer optimization between several dynamically adaptable layers is far from
being common in the Internet.
This state of affairs is the point of departure for MAKI (Multi-Mechanism

Adaptation for the Future Internet1), a Collaborative Research Center funded
by the German National Science Foundation. MAKI aims at a future dynamic

1In German: ‘Multi-Mechanismen-Adaption für das künftige Internet’
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2 FROM OSI VIA INTERNET TO MAKI

and adaptive Internet in which arbitrary components of the communication
‘stack’—all the way from app to ether or wire—can be switched at runtime to
adapt to changing load and fluctuating network conditions. Obviously, such
switching has to consider many boundary conditions, for instance:

• If a component is part of a distributed functionality (e. g., a network
protocol or distributed functionality in a middleware), switching may
have to be conducted synchronously at many nodes.

• The target component of the switching may also suggest (e. g., for per-
formance reasons) or even require (e. g., for compatibility reasons) switch-
ing of other components.

• Switching may be too ‘expensive’ (e. g., in terms of temporary perfor-
mance degradation, of required switching time) to be justified if a ‘cur-
rent condition’ that suggests the switch cannot be expected to hold
long enough for the switching to ‘pay off’ (even oscillation may occur).

The present whitepaper describes and discusses the general ‘mechanism tran-
sition’ approach that is key to all MAKI projects and introduces several ap-
proaches introduced for modeling and specifying concrete realizations of this
approach. We will start by comparing the conventional OSI model for open
systems interconnection with the current practice regarding the structure of
computer networks and with the architecture advocated in MAKI as a basis for
dynamic ‘mechanism transitions.’ Following this introduction, we will present
the actual concepts for modeling and specifying ‘mechanism transitions’ and
discuss their pros and cons. For the time being, these different approaches
are concurrently applied and evaluated in MAKI in order to gain further ex-
perience.

2 From OSI via Internet to MAKI

2.1 The OSI Model as a Starting Point

The ISO standard Open Systems Interconnection (OSI) [61] consists of basic ter-
minology, a seven-layer architecture, and a set of communication protocols
and services. OSI is common knowledge among computer network special-
ists since more than three decades and, more importantly, it provides a sound
basis for our work. Therefore, we retain the OSI terminology as far as applica-
ble in this document. Given the broad variety of expertise and background of
potential readers of this document, we provide a quick summary of the most
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2.2 The Internet in Relation to OSI

relevant terms and model elements of the general OSI model in Appendix B.
We omit the OSI seven-layer model, which most computer network experts
consider obsolete, and concentrate on the general model and terminology.
Readers who are truly familiar with the terms communication protocol, com-
munication service, protocol entity and protocol function, (N-)layer, service
access point, request/confirmation and indication/response are not required
to refer to Appendix B.

2.2 The Internet in Relation to OSI

The following developments in the Internet lead to deviations from the purist
interpretation of the OSI model:

• Fragmented ‘under-underlay’: The overwhelming success of the Inter-
net led to the integration of many network types; quite often, such
network types exhibit specific peculiarities that require an elaborate
network stack ‘below IP’, leading to more than two layers below the
‘classical layer three’ (network layer, i. e., IP); this led to a technology-
and topology-driven fragmentation of the ‘under-underlay’ layers be-
low IP that is today only partly reflected in the layer-three ‘underlays’
that follow the IP-specific structuring concepts (e. g., autonomous sys-
tems (ASes), IP-subnetworks)

• Virtually separated networks: The ‘hourglass’ shape of the landscape
of Internet protocols (everything over IP – IP above everything, i. e.,
above every ‘sub’-network and above all lower-layer protocols) made
IP ‘irreplaceable’ even though its design was suboptimal for newer ap-
plication classes, in particular low-latency media streams of VoIP and
IPTV; hence, virtually separate networks emerged where Telcos could
manage this low-latency traffic via reservation schemes; the list of con-
tributing technologies on different layers and of different impact leads
from WDM and MPLS decades ago to SDN more recently.

• Blurred layers, selective functionality: As throughput requirements grew
ever faster, cross-layer optimization considerations suggested a depar-
ture from the strict ‘distributed abstract machine’ concept introduced
by OSI; many approaches advocated a pick-and-choose approach where
applications would be supported by custom ‘stacks’ of selected protocol
functions across all layers.

• Balkanizedmiddle layers: Asmentioned above, the inefficient and partly
impractical OSI standards proposed for layers five and six strengthened
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2 FROM OSI VIA INTERNET TO MAKI

the success path of the ‘Internet stack’ where these layers are basically
non-existent: applications are supposed either to connect directly to
the transport layer (sockets) or to connect to application-layer proto-
cols (e. g., HTTP, SMTP). Since the construction of more sophisticated
distributed applications atop TCP is tedious and usually comprises a lot
of recurrent functionality, there was a big demand for additional sup-
port in the ‘free space’ left over from the vaporized OSI-layers five and
six. Four major kinds of support were (and are) provided in this respect:

– Middleware: Middleware realizes recurrent functionality that re-
quires distributed realization on (more or less) all nodes involved
in a distributed application; since most middleware is internally
designed according to the ‘blurring of layers’ paradigm (see above)
yet clearly separated from applications and underlying (Internet)
transport protocols, it can be viewed as a ‘single fat layer’; in light
of resource-constrained special-purpose or mobile nodes, recent
approaches targeted lean approaches by following the pick-and-
choose paradigm.

– Middleware services: Recurring functionality that can be provided
on selected nodes for a whole network domain (such as time ser-
vices, authentication services) are often realized as middleware
services; service provision to application entities usually follows a
client-server communication scheme.

– Overlays: The term ‘overlay’ is commonly used instead of ‘mid-
dleware’ if the recurring functionality is provided through clever
topology construction and clever repartition of that functionality
across the (distributed) entities providing it; overlays are typically
designed with scalability as a major design consideration. Peer-to-
peer file sharing systems can be considered to mark the starting
point of overlay concepts.

– Communication paradigm driven solutions: The advent of novel
communication paradigms (e. g., remote procedure call, applica-
tion level multicast (ALM), publish/subscribe (pub/sub)) along with
competing realizations (e. g., various overlay routing approaches),
has been a major driver for novel middleware (providing the func-
tionality in a ‘communication protocol’ oriented way) and overlays
(providing clever routing approaches and topologies); this driving
role of communication paradigmsmerits special mention as one of
the forces that pushed the ‘Internet reality’ of today further away
from the ‘perfect OSI world’ of the 1990s.
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2.3 Towards the MAKI Internet Model

• Quest for parallelization: Finally, the protocol / layer structure is further
challenged by the increasing parallelization that results from physical
limits of ‘Moore’s law in the classical sense’. CPUs, multi- and many-
core architectures as well as evermore powerful network interface cards
(NICs) hold the promise to help counter the ever increasing throughput
demands of network stacks. At the same time, they re-introduce the
need for clear separation (e. g., at the boundaries to GPUs or NICs).

2.3 Towards the MAKI Internet Model

As a novel approach that aims at a paradigm shift of the Internet, the MAKI
Internet model has to reflect (i) the past, i. e., the OSI model and its tailoring
to the Internet as it occurred some three decades ago, (ii) the present, i. e.,
the realities of the present Internet as summarized in the last section, and
(iii) the necessities imposed by the key concepts ‘mechanism’ and ‘transition’
and the considerations they impose.
Obviously, the encompassing notion of ‘mechanism’ must be refined such

as to cover not only protocols and services as in the OSI case but the full
variety of functionality realized by cooperating components in today’s Inter-
net. In addition, this concept of abstract mechanisms and their incarnation
in cooperating runtime instances must both be enriched by all the necessary
elements, both structural and behavioral, that are required in order to enable
mechanism transitions. Transitions, in turn, must be conceived such that they
can be specified and realized by parties (i. e., vendors and communities) that
are independent from mechanism providers—and they must be extensible as
new candidate mechanisms for a transition are added.

3 Modeling MAKI Mechanism Transitions

3.1 Requirements Imposed by the Reality of Today’s Internet

The previous chapter argued how and why the current reality of Internet-
based networks deviates considerably from the purist OSI general model and
from the conventional four-plus-one-layers Internet model. We will condense
the arguments brought forth in Section 2 into the following four characteris-
tics that describe how today’s Internet deviates from clean models that sup-
posed to be its foundation, since any model of the Future Internet should be
able to reflect the reality of the Internet.

10



3 MODELING MAKI MECHANISM TRANSITIONS

(I1) Fragmented network: Different under-underlays require different proto-
col stacks below IP; vertically sliced ‘virtual networks’ are required for
proper handling of different traffic classes, in particular in response to
VoIP and IPTV, with SDN as the latest movement; these fragmentations
complement the known AS/subnet partitioning

(I2) Pulverized protocols: Mainly for performance reasons, the strict hierar-
chical layering concept has been increasingly traded in for pick-and-
choose models of protocol (function) selection across layers.

(I3) Clustered functionality: While trend (I2) led to highly modular, i. e., fine-
grained self-contained functional blocks, other developments had a re-
vers effect, i. e., led to a clustering of functionality with sharp external
boundaries but blurred internal structure; e. g., self-contained middle-
ware and overlays encapsulate rather complex intertwined sets of func-
tions, isolating these parts from the rest of the network stack; powerful
computer-like NICs and GPUs andmulti-/many-core trends, all available
on a single computer node, suggest the network stack to be partitioned
among these ‘processing elements’.

(I4) Complex topology: The various overlay approaches (e. g., for server-less
high-availability storage, for collective video transport) and application-
layer routing concepts (needed in support of, e. g., pub/sub and ALM)
mark a trend away from the classical point-to-point design and spec-
ification of communication protocols, where the main considerations
concerned two interacting parties in the system.

3.2 Requirements Imposed by Mechanism Transitions

As discussed in the introduction, MAKI aims at a substantially more flexible,
dynamically adaptable Internet. The term Internet is thereby conceived as a
superset of all interconnected communication systems2 worldwide. The dy-
namic adaptation is meant to extend substantially beyond parameter adap-
tation: switching from one ‘component’ to another one at runtime shall be
specifically supported. The (often distributed) functionality represented by
a switchable, i. e., exchangeable, component is denoted as mechanism here-
after; as laid out in the previous chapters, the concepts mechanism and tran-
sition (see below) represent the fundamental terms and concepts conveyed
in this whitepaper. More precisely speaking, a mechanism is realized in the

2The term communication system is used to denote a computer network together with its
distributed computation support (e. g., overlays, middleware).
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3.2 Requirements Imposed by Mechanism Transitions

form of a set of distributed runtime code instances (non-distributed scenar-
ios, i. e., a set of local instances or even a single instance, are comprised in
this definition as special cases). The cooperating instances actually provide
the specified mechanism functionality in the Internet. In accordance with OSI
terminology, we denote these runtime code instances as (mechanism) entities.
A mechanism—more precisely: its entities—may be dynamically replaced by a
different set of distributed entities that realize a different, functionally similar
mechanism. (For details see further below.) The act of switching (exchanging
one mechanism,i. e., the set of mechanism entities by another one) is denoted
as transition.
In comparison to the occasional approaches to dynamic switching that

exist in today’s Internet, the mechanism transition approach pursued in MAKI
is thought of as a fundamental principle for the Future Internet, permitting
much wider spread, easier and more consistent development, and most im-
portantly interoperability in open systems. Towards these aims, the MAKI
concept also exhibits subtle differences from occasional existing approaches.
This is exemplified by a look at prominent examples of existing approaches:
those that permit switching between UDP and TCP, between TCP and RT-
P/RTSP, and between different data link interfaces such as WiFi, 3G, 4G, 5G,
and wired connections. In these approaches, it is the party using a mecha-
nism or the local operating system that decides about switching: for instance,
apps may decide about switching between different transport layer mecha-
nisms, the operating system may decide to switch between data link layer
mechanisms, and in the case of multipath-TCP, it is the higher layer (TCP)
that decides about which lower layer protocols to use. (OSI literates may
note that functionality like that of multipath-TCP was by and large antici-
pated in the OSI model under the term ‘downward multiplexing’, except that
dynamic load balancing had not been explicitly addressed by then.) In con-
trast to these known approaches, the concept of MAKI mechanism transition
assumes a dedicated control logic to surround the (source and target) mech-
anisms involved in a transition—notwithstanding the possibility for a third
party (e. g., app, higher layer, OS) to influence the control logic, i. e., to cause
a transition indirectly (see ‘utility functions’ further below).
Before introducing more details of the MAKI reference model, the reason-

ing that governs the MAKI model must be considered in more detail. Conse-
quences of the principles guiding MAKI for the correspondingly revised Inter-
net model will be enumerated as (M1) through (M5) below.

(M1) Representation of static aspects of the dynamic control logic for tran-
sitions, its modularization, and federation: The necessary computational

12



3 MODELING MAKI MECHANISM TRANSITIONS

logic as discussed above must be explicitly represented as elements of a
MAKI-compatible architectural model; a modularization of this logic should
be supported and reflected: MAKI suggests the well-known M-A-P-E cycle for
separation of concerns here (see below); on the other hand, a federation of
conceptual components across layers, and of the corresponding entities (run-
time instances, see above) across layers and network nodes must be reflected
in the model.
In open networked systems (following the ‘open systems’ vision advocated

by both the OSI and Internet communities), the interdependencies and inter-
relations between transitions and their surroundings cannot be completely
foreseen at the time a mechanism is specified and implemented; they may
not even be fully known at the time a transition between source and tar-
get mechanism is specified and implemented. Examples for such dependen-
cies that cannot be (fully) foreseen at mechanism or transition design time
include, in particular: (i) dependencies to/from other mechanisms and tran-
sitions, both ‘hard’ (e. g., mutual exclusion due to incompatibility) and ‘soft’
(e. g., mutual effects on the performance of the other mechanism); (ii) require-
ments imposed by parties using (sets of) mechanisms, i. e., apps and ‘higher’
mechanisms. This leads to the quest for a human- and machine-readable
specification language for the transition-governing M-A-P-E cycle. (We will
use the term ‘abstract specification’ to refer to the hybrid, i. e., easily human
and machine readable quality of such a language.) This quest can be further
detailed as follows.

(M2) Abstract specification of dynamic aspects of the transition control logic:
The transition control logic represents the behavior of a particular transi-
tion between mechanisms; it concerns the necessary preparation, state and
function transition, and re-instantiation steps and may provide for simulta-
neous operation of both mechanisms during parts of the transition. This logic
should ideally be available as abstract specification. Since it may concern only
a particular transition and does not have further external effects apart from
the transition itself, there is a temptation to avoid formal specification and
modeling. However, the use of formal approaches provides a good interface
where human and machine based reasoning meet; in addition, it is known
to improve and simplify maintenance and to enable generalization (here: to
other transition control logic).

(M3) Abstract specification of interdependencies: Regarding point (i) in (M1),
reasoning about mutual dependencies between transitions and about ‘opti-
mal’ cross-transition configurations should also be possible using an abstract
specification.
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3.2 Requirements Imposed by Mechanism Transitions

(M4) Abstract specification of the transition decision logic: Probably the
biggest challenge in the new paradigm proposed by MAKI concerns the en-
abling of decisions about transitions: when would which transition be trig-
gered and performed. While simple rules suffice for simple cases, the mid-
and long-term goal must be to provide a framework for a sophisticated con-
trol loop. This control loop should ideally take into account the demand side,
i. e., current and expected future load situation and user desires (one may call
it the problem space), and the supply side, i. e., dynamic adaptation possibil-
ities of the Future Internet (one may call it the solution space).
In the research work of the MAKI team and based on related work, the

above-mentioned control loop was thoroughly investigated, guided by the
classical measure-analyze-process-execute (M-A-P-E) cycle introduced in the
autonomous computing context by IBM in 2004. In this context, the following
major aspects turned out to be suitable for capturing the design and solution
spaces:

• Environment conditions, i. e., parameters that describe the load situation
of several alternative mechanisms

• Mechanism performance characteristics, i. e., quality-of-service parame-
ters describing an aspect of the solution space suitable for comparing
the performance of alternative mechanisms; note that mechanism per-
formance may be inversely described by means of the cost , i. e., over-
head (res source demand or similar), associated with providing a desired
quality-of-service; mechanism cost can equally be used for comparison
of alternatives in the solutions space

• Transition costs capturing the effort required for executing a transition
(e. g., resource demands, temporary performance degradation); obvi-
ously, transition costs must be traded off against expected performance
gains

• Utility expressions providing a crucial dual-purpose ‘link’ between prob-
lem space (environment conditions) and solution space (performance
characteristics / costs): since different mechanisms will usually cater
for different performance characteristics to a different degree, and since
the improvement of one quality-of-service parameter may degrade an-
other one, utility expressions must be used in order to determine the
contribution (weight) of each performance parameter to the overall per-
formance. Moreover, different users may have different preferences
and different importance, i. e., weight, as mechanisms cater for several
users. In this respect, utility expressions may be used to integrate these
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4 THE MAKI REFERENCE MODEL

(maybe conflicting) user interests into a single ‘formula’ that maps the
complex problem space into what is to be optimized in the solution
space

• Predictors, i. e., means for capturing time as additional and independent
dimensions of the mechanism transition dynamics; decisions that are
solely based on current demand or load may turn out to be inappro-
priate by the time the transition is carried out; in other words: without
considering (and hence, predicting) future situations, mechanism tran-
sitions may be suboptimal or counter-productive, or even lead to oscil-
lating behavior; while predictors for expected future situations (future
environment characteristics and utilities) are difficult to achieve and
may still be inexact, they can considerably improve system performance

(M5) synchronization of dependent transitions: Two major kinds of depen-
dencies between transitions must be carefully considered when effectuat-
ing a transition, leading to a (potential) need for synchronization: (i) intra-
transition (cross-network) synchronization concerns the fact that mechanisms
are provided by a distributed set of (often identical) components (cf. protocol
entities in the conventional OSI model, Appendix B); they may lead to the
need for effectuating a particular intra-transition protocol among the enti-
ties effectuating the transitions on different nodes; (ii) inter-transition (cross-
node) synchronization concerns interdependencies as discussed under (ii) in
(M1); they may lead to the need to carry out several transitions on a single
node in parallel or even in lock-step.
In the next chapters, we will first establish a normative MAKI reference

model, mainly intended for establishing concepts and terminology. The sub-
sequent chapter will then introduce particular modeling and specification
techniques that were developed or furthered in the context of MAKI research.
Their basic reason of existence is for simplifying a developer’s task to realize
MAKI conformant mechanisms, multi-mechanisms (for the term see below),
and control cycles that drive transitions.

4 The MAKI Reference Model

4.1 The Structural Model

The first consolidated version of the structuralMAKI Internet reference model
is introduced below by means of annotated architectural figures. The re-
quirements (I1) through (I4) resulting from today’s Internet (see Section 3)
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4.1 The Structural Model

are mainly reflected as follows. First of all, the strict architecture put forward
by OSI (see Appendix B) with its rigid separation in layers and its singular
granularity of services plus corresponding protocols is replaced by a more
universal modular architecture where the concept of a mechanism is the de-
sign center. Mechanisms can be freely composed into distributed caller-callee
and composite-component structures, and such compositions may be encap-
sulated into (OSI-like) distributed virtual machines and structures that may
serve as self-contained layers if desired. At the same time, node and network
structures can be reflected in the model by means of node containers called
processing and storage elements, and by means of network containers called
subnetworks which can be arbitrarily overlapping. Finally, (I4) is reflected
by explicitly introducing topologies as first-order objects in the mechanism
related model.
The MAKI-specific requirements (M1) through (M5) discussed in Section 3

are reflected as follows. The concepts mechanism, (mechanism) entity, and
transition as sketched in the beginning of Section 3.2 are introduced system-
atically as part of the MAKI reference model. (M1) through (M5) inform details
of these concepts and, in particular, further structural elements of the MAKI
reference model as introduced below. Behavioural aspects are reflected by
means of ‘placeholders’ that mark up the relationship between structural and
behavioral elements.

4.1.1 Basic Reference Model for Mechanisms

The relationship between mechanisms, (mechanism) entities, and topologies
(cf. section 3.2) is depicted in Figure 1.

Figure 1: Mechanism (conceptual level) with corresponding (runtime) entities
and topology (architectural level)

For a more concise description, we introduce a set of informal definitions
as follows.
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4 THE MAKI REFERENCE MODEL

Definition 1: MECHANISM (Key Concept)

A mechanism is a confined conceptual element of a networked system
that is bound to a realization as cooperating functional units; the spe-
cial case of an isolated realization (single-node) is permitted.

Examples: services in the OSI sense (cf. Appendix B) represent a special
case of mechanisms; other examples include protocol functions in the strong
and in the relaxed OSI sense (cf. Appendix B), conceptually confined func-
tionality of a middleware or of an overlay (e. g., those that realize a commu-
nication paradigm), comprised or auxiliary functionality in support of these,
and the entire middleware or overlay as such.

Definition 2: (Mechanism) Entity

A mechanism entity is an element of a communication system that re-
alizes node-specific functionality at runtime that pertains to a mecha-
nism; the entity and cooperating peers together realize the distributed
cooperative provision of a mechanism.

In analogy to the OSI terminology, we consider mechanisms as abstract con-
cepts, the functionality of which is often realized by cooperating runtime
modules; these runtime modules are denoted as (mechanism) entities, again
in accordance with OSI. In analogy to the OSI terminology, the term mech-
anism is often commonly used for the sake of simplicity in cases where a
distinction between mechanism and mechanism entity would be more pre-
cise.

Definition 3: (Mechanism) Topology

Amechanism topology is themeshwork of (logical) connections between
mechanism entities. The default representation is a graph in which the
vertices represent the entities that realize a mechanism.

We already pointed out that in today’s Internet, complex overlays and other
multi-party structures complement the former ‘point-to-point-centric’ con-
ceptualization of (OSI-model-like) services and protocols. In light of the much
increased relevance of the multi-party structures pertaining to the realiza-
tion of mechanisms, topology was ‘promoted to first-class citizen’ in the MAKI
model.
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Definition 4: Communication Mechanism

A mechanism is refined as communication mechanism if it is involved in
the handling or forwarding of user data.

Definition 5: Control Mechanism

A mechanism is refined as control mechanism if it is involved in the
operation of other mechanisms in the sense of auxiliary functionality.

In the OSI referencemodel, protocols and services were supposed to serve the
purpose of forwarding packets between layers and across nodes. A look at,
e. g., the IP protocol and its companion protocols (a. k. a. IP auxiliary protocols)
such as IGMP and ICMP shows the importance of another kind of protocols and
services: those that are not directly involved in the handling and forwarding
of data ‘packets’ (PCI plus PDU in OSI terms). Therefore, the distinction of two
classes of mechanisms (communication and control) is introduced. Important
examples for control mechanisms are monitoring mechanisms and topology
control mechanisms. Note that the attributes ‘communication’ and ‘control’
may be used as prefix for other concepts and constituents of the MAKI refer-
ence architecture, such as mechanism entity and multimechanism.

4.1.2 Possible Relationships of Coexisting Mechanisms

According to the definition of a mechanism, a networked system contains a
large number of mechanisms (although today, the vast majority of them is
not perceived, let alone specified and realized, as a mechanism in the sense
of the MAKI reference model. The large number of mechanisms found al-
ready in today’s communication systems can be inferred by just looking at
the functional building blocks of communication protocols that are called
protocol functions in OSI terms: rate, flow, and congestion control, address-
ing, acknowledgment, timeout, checksum calculation, upward and downward
(de-)multiplexing, and so on. Middleware, overlay networks, etc. are not even
considered in this exemplary list. The vast amount of mechanisms today will
obviously grow further in the future. Therefore, it is useful to introduce ma-
jor categories of relationship among coexisting mechanisms, worthwhile to
discern. Such categories are introduced below.
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Definition 6: Super-Mechanism / Sub-Mechanism

If an ‘encompassing’ mechanism applies an ‘encompassed’ mechanism
as part of its specification, the former is concretized as super-mechanism
and the latter as sub-mechanism
For communication mechanisms, encompassing means that process-
ing of data structures as exchanged in the network by the super-
mechanism’s entities continues after the usage of the sub-mechanism
is terminated.

Note that a sub-mechanism may act as a super-mechanism in a different re-
lationship and vice versa. The analog ‘transitivity’ applies to the following
definition.
Definition 7: User-Mechanism / Provider-Mechanism

If a ‘higher’ mechanism applies a ‘lower’ mechanism as part of its spec-
ification, the former is concretized as user-mechanism and the latter as
provider-mechanism. In contrast to the relationship between super- and
sub-mechanisms, ‘higher’ means that the distributed handling of data
structures in the network (transportation, storage-and-retrieval) is pro-
vided by the ‘lower’ mechanism in lieu of the higher mechanism.

The last two definitions are illustrated in Figure 2 below. Software engineers
will note that they reflect wide-spread relations common to, e. g., object-
oriented programming.

Figure 2: Mechanisms in super-sub and user-provider relation

Definition 8: Functionally Equivalent Mechanism

A mechanismM2 is called functionally equivalent to a mechanismM1 if
any user- or super-mechanism conceptualized for the use of M1 does
not have to be modified if M1 is replaced by M2 and if under M2, the
user- or super-mechanism retains its functionality

Obviously, equivalent mechanisms have to offer exactly the same interface to
their user- or super-mechanisms, where ‘same’ refers to both the syntax (sig-
nature) and behavioral semantics at the interface, so that only non-functional
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differences such as different performance functions are exhibited ‘upward’ in
the communication system. Functional equivalence is very rare in today’s In-
ternet and cannot be expected to be common in the near future. Therefore,
another term is introduced for the functional comparison of mechanisms.

Definition 9: Functionally Similar Mechanism

A mechanism M2 is called functionally similar to a mechanism M1 if
core functionality—defined as the majority, i. e., more than 50% of the
overall functionality—of M1 and M2 can be formally or informally de-
fined in identical terms and if additional functionality can be specified
that provides functional equivalence according to Definition 8.

In cases where communication services are exchanged already today (see,
e. g., WiFi vs. LTE vs. Ethernet or TCP vs. UDP vs. RTP), functional equivalence
is not 100% present. Rather, the functional differences must be shielded or
mitigated (e. g., by the virtual network interface card, VNIC) . The network
access layer below IP is an example for shielding, and multi-protocol video
streaming solutions provide mitigation. Still, shielding and mitigation cannot
be provided if mechanisms are too different, which brings about the term
‘functional similarity’ that is crucial to the definition of transitions in the next
section.
Sincemultimechanisms shall be in away that includes the potential shield-

ing of functional differences between mechanisms, the definition of func-
tional similarity above is crucial to the MAKI reference model.

Definition 10: Dependent / Independent Mechanism

Coexisting mechanisms are called dependent if they exhibit rela-
tionships of type super-/sub-mechanism or of type user-/provider-
mechanism. Coexisting mechanisms are called independent if they are
neither dependent nor functionality equivalent nor functionaly similar.

Source and targetmechanism. In the context of transitions, the terms source
mechanism and target mechanism will be applied to denote the mechanism
from which and to which a transition is carried out, respectively. Since these
terms depend on the context and do not classify mechanisms as such, they are
not included in the list of numbered definitions provided in this whitepaper,
which constitute the core of the MAKI reference model.
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4.2 Behavioral Model: Transitions

In light of the argumentation and definitions provided so far, we can imme-
diately proceed to the definition of the second central concept of the MAKI
reference architecture:

Definition 11: (Mechanism) TRANSITION (Key Concept)

A (mechanism) transition is the functional replacement of a (source)
mechanism by a functionally similar or equivalent other (target) mech-
anism in a running communication system, without causing an error
condition in any dependent mechanism.
A transition may concern one, several, or all super- or user-mechanisms
of a communication system for which the source mechanism acts as
sub- or provider-mechanism, and for which it is replaced.
In the particular case where the source mechanism is the only super-
or user-mechanism of a dependent sub- or provider mechanism, such
a dependent mechanisms may be halted or terminated if the target
mechanism of the transition will replace or restart it.

The introduction of the concept of transitions raises the issue of agents that
trigger or perform transitions and of the corresponding decision making. Sec-
tion 4.3 and subsequent chapters will emphasize these behavioral aspects.
For now, we introduce one definition in order to be able to capture this issue
in the subsequent discussions.

Definition 12: Transition Control Logic

The transition control logic is the decision making and management
functionality required for deciding about transitions and for enabling
and steering their execution.
Transition control logic consists of a partial or complete cycle through
the steps of the M-A-P-E cycle: monitoring (collection of evidence),
analysis (computing of system status and transition cost), planning (as-
sessment of the status after transition, core decision making), and ex-
ecution (provision for and steering of the actual transition).

Considering the vision of a future dynamic Internet with frequent mechanism
transitions, the transition time and ‘smoothness’ will be amajor aspect. These
considerations suggest distinctions between transitions as follows.
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Definition 13: Sharp Transition

In a sharp transition, the source mechanism is terminated before the
operation of the target mechanism starts.

As specified in the transition definition, the termination and start of a mech-
anism concerns the role of the source and target mechanisms for a super-
or user-mechanism; it does not necessarily imply the termination or start of
mechanism entities in terms of executable code. This applies to the next two
definitions, too.

Definition 14: Handover Transition

In a handover transition, the source mechanism is terminated after the
target mechanism has started and if the overlap period serves the pur-
pose of reduced performance slump

Definition 15: Coexistence Transition

In a coexistence transition, two or more functionally equivalent or sim-
ilar mechanisms are permanently in use for the same super- or user-
mechanisms and if the transition control logic determines the distri-
bution of tasks among these mechanisms as opposed to triggering the
(sharp or handover) transitions as such.

Additional structural component. The above definitions of transitions and
related concepts provide the basis for introducing an additional structural
component that makes the possible differences between multiple transitions
and the transitions themselves transparent to super- and user-mechanisms.

22
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Definition 16: Multimechanism

Amultimechanism encapsulates several mechanisms and the transitions
between them; it comprises

• two or more functionally similar or equivalent mechanisms;

• a single mechanism interface towards super- and user-
mechanisms (the multimechanism appears as a single mecha-
nism to those mechanisms) and, in case of functionally similar
mechanisms, the necessary code for ‘equalizing’ the functional
differences between comprised mechanisms to the necessary
extent for ensuring the properties of a transition as specified;

• an interface towards external control logic for supplying infor-
mation about internal states and measurement and for receiving
transition decisions or decision aids;

• internal transition control with mandatory support for execution
of transitions and optional measurement, analysis and planning
parts.

The concepts of sub-/super-mechanisms and user-/provider-mechanismsmay
be lifted to multimechanisms, resulting in sub-/super-multimechanisms and
user-/provider-multimechanisms, respectively.

Similar to today’s Internet where several services and protocols may ex-
pose cross-layer dependencies, particular combinations of dependent mech-
anisms may be favorable while others may be unfavorable or even impossible
due to incompatibilities. Such dependencies cannot be hidden by means of
the multimechanism concept; they must be considered by control logic that
is external to the multimechanisms and considers these dependencies. This
is a major reasons why multimechanism-internal transition control logic is
optional except for the part that executes transitions.

This has two reasons: 1. the instantiation of a multimechanisms in the
form of distributed entities may require different kinds of (or no) control logic
to be realized in different entities, 2. overarching (‘cross-layer’) control logic
may be used for several multimechanisms. For the same reason, a definition
for a component such as topology control entity is not provided here.
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4.3 Behavioral Model: Transition Decision

4.3 Behavioral Model: Transition Decision

The quest for transition control logic as defined above was mainly put forth in
requirement (M4); it was reflected in the definitions the corresponding notion
and of multimechanisms above. A crucial part of control logic, and thereby of
the M-A-P-E cycle, are the decision making processes that trigger transitions.
Often, the decision concerns a set of transitions for several mechanism

components on several network nodes, in which case it may be necessary to
decide which entities shall be in the set; finally, the decision may concern a
set of transitions for different but interdependent mechanisms – which will
again in turn be realized as a set of interconnected components.

Holistic Model and Function for Decision Making: In the remainder of this
section, we will introduce the parts of the MAKI reference model that provide
the general nature of a transition decision function, denoted as utility function.
As usual for a reference model, the corresponding definitions will attempt to
capture—to the best of the experience and knowledge of the authors—all
aspects, characteristics, and parameters that can be taken into account in
a transition decision. Therefore, the decision function will be composed of
several auxiliary functions.
As the remaining chapters of this whitepaper illustrate, actual models ap-

plied for specific purposes in the MAKI context concentrate on more specific
aspects and are hence driven by much more focused decision making con-
cepts. Thereby, auxiliary functions are often reduced to single values or sim-
ple terms in the utility function. Such simplifications are also suggested since
present decision making techniques (introduced in subsequent chapters) re-
quire simpler utility functions.
As to the encompassing utility function, auxiliary functions, and further

inputs to the necessary terms and definitions for the ‘holistic’ model and func-
tion introduced below, we can refer to the context of (M4), where most of the
key functions and input were already named as part of the problem descrip-
tion: environment characteristic (subsuming everything that describes the
load and ‘surrounding’ situation of a mechanism) (mechanism) performance
characteristic (quality-of-service parameter),mechanism cost (inversely char-
acterizing a mechanism in terms of associated effort, e.g., resource consump-
tion), transition cost, and utility (linking all inputs and functions together in
weighted expressions where weights reflect user requirements and priorities).
We will now provide more concise formal specifications as part of the MAKI
reference model.
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Definition 17: Environment Characteristic

An environment characteristic of a mechanism is a variable Ei or vector
of variables ~Ei that influences the performance of a mechanism yet is
not under direct control of that mechanism; the variable or each vector
component takes on a numeric, binary, or enumeratic (class) value at
any given time of the operation of the mechanism.

Definition 18: Performance Function PF

The quality of service provided by a mechanism is modeled by means of
a set of performance functions {PFi}, where each performance function
PFi maps a set of environment characteristics {Ej} onto a particular
quality-of-service variable Qi or cost variable Ci of the mechanism; in
the first case, the performance function describes an aspect of howwell
the mechanism renders its service, in the second case, it describes the
amount of a relevant resource or effort required for service provision
under the given set of environment conditions.

While the reference model is meant as an abstract description, one can easily
infer typical resources for obtaining the above-mentioned data. Environment
characteristics must usually be acquired by means of monitoring (measure-
ment); if they are related to mechanisms ‘in the environment’ of the multi-
mechanism(s) for which transition decisions are sought, then they may be
obtained from these mechanisms upon request.

Performance characteristics of an active mechanism may either be moni-
tored or derived from the performance functions based on measured (or ob-
tained, see above) environment characteristics. Performance characteristics
of an inactive mechanism (usually: a candidate mechanism of a considered
transition) can only be obtained via performance functions, executed with
measured (or obtained) environment characteristics as input. Working out a
performance functions is a considerable challenge, usually subject to inten-
sive research. In some cases, they can be derived from research publications.
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Definition 19: Transition Cost (Aggregation) Function CF

A transition cost function CF maps boundary conditions of a transition
under consideration (such as the number of components employed or
available resources) onto a numeric, Boolean, or enumerated value
suitable for trading off transition gain—in terms of utility gain—against
transition cost. Different categories of transition penalties may have to
be considered, requiring different cost functions and a transition cost
aggregation function. For decision making, the relevant cost (aggrega-
tion) function must yield the same output value type as the relevant
utility function.

Definition 20: Prediction Function (predictor) FF

A prediction function FF (predictor for short) can be defined pairwise
for a performance function PF, taking the same parameters plus an
additional one denoted as time offset; this time offset determines the
time in the future for which a predicted performance for a given mech-
anism shall be computed. A prediction function may take on the form
of a probabilistic estimator and yield additional statistical information
such as probability distribution function, variance, etc.

It should be noted that lacking persistence of predicted future environmen-
tal conditions as well as oscillations may hamper or foil transitions. The gain
drawn from a transition depends heavily on the future development of the en-
vironmental conditions; conditions that favor a target mechanism at a given
point in time may persist or become even more favorable, and hence favor
that mechanism further; in such a case, a transition may even pay off in case
of high transition costs. If, however, the environmental conditions evolve
quickly in a direction that favors a different mechanism, even low-cost tran-
sitions may be counter-productive.

The simplest conceivable predictor is one that assumes the current envi-
ronmental conditions to last (independent of the time offset). On the other
side, sophisticatedmachine-learning based predictors can be imagined which
can be used for effectuating a transition in anticipation of an upcoming set
of environmental conditions
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Definition 21: Utility (Aggregation) Function UF

A utility function UF maps different weighted performance functions
onto a single output value U :
U = UF(PF1(e11, ..., e1m) ∗ w1, ...,PFn(en1, ..., enm) ∗ wn);
different user- or super-mechanisms affected from the same transition
- and for top-layer mechanisms: different users may provide different
utility functions; in this case, a utility aggregation function must com-
bine different weighted utility functions into a single value.

As discussed under (M4), a transition decision based on nothing but perfor-
mance and cost functions is likely to be impossible or arbitrary: sets of per-
formance functions and cost functions may yield contradicting values for dif-
ferent quality-of-service variables (e. g., for a distributed data storage case, a
transition may promise to improve access time but reduce availability); there-
fore, a tradeoff between conflicting aspects must be achieved, which is the
purpose of the utility function. For the analogous reason, an aggregated cost
function is necessary if several cost functions exist.
Even in the case of two different transitions that both improve over a

status quo, but with an emphasis on different performance characteristics,
the transition decision cannot be taken without comparing the utility of these
performance characteristics.
It is necessary to reason about the cumulative utility which a mecha-

nism provides to a set of users (apps or ‘higher’ mechanisms); to this end,
users must provide individual utility functions that map the set of considered
quality-of-service variables to a single utility variable. For the integration of
all utility functions of all users currently using a mechanism, the utility func-
tions must be normalized and combined; normalization can be achieved by
specifying constraints on the utility functions (such as an integral maximum),
combination can be specified in a dedicated utility aggregation function (that
may consider different weights or priorities for different user classes).

Actual decision making. Provided that comparable utility and cost functions
for source and target mechanisms yield the same types of values and that the
functions are designed such as to make these values truly comparable, the
condition for a transition cannot be formulated quite simply: Let US and UT

denote the utility of a source and a target mechanism, respectively, obtained
as output of the utility (aggregation) function; let further CS→T denote the
transition cost for the transition from the source to the target mechanism
as considered; then a transition is (in principle, see below) favorable if the
target mechanism utility is larger than the source mechanism utility plus the
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transition cost, i.e. if UT −CS→T −US > 0. If several transitions are possible,
the one with the largest value of the above subtraction is to be favored.
Obviously, the decision making as above does not yet properly take into

account time: a favorable utility of a target mechanism weighs more if the
performance functions can be expected to remain favorable for a longer time.
If this aspect is to be reflected in the weights of the utility function then the
weights must be considered as appropriate functions instead of single values.
Again, obtaining these functions—and assessing the expected development
of utility over time—is difficult issue and requires targeted research.

Outlook on remaining chapters. The present chapter introduced the MAKI
reference model for communication systems based on the core concepts of
mechanisms and transitions, providing a vision for a highly dynamic Future
Internet. Both structural and behavioral aspects were addressed.
As common for reference models, the striving for comprehensiveness led

to quite a number of concepts in the structural model and to a behavioral
model that is quite far-fetched with respect to the knowledge embedded in
the performance, cost, and utility functions defined. Therefore, we will com-
plement the reference architecture with findings from a range of subprojects
within the MAKI collaborative project. Thereby, Section 5 addresses issues of
structural modeling, and Section 6 presents a number of approaches to the
behavioral aspects of mechanism transitions.

5 MAKI Transitions: Structural Aspects

This chapter resumes structural issues of mechanism centered, transition en-
abled highly dynamic communication systems.
Section 5.1 presents a metamodel-based approach to structural modeling,

making considerable inroads into the realization of the structural part of the
MAKI reference model.
Section 5.2 emphasizes an important particular aspect, namely the com-

plexity of composite structures consisting of super- and sub-mechanisms,
user- and provide-mechanisms, and functionally equivalent or similar mech-
anisms comprised in multimechanisms. Considering possible combinations
due to (at first sight) independent transitions in these potentially quite com-
plex composites, unfavorable and functionally incompatible combinations
will emerge. In the light of this particular problem, Section 5.2 provides an
approach based on so called feature models.
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5.1 Structural Modeling Based on Metamodels

In this section, we introduce metamodeling as a technique for describing
the structure of MAKI-compatible systems. We illustrate this technique us-
ing three different sample system types.

5.1.1 Definitions

The following paragraphs introduce basic concepts related to meta-model-
ing [45]. A metamodel3 describes the essential parts of a system under con-
sideration. It consists of classes, which may have typed attributes (e. g., real-
valued, integer-valued, or enumeration type-valued) andmethods. An abstract
class (depicted using italized font) cannot be instantiated. To specify rela-
tions between classes, two connection types are employed: inheritance links
and associations. Inheritance links are denoted by triangle-headed links and
specify is-a relationships between classes. Associations are denoted by arrow-
headed lines and specify has-a relationships between classes. Each associa-
tion comprises two association ends, each possessing a descriptive role name
and a multiplicity, which specifies how often a particular association may be
instantiated at runtime. Composition is a special type of association, which
specifies that one class, the containee, has a part-of relationship to another
class, the container. The container end of such an association is depicted as
solid black diamond.
In the following, we present these modeling elements using three ex-

amples of MAKI-compatible systems, originating from different areas of the
communication system domain. As metamodeling framework, we employ
Ecore [52] which is part of the Eclipse Modeling Framework (EMF). One of the
benefits of Ecore is that widely used mappings to object-oriented languages
such as Java already exist.

5.1.2 Example 1: Wireless Sensor Networks

A Wireless Sensor Network (WSN) typically consists of a large number (hun-
dreds to thousands) of small, cheap, and battery-powered sensor nodes, which
are for example used to collect environmental data or to help during disas-
ter recovery [46]. A WSN may be partitioned into several regions, exposing
different characteristics (e. g., moving vs. static obstacles).
Figure 3 depicts a metamodel for the WSN application domain. AWire-

lessSensorNetwork consists of (sensor)Nodes andLinks between them, which
are grouped into (network) Regions. A Node has the real-valued attributes

3The following definitions conform to the Meta Object Facility (MOF) standard [24].
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Figure 3: Metamodel of Wireless Sensor Networks

transmissionPower and batteryLevel and always belongs to oneWirelessSen-

sorNetwork and to at least one Region. Sensor nodes are interconnected
by directed Links, having the real-valued attributes transmissionPower and
distance. Additionally, two associations between Link and Node represent
outgoing and incoming links.
The classTopologyControlMechanism represents a generic topology con-

trol mechanism. The method TopologyControlMechanism::apply(Region)

runs the particular topology control algorithm on a given region of a WSN. A
topology control mechanism typically works by determining and inactivating
power-intensive links that are unnecessary for the operation of the WSN. In
literature, hundreds of TC algorithms have been proposed; for conciseness,
we list only a few of them in the metamodel:

• MaxpowerTC retains the complete—so-calledmaxpower—topology by
inactivating no links at all4. While amaxpower topology is inmost cases
not the most energy-efficient one, it is relatively robust, e. g., against
sudden nodes failures, due to its high degree of redundancy.

• XTC sorts the neighbors of each node by quality (e. g., by increasing
distance) and removes all links whose endnode is already ‘covered’ by

4Indeed,MaxpowerTC instantiates the Null Object pattern [20].
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higher-quality links [58].

• kTC reduces (unnecessary) redundancy in a topology by inactivating
all links that are the longest link in some triangle [48]. The parameter
k may be used to control the ‘aggressiveness’ of the algorithm: Some
longest link in a triangle is removed only if it is additionally at least k
times longer than the shortest link in the triangle.

• g-kTC and l-kTC [28, 51] are variants of kTC that take application-
specific constraints into consideration. Generally speaking, g-kTC and
l-kTC only remove links from a topology if the increase of the length
of routing paths in the overlay stays below a given threshold.

• i-kTC [27] is an incremental variant of kTC. While kTC, g-kTC, and
l-kTC tend to operate on whole topologies, i-kTC operates on change
events of the topology.

TheWSNTopologyControlMultimechanism has a number of registeredWS-

NTopologyControlMechanisms, from which it may choose the most suitable
one(s) at runtime.
The metamodel in Figure 3 presents a highly flexible approach to specify-

ing WSNs: If the WSN consists of only one region, the same topology control
multimechanism is active for the whole WSN, which is especially useful when
applying topology control mechanisms that require non-local knowledge of
the WSN topology (e. g., overlay routing paths in g-kTC and l-kTC [28, 51]).
If the WSN consists of more than one region, in the extreme case, each region
consists of exactly one node. This allows the topology control multimecha-
nism to configure topology control to meet the characteristics of the local
topology, e. g., using kTC in ‘stable’ regions and MaxpowerTC in regions
with high mobility. As a result, this enables different mechanisms to coexist
independently within one WSN.

5.1.3 Example 2: Location-Assisted Publish-Subscribe

As a second example, we consider the location-assisted publish-subscribe
framework Bypass [38]. The corresponding metamodel of Bypass is depicted
in Figure 4. A Bypass system consists of a Server and a number of Clients.
A Client emits Events and may register for Events emitted by other Clients
at the Server. A SubscriptionInterst determines the types of Events that a
Client may register for: A TopicBasedInterest describes interesting Events
by their topic, while a LocationBasedInterest describes interestingEvents by
a circular area (given as radius) around a certain position (given as latitude
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Figure 4: Metamodel of the location-assisted publish-subscribe system By-
pass

and longitude). Each Client may be a member of zero or more Subscription-
Groups. A subscription group serves one or more SubscriptionInterests. We
model two multimechanisms of Bypass: the DisseminationMultimechanism

and the CommunicationMultimechanism.
The DisseminationMultimechanism wraps the method that determines

how Events are distributed within one SubscriptionGroup. Possible Dis-
seminationMechanisms are(i) Unicast, where an Event is delivered to each
Client in a group, separately; (ii) Broadcast, where an Event is delivered
to all Clients in a group at the same time; (iii) Gossip, where an Event is
forwarded to a subset of a Client’s neighbors.
The CommunicationMultimechanism hides the currently active Com-

municationMechanism(s) of a Client. In scenarios with typical end-user mo-
bile devices, wemay at least identify the following communication interfaces,
which may be (partially) active in parallel: WiFi-, Bluetooth-, and Cellular-
Interface.
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Figure 5: Metamodel of the adative video streaming system Transit

5.1.4 Example 3: Adaptive Video Streaming System

As another example we consider the adaptive video streaming framework
Transit [60, 42]. The correspondingmetamodel of Transit is shown in Figure 5.
In Transit, TransitNodes may register at a TrackerServer to receive a video
stream. The delivery of the video stream is typically performed via multi-
hop paths across several TransitNodes. The TransitNodes may build up dif-
ferent (logical) topologies. A TopologyManagementMechanism shapes the
topology to either form a mesh (MeshTopologyManagement), a set of trees
(MultiTreeTopologyManagement) or a combination of both (HybridTopo-
logyManagement). On each TransitNode, a TopologyManagementMulti-

Mechanim hides the currently active TopologyManagementMechanism.
Additionally, aTransitNodemay decide to receive/transmit the video stream

in a pull-based and/or a push-based way, which is described by the Delivery-
CoordinationMultimechanismwith the twomechanismsPullBasedDelivery
and PushBashDelivery.
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Finally, theTopologyOptimizationMultimechanism determines network-
global strategies for handling special situations. For instance, the Flash-
CrowdStrategy copes with high churn rates by restricting modifications of
the topology to avoid premature optimizations. In contrast, the mTreebone-
Strategy performs optimizations such as tree rebalancing.

Summary In this section, we showed how to specify the system structure
and the placement of multimechanisms—on a network-/region-wide (WSN),
group-wide (Bypass), or node-local (Transit) level—using metamodeling tech-
niques. We provided metamodels of three representative examples of MAKI-
enabled systems, exposing different levels of complexity. Still, these mod-
els already hint at certain limitations of pure metamodels: The interdepen-
dencies between multimechanisms cannot be described easily and in a suffi-
ciently general way. Also, metamodels cannot be used to specify valid tran-
sitions between the mechanisms of one multimechanism. The following sec-
tions (especially Section 5.2) address these limitations and, thereby, com-
plement the metamodeling approach described in this section. A common
approach to describe the dynamic behavior of metamodels are so-called pro-
grammed graph transformations [47, 13] that are suitable to provide the im-
plementation of class methods, which have been omitted here for concise-
ness, on the same abstraction levels as metamodels. A closer look at the three
sample metamodels reveals that the topology of a communication system is
an important aspect, which will be addressed separately in Section 6.4.

5.2 Describing System Configurations using Feature Models

In MAKI-enabled systems, the full variety of functionality is encapsulated in
mechanisms, which may(i) be concurrently active at the same time, (ii) indi-
vidually be replaced with other mechanisms at runtime, and (iii) expose con-
flicting requirements. In this section, we propose to apply techniques from
the field of Software Product Line Engineering to tackle these challenges and
provide a comprehensive specification of valid system configurations.

5.2.1 Specifying Variability of Dynamic Software Product Lines using FODA
Feature Models

Feature models provide a comprehensive formalism for specifying common-
ality and variability among the different members of a family of similar (soft-
ware) products organized in a software product line (SPL) [25]. A feature con-
stitutes(i) a product characteristic, i. e., a system property relevant for some
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Figure 6: Feature model of Crater

stakeholder as identified during domain engineering, and (ii) a product con-
figuration parameter for deriving stakeholder-specific product variants dur-
ing application engineering [7]. A dynamic software product line (DSPL) en-
hances the SPL approach by allowing a product to be not only (pre-)configured
once during application engineering, but rather by supporting flexible recon-
figurations at runtime [6]. This enables a product implementation to dynam-
ically evolve to meet continuously changing requirements [5].
As a running example, we consider the data dissemination protocol Cra-

ter [39] being part of a monitoring framework, which was designed using
the MAKI paradigm as described in Section 2.3. Crater provides a multi-
mechanism for which a selected mechanism depends on the current contex-
tual situation. Relevant reconfiguration options of the MAKI-enabled system
are captured as features that can be adapted at runtime. The constraints on
feature combinations, as imposed by a feature model, restrict the configura-
tion space of the DSPL to a subset of valid configurations. Figure 6 shows a
sample feature model of Crater from the perspective of a single node in FODA
notation [25].
The feature model organizes the supported features in a tree-like hierar-

chy. For instance, the feature Node decomposes into features Role, IF, and
Topology. A single child feature is either mandatory or optinal for its parent
feature. For example, the feature Role constitutes mandatory core function-
ality to be part of every Crater variant. In addition, sets of child features may
be collected in groups, where or-groups require at least one feature from that
group to be present if its parent feature is present, whereas alternative (xor)
groups require exactly one feature to be present. Finally, cross-tree edges
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Figure 7: Context feature model of Crater

denote feature dependencies that crosscut hierarchies; for example, Leaf is
incompatible with Uniform. A particular product configuration of a DSPL is
obtained by binding all variability, i. e., by either selecting or deselecting ev-
ery provided feature according to the given contextual situation.

5.2.2 Specifying Runtime Contexts using Context-Aware Feature Models

DSPL supports dynamical (de-)selection of features at runtime, depending on
the requirements imposed by a contextual situation. To provide autonomous
planning and execution of a reconfiguration at runtime, Saller et al. extended
the DSPL variability specification given by a feature model with the require-
ments imposed by the contextual environment [44, 43]. The enhanced model
builds the basis for a design-time pre-computation of appropriate reconfig-
uration behavior to be conducted by the implemented DSPL for the corre-
sponding context changes emerging at runtime. The feature requirements of
contexts are specified by require and exclude cross-tree constraints leading
from the context model to the FM. As contexts represent distinct environ-
mental states they are assigned by external events. The given FM of a DSPL
is therefore extended with additional context information, again represented
as a feature model over contexts, i. e., a context feature model.
Figure 7 shows the extension of the Crater DSPL by enriching its origi-

nal FM (left-hand side) with a context model (right-hand side) resulting in a
context-aware feature model (CFM). Here, all contexts are collected in an or-
group which allows combinations of context features where always at least
one context is to be active at runtime. Further constraints are specified by
contexts requiring and/or excluding selected features. A reconfiguration is
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Figure 8: Reconfiguration model of handshake procedure in Crater

triggered by changes imposed by the currently active contexts.

5.2.3 Specifying Context-Aware Reconfiguration Behavior

Each valid configuration as specified by the CFM represents a state in the
configuration state space. The reconfiguration between states establishes a
reconfiguration sequence. However, not all reconfiguration sequences com-
plying with the feature model are valid for a given DSPL. For instance, in
Crater, the reconfiguration from a state where Uniform and Cell are active and
WiFi is inactive to a state where Hybrid is active requires a handshake proce-
dure. A reconfiguration is thus not directly possible without activating WiFi
first with feature Uniform being selected. Therefore, the DSPL specification
must be further augmented with a reconfiguration model restricting possible
reconfiguration sequences precisely [32]. Saller et al. proposed to specify
valid (partial) configurations as states and each potential reconfiguration as
transitions in a transition system[44]. In [8, 23], automata-like specifications
have been used for this purpose as well. Figure 8 depicts a sample transition
system specifying the reconfiguration behavior of the CRATER DSPL.
As described in [43], based on this specification and enriched with an

evolving probabilistic contextual model, further means of analysis such as
state space reduction for resource constrained devices or off-line pre-com-
putation for probable usage patterns were derived. An open issue is still the
specification of reconfiguration behavior with reconfiguration automata con-
sisting of states represented by partial feature configurations to tackle chal-
lenges such as state space explosion. Furthermore, we plan to generalize the
notion of Context Feature Models, where contexts not only imply dependen-
cies on system features but also potentially depend on them. This will further
facilitate the specification of pervasive MAKI-enabled systems.
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6 MAKI Transitions: Behavioral Aspects

6.1 Introduction

The goal of the MAKI collaborative research center is to contribute to a much
more dynamic Future Internet. In this respect, the core concepts of mecha-
nisms and transitions are introduced. The MAKI reference model introduced
in Section 4 proposes a utility-based behavioral model for decisions about
mechanism transitions. In other words, such transitions aim at maximizing
the utility of the system by executing transitions between mechanisms at
runtime. This chapter discusses a range of inroads made into the behavioral
aspects of mechanism transitions. The contributions compiled here comply
with the vision provided by the reference model, but take the existing In-
ternet as a starting point and pursue evolutionary paths towards supporting
dynamics.
Thereby, the researchers involved in this aspect of the MAKI research

agenda addressed the problem from different viewpoints and, thereby, with
different modeling approaches.
As an introduction, we will refer to three general approaches about de-

cision making that are well known from the literature (cf. Figure 9). The ap-
proaches presented in the following fit very well with this classification: they
can be associated with one or both of the first two categories and consid-
ered or integrated findings and general concepts from the third category. As
Figure 9 indicates, the three wide-spread approaches are(i) to use an explicit
utility function for deciding about transitions, (ii) to turn the problem into a
goal-based specification, or (iii) to use rule based descriptions.
All these approaches have different advantages, application scenarios,

and drawbacks, but have in common that they aim at increasing system per-
formance. Basically, the three categories distinguish between different ways
how the system derives the actual transition decision at runtime. Obviously,
the developer of a rule-based description system has some utility function
in mind that lead to the concrete rules. In the following, we illustrate the
differences using concrete MAKI applications.

6.1.1 Utility-Based Description

Utility functions are a widely used concept in adaptive systems, as they al-
low describing preferred configurations with a high level of abstraction [26].
Walsh et al. [56], for example, use utility functions to optimize the resource al-
location in a dynamic, distributed environment. To derive the concrete adap-
tation decisions at runtime, these solutions require a detailed system model
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Utility Based Description 

Find configuration C (and transition T which leads to C) which 
maximizes the utility 

Rule Based Description 

Developer  
derives  
concrete  
rules 

If x and y execute transition 
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analytical solution Iteration/ enumeration of transitions 

heuristic Integer Programming 
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Multiple goals, which should be fullfilled.  
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analytical solution Iteration or Enumeration of possible transitions 

heuristic Integer Programming (C01: MF, C02: ML) 
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Constant and planar 

If x and y execute transition (C03: BR?) 

Figure 9: Classification of the transition decisions. The concrete transition at
runtime is triggered based on different models.

to forecast the utility of different configurations and the costs of the adapta-
tions [4].
A Utility Based Description searches for configurations or transitions which

maximize the utility. Therefore, the systems uses an analytical models or iter-
ates over a set of possible transitions at runtime. For each possible transition,
the system evaluate the utility and finally choose the transition which leads
to the maximum utility.
Utility based decisions play an important role in quite a number of MAKI

projects. [11] is a good example where the concept of optimal mechanism
combinations as promoted by MAKI was applied to a concrete Internet issue,
namely video distributed using scaleable video codecs. Utility function were
applied for that purpose. They are even applied in MAKI beyond decision
making for transitions. For instance, [12] applies a utility function in order to
maximize throughput in the wireless sensor network.

6.1.2 Goal Based

Goal based decision making has been pursued for many years in areas like
behavioral agent research and in many knowledge based concepts. Following
Kephart et al. [26], goal based specification of an adaptation logic described
goals and constraints; the authors emphasize the fact that pure goal based
approaches lack the possibility to specify conflict resolution strategies, e.g.,
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in case multiple conflicting goals. This is one of the reasons why goal based
approaches are often combined with rule based concepts. In our context,
section describes a game theoretic approach to decision making for MAKI
mechanism transitions that combines goal and rule based concepts.

6.1.3 Rule Based

An example for the derivation of concrete rules for a given utility function by
the developer is kTC[48]. kTC is a simple local rule that removes the longest
edge from triangles. By doing so, kTC achieves several goals, like an output
topology with planarity and bounded node degree. However, these goals or
a utility function are not explicitly encoded into the rule. Instead, it was
evaluated during the development of the kTC rule that the rule implicitly
leads to the aforementioned desired effects.

6.1.4 Rule Based plus Rule Learning

While rule based systems have well-known limits that make them just one
out of three choices, recent developments in machine learning provide a path
towards considerable sophistication. In particular, the automatic derivation
of concrete rules for a given utility function, such as a rule-fuzzy learning
proposed in [37] for video streaming, and the Fossa approach developed in
the MAKI context [18] show that rule based systems along with rule learning
constitute a very promising approach.

6.2 Behavioral Modeling Based on ECA Rules and Description
Language

Event Condition Action (ECA) rules allow a developer to specify the events
and conditions that trigger transition actions. The Fossa ECA Engine [17] is a
concrete implementation of the ECA concept for transitions, which decouples
the application from the transition logic.
The ECA rules have a human-readable representation which allows the

developer to inspect and understand the transition logic. Additionally, they
have a high expressiveness to support complex transition behavior.
ECA rules are triggered by Events which cause the evaluation of the Con-

dition. If the condition evaluates to true, the Action leads to the execution
of transitions. ECA rules can contain three types of events: i) application
events that are pushed to the ECA engine (e.g., a MessageReceived-Event), ii)
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updates and changes of important monitoring values (e.g., the current num-
ber of neighbors), or iii) clock events such as a periodic timer. Conditions are
expressions consisting of monitoring values and event attributes. Monitoring
values can be either pushed by the application to the ECA Engine or retrieved
on demand. The ECA Engine executes simple optimizations such as constant
folding and evaluation reordering on the expressions of the condition.
Actions execute the actual transitions which lead from one configuration

to another. An ECA rule can contain multiple actions. This can be the simple
change of a parameter, the exchange of a component following the life cycle
specified in [19], or the addition or removal of a neighbor. Additional types
and description approaches might be possible. Even the simple change of a
parameter at runtime might require complex operations and have complex
dependencies. The change of the number of neighbors in an overlay topology,
for example, incurs additional network traffic for communication.
The ECA rule in Listing 1 illustrates the overall concept with an example. If

the number of received messages in the last 30 seconds is greater than 5 and
the number of hops a message is forwarded is less than 10, the application
sets the number of neighbors to 10. The condition is evaluated after each
MessageReceivedEvent and when the NumberOfHops changes.

1 on �rst match (count(MessageReceivedEvent, 30 s) > 5) and (←↩
NumberOfHops < 10):

2 execute transition NumberOfNeighborTrans;

Listing 1: Example of an ECA rule.

To avoid oscillating transitions, conditions support temporal expressions,
for example, “is the maximum number of neighbors during the last minute
less than ten?” (max(NumberOfNeighbors, 1 min) < 10). Additionally, rules
can specify whether the action is executed (i) only the first time the condition
matches, (ii) every time it matches, or (iii) every time it matches if not exe-
cuted within the last t seconds. This enables fine-tuned transition behavior,
which avoids oscillating transitions and overreactions. The Fossa ECA En-
gine is implemented efficiently with an event processing unit, which works
as message broker between the incoming events and the corresponding ECA
rules. The overall architecture of the Fossa ECA Engine ensures that only rel-
evant monitoring values are collected, minimizing the monitoring overhead
for the adaptivity.
The event and condition expressions are inspired by event processing

languages such as ESPER Event Processing Language (EPL)5 and Stream-
SQL. There exists a multitude of other rule based description approaches for

5http://esper.codehaus.org/
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adaptive behavior, which influenced the design of the presented ECA rules:
situation-actions rules of Dayal et al. [10], policies as described by Lobo et
al. [31], condition-action rules [14], adaptation strategies and adaptation op-
erators in the rainbow framework [21], adaptation rules as priority rules [15],
policies [3], and action policies [26], to mention only some examples.
We extended the Fossa ECA Engine with an additional Fossa Learning En-

gine, which learnes ECA rules for a given utility function [17]. This bridges
the gap between a utility-based description of the desired adaptive behavior
and a rule-based execution at runtime. Especially the genetic programming
learner, as described in [18], leverages the clear syntax and semantics of the
ECA rules as well as a model of the (possible) adaptive behavior, to learn ECA
rules.

6.3 Behavioral Modeling Based on Min-Cost-Flow Optimiza-
tion

In this subsection, we describe a min-cost-flow model to find optimal tran-
sitions. An optimal flow in this model corresponds to an optimal choice of
transitions. An example is illustrated in Figure 10.

6.3.1 Nodes

Each end user device and all MAKI-enabled devices are represented in our
min cost flow model. In the min-cost-flow the set of nodes is V = D ∪ T ∪
C ∪R ∪ {Ω}.
Devices D: There is a node vd representing each device and its current

configuration c(vd) ∈ C .
Configurations C: Let C be the set of all possible configurations. The set

of valid configurations for a device d is given by C(d) ⊆ C . The current
configuration of device d is denoted by c(d) ∈ C . In the model, there is a
configuration node vd ∈ C for each configuration c ∈ C .
Transitions T: We assume that every device can transition between any of

its valid configurations. There is a node vt ∈ T for each possible transition.
The node with label a → b with a, b ∈ C models the transition from config-
uration a to configuration b. We explicitly also have transition nodes a → a
for a ∈ C for not changing the configuration of a node.
Restrictions R: The model supports restrictions on the number of nodes

attaining a certain configuration. Such a restriction rj models the sum of
devices attaining any of the configurations c ∈ Cj ⊆ C is at most kj . Note that
in this formulation any configuration may appear in at most one restriction.
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All devices that are not restricted in any sense are connected to an unlim-
ited restriction with sum at most∞.
Sink Ω: The sink Ω.

6.3.2 Arcs

Devices to Transitions: For each device node vd ∈ D, there is an arc (vd, vt) to
all transition nodes vt ∈ T with labels a → b where a = c(vd) is the current
configuration of the device and b = C(vd) is a possible configuration for the
device.
Transitions to Configurations: For each transition node vt ∈ T , there is an

arc (vt, vc) to the corresponding target configuration of the transition, i.e., for
vt with label a→ b with a, b ∈ C , node vc corresponds to configuration b.
Configurations to Restrictions: For each configuration node vc ∈ C , cor-

responding to configuration c ∈ C we have an arc (vc, vrj) to the (unique)
restriction node vrj containing c.
Restrictions to the Sink: For each restriction node vrj ∈ R there is an arc

(vrj ,Ω) to the sink.

6.3.3 Costs

There are two different types of arc costs. The first type is the transition cost,
which is the cost for implementing a transition, including costs for configu-
ration changes measured in resource consumption, downtimes, intermediate
drop in user experience, etc. The second type is the operation cost, which is
the cost of operation within a certain configuration. The operation cost does
not only contain costs (e.g., resource consumption) but also benefits (e.g.,
quality of experience). In the min cost flow model, these costs are modeled
as follows:
Transition costs δ: on all arcs from nodes in T to nodes in C.
Operation costs γ: on all arcs entering Ω.

6.3.4 Flow Balance

Only the device nodes and the sink have non-zero balance. All the device
nodes are supply nodes with a balance of +1, whereas the sink is a demand
node with balance −|D|.
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Figure 10: Min-cost-flow model

6.3.5 Bounds on the Flow

Only the arcs leaving the restriction nodes rj have an upper bound on the
flow value. This upper bound is exactly the value kj of restriction rj limiting
the sum of all devices with configurations in Cj .

6.3.6 Optimization

To find an optimal set of transitions we first build the network according to
the current system state. Next, an optimal flow is calculated using a stan-
dard solver for min-cost-flow problems. Finally, we determine the optimal
transitions as follows. In an optimal result, for each device d, exactly one
edge (vd, vt) has non-zero flow, more precisely a flow value of one. This arc
determines the optimal transition t for device d.

44



6 MAKI TRANSITIONS: BEHAVIORAL ASPECTS

6.3.7 Limitations and benefits

Unfortunately, the model has a limitation in expressiveness regarding con-
straints: Each configuration can only be part of at most one restriction. This
is sufficient to model many real-world restrictions like limiting the number
of devices in the same configuration or a list of configuration, e.g., due to
a limit on the capacity of assigned resources in that configuration(s) (router,
cell-phone tower, or similar). However, it does not allow for a more complex
set of restrictions with more than one restriction on any of the configurations.
Although the number of configurationsmay become quite large, themodel

allows for quick optimization as the formulation results in layered graphs.
Even huge instances can be solved to optimality quickly.

6.4 Modeling Topologies under Transitions

The topology of a communication system describes its inherent structure.
Typically, a topology is modeled as a graph G = (V,E), where the node set
V and the edge set E denote the networked devices and the communica-
tion channels, respectively. We distinguish two types of topologies: physical
topologies and logical topologies. An example of a physical topology is a
wireless ad-hoc network, where an edge (u, v) ∈ E indicates that the incident
nodes u, v are within transmission range of each other. On the other hand,
an example of a logical topology are peer-to-peer overlays, where edges in-
dicate the communication pattern of the overlay.
Both physical and logical topologies may be adapted at runtime. From

a modeling perspective, this means that the graph G is modified. Typically,
nodes have a certain degree of freedom when selecting their neighbors. For
example, a node in a wireless network may select its neighborhood from the
set of nodes that are contained in the maximum transmission range of the
node [51]. In other words, the edge set E is modified and, thereby, topology-
specific side constraints are considered. Moreover, the set of nodes V may
be modified. In the example of a sensor network, a node may temporarily
switch to a sleep mode in order to disable its wireless transmitter, resulting
in a smaller energy consumption [1]. Switching between the different modes
leads to the node vanishing from and re-appearing to V .
Using a common model like graph theory for topology adaptations is ben-

eficial for two main reasons. First, different adaptation concepts and algo-
rithms can be jointly analyzed and compared, independent from a specific
topology mechanism. Second, a common model allows for providing generic
and replaceable adaptation components, which can be re-used for different
(related) topology mechanisms. An example of such an adaptation compo-
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nent is a component that adapts the graph toward a certain distribution of
target patterns. As exemplarily demonstrated above, most topology adap-
tations may be modeled as edge modifications or node modifications of a
graph G, i.e., the edge set E or the node set V may be modified. In order
to support its adaptation by a generic component, a mechanism needs to
provide an interface for these graph operations and map these operations to
mechanism-specific operations, like connecting to or disconnecting from a
specific neighbor. Moreover, it must be ensured that inherent properties of
the mechanism’s topology are never violated. For this purpose, the interface
may for example allow for requesting graph constraints. Another possibility
would be an interface that, at each point in time, provides a set of currently
allowed graph modifications.
In the context of a MAKI-enabled system, we distinguish two types of

adapting the mechanism’s topology at runtime: mechanism-internal adapta-
tion and transition-enforced adaptation.
Mechanism-internal adaptation describes the modification of a topology

within a mechanism in order to optimize given optimization criteria. This
adaptation is conducted continuously and independent of a transition. A mul-
titude of mechanism-internal adaptations exist. A typical example is topology
control, where physical communication links are removed from wireless net-
works, leading to energy savings [48, 51]. Other examples are mechanism-
internal adaptation for improved event dissemination in peer-to-peer net-
works [30], improved connectivity in ad-hoc networks [9], or streaming tree
balancing [57]. A wide-spread approach to conductmechanism-internal adap-
tation are local algorithms. In accordance with this section, local algorithms
are often defined and applied on graphs [53]. In a local algorithm, each node
v ∈ V has a local view GL(v) ⊆ G of small size. If each node adapts its
local view GL(v) in an appropriate way, a global effect on G can be achieved
cooperatively. An example of a local algorithm is the aforementioned kTC
algorithm [48], where each node has a local view of two hops and applies a
simple rule to remove edges from GL(v).
Transition-enforced adaptation describes the modification of a topology

in the context of a transition. In order to motivate such an adaptation, we con-
sider two well-known peer-to-peer search overlays: Gnutella [40] and Bub-
bleStorm [54]. Recently, we have shown that transitions between Gnutella
and BubbleStorm are possible [16]. BubbleStorm and Gnutella exhibit in-
herently different topologies: While BubbleStorm relies on a random graph
to give probabilistic guarantees, Gnutella has characteristics of a power-law
structure. As becomes easily evident, conducting a transition between the
mechanisms BubbleStorm and Gnutella requires that the topology is adapted
accordingly.

46



6 MAKI TRANSITIONS: BEHAVIORAL ASPECTS

Conducting a transition-enforced adaptation is challenging because sev-
eral requirements need to be fulfilled. In general, a topology transformation
from a graph GA to a graph GB should be conducted in an efficient way with
respect to time and communication overhead. For this reason, if possible,
the existing topology GA should be modified rather than constructing a new
topology from scratch. Based on application-specific needs, we can think of
different additional requirements for the transition-enforced topology adap-
tation. For example, considering the transitions between search overlays, as
considered in the example above, search queries still need to be answered
successfully during the transition. Such specific characteristics need to be
considered during the modification of a topology.
For the aforementioned transition between peer-to-peer search overlays,

a transition-enforced adaptation can be performed for example by stopping
the source overlay and constructing a new overlay by using the join proce-
dure provided by the mechanism under transition [16]. While this approach
is straightforward, it exhibits the disadvantage that a complete new overlay
is constructed, a costly and time-consuming operation.
A possible approach to be considered in the future is to develop concepts

and algorithms for efficient transformations between specific types of graphs.
If no suited direct transformation for a specific pair of types of graphs exists,
such transformations could be combined smartly. For example, typical topol-
ogy control algorithms for wireless networks rely on a Unit Disk Graph as
base topology. By providing transformations from different topologies back
to this base topology (which essentially only requires re-adding all edges that
were removed from the Unit Disk Graph before), transitions between differ-
ent wireless topologies could be realized by combining the transformation to
the base topology with an additional transformation to the target topology.
Following a generic model of topology adaptation as proposed above, such
concepts and algorithms could potentially be re-used in different implemen-
tations and even application domains.

6.5 Modeling Transitions with Game Theory

In this subsection, we describe how game theoretical methods can be ap-
plied to model autonomous behavior in MAKI systems. First, we describe
why in general decentralized algorithms are of high importance for MAKI
systems. Then, we explain why especially game-theoretic decentralized al-
gorithms can be well applied to MAKI systems.
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6.5.1 Importance of Decentralized Algorithms for MAKI Systems

In order to control or optimize a network by a centralized algorithm, all infor-
mation about the network originating from different nodes must be collected
at a central unit. In large networks, this process consumes high amounts of
resources, such as time and energy needed for coordination [55]. Compared to
that, less resources have to be spent when nodes act autonomously based on
local information. Therefore, decentralized algorithms are suitable, in which
nodes rationally optimize their own parameters based on local knowledge.
In this part, we consider networks, in which each of the network’s nodes
has its own transition control logic. Given a certain multi-mechanism, each
node triggers its own transitions between equivalent mechanisms individu-
ally, depending on the node’s benefits and costs of each transition. Examples
for such networks are wireless Ad Hoc networks, in which each node rep-
resents a mobile device of some end user. Below, we give two exemplary
multi-mechanisms in such networks that depend on the individual decisions
of each node.

Example 1: Multi-hop Broadcasting for Data Dissemination Consider a data
dissemination scenario in an Ad Hoc network, in which a video available at a
source node is distributed in a multi-hop manner to a number of nodes [33,
34]. For such a scenario, some forwarding nodes must forward the source’s
data for other receiving nodes. Upon receiving the video from a forward-
ing node, the receiving node should re-transmit the video to nodes in its
proximity. Depending on the number of receiving nodes that a forwarding
node has, the transmission at the forwarding node can be either by unicast
or multicast, when a forwarding node has one or several receiving nodes, re-
spectively. Performing a transition between the two mechanisms "Unicast"
and "Multicast" and deciding about its receiving nodes, the node can adjust
its transmit power. Since a node’s current mechanism determines which links
are active, the topology of the network depends on all nodes’ decisions. While
from a network’s point of view, a topology that minimizes the overall energy
consumption might be desired, such a topology might be less beneficial for
single nodes. Hence, the nodes’ local decisions usually lead to a suboptimal
overall outcome.

Example 2: Task Offloading Mode Consider a computation offloading sce-
nario, in which a number of mobile nodes possess computation tasks [2, 35].
A node can either process its task locally, or send it to a resourceful server via
amulti-hop route. Performing a transition between the twomechanisms "Pro-
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cess Locally" and "Offload to Server", the node might reduce its own energy
consumption. At the same time, in case the node decides to offload its tasks,
other nodes are required to forward the data to the server, which increases
their energy consumption. In this scenario, the network topology affects the
nodes’ decisions, which in turn affect the load on the network. Again, a glob-
ally optimal configuration, e.g. minimizing the overall energy consumption,
might be in conflict with individual nodes’ benefits.

The examples illustrate that firstly, benefits and costs for transitions are
individual to each node. This can be captured by introducing a local util-
ity function for each node in the network (c.f. MAKI specific requirement
(M4)), which trades the expected benefit of a transition off against the ex-
pected transition costs. Secondly, when globally optimal transitions are not
enforced by a central planner since nodes execute transitions autonomously,
the nodes’ decisions might not lead to a desired overall state of the network.
Both observations are naturally included in the notion of non-cooperative
game theory.

6.5.2 A Short Overview of Non-Cooperative Game Theory

Non-cooperative game theory investigates decision processes of players with
potentially conflicting interests [36]. Each player has to take his own deci-
sions, taking into account the possible decisions of other players and the ef-
fect of the other players’ decisions on his own objective. In this way, the play-
ers’ decisions are coupled and determine the outcome of the decision process.
Each individual player’s objective is described by a utility function, which is
a mapping from all players’ decisions to the resulting payoff for the individ-
ual player. Assuming rationality and selfishness, the goal of each player is
the maximization of his own utility. The fact that decisions are taken au-
tonomously without relying on a central planner, makes game theory a suit-
able method to model networks in a decentralized way [22, 29].

Nash Equilibrium – A Solution Concept A solution concept of a game is a
Nash Equilibrium, a state in which no player can improve his utility by unilat-
erally changing his strategy given the current strategies of other players [36].
A Nash Equilibrium does not necessarily correspond to the best outcome of
the game, but it is a state at which a player has no incentive to change his
strategy. The goal of mechanism design, a special field in game theory, is to
design the rules of a game in a way to obtain a certain outcome when self-
interested players get involved in competitive situations [50].
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Price of Anarchy (PoA) The Price of Anarchy (POA) is a measure to study the
efficiency of a game’s outcome. Due to selfish behavior of the players in non-
cooperative games, the Nash equilibrium of the game is often inefficient com-
pared to the globally optimal solution. PoA is defined as the ratio between
the worst possible NE and the global optimum of the problem achieved by a
central authority [50]. In other words, PoA shows the maximum possible loss
in performance when a problem is solved in a game-theoretic decentralized
way instead of a centralized optimization.

6.5.3 Applying Game Theory to MAKI Systems

Analyzing the System and Designing Incentives Autonomous behavior in
MAKI systems can be modeled with game theory by considering each node
in the network as a selfish player. The possible MAKI mechanisms of a node
correspond to the actions of the player. Moreover, the local utility function
of a node, which trades the expected benefit of a mechanism off against its
expected cost, represents the game theoretic utility of the action. In this way,
a MAKI transition at a node corresponds to a (game theoretical) change of the
action of a player. Since the utility of a network’s node is usually affected by
the decisions of other nodes and since interests of nodes can be conflicting,
such a translation of a MAKI-system into a non-cooperative game theoretic
model is useful.
As an illustration, consider Example 1 from Section 6.5.1. For a single

node in the network, sending the source’s data to several child nodes using
multihop broadcast might not be in the interest of a forwarding node, since
this requires energy consumption. On the other hand, it might be beneficial
for the receiving nodes since their direct link to the source might require a
high number of retransmissions, delay and energy consumption. Therefore,
different nodes may have conflicting interest in a multihop broadcast sce-
nario. Let ui(ai, a−i) represent the utility function of player i which is a func-
tion of the action ai of player i, and the actions a−i of other players. Suppose
the goal is the minimization of energy consumption in the network. Then, the
utility function at the nodes must be defined as a function of energy. If we de-
fine a cost at every node equal to the energy which is consumed at a nodes’
respective transmitter, the node chooses a transmitting node for receiving
data which leads to a lower cost for himself. Therefore, by maximizing the
utility (minimizing the cost) at a node, the energy consumption in the net-
work is minimized in a fully decentralized way [34]. Similar assumption can
be made for Example 2 of Section 6.5.1. For computation offloading, in or-
der to minimize the energy consumption in a network, a local utility function
should consist of both the device’s internal energy consumption and external
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energy consumption for transmission and offloading to the cloud [2, 35].
After modeling nodes in a network as players in a non-cooperative game,

based on the individual nodes’ utilities and their coupling effects, the prop-
erties of the game (c.f. Section 6.5.2), such as the type of game or the ex-
istence and uniqueness of Nash Equilibria can be analyzed. For example, it
can be identified, which transitions the nodes are likely to perform and which
configurations of mechanisms are likely outcomes of the transition process.
Additionally, since Nash Equilibria may not lead to the globally optimal solu-
tion of a game (c.f., Section 6.5.2), also the transition process of nodes in the
MAKI system might not lead to the globally optimal solution. Hence, from
a game theoretic perspective, it is crucial to investigate how the game has
to be adapted, such that it can reach a better equilibrium point. Translating
this to MAKI systems, this means that incentive mechanisms (such as pricing
or reputation systems) have to be developed which persuade nodes to make
transitions that are locally less beneficial, but globally beneficial.

Incorporating Cross-Layer Utilities A utility function represents the trade-
off between the benefits and the costs of players in a game. In communica-
tion networks, the benefits and costs of mechanisms depend on several pa-
rameters from different communication layers at the same time. Often, utility
functions only consider the parameters from a single layer, either in the un-
derlay (e.g. energy consumption, network load, delay) or overlay (e.g. video
quality, application requirements). A model in which the utility function con-
siders parameters from different communication layers is called a cross-layer
model. In [59], a cross-layer model is presented for a multihop video dissem-
ination scenario. In this scenario, the proposed utility function of a node is
composed of the quality of experience of the node as benefit and the energy
that the node consumes in the network as cost. Based on the contribution of
a node in terms of energy consumption and forwarding video for others, the
node receives a higher quality of the video from its respective transmitter.
Here, receiving the video with higher quality is an incentive for the nodes to
contribute more in the network.
Designing a cross-layer utility is more challenging than a single-layer util-

ity. It requires that the designers have information about both underlay and
overlay parameters affecting the network performance. For instance, con-
sider the wireless channel gain in the physical layer and the delay of routing
protocol in the network layer. For this specific example, the parameters in
the physical layer usually change in the scale of milliseconds while for the
network layer this delay might be in the scale of minutes. A designer of cross-
layer models must take this issue into account. Although designing a cross-

51



layer framework is more difficult than a single layer framework, the overall
system outcome with a cross-layer model is more satisfying since it covers a
broader range of parameters [49].

7 Conclusions

The present whitepaper motivates the need for a revision of the OSI refer-
ence model and of the governing principles of the Internet. The proposed
revision aims at making the Internet much more adaptive, enabling fast and
many-fold switching between alternative approaches for the sake of best pos-
sible performance and user experience. The ever increasing dynamics w. r. t.
user behavior and load, mobility patterns, and crowd phenomena motivate
the quest for much better support for dynamicity. In this respect, the MAKI
reference model was introduced with an emphasis on mechanism transitions,
the core concept for better dynamics.
The whitepaper also introduced concrete modeling and specification ap-

proaches that make the MAKI reference model (partly) available to devel-
opers, such that they can realize MAKI-compliant communication systems,
i. e., Future Internet components that support mechanism transitions and the
implementation of (‘M-A-P-E-inspired’) control cycles which drive transitions
and make the network highly adaptable.
As to the structural model, a useful metamodeling approach was intro-

duced, extending and leveraging concepts known from feature modeling. For
coping with large combinations of mechanisms, an approach based on feature
models was introduced.
As to the behavioral model, quite a number of approaches were described,

mostly rule-based and goal-based approaches. One rule-based approach was
extended towards machine learning of optimization rules. The examples in-
cluded approaches towards modeling the control cycle that drives transitions.
However, it became clear that more sophisticated and holistic control cycles
remain an open issue. In a nutshell, such future approaches will have to
consider function based descriptions of major transition drivers (performance
functions, cost functions, utility functions and the like) where the (rule and
goal based) approaches presented for MAKI use expressions where, e. g., per-
formance characteristics and utility functions are combined in a single term.
Given the increasing dynamics of Internet users and their usage patterns, the
MAKI approach towards a much more dynamic Internet remains an important
promise for the Future Internet.
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B AN OSI MODEL & TERMS PRIMER

B An OSI Model & Terms Primer

The OSI standard put forth by the ISO was meant to service three purposes:

1. unified terminology, such as to facilitate communication about computer
networks

2. unified general model, such as to facilitate the construction of open com-
puter networks to which arbitrary stakeholders could contribute com-
ponents that would be capable of cooperating with appropriate other
components provided by other stakeholders (hence ‘Open Systems In-
terconnection’ or OSI)

3. standardization of a concrete 7-layer architecture and of concrete pro-
tocols.

Since the latter attempt was for a great part commercially unsuccessful, we
will skip it entirely and turn the first and second point. In essence, the OSI
model concerns two parts of a network architecture:

1. data structures such as packets (‘protocol data units’, PDUs) consisting
of headers (‘protocol control information’, PCI) and payload (‘service data
units’, SDU), etc.

2. functional elements of layered communication systems

We will only briefly recall the second aspect above, as illustrated in Figure 11.
The following terms denote the key elements of the OSI model; they have

been commonly accepted as a consequence of the spread and use of the ISO
OSI standard.

• layer: layers contain basically the ‘computer network equivalent’ of the
virtual machine concept known from software engineering: hiding away
realization details, a higher layer (layer (N+1), say) provides amore pow-
erful abstraction of a computer network than a lower layer (layer (N),
say). Since a layer also hides away lower layers, applications or higher
layer services must not circumvent (leave out) any layer. It was said
above that layers do not conceptualize but contain distributed virtual
machines; as such, layers are mere ‘hulls’ for the actual functionality,
namely services.

• service: layers may contain a single service, several comparable services
(cf. TCP and UDP on the transport layer) or complementary services (cf.
the IP companion services such as ICMP and ND).
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Figure 11: Functional elements of layered communication systems

• (protocol) entity: this term denotes the actual (usually: software) com-
ponents which collectively provide a service; most service are realized
as a distributed set of identical entities, some (e.g. unidirectional or
strictly client server structured) services may be composed of different
kinds of entities on different nodes.

• service access point, request/indication, response/confirmation: the func-
tionality of a service is basically defined by means of the command/re-
ply interface offered by that service as a means for establishing a rela-
tionship between service user and service provider: it concerns (i) the
location and the addressing means for ‘talking to the service’, called ser-
vice access point in OSI lingo (cf. TCP sockets), (ii) the commands and
replies exchanged at the service access point, denoted ‘requests and
indications’ in OSI lingo (or ‘responses and confirmations’, see further
below); note that a ‘request’ at a node A—such as a request to send a
message—will usually lead to an indication at a different note (B, say),
such as the delivery callback event for that packet triggered at the en-
tity of the service user on the other side; (iii) rules for how the requests,
indications etc. are to be ordered, which reactions can be expected as
a result of the service provision (specified as resulting indications etc.),
and further details. If the functioning of a protocol requests not only a
request and indication pair, but also a reaction by the addressee of the
request i.e. receiver of the indication, then this second pair is denoted
as response and confirmation; the standard example for this case is con-
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nection establishment, where the caller issues a connect.request, lead-
ing to a connect.indicate at the callee side, and the callee—if willing to
accept the call—is expected to issue a connect.response that leads to a
connect.confirm on the caller side.

• (communication) protocol: in OSI terminology, ‘protocol’ defines the in-
teraction among service entities and is strictly hidden from the service
users i.e. higher layers (note that the P in TCP and UDP is misleading
since the IETF does not strictly distinguish between service and pro-
tocol; a statement like ‘my application is using TCP’ indicates that one
talks about the service, not the protocol – however, there is no such
term as TCS for ‘transport control service’). OSI requires a ‘protocol’ to
be defined by means of specifying (basically) the following: (i) data for-
mats: protocol control information i.e headers of the packet types used,
minimum and maximum sizes of service data units i.e. packets, etc.); (ii)
exchange and action rules: which packet type may follow which other
one; how is the request/reply/response/confirm interaction at the ser-
vice access point related to the exchange of protocol data units (pack-
ets) among service entities; how is this exchange of protocol data units
realized by leveraging the next lower layer (and thereby: which lower
layer service is assumed to be available).

• (communication) protocol: in OSI terminology, ‘protocol’ defines the in-
teraction among service entities and is strictly hidden from the service
users i.e. higher layers (note that the P in TCP and UDP is misleading
since the IETF does not strictly distinguish between service and pro-
tocol; a statement like ‘my application is using TCP’ indicates that one
talks about the service, not the protocol – however, there is no such
term as TCS for ‘transport control service’). OSI requires a ‘protocol’ to
be defined by means of specifying (basically) the following: (i) data for-
mats: protocol control information i.e headers of the packet types used,
minimum and maximum sizes of service data units i.e. packets, etc.); (ii)
exchange and action rules: which packet type may follow which other
one; how is the request/reply/response/confirm interaction at the ser-
vice access point related to the exchange of protocol data units (pack-
ets) among service entities; how is this exchange of protocol data units
realized by leveraging the next lower layer (and thereby: which lower
layer service is assumed to be available).

• protocol function: the OSI standard provides a means for structuring
complex protocols into smaller functional units, so called protocol func-
tions. However, such decomposition cannot bemade freely, e.g., accord-
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ing to software engineering principles – at least, the OSI standard does
not provide noteworthy support for such ‘free’ modularization. Taken
strictly, protocol functions are only foreseen for the major ‘blocks of
functionality’ which are exposed to the user by means of corresponding
requests and replies plus, if applicable, responses and confirmations.
In the example of connection establishment cited above, ‘connect’ as in
connect.request etc. denotes such a protocol function. A more relaxed
interpretation of the OSI standard has often been applied in the past,
leading to an interpretation of ‘protocol functions’ as building blocks of
a communication protocol, modularized such that understanding of the
functionality can be conveyed. Under this interpretation, functional as-
pects like addressing, packet sequence numbering, flow and congestion
control etc. were denoted as protocol functions.
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