Runtime Support for Quality of
Information Requirements in
Event-based Systems

Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) vom Fachbereich
Informatik der Technischen Universitat Darmstadt genehmigte Dissertation

von Diplom-Wirtschaftsinformatiker Sebastian Frischbier aus Darmstadt (Hessen)
Marz 2016 — Darmstadt — D 17

5 TECHNISCHE
UNIVERSITAT
DARMSTADT

Runtime Support for Quality of Information Requirements in Event-based Systems
Vom Fachbereich Informatik

der Technischen Universitat Darmstadt

zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von Diplom-Wirtschaftsinformatiker Sebastian Frischbier aus Darmstadt (Hessen)

1. Gutachten: Prof. Alejandro Buchmann, Ph.D.
2. Gutachten: Prof. Peter Pietzuch, Ph.D.

Tag der Einreichung: 03.02.2016
Tag der Prifung: 17.03.2016

Darmstadt — D 17

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-53663
URL: http://tuprints.ulb.tu-darmstadt.de/5366

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

@00

Die Verdéffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung 3.0 Deutschland
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

To Mareike

Erklarung zur Dissertation

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit den
angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus
Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat
in gleicher oder dahnlicher Form noch keiner Priifungsbehérde vorgelegen.

Darmstadt, den 03.02.2016

(Sebastian Frischbier)

Erklarung zur Dissertation

Curriculum Vitae

Sebastian Frischbier

Education

2009-2016 PhD Candidate

2002-2009

2001

Technischen Universitiat Darmstadt
Databases and Distributed Systems Group (DVS)

Joint Masters Degree in Management and Computing

(Diplom-Wirtschaftsinformatiker)
Technische Universitdt Darmstadt

Abitur
Eleonorenschule Darmstadt

Academic Positions

2009-2015

2013

Fellowships

2013-2015

2002-2008

Research and Teaching Assistant
Technische Universitdt Darmstadt
Databases and Distributed Systems Group (DVS)

Visiting Researcher

Imperial College London, UK
Large-Scale Distributed Systems Group (LSDS)

Software Campus

Studienstiftung des deutschen Volkes

vi

Curriculum Vitae

Contents

1. Introduction 1
1.1. Problem Statementt 2
1.2. Research QUESLIONS v i it e et e e e e e e e e e e e e e e 6
1.3. Proposed Solution, Scope and Contributions 6
1.4. Related Activities and Publications. 10
1.5, Structure e 12

2. Background 13
2.1. Event-based Systems e 13

2.1.1. Publish/Subscribe for Dispatching Event Notifications 15
2.1.2. Complex Event Processing for Reasoning and Deciding on Events 17
2.2. Related Concepts and the Roleof EBS 17
2.2.1. Wireless Sensor Networks and Cyber-Physical Systems 17
2.2.2. Data Stream Management SYStems v v v v v v v vt e 18
2.2.3. Service-Oriented Architectures 19
2.2.4. Cloud Computingo v vttt ittt et 20
2.2.5. Systems-of-Systems and the Vision of Emergent Software Systems 22
2.3, Summary e e e e e e e e e e e 23

3. A Generic Model to Express Quality of Information Requirements in EBS 25
3.1. Quality of Information and Related Concepts 26
3.2. Properties: the Basic Building Blocks 28

3.2.1. Categorization of Properties, 32
3.2.2. Deriving a Generic Property Representation 40
3.3. Expectations: Requirements About Quality of Information (Qol) Properties 46
3.3.1. Expectation Definition. 48
3.3.2. Lifecycle of an Expectation ottt 52
3.3.3. Fidelity: Quantifying the Satisfaction of a Subscriber 53
3.4. Capabilities: Support for Properties 60
3.4.1. Capability Definition: Spectrum of Support and Costs 61
3.4.2. Capability Profiles: Characterizing Publishers 64
3.4.3. Lifecycle of Capabilities and Capability Profiles 66
3.5. Feedback: Enabler of Self-Adaptation and Renegotiation 68
3.5.1. Individual Feedback 68
3.5.2. Aggregated Feedback 71
3.6, SUMMATY v et e e e e 77

4. Runtime Negotiation and Enforcement 79

4.1. Matching Expectations to Capabilities. 80
4.1.1. Set-Matching to Find Suitable Capability Profiles 81
4.1.2. Range-Matching for Each Generic Property 82
4.1.3. Determining the Preliminary State of an Expectation 85

vii

4.2. Deciding on Satisfiable Expectations, 87
4.2.1. Decision Strategies Encapsulating the Decision Process 88
4.2.2. Example Strategy: First-Come, First-Served while Minimizing Costs 89

4.3. Safeguarding the DeciSion it i ittt e 90

4.4. Runtime Adaptation 93
4.4.1. Middleware Self-Adaptation 93
4.4.2. Client Self-Adaptation Using Feedback 94
4.4.3. Coordinated Adaptation, 95

4.5. Monitoring the System State at Runtime 98
4.5.1. Detect and React to State Changes with Monitorlets and Watchdogs 98
4.5.2. Monitoring the Global State of a Distributed Event-Based System 100

4.6. Resolving Possible Conflicts at Runtime 107

4.7. SUIMIMNATY . . . v v vttt et e e e e e e e e e e e e e 109

5. Implementation 111

5.1. Architecture and Design i i e 112
5.1.1. Extending the Message-Oriented Middleware: ExpectationController 112
5.1.2. Decentralized Monitoring with ASIA 118
5.1.3. Libraries, Handlers and Editors Provided to Clients 119
5.1.4. Classes for Expectations, Capabilities and Generic Properties 123

5.2. Platform-Specific Prototypest 125
5.2.1. Centralized Implementation: Apache ActiveMQ 125
5.2.2. Distributed Implementation: REDS 131

5.3. Example Applications e 135

S, SUMIMATY . . v v vt e e e e e e e e e e e e e e e e e e e 142

6. Evaluation 143

6.1. Expressivity of Expectations and Capabilities 144
6.1.1. Related Approaches and their Expressiveness 144
6.1.2. Summarizing the Limitations of Related Approaches 149
6.1.3. Expressiveness of Expectations and Capabilities 150

6.2. Benefits Regarding Data Quality and Resource Savings 151
6.2.1. Heterogeneity Scenario: Dealing with Unsuitable Data. 151
6.2.2. Comparing Expectations with Features of Related Approaches 157
6.2.3. Benefits: Higher Data Quality 159
6.2.4. Benefits: Resource Savings oottt 165

6.3. Scalability and Execution Costs for Brokers Applying our Approach 169
6.3.1. Used Scenario and Characterization of Workload 169
6.3.2. Tailoring jms2009-PS to Gauge Execution Costs of Runtime Negotiation . . 171
6.3.3. Testplan, Scaling Parameters and Measured KPIs 172
6.3.4. Discussion of Measured Results 174

6.4. Effectiveness of Using ASIA to MonitoraDEBS 188
6.4.1. Benefits: Adjustable Precision 189
6.4.2. Experiment Setup for Gauging Traffic, Throughput and Latency 190
6.4.3. Impact on Network Traffic 190
6.4.4. Execution Costs: Throughput and Latency 193

6.5. SUMMALY o ittt e e e e e e e e e e e e 197

viii Contents

7. Related work 199
7.1. Standards and Protocols for Asynchronous Communication 200
7.2. Related Approaches with Explicit Support for Qo* 200
7.3. Related Approaches Regarding Monitoring, Self-Adaptation, Negotiation 202
74, SUMMALY . . v vttt et e e e e e e e e e e e e e e e 205

8. Conclusion 207

9. Outlook and Future Work 209
9.1. Centralized Event-Based Systems: Immediate Challenges. 209
9.2. Decentralized Event-Based Systems: Synchronizing State 210
9.3. Applying our Approach to Pull-Based Systems. 212
9.4. Economic Perspective: Incentives and Negotiation on Two-Sided Markets. 218

A. Appendix 219
A.1. Literature Survey Details e e 220
A.2. Runtime Negotiation: Pseudocode 228
A.3. Reference Architecture: APIs and Code Examples 231
A.4. FINCoS: Extensions and Experimental Setup 237

A.4.1. Test Harness for Automated Testing 238

A4.2. TestSetup o o i e e e 239

A4.3. AnatomyofaSingle TestRun 240

A.5. Drill Down Data for Heterogeneity Scenario with Surplus Publishers. 242
A.6. jms2009-PS Extensions and Experimental Setup 244
A.6.1. Test Harness for Automated Testing 244

A.6.2. AnatomyofaSingleRun, 245

A.7. Regression Tables jms2009-PS Benchmark Results 247
A.8. Experimental Setup Application-Specific Integrated Aggregation (ASIA) 249

B. Bibliography 251

Contents ix

Contents

List of Definitions

® Nk W=

0

Definition (Generic property)« v v v v v i it e e e e e 43
Definition (ACHON) v v v o e e e e e e e e e e e e e e 44
Definition (EXpectation) o v i it ittt et e e e e e 48
Definition (Capability) e 61
Definition (Capability Profile) 65
Definition (REASOM) . . v v v v v e e e e e e e e e e e e e e e e e 69
Definition (Adaptation Advice) 70
Definition (Aggregated Feedback) 74
Definition (Relationships capability and generic property) 83

xi

Xii List of Definitions

List of Tables

3.1. Scales of measurement used to represent different properties about runtime quality. 42
3.2. Example of two expectations defining the preferences of a subscriber. 51
3.3. Values for sets S; and S, of notifications for the fidelity shown in Figure 3.17d. . . 57
3.4. Fidelity of notifications in S; and S, when using X; as shown in Figure 3.17. ... 59
3.5. Fidelity of notifications in S, S, when using X§ as shown in Figure 3.17. 59
3.6. Atomic, broker-side, complex and interdependent properties 63
3.7. Example of three capability profiles 65
6.1. Properties supported by related approaches 149
6.2. Comparison features related approaches 149
6.3. Expectation X;and its reduced form Xp™ 151
6.4. Capability profiles used by suitable and unsuitable publishers. 152
6.5. Encoded types used for the evaluation 158
6.6. Baseline: linear regression analysis results for a bare ActiveMQ 174
A.1. Literature survey Q0D i e e e e e e e e 220
A.1. Literature survey QoD e e e e 221
A.2. Literature survey QOS e e e e e e 222
A.2. Literature survey QOS e e e e e 223
A3. Literature survey Qol 224
A.3. Literature survey QOIL i i e e e e 225
A.4. Literature survey Vol L e 226
A.4. Literature survey VoI L e e 227
A.5. Regression analysis result: scaling population and throughput 247
A.6. Regression analysis result: scaling number of properties 247
A.7. Regression analysis result: moderate and aggressive dynamics 247
A.8. Regression analysis result: scaling properties and dynamics 248
A.9. Regression analysis result: scaling population/throughput for different dynamics . 248
A.10.Regression analysis result: scaling population/throughput and properties 249
A.11.Parameters for the ASIA deployment used in the reference scenario. 249

xiii

Xiv List of Tables

List of Figures

1.1. Expectations, capabilities and feedback in a nutshell. 7
2.1. Chapter OVEIVIEW v v it i e et e e e e e e e e e e e e e e e e e 13
2.2. Minimal set of components of an Event-based System (EBS) 14
2.3. Interactionmodels 14
2.4. Components of a Publish/Subscribe (PS) system 15
2.5. Distributed network of brokers (B) forming a Message-oriented Middleware (MOM). 16
2.6. Service consumer and service provider in a Service-oriented Architecture (SOA). . 19
2.7. Resource provisioning models for Cloud computing. 21
2.8. Key enablers for Cloud computing as described in [174]. 22
3.1. Chapter overview i e e 25
3.2. Concepts related to runtime quality 27
3.3. General-purpose vs. domain-specific solutions 29
3.4. Generic property: definition, relationships, action 30
3.5. Steps and filters to derive a generic property format 31
3.6. Mapping quality-related properties to QoD, QoS, Qol, VoI 33
3.7. Generic property COMPONENLS . « . v ¢ v v v v vt vttt et e et e et e e e 43
3.8. Types of relationships between generic propertiesinan EBS. 45
3.9. Preferences of a subscriber map to requirements and utiliy values. 46
3.10.Indifference curves representing malleable requirements. 48
3.11.Requirement about property p; defined as part of an expectation. 49
3.12.Utility for a subscriber in case of open and closed intervals. 50
3.13.Star plots for X and X as defined in Table 6.3. 52
3.14.Lifecylce of an expectation.t e 53
3.15.Fidelity metric intention e 54
3.16.Star plots of expectations Xj and Xj 56
3.17.Generic properties for S; and S, using egs. (3.8) to (3.10). 58
3.18.Support for generic properties: design time and runtime constraints 60
3.19.Capability: actual and potential support for a generic property. 62
3.20.Freshness to illustrate a broker-side and complex generic property. 64
3.21.Star plots for capability profiles mapped to expectations 67
3.22.Lifecycle of a capability/ a capability profile L. 68
3.23.Feedback: types and recipients e 68
3.24.Individual feedback: states of an expectation 69
3.25.Relationship adaptation advice, capability, generic property and actions. 70
3.26.ASIA imprecision trade-off. L L. 74
3.27.Example: sampling rate represented in ASIA 75
3.28.Example: same metric represented with different imprecisions 76
3.29.ASIA dashboard example 77
4.1. Chapter OVEIVIEW o i vttt it e e e e e e e e e e e e e e 79
4.2. Runtime negotiation: matching 81

XV

4.3. Runtime negotiation: types of range-matching (maximizing) 82
4.4. Runtime negotiation: types of range-matching (minimizing) 83
4.5. Runtime negotiation: range-matching algorithm 84
4.6. Runtime negotiation: capability vs. requirement 85
4.7. Runtime negotiation: decision strategy 89
4.8. Runtime negotiation: safeguarding, 91
4.9. Runtime adaptation: coordinated adaptation problem. 95
4.10.Runtime adaptation: coordinated adaptation solution1 96
4.11.Runtime adaptation: coordinated adaptation solution2 97
4.12.Runtime monitoring using watchdogs and monitorlets. 98
4.13.Example for watchdogs detecting satisfied or unsatisfied conditions. 99
4.14.Distributed decentralized EBS 100
4.15.Information flow in a Distributed Event-based System (DEBS) 101
4.16.ASIA example DEBS 106
4.17.Conflicting definitions used by subscribers oo oL 107
4.18.Conflicting definitions used by publishers 108
4.19.Runtime SUPPOTL SUMMATY .+ .+« « v v v v o v v e e e e et e et e et e et e e e e e e 109
5.1. Chapter OVEIVIEW o v v v it e e e e e e e e e e e e e e e e e e e 111
5.2. Overview architecture it 112
5.3. Legend of symbols 112
5.4. Design the ExpectationController extension 113
5.5. Design of the ResourceMonitor oo v ittt it e 114
5.6. Designofthe Registry it 115
5.7. DesignoftheBalancer 115
5.8. Design of the ReactionCoordinator, 116
5.9. Design of the RateController eine... 117
5.10.Design of the ASIAController 118
5.11.Design of the ExpectationHandlerClient 119
5.12.Design of the ReactionManager uv v unennenn.. 120
5.13.Prototype of a graphical editor for expectations. 121
5.14.Prototype of a graphical editor for capability profiles. 122
5.15.Classes for cOre COMPONENTS v v v v v vt e e e e e e e et e e e e e e 124
5.16.Class for genericvalue entityttt 125
5.17.Plugin-support on Apache ActiveMQ. 126
5.18.ActiveMQ: forwarding in broker networks 126
5.19.ActiveMQ: ExpectationController plugin 127
5.20.ActiveMQ: ASIAController plugin, 128
5.21.REDS general architecture: routing and overlay layers. 131
5.22.REDS: differences edge brokers and inner brokers 131
5.23.REDS: joinpoints used e 132
5.24.McCAT approach e e e 135
5.25.MCCAT: iNterCePLOTS . « v v v v v v e 136
5.26.Jms2009-PS architecture and extensions 140
5.27.FINCoS architecture and eXtensionso v v v v v i vt i ie e 141
6.1. Chapter OVEIVIEW v v v v it e i e 143
6.2. Heterogeneity SCeNario v v v v i v v it et e e e e e e 152

XVi

List of Figures

6.3. Star plots for capability profiles 154
6.4. Measuredresults WOE 155
6.5. Requirements in baseline workload 156
6.6. Cumulative fidelity compared 159
6.7. Legend heatmaps i e 160
6.8. Comparing scenarios regarding conformance with requirements 161
6.9. Comparing scenarios regarding conformance with requirements 162
6.10.Data in different scenarios Lo 163
6.11.Surplus publishers: cumulative fidelity compared 164
6.12.Subscribers: savings and overhead without encoded types 165
6.13.Resource savings vs. fidelity., 166
6.14.Subscribers: savings and overhead with encoded types 166
6.15.MOM: savings and overhead regarding resource utilization 167
6.16.Publishers: savings and overhead regarding resource utilization 168
6.17.Execution costs: exploring the system limits 172
6.18.Trade-offs between cost drivers for execution costs. 175
6.19.Benchmark results: impact of populationsize 177
6.20.Benchmark results: impact of throughput 178
6.21.Benchmark results: impact on CPU varying when one parameter 179
6.22.Benchmark results: impact on memory when varying one parameter 180
6.23.Benchmark results: impact on traffic when varying one parameter 181
6.24.Benchmark results: impact on latency when varying one parameter 182
6.25.Benchmark results: impact on CPU when varying two parameters 183
6.26.Benchmark results: impact on memory when varying two parameters 184
6.27.Benchmark results: impact on traffic when varying two parameters 185
6.28.Benchmark results: impact on latency when varying two parameters 186
6.29.Benchmark results: impact on KPIs when varying all parameters 187
6.30.ASIA: precision results 191
6.31.ASIA: network traffic 195
6.32.ASIA: throughput and latency 196
7.1. Chapter OVEIVIEW v it ittt e e e e e e 199
9.1. Challenges to be addressed in futurework L L. 209
9.2. Steps of the WS-Agreement protocol (bold) using expectations (italic). 212
A.1. Broker interfaces for controllers. 231
A2, Action interface 231
A.3. Callback interfaces for subscribers and publishers. 232
A.4. ExpectationHandlerClient and CapabilityHandlerClient interfaces 232
A.5. ClientHandler for publishers 233
A.6. ActiveMQ: API provided to plugins 233
A.7. REDS: joinpoints provided by brokerclass 234
A.8. Example generic Property v v v vt i i e e e e e e e e e 236
A.9. Test harness to automate executing and analyzing series of single test runs. 238
A.10.Test environment FINCoS + ActiveMQ 239
A.11.Anatomy of asingle FINCOS runt i it ittt 241
A.12.Conformance with requirements for surplus publishers. 242
A.13.Data for scenario with surplus publishers. 243

List of Figures XVii

A.14.Test environment jms2009-PS + ActiveMQ 245
A.15.Anatomy of a single jms2009-PSrun 246

Xviii List of Figures

List of Abbreviations

Aml
AMQP
AOP
API
ASIA
BC
BNF
BPEL
BPM
CEP
CPS
CPU
CuUsP
DDS
DEBS
DQML
DSMS
EBS
ECA
EDA
EFO
ERP
ESA
ET
FCFS
FIFO
FIT
GPS
HCC

Ambient Intelligence

Advanced Message Queuing Protocol
Aspect-oriented Programming
Application Programming Interface
Application-specific Integrated Aggregation
Best-Case workload

Backus-Naur Form

Business Process Execution Language
Business Process Management
Complex Event Processing
Cyber-physical System

Central Processing Unit
Channel-based Unidirectional Stream Protocol
Data Distribution Service

Distributed Event-based System
Distributed QoS Modeling Language
Data Stream Management System
Event-based System

Event Condition Action rules
Event-driven Architecture
Expectations, Filtering Only
Enterprise Resource Planning
Expectations + Self-Adaptation
Encoded Types

First-come, First-served

First In — First Out

Function, Integration, Traffic

Global Positioning System

Human-centered Computing

XiX

HCI
laa$S
loT
ITSM
JMS
JVM
KPI
LOI
McCAT
MCDM
MOM
MOOP
MQTT
MSH
NIIRS
NTP
OASIS
OGF
OoMG
OODA
OWL
Paa$
PoD
PoS
PP

PS
QoC
QoD
QoE
Qol
QoS
RDF
REDS

Human Computer Interaction
Infrastructure-as-a-Service
Internet of Things

IT Service Management

Java Message Service

Java Virtual Machine

Key Performance Indicator
Locations of Interest

Multi-cloud Cost-Aware Transport
Multi-Criteria Decision Making

Message-oriented Middleware

Multi-Objective Optimization Problem

MQ Telemetry Transport

Managed Service Hosting

National Image Interpretability Rating Scales

Network Time Protocol

Organization for the Advancement of Structured Information Standards

Open Grid Forum

Object Management Group
Observe-Orient-Decide-Act
Web Ontology Language
Platform-as-a-Service
Power of Demand

Power of Supply
Percentage Point
Publish/Subscribe

Quality of Context

Quality of Device

Quality of Experience
Quality of Information
Quality of Service
Resource Description Framework

REconfigurable Dispatching System

XX

List of Abbreviations

RFID
RIA
RMI
SaaS
SCM
SLA
SLO
SOA
SoS
SPEC
SSN
STOMP
Vol
VM
WOE
WSDL
WSN
XML

Radio-Frequency IDentification

Rich Internet Applications

Remote Method Invocation
Software-as-a-Service

Supply Chain Management

Service Level Agreement

Service Level Objective

Service-oriented Architecture
System-of-Systems

Standard Performance Evaluation Corporation
Semantic Sensor Network

Simple Text Oriented Messaging Protocol
Value of Information

Virtual Machine

Without Expectations

Web Services Description Language
Wireless Sensor Network

Extensible Markup Language

XXi

XXii List of Abbreviations

Abstract

Modern reactive software systems turn fine-granular real-time notifications about processes in
the physical world into information and knowledge to react in time. Push-based Event-based
Systems (EBSs) complement pull-based architectures, such as Service-oriented Architectures
(SOAs), and enable enterprises to react to meaningful events in a timely manner. Applications
for algorithmic trading, energy-aware reactive data center management, or smart supply chain
management are just three examples of reactive systems where information provided by hetero-
geneous data sources has to be interpreted and where false alarms, missed events or otherwise
data of inadequate Quality of Information (Qol) carries a cost.

Whether the Qol of notifications is adequate depends on the purpose, the information is intended
to be used for by each receiver. This purpose is application-specific and changes at runtime.
Thus, the notion of Qol combines objectively measurable properties of a notification and their
application-specific assessment that determines the Value of Information (VoI) for a receiver.

Receiving only data that conforms to their Qol requirements is crucial for reactive applications.
Current support for Qol, however, is limited in terms of expressiveness and effectiveness.

In this dissertation, we introduce the concept of expectations, capabilities and feedback as a holistic
concept to express, negotiate and enforce Qol requirements at runtime in push-based systems.
Participants express requirements and define individual trade-offs between them as expectations;
the ability of the system to support properties by adapting itself is captured by capabilities that
include the individual costs of participants. Feedback to participants is a central component of
our approach and is used to coordinate the adaptation of participants at runtime. We show
that our approach is more expressive and supports a wider range of properties than current
approaches; our approach actively enforces complex requirements about Qol in an effective way
without deteriorating the system’s performance.

The work presented in this dissertation contributes to the challenge of runtime Qol support in
push-based architectures on a conceptual and practical level.

On the conceptual level, we contribute a generic and extensible model to express and manage
requirements about arbitrary Qol properties, algorithms for negotiation and enforcing these re-
quirements at runtime as well as a concept for effective runtime monitoring in a distributed and
decentralized EBS. The conceptual part of this dissertation synthesizes and expands approaches
devised in pull- and push-based systems as well as in economics into a novel concept to support
Qol at runtime in reactive software systems.

On the practical level, we contribute a reference architecture for runtime support of Qol require-
ments, two prototypes built on a centralized and a decentralized Message-oriented Middleware
(MOM), examples for existing applications enhanced with our approach as well as an extensive
evaluation of our prototypes built on the industry-strength Apache ActiveMQ platform and the
academic REconfigurable Dispatching System (REDS). The evaluation uses industry-strength
benchmarks and systems to quantify the benefits and execution costs for participants. The prac-
tical part of this dissertation shows the practicability of our approach and quantifies the benefits
of actively enforcing Qol requirements using feedback.

xxiii

XXiv Abstract

Zusammenfassung

Reaktive Softwaresysteme verdichten und interpretieren feingranulare Echtzeitinformationen
iiber Realweltprozesse zu Informationen, die zur Analyse und automatisierten Reaktion genutzt
werden. Push-basierte Ereignis-basierte Systeme (EBS) ergédnzen sich mit pull-basierten Ansat-
zen, wie beispielsweise Service-orientierten Architekturen (SOA), und ermoglichen es so Unter-
nehmen, auf relevante Ereignisse zeitnah reagieren zu konnen. Anwendungen aus den Bereichen
Algorithmic Trading, energieeffizientes Rechenzentrumsmanagement oder Smart Supply-Chain-
Management sind nur drei Beispiele fiir reaktive Softwaresysteme, in denen Informationen aus
heterogenen Datenquellen in Form von Notifikationen zeitnah interpretiert werden miissen, denn
Fehlalarme, nicht detektierte Ereignisse oder sonstige Daten mit ungeniigender Informationsqua-
litdat (Qol) verursachen massive Kosten.

Ob die Informationsqualitidt von Daten ausreichend ist, hingt vom jeweiligen Verwendungszweck
ab, welcher anwendungsspezifisch und fiir jeden einzelnen Empfanger verschieden ist; zudem
verdndert er sich zur Laufzeit. Der Begriff der Informationsqualitdt umfasst daher sowohl objek-
tiv messbare Eigenschaften einer Notifikation wie auch subjektive Bewertungen derselben, um
den Informationswert (Vol) fiir einen Empfénger zu quantifizieren. Fiir reaktive Softwaresyste-
me ist es essentiell, nur Daten zu empfangen, die ihren Qualitdtsanforderungen entsprechen. In
derzeitigen Systemen werden solche Anforderungen jedoch nur unzureichend unterstiitzt.

In dieser Dissertation wird das Konzept von Expectations, Capabilities und Feedback vorgestellt. Es
handelt sich um ein neuartiges und ganzheitliches Konzept, welches es ermoglicht, Anforderun-
gen hinsichtlich Datenqualitit zur Laufzeit formulieren, automatisiert verhandeln und durchset-
zen zu konnen. Teilsysteme und Anwendungen beschreiben ihre Anforderungen und mogliche
Trade-offs als Expectations. Die Fahigkeit des Systems, bestimmte Qualitdtsanforderungen mit-
tels Selbstadaption erfiillen zu konnen, wird mittels Capabilities beschrieben. Diese beinhalten
auch die individuellen Kosten fiir die Bereitstellung von Daten mit bestimmten Eigenschaften.
Feedback ist eine zentrale Komponente dieses Ansatzes und wird genutzt, um die Adaption
von Teilsystemen zur Laufzeit zu koordinieren. Der hier beschriebene Ansatz hat eine hohere
Ausdrucksfahigkeit und unterstiitzt ein breiteres Spektrum an Qualitédtseigenschaften als bishe-
rige Ansétze. Anforderungen hinsichtlich Informationsqualitdt werden effektiv erfiillt, ohne die
Performanz des EBS nachhaltig zu mindern.

Diese Dissertation leistet konzeptuelle wie praktische Beitrdge zur Unterstiitzung von Anforde-
rungen iiber Informationsqualitit in reaktiven Softwaresystemen. Auf der konzeptuellen Ebe-
ne sind dies: ein generisches und erweiterbares Modell zur Formulierung und Verwaltung von
komplexen Qualitdatsanforderungen, Algorithmen zur automatisierten Verhandlung und Durch-
setzung dieser Anforderungen zur Laufzeit sowie ein Konzept zur effizienten Laufzeitiiberwa-
chung von verteilten dezentralen EBS. Der konzeptuelle Teil dieser Dissertation synthetisiert
und erweitert Ansatze aus pull- wie push-basierten Systemen sowie den Wirtschaftswissenschaf-
ten. Auf der praktischen Ebene sind die Beitrédge: eine Referenzarchitektur, Prototypen auf einer
zentralisierten sowie einer verteilten Middleware Plattform, Beispiele fiir die Umsetzung des
Konzepts in existierenden Anwendungen sowie eine umfassende Evaluation der Prototypen auf
Basis von Apache ActiveMQ und REDS mittels industrie-erprobter Benchmarks und Werkzeuge.
Der praktische Teil dieser Dissertation zeigt die Verwendbarkeit des vorgestellten Ansatzes.

XXV

XXVi Zusammenfassung

Acknowledgements

Without the collaboration, feedback and support of so many people over the last couple of years,
I would not have been able to pursue this work in the form presented here.

I want to thank my advisor, Prof. Alejandro Buchmann, Ph.D., for his guidance and support dur-
ing my time with his Database and Distributed Systems Group (DVS) at TU Darmstadt. Without
the freedom he gave me, I would not have been able to pursue my various research activities as
I did. I want to thank Prof. Peter Pietzuch, Ph.D. (Imperial College London), for being second
referee, hosting me as a Visiting Researcher at Imperial and helping me to shape my ideas.

Special thanks go to John Wilkes, Ph.D. (Google, Inc.), and Kimberly Keeton, Ph.D. (HP Labs),
for their feedback and the encouragement to tackle the challenge of information quality; Prof.
Wolfram Wiesemann, Ph.D. (Imperial College London), for the discussions on Multi-Objective
Optimization; Prof. Dr. Patrick Eugster, Prof. Dr. Johannes Fiirnkranz, Prof. Dr. Mira Mezini, and
Prof. Dr. Ralf Steinmetz for being members of my dissertation committee.

From 2010 till this very day, I had a great and intensive research collaboration with Prof. Dr.
Patrick Eugster (then Purdue University, US), David Eyers, Ph.D. (University of Otago, NZ),
Alessandro Margara, Ph.D. (University of Lugano, CH), Prof. Dr. Peter Pietzuch, Ph.D., and
Emilio Coppa (Sapienza University of Rome, I). Working with them has not only resulted in ASIA
and McCAT but also fostered a lot of other ideas described in this dissertation. I am very thankful
for all the discussions and in particular to Patrick Eugster for inviting me to the group.

I had the opportunity to collaborate with many industrial partners in various projects. I want to
thank Dr. Michael Gesmann, Dirk Mayer, Dr. Harald Schoning, and Ralf Vatter from Software
AG, Dr. Christian Webel and Dr. Sebastian Adam from Fraunhofer IESE, Dr. Martin Verlage and
Carsten Déanschel from vwd group, as well as Dr. Stefan Roth from SAP; during my time with
Deutsche Post MAIL, I had the privilege to work with Jacqueline Burkhard, Helga Schiill, and Dr.
Dieter Piitz from Deutsche Post, and Irene Buchmann from Archimetrica. It was a pleasure to
work with them all and I am in particular thankful for all the things I have learned from them.

I want to thank my former colleagues from DVS for their collegiality, in particular Dr. Stefan
Appel, Max Lehn, Robert Rehner, Dr. Pablo Guerrero, Dr. Christoph Leng, Dr. Kai Sachs, Alex
Frommgen, and Daniel Bausch as well as Dr. Ilia Petrov and Astrid Endres. Special thanks go to
our secretary and invisible engine Maria Tiedemann for her support and assistance.

Thanks also to my students Matthias Eichholz, Erman Turan, Pascal Kleber, Karim Abou Sedera,
Christoph Schott, Arne Stiihlmeyer, Julian Dean, Henriette Roger, Jan Matuschek, Vikrant Lawan-
gare, and Michael Chromik. My thanks also go to the Coffea bar in Darmstadt and its team of
dedicated baristas: many ideas presented here flourished over a well-made espresso.

Finally, thanking one’s wife and family for carrying all the burdens along the way with you
might seem perfunctory and stereotypical to some. I am certain, however, that those who have
embarked on such a long and not always sunny journey themselves can imagine, how deeply
indebted I feel to my wife Mareike and my family for their continuous support.

In memoriam Hans-Dieter Ebert, Marion Braun, Walter Waterfeld and those of friends and family
who had seen the start of this project but not the end of it.

XXVii

1 Introduction

I often say that when you can measure what you are speaking about,
and express it in numbers, you know something about it; but when you
cannot measure it, when you cannot express it in numbers, your knowl-
edge is of a meagre and unsatisfactory kind; it may be the beginning of
knowledge, but you have scarcely in your thoughts advanced to the state
of Science, whatever the matter may be.

Popular lectures and addresses [408]
LorD KELVIN

The gap between the physical world and its state represented and reasoned about in software
systems is about to close. This trend is manifesting itself most prominently in the recent notion
of the Internet of Things (IoT). The IoT refers to the integration of heterogeneous digital devices,
software architectures and Cloud-based infrastructures to provide and process fine-granular data
about real-world events without requiring human intervention [12, 39, 192, 247, 273, 341, 413].
This enables modern reactive software systems to turn real-time data about processes in the
physical world into information and knowledge to react in time: smart Supply Chain Manage-
ment (SCM) systems can automatically redirect delivery routes or trigger processes to replenish
goods if they detect delays based on incoming notifications [233]; earthquake early-warning
systems can initiate counter-measures if they infer indications for imminent earthquakes by com-
bining data from various sensors and backend systems [93]; financial trading applications decide
to buy or sell at stock exchanges based on real-time news feeds; fraud detection systems cancel
suspicious transactions in financial services if they are confident to witness an attempted fraud
by reasoning about data of the ongoing transaction [78, 208]; and data center management sys-
tems scale and reassign resources based on detected usage patterns and energy consumption of
resources to balance resource usage with cooling costs [81, 106, 250].

On the software architecture level, push-based Event-based Systems (EBSs) complement pull-
based Service-oriented Architectures (SOAs) to leverage information about real-world events in
software systems [76, 78].

Within the push-based communication model of EBS, software components act with different
roles: as subscribers, they get notified whenever data sources provide information about events
they are interested in; as publishers, they publish notifications about meaningful events that
they have detected with a certain confidence. Subscribers and publishers are fully decoupled
by a Message-oriented Middleware (MOM) that pushes notifications from publishers to interested
subscribers as soon as they are available [147]. Dependencies between participants in an EBS
are formed dynamically at runtime, based on the type, quality-related properties (e.g., sampling
rate, confidence of detection, precision, trustworthiness) or content of notifications, enabling
many-to-many communication [208]. Publishers and subscribers are unaware of each other and
anonymous but to the middleware, allowing them to join and leave the system without causing
interruptions. Thus, a push-based EBS is a suitable architecture for reactive data-centric systems
with an inherent need for flexibility, extensibility and scalability at runtime.

1.1 Problem Statement

Having information of adequate quality available at the right time in the right place is vital for
software systems to react to situations or support decisions. The applications in the area of IoT
and EBS mentioned above are just a few examples of modern reactive systems where heteroge-
neous information provided by various publishers has to be interpreted and where false alarms,
missed events or otherwise information of inadequate Quality of Information (Qol) carries a
cost [35, 50, 55, 125, 182, 250].

In general, information in an EBS can be considered to be of inadequate quality if it is not precise,
accurate, or fresh enough; if notifications about events arrive out of order, causelessly (false
positives) or not at all (false negatives); if data is not reliable enough because the publisher is not
trustworthy, or not confident enough. The degree to which any of these properties have to be met
for Qol to be considered adequate, however, depends on the purpose the information is intended
to be used for by each subscriber [35, 182]. This Value of Information (Vo) is application-specific
and can change dynamically at runtime as it depends on the individual utility function of each
subscriber, itself subject to the subscriber’s context and state [56, 225, 421, 424].

Supporting requirements about QoI depends on the EBS satisfying individual requirements about
quality-related properties at runtime as most of these properties cannot be determined at design
time [35, 42, 85, 213]. In that regard, the notion of Qol in EBS encompasses aspects of Quality
of Service (QoS) and other concepts addressing runtime quality but is not limited to them.

We use three motivational examples inspired by research cooperations: financial data vendors,
energy-efficient data center and smart supply chains. The examples highlight different aspects of
Qol and Vol in reactive software systems and the relevance of Qol.

Financial Data Vendors

Trading on today’s financial markets is based on software systems for analyzing, planning and
executing transactions. Financial data vendors provide banks, traders, and end users with in-
formation to base investment decisions upon. The spectrum of the provided information ranges
from raw data feeds about trades at stock exchanges delivered at high sampling rates and low
latency to aggregated analytics that include background reports about markets or trends.

A financial data vendor is subscribed to fine-granular notifications about events at the stock
market, published by the different stock exchanges. This data is directly forwarded to some
consumers; for others, it is aggregated and fused with historic data or general news first, using
approaches such as Complex Event Processing (CEP) or manual analysis. The sampling rate of
incoming notifications from a single stock exchange can range from one notification per day to
more than 100.000 notifications per second. All participants of such an EBS are usually located
in data center connected by high-speed networks.

Customers of a financial data vendor subscribe to a combination of product (e.g., tick, aggre-
gate, report), content attributes (e.g., stock exchange, ticker symbol) and Qol properties (e.g.,
latency, sampling rate). At an extreme end of the subscriber spectrum, high-frequency or low-
latency trading applications exploit the speed of algorithmic decision making in software systems
and minute information asymmetries for arbitrage revenues. They have restrictive requirements
about latency and sampling rate but are willing to pay a premium; some applications require a

2 1. Introduction

minimum sampling rate while others need to define a maximum sampling rate as they are un-
able to process information properly if the sampling rate is too high. End users managing their
own portfolio manually, on the other hand, are usually more interested in aggregated updates
on the development of a stock symbol or trend forecasts, rendering latency and sampling rate
insignificant compared to the requirements of algorithmic traders [73].

For financial data vendors and their subscribers, Qol directly translates into products, prices and
penalties. The Vol of each subscriber determines the products it consumes and holds the financial
data vendor responsible for. Providing data with insufficient Qol results in penalties and revenue
loss for the financial data vendor. For consumers, receiving data with insufficient QoI results in
suboptimal strategies to buy or sell — in the worst case even leading to stock market crashes such
as the May 6, 2010 Flash Crash [255].

Energy-aware Reactive Data Center Management

Virtualized resources in data centers accessible via broadband networks and the Internet provide
scalable infrastructures for applications, CEP engines and MOMs at different levels of abstraction.
In this dissertation, they are subsumed under the term Cloud computing and allow applications
to adjust resources automatically to meet fluctuations in demand. Resources are rented out to
tenants by providers on a pay-per-use basis. The physical servers managed by the provider are
not accessible to tenants but hosted Virtual Machines (VMs) and applications are. Network traffic
in and out of the data centers is charged for by the provider.

From the perspective of a Cloud provider, this pay-per-use business model requires fine-granular
monitoring of resources and applications for billing and availability management as violations of
Service Level Agreements (SLAs) result in penalties and reduce revenue. Energy consumption of
servers and cooling facilities are the main cost drivers in data center operations [44, 49, 257,
313]. Thus, providers try to optimize the utilization of their resources by balancing the level of
utilization of each server with the energy it consumes, the heat that it produces, and the costs
necessary for cooling. For this, sensory data about energy consumption and ambient temperature
is incorporated into load-balancing algorithms together with metrics about applications, their
SLAs, server utilization and network traffic. Resource management in this setting is done in a
push-based fashion: certain events trigger a reassignment of resources for a given application,
e.g., scale-in or scale-out, runtime migration to other hosts etc. Triggering events can be: changes
to the workload or SLAs of the hosted application, critical resource utilization caused by other
tenants hosted on the same resource, or outages [48, 81, 106, 128, 257, 280, 313].

At runtime, the whole technology stack has to be monitored: network traffic, racks, single servers,
VMs hosted on each server, applications such as Apache Hadoop running on each VM, or single
jobs executed by an application [250, 315]. Thus, runtime monitoring requires multiple pub-
lishers to provide runtime information about different entities. For example, monitoring systems
like Ganglia or Nagios report on the state of a VM, application-specific agents like Hadoop Task-
Trackers [16] or Borglets [414] monitor job execution, and components of the hosted application
provide application-specific metrics. The data provided by these publishers is sometimes redun-
dant in its content but differs in its Qol properties such as sampling rate, granularity, precision,
or latency. The same data is consumed by many different subscribers such as applications for
billing and metering, data warehouses, resource managers such as BorgManagers or Hadoop
JobTrackers, dashboards, the applications themselves, load balancers, or cooling systems.

1.1. Problem Statement 3

Requirements of subscribers regarding different quality-related properties of notifications are
individual and can change dynamically over time. Some examples: monitoring data about a
VM delivered at a given sampling rate and confidence of detection might be sufficient for the
purpose of one subscriber while another subscriber might need the same type of data at a higher
sampling rate but would tolerate less confidence of detection or precision — a third subscriber
might not care about precision at all but requires measurements about the same entity from three
different publishers for cross-validation; monitoring data in its current form might be sufficient
for a subscriber as long as there is no indication of malfunction at the monitored entity — in
case of anomalies, the same data is required at a high sampling rate for root cause analysis by
this subscriber while other subscribers still require a lower sampling rate as they are resource-
restricted.

In the context of reactive data center management systems, providing, processing or consum-
ing data with insufficient Qol has a severe impact. Resource managers and load-balancers in
data centers rely on precise data about the ambient temperature and energy consumption of
server racks. They are bound to misjudge the actual utilization and power consumption of re-
sources if the data they receive is imprecise or precise data is drowned out by too much imprecise
data. Consequently, resources might be overloaded and overheat, resulting in outages and vio-
lated SLAs for jobs running on these resources. Alternatively, underutilization of resources or
overprovisioning of cooling facilities results in skyrocketing costs [81, 106, 313].

Smart Supply Chain Management and Industry 4.0

Advances along the whole technology stack have accelerated the emergence of the term Industry
4.0 [203, 282]. The term denotes the vision of tightly integrated production and delivery pro-
cesses that rely on machine-to-machine communication and the IoT to monitor, execute and opti-
mize the manufacturing value chain. On the device level, increasing miniaturization and decreas-
ing production costs enable a myriad of sensors to be used in monitoring real-world conditions
while actuators can manipulate objects and processes in the real-world. Sensors and actuators
are omnipresent in modern supply chains and production processes to feed EBSs and SOAs. For
example, as part of Wireless Sensor Networks (WSNs), or as active and passive Radio-Frequency
[Dentification (RFID) tags in Cyber-physical Systems (CPSs) [76, 78, 176, 177, 208].

The resulting applications are distributed and form federated systems with a high degree of
heterogeneity and dynamics; often they are a mix of energy- or otherwise resource-constrained
participants and Cloud-based backend systems with no such constraints. As for smart buildings,
multiple publishers for the same type of information are bound to become available over time
as new devices are added that provide a bundle of capabilities previously provided by dedicated
devices. Subscribers in those systems can range from Cloud-based Enterprise Resource Planning
(ERP) applications and data warehouses to resource-constrained mobile devices such as smart
glasses or handhelds. The data provided, processed and required is also very heterogeneous in
terms of type, granularity and quality-related properties. For example, position information is
provided or required about single items, or about the container or even the truck the items are
contained in; some sensors provide precise information about the position or status of an entity
while others have a certain drift; others again cannot provide data as frequently as required due
to energy-constraints.

In terms of Qol, applications in the domain of smart business processes in manufacturing and
logistics usually do not require subsecond latencies. Rather, they require complete, precise and

4 1. Introduction

trustworthy information about the state of a process. Incomplete or imprecise data can lead to
miscalculations of supplies, lot sizes or due dates. At the same time, energy-constrained devices
have to avoid draining their batteries and rendering them useless. Thus, energy-constrained
publishers have to be aware of interested subscribers and their required sampling rates [62, 99,
261, 325, 415, 418].

Limitations of a Typical EBS Regarding Qol

The three examples from different domains of modern reactive systems illustrate the relevance of
Qol for applications in an EBS. In a typical EBS, however, runtime support for Qol is insufficient
as requirements about Qol can only be supported implicitly by encoded types, or by additional
metadata in notifications; some MOMs offer explicit support only for domain-specific and fixed
sets of properties. Both approaches have limitations on the conceptual and technological level.

Implicit support for requirements about Qol-related properties can be provided by publishers
in an EBS by advertising types that encode quality-related properties in their name (e.g., Cpu-
Usage_rate50_confidence70), or by adding metadata to the content of each published notifica-
tion (e.g., rate=50, confidence=70). Subscribers can express their requirements by subscribing
to the encoded type that fits their requirements best, assuming that the semantics are known.
This approach, however, is limited in terms of expressiveness and efficiency. First, using encoded
types restricts the set of available properties to those determinable by publishers at design-time,
excluding important runtime properties like latency and reliability that are determinable only
by the MOM before dispatching notifications to subscribers. Crucially, publishers cannot coor-
dinate their supply with the demand of subscribers, as there is no feedback from subscribers to
publishers in a typical EBS. Above all, interdependent properties that require the participation
of multiple publishers cannot be supported in a typical EBS using encoded types, as there is no
coordination between publishers. For example, a typical EBS cannot support the requirement of
a subscriber about a number of alternatives, i.e., the same type of notification has to be provided
by a certain number of different publishers. Second, using encoded types for different combina-
tions of quality-properties would result in an unmanageable growth of available types and traffic
overhead as the same information has to be processed for multiple encoded types [23, 85, 171].
Such overhead, however, is not suitable for environments where processing data is expensive.

Explicit support for a few quality-related properties is provided by MOMs like IndiQoS [85],
Adamant [213] with the underlying Data Distribution Service (DDS) [197, 269, 334, 345], or
Harmony [253, 428]. These solutions are also limited on the conceptual as well as on the tech-
nological level. On the conceptual level, they focus on a fixed set of MOM-related QoS properties
at a low level of abstraction, which they try to satisfy by adapting the MOM on the transport
protocol level only. They do not consider requirements about Qol properties that would require
publishers to adapt at runtime. On the technological level, they have specific requirements about
the infrastructure and require tight vertical integration across the technology stack to switch be-
tween custom transport protocols. The applicability of these approaches in heterogeneous IoT
deployments that involve Cloud-based services, however, is limited. For example, direct access
to specific hardware features on the host machines for performance tuning is no longer provided
and transport mechanisms like multicast are not available in Cloud environments [173].

1.1. Problem Statement 5

1.2 Research Questions

Based on the discussed challenges regarding runtime support of Qol requirements in push-based
systems, we derive four research questions to be addressed in this dissertation:

Q1 What constitutes Quality of Information (QoI) and Value of Information (VoI)?

Q2 What are suitable abstractions to express individual requirements and capabilities about Qol
properties in EBS?

Q3 What are strategies to enforce requirements and resolve conflicts?

Q4 What is the influence of resource- or cost-constrained environments?

1.3 Proposed Solution, Scope and Contributions

In this dissertation, we introduce the concept of expectations, capabilities and feedback as a
holistic approach to support Qol in EBS as a first-class citizen and enable participants to adapt
at runtime based on feedback about their actions and the global system state. We consider the
fact that participants operate on resource-constrained devices and Cloud environments. Hence,
resource- and data-efficiency are important criteria in our approach.

We enable subscribers to express preferences for Qol properties based on their individual Vol
while publishers can associate their capabilities with costs for providing certain Qol properties.
As part of our approach, we model Qol-related properties like sampling rate, confidence of de-
tection, or latency in a generic way. Actions are associated with a generic property and define
how it can be adjusted at runtime: by advising a publisher to adapt, adapting the MOM, or by
adapting both publisher and MOM in a coordinated fashion.

Subscribers can express preferences and individual trade-offs between requirements as expecta-
tions in a consistent and information-centric way. Publishers expose their general abilities to
support a generic property, their costs, and the state they are currently operating at to the MOM
as capabilities. In a capability, we do not only capture the current state of the publisher but, more
importantly, we model the extent to which it could adapt. Thus, a capability describes first and
foremost the spectrum of adaptation that would be possible together with the costs arising from
this adaptation; the current state is included as well to analyze the still exploitable spectrum.

Malleable requirements (expectations) and the ability of the system to adapt (capabilities), de-
fined as weighed ranges over generic properties, enable us to automatically negotiate Qol re-
quirements at runtime. The algorithms used in this process identify the extent to which the
system would have to adapt to satisfy requirements. The system assesses the feasibility by bal-
ancing the costs for performing the identified adaptation with the benefits to be derived from it
using custom decision- and load-balancing strategies; costs and benefits depend on the current
system state, the preference expressed by subscribers and the costs associated with publishers.
Based on this assessment, requirements are declined or satisfied by adapting the system. Sub-
scribers receive feedback about the state of their expectations while publishers get feedback
about the usage of their capabilities and explicit advice to adapt if necessary.

The proposed concept complementary extends the push-based paradigm of an EBS without com-
promising the model of indirect many-to-many communication, making it backward compatible.
As shown in Figure 1.1, expectations and capabilities are defined independently of advertise-
ments, notifications or subscriptions. They are matched only at the MOM, preserving the

6 1. Introduction

Typical Event-based system

Advertisements Subscriptions

Type
Content

i

Notifications

i

Notifications

Message-
oriented >
Middleware

Expectations

Capabilities

Qol

) <mmm
Feedback - Properties ‘ Feedback

a) expectation state
b) aggregated metrics

a) adaptation advice
b) aggregated metrics

Concept of expectations

Figure 1.1.: Our concept extends the model of EBS (top) with capabilities, expectations and bidi-
rectional feedback for runtime adaptation (bottom, bold).

anonymity of the associated participants in an EBS that is essential for scalability, flexibility,
extensibility and robustness. Individual feedback about expectations or capabilities as well as
aggregated feedback about the system enables participants to assess their current situation and
adapt their behavior at runtime.

Expressing capabilities in a uniform way and associating generic actions with them, we can
connect to the huge body of existing work to manipulate and optimize dedicated lower-level
properties such as latency, throughput, or precision. We can utilize these related approaches by
decomposing requirements about more abstract generic properties expressed in our approach
into lower-level requirements. For example, latency is a property supported by both IndiQoS and
Harmony on the transport protocol level. In our approach, we could enforce requirements about
this property by associating it with a generic action that maps our definition of latency to the
representation used by IndiQoS or Harmony. Depending on the deployment of the system, we
could then trigger an underlying instance of either MOM for enforcement.

The fact that Qol requirements or capabilities of a participant can be influenced by changes to
its context or state is essential to our approach, as it requires the EBS to react dynamically at
runtime. For example, a mobile publisher’s publication latency can temporarily increase due
to bad connectivity, forcing the MOM to evaluate the impact of this change on subscribers that
rely on low-latency data from this publisher. However, we do not necessarily have to know
and understand the current context or state of a participant for this. Neither do we require all
participants to be aware of their own context or state in the sense that they are able to infer and
interpret their current context based on a specific context model.

A key element of our approach is the realization that Qol requirements and capabilities can
change dynamically at runtime. These changes have to be detected by the MOM using runtime
monitoring or by participants notifying the MOM about updates of their requirements or capa-
bilities. In neither case do we need to know the reason for a change and thus do not require the
use of a specific context model. Instead, we provide subscribers with an expressive model that
allows them to map their preferences to requirements about objective properties supported by

1.3. Proposed Solution, Scope and Contributions 7

the system without having to expose the model they use to infer and determine their own context
and state. Respectively, publishers can express their current and potential supply for properties
depending on their state and context without having to expose their context model either. Thus,
approaches to infer and determine the ambient context of a participant are considered to be sec-
ondary. Security and privacy aspects are important but orthogonal to our approach; they are out
of scope of this dissertation.

By supporting Qol in an EBS in a holistic way, we contribute to the vision of reactive software
systems that consist of coequal pull- and push-based software architectures [18, 19, 76, 78]. Pull-
based software architectures like SOA operate on persistent data and offer extensive runtime
support for SLAs defined over QoS-related properties; efficient monitoring approaches provide
usage information about SOA-based systems and SLAs defined for them at runtime. Push-based
software architectures like EBS, however, lack a comparably generic concept to support Qol-
related properties at runtime. Providing the necessary usage information about an EBS and
Qol properties at runtime is still an open issue. We contribute concepts to support and monitor
guarantees about Qol-related properties in EBS at runtime.

Referring to the research questions regarding the support of Qol in EBS, the contributions of this
dissertation are in particular:

Generic model to express Qol requirements and adaptation capabilities (Q1+Q2). We pro-
pose a generic model to express and manage malleable requirements about Qol-related proper-
ties in an EBS at runtime. Subscribers define requirements about an arbitrary set of properties
as an expectation in a consistent and information-centric way. Multiple expectations by the same
subscriber define a preference order without the need to define an explicit utility function. Pub-
lishers expose their support for Qol-related properties to the MOM as capabilities. Each capability
describes the spectrum of support a publisher can offer for a specific property when using self-
adaptation; the current state it is operating at is contained as well. A capability profile of each
publisher is maintained at the MOM and includes capabilities for those properties determinable
only by the MOM at runtime. Costs and benefits are essential components of our model: sub-
scribers quantify the VoI of their requirements by ranking them with utility values while publishers
and MOM manage cost functions for capabilities, e.g., the costs for maintaining a sampling rate of
100 notifications/second vs. a sampling rate of 50. The degree to which a subscriber is satisfied
with the results delivered by the MOM is quantified by its fidelity.

Algorithms to negotiate and enforce Qol requirements at runtime (Q3+Q4). We present
algorithms to automatically decide about Qol requirements at runtime, deduce the action plan
and execute it. In particular, we discuss algorithms for matching expectations to capabilities,
deciding on satisfiable expectations, safeguarding action plans and enforcing the decision. Our
approach allows using custom decision strategies and takes into account the costs and utility
values provided by participants. Decisions are enforced by transparently adapting the MOM and
advising publishers to adapt.

Feedback for self-adaptation to extend the communication model of EBSs (Q1,Q2,Q4). We
extend the unidirectional communication model of push-based systems with bidirectional feed-
back from the MOM to participants. At runtime, we provide subscribers, publishers and brokers
with individual and aggregated feedback. Individual feedback contains status updates from the
MOM about expectations or capabilities of a dedicated participant. Subscribers get updated
about the state of their active expectations while publishers receive explicit adaptation advices
containing a target value that a capability has to be adjusted to. Thus, we extend the scope of

8 1. Introduction

supported Qol properties to those influenced by publishers. Aggregated feedback is delivered to
all participants that have registered interest in aggregated metrics about the system population
and state, e.g., the number of active subscribers for a certain type of notification or the average
sampling rate of notifications of a certain type.

Novel concept for runtime monitoring of decentralized event-based systems (Q1+Q4). We
introduce a novel approach to monitor the population and dynamics of a large-scale Distributed
Event-based System (DEBS) effectively based on the concept of Application-specific Integrated
Aggregation (ASIA). We use this monitoring information in three ways to support Qol require-
ments: a) to detect significant changes in the global state of the system that require a renego-
tiation of expectations; b) to decide on load-balancing; and c) to provide aggregated feedback
to participants. Participants can individually balance the measurement costs with the freshness
and precision of the reported monitoring information. Our approach exploits relaxations on
information precision to limit the propagation of unnecessary updates within the system.

Reference architecture for runtime support of Qol requirements (Q3+Q4). We present the
design of an architecture to support Qol requirements in an EBS at runtime. Our reference
architecture consists of an extension to each broker in the MOM as well as additional handlers
provided to participants. The extension makes a broker self-adaptive while the handlers enable
participants to deal with feedback by the MOM and manage the lifecycle of expectations and
capabilities. Our design can be applied to any push-based MOM as it extends the Application
Programming Interface (API) of an EBS. The MOM extension consists of platform-independent
components for negotiating between expectations and capabilities, monitoring the system state,
and coordinating adaptation. Platform-specific components implement MOM-related reactions
like routing adaptation or traffic shaping.

Prototypes implemented in Java as proof of concept (Q2-Q4). We present two prototypes of
our reference architecture built on open-source MOMs with different features to show the fea-
sibility of our approach: Apache ActiveMQ is representative of a centralized industrial-strength
MOM focusing on high performance while the distributed REconfigurable Dispatching System
(REDS) allows us to exploit routing strategies in decentralized networks of brokers. Both MOMs
have been extended to support expectations, capabilities and provide feedback to participants.
Extensions are written in Java without affecting existing code.

Examples for applications implementing our approach (Q1+Q3,Q4). We present examples
for existing open-source applications that we have enhanced with our approach. Using expec-
tations, capabilities and feedback, Qol requirements are now supported in the Ganglia monitor-
ing system and MySQL master-slave replication by extensions to our self-adaptive Multi-cloud
Cost-Aware Transport (McCAT) MOM. We have designed McCAT to combine the self-awareness
in distributed and decentralized EBS, as provided by ASIA, with awareness about Qol that is
provided by expectations and capabilities. Using McCAT as a transparent transport mechanism
for existing distributed applications, we can save up most of the network traffic produced by
out-of-the box deployments of Ganglia monitoring and MySQL master-slave replication without
violating Qol-requirements defined in these systems. Using McCAT wrappers, we make static dis-
tributed systems self-adaptive without having to change existing code. For the evaluation of our
approach, we have also extended the open-source benchmarking tools FINCoS and jms2009-PS
to include expectations, capabilities and feedback in their workloads.

Evaluation regarding expressivity, benefits, and execution costs (Q3+Q4). We evaluate the
expressivity of our approach by showing that we support arbitrary Qol properties while we also

1.3. Proposed Solution, Scope and Contributions 9

support the limited sets of Qol properties addressed by related approaches. We show that us-
ing expectations, capabilities and feedback for adaptation results in significant benefits for sub-
scribers, MOM and publishers in terms of higher fidelity, less network traffic and lower CPU
utilization. In terms of execution costs we show that processing and negotiating expectations
and capabilities at a single broker is feasible for more than 2000 active participants triggering
renegotiations up to every five seconds without degrading the performance of the MOM in terms
of throughput and latency. We identify the cost drivers for execution costs and explore their
trade-offs using jms2009-PS, which is based on the industry-standard benchmark SPECjms2007.
We evaluate the effectiveness of our proposed monitoring approach separately in terms of per-
formance, scalability and precision. We show that our approach provides information about the
population and dynamics of a DEBS at the individual level of precision defined by the consuming
components. Our monitoring approach outperforms external aggregation systems by collecting
and distributing information with a limited overhead while we do not significantly impact the
performance of the MOM in terms of throughput and latency.

1.4 Related Activities and Publications

Research contributing to the work presented in this dissertation has been conducted in the con-
text of several multi-institutional research projects and collaborations. The results have been
published in a number of peer-reviewed publications and students’ theses.

Research Projects and Collaborations

I have been involved in several joint research projects with industrial and academic partners to
investigate deployment and operation aspects of enterprise software systems following the SOA
or EBS paradigm.

With Deutsche Post MAIL, I have improved the maintainability of SOA-based application land-
scapes by developing a metric for IT Service Management (ITSM) to quantify the criticality of a
SOA based on Function, Integration, Traffic (FIT). This work has been applied to participants in
an EBS as part of a cooperation with Software AG in the context of the BMBF Software Campus
project WEFITM!. The lessons learned have been incorporated into the algorithms for negotiating
and enforcing Qol requirements at the MOM as presented here.

Within the BMBF Software-Cluster research projects Software-Cluster EMERGENT? and SINN-
ODIUM?, I have worked closely with research partners from industry and academia on enabling
emergent behavior in enterprise software systems by integrating the paradigms of EBS and SOA
on the architectural level. Both research projects have focused on improving interoperability, reli-
ability and adaptability of enterprise software provided by different vendors. EMERGENT focused
on software engineering and design time aspects of software systems spanning across multiple or-
ganizations. Work in SINNODIUM has been centered on runtime aspects of multi-organizational
systems, such as monitoring business processes and heterogeneous infrastructures, as well as
aiding reactive behavior to respond to relevant business events. The work done in these projects
has greatly influenced the concepts presented here. Valuable feedback and input from indus-
trial research partners — major software vendors and corporate users — on runtime aspects of
push-based enterprise systems helped to verify the concept presented here.

1
2
3

http://www.softwarecampus.de/en/home/
http://www.software-cluster.com/en/research/projects/joint-projects/emergent
http://www.software-cluster.com/en/research/projects/joint-projects/sinnodium

10 1. Introduction

http://www.softwarecampus.de/en/home/
http://www.software-cluster.com/en/research/projects/joint-projects/emergent
http://www.software-cluster.com/en/research/projects/joint-projects/sinnodium

Working on aspects of self-awareness and self-adaptiveness in push-based systems, I have estab-
lished a close research collaboration with Peter Pietzuch (Imperial College London, UK), Patrick
Eugster (then Purdue University, US), David Eyers (University of Otago, NZ), Alessandro Mar-
gara (University of Lugano, CH), and Emilio Coppa (Sapienza University di Roma, I). We have
developed the concept of Application-specific Integrated Aggregation (ASIA) as a means to effi-
ciently monitor the population and dynamics of large-scale decentralized DEBS. During my stay
at Imperial College London as Visiting Researcher, the scope of that work was extended to en-
compass self-adaptive behavior applicable for Cloud environments, resulting in the self-adaptive
and cost-aware system McCAT. The work on ASIA and McCAT is directly contributing to this
dissertation.

Related Publications

I have authored and co-authored several peer-reviewed publications that cover work contributing
directly and indirectly to this dissertation. As part of preparatory work we analyze different
aspects of the concepts contributing to the IoT; on the device layer, we characterize RFID sensors
and software systems to leverage their benefits for SCM systems in [176] while we evaluate the
technological and economic enablers of Cloud computing in [174] from the perspective of data
intensive applications on the infrastructure layer.

On the software architecture level, several publications discuss the benefits and challenges of
integrating SOA and EBS to create reactive software systems and derive requirements for run-
time quality management in EBS [76, 78, 170]. The FIT-metric to optimize the availability of
SOA-based application landscapes is described in [169]. Focusing on open challenges in devel-
oping and maintaining event-driven and service-oriented architectures, I have been involved in
contributing a container concept for encapsulating event-driven functionality [18], integrating
this concept into approaches for Business Process Management (BPM) [19, 20] and dealing with
heterogeneous data in an EBS by applying a transformation approach [166, 168]: Eventlets, the
proposed container concept for event-driven functionality, is the main topic of Stefan Appel’s
dissertation [17] while the transformation approach Actress is the key contribution of Tobias
Freudenreich’s dissertation.

The work on ASIA, as described in this dissertation, has been published in [150, 171, 172,
177] while the self-adaptive system McCAT is outlined in [173]. The concept of expectations,
capabilities and feedback is described in an early stage in [175].

Supervised Theses

I have been involved in supervising several students’ theses that address aspects relevant for
this dissertation. Routing mechanisms in EBSs and DEBSs are analyzed by Matuschek in [302].
The transformation approach for heterogeneous data in a DEBS, mentioned above and described
in [166, 167, 168], is based on [165] by Freudenreich. In cooperation with Software AG, com-
plementary work on modeling and checking SLAs for SOA-based systems has been presented by
Dean in [132], while Stithlmeyer introduces a concept for describing and updating reactions in
CEP engines at runtime [401]. Mechanisms for ensuring requirements about latency in EBSs and
DEBSs are investigated by Eichholz in [138] and contribute directly to this dissertation.

1.4. Related Activities and Publications 1

1.5 Structure

This dissertation presents the concept of expectations, capabilities, and feedback to support Qol
requirements in EBS. The remainder of this document is structured as follows:

Chapter 2 provides background information about push-based and pull-based paradigms. In par-
ticular, Publish/Subscribe (PS) and Complex Event Processing (CEP) are covered as key concepts
within the paradigm of EBS. Related approaches such as Wireless Sensor Networks (WSNs),
Data Stream Management Systems (DSMSs), Cloud computing, Service-oriented Architectures
(SOAs), and System-of-Systems (SoS) are discussed in aspects relevant for this work.

Chapter 3 introduces the model of expectations, capabilities and feedback in detail. We revise
the relationship between Quality of Information (Qol) and related terms to establish a coherent
terminology. We review the spectrum of properties associated with these concepts and reduce
their generalizable features to the modular and reusable building blocks of our approach. We
present expectations to express malleable requirements about those generic properties and ca-
pabilities to describe support for them. We define the different types of feedback introduced in
our approach and define the fidelity metric to quantify the conformance between a subscriber’s
requirements and the data provided by the MOM.

The conceptual foundations for negotiating and enforcing Qol requirements at runtime are pre-
sented in Chapter 4. We describe the whole process of runtime monitoring, runtime negotiation,
and runtime adaptation in a push-based system. This includes algorithms to monitor the system
state in a decentralized setup, adapt the MOM, as well as detect and resolve conflicts.

Chapter 5 describes the architecture for supporting our proposed concept in an EBS and a DEBS.
We describe the extended API provided to subscribers and publishers that enables them to ex-
press expectations and capabilities and receive feedback. We describe the platform-independent
parts of our architecture first before describing two prototypes built on top of ActiveMQ and the
REconfigurable Dispatching System (REDS) as proof of concept. We also describe the steps nec-
essary for publishers and subscribers to utilize our approach, using our modifications of McCAT,
the jms2009-PS benchmark, and FINCoS for illustration.

We evaluate our proposed concept and the described prototypes in Chapter 6 in regarding ex-
pressiveness, benefits for participants and execution costs for the MOM.

In Chapter 7, we discuss related work focusing on runtime quality in the area of EBS, WSN, Cloud
computing, and SOA. In particular, we compare our concept to related approaches providing
support for quality-related properties in push-based systems and distributed systems in general.

We summarize our contributions in Chapter 8 and point out future research in Chapter 9.

12 1. Introduction

2 Background

In this chapter, we present background information about basic concepts and paradigms referred
to in this dissertation. As shown in Figure 2.1, the remainder of this chapter is structured into
three parts that focus on push- and pull-based interaction models.

© o1

,—e Related —

Service-
oriented

Publish- Wireless Architectures

Subscribe Sensor
Event- Networks
based

Systems

Cloud
Computing
Complex Data Stream
Event Management
Processing Systems
Systems of
Systems

I
push-based I pull-based —

Figure 2.1.: Chapter structure: background on push- and pull-based approaches.

First, we focus on the push-based communication model of an Event-based System (EBS). In
particular, we introduce Publish/Subscribe (PS) and Complex Event Processing (CEP) as the
two aspects of an EBS relevant for this dissertation. Based on this conceptual foundation, we
present an overview of Wireless Sensor Networks (WSNs) and Data Stream Management Systems
(DSMSs) as directly related concepts. Finally, we include pull-based concepts also contributing to
the notion of the Internet of Things (IoT), namely Service-oriented Architectures (SOAs), Cloud
computing, and System-of-Systems (SoS).

2.1 Event-based Systems

An EBS is a reactive sense-and-respond system designed around the concept of events. An event
is defined as a significant change of state in the physical or digital environment of a system.
What is of significance is defined by the application using the EBS. In principle, there are change
events (e.g., job completed), status events (e.g., position or ambient temperature), and interval
events (e.g., process duration). As time is constantly changing, even two status events describing
the same state of the environment at different points in time are considered to be different
events [94, 208].

Observations about events are represented by notifications. A notification consists of at least an
identifier, a timestamp and a payload that describes the observed event. The timestamp could

13

represent a point in time (e.g., the time of detection or the time of publication) in absolute or
relative terms, or it can represent an interval of time (e.g., a duration for which the observed
event lasted). The payload consists of a set of attributes, objects, or semi-structured data de-
scribing the event [318]. With regard to the information density carried by a notification, three
kinds of events are usually distinguished [208]: simple events are fine-granular observations on
a low level of abstraction, such as raw sensor readings or stock ticks, while composite events are
aggregations of simple and composite events. Complex events, in contrast, are derived at a high
level of abstraction based on the observation and interpretation of events (e.g., shipment XYZ
80% complete). Event algebras describe the rules for aggregating simple and composite events
while enrichment can be used for deriving complex events.

An EBS is able to detect events of interest, notify affected components and react to the observed
situation based on certain rules. For that, it consists of at least a monitoring component, a
transmission mechanisms and a reactive component as shown in Figure 2.2.

Event-based System

Monitorin Transmission Reactive
Event e 9 - >
component mechanism component
detact represent, enrich process notification decide, execute

event

L CEP i — Publish/Subscribe S - CEP -
Figure 2.2.: Minimal set of components of an EBS as described in [208].

The transmission mechanism for notifications can be based on different interaction models as
shown in Figure 2.3. While it is not mandatory, communication in an EBS is usually push-based,
e.g., using messages or publish/subscribe. With the producer initiating the interaction, informa-
tion is delivered to the consumer upon availability without the consumer having to constantly
poll the producer for potential updates. This reflects the reactive nature of an EBS [208, 318].

Pull-based:
initiated by consumer

Anonymous
Request/Reply
Counterpart Counterpart
known unknown

Request/Reply

Messaging Event-based
(publish/subscribe)

Push-based:
initiated by producer

Figure 2.3.: Interaction models as discussed in [77].

In the remainder of this dissertation, we focus on two complementary approaches that can be
used in an EBS to address key challenges in reactive applications: notifications are dispatched
from many different producers to all interested consumers using the Publish/Subscribe (PS)
interaction model while Complex Event Processing (CEP) turns notifications about simple and
composite events into meaningful information, detects complex events and reacts to them.

14 2. Background

2.1.1 Publish/Subscribe for Dispatching Event Notifications

Publish/Subscribe (PS) systems dispatch notifications from data sources to consumers in an asyn-
chronous, push-based fashion. They are anonymous in that they do not require participants to
know each other’s identity to exchange information. Dispatching is usually done using a Message-
oriented Middleware (MOM) that decouples data sources from consumers in time, space and
synchronization [87, 147, 172].

As illustrated in Figure 2.4, publishers report each detected event by publishing a notification
about this event to the MOM. The MOM forwards each notification to those subscribers that
have expressed their interest by registering subscriptions at the MOM; subsequent lack of interest
is expressed by unsubscribing from already subscribed events. Publishers can announce the
events they are able to detect to the MOM using advertisements.

Advertisements \‘ f Subscriptions
Message-

Publisher oriented Subscriber

4,—» Middleware

Notifications

Notifications

=== Network link

Figure 2.4.: Components of a PS system to dispatch notifications: publishers, subscribers, MOM.

Subscribers and publishers use an Application Programming Interface (API) offered by the MOM
for advertising, subscribing and publishing notifications [350]. Subscribers provide a callback
function that is triggered by the MOM whenever publishers provide matching notifications. Pub-
lishers, on the other hand, publish notifications in a fire-and-forget fashion using a callback
method provided by the MOM. Thus, subscribers and publishers are fully decoupled and par-
ticipants of either type can be added or removed at runtime without interrupting the system.
Furthermore, subscribers and publishers are assumed to be unaware about the presence of other
participants when deciding on subscriptions, publications or advertisements. This increases flex-
ibility and supports scalability [87, 147, 172, 318].

Efficiently identifying the set of subscribers interested in a certain notification is a key challenge in
PS systems and done by matching subscriptions to advertisements or notifications using different
filtering mechanisms [208, 318]. As discussed in [17], the granularity of these filter mechanisms
is either per-connection or per-event.

Channel-, subject- and topic-based approaches are per-connection and use static routing to iden-
tify interested subscribers: publishers publish their notifications on a given channel, e.g., sports.
All subscribers subscribed to this channel receive every notification published there, regardless
of its content [7, 17, 87, 329]. Hierarchical addressing (e.g., sports.soccer.germany) and
wildcards (sports.*.germany) have been introduced to increase the flexibility of the otherwise
limited expressiveness [87, 147].

Contrastingly, content-based [317, 363], type-based [146, 147, 148], or concept-based ap-
proaches [15, 104] identify the affected subscribers per event. Type-based schemes allow to

2.1. Event-based Systems 15

advertise and publish notifications of a certain type that subscribers can subscribe to. This ap-
proach overcomes the restrictions of hierarchy-based subject- or channel-based approaches while
allowing for type-safety checks and advertisements due to subtyping. Concept-based approaches
have been introduced to deal with the increasing heterogeneity between subscribers and pub-
lishers [15, 104]. In contrast to the other subscription schemes, this approaches does not assume
a common understanding of the namespace used by publishers and subscribers. Thus, it can be
implemented on top of any of the other subscription schemes.

In practice, MOMs often support a mix of subscription schemes [139, 172, 387] to balance the
costs of per-event approaches with the performance gains of per-connection approaches [368].
For example, combining topic- or type-based approaches with a content-based scheme enables
the MOM to efficiently filter notifications based on advertisements while providing subscribers
with additional expressiveness for their subscriptions [131, 172, 390, 404]. In MOMs support-
ing Java Message Service (JMS), this can be done by subscribing to dedicated topics with ad-
ditional filters that are matched to attributes of each JMS; in the REconfigurable Dispatching
System (REDS), subscriptions are defined for a given type of notification together with optional
constraints on the set of attributes contained in the notification.

A MOM can be realized as a centralized message broker or as a Distributed Event-based System
(DEBS) relying on a distributed and decentralized network of brokers. In a DEBS, the network
of brokers forms a decentralized overlay on top of network links that interconnect publishers and
subscribers as illustrated in Figure 2.5.

I
Edge
fae
Broker @
] | ___{ Broker
/

I
e =
Broker
= i
roker
Broker — bl \
Couotsner s |-

broker Broker \.
" suosorioor >

~ 7 Message-oriented Middleware

Figure 2.5.: Distributed network of brokers (B) forming a MOM.

Edge brokers are directly connected to subscribers or publishers while inner brokers perform
efficient filtering and forwarding of notifications from publisher-side edge brokers to subscriber-
side edge brokers. To avoid flooding the broker network when propagating notifications is a key
challenge in any DEBS. To this end, each broker stores information on directly connected clients
and neighboring brokers, e.g., advertisements and subscriptions. Based on this information,
routing trees from publishers to all interested subscribers are established and maintained [318].

Examples for centralized MOMs are Apache ActiveMQ [390] and IBM Websphere [204] while
distributed MOMs are mostly research prototypes, e.g., REDS [126], HERMES [349], SIENA [88,
242], REBECA [15, 432], DREAM [77], CREAM [105], or PADRES [157]. Further examples are
surveyed in [32, 58, 118, 129, 281].

16 2. Background

2.1.2 Complex Event Processing for Reasoning and Deciding on Events

CEP engines are software components that enrich, combine and interpret notifications from mul-
tiple publishers to infer whether a meaningful event has taken place [78, 89, 145, 284]. Upon
detecting such an event, the CEP engine can propagate this knowledge as a new notification
or react directly, e.g., by triggering a suitable business process [18]. In the PS communication
model of an EBS, CEP engines thus act as subscribers and publishers.

Within a sequence of notifications about events, CEP engines try to identify patterns that indicate
a complex event has taken place or is about to take place [145, 251, 268]. Patterns are expressed
using operators such as selection, combination, negation, aggregation or production of new no-
tifications about composite or complex events [124]. Patterns about multiple related events can
be pre-defined or learned by the CEP engine using machine learning [294].

On the technological level, pattern matching is realized by continuous queries that have to
be stopped explicitly. Unlike pull-based queries in database systems that reflect the state
of the database at the time of posing the query, continuous queries (a.k.a long-running,
standing, persistent queries) continuously monitor the streams of incoming notifications and
push results to the consumer every time the query matches the content of one or multiple
streams [30, 137, 186, 278]. In distributed setups, distribution strategies have to deal with the
operator placement problem: decide at which node an operator is to be executed [123, 124].

Examples for query languages are TESLA (Trio-based Event Specification LAnguage) [120] or
EP-SPARQL [14]. Examples for CEP engines or MOMs that distributed CEP functionality are T-
Rex [121], CommonSens [392, 393], or RACED [119]. A more comprehensive overview of query
languages and CEP solutions can be found in [120, 122, 137].

Dealing with uncertainty is a major challenge in complex event processing. Information con-
sumed by the CEP engine can be imprecise, incorrect, or incomplete, resulting in uncertainty
about the validity of the derived information. Reasons for this can be incomplete, delayed, or
out-of-band notification propagation by the PS system as well as inaccurate raw data provided
by publishers. In addition, pattern definitions can be defined incorrectly based on wrong as-
sumptions [122, 124, 125]. Thus, the complex events derived are flawed with a certain level of
uncertainty that is expressed by a confidence of detection.

2.2 Related Concepts and the Role of EBS

In the previous sections, we have introduced PS and CEP as the two aspects of a push-based EBS
that this dissertation focuses on. In the remainder of this chapter, we introduce other concepts
and paradigms that apply the concept of an EBS, use it, or are similar in their motivation and
characteristics.

2.2.1 Wireless Sensor Networks and Cyber-Physical Systems

On the device level, increasing miniaturization and decreasing production costs enable a myr-
iad of sensors to be used in monitoring real-world conditions while actuators can manipulate
objects and processes in the real-world. Wireless Sensor Networks (WSNs) and Cyber-physical
Systems (CPSs) refer to large federations of sensor nodes — low-cost physical devices that com-
bine different sensors and actuators with wireless transceivers, processing units, and a power
unit [11, 35, 90, 111, 355, 397].

2.2. Related Concepts and the Role of EBS 17

The resulting variety of data sources bridges the gap between the physical and the digital world
by providing software systems with continuous streams of fine-granular but heterogeneous data
about real-world events, processes, and objects [43, 66, 254].

Sensor nodes in a WSN or CPS act as publishers that report to a subscriber outside the sen-
sor network using a push-based communication model. Sensor nodes have comparably lim-
ited sensing, processing and transmission capabilities but are deployed densely in large num-
bers. Thus they have to cooperate with each other to sense a given phenomenon and pro-
cess the information for the subscriber. For this, they autonomously establish and maintain
multi-hop routing topologies to forward information from sensing nodes in a peer-to-peer
fashion. Intermediate sensor nodes switch between sensing information and forwarding in-
formation received from peers. Thus, routing topologies can be hierarchically structured and
change frequently based on which sensor nodes are available and capable for forwarding at
runtime [11, 193, 235, 236, 273, 355, 396, 435].

In order to ease the cooperation of nodes, sensor nodes in a typical WSN are assumed to be
homogeneous, perform a dedicated sensing task and report to a single subscriber [11, 355, 397].
Contrastingly, a CPS in the context of the IoT is assumed to consist of interacting heterogeneous
devices, ranging from passive Radio-Frequency IDentification (RFID) tags to mobile devices or
body-sensor networks [27, 193, 273, 376, 377, 378, 379, 397, 431].

In a CPS, the heterogeneity of sensor nodes in terms of sensing and processing capabilities re-
quires new approaches to identify those sets of sensor nodes that can provide relevant data for
a certain task [52, 140, 340, 342, 392, 411]. In this regard, sensor nodes have to become self-
aware and able to describe their current capabilities and exchange this information with their
peers [102, 109, 110, 140, 411, 418].

The major challenge in any WSN or CPS is managing energy consumption for sensing, processing
and transmission as sensor nodes have limited power supply; many are battery-powered and
replacement is usually infrequent or not possible at all. Hence, all tasks are priced at runtime
based on their energy consumption and sensor nodes adapt their capabilities based on their
current power level. Location, power level and role of a sensor node change at runtime and can
result in inaccuracy and uncertainty of the provided data as the ambient context and situation
affect the capabilities of a sensor node [54, 56, 96, 99, 224, 271, 300, 422, 431, 435].

Consequently, research in the area of WSN and CPS focuses on energy-efficient sensing, pro-
cessing, and transmission. This encompasses compression but also distributing CEP logic in
a federation of sensors to minimize data transmission by aggregation, fusion and reason-
ing inside the network [45, 99, 152, 194, 224, 287, 343, 344, 354, 356, 376, 402]. Be-
sides minimizing energy consumption in general, certain approaches focus on explicitly trad-
ing off energy consumption with the sensitivity, precision, completeness and reliability of sen-
sors [79, 80, 201, 325, 386, 431].

Examples for push-based MOMs that address the specific characteristics of sensor nodes are Tiny-
DDS [65] or TinyCOPS [200]; examples for other frameworks and MOMs for sensor networks
can be found in [206, 344, 354, 392, 376].

2.2.2 Data Stream Management Systems

The intention of a Data Stream Management System (DSMS) is very similar to that of a CEP
engine: generate new information on a higher level of abstraction by processing continuous

18 2. Background

streams of incoming lower-level information. A DSMS applies continuous queries to streams
of homogeneous information provided at high volume from known data sources [30, 98, 278].
Examples are transaction logs of highly utilized web-based applications or financial ticks [10,
73, 186, 245, 262, 266, 409]. The challenges faced in a DSMS are similar to those in CEP, e.g.,
high-throughput and low-latency execution of continuous queries [231, 245, 323], or operator
placement in distributed setups [100, 351].

Work on DSMSs and CEP engines increasingly overlaps but has originated from different research
communities. DSMSs and CEP are introduced in different sections of this dissertation following
the distinction described in [91, 122, 124, 186]: DSMSs transform incoming streams of infor-
mation into new streams of information with a higher information density using sequences
of predefined operators such as averaging, grouping, and selections [122, 186]. In contrast,
CEP engines identify meaningful situations and publish this information as new notifications in
addition to the existing streams [122].

In regard to the contributions of this dissertation, the distinction between DSMS and CEP engines
is not of utmost importance as DSMSs also apply a push-based communication model and act as
both subscribers and publishers in a PS system. From the perspective of this dissertation, DSMSs
focus on a subset of tasks addressed by CEP.

In particular relevant for this dissertation is the fact that a DSMS explicitly trades off Quality of
Information (Qol) against costs when applying distribution and optimization strategies: Qol is
expressed in terms of accuracy, correctness, processing latency, and output rate! while processing
costs are quantified in terms of memory and power consumption [10, 186, 245, 246]. Surveys
and more detailed descriptions about DSMSs are provided in [29, 181, 185, 398].

2.2.3 Service-Oriented Architectures

Host-centric Service-oriented Architectures (SOAs) are the backbone of current backend soft-
ware systems. They implement business processes by relying on persistent data and stable
workflow definitions that identify the participating applications. SOA enables reuse and mod-
ularization by encapsulating functionalities and their data in services that can be only accessed
using implementation-independent interfaces. Services interact with each other by relying
on implementation-independent formats, e.g., using the Extensible Markup Language (XML)
[154, 155, 156, 169, 333, 407, 423].

Registry/
Repository

0 Register e Lookup
Service Service
Provider Consumer

WSDL
Figure 2.6.: Service consumer and service provider in a SOA.

KB Request

o-

interface

Figure 2.6 shows the steps of the request/reply-based interaction between the participants in a
SOA with service consumers pulling data from service providers: a service provider registers its

! Sampling rate of the DSMS.

2.2. Related Concepts and the Role of EBS 19

capabilities at a Registry. A service consumer requiring a certain service performs a lookup at
the Registry that returns the endpoint to reach the service provider. The service consumer then
sends a request directly to the interface of the service provider, e.g., described in the Web Services
Description Language (WSDL).

SOA had been intended to facilitate the integration of inter-organizational software systems; at
present, it is used mostly for intra-organizational application integration. Especially large com-
panies, such as Deutsche Post DHL, use SOA to integrate and optimize their historically grown
heterogeneous application landscape. From an architectural point of view, applying the concept
of a SOA reduces complexity and redundancy: the application landscape has to be restructured
according to functionality and data ownership as services are the basic entities within a SOA
and are organized in domains without overlap. From an infrastructure point of view, however,
services are usually provided and consumed by applications in practice. These applications pro-
vide and supply multiple services and have to be available according to their business criticality.
The desired level of availability is specified in Service Level Agreements (SLAs) in terms of Ser-
vice Level Objective (SLO) per application. These SLAs and SLOs have to be broken down and
enforced on a per-service level [67, 169, 205].

The WS-Agreement protocol is one example for approaches to automatically formalize and di-
rectly negotiate SLAs between a service provider and a service consumer. WS-Agreement has
been proposed by the Open Grid Forum (OGF) and is based on XML. It is favored in both
academic and industrial systems for service-based systems as extensions allow for automated
renegotiation of agreements as well as for multi-round negotiations. The WS-Agreement for Java
framework (WSAG4J)? provides a basic set of libraries to process SLAs in Java based on the
WS-Agreement specification [38, 227, 264, 267, 285, 332, 331, 380, 436].

While the scope of this dissertation is on push-based systems, modern enterprise software systems
increasingly combine push- and pull-based paradigms [18, 78, 170]. For example, services in a
SOA are invoked by components of an EBS that receive or detect meaningful events. Service
invocations, in turn, can result in meaningful changes to a system, triggering components of
an EBS to publish notifications about these events [17, 115, 307]. Push-based approaches are
already widely used to monitor the behavior of pull-based processes and architectures [13, 34,
97, 218, 309, 419, 433]. Proposed proprietary standards such as WS-Notification, and WS-
Eventing try to integrate push-based communication into SOA [17, 69, 187, 229, 416].

2.2.4 Cloud Computing

On the infrastructure level, the combination of several technological and economic concepts,
known as Cloud computing, has caused a disruption in the way large pull- and push-based appli-
cations are built, deployed and operated. The term Cloud computing does not refer to a single
technology or specific product; it refers to offering computing resources as a commodity over the
Internet on a pay-per-use basis [303]. Cloud computing resources are hosted in multiple data
centers allowing for instantaneous scaling and load-balancing of applications on a global scale
without the need for upfront investments [24, 25, 162, 164, 174, 184, 189, 232, 434].

In the terminology of Cloud computing, resources are rented out to tenants by providers. A
tenant uses the resources to provide functionality to users. In a public Cloud, multiple tenants
share the same physical resources provided by the provider. In a private Cloud, all resources are

2 http://wsag4j.sourceforge.net/site/index.html

20 2. Background

http://wsag4j.sourceforge.net/site/index.html

exclusively used by a single tenant. In a hybrid setup, sudden bursts in demand are compensated
for by temporarily adding public Cloud resources to the resources available in a private Cloud.

Different provisioning models can be distinguished for Cloud computing depending on the level
of abstraction that the resources are accessible to tenants: Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS); on-premise and MSH are shown
in Figure 2.7 as alternative models [174, 184, 190, 303].

Infrastructure- Platform- Software-
as-a-Service as-a-Service as-a-Service

| | | | | | | |:| Level of abstraction

On-premise laaS PaaS SaaS
& MSH

Software

Middleware

Physical

Infrastructure |
resources |

|:| Inaccessible to tenant

Figure 2.7.: Resource provisioning models for Cloud computing.

On-premise and Managed Service Hosting (MSH). The whole technology stack is controlled by
the tenant. Physical servers are owned by a single tenant (on-premise) or rented exclusively
to it (MSH). These are common approaches that require upfront investment and include
the risk of ill-sized resource planning, i.e., under- or overprovisioning.

Infrastructure-as-a-Service (laaS). Tenants request Virtual Machine (VM) instances hosted on a
shared resource pool. The structure, location and usage of the resource pool are transparent
to the tenant. Thus, provisioning, scheduling and load-balancing can be performed by the
provider. Pricing is based on the number, configuration and uptime of the active instances.

Platform-as-a-Service (PaaS). Middleware functionality, such as a specific database management
system (DBMS), is provided through an API. The implementation and detailed configura-
tion of the underlying infrastructure is inaccessible to the tenant. The provider is responsi-
ble for automatically scaling the underlying resources to the utilization of the middleware.

Software-as-a-Service (SaaS). An application is provided to tenants to be configured and inte-
grated into their application landscape. SaaS mostly aims directly at end-users by providing
high-level user-experience via Rich Internet Applications (RIA). The provider is responsible
for scaling all underlying resources. Pricing is based on usage or subscription.

Comparing Cloud computing to Utility computing and Grid computing shows that Cloud comput-
ing is the synthesis of several preceding concepts and technologies. All concepts aim at delivering
abstracted computing resources to multiple tenants [164]. While Utility computing describes the
general approach, the other concepts focus on different ways of realization [290, 364]. The con-
cept of Grid computing emerged in the 1990s and aims at delivering abstracted computational
resources drawn from a distributed inter-organizational resource pool [184]. Each participating
organization keeps controlling the resources committed to the pool while being entitled to use
the whole Grid. The abstraction of the resource pool and job scheduling is done using a mul-
tilayered software fabric. While multiple tenants are served by a Cloud provider at the same
time, tenants queue to use the whole Grid one at a time. Furthermore, a Grid consists of re-
sources owned and operated by different organizations while a Cloud is provided by a single

2.2. Related Concepts and the Role of EBS 21

provider. On the technological level, Cloud resources are provided using a standardized inter-
face over a network while Grids require running the Grid fabric software locally on each tenant’s
infrastructure [163].

Cloud computing is the result of five technological and five economic enablers reinforcing each
other as shown in Figure 2.8.

Virtualization

Service-oriented

Grid Computing Architectures

Technology

Rich Internet
Applications

Broad network
coverage

Enablers
Open Source

Multi-tenancy Software

Standardization Micropayment

Economy of Scale

Figure 2.8.: Key enablers for Cloud computing as described in [174].

Virtualization and Grid computing form the fabric that enables resource pooling and rapid elastic-
ity [164, 184]. SOA reshaped software architectures to run on virtualized distributed resources
efficiently as losely-coupled, component-based services [169, 303]. Economy of scale, standard-
ization and open source software make Cloud services cost-effective by rewarding scale, reducing
complexity and minimizing license fees as well as lock-in effects [103, 189, 338]. RIA and broad
network coverage simplify the delivery of computational functionality as on-demand self-services.
Micropayment permits effectively charging the usage of resources. Multi-tenancy of Cloud re-
sources maximizes both utilization and risk-reduction for the provider [33].

Cloud resources conveniently available on demand have boosted analytical applications, such as
Hadoop, for processing and storing data on a large scale. Operating pull- and push-based soft-
ware architectures for timely dissemination of data on those resources, however, comes literally
at a cost: traffic in and out of data centers is charged for while the virtualization of resources
limits vertical integration for performance tuning. In addition, scheduling, load-balancing and
maintenance operations are transparent to the tenant and can affect the completeness and la-
tency that notifications are processed with [173, 174, 197].

2.2.5 Systems-of-Systems and the Vision of Emergent Software Systems

Advances in software engineering and programming language design enable software compo-
nents to become increasingly context-aware and self-adaptive to react autonomously to changes
in their context and state [2, 3, 60, 61, 63, 68, 71, 114, 136, 221, 222, 220, 353].

In the IoT, self-adaptive software systems utilize the fine-granular information provided by WSNs
and a CPS to become self-aware [301]. The push-based nature of an EBS allows them not
only to be informed about changes in their physical or digital environment, but using CEP, they

22 2. Background

become reactive. The resulting applications are distributed and form a federated System-of-
Systems (SoS) with a high degree of heterogeneity and dynamics. Participants join or leave at
runtime depending on their state or the situation they are in. Thus, the notion of context is
essential to IoT applications as it captures the effect both state and situation of a participant have
on its requirements and capabilities at runtime.

Self-aware, self-organizing and reactive software systems fuel the vision of proactive software
systems with emergent behavior [170, 222]. Emergence enables SoS to autonomously adapt to
changing situations and expose new functionality that has not been explicitly designed into them
beforehand [179, 217]. Emergent behavior refers to the successful combination of uncoordinated
interactions by the different autonomous entities making up a SoS. Emergence materializes if
the interactions inside a system create an advantage for the system within a given context. With
these new emergent abilities a system can now pursue objectives that would be too complex
for a single entity to handle [63]. In that, emergent systems are not only state-preserving (i.e.
self-organizing and adaptive) but proactive as they are able to actively utilize changes in their
environment to their own benefit [178]. Consequently, the concept of emergence has long since
been subject to multiple areas of research spanning from biology to philosophy to mechanical
engineering [178, 399]; in computer science work on autonomous systems, organic computing,
and SoS from the military domain address emergence [59, 63, 130, 228, 426].

In such federated and autonomous systems, decisions are based on local knowledge and informa-
tion exchanged between participants. The quality of this information is crucial for participants
to make correct decisions and coordinate with each other [71, 127, 136].

2.3 Summary

In this chapter, we have introduced push- and pull-based concepts; Qol is crucial in all of them.
This dissertation focuses on push-based Event-based Systems (EBSs) that use Publish/Subscribe
(PS) for the efficient dissemination of notifications about events and Complex Event Processing
(CEP) to generate new knowledge about situations.

Wireless Sensor Networks (WSNs) and Cyber-physical Systems (CPSs) are concepts directly ap-
plying PS and CEP while facing challenges such as specialization of sensor nodes and resource
constraints. The trade-offs between sensing, processing and energy-consumption result in dy-
namically changing capabilities of sensor nodes at runtime, affecting the precision and reliability
of the published information.

We have discussed Data Stream Management Systems (DSMSs) as directly related to CEP. Both
concepts deduce new knowledge by querying streams of notifications. They have to deal with
imprecise, incorrect or incomplete information as well as incorrect query definitions.

Widening the scope to include pull-based approaches fusing with push-based concepts, we have
briefly discussed Service-oriented Architectures (SOAs) as backbones of today’s enterprise soft-
ware systems and technological enablers of Cloud computing. We have discussed the notion of
Cloud computing with its technological as well as economic enablers regarding the implications
for deploying and operating reactive applications. Finally, we have briefly touched upon the
vision of System-of-Systems (SoS), which describes federations of self-aware, self-organizing,
and reactive autonomous applications that leverage the concept of emergence to realize new
functionalities without requiring up-front design.

2.3. Summary 23

24

2. Background

3 A Generic Model to Express Quality of
Information Requirements in EBS

People are extremely bad at specifying what they really need.

JoHN WILKES (2015)

Supporting Quality of Information (Qol) in an Event-based System (EBS) means to satisfy re-
quirements of subscribers about data being produced by publishers and processed by a Message-
oriented Middleware (MOM) [42, 85, 213]. This requires the MOM to match the requirements
of subscribers to the current state of the system and adapt both publishers and itself to satisfy
the requirements at runtime if necessary [170, 175, 177].

In this chapter, we present the model of expectations, capabilities, and feedback to support require-
ments about Qol in an EBS. As illustrated in Figure 3.1, subscribers express their requirements
about generic properties of notifications as expectations while publishers and the MOM define
their support for these generic properties as capabilities. Expectations and capabilities depend on
the context and state of subscribers, publishers, and the MOM at runtime. At runtime, the MOM
matches expectations to capabilities, decides on suitable adaptations to satisfy expectations, and
gives feedback to both subscribers and publishers. We will discuss the algorithms for these de-
cision processes in detail in Chapter 4 while we focus on describing the different components of
our model and their semantics in this chapter.

2
)
1
Generic
Property
3
» Capabilities

Figure 3.1.: The model of expectations, capabilities and feedback.

Subscribers

4
Message-oriented
s Middleware (MOM)

runtime

Publishers

First, we discuss the relationship between Qol and related concepts such as Quality of Service
(Qo0S), Quality of Context (QoC), or Quality of Experience (QoE) in Section 3.2. We revise a
spectrum of properties that characterize information in addition to its content or type in an EBS
and the Internet of Things (IoT). We identify common features in the representation of these
characteristics to derive a generic property format for defining expectations and capabilities.

Second, we introduce expectations to express requirements subscribers have about Qol in an EBS
at runtime in Section 3.3. We give special attention to the effect that context changes have on

25

these requirements and their lifecycle. We introduce the notion of fidelity to quantify the degree
to which the system satisfies Qol requirements from the perspective of a single subscriber.

Third, we introduce capabilities to expose each participant’s current state and potential spectrum
of adaptation to the MOM in Section 3.4. The MOM uses capabilities to determine the support
for properties and assess potential benefits to be gained from adaptation. As capabilities depend
on a participant’s context and state at runtime, we allow participants to price-in their current
situation and context into the costs for adaptation.

Fourth, we describe the types of feedback the MOM provides to participants at runtime in Sec-
tion 3.5. Feedback is a key component of our approach as it enables self-adaptation. Participants
use it to revise their expectations or capabilities and trigger renegotiation at runtime.

3.1 Quality of Information and Related Concepts

Describing and evaluating the usability of a system at runtime is approached from various per-
spectives using different concepts all related to the abstract notion of runtime quality. Quality
of Device (QoD), Quality of Service (QoS), Quality of Information (QoD?!, Quality of Experi-
ence (QoE), and Quality of Context (QoC) all focus on quantifying the different characteristics
of a system in order to derive a degree of suitability [226]. Thereby, they try to bridge the
gap between objectively measuring system characteristics and deriving subjective application-
specific evaluations. Each concept focuses on different aspects of runtime quality depending
on the area of research each concept has originated from: the quality perceived by users
in the area of Human-centered Computing (HCC) and Human Computer Interaction (HCI)
is central to QoE [74, 226, 234], the performance of devices and entities to QoD [75] and
QoS [21, 23, 28, 82, 402], while Qol focuses on the suitability of information generated and
delivered by the system in general [55, 421]. As a subset of Qol for the domains of Ambi-
ent Intelligence (AmI), HCC, and HCI, QoC evaluates the suitability of a given context model
for identifying a specific context and situation by relying on a limited set of Qol characteris-
tics [6, 75, 324]; QoE captures the overall satisfaction perceived by a user [159, 234].

In this section, we discuss these different concepts and their relationships from the perspective
of Qol. Our goal is to establish a nomenclature to be used throughout the remainder of this
dissertation. We aim at separating the objectively measurable domain- and application-agnostic
properties of a system and their dependencies from subjective application-specific aggregated
assessments of these characteristics. Requirements about those objectively measured properties
become comparable across different subscribers and should be subject to mechanisms enforc-
ing Qol requirements in a generic way; application-specific assessments, however, should be
encapsulated within the business logic of each subscriber and not exposed to the MOM.

As shown in Figure 3.2, we see runtime quality as an area of conflict between subjective gain on
a high level of abstraction that results from having information of suitable quality available (top,
red) and objectively measureable capabilities and costs for providing this information on a lower
level of abstraction (bottom, green). In data-centric reactive software systems like EBSs, Qol is
crucial as it focuses on the information that is being produced, processed and exploited [21].
From this perspective, all other runtime quality concepts can be centered around Qol depending
on whether they impact it or rely on it [226]. We traverse the graph of concepts shown in
Figure 3.2 bottom-up to discuss the relationships.

! Sometimes confusingly referred to as Quality of Data, resulting in the ambiguous abbreviation QoD [425].

26 3. A Generic Model to Express Quality of Information Requirements in EBS

Level of

high
Preferences
§§§§§§ ¥ User
/ QoE
C
Controlling
Processing
Transport
QoS |
Production
QoD
low
Objective
—» Affects = 20000000 ————= » Valuates

Figure 3.2.: Different concepts related to the notion of runtime quality and their relationships
(affecting or valuating); levels of abstraction are based on [21].

Quality of Device (QoD). On the level of data production, QoD describes the performance and
capabilities of a specific device as shown in the lower part of Figure 3.2. This includes physical
devices, such as sensors, as well as software components that act as publishers. For example,
a camera sensor is part of an intrusion detection system and provides pictures with a certain
resolution at a given sampling rate; a Complex Event Processing (CEP) engine fuses this data to
publish notifications once an intruder has been detected using different fusion mechanisms that
result in more or less false-positives and false-negatives denoted as confidence of detection [54,
224]. Other examples: a temperature sensor measures a room’s temperature with 98% precision
while another temperature sensor has a precision of 85% [75]; a Global Positioning System
(GPS) sensor can have a certain drift when measuring its location, resulting in biased location
information [293, 324, 340].

Quality of Service (QoS). The properties exemplarily discussed here for QoD are often sub-
sumed under the broader notion of QoS. QoS describes the overall performance and ca-
pabilities of a system that consists of multiple entities. QoS spans across several levels of
abstraction and includes the communication and interaction between entities, e.g., by con-
sidering network links [226], and consequently addresses broader aspects of systems such as
scalability, availability and dependability [207]. In contrast to QoD properties, QoS proper-
ties include aspects of lower-level transportation and processing such as compression, band-
width, latency, jitter, loss, and security [22, 56, 210, 288, 354]. For EBS, additional QoS

3.1. Quality of Information and Related Concepts 27

properties like order, completeness®, and delivery semantics are defined for sequences of notifi-
cations [42, 47, 95, 125, 122, 208, 210, 288, 318].

QoD influences QoS as the capabilities of the system depend on the capabilities of the physical
or virtual devices making up the system [75, 226]. We follow [75] in discussing QoD and QoS
separately as this maps to the tripartition of an EBS, which consists of publishers, subscribers,
and MOM with different requirements and capabilities regarding runtime quality [41, 42] as
discussed in Section 2.1.1.

Quality of Information (QoI). While QoD and QoS are objectively measured [226, 263, 291],
the concept of Qol focuses on whether information is "fit for use" for a specific application,
task or user [55, 75, 224, 226, 250]. As this depends on the individual situation and pur-
pose of each subscriber, the concept of Qol is split into two parts: objectively measureable QoI
properties that describe the inherent quality of an information item and application-specific
Value of Information (Vol) properties that quantify the subjective utility of those Qol properties
for the given application, situation and context [57]. For example, Qol properties commonly
referred to are accuracy, freshness, precision, spatial and temporal resolution, confidence, or com-
pleteness® [31, 37, 244, 250, 324]. Qol properties are inherent to a single notification or a
sequence of notifications.

Whether these properties of a specific notification are distinctive enough to satisfy the individual
requirements of a dedicated consumer is evaluated by Vol functions like integrity, coherence,
currency, validity, relevance, or understandability that reflect preferences of a subscriber [37,
244, 271, 291, 366]. QoD and QoS influence certain Qol properties. For example, the drift of a
GPS sensor, its sampling rate and the latency of the network link have an impact on the accuracy
of notifications about a user’s position in terms of spatial and temporal resolution: location based
services could assume an incorrect or outdated position of the user if notifications are received
late, with insufficient resolution or biased position data [293, 324, 340, 374].

Quality of Context (QoC) and Quality of Experience (QoE). The dependency on a specific context
or a single user’s preferences is more evident for QoC and QoE as these concepts are connoted
with direct human involvement in the area of AmlI, HCI, and HCC [74]. QoC approaches runtime
quality from the domain of AmI and focuses on correctly deriving the current physical and even
emotional context of a user to react on it [64, 339]. Thus, QoC relies heavily on the quality of
the context model used to describe different user contexts as well as on Qol of data supplied
by sensors to correctly identify the context a user is currently in [75, 226, 340]. Most models
and approaches dealing with QoC assess subjectively whether data is reliable, significant or con-
sistent enough based on application-specific accumulation of objective properties like precision,
accuracy, sampling rate, and location. Especially spatial or temporal resolution is an impor-
tant factor when determining the fitness of a context model [291, 292, 293, 324]. QoE has an
even wider scope as it embraces aspects of QoC and QoS, focusing not only on the suitability
of data provided by a service but also on how the performance of a service is perceived by a
user [74, 159, 234, 425].

3.2 Properties: the Basic Building Blocks

Analyzing the relationships between the different concepts addressing runtime quality shows
that Qol is essential for tasks that require data of sufficient quality for reasoning and inference.

Percentage of published notifications that are delivered to an interested subscriber by the MOM [42, 95, 208].

3 The number of attributes in a single notification compared to the reference number of attributes [5, 6, 182].

28 3. A Generic Model to Express Quality of Information Requirements in EBS

Although the final assessment whether some information is of sufficient quality or not is based on
the individual utility function of a subscriber, it depends on properties being explicitly supported
by the system on lower levels of abstraction [159, 234]. For example, highly aggregated domain-
specific Vol functions like currency or validity for QoC accumulate objective lower-level properties
such as the overall freshness (Qol) of a notification, which depends on the latency (QoS) of the
system and the sampling rate (QoD) of a data source [6, 271].

Support for a property implies not only that requirements about this property can be defined
or decomposed from requirements about other properties. Rather it entails the ability of the
MOM to be aware of the state of this property and to manipulate it with suitable actions. In an
EBS, some properties can be determined and manipulated only by publishers (e.g., precision)
while others depend on the capabilities of the MOM. These dependencies have to be taken
into account by the system when offering explicit support for certain properties. For example, a
system that cannot adapt publishers cannot actively enforce requirements about precision other
than by discarding notifications with insufficient precision.

From the perspective of a subscriber, subjective assessments of information quality at some point
require a decomposition and mapping to requirements about those properties that are explicitly
supported by the system [381]. Properties describe objectively measurable system characteristics
on different levels of abstraction, here denoted by QoD, QoS, and Qol in Figure 3.3 (far left).

Level of

abstraction Level Of.
accumulation
! I | .
1 1 high
| |
| |
Vol ! !
| |
| |
|
Qol ! i
|
| |
QoS i !
|
| |
| |
QoD | 1 low
<« General purpose —— Expectations — Domain-specific —p

- Subjectively determined by subscriber D Objectively supported by system

Figure 3.3.: Schematic view on the levels of abstraction that requirements about properties are
provided at in general-purpose (left) and domain-specific systems (right).

Providing generic support for Qol in an EBS requires a flexible trade-off between the level of
abstraction that properties are exposed on to subscribers and the degree of accumulation that
is transparently performed in the system [35]. General-purpose systems as shown in Fig-
ure 3.3 (left) do not make assumptions about the connected applications but explicitly sup-
port objective low-level properties. They require subscribers to break down and map their
preferences to the exposed lower-level properties for QoS, as these are the properties actively
controlled by the system. Examples are IndiQoS [85], Adamant [213], Data Distribution Ser-
vice (DDS) [197, 269, 334, 345], or Harmony [428] for bandwidth or latency. However, this lim-

3.2. Properties: the Basic Building Blocks 29

its the support for information quality as some Qol properties cannot be directly inferred from
lower-level properties alone [21]. At the other end of the spectrum, domain-specific systems
(c.f., Figure 3.3, right) allow for requirements about pre-defined Vol properties like significance.
They already aggregate and accumulate lower-level properties in a domain-specific way while
hiding lower-level properties to the subscriber; the definitions and relationships of properties are
predefined in the system, limiting support for applications from other domains. An example is
the QoC extension [293] to the COSINE system [243].

We enable an EBS to decide on the level of abstraction that support for Qol is provided on at
runtime as illustrated by Figure 3.3 (middle). As part of our approach, we model properties in a
uniform way as shown in Figure 3.4, separating the definition of a property from its relationships
to other properties and the actions that indicate the directions it can be manipulated.

Subscriber
i Generic property
4 |
Definition J‘ --------- Generic property («— Relationships -}
T i-» Generic property
Capability
"""""" * Has
Publisher & MOM —* Defined over/for

Figure 3.4.: Modular representation of a generic property: separating the definition from rela-
tionships and actions enables modularization, reuse, and adaptation.

A uniform representation for generic properties makes requirements and capabilities comparable;
using explicitly modeled relationships between properties, we can model higher-level generic
properties by defining dependencies to already defined properties.

We associate each generic property with at least one action that indicates whether the current
value of a property can be increased or decreased from the perspective of the MOM. An ac-
tion does not describe explicitly how the generic property is manipulated but leaves this to the
participant executing the manipulation. This separation aids modularization, reusability and
extensibility as we abstract from the implementation and design of a participant: we can rely
on a small set of already defined lower-level properties when providing support for different
higher-level properties: instead of hard-wiring the manipulation of higher-level properties that
implicitly entails manipulating multiple lower-level properties, we orchestrate the manipulation
of lower-level properties that result in the desired change in the higher-level property.

This modular design is inspired by the concept of service-encapsulation and reuse in Service-
oriented Architecture (SOA) [169]. In order to apply this approach to EBS, we a) identify
objectively measureable properties over which subscribers can define comparable Qol require-
ments; b) deduce properties that influence those Qol properties relevant to subscribers in an
EBS; and c) identify the type of participant supporting each property, i.e., MOM, publishers or
both.

30 3. A Generic Model to Express Quality of Information Requirements in EBS

In literature, a multitude of different properties is proposed and discussed in context of the
different concepts that all address runtime quality (c.f., Section 3.1). Unfortunately, they are
overlapping and sometimes contradicting in their semantics, granularity, or representation as the
different concepts are blending into each other.

We derive a generic format to represent properties by successively applying five filters to the
properties associated with runtime quality in literature as shown in Figure 3.5.

Quality-related
characteristics

Map to QoD, QoS, Qol, Vol

EBS | & identify
WSN QoS o Label
| Relation-
hips
Qol ship
SOA
Generic
format
Cloud| QoC
| Actions
Aml QoE | e Generalize
e Exclude subjective
Vol and keep objectively
DSMS measureable Qol
properties & contributing
properties

Concept |

o Eliminate

Redundancies

Figure 3.5.: Steps and filters applied to properties discussed in literature to derive a generic prop-
erty format to express the basic building blocks of our approach.

Step 1 Eliminate synonyms. Ambiguous and synonym terms used to describe the same seman-
tics are harmonized. For example, both tunability [366] and ease of manipulation [37] are
used to describe the effort necessary to modify information, while both confidence of detec-
tion [226] and probability of correctness [261] measure how dependable the information is,
i.e., the conviction of the publisher that the described event has actually happened; delay
and latency are used interchangeably to describe the time elapsed between sending data at
one entity and receiving it at another — we use the terms ease of manipulation, confidence
of detection and latency. In general, we stick to the terms used by the majority of papers.

Step 2 Map to QoD, QoS, Qol, or VoI to identify dependencies and ownership. Classifying properties
into the levels of abstraction and accumulation discussed earlier helps to identify depen-
dencies between properties and the types of participants that determine and control those
properties. For example, resolution (QoD) is manipulated by publishers.

Step 3 Reduce set to objectively measurable Qol properties. Using a top-down approach, we iden-
tify objectively measureable properties that are used by subscribers to describe data quality
in EBS in a first step and filter out subjective Vol properties. In a second step, we identify
the contributing QoS and QoD properties that influence each identified Qol property. They
do not necessarily have to be exposed to the subscriber but they require publishers and
MOM to model capabilities about them.

3.2. Properties: the Basic Building Blocks 31

Step 4 Label. The remaining properties are labeled by the data types and scales of measurement
they are represented by in literature [400].

Step 5 Generalize representations. We derive a generalized representation to model requirements
about and support for Qol, QoS, and QoD properties.

The following Section 3.2.1 describes the results of our analysis while Section 3.2.2 presents the
derived generic format in more detail. In particular we introduce the different types of actions
we associate with a generic property, and discuss the types of relationships between properties
and approaches to represent their mapping.

3.2.1 Categorization of Properties

In the remainder of this section, we identify the common features of properties about runtime
quality and generalize them into a generic format. Throughout this work, we use this generic
representation to define requirements and capabilities. We revise the properties discussed in
more than 70 peer-reviewed publications that address runtime quality issues in EBSs, Wireless
Sensor Networks (WSNs), Cyber-physical Systems (CPSs), Data Stream Management Systems
(DSMSs), SOAs and Cloud computing as well as in AmI, HCC and HCI. We started with surveys
as well as papers with high citation counts that explicitly address QoD, QoS, Qol, QoC, or QoE
and proceeded with cross-references.

We map the surveyed properties to the four levels of abstraction QoD, QoS, Qol, and VoI we have
discussed in Section 3.1. Condensing the different concepts into these four categories allows
us to associate each concept with the type of participant that determines and manipulates each
class of properties in an EBS: publishers control properties associated with QoD, while the MOM
controls most properties associated with QoS. Properties associated with Qol depend either
directly on publishers, the MOM, or on a cooperation between both. Only the subscriber can
determine properties classified as Vol. Here, Vol encompasses properties and functions from the
areas of QoC and QoE as these are application- or domain-specific accumulations. A detailed list
of the reviewed references and their mapping to the discussed properties can be found in the
Appendix in Table A.1 (QoD), Table A.2 (QoS), Table A.3 (Qol), and Table A.4 (VoI).

The results of both mapping properties to the different categories and identifying dependencies
are shown in Figure 3.6 as stacked swim lanes. Each swim lane comprises the properties mapped
to a specific category. The swim lanes are stacked to show increasing levels of abstraction. Asso-
ciated properties are shown as blocks while arrows between them denote relationships. Please
note that we do not show every possible relationship between properties but concentrate on the
most obvious ones for clarity. Vol properties marked red are out of scope of this dissertation while
properties marked green or gray are in-scope. Properties marked gray denote properties that in-
fluence Qol properties and have to be modeled for publishers and MOM to define capabilities but
are subordinate from the perspective of a subscriber.

At the bottom of Figure 3.6, properties associated with QoD are controlled by publishers. Most
of these properties are influencing Qol properties but do not have to be exposed to the subscriber
as long as the depending Qol properties are exposed. QoS properties are controlled by the MOM.
As for most of the QoD properties, they do not necessarily have to be exposed to the subscribers
as long as the depending Qol properties are exposed. The upmost green swim lane encapsu-
lates those Qol properties that are neither device- nor system specific but describe quality-related
properties of notifications and the data enclosed therein. Qol properties, however, depend on

32 3. A Generic Model to Express Quality of Information Requirements in EBS

Appropriate Amount Believability Ease of Manipulation Understandability Effort
g Accessibility Objectivity Reliability Interpretability Reusability
Validity Value-added Integrity Currency Volatility Relevance

Trustworthiness

Accuracy ‘ Provenance }-———{ Freshness ‘ ‘ Receiving Rate ‘
]

‘ Order ‘ ’ Delivery Guarantees ‘ Bandwidth ——{ Latency ‘ ‘ Alternatives ‘

Qol

’ Priority ‘ ’ Persistence ‘ —>{ Notification Size ’ Jitter ‘ ‘ Completeness ‘
*
’ Security ‘ ’ Availability ‘ ’ Compression F Qos
’ Drift ‘ Sensitivity ‘ ’ Distance Resolution —,Sanling Rate

Confidence
e QoD
—

Ests

I

- Subjectively determined by subscriber |:| Objectively supported by system I:] Objective but subordinate — Impact

Figure 3.6.: Mapping quality-related properties commonly referred to in literature to the objec-
tive concepts of QoD, QoS, Qol (in scope, green) and the subjective concept of Vol
(out of scope, red). For improved readability, not all relationships are shown.

QoS or QoD properties controlled by publishers or the MOM as shown by various relationships
across level of abstraction. The red swim lane shown on top of Figure 3.6 contains all properties
associated with Vol. They are out of scope of this dissertation as they are subjective interpreta-
tions and accumulations of the objective lower-level properties and require a specific application
scenario to be valid. They are individually determined by each subscriber and do not have to be
exposed by the system except for domain-specific solutions and deployments.

Analyzing the properties discussed in literature and eliminating redundant terms results in a
total but not exhaustive set of 47 properties. In the remainder of this section, we discuss the
semantics of each property as well as their representation. We describe each property, starting
bottom-up with properties associated with QoD and controlled by the publisher. We discuss
explicit dependencies and ambiguous use of names as we move up the levels of abstraction to
the subjective Vol functions shown in red on top of Figure 3.6.

Please note that some properties can be defined on different levels of abstraction. Completeness,
for example, can be defined for packages on the transport protocol level (QoS), or for notifica-
tions (Qol) on a higher level of abstraction; compression can be associated with a device (QoD) as
well as with the system (QoS). When not explicitly stated otherwise, we define each property on
the highest possible level of abstraction as our approach aims at providing support for properties
that are used by subscribers to define Qol. From the perspective of a subscriber, properties de-
fined on lower levels of abstraction become subordinate to those properties defined on a higher
level of abstraction that is of greater interest to the subscriber.

3.2. Properties: the Basic Building Blocks 33

Quality of Device (QoD) Properties

Properties associated with QoD describe characteristics of a publisher, which could be a physical
or digital device. They are determined by the publisher and depend on the configuration as well
as on the capabilities of each instance. Some properties can be changed at runtime but require
the cooperation of the publisher if the MOM wants them to change.

Cost
Sensing events, fusing lower-level data for reasoning, purging and finally publishing no-
tifications comes at a cost for publishers, specified by this property [37]. Costs can be
based on energy consumption [54, 354, 356, 386], network costs [173] or total costs for
invoking contributing services or applying different techniques, e.g., for compression or
fusion [46, 356, 384]. Represented by cost per unit in either abstract [6, 46, 143, 356] or
domain-specific form such as energy-consumption per notification [354].

Distance
For sensors observing entities in the physical world, this property expresses how far away
the sensor is from the entity it is monitoring or the event it has detected. Represented by
a distance metric such as meters [75]. Ideally, the distance of the sensor to the monitored
object is as small as possible.

Drift
Denotes a constant or varying factor that measurements become biased by over a certain
amount of time [108, 418], represented by its magnitude [422].

Location
Describes where the publisher is located and can refer to real-world or abstract locations
in absolute or relative terms [109, 208]. Representation can be pair-wise (e.g., GPS
coordinates) or key-value-pairs (e.g., latitude and longitude or degrees, minutes, sec-
onds) [55, 62]. In an EBS, location information is considered to be part of the content
of a message and not quality-related metadata [22].

Resolution

The granularity of information in terms of time, space, or domain-specific parameters [57,
75, 109, 418]. Temporal resolution refers to the period of time that a measurement is
associated with (e.g., a measurement duration of 10 minutes vs. 1 second) while spatial
resolution denotes the physical area that a measurement is associated with (e.g., a sensing
area of 2 square meter vs. 10 square miles). The resolution of published data depends not
only on the capabilities of the publisher but also on the costs for sensing and processing; it
has a significant impact on the size of a notification [57] Represented by domain-specific
metrics, e.g., 0.5 megapixels for images, or National Image Interpretability Rating Scales
(NIIRS) score of 1 for the interpretability of aerial photographs [352]. In general, a higher
level of detail is regarded as positive. In regard to temporal and spatial resolution, this
might result in a small value that describes a maximum closeness in terms of time or space;
in terms of image resolution, a high value is usually considered to be better than a low
value as this represents a higher level of detail that can be captured on the picture.

Sampling rate
The frequency a sensor’s measurements are published with as notifications [62, 172, 340,
415]. Represented by the number of notifications per time unit.

34 3. A Generic Model to Express Quality of Information Requirements in EBS

Sensitivity

Describes how sensitive a sensor reacts to a change in the value that it observes. Please
note that resolution and sensitivity might correlate but are not interdependent: while a
high sensitivity might result in a higher resolution, the former describes the maximum
granularity of the input data of a sensor while the latter describes the granularity of the
published data. The sensitivity of a publisher depends on its capabilities but also on the
costs for sensing. Sensitivity is represented by the ratio between the observed change
in a value and the change actually taking place, e.g., valuey.s,.. = 200, value pgngeq =
100, valueg, . = 110 = 90/100 = 90% sensitivity [386, 418]. A high sensitivity indicates
that small magnitudes of change can be observed.

Quality of Service (QoS) Properties

Properties associated with QoS describe characteristics of the system and include aspects of trans-
portation and interaction between entities over network links. QoS properties are primarily
determined by the MOM and can be manipulated to a certain degree at runtime.

Alternatives

Defines the number of different data sources that must provide information with the
same set of quality-related properties. In collaborative environments, a certain number
of alternative sensors is crucial to fulfill a sensing task or to improve the sensing re-
sults [35, 66, 109, 339, 386, 415]; users may also directly require a number of data
sources that all satisfy certain quality criteria [340]. Using data from multiple sources
is mandatory in general to double check events (e.g., to verify the sighting of a certain
RFID tag by receiving a sighting event from at least two separate readers) and for fault tol-
erance [41]. Alternatives can be represented by an absolute number or by the percentage
of data sources that should be selected out of all available data sources.

Availability
Quantifies the degree to which a system or service is working correctly over time according
to the requirements. For pull-based systems, this can be the percentage of times a service
responds within a given time over a given period, e.g., an availability of 0.9305 or 93%
[357]. For push-based systems, the availability of a publisher could be defined as the
percentage of time that the publisher provides notifications at the given rate [271].

Bandwidth
Low-level metric applied on the transport protocol level [263]. Capacity of a communica-
tion link between entities. Represented by the amount of traffic being processed per time
unit as bits per second or number of homogenous messages per second [159]. Sometimes
also expressed as the utilization of the available bandwidth in percentage [122].

Completeness
Describes the degree to which all necessary parts of the information are available for the
subscriber [182, 271]. For the area of EBS, completeness has two complementary aspects:
the completeness of a single notification and the completeness of a sequence of notifica-
tions. For a single notification, completeness is represented by the ratio of the number
of attributes contained in the notification compared to the total number of attributes of
a reference type [254, 271]; these attributes can also be weighted to reflect varying im-
portance [291]. For a sequence of notifications, completeness quantifies the percentage of

3.2. Properties: the Basic Building Blocks 35

notifications that have been dropped by the MOM, i.e., notifications that have been pub-
lished but not delivered to a matching subscriber in a given period of time [42, 95, 208].
Completeness is represented as a fraction in both cases [6, 292].

Compression

Denotes whether a notification has been altered to reduce the amount of data to process
or transmit. Compression refers to removing parts of the data’s representation that are
deemed expendable or to aggregating the content of different data items (e.g., averaging,
summarizing). There are lossy and lossless types of compression. Lossless compression
(e.g., GZIP) is reversible as it allows a complete reconstruction of the original granularity of
the data while lossy compression is nonreversible [356]. Compression can be represented
either as a binary value (compression available/applied), the number of data items being
merged, or by the degree to which the size of a notification has been reduced or by a set of
labels that denote the applied compression mechanisms ranked by their efficiency [263].

Delivery guarantees

Jitter

Subscribers can define how often they want to receive a single notification that is published
by a publisher and processed by the MOM [208]. Depending on the negotiated guarantee,
the MOM has to ensure that either no message is lost or that no duplicates are gener-
ated. Possible values are best effort (a notification might not be received at all or multiple
instances could be received), at least once (guaranteed delivery of either one or more in-
stances of the same notification), at most once (either none or exactly one instance of a
notification is processed) or exactly once, where the last one is the most challenging one to
guarantee as it combines the semantics of at least once and at most once [42, 471].

Low-level metric applied on the transport protocol level [263]. Quantifies the variation
in the delay of packages being processed on the network. Represented by the standard
deviation of the latency of network packets [134, 210]. As notifications are split up into
several packages on the transport protocol level, a high jitter can increase the latency of
the notification as transport protocols have to re-send those parts of the notification that
are wrongly assumed to be lost before the notification can be reassembled and processed
by the MOM or subscribers.

Latency

Loss

Quantifies the time elapsed between two actions. Here it denotes the time (minutes, sec-
onds, milliseconds, nanoseconds) between sending a notification at one entity and receiv-
ing it at another. From the perspective of a subscriber, latency denotes end-to-end latency,
i.e., the overall time elapsed between the notification is sent by the publisher and received
by the subscriber. From the perspective of the MOM, latency is the sum of publication la-
tency and processing latency. Processing latency is affected by jitter and loss [210] while
both publication and processing latency are also affected by the overall performance of
publisher and MOM. Thus, applying compression to notifications can also result in higher
latency as compression is resource-intensive or notifications are not forwarded at all as they
are aggregated [356].

Low-level metric applied on the transport protocol level [263]. Refers to the percentage
of packages being lost on the transport protocol level, forcing a re-submit when using
dedicated transport protocols [210]. As with jitter, a high degree of loss can increase the

36

3. A Generic Model to Express Quality of Information Requirements in EBS

latency of the notification as notifications are split up into several packages on the transport
protocol level and all have to be received before the notification can be reassembled and
processed.

Notification size
The size of a single notification in terms of bytes or attributes. The size of a notification is
affected by the kind of compression used as well as the resolution of the information and
thus influences the consumed bandwidth [31, 85]. The notification size depends on the
resolution, completeness and representation of the notification.

Order
Denotes the order that notifications arrive in at the subscriber. Represented either by bi-
nary states random/unordered and total order [288], or by different values that denote
guarantees with increasing strictness: no order, publisher First In — First Out (FIFO) order
(i.e., arrive in the order they have been published by each publisher), causal order, and
total order; the latter two guarantees require synchronization when multiple publishers for
notifications about the same type of event are involved [47].

Persistence
Describes a feature of the MOM that allows notifications to be stored for a certain amount
of time in the system. Persistence is used to support mobility and periods of disconnection,
provide delivery guarantees through re-transmission of notifications, or allow subscribers
to receive historic notifications that have been published before the subscriber had joined
the system [112].

Priority
Indicator for the importance of a certain type of notification and represented by a score
or ranked set of labels assigned by subscribers or publishers [7, 47, 112]. The MOM can
ranking notification types by their priority to decide on which notifications to process pref-
erentially [47].

Receiving Rate

Defines the number of notifications per time unit received at the subscriber. Especially
resource-restricted subscribers benefit from having control over the maximum number of
notifications per time unit they have to process [277]. Requirements about the received rate
can be decomposed into requirements about the maximum sampling rate to be consumed
from a number of alternative publishers. For example, a maximum received rate of 100
notifications per second can be modeled as a requirement about a maximum of 20 events
per second (sampling rate) from a maximum of five different publishers (alternatives).

Response Time
Quantifies the time between a request and a response [418]. Usually defined for pull-based
systems and represented like latency; an unusual interpretation of publishers’ sampling
rates for push-based systems to express the speed of detecting and reporting an event [418].

Security
Covers aspects from encryption to access control, identity management, and authentication.
Can be represented either by binary values to denote that data is encrypted or not to a set
of labels denoting increasing levels of security [6, 113, 263].

3.2. Properties: the Basic Building Blocks 37

Objective Quality of Information (Qol) Properties

Properties related to Qol describe characteristics of the data being produced by publishers and
processed by the MOM. The properties discussed here can be measured objectively as they
are defined independently of the requirements of a specific subscriber. Qol properties are deter-
mined by publishers or by the MOM. Manipulating them at runtime might require a coordination
between MOM and publishers.

Accuracy

Quantifies how well the data enclosed in a notification reflects the fact or event it de-
scribes [53, 95, 418], measured by its deviation from the true value. Accuracy is hard
to determine in reality, as it requires knowledge about the true value for each measure-
ment [306]. For sensor readings, this can be compensated by calibration and the use of
reference values [324]. Thus, the accuracy of a measurement depends on the sensitiv-
ity of the sensor as well as on its drift and resolution. Depending on the kind of sensor
and the sensing task, distance and location as well as the current context of a sensor do also
influence the accuracy of measurements [109, 110, 182]. Accuracy is quantified in domain-
specific ways: the ratio between false positives or false negatives and the total number of
notifications describing an event [95, 226]; the root square mean deviation for the estima-
tion error of a prediction model [99, 254]; the percentage of deviance from the true value,
e.g., £0.3m/s or £2% for a wind sensor [110]. These domain-specific representations can
be normalized into a score in the interval [0;1] where 1 denotes perfect conformity with
the described fact [261].

Confidence of detection

Quantifies the conviction of a publisher that the reported event has been captured cor-
rectly [54, 75, 224]. Also referred to as probability of correctness [261, 291] or coverage
probability denoting that the true value is covered [53]. High confidence indicates less
false positives and false negatives of the reported events [96, 430]. With different connota-
tions more related to trust [6] or precision [182] when referring to multiple records of the
same information to be the same across time. Represented by a score in the interval [0; 1]
where 1 denotes absolute conviction.

Freshness

Quantifies the actuality of the information contained in the event notification. Freshness is
the sum of two distinct aspects of timeliness: (a) timeliness of capturing the event including
details of the capturing frequency as expressed by the sampling rate of the sensor [31,
47, 51, 57, 250]; and (b) timeliness of processing the event notification from publisher to
subscriber which entails processing latency and transport latency [6, 248, 271]. Sometimes
also referred to as up-to-dateness [6, 75, 292]. Represented like latency in units of time.
Lower sampling rate, higher compression and content aggregation in particular decrease
freshness as they increase latency [356].

Precision

Quantifies the variation of replicate measurements in describing the same true value, mea-
sured as imprecision. Precision complements the notion of accuracy as it describes a differ-
ent aspect of measurement deviation [53, 306, 324]. Using the graphical analogy of shots
fired at a target [324], accuracy describes the distance of each hit to the bull’s eye while
precision describes the degree to which the hits are clustered on the target. In contrast
to accuracy, precision is easier to compute for numerical values by the use of statistics,

38

3. A Generic Model to Express Quality of Information Requirements in EBS

i.e., normalized standard deviation. Represented as a ratio with 100% referring to per-
fect alignment [324]. We try to illustrate the relationship between precision and accuracy
by returning to the example of a temperature sensor as given in Section 3.1: a temper-
ature sensor measures a room’s temperature of around 20 degrees Celsius with a bias of
£ 0,4 degrees Celsius — or 98% precision — while another temperature sensor has a bias
of = 3 degree or 85% precision [75]. In both cases, the precision denotes the average
deviation around the true value for each recurring measurement. The accuracy of a sin-
gle measurement, however, could be much better or worse. In the area of IoT systems,
precision is increasingly used to describe the semantics of accuracy as the true value itself
is seldom known but is reconstructed from different measurements that are not exactly
repeatable [53, 54, 75, 182, 324].

Provenance

Metadata describing the pedigree and level of originality of data. The intention of prove-
nance is to keep track of where data has originated from, how it has been generated and
how it has been altered before being delivered. Thus, source provenance and process
provenance can be distinguished. Provenance is important for auditing, attribution, or
replication of data [35, 385]. Metadata describing provenance can be attached to the
data item itself or be stored in a provenance store to be queried [191, 314]. In database
systems, provenance information can be provided by reverting the queries that produced
the current data. Provenance is quantitatively or qualitatively represented based on the
domain-specific requirements about the granularity and extent that data should be trace-
able [314]. The spectrum of quantitative representation ranges from a Boolean value to
denote whether data has been altered at all [225], to a cosine distance in the interval
[0; 1] between reference data and the received copy to quantify the degree to which data
has been altered (with 1 denoting a maximal similarity while 0 describes two completely
different data items) [224]. Representing provenance qualitatively ranges from structured
metadata in XML [191, 385] to ontologies using Resource Description Framework (RDF)
and Web Ontology Language (OWL) such as the W3C PROV family of ontologies [312].
Provenance is not only affected by the fusion done by CEP engines but also by notifications
being compressed or aggregated while processed by the MOM.

Trustworthiness

Indicator for the degree to which the consumer can rely on the data being correct and
not being manipulated on purpose by the producer or the MOM [182]. Thus, trustworthi-
ness affects both the publisher and the data it provides: it is either estimated by the MOM
for a publisher and then vested on the data provided by this publisher, or the trustwor-
thiness of different data items is evaluated and an accumulated degree of trustworthiness
applied to the publisher providing the data [127, 274]. Trustworthiness is closely related
to provenance and security as both properties help to addresses aspects of data decep-
tion, i.e., malicious parties provide false data on purpose [275]. Some approaches for
assessing the trustworthiness of both data and publisher depend on source provenance
and process provenance [127, 274] while others use feedback provided by subscribers to
assess the trustworthiness of a publisher [46, 47, 324]. Trustworthiness is quantitatively
represented in the interval [0; 1] by numeric trust scores [5, 275, 292] or by ranked trust
labels [6, 57, 75, 109, 188, 324, 384]. Higher trust scores or trust levels indicate a higher
degree of trustworthiness [6, 75, 109, 188, 324, 384].

3.2. Properties: the Basic Building Blocks 39

Subjective Value of Information (Vol) Properties

Properties grouped here all depend on objective properties discussed before. However, they ag-
gregate and accumulate objective properties based on domain- or application-specific definitions.
Thus, we denote those accumulations as subjective VoI properties or functions that do not neces-
sarily have to be provided by the system except for domain-specific deployments as they cannot
be evaluated independently of the subscriber. We exemplarily discuss volatility and believability
in more detail to show the general characteristics.

Volatility
Describes the probability that an updated version of data contained in a notification be-
comes available before the current data item expires (i.e., currency = 0). Defining volatil-
ity requires specific knowledge about the dynamic behavior of updates for this type of data
and its general freshness [271].

Believability

A quantification for measuring the resilience of data from the subscriber’s point of view.
Depends on domain-specific knowledge about the data, the subscriberdAZs configuration
and the requirements of the concrete task that the data is intended to be used for. Like
accessability, appropriate amount, integrity, interpretability, ease-of-manipulation, objectiv-
ity, understandability, validity, value-added, or relevance, the notion of believability revolves
around the effort necessary for subscribers to assess, detect, purge, repair or replace data
of insufficient quality according to their needs [143, 250, 292, 366, 421].

The discussed examples show that the Vol properties grouped here rely on individual combina-
tions of requirements about Qol properties such as accuracy, precision, confidence of detection,
provenance, or trustworthiness [47, 224, 225, 244, 247, 248, 366].

3.2.2 Deriving a Generic Property Representation

Revising the properties discussed in this chapter shows that although different properties do not
have to be comparable (e.g., trustworthiness vs. sampling rate) they can be conflicting when sup-
ported due to interdependencies and resource constraints (e.g., trading-off accuracy vs. latency
for energy-efficiency as described in [99]). Some properties are interdependent across levels of
abstraction (e.g., freshness, latency, and sampling rate) while others are orthogonal (e.g., spatial
resolution, loss).

Regarding their representation, however, they all share two features that we can exploit to derive
a generic format for representing them: (a) they can all be modeled over a range or a list of
values that apply a total order depending on the semantics of the property, and (b) they can all
be improved by either maximizing or minimizing them based on this ranking.

Range or list of values

Having categorized the properties already by their level of abstraction, we can group them by
the data types they are represented by: binary variables, list of String values, integers, or floating
point notations (double, float). Examples are: integers for the number of alternatives; floating
point notations for latency, accuracy, or precision; ranked labels for delivery semantics where the
labels are ordered from least strict (best effort) to the strictest guarantees (exactly once) — same

40 3. A Generic Model to Express Quality of Information Requirements in EBS

for order, trustworthiness or compression while the latter can alternatively be represented by
binary outcomes (compression or no compression).

We can further generalize these different data types by associating them with different scales
of measurement. Each scale has different features that reflect characteristics of the objects cat-
egorized on this scale. Examples for those scales of measurement are the four types of scales
nominal, ordinal, interval, and ratio that have been introduced by Stevens [400, 322]:

Nominal
Values on a nominal scale represent items in a set. The only operator applicable to these
values is the equality operator to check if two values are the same or not. Based on this,
the cardinality of a set can be computed but values cannot be ranked as they represent
only labels or type numbers that are equally potent. Examples are taxonomies in biology,
or back numbers of football players.

Ordinal

Objects represented as values on the ordinal scale can be ranked in a relative order accord-
ing to their semantics in addition to the equality operation. Examples are values such as
"low" < "medium" < "high". All operations that are order preserving are applicable to val-
ues on the ordinal scale while statistical operations such as computing means or standard
deviations are not applicable as there is no interpretable distance between two values but
only a relative rank-order. This is due to only a relative minimal value (the value with the
lowest rank) being available but no absolute zero value.

Interval
Like values on the ordinal scale, values on the interval scale are ranked. Examples are
scales of temperature (°C and Fahrenheit) or scales of time. In contrast to the ordinal scale,
ranking two values on the interval scale allows to interpret the distance between these
values but not their ratio, e.g., March 20th is not twice March 10th, but a period of 10 days
is twice as long as a period of 5 days.

Ratio
The ratio scale has no restrictions regarding operations. Values can be ranked, absolute
distances can be computed and ratios can be interpreted because ratio scales have absolute
zero values. Examples for ratio scales are the numeric scales themselves.

Out of these four scales, all discussed properties with their different data types and semantics
map to either ordinal, interval or ratio scales as shown in Table 3.1. Please note that this mapping
is done based on the semantics of each property, which allow us to define a ranking for all its
defined states.

Using those semantics, we can even map binary data types to an ordinal scale. For example,
representing the property completeness by binary values, we can define that the binary outcome
"true" (complete data) is more desirable for this property than the binary outcome "false" (incom-
plete data); in fact, we are mapping binary values "false"/"true" of a nominal scale to the ranked
labels "bad" < "good" of an ordinal scale.

Finally, we can represent these three scales either by a list of values (ordinal scale) or by a range
of values (interval, ratio) as shown in the topmost row in Table 3.1.

3.2. Properties: the Basic Building Blocks 41

Table 3.1.: Scales of measurement used to represent different properties about runtime quality.

List Range

Ordinal Interval Ratio Improvement

Property Binary Labels Integer Double Integer Double Max Min

Accuracy
Alternatives
Availability
Bandwidth
Completeness
Compression
Confidence
Costs

Delivery Guarantees
Distance

Drift

Freshness

Jitter

Latency

Loss
Notification size
Order

Precision
Provenance
Resolution
Sampling Rate
Security
Sensitivity
Trustworthiness

NN NN

ECOE0O0OERO0OERDOO0OOD0OOCOOO0OOCOCOmemROO0OO
EERCOEERONODO0OOCOOOCOOEOEEROOOOO
EC0 0000 OD0OOED0OERO0OOCOO0OO0OCOOCOOOeOd
EC0 0000 OD0OOE0DOERO0OOCOOCOmROOOOg
EE 00O D00O O 0O O 0O O EEECOCOEN
| pupupul N Bul B Bul Bl B Bl B Bl B N BN |
N
NN NN NN

NN NN N NN

Improvement Direction

Knowing the semantics of a property, we can decide if a specific state is generally more de-
sirable than another. For example, the label "known device" for trustworthiness (alternatively
represented by a trust score of 100%) denotes a higher degree of trustworthiness than the label
"unknown device" (a trust score of 0%, respectively) [6]. On the other hand, a latency of 500ms
is considered to be better than a latency of 2000ms.

Generally speaking, maximizing or minimizing it depending on the semantics of the property can
improve each property. This is of particular importance for properties that can be represented in
multiple ways with differing semantics. The property resolution, for example, is maximizing if
modeled in terms of image resolution or the number of attributes describing a complex fact, while
it is minimizing if modeled in terms of temporal or spatial resolution. For properties with ranked
labels such as trustworthiness labels (e.g., "untrusted" < "erratic" < "trusted" < "authoritative"),
a stricter value improves a relaxed one, e.g., "randomOrder" < "totalOrder".

As all properties can be represented on a scale that supports at least a ranking between different
values of the same property, we can assign each property with an improvement direction as
shown in the last two columns of Table 3.1.

42 3. A Generic Model to Express Quality of Information Requirements in EBS

Definition of a Generic Property

As illustrated in Figure 3.7, we can formalize the definition of a generic property as follows:

Definition 1 (Generic property). A generic property p describes a characteristic of a notification,
a publisher, or the MOM in an EBS. A property py is a tuple (P,qme» T>L, DIRECTION) with T the data
type, and DIRECTION being the improvement direction indicating maximization (/') or minimization
(). Different embodiments of this characteristic are defined as a list or range of values LI = {v;, €
T|Vpin < Uk < Unmax} On at least an ordinal scale. The values v, € U for p,.m. are ranked in the
order they are defined in U ranging from v,;, to v,,,, and reflecting their semantics. A value v

dominates a value v; iff v; < v and vy > v;. O
V...
min Vmax
Improvement >
direction
Vi<V, < A
Minimum Maximum

Allowed values

Figure 3.7.: Generic property: range/list of allowed values, ranking and improvement direction.

Expressing generic properties in software systems can be done using Extensible Markup Language
(XML) or a line-based syntax. The Backus-Naur Form (BNF) notation for a line-based syntax
based on the above definition is shown in Listing A.8a while Listing A.8b shows an example for
confidence of detection, latency, sampling rate, and trustworthiness using this syntax.

Actions to Manipulate Generic Properties

Each property can be manipulated by a publisher, the MOM, or in coordination between both. For
example, the sampling rate of a publisher can be increased or decreased at runtime. However,
only the publisher can increase the sampling rate while decreasing can be done either by the
publisher or by the MOM applying a filter before delivering notifications to the subscriber [173,
356]; confidence of detection and precision can be increased or decreased only by the publisher by
changing the sensor frequency [62] or applying additional cross-validation using multiple sensors
which increases communication and processing costs [225]. The MOM can decrease latency to a
certain degree by using traffic-reduction mechanisms based on prioritization and filtering [138].
These examples show that applying a mechanism comes at a cost for the executing participant,
depending on its capabilities, context and state [173, 225, 356].

In an EBS, these mechanisms and their owners are hidden from the subscriber, as the MOM is
handling requirements by subscribers about properties. As satisfying those requirements might
require increasing or decreasing properties, the MOM has to know whether a property can be
manipulated in either direction. The details of the mechanisms, however, do not have to be
known at this step while the MOM has to be aware of the costs for executing a mechanism. We
encapsulate these aspects into an action to be associated with a generic property in the MOM:

3.2. Properties: the Basic Building Blocks 43

Definition 2 (Action). Actions encapsulate dedicated activities to manipulate a property p,. An
action ay, is a tuple (p,, DIRECTION, ID, costs;p) with p, being the associated property, DIRECTION
denoting whether this action increases (1) or decreases (|) the property, ID as an identifier for this
tuple and the name of the action, while costs;, quantify the costs arising from applying ID. O

From the perspective of the MOM, an action can be invoked by self-adaptation or delegation de-
pending on who is responsible for executing the necessary mechanisms. Mechanisms applied by
the MOM are executed by self-adaptation while delegation is used for those mechanisms that are
applied by publishers*. Delegation is done by triggering the respective participant to manipulate
a specific property to the desired degree. In both cases, the details of how the property is actually
manipulated do not have to be defined inside the action.

Please note that sequences of actions can be defined as a new action as well. Alternative actions
can be defined by associating multiple tuples for a property. They can have different costs but
must have different IDs.

For example, we can model the two alternatives for decreasing the sampling rate of a publisher
in our concept by associating two tuples given as follows:

QadaptPublisher = (rate, l: adap tPUbliSher’ cos tsadaptPublisher) (3.1)

QapplyFilter = (rate, I aPPlJ’Fll ter,cos tsapplyFilter) (3.2)

Relationships Between Generic Properties

Relationships between generic properties are explicitly modeled inside the MOM and hidden
from the subscriber. They are necessary for the MOM to determine the support of the system
for a given property p, about which subscribers have defined requirements. Relationships can be
modeled explicitly to determine if and how a given generic property is supported by the system.

Relationships allow to determine if the property p, addressed by the subscriber is directly sup-
ported by capabilities and can be manipulated using an associated action or whether actions and
capabilities are defined for a generic property p, that matches p, in syntax (i.e., granularity,
scale, improvement direction and data type) and semantics. This is important in heterogeneous
environments in particular [165, 166, 168].

Furthermore, relationships identify the properties that p, depends on from the perspective of
the MOM and how these properties influence p,. From the subscriber’s point of view, for exam-
ple, increasing publication latency and processing latency deteriorates (end-to-end) latency while
increasing the sampling rate improves (end-to-end) latency from the MOM'’s perspective. This
knowledge is required by the MOM to evaluate or manipulate different lower-level properties
when negotiating requirements.

The relationships between p, and p, can range from simple to complex as illustrated in Fig-
ure 3.8. Exemplarily, we have defined four types of relationships with increasing complexity:
identity, mapping or transformation, graph, and ontology.

4 In a distributed MOM consisting of several interconnected brokers, neighboring brokers are treated like pub-

lishers when notified by the edge broker handling requirements of a connected subscriber.

44 3. A Generic Model to Express Quality of Information Requirements in EBS

Requirement Subscriber

‘ Definition J<— Generic property‘ ‘ Definition J< Generic property‘
A
i
i
Relationships
:
! ! 7o i
Lommmman Generic property : ! !
! v i
: i —
| e propery
i !
i |
i !
| !

Capability) Capability) Capability

A 4
Generic property
Capability]

— Defined over/for

Publisher & MOM

Identity Mapping or transformation Graph Ontology
Simple Relationships Complex

Figure 3.8.: Types of relationships between generic properties in an EBS.

Identity. In this case, the property p, that a subscriber has defined requirements over is identical
to the property p;, as supported by the system in that capabilities and actions are defined for it
(c.f. Figure 3.8, left). Examples are accuracy, precision, or confidence of detection.

Mapping or transformation. A relationship requiring a mapping or a transformation exists if p,
has the same semantics as p, but a different syntax or name. In this case, p; has to be mapped to
p, using transformations [166] if necessary (c.f. Figure 3.8, middle). For example, a subscriber
has defined a requirement about the generic property trustworthiness which is defined over the
trust scores 0 < 0.5 < 1 [6] while the system supports the generic property trust defined over
the trust levels "untrustworthy" < "trustworthy" < "very trustworthy" [324].

Graph. A graph captures a relationship with multiple generic properties contributing to a prop-
erty the subscriber has defined requirements about, e.g., freshness depends on processing latency,
publication latency and sampling rate controlled by the MOM and publishers.

Ontology. More complex relationships may require the use of a suitable ontology as semantical
transformations and performance models have to be modeled as an extension to the graph-based
relationship. For example, the ontology described in [418] allows to describe parameters that
influence the performance of a sensor regarding different properties and to express how these
properties are affected by different contexts and conditions at runtime [109].

We do not make any assumptions about the complexity or representation of relationships be-
tween properties as we encapsulate both within the mapping function ©. A mapping function
© encapsulates the relationships between a subscriber-side property p, and generic properties
that are supported by the system. ©(p,) returns a generic property p/ that matches p, in syntax
and semantics.

3.2. Properties: the Basic Building Blocks 45

3.3 Expectations: Requirements About Qol Properties

In an EBS, subscribers require data not only of a certain type or content but also of adequate
Quality of Information (Qol) to perform their individual tasks. They have individual preferences
about quality-related properties such as precision, sampling rate, latency, or confidence of de-
tection based on their subjective Vol functions that are determined by the application logic and
context at runtime [22, 35, 56, 182, 340, 381].

For example, an application M has to monitor the temperature of a chemical process during man-
ufacturing to detect anomalies. Information about the current temperature has to be either highly
reliable to minimize false-positives/negatives or has to be very fresh to minimize the impact of
false-positives/negatives on the evaluation result at subscriber M. In terms of quality-related
properties, M requires notifications about events of type temperatureEvent to be delivered with
high confidence of detection (e.g., 75-95%) at a low sampling rate (e.g., 5-10 events/second).
Alternatively, the subscriber could also use updates with a low confidence of detection (e.g., 50-
60%) but at a high sampling rate (e.g., 40 - 60 events/second). When given the choice, M would
prefer notifications matching the first set of requirements to notifications satisfying the second
set of requirements.

Preferences and Utility Functions

Preferences reflect the avoidable costs arising from having to identify, purge, repair, or replace
data of inadequate quality at the subscriber [95, 143, 250, 277]. As shown in Figure 3.9, pref-
erences map to requirements about specific sets of Qol properties (A, B) and utility (u;,u,) gen-
erated from meeting these requirements [424]. Preferences can be interdependent for some
properties while they can be independent for others. For interdependent preferences, several
requirements about different properties have to be satisfied simultaneously while any state is
accepted for independent preferences [249]. For example, the subscriber requires a certain com-
bination of sampling rate and confidence of detection (interdependent properties) in the example
given above but does not care about loss or spatial resolution (independent properties).

Application logic Context at runtime

Preferences

Requirements Utility

Sets of Qol properties
ACBC D(Pmpb, s 7pn)

—_— e
—_— O 4——
A B

_/' (Pa>Pos - - Pn)

Figure 3.9.: Preferences of a subscriber map to requirements and utiliy values.

46 3. A Generic Model to Express Quality of Information Requirements in EBS

Preferences are mapped to values of a multi-dimensional utility function that is defined over all
properties the subscriber has requirements about. A utility function f, : D — N7 maps a set of
satisfied requirements A € D(p,, Pp, - - -, P,) from a multi-dimensional space D(p,, pp,---,P,) to
a score — the utility value u — with higher utility values reflecting a higher preference [424].

Increasing utility values for Qol correspond to the fact that the costs for ensuring data quality at
the subscriber generally decrease with increased quality of the data provided by the MOM [143].
Conversely, utility values are an indicator for the subscriber’s willingness to pay for receiving data
that satisfies a specific set of requirements [381]. Please note that this does not necessarily result
in a monotonic utility function as the utility value reflects the individual VoI of data received
by a specific subscriber based on a combination of interdependent properties. As illustrated in
the introductory example given earlier in this section, a subscriber would prefer data received
at a lower sampling rate but with higher confidence of detection to data received with higher
sampling rate and lower confidence of detection. Based on these two statements alone, we
cannot automatically infer that receiving data at a high sampling rate and high confidence of
detection has an even higher utility for the subscriber.

Modeling a multi-dimensional utility function mathematically, however, is challenging, as its ex-
act form is often unknown even to the subscriber itself. In general, three different approaches can
be distinguished that aim at overcoming this problem [249, 340, 424]: 1) using domain-specific
utility functions that restrict D to a fixed set of properties with known interdependencies; 2) mak-
ing constraining assumptions on the general form of the utility function to simplify modeling and
handling the functions, e.g., monotonicity, continuity, differentiability, or general independence
of properties; or 3) using a set of utility values and their associated sets of properties to recon-
struct a utility function by extrapolating the available data points.

Using domain-specific functions restrict the generality of the resulting model and contradicts the
intention of our approach. Simplifying the general form of the utility function and assuming inde-
pendence between properties in turn allows to model and optimize each property independently
and later decide on the optimal combination by adding the utility values of each independent
utility function together [249, 424]. However, interdependent preferences as illustrated in the
example cannot be modeled this way, as the resulting utility function requires that requirements
about several properties are satisfied simultaneously.

Thus, our approach is inspired by the third alternative discussed above as it balances the expres-
sivity and flexibility of the resulting model with the effort for defining it. Enabling subscribers to
define discrete points on their individual utility function without having to know the form of the
utility function between these points. Defining points on a utility function requires a subscriber
merely to define target values for different sets of requirements they want to be satisfied and
rank these sets comparatively by assigning different utility values to each set.

However, subscribers in reality often fail to provide exact values for all their requirements or
define priorities between exact values in a comparative way [249, 340]. Thus, several ap-
proaches try to consider a certain degree of uncertainty when assessing requirements of sub-
scribers. For example, Perera et al. [340] as well as Pernici and Siadat [346] require an ex-
act value for a requirement but then distinguish between requirements that can be satisfied by
an approximation (proximity-based [340]/fuzzy [346]) and those that have to be met exactly
(point-based [340]/non-fuzzy [346]) using different evaluation strategies.

We allow a subscriber to define ranges of allowed values for each property. Each value that
is at least within these ranges satisfies the requirement and generates the same utility. For in-

3.3. Expectations: Requirements About Qol Properties 47

terdependent properties, these ranges represent malleable requirements: each value within the
defined ranges of a requirement is equally accepted to satisfy the requirement, generating the
same utility for the subscriber. In other words, the subscriber is indifferent to any value as long
as it satisfies the requirement.

Consequently, all combinations of values satisfying a set of interdependent requirements simulta-
neously generate the same utility. We call such a combination of values a solution. The relation-
ship between malleable requirements and solutions can be illustrated by the indifference curve
of a set of requirements as shown in Figure 3.10a. An indifference curve represents a surface
connecting all solutions the subscriber is indifferent to so they generate the same utility [249].
Pop Poy

A.u>B.u Increasing
preference

(a) Indifference curve for solutions satisfying A. (b) Indifference curves for A and B.

Figure 3.10.: Indifference curves representing malleable requirements.

For alternative sets of requirements, indifference curves also illustrate the preference structure
of the subscriber regarding sets of requirements as shown in Figure 3.10b for two sets of require-
ments A and B. Here the subscriber prefers to have A satisfied, indicated by A’s indifference curve
being further away from the center than B’s — the subscriber would prefer any combination of
values that would satisfy A over any other combination of values that would satisfy B but not
A. The subscriber, however, is indifferent to how exactly A is satisfied, denoted by the different
points on A’s indifference curve. Please note that these indifference curves represent preferences
on an ordinal scale, i.e., they show a ranking between sets of requirements without interpretable
distances between them [249].

3.3.1 Expectation Definition

We introduce expectations to encapsulate sets of malleable interdependent requirements, en-
abling subscribers to manage their individual preferences about quality-related properties at
runtime. We do not require the subscriber to define its complete utility function or parts of
it. We do not make any constraining assumptions beforehand about the form or type of a utility
function, interdependencies of properties, or preference structures. Rather, we enable subscribers
to define their requirements in a way that reflects their known preferences and allows them to
adapt their requirements as soon as their context changes at runtime.

Our key idea is to allow subscribers to define a set of interdependent requirements about generic
properties as an expectation and express the utility generated from satisfying these requirements.
Alternative sets of requirements can be ranked by a subscriber according to its own preference
structure without having to define the complete utility function.

48 3. A Generic Model to Express Quality of Information Requirements in EBS

Definition 3 (Expectation). An expectation describes a set of malleable requirements that a sub-
scriber has about interdependent quality-related properties of notifications about events it has sub-
scribed to. Each expectation X{ consists of a set of tuples (py,LB, UB) as well as a utility value X;.u
which reflects the individual importance of this expectation for the subscriber and allows a ranking
between alternative expectations. In each tuple, LB denotes the lower bound while UB denotes the
upper bound of accepted values for the property py. O

An expectation is associated with a subscription for notifications of a certain type or content
that the subscriber has already registered at the MOM. However, an expectation is not part of
the subscription itself as the requirements encapsulated in an expectation are subject to context
changes of the subscriber that affect its requirements about quality-related properties but not
those about a notification’s content or type. Separating both types of requirements allows a
subscriber to adapt its Qol requirements without having to change its subscription.

Each tuple in X{ refers to a requirement about a generic property p; such as sampling rate, or
latency. Instead of constraining a subscriber to define a single target value for each requirement,
we allow for defining an interval [p;.LB; p;.UB] of values that a subscriber would equally accept
for the generic property p, and the associated subscription as shown in Figure 3.11. This way,
the subscriber expresses a preferential indifference about the values between p,.LB and p,.UB,
making the requirement malleable’.

Lower Bound Upper Bound

Improvement

P . .
roperty py direction

Maximum

v

Minimum Accepted values

Figure 3.11.: Requirement about property p, defined as part of an expectation.

Properties being part of an expectation are preferentially interdependent to the subscriber while
they are preferentially independent to all properties not part of an expectation.

For example, subscriber M with expectation X; = {(rate,5,10), (confidence,75,95)} accepts
notifications with {rate = 7, confidence = 90} as well as notifications with {rate =
10, confidence = 80}. In addition, the subscriber would accept any value for properties
such as loss or spatial resolution as they are not modeled in the expectation.

By combining requirements about different generic properties in a single expectation, each sub-
scriber defines a trade-off between the ranges of those properties, making the requirements mal-
leable. This reflects a preferential indifference of the subscriber regarding the state of each
property as long as it is within the ranges defined in the expectation: each combination of values
within the ranges of accepted values for p, and p;, generates the same utility value.

Open and Closed Intervals

From the perspective of a subscriber, a requirement about a generic property p, as part of an
expectation could not only be satisfied but even overfulfilled. A requirement is satisfied if the
system provides support for this generic property at a level that matches a value within [LB; UB].

> Please note that we can also express point requirements as well by setting p,.LB = p,..UB.

3.3. Expectations: Requirements About Qol Properties 49

This is the case we have referred to so far. However, a requirement might also be overfulfilled
by the system by providing a property at a level that matches a value z < LB for minimizing
generic properties and z > UB for maximizing generic properties. For example, a subscriber
requires the trustworthiness of data to be between 50%-75%, while the system provides data
with a trustworthiness of 95%.

Requirements about most properties we have reviewed can be overfulfilled without causing a
decrease in a subscriber’s utility. For example, the utility of a subscriber does not decrease if
data is provided with higher precision, accuracy, or trustworthiness than required. Requirements
about other properties, however, should not be overfulfilled but exactly met by the system, as the
subscriber perceives an overfulfillment as a disadvantage. For example, receiving notifications
at a higher sampling rate or from too many alternative publishers than required results in more
notifications that have to be processed by the subscriber: setting upper bounds for sampling
rate and alternatives sets an upper limit to the number of notifications to be received by the
subscriber (receiving rate). Overfulfilling such requirements is disadvantageous in particular for
resource-constrained subscribers or those that have to purge data [143].

We denote requirements about generic properties that can be overfulfilled as open intervals. Re-
quirements that have to be met exactly by providing values between [LB;UB] are denoted as
closed intervals. Figure 3.12 illustrates the relationship between the utility values of a subscriber
and the values supplied by the system for the different types of generic properties.

Expectation Expectation
— 0, — 5
| ! | !
| | | |
Utility o 1 1 utility .| 1
| | | |
| ! | !
1 1 ? 1 1
1 R 1 1
U —b———1 ‘_}ﬁ,’—: u -f--—- | |
|
| !
|
0 i ; > p, 0 i i > Py
% | % o
(a) Open interval (b) Closed interval

Figure 3.12.: Utility for a subscriber in case of open and closed intervals.

We illustrate the assumptions about open and closed intervals using two maximizing generic
properties p, (open) and p, (closed) in Figures 3.12a and 3.12b. For open intervals, the utility
is not decreasing if the system provides this property at a level that not only satisfies the require-
ment but that even overfulfills it by dominating even the upper bound of the expectation. Open
intervals do not necessarily imply that the utility for the subscriber increases linearly or exponen-
tially with the degree that the requirement is overfulfilled; in any case, we assume that it is not
deteriorating. For closed intervals, the utility is decreasing if the property is provided at a higher
level than required. For the sake of simplicity, we assume a utility value of O once a requirement
is overfulfilled as shown in Figure 3.12b.

When illustrated with indifference curves, the indifference curve is only defined over the range
of accepted values for closed intervals. Solutions outside this range of accepted values would
not be represented by points on the indifference curve. Indifference curves for open intervals,
however, would not end at the upper bound (for maximizing properties) or the lower bound (for

50 3. A Generic Model to Express Quality of Information Requirements in EBS

minimizing properties). Solutions outside the upper bound (for maximizing properties) or the
lower bound (for minimizing properties) would be represented by points on that indifference
curve nonetheless as they still generate the same utility for the subscriber.

Multiple Expectations to Express Alternative Sets of Requirements

As discussed earlier in this section, a subscriber might have different sets of requirements that
result in different points on the utility function of the subscriber. For example, subscriber M needs
highly reliable information but could alternatively do with less reliable information at a higher
rate to compensate false-positives/negatives. However, receiving more data of a lower quality
increases the costs for checking and purging the information contained in the notifications. Thus,
the second set of requirements would not be preferred by M to the first set of requirements but it
would be preferred to receiving data with best-effort properties, i.e., having no control at all.

We allow a subscriber to express those alternative configurations by defining multiple ex-
pectations all associated with the same subscription but ranked with different utility val-
ues [173, 175, 424]. Expressing alternative configurations that would generate the same utility
for the subscriber is also possible with our approach.

We illustrate how to model and compare different sets of requirements by extending the re-
quirements about sampling rate and confidence of detection as described in the initial example
with complementary requirements about trustworthiness, latency, precision, and accuracy. The
resulting two expectations X] and X, are defined in Table 6.3 and visualized in Figure 3.13. The
subscriber’s preference for the requirements formalized in X is quantified by associating a utility
of 25 for X! while meeting the requirements defined in X?, would only generate a utility of 5.

Table 3.2.: Example of two expectations defining the preferences of a subscriber.

Sampling Rate Confidence Trustw. Latency Precision Accuracy
X 1B UB LB UB LB UB LB UB LB UB LB UB Utility
X 5 10 75 95 m h 0 250 90 100 70 100 25
X5 40 60 50 60 Il m 0 400 50 80 20 80 5

Note: Levels of trustworthiness are abbreviated with 1 = low, m = medium, h = high

The malleable requirements of X{ and X are shown as red overlays in the star plots in Fig-
ure 3.13a for X{ and Figure 3.13b for X{. Using star plots® [92] to visualize expectations allows
us to visually compare expectations defined for more than two generic properties. Superimpos-
ing the star plot of an expectation with the corresponding capabilities of the system enables us
to easily check if the expectation is already satisfied, could be satisfied by adaptation or whether
it could not be satisfied even with adaptation (cf., Figure 3.21 in Section 3.4.2).

Star plots visualize multi-dimensional data in a two-dimensional way by generating a chart with
a set of axes radiating from the origin, each axis representing a dimension and displaying only
data of this dimension. Connecting the points of the same kind (e.g., all lower bounds) on all axes
generates a profile that can be compared with profiles for other data sets. Star plots are used to
identify similarities, outliers or concentrations on certain dimensions on an ordinary scale. They
are unsuited, however, for interpreting the exact distances and ratios between different data sets,
i.e., to interpret similarities or differences between data sets on an interval scale.

6 Star plots are also known as radar charts or spider web plots.

3.3. Expectations: Requirements About Qol Properties 51

Looking at the star plots for X{ and X? we can see that these two expectations are defined over the
same set of generic properties but differ in at least two aspects. First, requirements contained in
X? are defined over a wider range of values than those being part of X{. Second, requirements in
X? are stricter than those defined in X7 as they are located on the upper parts of the maximizable
properties such as trustworthiness, accuracy, or precision (respectively, the more in the lower part
of the minimizable property latency).

Confidence Confidence
of detection

Sampling Rate Sampling Rate

of detection
60

100 400

Latency 250 -
Precision |atency

80 Precision

medium

high —— lower Bound —— lower Bound
100 —— upper Bound — upper Bound

Accuracy Trustworthiness Accuracy Trustworthiness
(a) x{ (b) x¢

Figure 3.13.: Star plots for X{ and X{ as defined in Table 6.3.

Perspective of the MOM

From the perspective of the MOM, expectations for the same type of event can differ across
multiple subscribers in their ranges and sets of required properties. We denote the total set of all
expectations for e as X°.

3.3.2 Lifecycle of an Expectation

Each expectation has a lifecycle that can be manipulated by the subscriber at runtime as shown
in Figure 3.14, enabling each subscriber to adjust its requirements at runtime based on changes
to its context or state.

The lifecycle starts with defining an expectation locally at the subscriber based on valid prop-
erty definitions. At this stage, only the subscriber is aware of the expectation and has not yet
associated these requirements with notifications of a specific type or content.

Expectations have to be associated with a subscription when registering them at the MOM to
make the system aware of the described requirements and trigger an initial negotiation. The
same expectation can be associated with different subscriptions, though.

Registered expectations are active unless they are suspended or revoked by the subscriber. Active
expectations are considered by the MOM when trying to satisfy a subscriber’s requirements or
optimize resource usage of the system. Passive expectations are ignored.

Changes in the context or state of a subscriber might influence its requirements about generic
properties but not about the type or content of notifications. For example, a highly prioritized job

52 3. A Generic Model to Express Quality of Information Requirements in EBS

start er:d

Subscriber
(Define) > Delete
A
Revoke

f

Suspend
A

>

Update }

active passive

Message-oriented Middleware (MOM)

Figure 3.14.: Lifecylce of an expectation.

with tight Service Level Agreements (SLAs) has to be executed in a large-scale cloud deployment
and is monitored by an application monitoring job executions. The application still requires the
same kind of monitoring information (e.g., CPU utilization, memory usage, page misses) as for
jobs with lower priority but now requires a higher sampling rate and higher precision to detect
anomalies or congestion on the worker nodes and their virtual machines beforehand to guarantee
that the job finishes without violating the negotiated SLA.

Those changes in the requirements of the subscriber can be reflected by: a) changing the lifecycle
of a registered expectation; b) updating, suspending, or revoking already registered expectations;
or ¢) by registering new expectations that reflect the new requirements. A suspended expectation
is passive but can be updated as well. However, it has to be resumed into an active state before
the MOM considers it again. An update can affect the set of generic properties an expectation is
defined over, the ranges of accepted values, or the ranking of the whole expectation as expressed
by its associated utility value.

Changes to the lifecycle of an expectation can be performed independently from the subscription
if necessary, i.e., subscribers do not have to unsubscribe and subscribe anew. The lifecycle of
an expectation, however, is tied to the lifecycle of a subscription in such a way that when a
subscriber unsubscribes, the MOM revokes all associated expectations.

3.3.3 Fidelity: Quantifying the Satisfaction of a Subscriber

Subscribers express their preferences as expectations by mapping their subjective Vol properties
and functions to requirements about generic properties that the system offers support for. The
degree to which each subscriber is satisfied with the Qol of the data received from the system is
measured by the subscriber’s fidelity as shown in Figure 3.15.

The fidelity metric quantifies the conformance of the data a subscriber receives over time with the
active Qol requirements that are formalized by an expectation and motivated by a subscriber’s
subjective VoI functions. The better the results delivered by the system are aligned with the
requirements of the subscriber, the higher the degree of satisfaction [381].

The fidelity metric can be used to quantify the impact of different scenarios and data delivery
strategies on the satisfaction of the subscriber. Measuring fidelity over time shows shifts in the
degree of satisfaction based on variations of incoming data. We will illustrate both aspects with

3.3. Expectations: Requirements About Qol Properties 53

objective
,—> Qol properties — 3
Express Expectations Fidelity Measure
preferences conformance
T Vol functions <—,
subjective

Figure 3.15.: Fidelity: quantify conformance of delivered Qol properties with own Vol functions.

an example later in this section using two small sets of notifications. Furthermore, we will quan-
tify a subscriber’s satisfaction for different adaptation strategies evaluated in our experiments in
Chapter 6.

Positive values for a subscriber’s fidelity indicate that the subscriber is satisfied with the data
provided by the system while negative values indicate an overall dissatisfaction as data does not
conform with the requirements and has to be purged, repaired, or replaced [424].

The degree of satisfaction is based on the total utility that is generated by the received data sat-
isfying the currently active expectations. Dissatisfaction is expressed by applying a penalty for
notifications that do not conform to the requirements. The penalty reflects the costs of a sub-
scriber, as each notification with insufficient quality has to be purged or discarded. Expectations
define requirements about single notification as well as sets of notifications. Thus, the overall
satisfaction of the subscriber depends on the conformance of both single notifications (e.g., re-
quirements about latency or accuracy) and sets of notifications measured over a given period of
time (e.g., requirements about sampling rate or precision).

Equation (3.3) defines the fidelity metric for a set of n notifications eq,...,e, that have been
received at the subscriber about events of type T € E and an active expectation Xj defined
for a set of generic properties {p; € P|p;,...,p,}. The utility or penalty generated by single
notifications and their contribution to the conformance of the respective set of notifications is
summed up into the total fidelity for a given period of time.

n

Fidelity(n, X;) = Z |:utility(el~,X§) - penalty(el-,Xs) (3.3)
i=1

Computing the contribution of each notification to the overall utility and balancing this with an
optional penalty requires the use of an auxiliary function f. As defined in Equation (3.4), f
evaluates if a requirement of X; about p; is satisfied or overfulfilled by a given notification e;.

1, is satisfied by e;
flewpy=4""" Y (3.4)

0, otherwise

54 3. A Generic Model to Express Quality of Information Requirements in EBS

The function utility as defined in Equation (3.5) returns the utility generated by notification e;
when satisfying XJT.. As requirements of an expectation are interdependent by definition, X} is
satisfied if and only if all its requirements are satisfied or overfulfilled by e;.

P
utility(epX) =u-| [f(eip) (3.5)
=1

Conversely, an expectation is not satisfied if there is at least one requirement not satisfied or
overfulfilled. In this case, the notification is not contributing to the overall utility. We apply
a penalty that expresses a degree of dissatisfaction and reflects additional costs arising at the
subscriber for trying to purge or repair the notification with respect to the insufficient property.
All requirements that are part of an expectation are assumed to be interdependent. Thus, we
cannot assess if the lack of a certain property is more disadvantageous to the subscriber than
another’. Hence, we distribute the expectation’s utility value equally across all properties when
calculating the penalty for a notification. The resulting penalty is less severe for notifications with
only a few insufficient properties. The function penalty is defined in eq. (3.6) for a notification
e; and a given expectation X;.

p
penalty(e;,X;) = ul:ﬁ (1P1=>" fCenpd) (3.6)
i=1

Equation 3.7 shows the total fidelity by filling in Equations (3.5) and (3.6) into eq. (3.3).

Fidelity(n) =i [w]_[fcei,pz) - ﬁ (1P —Zf(ei,pl))} (3.7)

i=1 =1 i=1

Please note that the fidelity metric allows us to measure the difference in the satisfaction of
a subscriber if several alternative expectations with different utility values are registered (e.g.,
X¢.u > X;.u). However, the fidelity metric explores the ordinal aspects of requirements, i.e., it
does not evaluate how close we are to the upper and lower bounds defined by subscribers as long
as we satisfy the requirement; using an interval scale for interpretation is part of future work.

Example for applying the fidelity metric

In the remainder of this section, we are going to use a small example to illustrate how the fidelity
metric quantifies the satisfaction of a subscriber when receiving a set of notifications. Even with
a few samples we can show how different parameter values for generic properties impact the
overall quality of these notifications as perceived by a subscriber.

We assume that the subscriber has already registered two expectations X3 and Xj defined over
the subset latency, precision, and accuracy® of expectations X? and X (cf., Table 6.3). We de-

7 Allowing subscribers to rank properties is a valid extension to the current model and part of future work but

out of scope of this dissertation.
In some cases, knowledge about the true value v might be available at the subscriber, e.g., by using reference
values or calibrated reference sources.

3.3. Expectations: Requirements About Qol Properties 55

fine X7 as a subset of X] and X{ as a subset of XJ to simplify the scenario and concentrate on
a few selected generic properties that can be easily evaluated at the subscriber. We assume re-
quirements about all three generic properties to be open intervals for this example. X§ has quite
relaxed requirements compared to X5. However, the subscriber associates a utility value of 5 to
X;, ranking it less important than X3 with a utility value of 25. Figure 3.16 shows the star plots
for both expectations.

Latency Latency
400

100
o> Precision V 80 Precision

80

100 —— lower Bound —— lower Bound
Accuracy —— upper Bound Accuracy —— upper Bound

(a) x; (b) X5

Figure 3.16.: Star plots of expectations X5 and Xj to be used in the example.

We check X3 and X§ against two sets of notifications, S; and S,, consisting of 10 notifications
each. Each set of notifications is representing a different scenario. All notifications eq,...,e;q
are of the same type describing a numeric value v with v = 100 being the known true value.
Each notification e, is represented by a tuple (e, t, t,., v, pid) with e being the associated type
of event, t, the timestamp (milliseconds) the notification has been published by the publisher,
t. the timestamp (milliseconds) the notification has been received, v the value, pid a unique ID
associated by the MOM to the publisher of e,. Please note that this ID does not reveal the identity
of the publisher but enables a subscriber to distinguish notifications from different origin. Using
the information contained in a tuple, we can determine the generic properties at the subscriber
as defined in the equations 3.8 (latency), 3.9 (precision), and 3.10 (accuracy) to check against
an expectation by using the auxiliary function f as defined in Equation 3.4.

latency(e;) = e;.t, — e;.t, (3.8)
o 1 1< -
precision(ey,...,e,) = |1 ——- [— Z(ei.v —ev)?*| -100 (3.9)
e.v n <
accuracy(e;) = [100 — 4/ (e;.k — 2)2:| (3.10)

. . S k L

Table 3.3 shows the contained value e.v, moving average e.v, = % > i_, U, standard deviation
s,%, latency, precision and accuracy for each notification e;,...,e;5. The parameter values of
the generic properties computed for each notification are shown in Figure 3.17. As we can

56 3. A Generic Model to Express Quality of Information Requirements in EBS

see, the two sets of notifications are quite different for all properties. While S; has a higher
latency on average than S, (cf., Figure 3.17a), both precision (cf., Figure 3.17b) and accuracy
(cf., Figure 3.17c) are lower for S; than for S,. Table 3.4 contains details about the contribution
of each notification to the total fidelity when applying X; while Table 3.5 contains details about
the contributions when applying Xj.

Table 3.3.: Values for sets S; and S, of notifications for the fidelity shown in Figure 3.17d.

Notification Properties (egs. (3.8) to (3.10))

Set k ew e.v, s i Latency Accuracy Precision
1 50 50.00 0.00 250 50 100.00

2 70 60.00 100.00 200 70 83.33

3 30 50.00 266.67 300 30 67.34

4 150 75.00 2075.00 280 50 39.26

S 5 10 62.00 2336.00 290 10 22.04
! 6 70 63.33 1955.56 330 70 30.18
7 10 55.71 2024.49 277 10 19.24

8 170 70.00 3200.00 280 30 19.19

9 30 65.56 3002.47 260 30 16.41

10 20 61.00 2889.00 260 20 11.89

1 90 90.00 0.00 150 90 100.00

2 90 90.00 0.00 90 90 100.00

3 100 93.33 22.22 105 100 94.95

4 110 97.50 68.75 183 90 91.50

S 5 100 98.00 56.00 230 100 92.36
2 6 110 100.00 66.67 227 90 91.84
7 80 97.14 106.12 215 80 89.40

8 100 97.50 93.75 230 100 90.07

9 100 97.78 83.95 215 100 90.63

10 100 98.00 76.00 160 100 91.10

Computing the fidelity for S; and S, given X? and Xj shows that the notifications contained in
S, generate far more value for the subscriber as most of them satisfy not only X{ but also X3.
Plotting the contribution of each notification to the total utility in Figure 3.17d reveals those
notifications that deteriorate the overall fidelity, e.g., e; € S, when matched against X3.

Conclusion. As shown in this example, the subscriber would be dissatisfied with the data provided
by the system if it would receive notification of S; as S; does neither satisfy X nor the more
relaxed requirements in Xj as shown in Figure 3.17e. The overall dissatisfaction is shown by
high negative values for the fidelity, reflecting the fact that the subscriber deems notifications
of S; to be nearly useless for the intended purpose. On the contrary, the subscriber would be
satisfied if the system provides notifications such as those contained in S, as these satisfy even
the very restrictive requirements in X3. For that purpose, the system could filter out notifications
or adapt to provide only notifications like those being part of S,.

3.3. Expectations: Requirements About Qol Properties 57

37 L a /. =7 -\'\.\ .
° X S2 . -— . . °)
84 — \ o ol .
) . —, .8 \
: \ /' e — T s ’
% B4 . \' 8 s1
= \\ & 24 . x S2
€1 — 3 \/\
«Q 0 o—
32 \o
1 2 3 a2 5 & 1 8 8 10 1 2 3 a2 5 & 1 8 9 10
Notification Notification
(a) Latency for each notification. (b) Precision (%) for each notification.
S /'\ /'\ /--- § B s . .
o . . A S1,E4 o
° \ S2,E3 o o
2 L) ° A S2,E4 o
E) o
. 81] o e Demmee Doemooe A
g / . S S s N N
g 2] / E \O\O
. «—o o g \c
\ S —
g1 / - —
o S T
X S2 . . ~—
o - § - O\-
i 2 3 a1 5 & 1 8 & 1 i 2 3 a1 5 & 1 8 & 10
Notification Notification
() Accuracy (%) for each notification. (d) Cumulative fidelity for each notification.
o)
&1 =« E3
A E4
o
8 -
2
7 A
o e pelieemmmmm T
2o USSP
8
=}
E
3>
O o
a |
I
o
o |
e
I 1
s1 s2
Sets of notifications
(e) Total fidelity for sets S; and S, given X and X.
Figure 3.17.: Generic properties for S; and S, using egs. (3.8) to (3.10).
58 3. A Generic Model to Express Quality of Information Requirements in EBS

Table 3.4.: Fidelity of notifications in §; and S, when using X3 as shown in Figure 3.17.

f(ex,pr) Fidelity
pprecision platency paccuracy Xg satisfied Utilit}’(eijg) penalty(ek’xjeg) F(k)

8.33 -8.33

8.33 -16.67
25.00 -41.67
25.00 -66.67
25.00 -91.67
16.67 -108.33
25.00 -133.33
25.00 -158.33
25.00 -183.33
25.00 -208.33

0.00 25.00
0.00 50.00
0.00 75.00
0.00 100.00
0.00 125.00
0.00 150.00
8.33 141.67
0.00 166.67
0.00 191.67
0.00 216.67

Set

[y
—_
o
o
o

[eNeoNoNoNoNoNoNeNe]

NS NNNDNDNDN
(91 (92 B9, NS, BT, BT, BNT, |

S0 ®ONOUTAWN - E‘\Dm\lom.hwm»—l‘w
N
]

PR, PO RPRRPRRPRPRPRPRP,I OO0O0OO0COO0OOoOO0o
R R R R RRRRRR[(OOO0COO0OO0OOO R
R PP RPRrRRFPRPPRRPPRPPRPRPPRP[OCOOODORHROOOR
R R R ORRRRRFRROOODODOOOOO

N
(9,1

Table 3.5.: Fidelity of notifications in S;, S, when using X; as shown in Figure 3.17.

f(ex,p) Fidelity
pprecision platency paccuracy Xg satisfied UtiliU’(ek,Xg) PenaltJ’(ek,Xg) F(k)

0.00 5.00
0.00 10.00
0.00 15.00
1.67 13.33
3.33 10.00
1.67 8.33
3.33 5.00
1.67 3.33
1.67 1.67
1.67 0.00

0.00 5.00
0.00 10.00
0.00 15.00
0.00 20.00
0.00 25.00
0.00 30.00
0.00 35.00
0.00 40.00
0.00 45.00
0.00 50.00

Set

[t
—_
—_
[y

BE0ONOURAONR|[B0ONOGAWON |
B R R H H R R R | OO0 00000 R
R R R | OO0 00000 R
g1 o1 o1 U1 o1 U1 11Ul dl O OO OO OO U uru

RGN G OO U U U O W T W S O
R GG GO AN U U O O [V T T o O o WY o Y S Y S Y

3.3. Expectations: Requirements About Qol Properties 59

3.4 Capabilities: Support for Properties

In an EBS, support for expectations about generic properties depends on the degree to which
these generic properties can be provided by publishers and MOM. As we have described in
Section 3.2.2, generic properties can be provided either directly by publishers and MOM or
indirectly by combining provided lower-level properties they depend upon. This support can
change at runtime as many participants can adjust their support for a certain generic property
dynamically by using self-adaptation [35, 96, 109, 324]. For example, publishers can adjust
their sampling rate or confidence of detection while the MOM can use different mechanisms to
determine the level of trustworthiness of publishers and their publications with varying degrees
of confidence [62, 79, 99, 261, 362, 415].

Hence, support for generic properties in an EBS has two aspects: the actual value or level a
generic property is provided at as well as the spectrum of potential support that a participant
could realize by applying adaptation. As illustrated in Figure 3.18, actual and potential support
for generic properties are subject to the heterogeneity of participants at design- and runtime.

Potential support

What is A
provided? Currently provided value
What could . .
be provided? Range of values realizable by adaptation Property

Design and configuration Context and state

Design-time Runtime

Figure 3.18.: Support for generic properties is influenced by the heterogeneity of participants.

Participants in an EBS can differ in their configuration as well as in their design, e.g., the software
stack or hardware they run on, as we have discussed in Section 3.1 with regard to QoD and QoS.
To different degrees, both design and configuration of a participant restrain the actual support
for generic properties as well as the possible spectrum of adaptation. Some participants, for
example, are cloud-based applications with less constraints regarding resources while others are
run on mobile sensor nodes where energy-efficiency is a key issue and bandwidth is limited;
while the former could process and provide high-resolution images for surveillance systems at a
high sampling rate, participants on mobile sensor nodes might only be able to provide images
with low resolution at a low sampling rate or they might not provide images at all.

Design and configuration also set the scope regarding the potential support for a generic property
by enabling or restraining the ability of a participant to adapt at runtime. While some partici-
pants are designed as self-aware and self-adaptive applications that can autonomously adapt
their supply for generic properties to changes in their context and state, others can adapt to pre-
defined situations but need to be explicitly triggered and require detailed instructions; others
cannot adapt their behavior at all.

60 3. A Generic Model to Express Quality of Information Requirements in EBS

Participants in an EBS are differently affected by changes to their context and state in addition
to the heterogeneity based on designtime decisions. For example, sensors consume different
amounts of energy depending on their context and current sensing task [35, 99, 109, 325, 343,
356, 415]. As sensors have a pre-defined power range they are expected to operate efficiently
in, running low on energy may require battery-powered sensors to reduce their actual support
for generic properties such as precision, sampling rate, accuracy or latency in favor of saving
energy [62, 99, 261, 325, 415, 418]. This affects the actual and potential support of these
generic properties.

In any case, providing a generic property at a certain level, or applying self-adaptation, comes at
a cost for a participant [35, 37, 143, 250, 415, 424]. Direct costs arise either in terms of network
usage for cloud-based applications, energy-consumption for energy-restricted participants, or
general costs that are not always disclosed by a participant but influence the degree to which it
supports a given property [6, 54, 62, 79, 261, 325, 354, 356, 384, 386, 415, 424]. Indirect costs
arise from trade-offs that a participant has to make to provide a property at a given level or apply
self-adaptation.

Self-adaptation does not only change the actual supply for one generic property but might re-
quire the participant to reduce or restrict the actual support for other generic properties as well.
It can also influence the potential spectrum of adaptation still realizable for other generic prop-
erties. We illustrate this using two examples: 1) applying compression at a broker increases
latency but might have to be applied instead of transmitting uncompressed data in a WSN or
cloud-based settings [110, 173, 356]; and 2) a sensor might have to trade-off the accuracy of its
measurements against the latency and frequency for reporting them [99, 325, 415].

As participants change their support over time, the MOM needs to know about the actual and
potential support for a generic property available from active participants as well as the costs for
providing each generic property at a given level.

3.4.1 Capability Definition: Spectrum of Support and Costs

We introduce the notion of capabilities to expose the actual and potential support a participant
has to offer for a generic property. Using capabilities, a participant can describe a) the set of
generic properties it supports; b) the actual support for each generic property; c) the potential
support expressed as the full spectrum of realizable adaptation; and also d) quantify its current
costs for providing that support.

In our approach, capabilities do not merely describe the current state of the system. Rather, they
encapsulate information about the full spectrum a participant could and would support a generic
property with by applying adaptation. Capabilities enable publishers and MOM to describe and
price-in at runtime any restrictions imposed on them by their current state and context. Thus,
capabilities contain all information required by the MOM to decide at runtime if and to which
degree a participant might have to adapt in order to provide support for a given generic property
that satisfies the expectation of a subscriber.

Definition 4 (Capability). A capability describes the extent to which participant j can support prop-
erty py. Each capability C; is a tuple (py, LB, UB, CV, py.COSt,perqte (X)) that defines a) the spectrum
of support participant j in principle is capable of providing p; at by applying adaptation, denoted
as a range of values [C;.LB; C;.UB]; b) the actual support j is currently providing p; at denoted

3.4. Capabilities: Support for Properties 61

by the value C;.CV within the adjustable spectrum; and c) the cost function pj.costqperqee(X) for
providing p; at level x. O

A capability describes the actual and potential support of a participant for a generic property as
an interval of values denoting the realizable spectrum of adaptation as shown on the left-hand
side of Figure 3.19. Providing p, at a specific quality comes at a cost, described by the cost
function pj.cost,perqee(x). The cost function is defined over the interval [C;.LB; C;.UB], i.e.,
Pr-COStoperare(x) =00 Vx.(x <C;.LBV x > C;.UB). As shown on the right of Figure 3.19, the
cost function for a capability can be progressive, degressive, linear, or a step function [62, 79,
143, 424]. We do not impose any restrictions on the form of the cost function as it depends on
the configuration, design, state and context of each participant and may vary at runtime.

Costs
Current value A Degrisivg _
- " + Progressive
Lower bound Upper bound , Ve ;
P '
/ —— Step function
. / f
Generic | | , .
property Pk / K
/ .
Minimum > ~ < Maximum / e)
Spectrum supported _Ef_'—-'-_—. -t _ —— Linear
by adaptation > Dk

Figure 3.19.: Capability: actual and potential support for a generic property.

Please note that participants that cannot adapt at runtime can also use capabilities. Their capabil-
ities are defined over an interval of length zero with C;.LB = C;.CV = C;.UB. Consequently, the
cost function is only defined for the current value, i.e., p.COSt,perqre(X) =00 Vx # CL.CV.

Capabilities abstract from the application-logic of participants as they do not describe concrete
mechanisms or algorithms to manipulate a generic property. Thus, support for generic properties
is represented in a way that is independent of the implementation and design of a specific par-
ticipant, enabling the integration of a heterogeneous population of publishers and brokers. As
we have discussed, providing support for a specific generic property might result in side effects
on other generic properties at a dedicated participant. As these interdependencies depend on
each individual participant, they are not explicitly modeled in a capability. Rather, a participant
can express them by adjusting the spectrum, current value or costs for each generic property that
would be affected.

Types of Capabilities

A capability describes support for a generic property. As we have already briefly discussed in
Section 3.2, support for a generic property in an EBS has two aspects: determining the current
state of that generic property and the ability to manipulate this state at runtime, i.e., increase or
decrease it. In an EBS, different types of participants might have to take ownership for either of
these aspects. The current state of the generic property sampling rate of a publisher, for example,
has to be determined by the MOM while only the publisher can increase the sampling rate — the
MOM, however, can also decrease it. While subscribers are oblivious to this due to their top-

62 3. A Generic Model to Express Quality of Information Requirements in EBS

Table 3.6.: Mapping generic properties to the types of participants de-
termining and manipulating them based on [42].

Publisher MOM

Generic Property Atomic Broker-side Complex Interdependent

Accuracy
Alternatives
Completeness
Compression
Confidence
Delivery Guarantees
Drift

Freshness
Latency

Order

Precision
Provenance
Resolution
Sampling Rate
Security
Sensitivity
Trustworthiness

—_
N
N

w
N

EE B N B B N RupupEl BEl B B pul |
| gl N Bl pul B | pul Bl N N o=
| gl Eupul pupupny Bul pupEl N B=
EC0 00O D0OOmRDOOOmeOCOOOmO

1 Number of attributes per notification.

2 Number of notifications being part of a sequence.

3 Image compression for image sensors [57].

4 Lossy and lossless compression applied to a notification [356].

down view when defining expectations, the MOM must have a bottom-up perspective to identify
those participants that determine and manipulate different generic properties.

From the perspective of the MOM, capabilities about generic properties can be atomic, broker-
side, complex, or interdependent as shown in Table 3.6. Multiple matches indicate that a co-
ordination between publisher and MOM is necessary when having to manipulate the respective
generic property. For example, to guarantee the completeness of a sequence of notifications, both
publisher and MOM have to ensure that no notification is dropped.

A capability about a generic property is atomic if it is determined and manipulated by the pub-
lisher. From the perspective of the MOM, a capability about a generic property is broker-side, if
only the MOM can evaluate the current state of the system for this property at runtime®.

For example, only the MOM at runtime can determine the latency property as experienced by
subscribers, as it depends on two lower-level properties as shown in Figure 3.20 (left). The
overall latency is the sum of the latency of processing notifications from the MOM to subscribers
(latencygorwarding) as well as of the latency for receiving the notification at the MOM from the
publisher first (latencypypiication); the latter defining an effective lower bound for the latency.

In addition to being broker-side, a capability about a generic property can also be complex if
the MOM has to consider several lower-level properties when evaluating expectations about this
generic property. Thus, complex capabilities indicate relationships between generic properties

? In principle, the MOM can crosscheck every generic property at runtime. However, this would require increasing

resources for introspection and depends on the capabilities of the MOM. Thus, we mark a capability as broker-
side only if only the MOM can assess it at runtime but not by the publisher on its own.

3.4. Capabilities: Support for Properties 63

Subscriber

+

Latencyp,piication Latencyeonyarding Sampling Rate

..

..................................

Action ‘ Capability J Action ‘ Capability J Action Capability
1000ms
t(‘urrem =1 blicati Z -1 i
publication sent received E
e
MOM Publisher

Figure 3.20.: Freshness to illustrate a broker-side and complex generic property.

that are modeled as graphs or ontologies as discussed in Section 3.2.2. Freshness, for example,
depends on three different lower-level properties as shown in Figure 3.20. Determining the
freshness of a type of notification requires the MOM to consider the overall broker-side latency
for this type of notification as the sum of latencyoryarding @and latencyppicarion together with its
sampling rate as an indicator for the maximum amount of time that could have elapsed between
the event actually happening and its detection by the publisher [418].

Finally, a capability about a generic property can also be interdependent from the perspective
of the MOM. Interdependent capabilities denote support for generic properties that cannot be
provided by a single participant alone. Rather it depends on the contributions of multiple par-
ticipants. In contrast to complex capabilities, evaluating an interdependent capability does not
necessarily require to evaluate several different generic properties.

A capability about the generic property alternatives, for example, is interdependent: requirements
about alternatives can only be satisfied if a certain number of publishers is available where each
publisher provides not only the required type of notification but also supports a set of generic
properties to a degree that satisfies the other requirements defined in the expectation alongside
the requirement about alternatives. For example, we could add a requirement about alternatives
to expectation X3 (cf., Section 3.3.3), requiring notifications about events of type e to be provided
by at least 2 and at most 4 different publishers that all provide these notifications about e with
at least the required latency, accuracy, and precision. Thus, a capability about alternatives can
be broker-side or complex but does not have to be if the expectation is defined only over atomic
generic properties such as precision.

3.4.2 Capability Profiles: Characterizing Publishers

In an EBS, publishers provide all data as notifications while the MOM can only determine or
manipulate certain generic properties of these notifications. Thus, the system is only able to
satisfy an expectation if there is at least one publisher available that provides notifications with
generic properties matching the set of generic properties required by the subscriber.

64 3. A Generic Model to Express Quality of Information Requirements in EBS

We introduce the notion of a capability profile to characterize a publisher in terms of its overall
support for a set of generic properties. A capability profile bundles all capabilities of a publisher
for notifications of a given type of event together with those capabilities supported by the MOM.
Thus, a capability profile reflects the full set of capabilities available from a specific publisher for
notifications of a given type of event and can be matched against expectations.

Definition 5 (Capability Profile). A capability profile CP$ is a set of capabilities {Cs,...,C} asso-
ciated with publisher j for events of type e. It consists of atomic as well as broker-side capabilities
about generic properties py, ..., Dk- O

Multiple publishers can provide the same capability but with different ranges, current values, or
cost functions, i.e., support for a specific generic property. However, each publisher can define
only one capability per generic property. Consequently, capability profiles for the same type of
event (CP®) but associated with different publishers can be heterogeneous in terms of the

1. set of generic properties, e.g., CP; = {ce ... C¢

rate’ “latency

}ccp ={c,.,.C

e .
rate’ “latency’ Cconfidence}’

2. potential support available for each property through adaptation; and

3. the current values provided as actual support.

We use an example to show how capability profiles describe different publishers regarding their
support for generic properties. We show how we can use capability profiles to visually determine
if an expectation can be satisfied by notifications of a publisher or not. An algorithmic approach
for this is presented and discussed in detail in Chapter 4.

We define three capability profiles CP{, CP;, and CP5 about the generic properties sampling rate,
confidence of detection, latency, precision, and accuracy. Their lower and upper bounds as well as
current values are shown in Table 3.7; cost functions are omitted for the sake of simplicity!°.

Table 3.7.: Example of three capability profiles characterizing different publishers.

Sampling Rate Confidence Trustw. Latency Precision Accuracy
CP LB CV UB LB CV UB LB CV UB LB CV UB LB CV UB LB CV UB
CP{ 0 10 60 50 80 95 n m m 100 200 240 50 95 100 60 80 100
CP; 0 25 60 50 60 80 n m m 100 200 240 50 70 95 70 80 90
CPg 0 30 60 50 61 80 n 1 1 200 300 400 40 60 80 50 70 80

Note: Levels of trustworthiness are abbreviated with 1 = low, m = medium, and h = high.

Similar to expectations, we can visualize capability profiles in Figure 3.21 using star plots with
each axis representing the support for a generic property. On each axis, we plot three values: the
actual support for this generic property denoted by the current value (black), the minimal value
that could be provided after adaptation (light green), as well as the maximum value that could
be provided after adaptation (dark green). Connecting the dots of each type of value between the
different axes and filling out the area between the lower bound and the upper bound visualizes
the profile of a publisher: the green area denotes the potential support, i.e., all combinations
of values that could be provided by applying adaptation, while the black ring shows the actual
support for all generic properties the capability profile is defined about.

10 In Chapter 4 we will have a close look at how different cost functions affect the decisions of the MOM during

runtime negotiation.

3.4. Capabilities: Support for Properties 65

As we can see from the star plots in Figure 3.21, CP{ and CP% are quite similar with CP] having
higher current values for sampling rate, confidence of detection, precision, and accuracy (cf., Fig-
ure 3.21a and Figure 3.21c). Furthermore, a publisher supporting capabilities as bundled in CP]
would offer a wider spectrum of adaptation than a publisher characterized by CP;. By contrast,
the potential support for generic properties as described in CPj is rather limited, most obvious
for trustworthiness, precision and accuracy (cf., Figure 3.21e).

These differences are important when determining whether an expectation can be satisfied or
not. We use expectation X{ we have discussed in Section 3.3.1 as an illustration. We visually
compare each capability profile with X by superimposing the star plot of X{ (cf., Figure 3.13a)
with the star plot of each capability profile. This is shown in Figure 3.21b, 3.21d, and 3.21f.

Matching X? against CP{ (cf., Figure 3.21b) shows that the expectation would be satisfied by
notifications published by a publisher characterized by CP: the current state of each generic
property is satisfying the expectation’s requirements as illustrated by the black line of the current
values of CP] being covered by the red area of X] that defines its range of accepted values.
Matching X{ against CP; (cf., Figure 3.21d) in turn shows that the expectation would not be
satisfied at the moment as the current values for sampling rate, confidence of detection and
precision are not covered by the red area of X;. However, the green area of the potential support
of CP; is overlapping with the red area of X. Hence, adjusting the current values for these
generic properties could satisfy X{. Matching X{ against CP§, however, shows that CP; neither
does nor could satisfy the expectation. Even by applying adaptation, support for precision and
trustworthiness could not be provided at a level required by this expectation as illustrated by the
gap and missing overlap between the green and the red areas in Figure 3.21f.

3.4.3 Lifecycle of Capabilities and Capability Profiles

Each capability has a lifecycle as shown in Figure 3.22 that can be manipulated by a publisher
or the MOM to reflect changes to the current value, the spectrum of realizable adaptation or the
cost function of a capability.

Consequently, each capability profile has the same lifecycle states as a capability and is influenced
by transitions in the lifecycle of each capability it consists of. A capability profile’s lifecycle starts
with defining its first capability at a local publisher. As with expectations, capabilities become
active with the MOM becoming aware of a publisher’s capabilities by associating them at the
broker with an existing advertisement. A capability profile is registered at the MOM by registering
the first capability for this capability profile. The lifecycle of a capability ends with revoking it;
that of a capability profile ends with revoking the last capability it consists of.

During runtime, the situation of a publisher might change in a way that requires updating reg-
istered capability profiles without changing the advertisement. For example, a publisher might
still be able to publish its GPS position but at a lower rate or with a reduced spatial resolution for
consuming energy. Conversely, new resources might become available at runtime that improve
the support for a given property. For example, higher confidence of detection can be achieved due
to better contextual information during fusion [225].

A capability profile is automatically revoked if the associated advertisement is revoked by the
publisher; in case of the same capability profile being associated with multiple advertisements it
remains active and registered until the last associated advertisement has been revoked.

66 3. A Generic Model to Express Quality of Information Requirements in EBS

Confidence
of detection

Sampling Rate
60

100
Latency 24 Precision
= medium
—— lower Bound
—— upper Bound
100 —— current Value
Accuracy Trustworthiness
- . e

(a) Capability profile CPS.

. Confidence

Sampling Rate of detection
Latency 240 Precision
—— lower Bound
__ upper Bound

—— current Value

Accuracy Trustworthiness

(c) Capability profile CP5.

Confidence

Sampling Rate of detection

Latency 80 Precision
40

lower Bound
upper Bound
current Value

Accuracy Trustworthiness

(e) Capability profile CP5.

Confidence
of detection

Sampling Rate

Latency Precision
Capability Profile
—— lower Bound
—— upper Bound
—— current Value
—— lower Bound
—— upper Bound
Accuracy Trustworthiness
(b) Overlap of CP§ with Xj.
. Confidence
Sampling Rate of detection
Latency Precision

Capability Profile
—— lower Bound

—— upper Bound
—— current Value
Expectation
—— lower Bound
—— upper Bound
Accuracy Trustworthiness
(d) Overlap of CP, with Xj.
. Confidence
Sampling Rate of detection
Latency Precision

Capability Profile

—— lower Bound
—— upper Bound
—— current Value

Expectation
—— lower Bound
—— upper Bound

Accuracy Trustworthiness

(f) Overlap of CP; with X.

Figure 3.21.: Star plots showing examples for capability profiles CP],CP5, and CP; as well as their
ability to support requirements defined in expectation X7 (cf., Table 6.3).

3.4. Capabilities: Support for Properties

67

start end
” Publisher
(__petine) (
Define > Delete
e) ‘
y

>hRevoke)
!

Register

active passive

Message-oriented Middleware (MOM)

Figure 3.22.: Lifecycle states and transitions of a capability as well as a capability profile.

3.5 Feedback: Enabler of Self-Adaptation and Renegotiation

Feedback encourages a more efficient usage of system resources as it enables participants to
adapt their behavior at runtime and enables multi-round negotiations with the MOM about the
capabilities to provide and the expectations to satisfy [144].

In an EBS, publishers and subscribers are able and willing to adapt their behavior at runtime
to react to changes in their context or the system state [2, 3, 60, 61, 63, 68, 114, 220, 221,
222, 353]. They require feedback about their individual expectations or capabilities as well as
the system state to assess whether they have to adapt. Currently, however, such feedback is not
available at runtime in an EBS as there is only a unidirectional flow of information from pub-
lishers to subscribers as neither subscribers nor publishers get any feedback [171]. For example,
publishers do not know if their publications meet any demand by subscribers and vice-versa.

We provide participants with individual and aggregated feedback from the MOM at runtime

as shown in Figure 3.23. The different types of feedback and their respective recipients are
discussed in detail in the remainder of this section.

Feedback

Subscriber Expectation State Update
ASIA monitoring
updates
Publisher Adaptation Advice
Individual Aggregated

Figure 3.23.: Types of feedback given by the MOM and the respective recipients.

3.5.1 Individual Feedback

Individual feedback is intended for a dedicated participant. It contains state updates from the
MOM about expectations of a subscriber or adaptation advices for capabilities of a publisher.

68 3. A Generic Model to Express Quality of Information Requirements in EBS

Expectation State Updates to Subscribers

Subscribers get informed if the state of their active expectations has changed. This individ-
ual feedback is provided by the MOM and can be used by subscribers to assess the currently
consumed notifications regarding their Qol. It may trigger changes to expectations and start a
renegotiation. From the perspective of a subscriber, an active expectation can be either satisfied,
unsatisfied or pending to be satisfied as shown in Figure 3.24.

Pending

o
@ @

Satisfied Unsatisfied

Figure 3.24.: States and state transitions of an expectation from the subscriber’s perspective.

Receiving feedback that an expectation is currently satisfied informs the subscriber that from now
on notifications being forwarded from the MOM correspond to the requirements formalized in
the expectation to the degree pre-defined by the MOM. For example, 90% or 95% of notifications
satisfy the mentioned expectation.

Sometimes, the system needs to adapt itself first before being able to satisfy an expectation. In
this case, the subscriber is informed about the expectation being pending to be satisfied. As soon
as the system has finished its adaptation and the expectation becomes satisfied, the subscribers
is informed about this change of state as described above.

If an expectation’s state changes to unsatisfied, subscribers are informed about the reason an
expectation cannot be satisfied at the moment. For example, the context of a publisher has
changed so that certain capabilities are not available anymore to the degree necessary to satisfy
the expectation about the corresponding property; or a certain property is currently not sup-
ported by the system at all (e.g., as there are no active publishers with suitable capabilities).

Definition 6 (Reason). The MOM expresses reasons for not being able to satisfy an expectation
X as tuples (X;,p,,a) with a describing the value currently provided by the system for the generic
property p, that has an unsatisfied requirement defined as part of expectation X;. O

Including the currently available value for a specific generic property into a reason provides the
subscriber with a reference value to check its current requirements against. Knowing the current
state of the system for its individual bundle of requirements, a subscriber becomes empowered
to revise its requirement. It might be that the currently available value for this generic property
turns out to be sufficient for subscriber in its current situation or context even if this had not been
foreseen and expressed by a matching expectation beforehand. Without any reference value,
however, the subscriber would just receive the information that its requirements are not satisfied
but have no indication about the orders of magnitude it would have to adjust its requirements in
order to get them satisfied.

As soon as the expectation can be satisfied or is pending to be satisfied, the subscriber is notified
about the new state.

3.5. Feedback: Enabler of Self-Adaptation and Renegotiation 69

Adaptation Advices to Publishers and MOM

Publishers and neighboring message brokers in a distributed MOM receive explicit adaptation
advices if the support for a generic property has to be adjusted. Reacting to context changes that
affect publishers, subscribers or the MOM, optimizing the usage of system resources, or becoming
able to satisfy expectations can be reasons for having to adjust support for properties. Using
adaptation advices, we extend the scope of support for generic properties to those manipulated
by publishers.

Referring to the notion of actions introduced in Section 3.2.2, an adaptation advice can be the
result of the MOM choosing an action to increment or decrement the current state of a property
as shown in Figure 3.25. For example, as shown in Equation (3.1), the action adaptPublisher
defined in the MOM for p,qmpiingrate, indicates that the current state of the generic property
sampling rate can be decreased by adapting a publisher with a registered capability for sampling
rate. This would result in an adaptation advice given from the MOM to the respective publisher.

Message-oriented Middleware

Generic - < . > .
Action Triggers
Property j 99
Defined for
' Adaptation Advice

Register new / Update existing
Capability - J Advises new
current value

Publisher

Figure 3.25.: Relationship adaptation advice, capability, generic property and actions.

Definition 7 (Adaptation Advice). An adaptation advice for a specific capability profile includes
the list of capabilities to adapt. This information is provided as tuples (CP;,Ci,) where C; denotes
the capability to adapt as part of capability profile CP;?, and [3 defines the required target value for
C;.CV. O

Please note that an adaptation advice does not state how a participant should adapt but rather de-
fines the desired outcome of the adaptation for a certain generic property. Thus, we abstract from
the implementation of the publisher and enable for triggering self-adaptation in heterogeneous
populations of publishers. Participants can decide locally about the most suitable mechanism to
apply in order to meet the new requirements set by the MOM.

In distributed networks of brokers, adaptation advices to publishers are forwarded to the edge
broker being directly connected to the respective publisher.

For complex properties or those that require a sequence of actions to be executed, adaptation ad-
vices received from a neighboring broker are broken down into several other adaptation advices
or parameters for locally applied actions.

70 3. A Generic Model to Express Quality of Information Requirements in EBS

After a successful adaptation, the publisher or broker would update the current value C;.CV of
the capability C; that has changed.

3.5.2 Aggregated Feedback

While individual feedback focuses on specific expectations and capabilities of a particular par-
ticipant, aggregated feedback refers to runtime monitoring of an EBS. While only a single par-
ticipant receives individual feedback, aggregated feedback is broadcasted to all participants that
have registered interest in it — subscribers, publishers, and brokers in a distributed MOM. Ag-
gregated feedback provides participants with updates about the population and dynamics of the
system at runtime.

The population of an EBS is described by metrics such as the number of publishers or subscribers
active for notifications of a certain type e € E, set of generic properties, or content as defined
in Equations (3.11) and (3.12). For example, the total number of active publishers providing
temperature data about cargo container #50 with at least 75% confidence of detection.

publisherCount, #publishers active for e € E (3.11)

subscriberCount, #subscribers active for e € E (3.12)

The dynamics of an EBS refers to how demand and supply for notifications changes over time.
Key metrics are the average sampling rates of notifications or rates that notifications are sub-
scribed to or unsubscribed from. Equations (3.13) and (3.14) define these metrics for notifica-
tions about events of type e € E.

samplingRate, #notifications/sec e € E is published with (3.13)
subscriptionRate, #subscriptions/sec for e € E (3.14)

Using these metrics we can define composite Key Performance Indicators (KPIs) to describe the
importance of every publisher j and subscriber i based on the set of event types e they pub-
lish (Ef C E) notifications about or subscribe to (Ef C E). For each publisher j we define
the total number of subscribers that j is serving across all published types of notifications in
eq. (3.15). The number of subscribers consuming notifications published by j is one indicator for
the importance of j for the EBS.

EP
J
servedSubscribers ;= Z subscriberCount, (3.15)

e

However, j might not be the only publisher providing notifications about events of type e. Thus,
we compute the Power of Supply (PoS) of j as defined in eq. (3.16). This KPI expresses the

3.5. Feedback: Enabler of Self-Adaptation and Renegotiation 71

relative importance of a single publisher for providing subscribers with notifications about type
e; this importance decreases with an increasing number of alternative publishers.

1
relativePowerOfSupply, ; = publisherCount (3.16)
e

Complementary from the perspective of a subscriber, the Power of Demand (PoD) puts into per-
spective the importance of a single subscriber as defined in eq. (3.17).

subscriberCount,

PowerOfDemand, = (3.17)

E .
Y. subscriberCount,/

We use four examples to illustrate how aggregation updates about such metrics can be further
utilized by the different types of participants in an EBS depending on their design or context:

Example 1: Some collaborative sensing tasks in the IoT require a minimum number of au-
tonomous sensors to be active at the same time. An insufficient number of alternative
publishers for notifications about a certain type of event or set of generic properties ren-
ders the sensing task impossible while an excessive number of active publishers has to be
avoided to optimize the overall utilization of the system [339, 386]. Thus, a publisher
requires knowing the number of other active publishers currently providing similar notifi-
cations. Depending on its business logic it might be able to turn itself into an alternative
publisher if required or hibernate in case of too many publishers being available. Using
Equation (3.16), a publisher would define two thresholds for its PoS: one that results in
hibernation when under-run and one that activates the publisher when exceeded.

Example 2: Subscribers might require notifications to be supplied by a certain number of alter-
native publishers to perform a certain task, or they are resource-restricted and need to
calculate a maximum receiving rate based on requirements about a maximum sampling
rate and number of alternative publishers (cf., Section 3.2.1). For both types of tasks, sub-
scribers need to know the current number of active publishers as defined in Equation (3.11)
as well as the current sampling rate for a certain type of event and set of generic properties
as defined in Equation (3.13).

Example 3: Brokers in a distributed MOM have to monitor the number of active publishers pro-
viding notifications with a specific set of properties to detect changes in the system state
that require a renegotiation of expectations. Furthermore, approaches for load-balancing
and optimization need to quantify the importance and replaceablility of a given publisher
as defined in Equations (3.15) and (3.16), or for a given subscriber (cf., Equation (3.17)).

Example 4: A company participates in inter-organizational business processes that rely on a dis-
tributed EBS across companies for exchanging information. Assessing the importance of
each subscriber or publisher for runtime governance requires up-to-date monitoring in-
formation about the state of the system [78, 169, 170, 177]. The company’s IT Service
Management (ITSM) requires information about the supply for each subscriber in addition
to the information required for load-balancing as described in the preceding example.

72 3. A Generic Model to Express Quality of Information Requirements in EBS

While the necessary monitoring information is easy to obtain for a centralized MOM at runtime,
it is not available to brokers in a distributed MOM — they do only know about their directly
connected neighbors [170, 171, 172].

Effective Runtime Monitoring

Providing effective runtime monitoring for decentralized and distributed EBS remains an open
research topic due to the inherent anonymity and scalability of EBS.

Current approaches have limited effectiveness, as they require the deployment of additional mon-
itoring overlays (e.g., SDIMS [427] or Adam2 [365]) that provide a fixed set of available metrics
with limited granularity. On the conceptual level, they are unsuited for expressing subjective VoI,
which requires different sets of Qol properties as discussed in Section 3.2.1 and Section 3.3. On
the technical level, these additional monitoring overlays generate traffic overhead and additional
effort for operation and maintenance, which increases monitoring costs [171, 172].

We propose a new approach to effectively monitor large-scale distributed EBS based on the con-
cept of Application-specific Integrated Aggregation (ASIA). Our approach provides fine-grained
aggregated metrics about the population and dynamics of an EBS at runtime without compro-
mising performance and scalability of the monitored EBS.

Participants using our approach do not have to frequently pull information about the current
state of the system. Instead, they are informed proactively only if the state of the system has
changed to a degree that they have defined as being significant for them. The same metrics are
available for publishers, subscribers, and brokers of the MOM.

Our approach allows participants to individually specify the aspect of the system state they are
interested in, the granularity of the metrics they want to be kept updated about, and the precision
of these updates. The number of active subscribers is one aspect of the system state, the current
rate of subscription another. Granularity defines the level of detail an aspect of the system is
measured at, e.g., the number of subscribers for any temperatureEvent versus the number of
subscribers only interested in temperatureEvents for container #50 at confidence >78%). For
that purpose, our approach allows each participant to define an individual level of granularity.
Precision specifies the maximum degree to which the system state known at the participant
is allowed to be inaccurate at any time by hiding smaller changes to the system state to the
participant. For the same aspect of the system state, each participant might have an individual
perception about what is significant or insignificant. Hence our approach supports different levels
of granularity and precision for the same metric.

ASIA for Aggregated Feedback: Overview

The notion of imprecision is at the heart of our approach: participants can individually define
what they consider to be insignificant changes they do not want to be informed about. For each
monitoring metric they are interested in, a participant can specify an imprecision v at runtime.
Imprecision specifies how far the system state is allowed to vary from the most recent report of
metric values to the participant. For example, a publisher wants to be notified only if the number
of active subscribers for temperatureEvent has changed by more than ten subscribers compared
to the last time the system state has been reported; smaller fluctuations in the population are not
considered to be significant and the publisher does not want to be informed about them. This

3.5. Feedback: Enabler of Self-Adaptation and Renegotiation 73

relaxation is propagated throughout the network and is applied by every participating broker in
the EBS, minimizing the number of update messages necessary.

Figure 3.26 illustrates the resulting trade-off: requests for monitoring data with high precision
result in a large number of update messages as even minor changes are reported. In turn, higher
imprecision reduces the number of aggregated feedback updates a participant receives from the
system. However, this results in a coarse-grained representation of the system state.

Total number of updates reported

Imprecision of aggregated information

Precision of metrics reported by ASIA high

'

Imprecision

A
Lowerbound A Upper bound

reported reported
True value >

Figure 3.26.: ASIA imprecision trades data precision with costs for processing updates: upper and
lower bounds of monitoring updates enclose the true value.

Definition 8 (Aggregated Feedback). Participants receive aggregated feedback as tuples (m,(e),
<, UB, LB, 7, t,) with m,(e) the metric that represents the system state regarding a particular
aspect at time t,, LB the lower bound of the current interval the true value is contained in and UB
the upper bound of the interval with length v. The granularity of m,(e) can be increased by an
optional list of constraints ¢ = {&,...,¢&,}. Each constraint & € ¢ is a tuple (key, >, value)
itself with > an operator >€ {<, <,=,>,>} applied to value. O

Aggregated feedback is delivered to all participants that have registered interest in a metric
m,(e) about the system’s population or state such as the examples defined in Equations (3.11)
to (3.14). The granularity of metrics can be increased by a list of additional contraints ¢ .
For example, M, piishercount(€) as defined in Equation (3.11) requested with ¢ = 0 would re-
turn the total number of publishers providing notifications about events of type e without any
constraints. Using ¢ = {(’samplingRate’,>,40),('trustworthiness’,>,'medium’)} instead
keeps the subscriber informed only about the number of those publishers that provide notifica-
tions about events of type e at a rate of at least 40 notifications per second and have a level of

trustworthiness of at least 'medium’.

As shown in Figure 3.27a, ASIA is not reporting a single value for each metric but an interval
of values, defined by a lower and an upper bound. The size of the interval depends on the
imprecision v that has been chosen by the subscriber. Nevertheless, the interval always encloses
the true value for m,(e) as shown in Figure 3.27b. Updates for m,(e) are sent to a participant
only if the current state exceeds the boundaries of the interval that has been reported to that

74 3. A Generic Model to Express Quality of Information Requirements in EBS

participant before. Thus, participants do not have to process aggregation updates reflecting
changes that are insignificant to them.

Imprecision

(ma(e)a ?a U’b) lb7 67 ts

Aggregation update

(a) Tuple representing aggregated feedback

120
I}

—8— True value
-© - Monitoring update, upper bound
gmm - m—mm - -- - --©-- Monitoring update, lower bound

100
Il

80

Events per second

T T T 1
0 20000 40000 60000 80000
Time elapsed (milliseconds)

(b) Reported intervals always enclose v.

Figure 3.27.: Example for representing the sampling rate using ASIA aggregations.

Example: Monitoring the Sampling Rate

We use an example to illustrate the impact of different levels of imprecision on the precision of
the system state that is reported back to a participant. The sampling rate for a given type of
notification changes dynamically over time as shown in Figure 3.28a. A subscriber wants to be
updated about this but might not care about deviations of =20 notifications/second. At the same
time, a publisher is also interested in updates about the sampling rate for notifications about the
same type of event but does not care about deviations of £50 notifications/second. Consequently,
the subscriber chooses an imprecision of 75 = 20 while the publisher sets v, = 50.

The aggregated feedback about the system state reported to both subscriber and publisher reflects
the general rate distribution over time but hides changes that each participant has individually
defined as being insignificant. Figure 3.28Db illustrates the effect of U5 = 20 on the results sent

3.5. Feedback: Enabler of Self-Adaptation and Renegotiation 75

Events per second

T T T 1
0 20000 40000 60000 80000
Time elapsed (milliseconds)

(a) Example for a changing sampling rate

- - Monitoring update, upper bound
--@- Monitoring update, lower bound

120
L

100
L

80

Events per second
L]

T T T T
20000 40000 60000 80000
Time elapsed (milliseconds)

o4

(b) Sampling rate of Figure 3.28a reported with 7 = 20.

120
)

—6— ASIA update upper bound
—6— ASIA update lower bound

100
|

Events per second
0
L

T T T 1
0 20000 40000 60000 80000
Time elapsed (milliseconds)

(c) Sampling rate of Figure 3.28a reported with 7 = 50.

Figure 3.28.: Example for representing the sampling rate using ASIA aggregations.

76 3. A Generic Model to Express Quality of Information Requirements in EBS

to the subscriber representing the workload shown in Figure 3.28a: the temporarily declining
sampling rate (grey area) is ignored as the fluctuation in that area is less than £ 20 events/sec-
ond. The publisher is left with a very coarse grained representation of the system state as shown
in Figure 3.28c as the chosen imprecision v, = 50 hides most of the dynamics.

Referring to the example shown in Figure 3.28a, the participant receives 14 updates when using
an imprecision of 20 as shown in Figure 3.28b; choosing an imprecision of 50, however, would
result in only 3 updates sent to the participant for the same workload as shown in Figure 3.28c.
The received updates can be forwarded to analytical systems for further aggregation, displayed
on dashboards for ITSM as shown in Figure 3.29, or used for self-adaptation [173, 177].

~aY*MashZone staging Backup

[Evenenypes | Smmary Event ype

temperatureEvent START phase 0 2014-04-08 11:24:58
Type Color m START phase 1 2014-04-08 11:25:08
80 — B

temperatureEvent " START phase 2 2014-04-08 11:25:18
o 40 START phase 3 2014-04-08 11:25:28
sitionEvent

po) o E . , — START phase4 20140408 11:25:38

expectedDelivery Publishers ~ Subscribers Publications Subs START phase 5 2014-04-08 11:25:48

processDuration START phase 6 2014-04-08 11:25:58

Average Rate

START phase 7 2014-04-08 11:26:08
suscriptons [N Subscriptions 3 s ?
Publications [INMN[L] | |Unsubscriptions 15 .

0 10 20 30 40 50 60 70 80 %0

Publication Rate [~
100

~ UpperBound

J lﬁ LowerBound
| |

@Ho ® ® ® ® ° ®

o 78,974

Zoom: . Fine Tune:

O

a @ 100% [31 Refresh ail dota Properties | Hstory

Figure 3.29.: Example for a dashboard to support runtime governance of EBS [177].

3.6 Summary

In this chapter, we have presented the core components of our model to express requirements
about and support for Qol in an EBS: expectations, capabilities and feedback.

We have discussed the relationship between Qol and other related concepts addressing runtime
quality. We have shown that Qol is a key concept for any data-driven task as it bridges the gap
between objectively measureable characteristics of a system and subjective preferences about
these characteristics. We have established a taxonomy to distinguish objective characteristics
from subjective preferences and have derived a generic format to model characteristics as generic
properties. Based on this generic representation, we have introduced the notions of expectations
and capabilities.

Expectations enable subscribers to map their individual preferences to malleable sets of require-
ments about generic properties, rank these sets with utility values and declare trade-offs between
them. The MOM can exploit the explicit trade-offs and rankings when trying to satisfy an expec-
tation while defining requirements in a malleable way simplifies the definition of a requirement.
We have introduced the fidelity metric to quantify the conformance between the data provided by
the EBS and the preferences of a single subscriber. Allowing subscribers to weigh their require-
ments on their own raises questions about incentives and misuse, i.e., how to restrain subscribers
from misusing the system by weighing all of their requirements with very high utility values to
get them satisfied. These questions touch on general issues about incentives and a common

3.6. Summary 77

approach is to combine rankings with prices to be paid by the requester [381]. For this disser-
tation, however, incentive mechanisms and ways to prevent misuse are out of scope. For further
discussion about pricing models and incentive mechanisms for networked systems, we refer to
[107, 144, 286, 383, 382, 424].

Support for generic properties is formalized by the notion of capabilities we have introduced
to capture the actual and potential support a publisher can offer for a generic property. The
MOM uses capability profiles to decide if an expectation can be satisfied and assess the degree of
adaptation required. This decision process will be discussed in detail in the following chapter.

Feedback is essential for self-adaptation at runtime to satisfy expectations or optimize the overall
system utilization. We have introduced different types of feedback provided by the MOM at
runtime as part of our approach. We have discussed how participants can adjust their behavior
at runtime based on aggregated feedback about the system state or individual feedback about
their expectations and capabilities.

78 3. A Generic Model to Express Quality of Information Requirements in EBS

4 Runtime Negotiation and Enforcement

We have introduced expectations, capabilities and feedback in the previous chapter. We have
shown how subscribers can manage their individual Quality of Information (QoI) requirements
at runtime using expectations; publishers use capabilities to expose their current state as well as
their abilities to support Qol properties to the Message-oriented Middleware (MOM) at runtime.
Participants can use the feedback provided as part of our approach to adapt at runtime.

In this chapter, we describe the algorithms and concepts used at runtime by the MOM to negotiate
expectations with capabilities and decide on how to enforce which Qol requirements. As shown
in Figure 4.1, runtime support for Qol requirements in our approach combines negotiation with
adaptation at runtime following the Observe-Orient-Decide-Act (OODA) cycle1 [70, 330].

OODA steps
Context or state change at runtime

affects

@ System Participant Observe |«
Capability Expectation
4 detects notilfiesA

v | v

— Runtime negotiation

[Orient
@ Matching expectations to
capabilities
L v
[v
0 Decide
@ Safeguarding decision

— Runtime adaptation
[

@ Execute adaptation plan

L
—— —] = —— = Act

[

I

I I
| I
| I
I)
I I
I Decide on satisfiable l
I @ expectations |
I I I
I I
I I
I I
I I
I I
I I
I I

Give individual &
aggregated feedback

Figure 4.1.: Chapter overview: runtime support for Qol following the OODA cycle.

In the observe step, any changes that affect capabilities or expectations are detected — either using
runtime monitoring in a self-aware system or actively announced by participants. In the orient
step, the MOM has to identify the impact of the detected changes on the current state of the
system while the decide step is about deciding on how to react; the runtime negotiation phase in
our approach combines both steps. Finally, the reached decision is enforced in the act step; in
our approach, this runtime adaptation phase consists of executing the adaptation plan and giving
feedback to participants.

1 Also referred to as monitor-analyze-plan-execute (MAPE) feedback loop [12].

79

The whole process of runtime negotiation and runtime adaptation is performed for a single expec-
tation at a time. It can be triggered by a subscriber registering/updating an active expectation or
by changes to a capability profile. A changed capability profile requires checking all expectations
affected by it. The latter is the case if a publisher revokes/updates a capability profile or if the
system state changes and affects a capability.

In Section 4.1, we present algorithms for matching expectations to capabilities in order to identify
satisfied, satisfiable and unsatisfiable requirements. An expectation is satisfied if the system
already delivers data with conforming Qol properties, or it is considered to be satisfiable if it
would become satisfied after adapting the system. Otherwise, it is deemed unsatisfiable.

In Section 4.2, we focus on satisfiable expectations as adapting the system to satisfy them comes
at additional costs. We discuss strategies to decide on whether to satisfy an expectation or decline
it as unsatisfied.

In Section 4.3, we discuss algorithms to safeguard the set of possible adaptations resulting from
the first two steps of the negotiation phase. Here, safeguarding refers to making sure that adapt-
ing the system to satisfy a dedicated expectation does not violate other requirements or con-
straints imposed by the MOM. The steps discussed in Sections 4.2 and 4.3 could be combined
as they both address optimization and load-balancing aspects. We discuss them in separation to
distinguish between deciding on satisfiable expectations and safeguarding the decision.

In Section 4.4, we show how decisions are enforced at runtime by triggering self-adaption of the
MOM and advising publishers to adapt using individual feedback. We show examples for how
requirements for the different categories of generic properties can be enforced by publishers and
the MOM - either in isolation or by coordinated adaptation.

In Section 4.5, we present the concepts used in our approach to monitor the system state at
runtime and provide participants with aggregated feedback about the population and dynamics
of the Event-based System (EBS). Details on how participants inform the MOM about changes to
their requirements or capabilities have already been discussed in Sections 3.3 and 3.4 while the
types of individual and aggregated feedback have been covered in Section 3.5.

Finally, we discuss different types of conflicts that could arise at runtime in Section 4.6. We
describe examples for each category of conflicts and how they are resolved in our approach.

4.1 Matching Expectations to Capabilities

Requirements negotiation in an EBS can be done automatically at runtime inside the MOM. The
objective is to identify three sets of expectations: those that are already satisfied with the current
state of the system and those that are currently unsatisfied but generally satisfiable by adapting
the system. In some cases, however, a requirement cannot be satisfied due to limitations of the
system or cost constraints. In this case, it has to be declined as unsatisfiable

The first step of the runtime negotiation phase is about determining whether an expectation can
be satisfied by the system at all. Thus, we have to match the set of requirements contained in an
expectation against the capabilities currently available from publishers. As shown in Figure 4.2,
this step can be broken down into three tasks.

First, the MOM has to identify those publishers that support all non-interdependent generic
properties required by the expectation in a set-matching step. Second, for each of the asso-
ciated capability profiles, we have to match the ranges of its capabilities against the required

80 4. Runtime Negotiation and Enforcement

. Matching
— T
—
. L - 0 Set Matching
— Runtime negotiation - .
I .
Matching expectations to Range Matching
capabilities !]]
Atomic, broker-side
f & complex properties
@ Decide on satisfiable ~ ~ L
expectations . |
w \ e Interdependent
~ properties
@ Safeguarding decision ~N '

$ $

Preliminary state Sets of suitable and capable
of expectation publishers via their CPs
(satisfied, satisfiable,

or unsatisfiable) CaNDx¢, CANDx

+ preliminary adaptation plan

Figure 4.2.: Matching an expectation against the system state: set- and range-matching to iden-
tify the preliminary state of the expectation and those publishers that are able or
capable to satisfy the expectation.

ranges defined in the expectation. For this task we have to check ranges that are defined over
atomic, broker-side, or complex generic properties? first before matching the ranges of those
requirements defined over interdependent generic properties.

This first step of the runtime negotiation phase results in a preliminary state of the expectation
(satisfied, satisfiable, or unsatisfiable) together with two sets of capability profiles: one set of
capability profiles that already satisfy the expectation (CanDye) as well as one set of capability

profiles associated with publishers that are capable in principle but would have to adapt (CANDxe).
We maintain both sets for each expectation X! together with a preliminary adaptation plan.

4.1.1 Set-Matching to Find Suitable Capability Profiles

In the first step of the matching phase, the MOM has to find a set of publishers that are able to
satisfy the expectation. As publishers are represented by their capability profiles, we have to find
a set of suitable capability profiles. A capability profile CP; is suitable if matching capabilities for
all generic properties defined in the expectation can be found in CP;. We call the resulting set
of capability profiles we can match X{ against nominees (Nomye). By definition, interdependent
generic properties, such as alternatives, cannot be provided b}; a single publisher. Hence, they
cannot be part of a single capability profile and are not considered during set matching.

The algorithm that determines the individual nominees for an expectation X{ based on a set of
capability profiles {CPj,...,CP;} is shown in Algorithm 2 in the appendix. For each CP; that
is registered for the same type of notification e as X?, we check whether it supports at least®
all non-interdependent generic properties defined in X{ (line 3). This check is done using the
mapping function ©(p,) (line 4) which returns a capability C; that matches p; € X? in syn-
tax and semantics as described on page 45. The algorithm returns NOMXlg = {CP} € NOMXle -
{CP§,...,CP!} | Vp €X!A-isInterdependent(p,).0(p;) = C; € CP{}.

2
3

See Section 3.4.1 and table 3.6 for more details and examples on each type of generic property.
Please note that this includes capability profiles that offer support for a larger set of generic properties as defined
in the expectation, i.e., X? C CP;

4.1. Matching Expectations to Capabilities 81

4.1.2 Range-Matching for Each Generic Property

Having identified a set of publishers that support at least all non-interdependent generic proper-
ties defined in X{, we have to check whether the extent of the offered support suffices to satisfy
the requirements. This is done by matching the range defined in each requirement against the
range and current value of the matching capability in each capability profile CP; € NOMX?.

Figures 4.3 and 4.4 illustrate the different types of relationships between a capability and differ-
ent requirements about generic properties with maximizing or minimizing improvement direc-
tions: first, the current value of the capability could dominate the lower bound (Figure 4.3 A,B,D)
or upper bound (cf., Figure 4.4 G,H,J) of a requirement; it could even be enclosed by the upper
and lower bounds defined in a requirement (cf., Figure 4.3 B and Figure 4.4 G).

In addition, the range defined in a requirement could overlap with the range defined in the ca-
pability as shown in Figure 4.3 (A,B,C) and Figure 4.4 (EG,H). Alternatively, the ranges can be
disjoint as shown in Figure 4.3 (D,E) and Figure 4.4 (I1,J).

LB cv uB
Capability —| I |—> (maximizing)
| | |
| | |
Relationship Current Requirement in ! ! ! Requirement state if interval is...
value expectation : : : open closed
B | uB | |
| | (v)
overla dominates A > e
p : : satisfied satisfiable
| | |
overlap dominates B ! L b
! | satisfied satisfied
| | |
| | ()
overlap disjunct C + + () v
| | satisfiable satisfiable
| | |
o) | | |
disjunct dominates D . T T —>
| | | satisfied unsatisfiable
| | |
L - | | |
disjunct disjunct E T 1 T .-> X X
| | | unsatisfiable unsatisfiable
D Capability . Requirement UB = upper bound LB = lower bound CV = current value

Figure 4.3.: Maximizing improvement direction, e.g., precision: relationship between a capability
and a requirement with open/closed interval.

Determining the kind of relationship between a capability and a requirement is crucial to deter-
mine whether the requirement is satisfied or at least satisfiable.

The results differ depending on whether we assume requirements to be defined over open or
closed intervals: requirements with closed intervals as shown in Figures 4.3 and 4.4 are only
satisfied if the current value of the capability is enclosed by the lower and upper bounds defined
in the requirement (B,G).

For requirements with open intervals, however, it is sufficient for the current value to overfulfill
the lower bound of the requirement. For example, see Figure 4.3 (A,B,D) for a maximizing im-
provement direction, such as precision, and Figure 4.4 (G,H,I) for a minimizing improvement
directions, such as latency. The difference between open and closed intervals becomes most ap-
parent for the case where the ranges defined in the capability overfulfill both upper and lower

82 4. Runtime Negotiation and Enforcement

LB cv uB

Capability <—| I I— (minimizing)
|
|
|
|
|
|
|
T
|
|

|
|
Relationship Current Requirement in ! Requirement state if interval is...
value expectation : open closed
B | uB
overlap disjunct F 4- v v
satisfiable satisfiable

|
|
|
|
|
|
' v
|
|
| |
verl minat | L
overap do ates @ + satisfied satisfied
|
-_ satisfied satisfiable

| |
| |
overlap dominates H < | |
| |
| | |
I | | |
disjunct disjunct “I T T T
| | | satisfied unsatisfiable
| | |
L . - | | |
disjunct dominates J < 1 1 | .— X x
ur isfiable ur isfiable
| | |
D Capability . Requirement UB = upper bound LB = lower bound CV = current value

Figure 4.4.: Minimizing improvement direction, e.g., latency: relationship between a capability
and requirement with open/closed interval.

bounds of the requirement (D,J): for open requirements, this means that the requirement is sat-
isfied while it would be unsatisfiable for closed requirements as the current value of the capability
could never be adapted to satisfy the requirement. Contrastingly, requirements C and F are not
yet satisfied but satisfiable while E and J are unsatisfiable.

Definition 9 (Relationships capability and generic property). Generalizing the relationships
between capabilities and properties, we define the following terms for the requirement about a generic
property py of an expectation X; and a matching capability C; of a capability profile CPj.:

Satisfied requirement. The requirement about a maximizing generic property defined over an open
interval is satisfied if a matching capability’s current value dominates the lower bound of
the property: C;.CV > p,.LB. Respectively, a requirement defined over a generic property
with minimizing improvement direction is satisfied if the upper bound of the requirement is
dominated by the capability’s current value: C;.CV < p,.UB. A requirement defined over a
closed interval is only satisfied if the capability’s current value is enclosed by the lower and
upper bounds of the requirement (i.e., py.LB < C;.CV < p;.UB).

Overfulfilled requirement. A requirement is overfulfilled if its complete range is dominated by
the current value of the corresponding capability: C;.CV > p,.UB for maximization and
C;..CV < py.LB for minimizing improvement directions. While requirements defined over an
open interval are satisfied by overfulfilling capabilities, requirements defined over closed in-
tervals are unsatisfied. In some cases, the ranges do not even overlap: C;.LB > p;.UB for
maximization and C;.UB < py.LB for minimizing improvement directions.

Covered requirement. A requirement is covered if its range of accepted values overlaps with the
range of a matching capability: C;.LB < p;.UB A C;.UB = p;.LB) .

4.1. Matching Expectations to Capabilities 83

The key steps of the range-matching algorithm we execute per generic property p; € X? are illus-
trated in Figure 4.5; the full algorithm is given in pseudocode in Algorithm 4 in the appendix.

isSatisfied(py,C5.CV)

open {A,B,D,G,H,J} open {C,E,Fl}
closed {B,G} no closed {A,C,D,E,FH,I,J}

yes

pr — {satisfied}

.\

isOverfulfilled(pg, Cr..CV')

{C,E,EH,1}

{ADHJ} _yes

isCovered(py,Cy.LB,C,.UB)

isOpen(py.)
{AD,H,J}

/es no
pr — {satisfiable} pr — {unsatisfiable}
\ -

Figure 4.5.: Range-matching performed in Algorithm 4 and Algorithm 5 for each property to
check if the requirement is satisfied or satisfiable; letters refer to the types of rela-
tionships shown in Figures 4.3 and 4.4.

A,D,H,J
{ } no

{C,FH}

First, we check if the requirement is satisfied by the current state of the capability. For a re-
quirement defined over a a closed interval, the current value of a matching C; has to be within
the interval described by p,.LB and p,.UB — regardless of whether the improvement direction is
maximizing or minimizing; for open intervals, it is sufficient for the current value to be greater
or equal p,.LB for maximizing properties (and smaller or equal than p,.UB for minimizing, re-
spectively). In this case, we can add p; to the list of generic properties already satisfied by this
capability profile.

We first execute this algorithm for all requirements about non-interdependent generic properties
defined in X? (line 6) and each capability profile Cp; € NOMXlg (line 3). The results are two sets of
capability profiles: one that contains all capability profiles which already satisfy the expectation
(CANDxf) and one that contains all that would satisfy it after adapting (mxf).

In a subsequent step, we run the same checks shown in Figure 4.5 for each requirement in X?
that is defined over an interdependent generic property.

After checking all requirements about non-interdependent generic properties for all capability
profiles in Nomye, we proceed to check all remaining requirements about interdependent generic
properties. For each interdependent generic property we have to execute the algorithm that
checks whether a requirement is satisfied, satisfiable or unsatisfiable. The algorithm that has to
be applied depends on the semantics of each interdependent generic property.

We use the example of alternatives (cf., Algorithm 5 in the appendix) to illustrate the general
approach. While this process is the same sequence of checks as shown in Figure 4.5, we now have
to use current values that are computed by the MOM based on the number of capability profiles
in CaNDye and Canpye. The requirement is satisfied, if there are enough publishers satisfying all
other reciuirements about non-interdependent generic properties: |CANDye| > p;..LB (line 1). If
the number of capability profiles already satisfying all requirements about non-interdependent

84 4. Runtime Negotiation and Enforcement

generic properties is not yet sufficient, we have to take into account those capability profiles
that are capable of satisfying the remaining requirements with adaptation: |CANDXe| + |CANDXe| >
Dai¢-LB (line 6). In case of the requirement being defined over a closed interval with a maximum
number of alternatives, we also have to check if the number of publishers already satisfying all
other requirements does not exceed this upper bound: p,;,.LB < |CaNDye| < p,;;.UB. Otherwise,
the requirement’s state is set to satisfiable. l

4.1.3 Determining the Preliminary State of an Expectation

Having performed the first part of the runtime negotiation phase, we can already determine a
preliminary state of the expectation based on the results of the set and range-matching steps.

As long as there are no requirements about interdependent generic properties defined, an expec-
tation X is considered to be satisfied if there is at least a single capability profile that is already
satisfying X¢, i.e., CANDye # 0 (cf., Algorithm 4 lines 26-29). If there are requirements about in-
terdependent properties — such as alternatives — the number of capability profiles satisfying all
other requirements of X? has to be at least the minimum number required for this interdependent
property (cf., Algorithm 5 lines 4-7) to render an expectation satisfiable or satisfied.

The state of an expectation X? is the conjunction of each requirement’s state as shown in Fig-
ure 4.6: an expectation is satisfied by a capability profile if and only if the requirements about all
generic properties are already satisfied by the capability profile (A).

An expectation is satisfiable (B) by a capability profile if there is at least one requirement about
a generic property that is not yet satisfied by this capability profile but could be satisfied (e.g., b)
while all other requirements are already satisfied.

An expectation is unsatisfiable (C) by a capability profile if there is at least one requirement that
cannot be satisfied by the capability profile (e.g., c) — even if the requirements about all other
generic properties can be satisfied or are already satisfied.

Please note that these deductions are independent of each requirement being defined over open
or closed intervals as this characteristic; the isSatisfied method shown in Figure 4.5 and algo-
rithm 3 considers the type of interval.

Capability Expectation: Expectation Initial
Profile contained Requirements State adaptation plan
a b c

v v v satisfied —9 routeMessagesFrom(A)
satisfied satisfied satisfied

(satisfiable —p all actions available for adapting
satisfied satisfiable satisfied B.b to satisfy requirement b

unsatisfied —p nothing, as capability profile C
satisfied satisfied unsatisfiable does not satisfy the expectation

Figure 4.6.: State of an expectation (satisfied, satisfiable or unsatisfiable) depending on the ca-
pability profile that is matched.

4.1. Matching Expectations to Capabilities 85

The range-matching step populates an initial adaptation plan as shown on the right hand side
of Figure 4.6 in addition to the sets of suitable and capable publishers (cf., Algorithm 4 lines
22+28).

In case of a satisfied expectation, we have to make sure that the subscriber associated with
the respective expectation receives notifications from only those publishers that already provide
notifications that conform to the expectation. Thus, we add a routingAdaptation action (cf.,
Section 3.2.2) to the adaptation plan for each publisher P; that is associated with a capability
profile CP; € CANDXf (cf., Algorithm 4 line 28).

For every capability profile that could satisfy the expectation, we need to adapt the system first be-
fore we can acknowledge the expectation to be satisfied and route notifications to the subscriber.
From the range-matching step described in the previous section we know which capabilities to
decrease or increase for which capability profile. We use this knowledge here to select appropri-
ate actions for each satisfiable generic property and add them to the preliminary adaptation plan
(cf., Algorithm 4 lines 16+22).

For example, an expectation requires the generic property sampling rate provided by a publisher
to be decreased to 40 notifications per second. This can be done at the publisher by adjusting the
sampling rate (publisherAdaptation), or at the MOM by reducing the sampling rate delivered to
the subscriber (rateControlerAction). Let us also assume that the adaptation cost for a publisher-
Adaptation action is 10 while the adaptation cost for rateControlerAction is 2. In this case, we
add instances of both types of actions with their respective costs to the initial adaptation plan.

Thus, the preliminary adaptation plan can contain a mix of routing adaptations and other ac-
tions. This is the case whenever there is at least one capability profile that is already satisfying
the expectation but others are only capable. If the expectation contains requirements about
interdependable generic properties such as alternatives, we do adapt the routing only if there
are enough satisfying capability profiles so that at least the minimum number of alternative
publishers is satisfied. Otherwise, we first execute all adaptation actions that increase the num-
ber of suitable publishers before we adapt the routing and acknowledge the expectation to the
subscriber as being satisfied.

86 4. Runtime Negotiation and Enforcement

4.2 Deciding on Satisfiable Expectations

The range-matching step discussed previously marks an expectation as satisfiable if the system
could satisfy the contained requirements by adapting certain capabilities. Mechanisms for adapt-
ing the system have their own costs in addition to the costs for operating capabilities at a certain
level. Thus, the MOM has to assess the expected costs and adapt if the expected benefits outweigh
the calculated costs [79, 80, 381].

Whether a satisfiable expectation should be satisfied or not is an abstract decision problem to be
solved by the MOM. While every decision problem can be decomposed into a decision tree with
objectives, goals and attributes [249, 424], their nature and hierarchy depend on the preferences
of the decision maker. Thus, our model allows to express such preferences from the perspective
of the MOM that acts as the decision maker*. These preferences are orthogonal to the prefer-
ences articulated by subscribers and formalized in expectations. We follow the definitions of
Keeney [249] in that objectives describe outcomes that can be achieved to a certain degree while
goals describe outcomes that are achieved either completely or not.

Examples for objectives in the context of QoI in EBS:

* Maximize total utility.

* Maximize utility per subscriber.

* Maximize generated fidelity per subscriber.

* Maximize total number of subscribers with satisfied expectations.
* Minimize adaptation costs.

* Minimize operational costs.

Respectively, examples for goals are:

* Every subscriber has at least one satisfied expectation.
* No subscriber is put into disadvantage by an adaptation.
* No publisher is responsible for more than 40% of all satisfied expectations.

The preferences defined by the decision maker can consist of a single objective or of multiple
objectives and goals that can be conflicting due to limitations of the system.

In case that the preferences of the decision maker require the MOM to optimize multiple objec-
tive functions at the same time, the decision problem becomes an optimization problem. The
resulting optimization problem consists of a set of attributes (here: capabilities to adapt, utility
generated by an expectation, etc.), a set of objective functions that formalize objectives and goals
as well as a set of constraints [437]. In general, the optimization problems to solve are min-max
or max-min problems, i.e., some target function has to be maximized subject to several auxiliary
functions that need to be minimized or vice-versa; a feasible solution for such a problem does
not violate any constraints [297].

By abstracting the decision about a satisfiable expectation as an optimization problem, we can
rely on the huge body of work done for decades about optimization approaches in the area of
Multi-Objective Optimization Problem (MOOP) and Multi-Criteria Decision Making (MCDM).
However, the computational complexity of MOOPs is NP-hard if attributes require integer solu-
tions [83, 161], e.g., the number of alternative publishers to be chosen. Thus, heuristics and

4 In practice, we assume these preferences to be defined by the party deploying and operating the MOM.

4.2. Deciding on Satisfiable Expectations 87

relaxing assumptions are usually used in practice to find approximate (weak pareto-optimal)
solutions [36, 79, 80, 346, 381].

We summarize the general types of optimization approaches that build on preferences of the
decision maker and refer the interested reader to [83, 133, 151, 270, 272, 283, 297, 437] for a
more detailed presentation of the different approaches.

In general, three categories of approaches can be distinguished based on the point in time when
the preferences of the decision maker are defined [83, 133, 270, 437]:

1. A priori: the preferences of the decision maker are known beforehand. In this case, the
objectives and goals can be aggregated into a single objective function, e.g., using scalar-
ization, e-constraints, goal programming, lexicographical ordering, weighted global crite-
ria, or weighted sums; if the preferences establish a meaningful hierarchy of objectives,
multi-level programming can be used as well.

2. A posteriori: the preferences of the decision maker are not known beforehand. Thus, dif-
ferent alternative solutions are provided to the decision maker to choose from.

3. Interactive: the decision maker is included into the optimization process itself. At each step,
preferences can be defined that establish a hierarchy of objectives and narrow down the
solution space.

None of the above approaches is superior as such: the information available, the types of pref-
erences as well as system limitations determine feasible approaches for a specific optimization
problem [297].

Runtime negotiation in our model does not require a specific optimization approach to decide
on satisfiable expectations. Our model allows any custom approach to be used based on the
deployment scenario: how the decision is reached is encapsulated and transparent for all other
steps of the runtime negotiation phase.

4.2.1 Decision Strategies Encapsulating the Decision Process

In our approach, a decision strategy encapsulates an individual decision tree of minor and major
objectives or goals together with their attributes and optimization approach (optimal algorithms,
prediction models, or heuristics). We assume that the party deploying or operating the MOM
provides at least one decision strategy. In the remainder of this section we will discuss an example
for a simple decision strategy to illustrate the general principle.

A decision strategy encapsulates the two steps shown in Figure 4.7: calculating costs and deciding
on whether the expected benefits outweigh these costs. For a single satisfiable expectation,
applying a decision strategy results in a final state (satisfied or unsatisfied) for that expectation
as well as an updated adaptation plan.

Load-balancing approaches can be included when calculating the costs for adaptation, e.g., to
include resource utilization as a weighting factor; or it can be included in the second step when
deciding on whether the benefits outweigh the costs. For example, using the FIT score [169] to
weigh the total costs for adapting a publisher can be used to avoid overloading publishers.

Including or excluding those considerations, however, depends on the preferences of the decision
maker or the party defining a decision strategy.

88 4. Runtime Negotiation and Enforcement

A W

o ® N o »

10

Decision strategy __

Runtime negotiation _ - ;
| L
Matching expectations to _ - Calculate costs Decision strategies
‘ capabilities _ L can include load-
; . balancing strategies
@ Decide on satisfiable o Decide if benefits > costs
expectations L
i S
@ Safeguarding decision ‘ ‘

Final state Minimal
for expectation adaptation plan
(satisfied or unsatisfied) {at,...,an}

Figure 4.7.: Two-step approach to decide whether to satisfy a satisfiable expectation.

4.2.2 Example Strategy: First-Come, First-Served while Minimizing Costs

A valid decision strategy does not necessarily have to include aspects of multi-objective optimiza-
tion. For example, it could be based on a First-come, First-served (FCFS) policy just as well: the
MOM tries to satisfy expectations in the chronological order they are registered or updated. An
expectation X7, by subscriber S; should only be declined if the cost for providing it exceeds the
total cost of an already satisfied expectation X ’f,s by the same subscriber.

Algorithm 1 shows a simple heuristic to implement this strategy for each subscriber S;:

1. Select minimum adaptation plan to satisfy X;, (line 1).

2. Calculate total costs expected for satisfying X?, (line 4).

3. Calculate total costs for the currently satisfied X’ fs (line 3).

4. Satisfy X7, if satisfying it is less expensive than operating X ! f’s (line 6).

Algorithm 1: Decide if a satisfiable expectation should be satisfied with the example strategy.

Function decideOnSatisfiable(X¢

1,new’

ADAPTATIONPLANye) is
i,new
Result: minimal ADAPTATIONPLANye
3

ADAPTATIONPLAN;?ein < getAdaptationPlanMinimalCosts(X{, ADAPTATIONPLANye)

i,new i,new

COStS,,, < getTotalCosts(ADAPTATIONPLANye)
1,new

f’currm «— getCurrentSatisfiedExpectation(i) // Get currently satisfied expectation
COStScyrrent < getTotalCosts(X{ , on.)
state < unsatisfied
if coStSp,,, < COStS.yrren: then // Does it cost less on the long run?
‘ state « satisfied
else

L ADAPTATIONPLANge < 0
i,new

return ADAPTATIONPLANye
i,new

The total costs for satisfying an expectation in steps 2 and 3 include the costs for executing all
necessary adaptations as well as the costs for a publisher to continuously provide notifications
with certain capabilities. Thus, we do a rough break-even analysis in step 3 by calculating the
operational costs for providing & notifications that conform to Xf’k or X’f}s. In case that there is
no other expectation satisfied for S; so far, the costs for X’ f’s are set to 0o, automatically resulting
in the decision to satisfy X!

4.2. Deciding on Satisfiable Expectations 89

4.3 Safeguarding the Decision

In the runtime negotiation phase, a single expectation is negotiated at a time. This negotiation
results in a preliminary adaptation plan for the expectation. The adaptation plan contains all
actions that have to be executed for a set of capability profiles to satisfy the expectation: changes
to the routing table for those publishers that have capability profiles which already satisfy the
expectation; other actions for those capability profiles that require adaptation. The set of actions
is empty if the expectation is declined or cannot be satisfied even with adaptation as described
in Sections 4.1 and 4.2.

The last step of the runtime negotiation phase takes care that executing actions does not violate
constraints. Constraints stem from requirements defined in expectations as well as local or global
constraints imposed by the MOM due to budgets or load-balancing considerations. We refer to
this process as safeguarding.

Three examples illustrate such constraints:

» Advising one publisher to increase the sampling rate to satisfy the expectation currently un-
der negotiation might violate requirements about sampling rate defined in already satisfied
expectation.

* Advising several publishers to increase their sampling rate in order to satisfy a requirement
about alternatives might saturate a network link or broker and violate requirements about
latency and completeness [173].

* While the MOM can apply content aggregation or traffic shaping to satisfy requirements
about the latency of notifications, effectively reducing the number of processed notifications
can violate requirements about the sampling rate [138].

During the safeguarding process, we try to detect such violations of constraints and adjust the
adaptation plan accordingly. We decline the expectation as unsatisfiable if severe violations
cannot be avoided without emptying the adaptation plan. The feasibility and complexity of
the whole process depends on the custom decision strategy that is used.

In general, simulating the effect of adaptations before actually executing them or predicting
their impact on local or global constraints should be part of this process. However, this requires
complex performance and system models for EBSs and Distributed Event-based Systems (DEBSs)
to capture cause-effect relationships and make proper predictions. This actively pursued field of
research is out of scope of this dissertation and we refer the interested reader to [72, 202, 258,
305, 311, 367, 388, 410] for further information.

General Safeguarding Approach

In the remainder of this section, we describe the general safeguarding approach and show where
custom performance models and load-balancing approaches can be integrated. The sequence of
operations in our safeguarding algorithm is shown in Figure 4.8.

Safeguarding starts with parsing the initial adaptation plan that has been compiled during the
range-matching step described in Section 4.1.2 and the decision step in Section 4.2.

We rank all capability profiles affected by the adaptation plan according to a custom ranking
function. Starting with the top-ranked capability profile, we iteratively check whether the actions
defined for each capability profile would violate any global or local constraints.

90 4. Runtime Negotiation and Enforcement

Safeguarding decision

initial adaptation plan {a1, ..., am} LB = Load-balancing

Runtime negotiation /
T / rank affected
Matching expectations to V CPs
capabilities
L / resolved
! .
@ Decide on satisfiable / check for dadth?fE
expectations / violations a arf;ai'on
L

no violations violations unsolvable

~ return decline as
~ adaptation plan unsatisfied

Final adaptation plan
{alv cre am}

@ Safeguarding decision

Figure 4.8.: Steps to safeguard the adaptation plan.

If we detect such violations, we try to adapt the adaptation plan. For example, we could try
to use alternative actions as those currently defined or we could exclude the current capability
profile from the list. Finally, we end with a safe adaptation plan that we proceed with as the
final adaptation plan. The safeguarding algorithm rejects the expectation as unsatisfied if the
violations cannot be resolved. In this case, the final adaptation plan would be empty.

Integrating Load-balancing

Custom algorithms for load-balancing can be integrated in all steps of the safeguarding process
to distribute the load between different publishers or brokers. The ranking function allows for
encapsulating load-balancing aspects first and foremost. For example, the capability profiles
could be ranked based on their adaptation costs in ascending order to avoid expensive publishers
to be chosen first. Alternatively, ranking could be based on the utilization of the publishers
associated with each capability profile the action is targeting. Using the FIT-score [169], ranking
could be done in ascending order to choose less critical publishers first (as a high FIT score
indicates a high criticality) while ranking in descending order would start with more critical
publishers. Another possibility would be to rank publishers based on their trustworthiness score
in descending order. Alternatively, load-balancing can be included when checking for violations
or it can be used during the purging step in a similar way as during the initial ranking step.

Please note the difference between load-balancing in this section and load-balancing as part of
the decision mechanism discussed in Section 4.2. There, we sketched out how load-balancing
considerations can be included into the decision process of deciding whether the system should
adapt to enforce satisfiable requirements or not. By contrast, including load-balancing here aims
at how the expectation is going to be satisfied.

Example: Detecting and Resolving Violations for Alternatives

We illustrate the safeguarding process by describing how we avoid violations of the alternatives
requirement when assuming the simple decision strategy we describe in Section 4.2.2.

4.3. Safeguarding the Decision 91

When defined over a closed interval, the alternatives requirement can be violated by routing
notifications from too many publishers to a subscriber i. This can be avoided by checking the
size of |CANDye| and |CaNDye|: if the size of CaNDye already exceeds the range of allowed values,
we do not have to adapt arlly further capability plroﬁles from this list. Rather, we have to limit
the number of satisfying publishers that i receives notifications from. Conversely, if the sum of
satisfying and capable publishers exceeds the upper bound of the requirement, we have to limit
the number of capability profiles in mxi; to adapt®.

In both cases, all required information is available in the preliminary adaptation plan: routing
actions for satisfying capability profiles and other actions for capable capability profiles.

Thus, the basic algorithm we use for this is as follows:

1. Rank all capability profiles in the adaptation plan according to a ranking function

2. Iteratively check and resolve violations for requirements about generic properties other
than alternatives

3. Keep only the top-k capability profiles, delete all other from the adaptation plan

Here, k defines the upper bound defined for the requirement about alternatives if defined over a
closed interval. This way, we keep only the maximum number of capability profiles allowed by
the subscriber.

> Please note that for load-balancing reasons we could also decide to adapt capable publishers first and deactivate
publishers that already satisfy the expectation.

92 4. Runtime Negotiation and Enforcement

4.4 Runtime Adaptation

The last phase of the runtime support process is to adapt the system and give individual feedback
to subscribers. While system adaptation is limited to routing adjustments for satisfied expecta-
tions, approved satisfiable expectations require further adaptation. For the sake of clarity, we
focus on runtime adaptation to satisfy an expectation X{ € Sar; adaptation to free up resources
or optimize system utilization is part of future work.

Runtime adaptation can be realized in three ways by:

1. adapting the MOM transparently for publishers and subscribers;
2. advising publishers to adapt; or
3. coordinating the adaptation of both MOM and publishers.

In our model, all these different types of adaptations are uniformly represented by the generic
actions we have introduced in Section 3.2.2.

4.4.1 Middleware Self-Adaptation

Some generic properties can be influenced at the MOM using self-adaptation as discussed in Sec-
tion 3.2.2. While the MOM can influence some generic properties only in one direction (e.g., de-
crease), others can be influenced in both directions (i.e., increased or decreased). Adapting
the MOM transparently for participants is necessary when publishers are not able to adapt or
if adapting them would violate constraints. In this section, we present three mechanisms to
illustrate how self-adaptation by the MOM can be used to enforce requirements.

Adapt Routing

Routing adaptation refers to changing entries in the routing tables of a broker so that particular
participants are permitted or excluded from receiving notifications. Routing adaptation in the
context of our approach is used to ensure that a subscriber receives notifications only from those
publishers that have capability profiles conforming to its requirements. Notifications from other
publishers are not routed to the subscriber even though they match that subscriber’s subscription
in terms of notification type or content. This contrasts routing adaptation in a typical EBS or
DEBS where routing tables are populated based on matching advertisements and subscriptions.

Having access to the broker state allows us to build upon the existing routing tree built and
maintained by the broker. Routing adaptation increases or decreases the number of alternative
publishers a subscriber receives notifications from.

Decrease Sampling Rate Received by Subscribers

Reducing the sampling rate of notifications based on a leaky bucket algorithm, a token bucket
algorithm, load shedding, or content aggregation is a widely used mechanism in networked
systems [40, 141, 152, 153, 158, 240, 337, 405].

Such a rateController can be used by the MOM to reduce the sampling rate sr;, of notifications
to a lower rate sr,,, that another participant receives them with. The reduced outgoing rate can
be fixed or dynamically changing, depending on why this mechanism is used. While a fixed sr,,;
can be used to satisfy the requirements about sampling rate defined by a receiving subscriber, a

4.4. Runtime Adaptation 93

flexible outgoing rate allows the MOM to adjust the outgoing traffic. For example, to stay within
a bandwidth budget [173], or to reduce the total number of notifications to be processed by the
receiving broker, i.e., to free up processing resources there [138].

In this dissertation, we use rateControllers with both fixed and flexible sr,,, to reduce the
sampling rate of notifications of type e.

Reduce Forwarding and Path Latency of Notifications

The end-to-end latency of notifications as discussed in Section 3.2.1 can be broken down into
processing latency, forwarding latency and path latency [138]. Forwarding latency is added to
the publication latency of notifications due to the MOM having to process the notification. The
MOM can minimize the forwarding latency. In a DEBS, further mechanisms are available to
minimize the additional path latency that is added by dispatching notifications between brokers.
Eichholz [138] discusses and evaluates different mechanisms for an EBS and a DEBS.

All available mechanisms can be grouped into two categories: those that aim at prioritizing
certain notifications and those that aim at reducing the overall number of notifications to be
processed. For example, a single broker can influence the forwarding latency by adapting its
internal processing using notification prioritization, aggregation, or traffic shaping. In a DEBS,
assigning publishers or subscribers to different brokers in the topology (publisher placement and
subscriber placement) can be used to influence the path latency [138].

In this dissertation, we focus on publication and forwarding latency. The publication latency is
controlled to some degree by the publisher and cannot be transparently decreased by the MOM.
Additional forwarding latency, however, can be transparently minimized using aggregation and
load shedding as described and evaluated in detail in [138].

Using a rateController with flexible outgoing rates, the MOM tries to free up resources on the
broker to faster process notifications with strict latency requirements. The heuristic is triggered
whenever a watchdog detects a latency requirement being violated. The key steps are [138]:

1. Rank all processed types of notifications based on their quantity, volume and cumulative
fidelity in descending order.

2. Select the type of notification e that generates the least cumulative fidelity.

3. Rank all subscribers of € based on their expectations’ utility value in descending order.

4. Aggregate or drop notifications for those subscriber(s) of e with the lowest utility value.

Note that these steps describe a simple heuristic that tries to free up resources in a lazy fashion
whenever a violation is detected for as long as it is detected. The MOM tries to reduce the
number of notifications that have to be processed by aggregating or dropping all notifications of
a certain type destined for a specific set of subscribers. The heuristic tries to maximize the impact
on resource savings while limiting the impact on subscribers and the generated fidelity.

4.4.2 Client Self-Adaptation Using Feedback

In our approach we assume that most publishers can adjust their support for certain generic
properties dynamically at runtime by using self-adaptation and additional feedback from the
system [2, 3, 35, 62, 79, 96, 99, 109, 261, 362, 415]. For those publishers that are unable to
adapt on their own, we assume that wrappers can be deployed.

94 4. Runtime Negotiation and Enforcement

For example:

* A gmond monitoring agent within the Ganglia [298, 299] open-source monitoring system
can adjust the sampling rate of metrics using a wrapper that restarts the agent with new
configurations.

* A publisher being part of the FINCoS open-source benchmarking tool [304] can change its
sampling frequency, the precision and accuracy of its publications as well as its publication
latency at runtime without the need to restart.

In our approach, the MOM triggers runtime adaptation of a publisher by sending a dedicated
adaptation advice. As described in Section 3.5.1 and definition 7, such an adaptation advice
contains the list of capabilities to adjust together with the required target values. However, an
adaptation advice does not specify how this adaptation has to be done by the publisher.

4.4.3 Coordinated Adaptation

Adapting the current value for some generic properties requires coordination between MOM and
publishers. Coordinated adaptation can be realized explicitly as a sequence of actions or implicitly
by adjusting the costs of capabilities in the runtime negotiation phase.

We illustrate this using an example of a centralized EBS with a single broker, a single publisher
P, but two subscribers S; and S, with requirements about sampling rate defined over two closed
intervals that are disjoint.

Without coordinated adaptation, the requirements of only one subscriber could be satisfied; by
implicitly using coordinated adaptation, the requirements of both subscribers can be satisfied.

The initial situation is illustrated in Figure 4.9: publisher P; provides notifications with a current
sampling rate of 50 notifications per second to two subscribers S; and S,. Without any adapta-
tion, both subscribers S; and S, would receive notifications with this sampling rate that exceeds
their requirements about the closed intervals [10;20] (S;) and [30;40] (S,). However, P; could
adjust the sampling rate between 15 and 60 notifications per second using self-adaptation or
the MOM could apply self-adaptation to throttle the sampling rates delivered to each subscriber
using a rateController.

[1(); 20] LB cv uB

@ » [15; 60] | :
~ |
MOM <—50—‘ S. ! ‘
3 ® s —
| |
|

cv = 50 (closed)

: s l——
[30; 40] ! o

(closed)

satisfiable

satisfiable

Figure 4.9.: Problem: only P; available but conflicting requirements about sampling rate.

Adapting only P; would not satisfy both subscribers as their ranges of accepted values are defined
over closed intervals and do not overlap. Thus, advising P; to adjust to maxS; = 20 would leave
S, unsatisfied while adjusting to min S, = 30 would violate the requirement of S;.

Adapting the MOM would satisfy the requirements of both S; and S, as the sampling rate that
P, sends with is currently greater than the required sampling rate. The scenario is shown in
Figure 4.10: while P, would not adjust its current value and continue to send notifications with

4.4. Runtime Adaptation 95

rateController g (MOM) —l lﬁ unchanged
1

cv

[10; 20] e ™ us

. Pl _| I |—> (maximizing)
@\20 [15; 60]

o
I Lo
=MOM 4—50 S, i
satisfied
@A/ 40 T cv =50 i (°'°Sed): i |

|

: s
[30,40] (closed) + b satisfied

\; rateController (MOM)
So

Figure 4.10.: Potential solution: adaptation of MOM only, traffic P; higher than necessary.

a sampling rate of 50 to the MOM, the sampling rates delivered to subscribers are curbed to the
maximum values still accepted by each subscriber. While this solution satisfies both subscribers,
not adjusting P; results in an overhead of 10 notifications per second that have to be dropped or
aggregated by the MOM. This overhead wastes resources in terms of network traffic, CPU and
energy for P; and MOM.

Alternatively, we could adapt both P; and the MOM using coordinated adaptation. This scenario
is illustrated in Figure 4.11: while P; is advised to adjust its sampling rate to 40 to satisfy the
requirement of S, which is defined over higher values than S;, the MOM additionally adjusts
the sampling rate delivered to S;. In this case, the requirements of both subscribers are satisfied
simultaneously while we do not have to drop surplus notifications at the MOM for S,. Please note
that we adjust to the maximum values in this example as this is going maximize the generated
fidelity (cf., Section 3.3.3).

The fact that we consider explicit costs in our model is the enabling factor for coordinated adap-
tation: at runtime publishers and the MOM can manipulate the operational costs of a capability
(cf., Definition 4) and the adaptation costs of an action (cf., Definition 2).

Adjusting the adaptation costs for the different actions at runtime allows us to switch between
the two solutions described above.

Forcing MOM-based adaptation is done by setting the adaptation costs for adaptPublisher to
0o. This forces our negotiation algorithm to choose any other available action. The same applies
if a publisher is not able to adapt, too expensive, or deemed too critical (e.g., high FIT score).

Forcing coordinated adaptation, on the other hand, is done by adjusting the operational costs
of the capability sampling rate. We adjust the cost function for sampling rate once we advise
the publisher to adapt for the first time. Depending on the improvement direction we set the
operational costs to oo for all values lower (maximizing improvement direction) or greater (min-
imizing improvement direction) than the current value. Thus, we avoid that publishers adapt in
a way that would violate already satisfied requirements about the sampling rate

In our example, setting the operational costs for the capability sampling rate to oo for any value
¢ < 40 when satisfying S, prevents the algorithm to advise the publisher again to adapt to ¢ = 20
when negotiating S; (as this would violate the already satisfied requirement of S;). Please note
that this does not keep us from reaching the same state when we negotiate S; first: upon adapting
to satisfy Sy, COStSqqqpepublisher T€ S€t t0 00 for any ¢ < 20 while the original cost function remains
for greater values. Thus, we can advise P; again to adapt to ¢ = 40 when negotiating S, next.

96 4. Runtime Negotiation and Enforcement

’7 rateController S, (MOM) ———

[10; 20] LB Py uB

@ l [15: 60] P — I o
- ‘ ‘
20 | | |
MOM 4—40 S» L
40]
@" cv =40 v

[30, 40] 51 ! ! satisfied

(closed)' T‘
adaptPublisher (P;)

satisfied

(closed),

Figure 4.11.: Alternative solution: coordinated adaptation of MOM and P;.

While this iterative approach violates S; for some time, the system reacts immediately. As P;
updates its capability as soon as the advised adaptation has finished, triggering a re-negotiation.
Now, the negotiation algorithm notes that adapting P; is too expensive (co) and searches for
alternative actions to reduce the sampling rate again. At this point, any adaptation and op-
erational costs defined for other actions are less expensive. In our example, this would result
in using a rateController, while a different publisher could also be selected in a setup with
multiple publishers.

Please note that we can prevent the system from using a rateController in the same way:
setting the operational or adaptation costs for rateController to oo would prevent the system
from using this action.

4.4. Runtime Adaptation 97

4.5 Monitoring the System State at Runtime

Every change in the system’s context and state can trigger a reevaluation of affected expectations:
a lifecycle change of an expectation, participants joining or leaving the system, or changes to a
capability. While the participants themselves can actively announce some of these changes,
the MOM has to be self-aware to detect all significant changes, including link-failures, network
saturation, varying sampling rates, or crucial end-to-end latencies of notifications.

4.5.1 Detect and React to State Changes with Monitorlets and Watchdogs

In our approach, we separate the detection of significant changes from the reaction to them. We
encapsulate the functionality to monitor specific aspects of the local or global system state in
monitorlets while watchdogs encapsulate reactivity. Their design is the same for centralized or
distributed setups and inspired by the concept of eventlets introduced by Appel et al. [18, 19, 20].
As shown in Figure 4.12, watchdogs and monitorlets are complementary. The local state refers
to a single broker while the global state refers to a network of brokers in a DEBS, where we use
a novel approach to monitor the global state of the system and implement monitorlets.

Expectation Expectation
1 1
initialize condition initialize condition
Watchdog observe complex condition —(Watchdog
observe
trigger simple update
condition
Capability Capability
update update
query query
| ' '
Renegotiation Local Global
9 state state
Single broker Broker network

Figure 4.12.: Runtime monitoring using watchdogs and monitorlets.

A watchdog is bound to at least one expectation and observes the current value of one or more
capabilities. Each watchdog is initialized with a simple or complex condition to check; it triggers
arenegotiation of its associated expectation(s) or updates the global system state if that condition
is met. Simple conditions refer to only a single capability, e.g., C;.CV < x V C;.CV > y, while
complex conditions do also include multiple capabilities. The capabilities to observe and the
condition to check are based on the associated expectation(s). The lifecycle of a watchdog is tied
to the lifecycle of its initializing expectation(s) and a watchdog is destroyed by the MOM as soon
as all of its initializing expectations are revoked. While each expectation is active, however, the
conditions the watchdog has to observe can change with updates to the expectation.

For example, a watchdog for a satisfiable expectation triggers a negotiation of this expectation
as soon as the current values of capabilities are within the range of allowed values; conversely, a

98 4. Runtime Negotiation and Enforcement

watchdog triggers the renegotiation of a satisfied expectation if it observes that the current value
of a capability exceeds or falls below the range of allowed values defined for a requirement.

Monitorlets, in turn, act independently of expectations and do not trigger reactions. A monitorlet
is responsible for updating the current state of a capability so that it can be observed by watch-
dogs and used by the MOM during the runtime negotiation phase. For this, monitorlets either
query the local state of the broker or the global state of a DEBS. Examples are: the current
forwarding and publication latency of notifications provided by a given publisher; the sampling
rate of a single publisher for a given type of notification; the number of publishers currently
providing notifications of a certain type; or the number of subscribers currently subscribed for
a certain type of notification and set of requirements. Monitorlets are instantiated by the MOM
at runtime when necessary. For example, they can be initiated upon pre-defined events by the
MOM, e.g., subscribers or publishers joining the system for the first time. All monitorlets directly
associated with capabilities of a publisher are destroyed when this publisher disconnects.

The way watchdogs work is illustrated in Figure 4.13 with an example containing one pub-
lisher and three expectations X¢,X7, and X{. A single publisher is providing notifications that fit
the other requirements defined in these three expectations; its sampling rate is monitored by a
dedicated monitorlet, which has been initialized by the publisher sending a new advertisement.

In our example, each expectation defines a requirement about the sampling rate over a closed
interval of allowed values (shown on the right hand side of Figure 4.13). Thus, three watchdogs
- wg, Wy, w, — are associated with these expectations and this publisher. Each watchdog observes
the current value of the capability sampling rate of this publisher and triggers a re-evaluation of
its associated expectation if the monitored sampling rate enters or leaves the range of allowed
values defined in the associated expectation.

Sampling
rate Ranges required

A
50

40
———

. N\ .

|
30 ‘
| |
| ! ! |
20 /}r : : : :
|
: : : I :
o o .
! | I | |
: ! : : I Time
| | »
t ty ts o
‘ ‘
we | . X¢ : [30;35]
|
|
|
|

Wy X3 : [30;50]

we

X : [20;40] -

—~ @~

Watchdogs Condition satisfied

Figure 4.13.: Example for watchdogs detecting satisfied or unsatisfied conditions.

In our example, the sampling rate increases and decreases over time. At starting time, the sam-
pling rate is too low to satisfy the requirements of any expectation, rendering them all unsatisfied.
Thus, each watchdog is initialized to trigger a renegotation if the sampling rate is equal or greater
than the lower bound defined in each expectation.

4.5. Monitoring the System State at Runtime 99

The first watchdog to trigger a renegotiation of its expectation is w, at t;. As the sampling
rate requirement defined in X¢ is now satisfied, w, is changed to trigger a renegotiation of X¢
as soon as the sampling rate becomes greater than the upper bound or lower than the lower
bound. While this event is not detected for w, it is for the other watchdogs. Watchdogs w,
and w, trigger renegotiation at t, to satisfy X¢ and X; respectively. The necessity to change
their triggering conditions becomes apparent at t4 for w, as the still increasing sampling rate
exceeds the range of allowed values defined in X¢ but not that defined in X; (watched over by
wy). Now, the condition for w, is changed again so that the watchdog can detect the sampling
rate entering the range of allowed values again at t,. Both watchdogs w, and w; now have to
trigger a renegotiation of their expectations again at ts as the sampling rate drops below the
lower bounds defined in the associated expectations.

4.5.2 Monitoring the Global State of a Distributed Event-Based System

In a centralized EBS with a single broker, querying the state of this broker is sufficient for a
monitorlet to gather all data that it needs to update a given capability.

In a distributed EBS (DEBS), computing the global state requires a monitorlet to collect the nec-
essary metrics from all other brokers. Unfortunately, participants in an EBS are unaware of each
other and anonymous except to their directly connected brokers. As illustrated in Figure 4.14,
each broker that is part of the MOM has only local knowledge about its directly connected pub-
lishers, subscribers, and brokers. For example, broker B (black) is not aware of the total number
of subscribers and publishers as these are connected to other brokers outside of its direct neigh-

borhood (gray area).
\ /®

B
: ®
Figure 4.14.: Distributed decentralized EBS. Brokers (B) need only local knowledge (gray area)
about directly connected brokers, publishers (P) and subscribers (S) for routing.

W

This design is beneficial for scalability but complicates the task of maintaining a global view on
the state of the system. as local state information has to be synchronized between brokers. Fur-
thermore, the dynamic nature of an EBS means that the aggregated data continuously changes
over time and requires a large number of synchronization messages.

Overview: Application-specific Aggregation for Publish/Subscribe (ASIA)

We enable monitorlets and participants to be updated about the global state of the system using
the concept of application-specific integrated aggregation (ASIA). In Section 3.5.2 we have already
introduced the basics of ASIA. We have discussed how participants can express their interest in
different runtime aspects of the population or dynamics of a DEBS and how they can specify the
granularity as well as the precision of the metrics m,(e) contained in aggregated feedback.

100 4. Runtime Negotiation and Enforcement

In this chapter, we focus on how those metrics are computed in a distributed and decentralized
network of brokers. We discuss how the MOM synchronizes the necessary state information
between brokers and exploits the relaxations in data precision defined by participants.

ASIA dynamically integrates monitoring functionality into the broker network at runtime instead
of adding a separate monitoring overlay. Using an approach that is inspired by Aspect-oriented
Programming (AOP) [252], we augment the methods of a broker’s Application Programming
Interface (API) with aggregators that have access to the broker state and use the existing routing
topology for transparently synchronizing state information between brokers. An aggregator en-
capsulates the computation of an aggregation function f, that returns the requested metric m,(e)
for notifications of type e. The global result for m,(e) is computed by iteratively aggregating the
information exchanged between relevant aggregators [171, 172, 177].

In the terminology of AOP we define a set of joinpoints in the broker’s business logic. These join-
points can be advised to perform the aggregation of relevant information. Thus, our joinpoints
can be used to support more general behavior change in brokers such as aggregating or filtering
any kind of notification [173]. An advice is used to invoke an aggregator, e.g., for computing the
number of subscribers currently active [172].

As shown in Figure 4.15, ASIA uses the existing routing overlay between participants to send
additional metadata (red arrows) about aggregations to those participants that have expressed
interest in them. In a typical EBS, the flow of information is unidirectional from publishers to
subscribers: there is no feedback from the subscriber side of the system back to the publisher
side. The subscriptions sent from subscribers to brokers are not forwarded to publishers but
matched against advertisements within the broker network to establish a routing topology from
the edge broker of the publisher to the edge brokers of each interested subscriber. At the same
time, subscribers do not get any metadata on the population of publishers as publishers and
subscribers are fully decoupled by the MOM [147, 208].

Subscribers Broker network Publisher

Typical EBS ASIA-specific

Network link —>> Aggregation updates
—> Subscriptions —> Aggregation request

—> Advertisements @ ASIA aggregator

—> Notifications —— Aggregation tree

Figure 4.15.: Information flow in a DEBS (black) with additional ASIA metadata (red) for aggre-
gated feedback about subscriberCount.

4.5. Monitoring the System State at Runtime 101

In ASIA, subscribers, publishers and monitorlets of brokers can request aggregated feedback.
Using the extended API of its edge broker (i.e., B; for P; in Figure 4.15), an interested participant
indicates its interest in updates about an aggregated metric m,(e). As already introduced in
Definition 8, a participant requests updates for an aggregated metric by sending a tuple (e,m,(e),
7,) to its edge broker containing the metric, the required precision as well as an optional set
of constraints. With that it provides a callback function that is invoked by the edge broker when
m,(e) changes to a significant degree.

Distributed Aggregation of State Information and Synchronization Between Brokers

In a DEBS, a participant that registers interest in an aggregated metric at its edge broker B, causes
the formation of a spanning tree rooted at B,.. This aggregation tree contains all other brokers B;
that can contribute relevant aggregation results for m,(e) to B,. The tree is used to synchronize
aggregation results between brokers and is based on the established routing topology. Thus, we
do not have to maintain a separate overlay but can increase efficiency by piggybacking informa-
tion onto notifications that are routed anyway rather than being sent separately.

Using the aggregation tree we can distinguish between upstream and downstream neighbors.
From the perspective of a broker B;, upstream neighbors are those brokers that B; receives aggre-
gation updates from; downstream neighbors, in turn, are those brokers, subscribers or publishers
that B; sends aggregation updates to.

Maintaining the aggregation tree is crucial as computing the global result for an aggregated met-
ric m,(e) is done by iteratively combining the local knowledge of a broker B; with the aggregated
results for the same metric sent from its direct upstream neighbors in the aggregation tree.

Thus, each broker B; maintains four values:.

Ic; the local value of m,(e) at broker i
tc, the last result for m,(e) received from upstream broker k
tc " the local result for m,(e) at broker i
tcsre”d the last result for m,(e) sent to downstream receiver r

Where tci“" is the combination of the local value and the updates received from all upstream
brokers based on the semantics of the aggregation function. For a sum-based aggregation such
as subscriberCount, the total count would be the sum of the directly connected subscribers and
the received sum of subscribers being subscribed to other brokers as shown in Equation (4.1).

el =lc; + Z tc, “4.1)
K

A broker B; sends an update to its downstream receivers if tc!*" differs from tcsre”d. The process
of calculating and updating this global aggregation result is triggered by each aggregator that
detects a significant change in its broker’s local state, e.g., a subscriber connecting or disconnect-
ing from its edge broker. Please note that optional constraints ¢ could restrict the aggregator,
e.g., to monitor only those publishers that provide a certain set of capabilities.

102 4. Runtime Negotiation and Enforcement

In this dissertation we focus on aggregators using additive functions f,, including counting and
rate measurements. Any associative and commutative function can be used within an aggregator,
including multiplication, set operations, maximum/minimum or the arithmetic mean.

Figure 4.15 shows the aggregation tree (dashed red line) formed when P; requests the count of
subscribers as aggregated feedback from B,. From the perspective of B;, the subscriber count is
4 (S;,S9,S3,S4). By can determine this total number of subscribers by summing up the results
received from its immediate children B, and Bs.

Exploiting Relaxations of Data Precision

For precise results, every change at any broker causes updates to be sent up to the root of the
aggregation tree, inducing overhead for dynamic situations with many changes. Therefore, we
exploit the relaxations in the metrics’ precision that each participant defined upon requesting
aggregated feedback. This feature is similar to other scalable aggregation models [240]: a dis-
tance d sets the maximum imprecision that will be tolerated by the aggregator at a particular
broker. An imprecision of 1 denotes very precise results while a higher imprecision indicates less
precise results (cf., Figure 3.26).

When a participant requests updates for a metric with an imprecision v,, its directly connected
edge broker B, splits this imprecision according to Equation (4.2) and forwards the request with
the split imprecision 7, to each of its m upstream neighboring brokers. This process is repeated
at each broker along the aggregation tree until all upstream edge brokers are reached.

. v, 4.2)
UV, = .
k 1+m

The local imprecision is defined per downstream receiver, aggregation, set constraints and type
of notification. Thus, each broker has to maintain different local imprecisions. In case that a
broker B; has to forward multiple requests for the same aggregation, constraints and type of
notification, it forwards only one request with the minimum imprecision of all locally known
requests. However, B; keeps the original requests so that it is able to update each of its own
requesters based on their imprecision. This approach is similar to filter merging in a DEBS.

With the split imprecisions distributed along the aggregation tree, each broker B; can use this
information about relaxed precision to individually decide if an update has to be propagated.

As before, the update process is triggered if an aggregator detects a change in the local state of the
broker or the broker receives an update from an upstream broker. However, by using imprecision,
the exact values we have introduced to synchronize state information between brokers turn into
intervals with upper and lower bounds as already described in Definition 8. The only exception
is 1c;, as a broker B; is supposed to determine the exact value from its local state.

Having updated its local value Ic;, each triggered broker B; computes the interval of its current
total count tc®" using Equations (4.3) and (4.4) as the weighed sum of its own local count Ic;

i
and the aggregates tc;* received from each upstream broker By.

4.5. Monitoring the System State at Runtime 103

m m 1 I’}\
tef LB =le; + Y tc[.LB + (Z £} UB — tc;“.LB) Sy (4.3)
k k
& v,
)
tcf”.UB =I¢; + Zk: tc;“°.UB + o (4.4

For each receiving downstream participant r (broker, subscriber or publisher), B; uses Equa-
tion (4.5) to check if the new total count still overlaps with the last update sent to r. If either of
the conditions evaluates to true, an update has to be sent.

[tc?ew.LB >t . UB— &] Vv [tc?eW.UB <tc™.LB+ 6 (4.5)

/

B v
overshoot undershoot

In Equation (4.5) we add a safety margin 6 to trigger updates sooner while the two intervals still
overlap; for quickly changing metrics, this avoids a temporary situation where the true value is
not enclosed by the interval known to the participant anymore.

This way, updates are only propagated downstream if the current state of the subtree differs
too much from the previously sent update. The level of imprecision, the branching factor of the
aggregation tree and the safety margin 6 determine the sensitivity of the updates.

104 4. Runtime Negotiation and Enforcement

Example ASIA Aggregation: Subscriber Counts

We illustrate the whole approach using a simple subscriber count aggregator implemented in
ASIA. Figure 4.16 illustrates each step of our approach and its update algorithm. We assume
that publisher P; requests aggregated feedback about the number of active subscribers in the
system from its edge broker B;, allowing for an imprecision v, = 3. The aggregation tree is
built accordingly by B; which splits the received imprecision evenly between itself and its two
upstream neighbors B, and Bs, resulting in 7, = v, = V5 =1

In an initial bootstrapping step, we distribute the split imprecision and collect the initial intervals
from all affected upstream brokers as shown in Figure 4.16a. If the local count for a broker By, is
0 it still returns an interval [0; 7}] to its next downstream neighbor.

Next, we assume that four subscribers join the system, two at each edge broker. Figure 4.16b
shows the three steps of the update algorithm: first, the edge brokers detect the new subscribers.
Second, both B, and B update their local values lc, = 2,lc; = 2 and check if they have to send an
update to B; (i.e., tc;”.UB = tc;®”.UB = 2 > 1 = tc}*"*.UB). Third, at B,, these updates trigger a
reevaluation of its total count, resulting in an update sent to P; as the last update is outdated.

Finally, we assume that a single subscriber disconnects from Bj (cf., Figure 4.16¢). B; detects
this event, updates its local counts and sends an update to its downstream neighbor B; where no
update is sent to P; as the last update is still precise enough.

This example shows how ASIA detects changes to the population of a DEBS and notifies interested
participants only if the detected change is significant for them. By exploiting P;’s imprecision,
one update message from B; to P; has been saved while the last aggregated feedback to P,
is still valid as its interval encloses the true value (cf., bottom right corners in Figures 4.16b
and 4.16c¢).

4.5. Monitoring the System State at Runtime 105

(no subscribers)

split imprecision and request for
distribute request to aggregation updates
o upstream brokers about subscriberCount)

send initial
aggregate
update

downstream

<0, =3—

—[0; 3]>>

(no subscribers) aggregate counts from upstream
brokers with local count & forward

to requesting client

(a) Bootstrapping ASIA for subscriberCount.

update local total count &
check if updates have to be
sent downstream

aggregate counts from upstream
[1, 57 27 5] brokers with local count & forward
to requesting client

detect new

subscribers locally 2,5;5, 5] [2,5;5,5]
B ———

© "I:ruevalue
Before ’ Update E

@ o 1 2 3 5 6
After

True value

(b) Updates for subscriberCount sent when four subscribers joins.

no updates have to be sent as we
are still within the imprecision
boundaries of the last update

12,5:5,5]—(Pr) [2,5: 5,5

—_—

detect missing
subscriber locally

True value

e

Before !] |

} |

o 1 2 4 5 6
update local total count & Aft | |
check if updates have to be er

sent downstream True value

(c) No updates for subscriberCount sent when one subscriber leaves.

Figure 4.16.: Example using subscriberCount: bootstrapping and updating steps in ASIA.

106 4. Runtime Negotiation and Enforcement

4.6 Resolving Possible Conflicts at Runtime

During runtime negotiation and runtime adaptation, three types of conflicts can occur while
negotiating and enforcing requirements about Qol in EBS: participants might use definitions for
generic properties that conflict with definitions used by the MOM, a subscriber’s requirements
might conflict with the current system state, or adapting the system to satisfy requirements of
one subscriber might violate the requirements of another subscriber.

Conflicting Definitions Used by Participants

In general we assume that all participants use the same definition for a generic property. This
can be realized by querying the repository on each edge broker for the currently used definitions
or by defining transformations as discussed in Section 3.2.2.

In some cases, however, some participants might still end up with their own definitions that could
conflict with the definitions deployed at the MOM. We illustrate two possible types of conflicts
using the property delivery guarantees as an example.

Subscriber-side conflict: a subscriber-side conflict is shown in Figure 4.17. In our example, the
MOM defines delivery guarantee as: "best effort" < "at most once" < "at least once" < "exactly
once". However, a subscriber wants to avoid a delivery guarantee of "at most once" and defines
delivery guarantees as "best effort" < "at least once" < "at most once" < "exactly once". Conse-
quently, the requirement about delivery guarantees in X; is defined over a closed interval ["at
most once";"exactly once"] as shown in the top left corner of Figure 4.17.

As shown in the bottom left part of Figure 4.17, mapping the subscriber’s lower and upper bounds
to the MOM’s definition results in the label "at least once" being enclosed by "at most once" and
"exactly once". Thus, adapting the system to provide "at most once" might be a valid choice from
the perspective of the MOM but it would not satisfy the subscriber’s preferences.

This conflict is solved in our approach by splitting up the original expectation X? into two expec-
tations X?; and X, with disjunct intervals for delivery guarantees as shown in the top right corner
of Figure ’4.17; both expectations are defined over the same properties and ranges otherwise. In
principle, this split can be done by the subscriber or by the MOM when receiving X .

Single expectation (open / closed) Alternative expectations (closed)
e e e
X5 X i1 X 0,2
Best At least At most Exactly Best At least At most Exactly
effort once once once effort once once once

. I | Delivery I |
Subsoriber | -—> guarantees T | l— I—>
g i |
/s |
X P i
|

[| peive | | | |
i > ry >
Middleware | [| guarantees I I | T
Best At most At least Exactly Best At most At least Exactly
effort once once once effort once once once

Figure 4.17.: Conflicting definitions used by subscribers and MOM are resolved by splitting up the
original expectation into two equivalent expectations using a closed requirement.

4.6. Resolving Possible Conflicts at Runtime 107

Publisher-side conflict: the case we have discussed for subscribers could be applied to publishers
as well as shown in Figure 4.18. Let us assume again that a publisher’s definition of the generic
property delivery guarantees differs from that of the MOM. The MOM ranks the labels for delivery
guarantees as "best effort" < "at least once" < "at most once" < "exactly once" based on the
execution costs arising for the current configuration.

One publisher, however, ranks these labels as "best effort" < "at most once" < "at least once" <
"exactly once" as it is resource-constrained and checking whether a notification has already been
sent to avoid duplicates is considered to be less expensive than sending multiple copies. In this
case, the publisher defines its cost function for the capability delivery guarantees as shown on the
right hand side of Figure 4.18 with "at least once" being more expensive than "at most once".

No adjustments have to be made to solve this conflict: if the MOM decides that it requires a
publisher to adapt its capability to "at least once" to satisfy an expectation, it compares the costs
predicted by different publishers. As the preference of this publisher is already reflected in its cost
function, the costs for using this publisher would be higher than for using a different publisher.

. - e . e
Single capability Cpk Cost function for Cpk
Best At most At least Exactly Costs
effort once once once
I | | Delivery
Publisher l l I guarantees |
|
s
, | \ |
7/ | |
s | ‘
/ l |
r Ly X [l 1 > Delivery
e/ | » Delivery ! I ! " guarantees
Subscriber | [| guarantees Best At most At least Exactly
Best At least At most Exactly effort once once once
effort once once once

Figure 4.18.: Conflicting definitions used by publishers and MOM are directly taken care of by
the capability’s cost function that is defined by the publisher.

Conflicts Between Requirements and System State

Conflicts between the requirements of a subscriber and the system state are resolved by the
algorithms we have introduced in Section 4.1. A conflict could be severe so that the expectation
is unsatisfied or it could be solvable by deciding on an expectation that is satisfiable.

Conflicts Arising From Adapting the System

Adapt the system to satisfy an expectation could result in two types of conflicts: conflicts between
the new system state and requirements defined in other expectations, or conflicts with global or
local constraints imposed by the MOM, e.g., budget constraints or resource utilization.

In our approach, these conflicts are resolved during the safeguarding step as described in Sec-
tion 4.3 or using coordinated adaptation as described in Section 4.4.3.

108 4. Runtime Negotiation and Enforcement

4.7 Summary

In this chapter, we have described the algorithms used in our approach to provide runtime sup-
port for Qol requirements in an EBS. Runtime support in our approach is based on runtime
negotiation of expectations with capabilities, runtime adaptation of participants, and runtime
monitoring of the population and dynamics of the system. We have described how these tasks
are entwined with each other and how each is structured internally.

Context or state change at
runtime

Participants

P

observe detect
] \

[1
Monitorlet Watchdog Tt triggers —»|
use
returns

upciate update _

announce change

f‘.é:

not empty

’ ASIA ‘ *
empty X
— Runtime monitoring — Range matching
returns unsatisfied
. Prelimi y state
CANDxe, CANDxe
" T
unsatisfied satisfiable
B v
i . satisfied
Give feedback Descide
satisfiable X
~_ :
unsatisfied returns
~—
Final state

AAA

CAN]’)X;" CANDX:
T
satisfied

unsatisfied

Safeguard

decision

I*

Execute
adaptation plan

— Runtime adaptation —— — Runtime negotiation —

Figure 4.19.: Runtime support for Qol and its components summarizing Chapter 4.

Figure 4.19 summarizes the topics discussed in this chapter with their relationships and illustrates
the cyclic characteristics of runtime support: runtime negotiation of Qol requirements is triggered
by significant changes to participants at runtime. In our approach, these changes are either
actively announced by participants or detected by watchdogs and monitorlets as part of runtime
monitoring for centralized and decentralized EBSs. Significant changes refer to new, updated or
revoked expectations as well as to new, updated or deteriorated capabilities.

Runtime negotiation is done for each expectation at a time. It starts with a set-matching step that
identifies all publishers that would be able to satisfy all requirements expressed in an expectation
X¢. If this set of nominees (NOMX;;) is empty, we can already decline the expectation as unsatisfied
due to missing publishers. Otherwise, we can proceed with checking the expectation against all
nominees. In this range-matching step, we check if the current state of the system is already
sufficient to satisfy the expectation or if the system has to adapt. This check compares the
ranges of accepted values captured in the requirements with the current system state expressed

4.7. Summary 109

as the current values of matching capabilities. If the expectation cannot be satisfied by the
current system state, the algorithms check whether the system could adapt to an extent that
would enable it to satisfy the expectation. This is done by matching the ranges of accepted
values with the ranges of values realizable with adaptation and represented by the ranges that
matching capabilities are defined over. The results of this range-matching process are captured in
a preliminary state of the expectation as well as two sets of capability profiles: one that denotes
publishers already satisfying the requirements (Canp) and one that identifies capability profiles
that would have to be adapted first (CanD). In case that the system would not able to satisfy
the requirements even by applying adaptation, we again skip all following steps and decline the
expectation as unsatisfied.

If the preliminary state of the expectation is set to satisfiable, the MOM has to decide whether
the system should adapt in order to satisfy the expectation. We have shown how decision strate-
gies can be used at this point to formalize different optimization goals with their hierarchy of
objectives and attributes, e.g., number of satisfied subscribers, or adaptation costs.

Deciding on the final state of the expectation by safeguarding the decision completes the runtime
negotiation part of our runtime support. The final state of the expectation is either satisfied or
unsatisfied and determines how the system proceeds in the runtime adaptation part of our ap-
proach. If the expectation is satisfied, we proceed to safeguard the decision while we skip this
step in case of the expectation being declined as unsatisfied. We have shown how safeguarding
the made decision can be done algorithmically using the example of requirements about alter-
natives: during the safeguarding step, the MOM makes sure that the total number of publishers
a subscriber is going to receive data from does not violate the maximum number of alternatives
defined in an expectation. If we detect severe violations that cannot be solved by adjusting the
adaptation plan, we have to discard the expectation as unsatisfied nonetheless.

The final adaptation plan is the result of the safeguarding step and is sequentially executed before
the MOM gives individual feedback about the state of the expectation. In addition to the final
states satisfied and unsatisfied, we notify the subscriber about an ongoing adaptation of the
system by sending a temporary pending state which indicates that the expectation is going to be
satisfied soon; as soon as the adaptation is complete and the expectation satisfied, the subscriber
is notified about the expectation being satisfied (cf., Section 3.5.1).

Potential conflicts can arise at runtime during negotiation and adaptation. We have described
the different types of conflicts and how they are algorithmically resolved in our approach.

The strength of our solution is its general applicability: all the principles and mechanisms de-
scribed in this chapter do not rely on specific properties or software platforms. Thus, we can
support arbitrary Qol properties on various platforms. The feasibility of runtime negotiation is
limited only by the complexity of the custom decision strategy that is defined upon deployment
— the more complex the decision making process becomes, the more dependencies and compen-
sations would have to be considered during the final safeguarding step. In this chapter, we have
presented straightforward heuristics as a starting point and show their feasibility in the following
chapters that describe the implementation and evaluation of our prototypes.

110 4. Runtime Negotiation and Enforcement

5 Implementation

In this chapter, we present the design and prototypes of an architecture to implement the runtime
support for Quality of Information (Qol) requirements in an Event-based System (EBS) or a
Distributed Event-based System (DEBS) using expectations, capabilities and feedback.

Our architecture consists of extensions to the Message-oriented Middleware (MOM) as well as
additional libraries and interfaces provided to publishers and subscribers. We distinguish be-
tween different levels of abstraction: generic, platform-specific, and application-specific. Most
parts of our architecture are independent of the MOM platform as well as of the applications
that use the MOM for communication. Some extensions to the MOM are platform-specific but
independent of the application running on it. A few components, however, have to be platform-
and application-specific to fit in with the semantics of an application.

The chapter is structured in three parts along these levels of abstraction as shown in Figure 5.1.

Capability
@ Ref:rence HandlerClient Expectations Expectation
architecture R
Controller ASIA HandlerClient
ReactionManager Controller
Agnostic
Message-oriented Middleware
Specific . ey,

Apache ActiveMQ

@ MOM platforms | _

REDS Middleware

@ Examples

|:|generic -EBS paradigm - platform-specific - application-specific

Figure 5.1.: Chapter overview: platform- and application-agnostic design, platform-specific pro-
totypes (centralized, distributed), and example applications.

In Section 5.1, we describe the overall design of all components implementing our approach. The
reference architecture described in this section is independent of the actual MOM platform being
used or the application running on it. We describe platform-specific parts where necessary.

In Section 5.2, we describe the platform-specific components of our prototypes built for two
open-source MOMs written in Java: Apache ActiveMQ and REDS. We describe the integration
of our reference architecture into each platform and present the additional code necessary for
participants to negotiate Qol requirements with the MOM.

In Section 5.3, we discuss four open-source applications we have extended to use expectations,
capabilities and feedback: MySQL replication, Ganglia monitoring, FINCoS, and jms2009-PS.

m

5.1 Architecture and Design

Our architecture consists of an extension to each broker of the MOM as well as handlers provided
to subscribers and publishers to deal with feedback and manage the lifecycle of expectations or
capabilities. The remainder of this section is structured in three parts as shown in Figure 5.2.

Capability
o HandlerClient a Expectations Expectation e
T — X
Controller ASIA HandlerClient
ReactionManager Controller

|
m Message-oriented Middleware m

Figure 5.2.: Components discussed in this section: generic support for MOM and participants.

First, we focus on the extensions to the MOM. We start with describing the design of
ExpectationController, which extends the MOM to support the runtime negotiation of ex-
pectations with capabilities. Then we describe the design of ASTAController, which implements
the ASIA approach to provide aggregated feedback in a DEBS.

The handlers provided to subscribers and publishers are described in the third part of this section.
We distinguish between passive client handlers that support participants in managing their ex-
pectations or capabilities and active reaction managers that enable self-adaptation of otherwise
static publishers by enforcing adaptation advices sent by the ExpectationController.

The symbols used in all architectural diagrams are described in Figure 5.3.

EBS entities Data access Interface(s) Component

—> Advertisement —> Read —e Provided - Platform-specific
—p» Subscription ’;: Read/Write ~ —(Required B Application-specific
> Notification

Figure 5.3.: Legend of symbols used in all architectural diagrams.

5.1.1 Extending the Message-Oriented Middleware: ExpectationController

The core of our architecture is an extension to the MOM shown in Figure 5.2 called
ExpectationController. It consists of platform-independent components to negotiate expecta-
tions with capabilities and a few platform-specific components to enable reactions, e.g., filtering
notifications. MOM and participants communicate with platform-specific messages.

An ExpectationController consists of five key components:

* ResourceMonitor: monitors the system state and reports changes to the Registry.

* Registry: stores all necessary state information including expectations and capabilities as
well as metadata about participants. Changes trigger runtime negotiation at the Balancer.

* Balancer: matches expectations to capabilities and decides on satisfiable expectations. Trig-
gers the ReactionCoordinator upon completion to execute the adaptation plan.

* MechanismsRepository stores all applicable actions to manipulate generic properties.

* ReactionCoordinator: applies actions from the MechanismsRepository and coordinates
their execution by adapting the MOM, advising publishers, and notifying subscribers.

112 5. Implementation

ExpectationController

e — [—

i Mechanisms
Balancer
Registry O Repository

I < S

. Reaction
ResourceMonitor L execute — eactio

adaptation plan Coordinator
I ! T
L update _, 3c¢cess adapt
broker state broker state

Interface: ExpectationController

Message-oriented Middleware

Figure 5.4.: Design of the MOM extension to enable runtime support for Qol.

The components encapsulated in the ExpectationController require access to the state of the
MOM for monitoring the system and to apply reactions like filtering messages or routing adap-
tation [172]. The access is provided through an Application Programming Interface (API) by the
MOM implementing the ExpectationController interface (cf., Figure A.la in the appendix).

The methods to be provided by each broker implementing the ExpectationController interface
can be categorized into three types: first, forward updates about the lifecycle of expectations and
capabilities (e.g., register, update, revoke) to the Registry in a platform-independent format;
second, enable the access between different components of the ExpectationController; third,
allow for manipulating the routing tables to adapt the routing of notifications.

In the next sections, we are going to present the internal design of each key component in the
ExpectationController. We will describe their generic, platform- and application-specific parts
as well as their interfaces to each other in more detail.

ResourceMonitor: Montoring the System State

The ResourceMonitor encapsulates the functionality to monitor the system state as described in
Section 4.5, report changes to the Registry, and trigger the Balancer whenever necessary.

The ResourceMonitor consists of a set of active monitorlets and watchdogs as shown in Fig-
ure 5.5. The lifecylce of each monitorlet is managed by a MonitorletsRepository while a
WatchdogsRepository does the same for watchdogs. Each repository stores a set of prototypes.
A factory creates, updates or deletes instances of appropriate prototypes whenever necessary.

Each instance of a monitorlet keeps a specific capability in the Registry up-to-date by monitoring
the state of the broker or the system as described in Section 4.5.1. Thus, monitorlet prototypes
are assumed to be platform- or application-specific, e.g., using AdvisoryMessages! on ActiveMQ
or ASIA aggregations as described in Section 4.5.2.

Each instance of a watchdog monitors a capability or a set of capabilities based on conditions
and triggers a renegotiation of an expectation at the Balancer whenever its condition is satisfied

1 http://activemq.apache. org/advisory-message.html

5.1. Architecture and Design 113

http://activemq.apache.org/advisory-message.html

ResourceMonitor

— MonitorletsRepository —— —— WachdogsRepository ——
e — e —
Monitorlet Prototypes
yP Monitorlet Prototypes
Monitorlet
instantiate
remove
Active Monitorlets Active Watchdogs
Monitorlet Watchdog
__access _| | update negotiate
state capabilities:L expectation
M\
MOM Registry Balancer

Figure 5.5.: Design of the ResourcelMonitor.

as described in Section 4.5.1. As watchdogs only operate within the ExpectationController,
prototypes for watchdogs do not have to be platform- or application-specific necessarily.

Monitorlets and watchdogs can trigger implicitly or explicitly: implicitly, they run in the back-
ground and constantly pull data; explicitly, they are called when some significant event takes
place, e.g., an ASIA aggregation update is received.

The granularity of watchdogs can be single or cumulative. Single refers to each expectation
maintaining its own watchdog instance; cumulative refers to all satisfied expectations for a certain
type of notification defining a single watchdog while also all satisfiable expectations per type
of notification share a single watchdog. Single watchdogs reduce the negotiation overhead as
they allow for each expectation to be (re)negotiated only if its specific conditions are met or
violated. However, depending on the number of active expectations and their size (in terms of
the number of generic properties they are defined over), having multiple threads of watchdogs
running in the background can increase the resource utilization overhead. Cumulative watchdogs
reduce resource utilization as fewer watchdogs are to be maintained. However, the number of
unnecessary renegotiations might be higher than for single watchdogs if the ranges defined for
the different expectations are not close together.

In our prototypes, and the example described in Figure 4.13, we have used single watchdogs that
trigger implicitly by running as daemon threads. Please note that monitorlets and watchdogs
could be implemented using eventlets [18] in principle.

Registry: Manage All Necessary State Information

The Registry stores all necessary state information and metadata about the system in one place
and independently of the MOM platform or application running on it. As shown in Figure 5.6, this
information is not restricted to metadata about subscribers, publishers and neighboring brokers
but also includes the definitions of generic properties, expectations and capabilities.

The storage, state and lifecycle management of expectations is encapsulated in an Expectations-
Repository. The CapabilitiesRepository is similarly designed for encapsulating the storage

14 5. Implementation

Registry

ExpectationsRepository S — CapabilitiesRepository —
—— N — Y — Property —__
Definitions . .
Satisfied Satisfiable Unsatisfied - Relationships
Prop./Cap.
Y
Se— M
[S—
Expectations Capability
. Profiles
Population
BrokerHandlerExpectations BrokerHandlerCapabilities
T KI—/ T
update update
expectation l capabilities

L \lj , Resource | \|J ; Reaction

Balancer | ' Monitor ' ' Coordinator

Figure 5.6.: Design of the broker component Registry.

and lifecycle management of capabilities together with the relationships/mappings/transforma-
tions between capabilities provided by publishers and generic properties required by subscribers
(cf., Section 3.2.2 and fig. 3.8). Access to each repository is provided through broker handlers
that offer an API to query and update expectations or capabilities.

The Registry can be accessed by every other component of the ExpectationController. In
our reference architecture, the ResourceMonitor is the main contributor to the Registry as it
monitors the system state and reports every change to the Registry. The state of expecta-
tions is also updated by the Balancer upon completing the runtime negotiation process as de-
scribed in Sections 4.1 and 4.2. The state of capabilities, in turn, can also be changed by the
ReactionCoordinator to enforce coordinated adaptation as described in Section 4.4.3.

Balancer: Decide on Expectations and Safeguard Decision

While ResourceMonitor and Registry provide up-to-date information about the system state, the
Balancer encapsulates all functionality needed during the runtime negotiation phase: matching
expectations to capabilities, deciding on satisfiable expectations, safeguarding the decision, and
finally triggering ReactionCoordinator to pass on to the runtime adaptation phase.

The Balancer consists of three components as shown in Figure 5.7.

Balancer

Decisi(?n Guard
Strategies

A * safeguard
) O/
decide 1

Solver —Q)— Matcher

Adaptation
plans

I
) execute
negotiate ___| query adaptation
expectation CPs plan
— query actions
M "\
ResourceMonitor Registry ReactionCoordinator

Figure 5.7.: Design of the Balancer which implements the runtime negotiation phase.

5.1. Architecture and Design 115

The Matcher is triggered by the ResourceMonitor to negotiate a dedicated expectation. For
this, it queries the Registry for available capability profiles with a matching set of capabilities to
perform the set and range matching steps of the runtime negotiation phase as described in detail
in Section 4.1.

The Solver is triggered by the Matcher if the expectation is not yet satisfied but satisfiable. Using
predefined decision strategies and custom approaches, the Solver decides whether to satisfy the
expectation or decline it as unsatisfied (cf., Section 4.2). The result is reported back to the
Matcher, which proceeds with safeguarding the decision by triggering the Guard component.

The Guard checks the preliminary adaptation plan for inconsistencies or violations of constraints
as described in Section 4.3. It tries to solve violations or inconsistencies by adjusting the actions
listed in the adaptation plan. If the Guard cannot resolve the violation of constraints, the expec-
tation is declined as unsatisfied. The Matcher is informed about the result in any case, as it has
to trigger the ReactionCoordinator to execute the adaptation plan.

ReactionCoordinator and MechanimsRepository: Runtime Adaptation

The ReactionCoordinator is responsible for executing the adaptation plan provided by the Bal-
ancer. For this, it relies on the MechanismsRepository as shown in Figure 5.8.

The adaptation plan contains a list of actions that have to be executed to adapt a set of capabili-
ties. Each action is associated with at least one capability (cf., Section 3.2.2) in a mapping table.
The MechanismsRepository provides generic prototypes of actions to the Balancer for runtime
negotiation while it provides executable instances for the ReactionCoordinator to deploy and
execute. The interface to implement by each prototype is shown in Figure A.2 in the appendix.

— ReactionCoordinator — __ MechanismsRepository _____

e
.

Action Prototypes

ExecutableAction
instance adjustRouting Mapping

adaptPublisher

Log Executed Actions

actions to

capabilities
rateController pabilit
adjustLatency

deploy & v
execute execute
adaptation plan action l
instance t J
i get executable instance qLI"V
Balancer MOM Balancer

Figure 5.8.: Design of the ReactionCoordinator and attached MechanismsRepository.

Depending on the type of action, prototypes of actions can be agnostic or specific in regard to
the MOM platform or application using the MOM as shown in Figure 5.8. Examples for generic
actions are routing adaptation (adjustRouting) or publisher adaptation (adaptPublisher). The
former action is generic as its execution is implemented by the MOM itself when implementing
the ExpectationController interface; the latter action is generic as well as advising publishers
to adapt is independent of the MOM platform or application (cf., Section 3.5.1).

Actions that require an adaptation of the MOM, however, have to be platform-specific at least.
In some cases, they also have to be application-specific. For example, sampling rate reduction

116 5. Implementation

(rateController) and forwarding latency minimization (adjustLatency) can be implemented to
apply traffic shaping algorithms as described in Section 4.4.1. The way that notifications can
be intercepted is platform-specific and has to be implemented in the prototype of the action.
The rateController prototype must be application-specific if traffic shaping should be done
by aggregating the content of multiple notifications instead of discarding notifications: the se-
mantics of the notifications exchanged by the application over the MOM have to be known to
the rateController to be able to aggregate the content correctly. The general design of a
rateController is shown in Figure 5.9: a rateController instance is deployed for a dedi-
cated receiver and intercepts the notifications of a given type before the broker dispatches them.
Intercepted notifications are aggregated or decimated.

Dispatching process broker

Type Receiver
Notification —[>|>.<e 1 _.im rateController >
(eg., topic
+filter)

Figure 5.9.: Realizing the rateController per receiver and type.

The ReactionCoordinator sequentially executes the instances of the generic actions defined in the
adaptation plan and keeps a log of all successfully executed actions for rollback operations.

The ReactionCoordinator also handles individual feedback to subscribers about the state of their
expectations. As described in Section 3.5.1, this feedback can contain an acknowledgement
about the expectation being already satisfied, a list of reasons why it is declined as unsatisfied,
or a temporary state (pending), which indicates that the MOM is currently adapting to satisfy a
satisfiable expectation.

Executing the adaptation plan and giving feedback to subscriber completes an iteration of the
runtime support cycle for Qol requirements we have described in Chapter 4.

5.1. Architecture and Design 117

5.1.2 Decentralized Monitoring with ASIA

In addition to the individual feedback we provide about the expectations and capabilities of
dedicated participants, we also provide aggregated feedback about the population and the system
state in a DEBS using Application-specific Integrated Aggregation (ASIA).

The design of the ASIAController we use to support ASIA in our reference architec-
ture is shown in Figure 5.10; it is a lightweight extension of the MOM compared to the
ExpectationController discussed in the previous section.

ASIAController

—
Local values [€] .
Imprecisions

— Y —
teree tcsent

o— Aggregator

update

notfiy(l)lients

Interface: AggregationAwareController

Message-oriented Middleware
Figure 5.10.: Design of the broker component to enable runtime monitoring for DEBS with ASIA.

The components of an ASTAController are:

* A Repository that stores metadata about all connected participants and contains the rout-
ing tables of the adaptation tree as described in Section 4.5.2 to identify upstream and
downstream participants.

* A hashtable of all local values that are of interest to aggregators and should be tracked by
the Repository, e.g., the number of subscribers, the number of neighbors. Aggregators
can add new entries if local values are not yet tracked.

* A list of Aggregators which encapsulate the aggregation functions of aggregated metrics
that this broker instance can contribute to. Each aggregator manages the list of downstream
receivers for updates about its aggregated metric together with the aggregated results for
this metric received from upstream brokers and the last updates sent downstream.

The Repository updates all local values that change when being triggered by the broker. The
Repository sequentially triggers all registered Aggregators if local values change; if it receives
aggregated results sent from upstream brokers, only affected aggregators are triggered. Each Ag-
gregator tracks the changes to its computed total values and updates all downstream participants
based on their individual imprecisions as described in Section 4.5.2.

Requests for aggregated metrics from brokers upstream in the aggregation tree or from par-
ticipants directly connected to this broker are received by the MOM and forwarded to the
Repository. Based on these requests, new aggregators are deployed by the Repository.

The notifyClients method encapsulates the business logic for sending separate update notifi-
cations or piggybacking update information on existing notifications, advertisements or subscrip-
tions. The broker also has to implement the business logic for detecting piggybacked updates.

118 5. Implementation

The ASIAController interacts with the broker of a (distributed) MOM by the broker implement-
ing the AggregationAwareController interface as shown in Figure A.1b in the appendix.

5.1.3 Libraries, Handlers and Editors Provided to Clients

We provide participants with libraries and handlers to deal with feedback by the middleware
and use platform-agnostic APIs for managing the lifecycle of expectations and capabilities. The
ExpectationHandlerClient provided to subscribers is shown in Figure 5.11. It allows subscribers to
store, load, register, revoke, update, suspend, or resume expectations; requesting and receiving
aggregated feedback is handled as well.

The CapabilityHandlerClient provided to publishers is quite similar to the ExpectationHandler-
Client. It enables publishers to store, load, register, revoke or update capabilities and access their
usage statistics (cf., Figures A.4b and A.5 in the appendix). Due to the similarity between both
client handlers we show only the design and interface of the ExpectationHandlerClient in more
detail; the architecture of the CapabilityHandlerClient can be found in the appendix.

ExpectationHandlerClient _

Definitions

o) Capabilities register,
i te, ki
D ‘ Expectations Updater _update, revoke
(active) >
Message-
RN Parser — e
X > Middleware
Feedback -
(individual & ~_>{ Listener <t+<-————
Expectations aggregated) Adaptation Advices
Aggregated Feedback

expectations aggregated |
feedback [N f’\

L manage —— request |

getClientID onUpdate(Feedback)
1

1

Interface: ExpectationAwareSubscriber

Figure 5.11.: Design of the ExpectationHandlerClient provided to subscribers.

The client libraries handle the loading of property definitions and predefined expectations or
capability profiles into the participants and manage the platform-specific communication of
lifecycle changes. Furthermore, they process the individual and aggregated feedback given to
subscribers and publishers alike.

A client handler allows participants to register a callback method that is triggered by the
client handler whenever new feedback arrives from the MOM. Subscribers can implement the
ExpectationAwareSubscriber interface to be triggered for updates about their expectations or
aggregated feedback requests; publishers can implement the CapabilityAwarePublisher inter-
face to be triggered by adaptation advices or aggregated feedback. The client handlers can be
used without providing a callback, though. In the appendix, Figures A.3a and A.3b show the
interfaces for subscribers and publishers.

While most of the offered functionality is platform- and application-agnostic as it is encapsulated
within the client handlers, exchanging information with the MOM requires platform-specific com-
ponents to be added to each client handler. The updater component inside a client handler needs
to convert expectations or capabilities into the platform-specific format accepted by the MOM,;
the listener component, in turn, needs to convert back individual and aggregated feedback

5.1. Architecture and Design 119

from the platform-specific message format. Thus, we provide an abstract class for each type of
client handler that has to be extended for platform-specific ports. In the appendix, Figure A.4a
shows the API offered by the abstract class for subscribers and Figure A.3b for publishers.

ReactionManagerClient: a Wrapper for Publishers

We assume that most publishers using our approach are able to implement the CapabilityAware-
Publisher interface to receive and process adaptation advices from the MOM in order to adapt
the generic properties of their publications.

Not all publishers, however, are able to do this without severe changes to their implementation.
Using legacy applications in Cloud environments, for example, is a particular case [173]. Thus,
we provide a wrapper for publishers, called ReactionManagerClient, that transparently adapts
the information provided by the publisher without having to change its implementation.

request CapabilityHandlerClient ‘
manage

tod —
a%%r:g:cid capabilities /J\ /]-\

getClientlD onUpdate(Feedback)
| |
Interface: CapabilityAwarePublisher

ReactionManagerClient

Parser

Figure 5.12.: Design of ReactionManager to enable adaptation of static publishers.

Each ReactionManagerClient consists of application-agnostic and application-specific parts as
shown in Figure 5.12. The application-agnostic part of the ReactionManagerClient implements
the CapabilityAwarePublisher interface and uses a CapabilityHandlerClient to handle feedback
from the MOM. The application-specific part implements a set of rules (e.g., Event Condition
Action rules (ECA) [401]), mechanisms, as well as a parser for the publisher’s configuration.
These components are used to determine the types of advertisements to send to the MOM as
well as the capabilities provided by the publisher. Furthermore, they are required to interpret the
received adaptation advises and adapt its associated publisher.

We apply this approach in our reactive McCAT middleware to support Ganglia monitoring and
MySQL master-slave replication in public Cloud settings [173] (cf., Section 5.3).

Within our Ganglia scenario, for example, we have implemented a wrapper that changes the
configuration of each gmond publisher on the fly before restarting it, realizing adaptation of the
set of provided metrics, their granularity as well as the sampling rate within 26ms.

Graphical Editor to Define and Update Expectations and Capability Profiles

In addition to the client handlers we provide a platform-independent graphical editor written in
Java to ease the management of expectations and capabilities. The editor imports definitions for
generic properties as described in the Backus-Naur Form (BNF) of listing A.8a. Expectations and
capabilities can be defined, altered or deleted using sliders and input fields. The form accepts
only input that is conforming to the definition of the respective generic property. For example,

120 5. Implementation

input fields for requirements or capabilities about the generic property trustworthiness defined
over "low","medium","high" do not accept values such as "ultra" or "none". Figures 5.13 and 5.14
show screenshots of each type of editor. In a separate window of the editor, a star plot of the
currently edited expectation or capability profile is kept up-to-date to give visual feedback to the

user (cf., Section 3.3.1). The cost function of a capability is visualized as well.

Load Properties Description Load Expectation Instance | Add new Expectation Instance | | Save Expectations
Gl =)
Description 'E1 ' Utility: 25 | Remove Instance
GUID 24608800-8fb5-48b9-¢
Resilience -

Precision of the notification Precision of the notification

|| inactive

| | closed Trustworthiness) Confidence of detection

Confidence of detection

|| inactive

Accuracy of observation Sampling Rate
|| closed

End-to-end latency

Accuracy of observation

1 © Maximum accepted ® Minimum accepted

|_| inactive
— -
[] closed 70 {)
'S 100
Trustworthiness
. . Minimum accepted Maximum accepted
|| inactive
[_| closed low 'S
none low medium high
'S medium
none low medium high
Freshness
Sampling Rate
. . Minimum accepted Maximum accepted
|| inactive
[] closed 5 (¥
o' 10

Figure 5.13.: Prototype of a graphical editor for expectations.

Expectations and capability profiles can be exported as Extensible Markup Language (XML) as
shown in Listings 5.1 and 5.2. Definitions for generic properties are stored separately using a

5.1. Architecture and Design 121

O [ey
anjeA waLN) @ pardarne N @ paadane | Y anndeur [
pardadse wnwiui el
SSauIyUOMISNI]
Auaie| pua-o1-pu3z
0T
ey buidwes uoneAIasqo Jo Aeinddy
X uonduNny 150D
anjeA uaun)
U0112313p JO DUIPYUOD) SSIUIYLOMISNIL Tt dAndRUL D
U0NBAIISGO JO AdBINDDY
UOIIBIIIOU 3Y1 JO UOISPAIY
)8
13 Buifjsnes - 149 - 101p3 ANjigede) tvX uondunyg 150D
008
o e waun
T B —
2
- L o]
paidase wnuixeiy PRT— anndeur [
000°0T U011213p JO 3DUAPLUOD)
0 [£vx| uondunyg 150y
s O e waun
o0s 8 001 @
2
- L o]
pardarde wnwixepy pardarde wnwiuiy aAndeul [
000°T UONEDINOU BY) JO UDISIDAIY
U.—:U_—_mle
[Td>| aino
2JUBRISU| PAOWRY [13 bulhysnes - 43| uondudsag
m T3Aysnes o13|qeiou - €47 | T3 Aysnes o13|qe - zdD e CEINERES S S
[3sey | [suonyaqg senuadoid wodx3 | | seniqeded anes | | edueisuj Aujiqeded meu ppy | | edueisuj Aupigede) peoq || uondudsag seiuadold peo |

igede)

Figure 5.14.: Prototype of a graphical editor for capability profiles.

5. Implementation

122

line-based syntax as shown in Figure A.8b. We chose these open formats for maximum portability
but other formats can be easily integrated as well.

Listing 5.1: XML for an expectation.

<expectation utility="300" GUID="d496351b">
<property abbrev="rate">
<lower -bound>5</lower -bound>
<upper -bound>10</upper-bound>
</property>
<property abbrev="confidence">
<lower-bound>75</lower-bound>
<upper-bound>95</upper -bound>
</property>
</expectation>

Listing 5.2: XML for a capability profile.

<capabilityprofile GUID="5e5adf98" >
<capability abbrev="confidence">
<lower-bound>0</lower -bound>
<upper -bound>80</upper -bound>
<current-value>50</current-value>
<costs>25+3x</costs>
</capability>
<capability abbrev="rate">
<lower -bound>2</lower -bound>
<upper-bound>60</upper -bound>
<current-value>2</current-value>
<costs>17x</costs>
</capability>
</capabilityprofile>

5.1.4 Classes for Expectations, Capabilities and Generic Properties

The notion of expectations and capabilities based on generic properties is at the heart of our
approach. While their semantics have been described in detail in Chapter 3, we want to discuss
their implementation within our reference architecture in this section.

Expectations and capability profiles are handled as Java objects within the client handlers and the
ExpectationController. For exchanging them between participants, these objects are either se-
rialized (e.g., REDS) or converted into platform-specific message formats (e.g., MapMessage for
Apache ActiveMQ). Figure 5.15 shows the methods and attributes most important for imple-
menting the runtime negotiation process.

Each Expectation contains a hashtable of XProperty objects that embody the requirements
about generic properties by defining upper and lower bounds on each generic property. The
XProperty class provides the arithmetic functions required during the range matching step of
the runtime negotiation phase.

Each CapabilityProfile contains a hashtable of Capability objects. Each Capability is an
extended XProperty with additional cost function and current value of the same type of value
that the generic property is defined over. In particular being able to define virtual current values
valid only for specific expectations and adjusting the cost function are the key features used by
Balancer and ReactionCoordinator during coordinated runtime adaptation (cf., Section 4.4.3).

5.1. Architecture and Design 123

The cost function of a capability is implemented using the Calculable class of the open-source
Java library exp4j? that parses numeric functions described as Strings into executable objects.

Within each of these objects, we use the generic Value class to store values of generic properties.
A Value is a wrapper for list-based or range-based values of arbitrary data types as described
in Section 3.2.2; it also provides all methods to perform algebraic operations as shown in Fig-
ure 5.16. At the time of writing, Value supports String, Integer, Double, Long, and Boolean.
List-based values can be defined as well by providing a list of range-based Value objects in
ascending order.

Expectation XProperty
#GUID: String #title: String
#alias: String #abbrev: String
#utility: int #valuesStyle: int
#properties: Hashtable #closed: boolean

+addProperty(prop: XProperty)
+setValuesAllowed(valuesAllowed: Value[n])

+getFingerprint() +setUpperBound(uBValue: Value)

Set- and +getDimension() +setLowerBound(IbValue: Value)

range- +isActive()

matching +getNumberOfActiveEntries() +getDifferenceToLowerBound(Val: Value)

+getClosedProperties() +getDifferenceToUpperBound(Val: Value) Range-matching
+isCovered(Val: Value)
+getProperty(abbrev: String) +isOverfulfilled(Val: Value)
() ()
CapabilityProfile Capability extends XProperty

#GUID: String -costFunction: CostFunction
#alias: String -currentValueVisibleByGUID: Hashtable
#capabilities: Hashtable +getCV(ExpectationGUID: String)

+addCapability(prop: Capability)
(..r)

+getDimension()

+getFingerprint() +getCostFunction()
Set-matching +getCapabilities() +setCostFunction(costFunction: String)
+getCapability(abbrev: String)
+getinstanceXMLCode() +setCV(ExpectationGUID: String, newV: Value) Support for
+setLB4CostFunction(tmpLB: Value) coordlngted
adaptation

() ()

Figure 5.15.: Classes for expectations, capabilities, capability profiles and generic properties.

2 http://www.objecthunter.net/exp4j/

124 5. Implementation

http://www.objecthunter.net/exp4j/

Value

#longVal: long
#doubleVal: double
#stringVal: String
#booleanValue: boolean
#intVal: int
#indexOfFixedValue: int
+longVal()

+doubleVal()
+stringVal()
+booleanVal()

+intVal()
+allowedValues() /_I
+equals(obj: Object)

+isGreater(other: Value) #currentFixedValue
+isSmaller(other: Value)

+compareTo(other: Value)

+getDifference(otherValue: Value)

+getValueObiject()

+getValue()

+setValue(val: int)

+setValue(val: String)

+setValue(val: long)

+setValue(val: double)

+setValue(val: boolean)

+setValue(value: Value, fixed: ValueFixedList)

Figure 5.16.: Value: a wrapper for list-based and range-based values.

5.2 Platform-Specific Prototypes

We have implemented platform-specific components for the reference architecture described in
the previous section to enable runtime support of Qol requirements on two open-source MOMs.

This section covers the support we have added for expectations, capabilities and feedback for self-
adaptation within the Apache ActiveMQ messaging broker and the REDS MOM. Both platforms
support a mixed type/content-based communication model and have been extended without
affecting existing code.

We chose these two platforms for their different features: Apache ActiveMQ is representative of a
centralized industrial-strength MOM focusing on high performance, while the distributed REDS
MOM allows for exploiting routing strategies and broker topologies for adaptation in DEBS.

5.2.1 Centralized Implementation: Apache ActiveMQ

Apache ActiveMQ? is an industry-strength open-source Java Message Service (JMS) MOM, which
also supports other messaging protocols such as Advanced Message Queuing Protocol (AMQP),

Simple Text Oriented Messaging Protocol (STOMP), and OpenWire [390]. Topics are used for
many-to-many communication while queues implement point-to-point communication. Content-
based routing is supported by adding attributes to notifications and defining filters on these
attributes; explicit advertisement and unadvertisements, however, are not supported.

Using a plugin architecture, ActiveMQ allows to extend the MOM with custom functionality with-
out the need to change existing code. A plugin has access to the state of the broker instance it is
running on to intercept and modify any notification being processed by the broker. Furthermore,

3 https://activemq.apache. org

5.2. Platform-Specific Prototypes 125

https://activemq.apache.org

events indicating changes in the lifecycle of other participants (i.e., subscribers, publishers, or
brokers) can be intercepted and modified as well. ActiveMQ is using an interceptor stack and
container model to provide full access to its internal routing while isolating the business logic
of a plugin and easing parallelization at the same time. Thus, multiple plugins can be deployed
together without causing side-effects as illustrated in Figure 5.17 for ExpectationController
plugin, ASTAController plugin and the Latency plugin described in [138].

Expectation ASIA
@—» Controller Controller e —DD@
Plugin Plugin

Publisher Subscriber

ActiveMQ Broker Instance

Figure 5.17.: Plugin-support on Apache ActiveMQ.

Due to this modular plugin architecture, we provide ExpectationController and ASIAController
as two separate plugins on ActiveMQ.

Access to the broker state is offered by ActiveMQ through the API of the BrokerPluginSupport
class that can be extended by each plugin. Selected parts of the API are shown in Figure A.6 in
the appendix.

ActiveMQ is widely used as a centralized MOM. While clusters and networks of brokers can
be supported for availability reasons, ActiveMQ itself does not support any higher-level routing
strategies other than forwarding [302]: brokers subscribe on behalf of their local subscribers
to all their neighbors while publications are flooded to all brokers. Within the business logic
of ActiveMQ there is no distinction between edge and inner brokers as shown in Figure 5.18
for forwarding notifications. This is relevant for the interaction between the broker and our
extensions ExpectationController and ASIAController.

ActiveMQ broker
. S { ! Internal
routing
Publisher
\— sent —— /
preProcessDispatch

Lo postProcessDispatch /

Figure 5.18.: Forwarding of notifications between multiple brokers using the same methods.

ActiveMQ broker

Notification

Subscriber

ExpectationController Plugin

We provide ExpectationController as a plugin on ActiveMQ by extending BrokerPlugin-
Support and implementing the ExpectationController interface. The integration of the
ExpectationController with methods of ActiveMQ’s API is shown in Figure 5.19.

The ResourceMonitor has to be triggered by changes of the broker state. Thus we add triggers to
the methods of the ActiveMQ broker that are called whenever subscribers, publishers, or brokers
join the system (addConsumer, addPublisher, addBroker) or leave (removeConsumer, etc.) as
well as whenever topics or queues are added (addDestination) or removed.

126 5. Implementation

ExpectationControllerPlugin

addProducer
preprocessDispatch

Trigger update addConsumer

ResourceMonitor DispatchPolicy

addDestination

routing adaptation, rateController, latency minimization
ReactionCoordinator

Figure 5.19.: ExpectationController: utilized joinpoints in ActiveMQ plugin API.

Notifications about expectations and capabilities are received and forwarded as MapMessages
by a separate JMS subscriber that is subscribed on two topics provided on the broker:
expectations.control and capabilities.control. The client handlers publish on these top-
ics to register, update or revoke expectations and capabilities. The MOM publishes feedback on
the topics expectations. feedback and capabilities.feedback that client handlers are sub-
scribed to. We decided to use separate topics for the communication about expectations and
capabilities to minimize the number of processed notifications we have to parse.

Runtime adaptation is realized by transparently changing the subscriptions of subscribers for
routing adaptation and by using a customized DispatchPolicy to deploy rateController in-
stances for those subscribers that require a reduction of the sampling rate.

On ActiveMQ, adjusting the DispatchPolicy is a powerful tool to transparently and efficiently
intervene with the processing of notifications. At least one DispatchPolicy instance is assigned
to a new destination. ActiveMQ hands over each notification that is processed for this destina-
tion to the activeDispatchPolicy together with a set of subscribers for this destination. The
DispatchPolicy then decides for each subscriber if the notification should be dispatched.

We inject the rateController mechanism into the dispatching process of ActiveMQ by substitut-
ing the generic DispatchPolicy with the RateControllerDispatchPolicy shown in Listing A.1.
This customized policy maintains a list of rateControllers registered for dedicated subscribers
and types of notifications. If there is no rateController for a subscriber, the original notification
is forwarded without alterations. The injection is done when a new destination is registered as
shown in Listing A.2, lines 11-14. The listings are shown in the appendix.

ASIAController Plugin

We provide ASIAController as a plugin on ActiveMQ in the same way by extending Broker-
PluginSupport and implementing the ASTAController interface.

As for the ExpectationController plugin, changes to the population known to the broker as
well as incoming notifications trigger changes to the Repository. The Repository updates the
local values for different aggregators and triggers the aggregators. Figure 5.20 shows which
methods of ActiveMQ’s API trigger the six aggregators we have implemented for ASIA.

Incoming aggregated results sent by upstream brokers on the aggregation tree are detected in
the sent method of the plugin. They result in updates of their respective aggregates. The same
method is used to forward updates about aggregated metrics downstream the aggregation tree.

5.2. Platform-Specific Prototypes 127

Incoming: update tc” ¢, tc"Y

> Outgoing: notify downstream participants
using piggybacking or additional notifications

Publisher ASIA aggregators
se‘r:d _ - publicationRate
- publisherCount
- publisherCount Incoming:
addProducer - advertisement Count update
local values
addConsumer - subscriberCount
Subscriber addDestination - subscriptionRate

ASIAController Plugin

Figure 5.20.: ASIA aggregators: utilized joinpoints in ActiveMQ plugin API.

Aggregate update information is piggybacked onto existing JMS messages by adding attributes
with a common prefix that describe the aggregated metric, its upper and lower bounds as well
as the imprecision used to compute the interval. These additional attributes are stripped at the
receiving broker. Subscribers and publishers are notified with separate MapMessages.

Extending Publishers and Subscribers

In addition to platform-specific implementations for brokers and client handlers, developers need
to extend the code of existing publishers and subscribers to

1. access ExpectationHandlerClient and CapabilityHandlerClient;
2. define expectations and capabilities and register them at the MOM; and

3. react to feedback sent from the MOM.

Reacting to feedback is based on the semantics of the application and thus requires application-
specific extensions that can differ in extent and complexity. Accessing the client handlers and
managing the lifecycle of expectations and capabilities, on the contrary, is not.

Listing 5.3 shows a minimalistic example of a JMS subscriber that uses expectations to manage its
Qol requirements. We omit most of the additional boilerplate code used to manage the lifecycle
of the subscriber and the JMS connection itself. We assume that the subscriber subscribes to a
predefined topic with a given filter expression; the approach is the same for queues.

The additional code necessary to integrate our ExpectationHandlerClient into the business logic
of a subscriber consists of general bootstrap code to initialize the client handler (line 15 - 16)
and load a list of predefined expectations saved in a separate file. Alternatively, the subscriber
can define expectations on the fly after initializing the client handler. For every expectation to
be activated for a given JMS topic and filter expression, the subscriber needs only a single line
of code (line 17). The subscriber identifies itself at the MOM using the clientID attribute of the
JMS connection. This identifier is valid for all subscriptions of the connection.

We want to point out the ratio between the eight lines of code necessary to establish a connection
to a typical JMS MOM (lines 21-28) and the additional three lines of code necessary to include
expectations (lines 15-17).

128 5. Implementation

In our example, every update about the state of a registered and active expectation triggers the
subscriber to print a list of all the feedback received so far using the method provided by the
client handler (line 35).

Listing 5.3: Minimalistic JMS subscriber using expectations.

1 public class SubscriberExpectationAware implements ExpectationAwareSubscriber,
MessagelListener {

2

3 private Connection connection;

4 private Session session;

5 private Topic topic;

6 private MessageConsumer subscriber;

7 private ExpectationHandlerClientActiveMQ eH;

8

9 (...)

10

11 public SubscriberExpectationAware(String url, String clientID, String topicName, String
filter, String xID, String configFile) throws JMSException {

12

13 this.setupIMS(url,clientID, topicName,filter); //establish JMS connection

14

15 eH = new ExpectationHandlerClientActiveMQ(this, configFile, true);

16 eH.addLocalExpectationsAuto();//load all expectations in this file

17 eH.registerExpectation(xID, new EventType(topic,filter));

18}

20 private void setupJMS(String url, String clientID,filter) {

21 ActiveMQConnectionFactory factory = new ActiveMQConnectionFactory(url);
22 connection = factory.createConnection();

23 connection.setClientID(clientID);

24 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);
25 topic = session.createTopic(topicName)

26 subscriber = session.createConsumer(topic,filter)

27 subscriber.setMessageListener(this);

28 connection.start();

29}

30

31 (...)

33 @Override //handle feedback
34 public void onUpdate(FeedbackExpectation news) {

35 System.out.println(this.expectationHandler.summarizeFeedback());
36}

37

38 (...)

Listing 5.4 shows a minimalistic example of a JMS publisher that uses capabilities to announce
its support for Qol properties. As for the subscriber example, we omit most of the additional
boilerplate code used to manage the lifecycle of the publisher itself. Again we assume that the
publisher publishes to a single predefined topic; the approach is the same for queues or multiple
topics/queues.

As in our subscriber example, we need only two additional lines of code to bootstrap the client
handler and load a list of predefined capabilities (line 15 + 16) while a single line of code is
required to register a capability profile for a given JMS topic (line 17).

5.2. Platform-Specific Prototypes 129

In our example, receiving an adaptation advice from the MOM (line 32) triggers publisher-
specific code for adapting all capabilities required to change. Having completed the adaptation,
the publisher updates the current value for the respective capability and notifies the MOM using
the client handler (line 37).

Listing 5.4: Minimalistic JMS publisher using capabilities.

public class PublisherCapabilityAware implements CapabilityAwarePublisher {

1
2

3 private Connection connection;

4 private Session session;

5 private Topic topic;

6 private MessageProducer publisher

7 private CapabilityHandlerClientActiveMQ cH;
8

9

10
11 public PublisherCapabilityAware(String url, String clientID, String topicName, String
filter, String cID, String configFile) throws JMSException {

13 this.setupIMS(url,clientID, topicName);

14

15 cH = new CapabilityHandlerClientActiveMQ(this, configFile, true);
16 cH.addLocalCapabilitiesAuto(Q);

17 cH.registerCapabilityProfile(cID, new EventType(topic));

18}

20 private void setup]MS(String url, String clientID) {

21 ActiveMQConnectionFactory factory = new ActiveMQConnectionFactory(url);
22 connection = factory.createConnection();

23 connection.setClientID(clientID);

24 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

25 topic = session.createTopic(topicName)

26 publisher = session.createProducer(topic,filter)

27 publisher.setDeliveryMode (DeliveryMode.NON_PERSISTENT);

28 connection.start();

29 }

31 @Override
32 public void onUpdate(AdaptationAdvice news) {

33 for (RequirementForCovering req : news.getRequirements().values()) {

34

35 C...)

36

37 this.capabilityHandler.updateCapabilityCurrentValue(news.getAssociatedGUID(), req.
getAbbrev(), req.getRequiredValue());

38 }

39}

40

41 (...)

130 5. Implementation

5.2.2 Distributed Implementation: REDS

Our second set of platform-specific extensions provides support for expectations, capabilities
and feedback in the distributed REconfigurable Dispatching System (REDS)#. REDS is an aca-
demic MOM written in Java which aims at providing a lightweight distributed and decentralized
architecture that is easy to extend for custom approaches [126].

Publisher Broker Subscriber
Notification
Routing Publisher > PacketForwarder > Subscriber
. Network . .
Overlay NodeDescriptor NodeDescriptor NodeDescriptor
connection

Figure 5.21.: REDS general architecture: routing and overlay layers.

The general architecture of REDS consists of an overlay layer and a routing layer as shown in Fig-
ure 5.21. On the overlay layer, network connections between participants are established and
managed by NodeDescriptors that form a topology. Different transport protocols can be used
to establish the overlay, e.g., TCP or UDP. On this layer, participants do not have different roles
but each NodeDescriptors can send and receive notifications that consist of a subject and any
Serializable Java object as payload.

On the routing layer, PacketForwarder classes establish a routing direction from publishers to
subscribers based on the connections that are maintained in the overlay layer. Routing tables
for storing and matching advertisements and subscriptions are maintained by instances of the
PacketForwarder class that acts as broker. Any notification, advertisement or subscription pro-
cessed by a PacketForwarder can be modified by it.

The broker API becomes accessible to ExpectationController and ASIAController by extend-
ing PacketForwarder. The methods are shown in Figure A.7 in the appendix. As on ActiveMQ,
our extensions can intercept or generate subscriptions, advertisements, and notifications.

In contrast to ActiveMQ, however, REDS brokers use different methods based on whether they
act as edge brokers or inner brokers in a DEBS during the delivery of notifications. The interlock
of the different methods is illustrated in Figure 5.22 for the delivery of a single notification from
a publisher (left) to a subscriber (right) via three brokers: while all three brokers provide the
same methods, different methods are used based on their role. As shown in the annotations to
Figure A.7, we can utilize this knowledge when updating ASIA aggregators.

— Edge broker Inner broker Edge broker
Notification
: processEventFromCIlent notn‘ySubscrlber :
- processEventPacket processEventPacket processEvemPacket /
Publisher Subscriber

Figure 5.22.: Difference between edge and inner brokers in REDS.

4 http://zeus.ws.dei.polimi.it/reds/

5.2. Platform-Specific Prototypes 131

http://zeus.ws.dei.polimi.it/reds/

ExpectationController and ASIAController combined

As REDS does not support interceptor chains with plugins as ActiveMQ does, we have integrated
the functionality of both ExpectationController and ASTIAController into a single extended
PacketForwarder class by implementing both the ExpectationController interface and the
ASTAController interface.

ASIAController

- subscriberCount
- subscriptionRate

Update tCTé’,C’ tcﬂﬁﬂf

Updates to . and notify downstream
local values - advertisementCount < — participants using
triggered - publisherCount piggybacking or additional

- publicationRate notifications

Used when
acting as...

Publisher

processEventFromClient ——

installLocalAdvertisement Edge broker

installLocalSubscription ———
[— notifySubscriber
: Subscriber

processEventPacket

processAdvertismentPacket <+——— Inner broker

— P[] processSubscriptionPacket +——
+ piggybacked data
PacketForwarder
L Update routing rate
ResourceMonitor adaptation Controller

ExpectationController

Figure 5.23.: Joinpoints of a REDS broker and their use for ASIA and Qol requirements.

Figure 5.23 shows how our extended PacketForwarder interacts with ExpectationController
and ASIAController. When acting as an edge broker (upper half of Figure 5.23), all meth-
ods triggered by participants such as connecting, disconnecting, advertising, subscribing or pub-
lishing triggers the Repository of the ASTAController to update the local values and update
registered aggregators. When acting as an inner broker, in turn, any forwarded notification,
advertisement or subscription with piggybacked update information can lead to total counts be-
ing updated at the ASTAController. Any updates for aggregated ASIA metrics are forwarded
downstream the aggregation tree using notifySubscriber or hooking into the processEvent
method.

The ResourceMonitor of the ExpectationController is triggered by any change to the state
of the broker — regardless of whether the broker acts as edge or inner broker. The methods
processEventPacket and notifySubscriber are essential for runtime adaptation in terms of
routing adaptation or rate reduction. When acting as an inner broker, rate reduction is activated
in processEventPacket to reduce the number of notifications being processed to a neighboring
broker while notifySubscriber is used to deliver the notifications to a dedicated subscriber at
the required sampling rate.

132 5. Implementation

Extending Publishers and Subscribers

On REDS, the code extensions necessary for participants to access their client handlers and man-
age the lifecycle of their expectations or capabilities is the same as on ActiveMQ.

Listing 5.5 shows an example of a subscriber to the REDS MOM that uses expectations to manage
its Qol requirements.

The additional code necessary to give the subscriber access to the ExpectationHandlerClient and
load predefined expectations (line 15 - 18) is the same as on ActiveMQ, as is the code to register
a locally loaded expectation with a subscription (line 31.

Listing 5.5: Example for a REDS subscriber using expectations.

2 public class GangliaSubscriber extends Subscriber implements Runnable,
ExpectationAwareSubscriber {

3

4

5 ExpectationHandlerClientREDS expectationHandler;

6

7 ...

8

9 public GangliaSubscriber(GenericRouter router, Overlay overlay, Monitor monitor,
GangliaInterceptor myController) {

10 super (router, overlay, monitor);

11

12 G...)

13

14 //Register ExpectationsHandlerClient

15 expectationHandler = new ExpectationHandlerClientREDS(this,"./reds-

expectationHandlerClient-local.conf",true,myController.asiaPortToListenTo+55);

16

17 //Load expectations as defined in the config file

18 loadedExpectations = expectationHandler.addLocalExpectationsAuto();

19 }

20

21 ...

22
23 private void subscribeToAvailableMetrics(GangliaClusterData gcd) {
24

25 C...)

26

27 for (Subscription s : subs) {

28 sendSubscription(s, System.nanoTime(), SubPktType.SUB);

29 logger.finest("Send subscription for " + s.getType() + " with " + s.getConstraints().
size() + " constraints");

30

31 this.expectationHandler.registerExpectation(this.expectationsForTypes.get(s.toString())
, new EventType(s.getType().toString()));

32

33 }

34

35 ...)

36 }

37

38 }

5.2. Platform-Specific Prototypes 133

Listing 5.6 shows code excerpts for a REDS publisher as part of our McCAT extension to the
Ganglia monitoring system (cf., Section 5.3).

As in our subscriber example, we need only two additional lines of code to bootstrap the client
handler and load a list of predefined capabilities (line 15 + 16) while a single line of code is
required to register a capability profile for a given Ganglia metric that is being advertised by this
publisher (line 16).

Listing 5.6: McCAT publisher using expectations on a REDS platform.

2 public class GangliaPublisher extends Publisher implements Runnable,CapabilityAwarePublisher

{
3
4 (..
5
6 private CapabilityHandlerClientREDS capabilityHandler;
7
8 public GangliaPublisher(GenericRouter router, Overlay overlay, Monitor monitor,
GangliaInterceptor controller) {
9 super (router, overlay, monitor);
10
11 ...)
12
13 this.controller = controller;
14
15 capabilityHandler = new CapabilityHandlerClientREDS(this,"./reds-
capabilityHandlerClient-local.conf",true,controller.asiaPortToListenTo+55);
16 capabilityHandler.addLocalCapabilitiesAuto();
17
18 }
19
20 (...)
21
22 /* Method sends an advertisement for a specific Ganglia metric */
23 public void advertiseAvailableMetric(GangliaMetricData metric) {
24
25 ¢...)
26
27 Advertisement adv = new Advertisement(type, controller.currentGangliaConfiguration.
gmondData.getApplicableAggregations() .get(metric.getMetricName()), controller.
currentGangliaConfiguration.gmondData.getAdditionalParametersForMetric(metric.
getMetricName()) .get("attributeToAggregate"), host, cluster);
28
29 clientAdvertisedTypes.add(type);
30 sendAdvertisement (adv, System.nanoTime());
31
32 //Register corresponding CapabilityProfile if any has been defined in gmond-config using
#CPGUID option
33 if (controller.currentGangliaConfiguration.gmondData.getAdditionalParametersForMetric(
metric.getMetricName()) != null) {
34 String cpGUID = controller.currentGangliaConfiguration.gmondData.
getAdditionalParametersForMetric(metric.getMetricName()).get("CPGUID");
35 this.capabilityHandler.registerCapabilityProfile(cpGUID, new EventType(type.toString())
D
36 }
134 5. Implementation

5.3 Example Applications

We use our platform-specific prototypes to support Qol at runtime within different distributed
open-source applications written in Java. In the remainder of this chapter, we illustrate the
integration of our approach into the reactive McCAT middleware to enhance Ganglia monitoring
and MySQL master-slave replication in public Cloud environments. Furthermore, we describe
the extensions made to the benchmarking applications FINCoS and jms2009-PS.

McCAT: Enhance MySQL Replication and Ganglia in Public Clouds

Multi-cloud Cost-Aware Transport (McCAT) is an approach we propose to balance the network
usage of distributed legacy applications with Qol requirements of a tenant in multi-Cloud de-
ployments without having to change the application’s implementation [173].

Many distributed applications that are used in public Cloud deployments were originally de-
veloped for use in environments where network traffic is sufficiently available and free of
charge. Prominent examples are monitoring systems (e.g., Ganglia), data-parallel processing
frameworks (e.g., Hadoop), and replicated databases (e.g., MySQL) deployed in clusters.

In today’s public Clouds, network traffic has become a major cost factor for data-intensive ap-
plications: the Cloud provider charges a tenant for incoming and outgoing network traffic when
operating the tenant’s applications in one or multiple data centers. Consequently, the tenant
needs to have means to balance the network usage of its applications with the Qol of the ex-
changed information, e.g., in terms of latency, completeness, or precision.

We propose McCAT to make distributed applications network- and cost-aware while enabling
tenants to specify bandwidth budgets and Qol requirements. Instead of changing the implemen-
tation of the application, McCAT transparently intercepts data exchanged between components of
the distributed application using application-specific interceptors as shown in Figure 5.24.

Application Publisher Broker Subscriber Application

Data Centre A Data Centre C

Application Publisher Broker Subscriber Application

Data Centre B

MCcCAT adjusts inter-data centre traffic using

Remove Reduce volume Avoid processing
unused data of relevant data redundant data

Figure 5.24.: McCAT: make distributed legacy applications network- and cost-aware.

5.3. Example Applications 135

MCcCAT tries to balance the network usage of the application with the Qol requirements of the
tenant by removing unused data, reducing the volume of relevant data and avoiding to send
redundant data. These objectives are achieved by McCAT dynamically:

1. transforming meaningful data from application-specific formats into generic notifications;
2. filtering out data that is not required by any receiving component;

3. compressing and aggregating relevant data before sending;

4. caching data and processing it with application-level multicast.

For example, in a Ganglia system deployed across multiple data centers, network traffic between
data centers can be significantly reduced by aggregating multiple updates of monitored metrics
before transmission if their sampling frequency is higher than the received rate required at the
moment (e.g., sampling frequency of one update every five seconds vs. required granularity of
five minutes’ average), or by filtering metrics that are not being displayed to user.

Similarly, a master-slave replication deployment of MySQL across multiple Amazon EC2 regions
can save bandwidth by multicasting the same replication update to multiple slaves, processing
updates for selected tables only, or by delaying updates for a given amount of time to clear out
redundant updates: if multiple updates to the same row of a table occur within a given amount
of time, only the last update is processed.

Architecture Overview

MCcCAT is realized as a distributed application consisting of McCAT interceptors that act as pub-
lishers or subscribers in a DEBS and communicate via McCAT brokers as shown in Figure 5.24.
Expectations are used to capture the Qol requirements of the tenant while publishers use capa-
bilities. Adaptation advices sent by McCAT brokers adjust the publication behavior.

McCAT Interceptors: in McCAT, there are two types of interceptors: senders and receivers. They
have different tasks but are quite similar in their design as shown in Figure 5.25.

Sender interceptor Receiver interceptor

| | ————

Cache - -mm

N} E
Transform @ T

.-

Application

P
Application

(a) Sender interceptor. (b) Receiver interceptor.

Figure 5.25.: Design of the two McCAT interceptor types.

Sender interceptors, as shown in Figure 5.25a, act as publishers in McCAT. Each interceptor
uses application-specific components to mimic a receiving component (e.g., a MySQL slave) and
intercept data from a sending component of the application. The McCAT interceptor then ex-
tracts and transforms the meaningful data items from the application-specific wire-format, such

136 5. Implementation

as the binary format of MySQL replication updates or the XML schema of Ganglia monitoring
updates, into generic notifications used by McCAT. These notifications are filtered, to remove
currently irrelevant data, and cached, to purge redundant data.

A platform-specific publisher component sends notifications to all subscribers via McCAT brokers.
Each publisher subscribes to ASIA aggregations about the number of subscribers interested in the
data it publishes; notifications are published only if there is at least one matching subscriber ac-
tive. Adaptation advices received from the system adjust the behavior of the interceptor, either
by using a ReactionManagerClient to adapt the sending component of the application (cf., Sec-
tion 5.1.3), or by adapting the publisher within the interceptor.

Sender interceptors use an application-specific parser and a set of rules to analyze the configura-
tion of the sending component. They extract the information necessary to intercept the sending
component, identify relevant data items, and generate appropriate advertisements with capabil-
ities. This way, McCAT can leverage application-specific knowledge while respecting application
semantics when filtering and caching.

Receiver interceptors, as shown in Figure 5.25b, act as subscribers in McCAT. Each receiver
interceptor is associated with a receiving component of the application and mimics a sending
component (e.g., a MySQL master). Internally, a platform-specific subscriber receives notifica-
tions from McCAT sender interceptors that it caches and filters. Before processing the update to
the receiving component of the application, the interceptor transforms the data contained in the
notification back into the application-specific wire-format.

Like sender interceptors, receiver interceptors parse the configuration of their associated compo-
nents for clues about the data these components expect to receive. Based on this knowledge and
the tenant’s specification, subscriptions and expectations are generated and registered.

McCAT Brokers: realize the communication between sending and receiving components of the
application. Each broker is extended by an ExpectationController to negotiate expectations
with capabilities as well as an ASTAController to provide aggregated feedback to subscribers.
Brokers are network- and cost-aware, i.e., they know which connections the cloud provider
charges for and what the current utilization of these connections is. They apply lossy and
lossless aggregation mechanisms to the notifications they process to reduce traffic whenever
it becomes necessary to remain within the bandwidth budget set by the tenant.

Prototypes

We provide two prototypes of McCAT based on the ASIA extension of REDS [172]. They provide
support for the Ganglia® monitoring system [298] and MySQL master-slave replication®.

McCAT for Ganglia: the prototype of McCAT intercepts the communication between gmond and
gmetad agents. In a Ganglia system, gmond agents monitor the state of the host (virtual) machine
they are deployed on using different metrics. They update interested gmetad agents on remote
machines with a configurable update frequency when multicast is available. In environments,
such as public Clouds, where multicast is not available, gmetad agents query gmond agents at a
given frequency following a multi-step protocol (request, acknowledgement, response, acknowl-
edgement) over a given TCP socket. Gmond agents send an application-specific XML reply. Each
interaction is stateless, i.e., gmond agents always send the full set of metrics they have measured
even if the state of certain metrics has not changed since the last update.

5
6

http://ganglia.sourceforge.net/
https://dev.mysql.com/doc/refman/5.1/en/ha-vm-aws-deploy.html

5.3. Example Applications 137

http://ganglia.sourceforge.net/
https://dev.mysql.com/doc/refman/5.1/en/ha-vm-aws-deploy.html

In McCAT4Ganglia, we provide two kinds of interceptors: gmondInterceptor (sender intercep-
tor) and gmetadInterceptor (receiver interceptor). They rely on existing Ganglia configuration
files. We exploit the syntax of these configurations to store additional information for McCAT,
such as explicit subscriptions (i.e., subscribe to a set of metrics, all metrics of a given host or a
given cluster only), bandwidth budget, expectations to use, capability profiles to build on, or the
types of aggregations to use for specific metrics. The information is added in a format that is ig-
nored by an out-of-the-box Ganglia deployment but recognized by the application-specific parsers
of McCAT. Listings 5.7 and 5.8 show examples for a gmond as well as a gmetad configuration
file.

Listing 5.7: Extended gmond configuration for McCAT to use aggregation and capability profiles.

1 # Lines starting with # are ignored by Ganglia. McCat ignores only those lines
2 # where # is followed by at least one space. All other lines starting with # are
3 # considered to be additional configuration parameters.

4

5 (...)

6

7 collection_group {

8

9 # sampling frequency in seconds for all metrics in this group

10 collect_every =5

11

12 metric {

13 name = "cpu_num"

14 title = "CPU Count"
15 #aggr = AVG

16 #attributeToAggregate = value
17 #CPGUID=cpl
18}

19
20 metric {

21 name = "cpu_speed"

22 title = "CPU Speed"

23 #aggregation = AVG

24 #attributeToAggregate = value
25 #CPGUID=cpl

26 }

27

28 C...)

29 }

Listing 5.8: Extended gmetad configuration for McCAT to use subscriptions and expectations.

1 # Sebastian Frischbier:

2 # We make use of the syntax here to code additional information for McCAT into
3 # a valid gmond configuration file that can be used without McCAT as well.

4

5 # The first hostname is the host actually queried by gmetad.

6 # Only if this host fails to reply, the other hosts following that are queried
7 # For using the McCAT4Ganglia adapter, this very first host should be localhost.
8 # Otherwise, the adapter will show a warning message.

9 # You can check the correct settings from the adapter’s output on the terminal
10 # Unused configurations can be marked with a # at the start of each line

—
=

12 data_source "ASTA1" 1 localhost:8649
13 # data_source "ASIA2" 1 localhost:8888 ec2-54-200-192-151.us-west-2.compute.amazonaws .com

138 5. Implementation

14

15 # Experimental syntax for fine-granular subscriptions (metric & host level) => sub:c=[
cluster]:h=[host] :m=[metric]:expectation=[GUID]

16 # if c,h,m or f are not explicitly set, wildcard * is assumed

17 # 1f no explicit subscriptions are used or --normalsyntax is set, the gmetadInterceptor for
this gmetad subscribes to all available metrics from all hosts and clusters

18

19 # Example: subscription with expectation: cpu_idle metrics from all hosts of ASIAl that
conform to expectation ecl

20

21 #sub:c=ASIAl:m=cpu_idle:expectation=ecl

22

23 RRAs "RRA:LAST:0.0:1:100000" "RRA:AVERAGE:0.5:1:5856" "RRA:AVERAGE:0.5:4:20160" "RRA:AVERAGE
:0.5:40:52704"

24 gridname "ASIADC1"

25 all_trusted on

26 setuid_username ganglia

27 xml_port 8657

28 case_sensitive_hostnames 0

McCAT for MySQL Master-Slave Statement-based Replication: the prototype of McCAT inter-
cepts the communication between a MySQL replication master database and multiple MySQL
replication slave databases. In MySQL, slave databases can register at a master to be informed
about any change to rows in a specific database, e.g., INSERT, UPDATE, DELETE, DROP. When-
ever such an update happens at the master, all slaves are notified by the master and receive a
binary BinLogEvent containing the query causing the replication update; this statement-based
replication is the default configuration for MySQL. The master and all slaves log each query to a
BinLog record that can be used for rollback operations or to update slaves with outdated states.

In McCAT4MySQL, we provide two kinds of interceptors: mysqlSlaveInterceptor (receiver
interceptor) and mysqlMasterInterceptor (sender interceptor). The interceptors parse the
configurations of their database instances to learn the TCP ports used for replication as well
as the current state of the BinLog record.

The masterInterceptor registers at the MySQL master on behalf of the replication slaves. Bin-
Log events received from the master are buffered here until a sequence of interrelated events is
complete and then forwarded by the publisher.

At the edge broker, BinLog events referring to the same table in a replicated database are cached.
The size of the cache in terms of the number of BinLog events to add is determined by McCAT.
Redundant replication actions currently kept in the cache are eliminated, e.g., only the latest
update of subsequent updates for the same tuple is kept. Varying the size of the cache enables
MCcCAT to trade-off the latency and consistency of updates with traffic savings: the larger the
cache, the higher the probability for redundant updates to be observed and eliminated. The
latency of updates, however, increases with an increasing cache size while the consistency of the
slave databases is deteriorating. The bounds defined by the tenant for these generic properties
define effective upper bounds for the cache size.

5.3. Example Applications 139

JMS-2009-PS: Benchmark for JMS

The jms2009-PS [368, 369] benchmark extends the official Standard Performance Evaluation
Corporation (SPEC) benchmark’ SPECjms2007 for JMS. The workload of the SPECjms2007
benchmark is based upon a Supply Chain Management (SCM) scenario where different types
and instances of participants (i.e., different distribution centers, supermarkets, headquarters etc.)
interact with each other using a MOM. The benchmark is described in detail in Section 6.3.

Notifications Notifications

Message-oriented

Middleware

Satellite

Driver EventHandler

Agent
Capabilities (e.g. DCl) Expectations

Location Instance

ClientHandler ClientHandler

Controller
Instructions Results

run.properties
[Corrmoms;)
Store [topology].properties [platform] properties . Store

il %/—/ %/—J

. Configuration Platform
Detailed Traces single run configuration SPEC
Reports

Figure 5.26.: jms2009-PS architecture and custom extensions (blue).

Figure 5.26 shows the design of SPECjms2007 and jms2009-PS: an agent encapsulates all pub-
lishers (drivers) and subscribers (event handlers) that represent a physical location (e.g., DC;)
in the scenario. A satellite manages all agents that represent at specific type of participant (i.e.,
headquarters, distribution centers etc.). A controller coordinates all satellites. The controller
manages the lifecycle of its satellites and analyzes the results of a benchmark run.

Each driver and event handler is already designed as a dedicated JMS producer or JMS consumer
in SPECjms2007. Hence, we have extended them as described in Section 5.2.1: each driver
maintains its capabilities using a dedicated instance of CapabilityHandlerClient while subscribers
do the same for expectations using their dedicated instance of ExpectationHandlerClient. This
way, the additional load introduced by expectations and capabilities is tied to the benchmark’s
workload and scales with it.

FINCoS Benchmarking Tool

FINCoS [305] is an open-source benchmarking tool recommended by the SPEC Research Group8
to evaluate Complex Event Processing (CEP) engines and EBS infrastructures in terms of per-
formance and correctness. FINCoS allows for defining and running complex custom workloads
against different platforms without having to individually tailor or convert the same workload

7 http://spec.org/jms2007/
8 https://research.spec.org/tools/overview/fincos.html

140 5. Implementation

http://spec.org/jms2007/
https://research.spec.org/tools/overview/fincos.html

for each targeted platform. In addition, FINCoS takes care of measuring and logging Key Perfor-
mance Indicators (KPIs) such as latency or throughput of the notifications processed by the sys-
tem under test. FINCoS is written in Java and designed as a distributed application where agents
act as subscribers or publishers and thus simulate a heterogeneous population of an EBS.

Notifications Notifications

Detailed Traces Message-oriented Detailed Traces
e Middleware —_
Drivers Sinks

Capabilities
ClientHandler

Expectations
ClientHandler

II Phases

Adapters
Adapters

Self-adaptation

Daemon Service

Workload i i
Configuration Latency Performance
<] Topology (XML)_, Rates monitor
w Connections.fc

Controller
FINCoS
Analytics

4]

Figure 5.27.: Architecture and custom extensions (blue) of the FINCoS benchmarking tool.

As shown in Figure 5.27, load-generators (drivers) act as publishers in an EBS and send cus-
tomized workloads to the system under test. Agents (sinks) act as subscribers based on prede-
fined subscription patterns and receive the processed notifications. A FINCoS controller coordi-
nates the lifecycle of all agents that act as subscribers or publishers. Publishers and subscriber in
FINCoS can be distributed across different hosts for better performance. Hence, a daemon ser-
vice is running on each host to connect subscribers, publishers and controller across hosts using
Remote Method Invocation (RMI). A performance monitoring tool (perfmon) provides analytics
such as the deviation of throughput and latency of the notifications received by subscribers over
the course of the experiment.

FINCoS uses adapters to connect to CEP engines or EBS infrastructures implemented on different
platforms. Each agent requires a custom adapter to convert a platform-independent notification
into a platform-specific message and send it to the system under test (and to receives as well as
decode it back). We have implemented adapters for drivers and sinks to interact with ActiveMQ
and REDS based on the interfaces provided by FINCoS to custom adapters. We implemented a
separate adapter for ActiveMQ as the provided adapter for the JMS caused issues with dynamic
topics on ActiveMQ.

We have customized and extended FINCoS to handle expectations, capabilities as well as the
feedback provided by a MOM supporting expectations and ASIA. Subscribers can now associate
one or more expectations with a subscription and can change that behavior over the duration of
an experiment with or without changing their subscriptions. Publishers can associate capabilities
with their advertisements, change them at runtime, and - first and foremost — they can now
adapt their publication behavior at runtime based on individual feedback given by the MOM.

The behavior of each publisher or subscriber can be individually defined in FINCoS in a platform-
independent way. The behavior of publishers is centered around the notion of a phase. In

5.3. Example Applications 141

FINCoS, a phase describes a duration over which a publisher publishes one or more types of no-
tifications at a given sampling rate. The sampling rate can be constant, increasing or decreasing
during a phase. The content of each notification can be fully customized in terms of attributes
and values with randomized or predefined values for each attribute. Alternatively, each publisher
can replay datasets that contain recorded traces of notifications. Per publisher, multiple phases
can be defined with individual durations, which allow the configuration of complex dynamics
and workload patterns.

The behavior of subscribers is rather static in comparison: subscribers can define content-based
subscriptions but cannot change them at runtime, as there is currently only a single phase con-
figurable for subscribers. Thus, we have implemented phases for subscribers as this enables us to
simulate requirements that change at runtime. Subscribers can now change their subscriptions,
their aggregation requests for aggregated feedback or their expectations during the course of an
experiment: as for publishers, multiple phases can be defined for each subscriber. Subscriptions
and expectations are registered, revoked or updated at the start of each phase.

Each instance of a subscriber or publisher maintains its own local repository of expectations (or
capabilities, respectively). In addition, we have also implemented a support for aggregated feed-
back about the dynamics and population of the EBS at runtime. Both subscribers and publishers
can request updates about aggregated metrics such as publisherCount, subscriberCount, or pub-
licationRate. For each request, an individual imprecision can be set. Aggregation request are
registered, updated or revoked at the start of each phase by both subscribers and publishers.

5.4 Summary

In this chapter, we have focused on the implementation of our approach to support Qol require-
ments in EBS using the proposed concept of expectations, capabilities and feedback.

We have described the generic architecture of our extensions to MOM and participants in an EBS
or a DEBS, including the libraries and tools provided to subscribers and publishers. Most parts of
our reference architecture are independent of the platform or the application using it. We have
presented ExpectationController and ASIAController to extend the MOM and enable it to
provide aggregated feedback and handle Qol requirements.

We have presented prototypes of ExpectationController and ASIAController implemented
on the open-source MOMs ActiveMQ and REDS. These two platforms are examples of central-
ized and distributed MOMs to highlight different features. While our prototypes for ActiveMQ
are realized as separate plugins and can be combined with other off-the-shelf plugins, we have
realized our prototype for REDS as an extension to the broker class used by REDS. Modifications
to existing code of the MOM have not been necessary in both cases.

Finally, we have shown how publishers and subscribers have to be modified to enable runtime
support for Qol requirements using expectations and capabilities. Using the client handlers that
are part of our reference architecture, the modifications necessary to manage the lifecycle of
expectations and capabilities are negligible compared to the code necessary to manage the life-
cycle of advertisements, subscriptions and connections. We have discussed the modifications of
four different applications: jms2009-PS, FINCoS, as well as the Ganglia and MySQL replication
deployment of the reactive McCAT middleware.

142 5. Implementation

6 Evaluation

In this chapter, we evaluate the concept of expectations, capabilities and feedback to support
Quality of Information (Qol) in Event-based Systems (EBSs) at runtime. We first focus on ben-
efits of our approach in terms of resource savings for participants, improved Qol, and superior
expressiveness of our model. Second, we gauge the execution costs for the Message-oriented
Middleware (MOM) when negotiating expectations and capabilities while scaling the popula-
tion, workload and dynamics of an EBS. Third, we quantitatively evaluate the scalability of our
monitoring approach in terms of QoI and performance.

As shown in Figure 6.1, each part of this chapter focuses on a different aspect of our approach
using appropriate Key Performance Indicators (KPIs) and tools to evaluate each aspect. We use
CPU utilization, network traffic, memory usage, end-to-end latency, and throughput as KPIs to
quantify the benefits as well as the execution costs of our approach. We use fidelity as introduced
in Section 3.3.3 to quantify the level of conformance between the Qol requirements of sub-
scribers and the data provided by the EBS. We have extended the industry-strength benchmark
jms2009-PS [368] and the open-source benchmarking tool FINCoS [305] to gauge our prototypes
implemented in Java and deployed on a distributed setup using off-the-shelf Cloud technology.

A

Benefits Scalability & Performance

@ Superior @ Improved Qol & @ Execution @ Distributed Aspects
expressiveness resource savings costs monitoring

(CPU utiIization) (Traffic) (Memory usage) (Latency) (Throughput) (Fidelity) KPIs

Discussion FINCoS jms-2009PS FINCoS Tools

Figure 6.1.: Quantitative evaluation focuses on benefits and execution costs.

We chose FINCoS and jms2009-PS to maximize the comparability and repeatability of our exper-
iments. The benchmark jms2009-PS uses a well-established workload and scaling strategy. This
enables us to reliably gauge the overhead for the MOM introduced by our prototype compared to
a typical EBS. With jms2009-PS, however, we cannot evaluate the reactive features and benefits
of our approach as the benchmark penalizes runtime adaptation, such as adjusting participants
or filtering notifications. Thus, FINCoS is used to complementary evaluate the effects of adapta-
tion and feedback on the resource utilization and satisfaction of participants. FINCoS allows for
defining complex workloads and individual behavior of participants in a platform-independent

143

way. With FINCoS, we can emulate scenarios that are suited to compare the features of our
approach with the features used by related approaches.

In Section 6.1, we show that our approach is more expressive than related approaches that
support Qol explicitly and implicitly. We present related approaches such as Adamant, IndiQoS,
Harmony, INCOME, or encoded types and discuss their limitations.

In Section 6.2, we quantify the benefits of our approach in terms of increased Qol and resource
savings for subscribers, MOM, and publishers. Using an experimental setup motivated by the
Internet of Things (IoT), we compare the results obtained with an EBS applying our approach
with those obtained in a typical EBS without any support for Qol, a typical EBS using encoded
types and finally, a Qol-aware EBS that does not support self-adaptation. We show that our
approach outperforms those approaches in terms of generated fidelity as well as reduced network
traffic and CPU utilization.

In Section 6.3, we use jms2009-PS to gauge the execution costs arising from negotiating expec-
tations and capabilities as well as handling feedback to participants in the MOM. We measure
overhead regarding CPU utilization and memory usage of the MOM as well as the impact on end-
to-end latency and throughput of the processed workload. We show that our approach scales with
the workload and is able to provide support for Qol requirements even for the maximum popu-
lation or throughput that is still manageable for a bare MOM.

In Section 6.4, we evaluate the scalability of our approach for monitoring the population and
dynamics of a Distributed Event-based System (DEBS) at runtime. We show that our monitoring
approach provides this information more efficiently than an aggregation system deployed as a
separate application on top of a DEBS as our approach does not significantly impact the perfor-
mance of the underlying MOM in terms of throughput and end-to-end latency. We show that our
approach exploits relaxations of individual precision requirements defined by participants to sig-
nificantly reduce the number of updates exchanged in the system while conforming to individual
precision requirements at any time, regardless of the number of brokers making up the MOM.

6.1 Expressivity of Expectations and Capabilities

In this section, we discuss the expressiveness of our approach to model and enforce requirements
about Qol properties. We show that our concept is superior to related approaches in its expres-
siveness and the supported set of properties. While related approaches support different fixed
sets of properties, our approach supports not only the superset of these properties but also in-
terdependent properties not supported by any other approach; furthermore, our concept can be
easily extended to support arbitrary properties. Regarding the complexity of requirements, we
show that our concept does not only provide the same expressiveness than related approaches
but that it allows for more complex preferences to be defined and enforced. We discuss the
limitations of related approaches before we compare them against our concept.

6.1.1 Related Approaches and their Expressiveness

IndiQoS, Adamant/DDS, and Harmony are approaches closely related to our work as they are
general purpose MOMs based on the Publish/Subscribe (PS) paradigm with explicit support
for quality-related properties; INCOME/QoCIM is an example for a domain-specific approach
in the area of Ambient Intelligence (AmI) and Human Computer Interaction (HCI). Encoded-
Types can be used alternatively in any EBS that does not offer explicit support for quality-related

144 6. Evaluation

properties. We review these related approaches, address their general expressivity regarding re-
quirements and capabilities and discuss their limitations. We summarize our findings regarding
the supported set of properties in Table 6.1 and the general expressivity in Table 6.2.

IndiQoS

IndiQoS [23, 22, 85] allows subscribers to express requirements about quality-related properties
of notifications they subscribe to. A QoS specification is part of the subscription and contains a
list of conditions that describe target-values for each quality-related property. These target-values
are minimum or maximum values depending on the pre-defined semantics of each property. All
conditions of a QoS specification have to be satisfied by the system.

IndiQoS supports only requirements about the maximum latency as well as the minimum peri-
odicity and precision of notifications. The periodicity property period defined in IndiQoS can be
mapped to the sampling rate property used in our model, as it defines the number of notifications
published by one publisher during a given time interval [23]. Latency is determined, manipu-
lated, and matched against the requirements defined in a subscriber’s QoS specification by the
MOM at runtime. Publishers expose their current support for period/sampling rate as a QoS pro-
file that is part of an advertisement. Listing 6.1 shows an example containing an advertisement
with a QoS profile and a subscription with a QoS specification in IndiQoS; the code examples are
taken from [23] and [22].

Please note that in IndiQoS, precision is not modeled as a quality-related property explicitly
enforced by IndiQoS but is rather considered to be part of the content of a notification [22].
Thus, the IndiQoS MOM can filter out notifications that contain a matching attribute precision but
IndiQoS is not able to enforce requirements about precision by adjusting the currently provided
precision either by adapting publishers or adjusting the precision at the MOM. Furthermore,
the publicly available documentation of IndiQoS does not disclose whether requirements about
period/sampling rate are enforced in the MOM.

Listing 6.1: Examples for expressing requirements and support in IndiQoS [23].

1 // Advertisement of a publisher with additional QoS profile
2 Publisher p = new Publisher of Temp
withProfile(

room = "labl",

temperature = any,

precision = 0.01)
withQoSProfile

Periodic (period=10)

o N o U1 b~ W

10
1 // Subscription with additional QoS requirements
2 Subscription s = subscribe Temp

=

13 where (temperature > 60)

14 withQoS (

15 (Periodic(period < 1))
16 and (latency < 10)
17)

6.1. Expressivity of Expectations and Capabilities 145

Adamant/DDS

Adamant [212, 213, 211, 210] is based on the Data Distribution Service (DDS) [334] and extends
DDS to be self-adaptive based on requirements about low-level Quality of Service (QoS) proper-
ties of the MOM such as loss, jitter, etc. In Adamant, like in DDS, DataWriters are associated with
publishers and DataReaders are associated with subscribers. DataWriters and DataReaders de-
scribe their current state or their requirements regarding quality-related properties in QoS policies
that are assigned to a given type of notification. Each QoS policy contains a list of independent
constraints on predefined properties and the current value of each property that it is provided
with by a DataWriter. Latency and deadline are exposed by Adamant as properties relevant to
Qol. The deadline property can be mapped to the sampling rate property used in our model as it
describes the rate at which periodic data should be refreshed by the DataWriter [216].

Listing 6.2 shows examples for QoS policies expressed by a DataWriter (top) and a DataReader
(bottom) using the Distributed QoS Modeling Language (DQML) introduced in [214, 215, 216].
Please note that the equality sign in these policies implies a lower bound, i.e., period = 100
implies that notifications should be sent at least every 100 milliseconds. This corresponds to a
sampling rate of at least 10 notifications per second [214].

Listing 6.2: Examples for QoS policies in Adamant DDS expressed using DQML as given in [216].

<DQML>
<DataWriter name="DataWriter]1">
<deadline>period="50"</deadline>
</DataWriter>
</DQML>

<DQML>
<DataReader name="DataReader1">
<deadline>period="100"</deadline>
10 </DataReader>
11 </DQML>

O © N o U~ W N =

Harmony

Harmony [135, 253, 428] focuses on providing support for end-to-end latency. Subscribers can
specify a maximum latency for a type of notification. Harmony monitors and adapts a network
of brokers at runtime to enforce these requirements. At the time of writing, no further details on
syntax or semantics of these requirements were publicly available. We refer the interested reader
to [138] for a more detailed discussion of the general features of Harmony.

INCOME/QoCIM

INCOME [296] uses QoCIM [295] and targets applications in the domain of Quality of Context
(QoC). QoCIM provides a domain-specific meta model for describing properties of contextual
data that is similar to our notion of generic properties. Subscribers can add XPath queries over
these properties to their subscriptions about types of context data. The PS middleware INCOME
briefly discussed in [296] filters out context data provided by publishers (called producers) that
does not match these extended subscriptions issued by subscribers (called consumers). Broker-
side and interdependent properties such as latency or alternatives cannot be supported due to

146 6. Evaluation

limitations of the model. Listing 6.3 shows an example as given in [296] how to express the
constraint that the precision of the pollution detection sensor #45 has to be at least 40.

In contrast to other approaches like IndiQoS or Adamant, INCOME does not apply any kind of
adaptation to enforce requirements — unsuitable data is merely discarded. While QoCIM would
allow for modeling other properties such latency, requirements about these properties cannot be
enforced in INCOME as this would require a notion of broker-side or interdependent properties
and ways to enforce them in the MOM or at publishers.

Subscribers cannot define trade-offs between requirements about different properties or rank
multiple sets of requirements. As in [248, 346], subscribers are not supposed to define more
than a single threshold per property.

Publishers cannot specify their costs for providing properties at a given value and cannot pro-
vide additional information about their adaptation spectrum other than the current values they
provide for a given property.

Listing 6.3: Example given in [296] for a constraint on the precision of a pollution detection sensor
to be > 40. Constraints are expressed using XPath as part of subscriptions in INCOME.

1 //QoC property

2 <qocindicator id="10" name ="PrecisionQoCIndicator">

3

4 </qocindicator>

5

6

7 // Context—based constraint

8 if(xpath.evaluate("//observable[uri="#pollution’ and

9 entity[uri="bordeaux://thiers ave./sensors/45/°]1]",
10 doc,XPathConstants. NODESET).length == 0)
11 {return false;}

12
13 // QoC—criterion constraint
14 if(xpath.evaluate("//qocindicator[@id="10" and

15 qoccriterion [@id="[10.1]"]/qocmetricdefinition[@id="10.1"1]",
16 doc,XPathConstants. NODESET).length == 0)
17 {return false;}

18
19 // QoC—value constraint
20 if(xpath.evaluate("//qocindicator[@id="10" and

21 qoccriterion[@id="[10.1]"]/qocmetricdefinition[@id ="10.1"]
22 and qocmetricvalue[@value>="40"]]",
23 doc,XPathConstants. NODESET).length == 0)
24 {return false;}
EncodedTypes

EncodedTypes provide implicit support for QoI [7, 85]. They can be used in any EBS as they
encode the quality-related properties of notifications into the name of an event type. All no-
tifications published on such an encoded topic adhere to these properties and current values.
For example, notifications published on the encoded topic CpuUsage_accuracy90_precision95
are notifications about CpuUsage with 90% accuracy and 95% precision. Publishers announce
their current support for properties by advertising encoded types that reflect their current state
while subscribers announce their current requirements by subscribing to encoded types that map

6.1. Expressivity of Expectations and Capabilities 147

to their current requirements. All encoded types expressed in subscriptions and advertisements
are registered at the MOM and can be looked up by subscribers and publishers to determine
which types are available. Publishers then publish on all encoded topics that cover their current
capabilities while subscribers subscribe to all encoded types covering their requirements.

This approach, however, is limited in expressiveness and efficiency, as it does not support broker-
side and interdependent properties. This is due to a lack of feedback between participants.

Regarding expressiveness, the set of supported properties is limited to Quality of Device (QoD)
properties and those Qol properties determined by publishers such as drift, accuracy, or preci-
sion. Important broker-side and interdependent properties such as latency or alternatives cannot
be expressed or enforced. Subscribers cannot encode their requirements about a minimum or
maximum number of alternative publishers they want to receive data from. Similarly, neither
lower nor upper bounds for received rates can be expressed or enforced. Both properties would
require a coordination at least between different publishers that want to publish on the same
encoded topic to avoid over- or underprovisioning. Such a coordination, however, is not pos-
sible in a typical EBS where participants do not know about the number and status of other
participants [171, 172, 177].

Assuming a typical EBS where the MOM is routing notifications solely based on their types and
content matching the filters defined by subscribers, subscribers have no way of indicating trade-
offs or ranges of accepted values to publishers while publishers have no way of signaling ranges
of values realizable with adaptation. Furthermore, subscribers cannot announce utility while
publishers cannot announce costs.

Regarding efficiency, the number of encoded types that have to be maintained in parallel quickly
becomes unmanageable due to a lack of feedback between participants [85]. Subscribers and
publishers do not know which encoded topics are actively used at the moment, i.e., which en-
coded topics do have active subscribers and publishers. Thus, subscribers and publishers have
to maintain all encoded types that match their requirements and capabilities. Without feedback,
subscribers would have to perform repeated lookups to see if publishers have registered new en-
coded types, check whether these new types map to their requirements and subscribe to them if
necessary. Publishers have to publish the same notification on all encoded topics that match their
capabilities, as they do not know which types are subscribed to. For example, a newly connected
subscriber will choose all the topics that match its own requirements as it does not know which
types are actively published on.

Even when assuming a scenario where each publisher does not use its own values but the
range of current values is segmented by equidistant intervals and inclusive semantics (e.g.,
CpuUsage_accuracy90_precision95 denotes all notifications with at least 90% accuracy and at
least 95% precision), the number of encoded topics would still be huge as the set size of encoded
types |ET| is given in Equation (6.1).

|ET| — interval Sizenumber of properties 6.1)

For example, splitting the full range of values for each property into equidistant intervals with
length 10 (e.g., precision10, precision20, precision30) per property and a set of 3 properties, this
would result in |[ET| = 10® = 1000 encoded topics that would have to be maintained in a worst-
case scenario. The set of encoded types a publisher is publishing on at runtime, however, depends

148 6. Evaluation

on the current capabilities of publishers as we have discussed in Section 3.4. For example, a pub-
lisher has been publishing notifications with at least 90% accuracy on CpuUsage_accuracy90
but at one point in time had been forced to reduce its accuracy to 80% to save energy. Conse-
quently, the same publisher stops publishing on CpuUsage_accuracy90 but starts to publish on
CpuUsage_accuracy80. Once switching back to an accuracy of 90% it has to continue to publish
on CpuUsage_accuracy80 in addition to CpuUsage_accuracy90.

6.1.2 Summarizing the Limitations of Related Approaches

Summing up the results of our analysis with regard to expressivity in Tables 6.1 and 6.2 shows
the limitations of related approaches compared to our work.

Table 6.1.: Quality-related properties shown in Figure 3.6 that are explicitly supported
by related approaches discussed in Section 6.1.1.

Approach Accuracy Alternatives Latency Precision Sampling Rate
IndiQoS O O] m! m’
Adamant/DDS O O] O [B
Harmony O O | O O
INCOME,/QoCIM |) | [| [&
EncodedTypes | O O | |
Expectations | | | |]

! Precision is not modeled as a quality-related property as part of the QoS specification / profile in
[23] but as content of the notification. Thus, it cannot be actively enforced.

2 The property period corresponds to the generic property sampling rate.

3 The property temporalResolution corresponds to the generic property sampling rate.

IndiQoS, Adamant, DDS, Harmony, INCOME, and EncodedTypes all allow subscribers to specify
requirements about quality-related properties. The set of quality-related properties explicitly
supported by each approach, however, is very limited as shown in Table 6.1.

In all approaches, subscribers are allowed to model requirements only over a fixed set of proper-
ties that the MOM tries to enforce at runtime by either filtering out unsuitable notifications (IN-
COME, IndiQoS for properties other than latency) or actively adapting itself (IndiQoS, Adamant,
DDS, Harmony). None of these approaches, however, actively enforces requirements about

Table 6.2.: Features necessary for expressing Qol requirements and their support in re-
lated approaches discussed in Section 6.1.1.

Approach Alternative Sets! Utility> Trade-offs Adaptation Spectrum® Costs
IndiQoS O O [O m’
Adamant/DDS O O O | O
Harmony O O O a m*
INCOME/QoCIM w° O w° O O
EncodedTypes O O O | O
Expectations | | |] |

! For the same subscription, different sets of interdependent requirements are supported.

2 Subscribers can rank and weight sets of requirements to reflect different utility values.

3 publishers can expose their spectrum of adaptation.

Costs are considered by the MOM during adaptation but cannot be influenced by publishers.

> Can be expressed using XPath but it is unclear how enforcing them is implemented by the approach.

6.1. Expressivity of Expectations and Capabilities 149

atomic properties determined and manipulated only by publishers — such as accuracy — or
about complex and interdependent properties — such as alternatives.

Furthermore, subscribers are restricted in the degree to which they can express their preferences.
As we have discussed in Section 3.3, preferences of a subscriber can map to requirements about
different sets of interdependent Qol properties; these sets can differ in their composition and
the value they generate for the subscriber if satisfied. As shown in Table 6.2, subscribers cannot
express such complex preferences in the discussed approaches as they cannot express the im-
portance of their requirements to the MOM, cannot define independent sets of interdependent
requirements and the trade-offs between the requirements of one set.

Conversely, the EBS is limited in supporting requirements about properties as publishers are not
able to express their spectrum of values they could realize by (self-)adaptation or their costs for
providing those properties.

6.1.3 Expressiveness of Expectations and Capabilities

The concept of expectations, capabilities, and feedback proposed in this dissertation offers a
higher degree of expressiveness than all the related approaches discussed above: it does not
only incorporate them completely but also advances the scope and degree of complexity that Qol
requirements can be expressed and supported with in EBS.

The concept of expectations and capabilities can be used to model requirements in the same way
as in related approaches. Modeling the properties supported by related approaches as generic
properties, we can define requirements about them using expectations. A minimum target value
for a generic property p; without an explicit upper bound as shown in Listing 6.1 or Listing 6.2
can be modeled by setting the lower bound p,.LB to the desired target value while the upper
bound p,..UB is set to the maximum value defined for this generic property. Conversely, maximum
target values without an explicit lower bound can be modeled by setting the lower bound p;.LB
to the minimum value defined for this generic property p, while the upper bound is set to the
desired target value. An example for an expectation containing both types of requirements is X
we have used to illustrate fidelity in Section 3.3.3 and shown in Figure 3.16a: for latency, we
would accept all values lower than the defined upper bound of 250 milliseconds; for accuracy
and precision in turn, we have defined minimum values but would also accept all other values
up to the defined maxima. As IndiQoS, Adamant, and INCOME do not allow publishers to
describe their spectrum of adaptation, we can imitate these restrictions for capabilities by setting
C;.LB = C;.CV = C;.UB for a capability C; defined for py.

The concept of expectations and capabilities allows for expressing more complex preferences.
Defining several expectations with each expectation being defined only about a single generic
property, we can model independent requirements. Defining an expectation about a set of generic
properties in turn models a set of interdependent requirements where all requirements have to
be satisfied simultaneously by the MOM as discussed in Section 3.3.1.

We can enforce requirements about more properties than all other approaches as we include
publishers when deciding on adaptation; we can specify the current and potential support of a
publisher for a given generic property and use this knowledge at the MOM at runtime to decide on
suitable adaptations. In the same way, we can model and enforce requirements about arbitrary
generic properties that only publishers can determine and manipulate — such as accuracy — as
well as for complex and interdependent properties — such as alternatives. We demonstrate this
in the next sections.

150 6. Evaluation

6.2 Benefits Regarding Data Quality and Resource Savings

In this section, we focus on the benefits of our approach in terms of higher Qol for subscribers as
well as resource savings for subscribers, the MOM and even for publishers. We show in particular
that it is necessary to adapt publishers at runtime to support Qol requirements of subscribers —
merely discarding notifications or adapting the MOM is insufficient.

6.2.1 Heterogeneity Scenario: Dealing with Unsuitable Data

We use the following scenario motivated by the IoT that generalizes examples used in work
about collective sensing tasks to show the feasibility and benefits of our approach: we assume
a situation where multiple publishers all provide position data about a vehicle by publishing
notifications about pos. The content of each notification is a set of double values describing
the vehicle’s position. Although all publishers provide the same type of data about the same
entity, we assume that publishers can be heterogeneous due to their design, configuration or
their current context and state at runtime. Especially in ambient intelligence environments with
a multitude of sensors, multiple publishers with varying capabilities can publish the same type
of information. As we have already discussed in Section 3.4, some publishers can publish with
a higher sampling rate than others, have better connectivity (which results in lower latency) or
they can offer data with higher accuracy due to better sensors, positioning techniques, or fusion
algorithms. In our setup, this heterogeneity leads to different support for the generic properties
accuracy, latency, precision, and sampling rate.

In our example, a subscriber is interested in the current position of a vehicle and can subscribe to
notifications about pos with or without registering additional expectations about quality-related
properties. The subscriber is resource-constrained and thus interested in limiting the maximum
number of notifications it has to process per second. At the same time, it requires at least 10 pub-
lishers to provide at least seven notifications per second each. Inaccurate or outdated data as well
as information that is not confirmed by enough data sources would lead to wrong conclusions
about the position and speed of the vehicle.

For our evaluation, we assume that a subscriber has an expectation X; *about the quality-related
properties accuracy, alternatives, latency, precision, and sampling rate as shown in Figure 6.3a
and Table 6.3.

Table 6.3.: Expectation X:*and its reduced form X2* used in the next sections.

Accuracy Alternatives Latency Precision Sampling Rate
Expectation LB UB LB UB LB UB LB UB LB UB Utility
X0 70 100 10 20 0 250 85 100 7 20 25
XZOS 70 100 - - 0 250 85 100 7 20 25

Note: X! denotes expectation #i as a set of Qol requirements about notifications of type e.

Limiting the maximum number of notifications to be received by subscribers is realized by defin-
ing lower and upper bounds for both alternatives and sampling rate (cf., Equation (6.2)).

receivedRate = [palt.LB X DsampRate-LD 5 Paie-UB X psampRate.ub} (6.2)

6.2. Benefits Regarding Data Quality and Resource Savings 151

We group available publishers into two categories: suitable and unsuitable publishers. Suit-
able publishers provide notifications with current values for precision, accuracy and latency that
conform to the requirements of the subscriber; notifications are published with a sampling rate
that also conforms to the requirements of the subscriber. Unsuitable but capable publishers, on
the other hand, provide notifications that do not conform with the requirements of subscribers.
Furthermore, these notifications are provided with a higher sampling rate than the maximum
rate requested by the subscriber. For the sake of simplicity, suitable publishers register CP;” with
randomly varying current values that all satisfy the respective requirements by subscribers while
unsuitable publishers register variations of CP‘S)OS (cf., Table 6.4).

Table 6.4.: Capability profiles used by suitable and unsuitable publishers.

Accuracy Latency Precision Sampling Rate
Capability Profile LB CV UB LB CV UB LB CV UB LB CV UB
CP;” (suit.) 70 100 100 100 100 240 50 95 100 O 10 60

CP;” (unsuit) 50 60 80 200 400 400 40 60 95 0 40 60

Note: The generic property alternatives is not modeled as it cannot be satisfied a single publisher but
only by a set of publishers.

Please note that the generic property alternatives cannot be part of the capability profile of a
single publisher as it can be satisfied only by a set of publishers. Thus, we use X;”as a reduced
version of Xt to make the visual comparison with each capability profile easier. The star plot of
X;”’in Figure 6.3b shows X; “without the requirements about alternatives.

As we can see from overlaying the star plots for each capability profile with X’gosin Figures 6.3e
and 6.3f, publishers providing CP;*’do already satisfy X; while publishers characterized by
CPt”do not. However, the potential support described by CP:”shows that Xgoscould be sat-
isfied by adapting the current value for each generic property. Thus, all publishers that are
characterized by CP;”are treated as suitable publishers when evaluating the requirements for
alternatives while publishers characterized by CP;~ would have to adapt first.

We run several test runs with the same number of active publishers and subscribers. With each
single run we increase the percentage of publishers that provide the correct type of informa-
tion but with insufficient quality-related properties as illustrated in Figure 6.2. We denote this
increasing percentage of publishers providing unsuitable data as the degree of heterogeneity.

100+ - ‘

[«— less than 50% remain ——|
904 ‘
80 - \
70+ Suitable publishers |
60 }
504

40

30 4[_,; Unsuitable publishers
20 |

0- \

0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level

% unsuitable publishers

Figure 6.2.: Heterogeneity: increasing number of publishers providing data with insufficient Qol.

152 6. Evaluation

The starting point for our setup is a heterogeneity of 0%: all publishers offer suitable data. For
this Best-Case workload (BC), no notifications from surplus publishers have to be processed or
discarded. The results measured for this workload represent an upper bound for QoI of the
notifications received by subscribers; at the same time they represent a lower bound for the
resource utilization of publishers, subscribers and brokers as neither publishers nor subscribers
or brokers have to process notifications that are not in conformance with X;".

We gradually increase the percentage of insufficient publishers until all available publishers pro-
vide the correct type of data but with insufficient quality-related properties at a heterogeneity
level of 100%. The workload generated by publishers scales with the level of heterogeneity as
unsuitable publishers publish more notifications than suitable publishers.

For each single run we compute the following KPIs:

* accuracy, latency, and precision as defined in Section 3.3.3;

* sampling rate as the number of notifications received by the subscriber per second from a
single publisher;

* alternatives as the number of publishers that data has been received from by the subscriber
at every point in time; and

* received rate as the total number of notifications received by the subscriber every second.

We measure and analyze the results received by subscribers when using a typical EBS to process
the workload generated at each level of heterogeneity. For better comprehensibility, the graphs
in Figure 6.4 visualizing the data received by subscribers contain red dashed lines that denote
the upper and lower bound defined for each property. The percentage of received notifications
that conform to the requirements is visualized in Figure 6.5.

Alternatives. As shown by the solid black line in Figure 6.4a, subscribers keep receiving notifica-
tions from all publishers, regardless of the fact that the overall number of publishers providing
suitable data is decreasing with increasing heterogeneity (indicated by the dotted black line in
Figure 6.4a). This behavior is to be expected as a typical EBS is routing notifications solely based
on their content/type; both suitable and unsuitable publishers, however, provide notifications
with matching content/type.

Total number of notifications and received rates. The total number of notifications processed as
well as the rates that these notifications are received with by subscribers is increasing as shown
in Figures 6.4b and 6.4c. This is due to unsuitable publishers publishing at a higher rate than
suitable publishers.

Latency, accuracy and precision. Unsuitable publishers provide notifications with a higher latency
and higher inaccuracy. With an increasing number of unsuitable publishers, this results in an
overall deterioration of latency, accuracy and precision as shown in Figures 6.4d to 6.4f.

6.2. Benefits Regarding Data Quality and Resource Savings 153

Accuracy

Accuracy
100 100
Alternatives 70
20
00 Precision Latency 250 100Preclswn
20 20
250
Latency
—— LB
— W — e
Sampling Rate Sampling Rate
(a) X2 all requirements. (b) X2*: only atomic and broker-side properties.
Accuracy Accuracy

100

Latency 240 05 Precision

LB

60 — UB

_ Y - ov
Sampling Rate Sampling Rate
(c) CP4” expressed by suitable publishers. (d) CP:” expressed by unsuitable publishers.
Accuracy Accuracy

Latency Precision Latency) —.— Precision
Sampling Rate Sampling Rate
pOS_ . pos, .
(e) Overlap of CP, " with X, (f) Overlap of CPZ”with X£°*:
publisher satisfies expectation. publisher could satisfy expectation.

Figure 6.3.: Star plots showing CP,”and CP:”as well as their ability to support requirements
about atomic and broker-side properties defined in expectation X:*.

154 6. Evaluation

Data is received from

4) R
21 Suitable data is received from & -+ -+
0 N .

0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level

(a) Decreasing number of suitable publishers.

400 600 800 100C

Notifications per second

200

0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level

(c) Increasing rates received (notifications/sec).

o
ST-——T— T T T T T T T T T T T
- ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' '
o |] '
® '
IR S g g —
'
o | '
%3 Vo
Q o ' ' ' T
20, ! ' ' ' T
< ' ' ' [f N T
, ' ! ! ! ! !] T
S R R T
o
N - ! ! ' ' ' ' '
-+ -+ ' ' ' ' '
' ' ' ' '
- ' ' ' '
o4 _~ e

0 10 20 30 40 50 60 70 80 90 10
Heterogeneity level

(e) Decreasing accuracy (%).

Notifications
5000 10000 15000 20000

0

Heterogeneity level

(b) Increasing total number of notifications.

o
S
n
.
o _ f 1 1 - 1
<] 1] ']
- ' ' ! ! ! . EE
. I S [.
.81 g — L .
2
5 F-——t—4F-H--H-4F-F--——mmm]
53l
~N 1
1
.
87 [
S .
1
1
.
ol m =L _Jl_J" 7T = ______]
0 10 20 30 40 50 60 70 8 90 100
Heterogeneity level
(d) Increasing latency (msec).
o
S _—_—_———-—-——————]
-
O,__________ _______________________
58/
7]
(5]
o
a QA
o |
N
o

0 10 20 30 40 50 60 70 8 90 100
Heterogeneity level

(f) Decreasing precision (%).

Figure 6.4.: Typical EBS: measured results obtained when increasing heterogeneity show that
properties of received notifications are affected by increasing heterogeneity of pub-
lishers in a system without support for Qol. The horizontal dashed red lines denote
the lower and upper bounds defined for each requirement in X:*.

6.2. Benefits Regarding Data Quality and Resource Savings 155

o o
&1 ol
3 8
[%2] [%2]
c c
So | ol
© © @ ©
o Qo
£ £
< o S o
53 53
S S
SR SR
o - o -
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level Heterogeneity level
. pr . . . pos
(a) Notifications (%) satisfying X. . (b) Notifications (%) satisfying alternatives.
o o
S S —
o o |
@ 5]
[%2] [%2]
c c
So | Lol
© © © ©
£ £
£ £
<o o
59 53
2 2
o | o |
N N
o - l o -
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level Heterogeneity level
(c) Notifications (%) satisfying sampling rates. (d) Notifications (%) satisfying latency.
o o
9{ g — 9{ - ._l
(=3 o |
[es] [es]
[%2] [%2]
c c
So | Lol
@ O © ©
2 Qo
£ £
co c o
53] 53
S S
o | o |
N N
o - o -
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level Heterogeneity level
(e) Notifications (%) satisfying accuracy. (f) Notifications (%) satisfying precision.

Figure 6.5.: Consequences using a typical EBS: decreasing conformance with requirements. De-
teriorating data quality due to increasing heterogeneity in an EBS without support
for Qol results in less notifications satisfying the requirements of a subscriber. The
requirements are indicated by red dashed lines in Figure 6.4 for each property.

156 6. Evaluation

6.2.2 Comparing Expectations with Features of Related Approaches

Using a typical EBS in a scenario with increasing levels of heterogeneity results in data that is
less and less conforming to the requirements of subscribers. This is due to the fact that a typical
EBS is not aware of subscribers’ requirements and publishers’ capabilities regarding Qol as we
have seen in the previous section.

In Section 6.1.1, we have discussed several features used by related approaches to support Qol
in an EBS. We examine how well an EBS can cope with increasing levels of heterogeneity when
using these different features in isolation. Consequently, we measure and compare the results
received by subscribers for increasing levels of heterogeneity when using an EBS that either uses
just filtering, applies encoded types, or uses expectations, capabilities and feedback.

We use four different configurations for ActiveMQ to emulate an EBS that relies only on specific
features to support Qol:Without Expectations (WOE), Expectations + Self-Adaptation (ESA),
Expectations, Filtering Only (EFO), and Encoded Types (ET). The workload generated at each
level of heterogeneity is the same for each configuration.

Without Expectations (WOE). The EBS is unaware of Qol. Notifications are processed based
on their conformance with the subscription about the type or content. This configuration
resembles a typical EBS and provides subscribers with the biased data presented in the
previous section. We use WOE as a baseline for quantifying the benefits or drawbacks of
the different configurations in terms of Qol and resource utilization.

Expectations + Self-Adaptation (ESA), our approach. The EBS is aware of Qol by using expecta-
tions, capabilities and feedback to reactively enforce requirements about Qol. In addition
to filtering out unsuitable data, publishers or brokers are advised to adapt if the currently
provided notifications do not conform to the requirements defined in Xt*'.

Expectations, Filtering Only (EFO). The EBS is aware of requirements about Qol by using expec-
tations and capabilities. However, it does not use feedback to advise publishers to adapt in
order to reactively enforce requirements; nor does it apply self-adaptation at the MOM. In
this scenario, the MOM just filters out notifications that do not conform to the requirements
defined by subscribers. This behavior mimics the limitations of related approaches such as
INCOME/QoCIM or IndiQoS (for properties other than latency).

Encoded Types (ET). We use EncodedTypes to provide support for properties in a typical EBS.
This configuration is based on the WOE scenario in as much as that the underlying EBS
is unaware of expectations, capabilities, and Qol. Requirements and capabilities about a
subset of properties are expressed using encoded types when advertising, publishing or
subscribing as described in Section 6.1.1. We assume a typical EBS that does not provide
participants with feedback about its population. Consequently, subscribers and publishers
do not know if a particular encoded type is still subscribed to or published on.

However, we make several simplifying assumptions to reduce the number of encoded types
to be maintained in parallel in this configuration. We assume that publishers encode only
their lower and upper bounds as well as their current values into their encoded types while
subscribers encode their lower and upper bounds. This way, publishers can announce
their spectrum of adaptation to subscribers while subscribers can announce their upper
and lower bounds of accepted values. Subscribers subscribe only to encoded types that are
as good as or better than their lower bounds. Publishers publish on the encoded types that

6.2. Benefits Regarding Data Quality and Resource Savings 157

match their current values or are covered by their current values, i.e., they do not only
publish on the encoded type that is closest to their current values.

Furthermore, we address only precision and accuracy as both properties are controlled by
publishers. Using Equation (6.1), this already results in a set of 223 + 22 — duplicates = 19
unique encoded types that have to be maintained when using the values defined in CP;”,
CP,”, and X:*as shown in Table 6.5.

In principle, sampling rate is another property that is controlled by publishers and could
be used in encoded types. However, including the sampling rate property into our example
would inflate the total number of unique encoded types to be maintained at the MOM from
19 for precision and accuracy to 2 - 3* 4+ 23 — duplicates = 44 encoded types. In addition,
encoded types that represent wild cards such as Pos, Pos_Accuracy, or Pos Precision are
omitted to reduce the set of encoded types to maintain.

Consequently, subscribers with Xz’ subscribe to six encoded types that match their require-
ments as shown in Table 6.5. Please note that suitable publishers have to publish each noti-
fication on 17 different encoded types in this scenario. This is due to CPZOSdescribing precise
and accurate data that covers all other encoded types promoting less precise or accurate
notifications. Contrarily, publishers with CP:”only have to publish the same notification
on four encoded types (i.e., Pos Precision40_Accuracy50, Pos_Precision40 Accuracy60,
Pos_Precision60_Accuracy50, Pos_Precision60 Accuracy60).

Table 6.5.: Encoded types used in the Encoded Types (ET) configuration based on X;”,
CP,”and CP:*as described in Tables 6.3 and 6.4.

Defined by Published on by Subscribed to
EncodedType X2” CcpPi” cpy” cPi” cpt” x2”
Pos_Precision85_Accuracy70 | O O | O |
Pos_Precision85_Accuracy100] | O | O |
Pos_Precision100_Accuracy70 | O O O | |
Pos_Precision100_Accuracyl00 MW | O O O |
Pos_Precision50_Accuracy70 a] O | | O
Pos_Precision50 Accuracyl00 O | O | O O
Pos_Precision100_Accuracy70 | | O] O O
Pos_Precision100_Accuracyl00 0O | O | O O
Pos_Precision95 Accuracy70 | | O | | |
Pos_Precision95_Accuracy100 | | O] O O
Pos_Precision40_Accuracy50 a | | |] O
Pos_Precision40_Accuracy80 a | | | | O
Pos_Precision40_Accuracy60 O O | | | O
Pos_Precision95_Accuracy50 | | |] a O
Pos_Precision95_ Accuracy80 | | | | O |
Pos_Precision95_Accuracy60 O O | | O O
Pos_Precision60_Accuracy50 | | |]] O
Pos_Precision60_Accuracy80 O O | | O O
Pos_Precision60_Accuracy60 O O | | | O

158

6. Evaluation

6.2.3 Benefits: Higher Data Quality

In the previous sections, we have shown how heterogeneity impacts data processed in a typical
EBS without any support for Qol. In this section, we quantify the benefits of our approach
when varying the level of heterogeneity. We compare our concept of expectations, capabilities
and feedback against a typical EBS (WOE configuration), related approaches, and a best-case
workload. The best-case workload (BC) represents an upper bound for the cumulative fidelity
and the resource savings. As defined in Section 6.2.1, the BC workload is achieved in a situation
where all publishers offer suitable data and no notifications from surplus publishers have to
be processed or discarded. Related approaches are represented by the EFO configuration, where
requirements about Qol are enforced by filtering notifications, and by the ET configuration where
encoded types are used in a typical EBS. Our approach is represented by the ESA configuration
where we adapt the MOM, publishers, or both using feedback.

Figure 6.6 shows the cumulative fidelity that measures the conformance between requirements
and processed data for each configuration at each level of heterogeneity. In the initial situation
with a heterogeneity of 0%, the fidelity generated in each configuration is similar to the best case,
except for ET. The fidelity in ET is negative (i.e., the subscriber is unsatisfied) as a subscriber
has to deal with too many notifications due to publishers publishing the same notifications on
multiple topics that the subscriber has also subscribed to.

« WOE + BC x EFO 0O ESA 2~ ET

o
S —
N
Best kload
= f == = e e -t e == th e T8 gy
X X _ % Our approach is always close to the optimum
““““ X
\
\
g o \ N i A
> ! -
= . \ a-
% —. . A Y\
=] XA‘ - \
= __.a- \
o 8 aA--"" \
> Q-+ a---"77 * —— \ EFO drops as too few publishers remain
% (|\I A---""7 . \
2 \
g ET unsatisfying due to too many duplicates \\
> \
O x
3 \x
S
! Traditional EBS d ding due to lack of trol =
raditional legrading due to lack of control =
\x
\\x
o
o |
“I:’ \ \ \ \ \ \ \ \ \ \ \
0 10 20 30 40 50 60 70 80 90 100

Heterogeneity level

Figure 6.6.: Cumulative fidelity for all configurations in comparison: ESA generates the same fi-
delity as BC due to adapting publishers and MOM; EFO cannot provide satisfying
results for h > 50 as it filters but does not adapt; ET does not provide satisfying
results at all; baseline WOE represents a typical EBS with decreasing results.

With increasing heterogeneity we can see that the fidelity generated in a typical EBS without any
support for Qol (WOE) is monotonically and quickly decreasing as the percentage of unsuitable
notifications is increasing but these notifications are not filtered out (cf., Figures 6.4 and 6.5).
Discarding these notifications generates costs for the subscriber that are reflected by penalties in

6.2. Benefits Regarding Data Quality and Resource Savings 159

the fidelity metric (cf., Equations (3.3) and (3.6)). In EFO, the fidelity is also decreasing with
increasing heterogeneity but at a much slower rate than in WOE. This is due to the fact that
the EBS in EFO supports requirements about Qol by filtering out unsuitable notifications. While
this releases a subscriber from having to discard unnecessary notifications on its own and avoids
penalties, the overall number of notifications that are received by a subscriber is much lower
than with the best-case workload BC or in the ESA configuration.

The limitations of the EBS in EFO become apparent for situations with a heterogeneity of more
than 50% where not enough suitable publishers are available. As the alternatives requirement
cannot be satisfied by the system anymore the expectation is rejected and the system operates
like a typical EBS in that it routes notifications solely based on their type and content. This is
reflected by a sharp drop in the fidelity for EFO as shown in Figure 6.6: while the subscriber
has still been satisfied for a heterogeneity level h < 50, the data received for higher levels of
heterogeneity result in an overall dissatisfaction.

Contrarily, when the EBS uses our approach in the ESA configuration to enforce requirements
about Qol, the generated fidelity is always similar to a best case workload, i.e., a situation where
the maximum number publishers that is required only provides suitable data. Simply speak-
ing, using adaptation, our approach turns every situation into an ideal situation if the available
publishers are capable of satisfying the requirements of a subscriber.

The fidelity generated in our setup when using EncodedTypes is increasing with increasing het-
erogeneity as shown by the ET line in Figure 6.6. This might seem counterintuitive at first glance
but is quite logic on further analysis: although the fidelity remains negative, the continuous in-
crease stems from the fact that only suitable publishers publish on those encoded types that are
currently subscribed to; with a decreasing number of publishers, the percentage of redundant
notifications diminishes. This is acknowledged by a less severe penalty.

Drill Down View On Data Processed in Each Configuration

We now analyze the different reasons for the fidelity shown in Figure 6.6. The heat maps in
Figures 6.8 and 6.10 provide a drill-down view on these factors. The heat maps visualize and
compare the results measured in each configuration for a given level of heterogeneity. Green
indicates an overall satisfying result while darker colors up to black indicate unsuitable results
as shown in Figure 6.7. Each row in a heat map corresponds to a configuration where a set of
features is tested in isolation. Each column compares the results measured for different config-
urations when using the same workload. Each cell represents the results measured for a given
configuration and level of heterogeneity: in Figures 6.8a and 6.9 each cell shows the percent-
age of notifications conforming to a given requirement while a cell in Figure 6.10 shows the
measured average value for a property.

Indicator on heat map

Figure 6.7.: Colors used in heat maps to indicate good or bad results.

As we can see from the heat maps in Figures 6.8a, 6.9a to 6.9d and 6.10e, using expectations
with self-adaptation (ESA) satisfies all requirements regardless of the level of heterogeneity that
is simulated. This is due to the ability of the EBS to adapt publishers that do not provide suitable

160 6. Evaluation

data at the beginning of a run. With expectations and self-adaptation, the EBS is able to provide
notifications with the same properties than in a best-case workload (BC), even if the level of
heterogeneity is high. This results in the consistently high fidelity shown in Figure 6.6.

BC BC
ESA ESA
EFO EFO 6 14 0
WOE WOE
ET ET 6 14 0 8 6 4 0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level Heterogeneity level
(a) Notifications (%) satisfying Xt summarizing (b) Number of publishers data is received from for
Figures 6.9a to 6.9d and 6.10e. each level of heterogeneity and configuration.

Figure 6.8.: Higher degree of conformance with the Qol requirements of subscribers: our ap-
proach (ESA) generates the same fidelity as with the best case workload (BC).

In comparison, not using adaptation but purely relying on filtering, as in EFO, works fine as
long as there are sufficient suitable publishers available. As the EBS in EFO is unable to adapt
publishers, the expectation cannot be satisfied anymore for h > 50 (cf., Figure 6.8a) as more
than 50% of publishers in the setup do publish notifications with unsuitable characteristics. In
this case, the expectation is declined and the EBS acts as a typical EBS by routing all notifications
that conform to the subscription by their type or content. This turning point is most prominent
for the number of alternatives shown in Figure 6.8b: the number of publishers that subscribers
actually receive notifications from is declining from 20 to 10 for a heterogeneity up to 50% in
compliance with the number of suitable publishers available at each level of heterogeneity. For
h > 50 the expectation is rejected and the subscriber receives notifications from all publishers.

In ET, the EBS is able to provide notifications that conform to requirements about precision and
accuracy using encoded types as shown in Figures 6.9a and 6.9b. However, the EBS does not
have any control over the publishers and no way of adjusting the number of suitable publishers
that subscribers consume data from as shown in Figure 6.8b. Please note that the number of
publishers in ET is declining with increasing heterogeneity as only suitable publishers publish on
the types subscribed to by subscribers in our scenario. The alternatives requirement is still vio-
lated in ET at all times as each publisher is sending with a sampling rate that is too high and thus
is not considered as a suitable alternative (cf., Figure 6.9c and Figure 6.9d). This is due to each
publisher having to publish the same notification to different encoded types. In Figure 6.10b,
the results measured for Encoded Types (ET) have been omitted, as the latencies for this con-
figuration are so extreme that they dwarf the differences between the other configurations in
comparison and make this figure hard to comprehend. Publishers being overloaded cause the
high latencies in the ET configuration.

While all notifications received by subscribers in EFO conform to their requirements for h < 50,
the total number of notifications received by subscribers is decreasing due to the decreasing num-
ber of suitable publishers (cf., Figure 6.10a). As shown in Figure 6.10, number and characteristics
of notifications measured in EFO converge to the behavior observed for WOE for h > 50.

6.2. Benefits Regarding Data Quality and Resource Savings 161

BC
ESA
EFO 46 42 39 36 34
WOE 51 46 42 39 36 34
ET
00 P it P PO
(a) Notifications (%) satisfying
accuracy requirement.
BC
ESA
EFO
WOE 12 6 3 0 0 0 O

I 14 15 23 32 42 56 70.. 8 0

10 20 30 40 50 60 70 80 90 100
Heterogeneity level

(<) Notifications (%) satisfying
rate requirement.

BC

ESA

EFO

WOE

ET

0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level

(b) Notifications (%) satisfying
precision requirement.

BC

ESA

EFO

WOE

3 0 0 0 0 0 0 0 0 0O O O

0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level

(d) Notifications satisfying the alternatives
requirement.

Figure 6.9.: Higher degree of conformance with the Qol requirements of subscribers using ex-
pectations and self-adaptation (ESA); configurations using filtering only (EFO) or
encoded types (ET) fall behind for one or more properties but still perform better
than a typical EBS without any support for Qol (WOE).

162

6. Evaluation

-[o3N 159 161 159 158 157 161 158 162 162 159 161
=T N 176 177 178 182 182 184 190 193 191 194 198
=0 N 751158 14 126..533 602 663 723 787

\\'[o] 31776 287297 359 419 479 540 601 664 723 789

=3 B O35 769 842 718 605 408 299 198 24 . 0

0 10 20 30 40 50 60 70 80 90 100
Heterogeneity

() Rates received (notifications/sec).

BC

ESA

EFO 63 60 58 56 55

WOE 67 63 60 58 56 55

ET

0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level

(c) Average accuracy of data received (%).

BC

ESA

EFO 13 9 5§ 2 0

WOE 67 47 34 25 18 13 9 5 2 O

IS 24 41 26 17 22 31 23 41 8682 O

0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level

(e) Notifications (%) satisfying
latency requirement.

BC

ESA

EFO 287 310 327 339 363

WOE 105165 206 239 264 287 306 322 339 349

0 10 20 30 40 50 60 70 80 90 100
Heterogeneity

(b) Average latency of notifications (msec).

BC

ESA

EFO

WOE 86

ET 0

0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level

(d) Average precision of data received (%).

o 5 5 5 5 4 5 5 5 5 5 5
ESA 5|5 585|555

EFO 3 .16 17 19 21 22

WOE 12 14 16 17 19 21 23

ET 12108753.0

0 10 20 30 40 50 60 70 80 90 100
Heterogeneity

(f) Absolute number of received notifications (K) in

each configuration.

Figure 6.10.: Comparing properties of notifications received in different configurations: an EBS
using expectations and self-adaptation (ESA) provides subscribers with notifications
that have same characteristics than in the Best-Case workload (BC). When using
only filtering but no adaptation (EFO) or encoded types (ET), the EBS cannot deal
with high levels of heterogeneity but still performs better than an EBS without any
support for Qol (WOE). Data for ET omitted in Figure 6.10b for the sake of clarity.

6.2. Benefits Regarding Data Quality and Resource Savings 163

Dealing With Surplus Publishers

Please note that the fidelity generated in the baseline configuration (WOE) that represents a
typical EBS is only positive for h < 10 because the number of publishers coincides with the upper
bound for alternatives defined in X};os (i.e., 10 <20 < 20).

Let us assume a slightly different scenario where a subscriber does not want to receive notifica-
tions from more than 18 publishers. Now it is crucial to reduce the number of publishers that
the subscriber receives data from. As shown in Figure 6.11, the subscriber would never be sat-
isfied by a typical EBS (WOE) as the EBS is not controlling the number of publishers — neither
by adaptation (as in ESA) nor by filtering out notifications (as in EFO) based on Qol. The other
configurations compensate surplus publishers by filtering out notifications (EFO, ESA) or even
turning surplus publishers off (ESA).

- WOE + BC X EFO 0O ESA ~ ET

o
O -
N
Y ———— fy ———— ———— ———— ———— H———— ———— f ———— f ————
TTT e X——
—X——_
=X
\
Traditional EBS never satisfying due to surplus publishers \
—~ © R \ A--mm-- A
X — \ I
= . \ N
>
B \ N \
[} . A- \
il A- \
= o A- \
2 S - : ’ \
% | A \ \\
° . \
2 —~
. \
=] \
O \x
8 \x
S -
| \x\
x\
X
o
o
GID T T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100

Heterogeneity level

Figure 6.11.: Cumulative fidelity compared in case of surplus publishers (p,;;.ub=18): only ESA
suffices, other configurations cannot deal with an insufficient number of publishers.

The heat maps containing detailed drill down data for the new set of requirements can be found
in the appendix in Figures A.12 and A.13. They contain information about the percentage of
notifications satisfying the new set of requirements in each configuration as well as details on the
data measured for each configuration.

164 6. Evaluation

6.2.4 Benefits: Resource Savings

In this section, we gauge the benefits of our approach in terms of resource utilization for sub-
scribers, MOM, and publishers. We compare the resource utilization regarding CPU utilization
and network traffic for the different levels of heterogeneity across the configurations described
in Section 6.2.2. We use the resource utilization monitored for a typical EBS (WOE) to com-
pare against the resource utilization in all other configurations. All figures show the savings and
overhead as Percentage Point (PP) of the respective utilization in WOE.

The resource utilization in terms of CPU utilization and network traffic are shown in Figure 6.14
for subscribers, in Figure 6.15 for the MOM, and in Figure 6.16 for publishers. In all cases we
provide two sets of graphs: one comparing WOE with BC, EFO, and our ESA configuration; a
separate graph also compares ET with WOE; this is due to the orders of magnitude that encoded
types generate overhead instead of savings.

Subscribers

Subscribers would have to deal with a massive increase in CPU utilization in the baseline config-
uration compared to a best-case workload (BC). This is mainly due subscribers being flooded by
an increasing number of unsuitable notifications at high rates (cf., Figure 6.10).

Subscribers benefit from all configurations where they receive only the data they require. This
becomes apparent from the significant savings for the BC, ESA and EFO configurations shown in
Figures 6.12a and 6.12b. When seen in isolation, the savings in EFO are even higher than for
the best-case workload as less messages are processed in total than in any other configuration,
including the best case.

+ BC X EFO 0O ESA & ET

100

I I
I I

: A |

; | *\' 8 8 7 | p—t

2o | : — = "/l /t%./"

a® " = - —

a — =) x 4

g " & / /'/'

§ 2 73,4, T u/ ; / t/ :

= */ | E 7 . |

?j S /u | 3 |

et ® o | Zo |

[x 4

ol l — > :

a I |
I e ol R

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level Heterogeneity level
(a) Savings in CPU utilization. (b) Savings in incoming network traffic.

Figure 6.12.: Subscribers: savings and overhead regarding resource utilization measured in PP
of WOE. Subscribers save resources when using expectations and self-adaptation:
significant savings in terms of CPU utilization and incoming network traffic for sub-
scribers forExpectations + Self-Adaptation (ESA); Best-Case workload (BC) and an
EBS aware of Qol but not using self-adaptation (EFO) shown for comparison.

Putting these savings in context to the fidelity generated in each configuration, however, shows
that subscribers pay for their additional savings in EFO with a decreasing fidelity that is a lot
lower than in a configuration where our approach with self-adaptation is used. In contrast, a

6.2. Benefits Regarding Data Quality and Resource Savings 165

configuration based on our approach using self-adaptation (ESA) does not lead to a degrada-
tion in fidelity when savings increase. This is shown in Figure 6.13b for network traffic and in
Figure 6.13a for CPU utilization: both figures show the cumulative fidelity generated in each
configuration for different levels of heterogeneity plotted over the savings achieved by each con-
figuration. The decreasing red line represents the EFO configuration while the ESA configuration
is shown by a blue line.

+ BC x EFO O ESA 24 ET

150+ Our approach: steadily high fidelity 1504 Our approach: steadily high fidelity
o102 60 70,0 100 gg 0 10 50 30 40 5060 7080 100
P 30 50 90 —
3 10 g 0 90
B 2 20
100 0 100/
2 30 he} 30
o
= L0 2 40
3 50 3 50
3 504 EFO: decreasing fidelity with increasing savings § 504 EFO: decreasing fidelity with increasing savings
0 0
0 10 20 30 40 0 20 40 60 80
Savings CPU (PP baseline) Savings network traffic (PP baseline)

(a) EFO: fidelity suffers with CPU utilization savings. (b) EFO: fidelity suffers with network traffic savings.

Figure 6.13.: Resource savings are bought dearly by decreasing fidelity for the subscriber in EFO.
Our approach ESA, however, provides the same savings but does not impact fidelity.

Please note that subscribers do not benefit from savings in resource utilization in the ET. Rather,
they suffer from additional overhead in this configuration, as the same suitable notification has
to be published multiple times by each publisher and consumed by subscribers. As this overhead
is several orders of magnitude higher than the overall savings even for the best-case workload,
we have included them in a separate set of graphs in Figures 6.14a and 6.14b.

+ BC x EFO 0O ESA 24 ET

60

[g [.
2 | & ; —
o) a ~ —— i L3
25| : A/ g = A/t :
e+ | /§\' ; o4 / |
g | ~— 2 “ |
S L 3 - |
2 & x/:—4: i o—" Z8] / |
g = R g5 . |
=) ,%./ /| = |
6ol * — e 8o !
3 - b g5 :
3 a— I “ |
no| | |
Y- I 3 | |
‘ : ; ; : ! ; : ; ‘ ‘ T ‘ ‘ ‘ ‘ ! ; : ; ;)
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level Heterogeneity level
(a) Savings in CPU utilization (with ET). (b) Savings in incoming network traffic (with ET).

Figure 6.14.: Subscribers: encoded types (Encoded Types (ET)) introduce a significant overhead.

The sudden drop in savings for EFO between a heterogeneity of 50 and 60 is due to the fact
that there are not enough suitable publishers left for h > 50. This violates the alternatives
requirement defined in X:*as the EBS has no means of adjusting publishers in EFO. Thus, the

166 6. Evaluation

behavior in EFO resembles that of a typical EBS (WOE) in that subscribers are flooded with
unsuitable notifications, zeroing any savings.

Message-oriented Middleware

Apart from subscribers, the MOM is also benefiting from using our approach. The savings for the
MOM shown in Figure 6.15 are more significant than for subscribers as the MOM has additional
effort for discarding unsuitable notifications in EFO or processing them in WOE. This effort is nil
when the MOM is able to advise publishers to adapt and thus minimizes traffic overhead right
at the source (ESA). For the MOM, the savings in EFO are not as high as for subscribers. This is
due to the MOM having to discard an increasing number of notifications that do not adhere to
the requirements of subscribers until the alternatives requirement is not satisfied anymore.

+ BC X EFO O ESA 4 ET

100

I I
| I
mich ! !
o + Imi=
= I — e | .
25 | : */ e : /;_ﬁni:/n
g [g g 8 —
= | */ \ / o 31 =
S */4';: o o S S/H |
2g " g 7 !
> "} S8 !
5 = | g _—t
o) | — a8l S
[%] | x\x/ x\x x |
N o e
06 10 20 30 4 50 60 70 8 90 100 0 10 20 30 4 50 60 70 8 90 100
Heterogeneity level Heterogeneity level
(@) Savings in CPU utilization. (b) Savings in incoming network traffic.
I I
| o 3
mich ! e 1 |
g 3/*/=\,/ w |
= —tt ° Q I A
& o /'4‘/ | x 29 /‘IT/A/
< | e T o3 —
g : 5 " l
e | E A/ |
2 34 I . = I
© : __—* “/ § 8 / :
© A &
S R 55 |
n § J | |
1 | |
| |
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level Heterogeneity level
(c) Savings in CPU utilization (with ET). (d) Savings in incoming network traffic (with ET).

Figure 6.15.: MOM: savings and overhead regarding resource utilization measured in PP of WOE.
Using expectations and self-adaptation results in significant savings for the MOM in
terms of CPU utilization and incoming network traffic. Encoded Types (ET) shown
in separate graphs 6.15¢ and 6.15d as they introduce a significant overhead.

The difference between the best-case workload (BC) and our proposed approach (ESA) is still
significant. This is due to the additional effort required by the MOM to negotiate expectations
with capabilities and send feedback. Applying this feedback and adapting also takes time during
which still unsuitable notifications arrive at the MOM and have to be discarded.

6.2. Benefits Regarding Data Quality and Resource Savings 167

Publishers

Even publishers can profit from a setup where the EBS applies our approach of expectations,
capabilities and feedback. As shown in Figure 6.16, adapting unsuitable publishers to publish
at a lower sampling rate in the ESA scenario frees up resources to the same degree as in the
best-case scenario (BC). Please note that publishers do not profit from a setup where insufficient
notifications are discarded at the MOM without notifying the publisher that its notifications are
not used (EFO); also note the significant overhead introduced by using encoded types (ET).

+BC x EFO 0O ESA 24 ET

] 3 + & | __./g——"
im _— o o—f ./0——‘—“‘57—‘ e
0°7 * — _o- —_— 4 x x——x
= 1 T w 1
° I g |
= | |
& g’ | 2o |
by I o B |
= | a |
| L |
Sgl ., I g I
= A go
6 \A/ A\:\A\ = % i . A\l — A/A’,.A
23] i —— g | ~. |
g1 I ° I
@ | 5 |
| | |
| |
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level Heterogeneity level

(@) Publishers: savings in CPU utilization (with ET). (b) Publishers: outgoing network traffic (with ET).

Figure 6.16.: Publishers: savings and overhead regarding resource utilization for publishers mea-
sured in PP of WOE. Better resource utilization for publishers when using expecta-
tions and self-adaptation (ESA). Significant overhead results from a configuration
that uses encoded types (ET) while filtering out unsuitable notifications at the MOM
does not have any advantages for publishers (EFO).

168 6. Evaluation

6.3 Scalability and Execution Costs for Brokers Applying our Approach

Negotiating expectations with capabilities, deciding on suitable adaptations, and coordinating
feedback comes at a cost for the MOM. We have briefly touched upon this already in Section 6.2.4
when discussing the resource utilization of participants in the heterogeneity scenario.

In this section, we investigate the execution costs for the MOM in more detail. The key questions
regarding execution costs and scalability we are going to answer are

1. What are the limits of the current prototype on a single broker in terms of the number of
supported participants, throughput, dynamics and number of generic properties?

2. Which part of the system becomes a bottleneck?

3. What are the cost drivers for the execution costs and how do they influence them?

We maximize the reproducibility and comparability of our results by relying on a standardized
and industry-strength benchmark to evaluate our prototype built on top of ActiveMQ.

We use jms2009-PS [368, 369] that extends the official Standard Performance Evaluation Cor-
poration (SPEC) benchmark! SPECjms2007 for Java Message Service (JMS). SPECjms2007 is a
general MOM benchmark that tries to exploit a wide spectrum of functionalities provided by most
MOMs [259, 370, 371, 372]. Hence it focuses on both point-to-point and many-to-many commu-
nication models as well as a diverse set of message types [369, 371, 372]; transactional behavior
and durable subscriptions based on persistence are other features exploited by SPECjms2007 but
irrelevant to our evaluation.

The costs and benefits of the many-to-many communication model that is particular for PS and
EBS are addressed and examined by jms2009-PS in more detail using the workload and scaling
strategy of SPECjms2007 [368, 369].

Like for SPECjms2007, a single run of jms2009-PS is successful ("passed") for a given configura-
tion if the MOM processes the workload and maintains

* the completeness and order of notifications (i.e., no notifications are lost);
* the defined received rate for 95% of all notifications;
* an end-to-end latency of at most 5000msec for 90% of the processed notifications.

We have extended jms2009-PS to include expectations and capabilities in its scaling strategy as
described in Section 5.3.

6.3.1 Used Scenario and Characterization of Workload

The workload used by SPECjms2007 and jms2009-PS is based on an Supply Chain Management
(SCM) scenario where the flow of goods is tracked by Radio-Frequency IDentification (RFID)
sensors and managed by an EBS. Four types of participants interact in seven interactions by
exchanging notifications over a MOM [368, 370, 371, 372]. Each interaction models a complete
business operation. Each type of participant represents a role in the scenario: supermarkets
(SMs), suppliers (SPs), headquarters (HQs), or distribution centers (DCs). Participants exchange
information based on a given number of product families that are sold in SMs, provided by SPs,
and distributed using DCs. Each instance of an SM is selling different products based on the
workload definition. The modeled interactions are [368]:

1 http://spec.org/jms2007/

6.3. Scalability and Execution Costs for Brokers Applying our Approach 169

http://spec.org/jms2007/

Order and shipment handling between SM and DC;
Order and shipment handling between DC and SP;
Price updates sent from HQ and SM;

Inventory management inside SM;

Sales statistics sent from SM to HQ;

New product announcements sent from HQ to SM; and
Credit card hot lists sent from HQ to SMs.

Nk Wb

Depending on the interaction, notifications of different types (e.g., Order, Confirmation, Cred-
itCardHotlist) and formats (e.g., binary, Extensible Markup Language (XML), plain text) are
exchanged between instances of publishers and subscribers that represend different physical lo-
cations in the scenario [370]. The content of each notification is based on the idenitity of the
communication partners, the interaction and the step of each interaction. Upon receiving a no-
tification, each subscriber checks the conformance of the received notification with the content
assumed at this step from the respective publisher.

As each interaction models a complete business operation between participants in the scenario,
there are no surplus notifications, subscribers, or publishers; each notification is relevant as
well as the temporal order notifications are received with. Thus we, cannot apply the reac-
tive behavior we have utilized in Section 6.2 without violating the constraints defined by the
benchmark.

The workload generated by jms2009-PS/SPECjms2007 can be scaled with the BASE scaling pa-
rameter. BASE is an abstract metric of SPECjms2007 that scales the workload either in terms of
the population (horizontal topology) or throughput (vertical topology). The size of the work-
load generated by SPECjms2007 in each topology is monotonically increasing with an increasing
value for BASE. The results obtained for a given BASE value, however, cannot be interpreted
directly but only compared to results obtained with other values for BASE where a higher value
for BASE always indicates a higher load for the system.

In the horizontal topology, the BASE, parameter scales the number of physical locations (SMs,
SPs, DCs) and the number of product families emulated by the benchmark. The number of
notifications exchanged per combination of interaction, product family and physical location,
however, is constant. The BASE, parameter defines the number of physical SMs that have to
be emulated by different SM instances. Per SM instance, a configurable but fixed number of
instances for DCs and SPs are generated using the formulas given in [370, 372]. jms2009-PS
initializes a preconfigured number of publishers and subscribers for each physical location and
interaction to share the load, i.e., to send all notifications defined in the workload to the MOM
and check the received copies at subscribers to determine the KPIs for the MOM.

In the vertical topology, the number of emulated physical locations is fixed while the sampling
rate for each combination of interaction, message type and participant is scaled. The BASE,
parameter scales the number of products sold in each supermarket SM while the number of
physical locations (SMs, SPs, DCs, HQs) remains constant. This results in an increased traffic
that has to be handled by the MOM.

Using the horizontal topology, we can gauge the impact of large population on the performance
of the MOM when using expectations and capabilities while we can use the vertical topology to
gauge the overhead when scaling higher throughput generated by a small population.

170 6. Evaluation

6.3.2 Tailoring jms2009-PS to Gauge Execution Costs of Runtime Negotiation

The configuration for all our experiments is based on the published SPECjms 2007 evaluation
results for ActiveMQ V5.4 provided by Sachs et al. [395].

In particular, we have not changed the configurations for

¢ transactional vs. non-transactional notifications;

* persistent vs. non-persistent notifications;

* usage of different message types, e.g. TextMessages or ObjectMessages;
* usage of notifications of different sizes (small, medium, large); and

* durable vs. non-durable subscriptions.

Durable subscriptions and persistence requirements at the MOM are supported by in-memory
storage in our experiments. This way, we minimize the risk of introducing additional perfor-
mance bottlenecks that would distort the performance results as our evaluation does not focus
on durable subscriptions or persistence.

However, we had to tailor jms2009-PS to be suitable for evaluating the execution costs of our
prototype by adjusting the configuration as well as extending the source code of jms2009-PS to
send, receive and monitor expectations and capabilities. We have been in close contact with the
authors of jms2009-PS to maintain the reliability of the benchmark.

The configuration of jms2009-PS can be adjusted to a certain degree without compromising the
validity of its results. Both jms2009-PS and SPECjms2007 provide a set of tuning parameters to
attune the benchmark to a given test environment and MOM [259, 368, 369, 371]. In jms2009-
PS, the communication model (i.e., point-to-point using queues or many-to-many using topics)
can be configured for each combination of interaction, destination instance, message type, and
product family. This way, different communication styles (i.e., point-to-point, topic-based, event-
bus) can be simulated and their costs compared [368, 369]. We have configured jms2009-PS
to use topics wherever possible. Furthermore, we maximize the number of different topics to
be maintained for each BASE by configuring the benchmark to generate a new topic for each
combination of physical location (e.g., SM,,DC;) and message type (e.g., Order SM; SP,). As
jms2009-PS generates dedicated publishers and subscribers for each generated topic, we scale the
total number of publishers and subscribers emulated by jms2009-PS with an increasing BASE,,.

Extending the source code of jms2009-PS has been necessary to enable publishers and subscribers
to register, update, and revoke expectations and capabilities as well as receive and log feedback
provided by the MOM. Details on the necessary extensions can be found in Appendix A.6.

In addition to the configuration parameters offered by SPECjms2007 and jms2009-PS to config-
ure the workload, we also provide additional parameters to configure the size of each expectation
and capability profile in terms of the number of generic properties, as well as the frequency with
that publishers and subscribers update their expectations and capabilities to simulate changes in
their context or state (e.g., due to self-adaptation).

The effect of satisfied or unsatisfied expectations on the fidelity of subscribers and the resource
utilization of participants in general has already been explored in Section 6.2. In this part of
the evaluation, we focus only on the effort necessary for the MOM to reach a conclusion about
an expectation and the set of capability profiles available at that moment, regardless of the
result being a satisfied or unsatisfied expectation. Thus, we generate random definitions for
the number of generic properties that should be used during each single run. These definitions

6.3. Scalability and Execution Costs for Brokers Applying our Approach 171

balance range-based and list-based generic properties for both numeric and textual types. Based
on these randomized definitions, we also generate expectations and capabilities for each agent
with randomized ranges of accepted values. The randomized values used are based on a uniform
distribution. We ensure that each randomly generated expectation/capability profile is valid in
that it is defined over the ranges defined in each definition with each lower bound being smaller
or equal to the randomized upper bound.

6.3.3 Testplan, Scaling Parameters and Measured KPls

Using jms2009-PS, we want to investigate the execution costs of our approach at the MOM.
We want to analyze how using our approach to support Qol at runtime impacts the maximum
number of participants or the maximum throughput a single ActiveMQ broker can still handle
without violating the constraints set by SPECjms2007 regarding received rates, completeness,
order and end-to-end latency of notifications.

As illustrated in Figure 6.17, the maximum population and the maximum throughput still man-
ageable by a bare ActiveMQ broker are identified by the maximum values for BASE; and BASE,,.
These upper bounds represent the overall system limits and our baseline. Within these bound-
aries we can explore how negotiating expectations and capabilities impacts the ability of a single
broker to deliver valid results when running jms2009-PS against it. In particular, we want to in-
vestigate the effect of varying the number of generic properties that expectations are defined over
as well as the frequency that participants update their preferences or capabilities at runtime.

System limits —

= Prototype limits
(large)

(small) (high)

BASE,, |<—— Population Throughput —»| BASE,

(large)

(low)

(high)

— — <@}~ Dynamics —— Properties Set P v —

Horizontal topology Vertical topology

Figure 6.17.: Experiments explore the limits of the current prototype compared to the system
limits determined by the baseline measurements for both BASE; and BASE,,.

Thus, we first calibrate our setup by running jms2009-PS against a bare ActiveMQ to identify
the range? of values for BASE, and BASE, that represent the overall system limits. We vary
BASE, and BASE, while participants emulated by jms2009-PS do not provide expectations and
capabilities or request feedback, hence not putting any extra load on the broker.

Having established a baseline for both the horizontal and the vertical topology, we activate the
support for expectations and capabilities in jms2009-PS and run it against a single ActiveMQ

2 Please note that includes finding lower bounds for our configuration, as too low values for BASE,, or BASE,, can

result in unpredictable results (cf., http://spec.org/jms2007/docs/FAQ.html#Q37).

172 6. Evaluation

http://spec.org/jms2007/docs/FAQ.html#Q37

broker that deploys our prototype. Comparing the measured results against the results obtained
for a comparable baseline allows us to quantify the execution costs.

For each single run of jms2009-PS we vary

1. BASE, in the horizontal topology to scale the number of active publishers and subscribers
that have Qol requirement or capabilities which need to be negotiated at runtime; or

2. BASE, in the vertical topology to scale the throughput of notifications to be processed by
the MOM in addition to processing and negotiating expectations and capabilities;

3. p to scale the number of generic properties each expectation and capability profile is de-
fined over by each participant; and

4. f as the frequency of changes to a participant’s context or state that result in changing
expectations or capabilities at runtime and requiring the MOM to renegotiate.

In a first set of tests, we vary only one parameter while keeping the others fixed (ceteris-paribus).
In a second set of tests, we vary two parameters ceteris-paribus. In a third set of tests, we finally
vary all three parameters for a given topology. We test the same combinations of parameters for
both BASE, and BASE, to gauge the impact of large population with moderate throughput and
of small populations with high throughput.

We vary the number of generic properties each expectation and capability profile is defined over
from 5 to 50 in steps of 5 (i.e., p € [5;50]) while we vary the duration that each participants
waits before sending an update about its preferences or capabilities from 1000 seconds to 2
seconds. The resulting update frequency f = % is defined over the duration d in seconds elapsing
between a single update is triggered by each participant. (i.e., f € [0.001;0.2]).

Please note that this configuration results in bursts of updates that the MOM has to deal with.
This behavior has been designed on purpose to stress the MOM to a maximum degree when
scaling the population, the update frequency, or the number of generic properties: a single peak
in processing overhead can already result in enough temporary routing backlog at the MOM to
violate the constraints set by jms2009-PS in terms of the end-to-end latency of notifications.

For each variation of our scaling parameters, we compare the resource utilization of an Ac-
tiveMQ messaging broker running our prototype with the resource utilization of a bare ActiveMQ
instance processing the same workload, i.e., using the same value for BASE,, or BASE,,.

We measure the following five KPIs for the MOM to quantify the execution costs in terms of the
overhead our prototype adds to a baseline configuration:

1. CPU utilization;
2. memory usage;
3. incoming and outgoing network traffic; and

4. end-to-end latency of notifications.

As we consider only results obtained from successful jms2009-PS test runs, we can assume that
the order and completeness of notifications is maintained.

We run each set of tests multiple times and average the values measured for each KPI. In total we
have been running more than 900 successful runs of jms2009-PS with varying scaling parameters
against our prototype deployed on a single ActiveMQ broker. The measurement phase of each
run is 30 minutes as required by the benchmark, preceded by a warmup phase of 15 minutes and
succeeded by a drain phase of another 15 minutes.

6.3. Scalability and Execution Costs for Brokers Applying our Approach 173

Table 6.6.: Baseline: linear regression analysis results for bare ActiveMQ: KPI ~ o + 8 - BASE + €
Horizontal BASE, Vertical BASE,
KPI a, P R> adj.R*> a, B, R? adj.R?

CPU utilization 15.8 3.01 1.00 1.00 17.6 0.62 0.99 0.99
Memory Usage 18.9 0.56 0.95 095 24.0 0.08 0.89 0.88
Network traffic 0.1 0.27 1.00 1.00 0.0 0.11 1.00 1.00

6.3.4 Discussion of Measured Results

In the remainder of this section we discuss the results obtained from our experiments.

Baseline: Measured System Limits

The resulting baseline measurements obtained for running jms2009-PS against an ActiveMQ bro-
ker without our prototype show that Central Processing Unit (CPU) utilization, memory usage
and network traffic increase linearly with an increasing BASE. This hypothesis of a linear rela-
tionship for both the horizontal and the vertical topology cannot be rejected as shown by the
linear regression analysis results listed in Table 6.6.

SPECjms2007 and jms2009-PS have not been designed with the objective to allow for fine-tuning
the number of active publishers and subscribers. Thus, we can only indirectly influence them in
the horizontal topology by varying BASE,. We have measured the impact of varying BASE,
and BASE, on the number of publishers and subscribers that are emulated by jms2009-PS. For
each run, we log the identities of the different subscribers and publishers that are emulated by
jms2009-PS and maintain JMS connections to the broker. 1790 participants are active for BASE,
=21 while 1252 participants are active for BASE, =15. In the horizontal topology, the popula-
tion varies scales linearly between ~ 800 participants for BASE, =10 and 2062 participants for
BASE, =25. In contrast, the population in all vertical tests is 19 and does not vary when scaling
BASE,.

In the horizontal topology, a bare ActiveMQ is saturated for a BASE; > 25, which corresponds
to &~ 2000 participants processing an average total rate of ~ 2100 notifications per second. In
the vertical topology, a bare ActiveMQ is saturated for a BASE, > 125, which corresponds to an
average total rate of ~ 4000 notifications processed per second by 19 participants.

The obtained ranges of BASE, = [10;25] and BASE,, = [35;125] that constitute the system limits
correspond to the results published by Sachs et al. in [368] for an older version of ActiveMQ.
We use these ranges for our tests when varying the population (BASE;) or throughput (BASE,).
In cases where we keep the population fixed, we set BASE; =15; where we want to keep the
throughput fixed, we set BASE, =50.

Measured Prototype Limits and Trade-offs

The key findings of our quantitative evaluation using jms2009-PS are summarized in Figure 6.18:
larger populations (higher BASE},) or higher throughput (higher BASE,) can be supported when
update frequencies are lower or less generic properties are used to define expectations/capability
profiles (and vice-versa).

174 6. Evaluation

The figure shows the skyline of our experimental results for the horizontal (Figure 6.18a) and
vertical (Figure 6.18b) topology, illustrating both the limits of our prototype and the trade-offs
between the cost drivers in each topology. Each line represents a combination of population size

(BASE,)/throughput (BASE,), update frequency f = % and the size of each expectation and

capability profile (p as the number of generic properties) that successfully passes jms2009-PS
where at least one parameter is not dominated by others.

BASE, f P Symbol

25 0.001 5
22 0.010 30
22 0.100 20
22 0.200 5
15 0.010 40
15 0.100 35
15 0.200 20
15 0.500 5
10 0.200 30

25 4

20

el -.20.%
15 - <

.. 10

10 iy

IDDDD>X X X ®

Population (BASE) Update Frequency Properties

(a) Skyline of population size, update frequency and number of generic properties (horizontal topology).

140 035 50
BASE, f P Symbol :

125 0.010 30
125 0.200 5
95 0.100 20
50 0.010 50
50 0.200 40
50 0333 5
25 0.010 5

<

120
100
4 S~
80
60

40

I4D>D>D>Xx oo

20

Population (BASE) Update Frequency Properties

(b) Skyline of throughput, update frequency and number of generic properties (vertical topology).

Figure 6.18.: Skylines of successfull parameter combinations show the trade-off between popula-
tion/throughput, update frequency, and number of generic properties.

The results obtained in the horizontal topology show that a single ActiveMQ broker can support
Qol requirements of more than 2000 participants (BASE; = 25) without saturating its CPU and
deteriorating the latency and order of notifications. In our experiments, this can only be achieved,
however, if expectations and capability profiles are defined over at most five generic properties
each and the minimum duration between updates from a participant is at least 1000 seconds.

The trade-off between those parameters becomes obvious when comparing this configuration
to a situation with 10% less participants (BASE; = 22), the same number of generic properties
per expectation and capability profile (p = 5) but an update frequency that is 200% higher: all
participants can update their requirements or capabilities at least every 5 seconds (d = 0.2).
Alternatively, a population of the same size (BASE, = 22) can be supported when expectations
and capabilities become four times larger (p = 20) but are updated only half as often (d = 0.1).
For the same population (BASE, = 22), we can support 30 properties per expectation/capability
profile (p = 30) if all participants update at least every 100 seconds (d = 0.01).

6.3. Scalability and Execution Costs for Brokers Applying our Approach 175

Again, trading off participants for generic properties allows us to increase the number of generic
properties to the maximum of 40 generic properties per expectation/capability profile we have
measured: ~ 1300 participants (BASE;, = 15) can be supported while keeping the same update
frequency (d = 0.01). The same population can be supported in our experiments for updates
sent every 2 seconds (d = 0.5) if we limit the set of generic properties to five again.

For small populations but higher throughput, our prototype is able to provide support for Qol
even for 50 generic properties per expectation/capability profile that are updated every 100
seconds (d = 0.01) if the average throughput per second does not exceed ~ 1500 notifica-
tions per second (BASE, = 50). For the same update frequency, a maximum set of 30 generic
properties can be supported for the maximum throughput of ~ 4000 notifications per second
(BASE, = 125). Maintaining this throughput, all 19 participants could even send updates every
5 seconds (d = 0.2) if the number of generic properties is reduced to five per expectation.

Relating these measurements to the building blocks of our model we have discussed in Chapter 3
shows that the maximum number of generic properties that a single instance of our prototype
is able to support corresponds to the total number of generic properties we have discussed in
Section 3.2.1. While having to reduce the number of generic properties to support very large
populations (BASE;, = 25) or high throughput (BASE, = 125), our prototype is still able to
negotiate expectations and capability profiles defined over the same number of properties we
have discussed in Section 6.1.

Drill-down: Investigating the Impact of Parameters

Having identified and analyzed the limitations of our prototype, we now investigate the cost
drivers and their impact. The data visualized in Figures 6.21 to 6.28 provides a more detailed
drill-down view on the impact of each parameter and the combination of parameters when ap-
plied to a scenario where the MOM has to deal with large populations (horizontal topology) or
high throughput (vertical topology). Thus, the results measured for the same KPI (i.e., CPU,
memory, network traffic, latency) and combination of parameters are shown side by side for the
horizontal and vertical topology.

The obtained results show that CPU becomes a bottleneck for high update frequencies, large
populations and/or high throughput (cf., Figure 6.21). Varying two or three of these cost drivers
together amplifies the impact on the CPU as shown in Figures 6.25 and 6.29. Memory becomes
a bottleneck besides CPU when a single broker has to support large populations that require the
broker to negotiate a large set of generic properties (cf., Figure 6.26). Network does not become
a bottleneck because the traffic overhead is negligible (cf., Figures 6.23, 6.27 and 6.29).

While the latency increases for large populations (BASE; > 18) or very high throughput
(BASE, = 120), this increase is due to the CPU being more and more occupied in these situ-
ations. The resulting maximum latencies® of 363msec for vertical and 352msec for horizontal,
however, are still well within the limits of 5000msec defined by SPECjms2007.

The regression analysis performed for each parameter shows a linear relationship between an in-
creasing overhead for CPU and memory with an increasing number of participants (BASE}),

3 SPECjms2007 periodically reports the 90 latency percentile for each interaction during the measurement

period; we average these values across all interactions. The numbers presented here represent the maximum
values measured during multiple iterations.

176 6. Evaluation

throughput (BASE,), number of generic properties, or update frequency (cf., Tables A.5
and A.6).

Investigating the impact of the update frequency, we have defined three categories of update be-
havior: scarce, moderate and aggressive. For each category, we use a different step size to increase
the update frequency with: for scarce, we decrease the number of seconds each participant waits
before sending an update from 1000 seconds to 100 seconds in steps of 50 (i.e., [0.001;0.01]);
for moderate, we decrease in steps of 10 from 100 seconds to 10 seconds (i.e., [0.01;0.1]); and
for aggressive, we decrease every second from 10 seconds to 2 seconds (i.e., [0.1;0.5]). The
measured results are visualized in Figure 6.19 for the horizontal and in Figure 6.20 for the ver-
tical topology; the linear regression results for each category are listed in Table A.7. The results
show that an update behavior as simulated in scarce does not impact CPU, memory or traffic.
Update behavior as in moderate and aggressive, however, impacts CPU linearly; update behavior
in aggressive does also linearly impact memory consumption and network traffic in our experi-
ments for larger populations (cf., Figures 6.19f and 6.19i) or high throughput (cf., Figures 6.20f
and 6.20i). Latency is never affected in our experiments from just varying the update frequency
unless the CPU becomes saturated.

53 53 E *
© © ©
So |ttt o Sg L ek B
5 5 5
2% 29 29
OO QO OO
SN SN SN
© @ ©
Do I+ easesps T o 1+ easeisps Do I+ easesps
z 0.002 0004 0006 0.008 0010 X 0.01 0.02 0.03 0.04 005 X 01 02 03 0.4 05
Update frequency (sparse) Update frequency (moderate) Update frequency (aggressive)
(@) CPU in scarce. (b) CPU in moderate. (c) CPU in aggressive.
() [} Q
28 28 28
[%2] 1] [%2]
So o So
ELO E«D ELO
=} o o
£Q £EQ ST R EQ | gttt -+
OF |t e @ A + g%+
o & o
j=)} [=2) [=2}
© @ ©
S o J+ easemispes To J+ esesps 5o J+ easemisps
E 0.002 0004 0006 0008 0010 X 0.01 0.02 0.03 0.04 005 X 01 02 03 0.4 055
Update frequency (sparse) Update frequency (moderate) Update frequency (aggressive)
(d) Memory in scarce. (e) Memory in moderate. (f) Memory in aggressive.
wn n wn
- - -
S @S oS
= =3 =3
o Q o e -+
= = = - N
S A4 A e + B ek £ T
o I+ sasearspes o I+ eseaspm o I+ sasearspes
0.002 0.004 0.006 0.008 0.010 0.01 0.02 0.03 0.04 0.05 01 0.2 0.3 0.4 0.5

Update frequency (sparse)

(g) Network traffic in scarce.

Update frequency (moderate)

(h) Network traffic moderate.

Update frequency (aggressive)

(i) Network traffic in aggressive

Figure 6.19.: Population: impact on CPU utilization, memory usage, and network traffic when

varying the update frequency simulating either scarce, moderate, or aggressive up-
date behavior of large populations in the horizontal topology.

6.3. Scalability and Execution Costs for Brokers Applying our Approach

177

Average CPU utilization (%)
0 20 40 60 80

A A e
+ BASE=50, p=5
0.002 0.004 0.006 0.008 0.010
Update frequency (sparse)
(a) CPU in scarce.
g
&3
[%2]
=)
>0O
S
£o
qE)ﬁ' H_.. +___+,,,,+. +
eR
j=3
©
DO 1+ BASESS0.p=5
z 0.002 0.004 0.006 0.008 0.010
Update frequency (sparse)
(d) Memory in scarce.
n
—
S
2
L
‘“@m A4+ o =+
© 1+ BASE=50,p=5
0.002 0.004 0.006 0.008 0.010

Update frequency (sparse)

(g) Network traffic in scarce.

9
358
g
= o
R R
g%
o
%N
8
Do |+ sasessops
Z 001 002 003 004 005

Update frequency (moderate)

(b) CPU in moderate.

€

o

28

(2]

o

>0

Eo

1] MU et
o

I

oo I+ Base=s0,p=s

Z 001 0.02 0.03 0.04 0.05

Update frequency (moderate)

(e) Memory in moderate.

15

10

+_+, e ,+

traffic (MB)

5

o J+ ease=s0ps

0.01 0.02 0.03 0.04
Update frequency (moderate)

0.05

(h) Network traffic moderate.

g

c -
%g ++->+_<___+_,v.-—— +
Sg 4T

p=}

29

(@]

o

@©

DO 1+ BASESS0p=s

z 010 015 020 025 0.30

Update frequency (aggressive)

(c) CPU in aggressive.

0O 20 40 60 80
i
¥
+
+
T
|
+

+ BASE=50,p=5

0.10 0.15 0.20 0.25 0.30
Update frequency (aggressive)

Average memory usage (%)

(f) Memory in aggressive.

15

10

—
FENTRETENES S

traffic (MB)

5

O 1+ BAsE=s0.p=s

0.10 0.15 020 0.25 0.30
Update frequency (aggressive)

(i) Network traffic in aggres-
sive.

Figure 6.20.: Throughput: impact on CPU utilization, memory usage, and network traffic when
varying the update frequency simulating either scarce, moderate, or aggressive up-
date behavior for small populations but high throughput in the vertical topology.

178

6. Evaluation

o o
o o
- -
4= /—f/ " z‘r/./"'
— 4o . 34
€8 e g8 i
< o=t =4 4=
_ A==
S S S 3=
gl A gl Pets
£ *‘/_'_/_‘«V-k/ 5 A ~
o) -] =7
5% 5% ™
() ()
[=)) (=2}
9 o 9 o
[SR [SR
Ed S
o) + posiaropuen o) + ncreasng Popaton
10 12 14 16 18 20 22 24 40 60 80 100 120
BASE horizontal BASE vertical
(a) Varying population, p =5 and d = 0.01. (b) Varying throughput, p =5 and d = 0.01.
o o
O q o q
— —
B e e e
. i o B - - -+
£ . S @1 o
5 e 5 J
= e = ,
gg F g8 J
E E =t
z o z o
59 8
(4] [}
g, g,
[[R
Ed Ed
o - o -
5 10 15 20 25 30 35 40 10 20 30 40 50
Properties per Expectation Properties per Expectation
(c) Varying properties, BASE, = 15, d = 0.01. (d) Varying properties, BASE, = 50, d = 0.01.
o o
o~ o
— —
— . * B +
£ I g3 e
S e & =
.g w#"""-ﬁ‘ .g ++—+—+‘ +
L,g 24 eme-e—s—s-e-e—e—s L,g ‘++—«+’
E ERRRE -+ A, .
o) o)
& 8Q
(4] [}
[=2 [=2
s o S o
[<R ! (<R
z z
o J - Baseline + BASE=15, p=5 o J - Baseline + BASE=50, p=5
0.0 01 02 03 04 0'5 000 005 010 015 020 025 030

Frequency of Context Changes Frequency of Context Changes

(e) Varying update frequency, BASE, = 15, p =5. (f) Varying update frequency, BASE, = 50, p = 5.

Figure 6.21.: Impact on CPU utilization when varying one parameter ceteris-paribus: horizontal
topology (left), vertical topology (right).

6.3. Scalability and Execution Costs for Brokers Applying our Approach 179

100
80 100

80

60
60

Average memory usage (%)
Average memory usage (%)

o | o |
N oo - ~ ~+ “+ 4+ +
it s o s s S Foh e e
o ol *—
N N
o) + s e o) + s e
10 12 14 16 18 20 22 24 40 60 80 100 120
BASE horizontal BASE vertical
(a) Varying population, p =5 and d = 0.01. (b) Varying population, p =5 and d = 0.01.
o o
o o
— —
= =
> =y
8o & o .
2% - 2] A
5 B b R PR 5 s e R bR e -+
2 ¥ Bg| .
© - o + -
[=2} . oD
E o E o
SR SR
z z
o - o -
5 10 15 20 25 30 35 40 10 20 30 40 50
Properties per Expectation Properties per Expectation

(c) Varying properties, BASE, = 15 and d = 0.01. (d) Varying properties, BASE, =50 and d = 0.01.

100
100

80
80

(9] (9]
j=2) j=2)
8 8
5 3 53
))
1<} S |l +
IS JUSTRDRRNTSRELE S Fommm oo + IS o O R R B “+---
Q| gt R
[} [}
oD - o —0-0—0—0-e (=2 —_—
S o S o
SR SR
2 2
o d -+ Baseline + BASE=15, p=5 o d -+ Baseline + BASE=50, p=5
00 01 02 03 04 05 000 005 010 0i5 020 025 0530
Frequency of Context Changes Frequency of Context Changes

(e) Varying update frequency, BASE, = 15,p = 5. (f) Varying update frequency, BASE, = 50,p = 5.

Figure 6.22.: Impact on memory usage when varying one parameter ceteris-paribus: horizontal
topology (left), vertical topology (right).

180 6. Evaluation

n _
-
e
I
ot A
5w
§ M
—t
ol
10 12 14 16 18 20 22 24

BASE horizontal

(a) Varying population, p =5 and d = 0.01.

15

10

traffic total (MB)

5

o

15 20 25 30 35 40
Properties per Expectation

5 10

(c) Varying properties, BASE, = 15 and d = 0.01.

mn _
-
o |
—
o
=
Q o+
= e
g, PR SRR o
PPTRIRETE o+ o ole el
o d + Baseline + BASE=15, p=5
0.0 01 02 03 04 0'5

Frequency of Context Changes

(e) Varying update frequency, BASE, =15, p=5 (h,f)

wn
-
A4
¥
+f”f/k
g ¥ %
<
o
5 A
5
g o | M/
[
zZ
ol
40 60 80 100 120

BASE vertical

(b) Varying population, p =5 and d = 0.01.

15

10

traffic total (MB)

5

10 20 30 40 50
Properties per Expectation

(d) Varying properties, BASE, = 50 and d = 0.01.

o
—
o |
-
o
s | -+
e T
=] oot
1 T i
S| W
o d + Baseline + BASE=50, p=5

000 005 0i0 015 020 025 0530
Frequency of Context Changes

(f) Varying update frequency, BASE, =50, p=5 (v,f)

Figure 6.23.: Impact on network traffic when varying one parameter ceteris-paribus: horizontal
topology (left), vertical topology (right).

6.3. Scalability and Execution Costs for Brokers Applying our Approach 181

o o
o q o q
< <
z z
58 58
8 s
o e}
= c
(7] ()
=] | ©
X=E! 684
T T
e} e}
= =
(0] ()
[P [N
B8 +——+—+—+—+—+—+—+—+—+—+ e B8 +—+————+—+—+—+—+—+—+—+——+—+—+—+—+
2 2
< <
o - o -
10 12 14 16 18 20 22 24 40 60 80 100 120
BASE horizontal BASE vertical
(a) Varying population, p =5 and d = 0.01. (b) Varying population, p =5 and d = 0.01.
o o
o q o q
< <
> >
2o 2o
Q1 CR=B
k= @ k= @
he] he)
c =
(7] ()
| © | ©
o O A o O A
TN TN
e} e}
c c
[} [}
(0] (0]
g8 + 4 —t- 3 3 4 4 B8 +——+—+—+——+—— 4 :
g g
< <
o - o -
5 10 15 20 25 30 35 40 10 20 30 40 50
Properties per Expectation Properties per Expectation

(c) Varying properties, BASE, = 15 and d = 0.01. (d) Varying properties, BASE, =50 and d = 0.01.

o o

O 4 O 4

< <
> >
2o 2o
T QA SR8
g © g ©
© ©
= =
() [}
| © | ©
Qo O - Qo O -
TN TN
o ©
c c
(4] (4]
[} [}
o9 o9
TS| bt —————————¢ TG | Wttt by
[[
z z

o4 Baseline + BASE=15, p=5 o - Baseline + BASE=50, p=5

00 01 02 03 04 05 000 005 010 0i5 020 025 0530
Frequency of Context Changes Frequency of Context Changes

(e) Varying update frequency, BASE, = 15 and p = 5. (f) Varying update frequency, BASE, = 50 and p = 5.

Figure 6.24.: Impact on end-to-end latency when varying one parameter ceteris-paribus: horizon-
tal topology (left), vertical topology (right).

182 6. Evaluation

o o
O g O q
- =~ k= ——+ -
P s
o~ . - .- =
g8 T X e A &
§ | x - R s
Bo | dmmm o T Tol
2 N©
= s
z o z o
59 Rel
Q ()
j=2) j=2}
S o S o
o 94
z" z"
o e Baseline A d=0.001 + d=0.01 Xx d=0.1 <© d=0.2 o e Baseline A d=0.001 + d=0.01 Xx d=0.1 <o d=0.2
5 10 15 20 25 30 35 40 10 20 30 40 50
Properties, BASE=15 (horizontal) Properties, BASE=50 (vertical)
(@) Varying update frequency and properties, (b) Varying update frequency and properties,
population fixed BASE; = 15. throughput fixed BASE, = 50.
8- — g
i R - SEaRagNeeS
- o R M 5. e Sk
— - s = — ¢ ¥ S
g8V s . _‘.xyf// £31 O’W - »;.if.“*.(’/-/
= Ve X i c X7 - = —
=] e —_".)ff/—‘k/] .x—%g,’— 2
g3 //;f,x—_"_)ﬁ‘* go ,’);r)_y-/
RSt = E N
2ol ¥ 2ol EF
oY oY &
[(5]
[=)) [=2]
9 o 9 o
[q [q
" z°
o « Baseline + p=5 X p=10 o p=20 v p=30 o « Baseline + p=5 X p=10 o p=20 v p=30
10 12 14 16 18 20 22 24 4o 60 80 100 120
BASE horizontal BASE vertical

(c) Varying population and number of properties, (d) Varying throughput and number of properties,

update frequency fixed d = 0.01. update frequency fixed d = 0.01.
8 3 8 V-8
— VX — V=Y K
I - O —i—, =t V,V*V'_Z—_o—o’x—x'/ff;ﬁ

S o | ~ _»O"O_-%'q'/ S o | -V’V _o-® Ly
S EaPYRy 5 SR v Y %
= ~ .<>—'° . *.;‘W/ =~ v 0—0 s

§ P SN § T 50T
R ar o g vV -0 -
= A = _o° s

> Lo g 5 o B
2o ¥ 2o =X
TR ov i{f&

Q Q

j=2) j=2}
g o | g o |
z" z"

o - Baselne + d=0.001 X d=0.01 < d=0.1 v d=0.2 o « Baseline + d=0.001 X d=0.01 < d=0.1 v d=0.2

10 15 20 25 40 60 80 100 120
BASE horizontal BASE vertical
(e) Varying population and update frequency, (f) Varying throughput and update frequency,

number of properties fixed p = 5. number of properties fixed p = 5.

Figure 6.25.: Impact on CPU utilization when varying two parameters ceteris-paribus: horizontal
topology (left), vertical topology (right).

6.3. Scalability and Execution Costs for Brokers Applying our Approach 183

100
100

80
80

60
60

40
40

20
20

Average memory utilization (%)
Average memory utilization (%)

o - Baseline A d=0.001 + d=0.01 x d=0.1 < d=0.2 o - Baseline A d=0.001 + d=0.01 x d=0.1 < d=0.2
5 10 15 20 25 30 35 40 10 20 30 40 50
Properties, BASE=15 (horizontal) Properties, BASE=50 (vertical)
(a) Varying update frequency and number of (b) Varying update frequency and numer of

properties, population fixed BASE; = 15. properties, throughput fixed BASE, = 50.

=3 v 8- V- -V-V--V

S g T T — —V._v_v_v—v—v
_ | - -v —_ _v’v—v
gl v” g v vV
= =
8 8
T T A
N o | No | EeS ~ X
= = \ /
5° L N o 5° 0T N & Mo e Ny NP
f = - f
e o= Moo Xm e Xemx e ¢ =% D R I e (- Xs -3 =
ESH X Xem o pem Xem g XX T EQ x-X-X-x-X X XX e X - X=X
g i—_'j"___’,‘__'ji_+-&‘-3‘-—4—_—5‘-_—1—__—_1—_—1-__—_1—__—_1-__-_?_ T i ol i s o ol e B e e st e 4
e Se|
g g
< <

o4 Baseline + p=5 X p=10 o p=20 v p=30 o Baseline + p=5 X p=10 o p=20 v p=30

10 12 14 16 18 20 22 24 40 60 80 100 120
BASE horizontal BASE vertical

(c) Varying population and number of properties, (d) Varying throughput and number of properties,
update frequency fixed d = 0.01. update frequency fixed d = 0.01.

100
100

80
80

(9] (9]
g g
23 23
g g
= e R £ P -l NP N PR Ny SR R o
=2 V_‘_g,_,g___g__v—.—g-.-g—_-g—_’xt‘g‘-@“g_‘@'@“g N g2 3’@‘3‘8‘3\'&5‘3‘5‘@'8‘8—3—8‘5’x__x__x_.x
o) g; B el s el nio kol s s o |#FFELEpprpppppiid
S e @ e T T
o - « Baselne + d=0.001 X d=0.01 < d=0.1 v d=0.2 o4 « Baselne + d=0.001 X d=0.01 < d=0.1 v d=0.2
10 15 20 25 40 60 80 100 120
BASE horizontal BASE vertical
(e) Varying population and update frequency, (f) Varying throughput and update frequency,
number of properties fixed p = 5. number of properties fixed p = 5.

Figure 6.26.: Impact on memory usage when varying two parameter ceteris-paribus: horizontal
topology (left), vertical topology (right).

184 6. Evaluation

2 2
© 3 © 3
i i
R S o | 47Tt s +
D ey R s v Ay
o e Baseline A d=0.001 + d=0.01 Xx d=0.1 <© d=0.2 o e Baseline A d=0.001 + d=0.01 Xx d=0.1 <o d=0.2
5 10 15 20 25 30 35 40 10 20 30 40 50
Properties, BASE=15 (horizontal) Properties, BASE=50 (vertical)
(@) Varying update frequency and number of (b) Varying update frequency and number of
properties, population fixed BASE; = 15. properties, throughput fixed BASE, = 50.
21 21
@ @
g o | é o
o o
b= b=
g g
¥ ¥
o o
2 2
Buwi Buoi
8 8
[<
o « Baselne + p=5 X p=10 & p=20 v p=30 o « Baselne + p=5 X p=10 & p=20 v p=30
10 12 14 16 18 20 22 24 4o 60 80 100 120
BASE horizontal BASE vertical

(c) Varying population and number of properties, (d) Varying throughput and number of properties,

update frequency fixed d = 0.01. update frequency fixed d = 0.01.
g3 g3
z z
o - Baselne + d=0.001 X d=0.01 < d=0.1 v d=0.2 o « Baseline + d=0.001 X d=0.01 < d=0.1 v d=0.2
10 15 20 25 40 60 80 100 120
BASE horizontal BASE vertical
(e) Varying population and update frequency, (f) Varying throughput and update frequency,
number of properties fixed p = 5. number of properties fixed p = 5.

Figure 6.27.: Impact on network traffic when varying two parameter ceteris-paribus: horizontal
topology (left), vertical topology (right).

6.3. Scalability and Execution Costs for Brokers Applying our Approach 185

o o
=B S5
< <
E E
> >
k<) k<]
S S
o . o
gS e ¢ ———— SS s+ o+
< <
o - Baseline A d=0.001 + d=0.01 x d=0.1 < d=0.2 o - Baseline A d=0.001 + d=0.01 x d=0.1 < d=0.2
5 10 15 20 25 30 35 40 10 20 30 40 50
Properties, BASE=15 (horizontal) Properties, BASE=50 (vertical)
(a) Varying update frequency and number of (b) Varying update frequency and number of
properties, population fixed BASE; = 15. properties, throughput fixed BASE, = 50.
o o
O q O q
< <
))
§81 5§81
Eo Eo
58] Rl
c c
g g
o ©
$S1 $S1
g g
< <
o4 Baseline + p=5 X p=10 o p=20 v p=30 o Baseline + p=5 X p=10 o p=20 v p=30
10 12 14 16 18 20 22 24 40 60 80 100 120
BASE horizontal BASE vertical

(c) Varying population and number of properties, (d) Varying throughput and number of properties,

update frequency fixed d = 0.01. update frequency fixed d = 0.01.
o o
g g
a(D a(D
© v ©
5 4 g 7%
58 s F L ~ X
T A T v o
k<] R k<] /7
5 /v// 4 , *, 5 V’V/ ’./
R L R
g g
< <
o - Baseline + d=0.001 X d=0.01 < d=0.1 v d=0.2 o4 Baseline + d=0.001 X d=0.01 < d=0.1 v d=0.2
10 15 20 25 40 60 80 100 120
BASE horizontal BASE vertical
(e) Varying population and update frequency, (f) Varying throughput and update frequency,
number of properties fixed p = 5. number of properties fixed p = 5.

Figure 6.28.: Impact on end-to-end latency when varying two parameterceteris-paribus: horizon-
tal topology (left), vertical topology (right).

186 6. Evaluation

o
ST A= --0-0
- o-0-00T0C ° — X
000" S
— - ==
&8 X A
§ P
T o | X -;C/"/
g X
E P
=) =
oo
oY
()
[=)]
9 o
5ol
S N
z
o . Baseline + d=0.001,p=5 X d=0.01,p=10 ¢ d=0.1, p=20

10 15 20 25
BASE horizontal

(a) CPU utilization varying population etc.

100

80

A T T L N 2

o “~.0’4 ‘\O

60

o

40

X=X X=X
X oy =K =X
el et o

X X g X e X AT
: - —1—_;4:_'*.’_‘*.’_1"_*.’—-

Average memory usage (%)
20

o4 « Baseline + d=0.001,p=5 X d=0.01,p=10 ¢ d=0.1, p=20

10 15 20 25
BASE horizontal

(c) Memory usage varying population etc.

an Baselne + d=0.001,p=5 X d=001,p=10 & d=0.1,p=20

10

Network traffic in/out
5

10 15 20 25

BASE horizontal

(e) Network traffic varying population etc.

1=}

8.

5
Iy
e o
321 <
g &
b=t N
2 K
L8 ! *

| - ;

TN O - ,
o A X
5 g ‘L
> IR X 4,
28 o= R Jy—y=sy=I =t
97
=
g
<

o4 « Baseline + d=0.001,p=5 X d=0.01,p=10 ¢ d=0.1, p=20

~ -
10 15 20 25
BASE horizontal

(g) Latency varying population etc.

Average memory usage (%)

Network traffic in/out

Average end-to—end latency

Average CPU utilization (%)

o

3.

1 . 0_0—0—0 ¥
IS /pﬁ’f%’}"*’

81 o-" s A

|
\

=
S x>y
T
o
139
o + Baseline + d=0.001,p=5 X d=0.01,p=10 ¢ d=0.1, p=20
40 60 80 100 120

BASE vertical

(b) CPU utilization varying throughput, etc.

100

80

60
<
‘.
2
<

K R K= X e X IRV

40

Xm X X i X7 X X= X=X
+ A o e e e e st

e —t—
—e—e

—

o«—*

20

o « Baseline + d=0.001,p=5 X d=0.01,p=10 ¢ d=0.1, p=20

40 60 80 100 120
BASE vertical

(d) Memory usage varying throughput etc.

7 Baseline + d=0.001,p=5 X d=0.01,p=10 ¢ d=0.1, p=20
o
—
0 4
o4
40 60 80 100 120

BASE vertical

(f) Network traffic varying throughput etc.

200 300 400

100
\
i
[/

o4 - Baseline + d=0.001,p=5 X d=0.01,p=10 ¢ d=0.1, p=20

40 60 80 100 120
BASE vertical

(h) Latency varying throughput etc.

Figure 6.29.: Impact on KPIs when varying all parameters: horizontal (left), vertical (right).

6.3. Scalability and Execution Costs for Brokers Applying our Approach 187

6.4 Effectiveness of Using ASIA to Monitor a DEBS

As part of our approach, we provide participants with aggregated feedback about the population
and dynamics of an EBS to aid self-adaptation at runtime. In Section 3.5.2, we have already
discussed several aggregated metrics that participants can be updated about at runtime.

In an EBS with a centralized MOM, such as ActiveMQ, these metrics can be provided conve-
niently at runtime. However, in a DEBS with a distributed MOM, such as REDS, capturing and
updating the necessary statistics usually requires the use of an additional monitoring system
that is deployed on top of the MOM. This additional monitoring system can be designed as a
distributed or a centralized application. Having to deploy and maintain a separate monitoring
system, however, increases the execution costs for an EBS that has to deal with large and dynamic
populations [172, 177].

Thus, we propose the concept of application-specific integrated aggregation (ASIA) we have de-
scribed in detail in Section 4.5.2 to effectively monitor large-scale DEBS. Instead of adding
a separate monitoring overlay, ASIA dynamically integrates monitoring functionality into the
broker network, using an approach that is inspired by Aspect-oriented Programming (AOP).

In this section, we quantitatively evaluate the prototype of our monitoring approach implemented
within the distributed open-source middleware REDS to show the benefits for participants and
MOM in a DEBS and gauge the execution costs in terms of latency and throughput. We chose the
academic prototype REDS as it is designed for a distributed setup while ActiveMQ is designed
and used mainly for centralized setups.

In Section 6.4.1, we focus on the benefits for participants using our approach to be updated
about the system state. We verify that aggregated feedback provided by ASIA always reflects the
current system state with the precision that is defined by the requesting participant. We show
in particular that the precision of the aggregated feedback is neither affected by the number of
brokers making up the MOM nor by workloads that change dynamically over time. Furthermore,
we show that participants can balance the frequency of being triggered by updates they have to
react to with the precision of the aggregated feedback they want to be updated about.

In Section 6.4.2, we describe the experimental setup that we use for investigating the benefits
for brokers — in terms of minimal network traffic overhead — as well as quantifying the execution
costs — in terms of throughput and end-to-end latency — for a DEBS applying our approach.

In Section 6.4.3, we focus on the benefits for brokers in terms of network traffic when apply-
ing ASIA. We show that our approach generates significantly less overhead in terms of network
traffic than a separate monitoring system. In particular, we show that exploiting precision relax-
ations defined by participants enables brokers applying ASIA to massively reduce the overhead
in network traffic compared to a configuration where a separate aggregation system is used.

In Section 6.4.4, we gauge the execution costs in terms of throughput and end-to-end latency
for a DEBS using our approach. We show that the benefits provided by applying ASIA do not
result in a significant impact on throughput and end-to-end latency of notifications. Rather,
integrating the monitoring capabilities into the broker introduces less overhead than using a
separate centralized aggregation system.

188 6. Evaluation

6.4.1 Benefits: Adjustable Precision

Participants can use aggregated feedback to decide if they should adapt or not. Based on the
business logic, context, or state of each participant that requires aggregated feedback, the re-
quirements about the precision of the enclosed information can vary. In any case, however,
the participant has to rely on the information to be within those precision boundaries (cf., Sec-
tion 3.5.2).

Thus, we evaluate if aggregated feedback provided by a distributed MOM applying ASIA does
adhere to these precision boundaries for dynamically changing metrics and different numbers of
brokers that make up the DEBS.

Based on the default workload provided by FINCoS we have defined a workload pattern for the
sampling rate of notifications that changes dynamically over time to different degrees between
25 and 105 notifications per second. Figure 3.28a in Section 3.5.2 shows the workload and its
changes over time.

We process the same workload during each run but increase the level of imprecision v accepted
by participants for aggregated feedback about the average sampling rate. In a second test series,
we also increase the number of involved brokers from 1 to 15 brokers. Each single run is repeated
ten times.

FINCoS is used as a workload-generator and has been extended to request and receive updates on
aggregated feedback provided with ASIA. Details on the extensions can be found in Appendix A.4.
For each single run we measure:

1. the degree to which aggregated feedback received by subscribers varies from the real sys-
tem state measured by the maximum difference between either the lower or the upper
bound of the interval reported by an ASIA aggregation (cf., Figure 3.27a); and

2. the number of notifications containing aggregated feedback that have to be processed by
the receiving participant for each level of imprecision.

The measured results are shown in Figure 6.30a as boxplots. Each boxplot shows the results
measured for a given level of imprecision when using 1, 5, 10 or 15 brokers to connect subscribers
and publishers. The red dashed lines denote the maximum deviation that would be tolerated
for a given level of imprecision. The results show that aggregated feedback about the average
sampling rate provided by our approach does always adhere to the precision requirements set
by participants; the number of brokers involved in providing this aggregated feedback does not
have an impact on the precision either.

For the same experiments, we have measured the number of updates sent to participants to rep-
resent the system state. The results are shown in Figure 6.30b as the percentage of notifications
with piggybacked aggregated feedback that has to be processed by a participant in proportion
to the total number of notifications processed for the same workload. A low imprecision of 1
results in 46% of the total number of processed notifications to be about aggregated feedback;
an imprecision of 5 already reduces this to 9% while the number of necessary updates drops to
less than 1% for an imprecision of 10 (0.49%), 25 (0.18%) or 50 (0.06%).

In conclusion, participants are triggered less often about changes to the system state if they do
not care about minute changes to that metric and express this to the MOM by an increased
imprecision. This allows them to free up resources, as the received feedback has to be evaluated

6.4. Effectiveness of Using ASIA to Monitor a DEBS 189

less often and only if the system state has changed in an order of magnitude that is significant
to the participant. Consequently, the resource utilization can be adjusted to the level of detail
required by the participant.

6.4.2 Experiment Setup for Gauging Traffic, Throughput and Latency

In the previous section we have shown that participants can rely on the aggregated feedback
provided by a distributed MOM applying ASIA to be precise. Providing this information, how-
ever, requires a continuous synchronization between brokers in a DEBS. Thus, we evaluate the
overhead incurred by providing aggregated feedback on the KPIs of a DEBS.

The workload used for this evaluation is inspired by an SCM scenario like the one used by
SPECjms2007 and discussed in Section 6.3.1. The objectives are: distributed topology, ranges of
aggregations, high load, dynamic population.

Consider a global logistics operation being supported by an Event-driven Architecture
(EDA) [170, 176]. Shipping containers (e.g., with the help of RFID) publish position updates,
while analytical applications, headquarters (HQs), supermarkets (SMs), and distribution centers
(DC) subscribe to notifications about the status of a shipping, the position of containers, or other
aspects of the intertwined business processes.

In our setup, 16 brokers form a DEBS representing DCs at waypoints for shipping containers
along a supply chain. The broker in each DC is connected to that of 3 other DCs and handles
100 directly connected publishers and subscribers. Each subscriber is subscribed to 3 from 100
potential types of notifications, and each publisher publishes at an average rate of 1 notification
per second to emulate a sequence of position updates while moving. Subscriptions filter on their
type alone, with each subscriber receiving on average about 3% of the published notifications.
Advertisements and subscriptions are uniformly distributed over all types of notifications. Every
10 seconds a subscriber issues a subscription or an unsubscription to mimic containers passing
waypoints (subscribers and publishers are handled by the DC next to them).

All experiments have been repeated five times with different seeds for generating notifications
and subscriptions. Each data point in our figures represents the average value measured. The
topology is randomly created for each repetition but the same random topology is used for all
configurations that have to be compared for each experiment. Further details on the experimen-
tal setup are described in Appendix A.8.

During the evaluation, we consider four different aggregation functions: two population count
functions (subscriberCount and publisherCount) and two dynamics rate functions (subscription-
Rate and publicationRate).

6.4.3 Impact on Network Traffic

In this section, we investigate how integrating the monitoring functionality provided by ASIA
into the brokers of a DEBS affects the network traffic as the state of aggregations has to be
synchronized between brokers. We demonstrate that ASIA can provide additional aggregated
feedback about the system state with a limited traffic overhead.

Using the workload as described in Section 6.4.2, we explore how the resulting network traffic
is affected when varying the maximum imprecision allowed for aggregated feedback.

190 6. Evaluation

50 - Number of brokers involved ——-——————-= °
O 1 broker
O 5 brokers
m 10 brokers

30 15 brokers

- — maximal allowed
deviation for this

imprecision ——-—-—-—-—--- °

n
o
1

Deviation from true value
S
1
4
|
|
|
|
|
|
é

) saes DLdd 7

(a) Precision of aggregated feedback stays within defined boundaries.

n wW P o
o o o o
1 1 1]

Overhead (% of notifications received)
S
1

1 5 10 25 50
Imprecision

(b) Relaxed precision requirements result in less updates for participants.
Figure 6.30.: Aggregated feedback provided by ASIA always adheres to the precision require-

ments defined by participants while allowing them to define trade-offs between
the precision of aggregations and the number of updates they receive.

6.4. Effectiveness of Using ASIA to Monitor a DEBS 191

For this, we measure the network traffic generated in our scenario in terms of the average num-
ber of notifications processed per second. The network traffic between subscribers, publishers,
and brokers includes the additional traffic generated by aggregation updates that cannot be
piggybacked but are required for synchronization between brokers or notifying participants.
When using the subscriberCount and subscriptionRate, we also include the traffic generated
by subscriptions: in ASIA, they are processed only once and used to piggyback updates, while an
independent aggregation system evaluates them separately to compute aggregates. We support
publisherCounts and publicationRates analogously.

We compare the network traffic generated by a DEBS applying ASIA with the traffic generated
in a configuration where a separate distributed aggregation system is deployed on top of the
broker network (DEBS+Agg). As a baseline, we compare the measured network traffic with
the network traffic generated in an EBS without any support for aggregated feedback (DEBS).
All configurations are implemented based on REDS with the separate aggregation system being
designed similar to the network imprecision (NI) approach introduced by Jain et al. [241] so that
it is able to handle imprecision.

Each participant requests aggregated feedback for three types of notifications that are chosen
randomly for a single experiment. The maximum imprecision defined by participants is set to O
to stress the system to the maximum degree as updates have to be delivered immediately even
for minor changes to the true value under observation. The topology is randomly generated for
each run.

Figure 6.31 shows the measured average number of notifications processed per second when
changing the maximum imprecision accepted by participants. In each graph, the x-axis repre-
sents the maximum imprecision allowed by participants. The DEBS configuration represents our
baseline: as it does not perform aggregation, the network traffic measured in this configuration
is independent of the level of imprecision allowed by participants. Conversely, as expected, the
network traffic decreases with an increasing imprecision for both ASIA and DEBS+Agg.

Comparing a DEBS applying ASIA to a configuration where the DEBS uses a separate distributed
aggregation system shows that ASIA produces significantly less traffic than DEBS+Agg in all con-
sidered experiments. This advantage increases with the level of imprecision, becoming especially
visible for dynamic rate aggregates as shown in Figures 6.31b and 6.31d. Here, the overhead
introduced by ASIA drops much faster compared to the configuration that uses a separate ag-
gregation system (DEBS+Agg). The main reason for this is that ASIA reduces network traffic by
piggybacking aggregation updates to the messages exchanged between brokers, whenever pos-
sible. As a separate aggregation system does not have access to the broker state to piggyback
information on the original notifications, separate notifications have to be sent at all times.

Comparing ASIA to the baseline configuration (DEBS) where the DEBS does not provide ag-
gregated feedback shows a relatively small increase in network traffic even when participants
request precise feedback. For example, when considering an imprecision of 20 publications/sub-
scriptions every 5 seconds, we observe an overhead of only 9% for subscriptionRate provided
by ASIA compared to 225% overhead for DEBS+Agg (cf., Figure 6.31b); for feedback about
the global sampling rate, we observe 20% overhead for ASIA compared to 104% overhead for
DEBS+Agg (cf., Figure 6.31d).

Analyzing the results for feedback about the population with an imprecision of 20 participants
over 1600, we measure the following overhead for ASIA: 82% for subscriberCount (vs. 465% in

192 6. Evaluation

DEBS+Agg) and 110% for publisherCount aggregators (vs. 257% in DEBS+Agg) as shown in
Figures 6.31a and 6.31c.

Furthermore, the overhead introduced by ASIA drops below 20% in all experiments when in-
creasing the level of imprecision to 100. An increase in imprecision allows ASIA to fully exploit
the combination of piggybacking and relaxed precision requirements.

6.4.4 Execution Costs: Throughput and Latency

We gauge the execution costs of our approach by measuring how integrating ASIA into the broker
network affects end-to-end latency and throughput. Our results demonstrate that ASIA can offer
aggregation support without significantly impacting both KPIs.

Throughput

The first experiment explores whether the aggregation process creates a bottleneck in the system.
We compare the throughput of a DEBS applying ASIA against a typical DEBS that does not
provide aggregated feedback. This configuration (DEBS) is also implemented in REDS using the
same routing protocol as our implementation of ASIA that we compare against.

We increase the sampling rate of publishers while measuring the received rate at subscribers to
measure the maximum throughput. Each participant requests aggregated feedback about four
different aggregations: subscriberCount, publisherCount, subscriptionRate, and samplingRate.
Each participant requests those aggregations for different types of notifications that are randomly
selected from all available types.

Figure 6.32a shows our results. For both the typical DEBS system without support for aggregated
feedback (DEBS) and for ASIA, the throughput initially grows with the sampling rate. If we
compare DEBS and ASIA, we observe that the throughput saturates at the same sampling rate
per publisher and that the maximum throughput value is almost identical for both configurations:
brokers become saturated as incoming notifications at a broker are queued before processing, and
the throughput stabilizes. This indicates that ASIA does not introduce a noticeable overhead even
under an extreme workload when each client requests feedback about different aggregations,
which requires the computation of different aggregation functions.

Latency

We gauge the impact ASIA has on the latency for notifications and update propagation for aggre-
gated feedback in a separate set of experiments. We configure participants to request aggregated
feedback about two different aggregation functions: publisherCount and samplingRate. These
aggregation functions are the most challenging ones for a DEBS applying ASIA as the observed
system state changes rapidly and update information has to be continuously synchronized be-
tween brokers. While piggybacking update information on top of notifications whenever possible
enables ASIA to minimize the overhead in terms of traffic, this mechanism has a higher likelihood
of causing queuing at intermediate brokers: information has to be piggybacked at the sending
broker while the receiving broker has to check every notification for additional metadata that
might have to be retrieved.

We compare a configuration using ASIA with two configurations using a separate monitoring
system for computing and updating the aggregated metrics: one configuration where the DEBS

6.4. Effectiveness of Using ASIA to Monitor a DEBS 193

uses a distributed aggregation system (DEBS+Agg) and one where the DEBS uses a centralized
aggregation system (DEBS+AggC). In the centralized configuration DEBS+AggC, all aggregates
are computed by a single broker that also sends updates to participants whenever necessary.
All three configurations use the same overlay topology and the same protocol for distributing
advertisements, subscriptions, and notifications.

For aggregation updates, we maximize the additional load on the aggregation components by
setting the imprecision to 0, requiring all updates to be delivered immediately to all interested
participants. All publishers publish at a sampling rate of 100 notifications per second.

Figure 6.32b shows the measured values for end-to-end latency of notifications. The latency of
notifications processed by a MOM applying ASIA is comparable to the latency in a system that
uses a separate aggregation system (EBS+Agg and EBS+Agg Centr), both in terms of average
delay and in terms of 95" percentile.

Considering the end-to-end latency for aggregation updates as shown in Figures 6.32c
and 6.32d), we notice how the topology significantly impacts the results if a separate aggre-
gation system is used. There is a significant difference depending on whether the DEBS uses
a centralized or a distributed aggregation system. When considering a centralized aggregation
system, the end-to-end latency is up to 300% higher. This is because all information has to be
delivered to a central node first where the aggregations are computed and updates distributed to
participants. The resulting overhead highlights the limitation of such a centralized approach as
the reported feedback lags behind the real system state.

Comparing ASIA with DEBS+Agg that uses the same topology shows that ASIA adds a moderate
latency overhead of up to 30% in the 95" percentile. As mentioned before, this is due to the
piggybacking of aggregation updates to notifications and could be removed by defining a separate
queue for processing notifications with updates in the broker so that piggybacking and retrieving
metadata does not affect the routing of other notifications. Still, we observe virtually no overhead
when comparing the average latency measured for ASIA and DEBS+Agg.

We have also monitored the resource utilization of brokers in terms of CPU utilization and mem-
ory usage. However, REDS is a lightweight academic prototype not built for high performance.
Thus, a broker saturates before any significant impact on the resource utilization of its host ma-
chine could be measured. The average CPU utilization of a broker during our ASIA experiments
is about 2% when using an EBS with ASIA and does not significantly change with the imprecision
used; the average CPU utilization for a broker running DEBS+Agg is 3%.

194 6. Evaluation

° DEBS o DEBS+ASIA ¢ DEBS+Agg
o _ o _
[¢e) o™
0 |
N
8¢
D
g | g &7°
Y T Y °.
2 v a 0.
S 81 S 8 o o
= 9, S T T e °
g Lo g
S b e S 9
8 | \\ TO o o
N 0 o Pg=gz=cgz===----- fe====-------o-o - g
oo
®o-—o ° iy - P]
o - o
I T T T T 1 I T T T T 1
0 20 40 60 80 100 0 20 40 60 80 100
Imprecision Imprecision

(a) Traffic generated when using SubscriberCount. (b) Traffic generated when using SubscriptionRate.

o
S &7
¢
o 'o 9 :
@ " @ o,
0 Ve £ LR
o v > S O
S 8 B :: o, S g 4o ©
E — \\ ‘. E '
8 g 8 -
3 o R, oesernoonooaaa n
o | o e o O | we-e ° ° °
n o~ _ - N
Tt eme o ____ a
o - o -
I T T T T 1 I T T T T 1
0 20 40 60 80 100 0 20 40 60 80 100
Imprecision Imprecision
(<) Traffic generated when using PublisherCount. (d) Traffic generated when using SamplingRate.

Figure 6.31.: Network traffic generated by ASIA and a DEBS with an additional distributed ag-
gregation system (DEBS+Agg) when using different aggregation functions; network
traffic in a DEBS without support for aggregated feedback (DEBS) for comparison.

6.4. Effectiveness of Using ASIA to Monitor a DEBS 195

Notifications per second total

|
20
|

Latency (millisec)

o DEBS o DEBS+ASIA

100
)

80

60
|

Latency (millisec)

40

10° 102 10% 10° 10t 102 10° o
Sampling rate per publisher

(a) Throughput vs. total sampling rate.

o o
O 1 o 1
- -
o | o |
[e°) [e°)
8 2 81

@

T

>

o

c
o | L o |
< g <

-
o | o |
N N
o - o -

ASIA DEBS+Agg DEBS+AggC

(¢) Latency for samplingRate updates.

. Average Q.9

amnm

DEBS ASIA DEBS+Agy DEBS+AggC

(b) Latency for notifications.

ASIA DEBS+Agg DEBS+AggC

(d) Latency for publisherCount updates.

Figure 6.32.: Measured throughput and latency to gauge execution costs. Comparing through-
put and end-to-end latency of a DEBS applying our approach (ASIA) with a typical
DEBS without support for aggregated feedback (DEBS), a DEBS using a separate dis-
tributed aggregation system (DEBS+Agg), as well as a DEBS that uses a centralized

aggregation system (DEBS+AggC).

196

6. Evaluation

6.5 Summary

In this chapter, we have qualitatively evaluated the expressiveness of our model to support Qol
requirements in an EBS; we have quantitatively evaluated the benefits of our approach as well
as the execution costs for our prototypes built on ActiveMQ and REDS.

In Section 6.1, we have explored the expressiveness of our model. We have shown that require-
ments about Qol in an EBS can be expressed and supported using expectations and capabilities
in a more expressive manner than in related approaches. Subscribers can express complex pref-
erences using expectations and capabilities, while publishers can expose their execution and
production costs at runtime; the MOM utilizes this information to dynamically decide on suitable
reactions to support arbitrary quality-related properties in an EBS.

In Section 6.2, we have identified and quantified the benefits for participants when the EBS ap-
plies our approach compared to a typical EBS. Based on a scenario where multiple publishers
provide the same type of information with varying Qol properties, we have shown that our ap-
proach provides subscribers with data that always conforms to their Qol requirements. Using the
fidelity metric (cf., Section 3.3.3) to quantify the degree of conformance between requirements
and the delivered data, we have shown, that the fidelity generated by our approach is constantly
higher than in configurations where the EBS applies only features used by related approaches.
For subscribers, the MOM, and publishers we have measured significant resource savings in terms
CPU utilization and network traffic when applying our approach compared to a typical EBS.

In Section 6.3, we have analyzed the execution costs arising at the MOM when applying our ap-
proach. Using the industry-strength jms2009-PS benchmark, we have investigated the overhead
introduced by our prototype compared to a bare ActiveMQ deployment. We have shown that
the CPU of a single ActiveMQ broker becomes the limiting factor when supporting Qol require-
ments of large and very dynamic populations that use a huge variety of generic properties. We
have shown that the overhead introduced by negotiating expectations and capabilities linearly
increases with an increasing number of generic properties and update frequency that participants
update their quality-related requirements or capabilities at runtime with; both cost drivers get
amplified linearly by the size of the population that the MOM is catering to. The results of our
experiments show that these cost drivers can be traded-off against each other: supporting large
populations or high throughput requires either lower dynamics or smaller sets of properties to
negotiate and vice-versa. These interdependencies can be leveraged by scaling strategies such
as using a distributed network of brokers instead of a centralized setup with a single broker to
distribute the load across multiple brokers. Nonetheless, a single instance of our prototype can
support Qol requirements about the same number of properties we have discussed in Section 6.1
even if more than 2000 participants update their requirements or capabilities at the same time
at least every 1000 seconds.

In Section 6.4, we have quantitatively evaluated our approach to monitor the population and
dynamics of a DEBS at runtime to provide participants with aggregated feedback. Using our
prototype implemented on the distributed MOM REDS, we have shown that our approach of
application-specific integrated aggregation (ASIA) provides precise monitoring information with-
out significantly impacting the throughput, end-to-end latency or resource utilization of a DEBS.
Our measurements show that our approach outperforms separate monitoring systems in terms of
traffic-overhead and end-to-end latency while catering to 1600 participants. Moreover, we have
shown that participants can express relaxations in their precision requirements about aggregated
feedback and that both participants and the MOM benefit from exploiting these relaxations.

6.5. Summary 197

198 6. Evaluation

7 Related work

The concept of expectations, capabilities and feedback presented in this dissertation describes
a novel approach to support requirements about Quality of Information (Qol) in Event-based
Systems (EBSs) at runtime. The approach synthesizes and expands several existing concepts and
approaches devised in pull- and push-based systems.

Throughout this dissertation, we have already addressed related work for specific domains, as-
pects or concepts. In Chapter 2, we have introduced the basic pull-and push-based paradigms
and concepts addressed in this dissertation. We have pointed out related work about EBSs,
Wireless Sensor Networks (WSNs), Cyber-physical Systems (CPSs), Data Stream Management
System (DSMS), System-of-Systems (SoS), Service-oriented Architectures (SOAs) and Cloud
computing. In Chapter 3, we have surveyed more than 70 peer-reviewed publications about
these concepts to derive a generic model for representing and processing quality-related prop-
erties in our approach. In Chapter 4, we have pointed out related work about Multi-Objective
Optimization Problems (MOOPs) and performance models. In Chapter 6, we have investigated
the expressiveness of related approaches in detail.

In this chapter, we focus on the state-of-the-art directly related to the contributions of this disser-
tation. As shown in Figure 7.1, we discuss standards and Message-oriented Middleware (MOM)
solutions that support requirements about quality-related properties before reviewing related
work regarding monitoring, self-adaptation, and negotiation in pull- and push-based systems.

Expectations,
Capabilities
and Feedback

ADAMANT

IndiQoS e

|
|
|
|
1
Standards & AMQP :
|
!
|
|
|

Message-oriented
generic models Middelware
addressing MQTT CA4I0T with Qo* support
Qo* DDS TinyDDS
INCOME
CommonSens
MQTT-S
oo §- ./_ Harmony
CASSARAM
QMON
7/
Kattepur et al. 7 \, 4 VRESCo
7/
Pernici et al. , 7 VieDAME
s ’ MORSE
_________________ , SOA + Cloud o
e Self-adaptation, Bahjat et al. DREAM
monitoring, negotiation Byers and Nasser PADRES CREAM

Figure 7.1.: Chapter overview: related work is structured based on the contributions.

We have structured the presentation of these topics according to the research areas each work
originates from, reflecting the structure of our background Chapter 2: EBS and WSN for push-
based approaches as as well as Cloud computing and SOA for pull-based approaches.

199

7.1 Standards and Protocols for Asynchronous Communication

Several standards and protocols for push-based communication have been proposed over time.
Amongst those that have attracted interest, we discuss the Java Message Service (JMS), Ad-
vanced Message Queuing Protocol (AMQP), MQ Telemetry Transport (MQTT), and Data Distri-
bution Service (DDS) regarding their support for quality-related properties.

JMS is the widely used standard for industry-strength systems applying an asynchronous com-
munication model. It defines an Application Programming Interface (API) for push-based com-
munication between participants and a MOM written in Java [131, 404]. Participants can use
any wire protocol to communicate. Implementing the JMS API, a MOM provides support for cer-
tain quality-related properties that focus on transactional behavior as well as persistence and
prioritization on a per-notification basis. Please note that JMS does not provide any mech-
anism for feedback. As only publishers can set priorities for notifications, this mechanism
cannot be used to support requirements of subscribers for privileged processing of certain no-
tifications. [17, 138].

AMQP is a wire protocol for push-based applications that focus on high-performance [260, 417].
It has been originating from the financial services industry and is specified by the Organization
for the Advancement of Structured Information Standards (OASIS) with the aim of easing inter-
operability between MOM:s of different vendors. On the network transport level, AMQP supports
the set of Quality of Service (QoS) properties provided by JMS together with additional guar-
antees that aim at reliably delivering notifications — in particular persistent or non-persistent
delivery, notification priorities, expiration date, and encryption [17, 326, 328].

MQTT is a lightweight transport protocol based on TCP/IP developed for push-based Internet of
Things (IoT) applications that use Publish/Subscribe (PS). MQTT has been specified by OASIS
and supports QoS requirements about delivery guarantees "best effort", "at most once", "at least
once", "exactly once" on the network protocol level [327]. MQTT-S is an adaptation of the MQTT
transport protocol to be used in resource-constrained WSNs and CPSs that want to use a topic-

based PS communication model [230].

DDS is a messaging protocol that has emerged from the domain of embedded real-time systems.
The combination of wire protocol and API has been standardized by the Object Management
Group (OMG) and is currently supported by several MOMs such as TinyDDS [65] or Adamant.
We have already introduced the core components of DDS in Section 6.1.1 and compared them
to our approach, pointing out the limitations of this approach to support Qol. In particular,
DDS [334] relies massively on multicast to support its QoS guarantees on the transport protocol
level [269]. This is fine for local deployments in private networks where DDS is predominantly
used; important properties such as latency, however, cannot be guaranteed by DDS in Cloud de-
ployments [197]. Compared to the relevance of JMS and AMQP for industry-strength productive
enterprise systems, the adoption of DDS is rather insignificant [17].

7.2 Related Approaches with Explicit Support for Qo*

We see most approaches proposed in the domain of push-based systems as complementary to our
concept as they provide mechanisms to enforce dedicated quality-related properties that we can
model with expectations. Thus, we discuss general purpose MOMs and domain-specific ones for
environments with resource-constrained devices.

200 7. Related work

General purpose self-adaptive MOMs that allow subscribers to define explicit requirements about
quality-related properties are Adamant, IndiQoS, and Harmony; in Section 6.1.1, we have al-
ready discussed the expressivity of those approaches. Other MOMs such as CREAM [105],
DREAM [77], HERMES [348], JEDI [116, 117], Mundocore [9, 8], PADRES [157], RE-
BECA [318], SIENA [86], or TinyCOPS [200] do not focus on explicit requirements about QoS. In
the domains of WSNs and CPSs, several systems have been proposed to support QoS and Quality
of Context (QoC): TinyDDS, CommonSens, CASSARAM/CA4IOT, and QoCIM/INCOME.

Hoffert et al. propose Adamant [210, 211, 212, 213] as a self-adaptive implementation of DDS.
Adamant focuses on low-level QoS properties of the MOM such as latency, loss, or jitter. Sub-
scribers can define requirements about those properties as maximum or minimum values within
their subscriptions. The Adamant MOM tries to satisfy these requirements by choosing a wire pro-
tocol that provides the best performance in a certain setting; feedback about the system state is
used only internally in terms of reinforced machine learning to select the most suitable transport
protocol. Publishers are not adapted to enforce requirements about properties.

Carvalho et al. propose IndiQoS [22, 23, 85] to enforce requirements about the maximum la-
tency of notifications. Subscribers add their requirements about latency, precision, or sampling
rate to their subscriptions. The MOM monitors the latency at runtime and tries to enforce re-
quirements about latency by reserving sufficient bandwidth using the RSVP resource reservation
protocol. Requirements about precision and sampling rate are only supported by filtering out no-
tifications that have not been labeled with matching attributes by publishers (cf., Section 6.1.1).
These attributes cannot be adjusted at runtime to conform to the requirements of subscribers, as
IndiQoS does not provide feedback to publishers.

Harmony [135, 253, 428] is a distributed MOM with a custom wire protocol that focuses on
providing support for end-to-end latency. Subscribers can specify a maximum latency for noti-
fications. Harmony maintains multiple paths between brokers and sends the same notification
over multiple connections to compensate for fluctuating latencies. In addition, Harmony moni-
tors the latency on each inter-broker network link and adapts the routing at runtime to minimize
the transport latency [138].

TinyDDS [65] is an implementation of DDS for resource-constrained devices in a WSN or CPS
that require a small footprint. TinyDDS does not support the full spectrum of QoS guarantees
but focuses on enforcing latency requirements on the network layer by internally prioritizing
notifications.

Soberg et al. propose the CommonSens system [392] to automatically select sensors based on
their sensing capabilities in the domain of assisted living in smart homes. Capabilities in Com-
monSens refer to the notion of Locations of Interest (LOI) in smart homes, e.g., the kitchen or
the living room; they do not describe single properties like precision or accuracy but sensing
functionality of a sensor node, e.g., face recognition, temperature readings, or heart frequency
readings [391, 393, 394]. Any notion of Qol is implicitly included in the semantics of a capability;
subscribers can directly address neither QoS nor Qol.

Perera et al. propose CASSARAM [340] to support the user of a large-scale CPS in selecting a
set of sensor nodes that provide data with a certain set of quality-related properties. They model
their context framework as an extension to the Semantic Sensor Network (SSN) Ontology [418]
that allows sensor nodes to semantically describe their own sensing capabilities. Based on these
semantics, users define two sets of properties: point-based requirements denote properties that
sensor nodes must provide while proximity-based properties are not mandatory; all properties

7.2. Related Approaches with Explicit Support for Qo* 201

can be weighted according to the preferences of the users. Their CA4IOT [341, 342] framework
embeds CASSARAM to process notifications only from matching sensor nodes, as well as en-
rich and transform them to conform to the semantics of the user. The focus of CASSARAM and
CA4IO0T is on selecting suitable sensor nodes by semantically matching fuzzy user requirements
to ambiguous sensor descriptions. Thus, there is no distinction of publisher-side, broker-side or
interdependent properties and no reactive adaptation of publishers or processing. CASSARAM
focuses on helping the user to define priorities for sets of properties and bridge the gap between
syntactically different but semantically similar property definitions. In contrast to our approach,
CASSARAM and CA4IOT do not focus on the degree to which these properties have to be pro-
vided at runtime while the focus of our work is on runtime negotiation and adaptation of both
MOM and publishers to leverage the adaptivity of publishers during the negotiation process. In
addition, our approach does not require the use of an ontology or the distinction of mandatory
and optional requirements.

Marie et al. propose QoCIM [295] as a domain-specific metamodel for describing properties of
contextual data in the IoT. This model is used within their INCOME system [296] and allows
subscribers to incorporate XPath queries over contextual properties in subscriptions while pub-
lishers add properties to advertisements (cf., Listing 6.3). Notifications are labeled with certain
properties by publishers and are filtered out by INCOME if properties do not match the XPath
expression of subscriptions. Each property can be modeled as an ordered set or range of values.
In this, QoCIM and INCOME are very similar to IndiQoS, Adamant, CA4IOT, and a very similar
model proposed by Kattepur et al. in [248]. Overall, their model does not provide the same
extent of support for Qol that our approach does (cf., Section 6.1). While their property model
is quite similar to our generic property definition in its minimalism, the QoCIM model, as well
as the INCOME system, have severe limitations. First, QoCIM does not indicate how properties
should be manipulated while we associate actions to a property and define capabilities for this
reason. Consequently, QoCIM does not distinguish different types of properties depending on
which type of participant is able to manipulate it, e.g., broker-side or interdependent proper-
ties. Thus, INCOME cannot reactively support requirements about broker-side or interdependent
properties as this would require a differentiation of properties to decide if the MOM has to adapt
itself or whether a certain set of publishers has to adapt or be filtered out. Furthermore, QoCIM
and INCOME do not allow subscribers to express their Value of Information (VoI) while pub-
lishers cannot expose their costs. Lastly, INCOME does not provide feedback to publishers or
subscribers. Hence, notifications with unsuitable properties can only be filtered out but the sys-
tem cannot reactively adapt to improve those properties. We have shown the shortcomings of
this and the superiority of our approach in our evaluation in Section 6.2.

7.3 Related Approaches Regarding Monitoring, Self-Adaptation, Negotiation

Related concepts originating from push- and pull-based concepts have inspired and shaped the
work presented here. While a full overview can be found in Tables A.1 to A.4, we want to discuss
selected ones in more detail here.

Modeling and Negotiating Requirements About Quality-related Properties

Work done by Keeton et al. [250] on general considerations about information quality and by
Wilkes [424] on balancing requirements with consumers’ utility has highly influenced our work.
Behnel et al. [42] and Appel et al. [21] identify a basic set of quality guarantees and the levels

202 7. Related work

of abstractions specific to EBS that we have used as a basic skeleton for structuring our literature
review presented in Section 3.2.1.

Modeling requirements about QoS properties is actively pursued for pull-based systems, such as
SOA, and systems applying a push-based communication model, such as WSNs.

Kattepur et al. [248] define a QoS metric for SOA very similar to properties in QoCIM while most
other authors propose approaches for automated renegotiation and multi-round negotiation for
Service Level Agreements (SLAs) based on WS-Agreement [198, 227, 267, 380, 436].

Pernici et al. [346, 347] use fuzzy parameters and fuzzy set theory for deciding on web service
adaptation in a SOA. A service consumer defines ranges over a set of quality dimensions that are
fuzzy or mandatory, similar to the proximity-based and point-based properties in [340]. Each
dimension is monotonic or antitonic, denoting whether it is desirable for the service provider
to be close to the maximum (monotonic), or to the minimum (antitonic) defined by the service
consumer. Service providers are asked to adjust their provided QoS or are replaced if they violate
the requirements of the service consumer. A violation is quantified as a penalty using fuzzy set
theory and depends on the individual requirements of the service consumer, its state as well as
the history of the relationship between consumer and provider.

Bahjat et al. [31] as well as Byers and Nasser [79, 80] propose frameworks to capture trade-offs
between low-level Qol-related properties in a WSN to optimize network utilization. Abdelzaher
et al. [4] show that graceful degradation of QoS properties by renegotiation can be a feasible
mechanism to maximize utility in time-critical distributed systems; Mai et al. [289] exploit trade-
offs between completion time and price in data analytic applications in Cloud environments.

The design of expectations and capabilities used in our approach is inspired by these works; in
particular the basic ideas of both Pernici et al. and CASSARAM. While CASSSARAM quantifies
the preferences of users regarding the priorities of different properties, fuzzy parameters as used
by Pernici et al. to add a certain tolerance to each requirement. Expectations and capabilities
fuse and extend these two different concepts to capture the requirements of subscribers and the
support provided by publishers: individual sets of properties to be defined in an expectation or
capability profile while a range of accepted or provided values can be defined for each property.

Runtime Monitoring

As a contribution of this dissertation, we propose ASIA as a novel approach for runtime monitor-
ing of distributed push-based systems.

Push-based approaches are often used for monitoring distributed pull-based systems [250]. For
example, frameworks for SOA-based workflow implementations such as VRESCo [307, 308,
310], VieDAME [315, 316], and MORSE [219] use PS and Complex Event Processing (CEP); Smit
et al. use STORM [409] to monitor heterogeneous Cloud settings [389]; Guinea et al. [195] use
SIENA [86] for collecting runtime information about services; Agarwala et al. [7] use a topic-
based PS system to process monitoring updates with QoS constraints.

In distributed push-based systems, most brokers monitor their own state to base decisions about
load-balancing, self-stabilization or reliability upon. For example, each broker in a Distributed
Event-based System (DEBS) based on CREAM [105], DREAM [77], or PADRES [157] monitors
the availability of neighboring brokers to avoid routing notifications to unavailable brokers. This
information, however, is not available to subscribers or publishers as aggregated feedback.

7.3. Related Approaches Regarding Monitoring, Self-Adaptation, Negotiation 203

Several approaches provide such information about the runtime state to participants by relying
on a separate aggregation system such as Astrolabe, SDIMS, or STAR.

Astrolabe [412] provides metrics based on user-defined aggregation functions, implemented
via a single logical aggregation tree on top of an unstructured peer-to-peer gossip protocol.
SDIMS [427] performs hierarchical aggregation based on attribute types and names using dis-
tributed hash tables. STAR [240] adaptively sets the precision constraints for processing ag-
gregate queries; it is used by Jain et al. [241] to provide a consistency metric for large-scale
distributed systems that calculates the system’s stability in terms of currently reachable nodes
(ideally high) and the number of updates that might have been repeatedly processed due to
network failures (ideally low).

In contrast to ASIA, such generic aggregation systems are unable to leverage specific properties
of DEBSs, such as overlay topologies or exchanged messages. Aggregation trees may not match
routing trees, resulting in inefficiency and delayed adaptation.

ASIA, the runtime monitoring approach proposed in this dissertation, relies on efficiently aggre-
gating and distributing state information in a distributed network of brokers. Energy efficient
in-network aggregation is studied in WSNs [152]. This is complementary to our work, as we
do not compute aggregations within the energy-constrained WSN but within the infrastructure
of the enterprise software system where energy-efficiency is an issue on a different scale. In
addition, none of these systems support generic, application-specific aggregation or imprecision
within the broker network; neither are they able to piggyback information.

Self-adaptation

A key component of our approach is adaptation: self-adaptation of the MOM to support re-
quirements about broker-side properties and adaptation of publishers to enforce properties that
require an adjustment by publishers or in coordination with the MOM.

CREAM [105] and DREAM [77] are reactive push-based MOMs that allow adaptation beyond
the MOM. Their design has inspired the ReactionManagerClient component of our reference
architecture as introduced in Section 5.1.3.

Runtime adaptation of predefined workflows is actively investigated for pull-based systems that
implement workflows using SOA. Most approaches are based on the OODA cycle and utilize mon-
itoring information about the software as well as the infrastructure layer via CEP and PS. For
example, Moser et al. propose the VieDAME framework [316] to monitor and adapt pull-based

Business Process Execution Language (BPEL) workflows at runtime based on custom replace-
ment strategies; MORSE [219] adds a model-driven component that checks the conformance of
the system state with the defined model. Similarly, Guinea et al. propose a multi-layer monitor-
ing and adaptation framework for SOA-based applications [195]. Using machine learning and
decision trees, they decide at runtime about replacing services used as part of a BPEL workflow.

While those approaches in pull-based systems mostly define adaptation as substituting services
within a workflow, their general approach has influenced the overall structure of runtime nego-
tiation and runtime enforcement in our approach that also follows the OODA cycle.

204 7. Related work

7.4 Summary

In this chapter, we have discussed the state-of-the-art regarding the key contributions of this
dissertation. We have discussed standards that define APIs and wire protocols for asynchronous
push-based communication with support for quality-related properties as well as reactive MOMs
directly related to our approach. Based on this comparison, we have reviewed further push- and
pull-based concepts that have inspired our work.

Summing up, several MOMs empower subscribers to define requirements about some quality-
related properties of notifications. They try to enforce these requirements either by self-
adaptation of the MOM (Adamant, IndiQoS, Harmony, TinyDDS) or by filtering out all notifica-
tions not conforming to the requirements (CA4I0T, INCOME, CommonSens). For self-adaptation,
they primarily leverage the features of the wire protocols defined by some standards. None of
the discussed approaches provides individual and aggregated feedback to its participants about
the state of the system. Consequently, none of these approaches actively enforces requirements
about quality-related properties determined and manipulated by publishers — such as accuracy —
or about complex and interdependent properties — such as alternatives.

As we have shown in our quantitative evaluation in Section 6.2, only filtering out unsuitable noti-
fications at the MOM results in a suboptimal fidelity for subscribers while brokers and publishers
have to deal with overhead in resource utilization compared to our approach. Self-adapting
the MOM only, however, limits the set of properties that are supported and omits enforcing
publisher-related properties.

In contrast, the concept of expectations, capabilities and feedback presented in this dissertation
expands the scope of runtime support to include the enforcement of publisher-related proper-
ties by runtime adaptation of publishers in addition to self-adaptation of the MOM. All related
approaches discussed here could be utilized by our approach as requirements about the generic
properties of our approach can be mapped to the properties supported in each approach.

7.4. Summary 205

206 7. Related work

8 Conclusion

Modern reactive software systems turn fine-granular real-time data about processes in the phys-
ical world into information and knowledge to react in time. Push-based architectures based
on an Event-based System (EBS) complement pull-based architectures, such as Service-oriented
Architectures (SOAs), and enable enterprises to react to meaningful events in a timely man-
ner. Applications for algorithmic trading, energy-aware reactive data center management, or
smart supply chain management are just three examples of reactive systems where information
provided by heterogeneous data sources has to be interpreted and where false alarms, missed
events or otherwise information of inadequate quality carries a cost.

Whether the Quality of Information (Qol) of received notifications is adequate depends on the
purpose each receiver intends to use the information for. This purpose is application- as well as
context- or even situation-specific. Thus, the notion of Qol incorporates two different aspects:
objectively measureable properties of a notification and an application-specific assessment of these
properties that determine the current Value of Information (Vo) for the receiver.

While Qol is crucial in modern reactive software systems, it is supported only to a limited de-
gree in a typical EBS: subscribers can subscribe to dedicated properties of notifications that can
be expressed with encoded types. This adds avoidable overhead to the system as an excessive
number of encoded types has to be maintained when expressing multiple properties. Further-
more, publishers and the Message-oriented Middleware (MOM) cannot adjust properties due
to missing feedback; changes to the context or situation of a subscriber require changes to its
subscriptions to reflect an adjusted Vol. Above all, however, the set of supported properties
is restricted to non-interdependent properties, excluding crucial properties required in modern
reactive applications.

Domain-specific MOMs support a limited set of properties that are only manipulated by the
MOM adapting itself but require specific platforms or custom transport protocols that may not
be available in heterogeneous environments or public Clouds. Crucial properties that require the
adaptation of publishers at runtime as well as interdependent properties that require multiple
publishers to contribute to are not supported at all. Subscribers cannot weigh their requirements
and publishers cannot expose their costs or adaptation capabilities. As shown in Chapter 6, this
lack of support results in significant execution costs for subscribers, publishers and MOM.

In this dissertation, we have introduced the concept of expectations, capabilities and feedback
as a holistic concept to express, negotiate and enforce Qol requirements at runtime in push-
based systems. Our approach supports Qol requirements in heterogeneous systems as it abstracts
requirements and capabilities about Qol from the implementation of participants and specific
platforms. Instead of being limited to a fixed set of supported properties, our solution enables
subscribers to define requirements about arbitrary quality-related properties and manage them
at runtime without having to adjust subscriptions.

Subscribers expose preferences and tradeoffs between requirements in an information-centric
way as expectations. They indicate the Vol of their requirements by ranking expectations with
utility values without the need to define an explicit utility function. The fidelity of a subscriber
quantifies the conformance of the data provided by the EBS to the subscriber’s requirements.

207

Publishers expose their current support for generic properties, as well as the spectrum of support
they could realize with self-adaptation, as capabilities. As providing notifications with specific
generic properties comes at a cost depending on the design, configuration, context, and situation
of the publisher, cost functions can be defined for each capability and manipulated at runtime.

In our approach, negotiating Qol requirements can be done automatically at runtime based on
custom decision strategies. Our approach enables the negotiation mechanism to take into ac-
count the costs of participants and the VoI of requirements. The decision strategies can include
load-balancing considerations and range from simple heuristics to sophisticated Multi-Objective
Optimization Problem (MOOP) solvers.

Runtime adaptation is used to enforce the decision by advising publishers to adapt or by applying
platform-specific adaptation mechanisms at the MOM itself. Individual and aggregated feedback
enables participants to adapt their behavior at runtime and extends the scope of supported prop-
erties to those influenced by publishers.

Using a minimalistic and generic format to represent properties, our approach can utilize ex-
isting work that focuses on dedicated properties: our generic format can be mapped to the
representation required by a related approach to apply its mechanisms.

This dissertation contributes to the challenge of runtime Qol support in push-based architectures
on a conceptual and practical level.

On the conceptual level, we contribute a generic and extensible model to express and manage
requirements about arbitrary properties based on expectations, capabilities and feedback (Chap-
ter 3), algorithms for negotiation, safeguarding and enforcing these requirements as well as a
concept for effective runtime monitoring in a distributed and decentralized EBS (Chapter 4). The
conceptual part of this dissertation synthesizes and expands approaches devised in pull- and
push-based systems as well as in economics into a novel concept to support Qol at runtime.

On the practical level, we contribute a reference architecture for runtime support of Qol require-
ments, two prototypes built on a centralized and a decentralized MOM, examples for applications
applying our approach (Chapter 5) as well as an extensive evaluation of our prototypes (Chap-
ter 6). The practical part of this dissertation shows the feasibility of our approach on differ-
ent platforms, demonstrates that our approach can be integrated into existing applications, and
quantifies the benefits of actively enforcing Qol requirements using feedback.

In summary, we do not only contribute and evaluate a novel generic and extensible concept to
express, negotiate and actively enforce requirements about arbitrary Qol properties. In fact, we
demonstrate the practicability and benefits of our approach: we have shown that our approach
can be easily incorporated into existing industry-strength as well as academic systems without
the need to redesign them. We have shown that the higher QoI of the processed data and the
significant resource savings for participants compensate for the additional execution costs for the
MOM. Our approach makes this trade-off between fidelity and performance explicit and eases
the design of a new generation of reactive software systems with an inherent support for Qol.

208 8. Conclusion

9 Outlook and Future Work

In this chapter, we address future work regarding the proposed concept of expectations, capabil-
ities and feedback to support Quality of Information (Qol) requirements. The topics discussed
relate to four areas of interest that are shown in Figure 9.1. They successively extend the scope
of the work presented in this dissertation from the domain of push-based systems to distributed
software systems in general by including pull-based approaches and economic aspects.

Push-based G e

DEBS

Outlook:
Two-sided
markets

SOA
Pull-based

Figure 9.1.: Future work addresses challenges in push- and pull-based systems as well as general
topics related to incentives and negotiation on two-sided markets.

The chapter is structured into four parts as shown in Figure 9.1. First, we focus on topics in
the area of centralized Event-based Systems (EBSs) that immediately connect to the scope of the
work as presented in this dissertation. Second, we discuss additional challenges in distributed
and decentralized EBSs. Third, we extend our scope to include pull-based systems and the sub-
sequent challenges there. Using the example of Service-oriented Architectures (SOAs), we show
that our concept can be applied to pull-based software systems as well. Finally, we sketch out
future work regarding incentives and negotiation in general as our concept connects the runtime
support for Qol requirements to the concept of two-sided markets investigated in economics.

9.1 Centralized Event-Based Systems: Immediate Challenges

In this dissertation, we present a concept and working prototypes for modeling, negotiating and
enforcing requirements about Qol in push-based systems. The work as presented in its current
state, however, has some limitations that have to be addressed in future work. Performance
and prediction models for forecasting the system behavior, alternative and vertically integrated
adaptation mechanisms as well as approaches for coordinating rollbacks and compensation are
areas of interest to be investigated in future work.

Expectations express requirements and preferences of subscribers in regard to different sets of
generic properties. The system can satisfy or decline these bundles of requirements. Conse-
quently, turning an expectation into a Service Level Agreement (SLA) between the subscriber
and the Message-oriented Middleware (MOM) would be the next step. An SLA formalizes a

209

contract between a service provider and service consumer where the service provider guarantees
the provisioning of a set of Service Level Objectives (SLOs); violating this guarantee results in
penalties while adhering to it results in the subscriber paying a fee to the provider.

In our approach, an agreement comes about if the MOM notifies the subscriber that its expec-
tation is satisfied. In the current development stage of our prototypes, however, the MOM does
not forecast the system’s behavior or predict the side effects of adaptations on other, currently
satisfied, requirements before applying them. Thus, it may happen that the MOM cannot keep
up the given guarantee due to deadlocks or conflicting effects of adaptations at runtime.

Consequently, future work in the area of Qol requirements should address system and per-
formance models for push-based systems to enable prediction and forcasting as in pull-based
systems [84]. Previous work as presented in [142, 259, 367, 410] can be used to build upon.

Investigating refined adaptation mechanisms and their interdependencies is another topic to be
addressed in future work. Identifying new platform- or even protocol-specific adaptation mech-
anisms to be transparently applied by the MOM in an EBS is another area of interest. Increas-
ing the level of vertical integration between the MOM, wire protocols for push-based systems
such as the Advanced Message Queuing Protocol (AMQP) or the Channel-based Unidirectional
Stream Protocol (CUSP) [406], or programming languages, would enable fine-tuned adaptation
mechanisms that can be applied in specific environments. Machine learning approaches such as
Fossa [180] should be investigated further to support the MOM in deciding on the set of adapta-
tion mechanisms to apply in a promising situation; this would also tie in well with previous work
done for domain-specific approaches such as IndiQoS or Adamant [211, 212].

Directly related to alternative adaptation mechanisms are concepts for coordination and com-
pensation in an EBS: the more adaptation mechanisms can be applied to different degrees and
in different combinations, the more important coordination and compensation become. Com-
pensation is crucial, in particular, when applying adaptations to optimize the utilization of the
system, i.e., to free up resources. While this topic has gained a lot of attention in the database
community and is still actively pursued, compensation mechanisms in push-based systems should
be addressed more actively in future work [196].

9.2 Decentralized Event-Based Systems: Synchronizing State

As part of our quantitative evaluation we have shown in Section 6.3 that a single broker becomes
saturated at some point for large and dynamic populations, which require frequent renegotia-
tions. Distributed Event-based Systems (DEBSs) can be used to overcome these limitations of a
single broker as a network of brokers allows the load to be distributed across different brokers
using load-balancing approaches such as publisher placement [101] or topology reconfigura-
tions [239, 317, 319, 320, 336, 375, 429].

In a DEBS, however, additional research challenges emerge that have to be addressed in future
work. While the challenges discussed in the previous section also apply to each broker in a
distributed MOM, having to synchronize critical information between multiple brokers remains
the key challenge in a DEBS.

Two types of critical information have to be synchronized at runtime to support Qol require-
ments: state information necessary for brokers to decide on expectations and calibration informa-
tion to coordinate adaptations in a distributed setup without deadlocks or side effects.

210 9. Outlook and Future Work

In a centralized MOM consisting of a single broker, local knowledge about the system state is
identical with the global state itself. In a distributed environment, however, local knowledge has
to be enriched with the fraction of global knowledge required for local decisions at a particular
broker. Thus, synchronizing state and calibration information includes aspects of partitioning
and updating. We sketch out some ideas to address these synchronization aspects for negotiating
and enforcing expectations in distributed and decentralized push-based systems.

In a network of brokers, only the edge broker decides about the expectations of its directly con-
nected subscribers. Partitioning the critical state as such does not require changes to our set- and
range matching algorithms: all edge brokers connected to publishers forward the capability pro-
files of their publishers along the routing tree towards the edge brokers of subscribers subscribed
for matching types of notifications. With this knowledge, edge brokers can decide whether an
expectation is satisfied, satisfiable or unsatisfied. Updated capabilities are propagated through
the network and trigger renegotiations while updates to expectations trigger renegotiations as in
the single broker case discussed in Chapter 4.

Scopes and imprecision are promising concepts to support scalability and provide availability for
large and dynamic populations in a DEBS. They minimize the number of brokers affected by
updates as well as the number of renegotiations performed at each affected broker. Future work
should explore them in more detail.

Imprecision to minimize the number of updates. Instead of flooding the broker network with every
update to a capability, only those updates are propagated that would either violate an already
satisfied requirement or would satisfy a requirement that is hitherto unsatisfied. As in ASIA, the
ranges of accepted values defined in each expectation can be aggregated to compute thresholds
that trigger updates at edge brokers of publishers or inner brokers.

Scopes to minimize the number of affected brokers. Propagating updates from publishers to edge
brokers of subscribers along the routing tree already partitions the network using subscriptions
and avoids flooding. However, the set of brokers to be notified about a changing capability
profile can still be narrowed down as changes to a publisher’s capability profile are relevant
only to those edge brokers that manage expectations this publisher is currently satisfying or
that it could satisfy. Scopes [160, 235, 318] can be used to define such areas of interest in a
topology: each expectation defines a scope that contains all publishers with capability profiles
that satisfy the expectation or would be able to satisfy it. At the same time, each publisher
defines a scope that contains all subscribers that this publisher is catering to. Only the edge
brokers in a scope have to be notified about changes and only the expectations in a publisher’s
scope have to be renegotiated if the capabilities of the publisher change to a significant degree.
Conversely, the scope defined by an expectation identifies those publishers that could benefit
from the expectation being revoked or relaxed; these publishers could then be advised by the
MOM to save resources.

Coordinated adaptation in distributed systems is another area of interest to be addressed in future
work. As for the centralized case, coordination entails approaches for prediction, forecasting, and
compensation but with the additional challenge of a distributed environment. We believe that
enforcing adaptation in distributed environments should be built upon self-adaptive and self-
stabilizing approaches as investigated in [237, 238, 239, 311, 319, 320, 375].

9.2. Decentralized Event-Based Systems: Synchronizing State 21

9.3 Applying our Approach to Pull-Based Systems

The work presented in this dissertation focuses on the support for requirements about Qol in
EBS and DEBS. The concept of expectations, capabilities and feedback, however, is not limited
to the domain of push-based systems. In fact, open issues emerging in the context of runtime
governance of service-based systems are closely related to the challenges we have discussed for
push-based systems. SOAs are a prominent example for pull-based systems where consumers
and providers of a service interact directly following a request-reply communication pattern.

While our approach has been developed in context of push-based EBSs and focuses on the role of
a Message-oriented Middleware (MOM), we can apply the model of expectations and capabilities
to broker-less and even pull-based systems. In pull-based systems without an intermediate MOM,
the service consumer has to negotiate directly with each suitable service provider instead of del-
egating this effort to the MOM. Especially requirements about intermediate generic properties,
such as alternatives, require the service consumer to continuously check whether the require-
ment is satisfied, e.g., whether agreements with enough suitable service providers have been
established; apart from this, our concept can be applied directly.

In this section, we show that our model easily integrates with existing protocols and standards for
negotiating SLAs at runtime in pull-based systems. As an example, we extend the WS-Agreement
protocol for automated SLA negotiation we have introduced in Section 2.2.3 to negotiate an SLA
based on expectations between a service consumer and a service provider.

Agreement initiator Agreement responder

Service Consumer Service Provider

h g

GetTemplates()

Choose o
template

templates|]

Define property.definitions

Expectation(s)

T

|

|

|

]

|

|

|

|

|

|
Create e ! createAgreement(Offer)
offer i

|

|

|

|

|

|

|

|

|

[

|

|

A

3

Register or update expectation

o Match

& decide

AgreementEPR

Individual feedback: satisfied, pending, unsatisfied

getState()
Request aggregated feedback

) A

A

update

Figure 9.2.: Steps of the WS-Agreement protocol (bold) using expectations (italic).

The WS-Agreement protocol consists of four steps as illustrated in Figure 9.2.

212 9. Outlook and Future Work

1. The consumer requests templates from the provider. These templates contain all SLOs
the provider is supporting. When using expectations, the provider’s reply contains the
definitions for all generic properties that the provider supports matching capabilities for.

2. The consumer compiles an agreement offer that contains a set of SLOs out of these tem-
plates. Using expectations, this step refers to registering or updating an expectation that is
defined over generic properties contained in the template.

3. The provider rejects the agreement offer or accepts it by sending an agreement EPR that
contains all clauses of the agreement. Using expectations, the service provider sends indi-
vidual feedback about the state of an expectation: satisfied, pending, or unsatisfied. Either
state can trigger a new iteration of the negotiation process at the service consumer who
updates its expectation and sends a new offer to the service provider.

4. The consumer can request monitoring updates about the status of the agreement. Using
expectations, the consumer can request updates about aggregated ASIA metrics. Individual
feedback about the current state of an registered expectation is provided anyway.

Listings 9.1 to 9.3 illustrate how expectations and individual feedback can be expressed in WS-
Agreement syntax. We assume a service consumer with preferences as described by expec-
tation Xgosand a service provider with a matching set of capabilities. The negotiation with
WS-Agreement results in a template (Listing 9.1) and an agreement offer (Listing 9.2).

The WS-Agreement syntax allows us to state that an expectation has to contain requirements
about at least one generic property defined in the template (cf., Listing 9.1 line 14). The
agreement offer that represents an expectation, however, is only satisfied if all requirements
are satisfied (cf., Listing 9.2 line 14). The utility value used by the subscriber to rank a set of
requirements is matched by the importance element embedded in the BusinessValuelList of
the agreement offer (cf., Listing 9.2 line 44 on).

Modeling the definitions of generic properties as freeform ServiceDescriptionTerm elements in
the template (cf., Listing 9.1 line 15 on) enables us to define range- as well as list-based generic
properties with improvement directions (e.g., line 49 on) as introduced in Chapter 3.

In our example, we assume that the expectation is satisfied at first (cf., Listings 9.3 and 9.4) but
has to be declined later as the currently provided latency becomes too high and the precision
too low as stated in the list of reasons shown in Listing 9.5 (line 6 on). Please note that the
only element required by the WS-Agreement syntax of this response is the state element in
line 4. Thus, we can structure the list of reasons for declining the requirements conveniently by
reporting the required versus the currently provided value.

Listing 9.1: WS-Agreement template example with expectations.

1 <?xml version="1.0" encoding="UTF-8"7?>
2 <wsag:Template xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement"” xmlns:propdef=
"http://dvs.tu-darmstadt.de/XMLpropertydef" wsag:TemplateId="12345">

<wsag:Name>templatel</wsag:Name>

<wsag:Context>
<wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>
<wsag:TemplateId>12345</wsag:TemplateId>
<wsag:TemplateName>templatel</wsag:TemplateName>
<wsag:AgreementInitiator>subscriberA</wsag:AgreementInitiator>

10 <wsag:AgreementResponder>providerB</wsag:AgreementResponder>

1 </wsag:Context>

O N o U h~Ww

=

9.3. Applying our Approach to Pull-Based Systems 213

12

14

<wsag:Terms>
<wsag:0OneOrMore>

<wsag:ServiceDescriptionTerm wsag:Name="XPECT" wsag:ServiceName="XPECT_SERVICE">

<propdef:definitions>

<propdef:property abbrev="accuracy" improvement="MAX">

<propdef:value datatype="DOUBLE">
<propdef:range>
<propdef :minimum>0</propdef:minimum>
<propdef:maximum>100</propdef :maximum>
</propdef:range>
</propdef:value>
</propdef:property>

<propdef:property abbrev="latency" improvement="MIN">

<propdef:value datatype="DOUBLE">
<propdef:range>
<propdef :minimum>0</propdef:minimum>
<propdef :maximum>400</propdef :maximum>
</propdef:range>
</propdef:value>
</propdef:property>

<propdef:property abbrev="precision" improvement="MAX">

<propdef:value datatype="DOUBLE">
<propdef:range>
<propdef :minimum>0</propdef:minimum>
<propdef:maximum>100</propdef :maximum>
</propdef:range>
</propdef:value>
</propdef:property>

<propdef:property abbrev="sampling rate" improvement="MAX'">

<propdef:value datatype="INTEGER">
<propdef:range>
<propdef :minimum>0</propdef: minimum>
<propdef:maximum>60</propdef: maximum>
</propdef:range>
</propdef:value>
</propdef:property>
<propdef:property abbrev="trust" improvement="MAX">
<propdef:value datatype="STRING">
<propdef:1list>
<propdef:listvalue>none</propdef:listvalue>
<propdef:listvalue>low</propdef:listvalue>
<propdef:listvalue>medium</propdef:listvalue>
<propdef:listvalue>high</propdef:listvalue>
</propdef:list>
</propdef:value>
</propdef:property>
</propdef:definitions>
</wsag:ServiceDescriptionTerm>
</wsag:0OneOrMore>
</wsag:Terms>

63 </wsag:Template>

214

9. Outlook and Future Work

Listing 9.2: Agreement offer with expectations (example).

1 <?xml version="1.0" encoding="UTF-8"7>
2 <wsag:AgreementOffer xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement"
xmlns:expect="http://dvs.tu-darmstadt.de/XMLexpect" wsag:AgreementId="54321">

<wsag:Name>agreementOfferl</wsag:Name>

<wsag:Context>
<wsag:ServiceProvider>AgreementResponder</wsag: ServiceProvider>
<wsag:TemplateId>12345</wsag:TemplateId>
<wsag:TemplateName>templatel</wsag:TemplateName>
<wsag:AgreementInitiator>subscriberA</wsag:AgreementInitiator>

10 <wsag:AgreementResponder>providerB</wsag:AgreementResponder>

11 </wsag:Context>

O N o U1 A~ W

13 <wsag:Terms>

14 <wsag:All>

15 <wsag:GuaranteeTerm wsag:Name="XPECT-GUARANTEE" Obligated="ServiceProvider">
16 <wsag:ServiceScope wsag:ServiceName="XPECTService"/>
17 <wsag:ServicelLevelObjective>

18 <wsag:CustomServiceLevel>

19 <expect:expectation GUID="e5">

20 <expect:property abbrev="accuracy'">

21 <expect:closed>false</expect:closed>

22 <expect:lower-bound>70</expect:lower-bound>
23 <expect:upper-bound>100</expect : upper-bound>
24 </expect:property>

25 <expect:property abbrev="precision">

26 <expect:closed>false</expect:closed>

27 <expect:lower-bound>85</expect:lower-bound>
28 <expect :upper-bound>100</expect :upper-bound>
29 </expect:property>

30 <expect:property abbrev="latency'">

31 <expect:closed>false</expect:closed>

32 <expect:lower-bound>0</expect:lower-bound>
33 <expect:upper-bound>250</expect :upper-bound>
34 </expect:property>

35 <expect:property abbrev="sampling rate">

36 <expect:closed>true</expect:closed>

37 <expect:lower-bound>10</expect:lower-bound>
38 <expect:upper-bound>20</expect : upper-bound>
39 </expect:property>

40 </expect:expectation>

41 </wsag:CustomServiceLevel>

42 </wsag:ServicelLevelObjective>

43

44 <wsag:BusinessValuelList>

45 <wsag:Importance>25</wsag: Importance>

46 </wsag:BusinessValueList>

47

48 </wsag:GuaranteeTerm>

49 </wsag:All>
50 </wsag:Terms>
51 </wsag:AgreementOffer>

9.3. Applying our Approach to Pull-Based Systems 215

Listing 9.3: Agreement example, satisfied expectation.

1 <?xml version="1.0" encoding="UTF-8"7>
2 <wsag:Agreement xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement"” xmlns:expect=

O N U1~ W

<wsag:Name>agreementl</wsag:Name>

<wsag:Context>
<wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>
<wsag:TemplateId>12345</wsag:TemplateId>
<wsag:TemplateName>templatel</wsag:TemplateName>
<wsag:AgreementInitiator>subscriberA</wsag:AgreementInitiator>
<wsag:AgreementResponder>providerB</wsag:AgreementResponder>

</wsag:Context>

<wsag:Terms>
<wsag:All>
<wsag:GuaranteeTerm wsag:Name="XPECT_GUARANTEE" Obligated="ServiceProvider">

<wsag:ServiceScope wsag:ServiceName="XPECT_SERVIC"/>
<wsag:ServicelLevelObjective>
<wsag:CustomServicelLevel>
<expect:expectation GUID="e5">
<expect:property abbrev="accuracy">
<expect:closed>false</expect:closed>
<expect:lower-bound>70</expect:lower-bound>
<expect :upper-bound>100</expect : upper-bound>
</expect:property>
<expect:property abbrev="precision'">
<expect:closed>false</expect:closed>
<expect:lower-bound>85</expect:lower-bound>
<expect:upper-bound>100</expect :upper-bound>
</expect:property>
<expect:property abbrev="latency'">
<expect:closed>false</expect:closed>
<expect:lower-bound>0</expect:lower-bound>
<expect:upper-bound>250</expect:upper-bound>
</expect:property>
<expect:property abbrev="sampling rate">
<expect:closed>true</expect:closed>
<expect:lower-bound>10</expect:lower-bound>
<expect :upper-bound>20</expect :upper-bound>
</expect:property>
</expect:expectation>
</wsag:CustomServiceLevel>
</wsag:ServiceLevelObjective>

<wsag:BusinessValueList>
<wsag: Importance>25</wsag: Importance>
</wsag:BusinessValuelList>

</wsag:GuaranteeTerm>
</wsag:All>
</wsag:Terms>

52 </wsag:Agreement>

"http://dvs.tu-darmstadt.de/XMLexpect" wsag:AgreementId="54321">

216

9. Outlook and Future Work

Listing 9.4: WS-Agreement feedback about a satisfied expectation.

<?xml version="1.0" encoding="UTF-8"?>
<wsag:AgreementState xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement">

<wsag:State>Observed</wsag:State>

A AW N =

</wsag:AgreementState>

Listing 9.5: WS-Agreement feedback about a rejected (unsatisfied) expectation.

1 <?xml version="1.0" encoding="UTF-8"7>
2 <wsag:AgreementState xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement"
xmlns:cappro="http://dvs.tu-darmstadt.de/XML_cappro" >

3
4 <wsag:State>Rejected</wsag:State>

5

6 <rejected:reasons>

7 <reason:capability abbrev="precision">
8 <required>85</required>

9 <provided>70</provided>

10 </reason:capability>

11 <reason:capability abbrev="latency'">
12 <required>250</required>

13 <provided>400</provided>

14 </reason:capability>

15 </rejected:reasons>
16
17 </wsag:AgreementState>

Dependency trees that constrain the support for certain generic properties are a currently un-
derestimated topic in service-based systems. These dependency trees emerge at runtime and
stem from the reuse of existing services within a new service at design time: a service provider
requires results provided by other services to provide its own service. These dependencies are
hidden from the consumer of a service by the interface of the providing service. This is bene-
ficial from a development as well as a data ownership point of view as it minimizes redundant
data copies within a service-based application landscape. However, from a runtime governance
point of view, these hidden dependencies are disadvantageous as they affect the availability of
the whole application landscape.

We have investigated dependency trees in SOAs in [169] based on an analysis of a large-scale
productive service-based application landscape. Future work that aims at integrating pull- and
push-based approaches has to consider the implications of dependency trees on the process of
negotiating and guaranteeing Qol requirements.

9.3. Applying our Approach to Pull-Based Systems 217

9.4 Economic Perspective: Incentives and Negotiation on Two-Sided Markets

The widespread adaptation of public Cloud offerings for large-scale deployments of applications
emphasizes the impact of monetary aspects such as dynamic pricing strategies or incentives on
the design and runtime management of distributed applications. Current research in this area di-
rectly fuses advances in economics with those in computer science as most public Cloud offerings
reflect the dynamics of classical single-sided markets [173, 289, 373, 420].

Two-sided markets differ from single-sided markets in several aspects that affect strategies for
negotiation and revenue maximization [335, 358, 359]. In a two-sided market, participants can
only interact with each other using an intermediary party, the platform provider. The platform
itself cannot satisfy the demand of consuming participants without the presence of providing
participants. As the sole party knowing demand and supply, the platform provider is not only
responsible for negotiating demand and supply for each participant but it can also apply different
strategies to attract or discourage participants from joining the system and trading goods. Exam-
ples for those two-sided markets are app stores for mobile operating system such as Android® or
iOS, video game platforms such as Steam? and marketplaces such as ebay>.

In an EBS, the MOM already acts as a platform to negotiate the demand of subscribers with the
supply provided by publishers. However, we currently assume that subscribers demand only their
factual requirements while publishers adhere to adaptation advices from the MOM wherever and
whenever technically possible.

Autonomous and interoperable participants interacting with each other across organizational
boundaries to provide and request data from and for the Internet of Things (IoT) are a vision
to be realized in the near future [63, 170]. This vision, however, turns an EBS into a two-sided
market with autonomously acting and maneuvering participants. This requires future work in
the area of Qol to address behavioral aspects of participants currently investigated in economics.
Incentives, pricing strategies, and negotiation approaches in the face of network effects, multi-
homing, gambling behavior, bandwagon effects, or fraudulent behavior on two-sided markets
are just a few examples for aspects to be considered in the design and runtime management of
future EBSs [26, 71, 149, 256, 276, 279, 335, 358, 359, 360, 361].

https://play.google.com/
http://store.steampowered.com/
http://www.ebay.com

2
3

218 9. Outlook and Future Work

A Appendix

219

A.1 Literature Survey Details

Table A.1.: List of QoD properties discussed in literature addressing runtime quality aspects.

Quality of Device (QoD) properties

Reference Cost Distance Drift Location Resolution Sampling Rate Sensitivity

1] m O O O O O O
[5] O O O O O O O
6] m O O [] O O O
[21] O O O O O O O
[22] O O O O O [| O
[31] O O O O O O O
[32] O O O O O O O
[35] = [] O [] [] [| O
371 = O O O O O O
[42] 0O O O O O O O
[471 O O O O O [| O
[46] W O O [| O O O
[51] O O O O O [| O
[54] = O O O O [] O
[55] O O O [] [] O O
[56] W O O [O O O
[57] O O [] [] [] [| O
[62] O O O [| [] [| O
[751 O [| O [| [| [] O
[85] O O O O O O O
[95]1 O O O O O O O
[96] W O [[| O [| O
[99] = O O O O [] O
[109] =] [] [] [] [| [|
[110] m O O [] [] [| O
[112] O O O O O O O
[122] O O O O O O O
[125] = O O O O O O
[153] = O O O O [| O
[159] O O O O O O O
[182] O O O O O O O
[183] O O O [] O O O
[197] = O O O O [| O
[208] m O O O O O O
[209] = O O O O [] O
[210] O O O O O [| O
[223] O O O [] O O O
[224] O O O O O O O
[225] O O O [] O O O
[226] O O O O O O O
[244] O O O O O O O

220 A. Appendix

Table A.1.: List of QoD properties discussed in literature addressing runtime quality aspects.

Quality of Device (QoD) properties

Reference Cost Distance Drift Location Resolution Sampling Rate Sensitivity

[247] O O O O O O O
[248] ® O O O O O O
[250] = O O O O [| O
[254] O O O O O O O
[261] = O O O [| [| O
[263] = O O O O O O
[265] O O O O O O O
[271] O O O O O O O
[288] O O O O O O O
[291] O O O O [| [| O
[293] O O O [| [| [| [|
[295] O O O O [[| [|
[318] O O O O O O O
[321] = O O O [O O
[324] O O O O O [| O
[325] = O O O O [] []
[334] O O O O O [| O
[339] O O O O O O O
[340] = O [| [| [[| [|
[345] O [O O O [| O
[346] = O O O O O O
[354] = O O [| O [| O
[357] O O O O O O O
[366] ® O O O O O O
[384] = O O O O O O
[386] W O O [] [[] [|
[403] O O O O O O O
[415] = O O O [[| [|
[425] O O O O [| O O
[428] O O O O O O O
[430] O O O O O O O

A.1. Literature Survey Details 221

Table A.2.: List of QoS properties discussed in literature addressing runtime quality aspects.

Quality of Service (QoS) properties

Lumoes | O
918y PaAddy | []
swm asuodsay | O

fuoug | O

B_pIO | O

oz1s a8esso|y | O

SsoT | O

KHuseT | W

i | O

soaueIend A10A1[q | O
uorssaxdwo) | O
ssaualardwoy | O
ppimpueq | m
Amqeqreay | O

SOADRWIANY | O

[1]
[5]
[6]
[21]

Reference

o oo . 00000 ooo o
o oo 000000000 -
o m O0oo0o0o0oeo0o0oonoooo0o o
O m B OO0 " B B B OO 000
o oo 000000000
o O " m OO0 00000 B .
O OO OO R O0OO0ODO0OO0OOQ0O DO
o oo 000000 ooo oo
HE O OO OO ®®BTOO " B OO0 0
o o ooo0 s 0O 00" @ 00 .
o oo . 00000 ooogo o
o oo s 000000600060 aqoao
o oo 000 0006n06o006n0aqao
o oo . 0O0o0ooemo0o0onoooaq o
o O " m OB B B 0O0O0O00O00O00O00 O
o oo s 0O0o0o0so0o0onooOoofOo . d
o 0o oo0ooo0obooboo0ooqooqoooao o
o o oo0ooo0obo o000 . o0oood
o o OO0 00O 00006000 ao
o oo 000000 00m
o o oooo0oboobooOooqooqo s Ooo0o oo
o o oo s 0000060606000 ao
o Oooo0ooo0obo 0o oOo oo
o o oo0ooo0obooo0ooqooqoooao o
o m o000, 00on0 .00 aof
o o oooo0obo s oOoo0d O |0 od
o oo 00000000 a0
o OodoO0 @ B B B B B B B O0ER O
O m m H 0O "R B B 08 O8O 0O
o oo 000000 oOo oo oo
o o o0oo0oo0oo0obooo0ooQooooao oo
o O " OO0 &R B B B B B R 0O0ON
o ooooo0obo o000 0o00o0aod
O m m m B 00000 O 000
O m O m OO " B B 08 O000 N
o o oooo0obo e O0doo0oooao o

[22]

[31]

[32]

[35]

[37]
[42]

[47]

[46]

[51]

[54]
[55]
[56]
[57]
[62]

[75]

[85]

[95]

[96]

[99]
[109]
[110]
[112]
[122]
[125]
[153]
[159]
[182]
[183]
[197]
[208]
[209]
[210]
[223]

A. Appendix

222

Table A.2.: List of QoS properties discussed in literature addressing runtime quality aspects.

Quality of Service (QoS) properties

Lumoes | O

1Y PRARIY | O
swm asuodsay | O
fwoud | O
19PI0 | O

az1s a8essa|y | O
ssoT | O

fouareT | A

pur | O
soaueIens A1oarpq | O
uorssaxdwo) | O
ssaualardwo) | O
ypmpueq | O
Amqereay | O

SOAIBUIRIY 7 O

[224]
[225]

Reference

o o oooo0oo e of0do0ooobo oo o
o o oooo0oo e O0o0ooooo o
o oo . 000000000 n
o oo s 000 000g2:080g060g080.a4ad

[226]
[244]
[247]
[248]
[250]
[254]
[261]
[263]

1

o o " O 000 8 00000808

o oo s 000" 0000§€00mm
o oo s 0000000 O0°0CI0>0m-.
o oo . 000 000:080:0n8a0n80.a
o m 0o OO0 " 0000 @ B nm
o m 00 o0o0o0b0oo0o0oo0oobomfdn
o m Oomm O0000000ao0aooao
o O = m O O~ OO " OO0 0O
o oo s 000 000:0800n0g0n0.a
o oo s 0O0060g:06oagooqoooboooad
o oo 0008000000 n
o oooooo0ooofOooo. 0o oo o
o o oooo0oo0ooOooqooqoooo o
o ooooo0oo e o0O0o0ooobo oo d
"R 00000 O0OO0O0OO0OOoOQOOOQOQOoOoaoOoo
o o oobooo0oobo o000 B 0004
mO00060O060? Coa-onoaoqaoqo™ooaoao
" B R OO0 DO0ODODODOOC"B>O0O ;.
o m 00 o00io°n0m-a@d s 8 0o aod
o | 00006000 o0oooo s 0
o o " 0O 00080000800
o m Ooo0ooo0oo e o0o0oqoibo . 0od
o oo 000800000380 mn.
o m O0oo0o0o0o0o0oonooqooqooo s odoad
" B R OO0 0O0OOOCOOM "R OO0 0O
o o s 0O 000 00a0g3:0ga:6nm.ea0ad
OO0 00 0O0O0OGO0OO6OCO0OOoqQO Qoo oo o
o o oooo0oobo e o0oo0ooob0o oo ad
o m Ooo0oo0o e o0o0os 00 -
o oo 00080000000

[265]
[271]
[288]
[291]
[293]
[295]
[318]
[321]

[324]

[325]
[334]
[339]
[340]
[345]
[346]
[354]
[357]
[366]

[384]
[386]
[403]
[415]
[425]

[428]

[430]

223

A.1. Literature Survey Details

Table A.3.: List of Qol properties discussed in literature addressing runtime quality aspects.

Quality of Information (Qol) properties

Reference Accuracy Confidence

Freshness

Precision Provenance

Trustworthiness

[1]
[5]
[6]
[21]
[22]
[31]
[32]
[35]
[37]
[42]
[47]
[46]
[51]
[54]
[55]
[56]
[57]
[62]
[75]
[85]
[95]
[96]
[99]
[109]
[110]
[112]
[122]
[125]
[153]
[159]
[182]
[183]
[197]
[208]
[209]
[210]
[223]
[224]
[225]
[226]
[244]
[247]
[248]

EN B B D BB NN RERER D RERElD RERER B B B B BEl BER B B B B B pERER b Bl BER B N BN

OO O EE R0 00OEROCOO0OOCO OO0 OO COCOEOCOOEECOECOEENEO

EEEEE NN EE OO EEECOEEEECEEEEEEEEEERNOOOENECOOENRO

EpEpEREREREN BEN REREREREREREN N BERER DEREREREN B REREREN B N REREREN REl BEREN RENE

EpEpEEEREEEREREREREREREREREEEREREREN b REREREREREREN N B REpEREREREREN REl EERENERENE

N N B pupupupEl pupupul pupepupsl Bulh pEpEpEpEl BER B B EER B B B B B REpupuRul N NN

224

A. Appendix

Table A.3.: List of Qol properties discussed in literature addressing runtime quality aspects.

Quality of Information (Qol) properties

Reference Accuracy Confidence Freshness Precision Provenance Trustworthiness

[250] | | | | | |
[254] | |] O O |
[261] | |] | O |
[263] | | | | O]
[265] O | | O O |
[271] | | d O O O
[288] a a] O O |
[291] | |] | O |
[293] | | | | O (|
[295] | | | | O |
[318] O | | O O |
[321] | | | O O |
[324] | | | | O]
[325] | | | | O |
[334] d | | O O |
[339] | | | O O |
[340] | a | | O |
[345] O | | O O O
[346] a a | O O |
[354] O a] O O |
[357] O O] O O |
[366] | | | | O a
[384] | | d O O]
[386] | | a | O |
[403] O | | O O |
[415] | | | | O |
[425] | a | | O |
[428] O O] O O |
[430] | |] O | |

A.1. Literature Survey Details 225

Table A.4.: List of Vol properties discussed in literature addressing runtime quality aspects.

Value of Information (Vol) properties

Ameron | O
pappe-onfeA | O
Anpren | O
Aqepueisepun | O
Anqesnay | O
uUeASY | O
Anqerpy | O
0UISISI]
A1a153(q0
Aiqelardisyug
Audaug

1034
uonendriue\ Jo aseq
Aduaisisuo)

Adua1mn

SSQUASIOU0D)
Aniqeasrfeg
junowry 9jeridoiddy 7 O

Annqrsseooy | O

UAIRJY | —

—_

o Oooooooooooo o000 ofdmOfd .
o oo0oo0ooooo0 o0 o0ooo0oodmd .
o 0o oo0oooooooqooo.oof0ooqo oo o
o o oooooooooooooooqo oo n
o Oooooooo e o0 o0oooOoooOoogo oo n
o 0o oo0oooooooqooosoo0oogo oo o
"R 00O OO0O0OCODOOoQOOoOO Q™ @O QO™ @™ Qoo o
[I D D DN B D DN DN DO D DR D DN B DR B
o ooooooooooqooosoo0ooqgo oo o
o 0o ooooooOo e o0oOoom.moo0oo oo o
o o oo0ooooooooo oo o oo o
o 0oo0ooooooooooo e oo oo o
o 0o oo0oooooboooqooooo oo oo o
o ooo0oo0ooo0oo0oooe 0oo0o oo b

[5]
(6]
[21]

[22]

[31]

[32]

[35]

[37]

[42]

[47]

[46]

[51]

[54]
[55]

o 0o ooooooOo e o0oO0os e >Oo0do oo o
o ooooooooooooo s oo oo o
o oo ooooooooooooo oo o
o 0o oo0oooooboooqooos OO0 oo o
o oo ooooooooooooo oo b
o 0o ooooo oo oOoooOo s o0oo0o oo n
o ooooooooooqooooooqooooqo oo n
o 0o oo0oooooooooooooo oo o
o oooooonoooooooooo oo o
o oo o0ooooooooooooo oo b
o 0o oo0oooooooqooosoo0oo oo o
o ooo0ooooooo0oooooo oo
o 0o ooooooooqooo.oo0oo oo n
o o oo0ooooobooooooooooqo oo o
o oo ooooooooooooo oo o
R O0O0OO0OO0OE>0O0DO0O0OOoO0OOoQOo@OoaoqoQ™ ooaoqooonoo oo o
o oo ooooooooooooo oo b
o 0o ooooooooqooe oo o oo o
o oooooooooqoos oo o oo o
o 0o oo0ooooooooooooooqo oo n
o o oo0ooooooooo oo o oo o

[56]
[57]

[62]

[75]

[85]

[95]

[96]

[99]

[109]
[110]
[112]
[122]
[125]
[153]
[159]
[182]
[183]
[197]
[208]
[209]
[210]
[223]

o oo o0ooooooooooeo0oo oo b

A. Appendix

226

Table A.4.: List of Vol properties discussed in literature addressing runtime quality aspects.

Value of Information (Vol) properties

Amerop | O
pappe-anfeA | O
ApITEA | O
Annqepuelszapun | O
Anqesnay | O
QIOUBA[9Y 7 O
Annqerpy | O
90Ua1SISIad
A1a123[q0
Anqelsadioiug
Andaug

Mog
EOSESQMENE JO oSey
ASua1s1SU0D)

Adua1mn

$S9UISIOUOD)
Amqesstfag
junowry ayerdoxddy | O

Annqrssedoy | O

ERlEV IR |

[224]
[225]

o o oo0oooooOo e oo0ooQobooqoobo6o oo o
o ooooooo e o0 oo oooo oo o
HE B B RO B 0O B B O R OO O®RO
o oooooooOo s oo0oo oo o oo o
o Oooooooo0o e o0oo0oo o0 o oo o
o Oooo0oo s o000 oboobo .00 oo o
o oooo .00 oooooboooboooo o
o o oo0oooooooqoobooqoobooqoobo6oOo oo o
"R O"R 000 ®R OO0 ® OO @ B B B R 00O
o Oooo0oooooOo e oo oo oo o
OO0 ETEO0OODODO0OOoOOOoqQOOooaoqoooo6o-o e o d
o Oooooooooooo oo ooo o
R O0OOOEO0O0OO0ODO0OoOOO-OO oo e " Ooo0O oo o
E B O0OO0OO ®E 00O OO @ " O0O0O00 0

[226]
[244]

[247]
[248]
[250]
[254]
[261]
[263]
[265]
[271]
[288]
[291]
[293]

R OO0OOO OO0 "R OO0 000000
o oooooooooobooqoooqooo6oo6o o
o o oo0oooooooooqoobooqooo oo o
o Oooo0ooooooooboo oo oo o
o m OoO0oo0oooooqoooqoooqooboooo o
OO0 O0oO0OO0OoOooOooOooqoo-oe o0 oOo oo o
o oooooooooqoobooqobobooqooo6oOoo6o o
o Oooo0oooooooobooemoooo oo o
o Oooooooooooboo s OO0 oo o
o ooo0ooooooooooooooo o
o o oo0oooooOo e oobooQobooqoboo oo o
o ooooooooo0oo oo ooo oo
o Oooo0ooo0 s O 000" B "B 0000
o oooooooooqooboo oo oo o
o 0ooo0ooooooooo oo oOo oo o
o 0o oo0oooooooooqobooqoobo6oOoo6o o
o ooo0ooooooooooooooo o
o 0o oo0oooooooqoboomoboofo s 0O d
o ooooooooooboo oo oo o
o Oooo0ooooooooboo e Ooo0o6o o

[295]
[318]
[321]

[324]
[325]
[334]
[339]
[340]
[345]
[346]
[354]

[357]
[366]
[384]
[386]
[403]
[415]

[425]

[428]

[430]

227

A.1. Literature Survey Details

a AW N =

N o

A.2 Runtime Negotiation: Pseudocode

Algorithm 2: Set-matching algorithm described on page 81 in pseudocode used to store capabil-
ity profiles in Nomye that have capabilities matching the requirements defined in X¢.

Function FindNOM(X;, {CP5,...,CP;}) is

Nomyge < 0 // No suitable nominees so far
foreach CP; € {CP%,...,CP;} do // For every capability profile
match < true
foreach p, € X! A ~isInterdependent (p;) do
if G)(pk)g*éCP;3 then // Check if property is supported
L match <« false // No matching capability
if match = true then // All properties are supported
t Nowmye.add(CP}) // Add capability profile to nominees

return Nowmye
3

Algorithm 3: Pseudocode for relationship detection used during range-matching requirements
to capabilities in Algorithms 4 and 5 that generalizes Figures 4.3 and 4.4.

Function isSatisfied(py, C;.CV) is
if isOpen(p,) then
if toMaximize(p;) then
‘ if p;.LB < C{.CV then
L return true
else // Minimize

if py.UB = C;.CV then
L return true

else // Closed property

if p.LB < C2.CV A CS.CV < p,.UB then
L return true

| return (false)

Function isOverfulfilled(p;,C;.CV) is
if toMaximize(p;) then
if C;.CV > p,.UB then
L return true
else // Minimize
if C;.CV < p;.LB then
L return true

| return (false)

Function isCovered(py, C,e(.LB, C,e(.UB) is
if C{.LB < py.UB A C;.UB = p;.LB then
| return true

else
| return (false)

228 A. Appendix

wu

v N O

10
11
12
13

14
15
16
17
18

19
20

21
22

23
24

25
26
27

28

29

-

N OO A wWN

Algorithm 4: Range matching capabilities to requirements about atomic, broker-side, or com-
plex generic properties as described on page 84. Algorithm uses Algorithm 3; interdependent
properties are checked in Algorithm 5.

Function RangeMatchesNonInterdependent (X;, Nomye) is
Result: CaNDye, CANDye, X7 .state € {satisfied, satisfiable,unsatisfied}

X?.state < unsatisfied // Unsatisfied till proven otherwise
ADAPTATIONPLANye < () // Start with empty adaptation plan
foreach CP; € Nowmye do

mi,l,{P}i’l,{P}il —0 // Which properties does CP; satisfy?

CANDye, CANDye «— ()
foreach p; € X! A ~isInterdependent (p;) do
C¢ — O(p;) € CP¢

if isSatisfied(pk,Ci.CV) then // Already satisfied by Ci.CV
| pe— {Phy
else
if isOverfulfilled(py,C;.CV) then
if isClosed(p,) then
L o %ﬂil // Overfulfilling illicit for closed intervals
else // Could we satisfy by adaptation?
if isCovered(py,C;.LB,C;.UB) then
‘ Pr — 1P}y
else
L P _)ﬂi,l
if{PT}i,l # 0 then // At least one property is only satisfiable
CP; — CaNDye // We would have to adapt.

foreach p; € ﬁi,l do
L ADAPTATIONPLANye < addAl1AvailableActions(©(py),CP})

if X! .state # satisfied then
| X¢.state — satisfiable

else

if [{P};,| = [X{| — [{isInterdependent (p;)}| then // All non-interdep. prop. satisfied
CP; — Canpye
ADAPTATIONPLlAng < add(routingFrom(P,),CP})
X?.state « satislfied

Algorithm 5: Checking requirements about alternatives (interdependent) using Algorithm 3 as
described in the example on page 84.

Function CheckAlternativesRequirement(X7, CANDye, CANDye) is
1 1
Result: X¢.state € {satisfied,satisfiable,unsatisfied}

if isSatisfied(py, |CaNDge |) then // Already enough suitable publishers
‘ return satisfied l
else
if isSatisfied(py, | CANDye |+ |CaNDye |) then
‘ return satisfiable l l // enough capable publishers to adapt
else // Not possible, even with adaptation, as
L return unsatisfied // there are not enough capable publishers

A.2. Runtime Negotiation: Pseudocode 229

S WN

wv

10
11
12
13
14

15

16

17
18
19
20
21

22
23
24
25
26

Algorithm 6: Determine the least expensive (minimal) adaptation plan for Algorithm 1 as dis-
cussed on page 89.

Function getAdaptationPlanMinimalCosts(X!, ADAPTATIONPLANye) is
_— 1
Result: ApapTaTioNPLANge = {a;,...,a,} with minimal costs
L
foreach CP; € ApAPTATIONPLANye doO
i,new

foreach p; emu do // What has to be done for CP;?
C: — ©(p;) €CP¢
if hasToBeIncreased(p;,C;) then // Increase

=
‘ Aj < getIncreasingActions(p;)
else // Decrease

—
L A; < getDecreasingActions(p;)

// Select least expensive action
Q10

—
foreach a, € A, do
if O =0 then
| Q=q,
else
L if getTotalCosts(a,,C},py.LB,px.-UB) < getTotalCosts(§,Cy,p,.LB,p;.UB) then

| Q=aq,

ADAPTATIONPLANye <— add(2)

return ADAPTATIONPLANye
1

Function hasToBeIncreased(py, C}) is
Result: true V false

if toMaximize(p;) then // Maximize: test p;.LB
if pi.LB — C;.CV < 0 then

| return false
else

| return true

else // Minimize: test p;.UB
if p;.UB — C;.CV > 0 then

| return true
else

| return false

230 A. Appendix

A.3 Reference Architecture: APIs and Code Examples

«interface»
ExpectationController

+processExpectation(GenericMessageEnvelope expMsg) Forward updates
+processCapability(GenericMessageEnvelope capMsg) } about the lifecycle
of expectations
+getBalancer() and capabilities
Enable access +getMechanismsRepository()
between main +getReactionCoordinator()
components +getRegistry()

+getResourceMonitor()

exet?U“O” of +removeRoute(String publisherID, String subscriberID, String eventTypeDescr)
routing

adaptation ()

Encapsulate { +addRoute(String publisherID, String subscriberID, String eventTypeDescr)

(a) Key methods of the ExpectationController interface implemented by the MOM as dis-
cussed on page 113.

«interface»
AggregationAwareController

+getRepository()
+notifyClients(updatesToSend: AggregateValue[*])

(b) Interface to be implemented by each broker in a DEBS when participating in ASIA as de-
scribed on page 119.

Figure A.1.: Broker interfaces for controllers.

«interface»
Action

+getName()
+getCosts(targetValue: Value, GUIDofCP: String, eventTypeldentifier: String)

+deploy(debug: boolean, parameters: ActionParameter[n])

+update(parameters: ActionParameter[n])
+updateFixedCosts(newCostFunctionFixedCosts: int)

+trigger(state: ExpectationSatisfactionState, parameters: ActionParameter[n])
+delete(parameters: ActionParameter[n])

()

+getExecutableAction(targetValue: Value, propertyName: String, GUIDofCP: String,
publisherID: String, subscriberID: String, eventTypeldentifier: String, expectationGUID: String)

Figure A.2.: Interface any prototype of an action has to implement as described on page 116.

A.3. Reference Architecture: APIs and Code Examples 231

«interface»
ExpectationAwareSubscriber

+onUpdate(news: FeedbackExpectation)
+getClientID()

() Interface subscribers implement to be triggered as described on page 119.

«interface»

CapabilityAwarePublisher

+onUpdate(news: AdaptationAdvice)
+getClientID()

(b) Interface to be implemented by publishers as described on page 120.

Figure A.3.: Callback interfaces for subscribers and publishers.

AbstractExpectationHandlerClient

+registerSubscriberForCallback(callback: ExpectationAwareSubscriber)

+addLocalExpectation(exp: Expectation)
+addLocalExpectationsFromFile(propertyDefinitionsFile: String, expectationsFile: String)
+addLocalExpectationsAuto()

+registerExpectation(localGUID: String, type: EventType)
+updateExpectation(encodedGUID: String, newExpectation: Expectation)
+suspendExpectation(encodedGUID: String)
+suspendExpectation(localGUID: String, associatedEventType: EventType)
+resumeExpectation(encodedGUID: String)
+resumeExpectation(localGUID: String, associatedEventType: EventType)
+revokeExpectation(encodedGUID: String, typeName: String)

+getlLatestFeedback(encodedGUID: String)

+getEncodedGUID(localGUID: String, associatedEventType: EventType)
+registerAggregation(eventType:String, imprecision:Double, aggregation:AggregateType)
+summarizeFeedback()

(a) API for handling the lifecycle of expectations, provided as abstract class.

AbstractCapabilityHandlerClient

+addLocalCapability(cap: CapabilityProfile)
+addLocalCapabilitiesFromFile(propertyDefinitionsFile: String, capabilityProfilesFile: String)
+addLocalCapabilitiesAuto()

+addLocalCapabilitiesAutoRandomlyGenerated(number: int)

+updateCapabilityCurrentValue(encodedGUID: String, capabilityAbbrev: String, newCurrentValue: Value)
+commitUpdateToCapabilityProfile(encodedGUID: String)

+updateCapabilityProfile(encodedGUID: String, newCP: CapabilityProfile)
+registerCapabilityProfile(localGUID: String, type: EventType)

+revokeCapability(encodedGUID: String)

+getLatestAdaptationAdvice(encodedGUID: String)
+getLatestAdaptationAdvice(localGUID: String, eventType: EventType)
+registerAggregation(eventType:String, imprecision:Double, aggregation:AggregateType)
+getEncodedGUID(localGUID: String, associatedEventType: EventType)
+summarizeFeedback()

(b) API for managing the lifecycle of capabilities.

Figure A.4.: APIs of client handlers provided as abstract classes as discussed on page 119.

232 A. Appendix

Definitions CapabilityHandlerClient —
B R Capabilities register,
D < update, revoke
NN Capabilities |« Updater .— _————
(active)
Parser T Message-
N arse _ oriented
\—/ .
CP <> Feedback Ridibpas
(individual & @ Listener .<|<l— —_——_———
o aggregated) Adaptation Advices
Capabilities — Aggregated Feedback

—— manage —— request
capabilities aggregated fl\ fl\
feedback ? ?

l getClientID onUpdate(Feedback)
1 1

Interface: CapabilityAwarePublisher

Figure A.5.: Handler for publishers to manage their capabilities and handle feedback as discussed
in Section 5.1.3.

Access to BrokerPluginSupport
o +send(producerExchange: ProducerBrokerExchange,messageSend: Message)
Notlflcat.|on +preProcessDispatch(messageDispatch: MessageDispatch)
processing +postProcessDispatch(messageDispatch: MessageDispatch)
+addBroker(connection: Connection, info: BrokerInfo)
+addConsumer(context: ConnectionContext, info: Consumerinfo)
Types & +addProducer(context: ConnectionContext, info: Producerinfo)
topics +removeBroker(connection: Connection, info: BrokerInfo)
lifecycle +removeConsumer(context: ConnectionContext, info: Consumerinfo)
+removeProducer(context: ConnectionContext, info: Producerinfo)
+addDestination(context: ConnectionContext, destination: ActiveMQDestination,
createlfTemporary: boolean)
Population +removeDestination(context: ConnectionContext, destination: ActiveMQDestination,
lifecycle timeout: long)
+removeSubscription(context: ConnectionContext,
info: RemoveSubscriptionInfo)

Figure A.6.: API offered to plugins by the BrokerPluginSupport class to access the broker state
as discussed on page 126.

A.3. Reference Architecture: APls and Code Examples 233

Role PacketForwarder ASIA
+processEventFromClient(client: NodeDescriptor, ev: Event, timestamp: long)

Edge +installLocalSubscription(client: NodeDescriptor, sub: Subscription, timestamp: long) Update

broker +installLocalAdvertisement(client: NodeDescriptor, adv: Advertisement, timestamp: long) local
+notifySubscriber(ev: Event) values

Inner #processEventPacket(pkt: EventPacket, box: Outbox) Update

br i ; #processAdvertismentPacket(pkt: AdvertisementPacket, box: Outbox) sent

oke #processSubscriptionPacket(pkt: SubscriptionPacket, box: Outbox) te
tCTeC

Figure A.7.: Joinpoints provided in REDS for ExpectationController and ASIAController as

discussed on page 131.

Listing A.1: RateControllerDispatchPolicy for injecting rateController instances into ActiveMQ

as discussed on page 127.

1 public class RateControllerDispatchPolicy implements DispatchPolicy {
2
3 final private ExpectationController callback;
4 final private Hashtable<String,Hashtable<String,RateController>> buffers;
5 final private ActiveMQDestination destination;
6
7 public RateControllerDispatchPolicy(ExpectationController controller,
ActiveMQDestination destination) {
8 this.callback = controller;
9 this.destination = destination;
10 this.buffers = new Hashtable<String,Hashtable<String,RateController>>(Q);
11 System.out.println(" [DispatchPolicy] Initialized for "+this.destination);
12}
13
14 @Override
15 public boolean dispatch(MessageReference node, MessageEvaluationContext msgContext, List
<Subscription> consumers) throws Exception {
16
17 String clientID,eventTypeDescriptor,publisherID;
18 Message message = (Message) msgContext.getMessage();
19 publisherID = message.getStringProperty("publisherID");
20
21 int count = 0; //Required by DispatchPolicy
22 eventTypeDescriptor = EventType.trimActiveMQDestinationNames(message.getJMSDestination
(O .toString());
23
24 synchronized(consumers) {
25
26 for (Subscription sub:consumers) {
27
28 clientID = sub.getContext().getClientId();
29
30 if (sub.getConsumerInfo().isBrowser()) continue;// Do not deliver to browsers
31
32 if (!sub.matches(node, msgContext)) {
33 sub.unmatched(node) ; // Only dispatch to interested subscriptions
34 continue;
35 }
234 A. Appendix

36

37 if (this.callback.getMechanismRepository().isActiveContentAggregation(

38 eventTypeDescriptor, clientID,publisherID) {

39

40 if (!'this.buffers.containsKey(clientID))

41 this.buffers.put(clientID, new Hashtable<String,RateController>());

42

43 if (!'this.buffers.get(clientID).containsKey(publisherID)) {

44 this.buffers.get(clientID) .put(publisherID,

45 new RateController(

46 this.callback,

47 eventTypeDescriptor,

48 clientID,

49 publisherID,

50 true)

51)3

52 }

53

54 //Get aggregated notification from rateController

55 Message namsg = (org.apache.activemq.command.Message) this.buffers.get(clientID).
get(publisherID) .bufferEventForAggregation(message);

56

57 //nmsg is NULL if there is nothing to dispatch for now...

58 if (nmsg == null) continue;

59

60 sub.add(namsg) ;

61

62 } else sub.add(node); //No rateController defined

63

64 count++;

65 }

66 }

67 return count > 0;

68 }

69 }

Listing A.2: Injecting RateConrollerDispatchPolicy in ActiveMQ as discussed on page 127.

1 @Override
2 public Destination addDestination(ConnectionContext context, ActiveMQDestination
destination, boolean createIlfTemporary) throws Exception {

3

4 C...)

5

6 if (this.getMechanismRepository().isRegistered("rate", "rateController™") &&

7 Ithis.dispatchPoliciesForRateReduction.containsKey(destinationName)) {

8

9 this.dispatchPoliciesForRateReduction.put(destinationName, new
RateControllerDispatchPolicy(this,destination))

10

11 PolicyEntry policy = new PolicyEntry();

12 policy.setDispatchPolicy(this.dispatchPoliciesForRateReduction.get(destinationName));

13 policy.setDestination(destination);

14 this.getBrokerService().getDestinationPolicy().put(destination, policy);

15}

16 return super.addDestination(context, destination, createlfTemporary);

17 }

A.3. Reference Architecture: APIs and Code Examples 235

(definition)
(abbrevdef)
(titledef)
(improvementdef)
(unitdef)
(valuesdef)
(valuestyledef)
(valuestyledatatype)
(rangestyle)
(rangemin)
(rangemax)
(liststyle)

(list)

(values)

(value)

(char)
(pimprovement)
(datatype)
(pname)

(ptitle)

(punit)

(abbrevdef) (titledef) (improvementdef) (unitdef) (valuesdef) | €
xproperty.(pname).abbrev=(pname)
xproperty.(pname).title="(ptitle)"
xproperty.(pname).improvement= (pimprovement)
xproperty.(pname).unit=(punit)
(valuestyledatatype) (valuestyledef)

(rangestyle) (rangemin) (rangemax) | (liststyle) (list)
xproperty.(pname).datatype= (datatype)
xproperty.(pname).value.style=Range
xproperty.(pname).value.minimum=value
xproperty.(pname).value.maximum=value
xproperty.(pname).value.style=List
xproperty.(pname).value.list=values

values,value | value

value(char) | (char) | e
A...Z|la...z]0...9]|-].1,

MAXIMIZE | MINIMIZE

Binary | Double | Float | Integer | Long | String
DPname> Name of the property

textual description of the property

unit, e.g., nanoseconds, events per second

(a) Backus-Naur Form (BNF) of a property definition.

O 0 N A WN

i e
au A W N = O

xproperty.confidence.title="Confidence of detection"
xproperty.confidence.abbrev=confidence
xproperty.confidence.improvement=MAXIMIZE
xproperty.confidence.value.style=range
xproperty.confidence.value.datatype=Integer
xproperty.confidence.value.minimum=0
xproperty.confidence.value.maximum=100

xproperty.trust.title="Trustworthiness"
xproperty.trust.abbrev=trust
xproperty.trust.improvement=MAXIMIZE
xproperty.trust.value.style=list
xproperty.trust.value.datatype=String
xproperty.trust.value.list=none,low,medium,high

(b) Examples of generic properties confidence of detection and trustworthiness.

Figure A.8.: Generic properties definition in BNF notation and line-based syntax.

236

A. Appendix

A.4 FINCoS: Extensions and Experimental Setup

This section describes our extensions to the FINCoS benchmarking tool that we have introduced
in Section 5.3 and used for our evaluation in Section 6.2.

We have customized and extended FINCoS to handle expectations, capabilities as well as the
feedback provided by a middleware that supports expectations. Subscribers can now associate
one or more expectations with a subscription and can change that behavior over the duration of
an experiment with or without changing their subscriptions. Publishers can associate capabilities
with their advertisements, change them at runtime, and - first and foremost — they now adapt
their publication behavior at runtime based on individual feedback given by the MOM.

In particular, we have added the following elements to FINCoS as shown in Figure 5.27 (blue):

* Adapters for ActiveMQ and REDS. Adapters for drivers and sinks allow FINCoS to interact
with a specific MOM. We have implemented adapters for drivers and sinks to interact with
ActiveMQ and REDS based on the interfaces provided by FINCoS to be implemented by
custom adapters. We implemented a separate adapter for ActiveMQ as the provided adapter
for the Java Message Service (JMS) caused issues with dynamic topics on ActiveMQ.

* Expectations and capabilities client libraries. We have integrated the client libraries for han-
dling expectations, capabilities and feedback we have developed for ActiveMQ and REDS
and described in Section 5.1.3. Each instance of a subscriber or publisher maintains its
own local repository of expectations (or capabilities, respectively). The client libraries han-
dle the loading of property definitions and predefined expectations or capability profiles
into FINCoS and manage the platform-specific communication of lifecylce messages. Fur-
thermore, they process the individual and aggregated feedback given to subscribers and
publishers alike. For publishers, they also trigger the self-adaptation logic of each pub-
lisher instance as drivers now implement the CapabilityAwarePublisher interface and
can process adaptation advices sent as individual feedback. In addition, we have also im-
plemented support for aggregated feedback about the dynamics and population of the EBS
at runtime. Both subscribers and publishers can request updates about aggregated metrics
such as publisherCount, subscriberCount, or publicationRate. For each request, an individ-
ual imprecision can be set. Aggregation request are registered, updated or revoked at the
start of each phase by both subscribers and publishers.

* Phases for subscribers. In FINCoS V2.4.2, publishers can change their behavior with every
phase but subscribers can not. Thus, we have implemented the concept of phases for
subscribers as this enables us to simulate requirements that change at runtime. Subscribers
can now change their subscriptions, their aggregation requests for aggregated feedback and
their expectations during the course of an experiment: as for publishers, multiple phases
can be defined for each subscriber. Subscriptions and expectations are registered, revoked
or updated at the start of each phase.

* Self-adaptation based on feedback. We have added self-adaptive behavior to publishers. At
runtime, a publisher can now autonomously adapt the sampling rate, accuracy and artificial
latency! of its publications based on the adaptation advises given by the MOM to FINCoS
about the capabilities registered by that individual publisher. The current values of the

! We have enabled FINCoS to adjust the timestamp of a notification by an amount of milliseconds before publish-

ing it. This artificial latency can be configured for a specific type of notification per publisher.

A.4. FINCoS: Extensions and Experimental Setup 237

respective capabilities are also updated locally and reported back to the MOM as updates
(cf., Section 3.4.3).

* Detailed traces. In addition to the traces recorded by FINCoS itself, we have added the
collection of more detailed traces for both subscribers and publishers. This allows us to log
additional attributes and metadata for every notification that has been sent by publishers
or received by subscribers. While the traces logged by FINCoS contain only the information
required by FINCoS to replay the workload, our detailed traces also include the separately
received feedback from the MOM as well as timestamps of important events (pinpoints)
that we use to synchronize information gathered from different particiants.

A.4.1 Test Harness for Automated Testing

We have developed a test harness to automate experiments run with FINCoS and our prototypes.
In this regard, we have implemented a console-only version of FINCoS that does not require
a graphical user interface and is used by our test harness to run unsupervised experiments on
remote hosts.

As illustrated in Figure A.9, the test harness is designed to automatically execute test plans. A
test plan defines a sequence of single test runs. A single test run describes a single experiment
and has two phases: an execution phase and an analysis phase.

~Test harness: automating experiments ————————————————

Test series

~ Single test run

Execution Lifecycle Management

. . i Topology (XML)
Testplan + Topology Configuration 3 4 FINCoS
template generator | Connections.fcf
i 4

Configuration y Broker

Analytics
N Usage ' 4 Reports
Traces Pl . tictics Analyzer p
analytics

Figure A.9.: Test harness to automate executing and analyzing series of single test runs.

Automating the execution of a single run is done by updating the configuration files for FINCoS
and the system under test based on a template and a testplan. A topology template describes the
participants of a setup, their behavior and their relationships in a platform-independent syntax;
a test plan describes a list of changes to that template for each single test run. For example, the
publishers and subscribers populating the heterogeneity scenario described earlier are defined in
a topology template while the testplan defines the different heterogeneity levels by configuring
an increasing number of publishers to send unsuitable data. A configuration generator uses this
input to generate platform-specific configuration files for FINCoS and the system under test for
each single test run. The test harness then distributes these configurations, starts the resource
monitoring on all hosts, the system under test, and FINCoS. After completing a single test run,
the test harness collects all traces and monitoring information logged during the experiment,

238 A. Appendix

performs a clean shutdown of all participants and finally analyzes the collected data using scripts
written in Java and R2. The results are stored in a database together with the raw log data. This
process is automatically repeated for all test runs defined in a test series.

A.4.2 Test Setup

The test environment for experiments with FINCoS is shown in Figure A.10. All Virtual Machines
(VMs) being part of an environment are controlled by Vagrant® [199] V1.6.3 and provisioned
using Oracle VirtualBox* V4.3.10. They all run on a single host.

] Usage monitoring: CPU + memory ——» Lifecycle control
[Network traffic incoming / outgoing —» Expectation / Capabilities
=P Notifications / Feedback

FINCoS
controller vm

T
I
I
I
I
I
I
I
!

v

N FINCoS ActiveMQ vm FINCoS e
drivers vm XpectPlugin sinks vm
[i [
|
1
- Test harness controller vm -

Host (Ubuntu 14.04, 2 x 8 Core INTEL Xeon, 128 GB DDR3-RAM, 2 x 240 GB SSD SATA)

Figure A.10.: Test environment using six virtual machines running on the same host. Resource
utilization is measured separately for publishers, subscribers and ActiveMQ.

Each host runs Ubuntu Linux 14.04 (Trusty Tahr) and is equipped with 2 x 8 Core INTEL Xeon
E5-2650 2000MHz 15M Cache, 128 GB DDR3-RAM ECC PC1600 (8 x 16 GB DIMM), and 2 x
240 GB SSD SATA. Clocks on all VMs are automatically synchronized using the Network Time
Protocol (NTP)>. The VMs on a single host form a virtual private network with static network
addresses. This makes the whole setup portable and allows running multiple clones of a test
environment on different hosts in parallel.

As shown in Figure A.10, a dedicated VM is used by our test harness to execute test plans
and coordinate the lifecycle of the participants. For performance reasons and to measure
the resource utilization of publishers and subscribers in isolation, we are running them on
separate VMs while the FINCoS controller is hosted on a third VM. The system under test
is hosted on one VM. In our setup for ActiveMQ we use two VMs: one hosting an Ac-
tiveMQ instance with an ExpectationController while a separate instance of ActiveMQ is
hosted on another VM. The separate ActiveMQ instance runs without any plugin and just pro-
vides four topics used to exchange expectations, capabilities and feedback between clients and

https://www.r-project.org/
https://www.vagrantup.com/
https://www.virtualbox.org/

2
3
4
5 http://www.ntp.org/

A.4. FINCoS: Extensions and Experimental Setup 239

https://www.r-project.org/
https://www.vagrantup.com/
https://www.virtualbox.org/
http://www.ntp.org/

MOM (control.expectations, control.capabilities, control.expectations.feedback,
and control.capabilities. feedback).

The VMs have different configurations depending on their role: VMs running FINCoS and the test
harness have four virtual cores and 34 GB RAM each while the VMs running the system under
test have one virtual CPU and 24 GB RAM each.

FINCoS does not measure the utilization of resources such as CPU utilization, network traffic,
memory usage or disk space. Thus, we have added the necessary monitoring capabilities to our
test harness. The test harness uses dstat to measure the resource utilization of the VMs hosting
subscribers and publishers as well as each VM running a broker that is part of an EBS or DEBS.

A.4.3 Anatomy of a Single Test Run

As shown in Figure A.11, each single run has a setup stage followed by a measurement stage.
The total duration of a single run is 60 seconds as additional experiments have shown that
this duration is a good trade-off between the unambiguousness of the measured results and the
effort necessary for analysis. Additional experiments with longer durations of the measurement
stage have shown no impact on the measured results. Longer durations, however, aggravate the
analysis by several orders of magnitude due to the high increase in measured data.

We use a test run from the baseline scenario without any plugin running on ActiveMQ and a
hetergeneity of 0% to discuss the characteristics of a single run and show what is used as a Key
Performance Indicator (KPI) when comparing different scenarios.

During the setup stage, all participants are started by the test harness while publishers and
subscribers are initialized by the FINCoS controller. Starting ActiveMQ results in a high CPU
utilization that is independent of the scenario or plugin being used by ActiveMQ as shown in
Figure A.11a. Initializing subscribers and publishers on the other hand does not impact the CPU
utilization but causes spikes in network traffic as the workload definition and phase configura-
tions have to be deployed on all VMs hosting subscribers and publishers.

The measurement stage is started by the FINCoS controller triggering publishers and subscribers.
Advertisements, subscriptions, expectations and capabilities are registered at the MOM first fol-
lowed by the notifications sent by publishers, processed by the MOM and delivered to subscribers
again. The values observed in this stage differ as they depend on the scenario and level of het-
erogeneity. Please note that several phases defined for publishers or subscribers in FINCoS can
take place in the measurement stage.

For each single test run, we measure the average resource utilization in terms of CPU utilization
and incoming traffic during the measurement stage. We use these measurements as KPIs to
compare different scenarios with each other. We also log the timestamps for the beginning and
ending of each phase in FINCoS as well as the start and end of the measurement stage.

Furthermore, we calculate the conformance of each notification received by the subscriber with
the requirements expressed in Xt . The cumulative fidelity as the sum of all these values reflects
the overall satisfaction of the subscriber at the end of a single test run (cf., Section 3.3.3).

240 A. Appendix

Setup stage Measurement stage
_ fe——— l |
100 Broker initialization | |
80 | I
Subscribers |
- Publishers I
Broker | |
g 60+ Baseline (WOE) | |
p h=0 .
S | - ----~,__-,_____--,__k
8 / \
; 40 - Publishers + subscribers | g | ‘\
?.5 initialized by] .
FINCoS controller | " |
I —
I |
201 AN |
! |
N 2
l’~~ .
Y ‘V\ | |
o e\’
T T T I T T II
0 10 20 30 40 50 60
Time elapsed (seconds)
(a) CPU utilization during a single run.
Setup stage Measurement stage
50 Sink initialization
by FINCoS controller !
i
!
H
1
1!
40 "
1!
1 1
"
—-- Subscribers ‘: |
o —— Broker ! \
¥ 30 [
o Baseline (WOE) | 1
£ - ! :
<] o
o o
£ [
] H !
E 27 P
IS [
1)
1 1
H 1
1]
P
10 [
1
1 1
1)
1 1
1)
1)
H 1
1)
0 1 NN [

r T T f T T T
0 10 20 30 40 50 60
Time elapsed (seconds)

(b) Traffic measured during a single run.

Figure A.11.: Anatomy of a single run using FINCoS: example plots showing the resource utiliza-
tion in terms of incoming network traffic and CPU utilization for subscribers, pub-
lishers and MOM (ActiveMQ). Numbers are measured over the duration of a single
FINCoS experiment in the baseline scenario (Without Expectations (WOE))

A.4. FINCoS: Extensions and Experimental Setup 241

A.5 Drill Down Data for Heterogeneity Scenario with Surplus Publishers

Heatmaps Figures A.12 and A.13 complement the discussion of a scenario with surplus publishers
in Section 6.2.3.

Indicator on heat map

BC BC
ESA ESA
EFO EFO
WOE 0 0 0o 0 0O OOO O 0 O WOE
ET 0 0 0O 0O 0OOO 0 O 0 O ET
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level Heterogeneity level
(a) Notifications (%) satisfying X2 summarizing (b) Notifications satisfying the alternatives
Figures 6.9a to 6.9d and 6.10e. requirement.
BC BC
ESA ESA
EFO EFO 13 9 5§ 2 0
WOE 29 6 0 0 0 0 0 O WOE 6747 34 25 18 13 9 5 2 O
I 15 14 21 24 31 41 89 .. 7 0 S 14 37 11 18 17 21 25 42 ..
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Heterogeneity level Heterogeneity level
(<) Notifications (%) satisfying (d) Notifications (%) satisfying
rate requirement. latency requirement.
BC BC
ESA ESA
EFO 46 42 39 EFO
WOE 52 46 42 39 WOE
ET ET
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level Heterogeneity level
(e) Notifications (%) satisfying (f) Notifications (%) satisfying
accuracy requirement. precision requirement.

Figure A.12.: Drill down: conformance with requirements for surplus publishers.

242 A. Appendix

Indicator on heat map

-3 18 18 18 18 18 18 18 18 18 18 18

7.9 18 18 18 18 18 18 18 18 18 18 18

S8 (8 16 14 12 10
we | |11
ET 181614 12 10 8 6 4 2 O

0 10 20 30 40 50 60 70 80 90 100
Heterogeneity

(@) Number of publishers data is received from.

ol 161 159 158 162 161 158 158 158 163 162 162 BC
SST. N 158 161 160 162 164 167 167 170172176 178
ESA
SOl 162 158 142 126 106.540 601 662 723 781
EFO 288 307 324 343 362
\\eI=Nm 176|237 298 357 420 479 541 602 662 721 786
Y 030818 791 740 580 HoC EER AN 120.. WOE 112 167 210 242 269 288 307 324 340 365
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Heterogeneity Heterogeneity
(b) Rates received (notifications/sec). (c) Average latency of notifications (ms).
BC BC
ESA ESA
EFO 63 61 58 56 55 EFO 82 82 81 81 81
WOE 67 63 60 58 56 55 WOE 83 82 82 81 81 81
ET ET
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Heterogeneity level Heterogeneity level
(d) Average accuracy of data received (%). (e) Average precision of data received (%).

Figure A.13.: Drill down: data for scenario with surplus publishers.

A.5. Drill Down Data for Heterogeneity Scenario with Surplus Publishers 243

A.6 jms2009-PS Extensions and Experimental Setup

We have extended jms2009-PS to include expectations and capabilities into its workload. The
additional load introduced by expectations and capabilities is tied to the benchmark’s workload
and scales with it. We generate sets of random properties with random definitions. Based on
these, our test harness generates expectations and capabilities with upper and lower bounds
based on a uniform distribution. The seed can be configured. Participants express subscriptions
on different product families by using the IN selector provided by JMS. This configuration is
similar to Scenario II described in [368].

We introduce the dynamics parameter to simulate changing contexts for publishers and sub-
scribers that result in changing requirements and capabilities at runtime. The dynamics parame-
ter denotes how frequently each participant is changing.

We had to compensate for the major performance improvements achived for ActiveMQ V5.10
in comparison to V5.4. This compensation is necessary to be able to recreate the results pub-
lished in [368, 395] for ActiveMQ V5.4 with the more recent version V5.10 used in our setup.
In particular, we had to adjust the load-balancing factor used by SPECjms2007 to share the load
between all instances of publishers and subscribers that are generated for each JMS topic. With-
out adjusting the configuration parameters used in [368, 395], the benchmark had not be able to
uphold the necessary sampling rates at the pubisher side and handle all processed notifications
at the subscriber side in time. Consequently, a single run of jms2009-PS had not been successfull
because the benchmark had become the bottleneck while ActiveMQ had not been exhausted.

A.6.1 Test Harness for Automated Testing

We use the same test harness we have described in Section A.4 to automate testing with jms2009-
PS. As for FINCoS, the test harness generates the necessary configuration files for jms2009-PS and
ActiveMQ. The configuration is automatically distributed to the different hosts running controller,
satellites, and the ActiveMQ broker under test. The test harness also collects all data logged by
both jms2009-PS and the system under test.

The test setup for experiments with jms2009-PS is shown in Figure A.14. All VMs being part of an
environment are controlled by Vagrant® [199] V1.6.3 and provisioned using Oracle VirtualBox’
V4.3.10. They all run on a single host with the configuration already described in Appendix A.4

As for FINCoS, a dedicated VM is used to execute test plans and coordinate the lifecycle of
jms2009-PS and ActiveMQ. We have distributed the satellites across multiple VMs where each
location resides on a separate VM. Each agent has its own Java Virtual Machine (JVM).

The system under test is hosted on one VM. In our setup for ActiveMQ, we use two
VMs: one hosting an ActiveMQ instance with an ExpectationController while a sepa-
rate instance of ActiveMQ is hosted on another VM. The separate ActiveMQ instance runs
without any plugin and just provides four topics used to exchange expectations, capabili-
ties and feedback between clients and MOM (control.expectations, control.capabilities,
control.expectations. feedback, and control.capabilities. feedback).

The VMs have different configurations depending on their role: VMs running jms2009-PS and
the test harness have four virtual cores and 34 GB RAM each while the VMs running the system

https://www.vagrantup.com/

7 https://www.virtualbox.org/

244 A. Appendix

https://www.vagrantup.com/
https://www.virtualbox.org/

I:l Usage monitoring: CPU + memory ——» Lifecycle control DC = Distribution Center SP = Supplier

I Network traffic incoming / outgoing —» Expectation / Capabilities HQ =Headquarters SM = Supermarket
e / Feedback

=P Notifications

Test harness controller vm

ActiveMQ vm ActiveMQ vm
XpectPlugin

v v v v

SPEC SPEC SPEC SPEC SPEC
satellite-1 satellite-2 [« controller r=™ satellite-3 satellite-4
(DC) (sm) | | (sP) (HQ)
[y [‘ [
e] I
jms2009-PS

Figure A.14.: Test setup for evaluating the scalability of our approach using an extended version
of jms2009-PS that is based on SPECjms2007.

under test have one virtual CPU and 24 GB RAM each. The VM running the ActiveMQ instance is
dimensioned based on the configuration used in the published SPECjms 2007 evaluation results®
for ActiveMQ V5.4 by Sachs et al..

jms2009-PS does not measure the utilization of resources such as CPU utilization, network traffic,
memory usage, or disk space. Thus, we have added the necessary monitoring capabilities.

A.6.2 Anatomy of a Single Run

Each jms2009-PS run has 3 stages: warmup period, measurement period and drain period as
shown in Figure A.15. The duration of the measurement phase is 30 minutes, which is the
default duration recommended by SPEC. The total duration of a run including warmup and cool
down phases is 45 minutes.

Please note that the first peak in the warmup phase is caused by the jms2009-PS satellites con-
necting to the ActiveMQ broker while the next peak is caused by the satellites all advertising
and subscribing at the start of the warmup phase; the last peak is caused by the satellites all
disconnecting as one from the broker after the measurment phase is completed. These peaks are
not affected by the use of expectations or by any scaling factor introduced by us.

For the measurement phase of each run, we measure the average resource utilization in terms
of CPU utilization and incoming/outgoing traffic in addition to the delay and throughput as
monitored by jms2009-PS itself. We can resort to using averages here as the load on the system
is meant to be stable during the measurment phase. Memory is constantly increasing over time
as we configure ActiveMQ to use an in-memory database for persistance while notifications do
not become obsolete.

8 https://www.spec.org/jms2007 /results/res2010q3/jms2007-20100802-00022.html

A.6. jms2009-PS Extensions and Experimental Setup 245

https://www.spec.org/jms2007/results/res2010q3/jms2007-20100802-00022.html

mm
I

100 —
Drivers | | Satellites
warm up | | disconnect
80 | I I
g I I
g I I
g
5 60 | |
<
§ I I
5
3 a0
o
O Satellites |
connect |
20
I
I
0 | JITeT)
r T — T T — 1
0 500 1000 1500 2000 2500 3000

Time elapsed (sec)

(a) CPU utilization.

PO Warmup | Measurement | Drain |
I I
I I
7 I I
I I
I

T T T T T 1
0 500 1000 1500 2000 2500 3000

Memory Usage ActiveMQ (%)

Time elapsed (sec)

(b) Memory consumption.

Wm
6 —

5 | |

Network usage (MB)

I T T T T 1
0 500 1000 1500 2000 2500 3000
Time elapsed (sec)

(c) Traffic incoming.

Figure A.15.: Anatomy of a single run of jms2009-PS on a bare ActiveMQ.

246 A. Appendix

A.7 Regression Tables jms2009-PS Benchmark Results

The Tables A.5 to A.10 detail the results discussed in Section 6.3.4.

Table A.5.: Linear regression analysis results for our prototype when scaling the population or
throughput for fixed d=0.01 and fixed p=5.

Horizontal BASE, Vertical BASE,
KPI a, B, R* adi.R* a, B, R* adj.R?

CPU utilization 15.7 3.12 1.00 1.00 142 0.68 0.99 0.99
Memory usage 26.5 0.40 0.88 0.87 32.2 0.03 0.40 0.37
Network traffic 0.1 0.27 1.00 1.00 0.1 0.11 1.00 1.00

Table A.6.: Linear regression analysis results for our prototype when increasing the number of
generic properties while keeping all other parameters fixed (d=0.01).

Horizontal BASE, =15 Vertical BASE, =50
KPI a, B, R* adi.R* a, B, R* adj.R?

CPU utilization 52.4 1.52 0.81 0.72 404 1.70 0.93 0.89
Memory usage 24.9 1.33 0.91 0.86 284 1.10 0.94 0.91
Network traffic 4.1 0.00 0.88 0.82 55 0.00 0.11 -0.33

Table A.7.: Linear regression analysis results for our prototype when simulating moderate and
aggressive update frequencies; p=5, BASE; =15,BASE,, =50.

Horizontal BASE, =15 Vertical BASE, =50
Category KPI a B, R* adj.R* a, B, R?* adj.R?

Moderate CPU utilization 64.2 67.82 0.87 0.87 50.4 103.13 0.96 0.96
Memory usage 35.0 38.23 0.88 0.88 324 137.64 1.00 1.00
Network traffic 4.2 1.75 0.48 0.48 5.4 5.40 0.81 0.81

Aggressive CPU utilization 65.5 52.28 0.96 096 534 93.66 0.97 0.97
Memory usage 38.7 17.24 0.73 0.73 40.8 16.27 0.73 0.73
Network traffic 3.8 6.52 0.96 096 5.0 9.62 0.95 0.95

A.7. Regression Tables jms2009-PS Benchmark Results 247

Table A.8.: Linear regression analysis results: scaling the number of generic properties for differ-
ent update frequencies while keeping the population or throughput fixed.

Horizontal BASE, =15 Vertical BASE, =50
KPI f ap, B, R®* adj.R? a, B, R? adj.R?

CPU utilization 0.001 53.8 0.71 0.83 0.81 50.1 0.08 0.32 0.21
CPU utilization 0.010 51.0 1.45 0.87 0.82 47.7 0.35 0.93 0.90
CPU utilization 0.100 55.0 2.39 0.93 0.86 655 -—=0.77 0.77 0.54
CPU utilization 0.200 68.5 1.70 0.94 087 789 -178 0.78 0.55

Memory usage 0.001 28.7 0.48 0.92 091 30.7 -0.07 0.34 0.23
Memory usage 0.010 27.3 1.09 0.89 0.85 34.1 0.53 0.43 0.24
Memory usage 0.100 33.3 1.19 0.83 0.66 450 -098 0.75 0.50
Memory usage 0.200 36.9 1.05 0.87 0.75 485 -1.23 0.75 0.50

Network traffic 0.001 4.1 0.00 0.13 -0.01 5.5 0.00 0.19 0.05
Network traffic 0.010 4.1 0.00 0.88 0.84 5.5 0.00 0.02 -0.30
Network traffic 0.100 4.6 —-0.01 0.20 -0.61 6.3 —-0.07 0.77 0.54
Network traffic 0.200 5.6 —0.07 0.65 0.30 7.5 =015 0.77 0.55

Table A.9.: Linear regression analysis results: scaling the population or throughput for different
update frequencies while keeping the number of generic properties fixed (p = 5).

Horizontal BASE,, Vertical BASE,
KPI f ap B, R* adj.R* a, B, R? adj. R?

CPU utilization 0.001 16.8 3.02 0.99 0.99 14.7 0.66 0.98 0.98
CPU utilization 0.010 15.7 3.12 1.00 1.00 14.2 0.68 0.99 0.99
CPU utilization 0.100 18.9 3.35 0.99 0.99 345 0.57 0.97 0.97
CPU utilization 0.200 26.0 3.27 0.98 0.97 51.7 044 0.92 0.92

Memory usage 0.001 24.0 0.50 0.89 0.88 326 0.00 0.42 0.38
Memory usage 0.010 26.5 0.40 0.88 0.87 32.2 0.03 040 0.37
Memory usage 0.100 32.1 0.49 0.83 0.81 40.8 0.03 0.30 0.25
Memory usage 0.200 36.3 0.40 0.89 0.88 434 0.01 0.44 0.41

Network traffic 0.001 0.1 0.27 1.00 1.00 0.1 0.11 1.00 1.00
Network traffic 0.010 0.1 0.27 1.00 1.00 0.1 0.11 1.00 1.00
Network traffic 0.100 —-0.1 0.30 1.00 1.00 0.5 0.11 1.00 1.00
Network traffic 0.200 0.1 0.32 0.98 0.98 2.1 0.10 0.99 0.99

248 A. Appendix

Table A.10.: Linear regression analysis results: scaling the population or throughput for expecta-
tions and capability profiles of different sizes.

Horizontal BASE,, Vertical BASE,
KPI P a B, R®* adj.R* «q, B, R? adj.R?

CPU utilization 5 15.9 3.12 1.00 0.99 18.3 0.65 0.99 0.99
CPU utilization 10 16.4 3.31 0.99 0.99 235 0.61 0.97 0.96
CPU utilization 20 21.6 3.81 0.87 0.83 744 0.23 0.92 0.91
CPU utilization 30 70.9 1.37 0.91 0.88 75.8 0.22 0.92 0.91

Memory usage 5 26.5 0.40 0.88 0.87 322 0.03 0.39 0.36
Memory usage 10 29.1 0.58 0.84 0.83 41.7 0.00 0.00 —0.06
Memory usage 20 35.4 0.97 0.71 0.63 62.0 -0.06 0.15 0.10
Memory usage 30 56.6 -0.29 0091 0.88 539 -0.04 0.65 0.63

Network traffic 5 0.1 0.27 1.00 1.00 0.1 0.11 1.00 1.00
Network traffic 10 0.1 0.28 1.00 1.00 0.1 0.11 1.00 1.00
Network traffic 20 0.0 0.28 1.00 1.00 0.1 0.11 1.00 1.00
Network traffic 30 0.0 0.28 1.00 1.00 0.1 0.11 1.00 1.00

A.8 Experimental Setup Application-Specific Integrated Aggregation (ASIA)

The effectivity of ASIA as a monitoring concept for a DEBS has been quantitatively evaluated
using a testbed for distributed systems. It consists of 32 physical machines simulating a DEBS
with up to 1600 clients connected to a total of 16 brokers (cf., Section 6.4).

16 Intel Core i5 nodes host the brokers of the DEBS. Each broker runs on a single node equipped
with 8 cores at 3.1 GHz and 4 GiB of RAM. Another set of 16 nodes with 8 Intel Xeon 1.86 GHz
cores and 8 GiB of RAM each host the subscribers and publishers that produce network traffic;
all subscribers and publishers connected to a given broker are hosted on the same node. All
machines run Linux version 3.4.13. Table A.11 shows further details.

Table A.11.: Parameters for the ASIA deployment used in the reference scenario.

Population
Parameter Value
Number of brokers 16
Publishers and subscribers per broker 100
Subscribers in delay tests 8
Different topics 100
Average link latency 0.2ms

Dynamics
Parameter Value
Average subscriptions per subscriber 50
Subscription/unsubscription ratio 50% / 50%
Average publication rate (per publisher) 1 notification/s
Average subscription rate (per subscriber) 0.1 subscription/s
Average aggregation requests per publisher/subscriber 3
Maximum imprecision 0

A.8. Experimental Setup Application-Specific Integrated Aggregation (ASIA) 249

250 A. Appendix

B Bibliography

[1]

(2]

(3]

[4]

(5]

[6]

[71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

A. M. Abbas and O. Kure. Quality of service in mobile ad hoc networks: a survey. Inter-
national Journal of Ad Hoc and Ubiquitous Computing, 6(2):75-98, 2010. [Cited on pages
220, 222, 224, and 226.]

R. Abbott. Complex systems + systems engineering = complex systems engineering. arXiv
preprint cs/0603127, 2006. [Cited on pages 22, 68, and 94.]

R. Abbott. Putting complex systems to work. Complexity, 13(2):30-49, 2007. [Cited on
pages 22, 68, and 94.]

TE Abdelzater, E. M. Atkins, and K. G. Shin. QoS negotiation in real-time systems and its
application to automated flight control. IEEE Transactions on Computers, 49(11):1170-
1183, 2000. [Cited on page 203.]

Z. Abid and S. Chabridon. A fine-grain approach for evaluating the quality of context. In
PERCOM’11 Workshops, 2011. [Cited on pages 28, 39, 220, 222, 224, and 226.]

Z. Abid, S. Chabridon, and D. Conan. A framework for quality of context management. In
QuaCon’09, 2009. [Cited on pages 26, 28, 29, 34, 36, 37, 38, 39, 42, 45, 61, 220, 222,
224, and 226.]

S. Agarwala, Y. Chen, D. Milojicic, and K. Schwan. QMON: QoS-and utility-aware moni-
toring in enterprise systems. In ICAC’06, 2006. [Cited on pages 15, 37, 147, and 203.]

E. Aitenbichler and J. Kangasharju. Communication abstractions in MundoCore. In CADS
workshop at ECOOP’03, 2003. [Cited on page 201.]

E. Aitenbichler, J. Kangasharju, and M. Miihlhduser. MundoCore: A light-weight infras-
tructure for pervasive computing. Pervasive and Mobile Computing, 3(4):332-361, 2007.
[Cited on page 201.]

T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernandez-Moctezuma, R. Lax,
S. McVeety, D. Mills, E Perry, E. Schmidt, et al. The dataflow model: a practical approach
to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order data
processing. In VLDB’15, 2015. [Cited on page 19.]

I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor networks.
Communications magagzine, 40(8):102-114, 2002. [Cited on pages 17 and 18.]

M. Alaya, S. Matoussi, T. Monteil, and K. Drira. Autonomic computing system for self-
management of machine-to-machine networks. In Self-IoT’12, 2012. [Cited on pages 1
and 79.]

D. Ameller and X. Franch. Service level agreement monitor (SALMon). In ICCBSS08,
2008. [Cited on page 20.]

D. Anicic, P Fodor, S. Rudolph, and N. Stojanovic. EP-SPARQL: a unified language for
event processing and stream reasoning. In WWW’11, 2011. [Cited on page 17.]

251

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J. Antollini, M. Antollini, P Guerrero, and M. Cilia. Extending REBECA to support concept-
based addressing. In ASIS'04, 2004. [Cited on pages 15 and 16.]

Apache Software Foundation. Welcome to hadoop! http://hadoop.apache.org/core/,
2010. [Cited on page 3.]

S. Appel. Integration of Event Processing with Service-oriented Architectures and Business
Processes. PhD thesis, Technische Universitit Darmstadt, 2014. [Cited on pages 11, 15,
20, and 200.]

S. Appel, S. Frischbier, T. Freudenreich, and A. Buchmann. Eventlets: Components for the
integration of event streams with SOA. In SOCA’12, 2012. [Cited on pages 8, 11, 17, 20,
98, and 114.]

S. Appel, S. Frischbier, T. Freudenreich, and A. Buchmann. Event stream processing units
in business processes. In BPM’13, 2013. [Cited on pages 8, 11, and 98.]

S. Appel, P Kleber, S. Frischbier, T. Freudenreich, and A. Buchmann. Modeling and execu-
tion of event stream processing in business processes. Information Systems, 2014. [Cited
on pages 11 and 98.]

S. Appel, K. Sachs, and A. Buchmann. Quality of service in event-based systems. In 22nd
GI-Workshop on Foundations of Databases (GvD’11), 2010. [Cited on pages 26, 27, 30,
202, 220, 222, 224, and 226.]

E Araujo and L. Rodrigues. The IndiQoS message broker: an instantiation using RSVP.
Technical report, University of Lisbon, 2002. [Cited on pages 27, 34, 46, 145, 201, 220,
222, 224, and 226.]

E Araujo and L. Rodrigues. On QoS-aware publish-subscribe. In ICDCSW’02, 2002. [Cited
on pages 5, 26, 145, 149, and 201.]

M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, 1. Stoica, et al. A view of cloud computing. Communications of the ACM,
53(4):50-58, 2010. [Cited on page 20.]

M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patter-
son, A. Rabkin, I. Stoica, and M. Zaharia. Above the clouds: A berkeley view of cloud
computing. Technical report, University of California, Berkeley, 2009. [Cited on page 20.]

M. Armstrong. Competition in two-sided markets. The RAND Journal of Economics,
37(3):668-691, 2006. [Cited on page 218.]

L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Computer networks,
54(15):2787-2805, 2010. [Cited on page 18.]

C. Aurrecoechea, A. Campbell, and L. Hauw. A survey of QoS architectures. Multimedia
Systems, 6(3):138-151, May 1998. [Cited on page 26.]

B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data
stream systems. In PODS’02, 2002. [Cited on page 19.]

S. Babu and J. Widom. Continuous queries over data streams. ACM Sigmod Record,
30(3):109-120, 2001. [Cited on pages 17 and 19.]

252

B. Bibliography

http://hadoop.apache.org/core/

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

A. Bahjat, Y. Jiang, T. Cook, and T. La Porta. Quality of information functions for networked
applications. In PERCOM’12 Workshops, 2012. [Cited on pages 28, 37, 38, 203, 220, 222,
224, and 226.]

R. Baldoni and A. Virgillito. Distributed event routing in publish/subscribe communication
systems: a survey. Technical report, Universita di Roma La Sapienza, 2005. [Cited on
pages 16, 220, 222, 224, and 226.]

D. Banks, J. Erickson, and M. Rhodes. Multi-tenancy in cloud-based collaboration services.
Information Systems, 2009. [Cited on page 22.]

L. Baresi and S. Guinea. Towards dynamic monitoring of WS-BPEL processes. In ICSOC’05,
2005. [Cited on page 20.]

P Barnaghi, M. Bermudez-Edo, and R. Tonjes. Challenges for Quality of Data in Smart
Cities. Journal of Data and Information Quality, 6(2):1-4, June 2015. [Cited on pages 2,
17, 29, 35, 39, 46, 60, 61, 94, 220, 222, 224, and 226.]

Y. Bartal, J. Byers, and D. Raz. Global optimization using local information with applica-
tions to flow control. In FOCS97, 1997. [Cited on page 88.]

C. Batini, C. Cappiello, C. Francalanci, and A. Maurino. Methodologies for data quality
assessment and improvement. ACM Computing Surveys, 41(3):1-52, July 2009. [Cited on
pages 28, 31, 34, 61, 220, 222, 224, and 226.]

D. Battre, E Brazier, K. Clark, M. Oey, A. Papaspyrou, O. Wéldrich, P Wieder, and W. Ziegler.
A proposal for WS-Agreement negotiation. In GRID’10, 2010. [Cited on page 20.]

H. Bauer, M. Patel, and J. Veira. The Internet of Things: Sizing up the opportunity. Tech-
nical report, McKinsey & Company, 2015. [Cited on page 1.]

M. Bechler, H. Ritter, G. Schéfer, and J. Schiller. Traffic shaping in end systems attached
to QoS-supporting networks. In ISCC’01, 2001. [Cited on page 93.]

S. Behnel, A. Buchmann, P Grace, B. Porter, and G. Coulson. A specification-to-deployment
architecture for overlay networks. In DOA06, 2006. [Cited on pages 28 and 35.]

S. Behnel, L. Fiege, and G. Miihl. On Quality-of-Service and publish/subscribe. In
DEBS’06, 2006. [Cited on pages 2, 25, 28, 36, 63, 202, 220, 222, 224, and 226.]

M. Beigl, A. Krohn, T. Zimmer, and C. Decker. Typical sensors needed in ubiquitous and
pervasive computing. In INSS’04, 2004. [Cited on page 18.]

C. Belady. In the data center, power and cooling costs more than the it equipment it
supports. http://goo.gl/9zvvNG, 2007. [Cited on page 3.]

M. Belghachi and M. Feham. QoS routing scheme and route repair in WSN. International
Journal of Advanced Computer Science and Applications, 3(12):81-86, 2012. [Cited on
page 18.]

P Bellavista, A. Corradi, M. Fanelli, and L. Foschini. A survey of context data distribution
for mobile ubiquitous systems. ACM Computing Surveys, 44(4):1-45, August 2012. [Cited
on pages 34, 39, 220, 222, 224, and 226.]

B. Bibliography 253

http://goo.gl/9zvvNG

[471]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

P Bellavista, A. Corradi, and A. Reale. Quality of Service in wide scale publish/subscribe
systems. IEEE Communications Surveys & Tutorials, pages 1-26, 2014. [Cited on pages 28,
36, 37, 38, 39, 40, 220, 222, 224, and 226.]

A. Beloglazov and R. Buyya. Energy efficient resource management in virtualized cloud
data centers. In ICCCGC’10, 2010. [Cited on page 3.]

A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M. Dang, and K. Pentikousis.
Energy-efficient cloud computing. The Computer Journal, 53(7):1045-1051, 2010. [Cited
on page 3.]

E. Bertino. Data trustworthiness — approaches and research challenges. In Data Pri-
vacy Management, Autonomous Spontaneous Security, and Security Assurance, pages 17-25.
Springer, 2015. [Cited on page 2.]

C. Bettini, O. Brdiczka, K. Henricksen, J. Indulska, D. Nicklas, A. Ranganathan, and D. Ri-
boni. A survey of context modelling and reasoning techniques. Pervasive and Mobile
Computing, 6(2):161 — 180, 2010. [Cited on pages 38, 220, 222, 224, and 226.]

E Bian, D. Kempe, and R. Govindan. Utility based sensor selection. In IPSN’06, 2006.
[Cited on page 18.]

IEC BiPM, ILAC IFCC, IUPAC ISO, and OIML IUPAP International vocabulary of metrology-
basic and general concepts and associated terms, 2008. JCGM, 200:99-12, 2008. [Cited
on pages 38 and 39.]

C. Bisdikian. On sensor sampling and quality of information: A starting point. In PERCOM’
07 Workshops, pages 279-284, 2007. [Cited on pages 18, 27, 34, 38, 39, 61, 220, 222,
224, and 226.]

C. Bisdikian, J. Branch, K. Leung, and R. Young. A letter soup for the quality of information
in sensor networks. In PERCOM’09, 2009. [Cited on pages 2, 26, 28, 34, 220, 222, 224,
and 226.]

C. Bisdikian, L. Kaplan, and M. Srivastava. On the quality and value of information in
sensor networks. ACM Transactions on Sensor Networks, 9(4):39:26, 2010. [Cited on
pages 2, 18, 27, 46, 220, 222, 224, and 226.]

C. Bisdikian, L. Kaplan, M. Srivastava, D. Thornley, D. Verma, and R. Young. Building
principles for a quality of information specification for sensor information. In FUSION’09,
2009. [Cited on pages 28, 34, 38, 39, 63, 220, 222, 224, and 226.]

T. Bishop and R. Karne. A survey of middleware. In CATA’03, 2003. [Cited on page 16.]

G. Blair, A. Bennaceur, N. Georgantas, P Grace, V. Issarny, V. Nundloll, and M. Paolucci.
The role of ontologies in emergent middleware: Supporting interoperability in complex
distributed systems. In Middleware’11, 2011. [Cited on page 23.]

G. Blair, G. Coulson, M. Clarke, and N. Parlavantzas. Performance and Integrity in the
OpenORB Reflective Middleware. In Metalevel Architectures and Separation of Crosscutting
Concerns, pages 268-269. Springer, 2001. [Cited on pages 22 and 68.]

G. Blair, G. Coulson, and P Grace. Research directions in reflective middleware: the
Lancaster experience. In ARM’04, 2004. [Cited on pages 22 and 68.]

254

B. Bibliography

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771]

U. Blanke, R. Rehner, and B. Schiele. South by South-east or Sitting at the Desk: Can
Orientation be a Place? In ISWC’11, 2011. [Cited on pages 5, 34, 43, 60, 61, 62, 94, 220,
222, 224, and 226.]

J. Boardman and B. Sauser. System of systems-the meaning of of. In SYSOSE’06, 2006.
[Cited on pages 22, 23, 68, and 218.]

C. Bolchini, C. Curino, E. Quintarelli, E Schreiber, and L. Tanca. A data-oriented survey of
context models. ACM Sigmod Record, 36(4):19-26, 2007. [Cited on page 28.]

P Boonma and J. Suzuki. TinyDDS: An interoperable and configurable. Principles and
Applications of Distributed Event-Based Systems, 2010. [Cited on pages 18, 200, and 201.]

J. Borges Neto, T. Silva, R. Assuncdo, R. Mini, and A. Loureiro. Sensing in the collaborative
internet of things. Sensors, 15(3):6607-6632, 2015. [Cited on pages 18 and 35.]

S. Bosse, M. Splieth, and K. Turowski. Multi-objective optimization of IT service availabil-
ity and costs. Reliability Engineering & System Safety, 2015. [Cited on page 20.]

A. Bouius. Characterising the ripple effects of introducing energy-awareness functionality
in cyber-physical system software. Master’s thesis, University of Twente, 2015. [Cited on
pages 22 and 68.]

D. Box, L. Cabrera, C. Critchley, E Curbera, D. Ferguson, A. Geller, S. Graham, D. Hull,
G. Kakivaya, A. Lewis, et al. Web services eventing (WS-Eventing). W3C member submis-
sion, 15, 2006. [Cited on page 20.]

J. Boyd. A discourse on winning and losing. maxwell air force base, al: Air university.
Library Document No. MU, 43947, 1987. [Cited on page 79.]

D. Braha, N. Suh, S. Eppinger, M. Caramanis, and D. Frey. Complex engineered systems.
Springer, 2006. [Cited on pages 22, 23, and 218.]

P Brebner. Performance modeling for service oriented architectures. In ICSE'08, 2008.
[Cited on page 90.]

A. Brook. Low-latency distributed applications in finance. Communications of the ACM,
58(7):42-50, June 2015. [Cited on pages 3 and 19.]

P Brooks and B. Hestnes. User measures of quality of experience: why being objective and
quantitative is important. IEEE Network, 24(2):8-13, 2010. [Cited on pages 26 and 28.]

T. Buchholz, A. Kiipper, and M. Schiffers. Quality of context: What it is and why we need
it. In HP-OVUA’03 Workshop, 2003. [Cited on pages 26, 27, 28, 34, 38, 39, 220, 222, 224,
and 226.]

A. Buchmann, S. Appel, T. Freudenreich, S. Frischbier, and P Guerrero. From calls to
events: Architecting future BPM systems. In BPM’12, 2012. [Cited on pages 1, 4, 8,
and 11.]

A. Buchmann, C. Bornhovd, M. Cilia, L. Fiege, E Gértner, C. Liebig, M. Meixner, and
G. Miihl. DREAM: Distributed reliable event-based application management. In Web
Dynamics: Adapting to Change in Content, Size, Topology and Use, pages 319-350. Springer,
May 2004. [Cited on pages 14, 16, 201, 203, and 204.]

B. Bibliography 255

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]
[93]
[94]

[95]

A. Buchmann, H. Pfohl, S. Appel, T. Freudenreich, S. Frischbier, I. Petrov, and C. Zu-
ber. Event-Driven services: Integrating production, logistics and transportation. In SOC-
LOG’10, 2010. [Cited on pages 1, 4, 8,11, 17, 20, and 72.]

J. Byers and G. Nasser. Utility-based decision-making in wireless sensor networks. In
MobiHOC’00, 2000. [Cited on pages 18, 60, 61, 62, 87, 88, 94, and 203.]

J. Byers and G. Nasser. Utility-based decision-making in wireless sensor networks. Tech-
nical report, Boston University, 2000. [Cited on pages 18, 87, 88, and 203.]

C. Cai, L. Wang, S. Khan, and J. Tao. Energy-aware high performance computing: A
taxonomy study. In ICPADS’11, 2011. [Cited on pages 1, 3, and 4.]

A. Campbell, C. Aurrecoechea, and L. Hauw. A review of QoS architectures. In IWQS’96,
1996. [Cited on page 26.]

M. Caramia and P Dell’Olmo. Multi-objective management in freight logistics: Increasing
capacity, service level and safety with optimization algorithms. Springer Science & Business
Media, 2008. [Cited on pages 87 and 88.]

M. Carvalho, W. Cirne, E Brasileiro, and J. Wilkes. Long-term SLOs for reclaimed cloud
computing resources. In SOCC’14, 2014. [Cited on page 210.]

N. Carvalho, E Araujo, and L. Rodrigues. Scalable QoS-based event routing in publish-
subscribe systems. In NCA'05, 2005. [Cited on pages 2, 5, 25, 29, 37, 145, 147, 148, 201,
220, 222, 224, and 226.]

A. Carzaniga. Architectures for an event notification service scalable to wide-area networks.
PhD thesis, Politecnico di Milano, 1998. [Cited on pages 201 and 203.]

A. Carzaniga, E. Di Nitto, D. Rosenblum, and A. Wolf. Issues in supporting event-based
architectural styles. In ISAW’98, 1998. [Cited on page 15.]

A. Carzaniga, D. S Rosenblum, and A. L. Wolf. Design and evaluation of a wide-area
event notification service. ACM Transactions on Computer Systems (TOCS), 19(3):332-
383, 2001. [Cited on page 16.]

M. Castellanos, U. Dayal, and M. Hsu. Live Business Intelligence for the Real-Time Enterprise,
volume 6462 of LNCS, pages 325-336. Springer, 2010. [Cited on page 17.]

P Chahuara, E Portet, and M. Vacher. Making context aware decision from uncertain
information in a smart home: A markov logic network approach. In Ambient Intelligence,
pages 78-93. Springer, 2013. [Cited on page 17.]

S. Chakravarthy and R. Adaikkalavan. Events and streams: harnessing and unleashing
their synergy! In DEBS’08, 2008. [Cited on page 19.]

J. Chambers. Graphical methods for data analysis. Springer, 1983. [Cited on page 51.]
M. Chandy. Sense and respond systems. In CMG’05, 2005. [Cited on page 1.]

M. Chandy, M. Charpentier, and A. Capponi. Towards a theory of events. In DEBS07,
2007. [Cited on page 13.]

M. Chandy and W. Schulte. Event Processing: Designing IT Systems for Agile Companies.
McGraw-Hill, Inc., 2010. [Cited on pages 28, 36, 38, 46, 220, 222, 224, and 226.]

256

B. Bibliography

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Z. Charbiwala, S. Zahedi, Y. Kim, Y. Cho, and M. Srivastava. Toward quality of information
aware rate control for sensor networks. In FeBID’09, 2009. [Cited on pages 18, 38, 60,
94, 220, 222, 224, and 226.]

A. Chazalet. Service level agreements compliance checking in the cloud computing: Ar-
chitectural pattern, prototype, and validation. In ICSEA'10, 2010. [Cited on page 20.]

J. Chen, D. DeWitt, E Tian, and Y. Wang. NiagaraCQ: A scalable continuous query system
for internet databases. In SIGMOD’00, 2000. [Cited on page 19.]

M. Chen and M. Fowler. Data compression trade-offs in sensor networks. In SPIE’04, 2004.
[Cited on pages 5, 18, 38, 40, 60, 61, 94, 220, 222, 224, and 226.]

M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing, and
S. Zdonik. Scalable distributed stream processing. In CIDR’03, 2003. [Cited on page 19.]

A. Cheung and H.A. Jacobsen. Publisher placement algorithms in content-based publish/-
subscribe. In ICDCS’10, 2010. [Cited on page 210.]

S. Chong, C. Skalka, and J. Vaughan. Self-identifying sensor data. In IPSN’10, 2010.
[Cited on page 18.]

K. Church, A. Greenberg, and J. Hamilton. On Delivering Embarrassingly Distributed
Cloud Services. Hotnets’08, 2008. [Cited on page 22.]

M. Cilia, M. Antollini, C. Bornhévd, and A. Buchmann. Dealing with Heterogeneous Data
in Pub/Sub Systems: The Concept-Based Approach. In DEBS’04, 2004. [Cited on pages
15 and 16.]

M. Cilia, C. Bornhovd, and A. Buchmann. CREAM: An infrastructure for distributed,
heterogeneous event-based applications. In OTM Confederated International Conferences,
CooplS, DOA, and ODBASE. Springer, 2003. [Cited on pages 16, 201, 203, and 204.]

T. Cioara, I. Salomie, I. Anghel, I. Chira, A. Cocian, E. Henis, and R. Kat. A dynamic power
management controller for optimizing servers’ energy consumption in service centers. In
ICSOC’11, 2011. [Cited on pages 1, 3, and 4.]

R. Cocchi, S. Shenker, D. Estrin, and L. Zhang. Pricing in computer networks: Motivation,
formulation, and example. IEEE/ACM Transactions on Networking, 1(6):614-627, 1993.
[Cited on page 78.]

Federal Telecommunications Standards Committee. Federal Standard 1037C: Glossary of
Telecommunications Terms (FED-STD-1037C). National Communications System Technol-
ogy Program Office, 1996. [Cited on page 34.]

M. Compton, P Barnaghi, L. Bermudez, R. Garcia-Castro, O. Corcho, S. Cox, J. Graybeal,
M. Hauswirth, C. Henson, A. Herzog, V. Huang, K. Janowicz, W. Kelsey, D. Le Phuoc,
L. Lefort, M. Leggieri, H. Neuhaus, A. Nikolov, K. Page, A. Passant, A. Sheth, and K. Taylor.
The SSN Ontology of the W3C semantic sensor network incubator group. Web Semantics:
Science, Services and Agents on the World Wide Web, 17(0), 2012. [Cited on pages 18, 34,
35, 38, 39, 45, 60, 61, 94, 220, 222, 224, and 226.]

M. Compton, C. Henson, H. Neuhaus, L. Lefort, and A. Sheth. A survey of the semantic
specification of sensors. In ISSN'09 Workshop, 2009. [Cited on pages 18, 38, 61, 220,
222, 224, and 226.]

B. Bibliography 257

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

D. Cook and S. Das. Smart Environments: Technology, Protocols and Applications. Wiley &
Sons, 2005. [Cited on page 17.]

A. Corsaro, L. Querzoni, S. Scipioni, S. Piergiovanni, and A. Virgillito. Quality of service in
publish/subscribe middleware. Global Data Management, 8:1-19, 2006. [Cited on pages
37,220, 222, 224, and 226.]

G. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems: concepts and design.
Pearson Education, 2005. [Cited on page 37.]

G. Coulson, G. Blair, P Grace, E Taiani, A. Joolia, K. Lee, J. Ueyama, and T. Sivaharan. A
Generic Component Model for Building Systems Software. ACM TOCS, 26(1):1-42, March
2008. [Cited on pages 22 and 68.]

G. Cugola and E. Di Nitto. On adopting content-based routing in service-oriented archi-
tectures. Information and Software Technology, 50(1-2):22-35, 2008. [Cited on page 20.]

G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-based infrastructure to de-
velop complex distributed systems. In ICSE98, 1998. [Cited on page 201.]

G. Cugola, E. Di Nitto, and A. Fuggetta. The JEDI event-based infrastructure and its
application to the development of the OPSS WFMS. Software Engineering, 27(9):827-
850, 2001. [Cited on page 201.]

G. Cugola, D. Frey, A. Murphy, and G. Picco. Content-based routing for publish-subscribe
on a dynamic topology: Concepts, protocols, and evaluation. Technical report, Politecnico
di Milano, 2005. [Cited on page 16.]

G. Cugola and A. Margara. RACED: an adaptive middleware for complex event detection.
In ARM’09, 2009. [Cited on page 17.]

G. Cugola and A. Margara. TESLA: a formally defined event specification language. In
DEBS’10, 2010. [Cited on page 17.]

G. Cugola and A. Margara. Complex event processing with T-REX. Journal of Systems and
Software, 85(8):1709-1728, 2012. [Cited on page 17.]

G. Cugola and A. Margara. Processing flows of information: From data stream to complex
event processing. ACM Comput. Surv., 44(3):15:1-15:62, June 2012. [Cited on pages 17,
19, 28, 35, 220, 222, 224, and 226.]

G. Cugola and A. Margara. Deployment strategies for distributed complex event process-
ing. Computing, 95(2):129-156, 2013. [Cited on page 17.]

G. Cugola and A. Margara. The complex event processing paradigm. Data Management in
Pervasive Systems, 2015. [Cited on pages 17 and 19.]

G. Cugola, A. Margara, M. Matteucci, and G. Tamburrelli. Introducing uncertainty in
complex event processing: Model, implementation, and validation. Computing, 2015.
[Cited on pages 2, 17, 28, 220, 222, 224, and 226.]

G. Cugola and G. Picco. REDS: a reconfigurable dispatching system. In SEM’06, 2006.
[Cited on pages 16 and 131.]

258

B. Bibliography

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

C. Dai, D. Lin, E. Bertino, and M. Kantarcioglu. An approach to evaluate data trustwor-
thiness based on data provenance. In Secure Data Management, pages 82-98. Springer,
2008. [Cited on pages 23 and 39.]

R. Das, J. Kephart, J. Lenchner, and H. Hamann. Utility-function-driven energy-efficient
cooling in data centers. In ICAC’10, 2010. [Cited on page 3.]

O. de Carvalho, E. Roloff, and P Navaux. A Survey of the state-of-the-art in event process-
ing. In WSPPD’13, 2013. [Cited on page 16.]

T. De Wolf and T. Holvoet. Emergence versus self-organisation: Different concepts but
promising when combined, volume 3464 of LNCS, pages 77-91. Springer, 2005. [Cited
on page 23.]

N. Deakin. Java Message Service (JMS) API. http://www.jcp.org/en/jsr/detail?id=
914, 2002. [Cited on pages 16 and 200.]

J. Dean. Modeling and checking service level agreements for service-oriented architec-
tures. Master’s thesis, Technische Universitdt Darmstadt, 2012. In cooperation with
Software AG, Darmstadt, Germany. [Cited on page 11.]

K. Deb. Multi-objective optimization using evolutionary algorithms. Wiley & Sons, 2001.
[Cited on page 88.]

C. Demichelis and P Chimento. IP packet delay variation metric for ip performance metrics
(IPPM). Technical report, The Internet Society, 2002. [Cited on page 36.]

P Dube, N. Halim, K. Karenos, M. Kim, Z. Liu, S. Parthasarathy, D. Pendarakis, and H. Yang.
Harmony: Holistic messaging middleware for event-driven systems. IBM Systems Journal,
47(2):281-287, 2008. [Cited on pages 146 and 201.]

R. Dumke, S. Mencke, and C. Wille. Quality Assurance of Agent-Based and Self-Managed
Systems. CRC Press, 2009. [Cited on pages 22 and 23.]

M. Eckert, E Bry, S. Brodt, O. Poppe, and S. Hausmann. A CEP babelfish: Languages for
complex event processing and querying surveyed. In Reasoning in Event-Based Distributed
Systems, pages 47-70. Springer, 2011. [Cited on page 17.]

M. Eichholz. Supporting latency requirements in activemq broker networks by self-
adaptation. Master’s thesis, Technische Universitdt Darmstadt, 2015. [Cited on pages
11, 43, 90, 94, 126, 146, 200, and 201.]

G. Eisenhauer, E Bustamante, and K. Schwan. Event services for high performance com-
puting. In HPDC‘00, 2000. [Cited on page 16.]

B. Elahi, K. Romer, B. Ostermaier, M. Fahrmair, and W. Kellerer. Sensor ranking: A primi-
tive for efficient content-based sensor search. In IPSN’09, 2009. [Cited on page 18.]

A. Elwalid and D. Mitra. Traffic shaping at a network node: theory, optimum design,
admission control. In INFOCOM’97, 1997. [Cited on page 93.]

Y. Engel and O. Etzion. Towards proactive event-driven computing. In DEBS’11, 2011.
[Cited on page 210.]

M. Eppler and M. Helfert. A classification and analysis of data quality costs. In ICIQ’04,
2004. [Cited on pages 34, 40, 46, 47, 50, 61, and 62.]

B. Bibliography 259

http://www.jcp.org/en/jsr/detail?id=914
http://www.jcp.org/en/jsr/detail?id=914

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

D. Estrin and L. Zhang. Design considerations for usage accounting and feedback in in-
ternetworks. SIGCOMM Computer Communication Review, 20(5):56-66, 1990. [Cited on
pages 68 and 78.]

O. Etzion and P, Niblett. Event processing in action. Manning Publications Co., 2010. [Cited
on page 17.]

P Eugster. Type-based publish/subscribe. PhD thesis, EPFL Lausanne, 2001. [Cited on
page 15.]

P Eugster, P Felber, R. Guerraoui, and A. Kermarrec. The many faces of publish/subscribe.
ACM Computing Surveys, 35(2):114-131, 2003. [Cited on pages 1, 15, and 101.]

P Eugster, R. Guerraoui, and C. Damm. On objects and events. In ACM SIGPLAN Notices,
volume 36, pages 254-269. ACM, 2001. [Cited on page 15.]

D. Evans, A. Hagiu, and R. Schmalensee. Invisible Engines: How Software Platforms Drive
Innovation and Transform Industries. The MIT Press, 2006. [Cited on page 218.]

D. Eyers, T. Freudenreich, A. Margara, S. Frischbier, P Pietzuch, and P Eugster. Liv-
ing in the present: on-the-fly information processing in scalable web architectures. In
CloudCP’12, 2012. [Cited on page 11.]

M. Farina and P Amato. On the optimal solution definition for many-criteria optimization
problems. In NAFIPS'02, 2002. [Cited on page 88.]

E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi. In-network aggregation techniques for
wireless sensor networks: A survey. IEEE Wireless Commun., 14(2):70-87, 2007. [Cited
on pages 18, 93, and 204.]

T. Ferrari. End-to-end performance analysis with traffic aggregation. Computer Networks,
34(6):905-914, 2000. [Cited on pages 93, 220, 222, 224, and 226.]

G. Feuerlicht. Enterprise SOA: what are the benefits and challenges? Systems Integration,
2006. [Cited on page 19.]

G. Feuerlicht. Next generation SOA: can SOA survive cloud computing? AWIC’09, 2010.
[Cited on page 19.]

G. Feuerlicht and S. Govardhan. SOA: trends and directions. Systems Integration, 2009.
[Cited on page 19.]

E. Fidler, H.A. Jacobsen, G. Li, and S. Mankovski. The PADRES distributed publish/sub-
scribe system. Feature Interactions in Telecommunications and Software Systems, 2005.
[Cited on pages 16, 201, and 203.]

M. Fidler, V. Sander, and W. Klimala. Traffic shaping in aggregate-based networks: im-
plementation and analysis. Computer Communications, 28(3):274-286, 2005. [Cited on
page 93.]

M. Fiedler, T. Hossfeld, and P Tran-Gia. A generic quantitative relationship between quality
of experience and quality of service. Network, 24(2):36-41, 2010. [Cited on pages 26,
28, 29, 35, 220, 222, 224, and 226.]

L. Fiege, M. Mezini, G. Miihl, and A. Buchmann. Engineering event-based systems with
scopes. ECOOP’02, 2006. [Cited on page 211.]

260

B. Bibliography

[161]

[162]

[163]
[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

K. Fleszar, C. GlaRer, E Lipp, C. Reitwief3ner, and M. Witek. The complexity of solving mul-
tiobjective optimization problems and its relation to multivalued functions. In ECCC’11,
2011. [Cited on page 87.]

Will Forrest and C. Barthold. Clearing the air on cloud computing. Discussion document,
McKinsey & Company, March 2008. [Cited on page 20.]

I. Foster. What is the Grid? A Three Point Checklist. GRIDtoday, 2002. [Cited on page 22.]

I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid computing 360-degree
compared. In GCE’'08, 2008. [Cited on pages 20, 21, and 22.]

T. Freudenreich. Automatic context transformation in complex event processing systems.
Master’s thesis, Technische Universitdat Darmstadt, 2011. [Cited on pages 11 and 44.]

T. Freudenreich, S. Appel, S. Frischbier, and A. Buchmann. ACTrESS - automatic context
transformation in event-based software systems. In DEBS’12, 2012. [Cited on pages 11,
44, and 45.]

T. Freudenreich, S. Appel, S. Frischbier, and A. Buchmann. Using policies for handling
complexity of event-driven architectures. In ECSA’14, 2014. [Cited on page 11.]

T. Freudenreich, P Eugster, S. Frischbier, S. Appel, and A. Buchmann. Implementing fed-
erated object systems. In ECOOP’13, 2013. [Cited on pages 11 and 44.]

S. Frischbier, A. Buchmann, and D. Piitz. FIT for SOA? Introducing the EL.T. — metric to
optimize the availability of service oriented architectures. In CSDM, 2011. [Cited on pages
11, 19, 20, 22, 30, 72, 88, 91, and 217.]

S. Frischbier, M. Gesmann, D. Mayer, A. Roth, and C. Webel. Emergence as competitive
advantage - engineering tomorrow’s enterprise software systems. In ICEIS’12, 2012. [Cited
on pages 11, 20, 23, 25, 72, 73, 190, and 218.]

S. Frischbier, A. Margara, T. Freudenreich, P Eugster, D. Eyers, and P Pietzuch. ASIA:
application-specific integrated aggregation for Publish/Subscribe middleware. In Middle-
ware 2012 Posters and Demos Track, 2012. [Cited on pages 5, 11, 68, 73, 101, and 148.]

S. Frischbier, A. Margara, T. Freudenreich, P Eugster, D. Eyers, and P Pietzuch. Aggrega-
tion for implicit invocations. In AOSD’13, 2013. [Cited on pages 11, 15, 16, 34, 73, 101,
113, 137, 148, and 188.]

S. Frischbier, A. Margara, T. Freundenreich, P Eugster, D. Eyers, and P Pietzuch. McCAT:
Multi-cloud Cost-aware Transport. In EuroSys Poster Track, 2014. [Cited on pages 5, 11,
22, 34, 43, 51, 61, 77, 90, 94, 101, 120, 135, and 218.]

S. Frischbier and I. Petrov. Aspects of Data-Intensive Cloud Computing, volume 6462 of
LNCS, pages 57-77. Springer, 2010. [Cited on pages xv, 11, 20, 21, and 22.]

S. Frischbier, P Pietzuch, and A. Buchmann. Managing expectations: Runtime negotiation
of information quality requirements in event-based systems. ICSOC’14, 2014. [Cited on
pages 11, 25, and 51.]

S. Frischbier, K. Sachs, and A. Buchmann. Evaluating RFID Infrastructures. In ITG-
Fachbericht - 2. Workshop RFID, 2006. [Cited on pages 4, 11, and 190.]

B. Bibliography 261

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

S. Frischbier, E. Turan, M. Gesmann, A. Margara, D. Eyers, P Fugster, P Pietzuch, and
A. Buchmann. Effective runtime monitoring of distributed event-based enterprise systems
with ASIA. SOCA’14, 2014. [Cited on pages 4, 11, 25, 72, 77, 101, 148, and 188.]

J. Fromm. The Emergence of Complexity. Kassel University Press, 2004. [Cited on page 23.]

J. Fromm. Ten questions about emergence. arXiv:nlin/0509049 [nlin.AO], 2005. [Cited
on page 23.]

A. Frommgen, R. Rehner, M. Lehn, and A. Buchmann. Fossa: Learning ECA rules for
adaptive distributed systems. In ICAC’15, 2015. [Cited on page 210.]

M. Garofalakis, J. Gehrke, and R. Rastogi. Querying and mining data streams: you only
get one look a tutorial. In SIGMOD’02, 2002. [Cited on page 19.]

M. Gharib and P Giorgini. Modeling and reasoning about information quality require-
ments. In REFSQ’15, 2015. [Cited on pages 2, 28, 35, 38, 39, 46, 220, 222, 224,
and 226.]

D. Gillies, D. Thornley, and C. Bisdikian. Probabilistic approaches to estimating the quality
of information in military sensor networks. The Computer Journal, 53(5):493-502, 2010.
[Cited on pages 220, 222, 224, and 226.]

R. Giordanelli and C. Mastroianni. The cloud computing paradigm: Characteristics, op-
portunities and research issues. Technical report, ICAR-CNR, 2010. [Cited on pages 20,
21, and 22.]

L. Golab and M. Ozsu. Data stream management issues—a survey. Technical report, Uni-
versity of Waterloo, 2003. [Cited on page 19.]

L. Golab and M. Ozsu. Issues in data stream management. ACM Sigmod Record, 32(2):5-
14, 2003. [Cited on pages 17 and 19.]

S. Graham, P Niblett, D. Chappell, A. Lewis, N. Nagaratnam, J. Parikh, S. Patil, S. Sam-
darshi, I. Sedukhin, D. Snelling, et al. Publish-subscribe notification for web services. IBM
DeveloperWorks Whitepaper, 2004. [Cited on page 20.]

T. Grandison and M. Sloman. A survey of trust in internet applications. IEEE Communica-
tions Surveys & Tutorials, 3(4):2-16, 2000. [Cited on page 39.]

A. Greenberg, J. Hamilton, D. Maltz, and P. Patel. The cost of a cloud : Research problems
in data center networks. Computer Communication Review, 39(1):68-73, 2009. [Cited on
pages 20 and 22.]

R. Grossman. The case for cloud computing. IT Professional, 11(2):23-27, March/April
2009. [Cited on page 21.]

P Groth, S. Miles, W. Fang, S. Wong, K. Zauner, and L. Moreau. Recording and using prove-
nance in a protein compressibility experiment. In HPDC’05, 2005. [Cited on page 39.]

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of things (IoT): A vi-
sion, architectural elements, and future directions. Future Generation Computer Systems,
29(7):1645-1660, 2013. [Cited on page 1.]

P Guerrero. Workflow Support for Low-Power Wireless Sensor and Actuator Networks. PhD
thesis, Technische Universitdt Darmstadt, 2014. [Cited on page 18.]

262

B. Bibliography

[194] P Guerrero, K. Sachs, M. Cilia, C. Bornhévd, and A. Buchmann. Pushing business data
processing towards the periphery. In ICDE’07, 2007. [Cited on page 18.]

[195] S. Guinea, G. Kecskemeti, A. Marconi, and B. Wetzstein. Multi-layered monitoring and
adaptation. In ICSOC, 2011. [Cited on pages 203 and 204.]

[196] C. Hagen and G. Alonso. Beyond the black box: Event-based inter-process communication
in process support systems. In ICDCS’99, 1999. [Cited on page 210.]

[197] A.Hakiri, P Berthou, A. Gokhale, D. Schmidt, and T. Gayraud. Supporting end-to-end qual-
ity of service properties in OMG data distribution service publish/subscribe middleware
over wide area networks. Journal of Systems and Software, 86(10):2574-2593, October
2013. [Cited on pages 5, 22, 29, 200, 220, 222, 224, and 226.]

[198] A. Hani, I. Paputungan, and M. Hassan. Renegotiation in service level agreement manage-
ment for a cloud-based system. ACM Comput. Surv., 47(3):51:1-51:21, April 2015. [Cited
on page 203.]

[199] M. Hashimoto. Vagrant: Up and Running. O’Reilly, 2013. [Cited on pages 239 and 244.]

[200] J. Hauer, V. Handziski, A. Kopke, A. Willig, and A. Wolisz. A component framework for
content-based publish/subscribe in sensor networks. In Wireless Sensor Networks, pages
369-385. Springer, 2008. [Cited on pages 18 and 201.]

[201] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communication
protocol for wireless microsensor networks. In HICSS’00, 2000. [Cited on page 18.]

[202] J. Her, S. Choi, S. Oh, and S. Kim. A framework for measuring performance in Service-
Oriented architecture. In NWeSP’07, 2007. [Cited on page 90.]

[203] M. Hermann, T. Pentek, and B. Otto. Design principles for industrie 4.0 scenarios: A
literature review. Technical report, Technische Universitdt Dortmund, 2015. [Cited on
page 4.]

[204] E.N. Herness, R.J. High, Jr., and J.R. McGee. Websphere application server: A founda-
tion for on demand computing. IBM Systems Journal, 43(2):213-237, 2004. [Cited on
page 16.]

[205] M. Herr, U. Bath, and A. Koschel. Implementation of a service oriented architecture at
deutsche post MAIL. Web Services, pages 227-238, 2004. [Cited on page 20.]

[206] A. Herzog and A. Buchmann. A3ME - Generic Middleware for Information Exchange in
Heterogeneous Environments. In INSS’12, 2012. [Cited on page 18.]

[207] A. Hinze and A. Buchmann. Principles and applications of distributed event-based systems.
IGI Global, 2010. [Cited on page 27.]

[208] A. Hinze, K. Sachs, and A. Buchmann. Event-Based Applications and Enabling Technolo-
gies. In DEBS’09, 2009. [Cited on pages 1, 4, 13, 14, 15, 28, 34, 36, 101, 220, 222, 224,
and 226.]

[209] M. Hirzel, R. Soule, S. Schneider, B. Gedik, and R. Grimm. A catalog of stream processing
optimizations. ACM Computing Surveys, 46(4):46, 2014. [Cited on pages 220, 222, 224,
and 226.]

B. Bibliography 263

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

J. Hoffert. Design and Run-Time Quality of Service Management Techniques for Publish/-
Subscribe Distributed Real-time and Embedded Systems. PhD thesis, Vanderbilt University,
2011. [Cited on pages 27, 28, 36, 146, 201, 220, 222, 224, and 226.]

J. Hoffert, D. Mack, and D. Schmidt. Using machine learning to maintain pub/sub system
qos in dynamic environments. In ARM’09, 2009. [Cited on pages 146, 201, and 210.]

J. Hoffert, D. Mack, and D. Schmidt. Integrating machine learning techniques to adapt
protocols for QoS-enabled distributed real-time and embedded Publish/Subscribe middle-
ware. Network Protocols & Algorithms, 2(3), 2010. [Cited on pages 146, 201, and 210.]

J. Hoffert and D. Schmidt. Maintaining QoS for publish/subscribe middleware in dynamic
environments. In DEBS’09, 2009. [Cited on pages 2, 5, 25, 29, 146, and 201.]

J. Hoffert, D. Schmidt, and A. Gokhale. A QoS policy configuration modeling language for
publish/subscribe middleware platforms. In DEBS’07, 2007. [Cited on page 146.]

J. Hoffert, D. Schmidt, and A. Gokhale. DQML: A modeling language for configuring
distributed publish/subscribe quality of service policies. In OTM’08, 2008. [Cited on
page 146.]

J. Hoffert, D. Schmidt, and A. Gokhale. Productivity analysis of the distributed QoS mod-
eling language. In MDASD’10, 2010. [Cited on page 146.]

J. Holland. Emergence: From Chaos to Order. Oxford University Press, 2000. [Cited on
page 23.]

T. Holmes, E. Mulo, U. Zdun, and S. Dustdar. Model-aware monitoring of SOAs for com-
pliance. In Service Engineering, 2010. [Cited on page 20.]

T. Holmes, U. Zdun, and S. Dustdar. Morse: A model-aware service environment. In
APSCC’09, 2009. [Cited on pages 203 and 204.]

A. Holzer, L. Ziarek, K.R. Jayaram, and P Eugster. Putting events in context: Aspects for
event-based distributed programming. In AOSD’11, 2011. [Cited on pages 22 and 68.]

A. Holzer, L. Ziarek, K.R. Jayaram, and P Eugster. Abstracting context in event-based
software. In Trans. on Aspect-Oriented Software Development, volume 7271 of LNCS, pages
123-167, 2012. [Cited on pages 22 and 68.]

R. Holzer, H. de Meer, and C. Bettstetter. On autonomy and emergence in self-organizing
systems. In Self-Organizing Systems, volume 5343 of LNCS, pages 157-169. Springer,
2008. [Cited on pages 22, 23, and 68.]

M. Hossain, D. Ahmed, and J. Parra. A framework for computing quality of information
in multi-sensor systems. In I2ZMTC’12, 2012. [Cited on pages 220, 222, 224, and 226.]

M. Hossain, P Atrey, and A. El Saddik. Modeling quality of information in multi-sensor
surveillance systems. In ICDEW’07, 2007. [Cited on pages 18, 27, 28, 38, 39, 40, 220,
223, 224, and 227.]

M. Hossain, P Atrey, and A. Saddik. Context-aware Qol computation in multi-sensor sys-
tems. In MASS’08, 2008. [Cited on pages 2, 39, 40, 43, 66, 220, 223, 224, and 227.]

264

B. Bibliography

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

M. Hossain and A. El Saddik. Quality-driven human-centered approach for service provi-
sioning in ambient environment. In HCC’08, 2008. [Cited on pages 26, 27, 28, 31, 38,
220, 223, 224, and 227.]

S. Hudert, H. Ludwig, and G. Wirtz. Negotiating SLAs-an approach for a generic nego-
tiation framework for WS-agreement. Journal of Grid Computing, 7(2):225-246, 2009.
[Cited on pages 20 and 203.]

M. Huebscher and J. McCann. A survey of autonomic computing - degrees, models, and
applications. ACM Comput. Surv., 40:7:1-7:28, 2008. [Cited on page 23.]

M. Humphrey, G. Wasson, K. Jackson, J. Boverhof, M. Rodriguez, J. Gawor, J. Bester,
S. Lang, I. Foster, S. Meder, et al. State and events for web services: a comparison of five
WS-resource framework and WS-notification implementations. In HPDC’05, 2005. [Cited
on page 20.]

U. Hunkeler, H. Truong, and A. Stanford-Clark. MQTT-S—a publish/subscribe protocol
for wireless sensor networks. In COMSWA’08, 2008. [Cited on page 200.]

J. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stonebraker, and S. Zdonik. High-
availability algorithms for distributed stream processing. In ICDE’05, 2005. [Cited on
page 19.]

IBM. Seeding the Clouds: Key Infrastructure Elements for Cloud Computing. Technical
report, IBM, February 2009. [Cited on page 20.]

IBM. The smarter supply chain of the future: Insights from the global chief supply
chain office study. http://public.dhe.ibm.com/common/ssi/ecm/en/gbe®3163usen/
GBEO®3163USEN.PDF, 2010. [Cited on page 1.]

S. Ickin, K. Wac, M. Fiedler, L. Janowski, J. Hong, and A. Dey. Factors influencing quality
of experience of commonly used mobile applications. IEEE Communications Magazine,
50(4):48-56, 2012. [Cited on pages 26, 28, and 29.]

D. Jacobi, P Guerrero, I. Petrov, and A. Buchmann. Distributed network structuring with
scopes. Technical report, Technische Universitdt Darmstadt, 2009. [Cited on pages 18
and 211.]

S. Jacobi, P Guerrero, K. Nawaz, C. Seeger, A. Herzog, K. Van Laerhoven, and I. Petrov.
Towards Declarative Query Scoping in Sensor Networks, volume 6462 of LNCS, pages 281-
292. Springer, 2010. [Cited on page 18.]

M. Jaeger. Self-organizing publish/subscribe. In DSM’05, 2005. [Cited on page 211.]

M. Jaeger, G. Miihl, M. Werner, and H. Parzyjegla. Reconfiguring self-stabilizing publish/-
subscribe systems. In DSOM’06, 2006. [Cited on page 211.]

M. Jaeger, G. Miihl, M. Werner, H. Parzyjegla, and H. Heiss. Algorithms for reconfigur-
ing self-stabilizing publish/subscribe systems. In Autonomous Systems — Self-Organization,
Management, and Control, pages 135-147. Springer, 2008. [Cited on pages 210 and 211.]

N. Jain, D. Kit, P Mahajan, P Yalagandula, M. Dahlin, and Y. Zhang. STAR: Self-tuning
aggregation for scalable monitoring. In VLDB, 2007. [Cited on pages 93, 103, and 204.]

B. Bibliography 265

http://public.dhe.ibm.com/common/ssi/ecm/en/gbe03163usen/GBE03163USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/en/gbe03163usen/GBE03163USEN.PDF

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

N. Jain, P Mahajan, D. Kit, P Yalagandula, M. Dahlin, and Y. Zhang. Network imprecision:
a new consistency metric for scalable monitoring. In OSDI'08, 2008. [Cited on pages 192
and 204.]

Z. Jerzak. XSiena: The Content-Based Publish/Subscribe System. PhD thesis, Dresden Uni-
versity of Technology, 2009. [Cited on page 16.]

L. Juszczyk, H. Psaier, A. Manzoor, and S. Dustdar. Adaptive query routing on distributed
context-the cosine framework. In MDM’09, 2009. [Cited on page 30.]

B. Kahn, D. Strong, and R. Wang. Information quality benchmarks: Product and service
performance. Commun. ACM, 45(4):184-192, April 2002. [Cited on pages 28, 40, 220,
223, 224, and 227.]

E. Kalyvianaki, T. Charalambous, M. Fiscato, and P Pietzuch. Overload management in
data stream processing systems with latency guarantees. In Feedback Computing’12, 2012.
[Cited on page 19.]

J. Kang, J. Naughton, and S. Viglas. Evaluating window joins over unbounded streams.
In ICDE’03, 2003. [Cited on page 19.]

K. Karimi and G. Atkinson. What the Internet of Things (IoT) needs to become a reality.
White Paper; FreeScale and ARM, 2013. [Cited on pages 1, 40, 221, 223, 224, and 227.]

A. Kattepur, N. Georgantas, and V. Issarny. QoS analysis in heterogeneous choreography
interactions. In ICSOC’13, 2013. [Cited on pages 38, 40, 147, 202, 203, 221, 223, 224,
and 227.]

R. Keeney, H. Raiffa, et al. Decisions with multiple objectives. Cambridge Books, 1993.
[Cited on pages 46, 47, 48, and 87.]

K. Keeton, P Mehra, and J. Wilkes. Do you know your IQ? a research agenda for informa-
tion quality in systems. ACM SIGMETRICS Performance Evaluation Review, 37(3):26-31,
2010. [Cited on pages 1, 2, 3, 28, 38, 40, 46, 61, 202, 203, 221, 223, 225, and 227.]

I. Kellner and L. Fiege. Viewpoints in complex event processing: industrial experience
report. In DEBS’09, 2009. [Cited on page 17.]

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In ECOOP’97, 1997. [Cited on page 101.]

M. Kim, K. Karenos, E Ye, J. Reason, H. Lei, and K. Shagin. Efficacy of techniques for
responsiveness in a wide-area publish/subscribe system. In Middleware’10, 2010. [Cited
on pages 5, 146, and 201.]

Y. Kim and K. Lee. A quality measurement method of context information in ubiquitous
environments. In ICHIT’06, 2006. [Cited on pages 18, 35, 38, 221, 223, 225, and 227.]

A. Kirilenko, A. Kyle, M. Samadi, and T. Tuzun. The flash crash: The impact of high
frequency trading on an electronic market. Available at SSRN 1686004, 2014. [Cited on
page 3.]

M. Klein, P Faratin, H. Sayama, and Y. Bar-Yam. Negotiation algorithms for collaborative
design settings. In Complex Engineered Systems, pages 246-261. Springer, 2006. [Cited
on page 218.]

266

B. Bibliography

[257]

[258]

[259]

[260]

[261]

[262]

[263]

[264]

[265]

[266]

[267]

[268]

[269]

[270]

[271]

[272]

[273]

[274]

R. Koller, A. Verma, and A. Neogi. WattApp: an application aware power meter for shared
data centers. In ICAC’10, 2010. [Cited on page 3.]

S. Kounev. Performance Engineering of Distributed Component-Based Systems - Benchmark-
ing, Modeling and Performance Prediction. PhD thesis, Technische Universitdt Darmstadt,
2005. [Cited on page 90.]

S. Kounev and K. Sachs. Benchmarking and performance modeling of event-based sys-
tems. it - Information Technology, 51(5):262-269, October 2009. [Cited on pages 169,
171, and 210.]

J. Kramer. Advanced message queuing protocol (AMQP). Linux Journal, (187), 2009.
[Cited on page 200.]

M. Krause and I. Hochstatter. Challenges in modelling and using quality of context (QoC).
In MATA’05, 2005. [Cited on pages 5, 31, 38, 60, 61, 94, 221, 223, 225, and 227.]

J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A distributed messaging system for log pro-
cessing. In NetDB’11, 2011. [Cited on page 19.]

K. Kritikos, B. Pernici, P Plebani, C. Cappiello, M. Comuzzi, S. Benrernou, I. Brandic,
A. Kertész, M. Parkin, and M. Carro. A survey on service quality description. ACM Com-
puting Surveys, 46(1):1, 2013. [Cited on pages 28, 35, 36, 37, 221, 223, 225, and 227.]

R. Kiibert, G. Katsaros, and T. Wang. A RESTful implementation of the WS-agreement
specification. In WS-REST’11, 2011. [Cited on page 20.]

M. Ladan. Web services metrics: A survey and a classification. Journal of Communication
and Computer, 9(7):824-829, 2012. [Cited on pages 221, 223, 225, and 227.]

W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri, and A. Doan. Muppet: MapReduce-
style processing of fast data. In VLDB’12, 2012. [Cited on page 19.]

C. Langguth and H. Schuldt. Extended WS-Agreement protocol to support multi-round
negotiations and renegotiations. In ICSOC’10, 2010. [Cited on pages 20 and 203.]

N. Leavitt. Complex-event processing poised for growth. Computer, (4):17-20, 2009.
[Cited on page 17.]

K. Lee, C. Kim, S. Lee, and W. Kim. Rateless code based reliable multicast for data distri-
bution service. In BigComp’15, 2015. [Cited on pages 5, 29, and 200.]

B. Li, J. Li, K. Tang, and X. Yao. Many-objective evolutionary algorithms: A survey. ACM
Computing Surveys, 48(1), 2015. [Cited on page 88.]

E Li, S. Nastic, and S. Dustdar. Data quality observation in pervasive environments. In
ICCSE’12, 2012. [Cited on pages 18, 28, 29, 35, 38, 40, 221, 223, 225, and 227.]

M. Li, S. Yang, and X. Liu. A performance comparison indicator for pareto front approxi-
mations in many-objective optimization. In GECCO’15, 2015. [Cited on page 88.]

S. Li, L. Xu, and S. Zhao. The internet of things: a survey. Information Systems Frontiers,
17(2):243-259, April 2014. [Cited on pages 1 and 18.]

H. Lim, Y. Moon, and E. Bertino. Research issues in data provenance for streaming envi-
ronments. In SPRINGL’09, 2009. [Cited on page 39.]

B. Bibliography 267

[275]

[276]

[277]

[278]

[279]

[280]

[281]

[282]

[283]

[284]
[285]

[286]

[287]

[288]

[289]

[290]

[291]

[292]

H. Lim, Y. Moon, and E. Bertino. Provenance-based trustworthiness assessment in sensor
networks. In DMSN’10, 2010. [Cited on page 39.]

M. Lin, S. Li, and A. Whinston. Innovation and price competition in a two-sided market.
Journal of Management Information Systems, 28(2):171-202, 2011. [Cited on page 218.]

L. Liu, B. Bamba, M. Doo, P Pesti, and M. Weber. mTrigger: An event-based framework
for location-based mobile triggers. In Principles and Applications of Distributed Event-Based
Systems., 2009. [Cited on pages 37 and 46.]

L. Liu, C. Pu, and W. Tang. Continual queries for internet scale event-driven information
delivery. Transactions on Knowledge and Data Engineering, 11(4):610-628, 1999. [Cited
on pages 17 and 19.]

Q. Liu and K. Serfes. Price discrimination in two-sided markets. Journal of Economics &
Management Strategy, 22(4):768-786, 2013. [Cited on page 218.]

S. Liu, S. Homsi, M. Fan, S. Ren, G. Quan, and S. Ren. Power minimization for data center
with guaranteed QoS. In DATE’15, 2015. [Cited on page 3.]

Y. Liu and B. Plale. Survey of publish subscribe event systems. Technical report, Indiana
University, 2003. [Cited on page 16.]

M. Loffler and A. Tschiesner. The internet of things and the future of manufacturing.
McKinsey & Company, 2013. [Cited on page 4.]

E. Loken. Use of multicriteria decision analysis methods for energy planning problems.
Renewable and Sustainable Energy Reviews, 11(7):1584-1595, 2007. [Cited on page 88.]

D. Luckham. The power of events. Addison-Wesley, 2002. [Cited on page 17.]

H. Ludwig, T. Nakata, O. Waldrich, P Wieder, and W. Ziegler. Reliable orchestration of
resources using WS-Agreement. In HPCC’'06, 2006. [Cited on page 20.]

J. MacKie-Mason and H. Varian. Pricing congestible network resources. Selected Areas in
Communications, 13(7):1141-1149, 1995. [Cited on page 78.]

S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG: a tiny AGgregation service
for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev., 36(SI):131-146, 2002. [Cited on
page 18.]

S. Mahambre, M. Kumar, and U. Bellur. A taxonomy of QoS-aware, adaptive event-
dissemination middleware. IEEE Internet Computing, 11(4):35-44, 2007. [Cited on pages
27, 28, 37, 221, 223, 225, and 227.]

L. Mai, E. Kalyvianaki, and P Costa. Exploiting time-malleability in cloud-based batch
processing systems. In LADIS’13, 2013. [Cited on pages 203 and 218.]

T. Makila, A. Jarvi, M. Ronkko, and J. Nissild. How to define Software-as-a-Service - an
empirical study of finnish SaaS providers. In ICSOB’10, 2010. [Cited on page 21.]

A. Manzoor, H. Truong, and S. Dustdar. On the evaluation of Quality of Context. In
EuroSSC’08, 2008. [Cited on pages 28, 35, 38, 221, 223, 225, and 227.]

A. Manzoor, H. Truong, and S. Dustdar. Using quality of context to resolve conflicts in
context-aware systems. In QuaCon’09, 2009. [Cited on pages 28, 36, 38, 39, and 40.]

268

B. Bibliography

[293]

[294]

[295]

[296]

[297]

[298]

[299]

[300]

[301]

[302]

[303]

[304]

[305]

[306]

[307]

[308]

A. Manzoor, H. Truong, and S. Dustdar. Quality of Context: models and applications
for context-aware systems in pervasive environments. The Knowledge Engineering Review,
29:154-170, 3 2014. [Cited on pages 27, 28, 30, 221, 223, 225, and 227.]

A. Margara, G. Cugola, and G. Tamburrelli. Learning from the past: Automated rule
generation for complex event processing. In DEBS’14, 2014. [Cited on page 17.]

P Marie, T. Desprats, S. Chabridon, and M. Sibilla. QoCIM: a meta-model for quality of
context. In CONTEXT’13, 2013. [Cited on pages 146, 202, 221, 223, 225, and 227.]

P Marie, L. Lim, A. Manzoor, S. Chabridon, D. Conan, and T. Desprats. QoC-aware context
data distribution in the internet of things. In M4I0T’14, 2014. [Cited on pages 146, 147,
and 202.]

R. Marler and J. Arora. Survey of multi-objective optimization methods for engineering.
Structural and multidisciplinary optimization, 26(6):369-395, 2004. [Cited on pages 87
and 88.]

M. Massie. Monitoring with Ganglia. O'Reilly, 2012. [Cited on pages 95 and 137.]

M. Massie, B. Chun, and D. Culler. The Ganglia distributed monitoring system: design,
implementation, and experience. Parallel Computing, 30(7):817-840, July 2004. [Cited
on page 95.]

M. Mathew, N. Weng, and L. Vespa. Quality-of-information modeling and adapting for
delay-sensitive sensor network applications. In PCCC’12, 2012. [Cited on page 18.]

E Mattern and C. Floerkemeier. From the Internet of Computers to the Internet of Things,
volume 6462 of LNCS, pages 242-259. Springer, 2010. [Cited on page 22.]

J. Matuschek. Evaluating intelligent routing mechanisms in distributed message-oriented
middleware. Master’s thesis, Technische Universitdt Darmstadt, 2012. [Cited on pages 11
and 126.]

P Mell and T. Grance. The NIST definition of cloud computing. Technical report, National
Institute of Standards and Technology, Information Technology Laboratory, July 2009.
[Cited on pages 20, 21, and 22.]

M. Mendes. FINCoS - benchmarking tools for complex event processing (CEP) systems -
google project hosting. http://code.google.com/p/fincos/. [Cited on page 95.]

M. Mendes, P Bizarro, and P Marques. A framework for performance evaluation of com-
plex event processing systems. In DEBS’08, 2008. [Cited on pages 90, 140, and 143.]

A. Menditto, M. Patriarca, and B. Magnusson. Understanding the meaning of accuracy,
trueness and precision. Accreditation and quality assurance, 12(1):45-47, 2007. [Cited on
page 38.]

A. Michlmayr. Event Processing in QoS-Aware Service Runtime Environments. PhD thesis,
Vienna University of Technology, 2010. [Cited on pages 20 and 203.]

A. Michlmayr, P Leitner, E Rosenberg, and S. Dustdar. Publish/subscribe in the VRESCo
SOA runtime. In DEBS’08, 2008. [Cited on page 203.]

B. Bibliography 269

http://code.google.com/p/fincos/

[309]

[310]

[311]

[312]

[313]

[314]

[315]

[316]

[317]

[318]

[319]

[320]

[321]

[322]

[323]

[324]

A. Michlmayr, P Leitner, E Rosenberg, and S. Dustdar. Event processing in web service
runtime environments. In Principles and Applications of Distributed Event-Based Systems,
pages 284-306. Information Science Reference, 2010. [Cited on page 20.]

A. Michlmayr, E Rosenberg, P Leitner, and S. Dustdar. Comprehensive QoS monitoring of
web services and event-based SLA violation detection. In MWSOC09, 2009. [Cited on
page 203.]

M. Migliavacca and G. Cugola. Adapting publish-subscribe routing to traffic demands. In
DEBS’07, 2007. [Cited on pages 90 and 211.]

P Missier, K. Belhajjame, and J. Cheney. The W3C PROV family of specifications for mod-
elling provenance metadata. In EDBT’13, 2013. [Cited on page 39.]

G. Mone. Redesigning the data center. Communications of the ACM, 55(10):14-16, 2012.
[Cited on pages 3 and 4.]

L. Moreau, P Groth, S. Miles, J. Vazquez-Salceda, J. Ibbotson, S. Jiang, S. Munroe,
O. Rana, A. Schreiber, V. Tan, et al. The provenance of electronic data. Communica-
tions of the ACM, 51(4):52-58, 2008. [Cited on page 39.]

O. Moser, E Rosenberg, and S. Dustdar. Non-intrusive monitoring and service adaptation
for WS-BPEL. In WWW’08, 2008. [Cited on pages 3 and 203.]

O. Moser, E Rosenberg, and S. Dustdar. VieDAME - flexible and robust BPEL processes
through monitoring and adaptation. In ICSE’08, 2008. [Cited on pages 203 and 204.]

G. Miihl. Large-scale content-based publish-subscribe systems. PhD thesis, Technische Uni-
versitat Darmstadt, 2002. [Cited on pages 15 and 210.]

G. Miihl, L. Fiege, and P, Pietzuch. Distributed Event-based Systems. Springer, 2006. [Cited
on pages 14, 15, 16, 28, 201, 211, 221, 223, 225, and 227.]

G. Miihl, M. Jaeger, K. Herrmann, T. Weis, A. Ulbrich, and L. Fiege. Self-stabilizing pub-
lish/subscribe systems: Algorithms and evaluation. In Euro-Par’05, 2005. [Cited on pages
210 and 211.]

G. Miihl, M. Werner, M. A Jaeger, K. Herrmann, and H. Parzyjegla. On the definitions
of self-managing and self-organizing systems. In KiVS’07, 2007. [Cited on pages 210
and 211.]

E. Munera, J. Poza-Lujan, J. Posadas-Yagiie, M. Mufioz, and J. Blanes Noguera. Poster:
Context-aware adaptation mechanism for smart resources. In SenSys’15, 2015. [Cited on
pages 221, 223, 225, and 227.]

L. Narens. On the scales of measurement. Journal of Mathematical Psychology, 24(3):249-
275, 1981. [Cited on page 41.]

M. Nasir, G. Morales, N. Kourtellis, and M. Serafini. When two choices are not enough:
Balancing at scale in distributed stream processing. arXiv preprint arXiv:1510.05714,
2015. [Cited on page 19.]

R. Neisse, M. Wegdam, and M. Sinderen. Trustworthiness and quality of context infor-
mation. In ICYCS’08, 2008. [Cited on pages 26, 27, 28, 38, 39, 45, 60, 221, 223, 225,
and 227.]

270

B. Bibliography

[325]

[326]

[327]

[328]

[329]

[330]

[331]

[332]

[333]

[334]

[335]

[336]

[337]

[338]

[339]

[340]

[341]

H. Nguyen, E. Munthe-Kaas, and T. Plagemann. Energy saving for activity recognition
through sensor selection, scheduling and sampling rate tuning. In WMNC’14, 2014. [Cited
on pages 5, 18, 61, 221, 223, 225, and 227.]

OASIS. OASIS Advanced Message Queuing Protocol (AMQP) version 1.0. http://
docs.oasis-open.org/amgp/core/vl.0/amgp-core-complete-v1.0.pdf, 2011. [Cited
on page 200.]

OASIS. MQTT version 3.1.1 oasis standard. http://docs.oasis-open.org/mqtt/mqtt/
v3.1.1/0s/mqtt-v3.1.1-o0s.pdf, 2014. [Cited on page 200.]

J. O’'Hara. Toward a commodity enterprise middleware. Queue, 5(4):48-55, 2007. [Cited
on page 200.]

B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The Information Bus - An Architecture for
Extensible Distributed Systems. In SOSP’93, 1993. [Cited on page 15.]

E Osinga. Getting ’a discourse on winning and losing”: A primer on boyd’stheory of intel-
lectual evolution. Contemporary Security Policy, 34(3):603-624, 2013. [Cited on page 79.]

M. Palacios, J. Garcia-Fanjul, J. Tuya, and G. Spanoudakis. Automatic test case generation
for WS-Agreements using combinatorial testing. Computer Standards & Interfaces, 38:84—
100, 2015. [Cited on page 20.]

M. Palacios, J. Garcia-Fanjul, J. Tuya, and G. Spanoudakis. Coverage-based testing for
service level agreements. IEEE Services Computing, 8(2):299-313, March 2015. [Cited on
page 20.]

M. Papazoglou. Service-oriented computing: Concepts, characteristics and directions. In
WISE’03, 2003. [Cited on page 19.]

G. Pardo-Castellote. OMG Data-Distribution Service: architectural overview. In ICD-
CSW’03, 2003. [Cited on pages 5, 29, 146, 200, 221, 223, 225, and 227.]

G. Parker and M. Van Alstyne. Two-sided network effects: A theory of information product
design. Management Science, 51(10):1494-1504, 2005. [Cited on page 218.]

H. Parzyjegla, G. Miihl, and M. Jaeger. Reconfiguring publish/subscribe overlay topolo-
gies. In ICDCSW’06, 2006. [Cited on page 210.]

B. Patel and C. Bisdikian. End-station performance under leaky bucket traffic shaping.
Network, 10(5):40-47, 1996. [Cited on page 93.]

C. Patel and A. Shah. Cost model for planning, development and operation of a data
center. Technical report, HP Laboratories Palo Alto, 2005. [Cited on page 22.]

V. Pejovic and M. Musolesi. Anticipatory mobile computing: A survey of the state of the
art and research challenges. ACM Comput. Surv., 47(3):47:1-47:29, April 2015. [Cited
on pages 28, 35, 72, 221, 223, 225, and 227.]

C. Perera, A. Zaslavsky, P Christen, M. Compton, and D. Georgakopoulos. Context-aware
sensor search, selection and ranking model for internet of things middleware. In MDM’13,
2013. [Cited on pages 18, 27, 28, 34, 35, 46, 47, 201, 203, 221, 223, 225, and 227.]

C. Perera, A. Zaslavsky, P Christen, and D. Georgakopoulos. CA4IOT: Context awareness
for internet of things. In GreenCom’12, 2012. [Cited on pages 1 and 202.]

B. Bibliography 271

http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf
http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

[342]

[343]

[344]

[345]

[346]

[347]

[348]

[349]

[350]

[351]

[352]

[353]

[354]

[355]

[356]

[357]

C. Perera, A. Zaslavsky, P Christen, and D. Georgakopoulos. Context Aware Computing for
The Internet of Things: A Survey. IEEE Communications Surveys & Tutorials, 16(1):414—
454, 2014. [Cited on pages 18 and 202.]

C. Perera, A. Zaslavsky, P Christen, A. Salehi, and D. Georgakopoulos. Capturing sensor
data from mobile phones using global sensor network middleware. In PIMRC’12, 2012.
[Cited on pages 18 and 61.]

C. Perera, A. Zaslavsky, P Christen, A. Salehi, and D. Georgakopoulos. Connecting mo-
bile things to global sensor network middleware using system-generated wrappers. In
MobiDE’12, 2012. [Cited on page 18.]

H. Pérez and J. Gutiérrez. Modeling the QoS parameters of DDS for event-driven real-time
applications. Journal of Systems and Software, 104:126-140, 2015. [Cited on pages 5, 29,
221, 223, 225, and 227.]

B. Pernici and S. Siadat. Adaptation of web services based on QoS satisfaction. In IC-
S0C’10, 2010. [Cited on pages 47, 88, 147, 203, 221, 223, 225, and 227.]

B. Pernici, S. Siadat, S. Benbernou, and M. Ouziri. A penalty-based approach for QoS
dissatisfaction using fuzzy rules. In ICSOC’11, 2011. [Cited on page 203.]

P Pietzuch. Hermes: A scalable event-based middleware. PhD thesis, University of Cam-
bridge Cambridge, UK, 2004. [Cited on page 201.]

P Pietzuch and J. Bacon. Hermes: A distributed event-based middleware architecture. In
ICDCSW’02, 2002. [Cited on page 16.]

P Pietzuch, D. Eyers, S. Kouney, and B. Shand. Towards a common API for publish/sub-
scribe. In DEBS’07, 2007. [Cited on page 15.]

P Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and M. Seltzer. Network-
aware operator placement for stream-processing systems. In ICDE’06, 2006. [Cited on
page 19.]

J. Pike. National image interpretability rating scales. http://fas.org/irp/imint/
niirs.htm, 1998. [Cited on page 34.]

L. Pinto, G. Cugola, and C. Ghezzi. Dealing with changes in service orchestrations. SAC’12,
2012. [Cited on pages 22 and 68.]

I. Podnar Zarko, A. Antonic, and K. Pripuzic. Publish/subscribe middleware for energy-
efficient mobile crowdsensing. In UbiComp’13, 2013. [Cited on pages 18, 27, 34, 61, 221,
223, 225, and 227.]

G. Pottie. Wireless sensor networks. In ITW98, 1998. [Cited on pages 17 and 18.]

M. Razzaque, C. Bleakley, and S. Dobson. Compression in wireless sensor networks: A
survey and comparative evaluation. ACM Transactions on Sensor Networks, 10(1):5, 2013.
[Cited on pages 18, 34, 36, 38, 43, 61, and 63.]

P Reinecke, K. Wolter, and M. Malek. A survey on fault-models for QoS studies of service-
oriented systems. Technical report, Freie Universtitdat Berlin & Humboldt-Universitéat zu
Berlin, 2010. [Cited on pages 35, 221, 223, 225, and 227.]

272

B. Bibliography

http://fas.org/irp/imint/niirs.htm
http://fas.org/irp/imint/niirs.htm

[358]

[359]

[360]

[361]

[362]

[363]

[364]

[365]

[366]

[367]

[368]

[369]

[370]

[371]

[372]

[373]

[374]
[375]

J. Rochet and J. Tirole. Platform competition in two-sided markets. Journal of the Euro-
pean Economic Association, pages 990-1029, 2003. [Cited on page 218.]

J. Rochet and J. Tirole. Defining two-sided markets. Technical report, IDEI and GREMAQ,
2004. [Cited on page 218.]

J. Rochet and J. Tirole. Two-sided markets: an overview. Technical report, IDEI and
GREMAQ, 2004. [Cited on page 218.]

J. Rochet and J. Tirole. Two-sided markets: a progress report. The RAND Journal of
Economics, 37(3):645-667, 2006. [Cited on page 218.]

O. Rorato, S. Bertoldo, C. Lucianaz, M. Allegretti, and G. Perona. A multipurpose node for
low cost wireless sensor network. In APW(C’12, 2012. [Cited on pages 60 and 94.]

D. Rosenblum and A. Wolf. A design framework for internet-scale event observation and
notification. In ESEC97, 1997. [Cited on page 15.]

J. Ross and G. Westerman. Preparing for utility computing: The role of IT architecture and
relationship management. IBM Systems Journal, 43(1):5-19, 2004. [Cited on page 21.]

J. Sacha, J. Napper, C. Stratan, and G. Pierre. Adam2: Reliable distribution estimation in
decentralised environments. In ICDCS’10, 2010. [Cited on page 73.]

V. Sachidananda, A. Khelil, and N. Suri. Quality of information in wireless sensor net-
works: A survey. In ICIQ’10, 2010. [Cited on pages 28, 31, 40, 221, 223, 225, and 227.]

K. Sachs. Performance Modeling and Benchmarking of Event-Based Systems. PhD thesis,
Technische Universitdt Darmstadt, 2010. [Cited on pages 90 and 210.]

K. Sachs, S. Appel, S. Kounev, and A. Buchmann. Benchmarking publish/subscribe-based
messaging systems. In DASFAA’10, 2010. [Cited on pages 16, 140, 143, 169, 171, 174,
and 244.]

K. Sachs, S. Kouney, S. Appel, and A. Buchmann. A performance test harness for publish/-
subscribe middleware. In SIGMETRICS/Performance’09, 2009. [Cited on pages 140, 169,
and 171.]

K. Sachs, S. Kounev, J. Bacon, and A. Buchmann. Workload characterization of the
SPECjms2007 benchmark. In EPEW’07, 2007. [Cited on pages 169 and 170.]

K. Sachs, S. Kounev, J. Bacon, and A. Buchmann. Performance evaluation of message-
oriented middleware using the SPECjms2007 benchmark. Performance Evaluation,
66(8):410-434, 2009. [Cited on pages 169 and 171.]

K. Sachs, S. Kounev, M. Carter, and A. Buchmann. Designing a workload scenario for
benchmarking message-oriented middleware. In SPEC Benchmark Workshop’07, 2007.
[Cited on pages 169 and 170.]

T. Sandholm and K. Lai. Dynamic proportional share scheduling in Hadoop. In JSSPP’10,
2010. [Cited on page 218.]

J. Schiller and A. Voisard. Location-based services. Elsevier, 2004. [Cited on page 28.]

A. Schroter, D. Graff, G. Miihl, J. Richling, and H. Parzyjegla. Self-optimizing hybrid
routing in publish/subscribe systems. In DSOM‘09. Springer, 2009. [Cited on pages 210
and 211.]

B. Bibliography 273

[376]

[377]

[378]

[379]

[380]

[381]

[382]

[383]

[384]

[385]

[386]

[387]

[388]

[389]

[390]

[391]

C. Seeger. Event-driven Middleware for Body and Ambient Sensor Applications. PhD thesis,
Technische Universitdt Darmstadt, 2013. [Cited on page 18.]

C. Seeger, A. Buchmann, and K. Van Laerhoven. Wireless sensor networks in the wild:
Three practical issues after a middleware deployment. In MidSens’11, 2011. [Cited on
page 18.]

C. Seeger and K. Van Laerhoven. Sensor network middleware that mediates between
sensors and healthcare applications. Life Sciences Newsletter, November 2013. [Cited on
page 18.]

C. Seeger, K. Van Laerhoven, and A. Buchmann. MyHealthAssistant: An event-driven
middleware for multiple medical applications on a smartphone-mediated body sensor
network. Biomedical and Health Informatics, 19(2):752 — 760, 2014. [Cited on page 18.]

S. Sharaf and K. Djemame. Enabling service-level agreement renegotiation through
extending WS-agreement specification. Service Oriented Computing and Applications,
9(2):177-191, 2015. [Cited on pages 20 and 203.]

S. Shenker. Fundamental design issues for the future internet. Selected Areas in Commu-
nications, 13(7):1176-1188, 1995. [Cited on pages 29, 46, 47, 53, 78, 87, and 88.]

S. Shenker. Service models and pricing policies for an integrated services internet. Public
access to the Internet, pages 315-337, 1995. [Cited on page 78.]

S. Shenker, D. Clark, D. Estrin, and S. Herzog. Pricing in computer networks: Reshaping
the research agenda. SIGCOMM Comput. Commun. Rev., 26(2):19-43, 1996. [Cited on
page 78.]

Y. Shi and X. Chen. A survey on QoS-aware web service composition. In MINES’11, 2011.
[Cited on pages 34, 39, 61, 221, 223, 225, and 227.]

Y. Simmhan, B. Plale, and D. Gannon. A survey of data provenance techniques. Technical
report, Indiana University, 2005. [Cited on page 39.]

L. Skorin-Kapov, K. Pripuzic, M. Marjanovic, A. Antonic, and I. Zarko. Energy efficient
and quality-driven continuous sensor management for mobile IoT applications. In Collab-
orateCom’14, 2014. [Cited on pages 18, 34, 35, 61, 72, 221, 223, 225, and 227.]

A. Slominski, Y. Simmhan, A. Rossi, M. Farrellee, and D. Gannon. XEVENTS/XMESSAGES:
Application events and messaging framework for Grid. Technical report, Indiana Univer-
sity, 2001. [Cited on page 16.]

M. Smit, A. Nisbet, E. Stroulia, A. Edgar, G. Iszlai, and M. Litoiu. Capacity planning for
service-oriented architectures. In CASCON’08, 2008. [Cited on page 90.]

M. Smit, B. Simmons, and M. Litoiu. Distributed, application-level monitoring for het-
erogeneous clouds using stream processing. In Future Generation Computer Systems, vol-
ume 29, pages 2103-2114. Elsevier, 2013. [Cited on page 203.]

B. Snyder, D. Bosanac, and R. Davies. ActiveMQ in Action. Manning Publications Co.,
2011. [Cited on pages 16 and 125.]

J. Sgberg. CommonSens: A Multimodal Complex Event Processing System for Automated
Home Care. PhD thesis, University of Oslo, 2011. [Cited on page 201.]

274

B. Bibliography

[392]

[393]

[394]

[395]

[396]

[397]

[398]

[399]

[400]

[401]

[402]

[403]

[404]

[405]

[406]

[407]

[408]

J. Seberg, V. Goebel, and T. Plagemann. CommonSens: Personalisation of complex event
processing in automated homecare. In ISSNIP’10, 2010. [Cited on pages 17, 18, and 201.]

J. Soberg, V. Goebel, and T. Plagemann. Detection of spatial events in CommonSens. In
EiMM’10, 2010. [Cited on pages 17 and 201.]

J. Sgberg, V. Goebel, and T. Plagemann. Deviation detection in automated home care using
CommonSens. In PERCOM’11 Workshops, 2011. [Cited on page 201.]

SPEC. SPECjms2007 result ActiveMQ 5.4 on IBM x3850. https://www.spec.org/
jms2007/results/res2010q3/jms2007-20100802-00022.html. [Cited on pages 171
and 244.]

J. Steffan, L. Fiege, M. Cilia, and A. Buchmann. Scoping in wireless sensor networks. In
MPAC’04, 2004. [Cited on page 18.]

J. Steffan, L. Fiege, M. Cilia, and A. Buchmann. Towards multi-purpose wireless sensor
networks. In SENET’05, 2005. [Cited on pages 17 and 18.]

R. Stephens. A survey of stream processing. Acta Informatica, 34(7):491-541, 1997.
[Cited on page 19.]

S. Stepney, E Polack, and H. Turner. Engineering emergence. In ICECCS’06, 2006. [Cited
on page 23.]

S. Stevens. On the theory of scales of measurement. Science, 103(2684):677-680, 1946.
[Cited on pages 32 and 41.]

A. Stithlmeyer. Erweiterbares Framework zur Ausfiihrung von Aktionen fiir Event-basierte
Enterprise Software Systeme unter Verwendung von Apama. Bachelor’s thesis, Technische
Universitat Darmstadt and Software AG Darmstadt, 2014. [Cited on pages 11 and 120.]

R. Sumathi and M. Srinivas. A survey of QoS based routing protocols for wireless sensor
networks. Journal of information processing systems, 8(4):589-602, 2012. [Cited on pages
18 and 26.]

H. Sun, T. Zhao, Y. Tang, and X. Liu. A QoS-aware load balancing policy in multi-tenancy
environment. In SOSE’14, 2014. [Cited on pages 221, 223, 225, and 227.]

Sun Microsystems, Inc. Java Message Service (JMS) Specification - Ver. 1.1, 2002. [Cited
on pages 16 and 200.]

W. Tam, K. Lui, S. Uludag, and K. Nahrstedt. Quality-of-service routing with path infor-
mation aggregation. Computer Networks, 51(12):3574-3594, August 2007. [Cited on
page 93.]

W. Terpstra, C. Leng, M. Lehn, and A. Buchmann. Channel-based unidirectional stream
protocol (CUSP). In INFOCOM’10, 2010. [Cited on page 210.]

R. Tews. Beyond IT: exploring the business value of SOA. AIIM E-DOC, 2007. [Cited on
page 19.]

W. Thomson et al. Popular lectures and addresses, volume 1. Macmillan London, 1891.
[Cited on page 1.]

B. Bibliography 275

https://www.spec.org/jms2007/results/res2010q3/jms2007-20100802-00022.html
https://www.spec.org/jms2007/results/res2010q3/jms2007-20100802-00022.html

[409]

[410]

[411]

[412]

[413]

[414]

[415]

[416]

[417]

[418]

[419]

[420]

[421]

[422]

[423]

[424]

A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. Patel, S. Kulkarni, J. Jackson, K. Gade,
M. Fu, J. Donham, et al. Storm@twitter. In SIGMOD’14, 2014. [Cited on pages 19
and 203.]

E. Twellmeyer. Modeling and performance evaluation of an RFID scenario applying EPC-
global’s EPCIS architecture. Master’s thesis, Technische Universitdt Darmstadt and SAP
Research Dresden, 2008. [Cited on pages 90 and 210.]

G. Tychogiorgos and C. Bisdikian. Selecting relevant sensor providers for meeting your
quality information needs. In MDM’11, 2011. [Cited on page 18.]

R. Van Renesse, K. Birman, and W. Vogels. Astrolabe: A robust and scalable technology
for distributed system monitoring, management, and data mining. ACM Transactions on
Computer Systems, 21(2):164-206, 2003. [Cited on page 204.]

Verizon. State of the market: The internet of things 2015. Technical report, 2015. [Cited
on page 1.]

A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. Large-scale
cluster management at google with borg. In EuroSys’15, 2015. [Cited on page 3.]

N. Viet, E. Munthe-Kaas, and T. Plagemann. Towards quality and energy aware complex
event processing. In WiMOB’13, 2013. [Cited on pages 5, 34, 35, 60, 61, 94, 221, 223,
225, and 227.]

S. Vinoski. Web services notifications. IEEE Internet Computing, 8(2):86-90, 2004. [Cited
on page 20.]

S. Vinoski. Advanced message queuing protocol. IEEE Internet Computing, (6):87-89,
2006. [Cited on page 200.]

W3C Semantic Sensor Network Incubator Group. Semantic Sensor Network Ontology.
http://www.w3.0rg/2005/Incubator/ssn/ssnx/ssn, 2011. [Cited on pages 5, 18, 34,
35, 37, 38, 45, 61, 64, and 201.]

G. Wang, C. Wang, A. Chen, H. Wang, C. Fung, S. Uczekaj, Y. Chen, W. Guthmiller, and
J. Lee. Service level management using QoS monitoring, diagnostics, and adaptation for
networked enterprise systems. In EDOC’05, 2005. [Cited on page 20.]

H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, and L. Zhou. Distributed systems meet eco-
nomics: pricing in the cloud. In HotCloud’10, 2010. [Cited on page 218.]

R. Wang and D. Strong. Beyond accuracy: What data quality means to data consumers.
Journal of management information systems, pages 5-33, 1996. [Cited on pages 2, 26,
and 40.]

R. Wearn and N. Larson. Measurements of the sensitivities and drift of digiquartz pressure
sensors. Deep Sea Research Part A. Oceanographic Research Papers, 29(1):111-134, 1982.
[Cited on pages 18 and 34.]

R. Welke, R. Hirschheim, and A. Schwarz. Service oriented architecture maturity. Com-
puter, 44(2):61—67, February 2011. [Cited on page 19.]

J. Wilkes. Utility functions, prices, and negotiation. In Market Oriented Grid and Utility
Computing. Wiley & Sons, 2008. [Cited on pages 2, 46, 47, 51, 54, 61, 62, 78, 87,
and 202.]

276

B. Bibliography

http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

[425]

[426]

[427]

[428]

[429]

[430]

[431]

[432]

[433]

[434]

[435]

[436]

[437]

Q. Wu, G. Ding, Y. Xu, S. Feng, Z. Du, J. Wang, and K. Long. Cognitive Internet of Things:
A new paradigm beyond connection. IEEE Internet of Things Journal, 1(2):129-143, April
2014. [Cited on pages 26, 28, 221, 223, 225, and 227.]

R. Wiirtz. Organic computing. Springer, 2008. [Cited on page 23.]

P Yalagandula and M. Dahlin. A scalable distributed information management system. In
SIGCOMM’04, 2004. [Cited on pages 73 and 204.]

H. Yang, M. Kim, K. Karenos, E Ye, and H. Lei. Message-oriented middleware with QoS
awareness. In ICSOC’09, 2009. [Cited on pages 5, 29, 146, 201, 221, 223, 225, and 227.]

Y. Yoon. Adaptation Techniques for Publish/Subscribe Overlays. PhD thesis, University of
Toronto, 2013. [Cited on page 210.]

S. Zahedi, M. Srivastava, and C. Bisdikian. A computational framework for quality of
information analysis for detection-oriented sensor networks. In MILCOM’08, 2008. [Cited
on pages 38, 221, 223, 225, and 227.]

P Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L. Benini, and G. Troster. Activ-
ity recognition from on-body sensors: accuracy-power trade-off by dynamic sensor selec-
tion. In EWSN’08, 2008. [Cited on page 18.]

A. Zeidler and L. Fiege. Mobility support with rebeca. In ICDCS MCM’03, 2003. [Cited on
page 16.]

L. Zeng, H. Lei, and H. Chang. Monitoring the QoS for web services. In ICSOC07, 2010.
[Cited on page 20.]

Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art and research chal-
lenges. Journal of internet services and applications, 1(1):7-18, 2010. [Cited on page 20.]

E Zhao and L. Guibas. Wireless sensor networks: an information processing approach.
Morgan Kaufmann, 2004. [Cited on page 18.]

W. Ziegler, P Wieder, and D. Battre. Extending WS-Agreement for dynamic negotiation
of service level agreements. Technical report, CoreGRID-Network of Excellence, 2008.
[Cited on pages 20 and 203.]

E. Zitzler. Evolutionary algorithms for multiobjective optimization: Methods and applica-
tions. PhD thesis, ETH Zurich, 1999. [Cited on pages 87 and 88.]

B. Bibliography 277

	Introduction
	Problem Statement
	Research Questions
	Proposed Solution, Scope and Contributions
	Related Activities and Publications
	Structure

	Background
	Event-based Systems
	Publish/Subscribe for Dispatching Event Notifications
	Complex Event Processing for Reasoning and Deciding on Events

	Related Concepts and the Role of EBS
	Wireless Sensor Networks and Cyber-Physical Systems
	Data Stream Management Systems
	Service-Oriented Architectures
	Cloud Computing
	Systems-of-Systems and the Vision of Emergent Software Systems

	Summary

	A Generic Model to Express Quality of Information Requirements in EBS
	Quality of Information and Related Concepts
	Properties: the Basic Building Blocks
	Categorization of Properties
	Deriving a Generic Property Representation

	Expectations: Requirements About QoI Properties
	Expectation Definition
	Lifecycle of an Expectation
	Fidelity: Quantifying the Satisfaction of a Subscriber

	Capabilities: Support for Properties
	Capability Definition: Spectrum of Support and Costs
	Capability Profiles: Characterizing Publishers
	Lifecycle of Capabilities and Capability Profiles

	Feedback: Enabler of Self-Adaptation and Renegotiation
	Individual Feedback
	Aggregated Feedback

	Summary

	Runtime Negotiation and Enforcement
	Matching Expectations to Capabilities
	Set-Matching to Find Suitable Capability Profiles
	Range-Matching for Each Generic Property
	Determining the Preliminary State of an Expectation

	Deciding on Satisfiable Expectations
	Decision Strategies Encapsulating the Decision Process
	Example Strategy: First-Come, First-Served while Minimizing Costs

	Safeguarding the Decision
	Runtime Adaptation
	Middleware Self-Adaptation
	Client Self-Adaptation Using Feedback
	Coordinated Adaptation

	Monitoring the System State at Runtime
	Detect and React to State Changes with Monitorlets and Watchdogs
	Monitoring the Global State of a Distributed Event-Based System

	Resolving Possible Conflicts at Runtime
	Summary

	Implementation
	Architecture and Design
	Extending the Message-Oriented Middleware: ExpectationController
	Decentralized Monitoring with ASIA
	Libraries, Handlers and Editors Provided to Clients
	Classes for Expectations, Capabilities and Generic Properties

	Platform-Specific Prototypes
	Centralized Implementation: Apache ActiveMQ
	Distributed Implementation: REDS

	Example Applications
	Summary

	Evaluation
	Expressivity of Expectations and Capabilities
	Related Approaches and their Expressiveness
	Summarizing the Limitations of Related Approaches
	Expressiveness of Expectations and Capabilities

	Benefits Regarding Data Quality and Resource Savings
	Heterogeneity Scenario: Dealing with Unsuitable Data
	Comparing Expectations with Features of Related Approaches
	Benefits: Higher Data Quality
	Benefits: Resource Savings

	Scalability and Execution Costs for Brokers Applying our Approach
	Used Scenario and Characterization of Workload
	Tailoring jms2009-PS to Gauge Execution Costs of Runtime Negotiation
	Testplan, Scaling Parameters and Measured KPIs
	Discussion of Measured Results

	Effectiveness of Using ASIA to Monitor a DEBS
	Benefits: Adjustable Precision
	Experiment Setup for Gauging Traffic, Throughput and Latency
	Impact on Network Traffic
	Execution Costs: Throughput and Latency

	Summary

	Related work
	Standards and Protocols for Asynchronous Communication
	Related Approaches with Explicit Support for Qo*
	Related Approaches Regarding Monitoring, Self-Adaptation, Negotiation
	Summary

	Conclusion
	Outlook and Future Work
	Centralized Event-Based Systems: Immediate Challenges
	Decentralized Event-Based Systems: Synchronizing State
	Applying our Approach to Pull-Based Systems
	Economic Perspective: Incentives and Negotiation on Two-Sided Markets

	Appendix
	Literature Survey Details
	Runtime Negotiation: Pseudocode
	Reference Architecture: APIs and Code Examples
	FINCoS: Extensions and Experimental Setup
	Test Harness for Automated Testing
	Test Setup
	Anatomy of a Single Test Run

	Drill Down Data for Heterogeneity Scenario with Surplus Publishers
	jms2009-PS Extensions and Experimental Setup
	Test Harness for Automated Testing
	Anatomy of a Single Run

	Regression Tables jms2009-PS Benchmark Results
	Experimental Setup Application-Specific Integrated Aggregation (ASIA)

	Bibliography

