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Abstract 

This work encompassed an in depth investigation of the defect chemistry and 

piezoelectric properties of Bi0.5(Na(1-w)Kw)0.5Ti(1-x-y)CuxVyO3 with w = 0.1, 0.2 and 0.3 

and x and y < 0.01, synthesized by a solid state process. A pseudocubic perovskite 

phase with no detectable impurities was verified by X-ray diffraction, while doping 

tended to reduce the rhombohedral character of Bi0.5(Na0.9K0.1)0.5TiO3 (BNKT10) 

ceramics. Doping BNKT10 was shown to result in more homogenous grain size 

distributions, elucidated by analyzing scanning electron microscopy images. Small and 

large signal piezoelectric measurements also revealed that the tetragonal phase of 

Bi0.5(Na0.7K0.3)0.5TiO3 is disproportionally affected by doping. The transition 

temperature from ferroelectric to relaxor phase (Tf-r), the coercive field, and the 

remanent polarization drop for compositions with high K-content, while the maximum 

strain is mostly increased. The general trend of decreasing Tf-r in these high K 

tetragonal materials can be rationalized by A-site defects and the resulting increased 

distribution of random fields. Impedance spectroscopy at resonance indicates a high 

electromechanical coupling factor of planar samples in thickness mode (kt up to 0.56), 

which is useful for sensing applications in combination with the observed low 

mechanical quality factor (QM) of 9 in thickness direction. Impedance spectroscopy at 

elevated temperatures revealed that doping resulted in a decrease in the activation 

energy (EA) of 110±10 meV from 1.37 eV of undoped Bi0.5(Na0.9K0.1)0.5TiO3 for both 

single element doping with Cu or V, as well as simultaneous doping with both Cu and 

V. Furthermore, the resistivities of doped BNKT10 ceramics (3.3×103 Ωm to 

1.3×107
 Ωm) were consistently lower than those of the undoped BNKT10 ceramics 

(1.6×105
 Ωm to 2.0×108 Ωm). The variation of the oxygen partial pressure from 

0.21 bar (synthesis condition) to 1 bar, 2.1×10-6 bar and < 10-18 bar likewise lead to 

consistently decreased EA and resistivities with values as low as 0.23 eV and 

1.9×100
 Ωm to 2.7×103

 Ωm, respectively. Electron paramagnetic resonance 

spectroscopy (EPR) and X-ray photoelectron spectroscopy (XPS) indicated the 

presence of Cu2+, V4+ and V5+ in the doped ceramics, while lower oxidation states of 

Cu and V could be excluded. EPR spectroscopy indicated Cu2+ and V4+ in a rhombic 

environment with major distortion in one direction and minor distortion in the other 

directions. While V4+ is introduced into the B-site of the bulk, Cu2+ was shown to 

dominantly segregate from the bulk, most likely at the grain boundary due to the 

creation of a liquid phase during sintering. This correlates with the increasing density 

with increasing Cu content and the observed trend of a lowered QM with increasing 

Cu content, presumably due to leakage. The solubility limit of Cu in the bulk was 

found to be < 0.05 at.%. All doped BNKT10 ceramics, containing Cu, were shown to 

possess Cu in two different rhombic electronic environments, namely CuO6 and CuO4. 

For V doping, a discernable, albeit, small (<400 meV) increase in Fermi level was 

determined by XPS, suggesting a donor doping effect corroborated by the lower 

resistivities and EA of these samples likely due to charge compensation induced 

electrons. The overall defect chemistry of the Cu and V doped ceramics was revealed 
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to be influenced by (I) bismuth, sodium and potassium acceptor vacancies, resulting 

from the host material, (II) additional n-type doping induced electrons, (III) few bulk 

Cu2+ acceptor centers, resulting from Cu doping, (IV) V5+ donor states, introduced 

through V doping, and (V) in all cases the concentration and mobility of oxygen 

vacancies. 
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1. Introduction 

Piezoelectric materials nowadays can be found in numerous diverse applications, 

ranging from actuators as in fuel injection devices, (nano-)positioning, vibration 

reduction and energy harvesting to sensing applications.1-6 Examples are hydrophones 

(e.g. for sonar applications), ultrasonic imaging or parking assistants. 

As of 2009, an overwhelming 98% of the production of piezoelectric bulk actuators 

was lead-containing. Lead, a known neurotoxin 
7,8, is released into the environment 

during thermal processing of the raw materials in the form of PbO as well as during 

hard machining of components, furthermore requiring expensive waste disposal and 

recycling. Several governmental regulations worldwide were recently put into place to 

reduce the health risks of lead-containing materials.9-11 This urgent need for lead-free 

materials gave rise to global research efforts to replace lead-containing materials such 

as PbTiO3 (PT), PbZrO3-PbTiO3 (PZT), Pb(Mg1/3Nb2/3)O3 (PMN) or PbZn1/3Nb2/3O3 

(PZN) by emerging alternatives.3,5,12-21 So far, merely few lead-free materials have 

been found that are able to match or surpass the properties of the lead variants. 

The system Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 (BNT-BKT or also BNKT)22-27, is a promising 

candidate, to replace lead in certain piezoelectric applications, since it is able to form 

solid solutions with various other elements that improve ferroelectric (FE) and 

piezoelectric properties such as for instance barium 
28-32, niobium33-36, lithium37-40 or 

manganese41-43 to name the most researched solid solutions. BNT-based materials are 

not toxic and Bi itself is even used in pharmaceutics 
44,45. Combining two or more end-

members of such a solid solution can lead to improved piezoelectric properties 

superior to both pure end-members by mechanisms that are still not fully understood 

and currently debated in the literature. This is also well described for lead-based 

systems. Drawbacks to date are the low depolarization temperature and a high poling 

field compared to lead-based materials. 

The underlying question of the following work is: Is it possible to improve this system 

and its defect chemistry in particular, by tailored co-doping and optimized processing, 

in such a way that it can compete with one or more of today’s lead-based systems? 

The aim of this research was to explore novel dopants and especially dopant 

combinations, which are able to be incorporated into the pure BNKT system or solid 

solutions thereof. Especially for electronic devices and furthermore commercially used 

lead-based materials, it is common practice to intentionally introduce defects, thereby 

influencing different material properties. Therefore, further investigation on dopant 

influence on piezoelectrical properties, e.g. the maximum strain, the depolarization 

temperature, the induced polarization, but also time dependent characteristics as 

frequency dependent permittivity as well as ageing and fatigue of the material, is 

required to determine optimum doping concentrations of candidate elements for 

specific applications. 
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2. Background and Literature Review 

In the following section, the basics of doped piezoelectric ceramics and their defect 

chemistry are described. The general part of this section is mostly based on a 

publication of Pramanick et al. 46, a book of D. M. Smyth 
47 as well as a book chapter 

of W. Cao 
48. 

All defects discussed in this thesis will be noted in the Kröger-Vink notation 

(cf. Kröger et al. 49). One deviation from this notation is made in this work: To 

differentiate vanadium from a vacancy, all vacancies are indicated by a small v, while 

vanadium is indicated by a capital V. 

Since the overwhelming majority of crystal structures discussed belongs to the family 

of perovskites, following short overview is given. 

The family of perovskites entails compositions with the same crystal structure as the 

mineral perovskite CaTiO3. The ideal perovskite structure is a close packed cubic 

structure, with a general formula ABO3 with the A-ion roughly being twice the size as 

the B-ion. The A-site ions are sitting in a 12-fold coordinated environment with 

oxygen as partner (cf. Figure 2.1(a)) whereas the B-ions are found on an octahedral 

lattice site, being coordinated with six oxygen ions, which is represented in Figure 

2.1(b). Lots of materials have the perovskite structure or close relatives, since it is a 

favorable arrangement for anions and cations. 

  

Figure 2.1 Schematic of the ABO3 perovskite structure emphasizing (a) the dodecahedral 

lattice position with the A-ion – e.g. Ca2+ in the center and (b) the octahedral lattice position 

with the B-ion – e.g. Ti4+ in the center. Not to scale. 

(a) (b) 

A 

A 

B 

B O O 
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The fact that the original perovskite CaTiO3 does not fit the description of an ideal 

perovskite, since it is slightly distorted due to the small A-ion Ca2+ that is not able to 

fill the A lattice site completely, already gives an idea of the opportunity to influence 

the crystal structure by the choice of incorporated elements.  

 

 

2.1. Ferroelectric and Piezoelectric Basics 

 

 

Figure 2.1.1 Schematic of sub-groups of dielectric materials. 

In order to understand piezoelectric phenomena, one can first discern the basic 

principles underlying dielectric materials in general. Dielectrics entail different sub-

groups, piezoelectrics being one of them, (cf. Figure 2.1.1) that will be further 

discussed in the following sections. 

 

2.1.1. Dielectrics 

Dielectric materials are characterized by a band gap > 2.5 eV, thus are very poor 

conductors, since they (in the ideal case) have no electronic carriers. This is why they 

react to an external applied electric field by displacement of ions and electrons, which 

results in the dielectric displacement D 

 𝑫𝑖 = 𝜺𝟎𝑬𝒊 + 𝑷𝒊 , (2.1.1.1) 

with ε0 being the dielectric constant of vacuum, Ei the electric field and Pi the 

polarization. εr, the relative dielectric constant is described by 

 𝜺𝒓 = 
𝜀′

𝜀0
 (2.1.1.2) 
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and expresses the ratio between charge stored on an electroded material divided by 

the permittivity of vacuum at the same electric field. Usually 𝜺𝑟 ranges around five for 

organic and 20 for inorganic materials. Dielectric materials generally have a high 

dielectric constant up to 102 – 105. 

Upon the application of alternating current (AC) to dielectrics, one can differentiate 

the real (out of phase) and imaginary (in-phase) contributions to the permittivity. 

Reasons for that can either be resistive leakage or dielectric absorption or both. Thus 

the loss tangent tanδ is defined by 

 𝒕𝒂𝒏𝜹 =
𝜀′′

𝜀′
 , (2.1.1.3) 

which expresses the ratio of the imaginary out of phase component (𝜺′′) of the 

complex permittivity and the real in-phase component (𝜺′). It is described by 

 𝜀 = 𝜺′ − 𝑖𝜺′′ . (2.1.1.4) 

 

2.1.2. Piezoelectricity 

In piezoelectric materials, an applied stress  is correlated with the creation of electric 

charge in combination with strain of the material. This can be described by 

 𝑫𝒊 = 𝒅𝒊𝒌𝒍𝒌𝒍 . (2.1.2.1) 

Furthermore an applied electric field E results in strain S 

 𝑺𝒊𝒋 = 𝒅𝒌𝒊𝒋𝑬𝒌 . (2.1.2.2) 

The piezoelectric constant d, having a unit of C/N is identical for both effects: 

 𝒅 =
𝑫


=
𝑺

𝑬
 . (2.1.2.3) 

As for ceramics the piezoelectric constant can vary along different axes, d is written in 

tensor form, where equation (2.1.2.4) describes the direct piezoelectric effect, while 

equation (2.1.2.5) describes the converse or indirect piezoelectric effect. 

 𝑫𝒊 = 𝒅𝒊𝒋𝒌𝒋𝒌 + 𝜺𝒊𝒋𝒌
 𝑬𝑱 (2.1.2.4) 

 𝑺 = 𝒔𝒊𝒋𝒌
𝑬 𝒋𝒌 + 𝒅𝒊𝒋𝒌𝑬𝒋 (2.1.2.5) 
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Here the stress  and strain S are related to the electric field and the displacement. 

 𝑘2 =
𝐸𝑒𝑙/𝑚𝑒𝑐ℎ

𝐸𝑡𝑜𝑡𝑎𝑙
 (2.1.2.6) 

 𝑘2 =
𝐸𝑚𝑒𝑐ℎ/𝑒𝑙

𝐸𝑡𝑜𝑡𝑎𝑙
 (2.1.2.7) 

The electromechanical coupling factor k is correlated to the strength of the 

piezoelectric effect and compares the quantity of electrical energy converted to 

mechanical energy 𝐸𝑒𝑙/𝑚𝑒𝑐ℎ with respect to the total energy input (𝐸𝑡𝑜𝑡𝑎𝑙) into the 

system (cf. Equation 2.1.2.6) or conversely the mechanical energy converted to 

electrical energy 𝐸𝑚𝑒𝑐ℎ/𝑒𝑙 with respect to the total mechanical energy input into the 

system (cf. Equation 2.1.2.7), providing a means of judging the efficiency of 

conversion. The coupling factor scales with the degree of poling of a given sample. 

High coupling efficiency is important for transducer and sensor applications. For 

instance in surface acoustic wave sensors, a higher k allows for a higher measurable 

voltage oscillation upon mechanical vibration (acoustic waves). In case of transducers, 

materials with a higher k, require a lower driving voltage for the generation of 

acoustic waves, under otherwise similar conditions. 

Often-times 𝒅𝟑𝟑
∗  is used to describe actuator characteristics. It can be calculated in the 

following way 

 𝒅𝟑𝟑
∗ =

𝑆𝑚𝑎𝑥
𝐸𝑚𝑎𝑥

 (2.1.2.8) 

using the maximum attainable strain Smax and the maximum applied electric field 

Emax. 

 

2.1.3. Ferroelectricity 

Ferroelectricity implies the reversibility of the orientation of the electric dipole in a 

crystal by means of an electric field. The difference to pyroelectricity is that the 

applied electric field needed for reversal is smaller than the electric breakdown field 

or the field required for irreversible arrangement of atoms. Ferroelectric materials 

display a spontaneous electric polarization below the Curie temperature (Tc), 

depolarization temperature (Td) or transition temperature from ferroelectric to relaxor 

state (Tf-r). 
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2.1.4. Phase Transitions 

Lots of piezoelectric materials are a mixture of two (or more) constituents, e.g. PZT is 

a solid solution of PT and PbZrO3 (PZ). As the combined pure individual members 

may have different phases (e.g. pure PT is tetragonal and pure PZ is rhombohedral), 

there must in every case be a confined boundary between the constituents, or, as it is 

the case for a lot of lead-free solid solutions, a broader region with phase coexistence. 

As direct transitions from tetragonal to rhombohedral phases are not allowed by 

symmetry, a bridging monoclinic symmetry serves as an explanation for their 

coexistence.50  

Strictly speaking, the term morphotropic refers to phase transitions induced by 

composition only.51 Thus, due to the additional temperature dependence (and not 

solely concentration dependence) of the phase transitions, it is defined as polymorphic 

phase transition (PPT) in lead-free materials, however, as it is common nomenclature 

with respect to ferroelectric materials, the boundary between rhombohedral and 

tetragonal phases will be addressed as MPB hereinafter. 

The material properties close to the MPB may deviate substantially from the phase 

pure constituents (cf. Figure 2.1.4.1). At or in vicinity of the MPB, dielectric and 

piezoelectric properties of the materials exhibit maxima, which is why it is of 

importance to investigate material behavior at the MPB. 

 

Figure 2.1.4.1  Schematic of the maximized piezoelectric properties at a MPB between 

two distinct phases. 

 

2.1.5. Relaxor Piezoelectrics 

Relaxors are generally characterized by atomic disorder and resulting field disorder.16 

Well-ordered systems in contrary lead to the stabilization of domains, which are 

essentially a long range alignment of the polarization vectors. In relaxor materials this 
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long range order is interrupted by disorder in the material. As piezoelectric material 

systems can be complex, in particular charge disorder, size disorder, the presence or 

absence of lone electron pairs of atoms without particular order, all can contribute to 

the local disorder of the material. This can be described by the concept of so called 

random fields. Random fields reduce the correlation length of polarized units, which 

means the stabilized domains are smaller than without disorder. 

Upon the application of an electric field, so called ergodic relaxor materials display a 

pronounced strain of the material, accompanied by polarization vector ordering. Both, 

however, revert to a random, disordered state, once the electric field is removed. 

Ergodic relaxors display no measurable remanent polarization after such treatment. 

For non-ergodic relaxors, the FE order is retained beyond removal of the applied 

electric field. In general a pronounced frequency dispersion of the permittivity is 

characteristic of relaxor materials. 

 

 

2.2. Measurement Theory and Basics 

2.2.1. Electron Paramagnetic Resonance Spectroscopy 

Electron paramagnetic resonance spectroscopy (EPR) detects unpaired electrons. It is 

therefore insensitive to Na+ with 3s0, K+ with 4s0, Ti4+ 3d0 and Bi3+ with 6p0 

electronic configuration, allowing for excellent distinction between BNKT base 

composition and added dopants. Doping with Cu2+ and V4+, which possess 3d9 and 

3d1 electronic configuration, respectively (cf. Figure 2.2.1.1), allows for detection and 

distinction of those EPR-active centers. Strong Jahn-Teller-splitting (JT-splitting) is to 

be expected for Cu2+, while V4+ is expected to exhibit minor JT-splitting, 

corresponding with a stronger and minor local oxygen octahedra distortion, 

respectively. 

The Spin Hamiltonian for a single unpaired electron with a spin S of 
1

2
 can be 

described by 

 Ĥ = 𝛽𝑒𝑩𝟎 ∙ 𝒈 ∙ 𝑺 − 𝛽𝑛𝑩𝟎 ∙ 𝒈𝒏 ∙ 𝑰 + 𝑺 ∙ 𝑨 ∙ 𝑰    , (2.2.1.1) 

where βe represents the respective Bohr magneton and βn is the respective nuclear 

magneton, while gn corresponds to the nuclear g-factor. The first term of 

Equation 2.2.1.1 represents the respective electronic and nuclear Zeeman interactions, 

with B0 being the applied external magnetic field with respect to the 

g-matrix. This equation omits theoretically possible quadrupole interactions. 
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Figure 2.2.1.1  Schematic (a) of octahedral splitting and additional JT-splitting, with 

the electron configuration exemplarily chosen for Cu2+. Indicated in detail is the EPR 

transition of electrons in b1g orbitals oriented parallel to the magnetic field to an energetically 

higher state in which the electrons assume an antiparallel configuration with respect to the 

applied external magnetic field. In (b) the distortion of an octahedron, resulting from JT-

splitting is depicted. 

The g-matrix is a symmetric 3x3 matrix, reflecting the fact that the Zeeman 

interaction can be dependent on the observed direction i.e. the system may display 

anisotropy depending on the site symmetry of the respective paramagnetic center. 

Rhombic, axial and isotropic or spherical electronic symmetry are distinguished. The 

g-matrix in the rhombic case is described by 

 

𝒈 = [

𝒈𝒙𝒙 0 0
0 𝒈𝒚𝒚 0

0 0 𝒈𝒛𝒛

]   . 

(2.2.1.2) 

For isotropic interactions 

 𝒈𝒊𝒔𝒐 = 𝒈𝒙𝒙 = 𝒈𝒚𝒚 = 𝒈𝒛𝒛  , (2.2.1.3) 

holds true, since regardless of observing direction the electronic interactions are the 

same. Axial electronic environment with unidirectional distortion (in direction of 

principal z axis) is furthermore characterized by 

 (𝒈 = 𝒈𝒙𝒙 = 𝒈𝒚𝒚) ≠ (𝒈ǁ = 𝒈𝒛𝒛)  . (2.2.1.4) 

In analogy the hyperfine splitting constant A, which describes the interaction between 

electron spin and nuclear spin of an atom, can be described by a symmetric 

3x3 matrix, exemplarily indicated for the rhombic case: 
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𝑨 = [

𝑨𝒙𝒙 0 0
0 𝑨𝒚𝒚 0

0 0 𝑨𝒛𝒛

]   . 

(2.2.1.5) 

Since both Cu2+ and V4+ have a spin of 
1

2
, equation 2.2.1.1 was used in either case to 

simulate the EPR spectra. Hyperfine interaction (A) was also taken into account via 

this equation. The copper hyperfine interaction was in particular implemented by the 

second term of the equation, with ICu
 = 

3

2
  and in the other case IVa

 = 
5

2
. For 

Cu2+
 hyperfine interaction it was taken into account that two individual stable 

naturally occurring copper isotopes with abundances of 63Cu: 69.09% and 65Cu: 

30.91% exist. The vanadium hyperfine interaction was solely simulated for the stable 
51V isotope, which has a close to exclusive abundance of 99.75%. 

 

2.2.2. Electrical Measurements 

Electrical impedance is a measure of the complex ratio of the voltage to the current in 

an AC circuit: 

 
𝑍(𝑡) =

𝑈(𝑡)

𝐼(𝑡)
  , 

(2.2.2.1) 

where I is the current through the conductor and U is the potential difference across 

the conductor. It describes how strongly a material opposes the flow of electric 

current in an AC circuit, where Z is depending on time (or frequency). In case of 

direct current (DC), the impedance is equal to the resistance of a given circuit. 

Ceramics never purely behave in an ideal Debye-like manner, which can be described 

by 

 𝑍−1 = 𝑅−1 + 𝑗𝐶    , (2.2.2.2) 

where the equivalent circuit is a single parallel resistance-capacitor element with R 

being the resistance, j=√−1,  is the phase angle, C the capacitance and Z the 

corresponding complex impedance.  

The deviation from Debye behavior can have several causes, for instance the grain size 

distribution being inhomogeneous. Constant phase elements (CPE) are therefore 

commonly used to represent the deviation from this ideal behavior. The impedance of 

a CPE is given by 

 𝑍−1 = 𝑄(𝑗)    , (2.2.2.3) 
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where Q and  are constants (0 <  < 1). When  = 1, the CPE describes capacitive 

behavior. In case of   =0 it resembles an ohmic resistance. Hence, it helps to 

evaluate non-ideal capacitive or resistive behavior. 

In contrast to (ideal) single crystals, ceramic materials can be electrically 

inhomogeneous and electrical responses may overlap. In this case equivalent circuits 

allow for the deconvolution of different regions (e.g. grain boundary and bulk) in the 

material.52-54 

Equivalent circuits are used to represent an electrical model of the electro-mechanical 

processes, for instance the oscillations at resonance (cf. Figure 2.2.2.1), occurring in a 

material. They are, thus, allowing to understand electric properties and, beyond that, 

the extraction of materials parameters such as capacitances or resistances to correlate 

them with the electro-mechanical behavior. 

 

Figure 2.2.2.1  Simple schematics of analogous mechanical (a) and electrical (b) 

oscillation processes in piezoelectric materials. The capacitor, inductor and resistor of the 

electrical model are analogous to spring, mass and damper of the mechanical model, 

respectively. 

In the models, the inductance correlates with a spring, which mainly describes the 

material stiffness. The stiffness of the material is in turn determined by the 

Young’s modulus and the dimensions of the material and depends on the load 

resistance and working frequency. As an important factor, the capacitance (electrical 

model) or mass (mechanical model) predominantly influences the resonance 

frequency. Energy dissipation is implemented in the models by the resistor (electrical 

model) or damper (mechanical model). It is a function of the used working frequency, 

the piezoelectric properties of the material and the amplitude of the applied force 

(mechanical model) or applied field (electrical model). The energy can dissipate in 

the form of heat.  

In order to determine activation energies of a material, the resistances of a sample at 

different elevated temperatures can be used to calculate the resistivity ρ according to 

 
𝜌 =

𝑅 ∙ 𝐹

𝐿
    , 

(2.2.2.4) 

with R being the respective resistance, F the cross-sectional area (electrode area of 

one face) of the sample and L the length (in case of this work the thickness) of the 

sample. With the obtained resistivity it is possible to approximate the 
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activation energy EA of each electrical process by using following Arrhenius-type 

equation 

 
𝜌 = 𝜌0𝑒

−𝐸𝑎
𝑘𝐵𝑇    , 

(2.2.2.5) 

with 𝜌0 being a pre-factor and kB being the Boltzmann constant, from which one can 

obtain Ea: 

 

𝐸𝑎 = −𝑘𝐵 [
𝜕 ln 𝜌

𝜕 
1
𝑇

]   . 

(2.2.2.6) 

Commonly, an Arrhenius plot (cf. Figure 2.2.2.2) is chosen to visualize the data 

obtained from impedance measurements at different temperatures, in which Ea 

correlates with the slope of the plot multiplied by kB. The experimental data should in 

the ideal case yield a straight line if it follows Arrhenius-type behavior. 
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Figure 2.2.2.2  Exemplary Arrhenius plot, displaying the natural logarithm of the 

resistivity vs. the inverse temperature with indicated linear fit. 

 

 

2.3. Lead-Free Piezoceramics 

In this section promising lead-free piezoelectric ceramic materials are presented. Lead-

free piezoelectrics are mandatory to make the processing, usage and disposal of the 

piezoelectric materials safer by eliminating the dangerous exposure to highly toxic 

lead right at the source. Beyond the scope of toxicity, lead-free materials were 
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additionally demonstrated to outperform lead-based materials in specific applications 

and are therefore viable candidates to be investigated in depth. 

There are several variants of piezoelectric materials that do not contain lead. 

However, most of them, like for instance Rochelle salt, quartz or KH2PO4 play a 

merely historical or niche role and are furthermore not able to provide very high 

polarization or strain by their piezoelectrical response. 

Layered structures 
55-58, primarily being in commercial use for high temperature 

applications, represent more of a niche product. An example for that would be 

bismuth layer-structured ferroelectrics (BLSFs) with a very high Tc > 800 °C, putting 

BLSF type systems in a unique position for high temperature piezoelectric 

applications 
59-62. 

The long-known pure BT as well as BT-based systems all possess a high 

electromechanical coupling factor59, e.g. in combination with calcium and zirconium 

in the system BaCa(1-x)TixO3−BaZr(1-y)TiyO3 (BCT-BZT)63,64. BT-based systems have 

been used as piezoceramic material before the discovery of PZT e.g. in sonar or 

hydrophone applications. However, the main use today is as MLCC followed by use as 

PCTR. This recess of commercial use can be seen as rooted in the major drawback of 

BT: a Tc of about 120°C, which is significantly lower than that of PZT and renders it 

inferior to PZT with respect to usable temperature range and additionally with respect 

to temperature stability. 

The two most researched lead-free material classes to date are the alkali-niobate-

based and sodium bismuth titanate-based systems, which are detailed in the following 

sub-sections. For further reading and minute details, several reviews, books and 

specific papers exist that describe lead-free piezoceramics 
3,13,15-21,62,65. 

Due to the manifold piezoelectric applications with different specific requirements and 

figure of merit (FOM), several lead-free alternatives are pursued in research. All those 

variants have certain advantages and disadvantages, such as operating temperature 

restrictions due to the material. This renders some materials useful in one application, 

whereas in other temperature regimes, different materials may excel. Table 2.3.1 

gives an idea about the underlying key FOM that highlight the most important 

materials parameters with respect to certain applications and their operating 

temperature range. 
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Table 2.3.1 | Available Lead-Free Materials, Their Applications and FOM (following 5) 

material application(s) 

approx. 

range of 

operation 

FOM ref. 

layered (textured) 

BLSF and other 

layered structures 

aerospace, aircraft, 

nuclear sensors 

500 °C - 

1500 °C  

d33, k²∙QM, 

d∙g 
58,66-68 

AT cut quartz resonator RT - 580 °C QM, Fr- TC 5
 

KNN-based 

ultrasonic/automotive/SMD 

sensor, fuel injection actuator, 

ultrasonic motor 

RT -300 °C k²∙QM 69
 

KNN-based 
ultrasonic sensor, ultrasonic 

cleaner, transformer, motor 
RT - 250°C k²∙QM, νmax 

69,70 

KNN-based microphone, buzzer, actuator RT - 250°C 
d33, Smax/Emax, 

d∙g 
71

 

BNT-based 
ultrasonic sensor, ultrasonic 

cleaner, transformer, motor 
RT - 200°C k²∙QM, νmax 

72,73 

BNT-based actuator RT - 100°C d33, Smax/Emax 
74-76

 

PVDF (polymer) microphone, buzzer, actuator RT - 170°C 
d33, Smax/Emax, 

d∙g 
5

 

BT-based 

(BCT-BZT) 
sensor / actuator RT - 100°C d33, Smax/Emax 

77,78 

  
        

 

2.3.1. Alkali-Niobate-Based Ceramics 

The system KNN and solid solutions thereof are a widely studied lead-free system that 

especially received strong attention after an investigation published by Saito et al. 3. 

The publication created high interest in the material system and lead to extensive 

follow-up research, though the system itself has been known for about 50 years 
79-81. 

One reason that the material was not thoroughly investigated in the early years after 

the discovery is the complicated processing due to difficult sintering in a narrow 

window, making alkali-niobate systems harder to process than for instance BT 
82. But 

also the finding of PZT as a material, which is easier to process, can be seen as reason 

for the long delay of research interest in the material. 
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Forming solid solutions with other end-members, e.g. lithium niobate, enables easier 

processing, since lithium oxide is able to act as a sintering aid, creating a liquid phase 

during sintering. Figure 2.3.1.1 gives an idea about the range of compositions in the 

KNbO3-NaNbO3-LiNbO3 (KN-NN-LN)-system, schematically sketched in grey, which 

could to date be obtained with reasonable densities and the piezoelectric properties 

could be assessed (in the other cases, the samples presumably will have been leaky).  

 

Figure 2.3.1.1  Compositions in the KN-NN-LN ternary system that were successfully 

sintered and it was possible to perform electrical measurements (the hatched areas represent 

the approximate regions, entailing reported compositions, detailed by S. Priya (ed.)65). 

 

 

Figure 2.3.1.2  Influence of the A / B (K / Nb) ratio on absolute density and sintering 

temperature of the compositions (adapted from Matsubara et al. 70 and reprinted with 

permission, copyright © 2005, John Wiley and Sons, Inc.). 
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As Figure 2.3.1.2 illustrates: in addition to the narrow compositional ranges that are 

possible to process with moderate efforts, another factor that complicates the 

synthesis of ceramics in the KNN-system is that the A- and B-site ratio highly 

influences different sintering properties such as density and optimum sintering 

temperature. For increased A-site excess atoms, as well as for the stoichiometric 

composition, a drop in sintering temperature and density can be observed. In 

addition, the evaporation of alkali oxides and phase stability at high temperatures 

pose further challenges. The density was reported highest for B-site excess 

stoichiometry with a plateau for the observed compositional ratios at about 4.4 g/cm³. 

If no countermeasures are employed, the difficulties in processing can lead to reduced 

density of the ceramics, thus weakened piezoelectrical properties. To prevent these 

phenomena, there are different means to control the sintering process. Firstly, it is 

possible to use methods such as hot(-isostatic) pressing 
83, pulsed laser deposition 

84 

or spark plasma sintering 
85-87 to compact the material. The overall achievable 

densification by hot pressing results in improved ceramics with 99.0 - 99.8 % relative 

density, exhibiting a coupling coefficient of 0.48 
88. Those methods, however, are 

expensive and thus not suitable for a cost-efficient large scale production of alkali-

niobate-based piezoelectric ceramics. Owing to this, secondary options to deal with 

those difficulties, namely sintering additives and off-stoichiometry-sintering 

(as Figure 2.3.1.2 already suggests), are being investigated, with a focus on the 

industrial applicability of these processes. Sintering aids have been used in the form of 

simple oxides e.g. CuO 
89-92, Bi2O3 

93 or complex additives like K4Cu(Nb/Ta)8O23 
70,94 

and enable dense sintering without the need for hot pressing methods.  

Another researched approach to alter the piezoelectric properties of KNN-based 

materials is to lower the orthorhombic to tetragonal phase transition, which occurs at 

about 200°C in pure KNN 
95 close to room temperature. This has been achieved by 

introducing other elements into the system that lead to improved electromechanical 

response. However, this is obviously at the expense of a lower depolarization 

temperature, in addition accompanied by a strong dependency of piezoelectrical 

properties on the temperature. To avoid temperature dependent properties, it is 

possible to lower the transition temperature well below RT, for instance by adding 

calcium 
96 or lithium and antimony 97,98 to the system. This ensures that there is no 

phase transition in the operational range of the piezoceramic element. Since key 

piezoelectric properties, such as d33 and d33*, are decreased upon lowering of the 

phase transition below RT, this can be seen as a hardly avoidable trade-off between 

temperature stability and piezoelectric performance.  

With respect to mechanical strength and fracture toughness, there are fewer studies. 

Those indicate mechanical strength and fracture toughness of alkali-niobate-based 

ceramic materials that are comparable to that of PZT ceramics 
59,98.  
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2.3.2. Bismuth Sodium Titanate-Based Ceramics 

In contrast to section 2.6.1, with a focus on the defect chemistry of BNT-based 

materials, this section is more focused on general piezoelectric features and 

mechanisms. 

Bismuth sodium titanate (BNT) is a material, already known since 1960, after being 

discovered by Smolenskii et al. 99. It has a perovskite structure with rhombohedral 

symmetry. BNT displays multiple phase transitions that are not clearly defined for the 

pure material. The phase transitions from rhombohedral to tetragonal TR-T and 

subsequently to cubic TT-C are approximately at 300°C and 540°C, respectively, for 

BNT single crystals 100. Due to the breakdown of the ferroelectric order below Tc, 

leading to polarization loss way before Tc, the FOM for the very upper limit of the 

usable temperature range is the so called Tf-r. It indicates the transition from 

ferroelectric to relaxor state which does not coincide with Tc. For BNT solid solutions, 

a relationship between TR-T and ionic radius was reported by Hiruma et al. 101. They 

found, that the TR-T decreases upon addition of all investigated A-site dopants but 

Pb2+.  

Due to a high coercive field (EC) of approximately 7 kV/mm, a high field is required to 

pole the pure material without causing an electric breakdown, making investigations 

on pure BNT difficult. The high poling field can be circumvented by forming solid 

solutions with other end-members that change the piezoceramic properties and 

reduce the necessary poling field. Henceforth, binary systems as BNT-BT, BKT-BT, 

Bi0.5Na0.5TiO3 -SrTiO3 (BNT-ST) or BNKT or ternary systems as BNKT-BT, 

BNKT-KNN, BNKT-BZT or Bi0.5Na0.5TiO3-Bi0.5Li0.5TiO3-Bi0.5Li0.5TiO3 

(BNT-BLT-BKT) prevail current research and not pure BNT. 

 

Figure 2.3.2.1  Phase diagram of BNT-BT close to the proposed MPB (adapted from 

Hiruma et al. 101 and reprinted with permission, copyright © 2007 Trans Tech Publications, 

Switzerland). 
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In the BNT-BT system, BNT-6BT is the most researched composition and displays an 

MPB between the rhombohedral phase at high BNT contents and the tetragonal phase 

at high BT contents, which entails BNT-6BT (cf. Figure 2.3.2.1). Above Tf-r a relaxor 

phase exists. 

The poling history of BNT-based materials plays a non-negligible role, as can be seen 

in Figure 2.3.2.2. Transitions from relaxor to FE behavior are possible and were 

characterized as irreversible at high electric fields, for instance at BT concentrations of 

seven mol.% by Ma et al.102. This is accompanied by the evidence of monoclinic 

phases under field 103 above Tf-r. 

Properties that can be obtained at the MPB are 125 pC/N, k33 =0.55 and a tanδ of 

1.3 % as reported by Takenaka et al.104. This increase in aforementioned piezoelectric 

key figures is, however, at the expense of Tf-r, which is being reduced, and 

furthermore accompanied by a strongly curved MPB, which translates to high 

dependence of material properties on temperature. Processing-wise BNT-BT can be 

sintered at lower temperatures (1100-1200°C) than pure BNT, which adds the benefit 

of reduced evaporation of components during sintering. Compared to that, the far less 

investigated BKT-BT system exhibits inferior piezoelectric properties of d33 = 60 pC/N 

and k33 = 0.37, while the TC of 290°C is in close proximity of the TC of BNT-BT as 

reported by Hiruma et al. 105. 

BNT-ST, first reported by Sakata et al. 106, allows for strains of 0.28 at 0.1 Hz, 6 

kV/cm and a composition of BNT-28ST. At compositions below 26% ST, a 

rhombohedral perovskite structure was confirmed by X-ray diffraction (XRD); for  

ST-contents higher than 28%, the system was characterized as metrically cubic. 

BNT-ST was reported to reach a maximum d33 value of 127 pC/N at 24% ST, while 

above 28% ST no piezoelectric response was found. 
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Figure 2.3.2.2  Multifigure with d33 at different Epol for (a) x = 5.5%, (b) x = 6% and 

(c) x = 7% BT content. (d) displays the d33 as function of composition at Epol = 6.5 kV/mm. 

(e) is the proposed phase diagram for (1-x)BNT-xBT (adapted from Ma et al.102 and reprinted 

with permission, copyright © 2012 American Physical Society). 

The system BNKT features a MPB with maximum d33 around BNT-20BKT 

(cf. Figure 2.3.2.3), as reported by several authors 
23,27,107,108, which is widely 

investigated also in the single crystal state. Compared to KNN-based systems, the 

sintering process is rather well controlled and understood. On the one hand there is 

the classical oxide route, comprising oxide or carbonate starting materials, with 

sintering taking place at about 1100°C to 1200°C, leading to dense ceramics. 

Properties that can be realized by this synthesis are a d33 of 140 – 190 pC/N at a kp of 

0.27 to 0.35 in combination with a lowered Td of 130-170°C, as for instance reported 

by Sasaki et al. 109 as well as other researchers 
22,24,25,108,110. On the other hand, 

different synthesis methods in order to produce bulk ceramics, single crystals, thin 

films and thick films and especially textured ceramics and films, have been 

investigated so far. 

Single crystals were for instance produced by the flux method 
111-114 or the top seed 

solution grown method 
115-117 and yielded different properties, depending on 

composition as well as growing method. Pure BNKT single crystals were reported to 

exhibit d33 of 120 to 170 pC/N and a maximum strain of about 0.25% at a field of 

8 kV/mm. 
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Figure 2.3.2.3  The MPB of BNKT illustrated with the example of piezoelectric constant 

d33 at RT vs. BNKT composition (adapted from Otoničar et al.
23

 and reprinted with 

permission, copyright © 2009 Elsevier Ltd. All rights reserved). 

For BNT > 0.8, BNKT compositions were found to exhibit rhombohedral symmetry 

and in addition display pseudo-rhombohedral octahedral distortions due to rotations 

and ion displacement. In the tetrahedral region with BNT < 0.8, only in-phase 

rotations are said to be present, however, as reported by Levin et al., limited to the 

nano-scale.26 Further it was concluded that no miniaturization of FE non-

180° domains is present near the MPB. 

 

Figure 2.3.2.4  Phase diagram of the (1-x)BNT-xBKT system determined from XRD, 

TEM and dielectric measurements. Open green circles represent the temperatures of the FE 

anomaly derived from dielectric data, the solid black line corresponds to the transition data as 

seen in XRD data. Light grey areas display the transition width and the green dashed line 

indicates the FE transition below tilting. The tilting is indicated to a notation according to 

Stokes et al. 118 (adapted from Levin et al. 26 and reprinted with permission, copyright ©2013 

American Physical Society). 
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For single crystals, piezoelectric properties can be dramatically improved by the 

introduction of BT. While in the ceramic material, one is able to obtain moderate 

strain increases by the addition of BT to the system, BNKT-BT single crystals feature 

very high strains of 0.87 and in addition were reported to feature a 0.7% jump in 

strain at a threshold of approximately 2 kV/mm 
114.  

It is possible to introduce relaxor-type behavior to BNKT at the MPB, by for instance 

adding Bi1/2Zn1/2TiO3 (BZnT), which in this particular case induces relaxor behavior 

between 2 and 4 % BZnT content, as reported by Dittmer et al. 119 . The relaxor 

behavior was reported to lead to an increased Smax/Emax of over 500 pm/V, which was 

attributed to the loss of remanent strain. Flattened permittivity curves in combination 

with a lower dielectric loss were found in the system. The authors see those effects as 

a result of mixed B-site occupancy through the introduction of Zn2+ rather than the 

influence of the end-member BZnT.  

Patterson et al. 120, working in the same ternary system but in the tetragonal region of 

the BNKT system at 40% BKT content, observed a secondary phase transition at lower 

concentrations (2.5%) of BZnT. This was said to be comparable to the transition 

occurring at the MPB of the pure BNKT system. Upon further addition of BZnT, 

flattening of the permittivity curves, maximum strain values of 0.33 and a Smax/Emax of 

547 pm/V was reported. The evolving relaxor behavior upon addition of BZnT is 

comparable to the results presented by Dittmer et al. at MPB-composition. 

By employing B-site additives ((Zr,Fe)1/2Nb1/2, Zn1/3Nb2/3 and Mg1/3Nb2/3), containing 

Zn2+ and Mn2+, which are also known to introduce relaxor-type behavior in PZT-

based materials, Yamada et al. found flattened permittivity behavior and decreased 

Curie temperatures for those materials. Those findings hint at the possibility of a 

phase transition shift towards lower temperatures, comparable to the findings of 

Dittmer et al. and Patterson et al.. However, since they did not conduct piezoelectric 

measurements, no definite statement about these properties can be made. 

Another widely researched ternary system is BNKT with the addition of niobium by 

means of the formal end-members KN 
33 or KNN (of which the BNT-rich end is 

detailed in Figure 2.6.2.5). 
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Figure 2.3.2.5  Phase diagram of BNKT-KNN, focusing on the MPB-region, which 

consists of pseudocubic relaxor phase, rhombohedral ferroelectric phase and tetragonal 

ferroelectric phase. The magnitude of the d33* is displayed in purple at the respective 

composition, indicated by a red dot. (adapted from Hao et al. 121 and reprinted with 

permission, copyright ©2013 AIP Publishing LLC). 

With respect to the temperature evolution of the piezoelectric properties, 

Seifert et al. 35, working in the same system, found a temperature insensitive behavior 

at sufficiently high KNN concentrations. They attributed this to the disrupted 

ferroelectric order and thereby introduced relaxor behavior of the material. This 

proposed mechanism is confirmed by work of Hao et al.121, who performed in-situ 

high energy X-ray scattering experiments under external electric field and found a 

distortion from the pseudocubic structure at applied fields. The temperature 

insensitive behavior can already be found at addition of minor amounts of KNN to the 

BNKT system (cf. Figure 2.3.2.6), inducing a phase transition shift below room 

temperature. Textured ceramics of this type can be synthesized as demonstrated by 

for instance Gao et al. 122  
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Figure 2.3.2.6  Dependence of Smax/Emax on the temperature for different BNKNT 

compositions of (1–x) (0.8BNT–0.2BKT)–x (0.97KNN–0.03BKT) (x= 0.01, 0.02 in mol%), 

exhibiting a strong correlation for BNKNT0 and temperature insensitive strain vs. temperature 

behavior for BNKNT1 and-2. (adapted from Seifert et al. 35 and reprinted with permission, 

copyright © 2010 The American Ceramic Society). 

The introduction of lithium into the BNKT system, which was found to reduce the 

sintering temperature 
39 and increase the planar mode electromechanical coupling 

factor up to 0.38 
123, influences the depolarization temperature. This in turn was 

found to exhibit a microstructural dependence on the employed lithium source, 

according to Lei et al. 124,125. In contrast to most other end-members or additives, 

including BLT, higher Tc and Tf-r were found for excess doping of the BNKT system 

with Li2CO3 
40, while electric properties improved at the same time. 

Manganese is mostly introduced to the BNKT system by excess doping and was found 

to decrease the final grain size of the ceramic through inhibited grain growth during 

sintering 
126,127. In addition a lowering of the leakage current upon manganese excess 

doping was studied by Wu et al. 128, which is also reported for the system BNKT-BT 

with manganese doping 
42. The increase in piezoelectrical properties in the reported 

cases is at the expense of Tf-r. 

In the literature, several ways to introduce lanthanum into the BNKT system, such as 

the replacement of bismuth with lanthanum 
129 or the excess doping of BNKT at the 

MPB 
130 or close to the MPB in addition with strontium 

131 as well as in the tetragonal 

region 
132 are described. The obtainable d33 range from 153 to 215 pC/N. While this 

goes hand in hand with a significant decrease in Tf-r for most of the studied systems, 

the tetragonal BNKT starting composition with lanthanum excess doping was reported 

to exhibit a fairly high Tf-r of 219°C. The high Tf-r was attributed to a decrease in 

oxygen vacancies which also resulted in lower breakdown strength according to 

Yoshii et al. 132. 
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Ullah et al. 133-137 investigated several aspects of BiAlO3 (BA) incorporation into the 

BNKT system. The generally observed effect that BA-addition leads to relaxor 

properties, finally resulting in a relaxor material at the MPB, as well as on both sides 

of the MPB, was attributed to the reduction of the ferroelectric order through cation 

disordering 
138,139. Since BNKT-BA possesses a low Ec, Su et al. 140 employed it as 

matrix material in combination with BNT seeds in order to improve the obtained 

strain to about 0.4 % by means of a composite approach. 

For further details on particular dopants and additives to the BNKT system, tables 8.1 

and 8.2 located in the appendix and the references contained therein can be 

consulted. 

In conclusion, it can be said that there is a wide range of investigated end-members 

and combinations thereof as well as specific dopants for all lead-free systems. 

For room temperature applications with low thermal fluctuations, BCT-BZT appears to 

be a promising member with excellent piezoelectric properties that can replace 

existing lead-based materials. 

Offering higher operating temperatures, the alkali-niobate-based materials comprise 

low density, fairly high mechanical strength and high piezoelectric response. They, 

however, still lack a robust and reproducible synthesis process. One additional 

drawback from an economic standpoint is that the raw materials Nb2O5 and Ta2O5 are 

inflating the price of the ceramic products. Latest research suggests that for multilayer 

actuators (MLAs), the employed electrode can be nickel, allowing cutting costs versus 

silver palladium or platinum electrodes 
141,142.  

Bismuth sodium titanate-based ceramics in turn offer easier processing conditions and 

a wider operating range with respect to temperature, however, with to date lower 

obtainable d33 than BCT-BZT systems or KNN-based systems. The additional Tf-r, 

which limits the operating temperature below Tc, still allows for higher operating 

temperatures than for instance BCT-BZT, but is not able to match the temperature 

range of KNN-based materials. 

As a concluding remark, it can be said, that some of the above mentioned lead-free 

materials are already used in applications. However, the general trend for replacing 

lead-based materials is, that most probably more than one of the lead-free system 

presented in this section and possible even novel materials are needed for the varying 

application demands, as for instance temperature ranges or other FOM of 

piezoelectric materials.5  
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2.4. Defect Chemistry of Piezoelectric Materials 

Co-doping in general can be described as the doping of materials with more than one 

foreign element. Using co-doping, one is able to influence mainly the defect chemistry 

of functional materials, which in turn governs mechanisms that can influence 

processing properties or parameters as well as characteristics of the final material. 

Doping of materials enables influencing defect complexes, complex associates, ionic 

transport, extrinsic electronic disorder, grain boundaries as well as extrinsic ionic 

disorder by introducing extrinsic nonstoichiometry into the material 143. 

Dopant ions usually replace normal ions of the host compound lattice - a state which 

can be described as a solid solution. Interstitial dopants, situated in-between sites of 

normal ions of the host compound lattice, are known but uncommon for 

piezoceramics. In the field of piezoelectric ceramics, most of the doping takes place on 

the cationic lattice. However, few anionic replacements for oxygen with fluorine or 

nitrogen are reported in literature 
144-151. 

 

Figure 2.4.1  Schematic of key parameters influencing the defect chemistry of 

ABO3-type perovskite materials. 

Two types of strategies are commonly employed in chemical substitution doping of 

piezoceramics, one being the replacement of lattice site ions with other isovalent 

atoms, possessing a different effective ionic radius. The radial difference leads to a 

distorted environment near the doping site, which can make the structure less stable 

and improve the material’s response to mechanical forces. This can for example be 

achieved by replacing Ba2+ with Sr2+ or Ti4+ with Zr4+. 

The second possibility is to replace normal lattice site ions with aliovalent ions, which 

have an ionic charge, different from the normal ion charge (see also Figure 2.4.1). 

This has a more pronounced effect on the defect chemistry of the material, due to 
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direct influence on electric charges in the material. The ionic charge of the foreign ion 

that replaces the ion of the normal lattice can be either higher than the charge of the 

latter one, which is then called donor doping or lower, resulting in so called acceptor 

doping. Examples are the replacement of Ti4+ with Fe3+ (acceptor doping) or 

replacing Ti4+ with Nb5+ (donor doping). This disturbance of the local charge balance 

leads to the creation of vacancies to restore the global electrical equilibrium. 

Aliovalent dopants and vacancies may form defect dipoles in the lattice, which is 

schematically represented in Figure 2.4.2. 

 

Figure 2.4.2  Schematic of a defect complex in the PbTiO3 structure: Pb ions are 

situated on the perovskite A-site, Cu2+ replaces Ti4+ on the B-site. The dashed line represents 

the electrostatic force between the acceptor Cu2+ and an oxygen vacancy (𝒗𝑶
●●). Not to scale. 

BaTiO3 (BT) allows for the whole spectrum of possibilities to influence piezoelectric 

properties. This is why hereinafter it is taken as exemplary piezoceramic material to 

discuss the interaction of defect chemistry with materials properties in detail. 

Besides the oxygen vacancies 𝑣𝑂
●● introduced by an environment with low oxygen 

activity 

 𝑂𝑂
𝑋 ↔

1

2
𝑂2 + 𝑣𝑂

●● + 2𝑒′ (2.4.1) 

and cation vacancies that may occur on the Ti-site of the system through BaO excess 

 𝐵𝑎𝑂 → 𝐵𝑎𝐵𝑎
𝑋 + 𝑣𝑇𝑖

′′′′ +𝑂𝑂
𝑋 + 2𝑣𝑂

●● (2.4.2) 

or on the Ba-site, caused by Ti excess 

Pb2+ 

Cu2+ 
O2- 

𝒗𝑶
●● 
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 𝑇𝑖𝑂2 → 𝑉𝐵𝑎
′′ + 𝑇𝑖𝑇𝑖

𝑋 + 2𝑂𝑂
𝑋 + 𝑣𝑂

●●   , (2.4.3) 

acceptor doping with for instance Fe2O3 creates both iron on titanium places and 

oxygen vacancies  

 2𝐵𝑎𝑂 + 𝐹𝑒2𝑂3 → 2𝐵𝑎𝐵𝑎
𝑋 + 2𝐹𝑒𝑇𝑖

′ + 5𝑂𝑂
𝑋 + 𝑣𝑂

●●   , (2.4.4) 

which form upon incorporation into the lattice. Acceptor doping in the case of BaTiO3 

is possible with A-site ions that have a lower ionic charge of +1 like e.g. K+ and Na+, 

B-ions that have an ionic charge lower than that of Ti, such as Fe3+ or Al3+ or by 

introducing N3- into the oxygen site 
152. 

Acceptor dopants and oxygen vacancies can form so called defect dipoles, which are 

indicated in brackets with the overall charge indicated (e.g. (𝑇𝑖3+′ − 𝑣𝑂
●●)●). Those 

defect dipoles influence the conduction properties by resulting in different charge 

compensation: for Ba/Ti = 0.99, this is mainly by electrons and for Ba/Ti = 1.01, it is 

dominated by titanium vacancies 
48. The electron charge compensation mechanism in 

BT-based materials is in contrast to for instance PZT-based materials or other lead-

free materials, where (A-site) vacancy charge compensation predominates. 

In turn, donor doping of BaTiO3 can be achieved by introducing A-site ions with a 

higher ionic charge (>+2) as for instance La3+, B-ions with an ionic charge higher 

than +4 ,e.g. Nb5+, or doping with fluorine, leading to F- ions on the oxygen site. 

Interstitial doping is uncommon for ferroelectric perovskite materials with 

B2O3 doping of BaTiO3 being an exception, which creates the following defect 

chemistry: 

 𝐵2𝑂3 → 2𝐵𝑖
●●● + 3𝑂𝑂

𝑋 + 3𝑣𝐵𝑎
′′   , (2.4.5) 

where interstitial boron (𝐵𝑖
●●●) leads to an expansion of the crystal lattice. Since 

interstitial doping is mostly restricted to boron in perovskite piezoceramics, it will not 

be considered in the following sections. 

Through those doping strategies, grain boundaries of the ceramics can be influenced. 

An example is donor doping of BaTiO3 with large amounts of Nb under specific 

synthesis conditions. In this case, Nb will predominantly reside in the grains and not 

the grain boundary: the grain boundaries possess relatively more acceptor states. This 

leads to a pair of symmetric Schottky barriers (cf. Figure 2.4.3), creating an energy 

barrier along grain boundaries, which in turn may cause a very high electrical 

resistivity with pronounced temperature dependency, depending on how many 

acceptor states are introduced into the grain boundary.153 The resulting positive 
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temperature coefficient resistance (PTCR) effect exists because the concentration of 

Schottky defects itself has a strong temperature dependency. 

 

 

Figure 2.4.3  Schematic of double Schottky barrier: left and right hand side: grains, 

creating the barrier and increasing the resistance of the overall material. 

Another ferroelectric feature that can be influenced by doping is the domain wall. 

Domains themselves are regions with dipoles aligned in the same direction. The 

number of possible domain orientations per ideal single crystal, all having the same 

energy, depends on the type of crystal lattice. For BaTiO3 it is six. Since in a large 

crystal many domains are coexisting, so called domain walls, which can be interpreted 

as defective structures, can be found in piezoelectric materials. These create a stress 

gradient that will strongly interact with other defects described in this section.154 

 

Figure 2.4.4  Simplified sketch of dipole (arrows) alignment with respect to an 

exemplary 𝐹𝑒𝑇𝑖
′  defect and the pinned surrounding domain wall, indicated by the dotted box.  
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Since aliovalent dopants are charged defect centers in the material, they will influence 

the alignment of the polarization of neighboring dipoles and thereby the location of 

domain walls. In addition, they reduce the mobility of domain walls (cf. Figure 2.4.4). 

In PZT and BT-based materials, this occurs to such an extent that aged samples will 

display a so called internal bias field (Ei).155 This field is a result of domain pinning, 

which means that after a given time, the dipoles permanently align with respect to 

(preferentially) charged defect centers (cf. Figure 2.4.5).156 This is for instance 

possible by means of oxygen vacancy hopping to align the dipolar moment with the 

internal field. 

 

 

Figure 2.4.5  Schematic of FE polarization vs. electric field loop, displaying an 

internal bias field, different coercive fields (Ec 1 and Ec 2) and the characteristic offset electric 

field of the FE loop. 

Depending on the dopants, different piezoelectric characteristics of the material can 

be obtained. In the case that few charged defects (vacancies or aliovalent dopants) are 

present in the ceramic, the domain walls can move largely uninfluenced and therefore 

no high energy barrier from internal fields needs to be overcome to reorient the 

domains. 

Such materials will display low coercive fields in combination with low remanent 

polarization (cf. Figure 2.4.6(a)). Materials with these characteristics are commonly 

called “soft” piezoelectric. As pinning will reduce the domain wall mobility due to 

discussed stabilization effect, doping that creates locally charged defect species in the 

ceramics will lead to higher coercive fields and higher remanent polarization 

(cf. Figure 2.4.6(b)). This is commonly called “hard” piezoelectric behavior. 
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Figure 2.4.6 Schematic of FE polarization vs. electric field loops of (a) characteristic “soft” 

material with very low Ec and Pr and (b) a “hard” material with pronounced Ec and high Pr. 

A very thorough study of the defect chemistry of PZT with an incorporation of 

1 mole-% A-site donor dopant La3+ and 0.5 mole-% B-site acceptor dopant Fe3+ by 

Erdem et al 157, addresses the question, by which mechanism co-doping - in contrast to 

pure acceptor doping with Fe3+ - influences ageing and other ferroelectric properties 

of the material. Therefore, they studied co-doped PZT by means of multifrequency 

EPR spectroscopy, which was also employed for purely acceptor doped 

PZT compositions in other studies. This yielded mixed results: for Fe3+ doped PT and 

PZT compositions 
158 defect dipoles could be observed by the technique, but not in the 

case of for instance acceptor centers as Cr3+ or Cu2+
 
159,160. Investigations on other 

rare earth A-site donor ions e.g. gadolinium 
161 lead to similar results. 

 

Figure 2.4.7  Schematic of defect dipole orientation for (a) pure PZT, (b) PZT with a 

(𝑭𝒆𝑻𝒊
′ − 𝒗𝑶

●●) defect dipole oriented along the c-axis and (c) the same dipole oriented in the 

crystallographic a-b-plane (adapted from Erdem et al. 157 and reprinted with permission, 

copyright © 2011 IEEE). 

With EPR spectroscopy they revealed, that 𝐹𝑒𝑇𝑖,𝑍𝑟
′  is displaced in opposite direction of 

the neighboring oxygen vacancy 𝑣𝑂
●●, whereby the defect dipole moment was 

measured to be increased, owing to the longer distance in-between the two defects in 

the dipole (𝐹𝑒𝑇𝑖,𝑍𝑟
′ − 𝑣𝑂

●●) ●. Furthermore, they speculate that this defect dipole is 

favored over a complete local charge compensation, as known for instance for co-
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doping with Fe3+ and the A-site donor dopant La3+. Figure 2.4.7 sketches the 

proposed model, in which a reorientation of the defect dipole is occurring upon 

exposure to an electric field or mechanical stress, which is believed to be realized by 

spontaneous diffusion of 𝑣𝑂
●● about the center atom of the octahedron. 

Generally speaking – thus moving back from the specific example of BaTiO3 and PZT – 

the intentional introduction of defects into a normally ordered crystal structure 

through doping is believed to move the system further away from the energetically 

stable state, thereby lowering energetic barriers for the ferroelectric switching of the 

materials, which results in higher piezoelectric properties. This is important for 

applications, because it enables the tuning of characteristic features as e.g. the 

conductivity by influencing the defect chemistry of the final product, thus allowing for 

specific tailoring of desired properties. 

In the following sub-sections, relevant commercial systems are being described with 

respect to how important material properties can be fine-tuned by introducing the 

right defect chemistry through chemical co-doping, with a specific focus on BNT-based 

systems in section 2.6. 

 

 

2.5. Co-Doping of Lead-Based and BaTiO3-Based Piezoceramics 

As detailed in the previous section, doping can have a profound effect on the defect 

chemistry and thereby on piezoelectric and electric properties of ceramics. In many 

commercial piezoelectric ceramics (for instance PIC151 or PIC181 by PI Ceramic 

GmbH, Lederhose, Germany), co-doping with more than one aliovalent dopant 

simultaneously is employed to create defect dipoles in the material and to control 

domain wall mobility, Schottky barriers and influence the oxygen vacancy 

concentration in order to tailor piezoelectric and electric properties.  

2.5.1. Co-Doping BaTiO3 and BaTiO3-Based Systems 

BaTiO3 is a material in practical use for longer than 60 years, not only because of its 

piezoelectric properties, but also due to applications as capacitor, utilizing the 

dielectric features of the material 162. Above its Curie temperature (130°C) it forms a 

cubic perovskite and is paraelectric (PE). At any temperature below that, BaTiO3 

exhibits ferroelectric behavior. Undoped BaTiO3 displays an excess of acceptor 

impurities, behaving like a semi-conductor with a band gap of ~3.1 eV and resistivity 

in the range of 1010 
cm 

163. Doped and co-doped BaTiO3 ceramics are used as 

capacitors, piezoelectric devices, as well as semiconductors and thermistors 
164, the 

largest market being multilayer ceramic capacitors (MLCCs) and PTCRs. Due to the 
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long history as well as high volume of research and publications, the functional and 

defect properties of BaTiO3 are fairly well understood. 

The intrinsic defect chemistry of pure BaTiO3 is mainly dominated by the formation of 

full Schottky defects: 

 𝑇𝑖𝑇𝑖
𝑋 + 𝐵𝑎𝐵𝑎

𝑋 +𝑂𝑂
𝑋 → 𝑣𝐵𝑎

′′ + 𝑣𝑇𝑖
′′′′ + 3𝑣𝑂

●● (2.5.1.1) 

which are energetically favored over following Frenkel disorders 

 𝑂𝑂
𝑋 → 𝑂𝑖

′′ + 𝑣𝑂
●● (2.5.1.2) 

 𝐵𝑎𝐵𝑎
𝑋 → 𝑣𝐵𝑎

′′ + 𝐵𝑎𝑖
●● (2.5.1.3) 

 𝑇𝑖𝑇𝑖
𝑋 → 𝑣𝑇𝑖

′′′′ + 𝑇𝑖𝑖
●●●● (2.5.1.4) 

with energies being 2.29 eV per defect for the formation of a complete Schottky defect 

and 4.49, 5.94 and 7.57 eV per defect for the formation of an oxygen, barium and 

titanium Frenkel defect, respectively 
165. This correlates well with the fact that 

interstitial doping in BaTiO3 is very uncommon. 

Co-doping solely on the A-site was undertaken by for instance Wu et al. 166, 

introducing potassium and lanthanum into the perovskite crystal lattice. 

K0.043La0.007Ba0.95TiO3, which corresponds with an acceptor-dominant composition, 

exhibits a dielectric peak comparable to pure BaTiO3, whereas the composition with 

donor-dominant behavior (K0.007La0.043Ba0.95TiO3) exhibited large broadening of the 

dielectric peak combined with a shift to lower temperatures (cf. Figure 2.5.1.1). 

Structurally, an increased tetragonality was reported for an increasing K/La ratio. The 

highest piezoelectric d33 value of 160 pC/N was reported for the acceptor-dominated 

composition. Karaki et al. 167 in contrast to starting from pure BaTiO3, worked on the 

effects of Bi2O3 and Li2O as additives to already Mn-doped BaTiO3 piezoelectric 

ceramics, finding an impact of the dopants on Ec, which rose from 120 to 500V/mm, 

while d33 decreased from 400 to 200 pC/N, maintaining a coupling factor in planar 

direction (kp) of ~0.36, which was said to be beneficial for applications in ultrasonic 

imaging. 
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Figure 2.5.1.1  Dielectric constant vs. temperature for different La/K-ratios upon 

heating (adapted from Wu et al. 166 and reprinted, copyright © 2012 Taylor & Francis). 

Assuming perfectly homogeneous distribution of defects throughout the material 168 

does not suffice to explain the (piezo-)electrical behavior of BaTiO3 grain boundaries 

after (co-)doping. According to Chiang et al. 169, acceptor segregation in company 

with the absence of donor segregation lead to solute segregation. They were unable to 

find a point of zero potential between acceptor and donor doped solid solutions, 

which they attributed to a marked preference of the BaTiO3 grain boundary for Ti-ion 

adsorption. The sign of the space-charge potential of those grain boundaries was 

reported to be unaltered by even large amounts of solute dopants. This finding is 

comparable to the excessive donor doping of BaTiO3, described in section 2.4, which 

results in PTCR behavior. 

Co-doping of BaTiO3 is majorly reported for two possible types of doping: firstly A-site 

donor- with B-site acceptor doping and secondly acceptor- in combination with donor 

doping both on the A-site of the lattice. 

Shihua et al. 170 and Ting et al. 164 both report on the co-doping with lanthanum and 

manganese, both having a different perspective. Ting et al. went into detail on the 

defect chemistry of the material, measuring resistivity and complex impedance. They 

found that charge compensation of the dopants can be described by 

 2𝑀𝑛𝑇𝑖
′′ + 𝑒′ = 𝐿𝑎𝐵𝑎

● ℎ● . (2.5.1.5) 

Additionally, they find an increased grain boundary resistance, that they attributed to 

the formation of cation vacancies, 𝑣𝐵𝑎
′′  or 𝑣𝑇𝑖

′′′′. However, they did not report on the 
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piezoelectric behavior of the material. Shihua et al. generally reported decreasing 

piezoelectric properties upon higher lanthanum content, which they attributed to the 

charged defects 𝑣𝐵𝑎
′′  or 𝑣𝑇𝑖

′′′′ that were said to give rise to random electric fields, which 

in turn was claimed to influence the broadening of the dielectric transition peak of the 

co-doped ceramics. Another study on co-doping with lanthanum as A-site donor and 

cerium as B-site isovalent ion was conducted by Lu et al. 171, indicating a solid solution 

and relaxor-type behavior for the incorporation of Ce4+ on the B-site.  

Other trivalent ions such as Dy3+ or Y3+
 
162,172-174 were used as A-site donor dopant in 

combination with B-site acceptor doping with Mn3+
 or Mg2+. For those dopant 

combinations in BaTiO3, a core-shell structure in the grain boundary is proposed to be 

the origin of the influence on temperature dependent properties. They provided 

further insight into the co-doping mechanisms, but unfortunately no piezoelectric 

characterization was performed. Niobium in combination with cobalt in a BT-BNT 

system allows for a higher Tc and, as Hsiang et al. 175 point out, induces domain wall 

pinning in the ceramics. 

 

2.5.2. Co-Doping of PZT and PZT-Based Systems 

For PZT, several different dopants were tested and characterized. As in the case of 

BaTiO3, the defect chemistry of PZT is rather well understood. In general, PZT-based 

systems, acceptor doping on the A-site (e.g. Li+, K+ or Na+) and/or acceptor doping 

on the B-site (e.g. Al3+, Mn2+/3+, Mg2+) causes a defect chemistry, being for instance 

 𝐴𝑙2𝑂3 → 2𝐴𝑙𝑇𝑖,𝑍𝑟
′ + 𝑣𝑂

●● + 3𝑂𝑂
𝑋 (2.5.2.1) 

 𝐾2𝑂 → 2𝐾𝑃𝑏
′ + 𝑣𝑂

●● + 𝑂𝑂
𝑋 (2.5.2.2) 

for B- and A-site substitution, respectively. This leads to an increase in oxygen 

vacancies in the PZT lattice. Acceptor doped PZT compositions are generally reported 

to exhibit pronounced ferroelectric ageing 
176, since those formed oxygen vacancies 

may reorient by for instance hopping and thereby stabilize internal electric fields in 

the ceramic. 

Donor doping on A-site (e.g. rare earth 3+) and B-site (e.g. Nb5+, Ta5+), in turn leads 

to cationic A-site or cationic B-site vacancies, for instance through introducing 

niobium or lanthanum: 

 𝑁𝑏2𝑂5 + 𝑃𝑏𝑂 → 2𝑁𝑏𝑇𝑖,𝑍𝑟
● + 𝑣𝑃𝑏

′′ + 6𝑂𝑂
𝑋 (2.5.2.3) 
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 𝐿𝑎2𝑂3 + 3𝑇𝑖𝑂2 → 2𝐿𝑎𝑃𝑏
● + 𝑣𝑃𝑏

′′ + 3𝑇𝑖𝑇𝑖
𝑋 + 9𝑂𝑂

𝑋 (2.5.2.4) 

which both create lead vacancies and are reported to reduce oxygen vacancies inside 

the PZT crystal lattice 
177. In contrast to doped BaTiO3 based materials, ionic, but not 

electronic charge compensation, prevails. The exact mechanism of how this induces 

piezoelectric softening is not fully understood to date and still being up for discussion. 

One explanation, supported by different publications 
178,179

, is that immobile defect 

dipoles (in the reported case: 𝑁𝑏𝑇𝑖,𝑍𝑟
● − 𝑣𝑃𝑏

′′ ) with immobility near room temperature 

destabilize the domain order by random fields. This in turn was found to lower the 

stability of the domain structure against external fields, thus causing the piezoelectric 

softening 
177,180,181. The beneficial effect of this is often-times improved fatigue 

behavior 59 with respect to ferroelectric properties such as Smax, Pmax or permittivity. 

One widely used and described co-doping pair for PZT is manganese as acceptor 

dopant and fluorine as donor dopant. Manganese is situated on the B lattice site and 

is able to assume different oxidation states Mn2+, Mn3+ or Mn4+, which coexist in the 

PZT lattice, with 𝑀𝑛4+ =̃ 𝑀𝑛2+ ≪ 𝑀𝑛3+, and are able to reduce the local space 

charges by changing the respective oxidation state 
182. Due to its acceptor nature, it 

introduces more oxygen vacancies to the system: 

 𝑀𝑛2𝑂3 → 2𝑀𝑛𝑇𝑖,𝑍𝑟
′ + 𝑣𝑂

●● + 3𝑂𝑂
𝑋 (2.5.2.5) 

thereby pinning domain walls and leading to hard piezoelectric behavior 
183. The 

introduction of fluorine as a donor dopant is reported to – in contrast to donor doping 

on the A- or B-site – not lead to additional lead vacancies, but to compensate oxygen 

vacancies by introducing F- into the anion lattice 

 𝑃𝑏𝐹2 + 𝑣𝑂
●● → 𝑃𝑏𝑃𝑏

𝑋 + 2𝐹𝑂
● (2.5.2.6) 

thereby not only reducing the conductivity in the case of manganese co-doped 

samples 
184, but also possibly forming defect dipoles 

 𝐹𝑂
● +𝑀𝑛𝑇𝑖,𝑍𝑟

′ → (𝐹𝑂
● +𝑀𝑛𝑇𝑖,𝑍𝑟

′ ) (2.5.2.7) 

that are less mobile than the otherwise formed dipoles (𝑣𝑃𝑏
′′ −𝑣𝑂

●●). In a study by 

Guiffard et al. 182 on fluorine doping in combination with various other cations, high 

piezoelectric properties (d33 of >300 pC/N, Qm ~1000) and good cycling behavior 
185 

were reported for those compositions. Figure 2.5.2.1 exemplifies the piezoelectric 

response of four out of five investigated different co-doping systems. 
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Figure 2.5.2.1  Bipolar P-E loops of aged and unpoled (a) Cr, (b) Mn, (c) Nb and (d) Sn 

doped PZT-based materials, single element doped (dashed lines) and co-doped with fluorine 

(solid lines) (reprinted from Guiffard et al. 182, copyright © 2012 Taylor & Francis). 

They compared manganese-fluorine with magnesium-fluorine co-doping and found 

that the dependence of defect dipoles on the fluorine content only holds true for 

manganese-fluorine co-doping. For magnesium doped PZT, mentioned fluorine co-

doping and in addition B-site niobium co-doping, did not influence the oxygen 

vacancy concentration. 

Recent works by Nguyen et al. 186 and Detalle et al. 185, who focused on the system 

PbTi(1-x)ZrxO3-Ba(1-x)SrxTiO3 (PZT-BST), suggest that this is also valid in the case 

where additional isovalent dopants are present in the system. They report the same 

hardening effect as for the addition of manganese only and also address it to the 

increased presence of oxygen vacancies. Upon magnesium and fluorine co-doping, it 

was found that above three at.% of fluorine content, the dielectric properties 

increased, correlating with a donor behavior below this threshold, specific to fluorine 

compared to other donor dopants e.g. niobium. For thin film applications this 

threshold is reported lower at about 1.5 at.% fluorine. They point out that especially 

with respect to long-term stability, manganese and fluorine co-doping is able to create 

solid solutions which allow for both hard piezoelectric responses and long-term 

stability. Boucher et al. 187 report on how to optimize the system by adjusting the 

Ti/Zr ratio. 

Introducing B-site donors into the PZT-Mn system, different behavior than in the case 

of fluorine doping below mentioned threshold can be seen. Though reducing the 

maximum overall strain Park et al. 188 were able to obtain a material by niobium and 

manganese co-doping, that is nearly temperature-independent in a range of -30 – 50°C 

and reported mechanical quality factors QM of ~300 and ~450, while kp remains high 
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with values > 0.6. Their proposed and discussed mechanism is attributed to domain 

pinning by manganese, which is said to compensate the Nb2O5 donor doping effects, 

such as a lowered QM, lowered QE and lower density. 

Cheon et al.°189 in contrast introduced two B-site acceptor dopants into a 

Pb(1-x)SrxZrO3-Pb(1-x)SrxTiO3 (PSZT) system at the same time, that are both known to 

improve the ageing behavior of PZT solid solutions. Besides manganese, chromium 

was taken as a second additive, however, not drastically changing the resulting 

material properties compared to simple chromium doping. 

 

Figure 2.5.2.2  Ageing of the resonance frequency of (a) undoped, (b) Cr-doped, (c) 

Mn-doped and (d) Mn-Cr co-doped PSZT (adapted from C. I. Cheon et al. 189
 and reprinted 

with permission, copyright © 1999, Kluwer Academic Publishers). 

Concerning ageing they found that the material responds very similar to solely 

chromium doped PSZT with respect to the resonance frequency of the material 

(cf. Figure 2.5.2.2), the piezoelectric figures εr and QM of the co-doped material being 

1004 and 505, respectively. Gao et al. 190 report on another pair of acceptor co-

dopants: Zn2+ on the B-site and Li+ on the A-site, finding high d33 values of 397 pC/N 

for 1 wt.% ZnO/Li2O additions, but in contrast to Cheon et al., they observe a 

significantly lower Qm of ~150 for this composition. 

Instead of using acceptor-acceptor co-doping combinations, in a more application 

oriented publication, Bourim et al. 191 employed the donor-donor co-doping pairs 

lanthanum and niobium as A-/B-site co-dopants in a PZT composition with excess 

lead. The applications they focus on are microcantilevers and microbridged actuators, 

which were found to benefit from the higher resistivity and fast domain switching due 

to easy domain reorientation of the co-doped material. 

An enhancement of the fatigue properties of PZT by co-doping with manganese as 

acceptor and lanthanum as a donor was reported by Shi et al. 192. Shi et al. used a 

metal organic deposition method to prepare thin films of the material, focusing on 

fatigue of the remanent and saturated polarization, which they found to be reduced 
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by about 18% after 108 cycles, less than otherwise reported in the literature at the 

time. 

 

Figure 2.5.2.3  Bipolar P-E looks of PZT with □: x=0.0; ○: x=0.01; ●: x=0.015; ×: 

x=0.02 and +: x=0.025 (adapted from Zhang et al. 193 and reprinted with permission, 

copyright © 2003 Elsevier B.V. All rights reserved.). 

Zhang et al 193 find an increase in the piezoelectric response for yttrium and niobium 

co-doped materials (cf. Figure 2.5.2.3), in addition with a decreased grain size of the 

resulting ceramic. The defect chemistry of this A-site donor, B-site acceptor material 

was not discussed in detail. 

 

2.5.3. Summary of Mechanisms in Lead- and BaTiO3-Based Ceramics 

Co-doping is employed for all commercially relevant piezoelectric ceramics, because 

this approach influences material properties positively that are important in industrial 

applications. By co-doping it was proven possible to even enhance properties, which 

are considered contradictory, if solely doped with a single foreign element. The 

majority of co-doping pairs is an acceptor-donor combination, be it A-site-B-site,  

A-site-A-site or rarely B-site-B-site co-doping, though donor-donor and  

acceptor-acceptor combinations on different lattice sites of the perovskite system are 

also reported. 

Important mechanisms and concepts for the understanding of co-doping in 

piezoelectric ceramics are: I. the increase of resistivity through Schottky barriers in 

grain boundaries, II. the concept of domain wall pinning/mobility and III. the concept 

of defect dipoles and their electrically/mechanically introduced reorientation through 

oxygen vacancy hopping. 

Isovalent additives as Sr2+ or Ca2+, in general have less influence on mechanisms 

related to the defect chemistry and are usually added in high amounts (≫ 1 at.%) to 

form solid solutions as end-member. 
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2.6. Literature on (Co-)-Doping of BNT-Based Systems 

2.6.1. BNT 

For single dopants, such as for instance manganese 
194, as reported by Eichel et al. 195, 

a detailed description of the underlying mechanisms and the chemical surrounding of 

the dopant also with respect to occurring oxygen vacancies and defect dipoles is 

provided. The general observations of the defect chemistry of the material that also 

holds true for the commercial piezoceramics. Namely that acceptor doping leads to an 

increase in oxygen vacancies, e.g. by 

 
𝐴2𝑂3 → 2𝐴𝑇𝑖

′ + 𝑣𝑂
●● + 3𝑂𝑂

𝑋 
(2.6.1.1) 

 
𝐴2𝑂 → 2𝐴𝐵𝑖,𝑁𝑎

′ + 𝑣𝑂
●● + 𝑂𝑂

𝑋 
(2.6.1.2) 

for B-site and A-site acceptor doping with a dopant “A”, respectively. Donor doping 

with low amounts reduces oxygen vacancies and higher amounts furthermore lead to 

A-site or sometimes B-site vacancies, 

 4𝐷2𝑂5 + 𝐵𝑖2𝑂3 + 𝑁𝑎2𝑂 → 8𝐷𝑇𝑖
● + 2𝑣𝐵𝑖

′′′ + 2𝑣𝑁𝑎
′ + 24𝑂𝑂

𝑋 (2.6.1.3) 

 2𝐷2𝑂3 + 6𝑇𝑖𝑂2 → 2𝐷𝐵𝑖
𝑋 + 2𝐷𝑁𝑎

●● + 𝑣𝐵𝑖
′′′ + 𝑣𝑁𝑎

′ + 6𝑇𝑖𝑇𝑖
𝑋 + 18𝑂𝑂

𝑋 (2.6.1.4) 

in case of B-site and A-site donor doping with a dopant “D”, respectively. This is also 

known for single element substituted BNT-based materials. These A-site vacancies, 

created upon introduction of A- and B-site donor dopants 196, are reported to increase 

the destabilization of ferroelectric order. 

The major difference in B-site doping of BNT-BT-based systems compared to PZT is 

the negative effect on Td, a phenomenon not, or not as strongly, observed in 

PZT systems, which for instance Sung et al. 197,198 compared by taking a look at doping 

with several B-site ions (cf. Tables 2.6.1.1 and 2.6.1.2). The general observation, 

widely valid for A-site and B-site doping, as also stated by Rödel et al. 15, is that 

doping or substitution in larger amounts usually leads to improved piezoelectric 

properties at room temperature, however “mostly at the expense of a decrease in Td or 

vice versa” 
15. Additionally, the reduced oxygen vacancy concentration caused by 

donor doping results in lowered electrical conductivity 199. 
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Table 2.6.1.1 | Effect of Different B-Site Dopants on Different Materials Properties (adapted 

from Sung et al. 197
) 

 
isovalent 

(undoped BNT)  donor doping  acceptor doping 

  Ti4+ 
 

Nb5+ Ta5+ W6+ 
 

Mn3+ Sc3+ 

ionic radius / Å 0.605 
 

0.64 0.64 0.60 
 

0.645 0.745 

phase purity / mol.% yes 
 

1.0 0.8 0.4 
 

2.0 0.8 

grain size / µm ~20 
 

~2 ~5 ~5 
 

>20 ~15 

d33 / pC/N 74 
 

87 84 84 
 

66 77 

kp 0.17 
 

0.17 - 0.16 
 

0.13 0.16 

QM 320 
 

160 202 180 
 

369 269 

ε 324 
 

↑ - ↑ 
 

- - 

tanδ 0.02 
 

↑ - - 
 

↓ ↑ 

Td / °C 190 
 

129 - - 
 

167 - 

Ec @ 60 Hz / kV/mm ~4.1 
 

~2.4 ~1.8 ~2.0 
 

- - 

Pr @60 Hz / µC/cm² ~35 
 

- - ~40 
 

- - 

  
  

 

      
 

    
 

Table 2.6.1.2 | Comparison of the Effect of Different B-Site Dopants on Materials Properties 

on BNT and PZT (adapted from Sung et al. 197
; the PZT trends are from Jaffe et al. 59). 

 donor doping  acceptor doping 

  PZT BNT 
 

PZT BNT 

d33 ↑ ↑ 
 

↓ ↓ 

kp ↑ - 
 

↓ ↓ 

QM ↓ ↓ 
 

↑ ↑ 

ε ↑ ↑ 
 

↓ - 

tanδ ↑ ↑ 
 

↓ ↓ 

Tc or Td - ↓ 
 

- ↓ 

Ec ↓ ↓ 
 

↑ - 

Pr ↓ - 
 

↑ - 

  
    

 

    
 

The influence of doping on d33-values of BNT-ceramics was reported to be comparable 

to PZT, namely an increase of d33 through B-site donor doping in contrast to a 

decrease in d33 through acceptor B-site doping. Mechanistically, Sung et al. attributed 
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this to the ability of domain walls to move. The A-site vacancies introduced by B –site 

donor doping are said to have led to an improved domain alignment during poling, 

which explains the higher d33-values. This mobility is lowered due to domain wall 

pinning by oxygen vacancies, which consequently results in a lower d33. The oxygen 

vacancies are in turn introduced by B-site acceptor doping. The lower d33 is said to be 

able to overcome by forming 𝑣𝑂
●● defect dipoles with a lower mobility. 

Chen et al. 200 and Kim et al. 201 both report on the addition of lithium acceptor and 

niobium donor doping of BNT with different concentrations of lithium and niobium. 

Increasing d33 and decreasing Td were found. However, the additions are in the range 

of mole-%, not qualifying for the range of co-doping, but rather presenting forms of 

novel solid solution systems such as the widely reported and investigated 

BNT-BT 
202-205, Bi0.5Na0.5TiO3-K(1-x)NaxNbO3 BNT-KNN 

35,206, BNT-BT-KNN 
207-211 or 

BNKT systems (cf. section 2.6.2 for BNKT). There are plenty of other reports on the 

introduction of more than one element to BNT 
212-220, where researchers add very high 

amounts of substituents, which at least can give hints at different trends of 

substitution effects with multiple ions. 

Co-doping of pure BNT with 0 – 2.5 at.% of dopants was carried out by 

Danwittayakul et al. 221, using iron B-site doping in combination with lanthanum 

A-site doping, leading to increased d33 and higher resistivity of the material. In 

contrast to that, Mahboob et al. 222 introduced equimolar amounts of niobium and 

neodymium into the material, finding a different conduction mechanism, depending 

on the amount of dopants added. Impedance spectroscopic investigations revealed a 

short range translational electron hopping mechanism between Ti4+-Ti3+ and 

Nb5+-Nb3+ in the low frequency region and a high frequency reorientation mechanism 

through the rotation of (𝑇𝑖3+′ − 𝑣𝑂
●●) or (𝑁𝑏3+′ − 𝑣𝑂

●●). Singh et al. 223 used the 

BNT-KNN-system as a basis to dope it with three other ions, namely lithium, tantalum 

and antimony, achieving high strains of 0.4%, in combination with a Td of 110°C. 

 

2.6.2. BNKT-Based Systems 

The system BNKT that is in focus in this work, is widely reported and described in 

literature concerning chemistry 
224,225, microstructure226-237, atomic-structure238-240, 

electromechanical properties23,24,107,108,241-249, the influence of temperature on those 

properties22,110,250,251 and processing of the system252,253. Despite this high general 

interest, little attention has been paid to the defect chemistry that can be tailored by 

co-doping, as already elaborated in the case of PZT- or BT-based materials. 

It has to be noted that most of the reported multi-element additions make use of 

isovalent additives in combination with one donor or acceptor if at all. Few 

publications deal with combined acceptor-donor co-doping combinations. 
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Three of them utilize lithium acceptor doping on the A-site 
254-256 in combination with 

another donor element, which provides larger grains in the ceramics, an increase in Td 

in one case and strain increased up to 0.45%. The enhanced properties in those 

materials are usually attributed to a destabilization of the ferroelectric order. The 

large strain of the materials is generally achieved by doping the material to such an 

extent that a relaxor material is created. 

Do et al. 257 were able to reduce the sintering temperature to 975°C by introducing 

copper and niobium to the system. Niobium was chosen to compensate for the created 

oxygen vacancies of the copper excess doping. Another report on lanthanum A-site 

substitution in combination with aluminum substitution 
258 also reports a high 

piezoelectrical strain of about 0.4%. However, they put no emphasis on defect 

chemical investigation. 

General trends that can be extracted from this literature data are the mentioned 

tendency of the BNT system to mostly display an inverse relation between Td and d33, 

which holds true apart from the exceptions lithium, manganese and erbium. In 

addition, one can say that the achievable d33 or 𝑑33
∗  -values are in the same range for 

the published BNKT morphotropic phase boundary (MPB) 
259 compositions. Apart 

from those publications on MPB- materials, some reports investigate BNKT at the 

composition Bi0.5Na0.25K0.25TiO3, making use of the significantly higher depolarization 

temperature of this base composition. Tables 8.1 and 8.2 in the appendix provide 

detailed overview over manifold reports on single and multiple element 

doping/substitution in the BNKT system and their general influence on piezoelectric 

and thermoelectric properties, thus corroborating mentioned trends. 
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3. Experimental 

3.1. Introduction 

The following section details the experimental procedures of this work, entailing 

everything from the synthesis of the powders to electrical characterization, diffraction 

studies or complex impedance spectroscopy and EPR. Unless otherwise stated, the 

outlined experimental details of all employed methods and equipment apply to every 

produced and characterized sample. 

 

 

3.2. Employed Methods and Equipment 

3.2.1. Ceramic Synthesis and Further Processing of Samples 

Bi0.5(Na0.9K0.1)0.5Ti(1-x-y)CuxVyO3 ceramics (hereinafter designated as 

BNKT10:100xCu,100yV), Bi0.5(Na0.8K0.2)0.5Ti(1-x-y)CuxVyO3 (hereinafter designated as 

BNKT20:100xCu,100yV) and Bi0.5(Na0.7K0.3)0.5Ti(1-x-y)CuxVyO3 (hereinafter designated 

as BNKT30:100xCu,100yV), all with stoichiometric V doping (x = 0; y = 0.01 and 

0.005), Cu doping (x = 0.005, 0.0005 and 0.0001; y = 0) as well as with Cu and V 

(co-)doping (x = 0.004, 0.003, 0.002, 0.001; y = 0.005-x) were synthesized. All 

ceramics were produced by conventional solid state synthesis (cf. Figure 3.2.1.1 for an 

overview), using Bi2O3 (99.975%), Na2CO3 (99.5%), K2CO3 (99.0%), CuO (99.7%), 

V2O5 (99.2%) and TiO2 (99.6%) all from Alfa Aesar (Karlsruhe, Germany). 

In order to avoid water uptake of starting powders, hygroscopic K2CO3 was weighed 

(BP61s, Sartorius AG, Göttingen, Germany, ± 0.1 mg accuracy) in a glove-box in 

argon atmosphere (< 10 ppm O2, < 5 ppm H2O). Na2CO3 was kept at 110°C in a 

drying oven and transferred to a desiccator to cool down to RT for subsequent 

weighing. All powders were weighed with ± 0.1 mg accuracy according to their 

stoichiometric formula and wet milled in ethanol, in custom-made polyamide 

containers; utilizing 300 g 3.0 mm yttria toughened ZrO2 milling balls for  

30 g powder and milling for 12 hours at 250 RPM (Pulverisette 5, Fritsch, 

Idar-Oberstein, Germany). 

Following drying took place for more than 24 hours in a ventilated oven at 90 °C. The 

dried powder was then mortared manually in an agate mortar and transferred to 

alumina crucibles. The compositions were calcined in ambient atmosphere at 800 °C, 

850°C or 900 °C with a heating rate of 5 K/min and a dwell time of 5 hours (L9/KM, 

Nabertherm GmbH, Lilienthal, Germany). Obtained, calcined powders were 

transferred to a polyamide container and milled as described above. 
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Subsequent to drying the slurries at 90 °C for more than 24 hours, the dry powders 

were mortared and the particles were separated manually with a polyamide mesh 

sieve, having 160 µm sieve openings (LINKER Industrie-Technik GmbH, Kassel, 

Germany). The fine grains were further pressed uniaxially with 5 kN into disks of  

10-15 mm diameter, or bar-shaped pellets of 5 mm times 5 mm times 35 mm for 

neutron diffraction samples. Then they were placed in a latex sheath, evacuated and 

closed, followed by cold isostatic pressing at 350 MPa in oil (KIP 100E, Paul-Otto 

Weber GmbH, Remshalden, Germany). Sintering took place at temperatures between 

1080 °C and 1150 °C (L16/14 Nabertherm GmbH, Lilienthal, Germany) in closed 

alumina crucibles, while the samples were placed in a powder bed of the respective 

calcined sample composition in order to reduce the evaporation of volatile species. 

 

 

Figure 3.2.1.1  Schematic of the ceramic processing route from raw starting powders to 

the final, sintered and shaped sample. 

Sintered ceramics were ground and polished to a thickness less than 1/10 of their 

diameter in the case of round samples (WEILER Werkzeugmaschinen GmbH, 

Powder 
Processing 

• milling mixed oxides/carbonates, 250 RPM, 12 hours in ethanol 

• drying at 90 °C >24 hours and mortaring 

• calcining, 800 - 900 °C, 5 K/min, 5 h 

• milling calcined powder, 250 RPM, 12 hours in ethanol 

• drying at 90 °C >24 hours, mortaring and manual sieving 

Greenbody 
Forming 

• uniaxial pressing (hand press) 

• sealing of pellets 

• cold isostatic pressing at 350 mPa 

Sintering 

• 1080 -1150 °C, 5 K/min, 2-3 h 

• ambient atmosphere 

• furnace cooling 

Finishing 

• grinding samples close to final shape 

• polishing samples 

• application of silver electrode for electrical measurements 
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Emskirchen/Mausdorf, Germany). In all cases at least 150 µm of the surface layer was 

removed to minimize surface effects. For scanning electron microscope (SEM) 

investigations the samples were fine polished with diamond pastes (DP Paste on 

polishing cloth DP-DUR, STRUERS GmbH, Willich, Germany) starting from 15 µm 

down to a final diamond particle size of 0.25 µm. In addition prior to SEM 

investigation, they were thermally etched at 1000 °C for 10 minutes, with a heating 

ramp of 5 K/min in air (L16/14 Nabertherm GmbH, Lilienthal, Germany) to allow for 

the observation of individual grains. For electrical characterization, silver paste 

(C60704D8, Gwent, Pontypool, United Kingdom) was fired onto both top and bottom 

sides of the cylindrical disc samples and on opposing sides of the bars in air at 400 °C 

for 2 h. 

 

3.2.2. X-Ray Diffraction 

XRD (D8 Advance, Bruker, Karlsruhe, Germany with Bragg–Brentano Θ/2Θ geometry) 

was carried out on both calcined powders and sintered, ground samples. For each 

unique calcined and sintered composition, one XRD pattern was acquired for every 

employed sintering temperature. An energy dispersive Si(Li) detector was used in 

combination with Cu- Kα radiation as source of λ = 1.5406 Å X-rays. Diffractograms 

were measured from 10° up to 90° 2Θ with a step size of 0.03° 2Θ using a rotating 

sample holder. Resulting unit cell parameters were calculated from the lattice 

parameters, determined from peak positions from the pattern. They were further used 

to determine the theoretical density as described in following section 3.2.3 via the 

respective cell volume. X-ray diffraction patterns were acquired by Jean-Christophe 

Jaud at the Technische Universität Darmstadt, Darmstadt, Germany. 

 

3.2.3. Density of Sintered Ceramics 

The ceramic density and open porosity of ground samples was determined according 

to the Archimedes method. Before the measurement, samples were submerged in a 

vial filled with deionized water and exposed to a vacuum of < 50 mbar (Vacuubrand 

RD8, Vacuubrand GmbH & Co. KG, Wertheim, Germany) for at least 15 minutes to 

remove enclosed air from open pores, while a subsequent waiting period of 

20 minutes ensured a RT water temperature of the vials. Deionized water was taken 

as immersion liquid and the sample weight of the wet samples in water (𝒎𝒘𝒆𝒕,𝑯𝟐𝑶) as 

well as the weight of the wet samples in air after careful removal of water on the 

surface without removing water in open pores (𝒎𝒘𝒆𝒕,𝒂𝒊𝒓) was determined (BA110s, 

Sartorius AG, Göttingen, Germany, ± 0.1 mg accuracy). The water temperature during 

immersion was determined with an accuracy of 0.1 K to obtain the density of water 

from literature. The samples were then dried over night at 90 °C to then determine 
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the weight of the dry samples in air (𝒎𝒅𝒓𝒚,𝒂𝒊𝒓). Next, the density was calculated 

according to: 

 𝜌𝐴𝑟𝑐ℎ𝑖𝑚𝑒𝑑𝑒𝑠 =
𝒎𝒅𝒓𝒚,𝒂𝒊𝒓 ∙ 𝜌𝐻2𝑂

𝒎𝒘𝒆𝒕,𝒂𝒊𝒓 −𝒎𝒘𝒆𝒕,𝑯𝟐𝑶
   . (3.2.3.1) 

The precision of the method is estimated as ± 0.2 %. 

The theoretical density of the sintered ceramics can be calculated with following 

equation: 

 
𝜌𝑡ℎ𝑒𝑜 =

𝒁𝒖 ∙ 𝒎𝒂

𝑽𝒖𝒏𝒊𝒕
    , 

(3.2.3.2) 

where 𝒁𝒖 is the number (respectively fraction) of formula units per unit cell for the 

sample composition, 𝒎𝒂 the atomic mass of the respective atoms and (𝑽𝒖𝒏𝒊𝒕) is the 

volume of the unit cell as determined from lattice constants, calculated from 

XRD patterns. The resulting relative theoretical density (𝜌𝑟𝑒𝑙) can then be expressed 

by 

 𝜌𝑟𝑒𝑙 =
𝜌𝐴𝑟𝑐ℎ𝑖𝑚𝑒𝑑𝑒𝑠
𝜌𝑡ℎ𝑒𝑜

    , (3.2.3.3) 

utilizing results from equations 3.2.3.1 and 3.2.3.2. 

 

3.2.4. SEM Measurements and Grain Size Determination 

The sintered, fine polished and thermally etched (cf. section 3.2.1) SEM samples were 

fixed on conductive carbon tape (G3348, Plano GmbH, Wetzlar, Germany), sputtered 

with gold/palladium (Sputter Coater SCD 050, Balzers; now Oerlikon Leybold 

Vacuum, Köln, Germany) applying 40 mA for 40 seconds and later connected to the 

carbon tape with conductive silver glue (G3691, Plano GmbH, Wetzlar, Germany) in 

order to avoid charging of the samples by primary electrons. At least five secondary 

electron (SE) and one backscattered electron (BSE) SEM images were taken (Philips 

XL30FEG, Philips, Amsterdam, Netherlands) for individual compositions. 

For further grain size distribution analysis, the SE images were digitally processed, 

using the software ImageJ 1.48v, identifying grains with aspect ratios from 0.23 to 

0.77 and grain areas of 0.1 µm² to 100 µm². The total area analyzed was about 

2x10-3
 mm² and consisted of a combination of at least five images of different sample 

locations, selected from different regions. For plotting the histograms of the grain 

diameter, the number of grains in a diameter range of 250 nm (nrange) was counted 

from 0 to 7 µm. This was compared to the total number of grains, identified for all 

analyzed ranges (ntotal).  
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3.2.5. Electrical Large Signal Measurements 

 

 
 

Figure 3.2.5.1  Schematic of a modified Sawyer-Tower circuit with LASER and light 

sensor for strain determination. 

In order to determine the crucial parameters strain and polarization under applied 

electric field and thereby obtain the characteristic FE hystereses, a modified Sawyer-

Tower setup was employed, as sketched in Fig. 3.2.5.1. All samples were measured by 

using an equilateral triangular wave function with a frequency of one Hz 

(Agilent 33220A arbitrary waveform generator, Agilent Technologies, Inc., 

Santa Clara, CA, USA) with further amplification of output voltage to the respective 

maximum field between 1 and 8 kV/mm (TREK 20/20C High Voltage Power 

Amplifier, TREK, INC., Lockport, NY, USA). For measuring bipolar properties, the 

samples were exposed to at least two cycles, each consisting of a negative and a 

positive triangular wave; unipolar measurements comprised the use of at least two 

triangular waves in one field direction only (either positive or negative electric field). 

The strain of the material was determined by optical means (Philtec, Inc., Model D63-

A1+H+LNPQ, Annapolis, USA). Samples were immersed in silicone oil (AK 35 or 

AK 200 Silicone Fluid, WACKER CHEMIE AG, München, Germany) to prevent the 

electric breakdown occurring in air. If not otherwise stated, all samples were 

measured with a reference capacitance (C0) of 10 µF. All signals (displacement sensor, 

converted capacitance, generated triangular signal and amplified signal) were 

analyzed with an oscilloscope (Agilent Infiniti Vision MSO7014B, Agilent 

Technologies, Inc., Santa Clara, CA, USA). The polarization of the sample (PS) was 

calculated by 
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𝑃𝑆 =

𝑪𝟎 ∙ 𝑽𝟎
𝑨𝒔

    , 
(3.2.5.1) 

where V0 is the applied (amplified) electric voltage and As is the top/bottom electrode 

area of the cylindrical ceramic samples. The measurements were carried out, testing 

at least two samples per unique composition. 

 

3.2.6. Electrical Small Signal Measurements 

The temperature dependence of the lossless part of the dielectric permittivity (ε′) and 

tanδ were determined for all samples from 20 °C to 400 °C with measuring frequencies 

being 100 Hz, 1 kHz, 10 kHz, 100 kHz and 1 MHz (HP 4284A Impedance Analyzer, 

Palo Alto, USA) that were acquired at each integer temperature. The furnace 

(LE 4/11/R6, Nabertherm, Lilienthal, Germany) was equipped with a custom-made 

alumina specimen holder with platinum wire contacts and a platinum disk (thickness 

< 0.1 mm) was used on both faces of the disk-shaped samples to ensure proper 

electrical contact between sample and platinum wire. A heating rate of 2  K/min was 

maintained throughout both heating and cooling cycles of poled as well as unpoled 

samples. Tf-r was determined by the inflection point of the obtained permittivity at 

1 kHz; the maximum of tanδ at 1 kHz was taken as further qualitative indication, 

however, was not used for calculating Tf-r. The measurements were carried out, 

testing one to two samples per unique composition. 

Room temperature measurement of the small signal piezoelectric coefficient (d33) of 

poled (6 kV/mm at RT for 60 min) samples was carried out using a Berlincourt meter 

(YE2730, Sinocera, Yangzhou, PRC) to ensure successful poling. The d33 values were 

recorded in both positive and negative poling direction of each sample and those 

values were further averaged to obtain a d33 less affected from a possible zero offset of 

the Berlincourt meter. 

 

3.2.7. Dielectric Spectroscopy Under Resonance Conditions 

In order to elucidate the energy storage and dissipation behavior of the ceramics, 

dielectric spectroscopy, also called impedance spectroscopy, was employed in a 

frequency range of 102 – 107 Hz (Alpha-A high measurement system with HVB300 

extension test interface / ZG4 4-point impedance interface, all from 

Novocontrol Technologies, Montabaur, Germany). In this range, ionic and dipolar 

interactions can be characterized. In particular kp and the coupling factor in thickness 

direction (kt) of ceramic disk samples, lying at about 500 kHz and 3 MHz, 

respectively, were assessed. Approx. 50 mm of gold wire with 25 µm diameter 

(99.95% purity, annealed, Alfa Aesar, Karlsruhe, Germany) was attached (as sketched 

in Figure 3.2.7.1 (a)) to the middle of each silver electrode face of the sample disks 
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with the help of a silver-containing, conductive glue (G3691, Plano GmbH, Wetzlar, 

Germany). Samples were then connected by placing the gold wires in a fixture 

(Test Fixture 16047A, Agilent Technologies, Inc., Santa Clara, CA, USA) with the disks 

being in a free-floating condition. For each composition two samples were measured. 

In a preliminary experiment, BNKT10:0.1Cu,0.4V was measured with two different 

diameters (~7 mm and ~ 10 mm), showing comparable coupling. In this work the 

values of the samples with ~10 mm in diameter are reported, because both PIC151 

and PIC181 (by PI Ceramic GmbH, Lederhose, Germany) standard samples have a 

diameter of ~10 mm. 

 

Figure 3.2.7.1  Schematic of a poled sample (a) prepared for impedance measurement 

with indication of thickness and planar coupling mode directions. (b) is a characteristic 

impedance spectrum representing the electric impedance as function of frequency. The 

resonance frequency (fr) and the antiresonance frequency (fa) are indicated. 

 

The characteristic impedance at resonance (represented in Figure3.2.7.1 (b)) consists 

of a minimum at about fr and a maximum in impedance at about fa. 
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Figure 3.2.7.2  Simplified vector impedance diagram, characteristic for a piezoceramic 

transducer. Characteristic frequencies of the resonance behavior are highlighted in red. Blue 

arrows represent the impedance vectors of the maximum (Zm) and minimum (Zn) impedance  

However, as evident from Figure 3.2.7.2, though equal in first approximation, the 

resonance frequency fr does not exactly coincide with the motional resonance 

frequency at maximum conductance (fs) or the frequency of maximal impedance (fm). 

Likewise fa does not exactly coincide with the parallel resonance frequency at 

maximum resistance (fp) or the frequency of minimal impedance (fn). 

In case of lead-based piezoceramics, it is common to determine the coupling factors 

and electromechanical quality factors by approximating fr ~ fs ~ fm and fa ~ fp ~ fn. 

This may not be accurate for lead-free materials. Thus, to assess fr and fa, an 

equivalent circuit, featuring inductive, resistive, CPEs and capacitive elements as 

exemplified in Figure 3.2.7.3 was used to determine fr and fa more accurately by 

means of simulation (RelaxIS version 2.4.1.10 rhd instruments GmbH & Co. KG, 

Marburg, Germany). 
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Figure 3.2.7.3  Schematic of an equivalent circuit used to fit the resonance- 

antiresonance-behavior of the piezoelectric ceramics, having inductance, CPE and resistance 

in series, parallel to another CPE. 

With thereby obtained fr and fa, the coupling factors, which are a measure of the 

effectiveness of the conversion from mechanical to electrical energy and vice versa 

were calculated by the following equation: 

 
𝑘2 ≈

𝑓𝑎
2 − 𝑓𝑟

2

𝑓𝑟2
    . 

(3.2.7.1) 

One has to distinguish two different occurring resonance events in piezoelectric disk 

samples: coupling in thickness direction and coupling in planar direction, which occur 

in different frequency regions. In detail, the resonance frequency depends on both 

material properties and sample geometry, however, in case of the sample geometry 

with ten times larger diameter than thickness, kp occurs at frequencies lower than kt. 

For given sample geometries and material, kp can roughly be found around 450 kHz 

and kt roughly around 3 MHz. 

The mechanical quality factor, describing the amplification of the mechanical 

vibration amplitude compared to off-resonance was calculated using 

 
𝑄𝑀 =

1

2𝜋𝑓𝑟𝑍𝑚𝐶𝟎
 ∙

𝑓𝑎
2

𝑓𝑎2 − 𝑓𝑟2
    , 

(3.2.7.2) 

where Zm is the maximum impedance at resonance and C0 is the shunt capacitance of 

the equivalent circuit. Since both occurring resonances described earlier 

(Section 2.2.2), have distinct frequencies and differ in fa, fr and Zm, both also feature 

distinct corresponding mechanical quality factors, which are indicated as QM,p and 

QM,t for planar and thickness mechanical quality factors, respectively. Zm was 

determined from the equivalent circuit used for fitting the resonance. 
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3.2.8. Dielectric Spectroscopy in Atmospheres with Different Oxygen 

Partial Pressure 

With dielectric spectroscopy at elevated temperature and in different atmospheres it is 

possible to evaluate the contribution of multiple conduction processes to the overall 

conductivity (or inversely, the proportional resistivity) of the ceramics. Thus, grain 

boundary contributions may be distinguished from bulk contributions and 

furthermore, the influence of the contacts can likewise be determined. Furthermore, 

the determination of the activation energy EA of the conduction processes is possible. 

 

 

Figure 3.2.8.1  Schematic of the high temperature impedance tube furnace for purging 

samples with different gases. 

Electroded ceramic samples were fixed with platinum wires (cf. Figure 3.2.8.1) in-

between two thin (< 150 µm) platinum disks in a sealed tube furnace 

(LOBA/I 1400-45-400-1, HTM Reetz GmbH, Berlin, Germany) and exposed to 

ambient air, 99.999 vol.% N2, 99.998 vol.% O2 or a mixture of Ar gas and two vol.% 

H2. Measuring temperatures ranged from 300 °C to 500 °C with measurements being 

performed at every increment of 25 °C. For atmospheres other than ambient air, a 

vacuum pump (Duo 5 M, Pfeiffer Vacuum GmbH, Asslar, Germany) was used to 

evacuate the furnace. Then with the vacuum valve closed, the respective gas was 

introduced into the furnace and stabilized at the maximum target temperature of 

500°C. The furnace was evacuated again, followed by a subsequent gas introduction. 

This procedure was repeated until the impedance spectrum of the sample in the 

respective gas atmosphere was stable. The impedance was measured at all 

temperature steps with frequencies ranging from 0.01 Hz to 5 MHz (Alpha-A high 

measurement system with HVB300 extension test interface / ZG4 4-point impedance 

interface, all from Novocontrol Technologies, Montabaur, Germany). One sample per 

investigated composition was measured. 
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Figure 3.2.8.2  Schematic of an equivalent circuit to fit two independent electric 

processes, for instance grain boundary and bulk contribution to the overall conductivity.  

The obtained impedance semicircles were fitted (RelaxIS version 2.4.1.10, 

rhd instruments GmbH & Co. KG, Marburg, Germany) by means of up to a series of 

four equivalent circuits, each comprising a resistance and CPE in parallel 

(Figure 3.2.8.2 sketches an example of two consecutive circuit units of CPE in parallel 

with a resistance) in addition to a resistor. This resistor was used to take the 

contribution of the contacts into account by adding it to the equivalent circuit. 

 

 

Figure 3.2.8.3  Schematic of Nyquist plot at one temperature with two identifiable 

semicircles and additional contact contribution. The inset figure details the corresponding 

equivalent circuit to obtain the simulated individual resistances. 
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3.2.9. Electron Paramagnetic Resonance Spectroscopy 

In order to further elucidate the defect chemistry of doped and co-doped BNKT, EPR 

was chosen as a method that enables crucial insight. Beyond that, it allows for the 

detection of minute amounts of employed dopants. In EPR spectrometry, unpaired 

electrons are aligned by a defined magnetic field (cf. Figure 3.2.9.1). The absorption 

of microwave radiation (X-band EPR with a frequency of 9.41 GHz was employed) by 

the sample is detected in a Bruker EMX EPR spectrometer (Bruker, Karlsruhe, 

Germany) and correlates with a spin direction change of unpaired electrons parallel to 

the external magnetic field into the reverse direction antiparallel to the magnetic field, 

the latter one being higher in energy. Polycrystalline 2,2-diphenyl-1-picrylhydrazyl 

with g = 2.0036 was taken as a reference material in order to accurately determine 

the resonance magnetic field values and the g-factor and the magnetic field was 

detected by a Gauss-meter (ER 035M, Bruker, Karlsruhe, Germany). The EPR spectra 

were acquired under the guidance of Dr. Emre Erdem at the Unversität Freiburg, 

Freiburg, Germany. One sample of calcined powder and one sintered disk sample 

were measured for each composition. 

 

 

Figure 3.2.9.1  Schematic of an EPR spectrometer. 
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3.2.10. X-Ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) spectra were obtained using a 

PHI VersaProbe 5000 spectrometer (Physical Electronics, Inc, Chanhassen, USA), 

which is hosted in the Darmstadt Integrated System for Battery Research (DAISY-

BAT).260 The samples were excited with monochromatic Al Kα radiation (hν = 1.4866 

keV) and binding energies are compared to the Fermi level of an Ag foil. The pass 

energy, Epass = 23.5 eV, during the collection of photoelectrons took place at a take-off 

angle of Θ = 45° with respect to the surface normal. Due to low electronic 

conductivity, the build-up of charge on the surface was compensated by a dual beam 

charge neutralization system, consisting of both ion beam (low energy argon ions) 

and electron beam. No further shift of spectra was performed. The XPS samples were 

measured by Dr. Shunyi Li and evaluated in collaboration with Dr. Shunyi Li and 

Prof. Dr. Andreas Klein at the Technische Universität Darmstadt, Darmstadt, Germany. 

One sample for each investigated composition was measured. 

 

 

Figure 3.2.9.2  Schematic of the DAISY-BAT facility Integrated System for Battery 

research, adapted from Schwöbel et al.260 and reprinted with permission, copyright © 2014 

Elsevier B.V. All rights reserved.). 
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4. Results and Discussion 

4.1. Microstructure and Phases 

One aspect that is influenced by doping of ceramics is the microstructure of the final 

ceramic material. It is furthermore possible to introduce foreign phases in the host 

material BNKT. Thus, in particular it is important to know the density of the produced 

ceramics, determine which phases exist in the ceramics and in addition assess how 

grains are sized, shaped and distributed. Characterizing changes in microstructure 

upon Cu and V doping of the ceramics allows for the correlation of microstructure and 

phases in context with results of the following sections 4.2 - 4.6. 

 

Table 4.1.1 | Densities of Undoped and Cu Doped BNKT10 Ceramic Samples  

dopant none none 0.01Cu 0.05Cu 0.5Cu 

Tsint / °C 1130 1080 1130 1130 1080 

ρrel / % 98.7 94.0 95.2 96.0 96.7 

  
         

 

The undoped and doped BNKT ceramics, produced in this work, mostly displayed high 

densities >90 % after sintering. The density tables (Table 4.1.1 - 4.1.3) list the 

highest obtained density for each composition, sintered at the indicated temperature 

Tsint. Three BNKT30 compositions (BNKT30:0.5V, BNKT30:0.4Cu,0.4V and 

BNKT30:0.5Cu) exhibit maximum densities < 90 % albeit different investigated 

sintering ramps (3 K/min and 5 K/min) and investigated Tsint (1080 °C, 1110 °C, 

1130 °C and 1150°C). 

 

Table 4.1.2 | Relative Densities of Cu and V Doped BNKT10 Ceramic Samples 

dopants 1V 0.5V 0.1Cu,0.4V 0.2Cu,0.3V 0.25Cu,0.25V 0.3Cu,0.2V 0.4Cu,0.1V 

Tsint / °C 1130 1080 1080 1080 1080 1080 1080 

ρrel / % 98.5 93.9 94.0 95.8 96.0 96.0 96.3 

 
    

   
 

To elucidate the influence of the Cu content on the density, ρrel at different Cu doping 

levels was compared for BNKT10 ceramics, sintered with the same Tsint (1080 °C). A 

trend towards higher ceramic densities with increasing Cu content can be observed 

(cf. Figure 4.1.1). Thus, at the same sintering temperature, Cu improves the 

densification process. This yields relative densities of up to 96.7 % in the case of 

BNKT10:0.5Cu, which exceeds ρrel of the undoped BNKT10 ceramics, sintered at 
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1080 °C, by 2.7 %. Nevertheless ρrel of undoped BNKT ceramics, sintered at 1130 °C, is 

1.8 % lower. In order to achieve maximum densification, sintering undoped BNKT10 

at 50 °C higher temperatures appears to be superior vs. doping BNKT10 with 

0.5 at.% Cu, while sintering at 1080 °C. 

 

Table 4.1.3 | Overview of the Relative Densities of Doped BNKT Ceramics 

dopant(s) none 0.5V 0.1Cu,0.4V 0.2Cu,0.3V 0.3Cu,0.2V 0.4Cu,0.1V 0.5Cu 

BNKT20 

       
Tsint / °C 1130 1130 1130 1130 1150 1130 1080 

ρrel / % 97.7 95.3 95.5 95.9 95.8 97.1 95.3 

BNKT30 

       
Tsint / °C 1150 1130 1130 1130 1130 1130 1110 

ρrel / % 97.0 88.0 94.4 92.5 96.2 88.7 86.4 
                

         

For BNKT20 and BNKT30 ceramics, the maximum ρrel is nearly exclusively found at 

sintering temperatures higher than 1080 °C. The low (1080 °C) Tsint of BNKT20:0.5Cu 

may be explained by the improvement of the densification process by Cu doping at 

lower temperatures. As this effect was found to be strongest at a Cu content of 

0.5 at.%, the optimum Tsint is also lowest. However, with the exception of BNK10:1V, 

all doped ceramics display a lower maximum ρrel compared to undoped ceramics, 

sintered at higher temperatures. It is not uncommon for BNKT ceramics of comparably 

lower density to exhibit higher piezoelectric properties, as for instance described by 

Zhang et al.110 for BNKT22 compositions, which display a maximum density at a 

Tsint of 1130 °C, while displaying maximum polarization at a Tsint of 1150 °C. 

 

Figure 4.1.1  Changes in ρrel upon increasing Cu dopant content of BNKT10 ceramics, 

all sintered at 1080 °C. The dashed line is a linear fit to guide the eye. C.f. Blömker et al.261. 

Multiple studies76,211,262,263 on the addition (note: this means excess doping instead of 

substitutional doping, which was employed in this work) of Cu to BNKT-based 
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materials, revealed the same trend of densification at lower Tsint upon Cu addition. 

Those authors attributed this behavior to liquid phase sintering, enabled by Cu. 

To elucidate the microstructure, both representative SEM images, as well as grain 

diameter histograms, serve to highlight the changes in microstructure upon doping.  

 

 

Figure 4.1.2  Representative SE image of the microstructure of (a) undoped BNKT10 

and (b) BNKT10:0.2Cu,0.3V ceramics. Please note that the image location was chosen to best 

represent the grain size distribution and is neither representative of the pore size nor the pore 

fraction. 

The quality of the thermal etching is fairly good, as individual grains and grain 

boundaries are clearly distinguishable by eye and by the employed analysis software 

in ImageJ. BNKT10:0.5V, BNKT10:0.1Cu,0.4V and BNKT10:0.3Cu,0.2V 

(cf. Figure 4.1.3 (a), (b) and (c), respectively) compositions display different thermal 

etching behavior under the same etching conditions. This slight over etching, 

compared to undoped ceramics or ceramics with lower V content, is correlated with 

faster grain growth for BNKT10:0.5V, BNKT10:0.1Cu,0.4V and BNKT10:0.3Cu,0.2V. 

This is likely related to their higher V content, compared to the other compositions 

investigated in this work. It is also in conformity with the low temperature sintering of 

piezoceramics upon the addition of V2O5, observed by Wittmer et al.264. 

However, an enlargement of grains as for instance reported by Kim et al.265, could not 

be observed. Two possible explanations for this phenomenon are: (I) though the 

necessary sintering temperature to obtain dense ceramics is lowered, as discussed 

previously in this section, the substitution doping undertaken in this work differs from 

the excess doping, carried out by Kim et al. or Wittmer et al. and therefore the 

enhanced grain growth through liquid sintering is not prevalent; and (II) the 

enhanced grain growth upon V addition in PZT-based materials requires Pb within the 

composition and is therefore limited to Pb-containing compositions. A combination of 

the two explanations is considered possible. 
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Figure 4.1.3  Representative SE images of (a) BNKT10:0.5V, (b) BNKT10:0.1Cu,0.4V, 

(c) BNKT10:0.3Cu,0.2V, (d) BNKT10:0.4Cu,0.1V and (e) BNKT10:0.5Cu ceramics. For 

BNKT10:0.5V and BNKT10:0.1Cu,0.4V and BNKT10:0.3Cu,0.2V the thermal etching 

temperature was 1020 °C. Please note that the image location was chosen to best represent 

the grain size distribution and is neither representative of the pore size nor the pore fraction. 

In general, all grains of all investigated ceramics are characterized by a shape with an 

aspect ratio close to unity (cf. Figure 4.1.2  and Figure 4.1.3 ). For the determination 

of the grain size distributions (cf. Figure 4.1.4 ), it was possible to identify all analyzed 

grains, while restricting the allowed aspect ratios, used for grain identification, from 

0.23 to 0.77. Undoped BNKT ceramics display a higher amount of grains with larger 
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diameters > 4 µm, which is qualitatively reflected in the corresponding representative 

SEM image (cf. Figure 4.1.2 (a)). The average grain diameter of undoped BNKT10 is 

1.3 µm. All doped compositions, however, exhibit a more homogeneous grain size 

distribution with average grain diameters ranging from 0.7 µm (BNKT10:0.3Cu,0.2V) 

to 1.3 µm (BNKT10:0.5Cu) (cf. Table 4.1.4 for details). 

 

Table 4.1.4 | Average Grain Size Diameters of BNKT10 Ceramics 

dopants none 0.5V 0.1Cu,0.4V 0.2Cu,0.3V 0.3Cu,0.2V 0.4Cu,0.1V 0.5Cu 

mean grain 

diameter /µm 
1.3 0.8 1.0 1.2 0.7 1.3 1.3 

standard derivation 0.8 0.3 0.4 0.7 0.2 0.8 0.7 

 
    

   
 

The deviation of the average grain diameters of the BNKT10 ceramics with different 

dopants is not very strong (0.6 µm maximum deviation). Thus, the detailed analysis of 

the distribution of the grain diameters (cf. Figure 4.1.4) sheds further light on the 

microstructure and highlights the presence of a higher number of larger (>4 µm) 

grains in undoped BNKT10 as compared to doped BNKT10. 

Especially BNKT10:0.5V, BNKT10:0.1Cu,0.4V and BNKT10:0.3Cu,0.2V (cf. Figure 

4.1.4 (b), (c) and (e), respectively) display very homogenous grain diameter 

distributions with no indication of larger grains with a diameter > 4 µm. 
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Figure 4.1.4  Grain size histograms of undoped BNKT10 (a) and BNKT10 ceramics 

doped with (b) 0.5V, (c) 0.1Cu,0.4V, (d) 0.2Cu,0.3V, (e) 0.3Cu,0.2V, (f) 0.4Cu,0.1V, (g) 

0.5Cu. Grain occurrence probabilities are plotted by taking the number of the particles vs. the 

total number of grains into account. The respective inset figures show the grain size 

probabilities for four to seven micrometers in detail. 
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Figure 4.1.5  Representative XRD patterns of Cu doped, V doped, Cu-V doped and 

undoped BNKT10. 

The investigation of samples via XRD allows for the observation of major (> 3 at.%) 

crystalline phases and thereby, in addition, for the detection of larger secondary 

impurity phases. All XRD peaks of the synthesized, sintered ceramics could be 

identified as belonging to a perovskite phase. There was no indication of crystalline 

secondary phases, observed within the limits of detection.       

All peaks match a perovskite phase. Unit cell parameters were further extracted for 

the density calculation. Figure 4.1.5 emphasizes the major reflections, which sintered 

BNKT10 ceramics exhibit and representatively compares undoped with doped 

ceramics. Upon doping with Cu and V, only BNTK10-based compositions displayed 

noticeable peak splitting (cf. Figure 4.1.6), while BNKT20 and BNKT30 compositions 

did not. The splitting can indicate lower elongation or shortening of the unit cell 

(c/a ratio closer to unity). For BNKT10 ceramics, this is in accordance with the XRD 

peak splitting trends in BNKT systems with respect to potassium content. This is 

described in literature (e.g. Otoničar et al.23) and attributed to the 

rhombohedral R3c (undoped BNT or K content < ~20 at.%) phase symmetry. 
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Figure 4.1.6  Representative XRD patterns of the same amount of Cu and V dopants 

for different potassium contents of the base composition (BNKT10, BNKT20 and BNKT30). 

For BNKT10 ceramics, which are on the rhombohedral side of the MPB, minute 

differences could be observed, as for instance the {111} and {211} reflections display 

a variance in the degree of splitting of the peaks (cf. Figure 4.1.7). Undoped BNKT10 

most clearly displays peak splitting, BNKT10:0.5Cu exhibits clear speak splitting, 

however, to a lesser degree and the other doped BNKT10 ceramics possess side 

shoulders instead of individually distinguishable peaks. This can be attributed to the 

rhombohedral phase symmetry of BNKT10-based ceramics. 

For doped BNKT20 and BNKT30 compositions, the tetragonal P4mm (undoped BKT or 

K content > ~20 at.%) peak splitting of the {200} reflection is not very pronounced 

(cf. Figure 4.1.6 and Figure 4.1.7) and it is arguable, whether or not there is any 

indication of splitting at all. Nevertheless, a discernible side shoulder of the 

{200} reflection is present. The respective undoped ceramics, however, display 

stronger peak splitting or side shoulder of for instance the {200} reflection. This 

indicates that BNTK30 ceramics lose their tetragonal character (reflected in a lower 

c/a ratio) to a certain degree. The doped BNKT30 ceramics are therefore, from a XRD 

standpoint, closer to a cubic or pseudocubic material than undoped BNKT30 ceramics. 
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Figure 4.1.7  Details of representative XRD patterns of Cu doped, V doped, Cu-V 

doped and undoped BNKT10 ceramics. The {111} (a) and {211} (b) reflections are 

presented. 

 

 

4.2. Piezoelectric Large- and Small Signal Measurements 

Key figures for piezoelectric materials are divided in large- and small signal 

parameters. This categorization refers to the applied electric field during the 

respective measurement. Large signal measurements to determine parameters like 

Smax, Psat, Pmax and Prem, are typically performed in a range of > 1 kV/mm, depending 

on which piezoelectric material is measured. Small signal measurements are 

performed in an electric field range, which is far below the coercive field strength and 

allows for an essentially linear response of the material. The European Standard 

EN 50324-2:2002, for instance, specifies a maximum field of 1 V/mm for permittivity 

measurements to ensure mentioned linear response.266 

Dielectric spectroscopy, which is sometimes referred to as impedance spectroscopy, is 

as well considered a small signal measurement. Dielectric spectroscopy, however, is 

discussed separately in the subsequent sections 4.3 and 4.4. 

Polarization vs. electric field (P-E) loops and strain vs. electric field (S-E) loops, of all 

synthesized ceramics with BNKT10, BNKT20 and BNKT30 base composition were 

measured at 6 kV/mm and are presented in Figures 4.2.1 and 4.2.3 - 4.2.6. Below, the 

effect of Cu and V doping will be discussed in detail for each base composition. 

Detailed characteristic large signal measurement values of all synthesized and 

discussed ceramics are provided in the appendix (cf. Table 8.3). 

BNKT10 based piezoceramics display a butterfly-like S-E loop, which is characteristic 

for ferroelectric materials. They are able to provide a strain of about 1 ‰, which 
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correlates with a large signal d33 (𝑑33
∗ ) of 120 pm/V (at 6 kV/mm) for undoped 

BNKT10. Doping BNKT10 in general increased the strain and a 𝑑33
∗  of up to 177 pm/V 

could be obtained in case of BNKT10:0.5Cu. All compositions display a high negative 

strain Sneg of at least -0.58 ‰. Upon doping, the negative strain is in all cases of larger 

magnitude. 

 

Figure 4.2.1  Strain vs. electric field at a maximum electric field of 6 kV/mm for (a) 

undoped BNKT10, (b) BNKT10:0.5V, (c) BNKT10:0.1Cu,0.4V, (d) BNKT10:0.2Cu,0.3V, (e) 

BNKT10:0.3Cu,0.2V, (f) BNKT10:0.4Cu,0.1V and (g) BNKT10:0.5Cu ceramics. 

Most S-E loops display saturated strain loops, which are characterized by a pointed 

shape at maximum strain, corresponding with decreased hysteresis behavior 

(cf. Figure 4.2.1). Exceptions are undoped BNKT10 and BNKT10:0.5V, which exhibit a 

more round shape at maximum strain. This finding is also in conformity with the 

features of the P-E loops at maximum field (cf. Figure 4.2.3). The maximum 

polarization (Pmax) of doped BNKT10 is consistently higher than of undoped BNKT10 

(25.0 µC/m²). This can amount to up to 31.8 µC/m² in case of BNKT10:0.3Cu,0.2V. 
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Figure 4.2.2  Strain (a) and polarization (b) vs. electric field at different maximum 

applied electric fields, representatively detailed for the composition BNKT10:0.1Cu,0.4V. 

A different switching behavior above the coercive field is additionally reflected in the 

evolution of the S-E loop with increasing electric field. Figure 4.2.2 representatively 

details the behavior of BNKT10:0.1Cu0.4V for 4, 6 and 8 kV/mm. While for an electric 

field of 4 kV/mm (slightly below the Ec of 4.5 kV/mm, determined for 

BNKT10:0.1Cu0.4V) no significant Pmax (5.0 µC/m²) and Smax (0.12 ‰) can be 

observed, a field of 6 kV/mm suffices to significantly increase the mentioned 

parameters (Pmax = 29.2 µC/m²;Smax = 0.91 ‰). For higher fields of 8kV/mm, Smax 

increases notably (to 1.27 ‰), while Pmax, increases marginally (to 32.8 µC/m²). The 

corresponding 𝑑33
∗  of BNKT10:0.1Cu0.4V increases from 60 pm/V to 152 pm/V and 

eventually to 158 pm/V at 4 kV/mm, 6 kV/mm and 8 kV/mm, respectively. It is 

evident, that the minor (6 pm/V) increase of the 𝑑33
∗  is due to the fact, that the 

piezoceramic already reached the saturation at an electric field at or close to 

6 kV/mm. This can be rationalized by the movement of domain walls, causing the 

non-linear response at about Ec, which was for instance described in detail by 

Damjanovic et al.154.  

Samples with BNKT10 base composition are in general characterized by a high 

coercive field (Ec), which is in all cases ≥ 4.5 kV/mm. In addition, all loops feature a 

sharp increase of the polarization about Ec. Doping only slightly influences Ec, leading 

to a maximum Ec of 4.8 kV/mm in case of BNKT10:0.5V and BNKT10:0.2Cu,0.3V. 

This change of 0.3 kV/mm is a rather low change in Ec. In contrast, BaTiO3 materials 

were for instance reported to display a strong dependence of Ec on dopant 

concentrations, as described by e.g. Karaki et al. 167. They observed an increase of Ec 

by a factor of 5 (from approximately 0.1 kV/mm to 0.5 kV/mm) upon the addition of 

Bi2O3 and Li2O to BaTiO3. 
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Figure 4.2.3  Polarization vs. electric field at a maximum electric field of 6 kV/mm for 

(a) undoped BNKT10, (b) BNKT10:0.5V, (c) BNKT10:0.1Cu,0.4V, (d) BNKT10:0.2Cu,0.3V, 

(e) BNKT10:0.3Cu,0.2V, (f) BNKT10:0.4Cu,0.1V and (g) BNKT10:0.5Cu ceramics. 

The higher Pmax and Psat upon doping is in contrast to the consistent lower density of 

doped vs. undoped BNKT10 ceramics (as discussed in section 4.1). When observing 

the same material with different porosity, Pmax and Psat are expected to decline with 

decreasing density, which is ascribed to a higher pore concentration and a resulting 

less homogeneous electric field, as discussed by Dunn et al.267 or Kar-Gupta et al.268. 

Pores can in this respect be treated as a second phase, consisting of air, which 

possesses a significantly lower permittivity, compared to the bulk FE material. Like 

Pmax and Psat, the remanent polarization (Prem) of ceramics produced in this work is 

consistently higher upon doping and reaches a maximum value of 29.2 µC/m² in case 

of BNKT10:0.3Cu,0.2V. 
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Figure 4.2.4  Strain vs. electric field at a maximum electric field of 6 kV/mm for (a) 

undoped BNKT20, (b) BNKT20:0.5V, (c) BNKT20:0.1Cu,0.4V, (d) BNKT20:0.2Cu,0.3V, (e) 

BNKT20:0.3Cu,0.2V, (f) BNKT20:0.4Cu,0.1V and (g) BNKT20:0.5Cu ceramics. 

BNKT20 based materials, however, exhibit slightly different S-E behavior compared to 

BNKT10 based ceramics (cf. Figure 4.2.4 and 4.2.5). Namely Sneg of the material has a 

magnitude lower than 0.44 ‰ with the exception of BNKT20:0.3Cu,0.2V, being -

0.70 ‰. The highest obtainable 𝑑33
∗  for doped BNKT20 was 293 pm/V at an electric 

field of 6 kV/mm. In contrast to the findings for BNKT10 based ceramics, Ec of doped 

BNKT20 ceramics was consistently lower (< 2.4 kV/mm), compared to undoped 

ceramics (2.9 kV/mm). This is reflected in the rather slim P-E loops of BNKT20 

materials. In addition, Pmax and Psat were found to be consistently lower in doped 

BNKT20 ceramics (cf. Figure 4.2.5). This finding is more in line with the consistently 

lower density of doped BNKT20 vs. undoped BNKT20 ceramics, discussed in section 

4.1, following previously discussed trend of lowered polarization with decreasing 

density.  
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Figure 4.2.5  Polarization vs. electric field at a maximum electric field of 6 kV/mm for 

(a) undoped BNKT20, (b) BNKT20:0.5V, (c) BNKT20:0.1Cu,0.4V, (d) BNKT20:0.2Cu,0.3V, 

(e) BNKT20:0.3Cu,0.2V, (f) BNKT20:0.4Cu,0.1V and (g) BNKT20:0.5Cu ceramics. 

BNKT30 based ceramics display both lower Sneg (cf. Figure 4.2.6) as well as slimmer 

P-E loops (cf. Figure 4.2.7). The P-E loop shapes are more sprout-like compared to the 

butterfly type loops for especially BNKT10 based ceramics. 

Ceramics of the compositions BNKT30:0.5V and BNKT30:0.5Cu could not be 

synthesized with a desired high density, high homogeneity and reasonable 

piezoelectric properties. Though ceramics of these compositions could be sintered 

with densities > 85 % during the course of this work, they displayed highly leaky 

electric behavior. This was reflected in a far greater Pmax (70 – 200 µC/m²), measured 

at 6 kV/mm, than the polarization at maximum electric field. Thus the compositions 

BNKT30:0.5V and BNKT30:0.5Cu are excluded from further consideration and 

discussion. 

The 𝑑33
∗  of doped BNKT30 varies greatly with different dopant combinations. While 

the 𝑑33
∗  was identified to be 150 pm/V for undoped BNKT30, lower values of 

75 pm/V, as well as higher values up to 228 pm/V were measured for doped BNTK30 

ceramics. This is clearly reflected in the shape of the S-E loops and the magnitude of 

the normalized strain (cf. Figure 4.2.6). 
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Figure 4.2.6  Polarization vs. electric field at a maximum electric field of 6 kV/mm for 

(a) undoped BNKT30, (b) BNKT30:0.1Cu,0.4V, (c) BNKT30:0.2Cu,0.3V, (d) 

BNKT30:0.3Cu,0.2V and (e) BNKT30:0.4Cu,0.1 ceramics. 

 

 

Figure 4.2.7  Polarization vs. electric field at a maximum electric field of 6 kV/mm for 

(a) undoped BNKT30, (b) BNKT30:0.1Cu,0.4V, (c) BNKT30:0.2Cu,0.3V, (d) 

BNKT30:0.3Cu,0.2V and (e) BNKT30:0.4Cu,0.1 ceramics. 

The coercive field of doped BNKT30 ceramics is consistently lower, compared to 

undoped BNKT30. The decrease of Ec is significantly larger (decrease of ≤ 1.9 kV/mm) 

than for BNKT20 based ceramics (decrease of ≤ 1.2 kV/mm) and in contrast to the 

increase of Ec, observed for BNKT10 based ceramics (increase of ≤ 0.3 kV/mm). Upon 
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doping BNKT30, the Prem nearly diminishes to 4.3 µC/m² or less. Pmax is consistently 

lower, compared to undoped BNKT30 ceramics. 

In Figure 4.2.8, 𝑑33
∗  as a function of K content and 

𝐶𝑢

𝐶𝑢+𝑉
 dopant ratio is presented. It is 

apparent from the figure that a maximum 𝑑33
∗  can be observed for doped BNKT20 

compositions, close to the MPB of BNKT. That is an indication that, regardless of the 

aspect of doping, the K content is a critical parameter to influence the large signal 

strain behavior of BNKT ceramics. 

 

Figure 4.2.8  Piezoelectric 𝑑33
∗  as function of K content and 

𝐶𝑢

𝐶𝑢+𝑉
 dopant content. The 

applied maximum electric field was 6 kV/mm. 

The permittivity (εr) and loss tangent (tanδ) small signal parameters at temperatures 

from RT to 400°C of all synthesized ceramics with BNKT10, BNKT20 and BNKT30 

base composition were measured at five different frequencies (100 Hz, 1kHz, 10kHz, 

100kHz and 1 MHz). This allowed for the simultaneous characterization of both the 

temperature dependence and the frequency dependence of εr and tanδ. 
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Figure 4.2.9  Permittivity and tanδ vs. temperature at varying frequencies of poled, 

undoped BNKT10 ceramics. The arrows indicate the increase of the measurement frequencies. 

The dotted vertical lines are highlighting Tf-r and TM. 

A typical permittivity vs. temperature plot of undoped BNKT ceramics is presented 

with the example of undoped BNKT10 in Figure 4.2.9. Coming from lower (εr is in the 

range of 102 to 103 at RT) permittivity at room temperature, upon heating the poled 

ceramics, a sharp increase in εr can be seen. This sharp increase is correlated with the 

transition temperature from ferroelectric to relaxor (Tf-r) behavior of the piezoelectric 

ceramic. Eventually at temperatures larger than Tf-r, a maximum in permittivity could 

be found for all investigated ceramics. The temperature, at which this maximum in εr 

occurs (TM), was > 280 °C for all ceramics. Slight frequency dispersion could be 

observed within the temperature range. The permittivity was decreasing with 

increasing frequency within the whole temperature range. 

Contrary to that, in a typical tanδ vs. temperature curve of undoped BNKT ceramics 

(cf. Figure 4.2.9), the loss at T < Tf-r is increasing with increasing frequency. At about 

Tf-r, the tanδ curve exhibited a maximum for all frequencies. The temperature 

associated with the maximum in tanδ is slightly depending on the measurement 

frequency. At T < Tf-r, the loss at lower frequencies was larger than at higher 

frequencies. In undoped BNKT compositions, it is evident (cf. Figure 4.2.9) to the eye 

that the maxima of tanδ and the maximum slope of the permittivity curve, both 

associated with the transition temperature Tf-r, coincide in a range of no more than 

± 5 °C. The loss tangent was found to be < 10 % at and below Tf-r. 

Detailed characteristic small signal values of all synthesized and discussed ceramics 

are provided in the appendix (cf. Table 8.4). These are Tf-r, TM and the maximum εr. 
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To illustrate the changes of the permittivity vs. temperature and tanδ vs. temperature 

plots upon doping the BNKT ceramics, two samples were chosen to exemplify the 

range of possible deviations in temperature and frequency dependence of εr and tanδ. 

One plot is characteristic for ceramics, that exhibit a lesser deviation from the 

undoped behavior (cf. Figure 4.2.10), while the other plot exhibits a larger deviation 

from the undoped behavior (cf. Figure 4.2.13).  

 

Figure 4.2.10  Representative plot (BNKT10:0.2Cu,0.3V) of relative permittivity and 

tanδ vs. temperature at varying frequencies with slightly decreased Tf-r (as characteristic for 

the BNKT10 doping series). The arrows indicate the increase of the measurement frequencies. 

The dotted vertical lines are highlighting Tf-r and TM. 

Doped BNKT10 ceramics are characterized by a consistently lower Tf-r, which was 

determined to be 122 °C – 157 °C in the doped case vs. 205 °C in the undoped case 

(cf. Figure 4.2.10). In all doped ceramics, the respective TM is shifted to higher 

temperatures. The maximum εr, however, does not follow a trend. Compared to 

undoped BNKT10 (εr of 3905), slightly higher (εr of 3993 in case of 

BNKT10:0.4Cu,0.1V) as well as significantly lower (εr of 2062 in case of 

BNKT10:0.2Cu,0.3V) could be observed upon doping (cf. Figure 4.2.10). 

Doped BNKT10 ceramics could in addition be characterized as having a lesser 

deviation of the doped from the undoped behavior of εr and tanδ, as exemplified in 

Figure 4.2.10. In proximity of the shifted increase in εr at about Tf-r, a broad, increased 

frequency dispersion can be noted. For tanδ, this dispersion in frequency is far more 

pronounced throughout the whole temperature range and in addition, the peak of 

tanδ is slightly broadened in comparison to the undoped BNKT ceramics. The slope of 

the increase in εr of the doped BNKT10 ceramics is in addition less steep, compared to 

the undoped BNKT10 ceramics. 
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Figure 4.2.11  Representative plot of BNKT10:0.2Cu,0.3V ceramics, indicating the 

relative permittivity and tanδ vs. temperature of poled and unpoled (depoled at 400 °C) 

samples at 1 kHz. The dotted vertical lines are highlighting Tf-r and TM of the poled samples. 

From the comparison of poled with unpoled samples (cf. Figure 4.2.11), it is apparent, 

that a FE to relaxor transition occurs upon heating poled doped BNKT10, while the 

unpoled samples are characterized by a significantly reduced tanδ around Tf-r. The 

relative permittivity of the poled samples as well deviates from the unpoled samples: 

slightly below Tf-r, it is higher than of poled samples and above Tf-r it is lower than of 

poled samples. 

TM of doped ceramics is in all cases higher than of undoped BNKT20 and BNKT30. TM 

of up to 351 °C (BNKT20:0.5V) were obtained upon doping. Furthermore the 

maximum εr increased consistently upon doping BNKT20 and BNKT30. For BNTK20 

ceramics, a 1.6- to 3.0-fold increase in maximum permittivity from an εr of 1750 of 

undoped BNKT20 (to 2844 – 5281) could be observed. Doped BNKT30 ceramics 

exhibit a 1.7- to 2.0-fold increase in maximum permittivity (εr of 2561 – 3077), 

compared to an εr of 1524 of undoped ceramics (cf. Figure 4.2.12). 
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Figure 4.2.12  Piezoelectric maximum small signal εr RT and TM of doped (a) BNKT10, 

(b) BNKT20 and (c) BNKT30 ceramics. The dashed horizontal lines each represent the value 

of TM and εr of the respective undoped ceramics. 

Analogously to doped BNKT10 ceramics, doped BNKT20 and BNKT30 ceramics are 

characterized by a consistently lower Tf-r, however, with a shift to Tf-r being as low as 

85 °C. This is especially drastic for BNKT30 based compositions, where all doped 

ceramics possess a low Tf-r close to RT (< 61°C), while undoped BNKT30 ceramics 

possess a high Tf-r of 200 °C (cf. Figure 4.2.15). Doped BNKT20 and BNKT30 ceramics 

could be characterized as having a larger deviation of the doped from the undoped 

behavior of εr and tanδ, as exemplified in Figure 4.2.13. The frequency dispersion of 

tanδ was, compared to doped BNKT10 ceramics, broader and additionally, the peak of 

tanδ itself was significantly broadened. 



  

  75 

 

Figure 4.2.13  Representative plot (BNKT30:0.4Cu,0.1V) of relative permittivity and 

tanδ vs. temperature at varying frequencies with significantly decreased Tf-r (as characteristic 

for the BNKT20 and BNKT30 doping series). The arrows indicate the increase of the 

measurement frequencies. The dashed lines each represent the value of TM and εr of the 

respective undoped ceramics. 

The drop in Tf-r can be explained by the existence of more defects in the ceramics: As 

aliovalent elements (Cu and V) are introduced to the system, they introduce internal 

random fields in the material in addition to the already existing internal fields, 

explained by for instance Wu et al.269. Schütz et al.270 attribute Tf-r to the transition 

from ferroelectric long range order behavior to disordered short range order relaxor 

behavior to the disruption of the Bi-O hybridization in the material, which they 

observed at about Tf-r (by Schütz et al. referred to as Td). Cu and V therefore likely 

have an influence on the Bi-O hybridization. 

The deviation of εr and tanδ of poled from unpoled samples is not very pronounced for 

doped BNKT20 and BNKT30 ceramics (cf. Figure 4.2.15). This correlates with the fact 

that these ceramics do not display a strong FE behavior, which is in accordance with 

for instance their low Pr. Above Tf-r, a higher εr and tanδ can be observed. In case of εr, 

the deviation persists up to temperatures as high as TM. This indicates the presence of 

polar entities up to temperatures higher than Tf-r.  
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Figure 4.2.14  Representative plot of BNKT30:0.4Cu,0.1V ceramics, indicating the 

relative permittivity and tanδ vs. temperature of poled and unpoled (depoled at 400 °C) 

samples at 1 kHz. The dotted vertical lines are highlighting Tf-r and TM of the poled samples. 

The maximization of strain at the MPB was more pronounced in case of doped BNKT 

ceramics, which can be easily grasped, comparing Figure 4.2.15 (a) and (b). This 

implies, that the increase in strain, from which an increased 𝑑33
∗  results, was not 

exclusively caused by the lowering of the transition temperature Tf-r.  

 

Figure 4.2.15  Piezoelectric 𝑑33
∗  and Tf-r of (a) undoped and (b) doped BNKT ceramics 

with different potassium content, emphasizing global trends upon doping. The applied 

maximum electric field was 6 kV/mm. 

The maximum polarization of undoped BNKT ceramics follows the general trend of 

the maximum 𝑑33
∗  of BNKT ceramics: at the MPB, 𝑑33

∗  as well as Pmax are highest 

(cf. Figure 4.2.15(a)). This is not true for doped ceramics. Upon increasing K content 

of doped BNKT ceramics, Pmax displayed a noticeable decreasing trend 

(cf. Figure 4.2.15(b)). 
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With respect to Prem and Ec, undoped and doped ceramics display the same global 

trend: higher K content lead to a trend towards lower Ec as well as a lower Prem. 

However, the decrease in Ec upon increasing K content was found to be stronger for 

doped ceramics, compared to undoped BNKT ceramics (cf. Figure 4.2.16). This trend 

of undoped BNKT ceramics is also reported in the literature by for instance 

Otoničar et al.23, however, their Ec for BNKT30 was reported higher (3.7 kV/mm vs. 

2.5 kV/mm in this study). This is most probably rooted in the significantly different 

Tsint of 1090 °C (vs. 1150 °C in this study). Yoshii et al.25 also report, that the coercive 

field of BNKT10 ceramics is the largest, followed by BNKT20 and BNKT30, with their 

measured Ec of BNKT30 being at about 3.5 kV/mm. However, they do not specify the 

sintering temperature. Thus the difference may be rooted in a difference in Tsint. 

 

Figure 4.2.16  Ec, Prem and Pmax of (a) undoped and (b) doped BNKT ceramics with 

different potassium content, emphasizing global trends upon doping. The applied maximum 

electric field was 6 kV/mm. 

The variation of piezoelectric key figures within one set of doped ceramics of a single 

BNKT base composition was in general not very high, compared to the variation in-

between BNKT10, BNKT20 and BNKT30 based, doped ceramics (the only major 

exception being the considerably lower 𝑑33
∗  of BNKT30:0.2Cu,0.3V). Exemplarily, the 

variation of piezoelectric key figures of BNKT10 ceramics is depicted in Figure 4.2.17. 

Within compositions of a set with fixed K content, the values fluctuate, but no clear 

trend with respect to the Cu/(Cu+V) ratio is evident.  
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Figure 4.2.17  Piezoelectric 𝑑33
∗  and Tf-r (a) as well as Ec, Prem and Pmax (b) of BNKT10 

ceramics, doped with different amounts of Cu and V. The applied maximum electric field was 

6 kV/mm. 

 

 

4.3. Dielectric Spectroscopy Under Resonance 

Doped BNKT10 displays promising piezoelectric characteristics for instance for 

application as sensor, such as a comparably high Tf-r, high Pmax and high Prem. To focus 

on this aspect, selected doped BNKT10 compositions were characterized in greater 

detail and depth with advanced methods. Dielectric spectroscopy was employed to 

evaluate the resistances at varying frequencies and determine EA at different 

temperatures under different 𝑃𝑂2. EPR and XPS were used to assess local environment 

and oxidation states. From here on, in the following sections 4.3- 4.6, exclusively 

results for undoped and doped BNKT10 ceramics are presented and discussed in 

greater depth. 

In order to assess characteristics, important for sensing applications, the resonance 

behavior of BNKT10 ceramic samples was investigated by means of dielectric 

spectroscopy. One is able to obtain detailed information on the electro-mechanic 

processes occurring in the ceramics, by using electrical models to describe (simulate) 

the data obtained via dielectric spectroscopy. 
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Figure 4.3.1  Impedance |Z| (a) and phase angle (b) survey spectrum of undoped 

BNKT10 from 1 kHz to 10 MHz with indicated resonance modes. Please note that due to 

identification of the modes the impedance axis (ordinate) features a break with different 

scaling afterward.  

All BNKT10 ceramics possess a distinct dielectric spectrum, which is characterized by 

two major resonances (cf. Figure 4.3.1) in case of the disk-shaped samples, employed 

in this work. One resonance, roughly observed at a frequency of 400 kHz, was 

associated with the coupling in plane of the disk (kp) and the other at a frequency of 

about 3 MHz, was associated with the coupling in thickness of the ceramic disks (kt). 

They are characterized by a peak in the phase angle at frequencies lower than at the 

respective resonance. PZT-based materials are characterized by a reported peak in-

phase angle of close to 90°, when poled sufficiently (according to Manabu et al.).271 

However, in undoped and doped BNKT10 based ceramics, synthesized in this work, 

the maximum phase angle did not exceed 65.7° (BNKT10:0.3Cu,0.2V). The planar 

mode is characterized by a narrow (approximately 15 kHz wide) resonance event, 

while the thickness mode exhibits a broader (approximately 0.7 MHz wide) resonance 

event. Both thickness, as well as planar resonance spectra may exhibit minor 

resonances, which exist as side shoulders on the major resonances or can be observed 

independently.  
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Figure 4.3.2  Impedance spectra at resonance of undoped BNKT10 with (a) and (b) 

detailing the resonance in the sample plane, associated with kp and (c) and (d) indicating the 

resonance in sample thickness direction, associated with kt. 

In order to more accurately evaluate the measured data and correctly assess kp and kt, 

the impedance resonance spectra were fitted, by using equivalent circuits to model the 

electric behavior of the samples at the respective resonance (cf. Figure 4.3.3). The 

Nyquist plot, depicting the real part vs. the imaginary part of the impedance 

(cf. Figure 4.3.3 (a)) served as a means to evaluate the resonance response of the 

BNKT10 ceramics. For all samples, characteristic elliptically shaped circles were 

obtained. Those extend to both, the negative, as well as the positive imaginary 

impedance quadrant, while having positive real impedance. For one major resonance 

with no minor resonances, one equivalent circuit as detailed in Figure 4.3.3 (b) was 

used. This equivalent circuit with two CPE, allowed fitting the data more accurately, 

however, one has to bear in mind that this combination may not be physically 

meaningful. As discussed in Section 2.2.2, a simpler model should be used, which 

accounts exclusively for the resonance behavior. The here employed equivalent circuit 

takes additional contributions, which do not result from the resonance, in account, 

too. 
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Figure 4.3.3  Exemplary Nyquist plot (a) of the in plane resonance of undoped 

BNKT10 with the corresponding equivalent circuit (b) for the simulation of the experimental 

data. 

While the planar coupling of doped samples was mostly unchanged compared to 

undoped BNKT10 (cf. Figure 4.3.4 (a)+(b)), doped samples displayed minor 

secondary resonances in the thickness resonance mode, compared to undoped 

samples (cf. Figure 4.3.4 (c)+(d)). 

When plotted as a Nyquist plot, these minor resonances occur in the form of minor 

loops within the major loop (cf. Figure 4.3.5 (a)). These minor resonances could be 

fitted, employing two or more combined equivalent circuits (of the circuit detailed in 

Figure 4.3.3 (b)) in order to fit the data obtained through experiments 

(cf. Figure 4.3.5 (b)). Every additional equivalent circuit, like the one described in 

Figure 4.3.3 (b), enables the fitting of an additional resonance loop. Thus it is possible 

to fit any given number of minor resonances in addition to the major resonance; 

however, only significant minor resonances were fitted. 
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Figure 4.3.4  Representative resonance impedance spectra of doped 

BNKT10:0.1Cu,0.4V with (a) and (b) detailing the resonance in the sample plane, associated 

with kp and (c) and (d) indicating the resonance in thickness direction, associated with kt. 

As apparent from Figure 4.3.4 (c), very weak, minor resonances exist (in-between 2.2 

and 2.4 MHz in this example), however, were neglected in the fit. Despite this fact, as 

evident from Figure 4.3.5 (a), a fairly good fit of the major and stronger minor 

resonance could be obtained to describe the behavior of the material at thickness 

resonance. These minor resonances occur due to an inhomogeneous response of the 

material, which manifests itself in the additional resonance(s). 

From this fitted data, the coupling factors kp and kt, as well as the mechanical quality 

factors (QM,p in planar and QM,t in thickness direction) of all synthesized BNKT10 

ceramics, were determined (cf. Table 4.3.1). The planar coupling factor of undoped 

and doped BNKT10 is not significantly influenced by doping and varies between 

0.19 and 0.23. There is, however, a strong influence of doping on kt. It varies from as 

large as 0.56 to as small as 0.31. The resonance behavior of QM,p and kp is decoupled 

from the resonance behavior in thickness direction. QM,p shows a largely decreasing 

trend with increasing Cu dopant content, with the only exception being BNKT10:0.5V, 

exhibiting a slightly lower QM,p than BNKT10:0.4V,0.1Cu (191 vs. 195, respectively). 

The decreasing trend can be rationalized by Cu segregation at the grain boundary, 

likely resulting in secondary phases below XRD detection limit. 
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Figure 4.3.5  Exemplary Nyquist plot (a) of two overlapping thickness mode 

resonances of BNKT10:0.2Cu,0.3V with the corresponding equivalent circuit (b) for the 

simulation of the experimental data. 

In case of kt, there is no clear trend evident. One can observe, that the kt may be 

inversely related to QM,t, as kt is consistently higher, when QM,t is lower 

(cf. Figure 4.3.6). As described by Kamel et al.272, the coupling factors depend on the 

domain wall motion and thus on pinning of the domain walls due to immobile 

defects. Consequently a different defect distribution or concentration is to be expected 

for samples with different kt.  

 

Table 4.3.1 | Coupling Factors and Mechanical Quality Factors of BNKT10 Ceramics (partially 

adapted from Blömker et al.261 and reprinted with permission, © 2015 The American 

Ceramic Society). 

  planar resonance 
 

thickness resonance 

composition Fa / kHz Fr / kHz kp QM,p 

 

Fa / MHz Fr / MHz kt QM,t 

undoped BNKT10 400.95 407.99 0.21 207 
 

2.58 2.89 0.50 10 

BNKT10:0.5V 423.05 429.44 0.19 191 
 

2.46 2.65 0.41 17 

BNKT10:0.1Cu,0.4V 303.75 308.34 0.19 195 
 

2.23 2.57 0.56 9 

BNKT10:0.2Cu,0.3V 445.96 453.38 0.20 161 
 

2.55 2.82 0.48 12 

BNKT10:0.3Cu,0.2V 451.32 460.81 0.23 111 
 

2.70 2.84 0.31 22 

BNKT10:0.4Cu,0.1V 447.64 456.041 0.21 75 
 

3.67 3.96 0.42 22 

BNKT10:0.5Cu 445.83 453.91 0.21 50 
 

2.44 2.66 0.45 6 

  
        

 

        
 

QM,t is very low (≤ 22), indicating a high dampening at the resonance. This is actually 

desirable for sensor applications, especially in combination with high kt.
21,273 It 
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additionally allows for a broad usable resonance bandwidth. Especially 

BNKT10:0.1Cu,0.4V stands out with a high kt of 0.56 in combination with a low QM,t 

of 9. 

 

Figure 4.3.6  Planar (a) and thickness (b) resonance coupling factors and mechanical 

quality factors of BNKT10 ceramics, doped with different amounts of Cu and V. 

 

 

4.4. Dielectric Spectroscopy in Atmospheres with Different Oxygen 

Partial Pressure 

Dielectric spectroscopy at elevated temperatures and in different atmospheres allows 

for the assessment of the conduction processes, exhibited by the investigated BNKT10 

ceramics. 

The Cole-Cole plots of the BNKT10 ceramics are characterized by one or more 

independent or overlapping semicircles (cf. Figure 4.4.1). The measured data could be 

fitted, using equivalent circuits, comprising a contact resistance in series with one or 

more units, consisting of a resistance and a constant phase element (CPE), in parallel. 

This is detailed in Figure 4.4.2 for the example of four units of resistance parallel to 

CPE, each unit representing one individual conduction process. In general the fit by a 

simulated equivalent circuit was in very good agreement with the measured data. 
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Figure 4.4.1  Exemplary Cole-Cole plot of impedance spectroscopic measurement of 

BNKT10:0.5V at 500°C and the respective fit by an equivalent circuit, detailed in Figure 4.4.2. 

Overview (a) of the whole Cole-Cole plot and detail (b) of the high Z’ region, to illustrate the 

additional semi-circle and the final increase at high Z’ due to contact contributions. 

The measurement of dielectric properties at different elevated temperatures was in 

addition used to calculate the resistivity of the bulk material at the respective 

temperatures. All measured data points of the bulk resistivity, plotted in an Arrhenius-

type of graph (cf. Figure 4.4.3), could be fit fairly well, assuming linear dependence, 

with the adjusted R² being > 99.4 % in all cases. Thus the investigated BNTK10 

ceramics follow Arrhenius behavior within the investigated temperature range. 

 

 

Figure 4.4.2  Exemplary equivalent circuit to simulate impedance spectroscopic data 

(as presented in Figure 4.4.1) at elevated temperature, taking contact, bulk and grain 

boundary contributions into account. 

Undoped BNKT10 ceramics display the largest bulk resistivity of the investigated 

BNKT10 ceramics in the investigated temperature range (1.6×105 Ωm to 

2.0×108
 Ωm). Regardless of whether the samples were doped with Cu only, V only or 

both Cu and V, the resistivity in the observed temperature range decreased in all 

cases, compared to undoped BNKT10. BNKT10:0.1Cu,0.4V displays the highest 
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resistivity (1.8×104 Ωm to 1.3×107 Ωm) of the doped samples and the determined 

resistivity was in close proximity to BNKT10:0.5Cu (~1.0×104 Ωm to 7.3×106 Ωm). 

BNKT10:0.5V exhibits still significantly lower (3.3×103 Ωm to 1.8×106 Ωm) resistivity 

compared to undoped BNKT10, but also, compared to the other investigated doped 

BNTK10 ceramic. 

This observed maximum in resistivity implies that the undoped BNKT10 will most 

likely (I) contain the lowest amount of charge carriers of the investigated ceramics or 

(II) contain a relatively lower amount charge carriers with fast transport processes. 

Any addition of Cu, V or a combination thereof, displayed increased conductivity, 

which can be correlated with (I) a higher charge carrier concentration and (II) charge 

carrier mobility.  

 

Figure 4.4.3  Arrhenius plot of different BNKT10 compositions measured in ambient 

air with their respective linear fit indicated by red lines. 

The activation energies (EA) of the bulk of BNKT10 ceramics, measured in ambient air 

(as extracted from the Arrhenius plot in Figure 4.4.3), were all in the range of  

1.25 eV to 1.37 eV, which is no significant deviation (cf. Table 4.4.1). This could allow 

for the conclusion, that the major conduction process in BNKT10 ceramics is 

unchanged upon doping. 
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Table 4.4.1 | Arrhenius Plot Fitting Parameters and EA of BNKT10 Ceramics in Air 

sample atmosphere intercept of fit /Ωm slope of fit /ΩmK bulk EA /eV 

undoped BNKT10 air -8.4 15849 1.37 

BNKT10:0.5Cu air -9.8 14694 1.27 

BNKT10:0.1Cu,0.4V air -9.1 14570 1.26 

BNKT10:0.5V air -9.4 14770 1.25 

  
       

 

In general the EA, determined in this work, are comparable to energies reported in 

literature (cf. Table 4.4.1). BNKT10 ceramics prepared by Rao et al.245 exhibit EA of 

1.06 eV for the bulk, which is slightly lower. In addition, the resistivity is 

< 5×102
 Ωm. This likely indicates a higher leakage current, which is further 

corroborated be the fact that their reported Pmax and Prem are also lower than in this 

work. 

 

Table 4.4.2 | EA of Other BNKT and BNKT-Based Ceramics in Air 

sample 
bulk 

EA   /eV 

grain boundary 

EA   /eV 
reference 

BNKT10 1.06 1.07 245 

BNKT12 2.14 - 274 

BNKT15 0.95 1.05 245 

BNKT16 2.21 - 274 

BNKT18 1.73 2.09 275 

BNKT18 1.26 1.23 123 

BNKT18 with 0.1Li substituted vs. Na 0.87 0.93 123 

BNKT20 0.85 0.83 245 

BNKT20 2.18 - 274 

BNKT20 with 0.1 Li substituted vs. Na 0.45 0.52 276 

0.97Bi0.5(Na0.78K0.22)0.5TiO3-0.03KNN 1.08 1.08 277 

BNKT30 1.13 0.83 245 

BNKT45 1.28 0.81 245 

BNKT50 0.46 0.45 278 

        

 



   

88  

Some of the reported EA deviate significantly from each other. This is especially 

evident in case of BNKT18 and BNKT20, where EA with large differences of 

0.53 eV and 1.33 eV, respectively, are reported by different authors. The results of 

Li et al.274 have to be seen critical in this context, as firstly, they determine the EA by 

using the relaxation times as an indicator instead of the specific resistivities (used in 

this work and the other works presented in Table 4.4.1). Secondly, they use 

2 to 4 temperature steps to determine EA, compared to no less than nine steps used in 

this work. Considering this heterogeneous picture, further studies on BNKT-based 

ceramics seem necessary to clarify the EA of the different compositions. 

In order to assess the conduction processes under different oxygen partial pressures 

(𝑃𝑂2), different gases and pressures were used at the elevated temperatures during the 

dielectric measurements. The respective 𝑃𝑂2 of the saturated, sufficiently purged 

atmosphere in O2 was one bar, in air was 0.21 bar, in vacuum was 2.1∙10-6 bar and in 

Ar with 1 vol.% H2 was < 10-18 bar 279. 

 

Figure 4.4.4  Arrhenius plot of undoped BNKT10 measured in different atmospheres, 

with the respective linear fit indicated by red lines. Samples in Ar/H2 atmosphere were 

measured in a different temperature range (25 °C – 350 °C). 

 

Varying 𝑃𝑂2 resulted in a distinct decrease in resistivity (cf. Figure 4.4.4). This is true 

for exposing ceramics at elevated temperatures to higher 𝑃𝑂2 (one bar), as well as for 

exposing ceramics to lower 𝑃𝑂2 (as low as < 10-18 bar). Of all investigated 𝑃𝑂2, the 

resistivity of undoped BNKT10 in air was the highest (1.6×105 Ωm to 2.0×108 Ωm). 

Next lowest, the resistivity of BNKT10 in pure oxygen was in the range of 

9.0×103 Ωm to 2.3×108
 Ωm. Despite the lower resistivity in the observed temperature 
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range, EA of undoped BNKT10 in O2 was higher than that in air (1.52 eV vs. 1.37 eV, 

respectively). In vacuum, the resistivity was reduced to 3.3×102 Ωm to 8.9×104 Ωm 

and EA decreased to 1.07 eV. 

In Ar/H2 atmosphere with the lowest 𝑃𝑂2, a significantly lowered EA of 0.23 eV was 

found. This is accompanied by a considerably lower observed resistivity  

(1.9×100
 Ωm to ~2.7×103

 Ωm) of undoped BNKT10 in Ar/H2 atmosphere. The 

samples were black and displayed metallic luster after treatment in Ar/H2 

atmosphere. 

In the investigated temperature range, oxygen diffusion into and out of the BNKT10 

ceramics according to 

 2𝑂𝑂
𝑋 ↔𝑂2 + 2𝑉𝑂

●● + 4𝑒′ (4.4.1) 

can occur. As the 𝑃𝑂2 is influenced, this will also influence the concentration of 𝑣𝑂
●● - 

i.e.: an increase of 𝑃𝑂2, will result in a decrease of 𝑣𝑂
●● and vice versa. The overall 

conductivity (𝜎𝑡𝑜𝑡𝑎𝑙) of the ceramics can be described by 

 𝜎𝑡𝑜𝑡𝑎𝑙 = 𝜎𝑛 + 𝜎𝑝 + 𝜎𝑖   , (4.4.2) 

with 𝜎𝑛 being the electronic conduction, 𝜎𝑝 being the hole conduction and 𝜎𝑖 being 

the ionic conduction.280 

 

Figure 4.4.5  The equilibrium electrical conductivity of undoped BaTiO3 as a function 

of 𝑃𝑂2. The lines highlight isotherms at 50 °C intervals from 600 °C to 1000 °C. Adapted from 

Raymond et al.281 and reprinted with permission, copyright © 1996 Published by 

Elsevier Ltd.). 
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However, the valence band of BNT lies at a rather deep level due to the fact that very 

high energies are required to oxidize O2-. Therefore electron holes seem to be not 

likely present in large amounts. This is comparable to PZT and BaTiO3 systems. 

The fact, that BNKT10 in air has the highest resistivity is in qualitative agreement with 

the general trend in resistivity vs. oxygen partial pressure that is to be expected in 

acceptor doped ceramics like BaTiO3. This is presented in both Figure 4.4.5 (BaTiO3) 

with a clearly visible trend and in Figure 4.4.6 with the indicated rough guide to the 

eye indicating the same trend (please note: for BT the conductivity is plotted, while 

for BNKT10 the resistivity is plotted). The indicated trend of BNKT10 should be 

considered as very approximate due to (I) the limited number of data points and (II) 

the initial approximation of 𝑃𝑂2. 

 

Figure 4.4.6  The equilibrium resistivity of undoped BNKT10 ceramics at 350 °C as a 

function of 𝑃𝑂2. The dashed line is a guide to the eye to approximate the trends in resistivity. 

In case of PZT, 𝜎𝑡𝑜𝑡𝑎𝑙 is reported to consist only of 𝜎𝑛 and 𝜎𝑖, for instance by 

Boukamp et al.282. 

Oxygen vacancies contribute to the ionic conductivity and their EA is known to be in 

the range of 1 eV according to Smyth 283, which is slightly lower than the EA found for 

undoped BNKT10 in air, O2 and vacuum (cf. Tables 4.4.1 and 4.4.3) and also for 

doped BNKT10 in air. A trapping of 𝑣𝑂
●● by acceptor defects, in the ceramics is 

furthermore possible. Trapped defects, e.g. (𝐶𝑢𝑇𝑖
′′ − 𝑣𝑂

●●)𝑋, are usually (depending on 

their dissociation energy) not mobile, thus do not contribute to the overall 

conductivity. In addition, detrapping these states requires further activation energy.  

In addition, the grain boundary 𝑣𝑂
●● ion diffusion in Nb doped PZT was found to be 

significantly higher, compared to the bulk 𝑣𝑂
●● ion diffusion, as reported by 
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Frömling et al.284, who performed 18O tracer experiments to characterize the diffusion 

of oxygen. 

Like in the case of Nb doped PZT, in a dielectric study at elevated temperature on 

BNKT18, Chen et al.275 noted a higher grain boundary conductivity, compared to bulk 

conductivity, and attributed this to conduction paths induced by Bi evaporation of the 

ceramics. Their argument was supported by observed transgranular fractures in BNKT 

ceramics, opposed to intergranular fractures, which they found in lead-based PZN. 

This is likely occurring in all BNT-based materials, as well in the investigated BNKT10 

ceramics. 

 

Table 4.4.3 | Arrhenius Plot Fitting Parameters and EA of BNKT10 Ceramics at Different 𝑷𝑶𝟐 

sample atmosphere intercept of fit /Ωm slope of fit /ΩmK bulk EA /eV 

undoped BNKT10 air -8.4 15849 1.37 

undoped BNTK10 O2 -13.8 17692 1.52 

undoped BNKT10 vacuum -10.3 12391 1.07 

undoped BNKT10 Ar / H2 4.1 2825 0.23 

  
       

 

 

4.5. Electron Paramagnetic Resonance Spectroscopy 

Electron paramagnetic resonance (EPR) spectroscopy is able to provide information 

on unpaired electrons in a system. Thus it is possible to detect Cu and V in certain 

oxidation states (2+ and 4+, respectively) in very low concentrations. Information on 

the local electronic environment, in particular the symmetry and the oxidation state 

can be extracted from the EPR spectra. 

Cu2+ could be detected in the Cu doped BNKT10 ceramics (cf. Figure 4.5.1). A broad 

Cu2+ signal was observed for higher concentrations of Cu (BNKT10:0.5Cu) of the 

respective calcined powder and sintered ceramics. Cu2+ displayed multiple individual 

resonances in the ceramics. The Cu2+ resonances could be simulated, using the 

software EasySpin285, assuming a rhombic local environment. They can be attributed 

to two distinctive Cu2+ defect centers (cf. Table 4.5.1) in calcined powders and 

sintered ceramics (designated as center1 and center2). 
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Figure 4.5.1  EPR spectra of calcined and sintered samples with varying Cu content. 

The dashed lines are a guide to the eye to identify the individual resonances. Partially adapted 

from Blömker et al.261. 

Both center1 (at about 290 mT) and center2 (at about 330 mT) are altered upon 

sintering. In general both centers (indicated by the dashed lines in Figure 4.5.1) 

broaden noticeably upon sintering. While center1 was additionally slightly shifted 

towards lower magnetic fields upon sintering, center2 was shifted significantly to 

lower magnetic fields. This is an indication that at least defect center2 of Cu2+ is 

segregating, likely to the grain boundaries: The calcined BNKT10 powders already 

consist of a perovskite phase, which is not altered notably upon sintering. Sintering 

mainly affects the grain size, grain boundaries and the defect chemistry, while the 

perovskite lattice of the bulk is not subject to major changes.  

As evident from Figure 4.5.1, the Cu2+ peaks were generally very broad (additionally 

cf. Figure 4.5.2). This broadening of the EPR resonance peak of Cu2+ in BNKT10 can 

be attributed to (I) spin-spin interaction of multiple Cu2+ defect centers in close 

vicinity to each other or (II) an inhomogeneous local environment of the host lattice 

due to more than one crystal phase or a significant amount of internal stresses. Case 

(II) was for instance described by Eichel et al.286 for PZT at the MPB. Spin-spin 

interactions appear at very high concentrations of Cu2+ throughout the ceramic or 

when Cu2+ is not homogeneously distributed across the ceramic, which results in local 

spin-spin interactions in regions with high Cu2+ concentration. 

Neither calcined, nor sintered BNKT10:0.01Cu, exhibited an EPR signal; 

BNKT10:0.05Cu ceramics, however, did. This indicates a limit of detection for Cu2+ in 

BNKT10 between 0.05 at.% Cu and 0.01 at.% Cu. Furthermore it is evident from the 

absence of other resonance signals in the EPR spectra of BNKT10:0.01Cu, that no 

unintended paramagnetic impurities (e.g. Fe3+ or Mn3+, described by Eichel et al. 287) 
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or reduced titanium (Ti3+, described by Warren et al.288) defects were present in 

undoped BNKT10 powders and bulk. 

 

Figure 4.5.2 EPR spectra of calcined and sintered BNKT10 ceramics and their respective 

simulations. The broad Cu peak of calcined BNKT10:0.05Cu (a) on the top was simulated as 

illustrated in the middle. On the bottom the difference between the measured data and the 

simulation of the broad Cu2+ is plotted. The dashed line is a guide to the eye to indicate the 

Cu2+ resonance. The measured spectrum of BNKT10:0.5Cu (b) on top was fitted by simulating 

the bottom Cu2+ spectrum. Partially adapted from Blömker et al.261. 

A significant contribution of the crystal phase or stresses to the dipolar broadening, as 

described by Eichel et al. will occur at any given concentration, as no other Cu2+ 

defect is required in close proximity. However, for very low (0.05 at.% Cu) 

concentration, the characteristic fingerprint spectrum of Cu2+ (cf. Figure 4.5.2(a)), 

sitting on top of the broad dipolar signal, was observed in this work. A spectrum, in 

which the simulated broadened Cu2+ signal is subtracted from the experimentally 

obtained spectrum, is presented to emphasize the remaining fingerprint signal. This is 

in contradiction with dipolar broadening at any given Cu2+ concentration. Thus a 

dipolar broadening due to multiple crystal phases or internal stresses can be excluded 

from consideration. Since the investigated Cu concentrations are very low 

(< 0.5 at.%), a segregation of Cu2+ to the grain boundaries is a viable explanation for 

the dipolar broadening. This argument is further supported by the increasing trend in 

density upon increasing Cu concentration of BNKT10 ceramics, sintered at 1080 °C 

(cf. discussion in section 4.1) 

For Cu2+ (d9 system) a strong Jahn-Teller (JT) effect is to be expected, causing 

elongation of the octahedral environment and resulting in splitting of the eg orbitals. 

This is reflected in the ratio of Azz to Axx and Ayy in case of center1. Azz is up to 

40 times larger than Ayy. The comparably small, however, noticeable deviation of Axx 

from Ayy is indicative of small rhombic distortions of the local electronic environment.  
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Figure 4.5.3  EPR spectra of Cu and V doped BNKT10 ceramics. Doped and calcined 

samples are compared in (a), while (b) is a magnification of the spectrum of calcined 

BNKT10:1V to emphasize the V4+ fingerprint signal. In (c), sintered samples are compared 

and (d) illustrates the V4+ signal in addition to the broad Cu2+ EPR signal of sintered Cu 

doped ceramics. C.f. Blömker et al.261. 

In PZT158,289 and in KNN290, Cu2+ behaves differently. It is predominantly incorporated 

into the lattice, residing on a B lattice site. This is different from this work, as Cu2+ 

segregates, most probably at the grain boundaries. 

Calcined and sintered BNTK10 with Cu and V doping display different characteristic 

EPR spectra. As discussed earlier (cf. Figure 4.5.3 and Table 4.5.1), Cu yields an EPR 

signal in BNKT10, which is characterized by two centers. These centers are also 

apparent in calcined powders and sintered ceramics with both Cu and V dopants 

(cf. Figure 4.5.3 (a) and (c)). 
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Table 4.5.1. | Spin Hamiltonian Parameters of Cu2+ and V4+ in BNKT10 Ceramics, adapted 
from Blömker et al.261 and reprinted with permission, © 2015 The American Ceramic 
Society. 

 
gxx gyy gzz 

Axx 

(MHz) 
Ayy 

(MHz) 
Azz 

(MHz) 

calcined Cu2+ (center1)A 2.053 2.067 2.393 17 10 404 

calcined Cu2+ (center2)A 2.147 1.995 2.385 71 101 306 

sintered Cu2+ (center1)A 2.117 2.056 2.468 120 117 451 

sintered Cu2+ (center2)A 2.190 2.345 1.949 201 202 152 

calcined V4+ B 1.972 1.952 1.939 118 129 468 

A A and g are displayed for 63Cu. A ratio of 1.588 to 1.484 for 65Cu to 63Cu was used for 
calculations. 
B For V4+ in sintered ceramics the same parameters were used. 
 

In addition, a fingerprint V4+ signal is easily visible in the case of calcined 

BNKT10:0.2Cu,0.3V and 0.1Cu,0.4V as well as in BNKT10:1V (cf. Figure 4.5.3 (b)). 

Upon sintering, the V4+ signal is weaker and only visible as a side shoulder of the 

Cu2+ signal (cf. Figure 4.5.3 (d)). At all investigated concentration levels of V, the 

characteristic signal is narrow and well defined, not indicating any peak broadening. 

In contrast to the Cu2+ ions, this points at bulk introduction of V4+. 

 

Figure 4.5.4  Measured (top) and simulated EPR spectra of BNKT10:0.2Cu;0.3V 

(below) with the corresponding simulation of Cu2+ and V4+ signal combined as well as the 

individual simulations of the broad Cu2+ signal and the narrow fingerprint V4+ resonance 

signal. C.f. Blömker et al.261. 

The g-factors of the simulated V4+ signal are in good agreement with comparable 

studies291-293. The hyperfine splitting parameters (A) compared to these studies are 
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significantly higher. As an example Davidson et al.292 reported Axx = 31 MHz, 

Ayy = 45 MHz and Azz = 156 MHz for V4+ in TiO2, while Axx = 118 MHz, 

Ayy = 129 MHz and Azz = 468 MHz in this work. This is possibly due to the elongation 

of the oxygen octahedron and resulting JT-splitting. Slight JT effects are expected for 

V4+ (d1 system). In addition it is to be noted, that the samples exhibited no V2+ signal, 

which would occur at a lower applied magnetic field (B0).294  

Figure 4.5.4 illustrates in detail, how the simulated EPR spectra were matched to the 

obtained experimental data. For samples with one dopant only, as BNKT10:0.5Cu or 

BNKT10:1V, a simulation of the individual signal was sufficient. As apparent from 

Figure 4.5.4 , ceramics with simultaneous Cu and V doping required the combination 

of the simulation of a broad Cu2+ signal and a narrow V4+ signal to obtain a good fit. 

 

Figure 4.5.5  Dependencies of 𝑔𝑧𝑧
𝐶𝑢 versus 63𝐴𝑧𝑧

𝐶𝑢 (a) with different regions of 

coordination: CuO4 coordination (𝑣𝑂
●● − 𝐶𝑢2+ − 𝑣𝑂

●●)●● defect complexes ((b) and (c)) on top, 

CuO5 coordination (𝑣𝑂
●● − 𝐶𝑢2+) (d) in the middle and CuO6 octahedra (e) at the bottom. The 

dashed lines represent a qualitative separation of the regions, calculated from experimentally 

obtained coordination parameters for Cu2+, as approximated by Eichel et al..286 Empty squares 

in (c) - (d) represent oxygen vacancies. 

With the obtained Spin Hamiltonian parameters, it is possible to roughly evaluate the 

oxygen coordination of the different Cu2+ centers by means of A vs. g  

Peisach-Blumberg295 plots. Peisach-Blumberg plots correlate the hyperfine splitting with 

the g-factor of metal-ligand complexes and allow drawing conclusions on the number 

of ligands. While the original Peisach-Blumberg diagram was used for Cu2+ in organic, 

biological specimens, Eichel et al.286 transferred this to Cu2+ in various titanates and 

organic substances. This allows for a distinction of the number of neighboring oxygen 

of Cu in octahedral environment in for instance PT, PZT and BT. This distinction is 

possible, since electron spin density is transferred to bonding oxygen ions, which 
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results in less hyperfine splitting for e.g. CuO5 coordination than for CuO4 

coordination (as Cu in the second case is surrounded by one oxygen less). This is why 

the CuO4 coordination is associated with the highest 63𝐴𝑧𝑧
𝐶𝑢, followed by CuO5 

coordination with intermediate hyperfine splitting, while CuO6 coordination is 

associated with the lowest 63𝐴𝑧𝑧
𝐶𝑢. The simulated Spin Hamiltonian parameters g and A 

of this work are displayed in a Peisach-Blumberg diagram with coordination regions 

that were adapted from Eichel et al. (cf. Figure 4.5.5). 

While Cu2+ in calcined BNKT10 is located in a region of CuO4 octahedral coordination 

and as well in a region of CuO5 coordination, this is changed upon sintering 

(cf. Figure 4.5.5). Here a CuO6 coordination of Cu2+ can be evidenced in combination 

with a CuO4 coordination. For Cu2+ in the bulk this correlates with the amount of 

oxygen vacancies coordinated to the defect. However, as discussed earlier and 

evidenced by dipolar broadening, a segregation of Cu2+ to the grain boundary is 

expected. This implies that the observed oxygen coordination should correlate with 

phenomena observed at grain boundaries, e.g. dangling bonds. Cu2+ in CuO4 

coordination can in this context be rationalized by Cu2+ residing in the vicinity of a 

grain boundary defect. This can be, for instance as discussed, a one dimensional 

defect (vacancy), but also a two-dimensional defect (Cu2+ close to a dislocation) or a 

three-dimensional defect (Cu2+ at the interface of a pore). 

 

 

4.6. X-Ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) is a surface sensitive quantitative method, 

allowing for the assessment of the first few up to ten nanometers of the sample. 

Selected, doped BNKT10 ceramics were investigated by means of XPS in their 

polished, annealed state in order to obtain information about the oxidation states of 

all BNKT10 elements including oxygen and attain an estimation of the Fermi level 

trends upon doping. 

V could be detected at the investigated (0.3 at.% - 1 at.%) doping levels, however, Cu 

(≤ 0.5 at.%) could not be detected, despite long measurement times over night. 

Presumably, since (I) the relative sensitivity factor (RSF) of Cu is lower than the RSF 

of for instance V, described by Powell et al. 296, (II) the background in the region 

around 930 eV, where the peak would be expected, is high and (III) the attenuation of 

the adsorbate layer weakens the signal. This attenuation is higher at higher binding 

energy (BE), resulting from the lower inelastic mean free path, as reported by 

Seah et al. 297. 
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Figure 4.6.1  Exemplary survey XPS spectrum of BNKT10:1V with line identifications. 

As evident from the survey spectrum (cf. Figure 4.6.1), all other elements, present in 

BNKT10 ceramics could be identified by their characteristic XPS signal. In addition, a 

carbon peak could be identified and can be attributed to the surface adsorbates and 

likely additional surface contamination. Commonly employed sputtering of the surface 

to remove surface contamination, was not performed in this work, as the oxidation 

states of the material were of interest and ion sputtering would likely change those. 

The binding energies are consistently shifted by approximately 2 eV. This can be 

attributed to charge compensation by the neutralizing beams. 

 

Figure 4.6.2  O 1s XPS spectra of doped BNKT10 ceramics. The peak at lower BE 

corresponds to BNKT. The peaks at higher BE result from adsorbates, e.g. water or hydroxides. 
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The presence of adsorbates on the sample surfaces is additionally reflected in the O 1s 

peak of the XPS spectra of doped BNKT10 ceramics (cf. Figure 4.6.2). At lower 

binding energy (~528 eV), a peak, corresponding with oxygen in the BNKT10 lattice 

environment, was observed. A peak at higher binding energy (~531 eV) indicates the 

discussed presence of adsorbates. In case of oxygen this is likely predominantly due to 

the presence of hydroxides or water on the surfaces, but could additionally be caused 

by small organic molecules.  

 

Figure 4.6.3  C 1s XPS spectra of doped BNKT10 ceramics. 

The binding energy of the C 1s main peak is approximately unchanged for all 

employed dopants and dopant combinations (cf. Figure 4.6.3). Though BNKT10:1V 

displays a slightly higher binding energy, the deviation is minimal (< 1 eV). This 

corroborates the assumption of a minimal influence of the ionic and electronic charge 

neutralization on the surface energies of the investigated ceramics. 

Figure 4.6.4 provides the XPS spectra of Bi 4f, Na 1s and Ti 2p3/2. The Na 1s spectrum 

(cf. Figure 4.6.4 (b)) clearly exhibits the discussed higher noise at high binding 

energies. The low signal to noise ratio is prevalent for all investigated ceramics. There 

is no significant change in Na 1s binding energy apparent. The low intensity of the Na 

1s peak is (analogous to the not observable Cu signal) caused by the low ionization 

cross section and additionally by the attenuation of the peak due to the adsorbates. 
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Figure 4.6.4  XPS spectra of doped BNKT10 ceramics. (a) Bi 4f spectra, (b) Na 1s 

spectra and (c) Ti 2p3/2 spectra. The Ti 2p1/2 peak, commonly used for quantification, is 

indistinguishable due to a more intense Bi emission. 
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The Bi 4f spectrum (cf. Figure 4.6.4 (a)) are all similar, despite BNKT10:0.2Cu0.3V, 

which exhibits an additional narrow peak, ~1 eV lower in binding energy, than the 

main peaks. If this peak would originate from Bi, this would indicate metallic Bi0. This 

should not be the case, as Bi0 would oxidize in air and additionally the energy of the 

Ar ions, used for charge compensation is very low (< 10 eV). This would typically not 

cause a sputtering effect, resulting in Bi0. Thus the origin of this minor peak remains 

to debate. 

In case of titanium, the Ti 2p1/2 peak, commonly used for quantification is 

indistinguishable as it is covered by a much stronger Bi emission. Therefore the Ti p3/2 

peak (cf. Figure 4.6.4 (c)) was used to quantify the Ti content of the ceramics.  

 

Figure 4.6.5  XPS V 2𝑝3/2 spectra data points and fit, as well as deviation from the fit 

of doped BNKT10 ceramics. Additionally represented by colored peak areas, are the 

deconvolution of V5+ and V4+ peaks with a BE difference of 1.2 eV and identical shape. The 

spectra were not shifted. At the top, all V oxidation states with a BE difference of about 1.2 eV 

are indicated as a guide to the eye. Adapted from Blömker et al.261 and reprinted with 

permission, © 2015 The American Ceramic Society.. 

The V 2p3/2 peak is asymmetric in shape, which implies the presence of more than one 

oxidation state of V (V4+ and V5+). A fitting of the V 2p3/2 signal revealed two 

separate V peaks with a BE difference determined as 1.2 eV. An identical shape of 



   

102  

both peaks was assumed to fit the experimental data. Due to the high noise level, the 

fitting is not very unique. 

Nevertheless, this finding is in agreement with binding energies of V reported in the 

literature. For instance Wu et al.298,299 observed a binding energy difference of about 1 

eV, while Silversmit et al. reported 1.4 eV binding energy difference between V4+ and 

V5+ and Demeter et al.300 reported a difference of 1.2 eV in binding energy. In this 

context the assumed oxidation states appear reasonable. 

 

Figure 4.6.6  Exemplarily detailed peak analysis of the fitted XPS V 2𝑝3/2 spectrum 

and the distinguished V5+ and V4+ peaks of BNKT10:0.1 V ceramics. 

From the fitted peaks, the intensity of the V p3/2 peak and from the individually fitted 

V4+ and V5+ peaks, their ratio was calculated (cf. Table 4.6.1). As to be expected, 

BNKT10:1V has by far the highest intensity (489), while BNKT10:0.5Cu with no V, 

expectedly exhibits an intensity of 0. A detailed example of a fitted V 2p3/2 peak is 

presented in Figure 4.6.6. 

The intermediate (BNKT10 with 0.5 at.% V, 0.4 at.% V and 0.3 at.% V) display 

intensities very close to each other and do not follow the global trend of increasing 

V 2p3/2 intensity with increasing V concentration. BNKT10:0.1Cu,0.4V displayed a 

higher intensity (152) than BNKT10:0.5V. This emphasizes the fact, that the XPS 

analysis should be interpreted semi-quantitatively, as it cannot be ultimately excluded 

that minor (0.2 at.%) changes in nominal V content are indistinguishable with respect 

to their intensity. Besides fitting artefacts, a segregation of V within the ceramics to or 

from the surface can influence the measured and calculated V signal intensity. For 

above mentioned reasons, the oxidation state ratio of V, determined at < 1 at.%, 

appears not definite and is therefore neglected in further discussion. 
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Table 4.6.1. | V p3/2 Signal Intensity and V4+ to V5+ Ratio of 
BNKT10 Ceramics From XPS. 

 
intensity V 2p3/2 V4+ / V5+ 

BNKT10:1V 489 0.6 

BNKT10:0.5V 147 0.3 

BNKT10:0.1Cu,0.4V 152 0.6 

BNKT10:0.2Cu,0.3V 143 0.9 

BNKT10:0.5Cu 0 - 

 
 

 

When investigating the relative changes in binding energy vs. the nominal 

V concentration in detail (cf. Figure 4.6.7), a systematic trend of increasing relative 

binding energy with increasing nominal V concentration was evident, however, minor 

in increase (< 400 meV change). The trend is emphasized with a linear fit 

(cf. Figure 4.6.7 (a)). This is not to exclusively claim linear behavior, but to guide the 

eye. Though a linear dependence is likely possible, the magnitude of the increase, as 

well as the limited amount of data and its inherent scattering does not allow for an 

unequivocal conclusion (the adjusted R² of the linear fit is 87.2 %). 

 

Figure 4.6.7  Relative change in BEs, obtained by XPS, with respect to the mean BE 

for each atom-specific investigated characteristic peak. (a) for Bi 4f, Ti 2p and O 1s and (b) 

for the C 1s peak. The linear fit in (a) was obtained, using the concatenated changes in BE for 

the investigated atoms (Bi, Ti and O). Both dotted linear fits serve as a guide to the eye. 

This is, however, only accurate if the investigated samples are free of charging. Due to 

charging, the binding energies are consistently shifted by about + 2 eV (e.g. the peak 
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of Ti 2p in SrTiO3 is located at 458.5 eV, while in this work it was at 456.5 eV). 

Commonly, the C emission is used as a reference for the Fermi level.301 Here, as 

evident from Figure 4.6.7(b), the C peak of the adsorbates changes (albeit very little, 

with < 200 meV), depending on the nominal V concentration. Thus it is more likely 

that the Fermi level position is relative to the band edges or vacuum level. 

Nevertheless, the global consistent trend is towards higher binding energies with 

increasing nominal V concentration. This increase in binding energy can be attributed 

to a minor, however, qualitatively traceable donor effect of V in BNKT10. 

 

 

4.7. Defect Chemistry of Cu and V Doped BNKT10 

Summarizing and further evaluating the results of the prior sections 4.1 - 4.6, the 

defect chemistry of doped BNKT10 ceramics is discussed in this section in greater 

detail and furthermore in context with the piezoelectric response of the doped 

ceramics. 

As evidenced by EPR (cf. section 4.5), V4+ ions can be observed in V doped BNKT10 

ceramics, while V2+ and V3+ could not be detected. Complimentary to that, the 

analysis of the V 2p3/2 XPS peak (cf. section 4.6) indicates the presence of two 

oxidation states of V (V4+ and V5+). This is in accordance with investigations of 

V doping in the literature, where lower oxidation states of V3+, V2+ or V+ were 

exclusively observed under severely (6 vol.% H2 at ≥ 800 °C 294 or 10 vol.% H2 at 

500 °C 302) reducing conditions. For instance Müller et al.302 reported on those lower 

oxidation states in V doped SrTiO3 and Abi-Aad et al.294 reported on V based Ce 

catalysts. Therefore the assumption, that in V doped BNKT10 ceramics only V5+ and 

V4+ predominate, appears justified by complimentary EPR and XPS results, as well as 

mentioned relevant literature. 

Thus in the further discussion of the defect chemistry, only V4+ and V5+ is taken into 

account. 

V is incorporated into the BNKT10 lattice according to 

 𝑉2𝑂5  
𝐵𝑁𝐾𝑇10
→      2𝑉𝑇𝑖

𝑋 + 4𝑂𝑂
𝑋 +

1

2
𝑂2   , (4.7.1) 

yielding V4+ on a Ti (B-) site, which is charge neutral with respect to the lattice. V5+ in 

the lattice is created according to 

 𝑉2𝑂5  
𝐵𝑁𝐾𝑇10
→      2𝑉𝑇𝑖

● + 5𝑂𝑂
𝑋 + 2𝑣𝑁𝑎,𝐾

′  𝑜𝑟 2𝑒′ (4.7.2) 
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in BNTK10 ceramics, additionally resulting in A-site vacancies (or 2𝑒′) upon the 

incorporation. On the one hand, the incorporation of V can lead to A-site vacancies of 

Na or K (𝑣𝑁𝑎,𝐾
′ ), which leads to vacancies with a single charge, as described in 

Equation 4.7.2. On the other hand, V doping may result in Bi A-site vacancies, 

according to  

 3𝑉2𝑂5  
𝐵𝑁𝐾𝑇10
→      6𝑉𝑇𝑖

● + 15𝑂𝑂
𝑋 + 2𝑣𝐵𝑖

′′′ 𝑜𝑟 6𝑒′   , (4.7.3) 

which results in triply charged Bi vacancies (or the corresponding number of 𝑒′). Once 

incorporated into the lattice it is possible for V to undergo a reduction or oxidation, 

which can be described by 

 𝑉𝑇𝑖
𝑋  ⇔ 𝑉𝑇𝑖

● + 𝑣𝑁𝑎,𝐾
′  𝑜𝑟 𝑒′   . (4.7.4) 

The occupied oxidation state, strongly depends on the position of the Fermi level of 

the respective doped BNKT10. At or very close to 0 K, all V atoms would be in a 

thermodynamically defined state (only V4+ at higher Fermi level or only V5+ at lower 

Fermi level would be present). This is not the case, observed at RT or higher. There, 

V4+ and V5+ were both evidenced in the ceramics. 

Ti3+, a theoretically possible defect in perovskites, is not taken into consideration in 

this defect chemistry discussion. This is because Ti3+ possesses an unpaired electron 

and therefore would exhibit a detectable EPR signal, which was not observed in the 

investigated BNKT10 ceramics (cf. to the discussion in section 4.5). 

Cu is introduced into BNKT10 and may act as an acceptor dopant in the following 

manner 

 𝐶𝑢𝑂 
𝐵𝑁𝐾𝑇10
→      𝐶𝑢𝑇𝑖

′′ + 𝑣𝑂
●● 𝑜𝑟 2ℎ● + 𝑂𝑂

𝑋   , (4.7.5) 

which implies the creation of 𝑣𝑂
●●  or ℎ● for Cu on a Ti lattice site. However, as 

discussed in section 4.5, a predominant fraction of Cu is not residing in the lattice, but 

should segregate, most likely at the grain boundary. This implies (I), Cu will thus 

rather influence the grain boundary defect chemistry vs. the bulk defect chemistry and 

(II) Cu will not have a dominant effect on the concentration of 𝑣𝑂
●● in the bulk; 

however (III) ℎ●, may be created at grain boundaries and migrate to the bulk, which 

is, nevertheless, not likely due to the deep valence band.  

In general, oxygen vacancies can react to form electron holes or vice versa: 

 2𝑣𝑂
●● + 𝑂2↔2𝑂𝑂

𝑋 + 4ℎ●   . (4.7.6) 
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It is to be noted: as presented in equation 4.7.6, both oxygen vacancies or electron 

holes can be present in BNKT10, accounted for on the donor side of the equation of 

charge neutrality. Theoretically (I) only ℎ●, (II) both ℎ● and 𝑣𝑂
●● or (III) only 𝑣𝑂

●● can 

exist as defects in BNKT. Taking the defect chemistry of PZT as a reference, it is highly 

likely that 𝑣𝑂
●● exists in BNKT, and ℎ● may be present, but, if at all, ℎ● ≪ [𝑣𝑂

●●] 

according to Boukamp et al.282 or Raymond et al.281. Despite the fact, that the 

concentration of 𝑣𝑂
●● was said to be expected higher, the major contribution to charge 

transport was attributed to the comparably way more mobile ℎ● by both authors. 

However, in contrast to this argument, the easy reducibility of BNKT10 

(cf. Figure 4.4.6 for details), evident from the resistivity of BNKT10 under reducing 

conditions contradicts notable concentrations of ℎ●. Thus electron holes will not play 

a major role in the defect chemistry of BNKT10. 

In addition to the discussed introduced defects by doping, BNT-based materials are 

known to be prone to the evaporation of Bi (Pb-based materials analogously loose Pb 

during sintering) at high temperatures during sintering according to 

 2𝐵𝑖𝐵𝑖
𝑋 + 3𝑂𝑂

𝑋 → 2𝑣𝐵𝑖
′′′ + 3𝑣𝑂

●● + 𝐵𝑖2𝑂3   . (4.7.7) 

This high temperature evaporation mechanism was detailed in literature by 

Lamoreaux et al.303 and is additionally described for BNKT by e.g. Zhang et al.247. 

Due to the triple charge of 𝑣𝐵𝑖
′′′, it is highly likely that trapping of 𝑣𝑂

●● in the form of a 

defect associate occurs according to 

 𝑣𝐵𝑖
′′′ + 𝑣𝑂

●●  ↔ (𝑣𝐵𝑖
′′′ + 𝑣𝑂

●●)′   .  (4.7.8) 

This is more likely than the creation of (𝑣𝑁𝑎,𝐾
′ + 𝑣𝑂

●●)● defect associates, as per defect 

associate, more involved charge is compensated, leading to higher BE between 𝑣𝐵𝑖
′′′ 

and 𝑣𝑂
●●. Since additionally potassium is a volatile element at elevated temperatures, K 

evaporation is possible and will result in 𝑣𝐾
′  and 𝑣𝑂

●●: 

 2𝑣𝑁𝑎,𝐾
𝑋 + 2𝑂𝑂

𝑋 → 2𝑣𝐾
′ + 𝑣𝑂

●● + 𝐾2𝑂   . (4.7.9) 

This was described in literature by Veera et al. 304 and Naderer et al.225. It is very 

likely, that in BNKT10, both Bi and K evaporation mechanisms are relevant and may 

be active at the same time, both resulting in A-site deficiency. The distinct difference 

between the two types of A-site ion loss due to evaporation is: Bi acts as triply charged 

acceptor (cf. Equation 4.7.7) with respect to the lattice, while K acts as a singly 

charged acceptor (cf. Equation 4.7.9) with respect to the lattice. 

Taking into account Equations 4.7.5, 4.7.7 and 4.7.9, the overall state of charge 

neutrality of Cu doped BNTK can be described by 
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 3[𝑣𝐵𝑖
′′′] + [𝑣𝑁𝑎,𝐾

′ ] + 2[𝐶𝑢𝑇𝑖
′′ ]   7[𝑣𝑂

●●]    . (4.7.10) 

In V doped BNKT10 ceramics, in addition to 𝑣𝑂
●● (and theoretically ℎ●, which is 

neglected), vanadium on the Ti-site can act as a further dopant and the overall charge 

neutrality is suggested to be 

 3[𝑣𝐵𝑖
′′′] + [𝑣𝑁𝑎,𝐾

′ ]   2[𝑉𝑇𝑖
● ] + 4[𝑣𝑂

●●]    . (4.7.11) 

Thus in the case of combined Cu and V doping of BNKT10 ceramics, from the large 

number of theoretically possible defects, six likely present or definitely present defects 

remain to be accounted for:  

 3[𝑣𝐵𝑖
′′′] + [𝑣𝑁𝑎,𝐾

′ ] + 2[𝐶𝑢𝑇𝑖
′′ ] + [𝑒′]   2[𝑉𝑇𝑖

● ] + 4[𝑣𝑂
●●]   . (4.7.12) 

These defects were either (I) directly confirmed by means of XPS (𝑉𝑇𝑖
● ) and EPR (𝐶𝑢𝑇𝑖

′′ ) 

and are therefore definitely present in BNTK or (II) could not be excluded by the 

employed measurements and appear highly likely from a thermodynamic point of 

view (ℎ● were excluded as discussed at the example of Equation 4.7.6) and were 

reported relevant according to literature elsewhere (𝑣𝐵𝑖
′′′, 𝑣𝐾

′  and 𝑣𝑂
●●). 

As indicated by EPR spectroscopy (cf. section 4.5), 𝐶𝑢𝑇𝑖
′′  is present, however, in very 

low concentration in the bulk, while Cu dominantly segregates at the grain boundary. 

Despite the low amount of Cu anticipated to be present in the bulk, the Tf-r of Cu 

doped BNKT ceramics is evidently reduced, which can be attributed to the 

introduction of random fields, even at low Cu concentrations. Those findings are 

consistent with the absence of a clear trend in Tf-r upon changing the Cu 

concentration, as the solubility limit is expected to not be affected by the amount of 

Cu dopant. Thus it appears justified to exclude 𝐶𝑢𝑇𝑖
′′  from the defects, which 

significantly contribute to the bulk defect chemistry of BNKT10. 
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5. Conclusions 

This work has demonstrated that Cu and V doping significantly influenced the defect 

chemistry and thereby the electric and piezoelectric properties of BNKT ceramics on 

several levels. 

A more homogenous microstructure of doped BNKT10 ceramics, had mean grain sizes 

of 0.7 to 1.3 µm and lacked the abnormally large grains (> 4µm) that were present in 

the undoped samples as determined through SEM images. This was accompanied by 

liquid phase sintering, enabled by Cu at the grain boundary. This finding is supported 

by a trend towards higher relative densities upon increased Cu concentration in 

BNKT10 ceramics, all sintered at 1080 °C.  

The synthesized BNKT ceramics are free of major impurity phases; XRD indicates the 

formation of a pseudocubic perovskite phase with minor peak splitting or side 

shoulders due to rhombohedral (BNKT10), tetragonal (BNKT30) or both distortions 

(BNKT20). The rhombohedral character of BNKT10 ceramics is reduced upon doping, 

indicated by less pronounced peak splitting of the {111} reflection. The same trend 

was observed for the tetragonal phase, which is reduced, as was apparent from less 

pronounced peak splitting of for instance the {211} reflection. Cu and V doping and 

co-doping of BNKT drives the phases closer to a (pseudo-) cubic structure, regardless 

of which side of the MPB the composition is located.  

Doped BNKT10 ceramics are in general characterized by strong FE behavior, indicated 

by characteristic butterfly type S-E loops and display high EC (up to 4.8 kV/mm), 

intermediate strain (𝑑33
∗  up to 177 pm/V), high Pmax (up to 31.8 µC/m²) and high Prem 

(up to 29.2 µC/m²). The Tf-r is slightly, but noticeably, reduced to as low as 122 °C 

from the undoped value of 205 °C. Doping the MPB-region BNKT20 leads to higher 

strain (𝑑33
∗  up to 293 pm/V), reduced EC in the range of 1.7 kV/mm to 2.9 kV/mm, 

slightly reduced Pmax and notably reduced Prem. In comparison to other lead-based and 

lead-free materials, however, 𝑑33
∗  is inferior. For these doped BNKT20 samples, 

however, the Tf-r is significantly reduced down to about RT compared to the undoped 

case with Tf-r of 110 °C. BNKT30 exhibits an even more drastically reduced Ec with 

values as low as 0.6 kV/mm, while maintaining a relatively high 𝑑33
∗  of up to 

228 pm/V and Tf-r close to RT. The lowering in Tf-r observed in all BNKT compositions 

upon doping can be rationalized by the introduced defects and the subsequently 

enhanced distribution of random fields in the bulk. Most likely 𝑣𝑁𝑎,𝐾
′  and 𝑣𝐵𝑖

′′′ play a 

major role by disrupting the Bi-O hybridization and thereby the FE long range order. 

The K content has a significant effect on the strain of doped and undoped BNKT, 

which is also reflected in a stronger doping effect with increased amounts of K that 

results in predominantly higher Smax and 𝑑33
∗ . The values of Ec as well as Prem are 

lowered with higher K content; however, the decrease in Ec was determined to be 

even stronger for all doped BNKT ceramics. With respect to Tf-r, Ec, and Prem, out of 
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the three phases investigated, the tetragonal phase was shown to be the most affected 

by doping with Cu and V. 

The resonance behavior of QM,p and kp in BNKT10 ceramics was evidenced to be 

decoupled from the resonance behavior in thickness direction (QM,t and kt). QM,p is, 

with one exception, characterized by a largely decreasing trend with increasing Cu 

dopant content, which was attributed to Cu segregation at the grain boundary. 

BNKT10:0.1Cu,0.4V stands out in terms of piezoelectric resonance properties with a 

high kt of 0.56 in combination with a low QM,t of 9, which are both beneficial 

properties for sensing applications, e.g. as flow meter. 

EPR measurements proved an absence of significant amounts of paramagnetic 

impurities (e.g. Fe or Mn), as well as the absence of reduced Ti (Ti3+) in undoped 

BNTK10. Furthermore the V lattice position in doped BNKT10 ceramics was observed 

to be confined to the B-site, where a rhombic environment was evident. The apparent 

confinement of the B-site octahedral distortion in one direction correlates well with an 

expected Jahn-Teller effect of V. Lower oxidation states of V (V3+, V2+, V+ and V0) 

were excluded by evidence from XPS as well as EPR spectroscopy. 

When doping with Cu, it was indicated to enter the B-site of the bulk lattice at very 

low concentrations of < 0.05 at.%. While this was shown to be sufficient to decrease 

the Tf-r, the majority of the Cu could be demonstrated, by observed EPR peak 

broadening to segregate from the bulk, forming a liquid phase at the grain boundaries 

during sintering. This is supported by the densification trend of the BNKT10 ceramics 

with increasing Cu content. Furthermore the lower resistivity (1.0×104 Ωm to 

7.3×106 Ωm) of Cu doped samples translates to increased conduction of the material, 

likely due to changes in the grain boundary. The local electronic environment of Cu in 

BNKT10 ceramics as determined by EPR is rhombic and the Cu is present in two 

different electronic environments: CuO6 and CuO4 which was manifested by 

Peisach-Blumberg plots assessing the correlation of hyperfine splitting A and the  

g-factor. 

An increasing, however, small (< 400 meV) tendency of an increase in binding 

energies of doped BNKT10 ceramics with increasing V content was observed in the 

evaluated dopant concentration range from 0 to 1 at.% V. This implies a slight 

increase in Fermi level upon V doping, which additionally correlates with the lower 

resistivity and EA of V doped BNKT10 determined via impedance spectroscopy. The 

oxidation states V4+ and V5+ were unequivocally confirmed; nevertheless the exact 

ratio of the two oxidation states for V concentrations ≤ 0.5 at.% remains debatable 

due to the nature of quantification technique. 

Regardless of the employed dopant or the change in 𝑃𝑂2 in this work, EA and the 

resistivity were in all cases lowered, as determined by impedance spectroscopy. The 

values of EA and resistivity dropped from 1.37 eV and and 1.6×105 Ωm to 
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2.0×108
 Ωm for undoped BNKT10 in air, to as low as 0.23 eV and 

1.9×100
 Ωm to 2.7×103

 Ωm for the case of undoped BNKT10 in Ar / H2 atmosphere. 

Doping BNKT10 with Cu and V resulted in slightly lower EA (110±10 meV), 

accompanied by lower resistivities (1.8×104 Ωm to 1.3×107 Ωm) compared to the 

undoped sample. 

The contribution of ℎ● to the conductivity can be neglected, as BNKT10 was easily 

reduced. Doped BNKT10 ceramics were demonstrated to be predominantly influenced 

by (I) 𝑣𝐵𝑖
′′′ and 𝑣𝑁𝑎,𝐾

′  A-site acceptor vacancies, resulting from the host material, 

(II) very likely also 𝑒′, (III) few bulk B-site 𝐶𝑢𝑇𝑖
′′  acceptor centers, resulting from Cu 

doping, as well as (IV) bulk B-site 𝑉𝑇𝑖
●  donor states, introduced through V doping and 

generally (V) 𝑣𝑂
●●. 
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6. Outlook 

In order to further investigate the effect of doping on the defect chemistry and 

piezoelectric properties of BNKT ceramics, several approaches appear sensible and 

likely to create further insight.  

As apparent from the discussion in context of the resonance behavior of piezoelectric 

BNKT10 ceramics, the poling of the ceramics plays a crucial role in obtaining high 

coupling factors. As in this study no extensive poling studies were performed beyond 

the investigation of a limited number of applied electric fields, temperatures and 

poling times, it would be highly interesting to investigate the poling in detail. Besides 

varying mentioned parameters independent of each other to extract trends and 

optimum poling conditions, the effect of quenching, annealing and ageing samples 

should be investigated. A good indicator that there is still leeway for improvement of 

the already promising coupling factors is the low phase angle of the thickness 

resonance, which is still far from 90°. 

In order to assess the applicability of the high electromechanical coupling in thickness 

direction, building an actual sensor or transducer (e.g. a surface acoustic wave sensor 

with an interdigitated transducer) and determining the behavior of the ceramics 

under working conditions could be highly insightful with respect to possible 

applications. 

The strain mechanism in BNKT systems is not clearly understood yet, thus in-situ 

neutron diffraction under applied electric field may clarify the underlying mechanisms 

of BNKT compositions in the rhombohedral, tetragonal and MPB-region of the system. 

In addition it may be possible to explain the difference in strain response of 

rhombohedral vs. tetragonal Cu or V doped BNKT10. 

To fully address the location of the Cu dopant, scanning tunneling electron 

microscope with energy dispersive X-ray spectroscopy could be used to investigate 

grain boundaries and bulk of the ceramics. However, one has to bear in mind that the 

technique is rather time consuming in terms of sample preparation and measurement. 

Using more measuring points to assess the resistivity of samples as a function of 

oxygen partial pressure and having a more defined oxygen partial pressure would 

highly benefit the understanding of the defect chemistry. In this work four points with 

different oxygen partial pressure were investigated and lead to a rough qualitative 

understanding of the involved defect species. A detailed description will allow for a 

more precise assessment of the involved species with a greater level of confidence. 

In this context it would additionally be interesting to also investigate the high 

temperature conduction behavior of Cu and V doped BNKT10 ceramics to elucidate 

the differences in the defect chemistry due to doping. 
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This work dealt with B-site dopants in detail. It should be beneficial to the 

understanding of the defect chemistry of BNKT to furthermore investigate the 

conduction behavior of A-site acceptor (or donor) dopants on the defect chemistry. 

To evaluate the influence of oxygen vacancies on the conductivity and have a direct, 

complimentary assessment of the contributions to the overall conductivity, 

electromotive force measurements represent a viable method to assess this. 

Though probably restricted due to availability and complexity, positron annihilation 

spectroscopy can provide insight into the vacancies present in undoped and doped 

BNKT. 

The simulation of doping of BNKT or other FE materials in general is highly 

interesting; however, this involves on the one hand atomistic aspects, which need to 

be considered, but on the other hand at the same time deals with the continuum scale 

(i.e. domain and grain size). In addition the high degree of disorder (and the number 

of possible involved defects) in the system is prohibitive of using very simple 

approaches, applicable to single crystals or more homogeneous FE materials. 
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8. Appendix 

 

Table 8.1 | Effects of the Addition of Single Elements to BNKT 

ele-
ment 

lattice 
site / 
typeA 

doping 
rangeA 

effect(s) 
literature 
sources 

Li A / Ac < 1 wt% BLT Td slightly higher, d33 up to 180 pCN-1 39,40,123-125,305 

Mg B / Ac 
< 10 at% 

BiMgT 
Td slightly lower, 𝑑33

∗  up to 570 pmV-1 306 

Al B / Ac 
< 1 wt% 
BiAlO3 

Td similar, temperature insensitive 𝑑33
∗  of 

450-500 pmV-1 
133-139

 

Ca A / Is 
see co-
doping 

see co-doping, not used as single additive 307-309
 

Sc B / Ac <0.5% d33 of 67pmV-1, Tc of 384 310
 

Mn A / Ac 
< 0.5 wt.% 

MnO 

Td at MPB lower, at higher contents 
increasing, 𝑑33

∗   of about 150 pmV-1 at 
4kV/mm 

41,126-128,311 

Fe B / Ac 0-10 mole% d33 of 122 pCN-1 312
 

Cu B / Ac 0.01 mole 
decreases Tsinter by 200 K, slightly 

decreased electromechanical properties 
262,263 

Zn B / Ac < 20 mole% d33 of about 120 pCN-1 119,120,313 

Sr A / Is < 5 mole% 
Td decreases significantly until 14°C, 𝑑33

∗  of 
600 pmV-1 

314
 

Zr B / Is < 5 mole% Td decreases, 𝑑33
∗  of up to 614 pmV-1 

313,315 

Nb B / Do < 3 wt. % 
Td decreases (MPB), temperature 

insensitive 𝑑33
∗  of 300 pmV-1 (Na/K=1/1) 

33-36,277,278,316-

323 

Sn B / Is 
< 5 mole% 

SnO2 
Td below RT, 𝑑33

∗   of about 600 pmV-1 196
 

Sb B / Ac <1 wt.% SbO3 
Td of 350°C (Na/K=1/1), higher d33 of 129 

pCN-1 
324,325 

Ba A / Is around MPB d33 of up to 170 pCN-1 28-31,72,326-339 

La A / Do < 4 mole% Td decreases, d33 of 155 pCN-1 129-132
 

Other 
Rare 
earth 

A / Do 
< 1mole% 
Rare Earth 

oxide 

Td increase to 190°C for erbium, otherwise 
slight decrease, d33 of up to 145 pCN-1 

340-346
 

Hf B / Is < 5 mole% 𝑑33
∗   of 475 pmV-1 at 8 kV/mm 347

 

Ta B / Do 
< 5 mole % 

Ta2O5 
ferroelectric order lost, strain about 0.4% 196

 

A considering A2+B4+O3 as basic formula unit; substituents are indicated as : Ac = acceptor, Is 
= isovalent, Do = donor 
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Table 8.2 | Effects of the Addition of Multiple Elements to BNKT  

added elements 
lattic

e 
siteA 

ty
p
e
A 

remarks 
𝑑33
∗   
 

d33 

 
kp 

  

at.% at.% at.%    pm/V pCN-1    

Li: 
0.2 

Sb: 
0.2 

Zr: 0 - 
0.8 

A 
A 
B 

A 
D 
I 

only Zr content 
varied 

500 - - 255
 

 

Ba: 
0.68 

- 
1.36 

Ca: 
0.12 - 
0.24 

Zr: 
0.08 - 
0.16 

A 
A 
B 

I 
I 
I 

only BNT replaced, 
not BKT 

- 198 - 309
 

 

La: 0 
- 0.3 

Al: 0 - 
0.6 

- 
A 
B 

D 
A 

BNKT replaced by 
(Bi,La)0.5AlO3 

579 - - 258
 

 

Ba: 0 
- 1.0 

Zr: 0 - 
1.0 

- 
A 
B 

I 
I 

BaZrO3 added to 
BNKT 

- - - 348
 

 

Ba: 0 
- 1.0 

Zr: 0 - 
1.0 

- 
A 
B 

I 
I 

BaZrO3 added to 
BNKT 

500 - - 349
 

  

Li: 0 - 
1.27

8 

Ba: 
0.76 

- 
A 
A 

A 
I 

Na replaced with Li; 
K and Ba constant 

- 184 0.3 350
 

  

Ba: 0 
- 

2.55 

Ca: 0 - 
0.45 

Zr: 0 - 
0.3 

A 
A 
B 

I 
I 
I 

BNKT replaced by 
Ba0.85Ca0.15(Ti0.9Zr0.1)

O3 
- 205 - 307

 

  

Mg: 
0 - 
0.6 

Sn:  0 
- 0.6 

- 
B 
B 

A 
I 

Bi(Mg0.5Sn0.5)O3 633 - - 351
 

  

Ba: 0 
- 

0.61
6 

Ca: 0 - 
0.184 

- 
A 
A 

I 
I 

Na replaced with Li; 
K constant 

- 175 - 308
 

  

Li: 0 - 
1.5 

Ta: 
0.5 

- 
A  
B 

A 
D 

Na replaced with Li, 
K constant 

727 - - 254
 

  

Ba: 0 
- 0.8 

Ca: 0 - 
0.3 

Zr: 0 - 
1.0 

A 
A 

I 
I 

Ba0.8Ca0.2ZrO3 added 
to BNKT 

549 - - 352
 

  

Ba: 0 
- 2.8 

Sr: 0 - 
1.2 

- 
A 
A 

I 
I 

BNKT replaced by 
Ba0.7Sr0.3TiO3 

- 214 - 353
 

  

Cu: 0 
- 1.0 

Nb: 0 - 
1.6 

- 
B 
B 

A 
D 

excess doping with 
CuO and Nb2O5 

427 >140 
0.3
5 

257
 

  

Sr: 0 
- 1.0 

Nb: 0 - 
0.75 

- 
A 
B 

I 
D 

BNKT replaced by 
SrK0.25Nb0.75O3 

709 - - 354
 

  

Ba: 
0.12 

La: 
excess 

- 
A 
A 

I 
D 

BNKT:BT + La2O3 - 151 - 355
 

  

A considering A2+B4+O3 as basic formula unit; substituents are indicated as : A = acceptor, I = 
isovalent, D = donor 
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Table 8.2 continued | Effects of the Addition of Multiple Elements to BNKT 
 

added 
eleme

nts 

lattice 
site 

type 
re
ma
rks 

 
 

 
𝑑33
∗  d33 kp 

356
 

  

at.% at.% at.%    pm/V pCN-1     

Li: 0 - 
0.4 

Nb: 0 - 
0.4 

- 
A 
B 

A 
D 

Na/K ratio varied, 
BNKT replaced by 

LiNbO3 
- 195 

0.3
36 

256
 

  

Ba: 
0.6 

Co: 0 - 
0.8 

- 
A 
B 

I 
D 

Ba constant, Co2O3 
added 

- 142 
0.2
5 

357
 

  

Ba: 
0.52 

Mn: 
0.008 

- 
A 
B 

I 
I 

Ba constant, MnCO3 
added 

- 140 
0.1
8 

358
 

  

Ba: 0 - 
2.0 

Zr: 0 - 
0.8 

- 
A 
B 

I 
I 

- - 190 
0.3
5 

359
 

  

Ba: 
0.1 

Li: 0 - 
0.5 

- 
A 
A 

I 
A 

Ba constant, 
Li0.5Bi0.5TiO3 added 

- 160 
0.3
5 

335
 

  

Ba: 
0.1 

Ce: 0 - 
0.49 

- 
A 
A 

I 
D 

- - 129 
0.1
65 

360
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Table 8.3 | Large Signal Characteristics of BNKT10 Ceramics at 6 kV/mm 

dopant(s) none 0.5V 0.1Cu,0.4V 0.2Cu,0.3V 0.3Cu,0.2V 0.4Cu,0.1V 0.5Cu 

BNKT10               

𝑑33
∗  / pm/V 120 122 152 135 138 162 177 

Sneg / ‰ -0.58 -0.68 -0.72 -0.83 -0.95 -0.78 -1.02 

Ec / kV/mm 4.5 4.8 4.5 4.8 4.7 4.7 4.5 

Pmax, / µC/cm² 27.0 28.0 29.2 30.8 31.8 31.1 31.0 

Prem / µC/cm² 25.0 25.5 25.7 27.5 29.2 27.6 26.9 

BNKT20 
       𝑑33

∗  / pm/V 150 293 285 243 222 208 232 

Sneg / ‰ -0.30 -0.43 -0.44 -0.36 -0.70 -0.30 -0.14 

Ec / kV/mm 2.9 2.2 2.4 1.8 2.4 2.0 1.7 

Pmax, / µC/cm² 28.0 26.8 26.5 25.2 27.5 19.7 19.4 

Prem / µC/cm² 19.0 15.8 15.2 12.9 20.4 10.4 8.6 

BNKT30 
       𝑑33

∗  / pm/V 150 - 162 75 208 228 - 

Sneg / ‰ -0.14 - -0.04 -0.01 -0.04 -0.01 - 

Ec / kV/mm 2.5 - 0.9 0.6 0.7 1 - 

Pmax, / µC/cm² 23.0 - 16.7 14.0 14.9 18.7 - 

Prem / µC/cm² 13.0 - 2.0 1.5 2.4 4.3 - 
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Table 8.4 | Overview of Small Signal Measurement Data 

dopant(s) none 0.5V 0.1Cu,0.4V 0.2Cu,0.3V 0.3Cu,0.2V 0.4Cu,0.1V 0.5Cu 

BNKT10               

Tf-r / °C 205 139 132 122 127 157 133 

TM / °C 287 342 325 332 296 312 317 

maximum 
permittivity 

3905 2897 2627 2062 2649 3993 2626 

BNKT20 
       Tf-r / °C 110 70 64 47 80 85 70 

TM / °C 299 351 340 339 344 343 346 

maximum 
permittivity 

1750 4813 5281 3005 2954 2844 2960 

BNKT30 
       Tf-r / °C 200 - 52 43 61 53 - 

TM / °C 315 - 335 348 333 320 - 

maximum 
permittivity 

1524 - 2781 2561 2891 3077 - 
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