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Abstract

In this work, as part of the EXL project nuclear reactions are investigated in inverse kinematics exper-
iments with stored ion-beams. These experiments were carried out at the heavy ion storage ring ESR
at GSI with stored °8Ni (at 100 and 150 MeV/u) and 2°Ne (at 50 MeV/u) beams. The *®Ni beam was
impinged on an internal gas-jet target of helium, while for the 2°Ne experiment the internal gas-jet target
utilized was hydrogen. The recoil particles produced in different reaction channels were measured with
a dedicated detector setup compatible with the Ultra High Vacuum (UHV) in the storage ring. This de-
tector setup included double-sided silicon-strip detectors operating as active barriers between the UHV
of the storage ring and an auxiliary vacuum of internal pockets of the experimental chamber. This per-
mitted successful measurements of low energy recoils (hundreds of keV), since both target and detectors
were windowless.

Nuclear reaction channels like elastic scattering, excitation of isoscalar giant resonances and neutron
pick-up were observed in these experiments. The angular distributions for elastic scattering were ana-
lyzed with optical potentials deduced from density-folding models. In particular, the elastic differential
cross sections for *®Ni+ a were fitted by using the t-pp potential which is based on the optical limit ap-
proximation of the Glauber theory. The resulting RMS point matter-radii are 3.68(10) fm and 3.64(9) fm
for the measurements at 100 and 150 MeV/u, respectively. These results are in very good agreement
with the literature values.

The excitation of isoscalar giant resonances has been studied for the first time in a stored-beam exper-
iment. In the double-differential cross section measured for *®Ni + o at 100 MeV/u, a well-defined peak
in the energy range from 15 to 30 MeV was obtained. A fit with a Lorentz function for the Iso-Scalar
Giant Monopole Resonance (ISGMR) component resulted in a centroid of 19.27(61) MeV and a width
of 6.45(51) MeV. Moreover, a multipole decomposition analysis was performed to extract the ISGMR
contribution. The extracted strength of the ISGMR exhausts 792% % of the Energy-Weighted Sum Rule
(EWSR). The results are consistent with the analysis of other experiments performed in the past in nor-

mal kinematics as well as theoretical predictions.

A neutron pick-up reaction was measured in the experiment with the stored 2°Ne beam. In this ex-
periment, the contribution of the transfer to the ground state and to low-lying states of 1Ne were not
kinematically separable. In order to disentangle the different components, a multipole decomposition
analysis was applied to the experimental data. Spectroscopic factors were deduced from the analysis of
the differential cross section for this transfer reaction. These results are in very good agreement with the
predictions from shell model calculations.
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The feasibility to perform different types of nuclear reactions with stored ion beams and an internal
target by using in-ring detection is successfully demonstrated in this work. This is a paramount milestone
toward further EXL experiments with radioactive beams at GSI and in future at FAIR.
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Zusammenfassung

In dieser Arbeit wurden als Teil des EXL-Projekts Kernreaktionen in inverser Kinematik mit gespeicherten
Ionenstrahlen untersucht. Diese Experimente wurden am Speicherring fiir Schwerionen, ESR, der GSI
durchgefiihrt mit gespeicherten *®Ni- (bei 100 und 150 MeV/u) und *°Ne-Strahlen (bei 50 MeV/u). Der
>8Ni-Strahl traf auf ein internes Gasjet-Target aus Helium, withrend fiir den 2°Ne-Strahl ein entsprechen-
des Wasserstoff-Target verwendet wurde. Die Riickstof3teilchen aus den den unterschiedlichen Reaktion-
skanilen wurden mit einem dedizierten Detektoraufbau vermessen, der mit den Ultrahochvakuumbe-
dingungen (UHV) des Speicherrings vertraglich ist. Der Detektor enthielt doppeltseitig segmentierte
Silizium-Streifenzéhler, die als aktive Barriere zwischen dem UHV des Speicherings und einem Hilfs-
vakuum in einer sogenannten internen Tasche der Streukammer betrieben wurden. Dies erlaubte die
Messung von niederenergetischen Riickstol3kernen (einige 100 keV), da sowohl das Target als auch der
Detektor fensterlos waren.

Kernreaktionskanile wie elastische Streuung, Anregung von isoskalaren Riesenresonanzen und eine
Neutrontransferreaktion wurden in diesen Experimenten beobachtet. Die Winkelverteilungen fiir elastis-
che Streuung wurden mit optischen Potenzialen analysiert, die aus Dichte-Faltungs-Modellen hergeleitet
wurden. Insbesondere der differenzielle Wirkungsquerschnitt fiir die elastische Streuung *®Ni+ a wurde
angepasst unter Verwendung des t-p p-Potenzials, welches auf dem optischen Grenzfall der Glauber-
Theorie basiert. Die resultierenden RMS-Punktmaterieradien sind 3.68(10) fm und 3.64(9) fm fiir
die Messungen bei 100 bzw. 150 MeV/u. Diese Ergebnisse sind in sehr guter Ubereinstimmung mit
Literaturwerten.

Die Anregung der isoskalaren Monopol-Riesenresonanz wurde erstmals in einem Experiment mit
gespeichertem Strahl untersucht. Der doppelt differenzielle Wirkungsquerschnitt fiir *Ni + a bei
100 MeV/u zeigt einen wohldefinierten Peak im Energiebereich zwischen 15 und 30 MeV. Eine An-
passung der isoskalaren Monopol-Riesenresonanz (ISGMR) mit einer Lorentz-Funktion ergab einen
Schwerpunkt von 19.27(61) MeV und eine Breite von 6.45(51) MeV. Dariliber hinaus wurde eine Mul-
tipolzerlegung durchgefiihrt, um den ISGMR-Anteil zu extrahieren. Die extrahierte Starke der ISGMR
schopft 79*1% % der energiegewichteten Summenregel (EWSR) aus. Diese Ergebnisse sind konsistent
sowohl mit der Analyse von anderen Experimenten, die in der Vergangenheit in normaler Kinematik
durchgefiihrt wurden, als auch mit Vorhersagen der Theorie.

Eine Neutrontransferreaktion wurde im Experiment mit dem gespeicherten 2°Ne-Strahl gemessen. In
diesem Experiment konnten die Anteile fiir den Transfer in den Grundzustand und in niedrigliegende
Zustiande in °Ne kinematisch nicht getrennt werden. Um die einzelnen Anteile zu trennen, wurde eine
Multipolzerlegung der experimentellen Daten durchgefiihrt. Die spektroskopischen Faktoren wurden
aus dem differenziellen Wirkungsquerschnitt fiir diese Transferreaktion extrahiert. Die Ergebnisse sind
in sehr guter Ubereinstimmung mit Vorhersagen aus dem Schalenmodell.

In dieser Arbeit konnte erfolgreich gezeigt werden, dass sich unterschiedliche Typen von Kernreak-
tionen mit in einem Ring gespeicherten Ionenstrahlen und einem internen Target durchfiihren lassen.
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Dies ist ein wichtiger Meilenstein fiir weitere EXL-Experimente mit radioaktiven Strahlen bei GSI und in
Zukunft bei FAIR.
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Chapter

Introduction

Experiments employing light-ion (or neutron) scattering provide important information about the struc-
ture of nuclei. For instance, elastic scattering gives access to nuclear potentials and the radial distribution
of nuclear matter [1, 2]. Inelastic scattering provides the possibility to study the deformation and collec-
tive excited modes of nuclei [3, 4]. In particular, the excitation of giant resonances permits to investigate
nuclear bulk properties, e.g., the dipole polarizability and the matter incompressibility [5]. One or
few nucleon transfer reactions give information on the single-particle structure and occupation numbers
[6, 7]. Usually, these types of experiments are performed in normal kinematics, i.e., light projectiles are
impinged on a target composed by the nuclei of interest. However, it is not always possible to produce a
target of a given material, this is especially true for radioactive ones. In this case, it is necessary to pro-
duce a radioactive beam and to use a stable target composed of the light material. This method is called
inverse kinematics. In contrast to a normal kinematics experiment, in inverse kinematics the elastically
scattered light-particles at forward angles in the center-of-mass-system are detected at laboratory angles
in proximity to 90°. Thus, reactions at low momentum transfer are possible without a dedicated spec-
trometer to select the scattered particles at small angles. A typical limitation of this method are the low
luminosities achieved due to a small target density or a low intensity of the radioactive beam. This prob-
lem can be overcome by using the novel stored-beam technique. In this technique, the beam is injected
into a storage ring which is a kind of circular lattice of electromagnets that keeps the beam particles in
circulation in a very clean environment. Thus, the beam revolution frequency inside the storage ring im-
proves the luminosity by several orders of magnitude (as it will be explained in the following chapters).
It is clear that for storing the beam in this environment, a low density and windowless target is needed
in order to not destroy the beam properties. Therefore, an internal gas-jet target is used in these type of
experiments. Additionally, if our objective is to achieve measurements at very low momentum transfer
it is also necessary to use windowless detectors because of the small energy of the scattered particles.
These principles are employed in the present work to study nuclear reactions in inverse kinematics using
stored beams. The results presented here also demonstrate the feasibility of these studies within the EXL
project.

1.1 The EXL project

The EXL (EXotic nuclei studied with Light-ion induced reactions in storage rings) project is one of the ex-
periments foreseen to be part of the NUSTAR program for NUclear STructure, Astrophysics and Reaction
studies at the future Facility for Antiproton and Ion Research (FAIR) [8]. The aim of the EXL collabora-
tion is to investigate light-ion induced reactions in inverse kinematics using novel storage-ring techniques
and a universal detector system providing high resolution and large solid-angle coverage which allows
for kinematically complete measurements. The full setup expected for this experiment comprises three
main parts: a 4m detector system surrounding the internal gas-jet target, a scintillator array placed at




forward direction for neutron and fast charged-ejectile detection and an in-ring heavy-ion spectrometer
for the detection of beam-like particles. A schematic view of this setup is shown in Fig. 1.1.
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Figure 1.1.: Schematic view of the EXL detector system. On the left hand is the setup which is planned
to be installed in a storage ring. On the right hand there is a zoom of the 47 detector system
surrounding the gas-jet target. (Adapted from Ref.[8])

The detector setup which surrounds the internal gas-jet target is composed of two parts: an inner array of
multisegmented silicon detectors (ESPA, EXL Silicon Particle Array) and an external array of CsI crystals
(EGPA, EXL. Gamma & Particle Array) [8]. The construction of the inner recoil detection involves some
technical challenges as the detector setup has to be compatible with ultra high vacuum conditions. The
solution for this problem will be, as demonstrated later, the operation of some ESPA detectors as active
windows [9]. Fig. 1.2 shows a cross section through the mid plane of the recoil setup.

—10cm

» gasjet target
M thin window foil

| scintillator
calorimeter

silicon detectors

W region A

| region B

W region C
region D
region E

M region F

Figure 1.2.: Schematic view of the 47t detector setup surrounding the gas-jet target. The drawing corre-
sponds to the cross section through the mid plane, seen from the gas-jet axis. (Adapted from
Ref.[8])

In Fig. 1.2, the ESPA is shown as small segments in proximity to the gas-jet target which represent the
manifold detector telescopes at distinct angular regions. This setup is dedicated for both the tracking
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and the spectroscopy of charged particles. The ESPA is subdivided in 5 regions labeled with letters from
A to E Depending on the expected particle energies in each angular region, a different number of silicon
detector layers are foreseen. On the other hand, in Fig. 1.2 the EGPA is shown as the external green
detector which surrounds the ESPA. The function of this array is the detection of y-rays emitted from
excited beam-like products, as well as the residual kinetic energy of fast recoils which punch through the
silicon detectors of ESPA.

The EXL project will provide a unique and versatile detector setup for the investigation of the nuclear
structure of unstable exotic nuclei. Multiple types of nuclear reaction experiments in kinematically
complete measurements will be possible with the full EXL setup. In Appendix B, some examples of
nuclear reaction experiments which can be studied in the future with extended setups or the whole
detector array will be shown.

1.2 Objectives and outline of this thesis

One of the main objectives of this thesis is the investigation of nuclear reactions in a stored-beam ex-
periment by employing an internal gas-jet target and a sophisticated setup including ultra-high vacuum
compatible detectors. For these experiments, the stable beams of 2°Ne and *Ni are used to study the
resulting nuclear reaction channels from the interaction with the internal gas-jet targets of hydrogen and
helium, respectively. Reaction channels like elastic scattering, excitation of low-lying states and giant
resonances and neutron transfer were possible to be measured in the present work. In particular, the
excitation of giant resonances has been investigated for the first time in a stored-beam experiment. With
the analysis of the present experimental data the feasibility of this experimental technique is demon-
strated by showing the consistency with experiments performed in the past in normal kinematics. From
these results, our goal also is to provide a proof of principle for the EXL project which in the future will
extend such techniques to study nuclei far away from the valley of stability.

Parallel to this, dedicated simulations were made in order to understand the performance of the current
detector setup and the future EXL system for the investigation of distinct nuclear reaction channels. The
present simulations routines are the starting point of a full simulation framework for the EXL collabora-
tion.

The outline of this work is the following:

* Chapter 2: Description of the facility and the experimental setup which was utilized for the mea-
surements of this work

* Chapter 3: Explanation of the offline routines applied for the raw data processing and calibrations

* Chapter 4: Simulation results with the present detector geometry and various reaction chan-
nels. Application of these simulations to the angular calibrations of the experimental setup and
identification of reaction channels

* Chapter 5: Theoretical concepts and tools employed for the analysis of the experimental results of
this work

* Chapter 6: Data analysis and results. Elastic scattering data are analyzed with distinct optical
potentials from which it is possible to deduce the nuclear matter distribution. Isoscalar giant
resonances are studied in an a inelastic scattering experiment. Hole-states of 1”Ne are investigated
based on the experimental data of a neutron transfer reaction 2°Ne(p, d)

e Chapter 7: Summary and conclusions

* Appendix A: Experimental studies and simulations performed for the preparation of the experi-
ment E105. Charge and light cross-talk effects are studied by comparisons with an in-beam detector
test

1.2. Objectives and outline of this thesis 3



* Appendix B: An outlook including extended EXL detector setups is presented. Some examples of
nuclear reactions are studied in simulations of the full EXL detector recoil setup
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Chapter
Experiment

The experimental part of this work was performed at the GSI (Helmholtzzentrum fiir Schwerionen-
forschung) facility, in Darmstadt (Germany), during the months of October and November of 2012.
The experiment was carried out at the existing heavy-ion storage ring ESR (Experimental Storage Ring)
using an internal gas-jet target and a dedicated detector setup compatible with the ultra-high vacuum
conditions in the ring. With this system a successful EXL campaign was carried out with stored >®°8Ni
and 2°Ne beams. The experimental data for this thesis comprises different runs with *Ni beam and
a “He-gas target (experiment E105) as well as with a 2°Ne stored beam and a H,-gas target (experi-
ment E087). In this chapter some details about the preparation and execution of the experiment will be
explained.

2.1 Production and acceleration of the beam

At GSI the primary beams are accelerated by a system composed of the UNILAC (UNIlversal Linear
ACcelerator) and the heavy-ion synchrotron SIS18 (Schwer Ionen Synchrotron). The main part of the
UNILAC consists of an Alvarez DTL (Drift Tube Linac) with two different beam injectors, the high
charge state (HLI -HochLadungsInjektor) and the high current injector (HSI -HochStromlInjektor). In
the HLI, the beams are produced by an ECR (Electron Cyclotron Resonance) ion source and preaccel-
erated by a radio-frequency quadrupole (RFQ) system [10]. The high-current beams are delivered by a
MUCIS/MEVVA type ion source. A RFQ system preaccelerates the low charge state ion beam, passing
through a first stripper, to be finally injected into the UNILAC [11, 12]. In this experiment, the *Ni** ion
beam was produced in the VARIS (a MEVVA-type) ion source with a current of about 5 emA. After the
preacceleration and stripping, the ions were injected into the UNILAC at an energy of 1.4 MeV/u [13].
Later, in the UNILAC, the heavy ions obtain a maximal energy of 11.4 MeV/u. A diagram of the present
UNILAC can be seen on the left side of Fig. 2.1.

After this point the beam passes through a second stripper (in our case obtaining *®Ni%®* ions) and is
transported to the synchrotron accelerator (SIS18) which has a circumference of 216 m and a maximum
magnetic rigidity of 18 Tm [15]. This step provides an acceleration for the heavy ions to energies
between 50 to 2000 MeV/u. Finally, the accelerated beam can be extracted to different experimental
areas (e.g. the storage ring ESR), as is suggested also in the diagram of Fig. 2.1. After a slow (or
fast) extraction the beam can be delivered to experiments at the caves in the target area (for producing
unstable beams) to the FRS (FRagment Separator), or be extracted into the transfer line towards the
heavy ion storage ring (ESR). The intensity of the extracted beam (from the SIS) during this experiment
was about 5 x 108 part./s on average [16]. In the transfer line the ions pass through a thick stripper foil
where the remaining electrons are removed. From the emerging charge state distribution, the fraction
of bare ions is magnetically separated and injected into the storage ring.

26+
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Figure 2.1.: Diagram of part of the GSI facility which is relevant for this work. On the left side, the UNILAC
with its respective ion sources is presented. On the right side, the synchrotron SIS18 and the
scheme of different experimental areas, like the ESR, are shown. (Adapted from Ref. [14])

2.2 The heavy ion storage ring (ESR)

The storage ring is a type of circular lattice of bending and focusing magnetic multipoles whose purpose
it is to accumulate and store ions up to the highest possible currents. The ESR is capable to store ion
beams from helium (Z = 2) up to uranium fully ionized (Z = 92) at velocities below 10% to almost 90%
of the speed of light [17]. The ESR has a circumference of 108 m and a maximum magnetic rigidity of
Bp = 10 Tm that allows to store fully stripped ions of uranium up to the maximum specific energy of
560 MeV/u. A layout of the ESR can be seen in Fig. 2.2 with some of the important parts such as the
electron cooler, RF cavities and the internal gas-jet target.

2.2.1 Stored beam

Usually, the injected beams to the ESR have a large transversal size and wide angular divergence (hot
ions), with a typical emittance of about 57 mm mrad [19]. These beams are efficiently cooled down by
collisions with cold electrons traveling in the same direction of the beam for a distance of 2.5 m (length
of the electron cooler). When the ions enter the electron cooler region, their velocity distribution is
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Figure 2.2.: Schematic sketch of the present heavy ion storage ring ESR at GSI. The ion beams are stored
in a lattice of bending and focusing magnetic multipoles which maintain the ion circulation
at frequencies around 10° rev./s. (Adapted from Ref. [18])

reduced and they are forced to circulate in the storage ring with a fixed velocity that is determined by
the electron cooler high-voltage, U.qojer> aS:

ENM = m,c(y — 1) = eUpplers (2.1)

Wlth
eU 1
cooler 1

m,c? ’ r= /1_[52’

where c is the speed of light, and m, and e are the mass and charge of the electron, respectively. This
technique leads to an emittance of the stored beam of less than 0.1t mm mrad and also guarantees a
well defined constant velocity with a spread in the order of A3/ ~ 107> [20]. This can be monitored
in a non-destructive way by recording the signal which is induced by the ions in the pick-up electrodes
at every turn and applying a fast Fourier transform (FFT). As result, a peak in the frequency spectrum is
obtained for a specific ion species (Schottky frequency spectrum). An example of such a type of spectrum
with uncooled and cooled beam samples is shown in Fig. 2.3. As one can see, the non-cooled beam has a
wider frequency distribution which is related to the emittance of the beam. After few seconds of cooling,
the frequency distribution of the beam is well reduced, which also means a reduction in the emittance
and a better velocity definition of the stored ions.

When the electron cooling is in operation, all ions have approximately the same velocity in the ring.
Thus, the revolution frequency can be expressed as:

_ Be
frev = 5 (2.3)

where S is the orbit circumference of the ions that depends on its mass-to-charge ratio (m/q) and the
bending strength of the ESR magnets. That means, the revolution frequency changes for different stored-
ion species or beam energies. In the present experiment, the *®Ni stored-beam was run at energies of
150 and 100 MeV/u, and hence revolution frequencies were 1.4 and 1.2 MHz, respectively. For the beam
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Figure 2.3.: Example of a Schottky frequency spectrum with the stored ion-beam 238U°?* at the ESR. The
relative longitudinal-momentum spread of the beam is reduced approximately from 6p/p ~
1073 to 6p/p ~ 107" in a few seconds. (Adapted from Ref. [20])

of 2°Ne at 50 MeV/u the revolution frequency was 0.9 MHz.

The beam current in the ESR is measured with a DC current transformer [21] which measures the
signal induced by a time varying magnetic flux due to the beam current, similar to a flux-gate mag-
netometer [22]. Then, the DC signal, which is proportional to the beam current I(t), is integrated
during the experiment. In Fig. 2.4 the experimental beam current during a run of *®Ni at 150 MeV/u is
shown. In Fig. 2.4(a) one can see various sharp rises when the beam injection was done (no target) and
subsequently a decay of the beam intensity during the target operation period.

< 2_— < 2__
E v *Ni @ 150 MeV/u E
e beam injection e | beam stacking
o g 15
5 5 C '
o (&) r .
£ £ ! )
8 8 1= I(t) ~ exp(-t/ 1)
m m N
0.5
_....I....I....I....I....I....I....I....I....I..
0O 5 10 15 20 25 30 35 40 45
Time [hours] Time[minutes]
(a) Different cycles of beam injection and decay. (b) Zoom-in of one of the cycles.

Figure 2.4.: Stored beam current during the experiment of >®Ni at 150 MeV/u. The sharp rises represent
the different beam injections. In this case the beam lifetime was about 45 minutes.

The beam injection to the ESR is usually performed in several shots in order to accumulate enough
particles in the ring to start a new run, this process is called beam stacking. The stacking of primary
beams in the ESR is usually quite fast (about one or two minutes in this case) due to the high intensity in
the production, but for the case of unstable ones this procedure might take an order of magnitude longer
[23]. The stored-beam lifetime is highly dependent on the free path of the ions along their trajectory in
the ring. Thus, the ESR environment must be as clean as possible. Usually, the operation vacuum in the
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ring is about 10~!* mbar and 1071° mbar for the target region, both in the regime of Ultra High Vacuum
(UHV). However, under these conditions the ions can still capture electrons from the residual gas, the
internal target or the electron cooler. Hence, atomic charge-exchange reactions are produced from the
stored-beam interaction, and the total rate can be estimated as [24]:

) = )\Tes-gas 4 jtarget 4 )Lcooler — % and A= o O'Ch'-ex"frev’ (2.4)

where 7T is the beam lifetime, p the effective target density and o®** the atomic charge-exchange

cross section. Therefore, the beam current can be maintained for a long time depending on the vacuum
quality and also the probability for an electron pickup. The experimentally determined lifetime for the
*8Ni stored-beam at 150 MeV/u was about 45 minutes, which is consistent with the expectation from
eq. (2.4) assuming a density of 102 part./cm? and a cross section of about 102 barn [25].

2.2.2 Internal gas-jet target

The internal target station of the ESR is located on the opposite side of the electron cooler (see Fig. 2.2),
between the two quadrupoles that focalize the ion-beam onto the interaction zone. The target is a vertical
flux, perpendicular to the beam direction, of an atomic (or molecular) gas at supersonic speed. This jet
is produced by expanding the gas through a nozzle of 5 um diameter into the vacuum. The divergence
of the jet is reduced by collimating the gas flux with a set of small orifices (skimmers) along its trajectory
[26]. With this, the produced jet has a uniform density around the region of the interaction zone with
the ion beam, and also its diameter can be fixed by the position and dimensions of the skimmers. The jet
dump system is located in the lower part guaranteeing that the gas flux is pumped away from the ring
without a substantial backstreaming. A schematic illustration of the internal gas-jet target is shown in
Fig. 2.5. The source of the gas target is also cryogenically cooled by a continuous flow of helium making
operation temperatures down to 4 K possible. At such conditions the cold gas-target expands through
the laval nozzle into the vacuum and its thermal energy is converted directly into kinetic energy [26].
In particular, assuming a stationary, adiabatic and reversible expansion of a perfect gas into vacuum, the
speed of this jet is given by [27]

2kgTy v
m y—1

v= (2.5)
where kg is the Boltzmann constant, T, the temperature of the source, m the mass of the gas molecule
and y the adiabatic index (for a monoatomic ideal gas set to 5/3). For instance, in this experiment, the
temperature of the helium target was kept at 12 K and a dynamic pressure of 3.6 bar, which resulted in
a flux speed of about 354 m/s.

During the experiment, the density of the target was monitored by the vacuum gauges of the four-stage
differentially pumped dump system. With these monitors, the target density at the interaction zone (nr)
can be extracted from the dump pressure, using

P dump
v >

ntAz =C (2.6)
where Az is the target thickness, C = 4S gy, /(7ky T Ax) and Sy, is the pumping speed at the dump
pressure (Pyymp), which for the case of hydrogen is about 1050 1/s and for helium 1320 I/s. In Fig. 2.6
two examples of target density during the experiment, for helium and hydrogen, are shown.

As can be noted, the target density was rather stable during the experiment. During each beam
injection the gas jet was turned off to guarantee an efficient cooling and beam stacking. For this reason,
in Fig. 2.6(a), it is possible to see small blank spaces in cycles of less than one hour. The average helium
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Figure 2.5.: Schematic illustration of the internal gas-jet target of the ESR. The jet source is on the top
of the figure, the flow direction is downward and on the bottom the jet dump system is
located. The interaction zone of the gas jet with the ion beam is represented in the middle
of the flow trajectory. (Adapted from Ref. [28])
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Figure 2.6.: Target density for two different runs of the experiment. The discontinuities are due to the
target flux halt during the beam injections.

target density was in the order of 10'? part./cm? while for hydrogen it was about 103 part./cm?.
Another important characteristic of the target is its diameter in the interaction zone which, in principle, is
limited by the dimensions of the nozzle and skimmer. In our experiment we measured the target profile
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by scanning the interaction zone with a low beam intensity. As the interaction of the beam with the
target leads to an average energy loss, the small changes in frequency of a non-cooled stored beam can
be easily measured by the Schottky frequency monitor. For this reason, the electron cooler was switched
off and then the revolution frequency shift (deceleration), after a 30 s interval, was measured. To control
the position of the beam, two scrapers located at 3 m in front and behind of the target region were used
[29]. The experimental data points for different beam positions are shown in Fig. 2.7(a).
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the internal target as a function of the hori- tion fit given by the eq. (2.7)

zontal (perpendicular) beam position.

Figure 2.7.: Experimental measurement of the target profile.

Given that the stored beam was not cooled in this measurement, the beam divergence is expected to be
larger (see Fig. 2.3), and therefore the profile curve can also be affected. In order to unfold the beam size
from this measurement, a convolution of the beam and target shapes projected on a plane perpendicular
to the beam direction was fitted to the experimental data:

d(x)= f t(x)b(x — x")dx’, with 2.7)

—00

b(x):Abe(_%%), and t(x)=At{

2/ r2—x? if|x|<r

0 if |x|>r"

The beam is assumed to be a Gaussian (b(x)) with standard deviation oy, and the target (t(x)) as a
projection of a cylinder of radius r and a uniform density. This shape has been used to successfully
describe the target profile in measurements utilizing different methods [30, 31]. The fit was done
by varying the two parameters, r and o}, for each numerical convolution. A global y¥? minimum at
o = 1.94(2) mm and r = 3.45(7) mm was found. The target width is in good agreement with previous
measurements involving different experimental setups [30, 32]. The unfolded target profile can be seen
in Fig. 2.7(b).

2.3 Detector setup

In the present experiment the detector array for recoil detection was mounted in a vacuum chamber spe-
cially designed for compatibility with the UHV conditions in the storage ring. This chamber was installed
in the region of the internal gas-jet target of the ESR (see Fig. 2.2). As the goal of this experiment was to
measure very low energy recoils (hundreds of keV), the detector array has to be windowless and placed
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within the ring environment. This is one of the most challenging parts of the technical design of this type
of experiments, because, together with the detectors, connectors, cabling, and cooling system (it will
be explained later) would have to be mounted in the ring environment where a vacuum in the order of
107!% mbar or below is required. Such a configuration is in fact hardly feasible. An additional constraint
is that for achieving such vacuum conditions in the ESR, it is necessary to increase the temperature of
the chamber to a minimum value of 150 °C for several days (bakeout) before the experiment. In order
to overcome these limitations, the detector setup was installed inside internal pockets, where an auxil-
iary vacuum (AV) was operated. This provides a separation of all unbakeable and outgassing elements
from the UHV of the storage ring [9, 33]. This was possible by using DSSDs (Double-sided Silicon Strip
Detector) of 285 um thickness as differential pumping barriers between the UHV of the ring and the AV
inside the pockets. For the safety of these active windows, the differential pressure was maintained below
of 1072 mbar.

In the present experiment, two of these internal pockets were installed at angles of 80° and 32° with
respect to the beam direction, as illustrated in Figure 2.8.

Figure 2.8.: Schematic illustration of the vacuum chamber: a) beam direction, b) gas-jet direction, c) slit
plate, d) shield to prevent the detection of scattered residual-gas particles in the DSSD2, e)
pocket 2 at 32°, f) pocket 1 at 80° and g) flange where a 2*! Am alpha source was installed
on a movable system. (Technical design by M. Lindemulder, KVI [34])

In the front part of each pocket, as mentioned before, a DSSD of (64 x 64) mm? in area and with 128 x 64
perpendicular strips was placed, also shown in the photography of Fig. 2.9(a). The distance between the
surface of the DSSD1 (at 80° ) and the center of the target was 250 mm, and 350 mm for the DSSD2 (at
32°). Inside the first pocket (at 80°), two Si(Li) detectors (which are unbakeable) were placed behind the
DSSD in order to operate the whole system as a telescope for the detection of elastically scattered recoils.
A schematic illustration of this pocket can be seen in Fig. 2.9(b). The Si(Li) detectors are 6.5 mm thick
and have an active area of (100 x 56) mm?, divided in eight quadratic pads with independent readout.
The first Si(Li) (closest to the DSSD1) was mounted to cover the angles between 86° and 77°, and the
second Si(Li) for the region from 82° to 73°. The challenge of using Si(Li)s in the present experiment
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is that temperatures above 35 °C can irreversibly damage the detector structure, as the lithium dopant
starts to drift at these temperatures [35].

(a) Photography taken from the beam direc- (b) Scheme of the first pocket. (Technical
tion. (Courtesy of O. Kiselev, GSI) design by M. Lindemulder, KVI)

Figure 2.9.: Internal pockets seen from inside of the vacuum chamber. The photography shows the DSSDs
in the front part of each pocket. The figure on the right presents the internal structure of
the first pocket.

For this reason it was necessary to include a cooling system to keep the Si(Li) detectors at low temper-
atures, especially during the bakeout of the vacuum chamber. The cooling was achieved by a liquid-
circulation pump connected to a copper tube that was directly in contact with the detectors, as shown in
Fig. 2.9(b). The cooling liquid employed was a solution of water and ethyl alcohol (50-50%) to prevent
its freezing at temperatures below 0 °C.

As the achievable angular resolution was kinematically limited by the extension of the gas-jet target, a
slit plate inside the chamber was included to reduce the acceptance and thus improve the angular res-
olution of the telescope of pocket 1. There were two available slit apertures on this plate, 1 and 2 mm.
The material chosen for the plate was tantalum with a thickness of 2 mm, sufficient for stopping the
recoils in the covered angular region. This slit plate was mounted on a remote-controlled piezo motor
composed by two drives, with a resolution below 1 um, for moving the plate in two dimensions (the
horizontal axes of the chamber).

The second pocket comprised only a DSSD, but this angular region is adequate for the detection of
inelastically-scattered recoils at low energy. For example, in the angular range of this detector, the en-
ergy of the recoils was calculated from the kinematics to be only about 300 keV for excitation energies
around 20 MeV. Also, in order to avoid a significant source of background at low energies in the DSSD2,
a shielding for blocking the elastic scattering of the residual-gas particles was installed, as presented in
Fig. 2.8. This shielding is a barrier of stainless steel fixed to the vacuum chamber that covers the small
angle scattering (in center-of-mass system) along the beam trajectory.

For calibration purposes an alpha source of 2*'!Am was installed on a flange in front of the detectors and
the target (see Fig. 2.8), with a movable system to transport the source inside or outside the chamber
when it was required.

The entire experimental setup had to be baked for several days before the campaign in order to reach
the UHV conditions necessary for the operation in the storage ring. In the following, the results of this
important procedure will be presented.

2.3.1 Vacuum chamber bakeout

In order to perform the bakeout, the outer walls of the vacuum chamber were fully covered with heating
jackets which were used to increase the temperature to a final value of 150 °C. Before this procedure
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started, the cooling system of the Si(Li) detectors was set to a temperature of —12 °C with the objective
to protect the Si(Li) detectors from possible damages during the bakeout. Besides various tempera-
ture probes, pressure meters and residual-gas analyzers were included in the setup for monitoring the
progress of the chamber bakeout. In Fig. 2.10 some samples of the bakeout evolution can be seen, like
the pressure inside the pockets, the temperature at the wall of the pocket and also at the Si(Li) detectors.
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Figure 2.10.: Results of the vacuum chamber bakeout. In the upper part the monitoring of the pressure
inside of the pockets is shown. The temperature on the walls of the pocket is presented in
the middle plot. In the bottom, the temperature of the Si(Li) detectors is shown.

After the first six hours the temperature inside the chamber was already above 100 °C, and with this,
most of the water was evaporated, bringing also a slight deterioration in vacuum, but quickly extracted
by the pumping system. When the final bakeout temperature was achieved, the temperature on the
detectors changed less than 5 °C with respect to the initial value. This shows the significant gradient of
temperature handled in the whole experimental setup during the procedure. As result, after four days
of bakeout, pressures in the gas-target region of 1 x 107!° mbar and 8 x 10~® mbar inside the pocket
system were achieved. Also, the temperature at the Si(Li) detector was kept below —7.5 °C during the
bakeout, guaranteeing a good operation during the experiment.

The residual gas was analyzed using mass spectrometers monitors from which it was possible to quantify
the abundance of a specific element and molecule by the relative current in the readout. Thereby, the
residual-gas particles can be differentiated by their mass number. In Fig. 2.11 a spectrum of the residual-
gas analysis-test (it was performed in the vacuum laboratory) after and before the bakeout process is
shown.

As can be noticed, after the bakeout there is an important reduction of abundance of water, nitrogen
and organic components, which finally is reflected in an improvement of two orders of magnitude in the
vacuum.
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Figure 2.11.: Mass spectrometer vacuum test before (solid line) and after (dashed line) a bakeout test.

The intensity of the peak is proportional to the abundance of the element (or molecule)
inside of the vacuum chamber. (Courtesy of B. Streicher, GSI)
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Chapter

Data reduction and calibration

3.1 Raw data processing

As explained in Chapter 2, in the present experiment more than 300 detector channels were operated
by a dedicated electronics arrangement for an individual analog-signal processing. The digital signals
(from ADC, TDC or scaler) were recorded by using a data-acquisition code [36] based on the Multi-
Branch System (MBS)[37]. For the off-line analysis the raw data were unpacked, sorted and saved in the
ROOT format file [38] which permits a simple implementation of a data-analysis code in the C++ language.
The data-analysis code that has been developed for this work includes data processing at different levels:
classification, calibrations and subsequent data transformations. The first step before starting this raw
data processing is to make a clear identification of the detector noise conditions, as will be shown as
follows.

3.1.1 Coherent noise correction

In order to quantify the electronic background of each detector channel, various runs without the gas-jet
target (empty target run) were measured during the experiment. In these runs the respective stored
beam was kept in circulation for mainly two reasons: to measure the component from residual-gas
scattering and to observe the influence of the ESR electric devices (in operation) to the total electronic
background. In this way, it is possible to compare all these individual channel outputs with the measure-
ments from a regular run (gas-jet target in operation). As an example, one can see in Fig. 3.1(a) the
ADC output of the strip number 1 from the DSSD2, for the two cases. The empty-target run data show
an irregular double-humped distribution that ends abruptly around channel 180, so all events from the
target can be selected beyond this lower limit. Similarly, the regular run presents the same background
structure for the first ADC channels, but its distribution is extended to higher channels. Interestingly, a
comparable trend was observed in all other channels, with a much better similarity for the strips that
were connected to the same preamplifier. As a naive examination of this pedestal shape, the ADC output
for all strips were printed in tables for part of the run. After a careful observation, a systematic behav-
ior was noticed. The pedestal values of the strips connected to the same preamplifier jump coherently,
at certain events, by approximately the same number of channels. This is certainly an indication of a
coherent noise occurrence during the experiment. The origin of such coherent noise in the silicon-strip
detectors is not fully understood [39-41]. One possible source is electromagnetic pick-up from external
devices, or even due to an unstable connection in the input or output signals of the preamplifiers. This
effect is commonly seen in compact multichannel electronic systems as a correlation in groups of the
output signals. In order to implement an off-line correction for the coherent noise, the mean distribution
of all pedestals has to be analyzed in an event by event mode. One feature of the type of electronics
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employed in the experiment is that the output pedestals are quite comparable among them, e.g., in the
present data most of the pedestal signals were centered around channel 50 with a standard deviation of
10 channels. So, in the case of an empty-target run, the average pedestal value of all strips connected
to the same preamplifier is equivalent to the mean ADC channel of an individual strip signal. However,
in a regular run the conditions are different since for real events the most likely occurrence is the low
channel multiplicity (only few strips are triggered), what in turn modifies the mean pedestal distribution
considerably. Therefore, the most adequate statistical estimator in this case is the median (instead of the
mean value). The reason is that for low multiplicity the median provides the coarse average, because the
few channels with the large ADC values have no weight in the common distribution. Thus, the correction
can be implemented with the calculation of the median signal @, for each event. Fig. 3.1(b) shows the
median pedestal distribution from a regular run.
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(a) Comparison of a strip signal for a regular and (b) Median Pedestal distribution of a group of
an empty-target run. channels connected to the same preamplifier.

Figure 3.1.: Electronic background identification for the DSSD2.

In this case, only the result of one preamplifier group is presented. The main contribution is at low
values, centered around channel 50, as was initially expected for the common pedestal behavior. In
some events, this average pedestal position jumps to higher values what generates a second bump in
this distribution. This is, in fact, the result of coherent noise pick-up. It is also interesting to see that
this common tendency is very similar to the electronic background of an individual strip output (like in
Fig. 3.1(a)).

A correction algorithm for the coherent noise was developed for this work, and is divided in two parts:
the identification of the median pedestal distribution and the classification of the events in which this
common effect occurs. In the first part of this routine, the “correct” average pedestal position, (a);, is
calculated from the dominant peak of the pedestal distribution. Hence, for each event the correction
which was applied is:

a:’zal{—5k, Wlth 5k=ak—((a)k+n0'k), Only lf 5]( ZO (31)

Here, a; is the uncorrected signal of the strip channel i, o; is the standard deviation of the main con-
tribution of the median pedestal and n is a value which is chosen typically between 2 and 3. Then, the
events in which the pedestals suffer from a sudden coherent jump (i.e. the small bump of Fig. 3.1(b)),
the factor &, is larger than zero and all channels are commonly corrected by this value. As an example,
in Fig. 3.2 the effect of the coherent correction in one of the strip signals for a regular run can be seen.
Clearly, the correction suppresses the second most intense peak at low channels, and especially above
channel 150 which will be important for the separability of some reaction events.
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Figure 3.2.: Example of coherent noise correction for one of the strips of the DSSD2 in a regular run.

Another advantage of this correction is the possibility to apply lower threshold cuts and then to make
a more efficient cluster separation, especially for low multiplicities. This can be done by performing an
event discrimination from the number of strips triggered in every case. In principle, the “real” events are
assumed to have a multiplicity 1 or 2 if the hit occurs in the inter-strip area (in Appendix A, inter-strip
effects in DSSDs are studied). Accordingly, a threshold has to be applied to cut the noise contribution,
which is composed mostly by high event multiplicities. In order to have a better understanding of this
procedure, the events from a regular run have been sorted versus the number of strips triggered per
event, as presented in Fig. 3.3(a). In this case, the threshold was set at the right side of the pedestal, at
2 times of the standard deviation from the centroid. The multiplicity 1 is dominant and comprises about
80% of the total events. The multiplicity 2 is an order of magnitude lower and is only accepted if the
two triggered strips are first neighbors. It is clear that the efficiency of these low multiplicities depends
on the position of the threshold, but at the same time the total number of events has to be the highest
possible. Thus, by applying the proper threshold, the multiplicities 1 and 2 contain more than 90% of the
accepted events. This percentage can be even closer to 100%, depending on the contribution of reaction
channels at very low energy.
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(a) Events sorted by the number of triggered (b) Example of noise reduction in a strip signal by
strips. imposing only multiplicities 1 and 2.

Figure 3.3.: Event discrimination by the number of multiplicities. In this case, the p-side multiplicities in
the DSSD2 are shown for a regular run.

In the analysis code, the multiplicities can be employed as a condition to suppress the background in all
detector channels. In Fig. 3.3(b) it is possible to see how the background contribution is significantly
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reduced when the condition of multiplicity 1 and 2 is applied. It is important to note that the chosen
threshold position in this case seems correct, because the amount of events in the high ADC channels
remains the same. The next step consists of the calibration of all digital signals, which will be explained
below.

3.2 Calibrations

3.2.1 Detector calibration

As explained in Chapter 2, the energy calibration of the detectors was done with an a-source of 2 Am.
This source was mounted on a movable arm at the opposite side of the detector pockets. In the calibration
runs, the a-source was moved and placed in front of the detectors for several hours until good statistics
(sufficient to resolve the energy peaks of the 24! Am) was achieved in all strip spectra. For the analysis of
these calibration runs it was necessary to implement a routine that provides an automatic peak detection
in a given histogram, and executes the respective multiple Gaussian fit. For this task, the TSpectrum
Class of the ROOT framework was employed, which is based on the algorithm for multidimensional peak
identification of M. Morhac et al. [42]. In this way, a large amount of histograms (> 500) were efficiently
analyzed for the calibration runs. An energy-spectrum sample of the 2! Am measurement, for one of the
detector strips, is shown in Fig. 3.4(a). Here it is important to note the good resolution of the DSSD
detectors (better than 1%) which allows even the detection of the second most intense a-decay line of
241 Am at 5442 keV. Thus, by applying a fit for each individual spectrum, and after the respective pedestal
subtraction, it is possible to correlate the ADC channel number with the deposited energy directly.
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Figure 3.4.: Sample of calibration spectra for one of the detector channels.

The second part of the calibration corresponds to the linearity test of the electronics. This method allow
us to extend the energy calibration along the whole ADC channel range. As usual, in this calibration a
pulse generator is employed as an input signal for the preamplifiers. Initially, for each measurement, the
pulse intensity was adjusted to generate a peak in the last channels of the strip spectra (around channel
3500). Later, the gain of the pulse signal was changed by a proportional factor in order to generate a
second peak at a lower channel number in the spectra. This procedure was repeated several times until
the whole spectrum range was covered, as Fig. 3.4(b) shows an example for one of the strips. Finally,
for all spectra, a second order polynomial calibration was performed, using

Epyiserla-u] = ay ¥ channel® + a; x channel + a, (3.2)

where q is the offset, a; the proportionality factor and a, the second order coefficient which is about six
orders of magnitude lower than a; for every fit. These parameters are adjusted to correlate the arbitrary
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units of the attenuation number with the equivalent energy position which is derived from the 2*'Am
calibration.

The third and last part of the calibration has the objective to correct the energy loss in the detector
dead-layer. This type of correction improves the calibration mostly at energies below 1 MeV. The dead
layer assumed for the DSSDs was 100 nm, as suggested by the detector manufacturer [43]. Accordingly,
a subroutine for the particle deposited-energy calculation was implemented. This code interpolates the
experimental stopping-power data (taken from Ref. [44]), and integrates the particle energy loss over the
entire thickness of the dead-layer. The effective-thickness effect due to small incident angles is negligible,
because as seen in Chapter 2 the DSSDs acceptance limits the particle direction in angles up to 10°, i.e.
corrections of less than 2% are expected. An example of the resulting correction functions for protons
and a particles with a 100 nm dead layer is shown in Fig. 3.5. As can be seen, the respective corrections
are more significant for energies below 1 MeV, especially for a particles where the correction at 500 keV
can go up to 26 keV. In order to implement this correction, a re-calibration of the 2! Am run is needed
due to the 11 keV which these a particles deposit in the dead-layer. After that, the correction functions
are used to return the missing energy in all spectra. The uncorrected deposited energy is assumed to be
the incident kinetic energy of the particle in the detector, and then, the corresponding correction value
is added individually to the detector energy of each event.
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Figure 3.5.: Energy deposited for protons and as in the 100 nm dead layer of the DSSDs.

3.2.2 Beam and target monitors

During the experiment many scalers were included in the data acquisition in order to measure different
settings of the ESR. In particular, the beam current and the target density monitors were read from
scalers modules at every event. However, these scaler signals also require a calibration. In the following
part such procedures are explained.

Beam settings

As it was previously mentioned in Chapter 2, the beam current was monitored with a DC transformer.
Similar to a flux-gate magnetometer, the integrated beam current is proportional to the input frequency
signals:

scaler
J(t):a( " —b), (3.3)
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where b is an offset and the proportional constant a = T SOT{?IZ [45]. Thus, the current can be determined
in the analysis code by a numerical derivative
t
AJ(t
J(t)=| I(tHdt = I(t) ~ ( ). (3.4)
" At

The time At is chosen large enough (~ seconds) in order to reduce the numerical fluctuations. Eventu-
ally, the average number or ions in the ring, at a given time t, can be also calculated as

I(t)
Qefrev ’

with Q the charge state of the stored beam, e = 1.6 x 1071? C, the elementary charge and f,., the beam
revolution frequency.

On the other hand, as the beam velocity is determined by the electron-cooler conditions, and in principle,
its kinetic energy, K}, can be deduced from the electron cooler high-voltage U, and its current i,:

Ci,
cooler — - >
_ eUcooler |
1 (1 L)

m,c? and m,c? the electron and the ion beam rest mass, respectively. In this case, the electron cooler
high-voltage is corrected to take the space charge effect into account, which causes a reduction of the
electric potential within the beam [46]. This correction term depends on the dimensions of the electron
beam and the drift tube, which results in a proportionality factor { = 1.13 x 1074 km—\g [17, 47]. Thus,
the corrected electron cooler high-voltage (eq. (3.6)) is calculated numerically and later employed for
deducing the kinetic energy of the corresponding stored beam. For instance, in a *®Ni run the electron
cooler was set to U,yoer = 82.33 kV and i, = 200 mA, which in turn defines the kinetic energy of the
stored beam to be 149.99 MeV/u. Similarly, for other *®Ni runs, the electron cooler was operating
with the parameters U,y = 54.71 kV and i, = 50 mA, from which the respective kinetic energy was
99.71 MeV/u.

Ny(t) =

(3.5)

€ Ucooler

, (3.6)

2 : &
Kb = myC ( ) 5 with Ucooler =

m,c?

Gas-jet target density monitor

In order to deduce the target density it is sufficient to measure the gas pressure at the dump region, as
noted from eq. (2.6). Experimentally this is achieved with a system composed of four IONVAC pressure
meters [48] that are labeled with S;, S, S; and S,. The individual output of these sensors is a DC voltage
u, from 0 to 10 V, which is converted to a frequency and is interpreted by scaler as

Ascaler 1 (u+2).

=10\ 25 3.7
At 3.7)
This voltage is related to the pressure by a calibration function provided by the manufacturer [48]
10(“7%°) mbar for S, and S
: mbar for S; an
P[Sl] = 12 ! 2 > (38)
10%~12) mbar for S; and S,
and hence, the total pressure at the dump can be obtained with
4
Pdump = kgas Z P[Si]’ (3.9)

i=1
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where kg, is a conversion factor used for gases other than air. For example, with hydrogen ky, = 2.4,
and helium ky, = 5.9. The uncertainty associated to the present measurements is about 15% [48].
Using all the above, the internal gas-jet density is calculated in the analysis code, at any Py, read-out,
with the expressions:

1 art.
(nTAz)H2 — (1.91 % 1018 — ) Pgymp P::F (Hydrogen), (3.10)

ar

H part. .
(npaz)e = (2.24 % 1018m ar) Pgump pey (Helium). (3.11)

3.3 Determination of luminosity and cross section

3.3.1 Luminosity

The luminosity is the density of collision centers in the target multiplied by the number of particles
colliding with this target per unit time. By definition the luminosity is given by the ratio of the event rate
(Y) with the cross section (o) of a particular event [49]

A

Y 1/(d
—=_ (—Y) . [em2s71] (3.12)
o o\ dt

Usually, for stored-beam experiments, the luminosity is expressed as the product of the beam revolution
frequency and the luminosity of a single collision (s¢), & = fiev%. [50]. Assuming a fixed target
(because the velocity of the gas-jet is negligible in comparison to the beam velocity vy.,,), this single-
collision luminosity can be approximated by the overlap integral !

2.~ AzJ np(r)ng(r)d3r, [em™2], (3.13)

where Az is the target thickness and ny, are the particle volumetric-density of the target (T) and beam
(B). As it was shown experimentally in Chapter 2, a good approximation for the internal gas-jet target
is an uniform cylinder with constant density ny. In this case, eq. (3.13) is reduced to the calculation of
the number of beam particles involved in this single collision. In a first approximation we can assume
that all stored particles in the ring are concentrated in a single bunch, so the number of beam particles
involved in a single collision is equal to N, (eq. (3.5)). Therefore, the luminosity in a given time t can
be finally expressed as

L) = afouy X Ny(£) X (nA2)(1) = % x I(£) X (npAz)(). (3.14)

However, this simple approximation overestimates the experimental luminosity and usually a correction
factor a is needed. The correction factor can be found from a relative normalization with a luminosity
monitor. For instance, by measuring the deflected ions from the central beam orbit due to atomic charge-
exchange, or by detecting of the ultra-violet light produced in the beam-target interaction zone [52]. In
this work a relative normalization with the elastic scattering for the most forward angles (6., < 3°)
was employed. Moreover, the time dependence of eq. (3.14) obeys to the variation of the beam current

1 From the expression of Ref. [51], we can assume that the densities do not change during the single collision.
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and the target density during the experiment, as can be seen in Figs. 2.4 and 2.5. Nevertheless, for the
analysis of the experimental data it is convenient to use the integrated luminosity

a

% te x (I(t) x (nTAZ)(t)) v » (3.15)

tg
=gint = J g(t)dt =t X (g(t))ave =
0
where t; is the time elapsed for the whole run and the brackets ()., represent the average value?. Thus,
the corresponding luminosity of a given run is deduced directly from the average value of the product
of the beam current and the target density. The uncertainty of this mean luminosity is divided in three
independent components: statistical, instrumental and one part from the normalization

e(2) = 1/ (exae) > + (inser) > + (Enom) - (3.16)

The main error contribution in the luminosity measurement is produced by the target density due to the
uncertainty of the pressure meters (~ 15%).

In the experiment with the 2°Ne stored-beam and the internal gas-jet of hydrogen the average luminosity
was 6.1(9) x 10’ em 2s!. In the case of the *®Ni stored-beam at 150 MeV/u with the helium target,
the corresponding mean luminosity was 3.9(6) x 10%° cm2s~!. For the runs of 100 MeV/u (with same
target and beam) the luminosity was smaller, 6.3(9) x 10*® cm™2s™!, since a significant reduction in the
beam intensity occurred because of its deceleration within the ESR.

3.3.2 Cross section

The differential cross-section measured in the laboratory frame is calculated using 3

do Y
(—) (O1p) = ———— x 107, [mb/sr] (3.17)

dQ gintAQlab

where Y is the total number of events registered in the detector which was placed at a laboratory angle
0., and covering the solid angle AQy,,. Here, the factor 10?7 is included to change the unit cm? to
millibarns (mb). In order to deduce the correct solid angle acceptance for each detector strip, a correction
in the relative position of the detectors is needed. In this work, simulations are employed to derive these
correction functions and the respective solid angles, as explained in Section 4.2. Moreover, in scattering
theory often the representation in the center-of-mass system is employed, because in this frame normal
and inverse kinematics are equivalent. The respective transformations to the center-of-mass system were
performed with a relativistic two-body-kinematics code which is based on the Mandelstam variables
formalism [54]. Therefore, the experimental differential cross section in the center-of-mass frame is
given by

do Y 27
E (Qcm) = mJ x 10%7, [mb/sr] (3.18)
int lab

where
dQa,  d(cosOyp)

dQ., d(cosf.,)’

This factor J is the Jacobian of the transformation that can be calculated directly from the particle
kinematics. Finally, for the calculation of the errors of the cross section, we assumed three independent

components
5 (4o _ (do \/ay 2 rag\?  [a(An)\? 220
(@)= (@) (7)) +(Z) (@) o

Due to the mean value theorem [53]
By integrating eq. (3.12) with respect t.

J

(3.19)

3

24 3. Data reduction and calibration



As could be seen in the previous section, the main contribution is the uncertainty of the average lumi-
nosity which is about 16%. The error in the solid angle is derived from the squared root of the accepted
events in the simulation (see Chapter 4), in all cases it was lower than 5%. The statistical error due to
the total number of events registered in the detector, Y, is more significant around the minima of the
cross sections, where its value can be up to 15%.
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Chapter

Simulations

Nowadays, simulations are an essential part in experimental nuclear-physics research. Their applications
range from the design of complex detector setups up to the realistic estimation of detector output signals.
In this work we have used GEANT4, which is a toolkit written in the C++ object-oriented language for
the simulation of the particle transport and its interaction with matter [55]. That toolkit has a great
versatility to make or import complicated geometries and to create any kind of projectile or target.
Therefore, it is an appropriate tool to simulate new detector systems and/or study the setups under
development, as required for the EXL project. The EXL detector setup is an ambitious project that
requires a lot of work in detector development and techniques for operation under diverse environments.
In this case, the simulations are an important tool that may help us to understand many issues about
the experimental performance of the newly designed detector systems. In the past several years, the
EXL collaboration has performed a large amount of experimental research of detector responses under
different conditions. For the present work, various of these setups are simulated, showing a way to study
detector correlations and their applications the for in-ring experiments. For the preparation of the present
experimental work, simulations of an in-beam experiment test are studied and are shown in Appendix A.
Such results were particularly important to understand the cross-talk effects in some of the detectors
planned to be used in the EXL project. Similarly, in Appendix B simulations of future detector setups of
the EXL project are studied. The present chapter is dedicated to the simulations of the experimental setup
which have already been explained in the Chapter 2. These simulations were extremely helpful during
the analysis of the experimental data. In the first part of this chapter, the geometry, particle generator
and the slit plate simulations will be discussed. Later, the simulated detector geometry is employed
to perform the angular calibrations of the experimental data. Finally, different reaction channels are
simulated in order to understand the experimental energy spectra in the DSSD2.

4.1 Simulated geometry and the event generator

As it was previously explained in Chapter 2, the experimental part of this work was carried out in the
ESR storage ring with *®Ni and ?°Ne ion beams, and the internal gas-jet targets of helium and hydrogen.
The recoil detector-geometry consisted of an array of two DSSD and two Si(Li) detectors mounted in
a especially designed vacuum chamber for UHV compatibility that was installed in the internal gas-jet
target region (see Fig. 2.8 and Fig. 2.9). In order to create a more realistic scenario of this setup in our
simulations, the detector elements were constructed and placed inside of a stainless steel chamber whose
geometry was imported from a simplified CAD drawing [34] of the original design using the interface
class CADMesh [56]. Based on our measurements of the target profile (shown in Fig. 2.7) and other
experiments [30, 32], the gas-jet target was assumed as a vertical cylinder with uniform density and a
radius of 3.45 mm. Additionally, to simulate realistic dimensions of the cooled beam at the interaction
zone, the systematic measurements of Ref. [57] with different beam species and intensities at the ESR
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were employed. Thus, the simulated interaction volume for the primary events is limited by the super-
position of these target and beam distributions.

The primary events in our simulations were generated for a specific reaction channel using a function
that takes into account the relativistic reaction kinematics for two and three bodies in the output channel.
This function is based on the particle kinematics formalism that is explained in detail in Ref. [54]. Hence,
the use of this routine allows to generate the recoils coming from different reaction channels, e.g.: elastic
and inelastic scattering, transfer, breakup, knockout, etc. Its implementation is done in the Primary
Event Generator class of the simulation, where the particles are created with a specific kinetic energy and
direction. Another option of this particle generator is the possibility to produce the events with a given
probability distribution, e.g., a differential cross section. This can be done with the standard Monte Carlo
method, as

fx do 27sinOdo

- 2o \da)iab ; re[0,1] — x €[04, 6,], (4.1)
fez 49 27sinOdH
61 \dQ/lab

where r is a uniform random variable and x is a variable distributed by the respective cross section.
Usually, the cross sections are extracted from external codes for nuclear reaction calculations in numeric
tables format [58-61]. Complementarily, a cubic interpolation subroutine is also included for a smooth
evaluation of eq. (4.1) in the defined angular range. Also, the respective transformations from center-
of-mass to laboratory system for inverse kinematics are applied at the beginning of the simulation.

For example, we can explore the results of our simulations including the kinematics and the respective
cross section for the reaction *®Ni(p, p) at 400 MeV/u (beam energy). Because of the inverse kinematics,
the elastically scattered recoils at laboratory angles close to 90° correspond to very forward angles in the
center-of-mass system (6., — 0°). In this case, it is clear to focus our simulation on the pocket 1 that,
as it was mentioned in the Chapter 2, was placed at an angle of 80.5° (with respect to the beam axis)
with a telescope formed by a DSSD and the two Si(Li) detectors. In Fig. 4.1 one can see the simulation
results of elastically scattered protons detected in pocket 1.
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(a) Point-like interaction zone. (b) Realistic interaction zone.

Figure 4.1.: Simulation of elastic scattering of >®Ni+ p at 400 MeV/u. The recoils are detected in the tele-
scope system of pocket 1 (at 6,,, = 80.5°) which comprises a DSSD and two Si(Li) detectors.
For this simulation we have assumed two distinct cases for the beam-target interaction zone:
a point-like type and an extended distribution with realistic dimensions.

The x-axis corresponds to the vertical strip number of the DSSD, that is proportional to the laboratory
polar-angle (in this case the strip number O is closer to 90°). The y-axis is the total energy deposited
in the three detectors. In order to see the effect of the target and beam dimensions on the detected
angular resolution, a realistic and a point-like interaction zone are simulated. In Fig. 4.1(a) it is possible
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to observe the small contribution of the strip size to the angular resolution, about 0.1° in the laboratory
system. When the realistic dimensions of the beam and target are included into the simulation (see
Fig. 4.1(b)), the resulting kinematics plot presents a more extended distribution, approximately 10 times
larger than in the point-like source case. As the strip number is proportional to the polar angle, the
angular resolution expected for such an experiment is around 1° in the laboratory system. Therefore, the
angular resolution is limited by the size of the interaction zone and not by the pitch of the strips. The
physical reason for such a large angular resolution is the extension of the beam and target interaction
volume. Mainly, the gas-jet target diameter (see Section 2.2.2) allows the event generation over an
extended region which is reflected in a deterioration of the detected angular resolution, even with a
small strip width (like in the present case). This problem can be solved by including a slit aperture
that collimates the scattered particles in the angles covered by this telescope. Below we will study this
element in more detail.

4.1.1 Slit aperture simulations

As mentioned above, the extended beam-target interaction volume has a direct consequence in the coarse
angular resolution for the detected particles. This is a limitation if we are interested in measuring a
particular reaction channel that demands a precise angular resolution and/or a good separation of other
reaction channels. For instance, as one of the goals in this experiment, we want to extract the nuclear
matter density by measuring the angular distribution for elastic scattering, but to obtain accurate results
it is crucial to have a good knowledge of the laboratory angle and separability from the inelastic channels.
One way to improve the angular resolution is by including a slit plate to reduce the angular acceptance
and constrain the detection to scattered particles from a part of the interaction volume only. For this
reason, the slit plate is mounted in between the gas-jet target and the detectors, at proximity to the
interaction zone in order to illuminate the entire detector area. In Fig. 4.2 a schematic illustration of the
slit plate mounted in front of pocket 1 (at 8,,;, = 80.5°) is shown.

Figure 4.2.: Illustration of the slit plate geometry placed in front of pocket 1. (Adapted from the technical
designs by M. Lindemulder, KVI)

This device must be well separated from the target in order to not interfere with the gas flow, where the
limit has to be around three times the target radius (approx. 10 mm). Experimentally, this distance was
fixed to 30 mm.

During the preparation for the experiment, one of the important tasks addressed by simulations was
to design the slit plate. Beforehand, it was known that the material for the construction of this device
should fulfill three requirements: machinable, UHV compatible and high stopping power. A natural
material could be stainless steel, which is the main component of the vacuum chamber. However, few
millimeters of this material are not enough to stop high energy protons completely. A more dense
material that also fulfills the requirements is tantalum. It was important to know the needed thickness of
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the plate in advance because its construction price might be high. In order to solve this, simulations of the
plate for both materials with impinging protons at uniform energies in the range of 0 < E, < 100 MeV
were performed. As we can see in Fig. 4.3(a), the tantalum material is more efficient in stopping the
protons at such energies than stainless-steel, because the percentage of protons punching through the
plate is smaller (“transparency”). If this material is used, we can stop about 20% more particles than
with a stainless-steel plate with the same thicknesses.
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(a) Percentage of protons that punch through (b) Stopped protons in the tantalum plate for dif-
the plate. ferent thicknesses.

Figure 4.3.: Simulation results for the slit plate assuming a proton source with uniformly distributed en-
ergies from 0 to 100 MeV.

Also, we studied the number of stopped protons in the tantalum plate at different thicknesses
(Fig. 4.3(b)). Protons with energies above 28 MeV punch through the 1 mm plate, while for the
2 mm one it happens only above 42 MeV, and the 3 mm plate still can stop protons at energies be-
low of 58 MeV. In order to decide which thickness is more suitable for the experiment, we included a
more realistic proton source including also the elastic cross section, as shown in Fig. 4.1. With such a
simulation we can predict that in the real experiment, with a slit plate of tantalum of 2 mm thickness,
about 98% of the protons that hit the slit are blocked. Now the question is what are the consequences
in the energy spectra when the slit plate is used? For instance, we can see the contrast of the simulation
without slit plate (Fig. 4.1(b)) and the ones including this volume with two different aperture widths (1
and 2 mm), as presented in Fig. 4.4.

The resolution of the elastic kinematic line is tremendously improved and the trend is more noticeable
when the slit aperture is smaller. However, the background from particles scattered on the slit plate is
significant, especially around the minimum of the cross section. Another constraint when employing the
slit plate is concerning the attenuation of the total detected events per strip. The 2 mm wide slit leads to
an attenuation factor of 4, while the 1 mm one reduces the total amount of detected events by a factor
of 8. This means, the experimental measurements have to be done for longer time in order to reduce the
statistical errors.

On the other hand, the angular resolution and separability of reaction channels can be studied by
adding to the simulations the first excited state of *®Ni, the 2f state at excitation energy E, = 1.45 MeV,
which is the next most intense channel in the angular region of pocket 1. In order to investigate this we
compared the simulated energy spectra per strip with different slit apertures, as shown in Fig. 4.5.

In the simulation without the slit plate, the corresponding energy spectra are composed by broad and
skewed peaks, from which it is not possible to distinguish between the contributions of elastic scattering
and the excitation of the first excited state. This asymmetry in the energy peaks is caused by the large
angular acceptance that allows the detection of many recoils produced at small angles in the center-of-
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Figure 4.4.: Simulated energy spectrum of pocket 1 including the elastic scattering and the first excited
state in the system *®Ni+ p at 400 MeV/u. The slit plate was employed in two cases: 1 mm

and 2 mm aperture.
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Figure 4.5.: Sample of the simulated energy spectra for various strips and slit apertures. On the top are
the results without slit plate. The spectra from the middle correspond to the simulation with
a slit width of 2 mm, and on the bottom for a 1 mm slit width.

mass system. For the simulation with a 2 mm slit, it is possible to identify two peaks, one on the right
side that belongs to the elastic scattering contribution and the other from the inelastic one. It is still
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possible to observe a slight asymmetry in the energy peaks, but not as major that it would compromise
the distinction of the two reaction channels. Finally, for the simulation of the 1 mm slit, the peaks
are symmetric and better defined. In this case the elastic scattering is easily separable from the first
excited state in each strip. For a better visualization of the above mentioned it is convenient to define a
parameter that quantifies the separation between peaks [62]

WUy — Uy

oo @2

where u denotes the centroids, o the standard deviations and the subscript 1(2) elastic (inelastic) peaks.
When this parameter is larger than 1 the peaks are totally separated, but for lower values the peaks are
overlapping and the distance between the centroids is less than twice the standard deviation for each
peak. In Fig. 4.6(a), we can see that the separability for the 2 mm slit is affected starting at strip number
36 and above, however, for the 1 mm slit, the elastic and inelastic scattering contribution are not mixed
in these detectors. As we have seen, the peak separation becomes more difficult in the last strips because
their widths are also increasing. In Fig. 4.6(b) it is possible to see the standard deviation of the elastic
scattering peaks for the two slit apertures studied. The increase of the energy resolution is due to a rapid
growth of the proton kinetic energy with the polar angle what finally produces a dispersed energy loss
distribution in the detectors.
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Figure 4.6.: Elastic and inelastic peaks separability for different slit apertures.

4.2 Angular calibrations

In this section, some of the simulations used for the experimental data analysis, like the angular cor-
rections and numerical calculations for the angular acceptance, are explained. For this task, one of the
simplest ways to check the nominal angular calibration for the detector setup is to compare the energy-
angle correlations of the experimental elastic scattering with the simulation. Since the kinematics of
elastic scattering is well known and the position of the detectors is supposed to be the same as in the de-
signs, the discrepancies which are expected in these comparisons are mainly due to small misalignments
in the experimental setup. Naturally, our simulations must be made with the same geometry provided
by the technical designs of the vacuum chamber and other devices [34]. For this purpose, experimental
data of elastic scattering that was measured in the present campaign was used. For a proper compari-
son, experimental runs with and without the slit plate are needed. Therefore, the most adequate runs
in this case are the proton elastic scattering experiments with the beams ?°Ne (at 50 MeV/u) [63] and
0Ni (at 400 MeV/u) [23, 36]. Initially, we are interested in the measurements made without the slit
plate in order to verify the correct geometry of the experimental setup. In Fig. 4.7, the experimental
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elastic scattering is compared with simulations that were performed with the same geometric setup as
in the technical drawings. Here, the experimental kinematic plot is presented as black dots and the
simulation results are shown in color. In the comparison of the DSSD1 energy spectrum it is possible
to observe a small offset in the strip number between experiment and simulation. Interestingly, in both
cases (2°Ne and *°Ni data) the simulations predict the position of the kinematic plot at five strips left to
the experimental one, what might be an indication of a systematic angular offset.
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Figure 4.7.: Comparison of simulations with experimental results for elastic scattering in the DSSD of
pocket 1. The experiment is presented as black dots while the simulations are in color. In
both cases, the simulations were done assuming the same geometry as given in the technical
drawings [34].

A possible reason for this difference is a small misalignment, in the order of millimeters, with the center
of the gas-jet target during the assembly of the vacuum chamber to the ESR. As it was shown in Chap-
ter 2, the measurement of the target profile (see Fig. 2.7) proved an offset of 0.58 mm along the axis
perpendicular to the beam direction. However, the misalignment along the axis parallel to the beam
direction is unknown. Likewise, the positioning of the slit plate can also be affected because its calibra-
tion was made with respect to the center of the vacuum chamber. Hence, the present simulations can be
quite useful to find the real positions of the target center and the slit plate and, eventually, the correction
functions for the angular calibration of the experimental data. The basic idea of our calculations is to fit
the experimental data with simulations for diverse target-center positions along the axis parallel to the
beam direction. Also, the slit plate position xg;,, parallel to the detector surface, is varied, as suggested
by the schematic illustration in Fig. 4.8.

For fitting these two parameters it is clear that we should make use of two different energy spectra: with
and without the slit plate. Initially, the fit of the energy spectrum without the slit plate is done separately
to determine z,,,. Later, this result is employed during the fitting procedure of the slit plate data in order
to limit the number of degrees of freedom of the system.

For the comparison of the simulated and experimental spectra, the centroid and standard deviation of
the peak of each strip are tabulated at the end of every simulation. With these values, the respective y2
parameter is obtained as

127 2
)(2 _ Z (Ei,exp - Ei,sim) , (43)
i=0

2
ai,exp
where E, , is the energy centroid of the peak in the strip number i and O'izx is the corresponding variance.

Each simulation, with a given geometry configuration, delivers a single value of y? which is stored in a
matrix. From this matrix one can eventually search for the global minimum by a numerical interpolation.
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Figure 4.8.: lllustration of the simulated setup. Two parameters are changed in the simulations: z,,, (red
arrows) and x;; (green arrows).

It is clear that the position of this global minimum corresponds to the best configuration which fits the
experimental data.

As mentioned above, the first parameter to be fitted is the center of the target, z,,,, using the experimental
data without the slit plate both for the ?°Ne and the *°Ni case. As can be seen in Fig. 4.9(c), a global
minimum of the y? is obtained at z,,, = 2.5 mm. Simulations with this result are directly compared with
the experimental data previously shown in Fig. 4.9(a) and Fig. 4.9(b). One can observe that this small
displacement in the target center is enough to describe satisfactorily the experimental results.

For the next part, the position of the slit plate is also fitted to correct the disagreement with the
experimental data, as shown in Fig. 4.10(a). In this case, small displacements from the nominal position
of the slit plate can change the position of the kinematic plot significantly because of the improvement in
the angular resolution. After the new target position was fixed (z.,,), the fit of the experimental data with
the slit plate is performed similarly than in the previous case, obtaining the y2 for each configuration of
Xgic- As shown in Fig. 4.10(c), a minimum was found for an offset of xg;; = 1.0 mm from the nominal
position. Now with this result, the simulation delivers a kinematic plot which is in a good agreement
with the experimental data, as also can be seen in Fig. 4.10(b).

In general, such types of geometric corrections not only allow us to describe the kinematic curves of
the elastic scattering, but also to perform simulations that are fully consistent with all energy spectra
for any channel in our detector setup. This can be applied to perform a more dedicated simulation with
the aim to extract the effective angular positioning of the detectors. In this sense, we can extract a
relation between the strip (or pixel) number of the DSSDs and the scattering angle of the recoils (an
angle calibration) directly. For this task, we can use the Primary Event Generator class in order to access
the initial momentum of the recoils that are generated in the interaction volume, and store them at
every event. For convenience, the spherical coordinates are employed to set the primary direction of
the recoils, where the two standard angles are needed: 6 the polar angle, and ¢ the azimuth angle.
Then, if a detector hit occurred in the simulation, histograms for the primary angles are saved for each
pixel activated in the DSSDs. In the DSSD1, 8192 (128 x 64) histograms are analyzed to obtain the
calibration for one of the angles of the recoil scattering. Similarly, for the DSSD2, 512 (32 x 16) are
employed. In Fig. 4.11(a) and Fig. 4.11(b) the results for the angular calibration of the DSSD1 are
shown. The relation of the polar angle with the integer strip number from the p-side is highly linear (the
Pearson correlation coefficient is r = —0.9998), covering the angles from 73° to 89°. This implies that
each strip from the front side of the DSSD1 represents a well-defined polar angle 6. For the azimuth
angle relation, in Fig. 4.11(b), are shown three samples for different n-side strips: at top edge (n = 0),
middle (n = 32) and bottom edge (n = 63). The angular acceptance for each p-side strip is in the range
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Figure 4.9.: Comparison of experimental data without the slit plate and the simulations using the fitted
parameter z;,, = 2.5 mm.

of —7.5° < ¢ < 7.5° The constant tendency of the curves along the p-side strip number is an indication
that also each horizontal strip represents a well-defined azimuth angle ¢. This can be explained by the
relatively large distance of the DSSD1 from the target and its proximity to 90°.

Furthermore, the calibration results for DSSD2 can be found in Fig. 4.11(c) and Fig. 4.11(d). In
this detector, the laboratory angular-resolution, which is required for the identification of the inelastic
reaction-channels is not as demanding as in DSSD1. This is the case because the center-of-mass angular
range of DSSD2 is contracted due to the kinematics of the reaction, i.e., A6, < A6,,. Therefore, the
signals of each four strips were coupled for the p and n sides. So, the effective number of strips at the
front side was 32 and 16 at the back side.

Note, in this DSSD the front-side strip-numbering was inverted with respect to the DSSD1 assignment
due the cabling. Similarly as seen in the calibration of DSSD1, due to the large distance between this
detector and the target, the relation between the polar angle and the front-side strip number is linear.
From this result it is possible to observe that the polar angular coverage of the DSSD2 was in the range
of 27.8° < 6 < 37.9°. Now, in the azimuth angle calibration, we can see a more evident dependence of
the ¢ angle with the front-side strips, mostly at the vertical edges of the rear side of the detector. This
is caused by the large effective width of these strips (~ 4 mm). As a result, more extended ¢ angle
distributions are obtained for the n-side strip projections. For instance, in strips n = 0 and n = 15 the
azimuthal angular distribution has a width of about 2°.
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Figure 4.10.: Comparison of experimental data with the slit plate and simulations using the nominal
position and the fitted value xg;; = 1 mm.

Another use of the present simulations is the option to derive the solid angle covered by the detector
setup, either per pixel or per strip. The advantage of employing numerical simulations for this task is that
the exact calculation for solid angles becomes very difficult when an extended beam-target interaction
volume is assumed, and even more if the slit plate is included. A way to address the problem is to
generate uniformly distributed points on a spherical section by employing Marsaglia’s method [64] which
is quite efficient for large numerical calculations. This distribution is useful for sampling the momentum
orientation of the primary particles created in the interaction volume. The principle of this simulation
is to generate Ny, particles in directions uniformly-distributed over a total solid angle €,. By definition
the solid angle covered by the detector geometry, ASQ;, is contained in £y, the total solid angle. Then, if
only n; particles hit the detector, the solid angle can be approximated by

AQ, — Oy (n—) . (4.4)
Ny

It is clear that the validity of the method depends on the total simulated events, so Ny, must be large
enough to reduce statistical fluctuations. In the present case, for Ny, ~ 10°, the solid angle per pixel is
obtained with an error smaller than 5%. In Fig. 4.12(a) and Fig. 4.12(b) the simulation results for the
solid angle in each p-side strip of the DSSD1, with and without the slit plate are shown.
In absence of the slit plate, the solid angle distribution is slightly bended around the middle of the
detector, as is expected because the edges of the detector are farther from the reaction point. In this
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Figure 4.11.: Angular calibration of the DSSDs for the present experimental setup. On the top are the
angle-strip correlations for DSSD1 and on the bottom for DSSD2.

case the average solid angle per strip is about 5 x 10™* sr. Now, when the slit plate is included in the
geometry, the solid angle is reduced by almost one order of magnitude. Besides, the respective solid
angle distribution is quite asymmetric, with a maximum around the strip number 60. For the strips with
numbers larger than 80, the corresponding solid angle drops to values close to zero. This is because the
shadowing effect of the slit plate over that region of the detector.

In the case of DSSD2, as seen in Fig. 4.12(c), the solid angles are much larger than the results seen
above, since the effective strip width was increased by a factor 4. Since the slit plate was not shadowing
this detector, the respective solid angle acceptance is nearly constant for all strips with a value around
1x 1072 st

4.3 Reaction channels studied with the DSSD2

As it was previously explained, the DSSD2 detector was included in the experimental setup with the
aim to measure the recoils produced by inelastic reactions. Particularly, the angular range in which
the DSSD2 was mounted is kinematically favorable for the detection of different reaction channels.
However, in some cases the identification of a particular reaction channel may be a difficult task because
the different contributions are agglomerated in the low energy part of the DSSD2 spectra. In the present
angular coverage most of these particles have a very low kinetic energy (hundreds of keV), but it is
also possible that very fast recoils punch through the detector losing only a part of their kinetic energy.
For example, the reaction °Ne(p,d) at 50 MeV/u can be observed in the DSSD2 because the deuteron
recoils in this angular region (with kinetic energies between 30 to 130 MeV) deposit their energy only in
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Figure 4.12.: Solid angle per strip obtained from simulations. (a) and (b) are the solid angles for the
DSSD1 without and with the slit plate, respectively. (c) corresponds to the solid angles of
DSSD2.

the range from 500 keV to 1.8 MeV. Thus, the resulting energy spectra are compressed at low energies
(below 2 MeV), which sometimes makes the proper reaction channel identification difficult. In this case,
the simulations can offer a way to decompose the most important ingredients in the energy spectra and
determine the regions of interest for the analysis. In the present work we are interested in measuring
in the DSSD2 the excitations of isoscalar nuclear resonances that are mostly excited by alpha inelastic
scattering. As explained in Chapter 5, at very forward angles in the center of mass system (6., ~ 1°),
the most important contribution to the giant resonances excitation are the monopolar (ISGMR) and the
dipolar (ISGDR) multipolarities. In order to simulate these resonances, we have used the experimental
results from Ref. [65], wherein such excitations are parameterized as Gaussians, which can be easily
implemented into the Primary Event Generator class. Initially, it is interesting to see the detector response
when the only possible reaction channels are the excitations of giant resonances, because in this way we
can explicitly observe the position and shapes of the peaks that are expected in the experiment. For this
purpose, the system *®Ni + a at 100 MeV/u was simulated in inverse kinematics. In Fig. 4.13 the energy
spectra for the detected recoils in DSSD2 are presented. Fig. 4.13(a) is a 2D histogram of recoil energy
vs. laboratory angle (proportional to the strip number). In this figure also the kinematic lines of the
excitation energy centroids of ISGMR (19 MeV) and ISGDR (33 MeV) are plotted. As can be seen, the
expected peak position of the ISGMR contribution in all strips of the DSSD2 is in average 300 keV. These
peaks cover the recoil energies from 100 to 600 keV. For the excitation of ISGDR, the respective recoil

38 4. Simulations



distributions are more extended than the ISGMR peaks, and their centroids are expected in the energy
range of 700 keV to 1 MeV.
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Figure 4.13.: Simulation of ISGMR and ISGDR excitation of *®Ni beam at 100 MeV/u. The a recoils were
detected in DSSD2 which covers the laboratory angular range of [27°, 37°].

In Fig. 4.13(b), an energy spectrum of one of the strips from the middle of DSSD2 is shown. This
projection shows the relative strength of the ISGMR and ISGDR contributions which are expected to
occur in the experiment. At angles smaller than 1.5° in the center-of-mass system, the excitation of the
ISGMR is dominant [4]. Thus, it is very important to have a good separation of the ISGMR from other
reaction channels detected at low energies in order to successfully identify the events originating from the
excitation of nuclear resonances. It is also important to consider these other reaction channels, because
their contribution may be a significant source of contamination for the giant resonances identification.
The first step is to identify the most likely reaction channels to be observed in the present angular range.
For instance, very few elastic scattering events are expected to be seen in DSSD2 due to the small cross
section contribution in these angles and the high kinetic energy of these recoils. In contrast, given that
the target is composed of a molecular gas, atomic reactions like electronic transitions or 6-ray production
can occur with a significant rate in this region. The §-rays are generated when the stored beam knocks
out an electron from the target atom at a certain angle and energy, that corresponds mainly to the elastic
electron scattering kinematics. In particular, for the present experiments such §-rays are expected to
have energies in the order of few keV, what makes them easily detectable by the silicon detectors. Even
more, due to the high production rate of 6-rays in some cases the detection of nuclear reaction channels
is also affected. In Fig. 4.14 we see three samples for the 5-rays kinematics produced with *®Ni beam at
various energies.

In this plot the vertical green-band corresponds to the angular range covered by the DSSD2. For beam
energies of 100 and 150 MeV/u, the recoiling electrons are detected in DSSD2 between 150 to 300 keV.
Also, at these energies the recoils originating from nuclear inelastic scattering (at very forward angles in
center-o- mass system) are expected. Obviously, difficulties for the identification in the experimental data
are foreseeable. In the case of 400 MeV/u, the kinetic energy of the 6-rays is higher, sufficient to punch
through the DSSD. The probability that these electrons deposit all energy in the detector is quite small,
but due to the high intensity of this reaction channel the contribution from the total absorption energy
is detectable. The same can be observed in Fig. 4.15, where the dashed lines represent the simulation
of 6-rays when only the elastic scattering kinematics is assumed. Each peak corresponds to the total
energy deposited by electrons in different frontal strips of the DSSD2. In the range below 300 keV, the
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Figure 4.14.: Inverse kinematics for electron elastic scattering: e( °®Ni, e) at 100, 150 and 400 MeV/u. The

vertical green band represents the angular range of DSSD2 (centered at 32°).

energy loss contribution is much more intense, but in order to have a more clear comparison with the
experimental data, the histograms are presented only above this energy value.
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Figure 4.15.: Comparison of experiment and simulation of the *Ni beam at 400 MeV/u on a hydrogen
target. The energy spectra correspond to different strips of the DSSD2. Dashed lines are
simulations of 6-rays produced in the target and the full lines the experimental data.

In these comparisons we can clearly see the total absorption component of the elastically scattered elec-
trons (normalised to the experiment) at the right side of the spectra. The experimental energy spectra
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exhibit a widespread distribution which ends with a pronounced peak corresponding to the electrons
that were fully absorbed in the detector, for each strip. In turn, the simulations can properly explain
the change in energy position of these peaks for the different strips, which are proportional to the lab-
oratory angle. As expected, the total absorption probability of these 6-rays becomes more efficient at
lower energies, close to the punching through energy threshold (~ 300 keV). On the other hand, atomic
inelastic processes and nuclear excitations, at very forward angles in the center-of-mass system, are
also important ingredients of these experimental energy spectra at the left side to the total absorption
component. Hence, if we want to reduce the contribution of atomic processes in the energy spectra
of DSSD2, we must decrease the energy of the beam in order to have the scattered 6-rays with lower
kinetic energies than the detection range for nuclear inelastic events. In this way it is possible to sepa-
rate energetically the undesired atomic contribution from the recoils originating from nuclear excitations.

Coming back to the excitation of giant resonances, we can perform more realistic simulations by
including also the &-rays production reaction channel. In this case it is important to normalize the
simulation with the experimental data in order to have a clearer identification of the reaction channels
that were measured. In Fig. 4.16 the simulation results for the *®Ni beam at 100 MeV/u and 150 MeV/u
are shown.
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Figure 4.16.: Simulations of DSSD2 including the §-ray production and the nuclear giant resonances. On
the top are three samples of strip energy spectra for >®Ni beam at 100 MeV/u, and on the
bottom at 150 MeV/u.

On the top, for the 100 MeV/u simulations, there are three samples of energy spectra for different strips:
the two edges of the detector (strips O and 31) and the middle one (strip 15). As can be seen, the
6-ray component is at the left hand of the energy spectra, below 200 keV, and its intensity exceeds the
giant resonances contribution by more than two orders of magnitude. In the first strips (starting from
number 0) the separation of the 6-rays and the ISGMR peak is problematic since more than one standard
deviation of the resonance peak is immersed in the detection of the §-electrons. However, this separation
becomes more evident for the last strips due to the kinematics of both §-rays and recoils from ISGMR
excitation. For the case of 150 MeV/u beam energy, the situation is rather different, the detected electron
energies reach up to 300 keV which affects the extraction of ISGMR events in all strips of the detector
severely. Therefore, only the measurement of recoils from excitation of states above 25 MeV would be
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free from being mixed with the 6-electrons. Hence, the 6-rays can be assumed as an important source
of contamination at low energies which can even interfere with the identification of the giant resonance
excitation. Besides this contribution, we must take other nuclear direct reactions into account which are
kinematically allowed in the DSSD2 angular range in order to estimate the physical background in the
detection energies of the giant resonances. In particular, for knockout reactions (unlike the two-body
kinematic ones) two light particles are generated in the output channel in a wide range of kinetic energies
and angles. So, these knockout products can be detected also in the DSSD2 because they can deposit
energies from 100 keV up to 3 MeV in our detector. Then, if we assume that these type of reactions are the
main source of background for the giant resonances measurement, it would be interesting to simulate
some specific cases in order to study the expected response of the DSSD2. For instance, the reaction
channels *®Ni(a, pa) and *®Ni(a, 2a) can be simulated by using the three-body kinematics function that
was implemented in the Primary Event Generator class. The two light particles are generated at the same
event with the respective angles and energies provided by the kinematics function. In Fig. 4.17(a) the
simulated detector response for these two reaction channels at 100 MeV/u are shown. These plots are
the sum of all strip spectra for the detection of one of the particles of the output channel. The dotted
line, that represents the energy loss of the proton produced by the *®Ni(a, pa) reaction, is an asymmetric
distribution covering mainly the same range of the ISGMR event detection. In this reaction channel, the
a-particle component is shifted to higher recoil energies (above 600 keV), because these particles deposit
more energy in the detector. Similarly, the solid line shows the energy spectrum of an a particle of the
reaction *®Ni(a, 2a). In analogy to the observation in the previous case, the energy loss distributions for
a particles are more relevant for energies above 1 MeV, which corresponds to an excitation energy of
8Ni of about 40 MeV (assuming a two body kinematics transformation).
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Figure 4.17.: Simulated DSSD2 response for the knockout reactions *®Ni(a, pa) and °®Ni(a,2a) at
100 MeV/u. The histograms represent the energy loss detection of only one of the knockout
products.

Then, if we want to investigate the background induced by knockout reactions at the region of the ISGMR
detection, the contribution of protons to the spectrum may be sufficient to estimate the background
shape. In this way, the proton spectrum of Fig. 4.17(a) is transformed to the excitation energy of *Ni
assuming two particles in the output channel (inelastic scattering). This distribution starts approximately
at 8 MeV, which corresponds approximately to the nucleon separation energy, and grows rapidly till an
energy of about 15 MeV. After this value, the distribution becomes decreasing for an extended excitation
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energy range. The present simulations will be useful during the data analysis in order to understand the
parameterization of the experimental background.
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Chapter

Theoretical concepts

Nuclear reactions are an important method to investigate the complex microscopic properties of the
nucleus. Usually, a projectile particle (a) with a certain kinetic energy impinges on a target one (A) and,
the energies and scattering angles of the collision products are measured. When one of the collision
partners (or both) have relevant internal degrees of freedom, the intrinsic states of the projectile-target
system may change from an initial state |a) = |a,A) to a different final one |) = |b, B). Such states are
called the reaction channels [66]. The most important is the entrance or elastic channel, corresponding
to |B) = |a). Also, the projectile can excite the target nucleus (or vice-versa) from its ground state to
some higher energy state, thus losing some kinetic energy and at the same time being deflected in angle.
This is an inelastic scattering reaction channel. The cross section for such processes yields information
on spin and parity of the nuclear states, and is sensitive to the wave functions of the nucleons that are
excited [67]. When the detector angle is fixed and the energy of the ejectile (b which remains in its
ground state) is measured, a spectrum for the energy transfered to the heavier particle is obtained. A
typical result for such a spectrum is illustrated schematically in Fig. 5.1.

giscrete

g.s.

J

—>  Excitation energy of particle B

statistical
equilibrium

Cross section

giant resonances

Figure 5.1.: Schematic representation of the spectrum of excitation energies resulting from a reaction
A(a, b)B. (Adapted from Ref. [68])

We can observe a group of discrete peaks at the low energy part (left edge) which correspond to the
excitation of the low-lying states, starting from the ground state component (elastic scattering, if b = a).
At higher transfered energies, approximately from 10 to 30 MeV, the system exhibits broad resonances.
These are the giant resonances. Such states can be excited by a predominantly one-step direct process
[68]. The giant resonances correspond to a collective motion involving many if not all the particles in

45



the nucleus [5]. At even higher energies is a continuous spectrum of energies that corresponds to the
formation of a compound nucleus is found. This continuous spectrum is the result of evaporation from a
compound system that has reached the statistical equilibrium [68].

In general, a nuclear collision is a complicated many-body process with strong interactions in which
a very large degrees of freedom may contribute. Thus, from an initial state |a), many final reaction
channels can be involved in a nuclear collision. In particular, our interest in the present work is the
investigation of channels coming from direct reactions. These reactions are characterized to occur by
a one-step process only. For instance, elastic scattering, transfer reactions and excitation of giant reso-
nances can be studied under this supposition. Along this chapter fundamentals of this reaction theory
will be revised.

5.1 Elastic scattering by a short-range potential

The scattering of two particles can be assumed as a wavefunction problem from the quantum mechanics
point of view. In this case, the nuclear interaction of the two particles is described by the scattering of a
plane wave on a short-range potential V(r), where r = |r; — r,| is the relative distance between the two
nuclei. Such a potential is supposed to vanish at large distances beyond the nuclear range. An illustrative
cartoon of the problem can be seen in Fig. 5.2. Here, a plane wave is propagated in the direction of the
potential V(r), where the wave is diffracted isotropically.

detector

Figure 5.2.: lllustrative cartoon of a plane wave scattering by a short-range potential. A spherical wave
emerges from the interaction point. An observer (or detector) is placed at large distance
from the source.

Now the problem consists in finding the relative contribution seen by an observer placed at a certain
position away from the diffractive source. In order to solve this problem, we can assume a wavefunction
Y (r, t) that satisfies the Schrédinger equation. The wavefunction with energy E can be written as [66]

Y(r, t) = P(r)e FU/M =4 (r)e it (5.1)
This means, also the stationary equation is satisfied
(V2 +K2) () = Uy (0), (5.2)
where
E \/ 2UE 2u
®=2 k= — U(r)=§V(r)

and u is the reduced mass of the projectile-target system. Now we can look for a solution for eq. (5.2)
corresponding to a distortion of the incident plane wave

Pi(r) = Ae’T, (5.3)

46 5. Theoretical concepts



where A is an arbitrary normalization constant. Treating the right-hand side of eq. (5.2) as a source (see
Fig. 5.2), the desired solution for the wavefunction form can be written as

P(r) = ¢y (1) + (), (5.4)

where v;°(r) is a particular solution given by the boundary conditions. Similar to the experiment, the
distance between an observer (detector) and the scattering center is much larger than the potential
range. Therefore, our interest is limited to the asymptotic solution of the problem (i.e. for r — 00).
In the present case, this solution consists of an outgoing spherical wave emerging from the scattering
center. So, near to the detector, the asymptotic form of the wavefunction is

ikr
YI(r)—A (e“““rf (9,¢)er ) (5.5)

where f(0,¢) = f(Q) is called scattering amplitude, which describes the dependence of the amplitude
of the outgoing spherical wave. In this amplitude, all information about the projectile-target interaction
can be found, and physically it can be related to the scattered particles flux in a solid angle AQ. Thus,
one can use the probability current density (probability current per area or flux) [66, 69]

((,(’bsc) vwsc wscv (’L,IJSC) ) (5.6)

SC

2,ul

in order to obtain the count rate N(, AQ) through the detector surface AS = AQr2#. Hence, it can
be shown that by using the asymptotic form of the scattered wavefunction in eq. (5.6) (in spherical
coordinates), the count rate is given by [66, 69]

N(Q,A0) = (aQr?) E-j. = v [f ()| A2AL, (5.7)

where v = hk/u is the classical velocity of the particle with momentum #k. On the other hand, the
probability current density of the incident plane wave can easily be deduced: j,, = |A|?>v. Therefore, by
the definition of the differential cross section [69], one finally obtains

do  r*#j
o

=[r@)". (5.8)
o]

This result shows that the problem for the scattering of two particles is reduced to the derivation of the
corresponding scattering amplitude. Eventually, this task is done assuming a scattering potential. Such
a potential can be taken as a complex

Uope(r) = V(r) +iW(r), (5.9)

where the imaginary part, W(r), accounts the absorption from the elastic flux, in analogy to the imag-
inary part of the refraction index in wave optics [70]. For this reason the present potential is called
optical potential [69]. In order to see the effect of introducing an imaginary part in the potential, we can
easily extract the divergence of the current density (eq. (5.6)) using the egs. (5.2) and (5.9).

1 i} -2
v 'jsc = E I:(’Qbsc) W’(,bsc + "IJSCW (UJSC) ] = E |¢SC|2W, (5.10)
with the probability density p*¢ = |1/)SC|2 we then obtain the equation of continuity [69]

Vi) = 2 p W), (5.11)

This relation shows absorption, corresponding to a current sink (loss of flux, V-j < 0), requires a negative
imaginary part of the optical potential, W(r) < 0, at the range where this absorption occurs. In principle,
this absorption process is related to the reduction of the probability current of the elastic scattering due
to the influence of other reaction channels.
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5.1.1 Scattering amplitude

There are different procedures to deduce the scattering amplitude, but one of the most direct methods
is through the formalism with Green’s functions. The principle of the method is the definition of a
Lippmann-Schwinger equation for the scattering problem [66-69], as discussed before

W) = i) + GSO BVl ), (5.12)

where the projection in the coordinate space of the state |¢,) corresponds to the wavefunction of a free
particle (eq. (5.3)), and the asymptotic scattered wavefunction is described by the state |¢f{i)) . Until
now we can see the similarity of this equation with the solution proposed in eq. (5.4), but also including
the incoming and outgoing wavefunctions with the notation (+). The operator G(()i)(Ek) corresponds to
the Green’s function for a free particle with kinetic energy E; [66]

2 1 e:i:iklr—r’l
b ) (5.13)

(+) /
G, (Egrnt)=—|— | — .
o (B ) (hz 41 |r—7v/|

Within the asymptotic limit, approximations for the terms

1
7 =- and |llim exp (£ik|r —r'|) = exp (&i (kr — ki 1)),
r r|—00

lim
[r| =00 |1‘ —r

can be employed to deduce the form for the asymptotic wavefunction. Thus, inserting egs. (5.3) and
(5.13) into the coordinate projection of eq. (5.12), is finally obtained

1 e eiikr 2‘U/
[Ww], L~ oo [ek t— (—W (g) <¢ikflvo|¢§f)>” . (5.14)

A comparison with eq. (5.5) leads to the relation

2
£(0) = 272 (h—‘j) (i lVol ). (5.15)

Additionally, it can be shown that the same result is achieved for the incoming-state solution (|1,D(__k))) by
applying the principle of micro-reversibility and the Green’s-function properties [69]. This result shows
that the scattering amplitude depends on the matrix element of the optical potential between an initial
free state and the full scattering state. Usually, the set of these matrix elements is called T-matrix [66, 69].
Each matrix element, T}/, describes the transformation of an initial plane-wave state (of momentum
fik) into the scattering final state (k') through the presence of a potential Vj,.

5.1.2 The optical limit of the Glauber theory

At intermediate and high energy collisions a convenient way to deduce the elastic scattering amplitude
is the eikonal approximation. The conditions for the validity of this approximation are: scattering in
forward directions (i.e. 6 < 1 rad) and small energy transfers from the projectile kinetic energy to
the internal degrees of freedom of the target (or projectile) [66]. In this approach, the asymptotic
wavefunction can be given by

Y1) ~ exp [ikz +ix(r)], (5.16)
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where z is the coordinate along the beam direction and r = (b, 2) (with b the impact parameter). Hence,
the scattered wave can be interpreted as an incident wavefunction with a phase shift y(b,z) given by
the integral of the total nuclear potential [71]

1 z
x(b,z2)=—— f V(b,z)dz’. (5.17)
v |_

Such a phase shift is also called eikonal phase. The present approximation is the foundation of the
Glauber theory [72, 73]. In this model, the phase shift can be represented as a sum of the individual
nucleon-nucleon phase shifts involved in the collision. This theory takes multiple-scattering effects for
the nucleon-nucleon interaction into account. However, for heavy nuclei and for nucleus-nucleus colli-
sions, a complete deduction of the Glauber scattering amplitude is not a trivial task. Usually, Monte-Carlo
methods are needed to integrate the complex expressions in the full description [74, 75]. Nevertheless,
a first order approximation (one-step process) of the multiple-scattering operator can be performed to
simplify the problem [66]. This method is called optical-limit approximation (OLA). The OLA is a very
popular method that has been used in the past for describing successfully intermediate and high en-
ergy nucleus-nucleus collisions [76-79]. In this approach, the microscopic nucleon-nucleon scattering
amplitude (in the momentum space) is often parametrized as [80]

k
fan(@ = %O—NNO + aNN)e(_ﬁNqu): (5.18)

where kyy is the nucleon momentum, and oyy, ayy and Byy are average free nucleon-nucleon pa-
rameters extracted from experimental p-p and p-n cross sections at different energies [77, 80]. A way
to connect this parametrization with the nuclear eikonal phase is through the t-pp potential [66, 81].
In this model the nuclear ground state densities are assumed to be spherically symmetric, what in turn
simplifies the calculation of projectile-target folding with the elementary scattering amplitude. So, the
nuclear eikonal phase reduces to the expression

an(b) = f dqqpp(q) fun(q@) pr(g)Jo(gb), (5.19)
0

where p;(q) are the Fourier transform of projectile and target densities, and Jy(gb) is the zero-order
Bessel function. Finally, this phase shift is employed to deduce the total elastic scattering amplitude

f(0)= —ideb bJo(qb) [ —1], (5.20)

which also contains the Coulomb phase-shift and must be calculated separately (a detailed explanation
can be found in Ref. [66]).

5.2 Distorted waves

In the description of inelastic scattering it is convenient to split the total potential in two parts:
U=V, +V, (5.21)

an average interaction (optical potential) V};, and V; that involves inhomogeneous effects [68]. In princi-
ple, the part of the problem with the V, potential has a known solution, whereas V; poses a too difficult
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problem which has to be approximated. Similar to the explanation in Section 5.1.1, the state |¢,) corre-
sponds to the incident plane waves, and the distorted waves due to the potential V|, are now represented
by the state | )(lgi)). Hence, these wave functions satisfy the homogeneous differential equation

(E-K-Vy) Ix) =0, (5.22)

with K being the kinetic energy operator. The solution of this problem is already known, and leads to
the Lippmann-Schwinger equation

1c7) = i) + G (E)Wol 1) (5.23)
On the other hand, we are interested in a special solution of the inhomogeneous problem

(E-K - Vo) ) = vy ylP), (5.24)

where |’l/«'£i)> are the waves distorted by the total potential U. So, the present problem is reduced to the
solution of the integral equation [67]

1
() (+) + () + _
) =l )+ GEEW ), where G(KE)—-E_,T_LBije. (5.25)

With the help of some identities of the Green’s functions and an expansion of this operator [67, 68], it is
possible to derive an expression for the transition amplitude [66]

Tk = (br Vol ) + (vl ). (5.26)

This result is known as the two potential formula or the Gell-Mann-Goldberger relation [68]. Usually, V,
is chosen to describe the elastic scattering (optical potential) while V; is the interaction which induces
the non-elastic transition. In particular, V; is assumed to be weak in comparison to V. Therefore, it is
valid to approximate the solution taking the Born expansion in powers of the interaction potential V; in
eq. (5.25) [82]

W) = )+ CPV ) + 6ONGHI 1) + GGG ) - (5.27)

Therefore, using the egs. (5.15) and (5.26), with the first order of the Born expansion, the scattering
amplitude can be approximated to [66]

£(6) = fo(6) — 27 (i“ )Jdgrxir)*(r)vl(r)xﬁ)(r). (5.28)

The present result is called Distorted Wave Born Approximation (DWBA). It got its name because of
the first order Born approximation in the potential V;, and also due to the use of the distorted waves,
x,&i) instead of incident plane waves. The DWBA is valid as long as the inelastic reaction is sufficiently
weak, i.e., the elastic scattering is the most important reaction channel, so that the inelastic scattering
events can be treated as perturbations. For stronger transitions, the coupled channel formalism offers
the most useful means of going beyond the first order in the interaction causing the transition [67]. The

corresponding inelastic scattering amplitude for the reaction A(a, b)B can be generalized to [66]

2
finel (9)— _o2 (h—“) f (ke £5){b, BlViganl 0,4 7 (k1) P roorg. (5.29)

Here, function y, describes the elastic scattering in the o = a + A entrance channel arising from an
optical potential V,, while yg describes the elastic scattering in the § = b + B exit channel arising from
a potential Vg. The transition potential Uy,, which describes the non-elastic transition depends on the
type of reaction and the model chosen to describe it. In this work, the DWBA calculations will be of great
importance for the description of transfer reactions and inelastic scattering like the excitation of giant
resonances.
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5.3 Giant resonances

A nuclear giant resonance, as mentioned before, is a collective excitation of the internal degrees of
freedom of the nucleus. In quantum-mechanical terms a giant resonance corresponds to a transition from
the ground state to an unbound collective one, and its strength is described by a transition amplitude.
Intuitively it is clear that the strength of the transition will depend on the basic properties of the system
such as the number of particles participating in the response and the size of the system. This implies that
the total transition strength should be limited by a sum rule which depends only on the ground state
properties. If the transition strength of an observed resonance exhausts a major part, i.e. greater than
50% of the corresponding sum rule, we call it a giant resonance [5].

Giant resonances can be excited principally by the strong (nuclear) and the electromagnetic interactions.
There are different methods from which giant resonances can be studied, e.g., y-ray absorption, coulex,
light-ion scattering, charge-exchange reactions, etc [5]. In particular, light-ion inelastic scattering is
one of the most common methods employed for the investigation of giant resonances. In this sense,
the ingredients of the hadronic interaction can provide an intuitive idea about the internal degrees of
freedom involved in this collective transition. The most general form of the central part of the effective
nucleon-nucleon interaction may be written as [68]

central _
U12 — UOO + Uloo-l * 0-2 + UOlTl * Tz + Ullo-l * 0-2 Tl * Tz, (5.30)

where the vectors o; and 7; correspond to the spin and isospin of the nucleon, respectively. This rep-
resentation is useful because the subscript of terms vg; gives rise to a spin transfer (S) and an isospin
transfer (T). At low momentum transfer, where the excitation of giant resonances takes place, the non-
central components of the nucleon-nucleon interaction are negligible compared to the central term [83].
Therefore only the central part of the effective nucleon-nucleon interaction has a significant contribution
to the excitation of giant resonances by light-ion inelastic scattering. An immediate result is that giant
resonance excitations involve electric (AS = 0) or magnetic (AS = 1) transitions, in different isoscalar
(AT = 0) orisovector (AT = 1) modes. For instance, in case of an even-even nucleus the spin-dependent
terms of the central interaction (v;, and v;;) are zero in a spin-saturated nucleus [84]. So, exclusively
electric isoscalar or isovector resonances might be excited. However, due to the dominant tendency of
the isoscalar term (v,,) [83], the most likely excited resonances are the different isoscalar multipolarity
modes. Similarly, when giant resonances are studied through a inelastic scattering, isoscalar transitions
are excited predominantly because of the T = 0 nature of the a-particle.

Another common way to classify the giant resonance modes is from a macroscopic point of view. In this
picture a giant resonance can be seen as a high-frequency, damped, harmonic shape vibration around
the equilibrium density of the nuclear system. The vibration amplitude is small, only a few percent of
the nuclear radius. The restoring forces for these resonances are directly related to bulk properties of
the nucleus such as compression modulus, symmetry energy, etc [5]. As it was intuitively seen before,
the resonance modes can be classified by the multipolarity L, spin S and isospin T quantum numbers.
In Fig. 5.3 few schematic examples of vibration modes resulting from the excitation of different gi-
ant resonances are shown. In the present representation the monopole (AL = 0), dipole (AL = 1)
and quadrupole (AL = 2) resonances are divided in different spin (S) and isospin (T) modes. Under
this supposition it is clear that the center-of-mass position of the nucleus remains constant during the
vibration.

In the AS = 0, AT = 0O case, the resonances correspond to electric isoscalar vibrations in which the
protons and neutrons oscillate in phase according to the multipole pattern defined by AL = 0,1,2... .
The AS =0, AT =1 modes are electric isovector vibrations in which the protons and neutrons oscillate
out of phase against each other according to a multipole pattern defined by AL. The AS =1, AT =0
modes correspond to magnetic isoscalar vibrations in which the nucleons with spin 1 vibrate against nu-
cleons with spin |, again with the multipole pattern given by AL. Finally, the AS =1, AT = 1 modes are
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Figure 5.3.: Schematic representation of various collective nuclear modes: monopole (AL = 0), dipole
(AL = 1) and quadrupole (AL = 2), for different cases of spin and isospin transfer. The ab-
breviation of the resonance names are given by the following manner. The first two letters,
IS or IV, correspond to Iso-Scalar and Iso-Vector, respectively. If the following letteris a S, it
means the resonance mode involves a spin-flip transition. Finally, the last three letters rep-
resent the multipolarity of the resonance: Giant Monopole Resonance (GMR), Giant Dipole
Resonance (GDR), Giant Quadrupole Resonance (GQR), etc. (Adapted from Ref. [5])

magnetic isovector vibrations where the protons with spin 1 (|) oscillate against neutrons with spin | (7).

Specifically, our interest in the present work is the investigation of electric isoscalar giant resonances.
The Iso-Scalar Giant Monopole Resonance (ISGMR) is usually associated with a vibration similar to a
breathing mode. The respective radial compression is related to the nuclear incompressibility. Similarly,
the Iso-Scalar Giant Dipole Resonance (ISGDR) can be seen as nuclear vibration in a squeezing mode.
This mode only exists at the second order approximation of the multipole expansion because the first
term corresponds to a translation of the nucleus as whole [5]. For giant resonances of multipolarities
up to A > 2 (here for practicality, A = AL), the collective nuclear oscillations are the usual multipole
vibrations and their respective transition operators are proportional to the nuclear radius to the Ath
power. In a more general way, the electric isoscalar transition operator can be written as [68]

A
Ff} = Zfl(’”i)yxu(gi), (5.31)
i=1

where the summation runs over all nucleons i and the Y;,,(Q;) are the well known spherical harmonics.
The functions f ’l(rl-) are defined as: r2 for A = 0, r3 for A = 1 and r? for A > 2. This transition
operator allow us to deduce the strength of a giant resonance from the so-called Energy Weighted Sum
Rule (EWSR). The EWSR is determined model independently and is based only on the ground state
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properties of the nucleus. A sum rule can be derived from algebraic relations between the transition
operators and the Hamiltonian as [5, 85]
2

8= Y (E,— ) |(nlF*|0) (5.32)

with |(n|F *|0) |2 the reduced transition rate from the ground state |0) to a final state |n) which has a
corresponding energy E,. Hence, the EWSR can be deduced for different multipolarities to be [5]

£ ar?), ifA=0
S, =14 L-2A[110%) - B(r?)? - 10e(r?)], ifa=1 (5.33)
L2220 + 1)%A(r72), for A > 2

where € = (4/E, + 5/E,)h*/(3mA), with E, and E, the centroid energies for the ISGMR and ISGQR,
respectively. As can be seen, these EWSRs are given in terms of the nuclear mass number A, the nucleon
mass m and the i-th radial moment of the ground-state density distribution, (r’). Additionally, assuming
that only one of the giant resonance states of multipolarity A exhausts the respective EWSR, the transition
density for such A-pole can be given by [5]

—Bo [3+r§—r] Po(r), ifA=0
2 .
PP =1~ [3r L +10r =2 L e (r& +4L ) | po(r), ifA=1 (5.34)
ﬁAR r A-1 d >
T V201 (1_%) Epo(l‘), for .2 2.

The advantage of describing the transition densities in the present way is that they only depend on the
ground-state density distribution of the nucleus, p,(r). Here, 3, corresponds to the collective coupling
parameter for the isoscalar A-pole giant resonance which is taken as

2 ifA=0
[,))2 _ { 21h> 3R2 ifk =1 (5 35)
A7) mAE, 11(r*)—(25/3)(r2)2—-10e(r2)’ - :

2 2A—4
L iﬂx ?:_;A_Z), for A >2
where E, is the excitation energy. The present representation of the transition densities permits us to
derive the transition potential from a folding model procedure explicitly, as it will be performed in the
analysis chapter of this work. In principle, such a transition potential can be employed to describe the
angular distribution of a A-pole giant resonance. As seen in the last section, DWBA calculations are
useful to deduce the inelastic scattering cross section (eq. (5.29)).
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Chapter
Data analysis and results

In this chapter, the identification and analysis of the reaction channels measured in the experiments of
%8Ni + a (100 and 150 MeV/u) and 2°Ne + p (50 MeV/u) will be explained. In the first section, the
elastic scattering data and the excitation of low-lying states observed in DSSD1 for different runs will be
studied. In the second part, the excitation of isoscalar giant resonances from a inelastic scattering on
8Ni will be investigated with the measurements of low energy recoils in DSSD2. In the third and last
part, we will focus on the analysis of the (p,d) transfer reaction measured during the commissioning
runs with *Ne + p. The characterization of these reaction channels and the theoretical descriptions of
the results will be presented below.

6.1 Elastic scattering and excitation of low-lying states

6.1.1 2°Ne+p

During the commissioning of the experimental setup with the stored 2°Ne beam at 50 MeV/u and the
hydrogen internal gas-jet target, the slit plate was not included for the measurements. As it was studied
in Chapter 4, for these measurements the angular resolution per strip was around 1° (in the labora-
tory system). However, the corresponding solid angle acceptance was enhanced by about one order of
magnitude with respect to the runs with the slit plate. Figs. 6.1(a) and 6.1(b) show a comparison of
experimental and simulated DSSD1 spectra for the run with 2°Ne beam. Here, the spectra are com-
posed of the energy deposited in each p-side strip which was previously calibrated in laboratory angles,
as explained in Section 4.2. As seen in the simulation results, the most intense kinematic band corre-
sponds to the contribution of elastically scattered protons. In the angular range of DSSD1 these recoil
particles have kinetic energies up to 20 MeV. As explained before, protons with energies above 6 MeV
punch through our DSSDs (285 um thick), e.g., the elastically scattered recoils at angles smaller than
80°. Although the angular resolution in this case was not improved by the slit plate, the reaction kine-
matics allows a very good separation of the first excited state of 2°Ne (at E, = 1.63 MeV). Fig. 6.1(c)
shows the reconstructed energy from the whole detector telescope. For the simulation, in contrast to the
real experiment, the scattering on residual-gas particles was not taken into account, what results in less
background in the simulated spectrum. Therefore, a direct comparison of experiment and simulation
suggests that one of the main sources of the experimental background is the scattering on such residual
particles.

Moreover, elastic and inelastic events were discriminated with graphical cuts. As an example, Fig. 6.1(c)
shows a cut employed to select the counts from the excitation of the first excited state of 2°Ne. The
respective graphical cuts were also included as a condition into the analysis routines to obtain the in-
dividual strip spectra. Similarly, the background component was selected from the regions out of the
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Figure 6.1.: Comparison between experiment and simulation results for 2°Ne + p at 50 MeV/u. The spec-
tra correspond to the correlation between the p-side strips of DSSD1 calibrated to laboratory
polar angle and the deposited energy. The elastic scattering kinematic line and the first ex-
cited state of 2°Ne are clearly identified. Graphical cuts are employed for the analysis of the
individual contributions.

kinematic curves in the 2D histogram. This contribution was projected on the energy axis of DSSD1 to
obtain the respective profile. The average background profile per strip can be seen in Fig. 6.1(d). As can
be noticed, the background at large energy values (close to 5 MeV) is about one event per 200 keV energy
bin, and the most significant component is in the energy range below 1 MeV. On average, less than 40
events in total correspond to the background contribution in the energy spectrum for each strip. Thereby,
the present energy distribution is employed to subtract the background in each spectrum. Finally, the to-
tal amount of events for different reaction channels are extracted from each strip. Then, the differential
cross section is deduced, as explained in Section 3.3. Below, the resulting angular distributions will be
studied.

Elastic scattering

The experimental angular distribution of elastically scattered protons by the stored 2°Ne beam is shown
in Fig. 6.2(a). Here, the differential cross section (in the center-of-mass system) is presented as the
ratio of the Rutherford cross section, as it is usually done to overcome the strongly decreasing Coulomb
dependence at forward angles. As seen in Figs. 6.1 and 6.2, the laboratory angular range from 72°
to 88° represents the center-of-mass region between 10° and 30°. Because of the present laboratory
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angular resolution, the corresponding uncertainty for each data point after the transformation to the
center-of-mass system is about 1°. Notwithstanding, with this large angular resolution it is possible to
see the first maximum of the cross section (around 24°) in the clear tendency of the experimental data.
For the analysis of this experimental angular distribution we employed three different optical model
potentials (OMP): the global potential for protons of Koning-Delaroche [86], one obtained from Ref. [6],
and a fit to the present data set using a density-folding potential. The global Koning-Delaroche potential
comes from systematics of proton elastic scattering data at different energies and diverse targets. The
parametrization is given by

Uopt(r) = Up(r) + Uso(r)L- S + Uc(r), (6.1)
where
Uo(r) = Wfr(r) +iWy fi(r) + iWp f1(7), (6.2)
and
n\* 1d
Uso(r) = (_) Vso__fso(r) (63)
m,c rdr

are the central and the spin-orbit parts of the optical potential, respectively, and Uq(r) is the Coulomb
potential. The function f;(r) is usually taken as a Woods-Saxon shape

fir)=(1+exp [(r —R;)/a;] )_1 ) (6.4)

where R; and q; are the half-density radius and the diffuseness parameter, respectively. The central
potential (eq. (6.2)) is composed of a main complex volume part and a surface term that increases the
probability of the nucleon-nucleon collisions at the nuclear surface. The spin-orbit interaction (eq. (6.3))
has a Thomas form parametrization and is expressed in terms of the pion-exchange range (h/m,c). In
the present case, the optical potential parameters from the Koning-Delaroche systematics are shown in
Table 6.1. The second OMP used for the analysis corresponds to a fit of the elastic scattering cross
section, 2°Ne(p, p) at 42.6 MeV, where the adopted potential form is similar to eq. (6.1), but excluding
the spin-orbit interaction. Also, the respective OMP parameters are presented in Table 6.1.

OMP W R ag Wy h ai Wp ) ap Vso Tso Aso I'c
Ref. [MeV] | [fm] | [fm] | [MeV] | [fm] | [fm] | [MeV] | [fm] | [fm] | [MeV] | [fm] | [fm] | [fm]

[86] | 39.17 | 1.15 | 0.68 5.56 1.15 | 0.68 4.33 1.30 | 0.53 4.74 094 | 0.59 | 1.38
[6] 36.33 | 1.20 | 0.75 | 11.31 | 1.20 | 0.79 0.18 1.20 | 0.79 - - - 1.25

Table 6.1.: Optical model potential parameters used for the description of the elastic proton scattering
on 2°Ne at 50 MeV/u. All radii are given in the reduced form R, = r A/>.

The third model used for this analysis is constructed from a folding potential
Up(r) = J dry f drypr(ry)pp(r)t(s=r+1, —17), (6.5)

where pr and pp are the target and projectile ground state densities. The projectile density (**Ne) was
assumed to have a Fermi shape with parameters deduced from electron scattering experiments [87], and
the proton (target) form-factor parametrization was taken from Ref. [88, 89]. The function t(s) is the
very popular M3Y interaction which has extensively been used for the description of elastic and inelastic
scattering at low and intermediate energies [90, 91]. The M3Y parametrization employed for the present
work is (in MeV) [91]

—4s e—2.5s

— 2134
4s 2.5s

e

t(s) = [7999 ] +J,5(s), (6.6)
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where the zero-range factor is J, = —276 MeV fm®. In order to calculate this potential, it was necessary
to solve eq. (6.5) numerically by making use of the convolution theorem [92]. Finally, with this folding
potential it is possible to create an OMP by applying the same form for the real and imaginary part

Uope(1) = (Ng + iNpUg(7), (6.7)

with Np and Nj factors that are adjusted to fit the experimental data.

As discussed in Chapter 5, with these OMPs it is possible to calculate the respective elastic cross sec-
tion. In the present work, these calculations are performed with the coupled channels reaction code
FRESCO[58]. The results for these three OMPs are also presented in Fig. 6.2.

1
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(a) Elastic scattering cross section. (b) Absorption probability for each potential

as a function of the impact parameter.

Figure 6.2.: Results from proton elastic scattering on °Ne at 50 MeV/u. The angular cross section is
presented as the ratio of the Rutherford cross section. The experimental data is analyzed
with three different optical potentials.

The OMP deduced by Falk et al. and the M3Y (fitted to the present data) are very successful in the
description of all experimental points. The differential cross section deduced from the global Koning-
Delaroche potential describes the experimental data below 15°, at higher angles this model overestimates
the elastic cross section by about 20%, but still agrees with the overall tendency of the experimental
data. In principle, these three models seem to be equivalent, but a better comparison can be done by
extracting the S-matrix for each elastic scattering calculation, as presented in Fig. 6.2(b). The quantity
T(b) = |S(b)|? is also called the transparency function, therefore the factor 1 — |S(b)|? represents the
absorption probability of the optical model, i.e., the reaction channels [93]. The most absorptive OMP
in the nuclear centre (b — 0) is M3Y, while the global Koning-Delaroche is lower by about 20%. At the
surface of the absorption probability, above 4 fm, the potential deduced by Falk et al. is more extended
due to the larger diffuseness parameters. An immediate result from this analysis is the total reaction
cross section that can be expressed as

O ren = 27‘5J db(1— T(b))b. (6.8)
0

As it was expected, the total reaction cross section is very similar for these three models: 525 mb for
Koning-Delaroche potential, 536 mb for the one of Falk et al., and 535 mb for the M3Y potential. At
medium and high energy collisions this quantity is well approximated by the geometric interaction of
the target and projectile, 0., & 7(rp + rr)?, with r, the individual nuclear radius [94-96]. Therefore,
one can also extract the nuclear size information from the analysis of the experimental total reaction
cross section. A simple method to derive the matter radius is from the approximation of soft-spheres
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described by Karol [94]. By fitting the absorption probability at the surface, the density shape can
be obtained, since the reaction cross section is slightly dependent on the smaller values of the impact
parameter and only the absorption at the surface (out of the total 1 — T'(b)) is relevant for the total o ,.
Thus, the soft-spheres approximation is quite useful, and an expression for the transparency function at
the surface can be deduced to be [66, 94]

T(b) = exp [—GNNJ dz J op(®)pr(r+ R)dgr] , (6.9)

where oy is the average nucleon-nucleon cross section at a given kinetic energy and R = (b, 2) can
be conveniently expressed in polar coordinates (with b the impact parameter and z the beam direction)
for the integration. The previous expression can be solved analytically assuming Gaussian forms for
the densities [94]. However, for consistency with the 2°Ne density, the equation is solved numerically
assuming a two parameters Fermi distribution (eq. (6.4)). Eventually, the half-density radius (R) and
diffuseness (a) of the 2°Ne density shape are varied to describe the absorption probability extracted from
the analysis of the experimental elastic scattering cross section (Fig. 6.2(b)). For the present case, the
average free nucleon-nucleon cross section, taken from Ref. [66], was scaled by using a parametrization
suggested for proton-nucleus collisions [97]. The normalization was performed in order to overcome the
significant in-medium effects at the present kinetic energy. In the fitting procedure, a weighted difference
between the Karol’s model calculation K;(R, a) and the result from a given OMP analysis M; is performed

as !

2
w(R,a) = Z (KR, C]lv)[v_ M) , (6.10)

1

where i denotes the different discrete points used for the fit. The best (R,a) parameters are extracted
from the global minimum of the two-dimensional grid w(R, a). This procedure also permits us to obtain
the probability distribution of the fit. Thus, the uncertainties of the parameters R and a are extracted by
assuming a 68% confidence interval in the respective probability distribution.

Usually, the nuclear radius is given by the root-mean-square (rms) value

B fooof(r,R,a)r"fdr 12
- fooof(r,R,a)rzdr ’

(6.11)

m

where f(r,R,a) is the density shape which in the present case corresponds to a Fermi distribution.
Besides, the uncertainty of this rms value is deduced from the first order error propagation of the two
fitted parameters through eq. (6.11)

o (ORn\? |, (ORy\? dR,, OR,,
ARm: Oxr ﬁ +O'a % +20—(R,a)ﬁ%: (6.12)

where oy and o, are the uncertainties of R and a, respectively, and o, is the covariance of these
two parameters which is also deduced from the probability distribution. The derivatives and integrals
of the previous equations are performed numerically. The results of the analysis with the M3Y and the
Falk et al. potentials are presented in Table 6.2.

In order to compare our results with the available values from literature, the nucleon size has to be
unfolded. For this, the adopted proton radius r, = 0.8775 fm is employed [98]. With the rms radii,
the unfolding of the nucleon size is reduced to the relation (r2) = R2 — rlf, where (r2)!/2 is the
rms point-matter radius. The resulting rms point-matter radius in the analysis of the M3Y OMP is

1 Similar to the y2, but with a standard deviation equal to /M.
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OMP R a R, <r12n y172
[fm] [fm] [fm] [fm]

M3Y 2.73(14) | 0.57(3) | 2.99(8) | 2.86(8)

Falk et al. [6] | 2.28(20) | 0.69(3) | 3.11(9) | 2.99(9)

Table 6.2.: Results from the Karol's model fit to the analysis of the 2°Ne data. R and a are the half-
density radius and diffuseness of the fitted Fermi distributions. The rms radius R, is derived
from eq. (6.11). The value (r2)/2 corresponds to the point-matter radius (see the text for
details).

2.86(8) fm, which is in perfect agreement with the result of a measurement of the interaction cross
section, (r2)'/2 =2.87(3) fm [99]. The same procedure was employed with the OMP from Falk et al. to
deduce the matter radius. However, the result is larger, 2.99(9) fm, because of the extended diffuseness
of this potential. The same problem was observed in Ref. [99] when applying Karol’s model. Apparently,
the results are considerably influenced by the diffuseness of the absorption probability. So, a method
that involves a direct fit of the experimental angular distribution would be preferred for deducing the
nuclear matter radius.

Inelastic scattering

As shown in Fig. 6.1, the first excited state of 2°Ne (2;r state at E, = 1.63 MeV) was also measured in this
experiment. The proton scattering (as has been investigated in the past) is an important probe to deter-
mine the radial structure of excited states of the target nucleus [3, 100, 101]. The hadronic projectiles
are equally sensitive to both protons and neutrons, while electromagnetic probes, like electrons, are only
sensitive to protons. The combination of these two techniques permits to observe deviations from the
collective model, where it is assumed that protons and neutrons move in phase with the same amplitude
(isoscalar limit) [3]. So, the ratio between neutron and proton multipole matrix elements would be

M,(A) N . n(p) A
) = with M, (ny(A) = J ppt(r)r'+2dr, (6.13)

N and Z are the neutron and charge number of the target and p g(p ) are the neutron or proton transition
densities. This implies that the deformation lengths measured from hadron scattering and with an
electromagnetic probe are the same, (8R),;y = (BR)gy 2. Thus, for the analysis of our experimental
angular distribution of 2°Ne(p, p’), DWBA calculations assuming the vibrational model can be performed
in order to investigate the respective nuclear deformation. The Bohr-Mottelson prescription for the
nuclear transition density [102]

d
pa(r)= _SAapgS(r)a (6.14)
is used to calculate the transition potential from the folding of eq. (6.5) explicitly, where 6, is the
multipole deformation length and p, the ground-state density. As usual, the contribution from Coulomb
excitation is included using the measured B(E2) value [103], and the nuclear deformation is varied to
fit the experimental data. In Fig. 6.3 the experimental angular distribution of the inelastic scattering of
20Ne with the respective DWBA fit is shown.

2 (BR)p is the deformation length deduced from an inelastic hadron scattering experiment. (8R)gy is the deformation

length obtained from a measurement with an electromagnetic probe.
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Figure 6.3.: Experimental angular distribution of 2°Ne + p inelastic scattering for the first excited state.

The solid line corresponds to the DWBA fit. The dotted line is the result assuming the same
measured electromagnetic deformation for the nuclear component.

The calculation assuming the same nuclear deformation as the measured electromagnetic deformation,
B, = 0.73(3) [104], overestimates the present experimental cross section by about 20%. From the
present DWBA fit, a nuclear deformation 3, = 0.68(6) was extracted, which is about 7% lower than
the deformation from a measurement with an electromagnetic probe. A better comparison of these
values can be performed with the empirical relation for the ratio of neutron and proton transition matrix
elements [3, 105]

M, bY [(BRy by N
Mp = b_z [m 1+ b—§E —1]| =0.89(12), (6.15)

where the ratio of proton-proton and proton-neutron interaction strengths is b?/ bg = 3 for proton
inelastic scattering at 50 MeV [3]. As can be noted, this result (within the error bars) is in agreement
with the unity predicted from the isoscalar limit (eq. (6.13)) for ?°Ne, and also consistent with the
expectation for a symmetric system, p, & p,.

6.1.2 *8Ni+ «a

In the runs with the stored *®Ni beam (at 100 and 150 MeV/u), helium was employed as a internal gas-
jet target, but in contrast to the previous case, the slit plate was placed in front of DSSD1. Certainly, the
price of including the slit was a reduction in the solid angle acceptance, besides a significant amount of
background from multiple scattering on the plate. For example, in Figs. 6.4(a) and 6.4(b) a comparison
of the experimental and the simulated spectra for the run at 150 MeV/u can be seen. In this case, two
excited states of **Ni were included in the simulation: 2] at 1.45 MeV and 3] at 4.47 MeV. Moreover,
the elastically scattered alpha recoils are seen in DSSD1 only in angles from 86° to 89°, because of the
fast increase of the kinetic energies with the polar angle. This reaction channel is easily identified in
the experimental data due to the good intensity. The position of the inelastic scattering events from the
transitions to the 27 and 37 states are suggested by the dashed lines. These kinematic lines are still
visible in certain regions where the accumulation of data points is more intense than the background.
However, the separation of such reaction channels is rather difficult, since the background subtraction
plays a critical role.

On the other hand, the elastic scattering contribution was easily separated from the background due to
the good signal-to-noise ratio, as can be seen in the graphical cut in Fig. 6.4(c). Similarly, as explained
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Figure 6.4.: Same as Fig. 6.1, but for °®Ni + a at 150 MeV/u. In this case the slit plate was placed in front
of DSSD1. The dashed lines highlight the inelastic scattering kinematic lines.

in the previous section, the average background profile per strip was obtained from energy projection
of the regions without contribution of the principal reaction channels. By comparing Figs. 6.4(d) and
6.1(d), it is possible to note the significant influence of the scattering on the slit plate on the average
background distribution per strip. In the same way of the previous analysis, the present background
profile was subtracted to each strip spectrum of DSSD1. After this background subtraction, the elastic
angular distributions were extracted for the runs of 100 and 150 MeV/u. In Fig. 6.5 the experimental
angular distributions as the ratio of the Rutherford cross section are shown. The laboratory angular
range from 86° to 89° represents angles in the center-of-mass system between 2° to 8°, in both cases. In
this angular range, the cross section measurement around the first minimum was achieved for these two
distributions. At 100 MeV/u the angular position of this minimum is around 4.2°, while at 150 MeV/u its
position was shifted by about 0.5°. It is also important to note the significant improvement in the angular
resolution due to the slit plate and kinematics. As seen in the analysis of the 2°Ne elastic scattering, the

angular uncertainty in the center-of-mass system was around 1°, however, in the *®Ni runs this value was
improved by almost one order of magnitude.

For the analysis of these distributions, in contrast to the one of 2°Ne which was at much lower energy, the
amount of OMPs available in literature is reduced and the global potentials are not as reliable due to the
scarce experimental data at such energies. Therefore, the most consistent way to obtain an OMP is from
folding potentials that have been tested successfully for a large range of heavy ion collisions and energies.
One of the folding potentials employed in this analysis was already studied in the previous section, the
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Figure 6.5.: Elastic scattering angular distributions for *®Ni + a at 100 and 150 MeV/u. Similar to
Fig. 6.2(a), the distribution is presented as the ratio of the Rutherford cross section. The
experimental data was fitted with three different potentials: double-folding M3Y, density-
dependent Gaussian (DDG) real interaction and Woods Saxon (WS) imaginary part, and t-pp
in the eikonal approximation.

double folding with the M3Y interaction. The normalizations for real and imaginary depths of the OMP
were fitted to the present experimental data by using the program SFRESCO [58]. At 100 MeV/u the
M3Y folding potential was normalized to Ny = 0.824(4) and N; = 0.603(8), where the uncertainties are
extracted from the fitting procedure by assuming a 70% confidence interval which corresponds to the
hypercontour inside )(2 = sznin + 2.41 [106]. Similarly to the data at 150 MeV/u, the best parameters
found were Ny = 0.755(2) and N; = 0.80(7). The respective depths for this potential can be found in
Table 6.3. As can be seen, the analysis with the M3Y potential underestimates the total reaction cross
section (0.,) at 150 MeV/u, which may be due to the reduced angular range for the fit. In principle,
this potential describes quite well the present experimental data, but for backward angles the model can
lead to an unrealistic behavior.

Another potential which in the past has shown good results for describing the angular distributions for
a scattering, and in particular to calculate the correct transition potentials 2, is the hybrid potential of a
single folding with a density-dependent interaction in the real part of the OMP and a Woods-Saxon for
the imaginary one [107]. The single folding is reduced to solve eq. (6.5) by replacing the a density by
a Dirac-delta function, pp(r) = A;6(r), with Ay = 4. The Gaussian interaction employed in this case
is [107]

v(s) = —vy exp (—sz/tz), (6.16)
with t = 1.88 fm and the strength v, that is adjusted to optimize the agreement with the experimental
data. A density-dependent scaling function is included in this interaction in order to reduce the strength
in the interior of the folded potential while leaving the peripheral values unchanged. So, the effective
density-dependent interaction used for the folding potential is [107]

Uppg (s, p) = vs(s)f (p), with fPp)=1-ap)F, (6.17)
where p(r’) is the ground state density of the target at the position ¥, & = 1.9 fm? and 8 = 2/3.
Moreover, the imaginary part has a Woods-Saxon potential shape (eq. (6.4)) where its three variables
were used as free parameters to fit the experimental angular distributions. In Table 6.3 the best fitting

parameters for each case can be found.

3 This will be studied in more detail in the next section, i.e., in the analysis of the angular distributions of the giant
resonances.
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Energy OMP R W r ai O rea
MeV/u [MeV] | [MeV] | [fm] | [fm] | [mb]
100 M3Y 96.65 | 70.73 - - 1431
100 DDG/WS | 111.49 | 40.59 | 1.39 | 0.69 | 1463
150 M3Y 88.56 | 93.25 - - 1456
150 DDG/WS | 91.46 | 39.52 | 1.20 | 1.19 | 1706

Table 6.3.: Optical model potential parameters fitted to the a elastic scattering on *Ni at 100 and
150 MeV/u. The Coulomb radius was fixed as rc = 1.2 fm. All radii are given in the re-

1/3
duced formR, = rxAt/ .

Reasonably good results were achieved with this OMB and even the reaction cross section deduced
from this analysis is in better agreement with the expectation for collisions at such energies. However,
the imaginary part at 150 MeV/u is still quite diffuse. As seen in the previous section, this may bring
problems when deducing the matter radius by fitting the absorption probability at the surface. In the
present case, since the beam energies are much higher, the best way to deduce the nuclear matter radius
is to fit the angular distribution directly by adjusting the projectile ground-state density parametrization.
This can be done in the optical limit of the Glauber theory with the microscopic t-p p potential [66, 81].
As seen in Chapter 5, in this model the nuclear scattering amplitude is expressed in terms of the average
free nucleon-nucleon parameters extracted from experimental p-p and p-n cross sections at different
energies [80, 81]. This means, under the Optical Limit Approximation (OLA), the elastic cross section
can be calculated from the average nucleon-nucleon interaction and the folding of the projectile and
target ground-state densities. Thus, the density form of the light particle is fixed, while the parameters
of the heavy particle density are varied to fit the experimental data. The matter density of the a particle
was taken with the same distribution deduced from electron scattering experiments as [87]

Q|\:
N N

pr(r) = (aATj'c)?’e_ , with a=1.37 fm. (6.18)
In the case of °®Ni, a two parameters Fermi distribution was assumed, where its half-density radius R and
the diffuseness a are optimized to fit the model to the experimental angular distribution. The present
calculations were performed with the code DWEIKO [108], where it was necessary to implement routines
for the variation of the density distributions and minimization. The result of each calculation was stored
in a two dimensional y? matrix for a later analysis. From this matrix, the probability distribution is
calculated by transforming each element as [109]

2
PRy a) oc (22) ™" exp (—%) (6.19)

where v is the number of degrees of freedom. Eventually, this 2D grid is normalized, Zi,]. P(R;,a;) =1,
to represent a probability distribution. As an example, the result for the fit of the >®Ni data at 150 MeV/u
is shown in Fig. 6.6. The best (R,a) fitting parameters maximize the probability distribution. The
final results are obtained from the marginal distributions, assuming a confidence interval of 68%. The
respective fits of the t-pp potential (optical limit of the Glauber theory) are also presented in Fig. 6.5,
and the corresponding parameters can be found in Table 6.4.

As can be seen, this model is quite successful in describing the angular distribution at forward angles
where the angular distribution is sensitive to the nuclear matter radius. The component at backward
angles is more sensitive to the nuclear interior, and therefore the in-medium effects have more influ-
ence on the measured angular distribution. In this case, a renormalization of the free nucleon-nucleon
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Figure 6.6.: Probability distribution obtained from the fit of the *®Ni data at 150 MeV/u. The most
probable value of this distribution corresponds to the parameters with the best agree-
ment to the experimental data. From the marginal distributions (P(R;) = Z].P(Ri,aj) and
P(a;) = ZiP(Ri,aj)), the uncertainties of the parameters are extracted assuming a confi-
dence interval of 68%.

parameters is required [66, 81]. Nevertheless, in the present fits the matter density surface, given by
the half-density radius and diffuseness, is very well described. The total root-mean-square radius (see
eq. (6.11)) of *®Ni deduced from the fit of run at 100 MeV/u is 3.78(10) fm, and 3.74(9) fm for the
one at 150 MeV/u. These values are in perfect agreement with the result of an a scattering experi-
ment in normal kinematics: 3.74(10) fm [1], and also with the reported value from a proton scattering
experiment: 3.74(5) fm [2].

Energy R a R, (r2)1/2 (r2)1/2 Ary,

MeV/u [fm] [fm] [fm] [fm] [fm] [fm]
100 3.81(16) | 0.63(3) | 3.78(10) | 3.68(10) | 3.69(20) | 0.02(20)
150 3.79(14) | 0.62(3) | 3.74(9) | 3.64(9) | 3.61(17) | -0.07(17)

Table 6.4.: Results from the Glauber fit of the *®Ni angular distributions. R and a are the half-density
radius and diffuseness of the Fermi shape density. The rms radius: R, (total matter), (r2)!/2
(point-matter) and (r2)'/? (point-neutron). The neutron skin is calculated as: Ar,, = (r2)!/? —
(r§)1/2, with (r;)l/2 = 3.68 fm (point-proton) [87].

From this analysis, the extracted total matter-density distribution, p,,, also contains the finite-size of the
nucleon. In order to unfold this contribution, the operation

(6.20)
F [PN]

pgloint(r) — 9_1 |:

is employed, where the operator Z represents the Fourier transform and p, is the nucleon matter-
density which can be assumed to be the same as the proton charge density [88, 89]. Moreover, the
(point) neutron density distribution can also be deduced in our analysis by subtracting the (point) proton
density of °®Ni. Similar to the unfolding of the nuclear matter distribution, the total charge density
(deduced from an electron scattering experiment [87]) is transformed using eq. (6.20) to calculate
the point-proton density distribution. In this procedure, the nucleon form factors are taken from the
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popular phenomenological parameterizations of Ref. [88, 89]. In Fig. 6.7 the (unfolded) point density
distributions deduced from the present analysis are shown.
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Figure 6.7.: Point-density distributions of *®Ni deduced from the results of this work. The solid lines
are the results from the present experiments and the color band are the respective error
bands. The point-matter radius is compared with the prediction of a Skyrme-Hartree-Fock
calculation (SHF). The neutron and proton contributions are multiplied by 4712 in order to
see the distributions at the surface in more detail.

The point-matter density from this experiment is presented within an error band. The nuclear density
at low radii has a large uncertainty, since the elastic scattering at backward angles was not measured.
However, the density distribution is much better defined at the surface and consistent with the prediction
from a Skyrme-Hartree-Fock (SHF) calculation. The SHF was generated with the code SKYRME_RPA
[110], including the interaction SkO’ [111]. The rms value from this calculation is 3.68 fm, which is
in very good agreement with our experimental results (see Table 6.4). The neutron density was also
deduced by subtracting the proton density [87] from the matter distribution. These two distributions
are shown in Fig. 6.7(b), where p(r) was multiplied by a factor 4mr? to emphasize the density at the
surface. The proton radius is slightly higher than the neutron radius. However, the neutron density
seems to be more extended at large radii. This is in consistence with the neutron skin radius extracted
in the present experiments, |Ar,,| < 0.07 fm, and with the literature values which range from —0.05 to
0.01 fm [112, 113].

6.2 lIsoscalar giant resonances excitation

The second main part of this work is concerning the excitation of isoscalar giant resonances in an a
scattering experiment. As discussed in the previous chapters, the idea of this experiment was to em-
ploy DSSD2 which was centered at a laboratory angle of 32°. Given that the present experiment was
performed in inverse kinematics, the inelastically scattered a recoils are restricted to laboratory angles
below 90°. The kinematic curve of the scattered recoils, for the excitation of the heavy particle, comprises
two solutions for a given laboratory angle: at low and high energy regions. In particular, the low en-
ergy region of the inelastic scattering kinematics corresponds to the forward angles in the center-of-mass
system. In Fig. 6.8 the expected recoil kinematics for an excitation energy of 19 MeV can be seen. As
previously mentioned (Section 4.3), the excitation of the ISoscalar Giant Monopole Resonance (ISGMR)
of *8Ni is located around this energy value with a standard deviation of 3 MeV [4, 65]. It can be noticed
that for the run with a stored *®Ni beam at 100 MeV/u the recoiling as are expected to be measured
in DSSD2 with energies smaller than 1 MeV, where the main component is generated from scattering at
very forward 6., angles.
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Figure 6.8.: Recoil kinematics for the reaction *®Ni(a, a’) at 100 MeV/u. The green vertical band shows
the angles covered by DSSD2. The kinematic curves corresponding to an excitation energy of
19 MeV £20 (6 MeV) are plotted with dashed lines.

For the resonance range of 20 (6 MeV), DSSD2 covered the angles 0.5° < 6., S 1.5°, corresponding
to recoil energies from 100 to 700 keV. Each center-of-mass angle is represented by a transverse curve
in the E,...j-61, frame. For a single detector strip (which has a well defined laboratory angle), several
center-of-mass angles are measured and the only way to identify them is from the detected energy. For
instance, in the strip 31 (0y,, = 37.5°) recoil energies around 200 keV belong to scattered angles below
1°, and for energies higher than 500 keV the respective angles are closer to 1.5°.

As studied in Chapter 4, one of the main limitations in the identification of inelastically scattered re-
coils at low energies in DSSD2 was the presence of atomic reactions, like for example 6-rays produced in
the internal gas-jet target. For the experiment with *®Ni + a at 100 MeV/u, the §-rays were observed at
energies below 200 keV. Similarly, the elastic scattering and many direct nuclear reactions generate high
energy recoils in the angular range of DSSD2. However, the respective energy losses are also much lower
than 200 keV where the 6-rays detection is dominant. Then, in order to identify the energy region in
which the recoils originating from the excitation of giant resonances are detected, both elastically scat-
tered electrons and the ISGMR excitation were simulated. The relative ratio of these reaction channels
was normalized to the experimental data. Thereby, the different p-side spectra from DSSD2 can be com-
pared with the respective experimental ones in order to associate the main contributions of the energy
bumps. Fig. 6.9 shows a comparison for two strips at the edges of the detector, around 6,,;, = 27.5° and
37.5°. In the simulation the ISGMR contribution can be identified as a small energy bump between 200
and 600 keV, as studied in Section 4.3. The kinematics of the 6-electrons contribution is more visible in
the angular range of DSSD2, its peak position changed about 100 keV in the angles between 27.5° and
37.5° The separation of the ISGMR component in the first strips (close to 27.5°) is limited by the 6-rays
threshold. However, at higher angles the giant resonance bump is better resolved because the nuclear
excitation is the most relevant reaction channel that is kinematically allowed in this energy range. From
a direct comparison with the experimental spectra, we can realize that the events produced from the
excitation of the giant resonance are the main component of the bump above 200 keV.

Now, the question is how to remove this significant background of low energy 6-rays. This subtraction
should be done before the transformation to the excitation energy-frame. This is important due to
the important dependence of the angular distribution (in center-of-mass system) on the recoil energy.
Initially, low energy thresholds (Eig"" ~ 150 keV) were applied to all strip spectra in order to cut the whole
electronic noise and the main part of the §-rays contributions. Above this threshold, the remaining 6-
rays components were fitted to a superposition of three Gaussians to reproduce the tails of these peaks.
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Figure 6.9.: p-side energy spectra of DSSD2 for *Ni + a at 100 MeV/u. Here, the comparison of strips
0 and 31 is done in order to identify the excitation of the isoscalar giant resonance (see also
Fig. 4.16).

After this subtraction, the events from energies between 200 and 250 keV were recovered. Fig. 6.10
shows three samples of strip spectra after the subtraction of the low energy background. In all strips
the energy threshold was around 150 ke, i.e., in the two-body-reaction frame the corresponding range
of sensitivity is above 15 MeV of the *®Ni excitation energy. As one can note from the comparison of
the strip spectra and their respective transformations, recoil energies around 300 keV are correlated
to excitation energies around 20 MeV. In all cases the energy bump below 1 MeV (in the laboratory
frame) was transformed to a resonance distribution that covers excitation energies up to 35 MeV. This
is consistent with the expected peak position of the ISGMR excitation in *®Ni [4, 65]. Nevertheless, the
event rate per strip was rather low and therefore, the statistical fluctuations are a big constraint for the
individual analysis of each strip signal.

The best option in this case is to add all contributions from the individual strips of DSSD2 in the trans-
formed frame (6., E,). The double-differential cross section can also be extracted from this spectrum
by applying the respective Jacobians of the transformation to each (6., E;ecoip)- Fig. 6.11 shows the
resulting double-differential cross section as a function of the excitation energy of *Ni. A clear peak in
the energy distribution is obtained with a centroid below 20 MeV. The peak is extended at high energies
to almost 40 MeV, but limited towards low energies due to the §-rays cut around 15 MeV. The present re-
sult shows great similarity to experimental cross sections from experiments in normal kinematics [4, 65].
However, we should keep in mind that this cross section contains contributions from different multipo-
larities (but only L < 3 are contributing in reality) and a component of background produced mostly
from direct reactions.
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Figure 6.11.: Experimental double-differential cross section for the excitation of the giant monopole res-
onance in the *®Ni. All spectra from strips of the p-side of DSSD2 were summed up. The
sensitivity below 15 MeV was constrained because of the 6-rays cut.

As we can remember from Chapter 4 (Fig. 4.17), in the present experiment, knock-out reactions (in
contrast to other direct reactions) are kinematically able to produce recoils in the whole energy range of
the giant resonances (GR) detection. Fortunately, this type of reaction channel is less probable than the
GR excitation and therefore, its contribution is only seen in the continuous background [5, 114]. This is
also consistent with the background parametrization employed in many works [4, 65, 115]. In particular,
the most convenient background parametrization in the present case is the one studied in Ref. [115].
The total contribution of the background is divided in a low and a high energy part. The low part
arises from an energy about 7 to 8 MeV (Eg,) which is approximately the threshold energy for nucleon
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separation. From this point the contribution grows until a maximum value, located at 15 MeV (E,),
where the excitation of the giant resonances starts. The parametrization for the low energy component
of the background is given by

y1(E)=exp[a; — by(E — Eg,) + ¢ In(E — Ey) ], (6.21)

where a,, b; and c; are free parameters. At high energy, the cross section decays rapidly, so it is reason-
able to assume an exponential function for its parametrization

Yo(E) = exp [a2 - sz] s (6.22)

where a, and b, are directly fitted to the experimental data in the range above 45 MeV. Finally, the
functions y; and y, are connected by taking care of the continuity using the first derivative criterion. In
this way, the other set of variables (a;, b; and ¢;) can be automatically fixed by the definition of the fitted
ones (a, and b,). The resulting shape of this parametrization is in agreement with the simulation results
of Fig. 4.17(b), which takes into account the proton detection from the knockout reaction *®Ni(a, pa).
Because the most possible source for this background is originating from a three-body output channel, it
is more convenient to deal with the respective subtraction before the conversion to the double-differential
cross section, which includes the Jacobians assumed from a two-body kinematics reaction. For the
present analysis, we have studied three different background parameterizations which can be seen in
Fig. 6.12(a). The first parametrization has been chosen to cut the contribution above 30 MeV completely.
The second parametrization allows more events in this energy region, where the second mode of the
ISGDR contributes [4]. Finally, the third parametrization is aimed to subtract less strength from the
whole region than the two previous functions. In the following subsection, the effect of the background
choice on the strength of the giant resonances will be investigated.
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(a) The three different backgrounds studied. (b) Double-differential cross section after the
background 2 subtraction.

Figure 6.12.: Background parametrization and subtraction.

Until this point we can assume naively the second parametrization as the background contribution. After
the respective subtraction, the double-differential cross section is obtained, as presented in Fig. 6.12(b).
Here, two Lorentz functions are employed to fit the experimental energy distribution in the range be-
tween 15 and 40 MeV. These peaks are assumed to describe the two most important resonance con-
tributions at forward angles: isoscalar giant monopole resonance and the isoscalar giant quadrupole
resonance. Given that our experimental data is limited to energies higher than 15 MeV, the centroid of
the ISGQR was fixed at 17 MeV (as measured in other experiments [4, 65]) during the fitting proce-
dure. The resulting Lorentzian function for the ISGMR component has a centroid in 19.27(61) MeV and
a width of 6.45(51) MeV. These values are comparable with results from other experiments performed
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in normal kinematics, which are also listed in Table 6.5. In particular, the results from Ref. [4], corre-
sponding to an experiment performed at the same kinetic energy (center-of-mass system), show a great
similarity to the present ISGMR contribution not only in the centroid but also in the height of the cross
section peak. A more dedicated analysis can be performed including also the analysis of the angular
distributions, which allows a decomposition of the different multipole contributions. This procedure is
explained below.

6.2.1 Multipole Decomposition Analysis

The Multipole Decomposing Analysis (MDA) has extensively been used by many authors [4, 65, 115,
116] in order to disentangle the individual resonance modes in a given energy range. In this method
the resonance region of the double differential cross section is divided in energy bins, and from each
of them the respective angular distribution is extracted and analyzed. In the present case, an energy
bin size of 1 MeV was chosen in order to reduce statistical fluctuations. For the individual angular
distributions, multipole fits were performed by employing theoretical angular cross sections obtained
from DWBA calculations. This means that for each energy bin the experimental angular distributions are

decomposed using
d%o €xp 2 d?c cal
(dﬂdE) =2 alEoL) (dﬂdE) ’ (623)

L=0 L

where the coefficients a(E,, L) are related to the fraction of the energy-weighted sum rule (EWSR) of the
Lth multipole. The DWBA calculations were performed with the code CHUCK3 [59]. In each case, 100%
exhaustion of the respective multipole EWSR was assumed. Also, particular care is taken when deducing
the right transition potentials. In the past there have been many controversies about how to obtain the
proper transition potentials, because a wrong assumption can lead to an underestimation of the strengths
of the giant resonances. For instance, no evidence was found for the excitation of the giant monopole
resonance in a+°8Ni experiments in the early 80’s [117]. Even a decade later, a reanalysis with incorrect
transition potentials resulted in strengths smaller than 30% of the EWSR [118]. The issue of the missing
monopole strength in *Ni was resolved at the end of the 90’s in the work of Satchler and Khoa [107],
where it was suggested to calculate the transition potentials directly from a folding procedure in order
to account the strong absorption in the nuclear interior. This procedure has been applied successfully
by many authors [4, 65, 119], resulting in monopole strengths in *®Ni larger than 70% of the EWSR. In
the present work we follow the same method for the analysis of our experimental data. The transition
potential corresponding to the multipole A is obtained from the explicit folding of the transition densities
defined in Section 5.3 as:

U, = J P (r Wi, p)dr ", (6.24)

where vSDG is the transition interaction which can be taken as a density-dependent Gaussian type (see

eq. (6.16) and eq. (6.17)), but with a dynamical correction in the density-dependent term to account
the weakening of the folded potential in the interior [107]

flp)—f'(p)=1—a(l+BpE)’. (6.25)

As already explained for the analysis of elastic scattering, this single-folding potential was employed
with a Woods-Saxon shape in the imaginary part to successfully describe the angular distributions. In
addition, the imaginary potential was deformed in the same way as the transition densities to construct
the total transition potential included in the DWBA calculations. The deformation parameters of these
potentials were also calculated numerically with the expressions presented in Chapter 5.

Moreover, the isovector giant dipole resonance (IVGDR) can also be excited via a inelastic scattering
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[120]. This small contribution had to be removed from each angular distribution before performing the
multipole fit. The IVGDR cross sections were calculated in the Goldhaber-Teller model [5] and by using
the strength distribution B(E1) obtained from an electron scattering experiment [121]. Thus, the multi-
pole decomposition of the isoscalar contributions is applied to every energy bin with the corresponding
DWBA calculations for a given excitation energy. Since the angular range of the experimental angular
distributions is quite limited, two assumptions were applied in the fitting procedure in order to reduce
the ambiguities in the results: one multipole contribution should not exhaust the whole sum rule in a sin-
gle bin, and the extracted strength (for a given multipole) from two adjacent bins have smooth changes
(A(EWSR);_,;+1 < 5 %). With this criteria, each fit is performed by minimizing the y? distribution. As
an example, the results from the MDA for some energy bins are presented in Fig. 6.13.

The monopole strength is dominant for excitation energies smaller than 30 MeV, where the most signifi-
cant contribution was found around 20 MeV. Also, the angular distribution of the quadrupole component
has a slight effect on the total cross section for excitation energies below 20 MeV. Meanwhile, the dipole
contribution increases at high energies where the scattered angles correspond to the minimum of the
monopole distribution. As seen in eq. (6.23), the coefficients of the fits are directly related to the per-
centage of the exhausted EWSR in each energy bin. Thus, the energy distributions for each single
multipole component can be extracted from these values. In Fig. 6.14 the results for the monopole con-
tribution are presented. Similar as before, because of the cuts in the double-differential cross section
the sensitivity of this energy distribution is constrained to excitation energies higher than 15 MeV. Each
histogram bar corresponds to the respective fraction of the EWSR assuming the background parametriza-
tion 2. For the monopole distribution, the exhausted EWSR in the energy range from 15 to 30 MeV is
about 79712 %, which is in agreement with the results reported from other experiments, as seen in
Table 6.5.

A theoretical prediction from a RPA calculation is also plotted in Fig. 6.14 with the dotted line. This
strength distribution was calculated with the code SKYRME_RPA [110], applying the interaction SkO’
[111]. The present experimental data shows a very good consistence with the theoretical prediction in
the whole energy range of the ISGMR. The energy position of the maximum of the ISGMR distribution
is well described by this model. Similarly, the width of this theoretical distribution is in very good agree-
ment with the experimental data. In the MDA such comparisons are performed through the moments of
the energy distributions [5]

m= > a,EX, (6.26)
k

where q; is the fraction of the EWSR for the L™ multipole. Thereby, the centroid of the distribution can

also be expressed in terms of these moments, namely m;/m, or 1/ms/m;. In Table 6.5 the centroids
deduced from the present experimental data can be found. The same MDA has been performed for the
other background parameterizations presented in Fig. 6.12(a). The centroids deduced for these three
cases are similar. However, they are about 1 MeV larger than the values from the literature and from
the RPA calculation. The reason for this offset is the asymmetric shape of the experimental energy
distributions because of the absence of data points below 15 MeV.

Nevertheless, the good agreement of the RPA calculations with the experimental distribution (in
Fig. 6.14) supports the consistence of our results with respect to the reported values in the literature.
Besides the monopole strength, the dipole and quadrupole contributions were also extracted in the MDA,
as shown in Fig. 6.15. Similar to the results of Fig. 6.12(b), the quadrupole component has the most
important contribution below 20 MeV. However, the large error bars are a consequence of the small
strength in the investigated angular range compared to the monopole contribution. On the another
hand, the dipole distribution seems to have no sensitivity in the whole energy range. The reason is
that the dipole angular distribution is significant only after the first minimum of the monopole cross
section, i.e., center-of-mass angles above 2°. In fact, the efficiency of the MDA for the multipoles L > 1
depends on the angular range which is covered for the fit. For future experiments it would be quite
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Figure 6.13.: Multipole decomposition analysis for different energy bins of 1 MeV width. The points
correspond to the experimental angular distributions and the solid lines are the DWBA cal-
culations for the L™ multipole. The dashed line is the total fitted angular distribution.

important to perform measurements in an angular range from 1 to 5°, which has proven great success in
the decomposition of the contributions up to L =7 [4, 65].
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Figure 6.14.:

Reference | m;/m, [MeV] | y/ms/m; [MeV] | Width,,; [MeV] | EWSR [%]
this work! 21.1(5) 21.6(6) 3.0(5) 53(8)
thiswork? | 21.4702 21.9798 3.410% 7971

this work> 21.5%0% 22.3(1.0) 3.5(6) 106(12)
RPA 20.04 21.20 3.24 109
[119] 20.3075% 21.481391 4.25%0%9 74122
[65] 19.207044 20.81100 4.89%0% g5+13
[4] 19.9957 - - 924

Table 6.5.: ISGMR parameters extracted from the multipole decomposition analysis. The index num-
ber are for the results of this work for the different background parameterizations shown in
Fig. 6.12(a). The present values correspond to the analysis of the distributions in the energy

range from 10 to 30 MeV only.
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6.3 Transfer reaction

The last type of nuclear reactions studied in this work is a neutron transfer observed in the run 2°Ne + p.
In this experiment, deuteron recoils were produced through a neutron pick-up by the hydrogen target,
what also turns the ejectile particle into *Ne. The minimum energy required for the occurrence of this
reaction is —14.6 MeV (Q value), which is fully covered by the center-of-mass energy of 48 MeV. Due
to the kinematics of the reaction, the scattering angles of these deuterons are limited to the forward
region in the laboratory system, namely below 35° for the present experiment. This means that the
angles covered by DSSD2 are adequate for the measurement of such transfer reactions. However, the
kinetic energy at which these recoils are produced is much higher than 30 MeV, and therefore, only an
energy loss is deposited in the detector. A way to identify this reaction channel is by a comparison with a
simulation that takes the respective kinematics and the deuteron energy loss in the detector into account.
In a first approximation, we can assume a transfer to the ground state of 1°Ne, although a transfer could
also happen to an excited state. In Fig. 6.16(b) the simulated energy loss of these deuterons for the
respective laboratory angles is shown. The maximum scattering angle (in lab.) is about 35° which
corresponds to a center-of-mass angle of 50°. In strips at more forward angles, the deuteron energy
loss is splitted in two parts because two different center-of-mass angles are measured at the same 0,,,.
Similarly, this trend is visible in the experimental spectrum, shown in Fig. 6.16(a), where the dashed
line was included to show the deuteron kinematics. At energies larger than 1 MeV the transfer products
are easily distinguishable, but below this value the separation of the transfer reaction channel becomes
more difficult due to the overlap with inelastically scattered recoils. In this case, depending on a good
background parametrization, the deuteron events are still separable at the low energy region.

The analysis of this reaction channel is performed from the individual energy spectra of the p-side strips.
For an optimal identification, the energy peak position deduced from kinematics and energy loss is
required for each spectrum. For instance, in strip #0 (6;,, = 27.5°) the most predominant peak from the
transfer reaction is located around 1850 keV, while at more backward angles the (p,d) contribution is
found at lower energies, as seen in Figs. 6.16(c), 6.16(d) and 6.16(e). The experimental spectra of strips
25 to 31, which correspond to scattering angles larger than 35°(in lab.), are free of a transfer reaction
component. So, the shape of these spectra can give us an idea of the type of background component to
be subtracted for the analysis of this reaction. As an example, in Fig. 6.16(e) the spectrum of strip #30
is shown. In order to fit this spectrum, a superposition of a log-normal and a Gaussian function was

employed
a (ID(X)_.Ul)Z (X_Mz)z
B(X):A ;CXP —T + exp —T , (6.27)
1 2

where a = 949.3, 0, = 0.5, u, = 538.5 keV and o, = 189.0 keV were found by fitting the background
component of the last strips. These parameters were fixed during the fit for the rest of strips. Thus, given
this parametrization, only the amplitude A and the value u; were varied to fit each spectrum. Besides,
this parametrization was employed to determine the background contribution for each strip of the de-
tector. In Figs. 6.16(c), 6.16(d) and 6.16(e) the very good results in the fitting of the experimental data
are illustrated.

Another important aspect during the data reduction was the identification of possible excited states.
As commented before, the transfer reaction does not populate only the ground state but also some of
the low-lying states of 1°Ne. However, we must know the peak position of the possible excited states in
order to fully identify the states populated by the transfer reaction. In Fig. 6.17 the level scheme of “Ne
up to 2 MeV excitation energies is shown.

As can be noticed, the spin and parity of the ground state is J™ = 1/2". The first two excitation levels
(5/2% and 1/27) are separated by less than 300 keV from the ground state, and the next levels are
at excitation energies above 1.5 MeV. This information can be employed to perform simulations of the
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Figure 6.16.: Comparison of experimental and simulation results for the transfer reaction °Ne(p,d) at
50 MeV/u in DSSD2. The kinematic line for this reaction channel is visible in the energy loss

spectrum, and it is highlighted by the dotted line. On the bottom there are four samples of
experimental strip spectra.

transfer reaction and the respective population of excited states. The idea is to obtain the expected
widths and peak positions for each excited state in the energy spectra. For this task, we can also assume
the same probability for each transition. The simulation results for strip number 0 at 6),;, = 27.5° are
presented in Fig. 6.18.

The resulting energy spectrum from the population of the ground state is centered around 1850 keV with
a standard deviation o =~ 77 keV. Also, the contributions from the two first excited states of *Ne are just
separated by 25 keV from the ground state peak. Even the contribution from the 5/2~ state at 1507 keV
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Figure 6.17.:

3/ 27— ,—1615.6

3/ 2" — —1536.0
5/2— ~—1507.6
1/2— —275.1
5/2"—~ ~—238.3

1/2" 0.0 Ex (keV)

Level scheme of °Ne for states up to 2 MeV. Data extracted from Ref. [103]. (This figure
was created with the code LevelScheme [122])
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(c) Population of the 1/27 state at 275 keV.
The peak is centered around 1825 keV.

(d) Population of the 5/27 state at 1507 keV.
The peak is centered around 1720 keV.

Figure 6.18.: Simulation results of the transfer reaction to different final states. The spectra correspond
to the strip number 0 of DSSD2 (6,,, = 27.5°).

overlaps with the other peaks because its separation is lower than two 20 of the distribution. The same
behavior was observed in the energy spectra of the other strips. A direct consequence of these results
is that the experimental peaks from this transfer reaction (see Fig. 6.16) can be a mixture of more than
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one final state. For this reason, the best way to study this experimental data is from a decomposition
of the angular distribution, as shown in the previous section. The decomposition allows an optimal
identification of the individual final configurations and the possibility to extract important information
about the nuclear structure of the Ne hole-states. Therefore, in the present analysis we describe the
experimental angular cross section as a superposition of the final configurations [68]

do\ &P do cal
(G5) =2 (aa),, (629

lsj Usj

where only one value each of s and { are allowed. For the present (p,d) reaction, this is s = 1/2 and
{=0,1,2,3, i.e, for the ground state orbital 2s,, and the excited states 1ds, 1p;/s, 1fs/5, 1d3/, and
1ps/o- The coefficients Sy,; are the corresponding spectroscopic factors which relate our experimental
results with the calculated angular distributions. Now the problem is to obtain consistent theoreti-
cal angular distributions to describe the different configurations. One common method is to perform
DWBA calculations [7, 123]. Nevertheless, as the deuteron recoil has a relative low separation energy
(2.2 MeV), the breakup channel of this particle can have some effect in the total measured angular
distribution, what in turn can lead to imprecise results for the spectroscopic factor [124]. A popular
method to take the breakup into account is by the definition of an adiabatic potential for the usual
deuteron OMP in the exit channel [125]. This adiabatic potential is an effective interaction of *Ne-d,
which accounts the effects of coupling to the continuum states of the deuteron nucleus. When such
interaction is included in a standard DWBA calculation, the method is called Adiabatic Distorted Wave
Approximation (ADWA) [126]. There are different ways to obtain the adiabatic potential, but in this
work we used CDCC (Continuum Discretized Coupled Channel) calculations to deduce the continuum
coupling effects explicitly [127]. The principle of the CDCC method is explained in Appendix C. Under
this approximation, the adiabatic potential is composed by three terms

Uadia = Uc + Upare + Uppp, (6.29)

where U is the Coulomb potential and Uy, the cluster-folding interaction of the proton and neutron
(components of the deuteron) particles with the 1°Ne nucleus, i.e.

Upare = (¢gs|V19Ne-p + V19Ne-n|¢gs>’

with the deuteron ground-state wave function ¢g4. The last term Uppp is the dynamical polarization
potential which simulates all effects of coupling with the continuum [127]. The code FRESCO provides
an average output of this interaction which is known as Trivial Local Polarization (TLP) potential, that
can be regarded as a simplified local approximation of a complicated coupled channel system [128].

In order to test the consistence of the adiabatic potentials, CDCC calculations have been performed for
the system 2°Ne + d at 52 MeV, where the respective experimental elastic cross section is reported in
Ref.[129]. In this case, the bare interaction was built from the proton and neutron global OMPs from
Koning-Delaroche [86]. The deuteron continuum was discretized up to 50 MeV in bins of 5 MeV, for each
of the S and D waves. The result of the elastic scattering is presented in Fig. 6.19(a). As can be noted,
the deuteron breakup effect (included in the full coupling) is not too strong compared to the result taking
into account the bare interaction only. These effects are mostly visible at backward angles, above 20°. In
terms of the reaction cross section, the analysis with only the bare potential results in 0., = 1112 mb,
while this value increases to o,., = 1167 mb by using the full coupling. This means the cross section
of the deuteron breakup is about 55 mb, which is an effect of only 5% in all reaction channels. For the
system °Ne +d at 36 MeV (Fig. 6.19(b)), which is of interest for our ADWA calculations, the trend is
quite similar. The breakup channel plays a moderate role only at backward angles. In this case, the
deuteron breakup cross section is O'preakp = 74 mb, about 7% of the reaction cross section.
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Figure 6.19.: CDCC calculations to account the deuteron breakup effect in the systems: 2°Ne + d at
52 MeV and °Ne +d at 36 MeV. The respective elastic cross sections are shown in the cases

of full continuum coupling and bare interaction.

As commented before, the effective interaction of the breakup channel is obtained from the previous
calculation. In Fig. 6.20 the result for the different components of the adiabatic potential is shown. As
in the nuclear interior the bare interaction has a stronger contribution, the polarization potential (which
contains the continuum coupling) is almost insensitive. Therefore, the most significant contribution of
this potential is located at the peripheral region. The real part presents a repulsive effect neighboring
to the reaction radius, what is a natural characteristic of the breakup channel [127]. Moreover, the
imaginary part of the polarization potential is absorptive at the surface, which also enhances a reduction
in elastic cross section due to the inelastic channels.

0.6

0.4}

0.2 }

0

Re(U) [MeV]
Im(U) [MeV]

-0.2 |

0.4}

-0.6

3 4 5 6 7 8 9 10 11 12 TP Ts 6 7 8 9 10 11 12
r [fm] r [fm]
(a) Real part. (b) Imaginary part

Figure 6.20.: Peripheral region of the bare and polarization potentials for the system ?Ne+d. The arrow
corresponds to the radius of the reaction, Rg = 1.25(A¥3 +A},/3).

Besides this interaction, other potentials, which are also needed for the ADWA calculations, can be
found in Table. 6.6. In the entrance channel (*°Ne + p) the OMP employed is the same that was used to
successfully describe the elastic scattering in first section of this chapter [6]. The core-core interaction
(°Ne + p) is the global potential from Koning-Delaroche [86], the same used to calculate the bare
interaction for the CDCC calculations. The binding potential of the deuteron was assumed as a Gaussian
shape with the parametrization suggested in Ref. [130].

The present finite-range ADWA calculations were performed in the prior representation where the 2°Ne
bound state potential was taken as a Woods-Saxon type. Its radius and diffuseness were kept fixed while
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System W TR ag Wy, Wp ™D ap Veo Tso ago rc
[MeV] [fm] | [fm] | [MeV] | [MeV] | [fm] | [fm] | [MeV] | [fm] | [fm] | [fm]
20Ne + p 36.33 1.20 | 0.75 | 11.31 | 0.18 | 1.20 | 0.79 - - - 1.25
PNe+p 38.44 | 1.15 | 0.67 | 5.58 410 | 130 | 053 | 474 | 0.94 | 0.59 | 1.39
n+p® 72.15 - 1.48 - - - - - - - -
YNe+n ™ | adjusted | 1.25 | 0.65 - - - - - - - -
PNe+d® | 81.50 | 1.17 | 0.80 - 2039 | 1.33 | 0.58 | 3.70 | 1.23 | 0.81 | 1.70

Table 6.6.: Optical model potential parameters used for the ADWA calculations. All radii are given in
the reduced form R, = rxAi/S. (*) is a Gaussian-shape potential. (1) the depth was adjusted
while keeping the shape fixed until the binding energy is matched by FRESCO. (i) potential
employed only for the DWBA calculation.

the potential depth was adjusted by the code to match the binding energy. As commented before, six
final states were included in our calculations: 2sy/5, 1ds/y, 1p1/2, 1fs/2, 1d3/; and 1ps), . Eq. (6.28)
was used to fit the experimental angular distribution to the theoretical cross sections for these six states.
The minimization code employed for this procedure was the same as the one utilized for the MDA. The
result of this analysis, together with the experimental angular distribution, is presented in Fig. 6.21(a).
The negative parity states (1p;/5, 1fs/2 and 1p3/,) have no contribution to the total angular distribution
(fitted coefficients were zero). Only the ground and the 1d excited states were populated in the measured
angular range. The angular distribution for £ = 0 has the most significant contribution at forward angles,
below 35°.
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Figure 6.21.: Experimental angular distribution for the transfer reaction 2°Ne(p, d)°Ne. The data is de-
scribed by a superposition of the orbitals 2s, /5, 1ds/, and 1d;,. It was not possible separate
the contribution from the angular momentum £ = 2 in the spin orientations 5/2 and 3/2%.
An alternative analysis was performed using DWBA calculations (see the text for details).

The states with the transferred angular momentum ¢ = 2 are favored at backward angles, above 40°.
However, as the angular distribution from the states 1ds,, and 1dj,, are equivalent, a separation of
these two contributions was not possible. Therefore, only information about the total shell 1d was
available. Eventually, from the present analysis the corresponding spectroscopic factors are extracted.
The respective can be found results in Table 6.7.

For the ground state the spectroscopic factor found in the fit analysis with the ADWA angular distribu-
tions is 0.48(9). This value is in perfect agreement with the prediction from a shell model calculation
performed with the code ANTOINE [131]. For this calculation, a sd valence space (*°0 core) configura-
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Spectroscopic Factors

¢ Orbital SM ADWA DWBA

0 25, 048 0489 0.49(7)
1ds;, 1.24

2 1dy, 0.27
Total 1.51 1.53(20) 1.98(19)

Table 6.7.: Spectroscopic factors obtained in the analysis of the angular distribution with ADWA and
DWBA calculations. The values are compared with the predictions from a shell-model calcula-
tion (SM).

tion was assumed, with the very popular interaction USDB [132]. On the another hand, the spectroscopic
factor from the population of the 1d states is given by the sum over the two possible j values

Se=> .5 (6.30)
J

with £ = 2 and j = {5/2,3/2}. The total contribution extracted from the ADWA analysis is 1.53(20),
which is also in perfect agreement with the shell model prediction. Additionally, one should note that
the sum of these experimental spectroscopic factors already exhaust the occupancy number

D 15, =2.01(22). (6.31)
0

Finally, the present results can also be compared with an analysis performed from DWBA calculations
in Fig. 6.21(b). In this case, the exit channel OMP was taken from a global systematics for deuterons
of Ref.[133], for which the corresponding parameters can also be found in Table. 6.6. Due to some
inconsistencies in the extraction of the spectroscopic factors, only angles up to 35° were fitted. The
result of the population of the ground state is in very good agreement with the shell model prediction
and with the result from the ADWA analysis. However, the total contribution from the 1d shell is about
31% larger than the other two cases. This effect could be related with the deuteron breakup contribution,
but also an OMP dependence in the output channel is expected. For a more conclusive analysis it would
be preferred to fit experimental data at more forward angles.
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Chapter

Summary and conclusions

In this thesis, nuclear reactions are investigated in experiments performed with the stored *®Ni and 2°Ne
beams at the storage ring ESR. For these experiments, internal gas-jet targets of hydrogen and helium
were employed with densities in the order of 10'2 and 10' part./cm?, respectively. These low target
densities were compensated by the revolution frequency of the stored beam, which was in the range
of MHz. Eventually, significant luminosities of up to 10*” cm~2s~! were achieved in the present experi-
ments.

From the technical point of view, one of the most challenging parts in the execution of the experi-
ments was the detector setup operation. On the one hand, during the preparation of the experiments
the detector system was adapted to tolerate temperatures of up to 150 °C (for a week) in order to
reach the ultra high vacuum conditions. On the other hand, the detector setup included double-sided
silicon-strip detectors (of 285 um thickness) operating as active barriers between the ultra high vac-
uum of the storage ring and an auxiliary vacuum of internal pockets of the experimental chamber.
This detector setup permitted us to measure low energy recoils (hundreds of keV) successfully, since
both target and detectors were windowless. These type of measurements are essential for the inves-
tigation of nuclear reactions in inverse kinematics at very low momentum transfer. The satisfactory
performance of this detector configuration is of great importance for the research of detector compati-
bility with ultra high vacuum conditions and, in particular, for future applications within the EXL project.

Parallel to the experiments, dedicated simulations with the GEANT4 toolkit were performed. These
simulations helped us to understand detector properties which were investigated in preparatory in-beam
experimental tests. Also, simulations of the detector setup utilized for the present work were essential
in the analysis of the experimental data. These simulations were applied for the reaction channel iden-
tification as well as to obtain the angular calibrations and solid angle acceptance of the detector system.
Moreover, extended versions of detector setups for upcoming experiments are studied with our simula-
tions. For instance, the full ESPA detector recoil of EXL was implemented in this work and was tested
with some reaction channels foreseen for future experiments with EXL (see Appendix B). The present
simulations routines are the starting point of a full simulation framework for the EXL collaboration.

In the experimental data of this thesis different reaction channels were identified. The analysis of this
data was divided in three main parts which are discussed below:

Elastic scattering and excitation of low-lying states

e The angular distribution of elastically scattered protons by the stored °Ne beam (at 50 MeV/u)
was measured in the center-of-mass range from 7° to 30°. The respective differential cross section
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was analyzed with three distinct optical potentials, where the most successful in the description
of the experimental data was a density-folding potential with the M3Y interaction. By studying
the absorption probability deduced from the analysis of each potential, a RMS point-matter radius
of 2.86(8) fm was obtained, which is in very good agreement with experimental results found in
literature. However, the method employed for deducing the RMS radius in this works is dependent
on the optical potential shape. In this case, a folding model potential is recommended to reduce
the number of free parameters of the optical potential.

* In the same experiment, ?°Ne + p, the first excited state of *°Ne (2 state at E, = 1.63 MeV) was
measured. DWBA calculations were performed to fit the experimental angular distribution of the
excited state. A nuclear deformation 3, = 0.68(6) was extracted. This result is consistent with the
deformation parameter deduced from experiments with electromagnetic probes.

e Elastic scattering of *°®Ni+a was measured at 100 and 150 MeV/u. The experimental angular distri-
butions were successfully described with theoretical differential cross sections deduced from three
distinct folding potentials. Since at the present energies and measured angles the eikonal approxi-
mation is already valid, a fit of the experimental data was done with the optical limit of the Glauber
theory. In this case, a Fermi shape was assumed for extracting the *®Ni matter density-distribution.
The resulting RMS point matter-radii are 3.68(10) fm and 3.64(9) fm for the measurements at 100
and 150 MeV/u, respectively. The presented values are in very good agreement with results from
several experiments with proton and alpha scattering which were done in normal kinematics in the
past.

Isoscalar giant resonances excitation

The excitation of isoscalar giant resonances was studied in the experiment *®Ni+a at 100 MeV/u. In this
case, inelastically scattered a recoils in excitation energies above 15 MeV were measured. The angular
coverage of the detector setup permitted measurements in the center-of-mass angles from 0.5° to 1.5°. In
the double-differential cross section, a well-defined peak in the energy range from 15 to 30 MeV was ob-
tained. A fit with a Lorentz function for the ISGMR component resulted in a centroid in 19.27(61) MeV
and a width of 6.45(51) MeV. Moreover, a multipole decomposition analysis was done by fitting the an-
gular distributions of different energy bins. The theoretical angular distributions for the fits were derived
with DWBA calculations where transition potentials explicitly deduced from a folding-model were used.
The extracted strength of the ISGMR exhausts 791’3 % of the Energy-Weighted Sum Rule (EWSR). The
results are consistent with the analysis of other experiments performed in the past in normal kinematics
as well as theoretical predictions. This is a clear demonstration for the feasibility of prospective studies
with stored radioactive beams. New experiments are already planned with an extended detector setup
for the investigation of isoscalar giant resonances in the doubly magic nucleus *°Ni.

Transfer reaction

A neutron transfer reaction was measured in the experiment with the stored 2°Ne beam. Deuteron
transfer-products were observed in laboratory angles from 27° to 35°, which corresponded to the center-
of-mass region between 26° and 72°. In this experiment, the contribution of the transfer to the ground
state and low-lying states of 1°Ne were kinematically not separable. In order to disentangle the different
components, a multipole decomposition analysis was applied to the experimental data. In this analysis,
the deuteron breakup channel also was taken into account. The result shows that the most significant
contribution at angles up to 35° is from the 2s;, orbital. At more backward angles a superposition of
the orbitals 1ds,, and 1d3/, (¢ = 2) is dominant. The spectroscopic factors deduced in this analysis are
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in very good agreement with the predictions from shell model calculations.

Overall, the results of this work demonstrate the feasibility of nuclear reaction studies with stored
ion-beams by using an in-ring detector system. This also provides a proof of principle of the EXL project
which in the future will apply these experimental techniques to investigate nuclei far away from the
valley of stability. A first step to implement this technique with a stored radioactive beam was already
demonstrated in an experiment from the same EXL campaign [23, 36].

85






Appendix

Preparatory works for EXL

On the way to the construction and development of the detection system for the EXL project, an in-
beam demonstrator test was done at the cyclotron accelerator at KVI [134]. For this test, three types
of detectors were employed: DSSDs (Double sided Silicon Strip Detector) of 285 um thickness, Si(Li)
with a thickness of 6.5 mm and CsI scintillation crystals. The experimental setup consisted of two DSSDs
and Si(Li) detectors which were placed in sequence inside of a vacuum chamber in order to record the
energy deposited by the proton beam that impinges the detector system. Eventually, two CsI crystals
were mounted at the rear part of the chamber to stop the protons completely. In the Fig. A.1 is shown a
schematic illustration of the experimental setup.

Vacuum chamber

Beam
-

I\L.——"""“
Csl-1 mylar —%’?]’m
d DSSD-1
C |/2 DSSQZ#
S -

Figure A.1.: Schematic illustration of the experimental setup used for the in-beam test at KVI. The silicon
detectors are placed inside of a vacuum chamber while the Csl crystals are placed outside for
stopping the beam particles completely.

The beam energy was set to 133 MeV, which is sufficient to punch through the chamber windows, silicon
detectors and to be stopped in the CsI crystals.

Many questions arose when the experimental results were compared to simple simulations, which did
not take into account the correlations between neighboring detectors and cross-talk (signal-partitioning)
effects. In principle, these simulations were done under the assumption that all detectors are indepen-
dent, i.e., that there is no signal correlation between a couple of neighboring detectors. Then, the only
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possible correlation are leaked particles among them. For comparison, Fig. A.2 shows two examples of
experimental energy spectra and these simple simulations.
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(a) Energy spectra of one of Csl crystals.. (b) Energy spectra of a strip of the DSSD-1

Figure A.2.: Example of the experimental results in comparison with the simulations. In this case the
simulations are performed without signal correlation.

Surprisingly, the experimental spectra for the CsI detector (Fig. A.2(a)) show two peaks and it seems
that the position of the total energy absorption peak is reduced by about 20 MeV. In principle, only one
peak (total absorption) and a smooth background at lower energies due to proton inelastic scattering
and not completely absorbed particles in the crystals was expected. Similarly, the experimental energy
spectra for the individual strips of the DSSDs present a different peak shape than the ones expected by
these simple simulations (Fig. A.2(b)). The experimental peak seems to be wider than the simulated
one, mainly at low energies where the experimental spectrum has a large extension, probably because
charge partitioning between neighboring strips in the DSSD.

Below, these two cases will be studied in more detail.

A.0.1 Crystal correlation (Light leakage)

In this demonstrator test a two-channels Photonis XP14D5 square photomultipliers [135]. In Fig. A.3 a
couple of pictures of this double-photomultiplier and the CsI crystals can be seen.

(a) Double photomultipliers. (b) Csl crystals.

Figure A.3.: Pictures of the Csl crystals and the double photomultipliers used in the demonstrator test.
With this device, two crystals can be coupled in a side by side mode.

However, this arrangement could bring light leakage problems, e.g., due to bad gluing or simply from
light transmission through the boundary between the crystals and photocathodes. This could mean that
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not all optical photons created in one of the crystals are detected on its respective photocathode. Thus,
a certain percentage of them could also arrive at the neighboring photocathode. In order to gain a
better understanding of this PMT prototype, we made a simulation of the PMT-crystals coupling. For this
simulation, the Scintillation process class of GEANT4 was employed. This routine permits to create optical
photons when the ionizing particles deposit energy in the scintillator material. Then, these particles
are transported inside the crystal using light optical properties until they reach the photocathode. For
the present simulation, realistic geometries and materials are assumed. Likewise to the experiment, the
crystals were wrapped in aluminum to prevent the escape of photons and coupled to the frontal window
of the PMT. This window is made of an optical borosilicate-glass that has a refractive index compatible
to the CsI crystal (at the wavelength of the photons produced in the crystals). On the other side of the
window, the two photocathodes, made of a bialkali material (Sb-Rb-Cs), were placed for the collection
of the light. In Fig. A.4(a) an illustration of the simulated setup is shown.

g E 10°
window > ir
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(a) Simulated geometry. (b) Detected light on each photocathode.

Figure A.4.: Simulation using the Scintillation process class. Two Csl crystals are wrapped with aluminum
and connected by the same window to the double photomultiplier. The green lines corre-
spond to optical photons. On the left side the detected light intensity in each photocathode
is shown when only one of the crystals is illuminated.

The aim of this simulation is to quantify the number of photons that are detected on the photocathodes
when only one crystal is illuminated. One of the results of this simulation can be seen in Fig. A.4(b),
which is a plot of the light intensity detected in each photocathode. As one can see, even with a “perfect”
gluing there is still a certain amount of photons that are detected in the neighboring photocathode.
About 2% of the total light intensity produced in one crystal is leaked. This value might also change
depending on the thickness of the PMT window, but it does not explain the experimental results shown
in Fig. A.2(a) completely.

To simulate higher order correlations between neighboring crystals, it is convenient to manipulate the
ADC signals at every event. The problem can be described as a linear transformation

N/ l-a «a N
(V)= ) () A

where N; and N, are the processed digits per event (proportional to the number of detected photons)
in each detector, and a is the light cross-talk percentage that can be calculated by the ratio (R) of the
channel position for the two experimental peaks of Fig. A.2(a)

R
a=——.
1+R

For example, in the present case a value R = 0.15 was obtained. This implies a cross-talk of 13% of the
total signal amplitude. The transformation of eq.(A.1) is then applied for each event in the simulation.

(A.2)
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Finally, our results are in very good agreement with the experiment, as we can see in Fig. A.5 and
Fig. A.6.
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(a) Simulation including the light leakage. (b) Deconvoluted experimental data.

Figure A.5.: Comparison of simulation and experiment of the Csl energy spectrum. The simulation was
done using the linear transformation of eq.(A.1) for each event. For the deconvolution of
the experimental data the respective inverse transformation was applied.

This explains that the positive correlations (below 20 MeV) are mainly caused by light leakage between
neighboring crystals. Such effect can also be seen in a bi-parametric spectrum (Fig. A.6) as lines with a

positive slope. The line with the negative slope corresponds to the proton leakage from one crystal to
another (anticorrelation).
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Figure A.6.: Energy spectra correlation of the two Csl crystals. The correlation effect, due to the light

leakage, is seen as lines with positive slope. The anticorrelation (line with negative slope)
shows the proton leakage.

The present linear transformation can also affect the energy resolution by a certain reduction factor,

similar as observed in the experiment. A simple explanation of this effect is obtained by assuming the
matrix variance
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with o2 the variance of the total absorption peak and p the correlation factor between the two detectors
due the proton leakage (close to —1). Then, it is possible to calculate the variance matrix after the
transformation

V'=p"V,
where f3 is the matrix transformation of eq.(A.1). Thus, the new variance is given by

2 2 2 2
Ofons. =0 ((1 —a)+2pa(l—a)+a ) .
For instance, assuming p = —0.9, we get O, = 0.740.

An immediate consequence from our simulation results is that the experimental correlations in the crys-
tals are highly linear. Therefore, a similar procedure can be applied to perform the experimental data
deconvolution. For that the inverse transformation of eq.(A.1) is needed

N 1 l1-a -—a N
N2 _(1—(1)2—(12 —Qa 1—a NZ/ ?
which is applied for each event. Thus, as is shown in Fig. A.5(b), this procedure can be useful for the

correction of light cross-talk in the experimental data if similar problems with double-photomultiplier
occurred, as is shown in Fig. A.5(b).

A.0.2 DSSD interstrip signals

In order to perform a realistic simulation for the DSSD, we built the detector in two parts: p and n
side. Each part is a single-sided strip detector, rotated by 90° relative to the other. The thickness of
each segment was 142.5 um (285 um total detector thickness) and an area of (21 x 21) mm?. At
every detector hit (p or n side), two identical digits are created, and later assigned to the p(n)-side digit
collection class. In this part, special care was taken at the boundary of these two geometries in order to
not over count or miss the digits. In Fig. A.7(a) the DSSD geometry in the simulation is shown.

interstrip
gap

(a) Constructed geometry of the (b) Pictures of the real detectors.
DSSD.

Figure A.7.: Simulated geometry for the DSSD detector. The detector was assumed as a junction of p-
and n-side SSDs. On the right side pictures of the real detectors are presented.

Both parts were divided in 64 strips with an interstrip gap of 15 um for the p-side and 65 um for the
n-Side. In Fig. A.7(b) pictures of the real detector are shown. Here, it is possible to observe the strip
division and the interstrip gaps for each case.
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One of the aims of the present simulations is to study the charge partitioning due to the interstrip hits
and its effect on the energy spectra. In the past years, a lot effort was invested to understand this
problem in experiments with multisegmented detectors [136, 137]. Also, complex theoretical models
have been successfully applied to describe the charge-collection efficiency [138, 139]. Based on these
works, a simple model was assumed for the simulation of charge-partitioning in interstrip hits. Let Q, be
the total charge collected at a certain event. Then, if the particle hits in between two neighboring strips,
the charge is divided in a left (Q;) and a right (Qg) part, i.e.

Qo

Quer = 1+exp (x_a—xm) and Qr) = Qo ~— Quwys (A.3)

where x,, is the center of the interstrip gap and a is related to the diffusion of the electron (hole) cloud,
which can be assumed as 10% of the interstrip gap [138]. Under this consideration, there are no charge
losses and the fraction of collected charge in one strip depends on its proximity to the hit. Since the same
procedure is employed in the p and n sections, it is necessary to track the interacting particles inside the
detector at every step. One way to validate this model is to perform a simulation by scanning the
interstrip area with constant energy particles and, for example, extract the charge-collection efficiency
for the left strip (analogous for the right part)

Q,+Qx’

In the present results, we focus on the interstrip gap between 305 um and 320 um. In Fig. A.8(a) one
can see the efficiency of the charge-collection at three different hit positions. The efficiency distributions
are quite narrow at vicinity to the strip’s edge, but are more extended at intermediate positions because
of the large amount of charge shared in these regions.

n (A.4)
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Figure A.8.: Interstrip simulation results. The edge of the left strip is 305 um and 320 um for the right
strip. The interstrip area was scanned with constant energy particles.

These effects can also be seen when the interstrip gap is illuminated with a horizontal plane source (see
Fig. A.8(b)). In the middle, the efficiency distribution has an extension up to 20%. Also, it is possible to
see that the assumed shape in eq (A.3) is obtained.

Now, when the detector is totally illuminated we can study the correlations between p and n side. Fig. A.9
shows the simulated p-n side energy spectrum, from where we can identify the different interstrip events.

The horizontal line represents the hits on the p-side interstrip gap and on the n-side strip. Similarly,
the vertical line shows the events from the n-side interstrip gap with strip hits on the p-side. When the
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Figure A.9.: Energy spectra when the detector was totally illuminated with 5 MeV alpha particles.

respective energy projection is done, it is possible to extract the interaction probability in each case,
which are: 71% for (p)Strip-(n)Strip, 22% for (p)strip-(n)interstrip, 6% for (p)interstrip-(n)strip and
1% for (p)interstrip-(n)interstrip. These results are in perfect agreement with the experimental data
[140] and also with the expectations from the effective interaction areas.

Returning to the initial problem, where simulations without strip correlation were not able to describe
the experimental results of the in-beam test (see Fig. A.2(b)), we employ the present simulations in order
to understand the effect of the interstrip events on the energy spectra. Fig. A.10 shows the comparison of
the energy spectrum of one of the strips with this new simulations. Now we can see the peaks are more
extended especially towards low energy region, which is in much better agreement with the experimental
peak shape.
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Figure A.10.: Comparison of a strip energy spectrum with the simulation. For this simulation the charge-
partitioning in the interstrip events was taken into account.
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The low energy part, as also seen in Fig. A.9(a), basically belongs to the interstrip events. In our model,
this energy region is overestimated, and this could be a sign for charge losses in the detector. Another
way to see the interstrip events in the demonstrator test is to check the p-n side correlation. Fig. A.11
shows the comparison of our simulations with the experiment. In both cases it is possible to see the
counts out of diagonal that are from charge-partitioning in the interstrip hits. As also seen before, this
contribution does not represent more than 30% of the total events, and this percentage could even
decrease at very low energies due to the charge losses effect with low penetrating particles.

Energy n-Side [keV]
Energy n-Side [keV]

700800
Energy p-Side [keV] Energy p-Side [keV]

(a) Simulation. (b) Experiment.

Figure A.11.: Comparison of simulation and experiment for the p-n side energy correction.
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Appendix

Future upgrades toward full EXL

B.1 Optional detector arrangement at the present vacuum chamber

In this chapter we will study some possible detector setups that would be implemented for experiments in
the near future. With these new detector configurations, measurements with a higher angular coverage
and better selectivity for reaction channels in interest would be achievable. The idea of the next step of
the EXL project is to include as many detectors as possible in the current vacuum chamber (presented
in Chapter 2) in an arrangement that enhances the particle tracking and the detection of inelastically
scattered recoils at very forward angles in the center-of-mass system (c.m.s.). Specifically, one of the
future goals will be to investigate the giant resonances with radioactive stored beams, like for example
S6Ni. For that reason it would be interesting to include telescope systems in order to separate the products
from distinct reaction channels, particularly at low energy detection range. Fig. B.1 shows an optional
design that comprises eight DSSDs and two Si(Li) detectors.

Figure B.1.: Schematic illustration of an optional detector setup for the next experiments of the EXL
project. The setup is divided in four zones: A, B, D and D. In total eight DSSD will be mounted
in the UHV and two Si(Li) detectors inside of a pocket. (Technical design by M. Lindemulder,
KVI [34])

As can be noticed with the detector labeling, the system is divided in four sections: A, B, C and D. The
section A is centered at a polar angle of 80.5°, comprising an optional DSSD in the front part of a pocket
which contains a DSSD and two Si(Li) detectors behind, the one employed in the experiment E105. For
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sections B and C, 1.5 mm thick DSSDs are planned to be used covering the polar angles from 70° to 43°,
but installed symmetrically with respect the azimuth angle ¢ = 0°. The section D, centered at the angle
0 = 28.5° is a telescope composed by a thin DSSD in the front and a thick DSSD behind. A more detail
information about this proposed detector setup can be found in Table B.1.

Detector ID | Thickness [mm] | Polar angle (6) | Azimuthal angle (¢) | Distance [mm]

DSSD-1A 0.285 80.5° 0° 235
DSSD-2A 0.285 80.5° 0° 360
Si(Li)-1A 6.5 80.5° 0° 419
Si(Li)-2A 6.5 80.5° 0° 444
DSSD-1B 1.5 65.0° +11° 300
DSSD-2B 1.5 65.0° -11° 300
DSSD-1C 1.5 48.0° +11° 355
DSSD-2C 1.5 48.0° -11° 355
DSSD-1D 0.285 28.5° 0° 220
DSSD-2D 1.5 28.5° 0° 320

Table B.1.: Some specifications of the detector setup presented in Fig. B.1. The angles are measured
with respect the beam direction and the distances are determined from the center of the gas
target.

One of the main features of this new experimental arrangement is the possibility to track the high
energy recoils using telescope systems composed by multiple DSSDs. For instance, section A provides
the opportunity to record the trajectories of the recoils coming from elastic scattering, excitation of low
lying states and some products from transfer reactions that can be observed with high kinetic energies in
this angular region. In principle, the direction of incidence of these particles on the front DSSD defines
the laboratory angles of the reaction. However, the resolution is constrained by the extended target
distribution and the beam diameter. An alternative method for deducing the recoil angles is to use a
couple of multisegmented detectors, mounted sequentially, with a sufficient separation between them to
resolve the angular coverage per strip, like the telescope of section A. Thus, the angles can be directly
deduced from the recoil trajectory, which is obtained from coincidences of the diverse strips (or pixels) of
the two DSSDs. In order to evaluate this method, proton recoils impinging on section A were simulated at
different kinetic energies above the punching through threshold for protons in the DSSD-1A. In Fig. B.2,
a comparison of the polar angle deduced from the recoil particle tracking and the one obtained from
the DSSD-1A acceptance is presented. In particular, this tracking method is not very efficient at energies
around the punching-through threshold of the two DSSDs (~ 14 MeV) because of the importance of the
angular straggling in this energy range. For energies larger than 40 MeV, clearly, the most advantageous
way to calculate the angles is from the particle tracking. As an example, Fig. B.2(b) shows the significant
improvement for the angular resolution already at 90 MeV.

As previously mentioned, one of the principal applications for this dedicated detector setup is to inves-
tigate the isoscalar giant resonances with the stored radioactive beam *°Ni by measuring the a-particle
scattering. As expected in this type of inverse kinematics experiments, the elastically scattered particles
are detected mainly in the detector sections A and B. Similarly, due to the kinematics, some stripping
reactions can also be observed in these detectors. At 100 MeV/u, with a luminosity in the order of
10?7 em 257!, reactions like *®Ni(a, *He)®’Ni could be measured in laboratory angles close to 90°, be-
cause of their significant probability at angles below 30° in the center of mass system. In Fig. B.3,
simulation results assuming the reaction channels mentioned above are presented. Fig. B.3(a) shows
the energy deposited in the two DSSDs of section A, as a function of the different vertical strips from
the DSSD located closer to the interaction zone. Similar to the results of Section 4.2, the strip number
is proportional to the polar angle due to the large separation of these detectors from the target position,
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Figure B.2.: Polar angle deduced by tracking the recoil particle. The method is more efficient at high
energies.

what in turn provides a clear visualization of the recoil kinematics. The intensity of the elastic reac-
tion channel is quite significant, even at given angles the scattered recoils have energies large enough
to punch through both DSSDs. On the other hand, the detection of the 3He particles produced in the
transfer reaction is predicted to have an intensity of almost three orders of magnitude lower than the
elastic scattering. The detection of these particles is mainly observed at energies below 10 MeV, because
in such angles their kinetic energy is quite significant and only energy loss is registered in the DSSDs.
The two parallel kinematic lines reflect the region where the detectors are geometrically overlapping.
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Figure B.3.: Simulation results for elastic scattering of *®Ni + a and the pick-up reaction **Ni + a —
3He + >’Ni at 100 MeV/u.

A more clear separation of the reaction channels can be done using the detector system as a telescope
(AE-E;), where the signal of the DSSD-1A is employed as a AE and the other detectors (including the
two Si(Li)s) for the total energy deposited, as is shown in Fig. B.3(b). Such configuration is quite advan-
tageous for performing a separation between the events involving distinct recoil species and, especially,
by their kinetic energy. In the upper part of this spectrum can be observed events produced from the
elastic scattering, starting from a well defined growing part that represents the particles stopped in the
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DSSD-1A, and followed by a decreasing region that exhibit the energy loss in this detector. Also, the
3He residues are distinguishable at the bottom part of this spectrum, with total deposited energies larger
than 100 MeV. This means, in order to identify this reaction channel a combination of several detectors
is required due to the high energies of the recoils.

Simultaneously, in the detector sections C and D, which are located at more forward angles in the c.m.s.,
inelastically scattered recoils can be measured. As seen in Chapter 6, one of the main experimental
problems for the giant resonances identification was the presence of 6-rays. In the present simulations
we can still take into account this reaction channel in order to investigate the separability with this new
detector configuration. Moreover, the position of the detectors in section D would permit measurements
of inelastic scattering below 6., = 1°, while for section C in the range 1° < 6., < 2°. For this simulation,
the Gaussian parametrization of the Ref.[116] was employed to describe the energy distribution of IS-
GMR. Also, the respective angular cross section was included in the event generator to have more realist
results. In Fig. B.4, simulation results assuming only electron elastic scattering and the ISGMR excitation
are presented. Fig. B.4(a) and Fig. B.4(b) are energy spectra samples from the edges of the DSSD-1D
detector, where laboratory angles from 21° to 37° are covered. Similarly, Fig. B.4(c) and Fig. B.4(d) are
energy spectra from the DSSD-1C at laboratory angles of 43° and 53°, respectively.
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Figure B.4.: Simulated energy spectra for sections C and D assuming two reaction channels: &-rays pro-
duction and excitation of ISGMR. The sequence shows the changes in peak positions and
shape for different polar angles in this part of the detector setup.

For the most forward strip (Fig. B.4(a)), one can note the important contribution of the resonance below
500 keV, but here the detection of the &-rays affects the full separation of this peak since energies about
200 keV. However, in laboratory angles larger than 30° the position of the §-ray peak is shifted to lower
energies, what in turn enhances the identification of the ISGMR component. In the detector section C the
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separation is still better, but in contrast, the ISGMR intensity is decreased due to the low cross section
in this range. From the present results we learn that measurements of isoscalar giant resonances are
feasible with the planned detector setup, as long as the signals of the 6-rays are vetoed or well identified
during the data acquisition. Also, the use of telescope systems may be important in order to remove the
contribution from particles with high kinetic energies.

B.2 Implementation of the full EXL recoil-detector setup

All experimental results and simulations which have being presented along this work are devoted to
the investigation of detector response under diverse conditions and their applications towards the final
version of the recoil-detector setup of EXL. As it was seen in Chapter 1, the full EXL setup will feature
hundreds of multisegmented silicon detectors (ESPA, EXL Silicon Particle Array) covering a large solid
angle around an internal gas-jet target, and surrounding this, a complex arrangement of scintillator
crystals (EGPA, EXL Gamma and Particle Array) will operate as a calorimeter [8]. For this work, the
complete geometry of this recoil-detector setup has been implemented in our simulations in order to
explore its performance in distinct experiments that might be performed in the future with the full
detector configuration. The simulated geometry is based on technical designs presented in previous
works [8, 141], but with slight differences such as the dimensions of some type of detectors and their
distances from the interaction center. In total, 735 independent multisegmented-volumes divided in 6
sections were included for the reconstruction of the silicon array (ESPA): A, B, C, D, E and E Each of
these sections are composed of manifold detector layers, which can be employed for particle tracking
and separation, as it was studied in the previous section. The polar angle coverage is rather extended,
ranging forward angles from 10° to backward regions up to 170°. The sections D and F have 360°
coverage in azimuth angles, while the other sections cover lower ranges due to limitation imposed by
the mechanical structure of the system. An outline of the distances, dimensions and number of detectors
implemented in each of these sections is presented in Table B.2.

Section | Layer ID | 6y, [deg] | Area [mm?] | Thickness [mm] | Distance [mm] | Number of det.

A 0 89-80 90 x 90 0.3 580 22
1 90 x 90 6.5 600 22
B 0 80-75 60 x 90 0.3 450 22
1 60 x 90 6.5 468 22
2 60 x 90 6.5 525 22
3 60 x 90 6.5 560 22
C 0 75-45 90 x 90 0.1 450 88
1 90 x 90 0.3 580 88
D 0 45-10 90 x 90 0.1 450 56
1 90 x 90 0.3 550 56
2 90 x 90 6.5 560 56
E 0 120-91 90 x 90 0.3 580 66
1 90 x 90 6.5 600 66
F 0 170-120 50 x 50 0.3 250 64
1 50 x 50 6.5 260 64

Table B.2.: Specifications of the recoil silicon array (ESPA). Each section is divided in different layers dis-
tributed along its angular range. Distances and angles are given with respect the center of
the interaction point.

As can be noticed, the most forward angles (respect to the beam direction) are covered by the regions D
and C, also the detection near 90° would take place in sections B and A, and at rear angles the regions
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E and F would complete the polar angle coverage. Fig. B.5 shows a schematic illustration of the ESPA
geometry implemented in this work. Fig. B.5(a) shows a horizontal cut of the simulated geometry seen
from the top and Fig. B.5(b) is a vertical cut in a rear angle perspective.

(a) Horizontal cut of the geometry (b) Vertical cut of the geometry seen from
seen from top. arear angle

Figure B.5.: Schematic illustration of the implemented silicon array ESPA. Each section of the system can
be distinguished by a different color tone.

Each detector zone can be distinguished in the illustrations by different color tones used to fill the detec-
tor volumes. In these illustrations a significant amount of detector layers at some angular regions which
can provide a precise high energy particle detection. As the detectors foreseen to be used in section F
have a smaller size, this detector zone has been installed closer to the internal gas-jet target in order to
full fit the solid angle acceptance at backward direction.

Moreover, the complex EGPA configuration which will comprise about 2000 CslI crystals arranged in a
spherical shell shape enveloping the ESPA. Since the detailed implementation of the EGPA is beyond the
objectives of this work, this arrangement was constructed in the present simulation as a single macro-
scopic volume with the same angular coverage and dimensions that are expected for the final geometry
of this system [8]. In Fig. B.6 we can observe the entire ESPA structure from a frontal perspective and
an external shell of CsI representing the EGPA. A natural way to evaluate this dedicated geometry is to
simulate some possible nuclear reaction experiments with this system, e.g., elastic scattering at low mo-
mentum transfer, isoscalar giant resonances excitation, transfer reactions or quasi-free scattering. Below
we will study some specific cases of nuclear reaction experiments with this setup.

B.2.1 Elastic Scattering

The elastic scattering of light ions (like p, d, a, etc.) at intermediate energies is a standard tool for
extracting nuclear matter distributions and radial shapes of nuclei. In particular, the EXL recoil-detector
setup gives access to complete measurements at low momentum transfer from where skin or halo struc-
tures of radioactive ion beams can be investigated. For instance, unstable nuclei like !*Be (neutron halo)
or 132Sn (doubly magic) could be studied in the future by the EXL project. In the following simulations
the reactions *Be(p, p) and *2Sn(a, a), at 400 MeV/u energy beam are considered, in order to recon-
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Figure B.6.: Schematic illustration of the complete ESPA and EGPA from a forward angle view. The
internal ESPA is shown in color and the EGPA is the outer transparent volume.

struct the detection of such reaction channels from each of the individual detectors of the system. In
Fig. B.7(a), one can see the total events built-up from the reaction 'Be + p.

The contribution from each detector-strip corresponding to sections A and B is presented in this spectrum,
where the respective elastic kinematic-plot can be identified up to an energy of 60 MeV. The vertical
dashed line represents the angular boundary between these two detector sections. In the case of elastic
scattering with the 132Sn beam (see Fig. B.7(b)), the a recoils are produced at higher kinetic energies and
the reaction angles (in c.ms.) are condensed close to 90°. For this reason the total amount of detected
events in section B is reduced, since the respective cross section drops significantly at large 6,.

B.2.2 Excitation of Isoscalar Giant Resonances

One of the major advantages of the full EXL setup is the option to measure scattered particles at very
forward angles in the center of mass system. For light-ion inelastic scattering at small 6., it is possible
to study collective properties of nuclei through the excitation of giant resonances. As it was previously
mentioned, the a inelastic scattering enhances the excitation of isoscalar giant resonances in the nucleus.
For example, in a future experiment with an unstable stored 32Sn beam, the ISGMR or the ISGQR can be
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Figure B.7.: Simulation results for elastic scattering with the complete recoil detector system of EXL.
The vertical dashed lines represent the separation of the detector section A and B that are
described in Table B.2.

investigated with a good accuracy by employing this EXL detector setup. In order to perform a realistic
simulation for these resonances, the differential cross section of these multipolarities was calculated with
the program CHUCK3 [59] and included as an input to the event generator of the simulation. Also, the
energy distributions of these resonances was extracted from a RPA calculations with the code SKYRME_RPA
[110]. In Fig. B.8 results of the simulation are shown, where the scattering angle 6., ranges from 0°
to 5°. As can be noticed in Fig. B.8(a), the kinematic plot is reconstructed from the energy deposited in
all detectors placed in laboratory angles from 10° to 90°. The detector zone D is more favorable for the
detection of giant resonances due to the inverse kinematics, but in some cases this component could be
even below the noise threshold which was assumed to be about 60 keV for the present simulations. For
sections C and D, the detected recoils have higher kinetic energies, but with extended distributions in the
energy axis for all individual detectors in such range. In principle, this could affect the full identification
of the resonances in this angular region since its cross section is small and also because there may be
other reaction channels with a higher intensity. Using only detectors mounted in a given polar angle
(ring), the energy profile of the resonance peak is obtained. In Figs. B.8(b), B.8(c) and B.8(d) three
samples at distinct angles are shown. For the projection of the ring at 27.15°, the ISGMR component is
dominant due to the small angles covered in c.m.s.. However, the ISGQR peak in these detectors is very
close to the noise threshold. The ISGQR excitation becomes more important at rear rings, but its energy
distribution becomes more extended and less intense.

B.2.3 Transfer Reactions

Nuclear reactions which involve transfer of one or few nucleons provide information on the single-
particle configurations of neutrons and protons in nuclei. Also, occupation numbers and spectroscopic
factors can be deduced from this type of experiments, that are particularly important for understanding
the nucleosynthesis pathways. For instance, pick-up reactions in vicinity of *°Fe, like >°Co(p,d), can
provide information about the final phase in the life of stars (presupernova evolution). With stripping
reactions, as °®Ni(d, p), the low energy astrophysical S-factors can be directly obtained. So, the reactions
mentioned may be good examples of nucleon-transfer experiments feasible with the future EXL setup.
In the present case, the reactions >>Co(p,d) and °®Ni(d, p) at 50 MeV/u were simulated. Results from
the pick-up reaction are shown in Figs. B.9(a) and B.9(c). The recoil detection in this reaction channel
is enhanced at forward angles in the laboratory system where section D has a large coverage. Therefore,
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Figure B.8.: Simulation results of ISGMR and ISGQR excitations in 132Sn with the full recoil-detector
system.

reactions which occur in small 6., are measured by detecting deuterons at angles close to 10° (in lab.)
with energies smaller than 20 MeV.

The maximum scattered angle in the laboratory system is reached at 37°, which corresponds to 6.,
around 52°. Also, the maximum deposited energy of these recoils in the silicon array (ESPA) is about
50 MeV. Deuterons with higher kinetic energies are able to escape from the silicon array, but are totally
stopped in the external CsI setup (EGPA). Fig. B.9(c) shows the total deposited energy spectrum in the
EGPA for the present reaction. As can be noticed, very intense peaks at low energy range from y-rays
and/or neutrons are also measured. In principle, particle coincidences between ESPA and EGPA detector
systems would permit a full kinematic identification of the recoils in an extended range of excitation
energies. On the other hand, stripping reactions in inverse kinematics are characterized by producing
recoils (with small 6.,,,) in backward directions in the laboratory system. In this case, the detector zones
F and E are the most relevant for such transfer reactions, as can be seen in Fig. B.9(b). Also, detection
of recoils in more forward regions (sections A and B) is still possible given that the respective angles
in c.m.s are just about 50°. It is important to note that the maximum energy deposited by the protons
in section F is around 36 MeV, however relatively clean measurements would be possible due to the
kinematic selectivity for most of the allowed nuclear reactions. Similarly as seen before, Fig. B.9(d)
shows the total deposited energy in the EGPA calorimeter where most of the faster recoils and emitted
y-rays are absorbed.
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Figure B.9.: Simulation results of transfer reactions with the complete recoil detector system of EXL.
The figures on the left side correspond to the pick-up-reaction results. On the right side,
simulation results of a stripping reaction are shown.

B.2.4 Quasi-free Scattering

Quasi-free scattering is the most direct and powerful way to investigate the single-particle properties
such as separation energies and the momentum distribution of nucleons inside of the nucleus. Partic-
ularly, the structure of light and medium mass nuclei near the neutron closures can be studied using
(p,2p) and (p, pn) reactions. In the future, the full version of the EXL setup will also include a dedicated
system for neutron detection which would allow to perform proton and knockout neutron coincidences.
Nevertheless, the most appropriate way to test the performance of the simulated EXL geometry with
this type of reaction is by measuring two charged particles in coincidence (like (p,2p)). For the present
simulation, the reaction *O(p, 2p) at 400 MeV/u was produced by using a three-body particle kinemat-
ics generator routine. Then, two protons are produced at the same event with a certain orientation and
energy given by the nucleon-momentum inside the nucleus and the energy conservation. The results pre-
sented in Fig. B.10(a) correspond to the characteristic polar-angle correlation of the two light-particles
in the quasi-free scattering. The average polar angular separation (in the laboratory system) of these
two protons is close to 80°. The detection of this reaction channel is exclusively done in sections D and
C. Another feature of the quasi-free scattering, that is possible to observe in the present simulations, is
the azimuth-angle correlation (Fig. B.10(b)). Two parallel lines show that these protons are produced in
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opposite directions with A¢ ~ 180°. This result also demonstrates the large azimuth-angle acceptance
of this full EXL setup, which is a key requirement for the realization of such experiments.
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(a) Polar angle correlation. (b) Azimuth angle correlation.
Figure B.10.: Simulated angle correlation for the reaction **O(p, 2p), at 400 MeV/u, using the complete

recoil detector system of EXL. The subscript (1 or 2) in the angles denote each proton in the
output channel.
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Appendix

Continuum Discretized Coupled Channel

Weakly bound nuclei have small separation energies and thus, break-up easily. The proximity of the
ground state to separation threshold also means that the breakup states of such nuclei (i.e. its con-
tinuum) influence all other reactions that can take place [142]. The breakup is an inelastic process
which can be induced by Coulomb or nuclear interaction. When the target-projectile interaction is pure
Coulomb, this reaction channel is called Coulomb breakup. A natural way to describe this process is by
coupling the continuum states (non-bound) of the weakly-bound particle. Thus, the problem can be
reduced to solving the scattering equations in the coupled-channel formalism [67-69]. In principle, this
procedure might be extended to describe the coupling with the continuum, however there are normaliza-
tion problems related to the wavefuntions of the continuum excited states. Whereas the wavefunction of
a bound state is normalizable and decays exponentially at large distances, the corresponding wavefunc-
tion of a non-bound state has significant oscillations asymptotically and its norm does not exist [143], as
suggested in Fig. C.1.

V (r)

Figure C.1.: Schematic representation of the wavefunctions of a bound state and a continuum one. The
wavefunction of the bound state is normalizable, while the corresponding wavefunction of
a continuum excited state have large oscillations asymptotically. (Adapted from Ref. [143])

In order to overcome this problem, a discretized representation of the continuum is employed. This
method permits a suitable description of a set of normalizable wavefunctions from the continuum.
When such discrete states are included into a coupled channel calculation, the formalism is called
Continuum Discretized Coupled Channel (CDCC) [142, 144]. The discretization can be done by divid-
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ing the continuum range in energy bins, of width T', in order to represent an average wavefunction per
bin. Hence, the resulting bin states are square integrable, and are defined as [145]

E.+T/2
Y (r)=N f ¢x(r)f (E)dE, .1
E.—T/2
with
R
lee(r)lzdr=1 and Nz — (C.2)
0 [1f(B)PdE

The ¢(r) are eigenfunctions with a potential which is energy-independent, and f (E) is a weight func-
tion that is chosen to guarantee the asymptotic normalization of the wavefunction (R — 00).

In the CDCC calculations, the target-projectile interaction is described with the cluster model. The
weakly bound nucleus is then considered as cluster composed by a core (c) and a valence (v) particle.
In the same manner, the target-projectile potential can be splitted into a core-target and valence-target
interactions which are projected over the weakly-bound particle states

Va,a’ = (a|VcA + VU,A|a/>- (C.3)

vV A

Figure C.2.: Representation of the cluster interaction composed by a three body system: core, valence
and a target (or projectile) A which is a tightly bound particle. In the CDCC calculations the
problem can be described by the potentials: c-A, v-A and c-v (binding energy).
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