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Abstract

This dissertation introduces the DisCoverage paradigm. DisCoverage de-
scribes a novel scheme for distributed multi-robot exploration. The objec-
tive of the multi-robot exploration problem is to explore and map an a priori
unknown environment as quick as possible with a group of autonomous
robots. DisCoverage solves this problem through effective coordination of
the group, such that the robots simultaneously explore different parts of
the environment.
In contrast to existing approaches, DisCoverage provides a distributed

solution to the multi-robot exploration problem: Robots communicate
and exchange data only with robots in the respective neighborhood, such
that no central coordinating unit is required. As a result, the local data
exchange among the robots allows the group to globally act as one team,
facilitating robust and efficient exploration of the entire environment.
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Kurzfassung

In der vorliegenden Dissertation wird das DisCoverage-Paradigma vorge-
stellt. Dieses Paradigma beschreibt ein neuartiges allgemeines Schema zur
verteilten Multi-Roboter-Exploration. Ziel der Multi-Roboter-Exploration
ist es, mittels einer Gruppe autonom agierender Roboter eine vorab un-
bekannte Umgebung zu erforschen und eine Karte in möglichst kurzer
Zeit zu erstellen. DisCoverage erfüllt diese Forderung durch eine effektive
Koordinierung der Roboter, sodass die Roboter unterschiedliche Bereiche
der unbekannten Umgebung erkunden.

Gegenüber existierenden Verfahren liegt der wesentliche Vorteil von Dis-
Coverage darin, dass der Explorations-Prozess verteilt abläuft: Die Roboter
kommunizieren lediglich mit ihren nächsten Nachbarn, sodass keine zentrale
Instanz zur Koordinierung benötigt wird. Somit wird durch ausschließlich
lokaler Interaktion mit der Umgebung und lokaler Kommunikation zwischen
Nachbarn ein globales Verhalten der Gruppe erzielt, welches zu robuster
vollständiger Exploration der unbekannten Umgebung führt.
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1 Introduction

To-day I got the ship afloat [...] in search of gold and spices,
and to discover land.

Journal of the First Voyage of Columbus [46]“Christopher Columbus (1451–1506) is well-known for his expeditions to
find and explore a new continent. Although Columbus was never aware
that he discovered America, without a doubt his expeditions significantly
contributed to the exploration of the Earth. Over the centuries, many
explorers helped to develop detailed maps of about any location of our
planet.
Today, the terrestrial mapping of the Earth is complete. Nevertheless,

our environment constantly changes, either due to unpredicted incidents
such as an earthquake, or due to planned changes such as road work, the
construction of new buildings, new furnishing in the office, or even due to
minor changes such as the movement of a chair in a room. Consequently,
a priori generated maps are not guaranteed to be accurate. Therefore,
the problem of exploring unknown environments is a frequently discussed
topic among researchers in the robotics community [127]. In fact, exploring
an unknown environment – also referred to as exploration problem –
is one of the key problems in autonomous robotics, since without any
information about the environment, a robot is not able to interact with it.
The applications for autonomous robot exploration are manifold [38, 127]:
Recent advances apply autonomous robot navigation in everyday life, such
as robotic lawnmowers and vacuum cleaners, or driverless cars. More
complex tasks include search and rescue missions after a catastrophe such
as earthquakes or nuclear accidents as happened in Fukushima (Japan) in
2011 caused by a tsunami, or planetary exploration such as Mars missions
that require a high degree of autonomy due to significant communication
latencies. Other applications exist, such as the clearing of mine fields. In
this case, the environment itself is not subject to the exploration task.
Instead, the location of the land mines underground build the unknown.
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1.1 Autonomous Robot Exploration
From a robotics perspective, a common approach to solving the exploration
problem is denoted by the frontier-based method. The frontier is defined
by the boundary separating explored from unknown space. The key idea
behind frontier-based exploration was first introduced in 1997 for a single
robot by Yamauchi [136], stating: ”To gain the most new information
about the world, move to the boundary between open space and uncharted
territory.“ Simply put, as long as a frontier exists, the robot moves to a
target point on the frontier and maps the new environment, which in
turn pushes back the frontier. Repetition of this scheme eventually leads
to a fully explored environment.
Exploring an unknown environment with a robot may protect human

lives especially in environments that are extremely dangerous or even
inaccessible to humans. However, using a single robot may not be fea-
sible, for instance if the domain to explore is very large. Therefore, in
the last decade, researchers focused on exploring unknown environments
with multiple robots, which became known as multi-robot exploration.
Multi-robot exploration has the advantage that – as Guzzoni et al. [68]
state – “many robots make short work,” meaning that the exploration
task is accomplished more quickly with multiple robots compared to the
single-robot case. In addition to faster exploration, multi-robot exploration
has the benefits of increased robustness and higher accuracy [38, 42, 55].
Increased robustness describes the tolerance with respect to robotic failures:
If a robot malfunctions, other robots jump in to take over the respective
task and the exploration continues. Higher accuracy is obtained through
redundancies in, e.g., the sensors. As a result, the information obtained
about the environment is more reliable.
However, these advantages only hold if effective coordination of the

group can be guaranteed. Burgard et al. [38] describe the problem of
effective coordination as follows:

The key problem to be solved in the context of multiple robots
is to choose appropriate target points for the individual
robots so that they simultaneously explore different regions
of the environment.“Typically, coordination techniques are classified in terms of central, hi-

erarchical, and distributed coordination. In central coordination, one
coordinator among the robots determines the target points for all robots.
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Similarly, in hierarchical coordination robots within communication range
form clusters that again coordinate in a centralized way. Central and
hierarchical coordination allow to assign optimal target points to each
robot due to the increased knowledge available to the coordinators, result-
ing in well-performing approaches to multi-robot exploration. However,
since central and hierarchical coordination are vulnerable to failures of
the coordinators, the property of increased robustness is lost. Contrary,
in distributed coordination no single coordinator exists. Instead, each
robot acts solely based on local information obtained from its sensors and
through data exchange with robots within communication range. The
local data exchange among the robots allows the group to globally act as
one team with one common goal. Martínez et al. [93] define distributed
coordination as ”obtaining global behavior from local interaction,“ retaining
the advantages of multi-robot exploration.

1.2 Problem Statement and Contributions
Existing approaches to multi-robot exploration often apply central or
hierarchical coordination techniques, loosing the advantages of distributed
coordination. Hence, the goal of this dissertation is to find approaches
to multi-robot exploration that apply distributed coordination techniques.
Defining the set S(t) ⊆ Q as the explored parts of a d-dimensional unknown
environment Q ⊂ Rd at time instant t with S(t = 0) = ∅, the problem to
be solved is formalized as follows:

Problem statement. Given a set of N mobile robots with state pi,
i = 1, . . . , N , in an unknown environment Q. Find distributed coordination
techniques based on well-defined communication constraints such that
S(t)→ Q as t→∞.

Therein, the two design criteria are:

(i) Distributed coordination: Each robot acts solely based on locally
available information, i.e., no dedicated coordinating robots exist.

(ii) Communication constraints: The communication topology is
such that each robot exchanges information only with a subset of
robots within their communication range.

The solution to this problem statement presented in this dissertation
essentially builds on a partition of the environment that assigns a region
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partition

H → min!

optimization

ṗi = fi(pi,ui)

robot dynamics

H ui

mapping

pi

Figure 1.1: Proposed continuous-time feedback loop (cf. Haumann et al. [8])

of dominance to each robot. Based on this partition, each robot locally
computes control laws to move to the frontier, solely based on information
available in its region of dominance. These control laws are obtained by
solving an optimization problem that facilitates multi-robot exploration.
The proposed coordination techniques describe a closed feedback loop

that consists of four blocks, namely the partition, the optimization,
the robot dynamics, and the mapping, as depicted in Figure 1.1. In
order to ensure distributed coordination, the Voronoi partition is used as
partition of the environment, since it can be computed distributively. That
is, each robot is able to compute its region of dominance – from now on
called Voronoi cell – solely based on local data exchange with neighboring
robots. Based on the Voronoi cells, each robot then optimizes an objective
function H in the optimization step. Minimizing H results in a control
input vector ui for the i-th robot. The robot state vector pi and the control
input vector ui are then used by the robot dynamics ṗi = fi, moving the
robots towards unexplored space. Finally, arriving at the frontier, each
robot maps the environment within sensing range, which in turn pushes
back the frontier to unexplored space. The robot movements and the
newly available information about the environment change the partition
continuously over time, closing the feedback loop.

This feedback loop fully satisfies the design criterion distributed coordina-
tion, since i) each robot is able to compute its Voronoi cell on its own, and
ii) based on the Voronoi cell, all following steps solely rely on information
available in the respective Voronoi cells. Further, the design criterion com-
munication constraints is also satisfied by the Voronoi partition, since the
Voronoi partition is dual to the Delaunay triangulation [71], and therewith
each robot only requires a well-defined set of robot neighbors in order to
compute its Voronoi cell.
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The presented multi-robot exploration approaches heavily rely on the
solution to the coverage problem proposed by Bullo et al. [36]. In order
to avoid confusion, it is important to stress that the coverage problem itself
is unrelated to the exploration problem. The objective of the coverage
problem is to place a set of robots in an a priori known domain such that
the domain is optimally covered. Here, optimal coverage is defined by
minimizing the expected distance from the robot positions to all locations
in the domain.
Essentially, the key contribution of this dissertation is to solve the

exploration problem by transferring the solution to the coverage problem
proposed by Bullo et al. [36] to the exploration problem. For this reason, the
proposed approaches are said to apply the DisCoverage paradigm, since
DisCoverage combines coverage and distributed multi-robot exploration.
In addition to the DisCoverage paradigm, the contributions are as follows:

• Since the solution to the coverage problem by Bullo et al. [36] is
restricted to convex environments, another major contribution lies in
extending the solution to the coverage problem to support nonconvex
environments.

• Two new multi-robot exploration strategies – the centroidal search-
based and the orientation-based DisCoverage approach – are intro-
duced first for convex and then for nonconvex polygonal environments,
both following the DisCoverage paradigm.

• A proof of convergence is provided for the centroidal search-based Dis-
Coverage approach, meaning that this approach is always guaranteed
to explore all parts of an unknown environment.

• Introducing the orientation-based DisCoverage approach, a new trans-
formation to nonconvex environments is proposed that maps any
nonconvex polygonal environment to star-shaped regions. This trans-
formation can be understood as a tool to generic path planning in
nonconvex environments. Consequently, the proposed transformation
is not restricted to the exploration problem.

• Extensive statistically significant simulations and lab experiments are
provided to validate the proposed multi-robot exploration strategies
along with an in-depth discussion.

• The time-optimal case for exploring an unknown environment with
multiple robots is formulated as a theoretical lower bound for the
minimum time needed to explore the entire environment.
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• A measure for the degree of star-shapedness with respect to a robot
position is introduced, allowing a robot to evaluate the optimality
of its position in the environment in the context of the coverage
problem.

• A modification to the distance transform based on the geodesic
distance is proposed, extending the distance transform traditionally
known in image processing.

1.3 Outline of the Dissertation
The outline of this dissertation is depicted in Figure 1.2. The next chapter
introduces foundations in computational geometry and stability theory
as well as conventions and notation used throughout this dissertation.
Thereafter, Chapter 3 discusses related literature: The coverage problem
is formally introduced, and existing solutions to the coverage problem in
convex environments as well as attempts to solve the coverage problem
in nonconvex environments are discussed. Similarly, existing multi-robot
exploration strategies are presented and classified in terms of coordination
techniques and communication constraints. Finally, a short discussion
about the relation of coverage and exploration is provided, stressing the
fact that a multi-robot exploration approach following the idea of the
solution to the coverage problem does not yet exist.
Chapter 4 introduces DisCoverage as a new paradigm to multi-robot

exploration. Following this paradigm, the centroidal search-based and the
orientation-based DisCoverage approaches are proposed. Initially restricted
to convex environments, the DisCoverage approaches are then extended to
support nonconvex environments. The theory to support nonconvex envi-
ronments is not limited to multi-robot exploration, therefore connections
to related research topics are highlighted. The behavior for multiple robots
as well as more complex vehicle dynamics are discussed.

In Chapter 5, the proposed approaches are evaluated through extensive
simulations. The DisCoverage approaches are compared to the time-optimal
case as well as to theMinDist approach – a standard path planning approach
to exploration. Further, results of lab experiments with e-puck robots,
conducted in collaboration with the MIT and ETH Zurich, are presented.
Both, the simulations as well as the experiments, validate the DisCoverage
paradigm.
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Mathematical
Foundations

Literature
Review

From Coverage to
DisCoverage

Simulations and
Experiments

Discussion

Conclusion

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Figure 1.2: Outline. Chapters with contributions are highlighted in blue.

The results of the simulations and experiments are discussed in Chap-
ter 6, pointing out advantages of the proposed approaches to multi-robot
exploration. In addition, several aspects such as performance, convergence
properties, and optimality of space partitions are investigated. A conclu-
sion of this dissertation, consisting of a summary as well as possible future
research directions, is given in Chapter 7.
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2 Mathematical Foundations

In this chapter, necessary mathematical foundations of computational
geometry and stability theory are provided in Section 2.1 and Section 2.2,
respectively.

2.1 Computational Geometry
From a mathematical perspective, the explored and unexplored parts as
well as the a priori unknown environment itself are sets. Likewise, the
surroundings sensed by robots can be modeled in terms of visibility sets.
Therefore, this section introduces properties of sets that are used extensively
throughout the dissertation. If not noted otherwise, the upcoming notation
and definitions closely follow the ones introduced by Bullo et al. [36].

2.1.1 Convex Sets
Definition 2.1 (Convex sets). Given two points p, q in the d-dimensional
space Rd. The sets (p, q) = {x ∈ Rd | x = p + λ(q − p), λ ∈ (0, 1)} and
[p, q] = {x ∈ Rd | x = p+λ(q−p), λ ∈ [0, 1]} are called the open and the
closed line segment, respectively. A set Q ⊆ Rd is called convex if for
all p, q ∈ Q the closed line segment [p, q] is contained in Q, i.e., [p, q] ⊆ Q.
If a set is not convex, it is called nonconvex.

Convex sets are defined for arbitrary dimensions d. The boundary of
a convex (or nonconvex) set Q ⊆ Rd is denoted with ∂Q. According to
Definition 2.1 a convex set includes its boundary. Open and closed line
segments, convex and nonconvex sets are depicted in Figure 2.1(a)–2.1(c).
Next to convex sets, closed line segments also form a basis for polygonal
lines.

Definition 2.2 (Polygonal line). Given a finite set of k points q1, . . . , qk ∈
Rd. The polygonal line is defined by the union of all closed line segments
∪k−1
i=1 [qi, qi+1]. The points q1, . . . , qk of a polygonal line are called vertices.
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(a) (b) (c) (d) (e)

Figure 2.1: (a) open and closed line segment, (b) convex set, (c) nonconvex set,
(d) polygonal line, (e) nonconvex polygon with 6 convex vertices (green) and 2
concave vertices (red).

If in addition the polygonal line contains the closed line segment [qk, q1],
then the vertices define a closed polygonal line.

Based on the definition of closed polygonal lines a polygon is defined in
the 2-dimensional space as follows.

Definition 2.3 (Polygon). Given a closed polygonal line in R2. Then, a
polygon is defined by the union of a closed polygonal line and its interior.
A polygon is said to be a convex polygon if its set is convex according
to Definition 2.1.

By definition, a polygon always represents a compact set, i.e., the set is
closed and bounded. A polygon can further be characterized by investigat-
ing its vertices.

Definition 2.4 (Convex vertices). Given a polygon defined by the vertices
q1, . . . , qk ∈ R2. A vertex qi is called convex if its interior angle is less
than or equal to π rad. If a vertex is not convex, it is called concave.

Apparently, a polygon is convex if and only if all its vertices are convex.
Definition 2.2 allows self-intersections of the polygonal line. However, for
the rest of the dissertation, non-intersecting polygonal lines and polygons
are assumed. A polygonal line is depicted in Figure 2.1(d), and the
respective polygon defined by its convex and concave vertices is shown in
Figure 2.1(e).
Remark 2.1 (Generalization). The notion of a polygon is by definition
limited to the 2-dimensional space. However, the definitions of polygonal
lines and polygons can analogously be extended to higher dimensions d.
For instance, a polygon is referred to as a polyhedron in case of d = 3,
or as a polytope for d > 3.
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Prior to introducing nonconvex environments, it is necessary to define
the notion of connectedness.

Definition 2.5 (Connected sets). A set Q ⊆ Rd is said to be connected,
if for all p, q ∈ Q there exists a path from p to q such that the entire path
is contained in Q. If a set is not connected, it is called a disconnected
set. Further, the diameter of a connected set Q is defined as diamQ =
maxp,q∈Q dg(p, q), where dg(p, q) defines the geodesic distance from p to
q in Q.

The geodesic distance dg(p, q) returns the shortest distance from p to
q in the set Q. In convex sets, the geodesic distance is equivalent to the
Euclidean distance.

2.1.2 Nonconvex Environments
Subject to the exploration problem are usually nonconvex environments.
As a consequence, a proper definition for these nonconvex environments
is required. Throughout this dissertation nonconvex environments with
obstacles are assumed as follows.

Definition 2.6 (Allowable environment). An allowable environment
is defined by a tuple (B,O), where B ⊆ Rd is a polytope denoting the
environment and its boundary, and O is a set of k polytopes o1, . . . , ok ⊂ B
representing obstacles. Consequently, an allowable environment is denoted
by the set Q := B \ ∪ki=1oi.

Definition 2.6 allows both the polytope Q as well as all obstacles to be
nonconvex. A property of an allowable environment Q is that the boundary
∂Q is continuously differentiable in all q ∈ ∂Q along the boundary except
in the finite set of convex and concave vertices. Therefore, it is convenient
to define a δ-contraction, which was first proposed by Udupa et al. [130]
and Lozano-Pérez and Wesley [87] for collision-free path planning of robotic
manipulators.

Definition 2.7 (δ-contraction). For an allowable environment Q ⊂ Rd,
the δ-contraction of Q is defined by Qδ = {q ∈ Q | dist(q, ∂Q) ≥ δ} with
dist(q, ∂Q) = minq′∈∂Q ‖q − q′‖.

The dist-operator defines the minimum Euclidean distance from q to the
set ∂Q.
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Corollary 2.1 (Differentiability of the δ-contraction). For arbitrary small
δ > 0 the boundary ∂Qδ of the δ-contraction Qδ is continuously differen-
tiable in all q ∈ ∂Qδ along the boundary ∂Qδ except in the convex vertices.
All concave vertices “grow” by δ, yielding a differentiable circular segment.

Corollary 2.2 (Connectedness of the δ-contraction). Depending on the
magnitude of δ applying the δ-contraction results in an environment Qδ
that is not necessarily connected.

An example of an allowable environment is shown in Figure 2.2. The
allowable environment is defined by a boundary B and an obstacle o1

(cf. Figure 2.2(a)). Its δ-contraction is depicted in Figure 2.2(b).

Q
o1

B

(a) allowable environment Q

Qδ

o1

(b) δ-contraction Qδ

Figure 2.2: Example of an allowable environment Q and its δ-contraction Qδ

2.1.3 Reachability and Visibility
In the context of robotic systems, Corollary 2.2 poses a tough limitation:
If the δ-contraction Qδ of an allowable environment Q is not connected,
locations p, q ∈ Qδ exist without any path leading from p to q in Qδ. This
observation leads to the notion of reachability.

Definition 2.8 (Reachability). Given a set Q ⊂ Rd and a point p ∈ Q.
A point q ∈ Q is said to be reachable from p if there exists a path from
p to q that is contained in Q. The set of all points q ∈ Q reachable from
p is the reachability set with respect to p.

In addition to the reachability property, the concept of visibility with
respect to a point p ∈ Q is introduced.

Definition 2.9 (Visibility). Given a set Q ⊂ Rd and a point p ∈ Q. A
point q ∈ Q is visible from p, if the closed line segment [p, q] is contained
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in Q, i.e., [p, q] ⊆ Q. The set of all points q ∈ Q visible from p is the
visibility set with respect to p.

The visibility set can alternatively be described as a star-shaped domain
as follows.

Definition 2.10 (Star-shaped sets). A set Q ⊂ Rd is called star-shaped
if there exists a p ∈ Q such that [p, q] ⊆ Q for all q ∈ Q.

A visibility set is star-shaped by definition and represents exactly the
parts of the environment that are visible from a robot location. Since the
immediately perceived environment of robots is often limited by a radial
sensing range r, it is convenient to define the r-limited visibility set.

Definition 2.11 (r-limited visibility set). Given a set Q ⊂ Rd and a
point p ∈ Q. The r-limited visibility set with respect to a point p ∈ Q
is defined by intersection of the visibility set at p with the closed ball
B(p, r) = {q ∈ Q | ‖p− q‖ ≤ r} at p with radius r.

Figure 2.3 shows the δ-contraction Qδ of the nonconvex allowable en-
vironment in Figure 2.2 for a larger δ. As a result Qδ is not connected
anymore, meaning that not all points in Qδ are reachable from all points
in Qδ (cf. Figure 2.3(a)). The (star-shaped) visibility set with respect to a
specific point p ∈ Q is shown in Figure 2.3(b).

Qδ

o1

(a) disconnected set Qδ

o1

p

(b) visibility set of point p

Figure 2.3: Reachability and visibility set of an allowable environment Q

2.1.4 The Voronoi Partition
The Voronoi partition was first found by G. Lejeune Dirichlet in 1850 [53]
and systematically analyzed by Georgy F. Voronoi in 1907 [132]. It is
generally defined for both convex and nonconvex environments by using
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the geodesic distance dg(p, q), which reflects the length of the shortest
path from p to q in Q.

Definition 2.12 (Voronoi partition). Given a connected set Q ⊂ Rd.
Let P = {p1, . . . ,pN} be a set of N generator points in Q. Then, the
Voronoi cell Vi of generator point pi is defined by

Vi = {q ∈ Q | dg(pi, q) ≤ dg(pj , q) for all j = 1, . . . , N}.

The set V = {V1, . . . ,VN} of all Voronoi cells Vi is known as the Voronoi
partition of Q.

Informally, a Voronoi cell Vi contains all points in Q whose geodesic
distance to generator point pi is less than the geodesic distance to all other
generator points pj 6=i. Since Definition 2.12 contains a less than or equal
to operator, the separating boundaries are assigned to two Voronoi cells.
Distinct Voronoi cells Vi and Vj that share a boundary, i.e., Vi ∩ Vj 6= ∅,
are called adjacent or Voronoi neighbors. Apart from the boundaries,
all Voronoi cells are disjoint and Q = ∪Ni=1Vi holds, meaning that V is a
partition of Q.

The Voronoi partition of a nonconvex environment is often referred to as
geodesic Voronoi partition. Further, it is worth to state the following
corollary about convex environments.

Corollary 2.3 (Convex Voronoi partition). If Q is a convex set, the
geodesic distance dg(p, q) equals the Euclidean norm ‖p − q‖ and all
Voronoi cells are convex.

Related to the Voronoi partition is the Delaunay triangulation, intro-
duced in 1934 by Delaunay [52]. The Delaunay triangulation – also known
as Delaunay graph – is dual to the Voronoi partition [71]. The nodes of
this graph are defined by the generator points pi. Two nodes pi and pj
are connected with an edge if the respective Voronoi cells Vi and Vj are
adjacent, i.e., if pi and pj are Voronoi neighbors. Voronoi partitions are
said to be computable spatially distributed over the Delaunay graph. This
implies that only the Voronoi neighbors as defined by the Delaunay graph
are required in order to compute a Voronoi cell. Hence, the computation
of a Voronoi cell is distributed [50]. Since distributed computation is an
essential property in distributed systems, Appendix A.2 provides further
details on convex Voronoi partitions and an algorithm for a distributed
computation of a Voronoi cell.
Analog to the r-limited visibility set, the r-limited Voronoi partition is

defined next.
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Definition 2.13 (r-limited Voronoi Partition [36]). Let P = {p1, . . . ,pN}
be a set of N generator points in Q. Then, the r-limited Voronoi cell
Vi of generator point pi is defined by the intersection of Voronoi cell Vi
with the closed ball at pi with radius r, i.e.,

Vi,r = Vi ∩B(pi, r) = {q ∈ Vi | ‖pi − q‖ ≤ r}.

The set {V1,r, . . . ,VN,r} of all r-limited Voronoi cells Vi,r is known as the
r-limited Voronoi partition. Further, if

Vi,r = B(pi, r)

holds, the r-limited Voronoi cell Vi,r is said to be radially unbounded.

Remark 2.2. Strictly speaking, the r-limited Voronoi partition is not a
partition of Q since generally Q 6= ∪Ni=1Vi,r.
Examples of the Voronoi partition, the corresponding Delaunay graph,

and the r-limited Voronoi partition of a convex set are shown in Figure 2.4.

(a) Voronoi partition (b) dual Delaunay graph

r

(c) r-ltd. Voronoi partition

Figure 2.4: Duality of Delaunay graph and Voronoi partition, and r-limited
Voronoi partition

2.1.5 Generalized Voronoi Partition
Another common problem in mobile robotics is to plan a collision-free path
through nonconvex environments. One such approach to collision-free path
planning is given by the distance transform, also referred to as maximum
clearance method [82].

Definition 2.14 (Distance transform). Given a nonconvex set Q ⊂ Rd.
The distance transform is a function fd : Q → R≥0 that assigns each
point p ∈ Q the minimum Euclidean distance to the boundary ∂Q, i.e.,
p 7→ fd(p) = minq∈∂Q ‖p− q‖.
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A distance transform of a nonconvex environment with two obstacles is
shown in Figure 2.5(a). Darker shades of gray represent points closer to
the boundary.

Definition 2.15 (Generalized Voronoi partition [81]). Given a nonconvex
set Q ⊂ Rd. Let D(p) = {q ∈ ∂Q | ‖p − q‖ = fd(p)}. With the
cardinality |D(p)|, define the separating boundary of the generalized
Voronoi partition as the set {p ∈ Q | |D(p)| > 1}.

(a) distance transform of Q (b) generalized Voronoi partition

Figure 2.5: (a) Distance transform of a nonconvex environment Q ⊂ R2, and
(b) the corresponding generalized Voronoi partition.

The separating boundary of the generalized Voronoi partition is depicted
in Figure 2.5(b). By definition, the boundary always keeps the maximum
distance to obstacles. Hence, the path along the boundary minimizes the
risk of collisions while navigating a mobile robot through the environment.

2.2 Stability Theory
This section introduces the concepts and essentials of dynamical systems
and stability theory, closely following Khalil [75]. In addition, these concepts
are summarized in detail in Adamy [19].

2.2.1 Dynamical Systems
A dynamical system is a process that evolves over time following an ordinary
differential equation. Generally, such a system is defined by the system
state x ∈ Rn and a vector-valued function f(x,u) that depends on x as
well as on the control input vector u ∈ Rm. Without loss of generality, the
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differential equation has the form

ẋ = f(x,u). (2.1)

The system state x contains all variables needed to fully characterize the
system. Consequently, the trajectory x(t ≥ t0) is uniquely defined for any
initial state x(t0) and control input trajectory u(t ≥ t0).

From a feedback control perspective, the course of a trajectory x(t) is of
interest. To this end, the equilibrium point as well as its characteristics
are next defined for autonomous systems ẋ = f(x,0).

Definition 2.16 (Equilibrium point). In a dynamical system ẋ = f(x,u)
the state xe ∈ Rn is called equilibrium point if ẋ = f(xe,0) = 0.

Definition 2.17 (Attraction). An equilibrium point xe is called locally
attractive, if there exists a δ > 0 such that ‖x(t0) − xe‖ < δ implies
x(t)→ xe as t→∞.

It is worth to note, that the notion of locally attractive equilibrium
points allows trajectories satisfying ‖x(t0)− xe‖ < δ to diverge arbitrarily
far away from xe before they finally converge into the equilibrium point.
The definition of stability is more restrictive in this regard.

Definition 2.18 (Lyapunov stability). An equilibrium point xe ∈ Rn is
called stable in the sense of Lyapunov, if for each ε > 0 there exists a δ > 0
such that ‖x(t0) − xe‖ < δ implies ‖x(t) − xe‖ < ε for all t ≥ t0. If an
equilibrium point is not stable, it is unstable. Further, if an equilibrium
point xe is stable and locally attractive, it is said to be asymptotically
stable.

Definition 2.18 introduces a terminology on the stability of an equilibrium
point (cf. Figure 2.6(a) for an example of stability in the sense of Lyapunov).
However, it does not provide any methods to analyze stability based on
the differential equation (2.1). This is addressed in the next section.

2.2.2 Lyapunov Functions
The rudimentary idea of Aleksandr M. Lyapunov is to formulate an energy
function that describes the overall energy available in the system [89]. Due
to friction, the energy level inevitably decreases over time until it reaches
a minimum, meaning that an equilibrium point is reached. This idea is
generalized in the following definition.
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xe

x(t)

x(t0)

‖x− xe‖ = ε

‖x− xe‖ = δ

(a) stability in the sense of Lyapunov

x(t)

xe

∂V
∂x

ẋ
∂V
∂xẋ

(b) x(t) satisfying the descent condition

Figure 2.6: (a) shows the ε-δ stability in the sense of Lyapunov applied to the
equilibrium point xe. (b) shows the contour lines of a Lyapunov function V as
well as the descent condition for a trajectory x(t) converging towards xe.

Definition 2.19 (Lyapunov function). Without loss of generality, let
xe = 0 be an equilibrium point for (2.1) with u = 0. A continuously
differentiable function V : D → R≥0 on a domain D ⊂ Rn that satisfies

(i) V (x) > 0 for all x ∈ D \ {0} and V (0) = 0, and

(ii) V̇ (x) ≤ 0 for all x ∈ D

is called Lyapunov function.

The first condition guarantees that a Lyapunov function assigns strictly
positive values to all states x except in x = 0, where it is zero. The
second condition implies that the value of V never increases over time,
meaning that the trajectory x(t) evolves such that V (x) either decreases or
remains on the same level curve. A more explicit expression is obtained by
applying the chain rule V̇ (x) = ∂V

∂x
dx
dt . Consequently, the second condition

is equivalent to
∂V

∂x
ẋ ≤ 0. (2.2)

Condition (2.2) is also known as descent condition and plays a vital role in
convex as well as nonconvex optimization problems [33, 61]. If the descent
condition strictly holds, i.e., V̇ (x) < 0, the angle between the gradient ∂V

∂x
and the time derivative ẋ is greater than 90◦, implying that the trajectory
x(t) decreases the value of the Lyapunov function V . In case of V̇ (x) = 0
the trajectory stays on the contour line of V . A Lyapunov function for a
trajectory x(t) as well as the descent condition is shown in Figure 2.6(b).

In line with Definition 2.18, Lyapunov functions provide a tool to deter-
mine stability, as stated by the next theorem.
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Theorem 2.1 (Lyapunov stability theorem [75]). Let xe = 0 be an
equilibrium point for (2.1) with u = 0. If a Lyapunov function exists,
the equilibrium point xe = 0 is stable in the sense of Lyapunov. If in
addition V̇ (x) < 0 holds for all x ∈ D \ {0}, the equilibrium point xe = 0
is asymptotically stable.

According to Theorem 2.1 asymptotic stability requires a Lyapunov
function whose derivative is negative for any state other than xe = 0.
However, this assumption can be relaxed by stating the following theorem.

Theorem 2.2 (Krasovskii’s method [75]). Let xe = 0 be an equilibrium
point for (2.1) with u = 0. If a Lyapunov function exists with V̇ (x) ≤ 0,
the equilibrium point xe = 0 is asymptotically stable, if all trajectories
satisfying V̇ (x) = 0, x 6= 0, leave the contour line of V after a finite amount
of time.

The proofs for Theorem 2.1 and Theorem 2.2 can be found in [75].

2.2.3 Invariance Principle
The idea of equilibrium points and the characteristics as introduced in the
previous section can be generalized. To this end, invariant sets are defined.

Definition 2.20 (Invariant sets). A setM is said to be invariant (posi-
tively invariant), if all initial values x(t0) ∈M imply x(t) ∈M for all t
(for all t ≥ t0).

According to Definition 2.20 trajectories x(t) that once enter a positively
invariant setM always remain inM in the future. The notion of positive
invariance is compatible with Lyapunov functions V , for instance, the
set M = {x ∈ Rn | V (x) ≤ c ∈ R>0} with V̇ (x) ≤ 0 is positively
invariant. Since the course of the trajectory is often of interest, a trajectory
is said to approach a set M if for each ε > 0 exists a T > t0 such
that dist(x(t),M) < ε for all t > T . Based on this notion, Krasovskii’s
Theorem 2.2 can be generalized to invariant sets as follows.

Theorem 2.3 (Krasovskii-LaSalle invariance principle [75]). Let D ⊂
Rn be a compact set that is positively invariant with respect to the
system dynamics (2.1) with u = 0. Let V : Rn → R be a continuously
differentiable function such that V̇ (x) ≤ 0 for all x ∈ D. LetM0 be the
set of all points in D where V̇ (x) = 0. LetM be the largest invariant set
inM0. Then, every solution starting in D approachesM as t→∞.
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The Krasovskii-LaSalle invariance principle generalizes the concept of
equilibrium points to invariant sets. At the same time, it provides a tool
to prove convergence toM for all trajectories starting in D. Contrary to
the Lyapunov theory, Theorem 2.3 does not strictly require a Lyapunov
function V . Instead, it is sufficient if V̇ (x) is negative semidefinite. Further
details on invariance principles are presented in Blanchini [29].
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3 Literature Review

This chapter reviews literature relevant throughout this dissertation. Sec-
tion 3.1 introduces the solution to the coverage problem as well as extensions
to dynamic coverage and nonconvex environments. Section 3.2 gives a
survey on multi-robot exploration strategies, focusing on the coordination
of multiple robots as well as on communication aspects. Subsequently,
Section 3.3 discusses the properties of the presented approaches and adds
a remark on performance measures.

3.1 The Coverage Problem
The coverage problem belongs to the class of geometric optimization prob-
lems. In robotics, its goal is to place a group of mobile robots in an
environment in such a way, that – given an objective function – the en-
vironment is optimally covered. In the following, existing solutions to
this problem are presented – first for convex environments, and later for
nonconvex environments.

3.1.1 Introduction
Informally, the coverage objective is to place robots in an a priori known
environment such that the expected distance to all possible locations in
the environment is minimized. Discussed in detail in [47, 48, 50, 93] by
Francesco Bullo, Jorge Cortés, and Sonja Martínez and in depth especially
in the textbook [36], a prominent solution to the coverage problem is given
by the Lloyd algorithm. The Lloyd algorithm was originally formulated
by Stuart P. Lloyd in 1957 and later published in 1982 in [86]. The
Lloyd algorithm – meanwhile also known as k-means clustering [28, 120]
(cf. Appendix A.1) – works in its original form according to the following
scheme:

Algorithm 3.1 (Lloyd Algorithm [86]). Given a d-dimensional compact
set Q ⊂ Rd and a set of i = 1, . . . , N generator points pi ∈ Q, compute
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the optimal positions of the generator points pi by iteratively applying the
following steps:

(i) Compute the Voronoi partition based on the generator points.

(ii) Compute the centroid for each Voronoi cell.

(iii) Move each generator point pi into the centroid of its Voronoi cell.

(iv) Terminate on convergence of pi, else continue with (i).

As result, one obtains a centroidal Voronoi partition.

Algorithm 3.1 uses the Voronoi partition to decompose the set Q into N
disjoint Voronoi cells based on N generator points. An example of the
Lloyd algorithm is depicted in Figure 3.1.

(a) initial state (b) iteration 1 (c) iteration 5 (d) iteration 10

Figure 3.1: Lloyd algorithm. The circles denote the generator points. (a)
highlights a Voronoi cell, and the arrows point to the centroid of the Voronoi
cells. (b) shows the Voronoi partition after one iteration. (c) depicts iteration 5.
In (d) the algorithm converges and, thus, terminates.

Bullo et al. [36] apply this centroidal search to a set of mobile robots,
i.e., each robot corresponds to one generator point in the Lloyd algorithm.
In each iteration the robots get closer to the optimal destination by mov-
ing towards the centroids. Repeating this scheme, the robots eventually
converge into the centroids of the respective Voronoi cells.

The Lloyd algorithm 3.1 depicts an algorithmic approach, where robots
always move into the respective centroids in the first step, and then the
Voronoi partition is updated in a second step. However, robots move
continuously in time, and therefore the Voronoi partition also changes
continuously. How to analyze this behavior in continuous time, and how
to synthesize motion control laws for each robot to move to the respective
centroids is subject of the next section.
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3.1.2 Distributed Optimization Problem
In order to solve the coverage problem, a formal description in terms of a
mathematical optimization problem is required. This optimization problem
is basically defined by an objective function, quantifying the solution. Prior
to formulating the optimization problem, several terms and definitions are
introduced following Bullo et al. [36].

Considered is a d-dimensional compact set Q ⊂ Rd, which is also referred
to as area or environment that is to be covered. If not stated otherwise,
the area Q is assumed to be convex. Further, N robots are situated in the
area at positions pi ∈ Q, i = 1, . . . , N . The set P = {p1, . . . ,pN} is called
configuration.

Next to the area Q, define a density function φ : Q → R≥0, q 7→ φ(q),
that assigns to each location q ∈ Q a nonnegative scalar real value. The
values φ(q) can be interpreted as a weighting of the area. A larger weighting
implies an increased benefit of covering the location q ∈ Q. As an example,
the density function could indicate the likeliness that an important event
occurs at the given location.

Further, a monotonically increasing, continuously differentiable function
f : R≥0 → R with a finite number of discontinuities is called performance
function. Accordingly, larger input values result in monotonically increas-
ing output values. For instance, when passing the distance x = ‖pi − q‖ of
a robot pi ∈ P to an arbitrary location q ∈ Q as input value, the perfor-
mance function could be defined as f(x) = x2. In fact, this performance
function is used by Cortés et al. [50] to solve the centroidal search.

Equipped with these basics, Cortés et al. [50] define an initial variant of
the objective function for the coverage problem as H : QN → R with

H(P) =

∫
Q

min
i∈{1,...,N}

f(‖q − pi‖)φ(q)dq. (3.1)

Here, the minimum operator identifies the best performance by choosing
the robot position pi, i ∈ {1, . . . , N}, that is closest to location q ∈ Q.
Each performance value is then weighted according to the density function
φ(q). The final fitness value of the configuration is given by integrating
over all locations q ∈ Q.

The value of H(P) in (3.1) solely depends on the choice of the configura-
tion P. Therefore, in order to obtain an optimal solution to the coverage
problem, a configuration P is to be found that minimizes the objective
function in (3.1), i.e.,

minH(P). (3.2)
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The optimization problem in (3.2) has the disadvantage, that it cannot
easily be computed distributively. However, distributed computation is
a required feature, since each robot is supposed to act autonomously.
Consequently, it is of interest to find an equivalent formulation of (3.1)
such that each robot is capable of optimizing the relevant part of the
objective function on its own.
To this end, Cortés et al. [50] partition the environment Q into a set

of non-empty disjoint cells W = {W1, . . . ,WN}. Analog to the Voronoi
partition, the union of the partition suffices the condition Q = ∪Ni=1Wi.
The idea of this partition is that each robot i maximizes the coverage in
its assigned cell Wi. This way, the objective function in (3.1) is recast into

H(P,W) =

N∑
i=1

∫
Wi

f(‖q − pi‖)φ(q)dq. (3.3)

The objective function in (3.3) has an additional degree of freedom, namely
the partition W. Since the properties of the partition W are not further
specified, a location q ∈ Q might be assigned to a cell Wi of robot i,
such that the performance function results in a larger value compared
to the objective function in (3.1). As a consequence, next to an optimal
configuration P, an optimal partition W of Q is to be found in order to
solve the coverage problem.

Theorem 3.1 (Optimal partition of the environment). Denote the config-
uration of N robots as P = {p1, . . . ,pN} in the area Q. Further, let f be
an arbitrary performance function, V = {V1, . . . ,VN} the Voronoi partition
for P in Q, and W 6= V an arbitrary partition of Q. Then,

H(P,V) < H(P,W)

holds, meaning that the Voronoi partition is the optimal partition with
respect to the objective function in (3.3).

Proof. A proof is given in Bullo et al. [36].

Although a formal proof is omitted here, Theorem 3.1 is intuitively clear,
since the Voronoi cells Vi by definition partition the environment such that
the distances to the robot positions pi are minimized. Using Theorem 3.1,
the objective function is reformulated to

H(P) = H(P,V) =

N∑
i=1

∫
Vi
f(‖q − pi‖)φ(q)dq. (3.4)
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Since the Voronoi partition V is uniquely defined by the robot configuration
P, it is convenient to omit the parameter V and write H(P) in (3.4). The
objective function H(P) in (3.4) is equivalent to the original objective
function in (3.1). However, the fundamental difference to (3.1) is that each
robot optimizes (3.4) autonomously due to H being a composition of N
summands. Hence, all robots perform the optimization in parallel, and
the optimization process is spatially distributed over the Delaunay graph,
which is dual to the Voronoi partition.

In summary, based on (3.4) the optimization problem in (3.2) can be
rewritten more explicitly in terms of the distributed optimization prob-
lem

minH({. . . ,pi, . . . }) (3.5)

for i = 1, . . . , N . In contrast to (3.2), (3.5) describes N optimization
problems that are coupled through the Voronoi partition V. Each robot
i optimizes its part in (3.5) reducing the value of the objective function
H(P), which in turn leads to an optimal configuration P.
Equation (3.4) together with (3.5) form the fundamental idea of the

solution to the coverage problem. The next sections present further details
about the density function, the performance function, and the computation
of the gradient.

3.1.3 A Note on Choosing Weights
The weighting of the environment is described by the density function φ(q).
As noted in the previous section, the weighting indicates the significance
of locations q ∈ Q. If normalized, the density function can be interpreted
in terms of a probability measure.

Bullo et al. [36] model the density function as a mixture of Gaussians [28].
The Gaussians are placed at locations q ∈ Q with high likeliness that an
important event occurs near q. The mixture of Gaussians is constant over
time but is allowed to change at distinct switching moments. Cortés et al.
[49] further discuss the design of density functions. It is shown how to obtain
geometric patterns such as a line or elliptic robotic formations. Finally,
the concept is extended to time-varying density functions φ(q, t) that are
applied to target-tracking problems [49, 84, 104]. Target-tracking based on
time-varying density functions is further elaborated on in Section 3.1.8 in
the context of dynamic coverage.
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3.1.4 Gradient of the Objective Function
Finding an optimal configuration P for the distributed optimization prob-
lem (3.5) implies the necessary condition

∂H(P)

∂pi
= 0 (3.6)

for each i = 1, . . . , N . Therefore, the gradient of H with respect to the
robot position pi is next derived in detail, since the understanding of how
to build the gradient is required again in the discussion about nonconvex
coverage. For simplicity, the performance function f is first modeled as a
continuously differentiable function with no discontinuities.

Without discontinuities in the performance function

In the distributed optimization problem (3.5), the Voronoi cells Vi depend
on the robot positions pi, meaning that changing a robot position pi also
changes the Voronoi cell Vi and the Voronoi cells Vj of the neighbors
j ∈ Ni = {j ∈ {1, . . . , N} | ∂Vi ∩ ∂Vj 6= ∅, j 6= i}. This coupling needs to
be considered when building the partial derivative of H(P) with respect
to a robot position pi in (3.6). Therefore, the Leibniz integral rule for
differentiation under the integral sign as described by Flanders [60] needs
to be applied.
Using an extended form of the Leibniz integral rule for differentiation

under the integral sign [60], and defining the position1) of robot i as
p>i = [xi yi], the xi component of the gradient (3.6) decomposes to

∂H(P)

∂xi
=

N∑
j=1

∫
Vj

∂

∂xi
f(‖q − pj‖)φ(q)dq (3.7a)

+
N∑
j=1

∫
∂Vj

f(‖q − pj‖)φ(q)v>j njds, (3.7b)

where vj = ∂q
∂xi

, q ∈ ∂Vj , describes the derivative of boundary points with
respect to xi, interpreted as velocities of the moving boundaries. Further,
nj is the outward facing unit normal on the respective boundary and ds is
the element of arc length [60, 73].
Following Cortés et al. [47], the derivative (3.7) can be simplified as

follows: Investigating term (3.7a), all summands j 6= i are zero with respect
1)For simplicity, the planar case pi ∈ R2 is considered here.
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to differential movements in xi. The term (3.7b) describes the differential
movement of the boundaries of the Voronoi cells. By observing that only
the boundaries of Voronoi cells adjacent to Voronoi cell Vi and Vi itself
change, (3.7b) can be formulated in terms of∫
∂Vi\∂Q

f(‖q − pi‖)φ(q)v>i nids+
∑
j∈Ni

∫
∂Vi∩∂Vj

f(‖q − pj‖)φ(q)v>j njds.

(3.8)
Therein, the first integral describes the movement of points q on the
boundary of Voronoi cell Vi that do not intersect with the boundary of
the environment Q. The second integral corresponds to the movement of
the boundaries of all Voronoi neighbors j ∈ Ni adjacent to Vi. Due to the
definition of the Voronoi cells, the integrand f(‖q− pi‖)φ(q)v>i ni and the
integrands f(‖q − pj‖)φ(q)v>j nj , j ∈ Ni, of (3.8) are identical in both
integrals, with the exception that the outward normals point in opposite
directions, i.e., ni = −nj . Therefore, the term (3.8) is equivalent to∫

∂Vi\∂Q

(
f(‖q − pi‖)− f(‖q − pj‖)

)
φ(q)v>i nids. (3.9)

Since by definition f(‖q − pi‖) = f(‖q − pj‖) holds on the boundary
of adjacent Voronoi cells Vi and Vj , the entire term vanishes, and the
derivative (3.7) reduces to

∂H(P)

∂xi
=

∫
Vi

∂

∂xi
f(‖q − pi‖)φ(q)dq. (3.10)

The partial derivative with respect to movements in the yi component
is performed analogously to the xi component. Therefore, the partial
derivative of the objective function H with respect to the robot position
pi is given by

∂H(P)

∂pi
=

∫
Vi

∂

∂pi
f(‖q − pi‖)φ(q)dq. (3.11)

Remark 3.1. The value of the objective function H(P) depends on the
robot configuration P and consequently the Voronoi partition. However,
the gradient of H with respect to a robot pi in (3.11) solely depends on
information available in the respective Voronoi cell Vi. Therefore, the
optimization of H can be performed distributively based on the Voronoi
partition of Q.
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Allowing discontinuities in the performance function

In preparation for the r-limited centroidal search, Cortés et al. [47] allow a
finite set of discontinuities in the performance function f . These disconti-
nuities need to be considered when building the gradient (3.11). Cortés
et al. [47] donate with a ∈ dscn(f) the set of discontinuities of f and define
the one-sided limits

f−(a) = lim
x→a−

f(x), f+(a) = lim
x→a+

f(x).

The gradient (3.11) of H with respect to the robot position pi then extends
to

∂H(P)

∂pi
=

∫
Vi

∂

∂pi
f(‖q − pi‖)φ(q)dq +∑

a∈dscn(f)

(f−(a)− f+(a))

∫
Vi∩∂B(pi,a)

nout,B(pi,a)(q)φ(q)dq. (3.12)

The vector nout,B(pi,a)(q) describes a normal unit vector in q on the
boundary of the intersection of the closed ball B(pi, a) with the Voronoi
cell Vi. All these normal vectors are weighted according to the density
φ(q), and then integrated and multiplied by the magnitude of the jump
discontinuity.

Remark 3.2. Condition (3.6), i.e., ∂H
∂pi

= 0, constitutes only a necessary
condition, implying that a configuration P may represent a saddle point or
a maximum of the optimization problem. Cortés et al. [50] mention, that
a sufficient condition for a minimum is a positive definite Hessian of H at
pi for all i = 1, . . . , N . This is further elaborated on in Du et al. [54].

3.1.5 Continuous-Time Motion Control Laws
Next, it is of interest how to use the gradient of the objective function H
with respect to the robot positions to derive motion control laws moving the
robots into the centroids. Cortés et al. [47] assume simple single-integrator
dynamics for each robot according to

ṗi = ui.

This dynamics describes the kinematics of a point mass of first order with
motion control law ui of robot i. The control input ui is computed by
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partition

∂H
∂pi

optimization

ṗi = − ∂H
∂pi

robot dynamics

H ui pi

Figure 3.2: Feedback loop of the coverage problem (cf. Haumann et al. [4])

continuously optimizing the gradient of the objective function, i.e.,

ui = −∂H(P)

∂pi
, |ui| ≤ umax. (3.13)

The condition |ui| ≤ umax reflects input amplitude constraints, since a
robot’s actors, and thus also its maximum speed, are limited. The motion
control laws (3.13) work according to the feedback-loop in Figure 3.2:
By continuously computing the Voronoi cell Vi, each robot evaluates the
objective function based on solely local information available in its Voronoi
cell, resulting in motion control laws ui that move the robot such that the
optimization problem is successively solved. As a consequence, one obtains
optimal robot positions maximizing the coverage. The differences between
the feedback loop in Figure 3.2 and the feedback loop in Figure 1.1 (page 4)
are that the mapping block is omitted, the optimization is defined as the
gradient with respect to the robot positions, and the robot dynamics are
defined in terms of gradient-based motion control laws.

These motion control laws distributively coordinate the group of robots
based on the Voronoi partition. Therefore, both design criteria – the
distributed coordination and the communication constraints – stated in the
problem formulation in Section 1.2 (page 3) are met.

3.1.6 Performance Functions
The only missing part in the distributed optimization problem is the
choice of the performance function f . Following Bullo et al. [36], several
performance functions and their behavior are discussed.

Centroidal Search

The performance function for the centroidal search is chosen as f(x) = x2

without discontinuities (cf. Figure 3.3(a)). Substituting H in (3.4) with
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this performance function results in

Hcover(P) =
N∑
i=1

∫
Vi
‖q − pi‖2φ(q)dq =

N∑
i=1

Jφ(Vi,pi). (3.14)

Jφ(Vi,pi) is the polar moment of inertia at pi of the weighted area Vi.
Applying the parallel axis theorem [30], (3.14) can be written as

Hcover(P) =
N∑
i=1

Jφ(Vi,mφ(Vi)) +
N∑
i=1

Aφ(Vi)‖pi −mφ(Vi)‖2, (3.15)

where the function Aφ(Vi) =
∫
Vi φ(q)dq denotes the weighted area of

Voronoi cell Vi, and the function mφ(Vi) = A−1
φ (Vi)

∫
Vi qφ(q)dq denotes

the weighted center of mass – also called centroid – of Vi. In the special
case where pi = mφ(Vi) the second term in (3.15) vanishes. This is
equivalent to the configuration P = {mφ(V1), . . . ,mφ(VN )} and represents
a centroidal Voronoi configuration.
As the first term in (3.15) does not depend on the position pi, the

gradient of Hcover with respect to pi reads

∂Hcover(P)

∂pi
= 2Aφ(Vi)︸ ︷︷ ︸

ki

(pi −mφ(Vi)). (3.16)

The characteristic property of this gradient is that the vector pi −mφ(Vi)
points straight from the centroid into the robot position, which reflects
exactly the desired behavior of the centroidal search when inserted in (3.13).
Further, the scalar ki can be interpreted as a proportional factor in the
control input (3.13), defining the magnitude of how fast the robot moves
towards the centroid. In principle, an example of the centroidal search
in discrete-time is given in the introduction to the coverage problem in
Figure 3.1 (cf. Section 3.1.1, page 21) for a rectangular region with constant
weights.

Area Problem

Instead of finding the centroids, subject to the area problem is to find robot
positions pi that maximize the covered area. To this end, Cortés et al. [47]
introduce the performance function

f(x) = −1[0;a](x) =

{
−1, if x ∈ [0; a],

0, otherwise,
(3.17)
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f(x) = x2

x0

1

2

0 1 2

(a) centroidal search

f(x) = −1[0,a](x)

x

0

−1

−2
0 1 2

(b) area problem

f(x) = x21[0;r](x) +

r21(r;∞)(x)

x0

1

2

0 r = 1 2

(c) ltd. centroidal search

Figure 3.3: Performance functions of the centroidal search, the area problem
for a = 1, and the limited centroidal search for r = 1.

with a ∈ R>0. Depicted in Figure 3.3(b), the performance function (3.17)
acts as an indicator function and has the same effect as using an r-limited
Voronoi partition with radius a = r. As a consequence, the objective
function turns into

Harea(P) = −
N∑
i=1

∫
Vi

1[0;r](‖q − pi‖)φ(q)dq

= −
N∑
i=1

∫
Vi∩B(pi,r)

φ(q)dq

= −
N∑
i=1

Aφ(Vi ∩B(pi, r)). (3.18)

Obviously, Harea represents the weighted area covered by all robots, im-
plying that minimizing (3.18) drives the robots away from each other to
minimize the overlap. Since performance function (3.17) has a single dis-
continuity in a = r with magnitude −1 and is constant otherwise, the
gradient in (3.12) reduces to

∂Harea(P)

∂pi
= −

∫
Vi∩∂B(pi,r)

nout,B(pi,r)
(q)φ(q)dq. (3.19)

Informally, this gradient is defined as the sum of all negative normal unit
vectors on the boundary of the closed ball in the respective Voronoi cell,
weighted with the density. These normal vectors as well as the resulting
negative gradient are illustrated in Figure 3.4 both for a constant and a
Gaussian density function.
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(a) with constant density (b) with a Gaussian density

Figure 3.4: Gradient of the area problem

Limited Centroidal Search

A mix of both the centroidal search and the area problem is defined by the
performance function

f(x) = x21[0;a](x) + a21(a;∞)(x), (3.20)

which is continuous in a, but not continuously differentiable (cf. Fig-
ure 3.3(c)). For a = r and the r-limited Voronoi cell Vi,r = Vi ∩B(pi, r),
the objective function reads

Hlim(P) =

N∑
i=1

∫
Vi,r
‖q − pi‖2φ(q)dq +

N∑
i=1

∫
Vi\Vi,r

r2φ(q)dq

=

N∑
i=1

Jφ
(
Vi,r,pi

)
+ r2

N∑
i=1

Aφ
(
Vi \ Vi,r

)
. (3.21)

Contrary to the performance function (3.17), f in (3.20) is continuous.
And since f is continuous, the one-sided limits in f(x → a = r) are
equal, and therefore no outward normals appear when building the gradient
according to (3.12). Consequently, the second term in (3.21) vanishes, and
the gradient of (3.21) reduces to the centroidal search in the r-limited
Voronoi cell Vi,r (cf. Definition 2.13, page 14). As result, the gradient of
Hlim with respect to the robot position pi yields

∂Hlim(P)

∂pi
= 2Aφ(Vi,r)(pi −mφ(Vi,r)). (3.22)
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Compared to the centroidal search in a Voronoi cell, the gradient now points
straight from the centroid of the r-limited Voronoi cell into pi, weighted
by the factor ki = 2Aφ(Vi,r). An example of the limited centroidal search
is depicted in Figure 3.5.

(a) initial state (b) iteration 5 (c) iteration 20 (d) iteration 40

Figure 3.5: Weighted centroidal search with limited Voronoi cells. Darker colors
imply higher weights. The initial states match the ones in Figure 3.1, page 21.

3.1.7 Stability Analysis
In the following, a proof of convergence for the limited centroidal search is
given as suggested by Cortés et al. [50]. As stated in (3.13), the motion
control law for each robot is defined as

ṗi = ui = −∂H(P)

∂pi
, |ui| ≤ umax. (3.23)

Based on these motion control laws, the goal is to apply the Krasovskii-
LaSalle invariance principle (cf. Theorem 2.3, page 18). This invariance
principle requires the time derivative of the objective function Hlim(P) to
be negative semi-definite such that it decreases over time. Building the
time derivative of Hlim(P) results in

Ḣlim(P) =
∂Hlim(P)

∂P
Ṗ =

N∑
i=1

∂Hlim(P)

∂pi
ṗi, (3.24)

that is, the scalar product in (3.24) can be decomposed into a sum of N
scalar products. Inserting the partial derivative (3.22) and (3.23) into (3.24),
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one obtains the inequality

Ḣlim(P) = −kp
N∑
i=1

‖pi −mφ(Vi,r)‖2 ≤ 0 (3.25)

with a positive gain kp. Inequality (3.25) always holds due to the sum
of squares and kp being positive. Using (3.25) the Krasovskii-LaSalle
invariance principle can be applied. Thereafter, Hlim(P) is minimized over
time, and consequently the robots move to the largest invariant set, which
equals the set of all centroidal Voronoi configurations.

3.1.8 From Static to Dynamic Coverage
Up to this point, a time-invariant density function φ was assumed such
that the robots converge to a static configuration. This setup is known
as the static coverage problem. However, in large-scale environments or
a priori unknown environments, an increased amount of robots may be
required in order to satisfy sufficient coverage of the entire domain. In this
case, the solution to the coverage problem is impractical [25].

This dilemma is addressed by the dynamic coverage problem. Batalin and
Sukhatme [25] define dynamic coverage as the constant motion of robots
such that the entire area is repeatedly covered over time. Interestingly,
covering the entire environment over time matches the definition of the
exploration problem. Consequently, solutions to the dynamic coverage
problem are also of interest in the context of multi-robot exploration.
Hussein and Stipanovic [70] solve the problem of dynamic coverage by

initializing each point in the domain with a coverage value. The goal is to
reach a certain coverage level for the entire domain. This is achieved by a
gradient-based motion control law that incorporates the information within
the sensing range. If the coverage level is reached within the sensing range,
the gradient is zero. In this case the controller is switched to move to the
closest point where the coverage level is not met. Extensions add repulsive
forces to the control law that avoid collisions among the robots. However,
nonconvex environments that are typical for the exploration problem are
not considered.
A related approach to dynamic coverage was proposed by Cortés et al.

[49] back in 2002 to solve the target-tracking problem: The target is
represented through a time-varying density function, such that the solution
to the coverage problem as introduced in Section 3.1 can be applied.
Consequently, instead of converging to a static configuration, the robots



34 3 Literature Review

continuously move, following the density. A drawback of this approach is
that convergence to the target cannot be guaranteed, since the dynamics of
the time-varying density function is unknown. Pimenta et al. [104] extend
this idea in 2008 by providing a gradient-based controller that provably
converges to the target under the assumption that the dynamics of the
target is partially known. Independently of Pimenta et al. [104], the same
solution was proposed again in 2013 by Lee and Egerstedt [84].
Dynamic coverage is also considered in [25, 113, 118] but the proposed

solutions are not of interest in the context of multi-robot exploration as
discussed in this dissertation.

3.1.9 Coverage of Nonconvex Environments
In essence, the robots always move to the centroid of the respective (r-
limited) Voronoi cell in order to solve the coverage problem. However,
in nonconvex allowable environments, simply moving to the centroid is
not directly applicable. Figure 3.6 depicts a robot in nonconvex allowable
environments Q with constant density. The robot is supposed to maximize
coverage in Q by moving to the centroid of Q. However, this approach
is problematic for the following reasons: In Figure 3.6(a) the centroid
lies outside of the allowable environment Q, in Figure 3.6(b) the centroid
of Q lies inside an obstacle, and in Figure 3.6(c), although the centroid
lies inside Q, the resulting trajectory collides with the obstacle. Hence,
simply moving to the centroid may result in collisions with the nonconvex
environment and therefore a modified approach to nonconvex coverage is
required.

p1

(a) centroid outside of Q

p1

obstacle

(b) centroid in obstacle

p1

obstacle

(c) problematic trajectory

Figure 3.6: Problematic locations of the centroid × of nonconvex allowable
environments for a single robot

A simple approach to nonconvex coverage is presented by Pimenta et al.
[103]. In essence, the authors use the geodesic Voronoi partition and apply
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the geodesic distance for each point q ∈ Vi to pi in the performance
function. The main contribution of Pimenta et al. [103] is a transformation
that projects each point q ∈ Q assigned to a robot at pi to q′ = pi +
dg(pi, q)npi,q, where npi,q denotes the unit normal of the first path segment
along the geodesic path from pi to q. The mapping of all q 7→ q′ avoids
moving into obstacles. At discontinuities of the geodesic path the normal
npi,q is undefined. In this case, the authors fall back to Clarke’s generalized
gradient [45]. As a result, the authors claim to obtain the optimal coverage
of the partition in nonconvex environments. In addition to this approach
to nonconvex coverage, Pimenta et al. [103] also present an approach to
convex coverage based on the power diagram [23], which is an extension
to the Voronoi partition. Using power diagrams, the authors solve the
coverage problem for a group of robots with heterogeneous sensing range,
i.e., each robot i may have a distinct sensing range ri. Focusing on the
area problem in nonconvex environments, the idea of using power diagrams
was proposed only recently in Thanou et al. [124]. Further, nonconvex
coverage solving the area problem in the geodesic Voronoi partition was
also investigated in Thanou et al. [125].

The method by Breitenmoser et al. [34] uses the Voronoi partition with
the Euclidean norm to assign to each robot the centroid of its Voronoi
cell. If obstacles block the direct path to the centroids, the robots use the
TangentBug algorithm [111] to avoid collisions. Further, if a centroid lies
inside an obstacle, it is projected to the nearest point on the boundary of
the obstacle, leading to the best possible approximation.

Another approach to solving the nonconvex coverage problem is presented
by Caicedo-Núñez and Žefran [40]. The authors apply a diffeomorphism
to nonconvex environments to obtain convex regions. However, as a side
effect the diffeomorphism changes the mass distribution. Consequently the
optimality property of the centroids in the nonconvex environment is lost,
yielding a suboptimal solution to the nonconvex coverage problem. This
issue is addressed by Caicedo-Núñez and Žefran [39], where the authors
prove the existence of an appropriate diffeomorphism. Nonetheless, it
is generally unclear how to compute the transformation, rendering this
approach in many applications computationally unfeasible.

Nonconvex Coverage in Visibility Sets

Also related to coverage in nonconvex environments is the problem presented
by Zhong and Cassandras [138]. The authors consider a modified coverage
framework, where overlapping sensor areas increase the quality of coverage,
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and the environment with polygonal obstacles is no longer partitioned into
Voronoi cells. The approach is related to coverage in visibility sets in that
obstacles attenuate or block the sensing abilities of the robots, leading
to nonsmooth analysis of the gradient of the objective function. Zhong
and Cassandras [138] show that the use of a generalized gradient [45] is
necessary due to a new term that arises from the boundary to invisible
regions.
The combination of visibility-based coverage in the Voronoi partition

has only been considered recently by Lu et al. [88] and Marier et al. [92].
Lu et al. [88] propose to evaluate the coverage integral in the unlimited
visibility set in the geodesic Voronoi cell. Following this approach, the
resulting centroid may lie outside of the area Q, e.g., inside an obstacle.
To work around this issue, the authors project the centroid to the closest
point in the Voronoi cell that is visible from the respective robot to avoid
collisions. A mathematical analysis and a proof of convergence is not
provided by Lu et al. [88], though.
Marier et al. [92] also use the notion of visibility sets in Voronoi cells

similar to Lu et al. [88], with the difference that they allow disconnected
cells. The authors closely investigate the gradient of the objective function
similar to Zhong and Cassandras [138]. Since the gradient in visibility
sets is of importance for the multi-robot exploration approach proposed
in Section 4, it is investigated here following Marier et al. [92]. To this
end, two robots located in pi and pj and their respective visibility sets,
V?i = {q ∈ Vi | [pi, q] ⊂ Vi} and V?j , are depicted in Figure 3.7. The
boundary of the visibility sets can be distinguished into several boundary
types:

(i) ∆i represents the boundary that is limited by obstacles or the area
Q. It is invariant with respect to robot movements, i.e., it remains
unchanged when pi changes.

(ii) ∆ij = ∆ji defines the boundary whose distance of points q ∈ ∆ij to
pi equals the distance to pj . In other words, ∆ij equals the definition
of the separating bisectors defining the Voronoi cells.

(iii) ∆i0 is defined by all boundary points q ∈ ∂V?i that are adjacent to
uncovered area. The uncovered area Q0 is the set of points q ∈ Q
that are not visible from any robot position pi.

(iv) ∆′ij = ∆′ji defines the boundary parts where two visibility sets are
adjacent. However, in contrast to (ii), the distance of points q ∈ ∆′ij
to pi does not equal the distance to pj .
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pi

V?i

pj

V?j

∆i

∆i0

∆ij

∆′ij

Figure 3.7: Nonconvex coverage in visibility sets

In convex sets, the boundary types (iii) and (iv) do not exist, and as shown
in the derivation of the gradients in Section 3.1.4 (page 25), the outward
normals generated by the boundary type (ii) cancel out such that only
outward normal vectors in discontinuities in the performance function f
remain. In contrast to (3.9) (page 26), when building the gradient of the
objective function H in visibility sets, the boundary types (iii) and (iv) do
not cancel out. As shown by Marier et al. [92], the gradient in this case
with respect to the xi component of the robot position p>i = [xi yi] for
the performance function f(x) = x2 results in

∂H(P,V)

∂xi
=

N∑
j=1

∫
V?j

∂

∂xi
‖q − pj‖2φ(q)dq (3.26a)

+

N∑
j=1

∫
∆′ij

‖q − pj‖2φ(q)v>j njds (3.26b)

+

N∑
j=1

∫
∆j0

D2φ(q)v>0 n0ds (3.26c)

+

∫
Q0

∂

∂xi
D2φ(q)dq (3.26d)

where again vj =
∂q(∂V?j )

∂xi
and v0 =

∂q(∆j0)
∂xi

are the derivatives of boundary
points q ∈ ∂V?j and q ∈ ∆j0 with respect to xi, interpreted as velocities of
the moving boundaries. Further, nj and n0 are the outward facing unit
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normals on the respective boundaries, ds is the element of arc length [60, 73],
and D ∈ R≥0 is a scalar that can for instance be set to diamQ. As before,
all elements of the sum in (3.26a) for j 6= i are zero. However, the
terms (3.26b)–(3.26d) are non-zero, leaving partial derivatives ∂H

∂pi
that

are significantly more complex to compute in practice. In addition, the
boundary parts ∆′ij can be computed only by knowing the visibility set
of neighboring robots, which implies increased communication payload.
Marier et al. [92] use these gradients to find optimal configurations with
respect to coverage in visibility sets and also provide a proof of convergence
for environments without holes. The problem that agents might leave the
environment due to the normal vectors (3.26b) and (3.26c) persists and is
again handled by a projection procedure.
Another research area is the problem of maximizing the visibility set

of a nonconvex area by deploying a minimum amount of sensors. This
deployment task is also known as the art gallery problem [44], where the
sensors are cameras that monitor an art gallery. Although the visibility
problem is akin to the coverage problem [36, 65, 100], the objectives and
the corresponding optimization problems and solutions of deployment tasks
are not equivalent.

Further Research

Additional research about optimization problems in nonconvex as well as
convex environments exists, e.g., [20, 43, 69, 80, 93, 107, 121, 123, 137, 138].
Nevertheless, since the relevance is limited in the context of multi-robot
exploration as addressed in this dissertation, these approaches are not
further discussed.

3.2 Multi-Robot Exploration
Multi-robot systems potentially solve the exploration task more efficiently
while at the same time being more fault-tolerant and more reliable [42, 55].
As motivated in the introduction of the dissertation, these advantages only
hold if the robots effectively coordinate each other. In accordance with
the solution to the coverage problem in Section 3.1, the coordination of
a group of robots is typically achieved by casting the exploration task
into an optimization problem based on an appropriate objective function.
This objective function consists of multiple components that rely on the
currently available information about the environment, such as map data
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and robot positions. Therefore, the coordination of the group inherently
relies on a reliable communication topology in addition to the optimization
problem.
The next section introduces the fundamental problem of simultaneous

localization and mapping. After that, objective functions and communica-
tion constraints of existing exploration approaches are discussed first for a
single robot and then for a group of robots. Finally, a discussion follows
including gradient-based exploration strategies and performance measures.

3.2.1 Simultaneous Localization and Mapping
Makarenko et al. [91] divide the exploration problem according to Figure 3.8
into three tasks: mapping, localization and motion control. Mapping is
the process of extending the map with new information gained about
the environment. However, mapping an unknown environment requires
an accurate robot position, otherwise it is unclear where to extend the
map. Consequently, mapping is tightly coupled to the localization task:
Inaccurate localization implies a bad quality of the map and vice versa.
This dependency is depicted by region 1○ in Figure 3.8. In addition, a bad
localization quality also has an impact on the motion control (cf. region 2○):
If a robot has a faulty estimate of its position, motion control may lead
to collisions with obstacles in the environment, which in turn implies a
coupling of motion control and mapping (cf. region 3○). The interaction of
these three tasks is represented by region 4○ in Figure 3.8 and was first
introduced by Leonard and Durrant-Whyte [85] by stating “which came
first, the chicken or the egg? (The map or the motion?)” before it became
known as Simultaneous Localization and Mapping (SLAM) [85, 128].

In fully autonomous exploration, a robot needs to take care of all three
tasks (cf. region 4○ in Figure 3.8). In practice, this is a non-trivial process
due to non-ideal sensors and actuators, and inaccuracies in the generated
map of the environment. Solutions to SLAM are discussed in Bailey and
Durrant-Whyte [24], Durrant-Whyte and Bailey [57], Thrun and Leonard
[128], and also in Thrun et al. [127].
This dissertation focuses on exploration approaches, meaning that an

ideal localization and mapping process is assumed. Therefore, the explo-
ration problem considered reduces to the “two-part definition” [114] (i)
where to move next and (ii) how to get there, which is represented by green
region 3○ in Figure 3.8.
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Figure 3.8: Simultaneous localization and mapping (SLAM) as in [91]

3.2.2 Objective Functions for a Single Robot
The surveys of Burgard et al. [38] and Stachniss et al. [119] refer to a
variety of exploration strategies that focus on a single robot. In all these
approaches, the robot moves to the unknown region that is closest to the
robot. In essence, this equals the frontier-based approach as introduced by
Yamauchi [136]: For a single robot at position p, the objective function
of this minimum distance strategy and the corresponding optimization
problem read

HMinDist(p, q) = dg(p, q) ⇒ arg min
q∈s̃
HMinDist(p, q). (3.27)

The objective functionHMinDist solely consists of the geodesic distance costs
dg from the robot position p to q on the frontier s̃. Makarenko et al. [91]
extend this objective function by two components: the localization quality
and the expected information gain on the frontier. The localization quality
accounts for the SLAM problem, so that the robot maintains an accurate
position estimate during the exploration. The expected information gain
represents the amount of unknown space that the robot is expected to
explore when reaching a target point.
While these approaches work for a single robot, they are not directly

applicable to the multi-robot domain, since the corresponding objective
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functions do not contain any ingredients to coordinate multiple robots.
Therefore, the next section reviews exploration strategies explicitly designed
for multiple robots.

3.2.3 On Coordinating Multiple Robots
Moors [96] proposes a centralized approach to coordinated multi-robot
exploration. Assuming unconstrained communication capabilities, a robot
chooses a target point on the frontier by optimizing a utility function
that consists of the expected information gain on the frontier and the
distance costs. In order to prevent other robots in the group from moving
to the same location, the expected information gain at the region around
the chosen target point is reduced and communicated to the group. The
reduction of the expected information gain minimizes the potential overlap
when choosing target points. This approach was applied to multi-robot
exploration of indoor environments and published by Burgard et al. [37] and
Simmons et al. [116]. A hierarchical version of this approach is presented
by Burgard et al. [38]. Here, robots within communication range form
a cluster and apply the same algorithm to choose target points for each
robot.
The assumption of a shared map is further relaxed in Fox et al. [63,

64] by enabling multiple robots to explore an indoor environment from
different, unknown locations. Due to the unknown initial locations, robots
within communication range actively seek to verify their relative positions.
Whenever relative positions are verified, the robots form a cluster and
continue exploration in a group following Burgard et al. [38]. Analog to
Makarenko et al. [91] for a single robot, these approaches account for the
SLAM problem with multiple robots.

Other approaches focus on maintaining a communication network during
the exploration task. Simulations are provided by Rooker and Birk [108].
Assuming limited communication range, the authors add a component to
the objective function that prevents robots from moving too far away from
the group. However, deadlock situations may occur that need to be detected
and resolved by applying the rendez-vous principle [110]. This drawback
does not exist in the work of Sheng et al. [115], as a distributed bidding
model is applied that coordinates the movement of the robots such that
distance constraints are satisfied in each point in time. Experimental results
are given by Rekleitis et al. [106]. Here, the communication constraints
are satisfied by using a fixed amount of robots that collaborate by moving
through the environment in a predefined pattern.
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3.2.4 Coordination by Partitioning the Environment
Following the solution to the coverage problem, another concept to robot
coordination is to spatially partition the environment such that each robot is
assigned a region of dominance to be explored. Consequently, coordinately
choosing target points reduces to finding appropriate partitions.

Solanas and Garcia [117] partition the unknown parts of the environment
by forming spatially disjoint clusters with the k-means clustering algorithm
[86, 120], where the amount of clusters matches the amount of robots. Each
robot is then assigned one cluster. The objective function is formulated
such that each robot moves to a target point on the frontier of its cluster
that minimizes the distance costs to the robot. Wu et al. [134] essentially
propose the same algorithm, except that the objective function additionally
contains a term that prevents a robot to get too close to frontiers of
neighboring clusters. This approach was again extended in Wu et al. [135].
However, drawbacks of these approaches are the central computation of
the cluster centers in unknown space and the assumption of unconstrained
communication. Therefore, without further modifications these approaches
are not applicable in distributed systems.

Bhattacharya et al. [27] transfer the solution to the coverage problem to
explore nonconvex environments based on the geodesic Voronoi partition.
Each robot computes the centroid of its geodesic Voronoi cell. This centroid
is then projected to the closest point in the respective cell where the
density function is higher than a specific threshold value. This projection
method guarantees that over time the robots move to all locations in the
environment. The density function is defined in terms of the Shannon
entropy. The entropy is a measure for the uncertainty in a point: In
unknown space, the uncertainty is highest, whereas it is zero in explored
regions. Moving to the projected centroid, the robots permanently reduce
the entropy according to their limited range sensor model, which in turn
influences the position of the centroid. The authors give a proof for
convergence under the assumption that all robots can communicate with
their geodesic Voronoi neighbors and exchange map data as well as robot
positions from time to time.

Other approaches to multi-robot exploration as well as related research
exist (e.g., [102, 107, 112, 131]). However, the relation to the DisCoverage
approaches presented in this dissertation is minor and therefore these
publications are not further discussed.
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3.3 Discussion
Neither the related work presented for the coverage problem nor the one
presented for the exploration problem are exhaustive. Instead, it emphasizes
the huge variety of solutions to both problems with different focus and
assumptions. In the context of multi-robot exploration, most of these
strategies (e.g., [37, 38, 63, 64, 116, 134, 135]) follow the two-step approach:
First, target points are chosen, then path planning algorithms are applied to
reach the destinations. Contrary, many solutions to the coverage problem
apply gradient-based motion control laws similar to Cortés et al. [50] as
illustrated by the closed feedback loop in Figure 3.2 (page 28). Therein, only
a single optimization problem is continuously optimized, resulting in motion
control laws that solve the coverage problem. A distributed coordination
technique to the multi-robot exploration problem following the solution
to the coverage problem was only recently investigated by Bhattacharya
et al. [27]. However, as discussed the authors need a projection method as
well as path planning to prevent robots from moving into obstacles, again
introducing additional steps next to solving the optimization problem.

3.3.1 Gradient-Based Motion Control
According to Koren and Borenstein [77], potential field methods have several
inherent limitations for mobile robot navigation. Next to oscillations due
to narrow passages or obstacles, a major drawback are trap situations due
to local minima in the optimization problem. Therefore, gradient-based
motion control needs a careful design in order to avoid these disadvantages.
This holds especially in distributed systems, since no entity with global
knowledge exists.

With respect to the coverage problem in Section 3.1, the solution provided
by Bullo et al. [36] yields optimal configurations that maximize the overall
coverage level. However, the final robot configuration significantly depends
on the choice of the density function and the initial robot configuration P ,
and since the robots apply gradient-based control laws, it is not guaranteed
to find the globally optimal robot configuration.
Therefore, a multi-robot exploration approach based on the solution to

the coverage problem satisfying the design criteria of distributed coordi-
nation under well-defined communication constraints (cf. Section 1.2 on
page 3) needs to be carefully designed such that full exploration of the
environment is always guaranteed.
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3.3.2 A Note on Performance Measures
Surprisingly, a very limited amount of research directs its attention to
performance measurements. Generally, performance is measured in terms of
time needed to complete the exploration process, which usually corresponds
to minimizing the overall travel distance. Such measurements are performed
in Amigoni [21] for selected strategies in a simulation environment. As a
result, the author claims that exploration strategies that balance cost and
potential information gain perform better than the ones that solely consider
the potential information gain or the distance costs. Other research that
examines robotic systems exists: Lee and Recce [83] performs experiments
for a variety of exploration strategies with only a single robot. Kramer
and Scheutz [78] focus on robotic development environments and middle-
ware solutions, Michael et al. [94] describe an experimental testbed for
multi-robot teams, and Kudelski et al. [79] provide a framework with
realistic communication models. However, extensive performance tests on
multi-robot exploration strategies are not performed.

As a consequence, the exploration strategies proposed in the next chapter
are compared to the time-optimal case. Although the time-optimal case
provides a measure of optimality from a purely theoretical perspective, it is
still suitable for reference, as it provides a lower bound for the time needed
to explore the entire environment.
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Motivated by the solution to the coverage problem, this chapter introduces
new approaches to distributed multi-robot exploration. The proposed
approaches rely upon spatially distributed optimization problems and
therefore closely follow the closed feedback loop in Figure 3.2 (page 28).
As a result, gradient-based motion control laws are obtained that cause
the robots to fully explore the environment, without any need of explicit
path planning algorithms. Since the idea of gradient-based motion control
laws as well as the underlying distributed optimization problem originate
from the coverage problem, the presented approaches are referred to as
DisCoverage approaches. The results of the centroidal search-based
DisCoverage approach in Section 4.2 were published in Haumann [5],
Haumann et al. [8, 9] and Klodt et al. [12]. Similarly, the orientation-based
DisCoverage approach was discussed in Frank et al. [2], Haumann et al.
[3, 4] and Haumann et al. [6].

4.1 Preliminaries and Notation
Throughout this chapter, planar allowable environments Q ⊂ R2 according
to Definition 2.6 (page 10) are considered, i.e., Q is a connected set defined
by a polygonal environment with polygonal obstacles. Further, it is assumed
that Q remains constant over time, implying a static environment without
moving obstacles. The explored parts of the environment are defined as
S(t) ⊆ Q, where the frontier is defined as s̃(t) = ∂S(t) \ ∂Q. Initially,
the entire environment is unexplored and S(t = 0) = ∅ holds. The robots
are denoted by the configuration P(t) = {p1(t), . . . ,pN (t)} with robot
positions pi(t) ∈ Q. The frontier in the region of dominance Vi(P(t)) for
robot i is given as s̃i(P(t), t) = s̃(t) ∩ Vi(P(t)). Typically, Vi(P(t)) refers
to the respective (geodesic) Voronoi cell in convex (nonconvex) allowable
environments Q. For ease of notation, the dependency on time t and on
the configuration P is omitted in most places, resulting in the variables S,
s̃, s̃i, P and Vi.
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Closely following the assumptions of Bullo et al. [36], all robots are
equipped with omni-directional sensors with sensing range r that perform
ideal measurements in order to map the environment. Furthermore, the
problem of simultaneous localization and mapping (SLAM) is avoided
by neglecting any uncertainties in the robot positions as discussed in
Section 3.2.1 (page 39). During the exploration process, bidirectional
communication among Voronoi neighbors is assumed. Consequently, the
robots maintain a communication network spatially distributed over the
Delaunay graph, which is dual to the Voronoi partition as described in
Section 2.1.4 (page 12). Robots of adjacent Voronoi cells communicate
each other’s position and exchange map data to account for the time-
varying Voronoi cells according to Figure 4.1. For ∆t → 0, neighbors
i, j differentially exchange map data of the areas δVi→j , i.e., ∆Vi→j in
Figure 4.1 approaches δVi→j . Therewith, each robot i is aware of the
explored parts Si and the frontier s̃i in its region of dominance Vi in each
point in time.

pi

Vi

pj

Vj

(a) Voronoi cells for 2 robots

pi

pj

∆Vj→i

∆Vi→j

(b) Changed partition after ∆t

Figure 4.1: Exchanged map data among Voronoi neighbors

4.2 Centroidal Search-Based DisCoverage
The limited centroidal search introduced in Section 3.1 (page 20) presents
an elegant solution to solve the coverage problem with limited sensing
and communication range. In literature, this approach is applied to solve
the coverage problem (e.g., [36, 50]) or target tracking problems (e.g.,
[49, 104]), mostly focusing on convex environments. The goal of this
section is to modify the limited centroidal search such that it can be
applied to solve the exploration problem with a group of robots. Therefore,
in convex environments, the objective function in (3.21) on page 31 is
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slightly modified in terms of

Hdiscover(P,S) =

N∑
i=1

∫
Vi,r̄
‖q − pi‖2φ(q, s̃i)dq +

r̄2
N∑
i=1

∫
Vi\Vi,r̄

φ(q, s̃i)dq. (4.1)

The modifications in (4.1) with respect to Hlim in (3.21) are twofold: First,
the density φ(q, s̃i(P(t), t)) is now a function of the time-varying frontier
s̃i. It is worth to note that the density φ(q, s̃i) was never proposed before:
Instead, Bhattacharya et al. [27], Cortés et al. [49], Lee and Egerstedt
[84], Pimenta et al. [104] propose a density φ(q, t) as a function of time.
Second, a scalar integration range r̄ > 0 is introduced, which is used to
compute the r̄-limited Voronoi cells

Vi,r̄ = {q ∈ Vi | ‖pi − q‖ ≤ r̄}. (4.2)

The integration range r̄ does not correspond to any sensing capabilities. A
proper interpretation is given in later sections. In what follows, the idea is
to adapt the density function φ(q, s̃i) over time so that the motion control
laws

ṗi = ui = −∂Hdiscover(P,S)

∂pi
, i = 1, . . . , N, (4.3)

solve the exploration problem. To this end, Section 4.2.1 formally defines
the density function φ(q, s̃i) for convex and nonconvex allowable environ-
ments. The partial derivative of Hdiscover in (4.3) is given in Section 4.2.2
for convex environments. Further, Section 4.2.3 discusses the properties
of the integration range r̄ in detail, and a proof of convergence for the
proposed exploration approach is given. Thereafter, the proposed approach
is generalized to nonconvex allowable environments (cf. Section 4.2.4). Sec-
tion 4.2.5 investigates the behavior when using multiple robots. Finally,
Section 4.2.6 discusses possible extensions to the vehicle dynamics.

4.2.1 Modifying the Density Function
As proven in Section 3.1.7 (page 32), the objective function of the limited
centroidal search along with the gradient-based motion control laws move
the robots to locations with high density, maximizing coverage in convex
environments. Therewith, it is fundamental that the density function
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φ : Q → R is designed such that its values are maximal in the critical
locations and monotonically decrease with increasing distance to the critical
points.

For the coverage problem, Cortés et al. [49] propose a Gaussian density
function φ : Q → R≥0 that is interpreted in terms of a probability density
function. As a result, the objective function

H(P) =

N∑
i=1

∫
Vi
f(‖q − pi‖)φ(q)dq︸ ︷︷ ︸

expected value

(4.4)

essentially computes N expected values which equal the expected mean
performance from a probability theory perspective. Therefore, Bullo et al.
[36] refer to (4.4) as an expected-value multicenter function that is optimal
for centroidal Voronoi configurations P.

Martínez et al. [93] define φ as a mixture of Gaussians, allowing several
distinct locations with maximum density. Next to a mixture of Gaussians,
Cortés et al. [49] propose density functions that form elliptic or line shapes
(cf. Section 3.1.3, page 24). Combining these ideas with the time-varying
density functions φ(q, t) in [27, 49, 84, 104], it seems natural to define the
density as a function of the time-varying frontier in terms of the Gaussian
mapping φ : Q × Q → R≥0,

φ(q, s̃i(P(t), t)) =

{
exp

(
− 1

2σ2 d
2
g(q, s̃i(P(t), t))

)
, if q ∈ Si,

1, if q /∈ Si,
(4.5)

where σ ∈ R>0 denotes the standard deviation. According to (4.5), the
density in unexplored space is equal to one. In the convex case, the
metric dg(q, s̃i(P(t), t)) = minq′∈s̃i(P(t),t) ‖q − q′‖ computes the minimum
Euclidean distance from q to the time-varying frontier s̃i(P(t), t) through
explored space Si(P(t), t). In the nonconvex case, dg(q, s̃i(P(t), t)) =
minq′∈s̃i(P(t),t) dg(q, q

′) computes the minimum geodesic distance from q
to the time-varying frontier. Since the density function is a Gaussian, its
value equals one on the frontier and in unexplored space. In explored space,
the value of the density function monotonically decreases with increasing
distance to the frontier, depending on the value of the standard deviation
σ.

Further densities are applicable, such as the gamma distribution with rate
parameters both equal to one (cf. Bishop [28]). In fact, the requirements
on the weighting can be relaxed to monotonically decreasing functions on
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φ : Q×Q → R. Accordingly, negative weights are allowed and a density
function in explored space could be defined simply through the geodesic
distance metric

φ(q, s̃i(P(t), t)) = −dg(q, s̃i(P(t), t)). (4.6)

However, it should be noted that (4.6) does neither allow for a physical in-
terpretation in terms of densities nor a probability-theoretical interpretation
due to the negative values.
In this dissertation the Gaussian density function (4.5) is used. An

example of this density function with geodesic distance metric dg is shown
in Figure 4.2. The nonconvex allowable environment is represented in terms
of an occupancy grid map (cf. Elfes [58], Moravec [97]). Cells of the grid
map are either unexplored, an obstacle on the boundary of Q, or free. A cell
on the boundary ∂Q of the environment switches its state from unexplored
to obstacle, as soon as the cell intersects with a circle around the robot
positions pi defined by the sensing range r. A cell in the interior of Q
switches its state from unexplored to free, if it is fully contained in one of
the sensing circles. The frontier is defined by all unexplored cells adjoining
free cells. The density decreases with larger distance and is depicted by
the color gradient on a logarithmic scale.

frontier frontier

explored space

unexplored space

obstacle

φmax

φmin

Figure 4.2: Density function in a nonconvex allowable environment

Remark 4.1 (Relation to the distance transform). The computation of the
weights of all points q in the explored region Si relies on the distance from
each q to the frontier s̃i in a Voronoi cell Vi. Interestingly, this equals the
distance transform in Definition 2.14 (page 14), except for the following
differences: First, the distance is computed with respect to the frontier
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instead of the obstacles. Second, in nonconvex allowable environments, the
geodesic distance norm is required instead of the Euclidean norm. Thus,
the modified distance transform can be thought of as an extension to the
distance transform known in image processing (e.g., Fabbri et al. [59]).

4.2.2 Building the Partial Derivative
Cortés et al. [49], Pimenta et al. [104], and Lee and Egerstedt [84] consider
time-varying density functions φ(q, t) for target tracking. As a consequence,
the control laws depend on the dynamics of the centroid of the r-limited
Voronoi cells, which in turn depends on φ(q, t). This dependency is required,
since if the dynamics of φ(q, t) is ignored, convergence and thus successful
target tracking cannot be achieved.

Contrary, the density function φ(q, s̃i(P(t), t)) in (4.5) does not explicitly
depend on the time. Instead, it depends on the state of the frontier
s̃i(P(t), t) in the Voronoi cell Vi(P(t)). This in turn implies that the
frontier s̃i is constant over time if the robots do not move, i.e., if Ṗ(t) = 0.
Considering moving robots, the density in a Voronoi cell changes only in two
cases: First, the robot moves into unexplored regions of the environment
and consequently pushes back the frontier. Second, the partition changes
such that parts of the frontier are assigned from Voronoi cell Vi to Vj
or vice versa. With this background in mind, it is not crucial to model
the dynamics of the density function in the gradient (4.3). Therefore, the
following property is assumed.

Assumption 4.1. Building the partial derivative of Hdiscover in (4.1) with
respect to the robot positions pi, the density φ can be modeled as a
quasi-stationary function.

Under Assumption 4.1, one obtains the well-known gradients [50]

∂Hdiscover(P,S)

∂pi
= ki(pi −mφ(Vi,r̄)), (4.7)

in convex allowable environments for each robot i = 1, . . . , N . Therein,
ki ∈ R>0 denotes a positive gain, and mφ(Vi,r̄) denotes the weighted
centroid of the r̄-limited Voronoi cells Vi,r̄. Obviously, the negative gradient
points straight from the robot position into the centroid, which reflects the
desired behavior described in (4.3).

In line with the solution to the coverage problem, the gradients in (4.7)
depend solely on local information available in the respective r̄-limited
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Voronoi cell Vi,r̄. Hence, although the objective function Hdiscover is defined
on the entire domain Q, its optimization is spatially distributed over the
Delaunay graph. This in turn implies that the communication topology
relies on the Voronoi partition, and the coordination of the robots based
on the gradients is distributed, meeting the design criteria in the problem
statement (cf. Section 1.2, page 3).

4.2.3 DisCoverage in Convex Environments
In this section, the DisCoverage multi-robot exploration approach is inves-
tigated for convex (obstacle-free) allowable environments Q as published in
Haumann et al. [8]. In this case, all Voronoi cells Vi are convex. Upper and
lower bounds for the integration range r̄ are given. Further, the sensing
range r is defined as a function of the integration range r̄ and the shape
of the convex polygonal environment. Finally, a proof of convergence is
provided.

On Choosing the Integration Range

In addition to the modified density, the objective function Hdiscover in (4.1)
depends on the integration range r̄ which defines the r̄-limited Voronoi
cells Vi,r̄ in the Voronoi cell Vi (cf. Definition 2.13, page 14). The r̄-limited
Voronoi cells Vi,r̄ form the base for computing the motion control laws (4.3)
through the partial derivatives (4.7) for each robot i = 1, . . . , N (cf. (3.22),
page 31). In the following, the impact of the integration range r̄ on the
motion control laws (4.3) and the sensing range r, and therefore the entire
exploration process, is examined.

A good understanding of the impact of the integration range is obtained
by considering an explored, convex environment Q with constant density
φconst = 1 as shown in Figure 4.3. In Figure 4.3(a) the vector field is shown
for a single robot with an integration range of r̄ = 1m. The normalized
gradients are computed by evaluating (4.7) inserted into (4.3) in each cell
of the explored environment. Obviously, the boundary acts as repulsive
force such that all trajectories lead into an invariant set in Q that is defined
by all points q ∈ Q whose distance to the boundary ∂Q is greater than or
equal to the integration range r̄. This is formalized, first for a single robot,
as follows.

Theorem 4.1. Given a single robot in p1 ∈ Q with r̄-limited Voronoi cell
V1,r̄, integration range r̄, and a constant density φ. All gradients (4.3) are
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r̄

V1,r̄

(a) Vector field for constant density

Qδ

δ = r̄

(b) δ-contraction Qδ for δ = r̄ = 1m

Figure 4.3: Fully explored, convex allowable environment Q with constant
density. The boundary acts as repulsive force. Legend: robot position,
integration range r̄, grid map cell resolution: 0.2m× 0.2m.

zero in the δ-contraction Qδ=r̄ of Q, which defines an invariant set. All
negative gradients of (4.7) in (4.3) for p1 ∈ Q \ Qδ point towards Qδ.

Proof. If p1 ∈ Qδ, the r̄-limited Voronoi cell V1,r̄ is radially unbounded.
In this case, the centroid mφ(V1,r̄) lies in p1, and the gradients in (4.7)
vanish. If p1 ∈ Q \ Qδ, the r̄-limited Voronoi cell V1,r̄ intersects with the
boundary. In this case, the centroid mφ(V1,r̄) does not equal p1. Instead,
it is pushed away from the boundary towards Qδ. Hence, the negative
gradients (4.7) used in (4.3) point straight from p1 into the centroid, and
the trajectories starting in Q \ Qδ approach Qδ.

Theorem 4.1 is an inherent property of the limited centroidal search [36].
The δ-contraction of Q is also known as growing of obstacles in robotics for
collision-free path planning (cf. Lozano-Pérez and Wesley [87], Udupa et al.
[130]). The invariant set, where all gradients are zero, is equal to Qδ for
δ = r̄ as shown in Figure 4.3(b). Consequently, the integration range can
be thought of as a safety distance to the boundary. This further allows for
a physical interpretation: When using real robots with dynamics ṗi = ui
as in (4.3), the integration range r̄ must satisfy the lower bound

r̄min =
1

2
diamrobot . (4.8)

Contrary, if (4.8) is violated, the risk of colliding with the environment
rapidly increases with decreasing integration range.



4.2 Centroidal Search-Based DisCoverage 53

Unfortunately, (4.8) does not strictly hold for non-uniform densities such
as (4.5), since higher densities may shift the centroid closer to the boundary
depending on the slope of the density, such that the distance from the
centroid to the boundary is significantly less than the integration range
r̄. Thus, applying Theorem 4.1 for non-uniform densities, (4.8) is only a
necessary but not a sufficient condition to avoid collisions. Nevertheless,
the δ-contraction can still be regarded as an approximate safety distance.
This is depicted in Figure 4.4(a) for a single robot in a partially explored
convex environment Q. In line with Figure 4.2, the density is illustrated
through the color gradient. Despite the non-uniform density, the trajectory
of the robot still adheres roughly to the safety distance of r̄ = 1m, finally
approaching unexplored space.

(a) preview of trajectory for r̄ = 1m (b) trajectory for r̄ = 3m and r = 1m

Figure 4.4: Vector field for a rectangular environment with a single robot.
Legend: robot position, integration range r̄, sensing range r, trajectory.
Grid map cell resolution: 0.2m× 0.2m.

Next to the lower bound r̄min of the integration range, the question
arises whether an upper bound r̄max exists. Indeed, closely investigating
Figure 4.4(b) reveals that too large values for r̄ result in trajectories that all
lead into a single time-invariant equilibrium point. In fact, for r̄ → diamQ,
the limited centroidal search equals the unlimited centroidal search [50] as
discussed in Section 3.1.6 (page 28), which is known to maximize coverage
for the entire convex domain and therefore not suited for exploration. This
also gets clear by recognizing that the sensing range of r = 1m is not
sufficient to explore new parts of the environment in Figure 4.4(b). From
Figure 4.3 and Theorem 4.1, it can be concluded that the δ-contraction of Q
can be interpreted in terms of a defensive approximation of the reachability
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set for δ = r̄ (cf. Definition 2.8, page 11). The reachability set Qδ contains
all points that can safely be reached while strictly maintaining the safety
distance δ to the boundary ∂Q. Increasing values for the integration range
r̄ push the robots further away from the boundary ∂Q. Finally, a value
δmax exists such that the reachability set Qδ degenerates into a single line
or a point. Considering Figure 4.4(b), the reachability set is defined by
a horizontal line when setting δmax to half of the height of the convex
environment. The δ-contraction of Q for δ > δmax yields an empty set
Qδ = ∅. Therefore, if a robot should be able to navigate in the environment
Q with control laws (4.3), the condition

r̄ ≤ r̄max = δmax (4.9)

must hold. Interestingly, Qδ for δ = δmax equals the paths defined by the
generalized Voronoi partition [81].
It is worth mentioning that choosing larger values for the integration

range r̄ and, thus, violating (4.9) does not have fatal consequences: In
this case, the unlimited centroidal search results in a centroidal Voronoi
configuration and the robots remain in this configuration forever. Therefore,
the upper bound does neither impose a necessary nor a sufficient condition
to explore the entire convex environment. Instead, the sensing range must
simply be large enough in order to sense the entire environment from the
corresponding configuration. How to chose a sufficiently large sensing range
r as a function of the integration range r̄ is discussed next.

On Choosing the Sensing Range

In order to find a lower bound rmin for the sensing range r, it is necessary
to observe that the boundary ∂Vi of a Voronoi cell Vi acts as a repulsive
force exactly like the boundary ∂Q of the environment (see Figure 4.5(a)).
As a consequence, the minimum sensing range depends on the Voronoi
partition, the number of robots and the smallest interior angle α of the
polygonal environment.

Theorem 4.2 (Lower bound for the sensing range r). Given N robots
with integration range r̄ > r̄min. Denote with α the smallest interior angle
of the convex polygonal environment Q. The minimum sensing range rmin

required to explore Q is defined by

rmin =
r̄

sin( α
2N )

. (4.10)
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(a) ∂Vi acts as repulsive force

V1

V2

p1

p2

α

α
2N

r̄
rmin

(b) minimum sensing range rmin

Figure 4.5: Sensing range rmin in dependence of N and the interior angle α

Proof. Since the boundary of the Voronoi cell acts as repulsive force, it
is sufficient to consider the Voronoi cell Vi of a single robot. Therein,
the reachability set is defined by the δ-contraction of the Voronoi cell Vi
(cf. Figure 4.5(b)). The interior angle α

2N in the Voronoi cell along with
the minimum sensing range rmin and the integration range r̄ define a right
triangle. Using the sine function, one obtains rmin as hypotenuse.

Remark 4.2. From (4.10) rmin ≥ r̄ follows since sin( α
2N ) ∈ (0, 1] for the

smallest interior angle α ∈ (0, π].

According to condition (4.10) in Theorem 4.2, the sensing range r must
satisfy r ≥ rmin to allow for complete exploration of the environment.
Based on the discussion for the sensing range r and the integration range
r̄, these results are summarized as follows.

Corollary 4.1 (Choice of integration and sensing range). Let Q be a con-
vex allowable environment. Then, the entire environment can be explored
over time if the integration range r̄ and the sensing range r satisfy (4.8)
according to Theorem 4.1, and (4.10) of Theorem 4.2, respectively.

The Separatrix: Unstable Invariant Sets

The density function φ(q, s̃i) in (4.5) assigns decreasing real values to
each q with increasing distance to the frontier. However, considering that
the frontier may have arbitrarily curved shapes during the exploration,
the non-uniform weights in the explored parts S of the environment Q
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introduce multiple maxima and minima, where

∂Hdiscover(P,S)

∂pi
= 0 (4.11)

holds. As frequently discussed in the solution to the coverage problem [36],
the objective function H exhibits its minima for centroidal Voronoi configu-
rations P , maximizing coverage. However, (4.11) imposes only a necessary
condition for an extremum, implying that a configuration P may represent
a maximum or a saddle point. A maximum is the worst case for a cen-
troidal Voronoi configuration P , since the gradients are zero. Consequently,
the robots remain at their position forever without moving to unexplored
regions.
In fact, these worst-case situations appear frequently in the proposed

approach to multi-robot exploration, as Figure 4.6 shows. In Figure 4.6(a),

(a) unstable equilibrium point (◦) (b) unstable invariant set ( )

Figure 4.6: Unstable equilibrium points and invariant sets. Legend: robot
position, integration range r̄ = 0.5m, sensing range r = 1m.

the vector field is shown for a single robot in an unknown environment
right after mapping the surrounding area for the first time. Obviously,
the gradient in the robot position is zero, and all other gradients in the
explored region point away from the robot to the frontier. Hence, the
robot is positioned in a maximum of the objective function Hdiscover,
which is equal to an unstable equilibrium point from a feedback control
perspective. Theoretically, the robot stays in this position forever, and a
random infinitesimal small perturbation needs to be added to the gradient
to continue exploration. Then, in Figure 4.6(b), the robot continued
the exploration to the east, finally arriving at the boundary ∂Q of the
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environment. This time, the vector field reveals an invariant set in the
shape of a line instead of a single equilibrium point. Analog to the circular
case, all other gradients point towards the frontier, therefore the invariant
set is unstable.

From a mathematical point of view, these unstable invariant sets can be
detected by checking the sufficient condition

HHdiscover(P,S) =

[
∂2Hdiscover(P,S)

∂pij∂pik

]
j,k=1,...,d

≺ 0 (4.12)

in the d-dimensional space Rd, i.e., the Hessian is required to be negative
definite (≺ 0) in pi(t). However, it is much easier to detect this case
according to the following observation.

Corollary 4.2 (Leaving unstable invariant sets). If condition (4.11) holds
for any robot i, i.e., the gradient of Hdiscover of robot i is 0, and if there
still exists a frontier s̃i in the Voronoi cell Vi of the robot, then the robot is
located in the unstable invariant set and an arbitrary perturbation must be
added to the gradient for the robot to leave the invariant set and continue
exploration.

Before further analyzing convergence properties of DisCoverage, it is
worth taking a closer look at Figure 4.7. Therein, all points in the unstable

φmax

φmin

Figure 4.7: Separatrix of the vector field, keeping maximum distance to the
frontier.

invariant set form the separatrix, highlighted by the black line in the
explored regions. Interestingly, the separatrix appears to be defined in line
with the generalized Voronoi partition (cf. Definition 2.15, page 15), except
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for the fact that the distance is maximized with respect to the frontier
instead of to the boundary ∂Q. Thereafter, the separatrix equals the set
defined by the maximum clearance method in robot navigation [82].

Stability Analysis and Proof of Convergence

According to the problem formulation (cf. Section 1.2, page 3), the explo-
ration process is complete if S(t)→ Q as t approaches∞. Since the density
function is constructed such that it is maximal on the frontier and mono-
tonically decreases with increasing distance to the frontier, the following
theorem proves that the limited centroidal search with integration range r̄,
denoted by the objective function (4.1) together with the gradient-based
motion control laws (4.3), moves the robots into regions with maximum
density, approaching a r̄-limited centroidal Voronoi configuration.

Theorem 4.3 (Frontier-based centroidal search). Let Q denote a convex
allowable environment and let S denote the explored region in Q. Let
P = {p1, . . . ,pN} be the configuration of N robots in Q with integration
range r̄, and denote with V = {V1, . . . ,VN} the Voronoi partition of Q
for P. Then, applying (4.1) and (4.3), the robots approach a r̄-limited
centroidal Voronoi partition as t→∞.

Proof. Essentially, the proof follows the one of the limited centroidal search
in Section 3.1.7 (page 32): Building the time-derivative of (4.1) and insert-
ing (4.3) yields

Ḣdiscover(P,S) =
∂Hdiscover(P,S)

∂P
Ṗ

= −
N∑
i=1

∥∥∥∥∂Hdiscover(P,S)

∂pi

∥∥∥∥2

. (4.13)

Under Assumption 4.1, the partial derivatives of Hdiscover with respect
to the robot positions pi are given by (4.7). Inserting (4.7) into (4.13) is
equivalent to

Ḣdiscover(P,S) = −kp
N∑
i=1

‖pi −mφ(Vi,r̄)‖2 ≤ 0. (4.14)

Obviously, the sum of squares as well as kp in (4.14) are non-negative,
implying that Hdiscover decreases over time. Applying the Krasovskii-
LaSalle invariance principle, the robots move to the largest invariant set,
which equals the set of all r̄-limited centroidal Voronoi configurations.
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With the help of Corollary 4.1 and 4.2, and Theorem 4.3, a proof of
convergence for the DisCoverage-based exploration approach is given next.

Theorem 4.4 (Proof of convergence). Let Q denote a convex allowable
environment and let S(t) denote the explored region in Q. Let P =
{p1, . . . ,pN} be the configuration of N robots in Q with integration range
r̄, and denote with V = {V1, . . . ,VN} the Voronoi partition of Q for P.
Then, if r̄ ≥ r̄min and r ≥ rmin ≥ r̄ holds according to Corollary 4.1, and
applying Corollary 4.2, continuous optimization of (4.1) and the motion
control laws (4.3) solve the multi-robot exploration problem and S(t)→ Q
as t→∞.

Proof. Applying Corollaries 4.1 and 4.2, the lower and upper bound for
the integration range r̄ results in trajectories that approach the frontier,
converging to an r̄-limited centroidal Voronoi configuration as stated by
Theorem 4.3. Since for the sensing range r ≥ rmin holds, the frontier is
within sensing range r and therefore pushed back, which in turn changes
the density function φ(q, s̃i). Therewith, the r̄-limited centroidal Voronoi
configuration is never reached and the exploration continues until the entire
environment is explored, in which case S(t) = Q holds.

In line with the solution to the coverage problem by Cortés et al. [50],
the optimization of the DisCoverage approach follows exactly the closed
feedback loop in Figure 4.8 with H = Hdiscover and the addition of the
mapping block. The partition is defined by the Voronoi partition V, the
optimization by the frontier-dependent density function (4.5) and the objec-
tive function (4.1), and the robot dynamics by the motion control laws (4.3)
and (4.7). The mapping block denotes that each robot continuously maps
unknown parts of the environment in its sensing range.

partition

∂H
∂pi

optimization

ṗi = − ∂H
∂pi

robot dynamics

H ui

Mapping

pi

Figure 4.8: DisCoverage continuous-time feedback loop (cf. Haumann et al. [8])
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4.2.4 DisCoverage in Nonconvex Environments
In this section, the DisCoverage approach is extended to support non-
convex allowable environments Q ⊂ R2, which are defined by a polygo-
nal environment with polygonal obstacles. Consequently, the partition
V = {V1, . . . ,VN} now is defined by nonconvex geodesic Voronoi cells Vi.
The nonconvexity of the geodesic Voronoi cells Vi introduces corner cases
especially with respect to the separatrix. Therefore, preliminary considera-
tions are carried out next in order to shed light into the necessary steps to
transfer the centroidal search-based DisCoverage approach to nonconvex
environments. The results presented in this section were preliminarily
published in Haumann et al. [9].

Preliminary Considerations: Applying the Centroidal Search to
the r̄-limited Visibility Sets

Due to the nonconvexity of the geodesic Voronoi cells Vi, the definition (4.2)
of the r̄-limited Voronoi cells Vi,r̄ is not applicable anymore. Instead, the
r̄-limited Voronoi cells Vi,r̄ are substituted by the r̄-limited visibility sets

V?i,r̄ = {q ∈ Vi | ‖pi − q‖ ≤ r̄ and [pi, q] ⊂ Q}, (4.15)

i = 1, . . . , N . The superscript ? in (4.15) indicates that V?i,r̄ define star-
shaped regions with respect to the robot positions pi. As discussed in
Section 3.1.9 (page 34), Marier et al. [92] have shown that the gradients
in visibility sets introduce normal vectors that significantly increase the
computational burden when building the gradients. This effect is undesired,
especially since the contribution of the normal vectors on the boundary to
the resulting value of the objective function may be marginal. Therefore,
the following simplification is introduced:

Assumption 4.2 (Quasi-stationary visibility sets). When building the
partial derivatives of the objective function with respect to the robot
positions pi, the star-shaped visibility sets V?i,r̄ are assumed to be quasi-
stationary and therefore can be modeled as constant.

Note, that at first glance, Assumption 4.2 may not appear feasible.
However, it will be justified in Remark 4.8 later in this section (page 71).
Turning the r-limited Voronoi cells Vi,r into the star-shaped visibility
sets V?i,r̄ according to (4.15), the preliminary optimization problem under
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Assumption 4.2 is given by

Hdiscover(P,S) =
N∑
i=1

∫
V?i,r̄
‖q − pi‖2φ(q, s̃i)dq −→ min! (4.16)

Note, that the objective function Hlim in (3.21) of the r-limited centroidal
search (page 31) includes an additional integral over the set Vi \ Vi,r. This
part vanishes in the partial derivative with respect to the robot positions
pi. Contrary, due to Assumption 4.2 the r̄-limited visibility sets V?i,r̄ are
constant. Therefore, the additional term is not required, since the partial
derivatives of (4.16) with respect to pi simplify to

∂Hdiscover(P,S)

∂pi
=

∂

∂pi

N∑
j=1

∫
V?j,r̄
‖q − pj‖2φ(q, s̃j)dq

=

∫
V?i,r̄

∂

∂pi
‖q − pi‖2φ(q, s̃i)dq

= ki(pi −mφ(V?i,r̄)). (4.17)

Therein, mφ(V?i,r̄) defines the centroid of V?i,r̄. Further, due to Assump-
tion 4.2, the extended Leibniz integral rule for differentiation under the
integral sign is not required anymore. In fact, Assumption 4.2 allows for an-
other simplification: Since the r̄-limited visibility sets are quasi-stationary
with respect to robot movements, the optimization problem (4.16) can be
decomposed into N independent optimization problems

Hdiscover(P,S) =

N∑
i=1

Hdiscover,i(pi,Si)

=

N∑
i=1

∫
V?i,r̄
‖q − pi‖2φ(q, s̃i)dq −→ min! (4.18)

Building the partial derivative of (4.18) with respect to robot position pi
yields

∂Hdiscover(P,S)

∂pi
=
∂Hdiscover,i(pi,Si)

∂pi
= ki(pi −mφ(V?i,r̄)). (4.19)

Using (4.19), the motion control laws read

ṗi = ui = −∂Hdiscover,i(pi,Si)
∂pi

, i = 1, . . . , N. (4.20)
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In contrast to (4.1), (4.3), and (4.7), equations (4.18)–(4.20) apply the
r̄-limited visibility sets V?i,r̄ in (4.15) instead of the r̄-limited Voronoi cells
Vi,r̄ in (4.2). Based on these equations, the separatrix is considered next.
In convex environments, the centroid of the r̄-limited Voronoi cell Vi,r̄

is always contained in Vi,r̄. As a consequence, the separatrix builds an
invariant subset of the allowable environment Q, meaning that no trajectory
on the separatrix ever leaves Q. In order to leave this invariant set, a
perturbation needs to be added to the motion control laws (cf. Corollary 4.2,
page 57).

Contrary, in nonconvex allowable environments the centroid of the star-
shaped r̄-limited visibility sets V?i,r̄ are not necessarily contained in Q.
Therefore, the separatrix does not strictly define an invariant set in Q.
Instead, trajectories on the separatrix may point straight into concave
vertices (cf. Definition 2.4, page 9) on the polygonal boundary ∂Q. Such a
situation is depicted in Figure 4.9 for a nonconvex environment with one
obstacle, represented as a grid map with a cell resolution of 0.5m× 0.5m.
The integration range is set to r̄ = 2m and the standard deviation of the
density function is σ = 2m. In Figure 4.9(a) the vector field is computed
through the negative gradient (4.19) in the r̄-limited visibility set (4.15).
All trajectories approach the frontier, except the trajectory leading into
the lower right corner of the obstacle. The reason for this behavior is the
choice of the non-uniform density function, as depicted in Figure 4.9(b).
Therein, the density on the path, highlighted by the dotted and solid line
in Figure 4.9(a), is displayed exemplarily along the horizontal axis in terms
of the distance to the frontier. Further, the solid line l represents the
1-dimensional line that is contained within the r̄-limited visibility set V?1,r̄.
Computing the weighted centroid mφ = mφ in the interval [3.1, 7] yields a
value of mφ([3.1, 7]) ≈ 3.91. Due to the non-uniform density, this value is
close to the lower bound of the interval [3.1, 7].
Transferring the 1-dimensional example to the 2-dimensional r̄-limited

visibility set V?1,r̄, the non-uniform density in Figure 4.9(a) pulls the center
of massmφ(V?1,r̄) close to the regions with high density. Although this is the
desired behavior in terms of the centroidal search, concave vertices on the
boundary ∂Q expose this critical problem and the centroid may lie outside
Q, which leads to collisions of robots with the environment. Therefore,
equations (4.18)–(4.20) based on V?i,r̄ in (4.15) are not directly applicable
to apply the centroidal search to nonconvex environments. Instead, a
solution needs to be found such that the trajectories along the separatrix
never leave the allowable environment Q, analog to the convex case. Or,
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r̄

l

φmax

φmin

(a) vector field, r̄ = 2m

0
0

density

1 2 3 4 5 6 dist

1

l

mφ([3.1, 7])

(b) density in one dimension

Figure 4.9: Vector field in nonconvex allowable environments

formulated from a feedback control perspective, all trajectories along the
separatrix must approach an equilibrium point that is contained in Q.
Remark 4.3 (Projecting the centroid). As depicted in Figure 4.9, the cen-
troid of a nonconvex set may lie outside of Q, resulting in trajectories that
collide with the boundary ∂Q of the environment. This effect appears inde-
pendent of Assumption 4.2, and is also observed by Zhong and Cassandras
[138], Breitenmoser et al. [34], Lu et al. [88], Marier et al. [92], and Bhat-
tacharya et al. [27]. The common solution proposed in these publications is
to project the centroid to a valid location inside the environment Q that is
visible from the respective robot position pi. Thus, collisions are avoided
when moving to the centroid.

The Solution: Introducing the r̄-limited Visibility Sets V?εi,r̄ in Qε
Instead of using a projection method as mentioned in Remark 4.3, the
δ-contraction can be applied to the nonconvex allowable environment Q for
an arbitrarily small δ = ε > 0 prior to computing the r̄-limited visibility
sets V ?i,r̄. The r̄-limited visibility sets are then denoted by

V?εi,r̄ = {q ∈ Vi | ‖pi − q‖ ≤ r̄ and [pi, q] ⊂ Qε}, (4.21)

where Qε is referred to as the ε-contraction of Q (cf. Definition 2.7, page 10).
The difference of V?i,r̄ and V?εi,r̄ is depicted in Figure 4.10. As a consequence,
all concave vertices on the boundary of Q are turned into concave circular
segments in V?εi,r̄ in the ε-contraction of Q (cf. Corollary 2.1, page 11). In
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Q
pi

V?
i,r̄

(a) r̄-limited visibility set V?i,r̄

Qε

pi

V?ε
i,r̄

(b) r̄-limited visibility set V?εi,r̄

Figure 4.10: Visibility sets without and with ε-contraction of Q

summary, under Assumption 4.1 and Assumption 4.21) the optimization
problem reads

H?discover(P,S) =
N∑
i=1

H?discover,i(pi,Si)

=
N∑
i=1

∫
V?εi,r̄
‖q − pi‖2φ(q, s̃i)dq → min! (4.22)

with partial derivatives

∂H?discover,i(pi,Si)
∂pi

= ki(pi −mφ(V?εi,r̄)) (4.23)

and motion control laws

ṗi = ui = −
∂H?discover,i(pi,Si)

∂pi
, i = 1, . . . , N. (4.24)

Using the r̄-limited visibility sets V?εi,r̄, one can state the following theorem.

Theorem 4.5 (Progression of trajectories in nonconvex environments).
For a nonconvex allowable environment Q and an arbitrarily small ε > 0,
continuous application of (4.22)–(4.24) within the r̄-limited visibility sets
V?εi,r̄ (4.21) results in trajectories that never leave the invariant set Qε.

Proof. Applying the ε-contraction with an arbitrarily small ε > 0 to Q
turns all concave vertices in ∂Q into continuously differentiable circular

1)Due to Assumption 4.2, the objective function Hdiscover is marked with a star ’?’.
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path segments in ∂Qε. For concave locations q on the boundary ∂Qε,
denote with tang(q) the tangent in the continuously differentiable location
q. Approaching concave locations q on the boundary ∂Qε, the centroid
of a tangentially r̄-limited visibility set V?εi,r̄ never lies behind the half-
plane defined by tang(q). Hence, no trajectory exists that leaves Qε.
Consequently, continuously applying (4.22)–(4.24), all equilibrium points
are contained in Qε.

From Theorem 4.5 two observations immediately follow.

Corollary 4.3 (Separatrix in nonconvex environments). Given a noncon-
vex allowable environment Q and its ε-contraction Qε for an arbitrarily
small ε > 0. Following Theorem 4.5, all trajectories starting on the sep-
aratrix approach an equilibrium point that is contained in the invariant
set Qε.

Further, analog to Corollary 4.2 (page 57), leaving unstable invariant
sets on the separatrix is facilitated by

Corollary 4.4 (Leaving the separatrix in nonconvex environments). Given
a nonconvex allowable environment Q and its ε-contraction Qε for an
arbitrarily small ε > 0 and integration range r̄. If the gradient of H?discover,i
in (4.23) of robot i vanishes, i.e., if

∂H?discover,i(pi,Si)
∂pi

= 0, (4.25)

and if there still exists a frontier s̃i in the Voronoi cell Vi of the robot, i.e.,
s̃i 6= ∅, then the robot is located in an equilibrium point on the separatrix,
and an arbitrary perturbation must be added to the gradient for the robot
to leave the separatrix and continue exploration.

The implications of Theorem 4.5 and Corollary 4.3 are depicted in
Figure 4.11 for a nonconvex allowable environment Q and a robot that ap-
proaches the concave vertex of an obstacle. Getting closer to the boundary
∂Qε increasingly restricts V?εi,r̄ as depicted in Figure 4.11(a)–4.11(c). As a
result, the centroid of the r̄-limited visibility set V?εi,r̄ moves away from the
obstacle the more V?εi,r̄ is “convexified” by the tangent. Hence, trajectories
on the separatrix always approach equilibrium points in the ε-contraction
Qε. This observation further allows to derive the following conclusion.

Corollary 4.5 (Collision avoidance with the environment). Since Qε
defines an invariant set for arbitrary small ε > 0, i.e., all trajectories
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(a)

Qε

V?ε
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(b)

V?ε
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(c)

V?ε
i,r̄

Figure 4.11: Centroid × of the r̄-limited visibility set V?εi,r̄ in the ε-contraction
Qε

starting in Qε always remain in Qε, the parameter ε allows for a sufficient
condition to avoid collisions with the environment: If the robots have
physical diameter diamrobot collisions with the environment are avoided by
setting

ε ≥ 1

2
diamrobot . (4.26)

In contrast to the necessary condition (4.8) derived in Section 4.2.3
(page 52) for convex environments, condition (4.26) describes a sufficient
condition for collision avoidance with the nonconvex allowable environ-
ments. Since convex allowable environments are a special case of nonconvex
allowable environments, Corollary 4.5 can be transferred to convex allow-
able environments as well by first applying the ε-contraction for sufficiently
large ε > 0.
Remark 4.4 (Collision avoidance among robots). Currently, the r̄-limited
visibility sets V?εi,r̄ are defined in the ε-contraction Qε. Hence, the boundary
separating two Voronoi cells is not ε-contracted beforehand. In order to
guarantee collision avoidance among robots, the ε-contraction must be
individually applied to the Voronoi cells Vi before computing V?εi,r̄, i.e.,

V?εi,r̄ = {q ∈ Vi | ‖pi − q‖ ≤ r̄ and [pi, q] ⊂ Vi,ε}. (4.27)

However, for the remainder of this dissertation the r̄-limited visibility sets
V?εi,r̄ are defined as in (4.21).
Remark 4.5. The r̄-limited visibility sets V?εi,r̄ are defined based on the
ε-contraction Qε for an arbitrarily small ε > 0. From Theorem 4.5 follows,
that this contraction is mandatory in nonconvex environments. However,
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this contraction is not to be confused with the δ-contraction Qδ=r̄. As
discussed, the latter defines a defensive approximation of the reachability
set.

Following Remark 4.5, all nonconvex allowable environments Q are from
now on subject to the (mandatory) ε-contraction to obtain Qε, avoiding
collisions in concave vertices of ∂Q according to Theorem 4.5. Therewith,
applying the δ-contraction with the integration range r̄ on top of the ε-
contraction results in the ε+ r̄-contraction Qε+r̄ = (Qε)r̄. Analog to Qδ=r̄
in convex environments, Qε+r̄ defines an approximation of the reachability
set. However, this time Qε+r̄ consists of two parts: Qε reflects an invariant
set the robots can never leave, meaning that Qε is exact and not an
approximation. The additional contraction of r̄ in Qε+r̄ still reflects a
defensive approximation due to the non-uniform density function φ.

The Integration Range in Nonconvex Environments

Finding a lower bound r̄min: In the convex case a lower bound for the
integration range r̄ was given in (4.8) (page 52) in terms of a necessary but
not sufficient safety distance to the boundary. Contrary, Corollary 4.5 pro-
vides a sufficient condition for collision avoidance with the environment by
computing the r̄-limited visibility sets V?εi,r̄ within the already ε-contracted
environment Qε. Therefore, sufficiently large values ε > 0 automatically
imply collision avoidance with the environment. From this observation
follows that there is no lower bound for the integration range r̄. This
formally implies

r̄ > r̄min = 0. (4.28)

Remark 4.6. The integration range r̄ in condition (4.28) must be strictly
positive, since for r̄ = 0, the r̄-limited visibility sets V?εi,r̄ degenerate into
single points according to the definition in (4.21), i.e., V?εi,r̄ = pi. For
V?εi,r̄ = pi, the gradients (4.23) and therewith the motion control laws (4.24)
always equal zero in this case, implying the robots stay at fixed positions
pi forever.

Finding an upper bound r̄max for a single robot: For a better
understanding of the upper bound r̄max of the integration range r̄, the
single-robot case is considered in a nonconvex allowable environment Q,
represented by a grid map with a cell resolution of 0.2m×0.2m as depicted
in Figure 4.12. Therein, the environment is divided into a left and a right
part, separated by a narrow passage of width dpass = 0.6m. Although
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not explicitly visualized, it is important to remark that the width of this
passage is virtually reduced by the ε-contraction Qε. In this case, ε > 0 is
assumed to be infinitesimal small.

Qε+r̄

(a) vector field and Qε+r̄ for r̄ = 0.8m

Qε+r̄

(b) vector field and Qε+r̄ for r̄ = 0.2m

Figure 4.12: Impact of the integration range in nonconvex environments. Leg-
end: robot position, integration range r̄, sensing range r = 1.5m. Grid
resolution: 0.2m× 0.2m.

Apparently, the robot must pass through this passage in order to explore
the entire environment. From Figure 4.12(a) follows that too large values r̄
for the integration range lead to a disconnected reachability set Qε+r̄. This
becomes also clear by observing that the gradients at the narrow passage
define a vector field that prevents the robot from moving to unexplored
space. Instead, the trajectories approach a stable equilibrium point in
the right part of Q. Decreasing the integration range r̄ as depicted in
Figure 4.12(b), the reachability set Qε+r̄ is connected. The connectedness
of Qε+r̄ leads to the following conclusion.

Theorem 4.6. Given a nonconvex allowable environment Q, its ε-
contraction Qε for ε > 0, and a single robot in Qε. Then, the robot
with integration range r̄ > 0 is able to explore the entire environment if
the reachability set Qε+r̄ is connected.

Proof. The r̄-limited visibility set V?εi,r̄ in Qε+r̄ does not intersect with the
boundary ∂Qε. Since the reachability set Qε+r̄ is connected, trajectories
through the narrow passage in Qε+r̄ exist where V?εi,r̄ is radially unbounded,
implying that no repulsive force impacts the gradients. As a result, if the
density φ increases along the narrow passage, the robot can pass through
the narrow passage and continue exploration.
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From Theorem 4.6 an upper bound of the integration range immediately
follows.

Corollary 4.6. Given a nonconvex allowable environment Q and a single
robot. Denote with dpass the diameter of the narrowest passage of Q the
robot needs to pass in order to explore the entire environment. Then, the
upper bound of the integration range r̄ is defined by

r̄max =
dpass − 2ε

2
=
dpass

2
− ε (4.29)

and Qε+r̄max
defines the connected reachability set.

If (4.29) is violated, Qε+r̄ defines a disconnected reachability set and
consequently full exploration of the entire environment is not guaranteed
due to the trap situation in the equilibrium points. According to Koren and
Borenstein [77], such trap situations are a major drawback of gradient-based
motion control laws. However, satisfying (4.29) in Corollary 4.6 prevents
this drawback, and exploration of the environment Q is guaranteed.
In Figure 4.12(b), the cell resolution of the grid map is 0.2m × 0.2m.

Accordingly, the diameter of the narrow passage is dpass = 0.6m. Following
Corollary 4.6, the upper bound for the integration range r̄ is denoted by
r̄max = 0.3m− ε.

Generalizing r̄max to N robots: The upper bound r̄max for the integra-
tion range in (4.29) unfortunately only holds for the single-robot case. This
gets clear by investigating Figure 4.13. Therein, two robots are placed in a
nonconvex environment Q that again contains a narrow passage of width
dpass = 1.2m. Inserting dpass into (4.29) results in a maximum integration
range r̄max = 0.6m − ε with an ε > 0. However, choosing r̄ = 0.6m − ε
leads to a deadlock situation as depicted in Figure 4.13(a). The stable
equilibrium points can be explained by observing that the boundary of the
Voronoi cells act as repulsive force, exactly like the boundary ∂Qε. In fact,
although unlikely, if using N robots, all of the N robots might want to
move through the narrow passage simultaneously. This observation leads
to the following generalization.

Theorem 4.7 (Maximum integration range). Using N robots to explore a
nonconvex allowable environment Q with ε-contraction Qε and integration
range r̄. Then, the robots explore the entire environment and S(t)→ Q if
the integration range r̄ satisfies the upper bound

r̄ ≤ r̄max =
dpass − 2ε

2N
. (4.30)
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(a) Vector field for r̄ = 0.6m− ε (b) Vector field for r̄ = 0.3m− ε

Figure 4.13: Deadlock situations in narrow passages. Legend: robot position,
integration range r̄, Voronoi partition, grid resolution: 0.2m× 0.2m.

Therein, dpass denotes the width of the narrowest passage the robots need
to pass in order to explore Q.

Proof. The term dpass − 2ε denotes the width of the passage in the ε-
contraction Qε. Coincidentally, situations may appear in which each robot
has assigned parts of the frontier on the other side of the passage. Therefore,
it may happen that N robots want to pass the passage simultaneously.
Therefore, in order to avoid the repulsive force of the boundary of the
Voronoi cells Vi, dpass− 2ε must be divided by the robot count N . Further,
the factor 2 in the denominator turns the diameter dpass − 2ε into a radius,
which completes the proof.

Applying Theorem 4.7 to the previous example with N = 2 robots results
in Figure 4.13(b). Since the diameter is denoted by dpass = 1.2m, the
upper bound yields r̄max = 0.3m− ε

2 . The vector field for r̄ = r̄max with
arbitrarily small ε > 0 shows that both robots now are able to pass the
narrow passage simultaneously. Therefore, deadlock situation in stable
equilibrium points as in Figure 4.13(a) are successfully avoided.

On Choosing the Sensing Range

Section 4.2.3 introduced a lower bound rmin for the sensing range r in (4.10)
in terms of the right triangle defined by the hypotenuse, the smallest inner
angle α and the integration range r̄ (cf. page 54). Since the δ-contraction
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is now defined by δ = ε+ r̄, (4.10) needs to be adapted according to the
following theorem.

Theorem 4.8 (Lower bound for r in nonconvex allowable environments).
Given N robots with integration range r̄max ≥ r̄ > r̄min. Denote with
α the smallest interior angle of the nonconvex allowable environment Q.
The minimum sensing range rmin required to guarantee exploration of Q is
defined by

rmin =
ε+ r̄

sin( α
2N )

. (4.31)

Proof. Instead of Qδ=r̄, the reachability set in nonconvex allowable envi-
ronments is defined by Qε+r̄. Based on this reachability set, the proof is
performed analogously to the proof of Theorem 4.2 (page 54).

Remark 4.7. Analog to Remark 4.2 (page 55) for the convex case, from (4.31)
the necessary condition rmin ≥ r̄ follows, since sin( α

2N ) ∈ (0, 1] for the
smallest interior angle α ∈ (0, π] and ε+ r̄ > r̄.

Stability Analysis and Proof of Convergence

The idea of the stability analysis as well as the proof of convergence
are performed analogously to the convex case in Section 4.2.3 (page 51).
However, it is necessary to emphasize that the analysis for nonconvex
environments Q only holds if Assumption 4.1 and Assumption 4.2 are valid.
The validity of Assumption 4.1 is assured by the discussion in Section 4.2.2
(page 50). Assumption 4.2 is also justified by the following remark.

Remark 4.8 (Note on Assumption 4.2). Since the integration range r̄ is
chosen following Theorem 4.7 (page 69), trajectories through Qε+r̄max

exist
that are radially unbounded. Therewith, the r̄-limited visibility sets V?εi,r̄
are convex. This in turn implies that the control laws are equal to (4.7)
(page 50) of the convex case as discussed in Section 4.2.3 (page 51ff). In
the radially unbounded case, Assumption 4.2 is inactive, and therefore not
required most of the time.

Following Remark 4.8, Assumption 4.2 is a weak restriction. This
observation is essential in the stability and convergence analysis that
follows. First, convergence to the centroidal Voronoi partition is shown.

Theorem 4.9 (Frontier-based centroidal search). Let Q denote a non-
convex allowable environment and let S denote the explored region in
Q. Denote with Qε the ε-contraction for an arbitrarily small ε > 0. Let
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P = {p1, . . . ,pN} be the configuration of N robots in Qε with integration
range r̄, and denote with V = {V1, . . . ,VN} the geodesic Voronoi partition
of Q for P. Then, applying (4.22)–(4.24) results in a r̄-limited centroidal
Voronoi partition for t→∞.

Proof. Building the time-derivative of (4.22) and inserting (4.24) yields

Ḣ?discover(P,S) =
∂H?discover(P,S)

∂P
Ṗ

= −
N∑
i=1

∥∥∥∥∂H?discover,i(pi,Si)
∂pi

∥∥∥∥2

. (4.32)

Under Assumption 4.1 and Assumption 4.2, the partial derivatives of
H?discover,i with respect to the robot positions pi are given by (4.23). In-
serting (4.23) into (4.32) is equivalent to

Ḣ?discover(P,V) = −kp
N∑
i=1

∥∥pi −mφ(V?εi,r̄)
∥∥2 ≤ 0. (4.33)

The sum of squares as well as kp in (4.33) are non-negative. Applying
the Krasovskii-LaSalle invariance principle, the robots move to the largest
invariant set, which equals the set of all r̄-limited centroidal Voronoi
configurations. According to Theorem 4.5, the equilibrium points of the
r̄-limited centroidal Voronoi configurations are contained in Qε ⊂ Q.

Remark 4.9 (Related work). In essence, Theorem 4.9 transfers the solution
to the coverage problem in convex domains to nonconvex allowable envi-
ronments based on the r̄-limited visibility sets V?εi,r̄ in Qε. Therewith, this
coverage approach directly extends the work of Lu et al. [88] and Marier
et al. [92] (and to a lesser extent also the work of Pimenta et al. [103] and
Bhattacharya et al. [27]) with the difference, that the projection method of
centroids (cf. Remark 4.3, page 63) is not required at the expense of calcu-
lating the r̄ limited visibility sets in the ε-contraction Qε. The projection
method is not required, since the motion controls are always such that the
robots remain in the invariant sets Qε. Solving the nonconvex coverage
problem in the ε-contracted visibility sets V?εi,r̄ was published in Klodt et al.
[12].

Based on Theorem 4.5 (page 64), Corollaries 4.3 and 4.4 (page 65), and
Theorem 4.9, a proof of convergence of the proposed exploration approach
for nonconvex allowable environments is given next.
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Theorem 4.10 (Proof of convergence). Let Q denote a convex allowable
environment and let S denote the explored region in Q. Denote with Qε
the ε-contraction for an arbitrarily small ε > 0. Let P = {p1, . . . ,pN} be
the configuration of N robots in Qε with integration range r̄, and denote
with V = {V1, . . . ,VN} the geodesic Voronoi partition of Q for P. Then,
if 0 = r̄min < r̄ ≤ r̄max according to (4.30) in Theorem 4.7 (page 69), and
r ≥ rmin according to (4.31) in Theorem 4.8 (page 71) hold, and applying
Corollary 4.3, continuous optimization of (4.22) and the motion control
laws (4.24) solve the multi-robot exploration problem and S(t) → Q as
t→∞.

Proof. Choosing the integration range r̄ according to Theorem 4.7 ensures
that trajectories generated by the gradient-based control law (4.24) ap-
proach the frontier, converging to an r̄-limited centroidal Voronoi configura-
tion as stated by Theorem 4.9. Thereby, local maxima on the separatrix are
avoided by applying Corollary 4.4 based on Theorem 4.5 and Corollary 4.3.
Since for the sensing range r ≥ rmin holds according to Theorem 4.8, the
frontier is within sensing range r and therefore pushed back, which in turn
changes the density function φ(q, s̃i). Therewith, the r̄-limited centroidal
Voronoi configuration is never reached and the exploration continues until
the entire environment is explored, in which case S(t) = Q holds.

Remark 4.10 (Relation to convex environments). If the geodesic paths from
all q ∈ V?i,r̄ to the frontier s̃i equal the Euclidean paths, then, for ε = 0,
the exploration behaves exactly like the one in convex environments.

4.2.5 Fallback Strategy when Using Multiple Robots
In the previous subsections the characteristics of the centroidal search-based
DisCoverage approach were investigated. In addition, a formal proof of
convergence for convex as well as nonconvex allowable environments was
given. Next, it is of interest how the centroidal search-based DisCoverage
approach behaves when using multiple robots. To this end, it is helpful to
first formulate the closed feedback loop in Figure 4.8 in terms of Algorithm 1.
In line with the introduction in Section 4, instead of pi(t), s̃(t), Vi(P(t)),
s̃i(P(t), t) the respective variables are written without the dependency on
time and the partition P for better readability. Further, the communication
of ∆Vi→j equals the exchanged map data as described in Figure 4.1.

Next, Algorithm 1 is applied to a nonconvex allowable environment with
N = 3 robots in Figure 4.14. As can be seen in Figure 4.14(a), the robots
evenly spread into the environment, exploring unknown space within the
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Algorithm 1 Continuous-Time DisCoverage Feedback Loop

Initialization of pi(0) and Si(0) for i = 1, . . . , N
while S(t) 6= Q do
for i = 1, . . . , N in parallel do

Partition: communicate pi to Voronoi neighbors j
compute Vi and V?εi,r̄
compute Si and s̃i

Motion control: compute φ(q, s̃i) for q ∈ V?εi,r̄
ṗi = −∂H

?
discover,i(pi,Si)

∂pi

communicate ∆Vi→j to respective neighbor j
Exploration: map V?i,r

end for
end while

respective geodesic Voronoi cells. In addition to the geodesic Voronoi cells,
the trajectories as well as the vector field for each robot are shown. It is
worth to note that the boundary of the geodesic Voronoi cells acts as a
repulsive force, and thus behaves like the boundary of obstacles. This is a
desired property, since therewith collisions among the robots are avoided.
After 23 iterations (cf. Figure 4.14(b)), the robot centered in the lower

part of the environment does not have any frontier in its Voronoi cell.
Therefore, the gradient vanishes and

ṗi = −
∂H?discover,i(pi,Si)

∂pi
= 0 (4.34)

holds. This is an undesirable effect when using a partition of the envi-
ronment to assign a region of dominance to each robot, since robots with
fully explored Voronoi cells do not contribute to the exploration process
anymore. To avoid robots from remaining in their position, robots with-
out a frontier fall back to coverage in the unlimited visibility set. This
unlimited centroidal search within the respective ε-contracted Voronoi cell
equals the centroidal search with an unbounded integration range r̄ and
a constant density function φ. The notion of a fallback or secondary
strategy was first introduced in Frank et al. [2]. It is worth to emphasize
the difference to the unlimited centroidal search by Pimenta et al. [103]:
There, the authors maximize coverage in the entire geodesic Voronoi cells by
first applying a transformation of the environment to handle nonconvexity
before optimizing the coverage functional. Contrary, the proposed fallback
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(a) robot configuration after 15 iterations

(b) robot configuration after 23 iterations

(c) centroidal Voronoi configuration after 85 iterations

Figure 4.14: DisCoverage for N = 3 robots in a nonconvex environment.
Parameters: integration range r̄ = 0.499m, ε = 0.001, sensing range r = 1.2m.
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strategy optimizes the coverage functions only for the unlimited visibility
sets V?εi similar to Marier et al. [92].

The exploration process continues until the entire environment is explored
after 65 iterations. Then, all robots apply the centroidal search within
the unlimited visibility set according to the fallback strategy. Another
20 iterations later, the robots reach a centroidal Voronoi configuration
(cf. Figure 4.14(c)). The Voronoi partition is omitted, since it equals the
respective shaded unlimited visibility sets in large parts. Further, the
sensing ranges are omitted for clarity. The white parts in Figure 4.14(c)
depict the uncovered area.

Remark 4.11 (The degree of star-shapedness). The unlimited visibility
set V?i = {q ∈ Vi | [pi, q] ⊆ Vi} allows for an interpretation in terms of
the degree of star-shapedness of Vi with respect to the robot position
pi. Denoting with | · | the area of a set, the degree of star-shapedness can
formally be defined as

J? =
|V?i |
|Vi|

∈ [0, 1]. (4.35)

A value of J? = 1 implies that the entire Voronoi cell is visible from pi.
Contrary, values less than one imply that only parts of the Voronoi cell are
visible. Further measures in this research area quantify the nonconvexity
of sets, e.g., Boxer [32], Rote [109], Zunic and Rosin [139].

In the context of the fallback strategy, Remark 4.11 allows to evaluate
the optimality of the coverage functional. A value of J? = 1 is equivalent
to covering the entire Voronoi cell. Decreasing values imply that only a
subset of the Voronoi cell is visible from pi, and therefore only a subset of
Vi is covered. The lower the degree of star-shapedness of Vi with respect
to pi, the more non-starshaped is the Voronoi cell Vi with respect to the
robot position pi. Low values J? may imply that a robot should search
for another location with increased J? that maximizes coverage. It is
noteworthy that the idea of using the degree of star-shapedness as indicator
for optimal coverage positions is new and therefore qualifies as contribution
of this dissertation.

4.2.6 Possible Extensions to the Vehicle Dynamics
Up to this point, DisCoverage was introduced for the single integrator
dynamics

ṗi = ui (4.36)



4.3 Orientation-Based DisCoverage 77

with motion control laws

ui = −∂Hdiscover(P,S)

∂pi
(4.37)

for each robot i = 1, . . . , N in convex environments (with H?discover,i(pi,Si)
in nonconvex environments). However, Cortés et al. [50] show that the
centroidal search can also be applied to systems with passive dynamics
such as double integrator dynamics by using a proportional derivative (PD)
motion control law, as well as to unicycle dynamics following the state
space model ṗxiṗyi

δ̇i

 =

cos δi 0
sin δi 0

0 1

ui, with ui =

[
vi
ωi

]
, (4.38)

where δi denotes the orientation of the robot and ui denotes its control
input with velocity vi ∈ R≥0 and angular velocity ωi. Cortés et al. [50]
propose a slightly modified version of the controller in Astolfi [22] to solve
the centroidal search with unicycle dynamics (4.38).

Remark 4.12 (Arbitrary vehicle dynamics). Bullo et al. [36] advocate that
the centroidal search can be applied to vehicles with arbitrary dynamics in
a discrete-time implementation. The only requirement is that all vehicles
must strictly decrease the value of the respective contribution to the
objective function H in the time intervals between communication rounds
where the Voronoi cells are updated. Additionally, all vehicles need to
strictly remain inside the respective Voronoi cells to avoid collisions with
obstacles and other robots. This observation also holds for the proposed
DisCoverage approach.

4.3 Orientation-Based DisCoverage
The proposed DisCoverage approach in Section 4.2 solely relies on the
density to derive motion control laws. The density itself depends on the
distance of all points in the r̄-limited visibility set V?i,r̄ to the frontier s̃i
for each robot i. Therefore, the objective function Hdiscover is a frontier-
based approach that essentially uses the distance to determine where
to move next. However, Hdiscover does not include the length of the
frontier which correlates with the expected information gain. Therefore,
the centroidal search-based DisCoverage approach does not maximize the
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expected information gain. Instead, it solely minimizes the distance to the
frontier for all points in the r̄-limited visibility set V?i,r̄.
The objective of this section is to find an exploration strategy that

optimizes both the distance costs as well as the expected information gain.
The orientation-based DisCoverage approach for convex environments as
presented in the following section was published in Haumann et al. [3, 4].
Section 4.3.5 introduces the orientation-based DisCoverage approach for
nonconvex allowable environments, which was published along with lab
experiments in Haumann et al. [6].

4.3.1 Introducing Robot Orientations
Each robot is equipped with an orientation δi ∈ [−π, π] defining the current
moving direction of robot i. In line with the distributed optimization
problem (3.4) and (3.5), the objective function of the orientation-based
DisCoverage approach (cf. Haumann et al. [4]) reads

Horient(P, ∆,S) =

N∑
i=1

Horient,i(pi, δi,Si)

=

N∑
i=1

∫
s̃i

f(pi, δi, q)φ(q)dq, (4.39)

where ∆ = {δ1, . . . , δN} denotes the set of all robot orientations, and f
and φ denote the performance function and the density function which is
constant over time. The objective function Horient differs with respect to
Hdiscover in two ways: First, the performance function f does not take the
distance from the robot position pi to a location q on the frontier s̃i as
parameter. Instead, f is relaxed and has three degrees of freedom: The
robot position pi, its orientation δi and the respective location q on the
frontier s̃i. Second, Horient,i integrates over the frontier s̃i instead of the
r̄-limited visibility set V?i,r̄. Consequently, optimizing (4.39) always takes
the entire frontier into account.
Next, the goal of each robot i is to find an orientation δi such that as

many points q ∈ s̃i on the frontier as possible are located directly in front
of the robot. This is equivalent to minimizing the absolute value of the
angle α ∈ [−π, π] between the orientation δi and all frontier points q ∈ s̃i
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with

α(pi, δi, q) = ^(q − pi)− δi︸ ︷︷ ︸
γ

+


2π if γ < −π,
−2π if γ > π,

0 else.
(4.40)

For instance, an angle of α = π implies that the considered point q lies
behind, whereas an angle of α = 0 implies that q lies in the direction of
the robot’s current orientation δi. Figure 4.15 illustrates the relation of
the orientation δi, ^(q − pi), and α.

s̃i

pi

y

x

q

^(q − pi)

δi

si
n
δ i

cos δi

1

α

Figure 4.15: Relation of the robot’s orientation δi and angle α of the frontier
(cf. Haumann et al. [4]). The coordinate system in pi is axis parallel to the global
system and independent of the orientation δi.

Based on the idea of minimizing the absolute value of the angle α between
δi and the frontier, the continuously differentiable performance function f ,
consisting of an angular component and a distance component, is introduced
as a product of two Gaussians as

f(pi, δi, q) = exp

(
−α(pi, δi, q)2

2θ2

)
︸ ︷︷ ︸

angular component

exp

(
−‖q − pi‖2

2σ2

)
︸ ︷︷ ︸

distance component

. (4.41)

Therein, both θ and σ describe the standard deviations of the Gaussians.
In the following, θ is referred to as opening angle. Small values of α
lead to large values of the angular component, which reflects exactly the
desired behavior described previously. The same holds for small values in
the distance component, i.e., frontier points q closer to pi imply a larger
distance component. In summary, the performance function f yields large
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values for frontier points directly in front of the robot orientation, weighted
with the distance.

The next section introduces the distributed optimization problem as well
as the applied vehicle dynamics first for convex environments. Thereafter,
the properties of the proposed performance function are investigated and
then the concept is transferred to nonconvex allowable environments.

4.3.2 Continuous-Time Control Law
Finding the optimal orientations δ∗i is equivalent to the optimization prob-
lem

δ∗i = arg max
δi
Horient,i(pi, δi,Si). (4.42)

In δ∗i the partial derivative of Horient,i with respect to δi vanishes, i.e., δ∗i
satisfies the necessary condition

∂Horient,i(pi, δi,Si)
∂δi

=

∫
s̃i

∂f

∂α

∂α

∂δi
φ(q)dq

=

∫
s̃i

α(pi, δi, q)

θ2
f(pi, δi, q)φ(q)dq

!
= 0. (4.43)

Using the optimal orientations δ∗i from (4.42), the design of a simple control
law for each robot is possible by simplifying the unicycle dynamics in (4.38)
to the first order dynamic system

ṗi = ui = v

(
cos δ∗i
sin δ∗i

)
. (4.44)

The control input ui is denoted by the constant velocity v ∈ R≥0 of all
robots and the optimal orientation δ∗i . As depicted in Figure 4.16 for
Hi = Horient,i, equations (4.44) and (4.42) represent a closed loop as the
optimization of the orientations depends on the robot positions and the
Voronoi partition, which change continuously over time as the robots move.

Similar to the orientation-based optimization in (4.43), Gusrialdi et al.
[67] first optimized an objective function with respect to the orientation
to align an anisotropic sensor model for optimal coverage. The proposed
optimization significantly differs from the one in Gusrialdi et al. [67] in
that Horient integrates over the frontier instead of the area within sensing
range.
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partition

∂Hi

∂δi

optimization

ṗi = ui

robot dynamics

Hi ui

Mapping

pi

Figure 4.16: Orientation-based DisCoverage continuous-time feedback loop
(cf. Haumann et al. [4])

4.3.3 Impact of the Angular Component
This section discusses the proper choice of the opening angle θ in the
angular component. For a better understanding the scene depicted in
Figure 4.17 and Figure 4.18 is considered. Both figures show the same
scene Q with a single robot in p = [2 2]>m with a sensing range of
r = 1m. The robot already explored the environment S ⊂ Q within its
sensing range, resulting in a circular border s̃ separating the explored parts
from the unknown area. Illustrated by the contour lines, the scene contains
a density function consisting of a mixture of two Gaussians with means
at [1 3]>m and [3 1]>m. The density φ can be thought of as a priori
knowledge, indicating more important regions in Q that should be explored
first.
Next, both figures are used to analyze the impact of the opening angle

θ in the angular component. The distance component does not have any
effect in this case as the Euclidean norm from p to all frontiers q ∈ s̃ is the
same. In Figure 4.17, the opening angle is set to θ = 2 (cf. Figure 4.17(b)),
whereas the opening angle in Figure 4.18 is set to θ = 0.5 (cf. Figure 4.18(b)).
Both Gaussians show a single maximum in α = 0, since in this case the
arguments of the exponential functions are zero. As a result, locations
q ∈ S in the direction of the orientation δ are maximally weighted.
The objective function Horient for the robot positioned in p in Fig-

ure 4.17(a) and Figure 4.18(a) is depicted in Figure 4.17(c) and Fig-
ure 4.18(c), respectively, over the δ axis within the domain [−π, π]. Appar-
ently, the optimal orientations δ∗1 and δ∗2 in Figure 4.17(c) fundamentally
differ from the optimal orientations δ∗3 and δ∗4 in Figure 4.18(c). The expo-
nential function in the angular component tends to become parallel to the α
axis for opening angles θ →∞ (cf. Figure 4.17(b)). This is equivalent to an
angular component equal to 1 independent of the angle α. In fact, already
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an opening angle of θ = 2 results in optimal orientations that do not point
to the desired directions as clearly visible in Figure 4.17. Consequently,
optimizing (4.39) with too large opening angles θ leads to a compromise
in finding the optimal orientation δ∗, which could result in an orientation
pointing to already explored space in the worst case.

Decreasing opening angles such as θ = 0.5 lead to a slim Gaussian with
a distinct peak in α = 0. According to the objective function Horient in
Figure 4.18(c) the optimal orientations point into directions where the
weights are maximal. This reflects the desired behavior as each robot is
supposed to first move to unknown space with higher density φ during the
exploration process.
Figure 4.19 shows an example for the opening angles θ = 0.15 and

θ = 0.05. From this scene it can be observed that too small opening
angles θ lead to lots of local maxima in the objective function Horient,i. As
plotted in Figure 4.19(b), this is especially an issue when using a grid map
representation of the environment. A grid map consists of discrete cells,
meaning that the frontier is defined as a finite amount of points q ∈ s̃. In
Figure 4.19(a) these points q are denoted by the center of the frontier cells.
Modeling the frontier as a finite set, the integral over the frontier in the
objective function reduces to a sum over discrete points, and therewith one
obtains the objective function

Horient,i(pi, δi,Si) =
∑
q∈s̃i

f(pi, δi, q)φ(q) (4.45)

for each robot i = 1, . . . , N . Evaluating (4.45), each point q ∈ s̃i tends
to facilitate a peak in the objective function if θ is smaller than the grid
resolution (cf. Figure 4.19(b)). This is an undesired effect, since the goal
is to rather obtain only few local maxima that imply a high information
gain in terms of lots of frontier cells. Additionally, very small values θ are
numerically unstable and cannot be sufficiently represented by the floating
point arithmetic.

Remark 4.13 (Relation to the MinDist strategy). With the Kronecker
delta [35]

δ⊗x =

{
1, if x = 0,

0, else
(4.46)
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(a) start configuration, θ = 0.15, σ = 1
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(b) Horient,i for small opening angles θ

Figure 4.19: Example of Horient,i in a grid map with cell resolution 0.2m×0.2m
and varying opening angle θ. In this case, the frontier s̃i describes a finite set.

and the finite set Mδi = {q ∈ s̃i | α(pi, δi, q) = 0}, the discrete valued
objective function (4.45) in the limit θ → 0 results in

Horient,i(pi, δi,Si) =
∑
q∈s̃i

δ⊗α(pi,δi,q) exp

(
−‖q − pi‖2

2σ2

)
φ(q)

=
∑

q∈Mδi

exp

(
−‖q − pi‖2

2σ2

)
φ(q). (4.47)

Consequently, each robot moves into the direction δi where the distance
component of all frontier cells is maximal. Although not equivalent, this
behavior is similar to the MinDist strategy.
Remark 4.14 (Optimal choice of the opening angle). As noted in Haumann
et al. [4], a formal rule for choosing the opening angle θ in the angular
component is an open issue, and therefore still subject to research. Nev-
ertheless, simulations in Haumann et al. [4] and experimental results in
Haumann et al. [6] validate an opening angle of θ = 0.5.
Remark 4.15 (Choice of the density function). The density function in
Figures 4.17 and 4.18 is illustrated by the contour lines. For the rest of this
dissertation, the density function is modeled as a constant φ(q) = 1, since
no a priori knowledge is assumed during the exploration process. Hence, in
contrast to the centroidal search-based DisCoverage approach, the density
function only plays a minor role in the orientation-based DisCoverage
approach.
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4.3.4 Impact of the Distance Component
Next, the impact of the distance component is investigated. Therefore,
the distance component is first omitted in the performance function (4.41).
Omitting the distance component equals building the limit of the standard
deviation σ →∞. Without a distance component, each robot optimizes
the objective function Horient,i such that as many frontier points as possible
are located in the direction of the robot’s orientation, independent of the
distance to the frontier. The effect of this setting is depicted in Figure 4.20.
Therein, a single robot is located in a rectangular scene in Figure 4.20(a).
The vector field indicates that all trajectories end in a separatrix located

(a) scene with one robot for σ →∞

δ1
0

Horient,1(p1, δ1, S1)

5

10

15

π−π π/2−π/2
(b) objective function Horient,1

Figure 4.20: Optimal orientation without distance component

in the middle of the scene. The corresponding objective function for the
robot is plotted in Figure 4.20(b), showing only one maximum at δ1 = 0.
From this observation, it can be deduced that too large values for the
standard deviation σ of the distance component yield invariant sets that
do not facilitate exploration. Further, this observation underlines that the
distance component is needed in order to favor locations near the frontier.
Therefore, the orientation-based DisCoverage approach is investigated

next for several standard deviations as depicted in Figure 4.21. Therein,
large parts S1 of the environment Q are already explored. The standard
deviation varies from σ = 1 in Figure 4.21(a)–4.21(b) over σ = 2 in
Figure 4.21(c)–4.21(d) to σ = 3 in Figure 4.21(e)–4.21(f). Clearly, the
standard deviation σ has an impact on the vector field and consequently
influences the trajectories of the robots during the exploration process.
Larger values for σ imply higher weights even for points on the frontier
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(a) exploration scene with σ = 1
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(b) objective function Horient,1 for σ = 1

(c) exploration scene with σ = 2
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(d) objective function Horient,1 for σ = 2

(e) exploration scene with σ = 3
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(f) objective function Horient,1 for σ = 3

Figure 4.21: Impact of the distance component for a scene with one robot
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located further away from the robot. Therefore, the standard deviation σ
controls whether the robot should focus on frontier points that are close
(cf. Figure 4.21(a)–4.21(b)) or on frontier points that are further away if
the extent of the frontier is larger (cf. Figure 4.21(e)–4.21(f)). In essence,
this equals a tradeoff between the distance to reach the frontier and the
expected information gain on the frontier.

Remark 4.16 (Optimal choice of the distance component). As noted in
Haumann et al. [4], a formal rule for choosing the standard deviation σ
in the distance component is an open issue, and therefore still subject to
research. Nevertheless, simulations in Haumann et al. [4] and experimental
results in Haumann et al. [6] validate a standard deviation of σ = 2.

Remark 4.17 (Following local maxima). Considering Figure 4.21(e) the
more efficient exploration approach is to first explore the bottom right
corner before focusing on the area in the top left. This can be achieved
by following the local maximum δ1 = −π/4 in Figure 4.21(f). Following
the local maximum usually has the advantage that the greedy behavior of
Horient is slightly suppressed in favor of exploring remaining parts on the
frontier before focusing on larger parts on the frontier. This situation is
discussed again in Section 4.3.6.

4.3.5 Handling Nonconvex Environments
The objective function Horient in (4.39) (page 78) of the orientation-based
DisCoverage approach consists of the angular and the distance component.
The angular component is responsible for finding optimal orientations,
influenced by the distance dependent weighting. Both components assume
visibility of the frontier points q ∈ s̃ with respect to the robot position in
the computation, which is a property that always holds in convex environ-
ments. Contrary, in nonconvex allowable environments with obstacles, the
boundary ∂Q as well as the pose and shape of the obstacles have to be
taken into account in order to find suitable orientations δi. Because of that,
a transformation of the environment is introduced next as in Haumann
et al. [6] such that the objective function

Horient(P, ∆,S) =

N∑
i=1

∫
s̃i

f(pi, δi, q)φ(q)dq, (4.48)

of the orientation-based DisCoverage can be used without modifications.
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Transformation to star-shaped domains

The idea is to find a transformation with the property that all points q on
the frontier are visible from the robot position pi. This property holds for
star-shaped domains. Therefore, a transformation is introduced next, that
maps any connected domain to a star-shaped domain.

Definition 4.1. Let Si ⊆ Q ⊂ R2 be a connected set and S?i ⊂ R2 a
star-shaped set. Let dg(pi, q) be the geodesic distance from the robot
position pi to q ∈ Si. Let e(pi, q) be the unit vector pointing into the
direction of the first path segment of the geodesic path from pi to q.
Then, the transformation is given by Tpi : Si → S?i , q 7→ q? = Tpi(q) =
pi + dg(pi, q)e(pi, q).

Theorem 4.11. The map Tpi transforms any connected set to a star-
shaped domain with respect to pi.

Proof. All points q ∈ Si visible from pi remain unchanged and, thus, are
invariant with respect to the map Tpi . Points not visible from pi are
mapped by Tpi . This applies also to all points on the geodesic path from
pi to a specific q. Therefore, the resulting set S?i is connected. As a
consequence of Tpi , all points are visible from pi. Hence, the set S?i is
star-shaped with respect to pi. This concludes the proof.

The map Tpi can be interpreted as a straightening of the geodesic path.
Note, that Tpi is not bijective, i.e., it may map arbitrary many elements
from Si to only one element in S?i . A geometric interpretation of the map
Tpi is given in Figure 4.22.

pi

Si

s̃i

(a) nonconvex environment

pi

S?
i

s̃?i

(b) star-shaped transformation

Figure 4.22: Transformation to star-shaped domains (cf. Haumann et al. [6])
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A significant property of Tpi is that elements q ∈ Si visible from pi
remain unchanged, i.e., if the closed segment [pi, q] ⊆ Si ⇒ Tpi(q) = q.
This is due to the fact that the geodesic path reduces to the Euclidean
path in convex environments. This implies that convex environments
reflect a sub-domain of nonconvex environments and that they are always
star-shaped for any point within the convex region.
Further, the star-shaped environment S?i (Figure 4.22(b)) is not nec-

essarily a subset of the original environment Si (Figure 4.22(a)), since
there exists no upper bound for the length of the geodesic distance in
arbitrary nonconvex environments. In fact, it may even be the case that
the transformation Tpi results in star-shaped regions S?i that are not a
subset of the environment Q, i.e., S?i ⊆ Q does not necessarily hold.
Remark 4.18 (Related work). It turns out that the proposed transformation
realizes the same idea that was presented by Pimenta et al. [103] in order
to extend the solution to the coverage problem by Cortés et al. [50] to
nonconvex environments. However, the formulation as a transformation
Tpi introduced above provides a more detailed explanation as well as a
geometric interpretation of how the environment is mapped to a star-shaped
domain. Thus, the transformation allows to extend any frontier-based
exploration strategy that works for convex environments to also work in
arbitrary nonconvex environments.

Orientation-based DisCoverage for nonconvex environments

In line with the solution to the coverage problem and the DisCoverage
approach based on the centroidal search, the orientation-based DisCoverage
approach first partitions the allowable environment Q into N geodesic
Voronoi cells (cf. Section 2.1.4, page 12). Communicating neighbor positions,
each robot calculates its geodesic Voronoi cell. Using the superscript ?
to indicate the objective function in star-shaped regions, the distributed
optimization problem for each robot i is then given by

H?orient(P, ∆,S) =
N∑
i=1

H?orient,i(pi, δi,Si)

=
N∑
i=1

∫
s̃i

f(pi, δi, q
?)φ(q)dq (4.49)

with q? = Tpi(q) as in Definition 4.1. Compared to (4.48), points q
on the frontier are replaced by q? in the performance function in (4.49).
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Algorithm 2 Continuous-time Orientation-based DisCoverage Loop

Initialization of pi(0) and Si(0) for i = 1, . . . , N
while S(t) 6= Q do
for i = 1, . . . , N in parallel do

Partition: communicate pi to Voronoi neighbors j
compute Vi and s̃i

Motion control: compute δ∗i = argδi maxH?orient,i(pi, δi,Si)

ṗi = v

(
cos δ∗i
sin δ∗i

)
, v ∈ R≥0

communicate δVi→j to respective neighbor j
Exploration: map V?i,r

end for
end while

The robot dynamics (4.44) and the continuous computation of optimal
orientations (4.42) remain unchanged. Through the transformation Tpi

the optimization of the objective function now includes the path planning
by calculating the geodesic distance.

4.3.6 Behavior of Multiple Robots
Analog to Section 4.2.5 (page 73) it is of interest how the orientation-based
DisCoverage approach behaves when using multiple robots in a nonconvex
environment. To this end, each robot continuously calculates its geodesic
Voronoi cell and optimizes its orientation-based DisCoverage objective

H?orient,i(pi, δi,Si) =

∫
s̃i

f(pi, δi, q
?)φ(q)dq. (4.50)

Therein, q? is computed by applying the map Tpi to points q on the
frontier s̃i in the nonconvex environment Q. The resulting algorithm is
given in Algorithm 2. In contrast to Algorithm 1, the motion control
law is computed by optimizing the orientation to obtain an optimal δ?i .
Further, the dynamics follow the simplified unicycle dynamics depending on
a velocity v ∈ R≥0, and the communication of δVi→j equals the exchanged
map data as described in Figure 4.1 (page 46).

Algorithm 2 is applied to explore a nonconvex allowable environment Q
with N = 3 robots as shown in Figure 4.23. Figure 4.23(a) shows the scene
after 5 iterations. In addition to the trajectories, the sensing range, and the
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(a) robot configuration after 5 iterations

(b) robot configuration after 28 iterations

(c) centroidal Voronoi configuration after 75 iterations

Figure 4.23: Orientation-based DisCoverage for N = 3 robots in a nonconvex
environment. The opening angle is set to θ = 0.5. The robots follow local maxima
and the distance is automatically adjusted to the nearest frontier cell.
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geodesic Voronoi cells, the figure shows the vector field. It can be observed
that all gradients point toward the frontier. However, approaching the
frontier, the gradients tend to evolve parallel to the frontier. This behavior
is by design, since the optimization yields orientations such that as many
points q on the frontier as possible are located directly in the direction of
the orientation.

Figure 4.23(b) shows the scene after 28 iterations. Similar to the simula-
tion in Figure 4.14 (page 75) the robot in p1 (green) does not have any
frontiers in its Voronoi cell. Therefore, the robot applies the centroidal
search within its unlimited visibility set V?εi . Further, the vector field
in the Voronoi cell of the robot in p3 (red) points to the frontier on the
right. However, as mentioned in Remark 4.17 (page 87), in this case it
would be of advantage if the robot first explored the remaining frontier
cell at the bottom. The objective function of this situation is plotted in
Figure 4.24. Therein, H?orient,3 has two maxima, one in δ∗3,1 = −2.5 pointing
to the bottom left, and another one in δ∗3,2 = 0 pointing to right. The
orientation-based DisCoverage exploration strategy is therefore modified
such that the optimal orientation δ∗i is chosen by following the gradient
∂H?orient,i

∂δi
based on the current orientation δi(t), see Figure 4.24(b), which

is referred to as following the local maximum in Remark 4.17. Therefore,
the robot p3 in Figure 4.23(b) continues following the local maximum in
δ∗3,1 and, hence, explores the remaining frontier cell.

δ3
0

H?orient,3(p3, δ3, S3)

1

δ3 = −2.5

π−π π/2−π/2
(a) Horient,3 for robot p3 in Figure 4.23(b)

δ3
0

H?orient,3(p3, δ3, S3)

π−π π/2−π/2

1

δ∗3,1

δ∗3,2

(b) corresponding local maxima

Figure 4.24: Following the local maximum is of advantage compared to the
greedy behavior when always following the global maximum. Depending on the
current value of δ3(t), the resulting maximum is either δ∗3,1 or δ∗3,2.

The exploration process is complete after 55 iterations. Thereafter, all
robots fall back to the centroidal search within the respective unlimited
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visibility sets V?εi . The centroidal Voronoi configuration is reached after a
total of 75 iterations in Figure 4.23(c).

4.3.7 Varying the Vehicle Dynamics
Generally, the remarks about extending the vehicle dynamics in Sec-
tion 4.2.6 (page 76) equally apply to the orientation-based DisCoverage
approach. In fact, the single integrator dynamics

ṗi = ui = v

(
cos δ∗i
sin δ∗i

)
(4.51)

previously used in (4.44) with the optimal orientation δ∗i denoted by a local
maximum in (4.42) is already closely related to the unicycle dynamicsṗxiṗyi

δ̇i

 =

cos δi 0
sin δi 0

0 1

ui, with ui =

[
vi
ωi

]
, (4.52)

where δi denotes the orientation of the robot and ui denotes its control
input with velocity vi ∈ R≥0 and angular velocity ωi. The difference be-
tween (4.52) and (4.51) is that the optimal orientation changes continuously
over time. Again, following Bullo et al. [36], arbitrary dynamics can be
applied as long as all vehicles strictly decrease the objective function over
time.
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5 Simulation Results and Lab
Experiments

As noted in Section 3.3.2 (page 44), relatively few results exist that compare
different approaches to multi-robot exploration. In fact, the influencing
factors on the exploration process are manifold and include the shape of
the nonconvex environment, the robotic setup such as the amount of robots
in the group, the typically limited communication and sensing capabilities,
inaccuracies in locomotion with navigation constraints due to possibly
non-holonomic vehicle dynamics, or limited power supply.
In this chapter, the exploration strategies proposed in the previous

chapter as well as the MinDist strategy are compared in terms of the
time needed to explore the environment. As published in Frank et al.
[2], the time-optimal case acts as reference, as it provides a lower bound
for the minimum time needed to explore the entire environment. Given
the constraints in real-world environments, the time-optimal case must be
considered as a measure of optimality from a purely theoretical perspective.
Next to simulations, experiments with e-puck robots are conducted for the
orientation-based DisCoverage approach.

5.1 The Time-Optimal Case
In order to evaluate the effectiveness of an exploration strategy, it is useful
to use the time-optimal exploration strategy as reference. In the time-
optimal case, it is assumed that a single robot maps the maximal region
it is able to scan within a traveled distance l ∈ R≥0. As in the proposed
DisCoverage approaches, it is assumed that a robot uses a 360◦ scanner to
map the environment within a given vision radius r ∈ R as illustrated in
Figure 5.1(a). Then, the following lemma holds.

Lemma 5.1. Given a robot i at position pi ∈ R2 with 360◦ sensing
capabilities limited by the vision radius r ∈ R≥0, a maximal area of

A = 2rl (5.1)
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(a) maximal possible new area A

l r
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A2

A3

(b) geometric interpretation of Lemma 1

Figure 5.1: Time-optimal exploration with vision radius r and traveled distance
l as published in Frank et al. [2]

can be explored by the robot for a traveled distance l.

Proof. The case l ≥ r is trivial, since the newly explored area equals the
rectangular region A = 2rl. Hence, let l < r. According to Figure 5.1(a)
the half A

2 of the maximal area A to be explored can be divided in two
sub-areas A1 and A2

1

2
A = A1 +A2. (5.2)

The area A1 is present two times in Figure 5.1(b), because it is given as
A1 = 1

4r
2π −A3. Therefore, A2 is given by the rectangular area rl and A1

and therewith is denoted as

A2 = rl −A1. (5.3)

Inserting (5.3) into (5.2) leads to the maximal area A = 2rl, which is equal
to the case of l ≥ r.

Given an environment Q and a discrete-time implementation of the
exploration process, and denoting with v ∈ R≥0 the traveled distance l per
iteration, the lower bound #it of iterations needed to explore the entire
environment in the single-robot case is therefore given by

#it =
|Q|
2rv

, (5.4)

where |Q| denotes the area of Q. In the multi-robot case, it is assumed that
all robots explore according to (5.1). Hence, as mentioned in Haumann et al.



96 5 Simulation Results and Lab Experiments

[4], the minimal amount of iterations #it for N robots jointly exploring
the environment is bounded by the lower bound

#it =
1

N

|Q|
2rv

. (5.5)

To summarize, the amount of iterations given in (5.5) provides a theoretical
lower bound for the iterations needed to explore the entire environment Q
with N robots.

5.2 Discrete-Time Motion Control Laws
All simulations are performed in the DisCoverage Multi-Robot Exploration
Framework [5]. This software provides a flexible framework for simulating
multi-robot exploration strategies in discrete-time. The possibly nonconvex
allowable environment Q is represented in terms of a grid map [58, 97]
consisting of quadratic cells. Each cell represents an area of 0.2m× 0.2m
and is either unexplored, occupied by obstacles or the boundary of the
environment, or free. A cell on the boundary ∂Q of the environment
switches its state from unexplored to obstacle, as soon as the cell intersects
with a circle around the robot positions pi defined by the sensing range
r. As mentioned in Section 4.2.1 (page 47), a cell in the interior of Q
switches its state from unexplored to free, if it is fully contained in one of
the sensing circles. Unexplored cells adjoining explored cells further define
the frontier. These cells are referred to as frontier cells in the following.
Since the amount of cells in the grid map is finite, all sets including the set
Q, the Voronoi cell Vi as well as the frontier sets s̃ and s̃i are finite sets,
and the integrals in the respective optimization problems reduce to sums.
The time is measured in iterations. In each iteration, a robot moves in the
direction according to its control law according to its velocity vi ∈ R≥0.
Since the moving direction is value-continuous, the robot positions pi ∈ R2,
i = 1, . . . , N , are also value-continuous. The maximum velocity is bounded
by 0.2m per iteration and therewith matches the cell resolution.

5.2.1 Multi-Robot Exploration Strategies
After splitting the optimization problem among the robots based on the
Voronoi partition, the following exploration strategies are used for com-
parison. Each strategy is explained in short together with its spatially
distributed objective function. Due to the discrete-time implementation,
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the time is measured with the discrete index k. For instance, the robot po-
sition is referred to as pki instead of pi(t). Similarly, the objective functions
are also formulated based on the finite frontier sets.

MinDist: Following this strategy, each robot seeks the closest frontier
cell in its Voronoi cell using the geodesic distance. The approach solely
relies on the distance costs to determine where to move next. It is a
standard approach in robotics motion planning and control [82] and the
objective function together with the optimization is given by:

objective function

optimization step

motion control

HMinDist,i(p
k
i , q) = dg(p

k
i , q)

q∗ = arg min
q∈s̃ki
HMinDist,i(p

k
i , q)

pk+1
i = pki + vie(pki , q

∗)

Therein, e(pi, q) denotes the unit vector along the first path segment of
the geodesic path from pi to q.

DisCoverage based on the centroidal search: This strategy was
introduced in Section 4.2 (page 46). Essentially, the objective function
consists of distance costs of points within the integration range r̄ to the
frontier. The moving direction is obtained by computing the centroid of the
r̄-limited visibility set V?εi,r̄ in the ε-contraction Qε. The objective function,
the optimization step and the motion controls in discrete time are given
by:

objective function

optimization step

motion control

H?discover,i(p
k
i ,Ski ) =∑

q∈V?εi,r̄ ‖p
k
i − q‖2φ(q, s̃ki )

uki = mφ(V?εi,r̄)− pki

pk+1
i = pki + vi

uki
‖uki ‖
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Orientation-based DisCoverage: In the orientation-based DisCover-
age strategy explained in detail in Section 4.3 (page 77), each robot op-
timizes its orientation δi to find a suitable exploration direction. The
objective function, combining distance costs and the expected information
gain, and the optimization problem are stated as:

objective function

optimization step

motion control

H?orient,i(p
k
i , δ

k
i ,Ski ) =∑

q∈s̃ki exp

(
−α

2(pki ,δ
k
i ,q

?)
2θ2 − d2

g(pki ,q
?)

2σ2

)

δ∗i = arg max
δi∈[−π,π]

H?orient,i(p
k
i , δ

k
i ,Ski )

pk+1
i = pki + vi

[
cos δ∗i
sin δ∗i

]

Therein, the angle α(pi, δi, q
?) is denoted as in (4.40) and q? = Tpi(q) as

in Definition 4.1 (page 88). Further, the density φ is equal to one as noted
in Remark 4.15 (page 84).

5.2.2 Fallback Strategy
All approaches use the (geodesic) Voronoi partition to assign a region of
dominance to each robot. Whenever the Voronoi cell Vi of robot i is fully
explored, it falls back to the centroidal search in the unlimited visibility set
V?εi in order to maximize coverage in V?εi to position itself optimally with
respect to the distance to all points in V?εi . Assuming a constant density
function φ(q) = 1, one obtains

objective function

optimization step

motion control

H?cover,i(pi,V?εi ) =
∑

q∈V?εi ‖q − pi‖2

uki = mφ(V?εi )− pki , s.t. ‖uki ‖ ≤ 1

pk+1
i = pki + viu

k
i
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5.3 Environmental and Robotic Setup
The simulation of the multi-robot exploration strategies is performed in
two allowable environments of size 15m× 10m as depicted in Figure 5.2.
The environment is represented in terms of an occupancy grid map [58, 97].
The resolution of each grid cell is set to 0.2m× 0.2m. The environment
in Figure 5.2(a) is defined by a convex rectangular region. Contrary,
Figure 5.2(b) shows a nonconvex indoor environment with four distinct
rooms, which are separated from each other by 3 meter wide doorways. All
simulations are performed with N = 3 robots, all having a sensing range
of r = 2m. Throughout the simulation, all robots move with a constant
velocity of vi = 0.2 m

s . As an exception, whenever a robot is unemployed,
it applies the unlimited centroidal search as fallback strategy and velocities
smaller than vi = 0.2 m

s are allowed in order to reach the centroid.
For the centroidal search-based DisCoverage approach (cf. Section 4.2,

page 46), an integration range of r̄ = 0.5m is used. Since the smallest
interior angle is α = 90◦ in both the convex and the nonconvex environment
(cf. Figure 5.2(a) and 5.2(b)), the sensing range r satisfies

r = 2m ≥ rmin =
r̄

sin( α
2N )

≈ 1.93m (5.6)

according to the minimum sensing range (4.10). In the nonconvex environ-
ment, the ε-contraction first needs to be applied as discussed in Section 4.2.4.
Strictly speaking, without the ε-contraction collisions with the environment
are possible on concave vertices that are not continuously differentiable
along the boundary ∂Q. However, in practice the ε-contraction can be
neglected for the following reasons: First, moving on an unstable separatrix
that points into a concave vertex is a special case that appears only very
rarely in very specific setups. Second, as implementation detail, the simu-
lator prevents the robots from moving into the boundary ∂Q by adding
an arbitrarily small perturbation to the robot position in this case, that
moves the robot away from the boundary. Therefore, the minimum sensing
range in the nonconvex environment is also defined by (5.6). Setting ε = 0
in (4.30) further simplifies the computation of the maximum integration
range to

r̄max =
dpass − 2ε

2N
=

3m
2 · 3

= 0.5m. (5.7)

Obviously, the chosen integration range r̄ = 0.5m ≤ r̄max satisfies (5.7),
and therewith all robots are able to simultaneously pass the doorways.
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90◦

(a) Convex allowable environment, grid resolution: 0.2m× 0.2m

3m

90◦

(b) Nonconvex allowable indoor environment, grid resolution: 0.2m× 0.2m

Figure 5.2: Applied simulation environments of size 15m× 10m
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For the orientation-based DisCoverage approach (cf. Section 4.3, page 77),
the opening angle of all robots is set to θ = 0.5 (cf. Remark 4.14, page 84)
and the distance component matches the sensing range with σ = 2m
(cf. Remark 4.16, page 87).

5.4 Statistical Evaluation
The MinDist-approach, the centroidal search-based DisCoverage approach,
and the orientation-based DisCoverage approach are all simulated in both
the convex and nonconvex allowable environments in Figure 5.2. In order
to obtain statistically significant results, each of the 6 combinations consists
of 1000 simulation runs. Each simulation run starts with distinct, randomly
generated initial robot positions and an unexplored map. The time of a
simulation run is measured in the number of iterations needed to fully
explore the map. In each iteration, the exploration progress is measured in
percent. A value of 100% implies a fully explored environment. Further,
in each iteration the unemployment is measured in percent. As discussed
previously, a robot is said to be unemployed, if no frontier cells are in its
Voronoi cell. Consequently for N = 3 robots, the unemployment in each
iteration is either 0%, 33.3% or 66.6%. A value of 100% unemployment is
excluded, since 100% resembles a fully explored environment. In this case,
the unemployment is set to 0% as the robots are open for new tasks.
Statistical evaluations of 1000 simulation runs in the convex and the

nonconvex allowable environment in Figure 5.2(a) are given in Figure 5.3
and in Figure 5.5, respectively, for all three exploration strategies. In each
diagram, the number of iterations is displayed on the horizontal axis. The
vertical axis shows the exploration progress in percent. A value of 100%
implies that all grid cells are explored. Each iteration vertically shows a
box plot: the ±25% band around the median represents 500 of the 1000
simulation runs. In addition, the ‘best case’ and the ‘worst case’ is shown
in each iteration of the 1000 runs. The best case equals the maximum of
the explored space in percent in the respective iteration. Analog to the
best case, the ‘worst case’ shows the minimum of the explored space in
percent in the respective iteration. Consequently, all 1000 simulation runs
always lie within the interval defined by the worst and the best case. In
addition to the box plot, the mean and standard deviation of the iterations
needed to explore 90%, 95%, 98% and 100% are depicted horizontally ( )
in terms of a Gaussian distribution for all 1000 simulation runs. Further,
the theoretical optimum is displayed as straight line as reference to the



102 5 Simulation Results and Lab Experiments

time-optimal case. As discussed in Section 5.1 (page 94), the time-optimal
case defines a lower bound of the iterations required to explore the entire
environment.
Finally, the unemployment is plotted over time. Since the value is

averaged over 1000 simulation runs, one obtains a smooth curve that grows
over time until a peak is reached. Thereafter, the unemployment decreases
again, since more and more simulation runs already finished the exploration
and therefore the robots are counted as employed as they are open for new
tasks.

5.4.1 Results in the Convex Environment
From Figure 5.3, it follows that all exploration strategies always accomplish
the exploration task. The width of the 50% band around the median
is comparable for all three strategies. However, in the first third of the
iterations, the slope of the centroidal search-based DisCoverage and the
orientation-based DisCoverage approach is higher than the slope of the
MinDist approach. This, for instance, can be observed at iteration 60:
While the median of the MinDist approach is at about 75% (cf. Fig-
ure 5.3(a)), the DisCoverage-based approaches both already explored about
84% of the environment (cf. Figure 5.3(b) and 5.3(c)).

There are several reasons for this. Following the MinDist approach, each
robot moves to the closest point on the frontier. Due to the grid map
representation, the frontier is defined in terms of a finite set of frontier
cells. Especially at the beginning of the exploration, these frontier cells
are typically located on the border of the circle defined by the sensing
range around the respective robot position. However, due to the grid map
discretization, the distance of distinct frontier cells to the robot position
is smaller than the distance of other frontier cells. Therefore, the robots
follow preferred orientations. As a result, the robots change the moving
direction after each iteration which results in zig-zag trajectories (cf. left
column in Figure 5.4). Therewith, the effective distance traveled is shorter
compared to moving along a straight line, and consequently the amount of
explored area is reduced.
The centroidal search-based approach does not have this disadvantage,

since integrating over all points in V?εi,r̄ results in smoothed trajectories
(cf. middle column in Figure 5.4). Further, the centroidal search-based
approach has the advantage of keeping the safety distance of r̄ = 0.5m
to the boundary ∂Q. Therewith, the perceived area is possibly larger
compared to approaches that allow moving closer along the boundary.
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(a) MinDist strategy
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(b) centroidal search-based DisCoverage
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(c) orientation-based DisCoverage

Figure 5.3: Statistics over 1000 simulation runs in the convex environment
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(a) HMinDist, iter. 25 (b) H?discover, iter. 25 (c) H?orient, iter. 25

(d) HMinDist, iter. 50 (e) H?discover, iter. 50 (f) H?orient, iter. 50

(g) HMinDist, iter. 75 (h) H?discover, iter. 75 (i) H?orient, iter. 75

(j) HMinDist, iter. 100 (k) H?discover, iter. 100 (l) H?orient, iter. 100

(m) HMinDist, iter. 138 (n) H?discover, iter. 113 (o) H?orient, iter. 166

Figure 5.4: Exemplary robot trajectories of the first simulation run in the convex
environment. The initial robot positions are equal for all three strategies. Left
column: MinDist strategy, middle column: centroidal search-based DisCoverage,
right column: orientation-based DisCoverage.
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Table 5.1: Iterations needed to explore 90%, 95%, 98%, and 100% of the convex
environment in Figure 5.2(a). The values are given in terms of the mean and the
standard deviation ( ) and also visible in Figure 5.3.

HMinDist H?discover H?orient
90% 87.27± 11.83 74.00± 11.75 79.17± 12.55
95% 99.34± 13.24 86.79± 13.48 93.97± 13.57
98% 109.43± 14.66 98.81± 14.93 107.58± 14.61

100% 132.36± 15.46 122.51± 15.25 132.33± 15.16

Similarly, following the orientation-based DisCoverage approach, each
robot chooses its moving direction by optimizing its orientation such that
as many frontier cells as possible are directly located in front of the robot.
As a result, the robot always moves into directions with lots of frontier cells,
which maximizes the information gain. This effect can be observed in the
first 40 iterations in Figure 5.3(c): Here, the slope of the orientation-based
DisCoverage approach surpasses the slope of the other two approaches.
The further course of the statistics in Figure 5.3 are best examined by

analyzing Table 5.1. Therein, the iterations needed to explore 90%, 95%,
98%, and 100% of the environment are listed in terms of the mean and
the standard deviation. The centroidal search-based DisCoverage approach
outperforms both the MinDist and the orientation-based DisCoverage ap-
proach. The standard deviations in each row are similar. Interestingly, the
orientation-based DisCoverage approach outperforms the MinDist approach
most of the time. However, towards the end of the exploration process, the
mean of the iterations needed to explore 90%, 95%, 98%, and 100% of the
environment again converges to the performance of the MinDist approach.
This fact can be explained by the greedy behavior of the orientation-based
DisCoverage approach. Maximizing the information gain, the robots focus
on parts of the environment that are largely unexplored. During this proce-
dure it happens, that small parts of the environment – parts such as a single
frontier cell in a corner – remain unexplored (cf. right column in Figure 5.4).
Due to these frontier isles, the robots need to travel large distances again
before finishing the exploration task. Therefore, the performance of the
orientation-based DisCoverage approach degrades towards the end.

Next, the unemployment in Figure 5.3 is discussed. At the very beginning
of the exploration process, all robots have frontier cells in the respective
Voronoi cells. Therefore, the unemployment initially is at 0%. Over time,
the unemployment increases, meaning that some robots do not have any
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frontier cells in their Voronoi cell. As mentioned before, in this case the
robots apply the centroidal search within the unlimited visibility set as
fallback strategy. Statistically, the unemployment of all strategies increases
further until it reaches its peak of 40% in the interval [98%, 100%]. From
these statistics one can deduce that the exploration strategies behave mostly
the same in terms of the unemployment.

5.4.2 Results in the Nonconvex Allowable
Environment

Next, the exploration process in the nonconvex allowable environment in
Figure 5.2(b) is examined, analogously to the convex environment. The
statistical results are shown in Figure 5.5. Again, all simulation runs
accomplish the exploration task. Due to the nonconvexity, the mean
traveled distance to explore the entire environment is larger compared to
the convex case. This reflects in the increased number of iterations needed
to fully explore the environment.
The statistical results in Figure 5.5 are similar to the convex case in

Figure 5.3. However, the unemployment differs from the convex: In
the convex case, the unemployment increases roughly after iteration 40,
while the unemployment in the nonconvex environment increases much
earlier already at iteration 20. The reason for this are the restrictions
imposed by the nonconvexity, meaning that the geodesic Voronoi cells
partition the environment such that robots do not have any assigned frontier
cells. The unemployment increases until it reaches its peak at about 98%
for the MinDist and the centroidal search-based DisCoverage approach.
Interestingly, the peak for the orientation-based DisCoverage approach
lies approximately at iteration 137, and therewith reaches its maximum
well after the 98% mark. This effect can be explained by investigating
Figure 5.6(l). Therein, the robot in the upper half explored almost all
parts of the room, but the trajectories are such that several frontier cells
close to the boundary remain unexplored. Therefore, the robots often have
remaining frontier cells towards the end of the exploration process in the
respective Voronoi cell and consequently are counted as employed.
This hypothesis is also backed up by Table 5.2. Here, the iterations

needed to explore 90%, 95%, 98%, and 100% of the nonconvex environment
are listed in terms of the mean and the standard deviation. While the
orientation-based DisCoverage approach in the right column performs
best with respect to exploring 90%, 95%, and 98%, the performance again
equals the other two approaches when comparing the 100% level. This again
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(a) MinDist strategy
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(b) centroidal search-based DisCoverage
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(c) orientation-based DisCoverage

Figure 5.5: Statistical evaluation of 1000 simulation runs
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(a) HMinDist, iter. 25 (b) H?discover, iter. 25 (c) H?orient, iter. 25

(d) HMinDist, iter. 50 (e) H?discover, iter. 50 (f) H?orient, iter. 50

(g) HMinDist, iter. 75 (h) H?discover, iter. 75 (i) H?orient, iter. 75

(j) HMinDist, iter. 100 (k) H?discover, iter. 100 (l) H?orient, iter. 100

(m) HMinDist, iter. 135 (n) H?discover, iter. 116 (o) H?orient, iter. 157

Figure 5.6: Exemplary robot trajectories of the first simulation run in the
nonconvex environment. The initial robot positions are equal for all three
strategies. Left column: MinDist strategy, middle column: centroidal search-
based DisCoverage, right column: orientation-based DisCoverage.
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Table 5.2: Iterations needed to explore 90%, 95%, 98%, and 100% of the
nonconvex environment in Figure 5.2(b). The values are given in terms of the
mean and the standard deviation ( ) and also visible in Figure 5.5.

HMinDist H?discover H?orient
90% 107.91± 22.45 98.72± 21.07 91.53± 21.25
95% 122.42± 23.35 114.46± 21.61 106.37± 21.37
98% 135.50± 23.35 129.82± 20.56 124.74± 19.27

100% 160.16± 22.73 158.29± 19.69 159.13± 19.40

underlines the greedy behavior maximizing the short term information gain
of the orientation-based DisCoverage approach. Next to this observation,
the performance of the centroidal search-based DisCoverage approach
lies between the performance of the MinDist and the orientation-based
DisCoverage approach. Besides this, the standard deviations in each row
are approximately the same, meaning that from a statistics point of view
all approaches spread equally around the respective expected values.
For completeness, the trajectories of all three exploration strategies in

the nonconvex environment are exemplarily shown in Figure 5.6 for the
first simulation run.

5.5 Experimental Results with E-puck Robots
In addition to the simulation, lab experiments were performed in collab-
oration of the Technische Universität Darmstadt with ETH Zurich at
the Massachusetts Institute of Technology (MIT) in 2010, and published
in Haumann et al. [6]. In the experiments, two e-puck robots [95] as de-
picted in Figure 5.7(a) explore a nonconvex allowable environment Q of size
1m× 1m with the orientation-based DisCoverage approach. In line with
the simulation results, the standard deviation of the angular component
and the distance component are set to θ = 0.5 and σ = 0.2m, respectively.
The boundary of the environment is represented by the black overlay in
Figure 5.7(b). The e-puck robots have a diameter of 7 cm and are equipped
with a Bluetooth interface (further specifications are listed in Appendix B.1,
page 128). In the setup, each e-puck robot carries a unique marker which
is tracked by an overhead camera using the ARToolkit software [72]. Ac-
cordingly, the localization of the robots is carried out by the camera and
the problem of Simultaneous Localization and Mapping (SLAM) is avoided.
The camera is connected to a central controller running in Matlab® in
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(a) E-puck robot [31] (b) Lab experiment (c) Internal states

Figure 5.7: Experimental results with two e-puck robots exploring a nonconvex
allowable environment

the loop. This central controller keeps track of the explored and unexplored
parts of the environment in terms of a grid map with a grid cell resolution
of 0.025m × 0.025m. Based on this information and the current robot
positions obtained from the visual tracker, the controller optimizes the
objective Horient,i for each of the two e-puck robots. The computed moving
directions are then sent back to the robots over Bluetooth in each iteration,
and the e-puck robots move into the designated directions.
The implementation of the experiments differs from the simulation as

follows: Since the e-puck robots have a finite physical size of diameter
7 cm, the obstacles are inflated by applying the ε-contraction in order to
avoid collisions with the environment. The inflation may influence the
exploration behavior, as the robots approach different sets of frontier cells
compared to pure simulation and the distance to the frontier changes when
navigating around the enlarged obstacles.
The e-puck robots move according to a bang-bang control, turning in

place until their orientation matches a specified target orientation range,
and then drive straight with velocity proportional to the distance to an
intermediate goal point. Due to limitations in tracking speed of the system,
noise is introduced in the system and the robots’ angular positions slightly
under- or overshoot, which results in jagged trajectories. However, apart
from this noise, the orientation-based DisCoverage algorithm appears to
be robust in this implementation. During the robot movements, the
Matlab® program tracks the explored parts around the e-puck robots
by simulating omnidirectional sensing capabilities with a sensing range of
r = 0.2m.
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Figure 5.7(b) shows the final configuration. Therein, the robots moved
through the environment such that all parts of the environment were visible
following the robot trajectories. As fallback strategy, the robots apply
the Voronoi coverage algorithm for nonconvex environments proposed in
Breitenmoser et al. [34]. The trajectories of the e-puck robots are tracked
by the controller and depicted in Figure 5.7(c). The initial positions are
marked by the two circles, and the final positions by the crosses.
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6 Discussion

In Chapter 4, two new approaches to multi-robot exploration were intro-
duced. Both approaches are based on the DisCoverage paradigm, which
itself is derived from the solution to the coverage problem discussed in
detail by Bullo et al. [36]. The approaches were both first introduced for
convex environments in terms of a distributed optimization problem. The
distributivity is based on the fact that the computation of the Voronoi
partition is spatially distributed over the Delaunay graph. The DisCover-
age paradigm forms a closed feedback loop: Based on the partition of the
environment, the robots autonomously create and optimize an objective
function. The partial derivatives of this objective function with respect
to the robot positions and orientations are used as control input for each
robot. The robot movements change the partition and the loop begins
anew. This process is continuously performed until the entire environment
is explored.
Both approaches are extended to the nonconvex domain. As a foun-

dation for the centroidal search-based DisCoverage approach, Assump-
tion 4.2 (page 60) was introduced according to which the visibility sets
are quasi-stationary when building the partial derivatives. Further, the
ε-contraction was applied, which turns concave vertices on the boundary
∂Q into continuously differentiable concave curved path segments. These
properties were then utilized in H?discover to derive nonconvex control laws.
The orientation-based DisCoverage approach was extended to support
nonconvex environments by first applying a transformation Tpi(q) (cf. Defi-
nition 4.1, page 88) to each location q ∈ Q obtaining a star-shaped domain
with respect to the robot positions. Therewith, orientations obtained as
results of optimizing H?orient always point into directions in Q avoiding
collisions with the boundary ∂Q.

Figure 1.1 of Chapter 1 is depicted again in Figure 6.1. With respect to
the centroidal search-based DisCoverage approach, the optimization block
optimizes H with respect to the robot positions pi, resulting in distributed
motion control laws ui = − ∂H

∂pi
. These in turn are used in the robot

dynamics in terms of ṗi = fi(pi,ui) = ui. Similarly, with respect to the
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partition

H → min!

optimization

ṗi = fi(pi,ui)

robot dynamics

H ui

mapping

pi

Figure 6.1: Closed multi-robot exploration feedback loop

orientation-based DisCoverage approach, H is optimized with respect to
the robot orientations δi, resulting in distributed motion control laws

ṗi = ui = v

(
cos δ∗i
sin δ∗i

)
. (6.1)

Therewith, both DisCoverage approaches follow the closed feedback loop
as initially proposed in the problem statement. The design criterion of
distributed coordination is fulfilled, since all robots autonomously solve the
optimization problem and apply distributed motion control laws. Further,
the communication constraints are defined by the Voronoi partition, which
is known to be computable in a distributed manner. This in turn fulfills
the problem statement as well as the design criteria mentioned in the
introduction (cf. Chapter 1).

6.1 Simulation Results and Lab Experiments
As shown in Chapter 5 (page 94 ff.), all exploration strategies accomplish
the exploration task, with varying performance. Generally, the performance
of the MinDist approach is reduced due to the zig-zag trajectories which
are immanent for implementations relying on a discrete set of frontier
cells. The centroidal search-based DisCoverage approach also solely relies
on computing distances to the frontier, and there is no information gain
based component. However, since the distances from all points in the
r̄-limited visibility sets V?εi,r̄ are computed, the resulting trajectories are
smooth. Further, due to the integration range r̄, the boundary ∂Q of the
environment as well as the boundary of the Voronoi cells act as repulsive
force. This repulsive force pushes the robots away from the boundaries up to
a certain safety distance depending on the integration range. This effect can
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be observed in Figure 5.6 (page 108) in the middle column, and is especially
visible for the green robot trajectory in Figure 5.6(h). In fact, smooth
trajectories and keeping a safety distance are considerable advantages over
the MinDist approach. In comparison, the MinDist approach in the left
column in Figure 5.6 often slices the boundary.
The orientation-based DisCoverage approach also slices the boundary,

since no components in the objective function pushes the robots away
from the boundary. Figure 5.6(l) shows this property for the green robot:
The closest frontier cells pull the robots around the nonconvex boundary.
In general, a safety distance can strictly be enforced for all exploration
strategies by first inflating the environment Q by applying the ε-contraction
to Q. This approach is also known as growing of obstacles [87, 130]
and a well-established strategy for collision-free path planning of robotic
manipulators [82].
The lab experiments in Section 5.5 (page 109) show that applying the

DisCoverage paradigm in terms of the closed feedback loop successfully
accomplishes the exploration task. In this case, two e-puck robots explored
a nonconvex environment with the orientation-based DisCoverage approach.
Since the e-puck robots have a physical diameter of 7 cm, inflating the
boundary of the nonconvex environment Q was a hard requirement to avoid
collisions.

6.2 Performance Analysis
The simulation results as well as the experimental results demonstrate that
the proposed multi-robot exploration strategies based on the DisCoverage
paradigm successfully solve the exploration task. Although each approach
was simulated one thousand times in order to obtain statistically significant
results, it needs to be emphasized that neither the simulation nor the lab
experiments account for all degrees of freedom that influence real-world
exploration tasks. This in turn makes it hard to measure the performance
of the approaches, meaning that it is close to impossible to nominate a clear
winner among the strategies – neither in this dissertation nor in related
publications.

As already noted in the discussion about related work (cf. Section 3.3.2,
page 44), the time-optimal case in terms of the theoretical optimum was
therefore used as lower bound of the time required to explore the entire
environment. As a result, all three exploration strategies perform similarly
with slight differences: the performance of the MinDist approach degrades
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due to the zig-zag trajectories; the centroidal search-based DisCoverage
approach has the advantage of inherently keeping a safety distance, and
the orientation-based DisCoverage approach initially performs better due
to its greedy behavior.

It should be emphasized, though, that the simulations and experiments
were performed to validate the proposed multi-robot exploration approaches,
as similarly noted in Frank et al. [2]. With this background in mind, the
main goal is not to find the best performing multi-robot exploration strategy.
Instead, the main contribution of the simulations and experiments is to
validate the idea of transferring the solution to the coverage problem
as proposed by Bullo et al. [36] to the multi-robot exploration problem,
fulfilling the design criteria in Section 1.2 (page 3).

6.3 Convergence Properties
The solution to the coverage problem as proposed by Bullo et al. [36] is
provably correct and always finds an optimal solution. The proof is based
on the fact that the objective function acts as Lyapunov function, whose
gradient is used in the control input. This in turn allows to apply the
Krasovskii-LaSalle invariance principle to prove convergence to centroidal
Voronoi configurations which maximize coverage.

The centroidal search-based DisCoverage approach closely follows the
solution to the coverage problem for convex environments. Under As-
sumption 4.1 (page 50) a quasi-stationary density function is assumed
and therefore the proof of convergence as well as the proof for solving the
multi-robot exploration problem are performed analogously to the proof
for the solution to the coverage problem. Under Assumption 4.2 (page 60),
these proofs are extended to nonconvex domains defined in terms of allow-
able environments. Essentially, this extension relies on the ε-contraction
defining the r̄-limited visibility sets. Based on this extension, the theorems
and proofs for convex environments are transferred to nonconvex allowable
environments. Although not discussed in detail, it is noteworthy that this
solution can readily be applied to solve the nonconvex coverage problem as
well, as published in Klodt et al. [12]. Compared to existing solutions to
nonconvex coverage, the proposed solution only solves the coverage problem
in the (un-)limited visibility set, instead of the nonconvex (un-)limited
Voronoi cell. However, this does not impose any restrictions in the context
of the multi-robot exploration problem.
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Although validated in the simulation and the experiments with the e-puck
robots, a formal proof of convergence for the orientation-based DisCoverage
approach is an open research question: Currently, the orientation-based
DisCoverage approach works successfully with the specified standard de-
viations in the angular component and the distance component. How to
choose these parameters is subject to further research, though.

6.4 Optimality of Space Partitions
Robots not having a frontier in their Voronoi cells fall back to the unlim-
ited centroidal search in the respective visibility set in order to maximize
coverage within the respective Voronoi cell. In the statistical evaluation,
these robots are counted as unemployed, as they effectively do not con-
tribute to the exploration task. In fact, having robots not contributing
to the exploration task is the same as mapping the environment with less
robots. From this observation, it follows that especially towards the end
of the exploration process a more effective coordination of the group is
required. However, this coordination cannot be achieved by strictly using
the Voronoi partition. This raises an interesting research question: The
Voronoi partition is the optimal partition for solving the coverage prob-
lem [36]. However, the Voronoi partition is not the optimal partition for the
multi-robot exploration task with respect to minimizing the time needed to
explore the entire environment. Nevertheless, the Voronoi partition is still
a widely used partition of the environment. This is due to the fact that its
computation is spatially distributed over the Delaunay graph, which is a
property that is of advantage especially in convex environments.
This background in mind, finding an optimal partition suited for dis-

tributed multi-robot exploration is an open problem. An optimal partition
may decrease the time needed to accomplish the exploration task, since it
allows for a better assignment of robot target points.

6.5 Higher State Space Dimensions
The proposed exploration strategies were discussed in detail for the two-
dimensional case. However, the centroidal search and therewith also the
centroidal search-based DisCoverage approach both can be readily applied
to higher dimensions without any modifications. This is not the case for the
orientation-based DisCoverage approach: Here, the robots derive H?orient,i
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with respect to the orientations δi. In higher dimensions, the optimal
orientation in the angular component needs to be optimized with respect
to each additional dimension. For instance, in the three dimensional space,
the optimization must be performed with respect to the horizontal and the
vertical direction. Using the spherical coordinate system probably provides
a tool to model the optimization procedure in this case.

6.6 Map Representation
Throughout the statistical evaluation and the lab experiments an occupancy
grid map was used to represent the environment. Occupancy grid maps [58,
97] have the advantage of being easy to implement, since each cell equals one
element in a huge n-dimensional matrix. However, Shen et al. [114] note,
that occupancy grid maps do not scale to the three dimensional space or even
larger dimensions. This is due to the curse of dimensionality [28], according
to which the state space grows exponentially with growing dimension.
For instance, increasing memory usage is an issue for high resolution
occupancy grid maps. Therefore, it is worth to look into alternative map
representations such as the metric representation or topological maps based
on graph theory [126]. For instance, Durham et al. [56] recently proposed
an approach to solve the coverage problem based on a graph, where each
node represents e.g. a room of an indoor environment, and the edges encode
information used to navigate among the rooms. In related research, Keidar
and Kaminka [74] investigate possibilities of how to efficiently detect the
frontier when running experiments.

6.7 Discrete-Time Systems
The DisCoverage paradigm and the solution to the coverage problem are
both introduced and analyzed in terms of continuous-time dynamical sys-
tems: The partition is continuously kept up-to-date, the optimization
problems are continuously optimized, the robots move continuously accord-
ing to the derived control laws, and, finally, all theorems and the respective
proofs are performed for the continuous-time case.

In practice, however, the implementation of these strategies is typically
performed in discrete time. This also holds for the DisCoverage simulator [5]
and the central controller in the experiments with the e-puck robots [6].
Therein, the environment is represented as a (discrete) occupancy grid.
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As a consequence, the frontier is defined by a finite set of frontier cells,
and the integrals in the optimization problems HMinDist, H?discover, and
H?orient reduce to sums over these finite sets (cf. Section 5.2, page 96).
Accordingly, the continuous-time motion control laws ṗi = ui translate
into the discrete-time equations pk+1

i = pki + τuki with sample time τ .
Albeit very similar, Cortés et al. [50] and Cortés et al. [47] show that the

convergence analysis for discrete-time systems relies on a discrete version
of the Krasovskii-LaSalle invariance principle. The authors show that
the solution to the coverage problem can be transferred to the discrete-
time domain including the proof of convergence to centroidal Voronoi
configurations. However, this dissertation extends this theory to nonconvex
environments within the (un-)limited visibility sets in continuous time
and a value continuous domain. Therefore, strictly speaking, the proof of
convergence for the proposed DisCoverage approaches in discrete time is
subject to further research.
In fact, explicitly modeling the system in discrete time has several ad-

vantages, since the Voronoi partition is only updated at distinct points
in time. First, no communication among robot neighbors is required as
long as the Voronoi cells remain constant. Second, the computational
overhead of computing the possibly geodesic Voronoi cells is vastly reduced.
Third, Bullo et al. [36] note that the centroidal search can be applied to
vehicles with arbitrary dynamics, if the objective function strictly decreases
in the time intervals between communication rounds where the Voronoi
cells are updated. Following this observation, modeling the exploration
process in discrete time has huge potential to extend the proposed DisCov-
erage methods to complex and more realistic and heterogeneous vehicle
dynamics.
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7 Conclusion

This final chapter reviews the achievements of this dissertation and also
gives an outlook on possible future research.

7.1 Summary
Motivated by an extensive literature review in the area of the coverage
problem, this dissertation introduced the DisCoverage paradigm, which
transfers the solution to the coverage problem to the multi-robot exploration
domain. Since the DisCoverage paradigm closely follows the feedback loop
of the solution to the coverage problem, the design criteria of distributed
coordination based on well-defined communication constraints as motivated
in the introduction are fulfilled. Hence, the DisCoverage paradigm enables
a group of robots to autonomously explore unknown environments. More
specifically, two approaches to autonomous multi-robot exploration were
derived and discussed in detail.
First, the centroidal search-based DisCoverage approach applies the

limited centroidal search to derive control laws moving the robots into
unexplored parts of the environment. To this end, the limited centroidal
search was extended to support nonconvex environments by applying the ε-
contraction to the environment. The ε-contraction defines an invariant set,
and consequently no additional projection methods are required for collision
avoidance between robots and obstacles. Applying the centroidal search
within the visibility sets in the ε-contraction of the respective Voronoi cells
solves both the coverage problem in nonconvex environments as well as the
multi-robot exploration problem in nonconvex unknown environments.
Second, the orientation-based DisCoverage approach solves the explo-

ration problem by finding robot orientations that lead the robots into
unknown parts of the environment. Initially proposed for convex environ-
ments, this approach was extended to nonconvex environments by applying
a transformation to the environment obtaining star-shaped regions with
respect to the robot positions. Although only applied for the orientation-
based DisCoverage approach, it is worth emphasizing that the proposed
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transformation is suited for generic path planning problems in noncon-
vex environments. Compared to the centroidal search-based DisCoverage
approach, the orientation-based DisCoverage approach additionally tries
to maximize the expected information gain in addition to minimizing the
distance costs. Therefore, the orientation-based DisCoverage approach
resembles a greedy exploration strategy.

These approaches were compared to the time-optimal case as well as the
MinDist approach in extensive, statistically significant simulations. The
time-optimal case defines a new measure in terms of a lower bound for the
time needed to explore an unknown environment. Although a formal proof
of convergence of the orientation-based DisCoverage approach poses an
open research question, lab experiments with e-puck robots validate this
approach. A proof of convergence was given for the centroidal search-based
DisCoverage approach, and contributions in the area of computational
geometry are highlighted.
The DisCoverage paradigm provides a well-defined approach to fully

distributed, frontier-based multi-robot exploration. Each robot acts au-
tonomously solely based on locally available information such that the
responsibility of the exploration problem is equally shared among the
robots. In conclusion, the design criteria of distributed coordination under
well-defined communication constraints as mentioned in the introduction
are met (cf. Section 1.2, page 3).

7.2 Future Research
The DisCoverage paradigm proposed in this dissertation provides a practi-
cable approach to distributed multi-robot exploration under well-defined
communication constraints. In the following, several aspects are discussed
that are especially suited for future research directions.

Workload Balancing

As pointed out in the discussion (cf. Section 6.4, page 116), the Voronoi
partition is not necessarily an optimal partition of the environment with
respect to the multi-robot exploration problem. Consequently, in order to
increase the effectiveness of the exploration process, it is worth looking
into how to assign target points on the frontier to each robot such that the
workload among the robots is balanced. As a result, robots would never
get unemployed, potentially decreasing the time needed to accomplish the
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exploration task. However, not relying on the Voronoi partition possibly
requires to find new distributed coordination techniques. Therefore, how to
balance the work among the robots in a distributed way allows for research
on a much broader scale.

Discrete Approaches to Multi-Robot Exploration

As indicated in the discussion in Section 6.7 (page 117), the solution to the
nonconvex coverage problem and the DisCoverage multi-robot exploration
approaches presented in this dissertation, and the initially proposed solution
to the convex coverage problem by Bullo et al. [36] are all formulated in
terms of optimization problems that are continuous in both time and
space. For instance, the frontier in the exploration problem is described
by a continuous line that separates explored from unexplored parts of the
environment. Similarly, the density function is usually defined in terms
of a continuously differentiable function in the environment. Therefore,
solving the coverage and DisCoverage optimization problems typically
involves numerical integration and differentiation methods, since finding
analytical solutions becomes impractical. This in turn implies that software
implementations solving the coverage or exploration problem as discussed
in this dissertation always discretize the underlying optimization problem
at some point. For exactly this reason, Bullo et al. [36] introduce all proofs
and algorithm twice: once for the continuous case, and once for the discrete
case.
With this background in mind, it appears straightforward to examine

whether approaches to multi-robot exploration exist that by design are
discrete in both time and space. For instance, Durham et al. [56] recently
proposed a solution to the nonconvex coverage problem by representing
the map as a graph instead of a polygonal environment, resulting in a
value-discrete optimization problem that is solved at distinct points in
time. Therefore, future research could investigate multi-robot exploration
in terms of value-discrete approaches.

Asynchronous Distributed Coordination

The solution to the coverage problem by Bullo et al. [36] and the DisCover-
age approaches rely on a continuously up-to-date Voronoi partition of the
environment. The DisCoverage Multi-Robot Exploration Framework [5]
provides a discrete-time implementation of the proposed approaches, in
which the robots synchronously update their Voronoi cell after each itera-
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tion. Therewith, from a global perspective, the resulting Voronoi partition
is always consistently updated. Instead of continuously updating the
Voronoi partition, Cortés et al. [50] and Nowzari and Cortés [98] propose
to use asynchronous algorithms [26, 129] to solve the coverage problem.
These asynchronous algorithms allow the usage of outdated information to
a certain degree, such that updating the Voronoi cells is self-triggered by
the respective robots. Transferring this idea to the proposed DisCoverage
approaches is subject to further research.

Stochastic Modeling of Map and Robot States

Finally, the work presented in this dissertation assumes ideal localization,
mapping, and communication capabilities. Although lab experiments
(cf. Section 5.5, page 109) validate the DisCoverage paradigm, in practice
it is inevitable to cope with noisy measurements, poor localization quality,
and faulty communication. Therewith, inference methods for distributed
state estimation as well as stochastic models to represent the map build
an essential component in real-world multi-robot exploration. Several
contributions with respect to distributed state estimation emerged as
byproduct of this dissertation (cf. Euler et al. [1], Haumann et al. [7, 10],
Willert et al. [16]). Still, formulating the objective functions based on
non-deterministic state estimates and map information is subject to further
research.
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A Computational Geometry

A.1 k-Means Clustering and Coverage
The solution to the coverage problem as proposed by Bullo et al. [36] applies
the continuous-time Lloyd algorithm. This in turn implies that there is
a tight relation between the solution to the coverage problem and the
k-means clustering algorithm. This relation is explained in the following.

The discrete-time Lloyd algorithm is also known as the k-means clustering
algorithm [28, 90]. It clusters a finite set Qd consisting of m data points
qi into k disjoint clusters Vi with i = 1, . . . , k, such that the union of all
clusters Vi defines a partition of Qd, i.e., Vi ∩ Vj 6=i = ∅ and ∪iVi = Qd.
The objective of the k-means clustering algorithm is to find a partition Vi,
i = 1, . . . , k that solves the optimization problem

H =

k∑
i=1

∑
qj∈Vi

‖pi − qj‖2 −→ min! (A.1)

Therein, the k cluster centers are denoted with pi, and ‖ · ‖ defines the
Euclidean norm. Interestingly, the inner sum

∑
qj∈Vi ‖pi−qj‖2 is minimal

for the Voronoi partition, implying that each data point qj , j = 1, . . . ,m
is assigned to the cluster center pi with minimum distance. Therewith,
finding the clusters reduces to finding the optimal cluster centers pi for all
i = 1, . . . , k. Finding the cluster centers pi minimizing (A.1) is achieved
by applying Algorithm 3, which is an iterative algorithm with time index l.
Algorithm 3 consists of two steps in each iteration: first the membership of
the data points qi is determined based on the Voronoi cells. Second, the
cluster centers are updated in order to minimize the objective function H(l)
at time step l by placing each cluster center pi into the center of mass of
its data set Vi. These two steps are repeated until the desired fitness of H
is achieved. As shown by MacQueen [90], Algorithm 3 in general converges
to a local minimum.
In the current form, Algorithm 3 assumes that all data points qi ∈ Qd,

i = 1, . . . ,m, are equally important. A simple generalization extends the
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Algorithm 3 k-means Clustering

Initialization of pi(0) and Vi(0) for i = 1, . . . , k
while H(l − 1)−H(l) > ε do
l 7→ l + 1
for i = 1, . . . , k do

Update Membership: compute cluster cells Vi(l)
Update Cluster Centers: pi(l) = 1

|Vi(l)|
∑

qj∈Vi(l) qj
end for

end while

k-means clustering algorithm to other distributions. In fact, Bullo et al.
[36] allow nonuniform density functions in infinite sets Q – known as the
environment throughout this dissertation. Allowing infinite sets Q in turn
implies that each Voronoi cell consists of infinitely many data points q ∈ Vi.
This observation implies that (A.1) turns into

H(l) =

k∑
i=1

∫
Vi(l)
‖pi(l)− q‖2φ(q)dq −→ min! (A.2)

Extending (A.2) by switching from the discrete-time index l to the
continuous-time variable t further results in

H(t) =
k∑
i=1

∫
Vi(t)
‖pi(t)− q‖2φ(q)dq −→ min! (A.3)

Continuously computing (A.3) also requires to continuously compute the
cluster centers pi. Bullo et al. [36] implement this by continuously moving
the cluster centers pi(t) in the direction of the centroids mφ(Vi). These
motion control laws are discussed in detail in Section 3.1. Consequently,
the continuous-time Lloyd algorithm solving the coverage problem follows
exactly the idea of the discrete-time k-means clustering algorithm.

A.2 Distributed Computation of the Voronoi
Partition

The Voronoi partition plays a vital role in solving geometric optimiza-
tion problems, such as collision-free path planning of mobile or industrial
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robots [76]. Therefore, this section provides further details on how to
compute a Voronoi partition for convex sets.
Generally, computing the Voronoi partition requires the knowledge of

all generator points. However, in the context of mobile robotics and
distributed systems this requirement cannot necessarily be met due to
restricted communication capabilities such as a limited communication
range. Consequently, it is desirable to find a distributed algorithm that is
capable of computing a Voronoi cell based on the neighboring generator
points. Such an algorithm was proposed in [41, 50]:

Algorithm A.1 (Distributed computation of a Voronoi cell). Given a
convex set Q ⊂ Rd. The Voronoi cell Vi of a generator pi ∈ Q can be
computed distributively based on a finite set of k neighboring generator
points pj according to the following algorithm:

(i) Initialize Voronoi cell Vi of pi by setting Vi = Q.

(ii) For each neighboring generator pj , j = {1, . . . , k}
a) compute the orthogonal bisector of the side of pi and pj ,

b) clip the polytope Vi by this bisector.

As a result, one obtains the Voronoi cell Vi of generator pi.

Applying Algorithm A.1 to all generator points p1, . . . ,pn, one obtains
all Voronoi cells. The time complexity of Algorithm A.1 is O(k2), where
k ∈N is the number of neighboring generator points. Faster algorithms
with respect to the computational complexity exist at an expense of losing
the property of distributivity. Thus, these algorithms are not suited for
distributed computation.
An example of Algorithm A.1 in the two dimensional space is depicted

in Figure A.1 for a generator p0 with five neighbors. The initialization
of Voronoi cell V0 is shown in Figure A.1(a). In Figure A.1(b)–A.1(f)
the polytope is iteratively clipped by applying bisection. It is worth to
note, that the final step in Figure A.1(f) does not change the Voronoi cell
anymore. In a smart implementation this property can be used to ignore
such cases [41], reducing the computational time. Further information on
Voronoi partitions, their applications, and extensions is available in [23, 51,
62, 76, 101, 133].
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Figure A.1: Distributed computation of a Voronoi cell
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A.3 Software
All simulations were performed with the DisCoverage Multi-Robot Ex-
ploration Framework [5], written in C++ and Qt [105]. Qt is a powerful
cross-platform application and user interface (UI) framework. The DisCov-
erage Multi-Robot Exploration Framework allows to simulate exploration
strategies in discrete-time in arbitrary environments, represented as a grid
map. Batch runs are supported in order to obtain statistically significant
results.
The lab experiments were performed with Matlab® in combination

with an overhead camera using the ARToolkit software [72]. This toolkit
provides a tracking library which is used to identify both e-puck robots
from above.

Further, the VisiLibity [99] library – a C++-library for floating-point visi-
bility computations – as well as Boost.Geometry [66] – a generic geometry
C++-library – were used to create all figures with respect to the coverage
problem as well as visibility sets. It is noteworthy, that most graphics were
post processed with PGF/TikZ [122], an excellent TEX macro package for
generating vector graphics.
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B Hardware Specifications

B.1 The E-puck Robot
Technical details of the e-puck robot [95]:

diameter 7 cm

height 5 cm

weight 200 g

max speed 13 cm/s

battery life time 2 hours moving

processor dsPIC CPU (16 bit), 64MHz

memory 8 kB RAM

flash 144 kB

actuators 2 stepper motors

perception 8 infrared proximity and light (TCRT1000)

camera 640× 480 pixel in color

sensors 3D accelerometers
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