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We study the applicability of the pattern recognition methodology
rough set data analysis (RSDA) in the field of meta analysis.

We give a summary of the mathematical and statistical background
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of empirical studies dealing with the deterrent effect introduced by
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1 Introduction

Up to now several hundreds of empirical studies1 have been conducted to explore
the relationship between crime and deterrence either explicitly or implicitly. To
this date no unambiguous answer can be given to the question whether and by
how much raising the probability or severance of punishment reduces crime.

Only a few literature surveys (for example Nagin (1978) and Cameron (1988))
tried to summarize the current knowledge of their time and still fewer studies
(Antony and Entorf (2003); Müller (2003)) performed a meta analysis. Basically
a meta analysis is a statistical analysis of the literature about a specific topic (refer
to Stanley (2001), who also describes the basic procedure of a meta (regression)
analysis.). Its goal is to accumulate all existing knowledge about a specific subject
and then to statistically extract sound conclusions from it, especially concerning
the reliability of certain effects.

In the beginning meta analysis was used (particulary in medical research) to
reevaluate various treatment effects. In the meantime new components and goals
entered the vicinity of meta analysis and its esteem in the field of economics rises
steadily (economic examples, beside many others, are Stanley (2001); Baaijens
and Nijkampf (2000); Weichselbumer and Winter-Ebmer (2005) and Rose (2004)).
Aside from the examination of presumed effects it has become more important
to empirically understand which factors are responsible for the existing variety
of outcomes.

To our knowledge no thorough meta analysis has been published in the field of
criminometrics. Antony and Entorf (2003) reported only descriptive statistics
since their data base was too small for more profound methods while Müller
(2003) performed a simple meta regression analysis but was not published. Both
found evidence of a deterrent effect and discovered some key relationships – like
the decreasing significance as the number of socioecomic explanatory variables
rises or whether the simultaneity problem was accounted for – between study
characteristics and the outcome of a study.

Although meta analysis has also drawbacks like the handling of ”publication bias”
(insignificant studies tend to be not published and therefore might be biased),
omitted variable bias and the incorporation of different levels of quality of the un-
derlying studies. But even with these problems, meta analysis is still a prominent
idea to strengthen or refute existing theories, find unknown or only suspected con-
nections between attributes and to summarize the existing knowledge on a robust
basis at a low cost.

It should be helpful to apply different methods in a meta analysis to find strong
and robust2 results.

1A list of these studies, covering the fields of economic, sociology, criminology and others, is
available upon request.

2in the sense that the results are not only independent of changes in parameters but also do
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1 Introduction

In this paper we present a detailed introduction of such a methodology to the
field of economics with an application as a meta analysis: the rough set data
analysis (RSDA). RSDA is, in principal, a non parametric pattern recognition
methodology which operates without any assumptions about the data. Its the-
ory was developed by (Pawlak, 1982) and is generating an increasing amount of
literature (like the further development of the theory as in (Slezak and Ziarko,
2003), as well as its applications – refer to Düntsch and Gediga (2000) for such
studies). Although it does not produce numerical coefficients, it should still be
very useful to study the interaction of data on a nominal level. Additionally it
can be utilized as a pre filter for other methods and to strengthen results found
by other statistical procedures.

After presenting the required mathematical foundation and the statistical meth-
ods we use the RSDA on a data set which comprises 30 criminometric studies
about the deterrent effect3.

Each study provides many of explanatory variables, ranging from explicitly used
variables in a study, to implicitly given ones due to the study design itself4 (such
as the author himself, his origin, the kind of paper, samplesizes, methods used,
etc.). Most of these variables as well as the dependent variable will be nominal
however, and hence standard regression procedures (linear, logit, etc.) are either
not suited very well for this problem or require assumptions which won’t most
probably be met, not to mention the problem of missing values.

We show that the existing methods and our extensions are useful tools to find
and describe various significant influences of variables on the outcome of a study
and to judge their importance.

We compare our results with a linear regression analysis which was done with
the aforementioned data set. Besides replicating many of the results, the most
prominent results are that there exists a lot of contradictory information which
indicates that there are no dominating key characteristics and that the distinc-
tion between property and violent crime is important but does not influence the
outcome of a study on its own.

In contrast to results from the linear regression we find that the importance of
the distinction between youth- and adult crime is artificial and that publication
year of a study is of non-linear importance.

The rest of this paper is arranged in the following way: section 2 gives the
mathematical basis of the RSDA and some key characteristics. In section 3 and
4 we present the statistical methods and a more practical extension of the rough

not depend on the kind of analysis itself
3In fact this study is meant as a proof of concept, paving the way for an extensive criminometric

meta analysis of more than 700 empirical studies. The data set used here was provided by
Müller (2003)

4The meta analysis we will perform on the existing empirical studies will consist of more than
300 such variables.
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set methodology.
We will conclude in section 5 with a thorough application of the presented meth-
ods to a criminometric data set which has been subject to a meta regression
analysis, and then end with the conclusion in section 6.

2 Rough Set data analysis

The principles of rough set data analysis were introduced and extended by Pawlak
(1982, 1983) and is used for classification (pattern recognition, artificial intelli-
gence) in a variety of fields of science (computer science, medicine, automation,
psychology, etc.); refer to Düntsch and Gediga (2000) for a large list of references.

Some economists have already used some methods of the RSDA (e.g. Baaijens
and Nijkampf (2000) in a meta analysis) but only to a limited extent – far from
exhausting its potential.

2.1 Principles

One important property of RSDA is it’s complete lack of assumptions about the
data. Only the structure given by the observed data is used. Therefore it can
be used with almost any kind of data, especially when little is known about the
distribution of the data or when the required assumptions of other methods are
not sufficiently met.

Let us assume we have a set of objects, each object possessing values in the same
set of attributes (a missing value is also a value). Let one attribute be marked
as a decision attribute (the equivalent to the endogenous variable). The question
is: given the values of all other attributes of an object, which value should the
decision attribute of this object have and is this classification correct?
Instead of one attribute an arbitrary number of attributes can be simultaneously
chosen as decision attributes.

The basic idea is to describe the data with rough sets. Each such a set consists of
objects which share the same values in respect to a specific set of attributes – they
are regarded to be in one equivalence class and are therefore indistinguishable.
Each set contains a specific property certainly, certainly not or perhaps. The key
lies in the recognition of the most important patterns in the data set, if they exist
at all, which can characterize the data sufficiently well.

The primary aims are the elimination of redundancy (distilling the relevant in-
formation), the finding of small sets of relevant attributes (extracting the most
important characteristics) and the generation of classifying rules (learn how these
characteristics influence the decision attribute(s)).
Basically RSDA is, as pointed out by Düntsch and Gediga (1998), a reversal of the
standard statistical procedures. While standard methods decribe uncertainty and

3



2 Rough Set data analysis

often add variables to distinguish the influencing variables from the insignifcant
ones, RSDA describes redundancy and reduces all available information to reducts
and cores (which will be defined further below).

2.2 Mathematical basis

In the following we use Düntsch and Gediga (2000); Slezak and Ziarko (2003);
Pawlak (1983) and Yin et al. (2001) to present the basics of the rough set theory.

Definition 2.1 (information system) An information system

I =< U,A, Va, fa >a∈A

consists of

1. a finite set of objects U = {x1, x2, . . . , xn},

2. a finite set of attributes A = {a1, a2, . . . , am},

3. for every attribute a ∈ A exists

• a set Va = {va1 , va2 , . . . , vas} of values,

• an information function fa : U → Va, xi 7→ vaj
.

Definition 2.2 (decision system) A decision system is an information system
whose set of attributes can be disjointly split in a set of state- ({A\D}) and
decision attributes ({D}).

Example

U a1 a2 a3 d
x1 red 0 x 3
x2 green 1 y 1
x3 green 1 y 1
x4 red 1 y 0
x5 red 1 y 0
x6 blue 0 x 1
x7 green 1 y 1
x8 blue 0 x 1
x9 blue 0 y 2
x10 red 0 x 3

This example is derived from Pawlak (1991) and is
referred to throughout this paper.
With U = {x1, x2, . . . , x10}, A = {a1, a2, a3, d},
Va1 = {green, red, blue},Va2 = {0, 1}, Va3 = {x, y}
and Vd = {0, 1, 2, 3}, a decision system looks like the
table on the left.

Of course the values of a1, a3 could be recoded into
numerical values since they are all interpreted as
nominal values.

�

The already mentioned equivalence classes are given by the

4



2.2 Mathematical basis

Definition 2.3 (Equivalence relation θQ) For every subset Q ⊆ A we asso-
ciate an equivalence relation of indistinguishability in respect to Q θQ on
U :

∀x, y ∈ U : xθQy ⇔
(
∀a ∈ Q : fa(x) = fa(y)

)
.

If xθQy then x and y are both in the same equivalence class: x ≡ y mod Q.
These residue classes resemble the granularity5 of the data.

Definition 2.4 (elementary classes) Each subset Q ⊆ A induces a partition
on U . Its elements EQ consist of those objects of U which possess the same values
in regard to Q:

U = {EQ1 , EQ2 , . . . , EQm},∀i 6= j : EQi
∩ EQj

= ∅ and xθQy ⇔ ∃1i : x, y ∈ EQi

Hence all elements of each elementary class can’t be distinguished and are in the
same equivalence class Umodulo Q.
We omit the index Q if Q = A or Q is understood and get

∀x ∈ U∃1i : x ∈ Ei = {y ∈ U : xθy}.

We abbreviate {y ∈ U : xθy} by θx.

The principle of the rough set theory can be derived from these definitions: all
our knowledge about the given data is represented via the elementary sets. Only
these sets are distinguishable, not the objects contained in each set (in fact,
according to Düntsch and Gediga (2001), the objects are randomly distributed
in these sets).

Example In our example the elementary sets Ei ∈ EA are E1 = {x1, x10}, E2 =
{x2, x3, x7}, E3 = {x4, x5}, E4 = {x6, x8} and E5 = {x9}. For example x1 and x10

are equivalent in respect to A (e.g. x1 ≡ x10 mod A).

�

Definition 2.5 (Upper and lower approximation) For a subset X ⊆ U we
define

1. the lower approximation X =
⋃
{θx : θx ⊆ X},

2. the upper approximation X =
⋃
{θx : x ∈ X}.

X is definable (i.e. the sum of elementary classes) iff X = X.

5more classes lead to a finer structure, i.e. more granularity

5



2 Rough Set data analysis

The lower approximation is the sum of all elementary classes which are completely
contained inX, while the upper approximation is the sum of all elementary classes
containing at least one element of X.
A rough set is the set (X,X); the knowledge about the certain (X ∪ −X) and
uncertain (X − X) area of classification (in regard to X) of an object6 – hence
the term rough set data analysis.

Example Let X1 be {x1, x2, x3, x7, x10}, X2 = {x1, x2, x9} and D = d.
Then X1 = X1 = E1 ∪ E2 and X1 is therefore definable.

X2 is not definable because X2 = E5 6= X2 = E1 ∪ E2 ∪ E5.

�

If X ⊆ U is, for example, determined7 by the attribute d, we can conclude for
every x ∈ U :

• if x ∈ Xi, x has certainly the value di;

• if x ∈ Xi\Xi, x has perhaps the value di;

• if x ∈ U\Xi, x has certainly not the value di.

A reduct of Q is a locally minimal choice of attributes from Q which generates
the same equivalence classes as Q.

Definition 2.6 (reduct) Let P ⊆ Q ⊆ A.
P is a Q-reduct iff θP = θQ and ∀R  P : θR 6= θQ.
P is a X-reduct iff X is defined by P but by no true subset of P .
The set of all reducts of Q is Red(Q).

As long as understood we omit the prefix of the reduct.
Given a reduct all of its elements are indispensable for classification.

Definition 2.7 (core(Q)) The core of Q is the intersection of all Q-reducts.

core(Q) is unique and normally no reduct (unless there’s only one reduct) and
all its attributes are indispensable for a classification in regard to Q.

Example Let Q be {A\d}. The induced partition is identical to the elementary
classes EA. The onlyQ-reduct is {a1, a3} because the equivalence relation induced
by {a1, a2} cannot differentiate E4 from E5 and the equivalence relation induced
by a2, a3 merges the partitions E2 and E3.
The core of Q consists therefore of a1 and a3 which are essential to generate the
same partitions as the whole set Q – a2 is unnecessary.

�

6whether x ∈ U belongs to X or not
7e.g. X = {X1, . . . , Xm} and Xi = {x ∈ U |fd(x) = di}
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2.3 Discretesizing and filtering data

2.3 Discretesizing and filtering data

Since the RSDA is a pattern recognition it relies heavily on repeated patterns in
the data. Continues data can lead to too many classes (in the worst case every
value and therefore every pattern is unique) it is reasonable to discretize the data
before doing the analysis.
We have different possibilities at our disposal:

• Gather all values which do not change the equivalence classes. This may
lead to big changes in the values of the attributes but does not influence the
analysis since the patterns in the data remain the same. The advantage lies
in keeping the structure of the data unchanged, the disadvantage is that
they do not simplify the algorithm and could be hard to interpret although
they may lead to new conclusions at the end of the analysis.

• Gather all values which seem reasonable. This relies on the knowledge of
the analyst and introduces some external influence into the data but is
a good method to condense the number of the values of an attribute. A
simple example is to code a metrical attribute into ”small”,”medium” and
”large” by the choice of the analyst.

• Create a number of new classes which either contain the same amount of
values or, if possible, each class represents some common measure.

This is less arbitrary than the previous method but the resulting categories
may be a bit harder to interpret. For example, instead of arbitrarily choos-
ing the three classes, these could be chosen in such a way that each class
contains the same amount of objects.

Additionally the number of attributes may be reduced by removing superfluous
attributes (either all values are the same or, properly encoded, are equal to an-
other attribute). These and further possibilities are discussed by Düntsch and
Gediga (2001).

2.4 Reduction of attributes and deduction of decision rules

In regard to size every minimal reduct is a best choice to reduce the set of at-
tributes. Therefore the set of minimal reducts is a natural choice to reduce the
amount of attributes to be used in the further analysis.
Since the problem of locating all reducts is NP-hard (Skowron and Stepaniuk,
1991) and thus has an exponential worst-case runtime, this may pose a serious
problem in any analysis with numerous attributes.

With d as a decision attribute we may deduct classification rules of the form
If fa1(x) = v1 and . . . and fat(x) = vt,
then fd(x) = b1 or . . . or fd(x) = bj, for a j > 0.

7



2 Rough Set data analysis

In the case of j = 1 we call a rule deterministic. A set of rules is written as8

Q→ D. Therefore a minimalX-reduct can be interpreted as a set of classification
rules with minimal size. The goal is to find all minimal reducts with the ”best”
(”best” can be interpreted in various ways and will be specified later) ability to
classify.
The support of a rule is the number of objects which meet the rule; a rule is
deterministic casual if it has a support of one (it seems not suited to predict
other objects since it appears only once in the data).

Example

In our example exist four A-reducts: {a1, d}, {a1, a3},
{a2, d} and {a3, d}. The core is empty. In each case two
attributes are sufficient for the classification (of the five
elementary sets).

If we are interested in the classification of d we must
consider the unique {A\d}-reduct {a1, a3}.

a1 ∧ a3 ⇒ d
r ∧ x ⇒ 3
g ⇒ 1
r ∧ y ⇒ 0
b ∧ x ⇒ 1
b ∧ y ⇒ 2

Therefore only the two attributes a1, a3 are required for the classification of d.
The deducted rulesystem is given on the right side.

�

2.5 Choice of relevant attributes

There can be many different (minimal) reducts and therefore we need methods
to measure the relevance of such sets of attributes.
First of all we keep all attributes in the core since they are all indespensable for
classification. But often this is not enough since the core may be very small or
even empty.

2.5.1 dynamic reducts

One possibility to determine important sets is the usage of dynamic reducts. The
idea (refer to Düntsch and Gediga (2000)) is to delete subsets of U randomly and
then recalculate all reducts. These reducts which reappear considerable more
often than others are considered to be more stable and therefore more important.
Let F be the set of all subsets of A. The stability coefficients SC can be inter-
preted relatively to each other; they are defined by

SCQ :=
|{J ∈ F : Q ∈ Red(J)}|

|F|
.

8and consists of the rules (X, Y ) ∈ (θQ, θD) with X ∩ Y 6= ∅ and Q ∩D = ∅. All elements of
class X are mapped to a class Y . A rule is deterministic if X ⊆ Y .

8



2.5 Choice of relevant attributes

Those reducts with a high SC are more robust and therefore more trustworthy.

2.5.2 wnf-benchmark

Furthermore we propose to use an additional benchmark for the individual at-
tributes by calculating the weighted and normalized frequency wnf for every
attribute in a reduct:

wnfa :=
ta −min

a∈A
(ta)

max
a∈A

(ta)−min
a∈A

(ta)
with ta :=

∑
Q∈Red(A)

1[a∈Q]SCQ.

Other methods are plain considerations of the frequencies of attributes in reducts
(section 3.1.3), sets of attributes which share a special relation (see section 3.4)
or sets of attributes with good entropy-characteristics (refer to section 3.2).

Although rough set methodology is based on symbolic characteristics several
numerical functions exist.

2.5.3 Approximation functions

Let P be a partition of U . The function

γQ(P) =

∑
X∈P |XθQ

|
|U |

tells us, how much certain knowledge exists of P through Q.
In the case of γQ(P) = 1 all X ∈ P are definable by Q and all rules are deter-
ministic.

For P = {X,−X} is γQ({X,−X}) = γQ(X) =
|X|+|−X|

|U | ; the global knowledge
about X through Q.

Let Q be a reduct of P and P be the partition induced by P , writing γQ(P )
instead of γQ(P). One measure of the importance of an attribute is the drop
from γQ(P ) to γQ\{q}(P ) – the importance of q grows with this difference.

The local knowledge – how much is known about X through Q – of a set X is
measured by:

αQ(X) =
|X|
|X|

.

Example The reduct {a1, a3} ∈ A\d in our example has two attributes. The
partition P induced by A\d is equal to EA (see 2.2). Since γ{a1,a3}(P) = 1 and

γa1(P) = 0.3 resp. γa3(P) = 0

9



2 Rough Set data analysis

the attribute a1 is most important while a3 is also important but to a lesser extent.
Without a1 (e.g. with a3 alone) no object can be classified (since fa3(u) = x ⇒
fd(u) = 1 ∨ 3 and fa3(u) 6= x⇒ fd(u) = 0 ∨ 1 ∨ 2). Whereas a1 can still classify
the objects x2, x3, x7 on its own.

Since X1 = X1 we know X1 perfectly: αA(X1) = 1 – each object can be assigned
correctly, whether it belongs to X1 or not.
However αA(X2) = 1

6
– the area of lower approximation covers just 16.67% of the

upper approximation.

�

We have to stress that such functions cannot be used on their own to compare
different sets of attributes (refer to Düntsch and Gediga (2001) or section 3.2 for
a function which can) since they ignore the complexity9 of Q.

2.5.4 Jackknife

A robust classification shouldn’t suffer much when one object is left out before
learning the rules.
We leave one object out and relearn the rules and then classify all objects again
(if more than one rule can be applied we guess the rule – if no rule fits an object
it cannot be assigned to any category). We record two values: ja is the fraction
of correctly classified objects and jw is the fraction of correctly classified objects
when all guesses go astray.

Example

a1 a2 d
x1 0 1 1
x2 1 1 0
x3 0 0 1

If we leave x1 out, a1 or a2 is superfluous and the rules are
either a1 = 1 ⇒ d = 0, a1 = 0 ⇒ d = 1 or a2 = 1 ⇒ d =
0, a2 = 0 ⇒ d = 1. Hence x1 will be correctly classified if,
with probability 0.5, a1 and therefore rule a1 = 0 ⇒ d = 1 is
chosen.

If x2 is left out, the rule is a1 = 0 ⇒ d = 1 and x2 is not classified because a1 = 1
cannot be assigned.
If we leave x3 out the rules are a1 = 0 ⇒ d = 1, a1 = 1 ⇒ d = 0 and x3 will be
correctly assigned to 1.
In the worst case we will always guess wrong and therefore

ja =
1

3

(
1

2
· 1 + 0 + 1

)
=

1

2
and jw =

1

3

(
1

2
· 0 + 0 + 1

)
=

1

3
.

If we had analyzed the reduct a1 we would have gotten ja = jw = 2
3
.

�

9If we have one rule for every object we have perfect classification but still gained nothing.
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3 Statistical methods

Besides quantitative measures various statistical tools can be derived.

3.1 statistical significance of decision rules

Düntsch and Gediga (1997) proposed a permutation test to decide whether a
given10 set of decision rules Q→ P should be considered significant.

Let H0 be the hypothesis that the values of Q and P (normally P consists of one
attribute d) are distributed randomly on Q and P (i.e. the rules are completely
random, containing no information). Define

fσ,Q
a (x) =

{
fa(σ(x)) if a ∈ Q,
fa(x) else.

With σ being a random permutation of U . Hence, the function fσ,Q
a (x) delivers a

random value of Va if a is in Q – otherwise it delivers the proper value fa(x). In
other words: all the values of the attributes in Q are chosen randomly according
to their frequencies..
We can now calculate (with fσ,Q

a instead of fa) the approximations γσ,Q(P ) for
all permutations and look whether the fraction of those approximations, which
are better than the original, is above a significance level α or not. If it is below
α we can reject H0.

3.1.1 Assessment of attributes

In section 2.5.3 we have seen how we can measure the importance of an individual
attribute by the drop of its associated γ-value. This drop is not necessarily enough
since it could be coincidental.
Let Q be a reduct since all superfluous attributes have no γ drop at all.
Düntsch and Gediga (1997) call an attribute q ∈ Q conditional casual, if the
attribute is hardly necessary to predict P (i.e. its γ-drop is casual).

Let γQ,σ,q(P ) be the usual approximation function with

fa(x) = fQ,σ,q
a (x) =

{
fa(σ(x)) if a = q,

fa(x) else.

In this case only the values of attribute q are permutated.
If the fraction of γQ,σ,q(P ) ≥ γQ(P ) is smaller than α we can reject the hypothesis
that q is conditional casual.

Example We assume that in our example only a1, a3, d exist. The reduct of
{A\d} is Q = {a1, a3}. Since all objects can be classified γQ(P ) = 1.

10not derived from any optimization of classification; for such cases see 3.1.1 below
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3 Statistical methods

We now permutate all values of the attributes a1 and a3 and see that the fraction
of the improved (or equal) γ-values is 0.005. If we permutate only a1 it’s 0.05
and in the case of a3 it is 0.005.
Therefore we can reject all three hypotheses (both are casual, or one of them is
conditional casual) on a 5% level (two of them even on a 0.5% level).

�

In the case of already optimized sets Düntsch and Gediga (1997) present a slight
modification of 3.1.1: mark randomly half of the data (i.e. introducing a new
binary attribute) and test whether this marking is conditional casual. If it is ”the
hypothesis that the rules in both sets of objects are identical should be kept”.

3.1.2 Validating decision rules

A common method, which is also implemented in GROBIAN (1999), is the fol-
lowing bootstrapping method:
Chose randomly n′ < n objects and use them to calculate all rules. With these
rules determine the prediction quality of all objects11. Repeat this sufficiently
often to determine an average prediction quality.

To assess the calculated average prediction quality we compare it to its lower
bound (mere guessing) using the frequencies12 pi of the values of d:

1−
∑

i

pi(1− pi) =
∑

i

p2
i .

3.1.3 Binomial-Test

Even if we know all (minimal) reducts we have to decide on the one hand which
reducts will be further investigated and on the other hand which attributes de-
serve more attention. Since in many cases there are too many (minimal) reducts
to evaluate we have to provide a method to assign priorities. For the former prob-
lem we have the dynamic reducts, for the latter we propose the wnf-benchmark
and the following test.
A very simple method to assign priorities of attributes in reducts of equal length13

is to look if they appear more often in those reducts than others.

We consider the hypothesis14 that all attributes are of equal importance and
therefore should be equally represented.

11the fraction of all objects which can be classified correctly; either by a deterministic rule or
by guessing

12i.e. |{x ∈ U : fd(x) = vi}|/|U |
13Since we will be interested in the smallest reducts we have to discern different lengths of

reducts; otherwise we could overestimate attributes stemming from reducts of lesser interest.
14Of course this hypothesis can be rejected since we know exactly how often any attribute

appears – we’re solely interested in the deviation from this hypothesis.
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3.2 Entropy

Under this hypothesis the frequency Hi of an attribute Ai is binomially dis-
tributed with the parameters ( 1

m
, n). If the hypothesis can be rejected on a

certain α-level (b := P (X ≤ Hi) > 1− α
2

or < α
2
) we can be confident that Ai is

of some importance.

Since we already know that the attributes of the core are indispensable those
could dampen the results and the procedure should be repeated after removing
these attributes from the set of reducts.

3.2 Entropy

The entropy of a dataset is a measure of the amount of information contained
therein – the minimal number of bits required to describe the data (devised by
Shannon (1948)).

Düntsch and Gediga (1998) carried this measure forward to the rough set method-
ology.
Let P be a partition of U with classes Mi, i = 0, 1, . . . , k of the size mi. Since in
each class the objects are randomly distributed the probability that a randomly
drawn object is in class Mi is |Mi|

|U | . Therefore the entropy function is

H(P) := −
k∑

i=0

mi

|U |
· log2

(
mi

|U |

)
.

If P is induced by θ we will write H(θ).

Düntsch and Gediga (1998) carried this measure forward to the rough set method-
ology.
Let P be a partition of U with classes Mi, i = 0, 1, . . . , k of the size mi. Since in
each class the objects are randomly distributed the probability that a randomly
drawn object is in class Mi is |Mi|

|U | . Therefore the entropy function is

H(P) := −
k∑

i=0

mi

|U |
· log2

(
mi

|U |

)
.

If P is induced by θ we will write H(θ).

H measures the granularity of the data. In the case that no information is

contained in the data the entropy is maximal: − log2

(
1
|U |

)
; when P the identity

(M0 = U) the entropy is zero.

3.2.1 NRE – A measure of comparison

With this entropy function Düntsch and Gediga (1998) define a measure which
allows us to compare the classification quality of different sets of attributes by

13



3 Statistical methods

mixing approximation qualities (minimal statistical uncertainty (H(d|Q)) and
coding complexity (H(Q)).

They propose three different methods of which we use and recapitulate only the
one closest to the RSDA principle: the only assumption needed is the represen-
tativeness of the classes θQ (i.e. the probability of a class is given by its size).

In principle we assume that these objects, which cannot be classified, bear no
information at all and are therefore random, building a class on their own. Thus
we have classes which either classify objects with certainty or by chance.

The required equivalence relation is: two objects are equivalent iff they are equal
or are in the same residue class of Q and classify d with certainty.

Let {X1, X2, . . . , Xc} := {Xi ∈ θQ|∃j : Xi ⊆ Yj, Yj ∈ θd}. The equivalence
relation is then θdet : x ≡ y ⇔ ∃i ≤ c : x, y ∈ Xi or x = y.

The distribution of the generated classes is

ψ̂i :=

{
π̂i = |Xi|

|U | if i ≤ c,
1
n

else.

The entropy of deterministic rough prediction is defined as

Hdet(Q→ d) := H
(
θdet

)
= −

∑
i

ψ̂i log2(ψ̂i)

= −
∑
i≤c

π̂i log2(π̂i) + |U\
⋃
i≤c

Xi|
log2(n)

n

= −
∑
i≤c

π̂i log2(π̂i)︸ ︷︷ ︸
certain classification

+ (1− γ(Q)) log2(n)︸ ︷︷ ︸
random guessing

.

The NRE (normalized rough entropy) S(·) is then defined by

Sdet(Q→ d) = S(Q) = 1− Hdet(Q→ d)−H(d)

log2(n)−H(d)
∈ [0, 1]

which can be applied as a measure of comparison.

A low value indicates either randomness (low c and low γ(Q)) or low granularity15

and therefore high coding complexity (high c with small π̂i and low 1 − γ(Q)).
The larger the value the better is Q.

Example

15the induced equivalence relation is fine – the finest beeing the idenity

14



3.3 Fisher’s exact test

A B C D d
1 0 0 0 0
2 0 0 0 0
3 1 0 1 0
4 2 0 1 1
5 2 0 1 1

γ 1 1 0 0.4 −

S({B, ·}) = 0.592 except S({A,B, ·}) = 0. S(D) =
0.296. All other S are zero.
The null-vector is easy to code (H(C) = 0) but contains
no information. A explains everything but θA is the
identity (highest coding complexity). In respect to D
both effects are mixed.
The attribute B is the best candidate – even D is still
better than A although its γ is much lower.

�

3.3 Fisher’s exact test

In the following we will present another method to gather attributes for further
analysis. The presentation of the underlying principle of Fisher’s exact test is
derived from Tsumoto (2002) and Eibe and Witten (1998) and is applied in a
similar way in the context of decision trees.
We must stress that at this stage we introduce no additional information about
the objects at hand – we just make use of methods to reject hypotheses.

Let A1, A2, . . . , An and B1, B2, . . . , Bm be values of the attributes A and B and
xij := |{x ∈ U : fA(x) = Aj and fB(x) = Bi}|. Its contingency table is shown in
figure 1.

Figure 1: general contingency table

A1 A2 · · · An sum
B1 x11 x12 · · · x1n b1
B2 x21 x22 · · · x2n b2
...

...
...

. . .
...

...
Bm xm1 xm2 · · · xmn bm
sum a1 a2 · · · an N

According to Tsumoto (2002) the χ2-approximation is not reliable in the case
of small samplesizes or small cell-values and therefore we will rely on the exact
probabilities.

With Fisher’s exact test (also called Freeman-Halton-test in dimensions larger
than two) we can test the hypothesis that the xij are distributed independently
– i.e. whether the values of A (columns) do not depend on attribute B (rows). If
the hypothesis is true they are distributed according to their marginal frequencies
and the probability of the observed contingency table follows the multivariate
hypergeometrical distribution (consult Martin (1995) for the proof):

15



3 Statistical methods

Figure 2: contingency tables of the example

a1\a2 0 1
1 2 2 4
2 0 3 3
3 3 0 3

5 5 10

a2\a3 0 1
0 4 1 5
1 0 5 5

4 6 10

a1\a3 0 1
1 2 2 4
2 0 3 3
3 2 1 3

4 6 10

px := P (x11, x21, . . . , xmn|a1, a2, . . . , bm) =

m∏
i=1

ai!
n∏

j=1

bj!

N !
m∏

i=1

n∏
j=1

xij!
.

Let p0 be the probability of the contingency table under consideration. We will
not use px as a statistic because Eibe and Witten (1998) show that it has a strong
bias in favor of attributes with high values. The Freeman-Halton-test evaluates
the statistic p =

∑
T I[px≤p0]px with

∑
T being the sum of all contingency tables

with equal marginal frequencies (i.e. the same column- and row-sums).
The hypothesis can be rejected on an α-level if p is below α since then there are
barely any other contingency tables with equal marginal frequencies which are
equally (or less) likely. In the case of bigger p’s we cannot derive any conclusions
about the dependance between the attributes as long as we do not know whether
their values are distributed according to their marginal frequencies or not.

In 3.4 we will discuss how we can make use of this to gather attributes for further
investigation.

Example The contingency tables of our example (with red = 1, green = 2 and
blue = 3, as well as x = 0, y = 1) of our example are shown in figure 2.
The individual probabilities p0 are 0.0238 resp. 0.0238 resp. 0.0875. The
Freeman-Halton-statistics are p = 0.095, p = 0.0476 and p = 0.4.
Therefore we conclude that the attributes a1 and a3 might be independent while
there is a statistical significant dependance between a2 and a3 (and to some extent
between a1 and a2).

�

Since the calculation of all contingency tables with the same marginal frequencies
has exponential runtime we use a Monte-Carlo-algorithm presented by Eibe and
Witten (1998) which enables us to approximate the Freeman-Halton-statistics in
most cases to an arbitrary precision in a very short time.

16



3.4 RFH-sets

3.3.1 Contingency tables (c.t.)

We think the same procedure is applicable for the individual values of two at-
tributes.
Consider again the contingency table in figure 1. Under the hypothesis H0 that
the individual values of the attributes are distributed according to their marginal
frequencies we can describe these conditional probabilities16 as

P (xij|fA = i) = dbinom

(
xij, ai,

bj
N

)
and P (xij|fB = j) = dbinom

(
xij, bj,

ai

N

)
.

Whereas dbinom(x, n, p) is the density of the binomial distribution with x suc-
cesses in n Bernoulli trails with probability p.

We reject H0 when the p-value pbinom(x, n, p) is below α in the case of x ≤ np
or (1− pbinom(x− 1, n, p)) is below α otherwise, while pbinom is the binomial
cumulative distribution function.

Example

A\d fd = 0 fd = 1 fd = 2
fA = 0 5 11 2 18
fA = 1 1 2 6 9

6 13 8 27

Given the hypothesis of independence between the attributes A and d the ob-
served frequencies are distributed according to their marginal frequencies.

p-values given A
A\d 0 1 2
0 0.351 0.139 0.020
1 0.351 0.139 0.020

p-values given d
A\d 0 1 2
0 0.370 0.194 0.064
1 0.372 0.109 0.238

Given the attribute A the only significant observations (α = 0.05) are 2 and 6
(its p-values are pbinom(2, 8, 18/27) = 0.020 = 1− pbinom(5, 8, 9/27)).
In the reverse case however, given d, no significant observation remains.
Therefore we have always to keep in mind which direction of influence is subject
to the analysis.

�

3.4 RFH-sets

In the following section we will call the matrice with the pairwise (testing at-
tribute i against attribute j) Freeman-Halton-statistics pij the FH-matrice.

16with some abuse of language we write fA = i; which means that we consider the objects x
with fA(x) = vai
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4 Model extensions

3.4.1 RFHA
1 (α)-sets

A possible strategy to search promising attributes is to look in those sets (with-
out the decision attribute) which show no significant dependency – sets with
insignificant Freeman-Halton-statistics.
It is reasonable to believe that these attributes provide a wide range of informa-
tion17 while the other attributes contain more redundant information.

Definition 3.1 Let I be an index function (i.e. an automorphism mapping
{1, 2, . . . , |A|}) on A.
A set R = {rI(1), rI(2), . . . , rI(c)} ⊆ A is a RFHA

1 (α)-set iff c ≥ 2 and every
i, j ∈ [1, c], i 6= j satisfies pI(i)I(j) ≥ α.

In other words: each R consists of attributes which have, to the chosen α-level,
insignificant pairwise Freeman-Halton-statistics.

After finding all RFHA
1 (α)-sets we merge some of these since these sets are usually

quite small. We merge those sets which contain the most frequent attribute and
those with the second most frequent attribute.

Since this search process has obviously an unusable runtime we implemented a
simple probabilistic algorithm which randomly explores the search space.

3.4.2 RFHA
0 (α)-sets

Opposite to the definition just given the pI(i)I(j) must now be < α.
Assume d = am. We are interested in those RFHA

0 (α)-sets which contain d.
The attributes in these sets could have an important linkage with d – the same
reasoning applies to all individual attributes ai with pim < α.
We emphasize could because attributes which often assume the same values will
be recognized as significant although they contain little information and should
be treated carefully.

4 Model extensions

Until now we implicitly dealt only with deterministic relations between attributes.
As soon as noise, measurement errors, etc. exist, these effects will blur the
relations and hamper our analysis in the rough set framework. To cope with this
problem Slezak and Ziarko (2003) presents various extensions from which we will
use one.
We must emphasize that at this moment we relax the basic principle of ”let the
data speak for itself” (Düntsch and Gediga, 2001) since parameters, terms not
provided by the data, are introduced.

17Attributes with no information (i.e. random values) are included in those sets and must
therefore, afterwards, be filtered out (finding reducts in those sets, the binomial test, etc.).
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4.1 Assumptions

4.1 Assumptions

1. Each subsetX ⊆ U possesses a (uncertain) prior probability 0 < P (X) < 1.

2. A conditional probability P (X|E) with regard to an elementary set E can
be assigned to each such a X.

3. For all X: P (¬X) = 1− P (X).

4.

P (X|E) =
P (E|X)P (X)

P (E)
and P (E) = P (E|X)P (X) + P (E|¬X)P (¬X).

A possibility to estimate P (X) and P (E|X) is to use their fractions:

P (X) =
|{X}|
|{U}|

and P (E|X) =
|{E ∩X}|
|{X}|

.

With these assumptions then follows

P (E) =
|{E}|
|{U}|

and P (X|E) =
|{X ∩ E}|
|{E}|

.

4.2 Variable Precision Rough Set Model (VPRS)

This parametric method allows us to classify an object up to a given precision.

Definition 4.1 (VPRS) Chose l and u satisfying 0 ≤ l < P (X) < u ≤ 1 and
Q ⊆ A.

1. POSQ
u (X) =

⋃
{E ∈ EQ : P (X|E) ≥ u}

2. NEGQ
l (X) =

⋃
{E ∈ EQ : P (X|E) ≤ l}

3. BNDQ
l,u(X) =

⋃
{E ∈ EQ : l < P (X|E) < u}

We will omit Q if it is understood or Q = A.
The parameters u (resp. l) control the margin of the classification precision.
They define the range where X is still regarded to be significantly influenced by
E compared to the uninformative prior18.
The VPRS-model is equivalent to the original model if u = 1 and l = 0 – because
then POS1(X) = X,BND0,1(X) = X\X and NEG0(X) = U\X.

18the equivalent to a random guess
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5 Application

5 Application

This paper is a preparation for a large-scale meta-analysis of empirical studies
about the generally assumed deterrent effect, searching for factors which play a
role in the outcome of a study.
The economic framework of the deterrence theory was first introduced by Becker
(1968) and Ehrlich (1973) who interpreted criminal behavior as the result of
an rational choice process weighting the expected benefit against the expected
penalty.
The core result was that the probability of being convicted and the severance of
the penalty have a negative influence on the willingness to commit a crime.

The methodology presented in this paper enables us to explore, reveal and verify
the underlying factors in those studies. However we cannot judge whether the
deterrent effect is present, and if, how strong it is. This will be subject to a
numerical analysis.

We applied the methodology to a data set provided by Müller (2003); a meta
regression analysis covering exactly the same subject on a smaller scale. The
data set consists of 84 cases from 30 studies while we will be working with more
than 700 studies.
In the following application we adopted only 74 data because 10 had many missing
values of important attributes.
The attributes of this data set is listed in table 1.

5.1 Preprocessing the data

Hereunder are gathered all steps which are done before the main analysis can
take place.

5.1.1 discretisizing the data

Since the variables Datats, Datapan and Datacs characterize the kind of
datastructure we merge this variable back into one: Datatpc (1 for time series,
2 for panaldata and 3 for cross-sectional data).
Similarly we merge
{Dataviol, Dataprob, Dataall} → {Datavpa},
{Datanat, Datastate, Datacounty, Datamicro} → {Datasrc} and
{Datayear, Datamonth, Dataweek, Dataday} → {Datatime}.

Then we discretisize the date by creating groups which contain an equal amount
of objects19.

19In the case of manually created groups the results achieved remained the same or were only
slightly clearer.
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5.2 Analysis – choice of attributes

The only exceptions are Noexvar which is the maximum of the transformed
variables Nodetvar and Nosozvar to maintain the relation (since it was the
sum of these two).

The decision attribute d was created in the following way (a positive t-value,
a two sided significance test of the respective deterrence hypothesis, stands for
approval):

d =


3 at least one t-value is < −2,

0 all t-values are < 2,

1 only 1/3 to 2/3 of all t-values are < 2,

2 no t-value is < 2.

This should be more accurate than the simple average used by Müller (2003).

5.1.2 Datafilter

Since all reasonable candidates have already been merged no more attributes are
superfluous or can be merged.

5.2 Analysis – choice of attributes

Let Q be {A\d}.
Since we have reduced the number of attributes to twenty we can easily find all
reducts in a short time20.

Since max
Q′⊆Q

γQ′(d) = 0.527 is smaller than one we have no real reducts and must

be content with those which maximise γ.

Table 2 shows these reducts with minimal length or with a stability coefficient
greater than 0.6, calculated by RSES (2004) with standard settings.

The core21 contains Datayouth (12) and Datavpa (18).

This led to the characteristics of the attributes which are shown in table 3 (f is
the frequency, b′ and wnf’ are the statistics calculated without the core).

Therefore we can temporarily omit the attributes 01, 04, 05, 08, 11, 16, 19, 20 and
mark the attributes 02, 03, 06, 07, 10, 12, 14, 17, 18 as important.

This means that it is not necessary to consider the total number of explana-
tory variables and simultaneously their distinction between social and deterrence
variables. Also it is not important whether a study considers unemployment or
income. It also does not matter whether a study was published in the US or

20The runtime depends heavily upon the sizes of the reducts and the number of attributes. If
the reducts can become small and we have more than 50 attributes the runtime may exceed
weeks on a standard computer.

21all attributes which are indispensable for γ(Q′) = 0.527; i.e. the intersection of all γ maxi-
mizing Q′
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5 Application

concentrates on deterrence, nor is its samplesize22, the level of aggregation or the
frequency of data collection of importance. The attributes and their numerical
abbreviations are depicted in table 1.
Additionally it seems to be that attribute 15 is nearly as important as 06 or 07
– at least more important than 09.

5.2.1 other candidates

The RFH
A\d
1 (0.05)-sets are

{7, 11, 15, 18} {6, 14, 18} {1, 11, 18} {6, 7, 18} {4, 6, 8} {7, 20}
{7, 12, 15, 18} {6, 16, 18} {1, 5, 18} {6, 8, 18} {10, 16} {8, 10}
{5, 6, 17, 18} {7, 10, 12} {3, 5, 10} {2, 6, 18} {12, 13} {9, 14}
{6, 7, 11, 18} {7, 10, 19} {3, 5, 18} {4, 5, 6} {4, 20}

The attributes 18 and 6 appear most often (12× and 9×) and thus we get,
combining all sets which contain at least one of these,

{1, 2, 3, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 18} and {2, 4, 5, 6, 7, 8, 11, 14, 16, 17, 18}.

The attributes ai with pim < 0.05 are 1, 2, 3, 5, 8, 9, 11, 13, 14, 16, 17, 19, 20.

The best attribute sets GROBIAN (1999) determined with the entropy-function
(γ-Cut 0.4, maximum length 10) were

set rel. entropy γ
{05, 07, 08, 09, 10, 11, 14, 17, 18} 0.113 0.432
{05, 06, 08, 09, 10, 11, 14, 17, 18, 20} 0.107 0.486
{05, 06, 07, 09, 10, 14, 17, 18, 20} 0.107 0.486
{05, 06, 07, 09, 10, 11, 14, 17, 18} 0.107 0.486
{05, 06, 07, 08, 09, 10, 11, 14, 17, 18} 0.107 0.486
{05, 06, 07, 09, 10, 11, 14, 17, 18, 20} 0.107 0.486
{06, 07, 08, 09, 10, 11, 14, 17, 18, 20} 0.107 0.473
{05, 09, 10, 11, 12, 14, 17, 18, 20} 0.107 0.473
{05, 08, 09, 11, 14, 17, 18, 20} 0.107 0.405
{03, 05, 06, 07, 08, 09, 10, 11, 18, 19} 0.101 0.459

5.2.2 Final preselection

According to the binomial test and the wnf-values we plan to eliminate the at-
tributes 01, 04, 05, 08, 11, 16, 19, 20; our opinion about 09, 13, 15 remains undeter-
mined by these tests.
These exclusions are supported by their small γ-drops – the only exception is 16
which is frequently observed in the minimal reducts and has larger drops of γ as
shown in table 4.
22This is an unpleasant result, since it is an indicator that no effect exists (refer to Stanley

(2005)) but is replicated by regression analysis with more data.
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5.3 Analysis – statistics

We decide to keep the attributes 05, 09, 15, 16 and reject 01 (its drops are never
above 10% and 01 is already taken care of by 02 and 03). We also keep 13 as a
precaution, since it only appears two times (although both times with very low
drops).

After removing the just mentioned attributes we can have a final look on the
remaining sets in table 5.
To these we add those subsets with the highest NRE-value (as defined on page
3.2.1).
The attributes 02, 03, 06, 07, 10, 14, 17 appear to be important, 12 and 18 seem to
be very important.
Our final choice of sets are the remaining minimal reducts, the RFH-sets and the
sets found by GROBIAN (1999) by maximising the NRE-value (NRE-sets); all
without the attributes previously declared unimportant.

5.3 Analysis – statistics

Most of the following statistics were calculated with GROBIAN.
In table 6 we depict the statistics of our chosen sets – first the minimal reducts,
then the RFH-sets and finally the NRE-sets.
All attributes and attribute sets were found to be conditional casual (see 3.1, the
values are not shown here) which indicates that there is neither a true dominating
attribute or set (there must be much redundancy in those sets) nor is there an
indication that the rules depend on a specific set of objects. However, although
not significant on any reasonable level, attribute 18 had in almost all cases the
lowest statistic (with a large gap to the attribute with the second lowest value).

If we draw random sets of six attribute the average γ is 0.22 (sd 0.11).

5.3.1 Validating

Without any information (i.e. predicting with the null-vector) the expected frac-
tion of correctly classified objects is(

22

74

)2

+

(
18

74

)2

+

(
29

74

)2

+

(
5

74

)2

= 0.3057.

The calculated prediction qualities vary around 51.02% (sd 1.83%) (those with
a NRE above 0.1 around 52.4% (sd 1.3%)) and therefore surpass the random
guessing by 66.9% (respectively 71.4%).
When we randomly23 draw 6 attributes for prediction the mean quality is 49.3%
(sd 2.5%) (their standard deviation varies around 12%, thus being somewhat
smaller). Since most of our sets are very similar the comparison with randomly
drawn attributes is a bit artificial.
23all comparisions were conducted with the same 10 randomly chosen sets of attributes
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5 Application

5.3.2 Jackknife

6 randomly drawn attributes lead to a mean classification of 49.63% (sd 2.6%)
compared to our 51.24% (sd 1.95%) (respectively 52.67% (sd 1.23%)).
Much more interesting is the mean worst-case classification of 15% (sd 7.9%)
compared to our observed 32.05% (sd 4.14%) (respectively 34.6% (sd 1.92%))
which indicates that our sets reduce the need to guess by a substantial amount.

5.3.3 Rules

Rules with a support greater than 4 are mostly driven by several studies. Hence
we collect in table 7 all distinct rules from the sets with a NRE above 0.1 and a
support greater or equal than four, which deterministically classify an object.
Since only two studies with d = 3 are correctly classified and they are from the
same author, the rule NODETVAR = 3,NOSOZVAR = 4, INCOME = 1 ⇒
d = 3 should be considered with care. It is worth mentioning, however, that 3
of 5 negative significant studies used many variables (more than 13) whereas the
other two used five or more.

Table 7 must be interpreted with caution since many attributes reappear in many
sets and therefore may be repeatedly represented in the table in combination
with different attributes. To soften this effect we take a look at the correlations
between the important attributes and d.

5.3.4 Contingency tables

Significant observations (therefore unlikely to be distributed according to the
marginal frequencies) are the following:

Nodetvar,02 Studies with only one variable have often (positive) significant (p =
0.021) and seldom partly insignificant24 results (p = 0). Studies with a
medium number show no significance and with many have often partly
insignificant results (p = 0.002). Negative results are evenly spread across
the quantity and given the outcome almost the same results are achieved.

Nosozvar,03 The studies with the lowest number of variables had significantly
often mixed (p = 0.011) and seldom (p = 0.024) insignificant results. Stud-
ies using more than ten variables (4) had very often (p = 0.006) insignificant
results; all studies in between show nothing special. Negative results are
evenly spread across the quantity and given the outcome the same results
follow.

Income,05 Studies not considering the income have often insignificant (p =
0.035) and seldom mixed (p = 0.035) results, otherwise they show a contrary

24a partly insignificant study means d = 1
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5.4 Findings

behavior: often mixed (p = 0.035) and seldom insignificant (p = 0.035). No
significant correlation towards negative results can be found and given the
outcome the same results follow only for the omission of income.

Cultyear,09 Old studies have more mixed (p = 0) and less insignificant results
(p = 0.053), while newer studies (> 1980) show the contrary (p = 0 and
0.053) and the newest studies show no correlation at all. Negative results
are evenly spread across time and given the outcome nothing changes.

Dataage,13 The studies with the oldest data have often mixed (p = 0) and rarely
insignificant results (p = 0.018). Studies with the newest data (> 1989)
have very often insignificant (p = 0) and seldom mixed results (p = 0.001).
Data from 69− 89 (i.e. 2,3) show no significant behavior; negative results
are evenly spread across the age of the data and given the outcome almost
the same results follow.

Dataus,14 Studies with US-data have very often insignificant (p = 0.018) results
and those without show these results only seldom (p = 0.018). Negative
results are evenly spread and given the outcome, only the studies with
insignificant results remain suspicious (p = 0.022).

Datano,16 Data with the smallest samples have seldom insignificant (p = 0.009)
and often mixed results (p = 0), therefore all other studies show the opposite
effect (same p-values). Distinctively analyzed almost all the p-values show
little significance, negative results are evenly spread across the sample sizes
and given the outcome almost the same results follow.

Datatpc,17 Studies with time series have often mixed (p = 0) and seldom (p =
0.027) positive results. Studies with panels have seldom (p = 0.001) mixed
and often (p = 0.001) positive results while studies with cross-sectional
data show slightly more insignificant results (p = 0.061). Negative results
are evenly spread across the sampletype and given the outcome the same
results follow.

Datavpa,18 No significant Freeman-Halton-statistic and no significant connec-
tion to the specific subject (all p > 0.14). The only exception: negative
results are conspicuously high within the combined studies (p = 0.02) and
given the outcome the same results follow (all p > 0.19).

Whereas the type of crime under consideration is indispensable for classification
it is not significantly correlated with the outcome of a study.

5.4 Findings

The results end up being not as straightforward as we had hoped but nonetheless
we manage to draw some interesting conclusions.
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5 Application

1. Most important:

• since the highest γ-values are well below one, there are many contra-
dictive configurations in the observed data; this means that the data
contains many similar patterns with different outcomes and that there
is no decisive set of attributes which could explain most of the observed
t-values

• the most decisive coherence is the connection between the subject of
the study (whether it concentrates on violence or property crime or
both) and its outcome: Datavpa (18) is in the core, has large (often
above 50%) drops of γ throughout the sets and appears in many de-
terministic rules25. Since its contingency table provides no significant
insights (except that negative results tend to appear in studies with
no focus on violence or property crime) we draw the conclusion that
the target of the study at hand does not significantly favor an outcome
on its own but only in combination with other variables;

• whether the study concentrates on youths or not (Datayouth,12) is
important for classification (included in the core) but this is constricted
to a few cases only and thus bears only little general information (the
γ-drop is almost always low, the contingency table is insignificant and
it appears only in five deterministic rules which is relatively low since
it is contained in every set).

Other important conclusions and attributes are:

• attributes with strong dependance with the outcome are not sufficient
to predict the outcome; therefore considering only the highly correlated
attributes is not enough

• the number of variables (Nodetvar, Nosozvar,2,3) used in a study
(third and first highest wnf’, significant contingency tables, mostly big
γ-drops (sometimes of more than 50%), appearance in many rules;

• the structure (Datatpc,17) of the data (high wnf’, significant con-
tingency table (c.t.), medium to high γ-drops, appears in many rules,
high representation in sets with high NRE);

• whether the study came from an economic (Culteco,10) background
(second highest wnf’ and appears in many sets with high NRE but
insignificant c.t., low γ-drops and little representation in the rules);

• whether simultaneity (Simul,6) was accounted for (medium wnf’ and
appears in many sets with high NRE but insignificant c.t., low γ-drops
and only small representation in the rules);

25we concentrate on deterministic rules and omit all rules with a support below four
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5.4 Findings

• whether fixed effects models (Fixeff,7) were used (medium wnf’ and
appears in many sets with high NRE but insignificant c.t., low γ-drops
and only small representation in the rules);

• whether American (Cultus,8) data were used (high wnf’, significant
c.t. and appears in many sets with a high NRE but low drops of γ
and no rule with a support ≥ 4).

Attributes which should also be considered are (medium to low wnf’-values):

• age (Dataage,13) of the data (medium wnf’, significant c.t., appears
in some rules but low γ-drops);

• age (Cultyear,9) of the study (bigger γ-drops in set with high NRE,
significant c.t., contained in most set with high NRE, appears in many
rules);

• whether urban (Dataurban,15) data were used (big γ-drops appears
in many rules, but insignificant c.t.);

• (Datano,16) – the sample size (significant c.t., big γ-drops, appears
in many rules);

• whether the income (5) was accounted for (significant c.t., is con-
tained in most sets with high NRE, medium γ-drops but does not
appear in many rules).

2. The following attributes appear to be irrelevant for the outcome (least im-
portant first):

• the time interval of the data (Datatime,20);

• whether the deterrent effect was studied (Detfocus,11);

• whether the author is American (Cultus ,8);

• the source (Datasrc, 19) of the data;

• whether unemployment (Unemp,4) was accounted for.

3. The combined insights from the rulesets with support ≥ 4 and the contin-
gency tables seem to be:

a) the more variables a study uses (especially social variables) the more
probable are insignificant results;

b) newer studies (resp. studies with newer data) tend to get clearer re-
sults;

c) studies using urban data tend to get less mixed results (all t-values
tend to be either significant or insignificant)
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6 Conclusion

d) studies with time series get mixed results (especially those concen-
trating on property crime) while those with cross-section data tend
to insignificant results. Studies with panel data get more significant
results (especially those concentrating on property crime);

e) the outcome of studies which user property crimes is easier to predict

4. The best attribute sets seem to be:

a) {05, 09, 10, 14, 17, 18} (NRE, number of rules, %),

b) {07, 09, 10, 14, 17, 18} (NRE, number of rules, %),

c) {02, 03, 09, 15, 18} (γ, NRE, %, α′s, number of rules),

d) {03, 10, 12, 15, 17, 18} (γ, NRE, %, α′s, number of rules).

5.4.1 Comparison with the crime data

Are these results compatible with the conclusions from a standard meta regression
analysis?
The comparison is tabulated in table 9.
Conclusions which were not discovered by the linear regression are:

1. the importance of the data structure (time series, panel, cross-section);

2. the explanatory power of the kind of crime studied works only in combina-
tion with other attributes (in particular Datatpc);

3. oldest and newest studies (and data) have plainer results while all others
have not;

4. studies with urban data show a similar behavior;

5. the influence of studies which concentrate on youths is not systematic.

We see that both types of analyses agree on many findings but also differ on
some. While RSDA cannot give us precise information about the strength about
an effect, it can tell us much about relations between attributes which remained
hidden or were probably misinterpreted in a linear regression analysis.

6 Conclusion

In this paper we presented the mathematical concept and statistical tools of the
Rough Set Data Analysis (RSDA) which, to our best knowledge, has not yet been
used in the fields of economics or meta-analysis to such an extent. It relies on no
prior assumptions about the data and refers largely to the principle of pattern
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recognition. It does not produce coefficients of the strength of relationships be-
tween attributes but, however, provides qualitative characteristics about these.
Therefore it can be used to discover overlooked dependencies, filter the set of at-
tributes for further inspection with other methods, make already known results
more robust or refute existing results.

The theory of deterrence has already been studied for decades but still neither a
common agreement could be reached nor could the attributes, which are decisive
for this diversity, be isolated – the underlying mechanism, if it exists, is still
empirically not understood.
We applied the methodology of RSDA to a data set of empirical studies about the
deterrent effect of the probability and severity of punishment which had already
been subject to a small meta regression analysis.

We found that both methods agreed upon many relations between recorded vari-
ables and the outcome of a study but also found some contradictions. The most
interesting conflicting results were the influence of the distinction between prop-
erty and violent crime and whether the empirical study concentrated on youths,
which are both positive and significant in the meta-regression analysis (i.e. study-
ing property or juvenile crime tended to significant positive t-values, thus sup-
porting the theory that property crime fits the rational criminal theory more
than violent crime and that youths appear more often in the crime statistics than
adults). However, we discovered evidence that the distinction between property
and violent crime is important but only in conjunction with other variables and
not ceteris paribus. Also the the importance of the juvenile crime is artificial.
We also discovered the non-linear influence of the publication year which was not
studied in the meta-regression analysis. The attributes which were declared by
both methods to be not important enough for a deeper inspection were in large
the same.

To sum it up we think that RSDA can be a useful tool in the field of data
analysis, especially when the assumptions of the standard econometric methods
are not sufficiently met or the data structure is not easily accessible to them. In
particular the ability to deal with nearly any kind of data (continuous, ordinal or
nominal) and its complete lack of prior assumptions (the distribution of the data,
its covariance matrix and other often undesirable properties are of no importance)
recommend it to be added to the pool of statistical methods in econometrics.
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6 Conclusion

Table 1: attributes from the studied data set
abbr. attribute description

Tarrest t-value of the arrest rate
Tconvict t-value of the conviction rate
Tsevere t-value of the penalty severence

01 Noexvar number of explanatory variables
02 Nodetvar number of explanatory deterrence-variables
03 Nosozvar number of explanatory social-variables
04 Unemp whether unemployment was considered
05 Income whether the income was considered
06 Simul whether simultaneity was considered
07 Fixeff whether a fixed effect model was used
08 Cultus whether it is an U.S. study
09 Cultyear year the study was published
10 Culteco whether the author is an economist
11 Detfocus study focuses on deterrence
12 Datayouth whether only youth were studied
13 Dataage average year of the data
14 Dataus whether the data a from the U.S.
15 Dataurban whether urban data were studied
16 Datano samplesize
17 Datats study used time series
17 Datapan study used panel data
17 Datacs study used cross-sectional data
18 Dataviol study focused on violent crime
18 Dataprop study focused on property crime
18 Dataall study used both types
19 Datanat data from a nation
19 Datastate data from a state
19 Datacounty data from a county
19 Datamicro data from individuals
20 Datayear data was surveyed yearly
20 Datamonth data was surveyed monthly
20 Dataweek data was surveyed weekly
20 Dataday data was surveyed daily
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Table 2: reducts of the dataset

Q′ γQ′(d) SC Q′ γQ′(d) SC
{02, 03, 06, 12, 15, 18} 0.527 0.686 {02, 03, 05, 08, 12, 18} 0.527 0.549
{02, 03, 10, 12, 15, 18} 0.527 0.667 {02, 03, 05, 09, 12, 18} 0.527 0.549
{01, 10, 12, 14, 15, 17, 18} 0.527 0.647 {02, 03, 05, 12, 14, 18} 0.527 0.549
{03, 08, 10, 12, 15, 17, 18} 0.527 0.647 {02, 03, 12, 15, 18, 19} 0.527 0.549
{01, 02, 12, 14, 15, 17, 18} 0.527 0.627 {02, 03, 12, 16, 17, 18} 0.527 0.549
{03, 10, 11, 12, 15, 17, 18} 0.527 0.627 {02, 03, 08, 12, 16, 18} 0.527 0.529
{02, 03, 12, 15, 17, 18} 0.527 0.608 {02, 03, 12, 14, 16, 18} 0.527 0.529
{02, 03, 05, 12, 17, 18} 0.527 0.588 {02, 03, 12, 13, 15, 18} 0.527 0.49
{02, 03, 08, 12, 15, 18} 0.527 0.588 {02, 03, 09, 12, 15, 18} 0.527 0.471
{02, 03, 12, 14, 15, 18} 0.527 0.588 {02, 03, 09, 12, 16, 18} 0.527 0.412
{03, 07, 10, 12, 16, 18} 0.527 0.588 {03, 09, 10, 12, 16, 18} 0.527 0.412
{03, 10, 12, 15, 16, 18} 0.527 0.588

Q′ is the chosen subset of attributes, γQ′(d) is the fraction of complete knowledge of d through
Q′ (see subsection 2.5.3) and SC is the stability coefficient (see 2.5.1) of Q′.

Table 3: characteristics of the attributes in the dataset

attr. f b b′ wnf wnf’ attr. f b b′ wnf wnf’
01 42 0.00 0.06 0.10 0.15 11 21 0.00 0.00 0.00 0.00
02 99 1.00 1.00 0.42 0.63 12 193 1.00 − 1.00 −
03 126 1.00 1.00 0.67 1.00 13 58 0.04 0.77 0.20 0.30
04 43 0.00 0.08 0.11 0.17 14 90 0.98 1.00 0.36 0.54
05 43 0.00 0.08 0.10 0.14 15 51 0.00 0.41 0.22 0.33
06 69 0.36 0.99 0.26 0.39 16 22 0.00 0.00 0.01 0.01
07 68 0.32 0.98 0.24 0.36 17 91 0.99 1.00 0.35 0.53
08 22 0.00 0.00 0.02 0.04 18 193 1.00 − 1.00 −
09 56 0.02 0.68 0.15 0.22 19 39 0.00 0.02 0.09 0.13
10 100 1.00 1.00 0.49 0.72 20 24 0.00 0.00 0.00 0.00

attr. is the numerical abbrevation of an attribute (see table 1), f is the number of appearances
of an attribute in all reducts of minimal length, b is the p-value under the hypothesis that
all attributes are equally distributed across these reducts (see 3.1.3) and wnf is the weighted
normalized frequency (refer to 2.5.2). b′ and wnf’ are calculated without the core.
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Table 7: correct classifying rules with support ≥ 4
N

o
d
e
t
v
a
r

N
o
so

z
v
a
r

In
c
o
m
e

S
im

u
l

F
ix

e
f
f

C
u
lt

y
e
a
r

C
u
lt

e
c
o

D
a
t
a
y
o
u
t
h

D
a
t
a
a
g
e

D
a
t
a
u
r
b
a
n

D
a
t
a
n
o

D
a
t
a
t
p
c

D
a
t
a
v
pa

d su
pp

or
t

2 4 0 8
0 4 0 8

2 1 4 0 5
2 4 4 0 5
2 4 0 0 5
2 3 0 5

0 3 0 5
1 4 3 0 5
1 4 2 0 5
1 3 3 0 5

3 4 0 5
4 1 0 2 0 4
4 1 0 4

0 0 3 1 0 4
0 3 1 0 4

3 3 1 0 4
1 0 3 2 0 4

0 4 2 0 4
3 0 1 2 1 4
3 3 2 1 4

3 1 2 1 4
3 1 2 1 4
3 1 2 1 4

1 1 1 2 1 4
1 1 2 1 4

1 1 1 2 1 4
1 4 2 2 4

3 3 2 2 4
3 0 2 2 2 4

2 1 1 2 4
4 0 2 2 4

0 3 2 2 4
3 2 2 2 4

d: the values of the decision attribute,
support: the number of objects which support the rule.
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6 Conclusion

Table 8: dependencies between categories; significance given A or given d
0 1 2 3

1 8 0 16 2
2 12 7 9 1
3 2 11 4 2

02× d | p=0

0 1 2 3
1 1 9 7 0
2 4 3 7 2
3 4 5 9 0
4 13 1 6 3
03× d | p=0.003

0 1 2 3
0 10 1 8 0
1 12 17 21 5

05× d | p=0.021

0 1 2 3
0 19 11 20 5
1 3 7 9 0

06× d | p = 0.16

0 1 2 3
0 8 7 8 3
1 14 11 21 2

07× d | p = 0.558

0 1 2 3
1 2 13 4 0
2 7 2 11 3
3 11 0 7 2
4 2 3 7 0
09× d | p=0

0 1 2 3
0 5 1 3 1
1 17 17 26 4

10× d | p = 0.384

0 1 2 3
0 16 18 25 4
1 6 0 4 1

12× d | p = 0.095

0 1 2 3
1 1 12 5 0
2 4 3 7 3
3 4 3 13 2
4 13 0 4 0
13× d | p=0

0 1 2 3
0 3 7 15 2
1 19 11 14 3

14× d | p=0.045

0 1 2 3
1 1 13 6 0
2 6 1 12 2
3 9 3 9 2
4 6 1 2 1
16× d | p=0

0 1 2 3
1 5 12 3 0
2 4 0 18 2
3 13 6 8 3

17× d | p=0.001

0 1 2 3
1 10 5 10 1
2 10 12 15 1
3 2 1 4 3

18× d | p = 0.167
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Table 9: comparison of the results
Observation / effect RSDA meta regression analysis
number of moderators negative negative
simultaneity low and unsigned positive
fixed-effects low and unsigned insignificant
deterrence effect n.a. yes
property crime distinction important positive

unclear on its own important
income significant yes yes
unemployment insignificant yes yes
data source important no yes
data structure important unimportant
background of author unimportant unimportant
publication year yes no

not linear only linearity studied
focus on deterrence unimportant unimportant
urban data low and unsigned no
youth importance artificial positive
US-data low insignificant
sample size low and negative low and negative
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