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Abstract

We conduct an empirical analysis of the technical efficiency of cars sold in Germany in

2010. The analysis is performed using traditional data envelopment analysis (DEA) as

well as directional distance functions (DDF). The approach of DDF allows incorporat-

ing the reduction of carbon dioxide emissions as an environmental goal in the efficiency

analysis. A frontier separation approach is used to gain deeper insight for different

car classes and regions of origin. Natural gas driven cars and sports-utility-vehicles

are also treated as different groups. The results show that the efficiency measurement

is significantly influenced by the incorporation of carbon dioxide emissions. Moreover,

we find that there is indeed a trade-off between technological performance and envi-

ronmental performance.
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1 Introduction

In recent years environmental issues like global warming have gained public attention

leading to a thrust in political activities to set environmental goals. Sustaining leadership

in environmental standards, the European Commission started a program to limit aver-

age emissions of carbon dioxide of new cars to 130 g/km (Commission of the European

Communities (2007)). The view of environmental performance is therefore based on a

one-dimensional aspect that does not account for any relating performance indicators of

cars (e.g. top speed, size etc.).

In this paper we conduct an analysis of the efficiency of automobiles that incorporates

several inputs (e.g. fuel consumption, price etc.) and outputs (e.g. top speed, accelera-

tion etc.) simultaneously. Our approach is in line with previous studies that evaluate car

efficiency including Papahristodoulou (1997), Cantner et al. (2010) and Oh et al. (2010)

but differs in two important aspects. First, while these previous studies view efficiency of

cars solely from the perspectives of consumers we take a more technical perspective. Sec-

ond, we estimate the efficiency including carbon dioxide emissions as undesirable outputs

as proposed by Färe and Grosskopf (1983). This allows us to measure efficiency taking

account of both technical as well as environmental targets and thereby obtaining a more

differentiated view of the efficiency of cars.

To estimate the efficiency and hence revealing potentials for enhancements in environmen-

tal efficiency we use two approaches that by their nonparametric nature rely on very weak

assumptions regarding the production process (in application with cars: transportation

process). We start with using data envelopment analysis (DEA) developed by Charnes

et al. (1978) to estimate the technical efficiency of cars ignoring emissions and proceed by

employing a much more general approach (that includes DEA as a special case), the direc-

tional distance function (DDF) proposed by Chung et al. (1997). The DDF is applied to

measure technical efficiency when emissions are included as an additional restriction and

for the interesting case when they are simultaneously reduced while the desirable outputs

are increased. This allows us to explore the trade-off between technical and environmental

performance. We use these measures to asses how large the potential efficiency improve-

ments can be and how they change when the direction of the efficiency measurement is

amended.

To gain more insights we divide the cars in our dataset (which has been collected from

an online database of the major German automobile club (ADAC)) into different broad

groups (e.g. car classes, regions of origin etc.) and use the frontier separation approach

first introduced by Charnes et al. (1981) to determine whether they show significant differ-

ences in their relative performance. These efficiency differences are usually assessed using

nonparametric tests such as the Wilcoxon rank sum (or Mann-Whitney) test or other

rank-based extensions. The application of rank-based tests in this context is criticized

by Simpson in a couple of papers (Simpson (2005), Simpson (2007)). To counter this

criticism we apply testing procedures for the assessment of stochastic dominance relations
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between the efficiency distributions of cars within different classes or regions. Stochastic

dominance plays an important role in risk and decision theory but is of general appli-

cability for one-sided comparisons of random variables such as our efficiency measures.

Testing for stochastic dominance has the general advantage of being able to compare two

random variables by considering their entire sampling distributions instead of just relying

on specifically selected moments.

This paper is structured as follows. Section 2 presents the theoretical foundations of the

nonparametric efficiency analysis ignoring and incorporating the carbon dioxide emissions.

An overview of the theory of the tests for stochastic dominance is given in section 3. Sec-

tion 4 introduces the data used in our analysis and in section 5 the results of the analysis

are presented and discussed. Section 6 concludes the paper.
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2 Theory

In this section we present the theoretical foundations and the methodology for our ef-

ficiency analysis. Our efficiency analysis incorporating carbon dioxide emissions is an

extension of a standard nonparametric efficiency analysis. Thus, we use this model as a

starting point. We start by introducing a formalization of the technology of the produc-

tion process and an efficiency measure ignoring the emissions and then extend the model

to obtain an efficiency measure that includes carbon dioxide emissions as an undesirable

output.

To model the production process consider n decision making units (DMU, e.g. cars) that

are using m inputs x ∈ R
m
+ to produce s outputs y ∈ R

s
+. The technology set of this

process is the set of all attainable points (x,y) and can be stated as

T = {(x, y) ∈ R
m+s
+ : x can produce y}.

This technology can be equivalently defined by its output sets

P (x) = {y ∈ R
s
+ : x can produce y} = {y ∈ R

s
+ : (x, y) ∈ T}

which comprises all output vectors y that can be produced from a given input vector

x. These output sets are assumed to satisfy the following axioms (see Färe and Primont

(1995)):

1. Inactivity: ∀x ∈ R
m
+ , 0 ∈ P (x).

It is possible for any amount of inputs to produce no output.

2. No free lunch: y 6∈ P (0) if y ≥ 0.

It is not possible to produce positive amounts of any output without using positive

amounts of at least one input.1

3. Strong disposability of inputs: If y ∈ P (x) and x′ ≥ x then y ∈ P (x′).

For a given combination (x,y) the same amount of output is attainable by using

more inputs.

4. Strong disposability of outputs: If y ∈ P (x) and y′ ≤ y then y′ ∈ P (x).

For a given combination of (x,y) it is possible to produce less output holding x

constant.

5. Convexity: P (x) is convex.

Convex combinations of observations are possible, e.g. if y1 and y2 ∈ P (x) then

αy1 + (1− α)y2 ∈ P (x) ∀α ∈ [0, 1].

6. Boundedness: ∀x ∈ R
m
+ , P (x) is a bounded set.

It is not possible to produce infinite amounts of outputs with a given level of inputs.

1 Note that here and in the following ”≥” means that at least one element of the vector satisfies strict
inequality while ”≧” means that all elements of the vector can satisfy equality.
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7. Closeness: ∀x ∈ R
m
+ , P (x) is a closed set.

A technical assumption without an intuitive economic interpretation.

For evaluating the efficiency of a DMU the upper boundary of the output set is of special

interest since it contains the maximum achievable output combinations for a given level

of inputs. For a given input vector x ∈ R
m
+ the output-oriented boundary is defined as:

∂P (x) = {y ∈ R
s
+ : y ∈ P (x), δy /∈ P (x), ∀δ > 1}.

This is the so-called frontier of the output set. To evaluate the efficiency of a DMU with

this model we use the Farrell-Debreu measure of output efficiency (Debreu (1951), Farrell

(1957)). This measure projects the DMU under evaluation on the frontier of the output

set by proportionally increasing all outputs holding input levels constant and is defined

as:

θ∗ = sup{θ : θy ∈ P (x)}

The resulting efficiency measure θ is the factor by which the DMU under evaluation has

to increase the volume of all its outputs given the input vector and the technology. A

DMU is part of frontier and classified as efficient if θ∗ = 1. It is part of the interior of

the technology and hence inefficient if θ∗ > 1. Note that the Farrell-Debreu efficiency

measure is the inverse of an analogous definition of the output distance function proposed

by Shephard (1970).

To estimate the technology and obtain the efficiency measure defined above we use data en-

velopment analysis (DEA), a nonparametric approach developed by Charnes et al. (1978)

that has been applied in many case studies of efficiency analysis (see e.g. Zhou et al.

(2008a) for a survey on environmental DEA research). DEA takes the observed combi-

nations (xi, yi) for all sample items i = 1, ..., n and the assumptions explained above and

generates a piecewise linear frontier function for the technology

T = {(x, y) ∈ R
m+s
+ : x ≧ Xλ, y ≦ Y λ, λ ≥ 0}

with output sets

P (x) = {y ∈ R
s
+ : x ≧ Xλ, y ≦ Y λ, λ ≥ 0}

where X represents the m × n matrix of inputs and Y represents the s × n matrix of

outputs. λ denotes a n × 1 vector of weight factors with λ positive but otherwise un-

restricted implying constant returns to scale of the production process. To compute the

Farrell-Debreu efficiency measure for DMU i with input-output combination (xi, yi) in this

model one has to solve the following linear programming problem:
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maxθ,λ θ

s.t. xi ≧ Xλ

θyi ≦ Y λ

λ ≥ 0

This linear programming problem is well-behaved and can be easily solved with the con-

ventional simplex algorithm. In our analysis below we use this standard DEA model to

evaluate the output efficiency of automobiles for the special case in which emissions are

ignored.

In a second model we take into account that in the course of the production process char-

acterized above the DMUs produce k pollutants u ∈ R
k
+, e.g. carbon dioxide. Different

ways to incorporate these emissions have been developed (see e.g. Scheel (2001) for a

summary). These can be roughly divided into methods transforming the data and meth-

ods transforming the technology. In this paper we use an approach proposed by Färe and

Grosskopf (1983) that is based on transforming the technology and treating emissions as

undesirable outputs.2 The new technology contains all attainable points (x, y, u) and can

be described by

T = {(x, y, u) ∈ R
m+s+k
+ : x can produce (y, u)}

with output sets

P (x) = {(y, u) ∈ R
s+k
+ : x can produce (y, u)} = {(y, u) ∈ R

s+k
+ : (x, y, u) ∈ T}.

In order to model u as undesirable outputs we require additional assumptions regarding

the output sets. First, while continuing to assume the desirable outputs y to be strongly

disposable we assume u to be only weakly disposable:3

8. Weak disposability of undesirable outputs:

If (y, u) ∈ P (x) and γu ≤ u with 0 ≤ γ ≤ 1 then (γy, γu) ∈ P (x).

Given the weak disposability assumption it is only possible to produce less of the unde-

sirable outputs if the amount of desirable outputs is decreased simultaneously. Therefore,

the reduction of emissions is costly and the car owner is faced with a trade-off between

speed and other performance characteristics of a car and lower emissions. Second, together

with the assumption of weak disposability of outputs, we assume the output sets to be

null-joint:

9. Null-jointness: If (y, u) ∈ P (x) and u = 0 then y = 0.

The null-jointness assumption simply states that it is impossible to produce positive

amounts of desirable outputs without producing any undesirable outputs.

2 Note that simply incorporating the emissions as inputs, as it is often done in environmental economics,
leads to a technology that is not bounded anymore (see Färe and Grosskopf (2003)).

3 The concept of weak disposability was first introduced by Shephard (1970) and Shephard (1974).
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The technology considering emissions as undesirable outputs can be rephrased as

T = {(x, y, u) ∈ R
m+s+k
+ : x ≧ Xλ, y ≦ Y λ, u = Uλ, λ ≥ 0}

with output sets

P (x) = {(y, u) ∈ R
s+k
+ : x ≧ Xλ, y ≦ Y λ, u = Uλ, λ ≥ 0}

where U is the k×n matrix of undesirable outputs with the equality constraint indicating

weak disposability.4

To illustrate the difference between the strong disposability and the weak disposability

approach, figure 1 shows a strong disposable output set with two desirable outputs (y1, y2)

while figure 2 shows a weak disposable output set with a single desirable output (y) and a

single undesirable output (u). Both output sets are generated by 3 DMUs (A,B,C). The

inputs are assumed to be constant and are suppressed in the figures. Assuming strong

disposability of both desirable outputs, the boundary of the output set is given by B’BB”

and the output set itself is in the south-west direction of this boundary in the positive

orthant. Under weak disposability of the undesirable output the boundary is given by

0ABB”. Here any element (y, u) can be proportionally reduced and alway stays in the

output set.
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Figure 2: Weak disposable output set

For the efficiency analysis in an environmental context where emissions are modelled as

undesirable outputs different measures have been developed (see e.g. Liu et al. (2010) for

a survey). In our analysis we use the concept of the directional distance function (DDF)

proposed by Chung et al. (1997) because its flexibility allows to measure technical together

with environmental efficiency. DEA can be viewed as a special case of DDF. Therefor,

DDF is also a nonparametric approach. It introduces a vector g that defines the direction

4Assuming constant returns to scale allows to set the scaling factor γ to 1 (see Färe and Grosskopf (2003)).
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of the efficiency measurement. The resulting efficiency measure is then defined as

β∗ = sup{β : (y, u) + βg ∈ P (x)}

where g is the directional vector and β denotes the measure of efficiency. We use the

directional vectors gO = (y, 0) and gUO = (y,−u) to compute the efficiency of automo-

biles. Using gO we measure pure output efficiency while respecting the environmental

constraint, while gOU measures both the technical and the environmental efficiency by the

possibility of simultanously increasing the desirable and decreasing the undesirable out-

puts in order to reach the boundary of the output set. In this second case we use a vector

specification that leads to a proportional increase of the desirable outputs and decrease of

the undesirable outputs. Hence, we treat technical and environmental efficiency targets as

equally important. The related efficiency measures (βO, βUO) can be obtained by solving

the following two linear programming problems:

maxβO,λ βO

s.t. x ≧ Xλ

(1 + βO)y ≦ Y λ

u = Uλ

λ ≥ 0

maxβOU ,λ βUO

s.t. x ≧ Xλ

(1 + βUO)y ≦ Y λ

(1− βUO)u = Uλ

λ ≥ 0

Again, the solution is a straightforward application of the simplex algorithm. The first

model is equivalent to the output-oriented DEA with an additional environmental con-

straint. The second model combines the efficiency measurement with regard to both the

desirable outputs and the undesirable outputs. Note that in the second case the resulting

βUO is implicitly bounded in the interval [0,1] since u can not get negative. To illustrate

the three approaches figures 1 and 2 above show the different projections of DMU C on the

boundaries. Ignoring the carbon dioxide emissions and assuming strong disposability of

all desirable outputs, the reference point for DMU C is C’ (see figure 1) and the efficiency

of C is measured by θ. Assuming weak disposability of the undesirable output (see figure

2) and measuring the efficiency with direction gO the reference point is C”, while C* is

the reference point using direction gUO.

In our subsequent analysis we compare the three measures (θ, 1+ βO, 1+ βUO) to analyse

in which way the different approaches influence the results of the efficiency analysis and

the ranking of the cars. In addition, we determine different groups of cars and investigate

how their within and between performance changes if measure of the efficiency is changed.
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3 Stochastic Dominance

Efficiency differences are usually assessed using nonparametric tests such as the Wilcoxon

rank sum (or Mann-Whitney) test or other rank-based measures. The application of rank-

based tests in this context is criticized by Simpson in a couple of papers (Simpson (2005),

Simpson (2007)). To counter this criticism we apply testing procedures for the assessment

of stochastic dominance relations between the efficiency distributions of cars within differ-

ent classes or regions. Stochastic dominance plays an important role in risk and decision

theory but is of general applicability for one-sided comparisons of random variables. Test-

ing for stochastic dominance has the general advantage of being able to compare and rank

two random variables by considering their entire distributions and not just relying on a

few specifically selected moments.

Several notions of stochastic dominance can be distinguished (see Levy (1992)). Here, we

rely on the concepts of first-order stochastic dominance (FSD) and second-order stochastic

dominance (SSD). According to first-order stochastic dominance a (real-valued) random

variable X stochastically dominates another random variable Y if the cumulative distribu-

tion function (CDF) of X is completely below that of Y over the whole support. Formally,

X ≻FSD Y if FX(z) ≤ FY (z) at all points z in the common support of X and Y with

strict inequality for some z. Second-order stochastic dominance is less strict in relying on

the area below the CDF of X (up to a certain upper bound t) being smaller than the area

below the CDF of Y (up to the same t). If this requirement is satisfied for all t in the

common support of X and Y then we say that X second-order stochastically dominates

Y . Formally, X ≻SSD Y if
∫ t

−∞
FX(z)dz ≤

∫ t

−∞
FY (z)dz for all t ∈ R and strict inequality

for some t. From these definitions it is clear that FSD implies SSD but not vice versa.

Since FSD is a very demanding concept it is important to have a less demanding one such

as SSD.5

For taking these concepts to the data, we rely on statistical measures proposed by Schmid

and Trede (2000) as descriptive devices and use bootstrapping for computing the respec-

tive distributions and p-values. We suppose to have two samples of N observations for X

(i.e. (x1, ..., xN )) and M observations for Y (i.e. (y1, ..., yM )). In our specific application

these are the efficiency measures of the cars pertaining to different classes or regions or

are computed by the different methods explained above. Testing FSD requires estimating

the CDFs by their corresponding empirical distribution functions (EDF)

F̂X(z) = N−1

N∑
i=1

I(xi ≤ z) and F̂Y (z) = M−1

M∑
i=1

I(yi ≤ z)

5 In a productivity context Delgado et al. (2002) as well as Fariñas and Ruano (2005) use first-order
stochastic dominance to compare productivity distributions of Spanish manufacturing firms. Second-
order stochastic dominance is not applied in that context as far as we are aware of.
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with I(.) denoting the usual indicator function and using the Kolmogorov-Smirnov-type

test statistic

DFSD = maxz{F̂X(z)− F̂Y (z)}

to test the null hypothesis H0 : X �FSD Y against the alternative H1 : Y ≻FSD X. In

our implementation this statistic is evaluated over an equally spaced grid of 100 points for

z spanning the whole range of all observations. The null hypothesis is rejected in favor

of the alternative for large values of the test statistic. We compute the p-values from

the finite sample distribution approximated by B = 10000 bootstrap replications.6 The

application of the bootstrap here amounts to resample B times with replacement under

the null hypothesis, i.e. to resample from the joint sample (x1, ..., xn, y1, ..., ym), and then

to compute the test statistic repeatedly, resulting in D∗

FSD,1, ..., D
∗

FSD,B. The p-value is

subsequently computed as the fraction of the bootstrap statistics exceeding the statistic

D̂FSD computed from the original samples, i.e. by the formula

p =
1 +

∑B
b=1

I(D∗

FSD,b ≥ DFSD)

B + 1
.

Applying this ordinary bootstrap approach is perfectly valid in the present cross-section

setting but would be problematic in a panel or time series data context.

Testing SSD affords the computation of the empirical analogs of the integrals appear-

ing in the definition. Subjecting these integrals to partial integration we get

∫ t

−∞

FX(z)dz =

∫ t

−∞

(t− z)dFX(z) and

∫ t

−∞

FY (z)dz =

∫ t

−∞

(t− z)dFY (z)

with the empirical analogs

ĜX(z) = N−1

N∑
i=1

(z − xi)I(xi ≤ z) and ĜY (z) = M−1

M∑
i=1

(z − yi)I(yi ≤ z).

As test statistic for testing the null hypothesis H0 : X �SSD Y against the alternative

H1 : Y ≻SSD X we now compute

DSSD = maxz{ĜX(z)− ĜY (z)}

and reject the null hypothesis for large values of the test statistic. Again the p-values

reported below are based on 10000 bootstrap replications and are computed according the

procedure outlined above.

6 For applied references on bootstrapping see Davison and Hinkley (1997) or Efron and Tibshirani (1993).
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4 Data

In this section we give a short overview of the data used in our study. The data for techni-

cal characteristics of the cars as well as the emissions of carbon dioxide are collected from

the “ADAC Autokatalog 2010“ (ADAC (2010)) which is an continuosly updated database

published online by the German automobile club ADAC. It contains data for 55 car pro-

ducers with 403 product lines and 9686 model variants that are sold in Germany.7 Since

many of these variants only differ in aspects that are not relevant for our analysis (e.g.

optional equipment like airbags) we eliminate these duplets resulting in 3961 remaining

observations. These cars have been divided into 7 vehicle classes according to some of

their characteristics (e.g size, price etc., see ADAC (2009)).8 Since some of these classes

only contain very few observations we aggregate them to 3 main classes: compact class,

middle class and upper class. In addition to dividing the cars into classes we also take the

possibility to divide them into regions of origin (Europe, Asia and United States).

To determine which inputs and outputs we use in our analysis we consider a highly sim-

plified conception of a car. We assume that the car is bought (input variable: price) to

transport a load (output variable: payload) which in combination with the engine power

(output variable: engine power) and the weight (input variable: net weight) leads to the

acceleration (output variable: acceleration) and the final top speed (output: top speed)

of the car. This transportation process requires fuel (input variable: fuel consumption)

and produces carbon dioxide emissions (undesirable output variable: CO2). We limit our

research focus on this technical view of an automobile as plainly providing transportation

services and ignore variables like luxury equipment (e.g air conditioner). The following

table 1 contains some descriptive statistics of the variables used in our study.

Table 1: Descriptive statistics of the data

Min. 1. Qu. Median Mean 3. Qu. Max. SD

Price [e] 6990 20890 28860 36871 39990 523838 36812.72
Fuel consumption [l/km] 3.3 5.9 7.1 7.53 8.6 21.3 2.40
Net weight [kg] 825 1355 1545 1562 1730 2855 312.56
Engine power [PS] 52 109 145 172.4 200 670 95.59
Top speed [km/h] 135 180 200 204 226 340 33.39
Acceleration [s] 3.2 8.1 10.2 10.29 12.2 23.6 3.14
Payload [kg] 115 425 484 496.4 547 1160 127.60
CO2 [g/km] 87 147 172 183 205 495 53.74

7 In this study we use the same terminology as in Cantner et al. (2010) (see table 3 in the appendix for
an example).

8 These classes are: Microwagen, Kleinstwagen, Kleinwagen, Untere Mittelklasse, Mittelklasse, Obere
Mittelklasse and Oberklasse.
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It is evident from the descriptive statistics that our dataset covers a vast range of different

car types comprising low-budget cars and luxury vehicles (price varying from 6990e (Dacia

Sandero) to 523838e (Maybach)) as well as small city cars and SUVs (payload varying

from 115 kg (Daihatsu Copen) to 1160 kg (Ford Ranger)). Interestingly, less than 25 per

cent of the cars achieve the emission goal set by the European Union which limits CO2

emissions to 130 g/km.
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5 Results

In this section we present and discuss the results of our efficiency analysis. We start by

considering the efficiency of the overall sample and later we will turn to different group-

specific results. As explained above, we estimate three different efficiency measures, DEA

(ignoring the CO2 emissions), DDFO (including the emissions as an additional restriction)

and DDFUO (simoultanously increasing desirable and decreasing undesirable output). For

estimating the DEA efficiency scores and the density functions we use the FEAR-package

provided by Wilson (2008) for the statistic software ”R”. The β-values of the DDF’s

as well as the p-values of the tests for stochastic dominance were obtained by our own

programmings. Table 2 contains summary statistics of the efficiency estimates while figure

3 presents the related density functions.9

Table 2: Summary statistics of the efficiency measures - Overall sample

Min. 1. Qu. Median Mean 3. Qu Max. SD Total Eff. % Eff.

DEA (θ) 1 1.124 1.198 1.215 1.287 1.859 0.130 82 2.07
DDFO (1+βO) 1 1.109 1.184 1.198 1.271 1.793 0.125 127 3.21
DDFUO (1+βUO) 1 1.076 1.119 1.124 1.170 1.412 0.068 112 2.83

1.0 1.2 1.4 1.6 1.8

0

1

2

3

4

5

6

7

Density function estimates

θθ
1 ++ ββO

1 ++ ββUO

Figure 3: Density estimates of efficiency measures - Overall sample

9 Since the efficiciency scores are bounded below at 1 we use the reflection method proposed by Boneva
et al. (1971) to estimate the density functions which is implemented in the FEAR-package provided by
Wilson (2008).
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The results of the data envelopment analysis show that the average car of the sample has

to increase all its outputs by 21.5 % holding inputs constant to become technically effi-

cient. Rather surprising this result does not change much when emissions are introduced.

The average potential for efficiency enhancement lowers only to 19.8 %.10 This difference

is also statistically significant since the test for first-order stochastic dominance of DEA

to DDFO does not reject the null hypothesis (see tables 9 and 10 in the appendix for

the test results) and so DEA efficiency estimates stochastically dominate the DDFO esti-

mates.11 As can be easily seen, the effect of simoultanously reducing undesirable outputs

on the potential increase in technical efficiency is far greater, reducing the average poten-

tial efficiency gains to 12.4 %. We interpret the differences between the results of DDFO

and DDFUO as the lack of performance enhancement possibilities due to simultaneously

decreasing emissions (trade-off). To summarize the results for the overall dataset, the

incorporation of carbon dioxide emissions lowers the technical enhancement possibilities

by 1.7 % while the trade-off between improving the technical characteristics and lowering

the emissions results in 7.4 % lower enhancement possibilities. This basic structure is also

evident for the median as a more robust location measure and is clearly visible from the

density plots.

These results are based on the whole dataset and thus apply to a quite heterogenous

group of automobiles. To obtain more detailed results we analyse the efficiency of differ-

ent groups in our dataset and compare the performance between the groups as well as to

the overall dataset.12 To evaluate and compare the efficiency of different groups there are

two different methods. It is possible to use the efficiency results obtained above for the

analysis of the overall dataset and compare them among groups respectively between a

group and the remaining observations. A drawback of this approach is that the results of

the analysis can be due to whithin-group or between-group differences. To illustrate this

point, figure 4 shows an output set with two different groups of observations.

10 An alternative interpretation for this result is that the average car is less inefficient since it lies nearer
to the new frontier.

11 Note that not rejecting the null hypothesis alone does not allow to make this statement since the
efficiency scores could be equal (stochastically undominated). If the reverse null hypothesis is not
rejected the efficiency scores are equal and we report this finding.

12 One might argue that the resulting efficiency scores of the groups largely depend on the variable
selected as inputs and outputs for our analysis. However, we want to point out that several different
specifications have been tested and lead to similar results in the efficiency scores.

13



6

-�
�
�
�
�
�
�
��
!!!!!!!!

y

u
0

r

r

r

r r
r

b

b

b

b

b

b

A

B

Figure 4: Weak disposable output set with two groups of DMUs

This figure shows a weak disposable output set that consists of two groups of observations

(group 1 denoted by ◦ and group 2 denoted by •). Since the frontier is defined only by

observations from group 2 we could characterize group 2 as more efficient than group

1. But if we compare the overall effiency measures this result might be overturned since

several observations from group 2 are located far below the frontier while the observations

of group 1 lie more close to the boundary although no DMU of this group is classified as

efficient.

To evaluate whether differences in the performance of a group depend on program or man-

agerial aspects we use the frontier seperation approach proposed by Charnes et al. (1981)

in a variant proposed by Portela and Thanassoulis (2001). In this apporach the efficiency

score of a DMU estimated in the overall dataset is splitted into two components, the pro-

gram efficiency and the managerial efficiency. While the managerial efficiency indicates

the inefficiency of a DMU relativ to its group frontier, the program efficiency indicates the

difference between the group frontier and the overall frontier hence the efficiency of the

whole program. We use the terminology of managerial and program efficiency, although it

does not completely suit to the analysis of cars, because it is common in the literature of

the frontier seperation approach (see Thanassoulis et al. (2008)). The resulting efficiency

scores are decomposed as:

• θOv = θMa · θPr

• (1 + βOv) = (1 + βMa) · (1 + βPr)

14
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Figure 5: Frontier Seperation Approach

To illustrate this approach figure 5 shows the output set under weak disposability like

figure 2. The boundary of the overall output set is still given by 0AB and the vertical

extension from B. So the overall efficiency measure under weak disposability (1+βO) of

C is 0CC
′′

0CC
. If we compare C only to its own program than the DMUs belonging to group

1 become irrelevant and the boundary is given by 0D and the vertical extension. The

efficicency score for C now is given by 0CC’

0CC
. This is called the managerial efficiency since

it expresses all ineffiency that is not based on program differences. Program effiency is

then given by the difference between the two boundaries and can be estimated by the

residual of overall and managerial efficiency,
0C”

0C

0C’

0C

. We will compare the obtained efficiency

scores within groups as well as between groups (for the three different measures defined

above) to determine in more detail how the incorporation of emissions changes the results

of the groups and to identify the sources for efficiency differences between groups.

In our paper we analyse the efficiency of the following groups:13

• car classes: compact class cars, middle class cars and upper class cars

• regional groups: Europe, United States, Asia

• special utility vehicles (SUVs)

• cars with natural gas engines (NGEs)

The first group refers to the general structure of the automobile market. We expect the

compact cars to be more efficient as the middle and upper class vehicles because we assume

that the additional luxury equipment lowers the technical and environmental performance

hence resulting in another trade-off. The regional groups are based on the three largest

automobile producing regions. The SUV’s are of special interest since their market share

in Europe has increased in the last years (see Zervas (2010)) while their environmental

performance is questionable (see Plotkin (2004)). The converse holds for natural gas

13Note that the three groups are not disjoint, e.g. SUVs are part of the classes
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engines which are supposed to be technically and environmentally superior to standard

engines.

The following figures contain boxplots for the results of the efficiency analysis and the

frontier seperation approach. The results for the overall dataset are also included because

they provide a useful benchmark for the group results with regard to their overall efficiency.
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Figure 6: Boxplots for class results
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Figure 6 shows the boxplots of the efficiency scores for the overall dataset as well as the

results of the frontier seperation for the car classes. The summary statistics for the class

results can be found in table 4 in the appendix. We start our discussion of the results

with a comparison of the overall efficiency of the different groups with the results of the

overall dataset. We find that compared to the overall dataset only compact cars perform

better while middle and upper class cars perform worse. This result holds for all three

efficiency measures and is statistically significant (see p-values in the tables 7 and 8 in the

appendix). As explained above this comparison does not reveal any information about

the ranking of the program efficiency of the three car classes. So from this result we can

only conclude that the overall efficiency of the compact class is higher than the overall

efficiency of middle and upper class cars. To obtain more detailed informations of the

performance of the different classes, boxplots and summary statistics for both, manage-

rial and program efficiency evaluations, can be found in the same figure and table as the

overall efficiency results. The boxplots show, that for compact and middle class cars the

overall efficiency results are mainly based on managerial aspects rather the effects due to

program efficiency. For upper class cars we see that the program efficiency contributes

more to the overall efficiency results. A comparison within the classes between the three

efficiency measures θ, 1+βO and 1+βUO (see tables 8 and 9 in the appendix for results of

the tests for stoachastic dominance) shows that while the ranking obtained for the over-

all dataset (θ ≻FSD 1 + βO ≻FSD 1 + βO) can be found again for the overall and the

managerial efficiency of all three classes, the results with regard to the program efficiency

are different. While the results from DEA and DDFO are stochastically undominated for

compact and upper car class, DDFO results stochastically dominate the results from DEA

for the midddle class. So while the incorporation of emissions does not change the distance

of the frontier functions of the compact and the upper class cars to the overall frontier, it

enlarges the difference for the middle class cars indicating that this class is relatively less

efficient when emissions are introduced. The between-classes analysis (for the p-values of

the tests see table 13 in the appendix) shows that compact class cars are more efficient

than the other classes in all efficiency types (overall, managerial and program) and for

all three efficiency measures. But if we compare middle and upper class vehicles we find

that while upper class performs better with regard to the managerial aspects it performs

worse regarding program efficiency. Graphically speaking the observations of upper class

cars lie nearer to their own (class) frontier then the middle class observations to theirs but

the (class) frontier is significantly further away from the overall frontier than the middle

class frontier. This latter effect dominates and so the upper class is less efficient than

middle class regarding overall efficiency. If we compare the different efficiency measures

between the classes, we see that the ranking of the car classes does not change, hence

the ranking is neither influenced by the incorporation of emissions nor by the trade-off

between environmental and technical performance.
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Figure 7: Boxplots for regional results

Figure 7 shows the boxplots for the results of the overall dataset as well as for the results of

the regions of origin of the cars (Europe, United States, Asia) while the summary statistics

for the regional results can be found in table 5 in the appendix. Comparing the overall

efficiency results with the overall dataset we find that European cars perform slightly

better (the efficiency results are only second-order stochastically dominated) while Asian

and American cars perform worse. This result holds for all three efficiency measures. The

results from the frontier seperation, presented in the same places as the previous overall
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results, show that for European cars the managerial aspects account for nearly all of the

overall efficiency results. For the United States and Asia the effect of program aspects

is larger, but the main forces that drive the overall efficiency results are also managerial

aspects. The within-analysis of the regions (for test results see tables 11 and 12 in the

appendix) shows for Europe the usual relation between the efficiency measures for the

overall and the managerial efficiency. For program efficiency we find that the results

from DDFO stochastically dominate those from DEA. Therefor the European (regional)

frontier lies further away from the overall frontier when emissions are incorporated. We

find analogeous results for Asia but the first-order stochastic dominance of DDFO to DEA

in program efficiency is only significant at the 10 % level. For the United States we

find weaker significance for the stochastic dominance of DEA to DDFO for overall (only

second-order dominance is significant) and managerial efficiency (first-order dominance

is significant at the 10 % level). With regard to the program efficiency of the United

States we find that both measures are stochastically undominated so the incorporation

of emissions does not change the location of the program frontier relative to the overall

frontier. Comparing the results between the regions (see table 13 in the appendix for

the related test results) we find for all efficiency measures that Europe is stochastically

dominated by Asia as well as the United States with regard to the overall as well as the

program efficency. This last result shows that the regional frontier of European cars lies

closer to the overall frontier than the frontiers of Asia or the United States. In fact,

the DEA analysis shows that 1287 European cars (43 %) are classified efficient regarding

program effiency, so we can conclude that many parts of the overall frontier are identical to

the European program (regional) frontier when emissions are ignored. For the managerial

efficiency we find that results for European cars dominate both the results for Asia as

well as those for the United States indicating a greater distance of European cars to their

regional frontier compared to the distance of Asian or United States cars to their regional

frontiers. Comparing Asia and the United States we find that the overall efficiency results

as well as the managerial efficiency results are undominated for all efficiency measures.

Comparing the results of the program efficiency for DEA and the DDFO we find that Asia

stochastically dominates the United States, hence the United States frontier lies closer to

the overall frontier than the Asian frontier. For DDFUO we find no statistically significant

differences. That means if we account for the trade-off between emission reduction and

technical improvement then we do not find significant differences between the Asian and

the United States frontier. We want to point out that although the results we obtained

for the program efficiency of the regions may be often statistically significant, the program

efficiency only contributes very little to the overall efficiency. Therefor, the differences of

the regional frontiers to each other as well as to the overall frontier are quite small.
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Figure 8: Boxplots for NGE and SUV results

The results from the efficiency analysis for the SUVs and especially for the NGEs which

are presented in figure 8 above and table 6 in the appendix are the most surprising ones of

our analysis. We present the results of both groups together, because we expected these

groups to have opposite results, the NGEs being considerably more efficient than any other

car group, the SUVs performing significantly worse. Interestingly the results for the NGEs

do not meet our expectations. First, comparing the overall dataset to both groups we find

that both groups perform significantly worse (see tables 7 and 8 in the appendix). While

we expected this result for SUVs it is quite surprising for NGEs. The frontier seperation

approach gives a more detailed explanation for this result. For both groups the main

source for their relative ineffiency is their poor performance in program efficiency while

managerial aspects only contribute little to the efficiency results (see figure 7). While we

expected SUVs to have a group frontier far away from the overall frontier we are quite

surprised finding nearly the same result for NGEs. The within-group analysis (see table

15 and 16 in the appendix) shows the usual dominance relation between the efficiency

measures for the overall and managerial efficiency of the SUVs for the NGEs. The within-

group analysis with regard to the program efficiency shows that for SUVs DEA results are

dominated by the DDFO results while the converse holds for the NGEs. Therfore, when

emissions are incorporated the group frontier of the SUVs lies further away of the overall

frontier while the group frontier of the NGEs lies closer to the overall frontier compared

to the case when emissions are ignored. We interpret our finding for the NGEs in the

way that although they show an enhanced performance when emissions are introduced

their lack of technical effiency compared to cars with conventional engines is remarkably

high (as it can be seen by comparing the θ scores of NGEs with the scores of the overall

sample), overturning the environmental advantages and thus resulting in a relatively poor
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efficiency performance.
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6 Conclusion

In this paper we analyze the technical efficiency of cars using nonparametric methods.

Emphasizing the importance of incorporating carbon dioxide emissions we use a nonpara-

metric approach and measure efficiency based on directional distance functions to evaluate

the technical efficiency of the automobiles when the reduction of emissions is regarded as

an equally important target. To check whether the results are significant in a statistical

sense, we use tests that are based on the concept of stochastic dominance. Our results

show that the incorporation of carbon dioxide emissions has a significant effect on the re-

sulting effieciency scores of the automobiles in our dataset reducing the average potential

to enhance efficiency by 1.7 %. The trade-off between reducing emissions and increasing

the technical performance lowers this potential further by 7.4 %.

Dividing the dataset in several special groups and using a frontier seperation approach

we get a more detailed analysis about the sources of efficiency differences between the car

groups. Analysing the results for car classes, we find that the compact class cars per-

form significantly better then middle or upper class cars showing the trade-off between

technical and environmental efficiency of a car on the one hand and energy-consuming

luxury equipment of the car on the other hand. The analysis of the regions of origin shows

that European cars perform better than Asian cars and cars from the United States.

We emphasize that this result may be due to our dataset, that is captured from an online

database of a German automobile club thereby lacking some non-European cars. The most

surprising result of our analysis is the finding for cars with natural gas engine. While we

expected them to be highly technically efficient, at least when incorporating carbon diox-

ide emissions, we found that the opposite is true. The results show that natural gas cars

are significantly less efficient compared to the overall sample and that the incorporation

of carbon dioxide emissions enhances their performance but ultimately has only a very

limited effect on the overall effiency of this car class. We want to emphasize, that this

result does not automatically imply the bold conclusion that the technology of natural

gas engines is inferior to standard engines but that it also could be due to the fact that

the cars that are currently saled are in an early stage of the technological development

and many potential efficiency improvements appear to be unexploited yet. Furthermore

we want to stress that our analysis assumes constant returns to scale and we therefor does

not account for efficiency differences that are based on size effects. An extension of our

analysis to the case of variable returns to scale, e.g. with the model proposed by Zhou

et al. (2008b), might give further insights in the role of scale effects in the automobile

technology. This is an important point on our agenda for future research.
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8 Appendix

Table 3: Used terminology (see Cantner et al. (2010))

Category Example

Brand VW

Produt line Golf

Model Golf 1.6

Model variant Golf 1.6 Trendline
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Table 4: Summary statistics of the efficiency measures - Classes

Efficiency Measure Car Class Type of Efficiency Min. 1. Qu. Median Mean 3. Qu Max. SD Total Eff. % Eff.

DEA (θ)

Compact
Overall 1 1.071 1.129 1.134 1.189 1.43 0.083 29 4.5
Managerial 1 1.061 1.111 1.121 1.172 1.392 0.081 42 6.52
Program 1 1.001 1.006 1.012 1.016 1.163 0.016 110 17.08

Middle
Overall 1 1.137 1.208 1.219 1.29 1.855 0.118 33 1.4
Managerial 1 1.098 1.164 1.175 1.234 1.771 0.106 57 2.41
Program 1 1.012 1.031 1.038 1.055 1.215 0.031 62 2.62

Upper
Overall 1 1.148 1.239 1.258 1.355 1.859 0.158 20 2.1
Managerial 1 1.068 1.142 1.156 1.219 1.793 0.117 60 6.3
Program 1 1.027 1.066 1.088 1.129 1.415 0.082 69 7.24

DDFO (1+βO)

Compact
Overall 1 1.057 1.111 1.119 1.172 1.415 0.081 47 7.3
Managerial 1 1.042 1.095 1.106 1.158 1.39 0.081 73 11.34
Program 1 1.001 1.005 1.012 1.016 1.15 0.017 119 18.48

Middle
Overall 1 1.122 1.194 1.202 1.272 1.712 0.111 50 2.12
Managerial 1 1.081 1.144 1.155 1.213 1.636 0.099 90 3.81
Program 1 1.013 1.033 1.041 1.061 1.214 0.034 63 2.66

Upper
Overall 1 1.135 1.221 1.244 1.336 1.793 0.155 30 3.15
Managerial 1 1.056 1.131 1.143 1.206 1.723 0.112 91 9.55
Program 1 1.026 1.065 1.089 1.127 1.507 0.083 64 6.72

DDFUO (1+βUO)

Compact
Overall 1 1.05 1.086 1.087 1.121 1.252 0.051 40 6.21
Managerial 1 1.041 1.081 1.08 1.115 1.252 0.051 54 8.39
Program 1 1 1.002 1.006 1.007 1.134 0.011 186 28.88

Middle
Overall 1 1.082 1.125 1.127 1.171 1.352 0.063 44 1.86
Managerial 1 1.06 1.102 1.105 1.144 1.344 0.06 86 3.64
Program 1 1.006 1.014 1.021 1.03 1.199 0.02 58 2.45

Upper
Overall 1 1.087 1.137 1.142 1.197 1.412 0.079 28 2.94
Managerial 1 1.045 1.096 1.099 1.142 1.323 0.068 80 8.39
Program 1 1.011 1.027 1.039 1.058 1.286 0.04 66 6.93
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Table 5: Summary statistics of the efficiency measures - Regions

Efficiency Measure Region Type of Efficiency Min. 1. Qu. Median Mean 3. Qu Max. SD Total Eff. % Eff.

DEA (θ)

Europe
Overall 1 1.120 1.193 1.209 1.278 1.859 0.129 67 2.24
Managerial 1 1.110 1.184 1.199 1.268 1.859 0.128 80 2.67
Program 1 1 1.001 1.008 1.010 1.178 0.016 1287 43.01

United States
Overall 1 1.133 1.213 1.233 1.304 1.830 0.151 7 2.34
Managerial 1 1.078 1.155 1.178 1.237 1.733 0.144 25 8.36
Program 1 1.033 1.047 1.047 1.060 1.111 0.022 7 2.34

Asia
Overall 1 1.139 1.22 1.231 1.313 1.829 0.126 8 1.19
Managerial 1 1.085 1.161 1.169 1.247 1.702 0.113 39 5.82
Program 1 1.036 1.05 1.053 1.066 1.199 0.026 8 1.19

DDFO (1+βO)

Europe
Overall 1 1.105 1.179 1.194 1.265 1.793 0.124 98 3.28
Managerial 1 1.095 1.169 1.183 1.249 1.793 0.123 119 3.98
Program 1 1 1.002 1.009 1.012 1.157 0.016 843 28.18

United States
Overall 1 1.115 1.2 1.211 1.286 1.712 0.142 14 4.68
Managerial 1 1.051 1.139 1.155 1.213 1.632 0.133 36 12.04
Program 1 1.033 1.046 1.048 1.059 1.245 0.028 14 4.68

Asia
Overall 1 1.121 1.206 1.213 1.301 1.749 0.12 15 2.24
Managerial 1 1.062 1.141 1.148 1.226 1.497 0.105 62 9.25
Program 1 1.036 1.05 1.057 1.069 1.326 0.035 15 2.24

DDFUO (1+βUO)

Europe
Overall 1 1.074 1.115 1.12 1.163 1.363 0.067 86 2.87
Managerial 1 1.068 1.111 1.116 1.158 1.36 0.067 105 3.51
Program 1 1 1.001 1.004 1.004 1.115 0.009 1031 34.46

United States
Overall 1 1.081 1.134 1.138 1.19 1.352 0.08 13 4.35
Managerial 1 1.041 1.1 1.107 1.153 1.319 0.077 30 10.03
Program 1 1.022 1.029 1.029 1.035 1.083 0.014 13 4.35

Asia
Overall 1 1.085 1.135 1.136 1.182 1.412 0.067 13 1.94
Managerial 1 1.049 1.1 1.103 1.15 1.391 0.068 56 8.36
Program 1 1.02 1.027 1.03 1.036 1.172 0.017 13 1.94
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Table 6: Summary statistics of the efficiency measures - SUVs and NGEs

Efficiency Measure Car Group Type of Efficiency Min. 1. Qu. Median Mean 3. Qu Max. SD Total Eff. % Eff.

DEA (θ)

SUV
Overall 1 1.257 1.335 1.343 1.409 1.83 0.135 3 0.73
Managerial 1 1.053 1.118 1.132 1.184 1.523 0.106 37 8.98
Program 1 1.147 1.193 1.187 1.231 1.37 0.066 3 0.73

NGE
Overall 1 1.196 1.277 1.301 1.377 1.855 0.166 1 0.47
Managerial 1 1.028 1.085 1.118 1.168 1.554 0.12 35 16.28
Program 1 1.13 1.167 1.162 1.193 1.376 0.057 1 0.47

DDFO (1+βO)

SUV
Overall 1 1.242 1.322 1.321 1.385 1.749 0.127 5 1.21
Managerial 1 1.022 1.085 1.099 1.143 1.414 0.089 70 16.99
Program 1 1.161 1.208 1.201 1.247 1.357 0.067 5 1.21

NGE
Overall 1 1.132 1.22 1.232 1.328 1.712 0.141 8 3.72
Managerial 1 1 1.054 1.084 1.134 1.463 0.095 53 24.65
Program 1 1.091 1.132 1.135 1.173 1.434 0.071 8 3.72

DDFUO (1+βUO)

SUV
Overall 1 1.15 1.194 1.191 1.23 1.412 0.066 4 0.97
Managerial 1 1.038 1.098 1.099 1.143 1.319 0.074 60 14.56
Program 1 1.056 1.08 1.086 1.107 1.248 0.045 4 0.97

NGE
Overall 1 1.101 1.15 1.148 1.2 1.352 0.071 4 1.86
Managerial 1 1.003 1.052 1.063 1.102 1.304 0.062 49 22.79
Program 1 1.06 1.075 1.081 1.097 1.245 0.038 4 1.86
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Table 7: Tests of groups against overall dataset (first-order stochastic dominance)

Compact Class Middel Class Upper Class Europe Asia United States SUV Natural Gas Engine

θ 0 0.352 0.962 0.108 0.68 0.786 0.994 0.997
0.995 0.002 0 0.993 0 0.08 0 0

1 + βO 0 0.234 0.984 0.164 0.684 0.631 0.997 0.969
0.993 0.002 0 0.972 0 0.171 0 0.001

1 + βUO 0 0.52 0.937 0.036 0.852 0.797 0.997 0.993
0.994 0.016 0 0.997 0 0.003 0 0

Table 8: Tests of groups against overall dataset (second-order stochastic dominance)

Compact Class Middel Class Upper Class Europe Asia United States SUV Natural Gas Engine

θ 0 0.798 0.736 0.049 0.8 0.695 0.794 0.795
0.81 0.007 0 0.806 0.001 0.013 0 0

1 + βO 0 0.792 0.799 0.072 0.79 0.515 0.789 0.743
0.794 0.007 0 0.791 0.001 0.061 0 0

1 + βUO 0 0.787 0.695 0.008 0.783 0.573 0.779 0.773
0.788 0.009 0 0.789 0 0.001 0 0
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Table 9: Tests for first-order stochastic dominance (overall dataset and classes - within)

H0 Dataset Compact Class Middle Class Upper Class
Overall Managerial Program Overall Managerial Program Overall Managerial Program

θ �FSD (1 + βO) 0.997 0.989 0.983 0.565 0.995 0.995 0.002 0.992 0.986 0.699
(1 + βO) �FSD θ 0 0.003 0.001 0.43 0 0 0.911 0.152 0.022 0.833
θ �FSD (1 + βUO) 0.996 0.989 0.988 0.971 0.994 0.995 0.981 0.992 0.987 0.97
(1 + βUO) �FSD θ 0 0 0 0 0 0 0 0 0 0
(1 + βO) �FSD (1 + βUO) 0.886 0.797 0.37 0.974 0.945 0.97 0.976 0.982 0.789 0.986
(1 + βUO) �FSD (1 + βO) 0 0 0 0 0 0 0 0 0 0

Table 10: Tests for second-order stochastic dominance (overall dataset and classes - within)

H0 Dataset Compact Class Middle Class Upper Class
Overall Managerial Program Overall Managerial Program Overall Managerial Program

θ �SSD (1 + βO) 0.799 0.759 0.747 0.495 0.797 0.787 0.001 0.799 0.762 0.591
(1 + βO) �SSD θ 0 0 0.001 0.481 0 0 0.704 0.022 0.004 0.683
θ �SSD (1 + βUO) 0.806 0.773 0.75 0.742 0.812 0.791 0.788 0.806 0.765 0.776
(1 + βUO) �SSD θ 0 0 0 0 0 0 0 0 0 0
(1 + βO) �SSD (1 + βUO) 0.739 0.615 0.51 0.737 0.767 0.763 0.797 0.788 0.667 0.77
(1 + βUO) �SSD (1 + βO) 0 0 0 0 0 0 0 0 0 0
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Table 11: Tests for first-order stochastic dominance (regions - within)

H0 Europe Asia United States
Overall Managerial Program Overall Managerial Program Overall Managerial Program

θ �FSD (1 + βO) 0.995 0.993 0 0.991 0.984 0.094 0.987 0.980 0.694
(1 + βO) �FSD θ 0 0 0.834 0.069 0.005 0.708 0.111 0.094 0.639
θ �FSD (1 + βUO) 0.995 0.994 0 0.992 0.984 0.991 0.986 0.977 0.985
(1 + βUO) �FSD θ 0 0 0 0 0 0 0 0 0
(1 + βO) �FSD (1 + βUO) 0.903 0.834 0.983 0.943 0.861 0.973 0.944 0.776 0.935
(1 + βUO) �FSD (1 + βO) 0 0 0 0 0 0 0 0 0

Table 12: Tests for second-order stochastic dominance (regions - within)

H0 Europe Asia United States
Overall Managerial Program Overall Managerial Program Overall Managerial Program

θ �FSD (1 + βO) 0.788 0.786 0.004 0.807 0.742 0.005 0.789 0.754 0.33
(1 + βO) �FSD θ 0 0 0.711 0.006 0 0.673 0.034 0.023 0.499
θ �FSD (1 + βUO) 0.8 0.801 0.723 0.812 0.757 0.821 0.802 0.755 0.773
(1 + βUO) �FSD θ 0 0 0 0 0 0 0 0 0
(1 + βO) �FSD (1 + βUO) 0.733 0.732 0.718 0.736 0.651 0.788 0.741 0.674 0.718
(1 + βUO) �FSD (1 + βO) 0 0 0 0 0 0 0 0 0
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Table 13: Tests for stochastic dominance (classes - between)

First-Order Stochastic Dominance Second-Order Stochastic Dominance

Compared Classes Type of Efficiency θ 1 + βO 1 + βUO θ 1 + βO 1 + βUO

Compact � Middle Overall 0 0 0 0 0 0
Managerial 0 0 0 0 0 0
Program 0 0 0 0 0 0

Compact � Upper Overall 0 0 0 0 0 0
Managerial 0 0 0 0 0 0
Program 0 0 0 0 0 0

Middle � Compact Overall 0.996 0.996 0.994 0.804 0.79 0.789
Managerial 0.994 0.993 0.994 0.791 0.775 0.774
Program 0.991 0.992 0.988 0.769 0.776 0.769

Middle � Upper Overall 0 0 0 0 0 0
Managerial 0.693 0.497 0.34 0.785 0.77 0.765
Program 0 0 0 0 0 0

Upper � Compact Overall 0.993 0.991 0.995 0.803 0.784 0.776
Managerial 0.773 0.989 0.744 0.638 0.745 0.637
Program 0.986 0.987 0.985 0.761 0.749 0.747

Upper � Middle Overall 0.438 0.3 0.298 0.45 0.423 0.37
Managerial 0 0 0 0 0 0.001
Program 0.033 0.047 0.033 0.645 0.642 0.653
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Table 14: Tests for stochastic dominance (regions - between)

First-Order Stochastic Dominance Second-Order Stochastic Dominance

Compared Regions Type of Efficiency θ 1 + βO 1 + βUO θ 1 + βO 1 + βUO

Europe � Asia Overall 0 0 0 0 0 0
Managerial 0.994 0.992 0.967 0.798 0.784 0.771
Program 0 0 0 0 0 0

Europe � United States Overall 0.01 0.04 0 0.002 0.016 0
Managerial 0.773 0.851 0.565 0.806 0.78 0.785
Program 0 0 0 0 0 0

Asia � Europe Overall 0.686 0.654 0.932 0.802 0.788 0.777
Managerial 0 0 0 0 0 0
Program 0.988 0.989 0.99 0.702 0.714 0.709

Asia � United States Overall 0.176 0.41 0.087 0.503 0.801 0.351
Managerial 0.038 0.074 0.192 0.161 0.205 0.267
Program 0.995 0.99 0.262 0.803 0.798 0.579

United States � Europe Overall 0.858 0.783 0.832 0.738 0.544 0.618
Managerial 0 0 0.001 0.001 0 0.004
Program 0.969 0.992 0.968 0.699 0.714 0.718

United States � Asia Overall 0.157 0.111 0.295 0.202 0.124 0.257
Managerial 0.211 0.381 0.451 0.277 0.286 0.398
Program 0.004 0.001 0.336 0 0 0.168
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Table 15: Tests for first-order stochastic dominance (SUVs and NGEs - within)

H0 SUVs Natural Gas Engine
Overall Managerial Program Overall Managerial Program

θ �FSD (1 + βO) 0.99 0.978 0.001 0.986 0.965 0.848
(1 + βO) �FSD θ 0.05 0 0.941 0 0.002 0
θ �FSD (1 + βUO) 0.992 0.98 0.992 0.985 0.964 0.987
(1 + βUO) �FSD θ 0 0 0 0 0 0
(1 + βO) �FSD (1 + βUO) 0.964 0.131 0.98 0.722 0.542 0.714
(1 + βUO) �FSD (1 + βO) 0 0.328 0 0 0.001 0

Table 16: Tests for second-order stochastic dominance (SUVs and NGEs - within)

H0 SUVs Natural Gas Engine
Overall Managerial Program Overall Managerial Program

θ �FSD (1 + βO) 0.81 0.742 0.001 0.807 0.733 0.778
(1 + βO) �FSD θ 0.008 0 0.664 0 0 0
θ �FSD (1 + βUO) 0.826 0.733 0.829 0.83 0.728 0.804
(1 + βUO) �FSD θ 0 0 0 0 0 0
(1 + βO) �FSD (1 + βUO) 0.764 0.179 0.821 0.637 0.573 0.592
(1 + βUO) �FSD (1 + βO) 0 0.578 0 0 0.003 0
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