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Abstract

In this paper we propose a stochastic formulation of the materials balance condition which im-

poses physical constraints on production technologies. The estimation of the model involves a

composed error term structure that is commonly applied in the literature on stochastic fron-

tier analysis of productive efficiency. Moreover, we discuss how OLS, maximum likelihood and

Bayesian methods can be used to estimate the proposed model. In contrast to previous ap-

proaches our model allows to estimate the physical limitations to production possibilities in the

presence of statistical noise and depends on substantially weaker data requirements. We demon-

strate the applicability of our new approach by estimating the materials balance condition for

SO2 and CO2 using a sample of fossil-fueled power plants in the United States.

JEL classification: Q53, C51, Q40, D24

Keywords: Materials balance condition; Abatement efficiency; Stochastic frontier analysis;

Laws of thermodynamics; Applied econometrics; Environmental economics

∗Tel.: +49 6151 165319, Fax: +49 6151 163897, E-Mail: hampf@vwl.tu-darmstadt.de
†I am grateful to Jens Krüger and Kenneth Rødseth for valuable comments.



1 Introduction

Accounting for the physical limits on production possibilities imposed by thermodynamic laws

has become an important issue in the literature on environmental production economics. For

example, Baumgärtner et al. (2001) discuss the physical limits to joint production of desirable

outputs and pollution while Lauwers (2009) emphasizes the importance of physical constraints

when estimating the productive efficiency of decision making units (DMUs, e.g. firms). In par-

ticular, researchers in production economics are concerned with the first law of thermodynamics,

the law of energy conservation.1 In its reduced form as the the law of mass conservation, it has

been introduced to the economic literature by Ayers and Kneese (1969) and has become an im-

portant research object commonly referred to as the materials balance condition (MBC). This

condition states that materials cannot vanish during a production or, more general, transforma-

tion process. For example, in the production of wooden chairs the initial amount of the input

wood has to be equal to the weight of the good output (wooden chairs) as well as the production

residual (shavings).

In the economic literature the MBC provides an important tool for both theoretical and em-

pirical research with a focus on environmental pollution.2 Theoretical research is concerned

with modeling production technologies which account for the restrictions imposed by the MBC.

While Ebert and Welsch (2007) discuss the implications of the MBC for production economics,

Førsund (2009) and Murty et al. (2012) criticize conventional models on production technolo-

gies including environmental pollution (e.g. Färe et al. (1989)) for not accounting for the MBC.

Since these models allow for physically impossible changes in the production structure of the

DMUs they are likely to lead to biased and implausible results, e.g. when analyzing the produc-

tive efficiency of DMUs based on these estimated technologies. To overcome this issue, Hampf

(2014) and Rødseth (2014) propose theoretical production models which allow to estimate the

production technology accounting for the MBC. While Hampf (2014) models the overall envi-

ronmental production technology set as the intersection of a conventional technology set and

a set defined by the MBC, Rødseth (2014) proposes a modified set of axioms for production

technologies based on the concepts of weak g-disposability and output essentiality. Empirical

studies on environmental efficiency (see Coelli et al. (2007), Welch and Barnum (2009), Hoang

and Rao (2010), Hoang and Coelli (2011), Hoang and Alauddin (2012) and Hoang and Nguyen

(2013)) apply the MBC to evaluate minimal emissions for a fixed amount of outputs accounting

for factor substitution according to the MBC.

Although the MBC has become a frequently applied tool in economic studies, its current formu-

lation imposes critical limits for empirical research. When incorporated into economic models,

the MBC is included as a deterministic equation without accounting for any random elements.

For example, stochastic effects which may affect the generation of emissions (e.g. weather condi-

tions) are not captured in this modelling. While this approach to the MBC reflects the original

idea of a physical law which can be studied under laboratory conditions, it is less suitable for

1 See Çengel (2008) for an introduction to the laws of thermodynamics.
2 In this paper we focus on the implications of the MBC for microeconomic theory and applications. For studies
on macroeconomic consequences of the MBC see van den Bergh and Nijkamp (1994) and Akao and Managi
(2007).
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empirical economic research where predominantly data are used which are obtained from a non-

controllable environment, hence are faced with stochastic influences. To our knowledge, the only

study which accounts for stochastic effects in a model including the MBC is Hoang and Nguyen

(2013). In this study differences in environmental efficiency, which is estimated using the MBC,

are explained by applying second-stage regressions. However, as pointed out by Simar and Wil-

son (2007) the two-stage approach provides statistically valid results only under very restrictive

assumptions, e.g. a separability condition which ensures that the second-stage regressors affect

the efficiency results but not the shape of the technology. Therefore, the approach by Hoang and

Nguyen (2013) addresses differences in environmental efficiency assuming that the coefficients

of the MBC remain known, deterministic constants.

Furthermore, all currently available models which include the MBC depend on very detailed

data regarding the production process (e.g. material content of inputs) which are only available

in a very small number of datasets. For example, all of the above cited studies are either

focusing on the energy sector in the United States or datasets from agricultural economics.3

This dependency on detailed data is particularly unfortunate since it forces applied researchers

to rely on conventional approaches to environmental production technologies which violate the

MBC and, thus, are based on physically infeasible production possibilities.4

To overcome these problems, we propose a stochastic formulation of the MBC and discuss

methods to estimate this model in the presence of unobserved abatement of pollutants. Our

proposed estimation strategy is based on recent methodological advances in the literature on

stochastic frontier analysis (SFA) accounting for a composed error term, heterogeneity and

doubly-truncated distributions. We further discuss how ordinary least squares (OLS), maximum

likelihood (ML) and Bayesian methods can be used to estimate the parameters of the stochastic

materials balance condition (SMBC). The empirical applicability of our model is demonstrated

by an estimation of the SMBC for sulfur dioxide (SO2) and carbon dioxide (CO2) using a well-

studied dataset on U.S. power plants. Since for this sample very detailed data (e.g. on abatement

efficiencies) are available, we are able to compare the estimated results of our novel model with

the reported values which provide benchmark results.

Our results indicate that for an analysis of pollutants for which abatement technologies are

available (e.g. SO2) our new methodology estimated by ML or Bayesian methods provides

reasonable results for both the coefficients of the MBC as well as the abatement efficiency of

the plants. Moreover, we find that in this setting conventional OLS leads to seriously biased

estimates. However, for pollutants without abatement possibilities (e.g. CO2) we find that OLS

performs better in small samples than the ML or Bayesian estimation of a misspecified model

allowing for abatement.

This paper is structured as follows: Section 2 presents the formulation and the estimation of

the stochastic materials balance condition while section 3 presents the data and results of our

analysis of U.S. power plants. Finally, section 4 concludes the paper.

3 This difficulty for applied research has been discussed e.g. during a panel session on the modeling of bad
outputs at the European Workshop on Efficiency and Productivity Analysis in Verona in 2011.

4 See Hampf and Rødseth (forthcoming) for a comparison of a conventional and a materials balance approach
to environmental efficiency.
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2 Theory of the stochastic materials balance condition

In this section we present the theoretical approach to stochastic materials balances. We start by

presenting the formulation of the SMBC and discuss distributional assumptions on the composed

error term. Based on this formulation we discuss possibilities to estimate this stochastic model.

2.1 Formulating the stochastic materials balance condition

In the following discussion we assume a production process where m inputs x ∈ R
m
+ are used

to produce k good (or desirable) outputs y ∈ R
k
+ jointly with a single pollutant p ∈ R+.

We denote by T the technology set of the production process containing all technically (and

physically) possible production points. Therefore, T can be defined as:

T =
{
(x,y, p) ∈ R

m+k+1
+ : x can produce (y, p)

}
. (2.1)

T is restricted by the MBC in a way that it only includes production points which ensure that

the amount of materials bound in the inputs is equal to the amount of materials bound in the

good outputs and the pollutant. Formally, the MBC for the above defined technology set is

given by:

sTxx = sTy y + p (2.2)

Here, sTx ∈ R
m
+ denotes the transpose of the m × 1 vector of emission factors indicating the

amount of materials bound in one unit of each input while sTy ∈ R
k
+ denotes the transpose of

the k × 1 vector of recuperation factors indicating the amount of materials bound in one unit

of each output. Both vectors may include zeros for inputs or outputs which do not contain any

materials (e.g. labor input or electricity output).

In this formulation of the MBC we have assumed that no pollution control in form of abatement

activities takes place. Therefore, all materials which are not contained in the good outputs are

released as pollution p to the environment. However, in many production processes abatement

technologies (e.g. scrubbers) are used to reduce the amount of pollution emitted to the environ-

ment. Denoting a ∈ R+ the amount of abatement of pollutant p the MBC which accounts for

abatement processes can be formulated as:

sTxx = sTy y + p+ a. (2.3)

As discussed in the introduction, empirical analyses use equation (2.3) as a deterministic restric-

tion on the production possibilities. Therefore, precise data on inputs, outputs, pollution and

emission as well as recuperation factors are needed for applied research.5 Usually, the amount

of abatement is unknown to the researcher and is estimated as the residual of the MBC (see

Hampf (2014)). Therefore, the application of the model depends on the availability of very

detailed data and, even if these data are available, does not account for any stochastic elements.

5 While precise data on emission factors are available for energy economic studies, studies in agricultural eco-
nomics are often based on rough rule-of-thumbs approaches to these factors (see the discussion on nitrogen
and phosphorus content in Hoang and Coelli (2011)).
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To overcome these issues, we propose a stochastic formulation of the MBC. Assuming a sample

of i = 1, . . . , n observations (e.g. plants) the stochastic materials balance condition can be

defined as:

pi = βT
xxi − βT

y yi − ai + ui (2.4)

where we have replaced the known emission and recuperation factors by unknown, to be esti-

mated vectors of regression coefficients βx and βy. In order to interpret these coefficients as

emission and recuperation factors we additionally impose the restrictions βx ≥ 0 and βy ≥ 0

indicating that neither inputs nor outputs can be associated with a negative material content.

In this model pi can be interpreted as the net emissions released to the environment, while

βT
xxi − βT

y y represents the gross emissions generated during the production of good outputs.

The random error term ui captures the stochastic influences on the regression model (e.g. mea-

surement errors). Combining the stochastic error term with the (unknown) amount of abatement

ai leads to the composed error term of the SMBC model:

ǫi = −ai + ui. (2.5)

In our model the composed error term ǫi influences the emissions in two ways. The gross

emissions are reduced by the amount of abatement ai. However, the final amount of net emissions

released to the environment is also affected by random components (e.g. weather conditions)

captured by ui.

This structure of the proposed regression model is similar to the stochastic frontier models stud-

ied in the literature on the measurement of productive efficiency (see Kumbhakar and Lovell

(2000) for an overview of this literature). These models are used to estimate the coefficients

of production functions (e.g. partial elasticities of production) accounting for productive ineffi-

ciency of the observations, which corresponds to our abatement term, and random noise. In the

following we exploit and adapt concepts and assumptions from the SFA literature to obtain an

estimation procedure for our SMBC model.

In line with the SFA literature we assume that the random effects are normally distributed with

mean equal to 0 and variance σ2
u. Moreover, we assume that they are independent from the

abatement term ai.
6 Hence, we impose the distributional assumption:

ui
iid
∼ N

(
0, σ2

u

)
(2.6)

To estimate the emission and recuperation factors of the SMBC and to obtain results for the

amount of abatement, distributional assumptions need to be imposed on the abatement term

ai. In contrast to the noise component ui, the abatement ai does not follow a symmetric

distribution due to a truncation from below at zero. This truncation follows from the non-

negativity assumption regarding the amount of abatement (or inefficiency in the SFA models).

Since the seminal papers on SFA by Aigner et al. (1977) and Meeusen and van den Broeck (1977)

a large number of distributional assumptions regarding the inefficiency term has been proposed

accounting for the the special structure of this term. In addition to the truncation at zero, it

6 See Smith (2008) for a SFA model accounting for dependencies in the composed error term.
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is assumed that the distribution is right-skewed implying that a large share of the probability

mass is located close to zero. Therefore, most observations are assumed to be only slightly

inefficient. Using equation (2.5) and combining the (symmetric) normal distribution for ui with

a right-skewed distribution for the inefficiency term leads to a left-skewed distribution of the

composed error term ǫi. Following Waldman (1982) the skewness of the residuals of a simple OLS

regression can be used as an indicator on whether the SFA model contains any inefficiency. These

residuals should be left-skewed if the output of the observations is systematically reduced due

to inefficiencies. To obtain a right-skewed distribution for the inefficiency term truncated from

below at zero, Aigner et al. (1977) propose to use a half-normal distribution or an exponential

distribution. Stevenson (1980) proposes a more flexible formulation based on a truncated normal

distribution allowing for a non-zero mode of the distribution. Greene (1990) presents a model

based on the gamma distribution.7 Note that all of these models assume that the mean and the

variance of the inefficiency distribution are identical across the observations.

Although the basic formulation of SFA models is similar to our SMBC model, the conventional

distributional assumptions regarding the inefficiency term cannot be readily imposed on the

abatement term ai in our model. The abatement term differs from the inefficiency term of SFA

models in the following points:

1. ai is bounded from below and above.

2. E(ai) and V ar(ai) are not identical for all i = 1, . . . , n.

3. No assumption regarding the skewness of the distribution of ai can be imposed.

The first point captures the fact that abatement (like inefficiency) can not be negative and hence

ai is truncated from below at zero. However, in contrast to inefficiency the abatement term ai is

also truncated from above. This upper boundary is equal to the gross emissions (βT
xxi −βT

y yi)

since the maximal possible amount of abatement cannot be larger than the gross emissions which

implies non-negative net emissions.8

The second point addresses the issue that in our model ai denotes the total amount of abated

gross emissions. Since these gross emissions depend on the individual amount of inputs and

outputs of the DMUs, the mean of the distribution on ai cannot be constant across all obser-

vations. Moreover, in line with Wang (2002) we do not impose the rather strict constraint that

the variance of ai is constant while the mean varies. Therefore, we assume that the distribution

of ai exhibits a mean and a variance varying among observations.

The last point captures the fact that the skewness of ai depends on the abatement efficiency of

the DMUs. If, in line with the conventional SFA models, one assumes that most DMUs are very

efficient, hence abate nearly all of their emissions, then ai ≈ βT
xxi − βT

y y for most observations

indicating a mode of the distribution close to the upper boundary given by the gross emissions.

This leads to a left-skewed distribution for ai and, thus, a right-skewed distribution for the

7 See Greene (2008) for an overview of other distributional assumptions.
8 From a theoretical point of view an upper boundary is also present in SFA models since the inefficiency cannot
be larger than the output according to the production function. However, in these models the inefficiency is
often concentrated at zero so that the upper boundary has no effect on the distribution or the results.
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composed error term.9 Therefore, the conventional SFA assumptions leading to a right-skewed

distribution and the diagnostic by Waldman (1982) can not be applied in our model.

To obtain a distributional assumption which accounts for all points discussed above we combine

several recently proposed methodological advances in the literature of SFA. To our knowledge,

the only SFA model which accounts for a doubly-truncated inefficiency term has been proposed

by Almanidis et al. (2014). They extend the truncated normal model by Stevenson (1980)

and assume that the inefficiency term is bounded from below at zero and from above at a

fixed constant B > 0. In our model of abatement their approach results in the distributional

assumption:

ai
iid
∼

∣∣N(ω, σ2
a)
∣∣+ , 0 ≤ ai ≤ B. (2.7)

where ω denotes the mean of the normal distribution truncated at 0 and B, while σ2
a denotes

the variance.10 Assuming B ≥ ω the mean of the untruncated distribution is equal to the

mode of the truncated distribution. As discussed above, the assumption of a fixed mean and

variance of the distribution cannot be uphold in our model. Several formulations accounting

for varying means (see e.g. Kumbhakar et al. (1991)) or variances (see e.g. Caudill and Ford

(1993)) based on parametric specifications have been proposed. Wang (2002) presents a unifying

approach including functional forms for both parameters. In addition, Kumbhakar and Tsionas

(2008) propose a model based on Kumbhakar et al. (2007) which estimates individual means and

variances of the truncated normal distribution by using local maximum likelihood estimation.

To obtain a suitable and identifiable distribution for the abatement term ai, we combine the

approach by Almanidis et al. (2014) with the scaling property for the mean and variance of a

distribution as introduced in the SFA literature by Wang and Schmidt (2002). As discussed in

Alvarez et al. (2006), the scaling property implies that the individual distribution of ai can be

obtained by individual scaling of a basic random variable. This basic variable is assumed to

follow the same distribution for all observations implying a fixed mean and variance of the basic

distribution. In our approach to the SMBC we define the basic variable a∗i by:

a∗i =
ai

βT
xxi − βT

y yi

. (2.8)

a∗i can be interpreted as the abatement efficiency of observation i. Hence, 100%× a∗i represents

the percentage reduction in gross emissions due to abatement. For this basic variable we assume

the basic distribution:

a∗i
iid
∼

∣∣N(µ, σ2
a∗)

∣∣+ , 0 ≤ a∗i ≤ 1. (2.9)

Here, µ denotes the mean (mode) of the untruncated (doubly-truncated) distribution and σ2
α∗

the variance of the untruncated distribution. Since the abatement of one unit of gross emissions

cannot be negative or larger than the gross emissions, the distribution of a∗i is doubly-truncated

at zero and one.

This specification of the distribution for the basic random variable implies that all observation

9 See Almanidis and Sickles (2011) for further discussions on the “wrong” skewness issue in SFA models.
10 In the terms of Amsler et al. (forthcoming) ω represents the pre-truncation mean. They further discuss

whether the pre- or the post-truncation mean should be the focus of SFA modeling. In this paper we follow
the conventional approaches and focus on the pre-truncation mean.
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are assumed to have the same distribution regarding their abatement efficiency a∗i . Based on this

basic distribution all heterogeneity in the mean and variances of the distribution of the absolute

amount of abatement ai is caused by differences in the amount of gross emissions (differences in

scale). This assumption leads to the following distribution for the abatement ai:

ai ∼
(
βT
xxi − βT

y yi

)
×

∣∣N
(
µ, σ2

a∗

)∣∣+ , 0 ≤ a∗i ≤ 1. (2.10)

Since scaling of the doubly truncated distribution is feasible (see Horrace (2005)), ai follows the

distribution:

ai ∼
∣∣∣N

((
βT
xxi − βT

y yi

)
µ,

(
βT
xxi − βT

y yi

)2
σ2
a∗

)∣∣∣
+
, 0 ≤ ai ≤ βT

xxi − βT
y yi. (2.11)

To visualize the scaling property, figure 1 depicts two density functions. The solid line indicates

the density of the basic distribution a∗i ∼ |N(1, 0.2)|+, 0 ≤ a∗i ≤ 1 while the dashed line indicates

the density of the scaled distribution ai ∼ |N(2, 0.8)|+, 0 ≤ ai ≤ 2 where ai = 2a∗i . While both

density functions show the same shape (or structure) they differ with regard to their scale and,

hence, exhibit different means and variances.
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0
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1
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Figure 1: Example of the scaling property
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Note that in contrast to the original publication on the scaling property by Wang and Schmidt

(2002) we do not account for the influence of exogenous variables (so-called z-variables).11

By assuming a parametric specification of the mean of the distribution for ai based on the

inputs and outputs of the model, we follow the approach by Huang and Liu (1994) where

a parametric specification of the mean based on both endogenous and exogenous variables is

proposed. However, the model by Huang and Liu (1994) does not account for heterogeneity of

the variance or the scaling property of the distribution. Modeling the variance as a function

of the endogenous variables has been proposed by Caudill and Ford (1993) but without using

the scaling property. Moreover, in contrast to Wang and Schmidt (2002) we do not rely on an

exponential functional form which precludes a negative mean of the function. We refrain from

this restriction in order to make our distributional assumption more closely connected to the

discussion on the SMBC. If negative results are an issue in the estimation, the model can be

adapted to account for an exponential structure.

Finally, we want to mention that our model assumes that the emission (recuperation) factors βx

(βy) are homogeneous across the observations.12 Models that include heterogeneous coefficients

have been proposed by Tsionas (2002) and Huang (2004). While, in principle, our model could

be modified to account for heterogeneity, due to the simultaneous inclusion of the heterogeneous

coefficients in the distribution on ai the identification of the parameters may be difficult. For

example, Galán et al. (2014) note that models with heterogeneous coefficients tend to show only

very small inefficiencies. Intuitively, it may be impossible in a modified SMBC accounting for

heterogeneous coefficients to identify econometrically whether a small amount of net emissions of

an observation is caused by a small material content of the inputs of this observation or whether

the observation abates a large amount of the gross emissions.

2.2 Estimating the stochastic materials balance condition

In the literature on stochastic frontier models with composed error terms various econometric

methods to estimate the models have been discussed. Greene (1980) proved that ordinary least

squares provide consistent estimates of the coefficients of the frontier function. More precisely, in

a frontier model including a constant and slope parameters, OLS provide a consistent estimation

of the slope parameters while the constant needs to be adjusted by adding the maximum value

of residuals to obtain an unbiased estimator. This corrected ordinary least squares (COLS)

approach has been proposed by Winsten (1957). In our model of the SMBC no constant is

included since pollution can not be positive if no inputs or outputs are included. Therefore,

simple OLS could be applied to estimate the SMBC. However, due to the correlation of the

residuals and the regressors which is caused by the mean and the variance of the distribution of

ai being functions of the regressors, the standard assumptions for linear regression models are

violated and hence OLS does not lead to consistent estimates. Only in case that ai = 0 ∀i, thus

in a situation without any abatement activities, OLS can be expected to provide statistically

valid results. However, even if ai = 0 ∀i the non-negativity restrictions on the emission and

11 However, the proposed model could be easily extended to include these variables.
12 This implies, for example, that the coal used by power plants is homogeneous across the plants.
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recuperation factors need to be accounted for. If OLS does not lead to positive coefficients, the

restrictions can be accounted for by using inequality restricted least squares (see Liew (1976)).

Assuming ai ≥ 0 ∀i, we follow Huang and Liu (1994) and use maximum likelihood estimation

to obtain the parameters of the stochastic materials balance condition, the distribution of the

abatement efficiency and the total amount of abatement. Modifying the results for the doubly-

truncated normal model by Almanidis et al. (2014) the log-likelihood function of our model

reads as:

lnL = −ln

[
Φ

(
1− µ

σa∗

)
− Φ

(
−µ

σa∗

)]
−

n∑

i=1

ln

(√
σ2
u +

(
βT
xxi − βT

y yi

)2
σ2
a∗

)

−
n

2
ln (2π)−

n∑

i=1

(
pi + (µ− 1)

(
βT
xxi − βT

y yi

))2

2
(
σ2
u +

(
βT
xxi − βT

y yi

)2
σ2
a∗

) (2.12)

+
n∑

i=1

ln


Φ




pi(βT
x xi−βT

y yi)σa∗

σu
+ (1−µ)σu

σa∗√
σ2
u +

(
βT
xxi − βT

y yi

)2
σ2
a∗


− Φ




(pi−βT
x xi+βT

y yi)(βT
x xi−βT

y yi)σa∗

σu
− µσu

σa∗√
σ2
u +

(
βT
xxi − βT

y yi

)2
σ2
a∗






where Φ(.) denotes the standard normal distribution function.

Maximizing this function leads to ML estimators for βx,βy, µ, σ
2
a∗ and σ2

u. Note that suitable

transformations of the parameters are needed to ensure non-negativity. In particular, µ is

bounded in the interval [0, 1]. This can be achieved, e.g., by the hyperbolic transformation of

parameters (see Nash (2014) for a discussion).13

The results of the ML estimation can be used to calculate the abatement efficiency a∗i using a

modified version of the Jondrow et al. (1982) estimator of technical inefficiency for SFA models.

The estimator of the abatement efficiency in our SMBC model is given by the expected value of

a∗i conditional on ǫi
βT
x xi−βT

y yi

and reads as:

E

(
a∗i

∣∣∣∣∣
ǫi

βT
xxi − βT

y yi

)
= µ∗ + σ∗

φ
(
−µ∗

σ∗

)
− φ

(
1−µ∗

σ∗

)

Φ
(
1−µ∗

σ∗

)
− Φ

(
−µ∗

σ∗

) (2.13)

where φ(.) denotes the standard normal density function. Moreover,

µ∗ =

µ∗ σ2
u

(βT
x xi−βT

y yi)
2 − ǫi

βT
x xi−βT

y yi

σ2
a∗

σ2
a∗ +

σ2
u

(βT
x xi−βT

y yi)
2

, σ∗ =

σa∗

√
σ2
u

(βT
x xi−βT

y yi)
2

√
σ2
a∗ +

σ2
u

(βT
x xi−βT

y yi)
2

.

Based on the estimates of a∗i and the model parameters, the total amount of abatement of

observation i can be estimated using:

âi = â∗i

(
β̂
T

xxi − β̂
T

y yi

)
. (2.14)

13 In the statistical software R the dfoptim package provides an optimization algorithm based on the hyperbolic
transformation allowing for interval bounded parameters.
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However, the ML estimator suffers from the fact that the doubly-truncated SFA model is only

locally identified (see Almanidis et al. (2014) for further discussions). Hence, multiple local max-

ima may exist making it necessary to check multiple starting values or use global optimization

methods (e.g. simulated annealing) to find the global optimum which may not exist (see Ritter

and Simar (1997) for further discussions on this issue in SFA models). One solution to this

problem is the reduction of the number of parameters and hence the flexibility of the model.

For example, following the conventional SFA models one may assume that most observations

abate nearly all their gross emissions and, thus, are abatement efficient. Therefore, the number

of parameters can be reduced by setting µ = 1.

Another solution to this issue are Bayesian methods which do not rely on the maximization of

the likelihood function. Bayesian stochastic frontier models have been introduced by van den

Broeck et al. (1994).14 In their paper, van den Broeck et al. (1994) focus on deriving priors

for the basic stochastic frontier models as discussed above. Since our model is not based on

the classical SFA models we cannot rely on these informative priors. However, as shown by

Fernández et al. (1997) the posteriori distribution exists given that the applied priors are proper

(integrating to one) even if vague (or non-informative) priors are used. To estimate the above

derived model of a stochastic materials balance condition we propose a set of priors extending

the ideas of Griffin and Steel (2007):15

βxr
∼

∣∣∣N
(
0, σ2

βxr

)∣∣∣
+

∀r = 1, . . . ,m

βys ∼
∣∣∣N

(
0, σ2

βys

)∣∣∣
+

∀s = 1, . . . , k

σ−2
a∗ ∼ Γ (a, b)

σ−2
u ∼ Γ (c, d)

µ ∼ U (0, 1)

(2.15)

To ensure non-negativity of the emission and recuperation factors we use independent truncated

normal priors with truncation point zero. The independence assumption is based on the the-

oretical concept of emission factors, e.g. in our empirical example of a SMBC for SO2 of U.S.

power plants the sulfur content of coal is independent from the sulfur content of natural gas.

However, in case that this assumption cannot be imposed the dependencies between the factors

could be taken into account by using multivariate truncated normal priors. However, this dis-

tribution is not implemented in standard software for Bayesian econometrics (e.g. WinBUGS)

but has to be manually accounted for (see Wilhelm and Manjunath (2010) for a presentation of

the multivariate truncated normal distribution for the statistical software R). In addition to the

priors for the emission and recuperation factors, we assume the conventional gamma priors for

the inverted variances (precisions) of the distributions of the random noise and the abatement

efficiency term. Finally, a uniform prior spanning the interval [0,1] is assumed for the mean of

the truncated distribution for a∗i .

14 For an introduction to Bayesian SFA see Tsionas (2001). For practical implementations using WinBUGS see
Griffin and Steel (2007).

15 See the following section for a discussion on the choice of the parameters of the prior distributions in an
empirical analysis.
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3 Empirical application to U.S. power plants

In this section we present the data used to illustrate the above proposed SMBC model and

discuss the results for U.S. power plants comparing the estimates obtained by OLS, ML and

Bayesian analysis.

3.1 Data of U.S. power plants

To demonstrate the empirical applicability of our model we estimate the stochastic materials

balance condition for two pollutants, sulfur dioxide (SO2) and carbon dioxide (CO2), using a

sample of U.S. power plants. These plants have been analyzed in numerous empirical studies on

production economics using both conventional (see e.g. Färe et al. (2007) and Mekaroonreung

and Johnson (2012)) as well as materials balance based models (see Welch and Barnum (2009),

Hampf (2014) and Hampf and Rødseth (forthcoming)).16 The deterministic MBC models are

applied to analyze these plants since very detailed data on the fuel consumption, emission output

as well as emission factors are freely available.

We apply our new stochastic materials balance model to these plants to show how valid results

can be obtained using only a subset of the data needed in previous studies while simultane-

ously accounting for random noise. Moreover, we use the reported material content as well as

the abatement efficiencies with regard to SO2 as a benchmark to compare the results of our

model.17 Finally, the estimation of the SMBC for CO2 and SO2 allows us to analyze the effects

of mispecifying the SMBC. For SO2 (CO2) abatement technologies are (not) available and hence

assuming zero (positive) abatement may lead to biased results.

In our study we focus on generating units which only use bituminous coal. Moreover, we

also include units which in addition to bituminous coal use natural gas. Although our model

can account for multiple fuels (e.g. different types of oil, coal etc.) we restrict our sample

to these two inputs. On the one hand, this approach allows to model a more homogeneous

dataset with a limited number of observations as frequently analyzed in empirical studies (see

e.g. Mekaroonreung and Johnson (2012)).18 On the other hand, including one fuel type which

contains sulfur (coal) and one fuel type which does not contain any sulfur (natural gas) allows to

evaluate the quality of the estimates in terms of indicating an emission factor of sulfur dioxide

equal to zero for natural gas. Since electricity generation is not associated with the production

of a material containing output, no good output is included in our estimation.

We construct our sample using data on the electricity generating units of the plants provided

by the U.S. Energy Information Administration (EIA) and the U.S. Environmental Protection

Agency (EPA).19 The analysis could be also performed using aggregated data on the plant level.

16 See Zhou et al. (2008) for a survey on energy-related studies in efficiency analysis.
17 To remove SO2 emissions power plants use flue gas desulfurization units (FGDs). For further discussions on

abatement by FGDs see Srivastava and Josewicz (2001).
18 Note that in contrast to studies on productive efficiency our model does not need to be based on a homogeneous

production technology since the materials balance is not affected by the efficiency with regard to transforming
inputs into good outputs, e.g. differences among gas and coal fired power plants in generating electricity do
not influence the material content of the inputs.

19 See Woodruff et al. (2012) for further details on power plants structures (e.g. generators, boilers etc.)
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However, some information e.g. on the abatement efficiency are only reported on the unit level.

Moreover, typical studies on the efficiency of plants use unit level data in order to obtain a

larger sample size and account for potential heterogeneity among the units which could be not

accounted for if plant level data are used. Unit level data on the fuel consumption are provided

by the file EIA-923. File EIA-860 includes detailed data on the FGD units. In particular, the

abatement efficiency (on an annual basis) of the FGDs is reported. Finally, the EPA provides

the Clean Air Markets database which contains data on the net SO2 and CO2 emissions of the

electricity generating units.

Our analyzed sample contains 87 generating units which were in operation during 2012. While

this number seems rather small it is in line with the number of observations in typical empirical

analyses and provides more realistic opportunities to evaluate our model compared to the sim-

ulation of a large number of artificial data. The descriptive statistics of the included variables

are presented in table I.

Table I: Descriptive statistics of the variables

Min Mean Median Max St.dev.

Bituminous coal (short tons) 100.00 492327.03 374572.00 2132220.00 523251.65
Natural gas (1000 cubic feet) 0.00 363516.49 67230.00 7673302.00 1040011.29
Sulfur dioxide (short tons) 4.02 2389.62 1294.84 17448.63 3084.46
Carbon dioxide (short tons) 1844.48 1232139.18 903058.48 5527276.51 1294754.51

To evaluate whether the emission factors of bituminous coal and natural gas for SO2 and CO2

estimated by our model are realistic, we calculate approximations of the true values based on

data of the sulfur content provided by the EIA and natural constants from physical chemistry.

For the basics on physical chemistry as used in the following derivation of the emission factors

see Atkins and de Paula (2014). The results of our calculations are summarized in table II.

Table II: Approximate emission factors

Fuel type Emission factor (in short tons)
Sulfur dioxide (SO2) Carbon dioxide (CO2)

Bituminous coal 0.008− 0.12 −
Natural gas 0 0.056

In addition to the fuel input of the generating units, the EIA (2012, table 1) reports an interval

of the sulfur content for each fuel type based on the minimal and maximal weight proportion

of sulfur. For natural gas no sulfur content is reported since methane (CH4) does not contain

any sulfur. For bituminous coal the weight share of sulfur lies within the interval of 0.4− 6.0%

leading to 3.6−54.4 kilogram of sulfur per short ton of bituminous coal (1 short ton equals 0.907

metric tons which equal 1000 kilograms). The molar mass of sulfur is 32 gram per mol.20 Hence,

the burning of 1 short ton of bituminous coal leads to 112.5 − 1700 mol of sulfur. Using the

molar mass of SO2 (64 gram per mol) this corresponds to 7200−108800 gram of SO2. Therefore,

20 Mol is a chemical unit to express the amount of particles. One mol corresponds to 6.022× 1023 particles.
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the burning of one short ton of bituminous coal leads to approximately 0.008− 0.12 short tons

of SO2.

Unfortunately, the EIA does not report the carbon content of fuels. Thus, we cannot calculate

an approximation of the CO2 emission factor for bituminous coal. However, assuming that the

natural gas input is pure methane we can calculate the theoretical emission factor of CO2 for

natural gas. As noted in table I, the EIA reports the natural gas input in 1000 cubic feet. One

cubic feet is equal to 0.028 cubic meters and the density of methane is 0.66 kilogram per cubic

meter. Therefore, 1000 cubic feet of methane weigh 1000× 0.028× 0.66 = 18.48 kilogram. Since

the molar mass of methane is 16 gram per mol this amounts to 1155 mol of methane. The molar

mass of carbon dioxide is 44 gram per mol leading to 50820 gram of CO2 per 1000 cubic feet of

burned natural gas. This is equal to 0.056 short tons providing an approximation of the true

CO2 emission factor of natural gas.

In our analysis we will use the calculated results for the emission factors as a benchmark for the

results estimated based on our novel methodology described above.

3.2 Results for U.S. power plants

In the following we present the results of our estimation of the SMBC using the data on 87

electricity generating units in the United States. We compare the results for each of the two

pollutants (SO2 and CO2) using the three different estimation methods (OLS, ML and Bayesian

analysis) discussed above. During our analysis we found that the log-likelihood function indeed

shows multiple local maxima (see the discussion on the ML estimation in section 2). The global

optimum has been obtained by a grid search using various combinations of starting values.

Bayesian methods are applied using the priors specified above with parameter specification

a = b = c = d = 0.001 leading to diffuse priors for the inverse variances (see Griffin and

Steel (2007)). The Bayesian analysis is performed using 10000 iterations with a burn-in of 1000

iterations and a thinning rate of 5 draws leading to a fast mixing and converging of the chains.

The reported results for the Bayesian analysis are the posterior median results.

The results of our estimations are presented in table III which contains the estimated emission

factors for bituminous coal (β̂BIT ) and natural gas (β̂NG), the estimated mode of the distribution

of the abatement efficiency a∗ (µ̂) and the coefficient of determination (R2). Since our model

does not contain an intercept we follow Kv̊aseth (1985) and apply the uncentered R2 value to

compare the models.21 The uncentered R2 value for our SMBC model is defined as:

R2 = 1−

∑n
i=1 (pi − p̂i)

2

∑n
i=1 p

2
i

(3.1)

Note that the definition of the fitted values of the net pollution (p̂i) differ among SO2 and CO2.

For SO2 the fitted values are calculated as: p̂i = β̂BIT × BITi + β̂NG ×NGi − âi, where BITi

(NGi) denotes the amount of bituminous coal (natural gas) input of generating unit i. In case

21 Kv̊aseth (1985) discusses and compares various definitions of R
2 for standard and non-standard regression

models.
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of CO2 the fitted values are obtained by: p̂i = β̂BIT ×BITi+ β̂NG×NGi. The difference is due

to the fact that no abatement activities are present for CO2 emissions.

In addition to the estimated coefficients we present standard errors in parentheses. Statistical

significance is indicated by asterisks. Note that in order to make the OLS and ML results compa-

rable to the Bayesian results we use the posterior median results as point estimators and derive

statistical significance based on the estimated standard errors.22. Our approach therefore differs

from usual Bayesian analyses which use the deviance information criterium (DIC) by Spiegel-

halter et al. (2002) or Bayes factors to address statistical significance of coefficients. However,

since our main interests is the comparison of results among different estimation methods we

apply the frequentists methodology on the Bayesian estimates as well.

Table III: Results for the SMBC of U.S. power plants

Sulfur dioxide (SO2) Carbon dioxide (CO2)

Coefficient OLS ML Bayesian OLS ML Bayesian

β̂BIT 0.0036∗∗∗ 0.056∗∗∗ 0.056∗∗∗ 2.472∗∗∗ 3.231∗∗∗ 3.18∗∗∗

(0.0004) (0.0011) (0.0034) (0.018) (0.035) (0.1281)

β̂NG 0.000065 0.0002 0.00033 0.057∗∗∗ 0.087∗∗∗ 0.088∗∗∗

(0.0003) (0.0002) (0.0002) (0.012) (0.0062) (0.0082)

µ̂ 1∗∗∗ 0.988∗∗∗ 0.239∗∗∗ 0.2213∗∗∗

(0.056) (0.0153) (0.016) (0.0657)

R2 0.44 1 1 0.99 0.90 0.91

Note: Standard errors in parentheses. For the Bayesian estimates posterior median results
are reported. ∗∗∗ indicates statistical significance on the 1%-level.

We start by discussing the results for SO2, a pollutant for which abatement technologies in form

of flue gas desulfurization units exist. The results for the emission factors show that no model

estimates a statistically significant content of sulfur for natural gas. Therefore, all models are able

to correctly indicate that natural gas does not have an influence on SO2 emissions. However,

we find large differences in the numerical values of the statistically significant coefficient for

bituminous coal across the estimation methods. While ML and Bayesian analyses both lead

to an estimated coefficient of 0.056 the OLS estimate is 0.0036 and hence approximately 15

times smaller. Comparing the results with the SO2 interval as obtained based on the reported

sulfur content by the EIA (0.008 − 0.12) we find that while ML and Bayesian analyses lead

to estimates which are close to the center of the interval, the OLS estimate lies far below the

interval indicating a biased estimation of the emission factor in the presence of abatement. This

poor performance is also indicated by the R2 value which for OLS (0.44) is far smaller than the

value for ML or Bayesian analyses (1).23

The large differences between the OLS and the ML and Bayesian estimates can be attributed to

the incorporation of abatement efficiency in the latter models. The estimated mode of 1 (0.988)

22 Due to the use of truncated normal priors for the emission factors the confidence intervals can by definition not
include negative values. Therefore, the statistical significance can not be evaluated based on these intervals.

23 Note that the small differences in the estimates among the ML and the Bayesian method do not lead to
differences in the rounded R

2 value.
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of the ML (Bayesian) estimation indicates that a large amount of the gross emissions is reduced

by abatement. In contrast, OLS attributes the low net emissions to smaller emission factors of

the inputs, in particular bituminous coal, and hence provides biased results for these coefficients.

Applying the estimation methods to CO2 for which no abatement activities are present we obtain

different results regarding the ability to estimate the emission factors. The R2 values of 0.90 and

0.91 indicate that ML and Bayesian analyses perform well when estimating the net emissions.

Nonetheless, they are outperformed by OLS with a R2 of 0.99. This becomes even more obvious

when comparing the results for the emission factors. All methods find a statistically significant

CO2 content of bituminous coal and natural gas. However, as can be seen from comparing the

estimates for β̂NG with the theoretical emission factor of methane (0.056), the OLS estimate

(0.057) is much closer providing a nearly perfect match to this value while the ML (0.085) or

the Bayesian median posteriori estimate (0.088) are farther away from the theoretical values.

The larger emission factors of the ML and Bayesian estimations can be explained by the abate-

ment term which should be zero for CO2. However, both methods find a mode of the abatement

efficiency that is statistically significantly larger than zero indicating that the misspecified mod-

els lead to biased estimates. While we assume that the estimation of a non-zero mode is largely

due to the small sample size of our analysis, it nonetheless shows that OLS may lead to bet-

ter results compared to a misspecified application of the doubly-truncated SFA model for the

SMBC.
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Figure 2: Abatement efficiencies for sulfur dioxide
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To visualize whether the abatement efficiency a∗ of SO2 is correctly estimated by ML (using

the Jondrow et al. (1982) type estimator defined above) and the Bayesian analysis (where the

efficiency is simultaneously computed with the remaining parameters), figure 2 presents the

abatement efficiencies reported by the EIA (which we use as the “true” value) and the estimated

efficiencies according to the ML approach (left panel) and the Bayesian analysis (right panel).

The diagonal line with slope 1 indicates all points for which estimated and true values are

identical.

The figure shows that both approaches provide very similar estimates of the abatement effi-

ciencies. Moreover, the majority of points is located close to the diagonal line indicating that

most of the estimated efficiencies differ only slightly from their true values. This is also sup-

ported by the mean squared errors (mse) of the abatement efficiencies, which is 0.005952 for

the ML and 0.005954 for the Bayesian approach. However, we also find that a few points are

located farther below the diagonal line indicating that the accuracy of the estimation decreases

for observations located farther away from the mode of the efficiency distribution. This becomes

particularly obvious from the single outlier observation with a reported abatement efficiency of

0.35 and an estimated abatement efficiency of 0.8. Combining the findings from the figure we

can conclude that both approaches (ML and Bayesian analysis) are capable of estimating the

abatement efficiency correctly given homogeneous abatement efficiencies. However, the preci-

sion of the estimates declines if the abatement efficiencies are very heterogeneous among the

observations. In this case the assumption of a common basic distribution of the efficiencies may

not be supported by the data.

4 Conclusion

In this paper we have addressed the issue of estimating the materials balance condition in the

presence of statistical noise and an unknown amount of abatement. Therefore, we have formu-

lated a stochastic version of the materials balance condition and have shown how econometric

methods based on stochastic frontier models can be applied to estimate our model. By account-

ing for random influences and allowing to estimate abatement efficiencies using substantially

weaker data requirments than previous approaches, our model provides a possibility to incorpo-

rate fundamental physical laws in a larger number of applied research in production economics.

To demonstrate the applicability of model we estimated the stochastic materials balance con-

dition for sulfur dioxide and carbon dioxide using a sample of U.S. power plants. Comparing

estimations based on OLS, maximum likelihood and Bayesian methods we found that applying

simple OLS leads to seriously biased results if emissions resulting from the production process

are reduced by using abatement technologies. Comparing maximum likelihood and Bayesian

methods we found that the latter provide a simpler approach to the estimation since maximum

likelihood estimations are faced with multiple local maxima needing extensive grid searches or

global optimization methods to obtain valid results. Comparing the abatement efficiencies as

predicted by our model with the efficiencies reported by the plants we found that our model

allows to estimate efficiencies correctly if they are homogeneous across the observations, i.e.
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follow the same distribution. Outliers can be far less well explained in our model indicating that

large heterogeneity of the efficiencies may limit the applicability of our model.

The proposed model addresses the estimation of a stochastic materials balance condition in the

case of a single pollutant. To estimate the materials balance for two pollutants we implicitly

assumed separability of the pollutants in our empirical example. Future research may address

the possibility to estimate the stochastic materials balance condition simultaneously for multiple

pollutants taking potential interdependencies into account. Such extensions could be based on

stochastic frontier models of multiple outputs accounting for the production of bad outputs as

proposed by Fernández et al. (2002). Moreover, in our model we assumed that the emission fac-

tors (regression parameters) are homogeneous across the analyzed observations. While stochastic

frontier models of heterogeneous parameters lead to identification issues when combined with

our parametric specifications of the mean and the variance of the abatement distribution, the

local maximum likelihood approach of Kumbhakar and Tsionas (2008) could be combined with

our model to allow for locally differentiated emission factors.
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