
Trustworthy and Efficient Protection

Schemes for Digital Archiving

Vom Fachbereich Informatik der

Technischen Universität Darmstadt genehmigte

Dissertation

zur Erlangung des Grades

Doktor-Ingenieur (Dr.-Ing.)

von

MSc. Mart́ın Augusto Gagliotti Vigil

geboren in Florianópolis, Brasilien.

Referenten: Prof. Dr. Johannes Buchmann

Prof. Dr. Ricardo Custódio

Tag der Einreichung: 28.05.2015

Tag der mündlichen Prüfung: 14.07.2015

Hochschulkennziffer: D17

Darmstadt 2015

List of Publications

[1] Johannes Braun, Andreas Hülsing, Alexander Wiesmaier, Mart́ın Vigil, and Jo-

hannes A. Buchmann. How to avoid the breakdown of public key infrastructures

- forward secure signatures for certificate authorities. In Public Key Infrastruc-

tures, Services and Applications - 9th European Workshop, EuroPKI 2012, Pisa,

Italy, September 13-14, 2012, Revised Selected Papers, pages 53–68, 2012.

[2] Mart́ın Vigil, Daniel Cabarcas, Johannes Buchmann, and Jingwei Huang. As-

sessing trust in the long-term protection of documents. In 2013 IEEE Symposium

on Computers and Communications (ISCC 2013), pages 185–191, 2013. Cited

on pages 29 and 68.

[3] Mart́ın Vigil and Ricardo Custódio. Cleaning up the PKI for Long-Term Sig-

natures. In XII Simpósio Brasileiro de Segurança da Informação e de Sistemas

Computacionais, pages 140–153, 2012. Cited on page 109.

[4] Mart́ın Vigil, Cristian Thiago Moecke, Ricardo Felipe Custódio, and Melanie

Volkamer. The notary based PKI - A lightweight PKI for long-term signatures

on documents. In Public Key Infrastructures, Services and Applications - 9th

European Workshop, EuroPKI 2012, Pisa, Italy, September 13-14, 2012, Revised

Selected Papers, pages 85–97, 2012. Cited on page 68.

[5] Mart́ın Vigil, Christian Weinert, Kjell Braden, Denise Demirel, and Johannes

Buchmann. A performance analysis of long-term archiving techniques. In 2014

IEEE International Conference on High Performance Computing and Communi-

cations, 6th IEEE International Symposium on Cyberspace Safety and Security,

11th IEEE International Conference on Embedded Software and Systems, pages

878–889, 2014. Cited on page 47.

[6] Mart́ın Vigil, Christian Weinert, Denise Demirel, and Johannes Buchmann. An

efficient time-stamping solution for long-term digital archiving. In IEEE 33rd In-

iv List of Publications

ternational Performance Computing and Communications Conference (IPCCC

2014), pages 1–8, 2014. Cited on page 89.

[7] Mart́ın Vigil, Johannes Buchmann, Daniel Cabarcas, Christian Weinert, and

Alexander Wiesmaier. Integrity, authenticity, non-repudiation, and proof of ex-

istence for long-term archiving: A survey. Computers & Security, 50(0):16–32,

2015. Cited on pages 19, 29, and 47.

[8] Felipe Carlos Werlang, Ricardo Felipe Custódio, and Mart́ın Vigil. A user-

centric digital signature scheme. In Public Key Infrastructures, Services and

Applications - 10th European Workshop, EuroPKI 2013, Egham, UK, September

12-13, 2013, Revised Selected Papers, pages 152–169, 2013.

Abstract

The amount of information produced in the last decades has grown notably. Much

of this information only exists in the form of electronic documents and it has often

to be stored for long periods. Therefore, digital archives are increasingly needed.

However, for the documents to remain trustworthy while they are archived, they

need to be protected by the archivists. Important protection goals that must be

guaranteed are integrity, authenticity, non-repudiation, and proof of existence.

To address these goals, several protection schemes for digital archives have been

designed. These schemes are usually based on cryptographic primitives, namely dig-

ital signatures and hash functions. However, since documents can be archived for

decades or even indefinitely, the used cryptographic primitives can become insecure

during the archival time. This is a serious issue because it can be exploited by at-

tackers to compromise the protection goals of the archived documents. Therefore, a

requirement for long-term protection schemes is to address the aging of cryptography,

i.e. replacing the used primitives properly before they become insecure.

In this work we analyze and improve long-term protection schemes for digital

archives. More precisely, we aim at answering three questions. (1) How do long-

term protection schemes compare with respect to trustworthiness? (2) How do they

differ in performance? (3) Can new schemes be designed, which generate more

efficient and trustworthy evidence needed to establish the protection goals?

Although several protection schemes can be found in the literature, many of them

fail in addressing the aging of cryptography. Therefore, our first step is to iden-

tify which existing schemes provide long-term protection with respect to integrity,

authenticity, non-repudiation, and proof of existence.

Afterwards, to answer question (1) we analyze the trustworthiness of the long-term

protection schemes using two approaches. In the first approach, we initially identify

the required trust assumptions. Then, based on these assumptions, we compare the

protection schemes.

In the second approach, we turn to quantifying the trustworthiness of the evidence

generated by time-stamping and notarial schemes. To this end, we use a belief trust

vi Abstract

model and design a reputation system. This leads to two further, more detailed

answers to question (1). First, that trustworthiness depends on the reputation

of the involved parties rather than the protection schemes themselves. Second,

the trustworthiness of evidence tends to degrade in the long term. Therefore, we

propose to use the reputation system to create incentives for the involved parties to

build good reputation. This raises the trustworthiness of generated evidence, hence

addressing question (3).

Next, we address question (2) by analyzing how schemes differ in performance

using an analytical evaluation and experiments. More precisely, we measure the

times needed to create and verify evidence, the space required to store evidence,

and the communication necessary to generate evidence. Moreover, this analysis

shows that while verifying evidence most of the time is spent on checking certificate

chains.

The findings in the performance analysis provide us with directions for addressing

question (3). We propose three new solutions that provide more efficient evidence.

The first solution is a new notarial scheme that generates smaller evidence and that

communicates less data than the existing notarial scheme. Novelties in our scheme

include balancing the numbers of signatures that users and notaries verify, and using

notaries as time-stamp authorities to provide proof of existence.

The second solution is based on the time-stamping scheme Content Integrity Ser-

vice (CIS) and allows for faster evidence verification. To the best of our knowledge,

CIS is the only scheme designed for an archive where documents are submitted

and time-stamped sequentially but share the same sequence of time-stamps. How-

ever, in this case the validities of several time-stamps in this sequence may overlap.

Consequently, many of these time-stamps need not be checked when verifying the

time-stamp sequence for one document. We address this issue in our new scheme by

using a data structure called skip list. The result is a time-stamp sequence where

users can skip the time-stamps that are not necessary to guarantee the protection

goals of one document. Using an analytical evaluation and experiments, we show

that our scheme is notably faster than CIS.

The third solution is intended to reduce time spent on checking certificate chains

when verifying evidence generated by time-stamping schemes. More precisely, we

improve an existing public key infrastructure-based solution where the root certi-

fication authority generates smaller verification information for time-stamps. This

verification information can be used to replace the certificate chains needed to verify

time-stamps. However, this solution requires extra work from time-stamp authori-

ties and the root certification authority, especially when the number of time-stamps

grows significantly. In our solution, this issue is addressed such that this extra work

vii

is independent of the number of time-stamps. Using an analytical evaluation we

demonstrate the advantage of our solution.

Finally, we provide our conclusions and future work. In this thesis we design new

solutions that allow for more efficient and trustworthy evidence of protection for

archived documents. As future work, we suggest conducting more research in the

direction of developing methods that address the decay of the trustworthiness of

evidence over time.

Zusammenfassung

Ein großer Teil der in den letzten Jahrzehnten erzeugten Daten existiert nur noch in

elektronischer Form und muss für einen langen Zeitraum gespeichert werden. Aus

diesem Grund ist die Entwicklung sicherer elektronischer Archive wichtig. Dabei

ist es erforderlich die Integrität, Authentizität und Nichtabstreitbarkeit von Doku-

menten zu gewährleisten sowie einen Beweis für deren Existenz zu liefern.

Um diese Schutzziele zu erfüllen wurden verschiedene Verfahren entwickelt. Diese

erzeugen in der Regel entsprechende Beweise mit Hilfe von kryptographischen Primi-

tiven, wie beispielsweise digitale Signaturen oder Hashfunktionen. Allerdings müssen

Dokumente oft für mehrere Jahrzehnte oder sogar für einen unbegrenzten Zeitraum

aufbewahrt werden. Durch diese lange Speicherung der Dokumente ist anzunehmen,

dass die Sicherheit der verwendeten kryptographischen Primitive nicht für den ge-

samten Zeitraum gewährleistet werden kann. Dies ist ein ernst zu nehmendes

Risiko für die Langzeitsicherheit von archivierten Dokumenten, da es Angreifern die

Möglichkeit bietet ein oder mehrerer Schutzziele zu verletzen. Aus diesem Grund

ist eine wichtige Anforderung an die verwendeten Verfahren auch das Altern der

eingesetzten kryptographischen Primitive zu berücksichtigen. Ein möglicher, häufig

verwendeter, Ansatz ist die kryptographischen Primitive regelmäßig durch neuere

und sicherere zu ersetzen und die entsprechenden Beweise zu aktualisieren, bevor

die Sicherheit der alten Beweise gebrochen werden kann.

Diese Arbeit analysiert und verbessert Verfahren, die für die Gewährleistung von

Langzeitsicherheit digitaler Archive entwickelt wurden. Dabei werden insbesondere

drei Forschungsfragen adressiert: (1) Wie unterscheiden sich die einzelnen Verfahren

bezüglich ihrer Vertrauensannahmen? (2) Wie unterscheiden sich die einzelnen Ver-

fahren bezüglich ihrer Effizienz? (3) Könne neue effizientere und vertrauenswürdi-

gere Verfahren entwickeln werden?

Obwohl in den letzten Jahren bereits mehrere Verfahren zum Schutz von Doku-

menten in Archiven entwickelt wurden adressieren viele nicht das Altern der verwen-

deten kryptographischen Primitive und sind daher nicht für die Langzeitarchivierung

geeignet. Aus diesem Grund wird in dieser Arbeit zunächst identifiziert, welche

ix

Systeme die Integrität, Authentizität und Nichtabstreitbarkeit von Dokumenten auf

Dauer sicherstellen und einen entsprechenden Existenzbeweis liefern.

Danach, um Forschungsfrage (1) zu beantworten, werden die Vertrauensannah-

men der einzelnen Schutzmechanismen analysiert. Hier verfolgt diese Arbeit zwei

Ansätze. Zum einen werden die benötigten Vertrauensannahmen identifiziert und

anschließend, basierend auf diesen Annahmen, die existierenden Verfahren miteinan-

der verglichen.

Zum anderen wird die Vertrauenswürdigkeit in die zur Gewährleistung der Schutz-

ziele verwendeten Beweise quantifiziert. Hierbei konzentriert sich diese Arbeit auf

Verfahren, die Zeitstempel oder eine notarielle Beglaubigung zur Erstellung der Be-

weise verwenden. Dafür wird ein Reputationssystem vorgeschlagen, welches die Ver-

trauenswerte mit Hilfe eines so genannte
”
belief trust models“ berechnet. Dieser

Ansatz erlaubt zwei detaillierte Antworten auf Frage (1) zu geben. Erstens, dass

die Vertrauenswürdigkeit eines Beweises von der Reputation der bei der Erzeugung

involvierten Parteien abhängt und nicht von dem verwendeten Schutzmechanismus

selbst. Zweitens, dass die Vertrauenswürdigkeit des erzeugten Beweises abnimmt,

je häufiger dieser aktualisiert wird. Darüber hinaus animiert das entwickelte Repu-

tationssystem die involvierten Parteien sich vertrauenswürdig zu verhalten, um eine

gute Reputation aufzubauen. Dies erhöht auch indirekt die Vertrauenswürdigkeit in

die Gewährleistung der Schutzziele und adressiert somit ebenfalls Frage (3).

Anschließend widmet sich die Arbeit Frage (2), indem mit Hilfe einer analytischen

Evaluation und entsprechenden Laufzeitexperimenten analysiert wird, wie sich die

einzelnen Verfahren bezüglich der Effizienz unterscheiden. Dabei wird zum einen die

Zeit gemessen, die benötigt wird um einen Beweis zu erzeugen und zu verifizieren.

Zum anderen werden auch der Speicherbedarf der Beweise und die Komplexität

der Kommunikation beim Erzeugen der Beweise ermittelt. Diese Analyse hat unter

anderem gezeigt, dass bei der Verifizierung eines Beweises die Verifizierung der Zer-

tifikatsketten den höchsten Rechenaufwand hat.

Auf diesem und anderen Ergebnissen der Effizienzanalyse aufbauend wurde Frage

(3) adressiert. Um die Effizienz aktueller Verfahren zu verbessern werden drei

neue Verbesserungsansätze vorgeschlagen. Der erste Ansatz ist ein neues notarielles

Verfahren, welches kürzere Beweise erzeugt und einen geringeren Kommunikation-

saufwand hat, als die bestehenden Ansätze. Eine wichtige Neuerung dieses Ver-

fahrens ist eine Balance zwischen der Anzahl von Signaturen, die Benutzer ver-

ifizieren und denen die Notare überprüfen müssen zu schaffen. Darüber hinaus

werden Notare als Zeitstempeldienste eingesetzt.

Die zweite Lösung baut auf dem Content Integrity Service (CIS) auf, bietet jedoch

einen effizienteren Verifizierungsprozess von Beweisen. CIS ist unserem Kenntnis-

x Abstract

stand nach das einzige Verfahren für Archive, das sequentiell erzeugte und gespe-

icherte Dokumente mit Hilfe eines einzelnen Beweises schützt. Dieser besteht aus

einer Sequenz von Zeitstempeln. Daher kann es bei einer sequentiellen Generierung

und Archivierung von Dokumenten dazu kommen, dass Zeitstempel für diese gener-

iert werden, deren Gültigkeitsdauer sich aber überschneidet. Bei der Verifizierung

wird jedoch standardmäßig die Korrektheit aller Zeitstempel überprüft, obwohl dies

bei überschneidungen nicht nötig ist. Das in dieser Arbeit vorgestellte neue Ver-

fahren adressiert diesen Aspekt, indem eine Datenstruktur in Form von Skip-Listen

zur Verwaltung der Zeitstempel eingesetzt wird. Dadurch werden bei der Veri-

fizierung nur die Zeitstempel ausgewählt und überprüft, die entscheidend für die

Gewährleistung der Schutzziele sind. Basierend auf einer analytischen Evaluation

und Laufzeitexperimenten zeigen wir, dass der Verifizierungsprozess des in diese

Arbeit vorgestellten Verfahrens deutlich effizienter ist als der von CIS.

Die dritte Lösung hat als Ziel den Aufwand beim überprüfen der Zertifikatsket-

ten für die einzelnen Zeitstempel signifikant zu reduzieren. Ein Ansatz ist, dass die

Autoritäten von Wurzelzertifikaten kompaktere Informationen für die Verifikation

erzeugen und diese anschließend verwendet werden, um die langen Zertifikatsketten

zu ersetzen. Dieser Ansatz bedeutet jedoch nicht nur einen Mehraufwand für die

Zertifizierungsauthoritäten, sondern auch für die Zeitstempeldienste, die die Zeit-

stempel erzeugen. Erschwerend kommt hinzu, dass dieser Aufwand in Abhängigkeit

von der Anzahl von Zeitstempel wächst. Die in dieser Arbeit vorgestellte Lösung

verbessert diesen Ansatz, so dass der zusätzliche Aufwand unabhängig von der An-

zahl der Zeitstempel ist. Die Vorteile dieser Lösung werden anhand einer analytis-

chen Evaluation demonstriert.

Abschließend bietet diese Arbeit eine Zusammenfassung und einen Ausblick auf

weitere Forschungsfragen. Im Rahmen dieser Arbeit wurde eine Vielzahl neuer

Lösungen für Verfahren zum Schutz der Langzeitsicherheit von Dokumenten en-

twickelt, welche die aktuellen Verfahren bezüglich Effizienz und Vertrauenswürdigkeit

verbessern. Eine mögliche zukünftige Forschungsaufgabe ist beispielsweise Metho-

den zu entwickeln, die den Verlust der Vertrauenswürdigkeit bei der Langzeitspe-

icherung adressieren.

Contents

Abstract v

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Structure . 6

2 Preliminaries 7

2.1 Terminology . 7

2.2 Protection goals . 8

2.3 Cryptographic hash functions . 8

2.4 Merkle trees . 8

2.5 Signatures . 9

2.6 Public key infrastructures . 10

2.7 Signature verification . 10

2.8 Signature-based time-stamps . 11

2.9 Widely Visible Media-based time-stamps 12

2.10 Lifetime of cryptographic algorithms 13

2.11 Trust . 14

2.11.1 Definitions . 14

2.11.2 Quantifying and operating on reputation 14

2.11.3 Quantifying and operating on trust 15

2.12 Skip lists . 16

3 Protection schemes for long-term archiving 19

3.1 Time-stamping schemes . 19

3.1.1 The validity of a time-stamp 20

3.1.2 Time-stamp sequences . 20

3.1.3 Advanced Electronic Signatures 21

xii Contents

3.1.4 Content Integrity Service . 22

3.1.5 Evidence Record Syntax . 23

3.2 Notarial schemes . 25

3.2.1 Notarial attestations . 25

3.2.2 Cumulative Notarizations . 25

3.3 Replication schemes . 26

3.4 Schemes that fail to provide long-term protection 27

4 Trustworthiness analysis 29

4.1 A qualitative analysis based on trust assumptions 29

4.2 Quantifying the trustworthiness of evidence 34

4.2.1 Overview . 34

4.2.2 Computing trust scores . 37

4.2.3 Realizing a reputation system 39

4.2.4 Alternative approaches . 45

4.2.5 The trustworthiness of evidence over time 46

5 Performance analysis 47

5.1 Analytical evaluation . 47

5.2 Experiments . 53

5.2.1 Implementations design . 54

5.2.2 Comparing schemes in the long term 54

5.2.3 Comparing schemes for distinct signature lifetimes 60

5.3 Final comparisons and possible improvements 65

6 A new notarial scheme 68

6.1 Improving Cumulative Notarizations 68

6.1.1 Attested Certificates . 69

6.1.2 Retrievers check document signatures by themselves 72

6.1.3 Proof of existence is provided only by notaries 73

6.1.4 Addressing the aging of cryptography 73

6.2 Performance evaluation . 76

6.2.1 Analytical evaluation . 76

6.2.2 Experiment . 81

6.3 Trustworthiness analysis . 85

7 A new time-stamping scheme 88

7.1 Improving the performance of CIS . 89

7.1.1 Combining skip lists with time-stamps 90

Contents xiii

7.1.2 Addressing the aging of cryptography 98

7.2 Performance analysis . 101

7.2.1 Analytical evaluation . 101

7.2.2 Experiment . 104

8 A new public key certificate 109

8.1 Problem specification . 109

8.1.1 Re-signed time-stamps . 110

8.2 Re-signed certificates . 113

8.3 Performance analysis . 116

9 Conclusions and future work 120

9.1 Future work . 122

1 Introduction

1.1 Motivation

In the last decades, the amount of information produced in digital form has grown

notably. People, organizations, and machines have created more and more digitally-

based contents. Turner et al. [50] estimate that the size of this digital universe

should double every two years until 2020, reaching 44 zettabytes1.

Since a large amount of this data only exists electronically, digital archives are

often needed to securely and efficiently store this information for long periods of

time. Moreover, digital archives have been also used to preserve data migrated from

other types of media, such as paper and radio broadcast. Examples of organizations

that use or will use digital archives are the following:

• the Estonian land register, which contained permanent digital records of about

one million Estonian properties in 2014 [26];

• the Irish Tax and Custom, which stored 6.7 millions electronic tax returns only

in 2013 [49];

• the National Library of Norway, which archived about 1 exabyte2 of books,

journals, newspapers, and webpages in 2007 [33];

• the National Health Service in the United Kingdom, which should adopt elec-

tronic health records by 2018 [13]. These records must be retained for up to

20 years [14].

The misuse of data stored in archives has always been a serious issue. For example,

corrupted electronic medical records have misled physicians into prescribing wrong

treatments that harmed or even killed patients [44]. Forged documents claimed

11 zettabyte is 270 bytes.
21 exabyte is 260 bytes.

2 1 Introduction

to be from land registers have been used by criminals to carry out frauds [22].

Corporations have been involved in financial scandals, where the date of a stock

option is forged to make it more valuable [9]. Moreover, dictatorships have tampered

with historical documents in order to censor information [27].

To prevent these issues, digital archives must guarantee the long-term protection

of their data, i.e. the archived documents. This means that such documents must

be protected as long as they are in the archives. This time period may range from a

few decades to many generations, for example, in the case of land registers. To cover

long-term protection requirements, techniques are needed that provide everlasting

protection. We will in this work therefore use the terms long-term and everlasting

synonymously.

Important protection goals are integrity, authenticity, non-repudiation, proof of ex-

istence, and confidentiality. However, providing these protection goals for archived

documents is challenging. For instance, digital signatures are often used to provide

authenticity for digital documents. But, digital signatures become insecure when

their security properties are defeated by advances in computer power and cryptan-

alytic techniques. For example, today’s attacks can defeat the security of 512-bit

RSA signatures [10] which were considered secure in 1990. Therefore, single digital

signatures cannot provide long-term protection.

Numerous solutions have been designed to help archivists guarantee long-term

protection for documents. However, only few solutions can achieve the protection

goals in the presence of aging cryptographic primitives. Although this is not a

new topic, no comparative analysis of all schemes achieving the protection goals

in the long term has been provided so far. Such an analysis could help archivists

to select the protection scheme that meets their needs best. Moreover, selecting

the appropriate scheme at the very beginning can be important for archivists. The

reason is that, since schemes generate distinct evidence, it may be hard to replace

a scheme after it has been employed.

Furthermore, the long-term protection schemes should be analyzed with respect

to non-security properties. Two very important properties that have not received

the attention they deserve are trustworthiness and performance. The trust assump-

tions and correspondingly the trustworthiness of these schemes vary. Moreover, to

determine trustworthiness of the evidence generated for an archived document, fur-

ther questions still have to be answered. How reliable were the parties involved in

each protection scheme at the time evidence was created? Is the current reputation

of the involved parties important for the trustworthiness of evidence created far in

the past? Does the number of involved parties affect the trustworthiness of the gen-

erated evidence? Answers to these questions not only allow to select the appropriate

1.2 Contributions 3

protection schemes, but also help to predict whether the evidence will be accepted

as trustworthy by future users.

Finally, a performance analysis is desirable when selecting schemes because they

may perform differently under distinct scenarios. For example, digital archives where

documents are submitted in batches can benefit from schemes that produce a sin-

gle evidence for a batch of documents rather than for each document individually.

In other cases, however, documents can be submitted sequentially or updated fre-

quently, thereby requiring a different solution. After selecting the protection scheme,

the performance analysis also helps digital archives and involved trusted parties to

allocate the necessary resources. Furthermore, an analysis that indicates where

performance can be further improved is helpful to design more efficient solutions.

1.2 Contributions

The focus of this work is on analyzing and improving schemes that provide the

protection goals integrity, authenticity, non-repudiation, and proof of existence for

archived documents in the long term. Confidentiality is not covered here because

it requires solutions that are very different from those used to achieve the other

protection goals. For instance, the solutions for confidentiality use a distinct type of

cryptographic primitives and generate no evidence that can be used to demonstrate

that this protection goal is achieved. An overview of solutions that guarantee long-

term confidentiality is provided by Braun et al. [4].

Therefore, we first survey in Chapter 3 the protection schemes that guarantee one

or more of the aforementioned protection goals. The result is an overview, divided

into two parts. The first part contains the schemes that achieve these protection

goals in the long term. The second part presents some schemes that cannot provide

long-term protection, showing why they fail. More precisely, the long-term protec-

tion schemes described in the first part can be classified into three groups. The first

group contains time-stamping schemes, to which the solutions Advanced Electronic

Signatures (AdES), Content Integrity Service (CIS), and Evidence Record Syntax

(ERS) belong. The second group contains notarial schemes, where we describe the

solution Cumulative Notarizations (CN). The third group is replication schemes, to

which Lots of Copies Keep Stuff Safe (LOCKSS) belongs. We describe these five

schemes systematically so that they can be compared with respect to trustworthiness

and performance.

Next, we analyze the long-term protection schemes with respect to trustworthi-

ness and performance. In the trustworthiness analysis found in Chapter 4, we assess

4 1 Introduction

to what extent retrievers can trust these schemes to guarantee the protection goals

for an archived document. This analysis consists of two parts. The first part is a

qualitative analysis, where we compare the schemes as to the required trust assump-

tions. This analysis indicates that the time-stamping and notarial schemes tend to

be more trustworthy than LOCKSS. The reason is that, contrary to LOCKSS, time-

stamping and notarial schemes provide evidence that can be used by any retriever

to check whether the protection goals are indeed fulfilled for an archived document.

The second part is a quantitative analysis, where we approximate the trustworthi-

ness of the evidence generated by the time-stamping and notarial schemes. To this

end, we use a belief trust model which allow us to estimate how likely evidence is to

indeed guarantee the promised protection goals. Since this trust model uses as input

the reputation of the parties involved in the generation of evidence, we propose a

long-term reputation system. In this reputation system, participants verify evidence

and use the verification result to rate the involved parties. By analyzing the trust

model and the reputation system, we draw two important observations. First, that

if the evidence for a document is updated for several years, involving many parties,

then its trustworthiness tends to degrade. Second, that the reputation system allows

for using incentives for the involved parties to build good reputation. This helps to

raise the trustworthiness of involved parties and, consequently, the trust retrievers

put in the generated evidence.

Performance is addressed in Chapter 5 by a performance analysis of the time-

stamping and notarial schemes. They are analyzed with respect to time, space,

and communication complexity. Time refers to the durations needed to initialize,

update, and verify evidence. Space refers to the size of the generated evidence.

Communication complexity refers the size of the messages exchanged while generat-

ing evidence. Our performance analysis has two parts. In the first part we evaluate

performance analytically, that is, without taking specific cryptographic primitives

into account. In the second part, we evaluate performance empirically by carrying

out experiments with prototypical implementations. More precisely, we simulate

the protection of documents in an archive for 100 years using well-known crypto-

graphic primitives and distinct signature lifetimes. The analysis shows interesting

results. First, the notarial scheme CN is the most time-efficient scheme at the cost

of the highest communication complexity. Second, ERS is the fastest time-stamping

scheme when generating evidence because it hashes the minimum data required to

address the aging of the used cryptography. Third, when verifying evidence in all

schemes, most of the time is spent on checking certificate chains. This is even worse

for the time-stamping schemes because they accumulate certificate chains whereas

the notarial scheme does not. Moreover, the experiments indicate that a solution

1.2 Contributions 5

to mitigate this issue in time-stamping schemes is to use longer signature lifetimes.

Conversely, this does not apply for the notarial scheme.

Next, we turn to designing three new solutions to improve the performance of

the protection schemes. The first solution is a new notarial scheme named Attested

Certificates (AC) that addresses the performance issues identified by analyzing CN.

This is done in Chapter 6. AC is more efficient than CN with respect to commu-

nication and space. Communication is reduced by leaving the verification of the

signatures on documents to retrievers. Thus, contrary to CN, documents and their

signatures are not sent to notaries. Space is reduced by generating smaller evidence

which, as opposed to CN, contains neither old notary signatures nor time-stamps.

We demonstrate that AC is superior to CN by a performance analysis. Moreover,

we compare CN and AC with respect to their trust assumptions, showing that the

solutions provide a similar level of trustworthiness.

The second solution that we propose is based on the time-stamping solution CIS

and is called Content Integrity Service with Skip Lists (CISS). The scheme is to

be used in digital archives where subsets of documents share the same sequence

of time-stamps. Note that this approach reduces the effort of an archivist, who

needs to maintain only some time-stamp sequences rather than one sequence for

each document in the archive. Although also ERS can be used for document sets,

it has the limitation that the documents of a set must be submitted to an archive

and time-stamped at the same time. However, in some cases this is not possible.

CIS is the most suitable solution for this scenario; however, CIS has performance

issues that we address in CISS. The main issue is that when submitting and time-

stamping documents sequentially, the generated evidence may contain several time-

stamp whose validities overlap. It follows that many time-stamps in the sequence

need not be checked by retrievers when they verify the sequence for single documents.

We address this issue in CISS by using a data structure called skip list. We show how

to build time-stamp sequences with skip lists allowing retrievers to select the time-

stamps that are needed to guarantee the protection goals of single documents, while

skipping the other time-stamps during verification. Moreover, CISS is designed

to address the aging of cryptography efficiently like ERS. That is, CISS hashes

only the minimal data when dealing with the aging of cryptography. As before, we

provide an analytical evaluation and experiments to show that CISS verifies evidence

significantly faster than CIS.

The third solution aims at preventing retrievers from spending excessive time on

certificate chain verifications when using time-stamping schemes. In Chapter 8 we

improve the solution by Silva et al. [45], where certificate chains needed to verify

time-stamps are replaced by smaller proofs. These proofs consist of single signatures

6 1 Introduction

created by a root certification authority (CA) as follows. First, the root CA checks

that the certificate chain of a time-stamp authority is valid and then re-signs the

time-stamps issued by that time-stamp authority. Our solution is called re-signed

certificates and uses a trust anchor (not necessarily a root CA) to re-sign only the

certificates of the time-stamp authorities. The re-signed certificates are requested

by archivists when they update their time-stamp sequences. This leads to a more

efficient solution when a time-stamp authority issues a large amount of time-stamps

during its lifetime. Finally, we analyze the performance of both solutions analyt-

ically, showing that ours indeed reduces the effort of time-stamp authorities while

also speeding up the verification process for retrievers.

1.3 Structure

This thesis is organized as follows. In Chapter 2 we introduce the terminology and

components used in the protection schemes addressed in this work. We also explain

how the lifetime of cryptography has been predicted and how trustworthiness can

be approximated. Chapter 3 provides an overview of existing protection schemes.

These schemes are analyzed with respect to trustworthiness and performance in

Chapters 4 and 5, respectively. In Chapter 6 we propose a new notarial scheme

by improving the performance of the existing CN solution. Next, in Chapter 7 we

design a more efficient time-stamping scheme based on the existing CIS solution.

In Chapter 8 we propose a solution to the performance issue of checking evidence

containing long certificate chains. Finally, in Chapter 9 we draw our conclusions

and give directions for future work.

2 Preliminaries

In this chapter we provide the background for this thesis. We start by defining

the terminology that we use in the following chapters. Next, describe the protec-

tion goals, cryptographic primitives, and components that are particularly impor-

tant for our work. The protection goals described are integrity, authenticity, non-

repudiation, and proof of existence. The cryptographic primitives are hash functions

and digital signatures. In the description of the components, we distinguish between

two types. The first type refers to the components that use the cryptographic prim-

itives and includes Merkle trees, public key infrastructures, widely visible media,

and time-stamps. However, since hash functions and digital signatures have limited

lifetimes, we also discuss how researchers and governments have predicted for how

long these primitives can be used securely. The second type of components does not

use cryptographic primitives and includes trust models and skip lists.

2.1 Terminology

We define the following terms that we use along this work.

Long term : a very long or endless period of time.

Document : any digital content.

Digital archive : a service that stores documents for the long term.

Protection scheme : a solution to be used to protect documents stored in a digital

archive.

Archivist : the entity that runs a digital archive together with a protection scheme.

Evidence : the data provided by a protection scheme to demonstrate that a docu-

ment has been protected properly.

8 2 Preliminaries

Retriever : a third party that obtains documents from an archive and use the

evidence provided for the documents to verify their protection.

2.2 Protection goals

In this section we present the protection goals addressed in our work. We first define

them and then explain how they are related.

The protection goals we deal with are integrity, authenticity, non-repudiation,

and proof of existence. Integrity means that a document has not been altered.

Authenticity means that its origin can be identified. Non-repudiation prevents an

originator from repudiating that he or she is the originator of a document. Proof of

existence allows to identify a time reference when a document existed.

Integrity, authenticity, non-repudiation, and proof of existence are closely related.

Integrity and proof of existence are the basis. Stating that a document has not

been changed includes a statement since when this is true. Thus, proof of existence

is desirable. Conversely, proof of existence makes only sense with evidence of in-

tegrity. Also, authenticity and non-repudiation make only sense if there is also an

evidence of integrity. Therefore, in this work when we say that authenticity, non-

repudiation or proof of existence are provided, this implicitly means that integrity

is also guaranteed.

2.3 Cryptographic hash functions

Cryptographic hash functions are central building blocks in cryptography. For ex-

ample, they are used to reduce integrity verification of large documents to integrity

verification of short bit strings. A hash function is a map h : {0, 1}∗ → {0, 1}n,

where {0, 1}∗ denotes the set of all bit strings of arbitrary length and n is some

fixed positive integer. This map is assumed to be collision resistant, that is, finding

x, x′ ∈ {0, 1}∗ with x 6= x′ and h(x) = h(x′) is infeasible. A typical choice for a

hash function is SHA-3 [40] where n ∈ {224, 256, 384, 512}. For a more detailed

discussion of hash function see [6].

2.4 Merkle trees

Merkle trees [37] go a step further than hash functions. They use hash functions and

a binary tree construction to reduce integrity verification of a sequence of documents

d1, ..., dm, m being a power of 2, to the integrity verification of the root of the tree.

2.5 Signatures 9

The construction is as follows. A Merkle tree uses a cryptographic hash function

h. The leaves of the tree are h(d1), ..., h(dm), in that order. Any internal node

(including the root) is constructed as the hash h(ya||yb) of the concatenation of the

left child ya and the right child yb of the node. Figure 2.1 shows an example of a

Merkle tree where m = 4.

y1 = h(d1) y2 = h(d2) y3 = h(d3) y4 = h(d4)

y5 = h(y1||y2) y6 = h(y3||y4)

r = h(y5||y6)

Figure 2.1: A Merkle tree for the documents d1, d2, d3, and d4. The leaves y1, y2, y3, and

y4, the inner nodes y5 and y6, and the root r are computed using hash function h.

To verify the integrity of a document di ∈ {d1, . . . , dm}, a verifier is given di, the

root r of the Merkle tree constructed as explained above and the authentication path

for di. This path contains log2m hashes, which are the siblings of the nodes in the

path from the leaf h(di) to the root r. For instance, the authentication path of leaf y1
in Figure 2.1 comprises hashes y2 and y6. The verifier uses this authentication path

to construct a root r′. For example, given the document d1 and the authentication

path {y2, y6}, the verifier computes r′ = h(h(h(d1)||y2)||y6). Next she compares r′

with r. If the roots are equal, then di is uncorrupted.

2.5 Signatures

Digital signatures provide authenticity and non-repudiation for documents. A dig-

ital signature scheme consists of three algorithms. The key generation algorithm

generates a secret signing key and a public verification key. Given a document and

the secret signing key, the signature algorithm computes a signature on the docu-

ment. Correspondingly, given the document, a signature on the document, and a

public verification key, the verification algorithm decides whether the signature is

valid. A valid signature proves that the document has not been changed since it

was signed (integrity) and that the holder of the secret signing key is the origin of

the document (authenticity). Also, the authenticity can be verified by anyone (non-

repudiation). The digital signature schemes currently used in practice are RSA,

DSA, and ECDSA [32]. For detailed descriptions of these schemes, see [6].

The validity of a digital signature relies not only on the verification algorithm to

attest that the signature is correct, but also on the public key to be valid. This is

10 2 Preliminaries

discussed in Section 2.7.

We are aware that for performance reasons signature schemes are often used to-

gether with hash functions. More precisely, to sign a document a signer first com-

putes a hash of the document and then computes a signature on this hash. However,

in this work we assume a hash function is not needed to sign documents, unless we

explicitly mention it. The reason is to make the presented protocols involving sig-

natures easier to comprehend.

In practice, signature schemes are often used together with hash functions because

of, for example, performance issues. More precisely, to sign a document a signer

first computes a hash of the document and then computes a signature on this hash.

However, we seldom make this procedure explicit in this work. The reason is to

make the presented protocols involving signatures easier to comprehend.

2.6 Public key infrastructures

The use of digital signatures relies on the availability of trustworthy public keys. A

public key infrastructure (PKI) provides such keys. We explain the hierarchical PKI,

which is the most popular model. Another model of PKI is the Web of Trust [63].

A PKI consists of one or several certification authorities (CA). A CA signs a

certificate to assert that a public key belongs to a certain subject. Moreover, the

CA can also assert specific properties of the public key (e.g. for which purpose this

key can be used). A certificate comes with a date when the certificate is first valid

and an expiration date. CAs can sign certificates for themselves and other entities,

such as subordinate CAs or end users. Therefore, the trustworthiness of a public

key may depend on the validity of all certificates in a chain of certificates (see [7,

sec. 6.1]).

Certificates may become invalid before they expire. For example, the secret signa-

ture key corresponding to the certified public key may be compromised. Therefore,

CAs operate revocation services that enable the revocation of invalid certificates and

provide the related revocation information for users. Depending on the policies of

a CA, it may provide no revocation information for expired certificates. For more

details on certificate revocation, see [7, chap. 5].

2.7 Signature verification

Checking the validity of a signature is much more involved than just applying the

verification algorithm. For example, it is necessary to check the validity of the public

2.8 Signature-based time-stamps 11

key used in the verification. Since signature verification is an important ingredient

of all schemes described in the next chapters, we present the process of verifying

a signature s at a time t in detail. The time t is usually the moment when the

verification occurs (i.e. the current time) or the time provided by a time-stamp. In

some particular cases, t can be the time when the signature s was created.

In the first step, a verifier collects the necessary verification information for the

signature s. This information includes a chain of certificates and the current revo-

cation information for each certificate in the chain. The first element in the chain is

issued by a CA called trust anchor, which the verifier must trust. The last element

is a certificate for the public key required to verify s. The other certificates in the

chain certify the public key required to verify the signature on the next certificate

in the chain.

In the second step, the verifier checks that the signature algorithms and hash

functions that were used to create s and the signatures on all certificates and revo-

cation information are secure at time t. She also checks that the key sizes in the

signature algorithms are sufficient to make the signatures secure.

In the third step, the verifier checks that none of the certificates is revoked at

time t by using the previously collected revocation information.

The fourth step is to verify that t is in the validity interval of all certificates. The

standard signature validity model is called shell model. For other validity models

see [7, chap. 6].

The fifth and last step is to apply the verification algorithm on all signatures.

Moreover, certificates can contain key properties as mentioned in Section 2.6. In

this case, an additional step is needed to check that the contained key properties

are guaranteed. For more details on the verification of key properties see [12, sec.

6].

2.8 Signature-based time-stamps

A time-stamp on a document shows that this document existed at a certain point

in time and has not been changed since. This time is usually provided as a calendar

date. Nevertheless, a time-stamp can also use a relative date, showing that the

document existed before another document. However, since it is unclear how to use

relative dates to verify whether cryptographic algorithms were used while they were

secure, we will present time-stamps using calendar dates. For time-stamps using

relative dates, we refer to reader to the hash chain-based scheme by Maniatis and

Baker [34].

12 2 Preliminaries

A time-stamp is issued by a trusted third party named time-stamp authority

(TSA). Such time-stamps are created as follows. First, some entity computes the

hash h(d) of some document d. Then the entity requests a time-stamp on h||h(d)

from a TSA. Here, h stands for the identifier of the hash function used to compute

the hash h(d). The TSA creates a time-stamp by signing h||h(d)||t, where t is

the time when the time-stamp is created. The time-stamp consists of h, t, and

the signature on h||h(d)||t. The verification information for the time-stamp is the

verification information needed to verify the signature on h||h(d)||t.
A time-stamp on a document d is verified as follows. First, the verifier extracts the

hash function h and the time reference t from the time-stamp. Then, she computes

h(d) and verifies the signature on h||h(d)||t contained in the time-stamp as explained

in Section 2.7.

2.9 Widely Visible Media-based time-stamps

A time-stamp on a document can also be constructed by publishing the hash of the

document on widely visible media (WVM). An example for WVM is a newspaper.

The assumption is that WVM is preserved for a long time in such a way that it is

impossible to modify WVM. In addition, WVM must carry a date on which it was

created. In the case of a newspaper, this is the date of publication of the newspaper.

This type of time-stamps has been used in practice by Surety, LLC [48]. A time-

stamp created by Surety, LLC and published in The New York Times is illustrated

in Figure 2.2. For more information regarding WVM, see [1].

Generating a WVM-based time-stamp on a document d works as follows. Some

entity selects a hash function identified by h, calculates h(d), and submits both

h(d) and h to a TSA. The TSA publishes h(d) and h on WVM. The verification

information for this time-stamp allows a verifier to locate and access the time-stamp.

If several hashes are submitted to the TSA, it may reduce the size of the time-stamp

by constructing a Merkle tree whose leaves are the submitted hashes. The TSA then

publishes the root of the Merkle tree and the hash function identifier h. In this case,

the verification information for each time-stamped document d should also include

the authentication path from h(d) to the published Merkle tree root.

To verify a WVM-based time-stamp on the document d, the verifier extracts the

creation time of the WVM and the hash function identifier h. She computes the

hash h(d) and compares it with the hash stored in the WVM. If the TSA used a

Merkle tree, the verifier first uses h(d) and the corresponding authentication path to

compute the root. Then, she compares the computed root with the root published

2.10 Lifetime of cryptographic algorithms 13

Figure 2.2: A widely visible media-based time-stamp issued in The New York Times [47].

on the WVM. If the roots match, then document d existed on the date when the

WVM was published and d has not been changed since.

2.10 Lifetime of cryptographic algorithms

The security of most cryptographic algorithms and their parameters is not ever-

lasting. Over the years, constant advances in computer power and cryptanalytic

techniques tend to defeat the security properties of the algorithms and their param-

eters. In the case of hash functions, they become insecure when collisions can be

found. As to digital signature algorithms or key sizes, they are considered insecure

when signatures can be forged (for details, see [20]).

To estimate for how long these algorithms are expected to be secure for the chosen

parameters (e.g. key sizes), Lenstra [31] proposed a model based on the best known

attacks and current trends, such as the expected progress of (published) cryptanaly-

sis and Moore’s Law [38]. Likewise, governmental agencies provide recommendations

on how to choose cryptographic algorithms and parameters (e.g. [8, 39]). These pre-

dictions and recommendations are based on the observed development of technology

and are revised on a regular basis.

14 2 Preliminaries

2.11 Trust

In this section we present how the trustworthiness of parties and information can be

quantified. We first provide the definitions of trust, trustworthiness, and reputation.

Next, we explain how reputation and trust can be quantified by using scores and

present important operators on such scores.

2.11.1 Definitions

Among many definitions of trust, the two most used are reliability trust and decision

trust. Reliability trust is defined by Gambetta [19] as the subjective probability by

which the individual A expects that another individual B performs a given action

on which A’s welfare depends. Decision trust extends reliability trust by also taking

into account the risk that one party (i.e. an individual) is willing to take upon

trusting another party or information [36]. We refer to decision trust as trust.

Trust is commonly used to approximate the trustworthiness of a party or infor-

mation. Wierzbicki [61] defines trustworthiness as an “objective, context-dependent

property of deserving trust”. Since it is an intrinsic quality, it is hard to assess

trustworthiness in practice. This is why trust is commonly used to approximate the

trustworthiness of a party or information.

Moreover, trust and reputation are related. Roughly, trust is between two parties

or a party and an information. Reputation is the aggregated experience of a com-

munity on a party or information. The reputation is often quantified by a reputation

score. A party or an information that has high reputation is frequently trusted by

many parties in that community; a party outside that community may also use that

reputation to make his or her trust decisions.

Reputation systems can be centralized or distributed. In a centralized reputation

system, an authority collects experiences reported by a community. This authority

is trusted to preserve the reported experiences and typically to compute the repu-

tation scores of parties or information. In contrast, there is no trusted authority in

distributed reputation systems. In this case, members of a community share their

experiences and compute the reputation scores from these experiences by themselves.

2.11.2 Quantifying and operating on reputation

Reputation can be quantified by reputation scores as follows. Assume an experience

by one participant c on another participant or information z is a boolean representing

whether c is satisfied after interacting with z. From these experiences, the reputation

2.11 Trust 15

score ~XC
z = (rCz , s

C
z) is computed, where C identifies a community of participants

that interacted with z, rCz is the sum of the positive experiences on z, and sCz is the

sum of the negative experiences on z.

Important operators on reputation scores are weighted averaging and addition.

Weighted averaging can be used to combine reputations scores of the same party

or information when these scores are provided by communities that are not equally

trusted. That is, the experiences by one community are more reliable than the expe-

riences by another community. Thus, assume that reputation scores ~XC1
z , . . . , ~XCn

z

were computed from experiences on z by communities C1, . . . , Cn, respectively.

Moreover, assume that experiences by communities C1, . . . , Cn have non-negative

weights w1, . . . , wn and occurred at the same time (i.e. their experiences are de-

pendent). For example, the interactions with z provide the same outcomes for the

communities. Then the weighted average reputation score can be computed by

~XC1,...,Cn
z = (

∑n
i=1wir

Ci
z∑n

i=1wi

,

∑n
i=1wis

Ci
z∑n

i=1wi

). (2.1)

Two reputation scores of the same party or information can be added using the

addition operator as follows. Assume ~XC1
v and ~XC2

v are the reputations of z and are

computed from the experiences provided by communities C1 and C2, respectively.

Moreover, assume that the experiences of C1 and C2 occurred at different times (i.e.

their experiences are independent). For example, the interactions with z provide

distinct outcomes for the communities. Then, the addition of ~XC1
v and ~XC2

v can be

computed by

~XC1
z + ~XC2

z = (rC1
z + rC2

z , sC1
z + sC2

z). (2.2)

2.11.3 Quantifying and operating on trust

Trust can be quantified by trust scores. To determine them, we use reputation

scores and a trust model. Well-established trust models are belief models. They are

a probability framework where probabilities are assigned not only to the possible

outcomes but also to uncertainty. They receive as input the reputation score of a

party or information and compute a trust score as output. The more experiences

the reputation score contains, the lower is the uncertainty and the more reliable

is the approximation of trustworthiness. Examples of such belief trust models are

Subjective Logic [25] and CertainTrust [43].

The two aforementioned models are based on the Beta Probability Density Func-

tion and are isomorphic, i.e. trust scores can be mapped from one model to an-

16 2 Preliminaries

other. Subjective Logic has the advantage of using mathematics which is easier to

comprehend. On the other hand, CertainTrust allows for a user-friendly graphical

representation of trust scores. However, since we will not use graphical representa-

tions of trust scores and both models can be interchanged (they are isomorphic), we

select Subjective Logic.

Trust scores are called opinions in Subjective Logic. An opinion of party a about

the truth of statement z is defined as a triple ωa
z of real numbers (b, d, u) in [0, 1]

such that b+ d+ u = 1. In this triple, b stands for the belief that z is true, d stands

for the disbelief that z is true, and u stands for the uncertainty whether z is true.

A reputation score can be mapped to an opinion and vice versa. The mapping

function is as follows. It receives as input a reputation score ~XC
z and the prior

knowledge about z, that is, the information about z in the absence of experiences

on z. Jøsang et al. set the prior knowledge to one, i.e. r0 = s0 = 1. The function

outputs an opinion ωv = (bv, dv, uv) such that

bz =
rCz

rCz + sCz + r0 + s0
, dz =

sCz
rCz + sCz + r0 + s0

, dz =
r0 + s0

rCz + sCz + r0 + s0
. (2.3)

An important operator on opinions is the conjunction operator (“∧”). It is analo-

gous to a logic AND and computes the conjunctive truth of two independent opinions

as follows. Assume there exist two opinions ωv and ωz about v and z respectively.

By computing ωv ∧ ωz we obtain the new opinion ωv∧z such that

ωv∧z =


bv∧z = bvbz

dv∧z = dv + dz − dvdz
uv∧z = uvuz + bvuz + bzuv.

(2.4)

Note that the presented operators on reputation and trust scores are commutative

and associative.

2.12 Skip lists

Skip lists [42] are ordered data structures that can be used to search for elements in

a data set efficiently. To this end, several links between the elements are generated

and stored in internal linked lists.

When an element is added to the skip list, the element is stored in one or more

internal linked list. More precisely, the linked lists are organized in levels. All

elements added to the skip list are stored in the internal linked list L0 in the first

2.12 Skip lists 17

level (level 0). Half of those elements are also stored in the linked list L1 in level 1,

a quarter of the elements are stored in the linked list L2 in level 2, and so on. In

general, the internal linked list Lj in level j ∈ Z≥0 stores 1/2j of the elements added

to the skip list. Figure 2.3 illustrates a skip list containing three internal linked lists

and the added elements e0, . . . , e4.

L0

L1

L2

e0 e1 e2 e3 e4

e0 e2 e4

e0 e4

Figure 2.3: A skip list containing the elements e0, e1, e2, e3, and e4. These elements are

stored in the internal linked lists L0, L1, and L2.

There are two types of skip lists, which differ in how elements are assigned to linked

lists. The first type is the deterministic skip list, where we can predict which linked

lists contain a given element by using the order in which the elements were added

to the skip list. The second type is the probabilistic skip list, where the elements

to be stored in an internal linked list are selected randomly using a distribution

probability.

The skip lists that we will use in Chapter 7 need to fulfill two requirements. First,

since we will need to time-stamp specific elements and links from a skip list, it should

be possible to determine the position of these elements before generating the time-

stamp. Second, after a time-stamp is created, the links should not be changed. Since

when removing an element we need to redefine the links, the removal of elements

should be prevented. To meet these requirements, we therefore select skip lists that

are deterministic and append-only.

We next explain how to initialize and add new elements to a deterministic, append-

only skip list. To initialize the skip list, the internal linked list L0 in level 0 is created.

At this moment, L0 is empty and there exist no further linked lists.

To add the first element e0 to the initialized skip list, we just add it to the empty

linked list L0. Since there are no other elements in L0, we create no links to e0.

For i > 0, the addition of the next elements ei requires extra steps as follows. We

not only add ei to the linked list L0 but also create a link from element ei−1 to ei.

Furthermore, we may need to add ei to other linked lists and generate links from

other elements to ei. To illustrate these steps, we first describe the addition of the

next four elements e1, e2, e3, and e4 to the skip list. Then, we show a generalization

of this process. Figure 2.3 depicts the skip list after e4 is added.

18 2 Preliminaries

1. The second element e1 is added to the linked list L0. A link from e0 to e1 is

created.

2. The third element e2 is added to the linked list L0 and a link from e1 to e2
is generated. Moreover, an empty linked list L1 in the second level is created

containing e0, e2, and a link from e0 to e2.

3. The fourth element e3 is added to the linked list L0. A link from e2 to e3 is

created.

4. The fifth element e4 is added to the linked lists L0 and L1. Next, two links are

created: one from e3 to e4 in L0, and another from e2 to e4 in L1. Furthermore,

an empty linked list L3 is created containing e0, e4, and the link from e0 to e4.

In general, for i > 0 the (i+ 1)th element ei added to the skip list is stored in the

linked lists L0, . . . , Lg. To determine g ∈ Z≥0 we use the formula

g = log2(i/m), (2.5)

where m is odd as shown by Maniatis and Baker [34]. For example, for i = 4, the

formula is satisfied by m = 1 and g = 2. Then, for each 0 ≤ j ≤ g, we create a link

from element ek to element ei in the linked list Lj such that k = i − 2j. Note that

the first element e0 is stored in all linked lists.

3 Protection schemes for long-term
archiving

This chapter provides an overview of existing protection schemes that provide one

or more of the protection goals integrity, authenticity, non-repudiation, and proof

of existence for archived documents. This overview is presented in two parts. The

first part contains the schemes that guarantee the mentioned protection goals in the

long term. In this part we distinguish among schemes using time-stamp sequences,

notarial attestations, and replication. The second part of the overview provides

schemes that use the above approaches or that achieve extra protection goals (e.g.

proof of non-existence) but fail in addressing the aging of cryptography. The content

of this chapter was published in [58].

3.1 Time-stamping schemes

In this section we present the first type of long-term protection solutions for digital

archives. We start by explaining why single time-stamps cannot provide long-term

protection. Next, we introduce time-stamp sequences and describe the solutions

that use this approach.

In our descriptions, an archivist maintains documents in the archive. In particular,

the archivist is responsible for generating evidence that can be used to verify that

a document existed at some point in time and has not been changed since (proof

of existence). If the document was digitally signed by its originator, the evidence

also provides authenticity and non-repudiation for each document. The evidence is

stored together with the document. To create such evidence, the archivist requests

time-stamps from a time-stamp authority (TSA). Also, retrievers obtain documents

from the archive and use the evidence provided for the documents to verify their

various protection goals.

Signatures must be verified in some schemes. This is done by using the proce-

20 3 Protection schemes for long-term archiving

dure explained in Section 2.7. Such a signature verification uses certain verification

information. The default is that the retriever collects up-to-date verification infor-

mation. For example, certificates and their most recent revocation information. In

some cases, the retriever is provided with stored verification information. This will

be mentioned explicitly.

3.1.1 The validity of a time-stamp

As explained Chapter 2, time-stamps provide proof of existence for documents.

However, single time-stamps based on widely visible media (WVM) or on signatures

cannot provide long-term protection.

The validity of a WVM-based time-stamp relies on the security of the crypto-

graphic hash function used to create the time-stamp. As shown in Section 2.10, this

security is not everlasting.

Likewise, signature-based time-stamps also rely on cryptographic hash functions

but additionally on digital signatures which also expire. For example, when the

certificates required to verify them expires.

Therefore, along this work we refer to the validity of a time-stamp as the period

that starts when the time-stamp is created and ends when the used hash function

or signature becomes insecure.

3.1.2 Time-stamp sequences

Time-stamp sequences were first introduced by Bayer et al. [1] to prolong the validity

of time-stamps. In this section, we explain how the intervals for time-stamp renewal

are chosen when generating such sequences.

First, an initial time-stamp T1 is created at time t1 that, depending on the scheme,

provides proof of existence for a single document or a sequence of documents. When

necessary, new time-stamps T2, T3, . . . are created at times t2 < t3 < . . . that prolong

the validity of the previous time-stamp beyond its expiration time. We will see that

in order for the prolongation to work, it is necessary that the previous time-stamp

is still valid when a new time-stamp is created. In the following, we explain how

time-stamp creation times can be chosen such that this condition is satisfied.

Assume that the time-stamps T1, T2, . . . are based on WVM. Such time-stamps

expire when the hash functions h1, h2, . . . used in their construction become insecure.

Hence, when a new time-stamp Tk is created (k > 1), the hash function hk−1 used

to create the previous time-stamp Tk−1 must be still secure. Also, to construct

Tk, a hash function hk must be still secure at time tk+1. So choosing hk and tk+1

3.1 Time-stamping schemes 21

needs to predict the lifetimes of hash functions. Section 2.10 discusses how this

can be done. One possibility of choosing the creation times of the time-stamps is

as follows. Determine an expected lifetime τh of cryptographic hash functions as

described in Section 2.10 and create the time-stamps at times tk = t1 + (k − 1)τh,

k ≥ 1. This construction method works as long as there is no unexpected break of

a hash function. This issue will be discussed in more detail in Chapter 4.

Now assume that the time-stamps used in the sequence are based on signatures.

Then the selection of the construction times t1, t2, . . . is slightly more complicated

because the time-stamps T1, T2, . . . use hash functions h1, h2, . . . and digital signa-

tures s1, s2, . . . in their construction. Hence, when a new time-stamp Tk is created,

hk−1 and sk−1 must be still secure. To construct Tk, a hash function hk must be

chosen and a signature sk must be created that are still secure at time tk+1. So

choosing hk, sk, and tk+1 requires predicting the lifetimes of hash functions and

signatures. Since the expected lifetime τh of hash functions is typically longer than

the expected lifetime τs of signatures, the time-stamp creation time can be cho-

sen as tk = t1 + (k − 1)τs. At time tk a new hash function is only chosen when

tk+1 > tk−1 + τh. Otherwise, hk = hk−1 is used. This construction method works

as long as a hash function and signature are not suddenly compromised. This issue

will be discussed in more detail in Chapter 4.

3.1.3 Advanced Electronic Signatures

Advanced Electronic Signatures (AdES) [17, 18] is a protection scheme in which an

archivist maintains a sequence of time-stamps for each document in the archive. The

first time-stamp in such a sequence provides proof of existence for the document at a

certain point in time. The following time-stamps validate the previous time-stamps,

thereby extending their validity beyond their expiration. Retrievers verify proof

of existence of a document by verifying the respective time-stamp sequence. The

original AdES uses signature-based time-stamps but it also works with WVM-based

time-stamps.

We explain the construction of an AdES time-stamp sequence on a document d in

more detail. For the selection of creation times, hash functions, and signatures we

refer to Section 3.1.2. Initially, the archivist selects a hash function h1 and requests

the first time-stamp T1 on h1||h1(d) which is issued at time t1.

Now suppose for k > 1 that time-stamps Tj have been issued at times tj us-

ing hash functions hj, 1 ≤ j < k. The next time-stamp Tk is created at time tk
when Tk−1 has not expired. Thus, the archivist selects a hash function hk. This

may be the previous hash function hk−1 or a new hash function depending on

22 3 Protection schemes for long-term archiving

whether hk−1 is expected to be still secure at time tk+1. The archivist also col-

lects up-to-date verification information Vk−1 for Tk−1 and requests a time-stamp

Tk on hk||hk(d||T1||V1|| . . . ||Tk−1||Vk−1). At the current time t ∈ [tk, tk+1], the evi-

dence stored with each document consists of time-stamps T1, . . . , Tk and verification

information V1, . . . , Vk−1.

Now we describe how a retriever can use the evidence for document d to verify

its proof of existence for t1, i.e. that it existed at time t1 and has not been changed

since. Let k ≥ 1 and suppose that the retriever wishes to perform this verification

at the current time t ∈ [tk, tk+1]. Then she verifies time-stamps Tj, 1 ≤ j ≤ k. To

verify Tk, she constructs y = hk(d||T1||V1|| . . . ||Tk−1||Vk−1) and checks that Tk is a

valid time-stamp on hk||y at time t. This time-stamp proves that d, T1, . . . , Tk−1,

and V1, . . . , Vk−1 existed at time tk and have not been changed since.

Now suppose for 1 ≤ j < k that the retriever was able to verify Tj+1. This means

that T1, . . . Tj, and V1, . . . , Vj existed at time tj+1 and have not been changed since.

In order to verify Tj, she constructs y = hj(d||T1||V1|| . . . ||Tj−1||Vj−1) and verifies

that, given verification information Vj, time-stamp Tj is a valid time-stamp on hj||y
at time tj+1. For j = 1 this shows that document d existed at time t1 and has not

been changed since. Note that for j = 1 the sequences T1, . . . , Tj−1 and V1, . . . , Vj−1
are empty.

As for time-stamps, the document d may consist of a primary document and a

signature on it. In this case, the sequence provides not only the proof of existence

of the primary document at time t1, but also its authenticity and non-repudiation.

Note that the signature on d and the corresponding verification information must be

added to the evidence and time-stamped when the time-stamp sequence is initialized.

3.1.4 Content Integrity Service

As AdES, Content Integrity Service (CIS) [23] protects documents by time-stamp

sequences. CIS is intended to use WVM-based time-stamps, but it also supports

signature-based time-stamps. Moreover, CIS allows an archivist to time-stamp dis-

tinct documents sequentially such that the documents share the same time-stamp

sequence. This feature is useful when time-stamped documents are changed and the

changes must also be time-stamped. For example, when the original format of a

document needs to be changed.

We describe how time-stamp sequences are created in CIS using WVM-based

time-stamps. Again we refer to Section 3.1.2 for the selection of the times when time-

stamps are created and when new hash functions are chosen. The initial document

to be time-stamped is d. The archivist selects a hash function h1, computes the hash

3.1 Time-stamping schemes 23

h1(d), and requests a time-stamp T1 on h1||h1(d) from a TSA. The TSA creates T1
at time t1.

Now assume for k > 1 that time-stamps Tj have been created at times tj using

hash functions hj, 1 ≤ j < k. The next time-stamp Tk is created before Tk−1
expires. For this purpose, the archivist chooses a potentially new hash function

hk and determines the hash yk to be time-stamped as follows. First, he computes

y1 = hk(d). Next, for 1 ≤ j < k the archivist computes yj+1 = hk(yj||hk(Tj||Vj)),
where Vj contains verification information required to verify time-stamp Tj at time

tj+1. While verification information Vj with j < k − 1 is already available, the

archivist must collect new verification information for Tk−1 at time tk. Also, the

archivist may need to time-stamp an additional document d′. In this case, hash yk
is set to hk(yk−1||hk(Tk−1||Vk−1)||hk(d′)). Next, the archivist requests a time-stamp

Tk on hk||yk from a TSA. Note that the construction of yj in this step and the

creation of yj in step j are very similar. The only difference is that in step j is used

the hash function hj and in step k is used the hash function hk.

We explain which evidence is stored and how it is verified. Suppose that, in the

course of construction of the time-stamp sequence, documents d1, . . . , dm have been

time-stamped at times t1, . . . , tm, respectively. At the current time t ∈ [tk, tk+1],

where tk ≥ tm, the evidence stored with d1, . . . , dm consists of t1, . . . , tm, the time-

stamps T1, . . . , Tk, and the verification information V1, . . . , Vk−1.

To verify the proof of existence of a document di ∈ {d1, . . . , dm} at the current

time t, a retriever does as follows. First, she identifies the time-stamp Ti applied on

di using the time reference ti. Then, she verifies the time-stamp sequence Ti, . . . , Tk.

This verification is analogous to the verification in AdES.

3.1.5 Evidence Record Syntax

In the Evidence Record Syntax (ERS) solution [3, 21], an archivist protects a se-

quence of documents d1, . . . , dm by using a single time-stamp sequence and Merkle

trees. Time-stamps are signed, but ERS could also use WVM-based time-stamps.

We start by explaining how the archivist initializes a sequence of time-stamps.

Initially, he selects a cryptographic hash function h1 and constructs a Merkle tree

M1 with leaves h1(d1), . . . , h1(dm). Next, he requests a time-stamp T1 on h1||r1 from

a TSA, where r1 is the root of tree M1. The TSA creates T1 at time t1. In Figure

3.1, this procedure is used to create time-stamp T1. Also, for each document di the

archivist creates evidence to be used by a verifier. This evidence consists of the

authentication path Ai,1 from the leaf h(di) to the root r1 in M1, 1 ≤ i ≤ m.

Now assume for k > 1 that Merkle trees M1, . . . ,Mk−1 with roots r1, . . . , rk−1 and

24 3 Protection schemes for long-term archiving

time-stamps T1, . . . , Tk−1 have been created. The next time-stamp, hash function,

and Merkle tree to be constructed are Tk, hk, and Mk, respectively. Section 3.1.2

explains when the next time-stamp must be created and whether a new hash function

must be selected. If no new hash function is selected, then the archivist sets hk =

hk−1, collects verification information Vk−1 for Tk−1, and requests a time-stamp Tk
on hk||hk(Tk−1||Vk−1) from a TSA. The TSA creates Tk at time tk. In Figure 3.1,

this procedure is used to create time-stamps T2, . . . , Tk−1.

If a new hash function hk is selected, then a new Merkle tree Mk is constructed.

The ith leaf is the hash of the concatenation of the following data: the document

di, the authentication paths for the leaves corresponding to di in all previously

constructed Merkle trees, the previously issued time-stamps T1, . . . , Tk−1, and their

verification information V1, . . . , Vk−1. Once Mk is created, the archivist requests

time-stamp Tk on hk||rk from a TSA, where rk is the root of Mk. Time-stamp Tk
is then created at time tk. This procedure is used to generate time-stamp Tk in

Figure 3.1.

time
t1 t2 tk

h1(d1), . . . , h1(dm)

M1

r1

T1 T2
. . .

hk(d1||A1,1||T1||V1|| . . . ||Tk−1||Vk−1), . . . , hk(dm||Am,1||T1||V1|| . . . ||Tk−1||Vk−1)

Mk

rk

Tk

Figure 3.1: The Merkle trees M1 and Mk created at the times t1 and tk are used to

time-stamp the documents d1, . . . , dm. The created roots are r1 and rk. The authenti-

cation paths for the documents in M1 are A1,1, . . . , Am,1. The verification informations

V1, . . . , Vk−1 are needed to verify the time-stamps T1, . . . , Tk−1.

The evidence stored with the documents d1, . . . , dm is as follows. At the current

time t ∈ [tk, tk+1], the evidence consists of the authentication paths Ai,1, . . . , Ai,k

for the leaves corresponding to documents di (1 ≤ i ≤ m) in the Merkle trees

M1, . . . ,Mk, time-stamps T1, . . . , Tk, and verification information V1, . . . , Vk−1.

To verify proof of existence for the document di ∈ {d1, . . . , dm}, a retriever uses

the evidence as follows. At the current time t ∈ [tk, tk+1], she uses the evidence for di
to construct the leaf corresponding to di in the last Merkle tree Mk. Next, she uses

the authentication path Ai,k in the evidence to construct the root rk of this tree.

She collects verification information Vk for the time-stamp Tk on hk||rk and checks

that Tk is valid at time t. If this check is successful and k = 1, then the verification

is complete. Otherwise, k is replaced by k − 1, t is replaced by tk, the verification

information Vk for Tk is extracted from the evidence, and the procedure is repeated

3.2 Notarial schemes 25

using the verification information provided in the evidence for di. Note that not in

all steps new Merkle trees were created. Therefore, new roots of Merkle trees must

only be created and verified when they are used for the first time. When this is not

the case, the retriever verifies whether Tk is a valid time-stamp on hk||hk(Tk−1||Vk−1).
Finally, note that like CIS, ERS allows the archivist to use a single time-stamp

sequence as proof of existence for a set of documents. However, in ERS all documents

in the set must be time-stamped at the same time.

3.2 Notarial schemes

In the previous section, we have seen how sequences of time-stamps can extend the

proof of existence of documents indefinitely. Notarial attestations are a different

approach to solving the same problem but constructing simpler evidence. In this

section we first introduce notarial attestations. Afterwards, we describe a long-term

notarial scheme.

3.2.1 Notarial attestations

The idea is that time-stamps are replaced by notarial attestations. In such attesta-

tions, a trusted third party called notary attests by his signature that one or more

signatures were valid at certain times, for example, when the attestation was cre-

ated. Retrievers who trust the notary only need to verify the notary’s signature but

not the attested signatures. In order to extend the validity of the original signatures

indefinitely, this process needs to be repeated since the signatures of the notaries

expire. In this case, creation times, hash functions, and signatures must be selected

as explained in Section 3.1.2. However, retrievers need to verify only the most recent

notary signature. This efficiency improvement requires stronger trust assumptions

as will be explained in Chapter 4.

3.2.2 Cumulative Notarizations

In the Cumulative Notarizations [30] solution, an archivist requests notarial at-

testations as evidence for documents in the archive. However, in contrast to the

time-stamping schemes, verification information for signatures is not accumulated.

We next detail how this evidence is generated and which objects must be stored.

Finally, we explain how the evidence is verified.

Assume that the archivist has a document d, a signature s on d, and the certificate

c required to verify s. To initialize evidence, he proceeds as follows. First, he selects

26 3 Protection schemes for long-term archiving

a hash function h and requests a time-stamp T on h||h(d||s) from a TSA. Next, he

requests a notarial attestation (i.e. signature) from a notary by sending d, s, c, and

T . The notary is a trusted third party. The notary collects verification information

for s and T and checks that s was valid at the creation time of T and that T is valid

at the current time. The notary creates and returns a signature s1 on d||s||c||T .

The archivist stores s1 and T together with d, s, and c.

Now assume for k > 1 that the archivist has obtained signatures s1, . . . , sk−1. He

requests the next signature sk at time tk, before sk−1 becomes insecure. To that end,

he sends d, s, c, T, s1, . . . , sk−1 to a notary. This notary is not necessarily the same

who created sk−1. The notary obtains verification information for sk−1, checks that

sk−1 is valid at the current time, creates a signature sk on d||s||c||T ||s1|| . . . ||sk−1,
and returns sk to the archivist. The archivist stores sk together with d, s, c, T , and

s1, . . . , sk−1.

The evidence for the document d is as follows. At the current time t ∈ [tk, tk+1],

the evidence consists of the signature s on d, the certificate c needed to verify s, the

time-stamp T on h||h(d||s), and the notary signatures s1, . . . , sk.

Finally, a retriever uses the evidence to check the authenticity, non-repudiation,

and proof of existence of the document d. More precisely, she verifies at the cur-

rent time t ∈ [tk, tk+1] that the most recent signature sk is valid. The validity of

this signature is sufficient to guarantee the mentioned protection goals because the

retriever trusts each notary involved. This is because she sees that the notaries at-

tested the previous signatures. In particular, the first notary attested the signature

s on the document d and the time-stamp T , which together provide authenticity,

non-repudiation, and proof of existence for d.

3.3 Replication schemes

As we have seen in Sections 3.1 and 3.2, time-stamping and notarial schemes generate

evidence of authenticity, non-repudiation, and proof of existence using hash functions

and digital signatures. In contrast, replication is a different approach where no

evidence is generated. In this section we first explain this approach and then present

a replication scheme.

Replication guarantees only the long-term integrity of documents. The idea is to

replicate the documents and distribute them to several peers. Copies of the same

document are compared on a regular basis and integrity is proved by means of a

majority vote.

Lots of Copies Keep Stuff Safe (LOCKSS) [35] is currently the only known solution

3.4 Schemes that fail to provide long-term protection 27

based on replication and it works as follows.

First, an archivist distributes the documents in his archive to a number of peers.

Contrary to time-stamping and notarial schemes, in LOCKSS the archivist verifies

integrity and not the retrievers. In order to do this for a document d, the archivist

invites peers p1, . . . , pq to participate in a poll. The number q of peers is at least

3. The archivist selects a hash function h, and does the following for 1 ≤ j ≤ q.

He generates random strings rj and sends messages {h, rj} to the peers pj. Each

peer pj computes the hash yj = h(rj||d) using its local copy of d and sends yj to

the archivist. He compares yj with h(rj||d), where d is his copy of the document.

If yj equals h(rj||d) for more than half of the peers, then the archivist believes in

the integrity of d. Otherwise, he iterates the following. He replaces his current copy

of the document d by a copy from a disagreeing peer and compares votes yj with

h(rj||d) again. This procedure terminates and provides the uncorrupted document

d as long as the majority of the peers is honest.

3.4 Schemes that fail to provide long-term protection

There are several solutions designed to provide the protection goals integrity, au-

thenticity, non-repudiation, and proof of existence for archived documents. However,

many of them fail in achieving these goals in the long term. We present some of

these schemes that are based on inspiring ideas and show why they fail to provide

long-term protection.

The State of Victoria in Australia developed the Victorian Electronic Record

Strategy (VERS) to provide evidence of authenticity and non-repudiation for doc-

uments [52, 59]. This evidence consists of signatures created by authorized VERS

users. Their public keys are certified by the archivist instead of a certification au-

thority (CA), because the authors of VERS argue that CAs are likely to disappear

during the archival period of documents. An authorized VERS user can re-sign an

archived document, but not the previous signatures. Therefore, authenticity and

non-repudiation are lost as any signature becomes insecure over time.

Certified Accountable Tamper-Evident Storage (CATS) [62] is a network storage

system where users can modify stored documents. CATS generates evidence of

authenticity, non-repudiation, and proof of existence for the history of changes on

each document. Moreover, CATS provides proof of non-existence for a document,

which means a date when the document was not present in archive. This evidence

also guarantees accountability since it prevents CATS and users from denying their

actions. The evidence consists of authenticated search trees, signatures, and widely

28 3 Protection schemes for long-term archiving

visible media. However, because CATS does not address the aging of cryptography,

the protection goals and accountability cannot be ensured in the long term.

Auditing Control Environment (ACE) is a scheme by Song and JáJá [46] that

provides proof of existence for documents. These documents can be submitted to

the archive sequentially. ACE build two types of Merkle trees to be used as evidence.

The first type of tree is built from the hashes of the new documents to be archived.

The second type of Merkle tree is built from the roots of the first type of Merkle trees.

The roots of the second type of Merkle trees are published on widely visible media.

However, when the used hash function needs to be replaced, ACE rebuilds only the

first type of Merkle tree. Therefore, roots published on widely visible media can no

longer be used as evidence after the hash function becomes insecure. Consequently,

the proof of existence of the archived documents is lost.

Oprea and Bowers [41] design a scheme to provide proof of existence and non-

existence for documents. The authors propose a data structure that realizes an

append-only, persistent, authenticated dictionary by combining Merkle trees with

Patricia trees [28]. The scheme also uses signed time-stamps but the authors do not

address the aging of hash functions and signatures. Therefore, the scheme can only

guarantee proof of existence and non-existence for a limited time.

4 Trustworthiness analysis

In this chapter, we analyze the trustworthiness of the long-term protection schemes

presented in Chapter 3. We start with a qualitative analysis which presents the trust

assumptions necessary for each protection scheme. Next, we show how to quantify

the trustworthiness of the evidence generated by these schemes. More precisely,

we estimate how likely evidence is to indeed provide the promised protection goals

(integrity, authenticity, non-repudiation, and proof of existence). To this end, we use

belief trust models, which have already been used to quantify the trustworthiness of

public keys. However, these trust models need as input the reputation of the involved

parties, namely time-stamp authorities or notaries. To address this issue, we propose

a reputation system for long-term archiving schemes that allows to determine the

required data. Finally, we demonstrate that if a document is archived for several

years, involving many parties that renew the evidence for the document, then its

trustworthiness degrades over time. The content of this chapter was published as

parts of [55, 58].

4.1 A qualitative analysis based on trust assumptions

We presented in Chapter 3 the long-term protection schemes Advanced Electronic

Signatures (AdES), Content Integrity Service (CIS), Evidence Record Syntax (ERS),

Cumulative Notarizations (CN), and Lots of Copies Keep Stuff Safe (LOCKSS). In

this section, we first present the trust assumptions that are common for long-term

archiving applications. Next, we compare the schemes based on the assumptions

they require.

Evidence initialization trust In some schemes, it is necessary to trust the archivist

to initialize evidence properly. The illegal reinitialization of evidence allows for

tampering with non-repudiation as follows. The archivist can change the archived

document and the date since when it existed by adapting the document, requesting a

time-stamp on the new document, and replacing the existing document and sequence

30 4 Trustworthiness analysis

of time-stamps by the new document and the new time-stamp. Furthermore, the

archivist can also change only the date since when a document existed to the current

date. To do this he requests a fresh time-stamp on a document and replaces the

existing time-stamp sequence by the new time-stamp.

Crypto trust In all schemes that use cryptographic components, such as hash

functions and signatures, these components are renewed on a regular basis. This is

because in the long term key lengths become too small to guarantee the authenticity

of signatures, signature keys may be compromised, and signature schemes or hash

functions may become insecure. However, despite this renewal the problem of sudden

break of cryptography remains. This problem refers to the situation where crypto-

graphic keys or schemes become insecure before they are renewed. This may happen

for several reasons. For example, a device that contains a secret key may be com-

promised or cryptanalytic progress may happen unexpectedly. In such situations,

later replacement of cryptographic components is of no use. For example, suppose

that a secret signature key is compromised before signatures that have been issued

with this key are renewed. Then an adversary who knows the secret key can replace

the respective signatures without retrievers being able to notice this. Therefore,

an important assumption that is required in several schemes is that cryptographic

components are not broken before they are renewed.

Widely visible media trust Trustworthy widely visible media (WVM) are neces-

sary for schemes that rely on WVM-based time-stamps. Trustworthy WVM require

that their content is uncorrupted and that the issuer of the WVM provided the

correct date.

CA trust In several long-term schemes, signatures must be verified to check au-

thenticity, non-repudiation, and proof of existence of a document. However, sig-

nature verification relies on the authenticity of the public verification key. This

authenticity is deduced by the signature verifier from a valid certificate chain. The

validity of the certificate chain relies on all certification authorities (CAs), in particu-

lar the trust anchor, to be trustworthy. That is, for every certificate a CA issues, the

CA is trusted to correctly identify the entity owning the corresponding secret key,

to correctly issue the certificate to this entity, and to operate a reliable revocation

system. For example, signature verifiers can decide whether a CA is trustworthy by

evaluating its certification practice statement3.

3A document where a CA declares how it issues certificates. This document presents, for example,

how the CA authenticates public key owners before signing their certificates. For details see [11].

4.1 A qualitative analysis based on trust assumptions 31

TSA trust There are two types of time-stamps. The first type is the signature-

based time-stamps and it needs TSA trust. TSA trust means that TSAs are trusted

to include the time when the time-stamp was issued in their time-stamps. The

second type is WVM-based time-stamps and it requires only widely visible media

trust.

Notary trust Notarial schemes rely on trustworthy notaries to obtain attestations.

The archivist sends signatures to notaries and they are trusted to attest that the

received signatures were in fact valid. Additionally, notaries must be trusted when

they attest that received hash functions were indeed secure.

Replication trust In replication schemes, a document is distributed to several peers

and its integrity is checked by using majority voting. For replication to guarantee

integrity, the archivist is trusted to find enough peers so that the necessary number

of votes can be obtained. Moreover, the majority of these peers is trusted to compute

their votes properly and to provide the correct copy of the document when requested.

Also, the majority of peers is trusted to have uncorrupted copies of the document.

Integrity verification trust In schemes that produce no evidence of integrity, re-

trievers of documents cannot verify integrity by themselves. Therefore, integrity

verification is delegated to archivists, who are trusted to carry it out correctly.

We now compare the schemes with respect to the trusted assumptions presented

above. This comparison is summarized in Table 4.1.

To achieve the protection goals, most of the schemes make assumptions with

respect to the archivist. The time-stamping schemes AdES, ERS, and CIS require

that the archivist does not reinitialize evidence (evidence initialization trust). In

contrast, in the notarial scheme CN this assumption is not required because notaries

check evidence and therefore can notice whether it was reinitialized. The same holds

true for LOCKSS since this scheme does not request time-stamps from third parties.

However, in LOCKSS integrity of a document depends on the archivist and the

peers that store copies of the document. More precisely, LOCKSS assumes that the

archivist can find enough peers which are honest and hold uncorrupted copies of

the document. Thus, LOCKSS requires replication trust. Furthermore, LOCKSS

requires integrity verification trust, which means that it is assumed that the archivist

correctly verifies the integrity of the archived documents.

32 4 Trustworthiness analysis

Table 4.1: The required trust assumptions for the protection schemes. Optional items

are marked with *.

Time-stamping Notarial Replication

Trust assumptions AdES ERS CIS CN LOCKSS

Evidence initialization 3 3 3 7 7

Crypto 3 3 3 3 7

Replication 7 7 7 7 3

Integrity verification 7 7 7 7 3

TSA 3 3 7 3 7

CA 3 3 3* 3 7

Widely visible media 7 7 3 7 7

Notary 7 7 7 3 7

Since LOCKSS generates no cryptographic evidence of integrity, it is not vulner-

able to the sudden compromise of cryptographic algorithms or their parameters.

Therefore, LOCKSS needs no crypto trust. On the other hand, time-stamping and

notarial schemes guarantee proof of existence and where applicable also authentic-

ity and non-repudiation by generating cryptographic evidence4. Because the used

cryptography can be suddenly compromised, all time-stamping and notarial schemes

need crypto trust.

Time-stamps can be based on either signatures or widely visible media. Signature-

based time-stamps require TSAs to include the correct time in their time-stamps.

The schemes AdES and ERS use signature-based time-stamps and therefore require

TSA trust. WVM-based time-stamps need no TSAs because time is inherited from

the WVM. That is, the time associated with a WVM-based time-stamp is the time

when the WVM was issue. CIS uses such time-stamps and therefore requires WVM

trust instead of TSA trust.

The notarial scheme CN provides authenticity, non-repudiation, and proof of exis-

tence by means of notarial attestations. These attestations are created (i.e. signed)

and renewed (i.e. verified and re-signed) by notaries. Therefore, CN requires no-

tary trust, that is, notaries are trusted to verify old attestations properly before

re-signing them.

Certification authorities are needed to authenticate TSAs’ or notaries’ verifica-

tion public keys. Thus, the time-stamping schemes AdES and ERS and the notarial

scheme CN require CA trust. Note that this trust assumption is optional for CIS

4Note that this is also the case of CIS, since in CIS hash functions are used to produce the

WVM-based time-stamps.

4.1 A qualitative analysis based on trust assumptions 33

because it uses WVM-based time-stamps. Such time-stamps use no digital signa-

tures and, therefore, require no authenticated public keys. (The authenticity of

these time-stamps relies on WVM trust.) CIS requires CA trust if CIS is used to

achieve authenticity and non-repudiation for documents signed by their originators.

We now compare the schemes with respect to the required trust assumptions.

LOCKSS appears to be the least trustworthy scheme. This is because LOCKSS is

the only scheme that produces no evidence and therefore retrievers cannot verify

by themselves whether integrity of documents is guaranteed. Thus, retrievers rely

on the archivist for integrity verification, which seems to be the strongest trust

assumption found in Table 4.1.

Next comes the notarial scheme CN, followed by the time-stamping schemes.

Time-stamping schemes are likely to be the most trustworthy schemes because their

trust assumptions are weaker than the notarial assumptions. More precisely, TSA

trust is weaker than notary trust. This is because TSAs are trusted to only provide

the correct time while retrievers can verify all generated evidence. However, in the

notarial scheme the task of verifying evidence is delegated to notaries. Therefore,

retrievers must trust the notaries to execute this task correctly.

However, with respect to several time-stamping schemes, it is still unclear whether

WVM-based time-stamps should be preferred over signature-based time-stamps or

the other way around. It should be noted that WVM make only sense if realized as

hard copies because electronic copies would require evidence of proof of existence

themselves. On the other hand, retrievers may be unable to verify the authenticity

of a hard copy of WVM by themselves. Thus, it is likely that retrievers decide

to believe in WVM only if they trust the archivist who preserves the hard copy.

In this case, the archived documents and the hard copies of WVM should not be

preserved by the same archivist. Otherwise, he could tamper with the documents

and forge WVM-based evidence without being noticed. Therefore, although we can

find TSAs issuing WVM-based time-stamps, more research is needed to understand

WVM requirements in the long term and to judge how this approach compares with

signature-based time-stamps.

Nonetheless, our qualitative comparison has the some limitations. First, some

assumptions are hard to be used to compare schemes. For example, can we say

that time-stamping schemes are more trustworthy than the notarial scheme even

though the additional assumption evidence initialization is required? Second, the

trustworthiness of each individual TSA or notary was not taken into account. TSAs

and notaries can differ in trustworthiness and such differences could be observed,

for example, in the reputation that these parties build over time. Thus, even if TSA

trust is weaker than notary trust, retrievers may prefer the notarial scheme over a

34 4 Trustworthiness analysis

time-stamping scheme if the notarial scheme uses notaries with higher reputation

than the TSAs in the time-stamping scheme.

In the next section we will analyze trust by looking at the evidence that the

schemes generate. This analysis is not intended to compare schemes as here, but

rather to estimate how likely their evidence is to guarantee the promised protection

goals. This approach will take into account the reputation of involved parties, which

is a limitation of the qualitative approach.

4.2 Quantifying the trustworthiness of evidence

This section presents two contributions. First, it describes how to use a computa-

tional trust model and the reputation of involved parties to estimate the trustworthi-

ness of evidence for an archived document. The trust model outputs probabilities

which estimate how likely the evidence generated by a protection scheme indeed

guarantees the promised protection goals. Like in the earlier sections, these goals

include integrity, authenticity, non-repudiation, and proof of existence. Here, we

deal only with time-stamping and notarial schemes because LOCKSS produces no

evidence. Moreover, we assume that evidence is signature-based because this ap-

proach has been largely adopted. Also, widely visible media-based evidence is not

covered here because it is unclear whether such media can be used for the long term.

Next, we present an overview of our proposal by introducing the involved partici-

pants, the computed probabilities, and identified limitations. However, to be able

to use a computational trust model we need the respective reputation data. Thus,

the second contribution of this section is to show how to realize a reputation system

that provides reputation information as input to the trust model.

4.2.1 Overview

In the long-term protection schemes for digital archives usually the following entities

participate. First, there are archivists, who request evidence, e.g. time-stamps, for

documents stored in their archives. Second, there are evidence generators, which

generate evidence for documents on archivists’ requests. Evidence generators can

be time-stamp authorities (TSAs) or notaries. Certification authorities that issue

certificates for TSAs, notaries or document signers are also evidence generators.

Third, there are retrievers who obtain documents and the corresponding evidence

from archives. Retrievers verify whether the evidence for a document, e.g. a time-

stamp sequence, is cryptographically correct by checking, for example, the signatures

contained in the evidence.

4.2 Quantifying the trustworthiness of evidence 35

However, verified evidence is not necessarily trustworthy because the protection

schemes require certain trust assumptions. Thus, we propose a reputation system

to provide information that helps to approximate the trustworthiness of such ev-

idence. This information is generated by three types of participants (retrievers,

archivists, and evidence generators). First, after the evidence for a document has

been generated, they verify it and rate the evidence positively if they think it is cor-

rect; otherwise negatively. Thus, these parties need to verify not only whether the

evidence is cryptographically correct, but also whether it guarantees the promised

protection goals. For example, if evidence is provided in the form of a time-stamp,

it is checked whether the time-stamp signature is valid and the time contained in

the evidence is feasible. Archivists can verify whether the contained time is feasible

as soon as they request a new time-stamp. However, a retriever may verify time-

stamps long after they were created. Therefore, we cannot expect that archivists

and retrievers verify proof of existence with the same accuracy. Moreover, an evi-

dence generator must be prevented from rating his or her own evidence. These two

issues will be addressed in Section 4.2.3.

The positive or negative ratings given by retrievers, archivists, and evidence gen-

erators are named experiences and are stored in the reputation system. From the

experiences we then compute the reputation of a generator and two probabilities

that approximate the trustworthiness of the evidence. The first probability is called

trust score of evidence and approximates how likely the evidence of a specific doc-

ument is to be correct, that is, to guarantee the promised protection goals. The

second probability is named trust score of generators and it estimates how likely

the involved generators create evidence correctly. The trust score of a generator is

derived from his or her reputation and takes into account the reported experiences

on all evidences that he or she has ever produced. The reason why we use two

distinct probabilities is that we take into account not only the trust in the evidence

for a specific document (trust score of evidence), but also the up-to-date reputation

of the corresponding evidence generators (trust score of generators).

We illustrate our approach with an example. We start with the trust score of

evidence. For k > 0, assume there are an archived document d and pieces of evidence

E1, . . . , Ek, e.g. time-stamps, created at times t1, . . . , tk. These pieces are used to

convince retrievers at the current time t > tk that d has the promised protection

goals. Now assume that E1, . . . , Ek have been verified by retrievers, archivists, and

evidence generators. Then, for 1 ≤ j ≤ k, the experiences of those who verified

evidence Ej are used to compute the probability ωEj
that Ej is correct. Next,

the trust score of evidence is computed from the probabilities ωE1
, . . . , ωEk

. The

computed trust score is the probability that pieces E1, . . . , Ek are all correct. We

36 4 Trustworthiness analysis

provide further details how the probabilities and the trust score are computed in

Section 2.11.

We now illustrate the trust score of generators using the same archived document

d and pieces of evidence E1, . . . , Ek from the previous example. For 1 ≤ j ≤ k,

assume generator Gj produced evidence Ej for document d at time tj. Also, Gj may

have produced further evidence for other archived documents. These further pieces

of evidence are also verified and rated. The experiences on all evidence that Gj

has ever created constitute the up-to-date reputation of Gj. All these experiences

are then used to compute a probability ωGj
that Gj produces correct evidences.

Next, the trust score of generators is computed from the probabilities ωG1
, . . . , ωGk

.

The trust score of generators is the probability that generators G1, . . . , Gk are all

trustworthy.

Note that the two proposed trust scores approximate the trustworthiness at dis-

tinct points in time. While the trust score of evidence indicates how likely the

evidence of a document was generated correctly at the time when it was gen-

erated, the trust score of the generators reflects the current reputation they have

built over time. This value can also be used by the archivists to avoid untrustworthy

generators when requesting new evidence.

On the other hand, the trust score of the evidence is needed to prevent retrievers

from trusting in an untrustworthy evidence generated by a trustworthy party. As-

sume a generator has high reputation, but one day he or she suffers an attack and

generates a false evidence. Since retrievers may trust an incorrect evidence because

it was issued by a reputable generator, a second trust value is needed that evaluates

the trustworthiness of the evidence itself.

The approach we just presented has some limitations. For now, we neither deter-

mine nor consider trust values for the involved archivists, although they participate

in the creation of evidence. The reason is that their role in a protection scheme

is quite different from the role of the generators; therefore, distinct mechanisms to

compute the trust put in archivists are necessary. Moreover, most of the parties can-

not easily verify whether archivists perform their role correctly. The individual who

could identify misbehavior from an archivist is the owner of the archived document.

He or she knows the protection goals of the document and could notice whether the

archivist tampers with them. However, this individual has limited lifetime and can-

not observe the archivist’s behavior indefinitely. Also, some documents may have

no owners. Therefore, for now we assume that the archivist is trusted to generate

evidence correctly.

As seen, our approach allows to approximate the trustworthiness of evidence gen-

erated with protection schemes that rely on time-stamps, notarial attestations, and

4.2 Quantifying the trustworthiness of evidence 37

certificates. However, as mentioned before a reputation system is needed that allows

us to determine the respective reputation data. For CAs, we can use the reputation

systems designed by Braun et al. [5]. Additionally, the reputation of CAs could

be derived from their certification policies as Wazan et al. [60] propose. These two

solutions for CAs are presented in Section 4.2.4. For time-stamp authorities and

notaries we will present a reputation system in Section 4.2.3.

We next present our approach in the following order. First, Section 4.2.2 shows

how to compute the trust scores introduced above. Next, Section 4.2.3 presents

how to realize a reputation system that provides input for computing trust. In Sec-

tion 4.2.4 we examine alternative approaches for approximating the trustworthiness

of evidence. Finally, we demonstrate in Section 4.2.5 that, if the number of involved

generators increases in the long term, then the trustworthiness of evidence tends to

decay.

4.2.2 Computing trust scores

This section presents how to approximate the trustworthiness of evidence produced

by time-stamping or notarial schemes. More precisely, we detail how to compute

two probabilities that estimate how likely a given time-stamp sequence or attesta-

tion sequence is to guarantee the promised protection goals of a specific document.

The first probability is called trust score of evidence and the second is named trust

score of evidence generators. To this end, we are going to use the trust model

called Subjective Logic. As justified in Section 2.11, we choose this model because

it is well-established and uses mathematics which is easy for the reader to compre-

hend. However, Subjective Logic can be replaced by the CertainTrust trust model,

because both models are interchangeable. Together with the selected model, we

will use the reputation scores from the parties involved in the creation of evidence.

Such reputation scores can be obtained using a reputation system as explained in

Section 4.2.3.

We start by explaining how a retriever computes the trust score of evidence (ωE).

For k > 1, the retriever first obtains at the current time t > tk a document d

and the corresponding evidences E1, . . . , Ek which is either a time-stamp sequence

or attestation sequence. In addition, for each 1 ≤ j ≤ k she obtains for evidence

Ej three reputation scores from the reputation system. The first reputation score is
~XA
Ej

= (rAEj
, sAEj

), where rAEj
is the sum of the positive experiences that archivists had

on Ej, s
A
Ej

is the sum of the negative experiences from archivists had on the same

Ej. Similarly, the second and third reputation scores ~XG
Ej

= (rGEj
, sGEj

) and ~XR
Ej

=

(rREj
, sREj

) are computed from the evidence generators’ and retrievers’ experiences on

38 4 Trustworthiness analysis

Ej, respectively. The three reputation scores are computed in the same manner but

differ in the type of participants.

From these reputation scores, the retriever computes the weighted average repu-

tation score ~XEj
of each evidence Ej. To this end, she uses non-negative weights wA,

wG, and wR for the reputation scores from the archivists, evidence generators, and

retrievers experiences, respectively. These weights are parameters of the reputation

system and represent how much each type of participant is trusted to report their

experiences correctly. As we will see in Section 4.2.3, archivists and evidence gener-

ators can check an evidence as soon as it is generated whereas retrievers may check

it much later. Thus, archivists and evidence generators can provide a more reliable

opinion about the protection goals (e.g. proof of existence) than retrievers. Also,

over time the number of retrievers that rate evidence may be larger than the number

of archivists and evidence generators. Therefore, we suggest that wA ≈ wG > wR.

Next, the retriever computes ~XEj
using the weighted average operator presented in

Section 2.11, Equation 2.1. That is, ~XEj
= (rEj

, sEj
) such that

rEj
=
wA · rAEj

+ wG · rGEj
+ wR · rREj

wA + wG + wR

, sEj
=
wA · sAEj

+ wG · sGEj
+ wR · sREj

wA + wG + wR

.

The final steps concern the trust model. The retriever maps each weighted average

reputation score ~XEj
into an opinion ωEj

using the mapping function shown in

Section 2.11, Equation 2.3. That is, ωEj
= (b, d, u) such that

b =
rEj

rEj
+ sEj

+ 2
, d =

sEj

rEj
+ sEj

+ 2
, u =

2

rEj
+ sEj

+ 2
.

Finally, she calculates the trust that all evidences Ej are correct based on the

corresponding opinions ωEj
. This trust is the opinion ωE and is computed using the

conjunction operator explained in Section 2.11, Equation 2.4. That is,

ωE = ωE1
∧ . . . ∧ ωEk

.

We now describe how to compute the trust score of evidence generators (ωG) given

the evidence E1, . . . , Ek of document d. Initially, the retriever identifies the distinct

generators g1, . . . , gl of each piece of evidence in E1, . . . , Ek, where l ≤ k. Note that

the condition l ≤ k is necessary because one generator can create one or more pieces

of evidence for the same document. Next, for every generator gj (1 ≤ j ≤ l) she

obtains from the reputation system three reputation scores. The first reputation

score is ~XA
gj

which means the addition of archivists’ experiences on any evidence

that gj has created so far. The second and the third reputation scores are ~XG
gj

and

4.2 Quantifying the trustworthiness of evidence 39

~XR
gj

which correspond to evidence generators and retrievers, respectively, and are

analogous to the reputation score ~XA
gj

.

The next steps are similar to the previously computed trust score of evidence.

For every generator gj and the corresponding reputation scores ~XA
gj

= (rAgj , s
A
gj

),
~XG
gj

= (rGgj , s
G
gj

), and ~XR
gj

= (rRgj , s
R
gj

), the retriever computes the weighted average

reputation score ~Xgj
. Again, she uses weights wA, wG, and wR which represents

how much archivists, evidence generators, and retrievers are trusted to report their

experiences correctly. The average reputation scores ~Xgj
are computed with the

weighted average operator. That is, ~Xgj
= (rgj , sgj) such that

rgj =
wA · rAgj + wG · rGgj + wR · rRgj

wA + wG + wR

, sgj =
wA · sAgj + wG · sGgj + wR · sRgj

wA + wG + wR

.

Next, the retriever maps every ~Xgj
to an opinion ωgj

using the mapping function.

That is, ωgj
= (b, d, u) such that

b =
rgj

rgj + sgj + 2
, d =

sgj
rgj + sgj + 2

, u =
2

rgj + sgj + 2
.

The computed opinion ωgj
approximates the trustworthiness of generator gj. From

these computed opinions, the retriever finally calculates the opinion ωG that the l

generators are trustworthy using the conjunction operator. That is, she computes

ωG = ωg1
∧ . . . ∧ ωgl

.

As seen, we assume that the retriever obtains reputation scores from a reputation

system. In the next section, we design such a reputation system to provide the

required information.

4.2.3 Realizing a reputation system

In this section, we describe a reputation system where participants report their

experiences on the evidence for archived documents. From these experiences, the

reputation system computes the reputation scores needed as input for the trust

model presented in Section 4.2.2.

Participants

As mentioned before, there are three types of participants in the reputation system.

The first type is evidence generators, which include time-stamp authorities and no-

taries that generate evidence on archivists’ requests. The second type are archivists

40 4 Trustworthiness analysis

and the third type are retrievers of documents from archives. Archivists and retriev-

ers verify generated evidence and rate it by reporting their experiences, i.e. whether

they think evidence is cryptographically correct and indeed guarantees the promised

protection goals. An experience is realized as a boolean, i.e. 1 refers to a positive

experience whereas 0 to a negative one. Evidence generators also verify evidence

generated by other generators and report their experiences to the reputation system.

Participants and their tasks are illustrated in Figure 4.1.

time
d

t1

E1
~XA
E1

, ~XG
E1

, ~XR
E1

t2

E2
~XA
E2

, ~XG
E2

, ~XR
E2

tk

Ek
~XA
Ek

, ~XG
Ek

, ~XR
Ek

create evidence for d

Evidence generators (G)

provide ratings for evidence

Retrievers (R)

Archivists (A)

Evidence generators (G)

Figure 4.1: The evidence Ek for document d being created at the time tk and then rated

at the time t > tk, k > 0. The ratings provided by evidence generators, archivists, and

retrievers are represented by the reputation scores ~XG
Ek

, ~XA
Ek

, and ~XR
Ek

, respectively.

Reporting experiences

The reputation system writes the reported experiences on an online accessible bul-

letin board. A bulletin board is a write-only medium where written data cannot

be deleted and can be read consistently by anyone (for details, see [24]). Such a

medium is desired because experiences on long-term evidence must be stored indef-

initely for future retrievers. Another reason to use a bulletin board is that it allows

the participants of the reputation system to audit all stored experiences. As we will

show later, this allows a retriever to check whether the reputation system computes

trust scores from the stored experiences correctly.

Together with every reported experience, the reputation system also publishes the

type of participant that reported the experience, the corresponding evidence, and

the name of the generator of this particular evidence on the bulletin board. Distin-

guishing the type of the participant (archivists, evidence generators, or retrievers)

is important because their experiences may not be equally reliable. As we will see

4.2 Quantifying the trustworthiness of evidence 41

next, this is because participants are likely to check evidence at different times. In

order to distinguish the type of the participants and also to prevent sybil attacks5

against the reputation system, participants are required to authenticate themselves

before reporting experiences.

Recall that an experience conveys a participant’s judgment whether a piece of

evidence for a document indeed guarantees the promised protection goals of this

document. This judgment is based on the verification of the piece of evidence. We

explain this verification for a time-stamp and attestation. If the piece of evidence is a

signed time-stamp, the participants first check that the time-stamp signature is valid.

Next, they check that the time in the time-stamp is recent. How far the time included

in the time-stamp is allowed to deviate from the time when the participants perform

the verification is a parameter of the reputation system. Note that this verification

is only possible if it happens soon after the time-stamp is created. Afterwards,

participants must use other methods to verify the time contained in the time-stamp.

For example, they can check archival logs recording the date when the time-stamp

was stored together with the document in the archive.

The verification of evidence is more evolved when it comes to a notarial attesta-

tion. In this case, the participants verify that not only the time of the attestation is

recent but also that the attested data has the promised protection goals. Therefore,

the participants must be provided with the new attestation, the previous attesta-

tions, and the corresponding protected document. Note that the verification needs

also to take place soon after the attestation was created so that proof of existence

can be checked.

As seen, the time when participants check evidence is quite important. This is

because the sooner evidence is checked, the more likely wrongly generated evidence

can be detected. Thus, the reputation system needs to classify experiences (i.e. the

verification results) with respect to when they were reported. This classification can

be done by using the type of the participant that reports an experience as follows.

Archivists who request evidence can verify it as soon as they receive new evidence.

Evidence generators can also verify evidence soon after its creation if the archivists

provide the generators with new evidence timely. In contrast, retrievers are likely

to access evidence long after it was created; therefore, they may be unable to check

evidence as accurately as archivists and evidence generators.

5Malicious users use false identities to subvert a reputation system.

42 4 Trustworthiness analysis

Creation, verification, and rating of evidence

For the reputation system to ensure that participants provide their experiences

timely, we now present a protocol for the creation, verification, and rating of evi-

dence.

1. At an initial time tk, an archivist selects an evidence generator gk and requests

new evidence from gk for a document d.

2. Generator gk produces new evidence Ek and returns it to the archivist.

3. The archivist verifies Ek as explained before and submits his experience to-

gether with Ek and the identification of gk to the reputation system.

4. The reputation system publishes the archivist’s experience together with gk,

Ek, and the participant type A on the bulletin board, where A refers to

archivists.

5. The reputation system randomly selects r > 0 generators other than gk that

will be allowed to report their experiences on Ek. We assume that r generators

can always be found and that they are selected truly at random to reduce the

change of collusion against or in favor of evidence generator gk. The reputation

system sends the identification of the selected generators to the archivist and

sets a time tr > tk. In the time period [tk, tr], the randomly selected generators

can report their experiences; after tr, their experiences will be rejected by the

reputation system. The goal is to guarantee that proof of existence is verified

with a minimum accuracy of tr − tk units of time.

6. The archivist sends the new evidence Ek to the r selected generators. If Ek is

a notarial attestation, then the archivist also sends previous attestations and

document d.

7. The selected generators verify Ek as described before and submit their expe-

riences on Ek to the reputation system.

8. The reputation system publishes each submitted experience together with gk,

Ek, and the participant type G on the bulletin board, where G refers to gen-

erators.

9. After time tr, the reputation system allows only retrievers to submit their

experiences on Ek. In this case, retrievers obtain Ek from the archive and

verify it. If they verify Ek soon after it was generated, then they verify Ek

4.2 Quantifying the trustworthiness of evidence 43

like archivists and evidence generators; otherwise, retrievers need additional

methods to check Ek for proof of existence.

10. Retrievers submit their experiences together with evidence Ek and identifica-

tion gk to reputation system.

11. The reputation system publishes each retriever’s experience together with gk,

Ek, and the participant type R on the bulletin board, where R refers to re-

trievers.

Computation of reputation scores

We now explain how the reputation system computes the two types of reputation

scores. As explained in Section 2.11, a reputation score of a party or information

z is a vector ~XC
z = (rCz , s

C
z), where rCz is the sum of all positive experiences that a

community C had on z and sCz is the sum of all negative experiences from C on z.

The first type of reputation score is the reputation scores of an evidence E, where

E and the corresponding experiences on E have been published on a bulletin board.

The reputation scores of E are ~XA
E = (rAE, s

A
E) computed from archivists’ experiences,

~XG
E = (rGE , s

G
E) calculated from evidence generators’ experiences, and ~XR

E = (rRE , s
R
E)

(retrievers’ experiences). To obtain such scores, a retriever submits E to the reputa-

tion system. The reputation system computes ~XA
E , ~XG

E , and ~XR
E and returns them

to the retriever.

The second type of reputation score is the reputation scores of an evidence gener-

ator g. Assume for k > 0 that the generator identified by g has produced evidences

E1, . . . , Ek so far. Then, for 1 ≤ j ≤ k, the bulletin board first computes the

three reputation scores ~XA
Ej

, ~XG
Ej

, and ~XR
Ej

of each evidence Ej as explained above.

Finally, the bulletin board adds the reputation scores from the same type of partic-

ipants. That is, it computes the reputation scores ~XA
g (type archivist), ~XG

g (type

evidence generators), and ~XR
g (type retrievers) such that

~XA
g = (

k∑
j=1

rAEj
,

k∑
j=1

sAEj
)

~XG
g = (

k∑
j=1

rGEj
,

k∑
j=1

sGEj
)

~XR
g = (

k∑
j=1

rREj
,

k∑
j=1

sREj
),

44 4 Trustworthiness analysis

as described in Section 2.11, Equation 2.2. To obtain such scores, a retriever

submits g to the reputation system. The reputation system computes ~XA
g , ~XG

g , and
~XR
g and returns them to the retriever.

Benefits, trust assumptions, and performance

We finally analyze the benefits of using the reputation system, identify the required

trust assumptions, and indicate performance improvements. A benefit of the reputa-

tion system is that it can help to raise the trustworthiness of the evidence generators.

For example, an archivist can select evidence generators with good reputation over

evidence generators with bad reputation. This raises the trustworthiness of the gen-

erated evidences. Furthermore, evidence generators such as time-stamp authorities

and notaries are more likely to produce correct evidences and build good reputation,

if they compete with other evidence generators to be selected by archivists.

The use of a reputation system also introduces further trust assumptions. The

reputation system is trusted to publish any reported experience together with the

corresponding type of the reporter participant, verified evidence, and evidence cre-

ator correctly on the bulletin board. In order to guarantee the correct type of partic-

ipants, the reputation system is also trusted to authenticate participants properly.

Moreover, proof of existence must be verified with a minimum accuracy. Such an

accuracy cannot be guaranteed if generators check an evidence long after it was

created. To prevent this, the reputation system is trusted to not accept experiences

submitted after an established deadline (see time tr presented above). Note that

generators are also trusted to receive evidences timely so that they can submit their

experiences before the deadline.

However, to some extent the correct behavior of the reputation system can be

verified. Archivists, retrievers, and evidence generators can check whether the val-

ues reported are published correctly. Furthermore, the trust assumptions could be

softened if participants sign the experiences they report.

Note that the reputation system need not be trusted to compute reputation scores.

This is because third parties can verify the reputation scores by retrieving the expe-

riences from the bulletin board and computing the reputation scores by themselves.

The reason for computing these scores on the reputation system’s side is to reduce

the communication among the bulletin board and retrievers.

Finally, the performance of the bulletin board could be improved by using crypto-

graphic tools. For example, the bulletin board could store the hash of each evidence

instead of the evidence itself. However, this would require a protection scheme to

address the aging of the used hash function. We leave this challenge for future work.

4.2 Quantifying the trustworthiness of evidence 45

4.2.4 Alternative approaches

This section presents alternative approaches for approximating the trustworthiness

of the evidence for digital documents. We briefly describe theses approaches and

analyze whether they can be used together with long-term protection schemes.

Trust in evidence that contains digital signatures can be derived from the trust we

put in the authenticity of the public keys needed to verify these signatures. Assessing

the trust in public keys authenticity is a built-in feature of the so-called PGP Web

of Trust [63]. PGP is a decentralized PKI where users quantify their trust in the

keys they know as ultimate, completely, marginal, none, and unknown. When a user

receives a new key and this key has been signed (i.e. certified) by a key the user

already knows, he or she can deduce his or her trust in the new key from the trust in

the known key. Trust can also be deduced if there is a chain of certifications between

the new key and a known one. However, these chains have a maximum length which

users define. Over time, such chains tend to become too long. Moreover, users may

find no chains from a known key to a very old key. Therefore, PGP Web of Trust is

not recommended to be used for the long-term protection of documents.

An alternative approach is to use a centralized PKI, such as X.509. In this ap-

proach, the trust in the authenticity of public keys is derived from the trust in the

certification authorities (CAs) that certify the public keys. Such PKIs provide no

built-in trust assessment. To address this issue, Wazan et al. [60] propose a formal

trust model to compute trust in a CA from its certification policies. A certification

policy describes the policy and practices of a CA, such as how key subjects are

authenticated. The approach of Wazan et al. needs an expert party that users fully

trust to analyze the certification policies and compute trust in CAs. This approach

could be used to provide extra input for our reputation system and, therefore, help

to approximate the trustworthiness of evidence with more confidence. For example,

such extra input is desired when the reputation system is initialized and contains

no experiences yet.

Another solution to compute the trust in CAs is proposed by Braun et al. [5].

Instead of trusted experts, users evaluate by themselves the CAs present in the cer-

tificate chains needed to establish Transport Layer Security (TLS) [15] connections.

More precisely, if a user connects to the expected website successfully over TLS,

he or she stores in his or her local database that the involved CAs are indeed the

subjects owning the public keys and that the CAs issued trustworthy certificates.

Additionally, there is a reputation system where users can submit their experiences

or obtain other users’ experiences. This solution could be used together with our

approach if retrievers report their experiences on certificates used as evidence for

46 4 Trustworthiness analysis

documents.

4.2.5 The trustworthiness of evidence over time

Time-stamping and notarial schemes produce evidence to convince retrievers of the

protection goals of a document. The creation of this evidence involves one or more

evidence generators (viz. time-stamp or notaries), each of which is trusted to pro-

duce evidence correctly.

However, usually there is no full trust in the evidence generators and correspond-

ingly in the evidence itself. There is always a small probability that generators act

improperly. Since retrievers are required to trust every evidence generator and the

number of involved evidence generators increases over time, the trustworthiness of

evidence degrades as time goes by. Intuitively speaking, the longer a document is

archived and the more evidence generators are involved in the evidence generation

process, the more likely it is that one generator was malicious and compromised

evidence. This can also be seen from the operator used to compute the conjunc-

tion between opinions about the trustworthiness of generators or evidence (see Sec-

tion 2.11, Equation 2.4). If the belief b in, say, one evidence generator is 1− ε, then

the belief in k generators is (1− ε)k which converges to zero as k goes to infinity.

Dealing with trustworthiness decay of evidence is a challenge for which we see

two possible approaches. The first approach is to mitigate trustworthiness decay by

setting incentives for evidence generators to build good reputation and then allowing

archivists to select the generators that have the highest reputations. The reputation

system proposed is a first step in this direction. The second approach is to reset

the trustworthiness of evidence. In this case, audit methods to reassure that the

protection goals of documents are still preserved may be used. However, this is left

for future work.

5 Performance analysis

In this chapter we analyze and compare the performance of several protection

schemes. They are analyzed with respect to their space, time, and communication

complexity. Space complexity refers to the size of the evidence generated by the

schemes. Time complexity refers to the time necessary to create, update, and verify

evidence. Communication complexity measures the sizes of the messages exchanged

to create or update evidence. We start by assessing performance analytically, that

is, without considering the cryptographic primitives used. Then, for a more realis-

tic comparison, we implement the protection schemes using existing cryptographic

primitives and carry out two experiments. In the first experiment we analyze how

the schemes compare with respect to space, time, communication. In the second

experiment we evaluate how distinct signature lifetimes affect the performance of

the schemes. Furthermore, we use the results to verify the predictions drawn from

our analytical evaluation. Finally, we show how the performance of the schemes

could be improved. The content of this chapter was published as parts of [56, 58].

5.1 Analytical evaluation

In this section we provide an analytical evaluation that allows to predict and in-

terpret the performance of several protection schemes without taking specific cryp-

tographic primitives or hardware into account. Such an evaluation is important

because we cannot estimate how future primitives and hardware will affect the per-

formance of protection schemes.

For this evaluation, we consider the notarial scheme Cumulative Notarizations

(CN) and the time-stamping schemes Advanced Electronic Signatures (AdES), Con-

tent Integrity Service (CIS), and Evidence Record Syntax (ERS). These schemes are

described in Sections 3.1 and 3.2. The analysis does not include LOCKSS because

the functionality of this scheme is very different from the functionalities of the other

schemes. It only guarantees integrity of documents and produces no evidence. Also,

48 5 Performance analysis

evidence is signature-based because it is still unclear whether widely visible media-

based evidence can be used for the long term.

Based on the proposed evaluation, we compare notarial and time-stamping schemes

with respect to their performance. To this end, we use the following conventions

that make the schemes comparable:

• There are m documents of the same size in the archive. There is also a signa-

ture on each of these documents.

• All time-stamps are signed.

• All schemes proceed iteratively. In the first iteration, initial evidence for the

individual protection goals is created. In the later iterations, the evidence is

updated.

• Keys used to update evidence are renewed in every iteration.

• Hash functions are only renewed after r iterations, because for security reasons

the lifetimes of signature keys are expected to be shorter. (In practice, the

lifetime of hash functions lasts around 80 years while the lifetime of signatures

around two to four years.) More precisely, since attackers can tamper with

the protection goals if they compromise a signature key before the signature

lifetime ends, shorter lifetimes are needed that the attackers have shorter time

to succeed in their attack. Therefore, in the kth iteration we define the number

of hash function renewals as p = bk/rc.

• Verification information for a signature contains a certificate chain that allows

to reduce the trust in the public verification key to the trust in a trust anchor.

It also contains the revocation information for the certificates in this chain.

This verification information is assumed to be of constant size.

We analyze the 1) time complexity, 2) space complexity, and 3) communication

complexity of the different schemes. For time complexity we distinguish between the

time necessary 1.1) for an archivist to initialize evidence, 1.2) for the archivist to

update evidence, and 1.3) for retrievers to verify evidence. Space complexity refers

to the size of the evidence that is generated to establish the protection goals while

communication complexity measures the size of the messages exchanged to create

evidence. For the sake of simplicity, we assume that m = 2l for a positive integer

l and that in ERS all the m documents are initially time-stamped using the same

Merkle tree.

5.1 Analytical evaluation 49

Moreover, we need to distinguish between two types of objects in our analysis.

The first type is hashes which are the bit strings produced by hash functions. The

second type is large objects whose sizes are typically bigger than the sizes of hashes.

Large objects are documents, signatures, verification information, time-stamps, and

attestations. This distinction is necessary to compare the times needed to hash these

objects because the running times of typical hash functions is proportional to the

length of the hashed objects (for example, the sponge hash functions [2]). Moreover,

the distinction helps analyze space and communication complexities because they

depend also on the length of the stored or exchanged objects.

1.1) Performance of evidence initialization: As a first step, we compare the time

complexities of the creation of initial evidence for the m objects. In all schemes, a

considerable amount of work is spent for hashing documents, signatures, verification

information, and hashes or concatenations of such objects. As the running time

of typical hash functions is proportional to the length of the hashed objects, we

approximate the running time of the initialization by counting the number of hashed

objects. This is done in Table 5.1.

Table 5.1: The numbers of objects being hashed while generating initial evidence for m

documents.

Scheme Documents Signatures Ver. info Hashes

CN m m 0 0

AdES m m m 0

CIS m m m 0

ERS m m m 2(m− 1)

In our analysis, CN is the fastest scheme because it hashes only the documents

and signatures. Next are AdES and CIS. ERS is the slowest scheme because in

addition to what AdES and CIS need to hash, ERS creates the initial Merkle tree

by hashing m− 1 concatenations of node pairs.

1.2) Performance of evidence renewal: Next, we quantify the times needed for

evidence creation in the kth iteration, for k ≥ 2. Recall that m is the number of

documents in the archive and thatm = 2l for some positive integer l. Also, p = bk/rc
is the number of hash function renewals, where r is the number of iterations after

which the hash function is renewed. Again, we count the number of hashed objects.

Table 5.2 shows this comparison.

50 5 Performance analysis

Table 5.2: The numbers of objects being hashed while updating the evidence for m = 2l

documents in the kth iteration. Here p = bk/rc is the number of hash function renewals,

where r is the number of iterations after which the hash function is renewed.

Scheme Documents Signatures Time-stamps Ver. info Hashes

CN 0 0 0 0 0

AdES m m m(k − 1) mk 0

CIS m m m(k − 1) mk 2m(k − 1)

ERS-O 0 0 1 1 0

ERS-N m m m(k − 1) mk mlp+ 2(m− 1)

The notarial scheme CN is the fastest scheme because it hashes no objects when

updating evidence. To compare the time-stamping schemes, we distinguish two sit-

uations for ERS. In the first situation (ERS-O), the archivist selects the previous

hash function and hashes only the most recent time-stamp together with the cor-

responding verification information. In the second situation (ERS-N), the archivist

selects a new hash function and builds a new Merkle tree. The leaves of the new

tree are computed by hashing all documents, signatures, time-stamps, verification

information, and authentication paths.

When no new hash function is selected, ERS-O is the fastest time-stamping scheme

since compared with AdES and CIS only very few objects are hashed. Also, AdES

is faster than CIS since in addition to the objects hashed by AdES, the CIS scheme

hashes 2m(k−1) hashes. However, hashes are small compared with the other hashed

objects. So the time difference can be expected to be small. If a new hash function is

used, then in our analysis AdES is the fastest time-stamping scheme. The difference

between CIS and ERS-N depends on the parameters l and p.

1.3) Performance of evidence verification: Next, we turn to approximating the

time complexity of evidence verification for individual documents. Again, m is

the number of documents in the archive and m = 2l for some positive integer l.

Also, the number of hash function renewals is defined as p = bk/rc, where r is the

number of iterations after which the hash function is renewed. The time in evidence

verification is mainly spent for hashing data objects and verifying signatures on

documents, time-stamps, or attestations. Therefore, this is what we count. By

a signature verification we mean that the verification algorithm is applied to the

signature and the verification information is checked. The latter means that the

certificate chain from the certificate for the signature verification key to the trust

anchor is validated. The trust anchor is not included in the chain and, therefore, is

5.1 Analytical evaluation 51

not validated.

Table 5.3 compares the number of signature verifications and Table 5.4 compares

the number of hashed objects required by the individual schemes to verify the evi-

dence for one document after the kth iteration in the evidence creation.

Table 5.3: The numbers of signature verifications required while verifying the kth evi-

dence for one document.

Scheme Signature verifications

CN 1

AdES k + 1

CIS k + 1

ERS k + 1

Table 5.4: The numbers of objects being hashed while verifying the kth evidence for one

document. Here p = bk/rc is the number of hash function renewals, where r is the number

of iterations after which the hash function is renewed. Also, there are m = 2l documents

in the archive.

Scheme Documents Signatures Time-stamps Ver. info Hashes

CN 0 0 0 0 0

AdES k k (k2 − k)/2 (k2 + k)/2 0

CIS k k (k2 − k)/2 (k2 + k)/2 k2 − k
ERS p+ 1 p+ 1 r(p2 + p)/2− 2p+ k − 1 r(p2 + p)/2− p+ k (lp2 + 5lp)/2 + 2l

With respect to verification, CN is expected to be the fastest scheme since it

verifies fewer signatures and hashes fewer objects than the time-stamping schemes.

Comparing the time-stamping schemes is more difficult. AdES, CIS, and ERS re-

quire the same number of signature verifications. But when comparing the number

of hashed objects, ERS has the advantage of hashing fewer objects than AdES

and CIS. More precisely, since p + 1 ≈ k/r we can see from the expressions that

ERS hashes approximately 1/r as many documents, signatures, time-stamps, and

verification information as AdES or CIS. On the other hand, ERS must compute

p + 1 ≈ k/r Merkle tree roots using authentication paths. However, the time for

doing this can be expected not to compensate the advantage of ERS since this com-

putation requires hashing pairs of hashes which are small compared to the other

objects. Therefore, in our analysis ERS is the fastest time-stamping scheme with

respect to verification of evidence. Next is AdES which has a slight advantage over

CIS because CIS hashes k2 − k more hashes than AdES.

52 5 Performance analysis

2) Space complexity: Table 5.5 compares the size of the evidence for the m docu-

ments. The evidence is stored in the archives and consists of signatures, time-stamps,

individual certificates, verification information, and hashes. All schemes, except for

ERS, keep separate evidence for each document. In ERS, sets of documents share

the same time-stamps and the same verification information for the time-stamps. In

our case, the m documents share the same time-stamps and time-stamp verification

information. However, each document has its own signature, signature verification

information, and authentication paths.

Table 5.5: The numbers of objects stored as the kth evidence for m = 2l documents.

Here we define p = bk/rc as the number of hash function renewals, where r is the number

of iterations after which the hash function is renewed.

Scheme Signatures Time-stamps Certificates Ver. info Hashes

CN m(k + 1) m m 0 0

AdES m mk 0 mk 0

CIS m mk 0 mk 0

ERS m k 0 m+ k − 1 ml(p+ 1)

Table 5.5 shows that in ERS the number of large objects (viz. signatures, time-

stamps, certificates, and verification information) is proportional to k and m, while

the number of hashes is proportional to mlp. Note that mlp is approximately mk/r

and is expected to be small because the lifetime r of hash functions is usually long.

This happens because hash functions are expected to be used for decades whereas

signatures only for few years (e.g. between two and four years) due to security

reasons.

As for CN, AdES, and CIS, evidence size grows proportionally to mk. Thus, the

expressions in Table 5.5 suggest that for increasing k, the ERS scheme is the most

space efficient scheme. Next comes CN, followed by AdES and CIS. The reasons for

this order are as follows. In CN, only the number of document signatures is pro-

portional to mk while in AdES and CIS the number of time-stamps and verification

information is proportional to mk. Since verification information is usually larger

than a single document signature, AdES and CIS should consume more space than

CN. Note that although Table 5.5 shows no certificates for AdES, CIS, and ERS,

these schemes store more certificates than CN. The reason is that every verification

information contains a chain of certificates.

3) Communication complexity: Finally, Table 5.6 presents the communication

complexity of the different schemes. Here we count the number of objects sent or

5.2 Experiments 53

received by an archivist from or to notaries or time-stamp authorities. These objects

are documents, signatures, time-stamps, notarial attestations (i.e. signatures), cer-

tificates, and hashes. Again, there are m documents in the archive. Also, p = bk/rc
is the number of hash function renewals, where r is the number of iterations after

which the hash function is renewed.

Table 5.6: The numbers of objects being exchanged between an archivist and notaries or

time-stamp authorities while creating the evidence for m documents in the kth iteration.

Here p = bk/rc is the number of hash function renewals, where r is the number of iterations

after which the hash function is renewed.

Scheme Documents Signatures Time-stamps Certificates Hashes

CN (k = 1) m 2m 2m m m

CN (k > 1) m m(k + 1) m m 0

AdES 0 0 m 0 m

CIS 0 0 m 0 m

ERS 0 0 1 0 1

The notarial scheme CN has the highest communication complexity. In CN, the

archivist requests notary signatures for the m documents by sending the documents,

their signatures, and all previous notary signatures to a notary. In turn, the notary

returns one notary signature for every document. Since the communication com-

plexity is proportional to km, CN should have by far the highest communication

complexity when k grows.

AdES and CIS are much more efficient than CN because the archivist sends m

hashes and receives m time-stamps. ERS is the most efficient scheme because the

archivist sends one hash (a Merkle tree root or the hash of a time-stamp) and receives

a time-stamp for it.

5.2 Experiments

The previous section presented a performance evaluation which can be used to com-

pare schemes analytically. In this comparison we considered neither specific crypto-

graphic primitives nor their parameters, such as signature algorithms and signature

key sizes.

Therefore, in this section we select existing hash functions, signature algorithms,

and signature key sizes to compare the protection schemes in a more realistic sce-

nario. We start by describing how we implemented Java prototypes for the protec-

tion schemes. Next, we present two experiments. In the first experiment we use

54 5 Performance analysis

the implementations to measure the time, space, and communication of schemes

by generating evidence based on RSA signatures that are renewed every five years.

We also identify the most time-consuming operations in the implementation as they

are executed in this experiment. In the second experiment we evaluate how the

implementations perform when larger keys for RSA signatures are used.

As before, we do not include LOCKSS into our comparison because it provides

no cryptographic evidence.

5.2.1 Implementations design

We implemented prototypes for the long-term protection schemes AdES, CIS, ERS,

and CN using Java 7 and the corresponding descriptions in Chapter 3. The pro-

totypes generate and verify evidence for the protection goals authenticity, non-

repudiation, and proof of existence. The evidence is stored in the XML format.

The implementations use the xades4j library [16] to create XML signatures. In

turn, xades4j uses the Bouncy Castle crypto provider [29]. When the implementa-

tions use a digital signature, the corresponding public verification key is available in

the form of an X.509 certificate.

To make the schemes comparable, each of these certificates is the last element c3 of

a certificate chain c1, c2, c3. The certificates c1, c2, and c3 are issued by certification

authorities A1, A2, and A3, respectively. Certificate c2 certifies the key for verifying

the signature on c3. Likewise, c1 certifies the key for verifying the signature on c2.

The key to verify the signature on c1 is a trust anchor and we assume verifiers know

this key. Our implementations also deal with revocation. However, for simplicity, we

assume that none of the certificates used in the experiments is revoked. Therefore,

we use an empty certificate revocation list for each of the certificates.

The implementations ran on Solaris 11 using an Intel i5 M560 2.67 GHz proces-

sor and 4 GB RAM. We used no code optimization (i.e. just-in-time-compilation)

because we cannot guarantee it equally improves the performance of all prototypes.

5.2.2 Comparing schemes in the long term

In this section we use our prototypes to compare the schemes with respect to per-

formance. Here, the prototypes use RSA keys that are expected to be secure for

at least five years, which means evidence needs to be updated every five years. As

we will show, the results are comparable to the predictions based on the analytical

evaluation presented in Section 5.1. Next, we first design the experiment and then

analyze the results.

5.2 Experiments 55

Experiment design

Our experiment is designed as follows. There are 128 documents, each of size 30720

bytes, in the archive. Also, each document is signed using a 1478-bit RSA key the

hash function SHA-256. The goal of the experiment is to protect these documents

for 100 years starting in the year 2013. We therefore create initial evidence in the

year 2013. Then we update the evidence every five years, i.e. in the years 2018,

2023, 2028, 2033, 2038, 2043, 2048, 2053, 2058, 2063, 2068, 2073, 2078, 2083, 2088,

2093, 2098, 2103, and 2108.

For generating evidence, we choose the RSA scheme and a hash function SHA.

For signing we select the RSA key lengths according to the conservative predictions

by Lenstra [31] such that they remain secure for at least five years, i.e. until the

next evidence update happens. The selected hash functions also follow the same

conservative predictions. Since Lenstra predict that the hash function SHA-256

remains secure until year 2090, we select SHA-256 from 2013 to 2083 and then

SHA-384 from 2088 onwards. This also enables us to evaluate both the performance

of evidence updates in which the hash function remains the same and of evidence

updates in which the hash function is replaced. The selected key lengths and hash

functions are found in Table 5.7.

We use the prototypes to measure time, space, and communication as follows.

Time is measure by counting the running times for each prototype to generate

or verify evidence. We exclude the times spent on reading or writing files in file

system. For evidence generation, we also exclude the times needed to communicate

with time-stamp authorities or notaries and the time they need to respond requests.

Space is measured by counting the sizes of the evidence produced by each pro-

totype. Communication is measured by counting the sizes of the data exchanged

between each prototype and the trusted third parties when evidence is generated.

As for running times, potential increase of computer speed has to be taken into

account. This is typically done using Moore’s law, which predicts that processor

speed doubles every 18 months. However, such predictions should be taken with

necessary care, since for physical reasons Moore’s law is only expected to be valid

until 2020 [51]. Therefore, we provide not only the running times measured in the

experiment, but also the correction factors in accordance with Moore’s law. These

factors are 2(yp−ys)12/18, where ys is the year when the implementation is supposed

to be executed and yp is the year when the used processor was launched. We used

an Intel i5 M560 2.67 GHz processor launched in 2010. By multiplying a provided

running time (measured while using our processor) and a correction factor computed

for the year ys, the reader can estimate how fast the implementation would perform

56 5 Performance analysis

Table 5.7: The key and hash sizes used to generate evidence.

Year when evidence is generated Key size (bits) Hash size (bits)

2013 1478

256

2018 1708

2023 1958

2028 2228

2033 2521

2038 2835

2043 3172

2048 3532

2053 3916

2058 4325

2063 4758

2068 5217

2073 5701

2078 6213

2083 6751

2088 7317

384

2093 7910

2098 8533

2103 9184

2108 9865

if using a processor launched in year ys.

Results

We start by comparing the schemes with respect to the running times required by

the archivist to generate evidence. The running times are found in Table 5.8. We

will see that our predictions in Section 5.1 are quite good. However, they only take

hashing and signature verification into account. This explains certain deviations.

We compare Table 5.8 with our predictions in Tables 5.1 and 5.2. First, we

consider the initialization step. Table 5.8 confirms the predictions found in Table

5.1. As our experiments show, CN is in fact the fastest scheme. Next are AdES and

CIS, followed by ERS. As expected, ERS is the slowest scheme.

Next, we turn to evidence update. The only year in which the hash function is

updated is 2088. In all other iterations the hash function from the previous iteration

5.2 Experiments 57

Table 5.8: The times (seconds) needed to generate evidence for 128 signed documents.

Year AdES CIS ERS CN Moore’s Law factor

2013 0.18 0.18 0.24 0.07 2−2.00

2018 0.45 0.46 0.24 0.00 2−5.33

2023 0.72 0.74 0.26 0.00 2−8.67

2028 0.96 1.02 0.29 0.00 2−12.00

2033 1.26 1.35 0.30 0.00 2−15.33

2038 1.58 1.67 0.32 0.00 2−18.67

2043 1.91 2.02 0.35 0.00 2−22.00

2048 2.25 2.39 0.38 0.00 2−25.33

2053 2.63 2.76 0.40 0.00 2−28.67

2058 3.03 3.22 0.41 0.00 2−32.00

2063 3.47 3.62 0.43 0.00 2−35.33

2068 3.91 4.15 0.45 0.00 2−38.67

2073 4.45 4.64 0.48 0.00 2−42.00

2078 4.92 5.15 0.50 0.00 2−45.33

2083 5.50 5.73 0.52 0.00 2−48.67

2088 6.21 6.50 6.33 0.00 2−52.00

2093 6.85 7.13 0.68 0.00 2−55.33

2098 7.61 7.89 0.70 0.00 2−58.67

2103 8.30 8.61 0.73 0.00 2−62.00

2108 9.08 9.47 0.75 0.00 2−65.33

is used. Table 5.2 predicts that in iterations where the hash functions is not updated,

CN should use no time, ERS should be the fastest time-stamping scheme, followed

by AdES and CIS. This is again confirmed by Table 5.8. In fact, we see that ERS

is significantly faster than the other two time-stamping schemes. In 2088 the hash

function SHA-256 is replaced by SHA-384. In this case, AdES is faster than ERS

and CIS as predicted. Furthermore, we see that ERS is slightly faster than CIS

because ERS hashes fewer hashes. This difference becomes plausible when we plug

in the parameters from our experiment for the year 2088 in Table 5.1: k = 16,

m = 128, p = 1, authentication path of length l = 7. In this case, ERS hashes 1150

hashes while CIS hashes 3840 hashes.

Next, Table 5.9 shows the times required by retrievers to verify evidence. As

predicted and shown in Tables 5.3 and 5.4, CN is the fastest scheme. The time-

stamping schemes are almost identical in performance. This is mainly due to the fact

that according to Table 5.3 they require the same number of signature verifications.

58 5 Performance analysis

The number of hashes appears to play an insignificant role. This situation will be

further investigated in Section 5.2.2.

Table 5.9: The times (seconds) needed to verify evidence for one document.

Year AdES CIS ERS CN Moore’s Law factor

2013 0.25 0.25 0.25 0.03 2−2.00

2018 0.31 0.31 0.31 0.03 2−5.33

2023 0.37 0.36 0.36 0.03 2−8.67

2028 0.43 0.43 0.43 0.03 2−12.00

2033 0.51 0.51 0.50 0.03 2−15.33

2038 0.59 0.60 0.59 0.03 2−18.67

2043 0.69 0.69 0.69 0.03 2−22.00

2048 0.80 0.80 0.79 0.03 2−25.33

2053 0.92 0.92 0.91 0.04 2−28.67

2058 1.05 1.06 1.04 0.04 2−32.00

2063 1.20 1.21 1.19 0.04 2−35.33

2068 1.36 1.37 1.34 0.04 2−38.67

2073 1.54 1.55 1.53 0.04 2−42.00

2078 1.74 1.75 1.72 0.05 2−45.33

2083 1.96 1.98 1.94 0.05 2−48.67

2088 2.21 2.21 2.18 0.06 2−52.00

2093 2.48 2.49 2.46 0.06 2−55.33

2098 3.56 3.56 3.50 0.99 2−58.67

2103 4.74 4.77 4.69 1.13 2−62.00

2108 6.12 6.13 6.04 1.31 2−65.33

2113 6.12 6.13 6.04 1.31 2−68.67

We now compare the schemes with respect to space. Figure 5.1 presents the total

size of the evidence for all 128 documents created by the individual schemes. As

predicted and shown in Table 5.5, from 2018 onwards, ERS is the most space efficient

scheme, followed by CN and the least space efficient schemes are AdES and CIS. In

2113, the differences are quite dramatic.

Finally, we compare how schemes differ in communication. Figure 5.2 illustrates

the sizes of the messages exchanged between the implementations and the trusted

third parties when evidence is created or updated. As predicted and shown in

Table 5.6, the communication complexity for CN is the highest. The communication

complexity of the time-stamping schemes are much lower with the communication

complexity for ERS being almost zero.

5.2 Experiments 59

2013 2033 2053 2073 2093 2113

0

10

20

30

Year

E
v
id
en

ce
si
ze

(M
b
y
te
s)

AdES or CIS
ERS
CN

Figure 5.1: The sizes of evidence for 128 signed documents.

2013 2033 2053 2073 2093 2113

0

5

10

15

Year

E
x
ch
an

ge
d
d
at
a
(M

b
y
te
s)

AdES or CIS
ERS
CN

Figure 5.2: The sizes of data exchanged between the archivist and the trusted third

parties while generating evidence for 128 documents.

Profiling evidence verification

The analytical evaluation in Section 5.1 indicates that ERS allows for the most

efficient evidence verification, followed by the other time-stamping schemes AdES

and CIS. However, in the experiments these schemes performed similarly, suggesting

that hashing plays an insignificant role for the used parameters. To verify whether

this is true, we used a profiler software that allows to identify which Java procedures

are executed and how much time they consume while the prototypes check evidence.

By using the profiler we confirmed that hashing consumes almost no time when

compared to other procedures. Among these procedures, the most time-consuming

is the verification of certificates. This scenario is also true for the notarial scheme.

For example, when checking evidence in year 2113, certificate verification consumes

73% of the running time of the time-stamping schemes and 83% of the running time

60 5 Performance analysis

of notarial scheme. The remaining time is mainly spent on overhead.

Certificates verification is a significant hot spot, i.e. an operation that requires

considerable running time while an implementation runs, in all schemes because of

the used parameters. More precisely, in our experiment we use a chain of three cer-

tificates together with three CRLs as the verification information for each signature

on time-stamp or attestation. Since every certificate or CRL is individually signed,

certificate chains contain many more signatures to be verified than time-stamps or

attestations contain. Since RSA verification is a very time-consuming operation,

checking certificate chains consumes considerable time when evidence is verified.

Another used parameter that influences the results for this scenario is the size

of the selected documents to be protected. Their small sizes (30720 bytes) leads

to the irrelevant hashing times. For larger documents we can expect appreciable

hashing times for AdES, CIS, and CN but not necessarily for ERS. This is because

AdES, CIS, and CN need to hash the document when verifying every time-stamp

or attestation, whereas ERS has to hash the document only when the hash function

is replaced.

5.2.3 Comparing schemes for distinct signature lifetimes

In the analytical evaluation and the previous experiment we did not take distinct

signature lifetimes into account. However, this is an important parameter since it

has a high impact on the performance of the protection schemes. In this section we

analyze the performance of the schemes with respect to this parameter. Note that

we are aware of the fact that it is in practice recommended to generate new signature

keys around, depending on the application, every two to four years. Nevertheless,

we think that it is an interesting contribution to analyze performance with respect

to distinct signature lifetimes. Thus, we first explain how they are expected to affect

performance and why they need to be analyzed with the help of implementations.

Then, we describe our experiment and present the results.

The predicted lifetimes of signatures determine how often evidence needs to be

updated (see Section 3.1.2). This update frequency implicates in how much evidence

will be created. More precisely, the longer the lifetimes, the less evidence is created.

It follows that also less evidence needs to be verified. Moreover, the lifetimes of

signatures are directly related to the sizes of the signature keys used to generate

evidence. Longer lifetimes require bigger key sizes and signatures generated with

bigger key sizes need more time to be verified individually.

Therefore, selecting bigger signature keys can be expected to improve the perfor-

mance of time-stamping and notarial schemes with respect to communication, space,

5.2 Experiments 61

and evidence generation time but not necessarily verification time. Communication

performance is improved because when using bigger keys archivists request new

evidence fewer times from time-stamp authorities or notaries. Space performance

becomes also better because less generated evidence needs to be stored. Further-

more, generation time is reduced because if less evidence is generated, less data

needs to be hashed in the next update. (Note that bigger keys does not affect the

generation time for the notarial scheme CN because archivists hash no data upon

requesting new evidence.)

As said, using bigger signature keys not necessarily improves performance with

respect to verification time. This is because of a trade-off between the number of

signatures to verify and the time needed to check each signature. On the one hand,

the use of bigger signature keys reduces the time needed to verify evidence because

there are fewer signatures to be checked. On the other hand, the time needed to

check evidence is increased because signatures created with bigger keys are slower

to be verified.

Note that it is hard to take this trade-off into account in the analytical evalua-

tion, because the times needed to verify signatures together or individually depend

on the used signature algorithms and their concrete implementations. Therefore,

prototypes of the protection schemes are necessary to analyze this trade-off.

Next we design an experiment to analyze how distinct RSA signature key sizes

affect the times that our implementations need to verify evidence. Since communi-

cation, space, and update time are known to be improved by using bigger keys, we

do not measure these parameters in this experiment.

Experiment design

Part of this experiment is similar to the previous experiment found in Section 5.2.2.

We use the same 128 documents of 30720 bytes. Each document has a 1478-bit

RSA signature generated using hash function SHA-256. The protection goals of

these documents are guaranteed from 2013 to 2113 by evidence generated using

RSA keys. This evidence is updated every five years.

However, in the new experiment we generate two additional types of evidence for

the documents from 2013 to 2113 using RSA keys. One type of evidence is updated

every 15 years and another type every 25 years. Thus, to generate evidence that is

updated every 5, 15, or 25 years we need to select the appropriate RSA key sizes

such that they remain secure until the next evidence update happens. Such sizes

were selected using the conservative predictions by Lenstra [31] and are found in

Table 5.10. Since the 15- and 25-year lifetimes require fewer evidence updates, in

62 5 Performance analysis

Table 5.10: The key sizes used to generate evidence. A dash shows that no new evidence

is generated in that year.

Year 5-year key sizes 15-year key sizes 25-year key sizes

2013 1478 1958 2521

2018 1708 - -

2023 1958 - -

2028 2228 2835 -

2033 2521 - -

2038 2835 - 4325

2043 3172 3916 -

2048 3532 - -

2053 3916 - -

2058 4325 5217 -

2063 4758 - 6751

2068 5217 - -

2073 5701 6751 -

2078 6213 - -

2083 6751 - -

2088 7317 8533 9865

2093 7910 - -

2098 8533 - -

2103 9184 9865 -

2108 9865 - -

some years no update takes place. Such years are marked with a dash in Table 5.7.

Although no hash functions are found in Table 5.10, these cryptographic primitives

are still necessary to generate evidence. As in the previous experiment, we use the

hash function SHA-256 from 2013 to 2083 and SHA-384 from 2088 for the three

types of evidence.

Results

We now compare how the three predicted signature lifetimes (5, 15 and 25 years)

affect the verification times. For this, we compute the difference between the times

the prototypes spent on verifying the evidence generated with the different signature

key sizes. In the following we will use the terms 5-year signature, 15-year signature

and 25-year signature for signatures generated with keys that are predicted to hold

5.2 Experiments 63

Table 5.11: The ratios between verification times when using 5-, 15-, and 25-year keys.

Year AdES CIS ERS CN

5/15 5/25 15/25 5/15 5/25 15/25 5/15 5/25 15/25 5/15 5/25 15/25

2013 0.94 0.82 0.88 0.93 0.83 0.90 0.92 0.81 0.88 1.01 1.02 1.01

2018 2.02 1.77 0.88 2.00 1.79 0.90 1.96 1.74 0.88 1.03 1.04 1.01

2023 3.27 2.88 0.88 3.08 2.76 0.90 2.99 2.64 0.88 1.08 1.09 1.01

2028 1.92 3.98 2.07 1.92 3.96 2.06 1.90 3.73 1.97 0.95 1.10 1.16

2033 2.60 5.39 2.07 2.58 5.33 2.06 2.53 4.97 1.97 0.99 1.15 1.16

2038 3.28 2.63 0.80 3.30 2.63 0.80 3.27 2.64 0.81 1.01 0.80 0.79

2043 2.39 3.28 1.37 2.38 3.26 1.37 2.36 3.31 1.41 0.94 0.84 0.90

2048 2.92 4.01 1.37 2.90 3.98 1.37 2.87 4.03 1.41 0.96 0.87 0.90

2053 3.51 4.83 1.37 3.48 4.78 1.37 3.45 4.85 1.41 1.04 0.94 0.90

2058 2.53 5.71 2.26 2.58 5.69 2.21 2.54 5.73 2.25 0.92 1.00 1.10

2063 2.96 3.34 1.13 3.05 3.34 1.10 2.99 3.11 1.04 0.95 0.77 0.81

2068 3.45 3.90 1.13 3.53 3.87 1.10 3.47 3.60 1.04 1.01 0.82 0.81

2073 2.73 4.49 1.64 2.79 4.46 1.60 2.69 4.18 1.55 0.88 0.87 0.99

2078 3.14 5.16 1.64 3.21 5.14 1.60 3.09 4.80 1.55 0.96 0.94 0.99

2083 3.59 5.90 1.64 3.68 5.89 1.60 3.53 5.48 1.55 1.00 0.98 0.99

2088 1.35 1.27 0.94 1.37 1.27 0.93 1.35 1.24 0.92 0.06 0.05 0.76

2093 1.54 1.44 0.94 1.55 1.44 0.93 1.53 1.41 0.92 0.06 0.05 0.76

2098 2.26 2.12 0.94 2.28 2.12 0.93 2.24 2.06 0.92 1.04 0.79 0.76

2103 1.64 2.87 1.75 1.65 2.88 1.74 1.63 2.80 1.72 0.90 0.90 1.01

2108 2.14 3.74 1.75 2.14 3.74 1.74 2.12 3.65 1.72 1.04 1.04 1.01

2113 2.14 3.74 1.75 2.14 3.74 1.74 2.12 3.65 1.72 1.04 1.04 1.01

Average 2.49 3.49 1.39 2.50 3.47 1.38 2.46 3.35 1.36 0.90 0.86 0.94

for 5, 15, and 25 years respectively. The difference is presented as the ratio computed

by dividing the verification time for evidence E1 by the verification time for evidence

E2, where E1 and E2 are verified in the same year but E2 uses a bigger signature key

than E1. A ratio smaller than one indicates that a smaller key allows for a faster

verification of evidence whereas a ratio greater than one indicates that a smaller key

allows for a slower verification.

The computed ratios are found in Table 5.11. They are used to compare the results

for the predicted lifetimes of 5- and 15-year signatures, 5- and 25-year signatures,

and 15- and 25-year signatures. These comparisons are found in the columns labeled

with “5/15”, “5/25”, and “15/25”. Moreover, for each of these columns, the average

ratio from 2013 to 2113 is presented.

Table 5.11 shows that the prototypes for the time-stamping schemes AdES, CIS,

and ERS tend to perform worse with respect to evidence verification if evidence uses

smaller signature keys. This tendency can be seen in the average ratios computed

from 2013 to 2113, which show that verification is slower for smaller keys. For

64 5 Performance analysis

example, the verification of 5-year AdES evidence needs 2.49 as many time as the

verification of 15-year AdES evidence. This indicates that when using time-stamping

schemes bigger keys are preferred because the time needed to verify fewer time-

stamps tends to compensate the longer times spent on verifying each time-stamp.

In contrast, the implementation for the notarial scheme CN tends to perform

slightly better with smaller signature keys. This tendency is indicated by the average

ratios in Table 5.11. For example, the verification of 5-year CN evidence requires

0.86 as many time as checking 25-year CN evidence. Also, when comparing 5- with

15-year signatures and 15- with 25-year signatures, we see no significant differences.

This shows that the smaller the keys are, the faster CN performs.

The result that CN performs faster with smaller signature keys is not surprising

because only the most recent signature is verified. Therefore, whether the used

signature key sizes reduce or increase the number of generated signatures is irrelevant

whereas the size of the used keys is important. Since smaller key sizes allow for a

faster verification of each signature, CN performs faster with smaller keys.

However, there are some years when the above tendencies are not observed in Table

5.11. We identify four situations where tendencies are different and explain why.

The first situation happens in the initial years when the notarial scheme CN perform

equally for 5-, 15-, and 25-year signatures. The reason is that the verification times

are too short and there is a deviation when measuring them from the prototypes.

The second situation happens in some later years when CN performs again equally

for distinct signature key sizes. For example, in 2023, 2038, 2053, 2068, 2083, 2098,

and 2108. The reason now is that in these years two or more predicted signature

lifetimes require the same key sizes (see Table 5.10). Thus, the times needed to

verify CN evidence are comparable although the predicted signature lifetimes differ.

The third situation occurs in years 2013, 2018, 2023, and 2038 when the time-

stamping prototypes perform faster for smaller signature keys (see ratios smaller

than one). This is because in these years using 5-, 15-, or 25-year signatures produces

the same numbers of time-stamps. Since the numbers of time-stamps to be verified

are the same, only the size of used keys affects the verification time. Thus, the

prototypes perform better with smaller key sizes since such sizes allow to verify each

signature faster.

The final situation is observed in 2088, 2093, and 2098 when the time-stamping

schemes perform again faster for smaller signature keys (see the ratios 0.94, 0.93,

and 0.92). Also, in 2088 and 2093 the notarial scheme CN presents extremely low

ratios (0.06 and 0.05). The reason seems to be that the verification of each signature

using certain key sizes is very inefficient in our prototypes. More precisely, the key

sizes that are equal or greater than 8533 bits, which are used from 2098 onwards

5.3 Final comparisons and possible improvements 65

(see Table 5.10), are very inefficient. To illustrate this situation, Figure 5.3 shows

the times needed to verify AdES and CN evidence when evidence is updated every

five years. Note that the times needed to verify evidence grows faster from 2098

onwards. Verification for CIS and ERS are not illustrated since it presents quite

similar run times.

2013 2033 2053 2073 2093 2113

0

2

4

6

Year

V
er

ifi
ca

ti
on

ti
m

e
(s

ec
on

d
s)

AdES
CN

Figure 5.3: The time needed to verify evidence using AdES or CN and 5-year signatures.

Note that the verification becomes very time-consuming from 2098 onwards.

Thus, the controversy tendencies are because in 2088, 2093, and 2098 the 15- and

25-year signatures require those particular key sizes but the 5-year signatures do

not. Therefore, when using 15- and 25-year signatures, the time-stamping proto-

types need extra time because of the inefficient key sizes, which compensates the

advantage of verifying fewer signatures than when using 5-year signatures. For the

CN prototype, the extremely low ratios indicates that 5-year signatures can be ver-

ified much faster than the 15- and 25-year signatures.

5.3 Final comparisons and possible improvements

In this section we first provide a final comparison of the protection schemes by

summarizing the results from Sections 5.1 and 5.2. Based on this comparison, we

then suggest how to improve the performance of these schemes.

The notarial scheme CN is more efficient than the time-stamping schemes with

respect to space and time but at the cost of higher communication complexity.

CN requires less space because it stores no verification information (e.g. certificates

and revocation information) for the notarial attestations whereas the time-stamping

schemes store verification information for each generated time-stamp. CN is also

66 5 Performance analysis

faster because no data is hashed when updating evidence and only the most re-

cent attestation is checked when verifying evidence. In contrast, the time-stamping

schemes need to hash data upon updating evidence and check all generated time-

stamps when verifying evidence. However, communication complexity is higher for

CN because archivists need to send documents and the previous attestations to re-

quest new evidence while in the time-stamping schemes archivists only send hashes.

When comparing the time-stamping schemes, ERS is the most efficient with re-

spect to communication and space. This is because in ERS an archivist requests

and stores only one new time-stamp for a set of documents, whereas in AdES and

CIS one new time-stamp is needed for each document in the set.

However, ERS is not necessarily the best scheme when it comes to evidence gener-

ation or verification. In regard to evidence generation, ERS is the most time-efficient

scheme except in the few cases when the evidence is initialized or the hash function

is replaced. In the initialization, ERS is the slowest scheme. When the hash function

is replaced ERS is comparable to the other time-stamping schemes. As for evidence

verification, all time-stampings schemes are comparable. Their differences in hash-

ing become irrelevant since the verification time is mostly consumed by certificate

verifications. For larger documents, however, hashing differences can be appreciable

when using AdES, CIS, or CN.

The performance of time-stamping and notarial schemes also depends on the

key sizes of the used signatures. Using bigger keys reduces space, communication,

and update times since archivists need to update evidence fewer times. However,

the same is not always true for evidence verification times. The time-stamping

schemes tend to perform better when using bigger signature keys because fewer

time-stamps and less verification information need to be checked. However, since the

notarial scheme CN verifies only the most recent attestation, reducing the number

of generated attestations by using bigger keys is of no use. Thus, using smaller keys

is desirable because they allow for faster signature verifications.

We now suggest improvements for the protection schemes. As said, the notarial

scheme is the worst scheme with respect to communication because an archivist has

to send the document and previous signatures to notaries. To address the issue,

he could send hashes computed from the document and from previous signatures

instead of sending the document and signatures themselves. This proposal will be

discussed in Chapter 6.

The time-stamping schemes could be improved with respect to time. AdES and

CIS could be changed such that hashing is similar to ERS hashing. More precisely,

when updating evidence, AdES and CIS could hash the document and the existing

evidence only if it is necessary to replace the latest hash function. This change will

5.3 Final comparisons and possible improvements 67

be incorporated in the new version of CIS proposed in Chapter 7.

Certificate chain verifications are the most time-consuming operation observed in

all schemes. To mitigate this issue, we identify three methods. The first method is

using larger signature keys for time-stamping as shown before but with necessary

care. This is because it will impact on the performance of time-stamp authorities

when they sign time-stamps. Also, because an attacker has a higher chance to get

access to the signature keys during their longer lifetimes and to forge signatures.

The second method is to skip the verification of certain time-stamps if the va-

lidities of several time-stamps in a sequence overlap. This particular situation may

happen when documents are submitted to an archive and time-stamp sequentially.

This can also happen when archived documents are frequently changed or the format

of a document is migrated. In these two cases, one time-stamp might be generated

soon after an evidence updated occurred. Such a method will be used in the new

version of CIS proposed in Chapter 7.

The third method refers to changing the used PKIs such that certificate chains

become shorter and therefore contain fewer certificates and certificate revocation

lists. This approach will be discussed in Chapter 8.

6 A new notarial scheme

In this chapter we propose a new notarial scheme named Attested Certificates (AC)

and show that it improves the existing notarial scheme Cumulative Notarizations

(CN) such that less communication and space are used. We reduce communication

by leaving the verification of document signatures to retrievers. In this case the

signed documents do not have to be sent to the notaries. The notaries only attest

the validity of certificates before attesting them. We reduce space by generating evi-

dence without the use of time-stamps. While in CN time-stamps are requested from

time-stamp authorities and added to the evidence, in AC smaller attestations are

generated. Furthermore, in AC only the latest attestation is kept instead of gener-

ating a sequence of several attestations as in CN. To show that AC outperforms CN,

we provide an analytical evaluation and carry out experiments using prototypical

implementations. We show that AC is more efficient than CN with respect to space

and communication. Moreover, although AC leaves the verification of document

signatures to retrievers, the experiments showed that the running times needed to

verify AC or CN evidence are comparable. Furthermore, we also compare AC with

the time-stamping schemes. Finally, we compare AC and CN with respect to trust-

worthiness. The comparison is based on the required trust assumptions and shows

that AC can be expected to be equivalent to CN. The content of this chapter was

published in [54, 55].

6.1 Improving Cumulative Notarizations

In Chapter 5 we compared the time-stamping schemes and the notarial scheme Cu-

mulative Notarizations (CN) with respect to performance. This comparison showed

that CN has the highest communication complexity. CN requires more data to be

exchanged than the time-stamping schemes because CN notaries verify old evidence

before generating new evidence. Therefore, in addition to the old evidence, notaries

need to receive the document while for time-stamp authorities the corresponding

6.1 Improving Cumulative Notarizations 69

hashes are sufficient. Since the document and the CN evidence are usually larger

than hashes, CN has the worst the communication complexity.

In this section we describe the new scheme AC, which has a lower communication

and space complexities than CN. Communication is reduced by removing the need

for sending the document and the whole evidence to notaries. More precisely, in CN

an archivist sends the document d, the signature s of d, the certificate c needed to

verify s, the time-stamp T on d and s, and the notary signatures (i.e. attestations)

s1, . . . , sk to a notary. In our new scheme AC, d and s are no longer sent; instead,

the archivist sends hashes computed from d and s. Also, AC needs neither the

time-stamp T nor the old attestations s1, . . . , sk−1. Therefore, T and s1, . . . , sk−1
are no longer sent. This has also a positive effect on the space AC needs. Since T

and s1, . . . , sk−1 are no longer needed, the archivist does not have to store them.

We summarize the differences between AC and CN with respect to communication

and space in Table 6.1. This table presents for each notarial scheme which objects

need to be sent and stored.

Table 6.1: The objects that the notarial schemes CN and AC send or store.

Objects Sent Stored

CN AC CN AC

Document 3 7 3 3

Document signature 3 7 3 3

Certificate 3 3 3 3

Time-stamp 3 7 3 7

Last attestation (sk) 3 3 3 3

Old attestations (s1, . . . , sk−1) 3 7 3 7

Hashes 7 3 7 3

Next, we present the protocol for the new notarial scheme AC in Section 6.1.1.

Then, we justify the design of the presented protocol and explain why it works.

6.1.1 Attested Certificates

In this section we present the protocol for the new scheme AC. We start by pre-

senting the set-up, i.e. which data is required before generating evidence. Next

we present the subprotocols to initialize and to update the evidence for documents.

This evidence consists of distinct objects, which are also presented. Finally, we show

how a retriever verifies the generated evidence

70 6 A new notarial scheme

Set-up

Initially, an archivist receives the following objects to be archived.

• A document d.

• The signature s on d.

• The certificate c required to verify s.

The archivist applies the notarial scheme AC to generate evidence that guarantees

the protection goals authenticity, non-repudiation, and proof of existence for d.

Evidence generation

The evidence generation is divided into two procedures. The first procedure is to

initialize evidence for the document d at time t and the second one to update the

evidence. The first procedure has the following steps.

1. The archivist selects a hash function h1, computes hash y1 = h1(d||s), and

sends h1, y1, and c to a notary.

2. The notary checks that c is valid at the current time t by performing the

following steps.

a) He obtains the certificate chain from c until a trust anchor.

b) He collects revocation information for all certificates.

c) He executes the verification algorithm for c as described in Section 2.7.

3. The notary checks that h1 is secure at the current time t.

4. The notary creates a signature s1 on c||t||h1||y1 and returns t and s1 to the

archivist.

5. The archivist stores t, s1, h1, and y1 together with d, s, and c.

The signature s1 is a notarial attestation used to inform retrievers that: a) c is

a valid certificate to verify the document signature s at time t, and b) document d

and signature s existed at time t (proof of existence).

The second procedure helps to update evidence and is necessary to address the

aging of cryptography. Thus, the second procedure must be executed before the

6.1 Improving Cumulative Notarizations 71

lifetime of the latest used signature or hash function ends. We first explain how

evidence is updated when the signature lifetime is about to end.

Assume for 1 ≤ j ≤ k that the archivist has the document d, the signature s

on d, the certificate c required to verify s, the used hash functions h1, . . . , hj, the

computed hashes y1, . . . , yj, the last signature sk, and the time t when the first

signature s1 was generated. Then, before the lifetime of signature sk ends at a time

tk+1 > tk ≥ t, the following steps are executed.

1. The archivist sends c, t, h1, . . . , hj, y1, . . . , yj, and sk to a notary.

2. The notary checks that the signature sk is valid and that the hash function hj
is secure at time tk+1.

3. The notary generates a new signature sk+1 on c||t||h1|| . . . ||hj||y1|| . . . ||yj.

4. The notary returns sk+1 to the archivist.

5. The archivist stores sk+1 together with d, s, c, t, h1, . . . , hj, and y1, . . . , yj.

6. The archivist deletes the previous signature sk.

Now assume for 1 ≤ j ≤ k that at time tk+1 the lifetime of the last used hash

function hj is about to end. Then, the following steps are performed.

1. The archivist selects a new hash function hj+1 and computes yj+1 = hj+1(d||s).

2. The archivist sends c, t, h1, . . . , hj+1, y1, . . . , yj+1, and sk to a notary.

3. The notary checks that the signature sk is valid and that the hash functions

hj and hj+1 are secure at time tk+1.

4. The notary generates a new signature sk+1 on c||t||h1|| . . . ||hj+1||y1|| . . . ||yj+1.

5. The notary returns sk+1 to the archivist.

6. The archivist stores sk+1, hj+1, and yj+1 together with d, s, c, t, h1, . . . , hj,

and y1, . . . , yj.

7. The archivist deletes the previous signature sk.

Note that for k > 1 the signature sk generated at time tk is used to attest that

the previous signature sk−1 was valid at time tk. Moreover, since sk is also created

on certificate c together with time t and all hashes computed from the document d

together with signature s, sk is used to re-attest the proof of existence of d and s.

As we will discuss later, the re-attestation requires trusting all involved notaries.

72 6 A new notarial scheme

Stored evidence

For k ≥ 1, at the current time t′ ∈ [tk, tk+1] the archivist stores the following objects

as evidence for the document d.

• The signature s of d.

• The certificate c required to verify s.

• The time t when the first signature s1 was generated.

• The hash functions hj and hashes yj = hj(d||s), for each 1 ≤ j ≤ k.

• The last signature sk.

Evidence verification

A retriever verifies the AC evidence for a document d as follows. First, assume for

1 ≤ j ≤ k that the retriever has obtained document d, the signature s of d, the

time t when evidence for d was initialized, hash functions h1, . . . , hj, and the last

signature sk from the archive. Next, the retriever executes the following steps.

1. For each 1 ≤ j ≤ k, she computes the hash yj = hj(d||s).

2. She checks that sk is a valid signature on c||t||h1|| . . . ||hj||y1|| . . . ||yj.

3. She verifies that s is a valid signature on document d. For this verification she

uses the public key contained in certificate c.

6.1.2 Retrievers check document signatures by themselves

Our experiments in Chapter 5 showed that the notarial scheme CN has the worst

communication complexity because a notary needs to receive a document in order

to verify and attest the signature on this document. Thus, retrievers need not verify

the document signature again and evidence verification becomes faster. However,

we have also seen that for all protection schemes retrievers spend most of the time

on checking certificates rather than document signatures. Thus, the experiments

indicate that the higher communication complexity for CN is not really compensated

by the performance improvements for retrievers.

Therefore, for the new notarial scheme AC, we propose that notaries receive no

documents and attest only that certificate chains are indeed valid. The verification

of document signatures is left to retrievers.

6.1 Improving Cumulative Notarizations 73

6.1.3 Proof of existence is provided only by notaries

In CN, proof of existence is provided by a time-stamp authority. The time-stamp

authority provides proof of existence for document d and the signature s on d by

issuing a single time-stamp T on d||s.
The use of time-stamps requires more data to be communicated between archivists

and time-stamp authorities or notaries when evidence is initialized or updated. Fur-

thermore, since archivists need to store the time-stamps requested for each signed

document, the use of time-stamps also contributes to the size of stored evidence.

To reduce communication and space complexities, we propose for the new notarial

scheme AC that proof of existence is provided by notaries instead of time-stamp

authorities. As shown in Section 6.1.1, an archivist no longer requests the time-

stamp T on the document d together with the document signature s. Instead, he

sends a hash y1 = h1(d||s) to a notary. The notary creates an initial attestation

s1 by signing the received hash y1 together with the current date t. The initial

attestation s1 and date t work as a time-stamp. Also, notaries can re-attest the

proof of existence of d and s by re-signing the hash y1 and date t.

Therefore, communication is improved because no additional communication with

time-stamp authorities is needed. Space is also improved because archivists need to

store no time-stamps.

6.1.4 Addressing the aging of cryptography

As seen in Section 6.1.1, we propose a protocol to update AC evidence and ad-

dress the aging of cryptography. In this protocol, a notary needs to re-sign all the

hashes that an archivist has computed from the archived document together with

the document signature. As we will show in this section, re-signing all these hashes

is necessary to prevent an attack where a malicious archivist can find a collision for

the archived document.

We start by describing how the malicious archivist can succeed in this attack if

notaries do not sign all hashes computed from the archived document and document

signature. Although in the presented protocol an object is signed by creating a

signature on the object, in practice the object is first hashed and then a signature is

generated on the computed hash. Since this practical procedure is necessary for the

attack to succeed, assume the owner of a document d creates a signature s on the

hash h0(d). Then, the owner sends d, s, h0, and the certificate c required to verify

s to the archivist.

Next, the archivist initializes AC evidence for d as proposed in Section 6.1.1.

74 6 A new notarial scheme

First, he selects a hash function h1. To simplify our description, assume h1 has a

longer lifetime that hash function h0 used to sign document d. Next, he sends h1,

y1 = h1(d||s), and c to a notary. The notary returns the initial signature s1 on

c||t||h1||y1 at time t. Since the attack is independent of the hash function a notary

uses to sign, we do not identify it. The archivist stores d, s, c, t, h0, h1, y1, and s1.

Now assume that, contrary to the proposed protocol, only the most recent hash

computed from the document d and signature s is signed when evidence is updated.

More precisely, for 1 < j ≤ k, at time tk instead of creating a new signature sk on

c||t||h1|| . . . ||hj||y1|| . . . ||yj (proposed protocol), sk is created on c||t||hj||yj, where

yj = hj(d||s) is the most recent hash the archivist computed.

Then, the archivist performs the following steps to carry out the attack.

1. At time t2 > t = t1, when h0 is no longer secure and the lifetime of h1 is about

to end, he first finds a document d′ 6= d such that h0(d
′) = h0(d). Then, he

selects a new hash function h2, computes a new hash y2 = h2(d
′||s), and sends

h1, h2, y1, y2, c, t, and s1 to a notary.

2. The notary first verifies that s1 is valid and that h1 and h2 are still secure.

Then he returns a new signature s2 on c||t||h2||y2 to the archivist.

3. The archivist stores h2, y2, and s2 together with d′. He deletes document d,

the previous signature s1, the hash function h1, and hash y1.

4. The archivist can use s, c, t, h0, h2, and s2 to convince a retriever that d′ was

signed by the same signer of d at time t.

Note that the described attack is possible because the notaries have no access to

document d. Therefore, they cannot guarantee that the submitted hashes y1 and y2
were computed from the same document.

However, a retriever could notice this attack as follows. First, she needs to obtain

d, s, c, t, h0, h1, and s1 from the archive before time t2, when the archivist deletes

d, h1, and s1. Then, she later obtains hj and sk (1 < j ≤ k). She will notice the

attack by checking that s1 is valid signature on c||t||h1||h1(d||s) but that sk is an

invalid signature on c||t||hj||hj(d||s).
Note that the malicious archivist can still succeed in his attack even if the notaries

sign more hashes but not all of them. In this case, however, the chance that the

attack is detected are higher. For example, assume that notaries sign the two most

recent hashes computed from the document d and signature s. Thus, in step 1 the

archivist sends c, t, h1, h2, y1 = h1(d||s), y2 = h2(d
′||s), and s1 to the notary, who

returns the signature s2 on c||t||h1||h2||y1||y2 at time t2. In this case, a retriever

6.1 Improving Cumulative Notarizations 75

can notice the attack easier than before. First, she obtains d, s, c, t, h1, h2, and s2
from the archive at the current time t′, where t2 ≤ t′ < t3. Then she will notice the

attack by verifying that s2 is an invalid signature on c||t||h1||h2||h1(d||s)||h2(d||s).

However, in our example the attack may be no longer detected if evidence is

updated again. Assume that at time t3 the archivist sends y2 = h2(d
′||s) and

y3 = h3(d
′||s) to a notary and obtains a signature s3 on c||t||h2||h3||y2||y3. In

this case, a retriever that obtains the collision document d′ and the corresponding

evidence after t3 cannot notice the attack only by verifying s3. This is because s3 is

a valid signature on c||t||h2||h3||h2(d′||s)||h3(d′||s). As before, the retriever will only

notice the attack if she has access to d before the archivist deletes it at time t2.

To prevent the above attack, we proposed the protocols to update and verify AC

evidence (see Section 6.1.1). For 1 ≤ j ≤ k, in the update protocol the archivist

sends all hashes yj = hj(d||s) computed until time tk when evidence is updated.

The update protocol requires the notary to check that at least the two most re-

cent hash functions hj−1 and hj are secure at tk. Also, the notary is required to

compute sk on all hashes y1, . . . , yj. In the verification protocol, a retriever ob-

tains at the current time t′ > tk the document d, signature s on d, certificate c,

hash functions hj, and the most recent attestation sk. She checks that the no-

tary has signed all hashes yj = hj(d||s) by verifying that sk is a valid signature on

c||t||h1|| . . . ||hj||h1(d||s)|| . . . ||hj(d||s).

Finally, we show that the proposed protocol indeed prevents the described attack

without relying on retrievers. For the malicious archivist to succeed at time tk
(k ≥ 1), he needs to find a document d′ 6= d such that yj = hj(d

′||s) = hj(d||s) for

each 1 ≤ j ≤ k and request a new notarial signature by sending every hj and yj to

a notary. Now, assume notaries are trusted to check the security of hash functions

correctly and to only generate a new attestation sk if the submitted hash functions

hj and hj−1 are secure at the current time tk. For k = 1, the archivist can only

request a signature from a notary at time t1 if h1 is secure; otherwise the notary

rejects the request. Therefore, h1 must be secure and the archivist cannot find a

collision h1(d
′||s) = h1(d||s). For 1 < j ≤ k, at time tk the archivist selects a new

hash function hj. He can only request a new signature from a notary if hj and

hj−1 are secure. Thus, he cannot find d′ 6= d such that hj(d
′||s) = hj(d||s) and

hj−1(d
′||s) = hj−1(d||s). Therefore, the attack cannot succeed.

76 6 A new notarial scheme

6.2 Performance evaluation

This section provides a performance evaluation for the new notarial scheme AC. We

compare it with the existing notarial scheme CN to show that AC achieves a better

performance as promised in Section 6.2.1.

As in Chapter 5, the evaluation consists of two steps. First, we analytically evalu-

ate how AC differs in performance from CN and the time-stamping schemes. Second,

we carry out an experiment where implementations for the protection schemes and

available cryptographic primitives are used.

6.2.1 Analytical evaluation

In this section we perform a similar analytical evaluation as in Section 5.1 to predict

the performance of the new notarial scheme AC. Based on these predictions, we

compare AC with the existing notarial scheme CN and show that AC provides a

better performance. Furthermore, we also compare AC with the time-stamping

schemes AdES, CIS, and ERS.

Next, we first recapitulate the conventions and parameters used in the analytical

evaluation. Then, we provide the expressions that predict the performance for AC

and CN. Note that for CN and the time-stamping scheme the expressions are the

same found in Section 5.1.

To make the schemes comparable, we make the following conventions.

• There are m = 2l documents of the same size in the archive, where l is a posi-

tive integer. The archive also contains a signature on each of these documents.

• Time-stamp authorities sign their time-stamps.

• Hash functions are only renewed after r iterations because their lifetimes are

expected to longer than the lifetimes of signatures. As explained in Section 5.1,

such differences are because of security reasons. Therefore, in the kth iteration

we define the number of hash function renewals as p = bk/rc.

• Verification information for a signature contains a certificate chain that allows

to reduce the trust in the public verification key to the trust in a trust anchor.

It also contains the revocation information for the certificates in this chain.

This verification information is assumed to be of constant size.

The performance parameters used to compare the schemes are again time com-

plexity, space complexity, and communication complexity. For time complexity we

6.2 Performance evaluation 77

distinguish between three times: 1) the time an archivist needs to initialize evidence,

2) the time the archivist spends on updating evidence, and 3) the time necessary for

a retriever to verify evidence. Space refers to the size of evidence that is generated to

establish the protection goals authenticity, non-repudiation, and proof of existence.

Communication is the amount of data exchanged between the archivist and notaries

or time-stamp authorities when initializing or updating evidence.

As before, we need to distinguish between two types of objects in our analysis.

The first type is hashes, i.e. the bit string a hash function outputs. The second

type is objects whose sizes are typically larger than the sizes of hashes; namely,

documents, signatures, verification information, time-stamps, and attestations. This

distinction is necessary when predicting the time complexity since the time spent on

hashing normally depends on the size of the hashed objects. Moreover, space and

communication complexities also depend on the size of the used objects.

Performance of evidence initialization

To evaluate AC with respect to initialization time, we again assume that hashing is

the most time-consuming operation. Thus, we count the objects that the archivist

needs to hash when initializing evidence for m documents. The numbers of hashed

objects are found in Table 6.2.

Table 6.2: The numbers of objects being hashed while generating initial the evidence for

m documents.

Scheme Documents Signatures Ver. info Hashes

CN m m 0 0

AC m m 0 0

As Table 6.2 shows, CN and AC need to hash the same number of objects when

initializing evidence for m documents. Therefore, both schemes are expected to per-

form similarly. Since CN outperforms the time-stamping schemes (see Section 5.2.2),

they are also expected to be outperformed by AC.

Performance of evidence renewal

We now compare the times for evidence update in the kth iteration, k > 1. As

before, we count the numbers of objects that the archivist hashes when updating

evidence for m documents. These numbers are found in Table 6.3.

The notarial scheme AC provides two methods to update evidence, which must be

taken into account when comparing AC and CN. The first method helps to update

78 6 A new notarial scheme

Table 6.3: The numbers of objects being hashed while updating the evidence for m = 2l

documents in the kth iteration.

Scheme Documents Signatures Time-stamps Ver. info Hashes

CN 0 0 0 0 0

AC-O 0 0 0 0 0

AC-N m m 0 0 0

evidence when the lifetime of the last signature is close to end. We refer to this

method as AC-O in Table 6.3. The second method (AC-N) is needed to update

evidence before the lifetime of the last hash function ends.

In AC-O the archivist hashes no objects. Because the same is true for CN, AC-O

and CN should perform similarly when updating evidence. However, AC-N and CN

are expected to compare differently. In AC-N the archivist hashes m documents

and m signatures, whereas in CN nothing is hashed. Therefore, CN should be faster

than AC-N.

Although AC-N is slower than CN, the notarial scheme AC still outperforms all

time-stamping schemes discussed in Chapter 3. This can be seen if we compare

AC-O and AC-N with the time-stamping schemes in Table 5.1. Note that when

comparing AC and ERS, we should compare AC-O with ERS-O and AC-N with

ERS-N since AC-O and ERS-O are performed in the same iterations. The same is

true for AC-N and ERS-N.

Performance of evidence verification

Here we compare the times necessary to verify evidence for individual documents

after the kth iteration. As in the analytical evaluation, we count the number of sig-

natures to be verified (Table 6.4) and the number of objects to be hashed (Table 6.5).

However, now we must distinguish document signatures from notary signatures (i.e.

attestations). The reason is that when a retriever checks a document signature in

AC, she does not check the signer’s certificate chain because it has already been

checked by a notary. Nonetheless, when verifying a notary signature in AC or CN,

the retriever needs to check the notary’s certificate chain.

The scheme AC is expected to be slower than CN with respect to evidence veri-

fication as indicated by Tables 6.4 and 6.5. The first table shows that AC is slower

because AC evidence contains one more signature to be verified than CN evidence.

The second table shows that AC is also slower since it requires the retriever to hash

p+ 1 ≈ k/r objects whereas in CN nothing is hashed.

6.2 Performance evaluation 79

Table 6.4: The numbers of signature verifications required while verifying the kth evi-

dence for one document.

Scheme Document signatures Notary signatures

CN 0 1

AC 1 1

Table 6.5: The numbers of objects being hashed while verifying the kth evidence for one

document. Here p = bk/rc is the number of hash function renewals and r is the number

of iterations after which the hash function is renewed.

Scheme Documents Signatures

CN 0 0

AC p+ 1 p+ 1

However, this difference in verification times between CN and AC is expected

to become insignificant in the long term. The reason is that the verification of

the notary signatures tends to become the most time-consuming operation when

verifying CN or AC evidence since bigger keys are needed to generate new notary

signatures. The same is not true for the document signature, which is never renewed.

Therefore, the time that AC needs to verify the document signature tends to become

insignificant if compared with the time AC or CN requires when checking the notary

signatures.

Compared with time-stamping schemes (Table 5.2), the new notarial scheme AC

should be faster when verifying evidence. This is because in AC the retriever verifies

fewer signatures and certificate chains. Also, she needs to hash fewer objects.

Space complexity

We compare the notarial schemes with respect to the space needed to store evidence

for m documents. For this, we count again the objects stored for each schemes

(see Table 6.6). We distinguish between two types of objects: large objects (viz.

documents, signatures, time-stamps, certificates, and verification information) and

hashes (i.e. short bit strings generated by hash functions). In the table, we set the

number m of documents to m = 2l for some positive integer l. Also, the number

of hash function renewals is determined by p = bk/rc, where r is the number of

iterations after which the hash function is renewed.

Table 6.6 shows that for AC evidence the number of large objects is proportional

80 6 A new notarial scheme

Table 6.6: The numbers of objects stored as the kth evidence for m = 2l documents.

Here the number of hash function renewals is defined by p = bk/rc, where r is the number

of iterations after which the hash function is renewed.

Scheme Signatures Time-stamps Certificates Ver. info Hashes

CN (k + 1)m m m 0 0

AC 2m 0 m 0 (p+ 1)m

to m but independent of the iteration number k. Also, the number of hashes is

proportional to mp which is approximately mk/r. Because signatures usually have

a shorter lifetime than hash functions, mk/r can be expected to be small. For CN

evidence, its size grows proportionally to mk, suggesting that AC needs less space

than CN for increasing k.

When comparing AC with the time-stamping schemes in Table 5.5, we also see

that AC is more space-efficient. The difference is because of the sizes of the stored

objects. Since large objects such as time-stamps and verification information must

be stored in the time-stamping schemes but not in AC, it has a lower space com-

plexity.

Communication complexity

We compare CN and AC with respect to their communication complexities. As in

Section 5.1, we count the number of objects that are exchanged between an archivist

and notaries or time-stamp authorities. These objects are documents, signatures,

time-stamps, notarial attestations (i.e. signatures), certificates, and hashes. They

are counted in Table 6.7. Again, there are m documents in the archive, and the

number of hash function renewals is p = bk/rc, where r is the number of iterations

after which the hash function is renewed. Also, for each scheme we distinguish

between the situations where evidence is initialized (k = 1) and where evidence is

updated (k > 1).

Table 6.7 shows that AC requires less communication than CN when initializing

or updating evidence. To initialize CN evidence (k = 1), the archivist first needs

to request m time-stamps by sending m hashes to the time-stamp authorities which

return m time-stamps. Then, he requests m attestations by sending m documents,

m document signatures, m time-stamps, and m certificates to notaries which return

m signatures. By contrast, to initialize AC evidence for m documents, he requests

no time-stamps and sends neither documents nor signatures to notaries. Therefore,

AC needs less communication to initialize evidence.

6.2 Performance evaluation 81

Table 6.7: The numbers of objects being exchanged between the archivist and notaries or

time-stamp authorities while creating the evidence for m documents in the kth iteration.

Here, the number of hash function renewals is determined by p = bk/rc, where r is the

number of iterations after which the hash function is renewed.

Scheme Documents Signatures Time-stamps Certificates Hashes

CN (k = 1) m 2m 2m m m

AC (k = 1) 0 m 0 m m

CN (k > 1) m (k + 1)m m m 0

AC (k > 1) 0 2m 0 m (p+ 1)m

When updating evidence (k > 1), AC is again more efficient because neither

documents nor time-stamps are sent or received. Also, the number of exchanged

signatures in AC is independent of the iteration k, whereas the same is not true

for CN. Thus, for increasing k AC should communicate less data than CN. Note

that mk/r hashes are exchanged in AC but not in CN. However, these hashes are

not expected to compensate the advantage of AC over CN. This is because mk/r

is expected to be small since the lifetimes of signatures are usually shorter than

the lifetimes of hash functions. Furthermore, the size of these hashes is small if

compared with the other exchanged objects.

Finally, note that the notarial schemes AC and CN still have worse communication

complexities than the time-stamping schemes. The reason is that large objects

(e.g. signatures and certificates) are exchanged in the notarial schemes whereas

only hashes are exchanged in the time-stamping schemes.

6.2.2 Experiment

We have compared the performance of the new notarial scheme AC with the per-

formance of the existing schemes CN, AdES, CIS, and ERS analytically. We now

provide a more realistic comparison which takes available cryptographic primitives

into account. For this end, we first design a prototype for the new notarial scheme

AC such that it can be compared with the prototypes described in Chapter 5. Next,

we use the AC prototype to simulate the protection of documents for which new

evidence is generated every five years for 100 years. Using the results, we finally

show that AC performs as predicted.

82 6 A new notarial scheme

Implementation design

The prototype for AC was implemented using the same technologies as for the other

schemes. That is, we used Java 7, the library xades4j to generate XML signatures,

and the Bouncy Castle cryptographic provider for cryptographic operations. As

before, the AC prototype uses certificate chains containing three X.509 certificates

and for each certificate there is an empty certificate revocation list. We executed

the prototype also on Solaris 11 using an Intel i5 M560 2.67 GHz processor and 4

GB RAM.

Experiment design

We repeat the experiment described in Section 5.2.2, where we use the prototypes

to generate and verify evidence for 128 signed documents from 2013 to 2113. The

documents have the same size as before (30720 bytes) and are signed using 1478-

RSA keys and the hash function SHA-256. Evidence is first initialized in 2013 and

updated every five years until 2113 using the appropriate key sizes and hash func-

tions. These keys and hash functions were selected following Lenstra’s conservative

predictions and are found in Table 5.7.

Results

In this section we discuss the results of our experiment. The results include the

running times needed to generate or verify evidence, the sizes of evidence generated,

and sizes of objects exchanged with trusted parties. We use the results to confirm

the performance predictions in Section 6.2.1 and to compare AC with the schemes

AdES, CIS, ERS, and CN in practice. The results for these scheme are the same

found in Chapter 5.

We first compare AC and CN with respect to the running times needed to generate

evidence. The running times are presented in Figure 6.1. Also, because AC and CN

are expected to be faster than all time-stamping schemes, the figure also compares

AC with the most efficient time-stamping schemes, namely ERS. The presented

times have not been corrected with Moore’s law, so that the reader can compare

them visually.

We compare the figure with the predictions for evidence initialization (Table 5.1)

and evidence update (Table 6.3) for AC and CN. For evidence initialization, the

analytical evaluation indicates that the running times of AC and CN should be

comparable. This is confirmed by the similar running times measured for AC and

CN which are observed in year 2013.

6.2 Performance evaluation 83

2013 2033 2053 2073 2093 2113

0

2

4

6

Year

G
en
er
a
ti
o
n
ti
m
e
(s
ec
on

d
s)

ERS
AC
CN

Figure 6.1: The times needed to generate evidence for 128 signed documents. The peak

in ERS times occurs because all documents and their evidences are hashed to build a new

Merkle tree.

For evidence update, the predictions suggest that AC and CN are also comparable

except when AC replaces the latest used hash function (see AC-N in Table 6.3).

Our experiments confirm that AC and CN are comparable from 2018 until 2108.

However, in year when the hash function is replaced (2088) the schemes are also

comparable since the advantage of CN over AC is too small.

When comparing AC and the most efficient time-stamping scheme (ERS) with

respect to evidence generation, the running times measured also confirm the predic-

tion that AC is faster. It follows that AC also outperforms the time-stamps schemes

AdES and CIS.

Note that the peak in ERS times occurs because a new Merkle tree is built.

This requires hashing the 128 documents, their corresponding signatures and time-

stamps, and the verification information for each signature or time-stamp. Addi-

tional hash evaluations are also needed to compute the leaves and the root of the

tree. This process is executed whenever a new hash function needs to be used.

Next, Figure 6.2 shows the running times that AC and CN need to verify the

evidence for one document. Since the notarial schemes are expected to outperform

all time-stamping schemes, this figure also compares AC with the most efficient

time-stamping scheme (ERS). The illustrated times have not been corrected with

Moore’s law.

The predictions in Table 6.4 and 6.5 indicate that AC is slower than CN. However,

Figure 6.2 shows that the time differences between the prototypes are very small.

84 6 A new notarial scheme

2013 2033 2053 2073 2093 2113

0

2

4

6

Year

V
er

ifi
ca

ti
o
n

ti
m

e
(s

ec
o
n
d

s)

ERS
AC
CN

Figure 6.2: The times needed to verify evidence for one signed document.

It follows that AC and CN are in practice comparable even though AC requires

retrievers to execute more operations when verifying evidence. Recall that AC

leaves the verification of the document signature to the retrievers, who also need to

compute hashes from the document and its signature.

Figure 6.2 also confirms the predictions that AC is faster than the time-stamping

scheme ERS. It follows that AC also outperforms the other time-stamping schemes,

which are all slower than ERS. The confirmed predictions can be explained by

comparing the numbers of signatures to be verified (Tables 5.3 and 6.4) and by

comparing the objects to be hashed (Tables 5.4 and 6.4). Although not explicitly

shown in these tables, AC is also predicted to be faster because retrievers need to

check fewer certificate chains. Recall that the verification of chains are left to AC

notaries and that certificate verification has been shown to need significant running

time (see Section 5.2.2).

Next, Figure 6.3 presents the total size of the evidence for all 128 documents

created by the individual schemes AC, CN, and ERS. Again, ERS is selected because

it is the most space-efficient time-stamping scheme.

As shown in Figure 6.3, AC needs by far less space than CN. Thus, we confirm

the predictions found in Table 6.6. Furthermore, we can see in the figure that AC

also needs less space than ERS, as predicted in Section 6.2.1. Since ERS is the most

space-efficient time-stamping scheme, it is also true that AC is more space-efficient

than the other time-stamping schemes described in Chapter 3.

We finally compare the communication complexities for the individual schemes,

that is, the sizes of the messages exchanged between the archivist and the trusted

6.3 Trustworthiness analysis 85

2013 2033 2053 2073 2093 2113
0

2

4

6

8

10

Year

E
v
id
en
ce

si
ze

(M
b
y
te
s)

ERS
AC
CN

Figure 6.3: The sizes of evidence for 128 signed documents.

third parties when evidence is generated. Figure 6.4 illustrates the communication

complexities for AC and CN. Since the notarial schemes are predicted to be less effi-

cient than any time-stamping scheme, Figure 6.4 also illustrates the communication

complexity for the least efficient time-stamping schemes AdES and CIS.

As Figure 6.4 shows, AC requires by far less data to be communicated than CN.

Thus, we confirm the prediction in Table 6.7. However, the figure also confirms that

AC is still inferior to all time-stamping schemes.

6.3 Trustworthiness analysis

As shown in Section 6.1, we design the new notarial scheme AC by improving the

existing notarial scheme CN. Since the changes affect the roles of the trusted parties

(e.g. notaries), in this section we compare AC and CN with respect to trustworthi-

ness. For this, we identify the necessary trust assumptions and then compare AC

and CN with respect to the identified assumptions.

AC and CN require the assumptions crypto trust and CA trust (see Chapter 4)

because both schemes use digital signatures. As explained before, crypto trust

refers to the requirement that neither cryptographic primitives nor secret keys used

to generate evidence are compromised before evidence is updated. CA trust means

that certification authorities are trusted to correctly identify the entity that owns

the corresponding secret key, to correctly issue the certificate to this entity, and to

operate a reliable revocation system.

86 6 A new notarial scheme

2013 2033 2053 2073 2093 2113

0

5

10

15

Year

E
x
ch
an

g
ed

d
a
ta

(M
b
y
te
s)

AdES or CIS
AC
CN

Figure 6.4: The sizes of data exchanged between the archivist and notaries or time-

stamping authorities while generating evidence for 128 documents.

CN and AC differ in TSA trust and notary trust. In CN, a time-stamp authority

is needed that provides a time-stamp as proof of existence. Therefore, CN assumes

TSA trust which means that the time-stamp authority is trusted to generate a time-

stamp containing the time when the time-stamp was generated. In contrast, in AC

no time-stamps are needed and notaries are trusted to provide proof of existence.

Thus, AC requires only notary trust.

However, the assumption notary trust defined earlier is too broad to allow us

to compare CN and AC. The reason is that AC and CN trust notaries to carry

out distinct procedures. Therefore, we next identify the individual procedures and

compare AC and CN as to trustworthiness. We summarize our findings in Table

6.8.

Table 6.8: The procedures that notaries are trusted to carry out. The procedures that

require no trusted entity are marked with a dash.

Procedure Trusted CN entity Trusted AC entity

Verify notary signatures Notary Notary

Verify certificates Notary Notary

Verify crypto. security Notary Notary

Verify document signatures Notary -

Maintain list of hashes - Notary

Provide proof of existence Time-stamp authority Notary

6.3 Trustworthiness analysis 87

The first three procedures are verifying notary signatures (i.e. attestations),

checking certificates, and verifying the security of cryptographic algorithms. They

are common for AC notaries and CN notaries.

The following three procedures are different for AC notaries and CN notaries. The

first of these procedures is the verification of document signatures. As described

before, CN notaries are trusted to verify document signatures whereas in AC this

verification is left to retrievers. Thus, relying on notaries to execute this procedure

seems to be a disadvantage of CN.

The second procedure is maintaining the list of hashes properly. More precisely,

AC notaries are trusted to not remove hashes from the list. This list is necessary to

ensure the integrity of the archived document. Depending on notaries to keep this

list seems to be a disadvantage of AC.

The third procedure is providing proof of existence. AC notaries are trusted

to provide proof of existence correctly. That is, they must provide the current

time in the notarial attestation when initializing evidence for one document (see

Section 6.1.1). In CN, this procedure is delegated to time-stamp authorities.

When trusting a time-stamp authority or notary, there are disadvantages which

are related to the number of involved parties. By trusting a time-stamp authority,

more parties are involved in evidence generation and trust in the generated evi-

dence tends to be lower (see Section 4.2.5). On the other hand, when trusting a

notary, attackers need to compromise fewer entities to succeed in tampering with

the protection goals of a protected document.

Furthermore, regardless of the entities trusted to provide proof of existence, it can

be compromised by a malicious notary. In CN, time-stamps authorities are trusted

to provide correct time-stamps but a malicious notary can still use an invalid time-

stamp when generating evidence. In AC, notaries are trusted to guarantee proof of

existence and can also attest a wrong time when generating evidence. However, in

both cases the archivist can detected such malicious notaries.

As seen, AC and CN notaries are trusted to carry out three distinct procedures.

Each procedure has disadvantages but in the end they seem to be balanced between

AC and CN. Thus, the assumption notary trust is expected to be similar in both

schemes. It follows that AC and CN are expected to be equally trustworthy.

7 A new time-stamping scheme

This chapter presents a new time-stamping scheme called Content Integrity Service

with Skip Lists (CISS). The goal of this scheme is to provide an efficient solution

for the following scenario. Assume a protection scheme is used to protect many

documents, which are not submitted and time-stamped together as a set (as required

for ERS), but sequentially. In this case, it would be still more efficient if only one

proof of existence (i.e. in the form of a time-stamp sequence) has to be generated

to protect these documents, since each proof must be protected from becoming

insecure over time. CIS allows for generating only one time-stamp sequence for a

set of documents, but has three shortcomings addressed by CISS. First, although all

documents in the set share the same time-stamp sequence, to generate or verify the

time-stamp sequence for one document only this document is needed. In comparison,

using CIS all documents in the set need to be hashed. Second, a new time-stamp

is appended to the time-stamp sequence each time a new document is added to

the set protected by this sequence. It follows that the validities of several time-

stamps may overlap and consequently not all time-stamps need to be checked during

verification. CISS allows to skip during verification the time-stamps that are not

needed to guarantee proof of existence. We show that this can be done by using

a data structure called skip list to generate and select the time-stamps. Third,

the time-stamps are generated using signature schemes and hash functions. Since

these two cryptographic primitives usually have different lifetimes, we distinguish

between two types of time-stamps to be created. One type is to address the aging

of signatures and requires hashing only the previous time-stamp in the sequence.

The other type is to be used before the last used hash function becomes insecure

and requires building a Merkle tree from all previous time-stamps. Since signatures

are expected to have shorter lifetimes than hash functions, using the appropriate

type of time-stamps prevents the retriever from hashing not necessary data; hence,

hashing times are reduced. We provide a performance analysis for CIS and CISS.

First, we compare the schemes analytically with respect to time and space. Then,

we run an experiment and compare the results with the analytical evaluation. The

7.1 Improving the performance of CIS 89

analysis reveals that CISS provides a significantly faster evidence verification. The

content of this chapter was published as parts of [57].

7.1 Improving the performance of CIS

The time-stamping scheme CIS described in Chapter 5 is a promising scheme. It

allows an archivist to time-stamp documents at distinct moments using a single

time-stamp sequence. That is, instead of generating and maintaining a time-stamp

sequence for each time-stamped document, he keeps only one time-stamp sequence

which is updated when a further document needs to be time-stamped. Thus, the

documents share the same time-stamp sequence as evidence.

This feature of CIS is desired, for example, in two situations. First, when the

format or the content of a time-stamped document must be changed frequently. In

this case, CIS can be used to time-stamp the history of changes of this document.

Second, when a set of documents are submitted to the archive and time-stamped

sequentially, CIS allows for generating a single time-stamp sequence for this set.

Thus, the archivist needs to address the aging of cryptography of only one time-

stamp sequence.

Although CIS provides this important feature for archives, Chapter 5 revealed

performance issues. In this section we first discuss four issues that affects the per-

formance of CIS. Then, we show how they are addressed in the new time-stamp

scheme time-stamping scheme Content Integrity Service with Skip Lists (CISS).

The first issue is that, even if a retriever wants to verify the protection goals of

only one document from a set of documents by checking the time-stamp sequence,

she must hash all the whole set.

The second performance issue is that the retriever may need to verify redundant

time-stamps, i.e. time-stamps that are not needed to guarantee the protections

goals of the document she wants to verify. These time-stamps are generated not to

address the aging of signatures or hash functions, but to provide the protection goals

for new documents added to the set of documents. Note that verifying time-stamps

requires checking certificates, which Chapter 5 revealed to be very time-consuming.

The third issue is the hashing of time-stamps that are not needed for verifica-

tion. More precisely, to verify every time-stamp in the sequence, the retriever must

compute one hash from the previous time-stamps. This is required when verifying

time-stamps generated to address the aging of hash functions. However, this is not

the case of time-stamps created to cope with the aging of signatures. (In this case,

hashing only the previous time-stamp is sufficient.) Since signatures have usually a

90 7 A new time-stamping scheme

shorter lifetime than hash functions, most of the time-stamps in the sequence are

to address the aging of signatures. Therefore, the verification of the sequence may

potentially require hashing many times time-stamps which are not necessary.

The fourth issue is that, even when all previous time-stamps must be hashed, this

is done inefficiently in CIS. More precisely, a single hash is computed recursively,

where in each step a hash is computed from a part of the time-stamp sequence

together with the hash computed in the previous step. This procedure turns out to

be inefficient because it hashes extra data, namely it computes hashes from hashes

(see Chapter 5, Table 5.2).

Note that the first and second issues happen when one sequence of time-stamps

is used as evidence for a set documents in the archive. The third and fourth is-

sue happen even when using CIS to generate a time-stamp sequence for only one

document.

Therefore, we propose the new time-stamping scheme CISS to address the above

issues. We first solve the issues of hashing all documents (first issue) and verify-

ing redundant time-stamps (second issue) by combining skip lists with time-stamps.

This is shown in Section 7.1.1. Next, we address the issue of hashing not necessary

time-stamps (third issue) by distinguishing between two types of time-stamps. One

type for addressing the aging of hash functions and another for the aging of signa-

tures. This is show in Section 7.1.2. Furthermore, the proposed solution is not

affected by the CIS issue of hashing time-stamps recursively (fourth issue).

7.1.1 Combining skip lists with time-stamps

In this section we describe how to combine skip lists with time-stamps to provide

long-term proof of existence for documents. First, we present skip lists. Next, we

present existing hash-based skip lists and their limitations. Following, we describe

our proposal of a hash-based skip list which uses time-stamps. The proposal is

intended to not only provide the promised protection goals but also allow for their

efficient verification.

Skip lists

As shown in Section 2.12, a skip list is a data structure that can be used to store a

sequence elements. The skip list contains several linked lists which store the elements

added to the skip list. In a linked list, every element has a link to the next element.

The stored elements and the internal linked lists are ordered such that we can search

for an element without visiting every element, i.e. we can skip elements.

7.1 Improving the performance of CIS 91

Existing skip lists based on hash links

Maniatis and Baker [34] design the first skip lists to be used as integrity evidence for

documents. In their skip lists, the internal links are realized as hashes. We provide a

simplified description of the construction of these hashes. For i ≥ 0, assume that di
and di+1 are the (i+ 1)th and (i+ 2)th documents added to a skip list. An internal

link l from di to di+1 is computed by l = h(di||di+1), where h is a hash function and

|| is concatenation.

The integrity evidence for document di consists of the hash link l and document

di+1. To verify integrity, a retriever recomputes the hash link as before and checks

whether it matches l.

However, these skip lists have three issues. First, when verifying the integrity of

one document, the retriever needs to hash additional documents (e.g. to verify di
she must hash di+1). This issue is also found in CIS. Second, Maniatis and Baker

provide no proof of existence for the documents in the skip lists6. Third, the aging

of the used hash functions is not addressed, therefore long-term integrity cannot be

achieved.

The new time-stamping scheme that we propose extends these skip lists such

that only the document to be verified is hashed and long-term proof of existence is

achieved efficiently.

Allowing for verifying integrity without hashing additional documents

Our first improvement of CIS is to allow a retriever to verify the integrity of a

document without hashing additional documents. For this, we propose to store

document hashes instead of the documents themselves in the hash-based skip lists.

Let us provide an example to illustrate our proposal when integrity evidence is

provided. (Proof of existence will be addressed in the next section.) Assume that

the internal hash links of the skip list are created between two documents hashes.

Thus, for i ≥ 0 when the skip list already contains document hash h(di) and h(di+1)

is added, a link l from h(di) to h(di+1) is computed by l = h(h(di)||h(di+1)).

In the above example, the integrity evidence for document di consists now of hash

link l and document hash di+1. Note that, contrary to the skip lists proposed by

Maniatis and Baker, document di+1 is no longer needed; hence, the size of evidence is

reduced. To verify integrity, the retriever first computes h(di). Then she recomputes

the link as before and compares whether it matches l.

6A hash link can be used as a proof of existence which uses no date. Such sort of proof of existence

is not sufficient to achieve our protection goals because dates are needed that allow retrievers to

verify whether cryptographic primitives were used before they became insecure.

92 7 A new time-stamping scheme

This example does not allow for proof of existence. To provide this protection

goal, we will see later that the computation of l needs to be slightly changed.

Providing proof of existence for hash-based skip list

The next step in designing our new time-stamp scheme is to provide proof of exis-

tence for the documents hashes and hash links in the skip list. For this, we create

a sequence of time-stamps to be used together with the hash links as evidence of

proof of existence for a set of archived documents. As we will see, the verification of

this time-stamp sequence has some performance issues that will be addressed later.

Since the set of archived documents share the same time-stamp sequence, the

archivist must update the sequence when a new document is received or a document

already in the set is changed. A procedure for this is to time-stamp every new

document together with the most recent time-stamp in the sequence. This procedure

is available in CIS but here we realize it more efficiently by using the internal hash

links of the skip lists as follows.

Assume d0 is the first document in the set to be protected. The archivist computes

the hash h(d0) and adds it to an empty skip list. Since h(d0) is the only element in

the skip list, he creates no internal hash links in the linked list L0 in level 0. Next,

he requests a time-stamp T0 on h||h(d0).

Now assume d1 is the second document in the set to be protected. The archivist

computes the hash h(d1), adds it to the skip list, and creates the hash link l01 from T0
to d1 in the linked list L0 such that l01 = h(T0||h(d1)). Next, he creates a time-stamp

T1 on h||l01.
In general, for i ≥ 0, the archivist adds the hash h(di) of the new document di

to the skip list, generates the hash link l0i = h(Ti−1||h(di)) in the linked list L0, and

requests a time-stamp Ti on h||l0i .
Note that by adding a new time-stamp Ti to the sequence, the archivist not only

establishes proof of existence for the new document di, but also extends the validity

of the previous time-stamp Ti−1. (It may happen that the validity Ti−1 is about to

expire but there is no document hash h(di) to be added to the skip list. We will deal

with this situation and especially with the aging of hash functions in Section 7.1.2.)

This is why he can use a single time-stamp sequence as evidence for documents that

are time-stamped at distinct times.

We now identify performance issues in this time-stamping procedure. When

adding a time-stamp Ti to the sequence, the archivist extends the validity of Ti−1
even though if Ti−1 is far from being expired. In this situation, when verifying

the protection goals for a document dj (0 ≤ j < i), a retriever needs to check

7.1 Improving the performance of CIS 93

time-stamps Tj, . . . , Ti−1 but not necessarily Ti. She can skip Ti if Ti−1 is still valid.

An example of the above situation is found in Figure 7.1. The document hashes

h(d0), h(d1), h(d2), and h(d3) were added to the skip list and time-stamped at times

t0, t1, t2, and t3 using time-stamps T0, T1, T2, and T3, respectively. When these

time-stamps are created (“•”), the validity of the previous time-stamp is far from

being expired (“◦”). A retriever verifies the proof of existence of document d0 at

time t4, when T2 and T3 are still valid. In this case, she checks time-stamps T0, T1,

and T2 but skips T3.

time
t0

h(d0)

t1

h(d1)

t2

h(d2)

t3

h(d3)

T0

T1

T2

T3

t4

verification for d0

Figure 7.1: The time-stamps T0, T1, T2, and T3 provide proof of existence for the docu-

ment hashes h(d0), h(d1), h(d2), and h(d3) at the times t0, t1, t2, and t3. Every time-stamp

extends the validity of the previous time-stamp. The beginning and end of a validity are

indicated by “•” and “◦”, respectively. At the time t4 a retriever checks the proof of

existence of d0.

Although the retriever can skip the most recent time-stamp, she must verify the

other time-stamps in the sequence. Assume that the archivist adds a new time-

stamp Ti+1 before Ti and Ti−1 expire. Next, assume that the retriever verifies the

time-stamp sequence for dj when Ti and Ti−1 have expired and Ti+1 is still valid. In

this case, both Ti and Ti−1 are redundant but they must be verified because each

time-stamp is applied on a hash (i.e. a hash link) from the previous time-stamp in

the sequence.

Therefore, it may happen that the addition of new document hashes to the skip

list generates time-stamps that are not necessary to guarantee the proof of existence

of previous documents. As a consequence, performance can be significantly affected

because checking time-stamps includes the time-consuming verification of certificates

(see Chapter 5). This issue will be address in the next section.

94 7 A new time-stamping scheme

Verifying time-stamps sequences efficiently

As discussed before, some time-stamps in the sequence may be not needed to guar-

antee the protections goals of a document. However, these time-stamps must be

checked because of the construction of the time-stamp sequence. (In the sequence,

each time-stamp is created on a hash link computed from the previous time-stamp.)

Our next step is to allow retrievers to skip the verification of such not necessary

time-stamps. Thus, we first present the idea behind skipping time-stamps and then

we show how to realize it. Afterwards, we provide an example where we combine

hash-based skip lists and time-stamps.

To allow for skipping time-stamps, we propose a new construction of hash links

as follows. As explained before, when an archivist adds a new document hash to

the skip list, he creates a hash link from the most recent time-stamp to the new

document hash. However, in the new construction if there exist older time-stamps

which have not expired, he also creates hash links from these time-stamps to the

new document hash. Finally, he requests a new time-stamp on the hash links he has

just created.

The result of this new construction is twofold. First, proof of existence for the new

document is provided as before. Second, there can be more than one time-stamp in

the sequence that extends the validity of an earlier time-stamp.

When verifying the time-stamp sequence for one document, a retriever needs to

check only a subsequence of the time-stamp sequence. The first time-stamp in the

subsequence is the time-stamp created when the hash of the document was added to

the skip list. The last time-stamp is the most recent time-stamp. The intermediary

time-stamps are those applied on hash links that make up the shortest path from

the first to the last time-stamp in the skip list.

For example, assume that the archivist added document hashes h(d0), h(d1), and

h(d2) to a skip list and requested time-stamps T0, T1, and T2 at times t0, t1, and

t2, respectively. In this time-stamp sequence, T2 provides proof of existence for d2
and extends the validity of T1. T1 provides proof of existence for d1 and extends

the validity of T0. T0 guarantees proof of existence of d0. Figure 7.2 depicts the

document hashes and time-stamps over a time-line. The black circles indicate when

the time-stamps are created. The white circles show when the time-stamps expire,

i.e. when the signatures on the time-stamps expire.

Now assume that the archivist adds document hash h(d3) at time t3, when the

time-stamps T1 and T2 have not expired yet. Then, he creates the hash link l03 from

the most recent time-stamp T2 to h(d3) such that l03 = h(T2||h(d3)). Furthermore,

he creates a hash link l13 from the unexpired time-stamp T1 to h(d3) such that

7.1 Improving the performance of CIS 95

time
t0

h(d0)

t1

h(d1)

t2

h(d2)

t3

h(d3)

T0

T1

T2

T3

Figure 7.2: The time-stamps T0, T1, T2, and T3 provide proof of existence for the docu-

ment hashes h(d0), h(d1), h(d2), and h(d3) at the times t0, t1, t2, and t3. Each time-stamp

also extends the validity of the previous time-stamp. The beginning and end of a validity

are marked with “•” and “◦”, respectively.

l13 = h(T1||h(d3)). Finally, he generates a time-stamp T3 on h||h(l03||l13). Thus, T3
extends the validities of time-stamp T2 on h(d2) and time-stamp T1 on h(d1).

In this example, when a retriever verifies the proof of existence of d0, she checks

only the time-stamps T0, T1, and T3. She can skip T2 since T3 extends the validity

of the signature on T1.

However, when adding a new document hash, the more time-stamps have not

expired, the more hash links can be generated. To avoid that creating links consumes

considerable space and time, we limit the number of links to g+ 1, where g depends

on the position of the document hash in the skip list and can be calculated with

Equation 2.5 presented in Section 2.12.

Next, we show how to realize our skip list taking the limit g + 1 into account.

We also consider that verification information V is needed to verify time-stamp T

and that skip lists have several linked lists L0, L1, Furthermore, we use indices

to identify the used hash functions because they must be replaced over time. Their

replacement is discussed in Section 7.1.2.

Let d0 be the first document for which the archivist generates evidence at time

t0. He executes the following steps.

1. Select a hash function h1 and initialize an empty skip list.

2. Compute hash h1(d0) and add it to skip list at position 0.

3. Request a time-stamp T0 on h1||h1(d0).

Now, assume d1 is the next document to be protected at time t1 > t0, when the

signature on time-stamp T0 has not expired and the hash function h1 is still secure.

96 7 A new time-stamping scheme

The archivist proceeds as follows.

4. Compute hash h1(d1) and add it to skip list at position 1.

5. Obtain verification information V0 showing that the signature on T0 is valid

at t1.

6. Create a link l01 from T0||V0 to hash h1(d1) in the linked list L0 such that

l01 = h1(T0||V0||h1(d1)).

7. Request a time-stamp T1 on h1||h1(l01).

Now assume at time t2 > t1 the signature on T1 has not expired, h1 is still secure,

and d2 is the next document to be protected. The archivist executes the following

steps.

8. Compute hash h1(d2) and add it to skip list at position 2.

9. Obtain verification information V1 showing that the signature on T1 is valid

at t2.

10. Create a link l02 from T1||V1 to hash h1(d2) in the linked list L0 such that

l02 = h1(T1||V1||h1(d2)).

11. If time-stamp T0 has not expired at time t2,

a) then

i. Create a link l12 from T0||V0 to h1(d2) in linked list L1 such that

l12 = h1(T0||V0||h1(d2)).
b) else

i. Create empty string named l12.

12. Request a time-stamp T1 on h1||h1(l02||l12).

Assume for i > 2 that the archivist has added document hashes h1(d0), . . . , h1(di−1)

to the skip list, and that he has generated time-stamps T0, . . . , Ti−1. At time ti, when

h1 is still secure and at least the signature on Ti−1 has not expired, the archivist

generates evidence for document di as follows.

13. Compute hash h1(di) and add it to skip list at position i.

14. Compute g using i as input for Equation 2.5 presented in Section 2.12.

7.1 Improving the performance of CIS 97

15. For every 0 ≤ j ≤ g, if there exists an unexpired signature on a time-stamp

Tk such that k = min{x ∈ Z∗|i− 2j ≤ x < i− 2j−1},
a) then

i. Collect verification information Vk showing that Tk had a valid sig-

nature at time tk+1.

ii. Create a link lji from Tk||Vk to h1(di) in the linked list Lj such that

lji = h1(Tk||Vk||h1(di)).
b) else

i. Create an empty string named lji .

16. Request a time-stamp Ti on h1||h1(l0i || . . . ||lgi).

Finally, an example of such a skip list is given in Figure 7.3. The figure illustrates

the following scenario. The archivist has added document hashes h1(d0), h1(d1),

h1(d2), and h1(d3) to the skip list. Also, he has generated the time-stamps T0,

T1, T2, and T3 on these hashes at times t0, t1, t2 and t3. Next, the archivist adds

hash h1(d4) at time t4, when only the signature on T0 has already expired. He

computes g = 2 by plug in the parameters i = 2 and m = 1 in g = log2(i/m) (see

Section 2.12, Equation 2.5). Then, he creates g+ 1 links: (1) l04 from time-stamp T3
and verification information V3 to h1(d4), (2) l14 from T2 and V2 to h1(d4), and (3)

l24 from T1 and V1 to h1(d4). Note that he does not generate the link l24 from T0 and

V0 because the signature on T0 has already expired at time t4.

time
t0

h1(d0)

t1

h1(d1)

t2

h1(d2)

t3

h1(d3)

t4

h1(d4)

L0 l01 l02 l03 l04

L1 l12 l14

L2 l24

T0 V0 T1 V1 T2 V2 T3 V3 T4

Figure 7.3: Using a hash-based skip list together with time-stamps to guarantee to the

protection goals of the documents d0 to d4. The hash links l are constructed with the hash

function h1. An arrow from a time-stamp T and its verification information V to a link l

indicates that T and V are hashed to produce l. The evidence for the document d0 at the

time t4 consists of the colored objects.

98 7 A new time-stamping scheme

Evidence for retrievers and its verification

The archivist provides retrievers with the evidence extracted from a skip list as

follows. Assume for n > 0 that he has added documents d0, . . . , dn to the skip list

sequentially. Thus, the evidence for document di (0 ≤ i ≤ n) consists of hashes,

time-stamps, and verification information. These hashes are the document hashes

and hash links extracted from the shortest path from the hash of di (position i)

to the most recent time-stamp in the skip list (position n). This sequence includes

no hash which retrievers can compute by themselves. The time-stamps are also

extracted from the shortest path. If i > 0, then the time-stamp and verification

information at position i− 1 is also extracted.

We provide two examples using Figure 7.3. First, we present the evidence for the

first document in the skip list, i.e. d0, at time t > t4. Its evidence consists of hashes

h1(d1), h1(d4), l
0
4, l

1
4, time-stamps T0, T1, T4, and verification information V0, V1. Note

that the evidence does not include, for example, the hash link l24, which retrievers

can compute from h1(d4), T1, and V1 (i.e. l24 = h1(T1||V1||h1(d4))). Furthermore,

retrievers must collect verification information for time-stamp V4 by themselves.

The next example is for the evidence for the second document, i.e. d1, also at

time t > t4. Its evidence consists of hashes h1(d4), l
0
4, l

1
4, time-stamps T0, T1, T4, and

verification information V0, V1. Note that although a retriever does not check the

signature on T0, she needs T0 and V0 to compute the hash link l01 = h1(T0||V0||h1(d1)).
Provided an archived document and the evidence, a retriever verifies the protection

goals of the document as follows.

1. Compute the hash of the document.

2. Compute the hash links which were not provided.

3. Verify the signature on each time-stamp.

Steps 1 is needed to verify the integrity of the document. Step 2 is required

to check the integrity of time-stamps and their verification information. Step 3 is

necessary to verify the authenticity of time-stamps and the proof of existence of the

document.

7.1.2 Addressing the aging of cryptography

An issue identified in CIS is that the aging of cryptography is addressed inefficiently.

This is because CIS provides a single procedure to extend the lifetime of signatures

and the lifetime of hash functions. To solve this issue in our new scheme CISS, we

7.1 Improving the performance of CIS 99

distinguish between the aging of signatures and the aging of hash functions. Thus,

in this section we first explain a procedure to be executed before the latest used

signature algorithm or keys become insecure (signature aging). Then, we describe

a procedure to be run before the latest used hash functions becomes insecure (hash

function aging). Finally, we show how to adapt the evidence such that a retriever

can verify whether the aging of cryptography has been properly addressed.

As explained before, when an archivist adds the hash of a new document to the

skip list, he generates hash links and request a new time-stamp on these hash links.

The hash links are computed from the time-stamps that have not expired together

with the new document hash. Afterwards, a new time-stamp is requested on these

hash links. Therefore, when the archivist adds a new document hash to the skip list,

he is already addressing the aging of the signatures on the unexpired time-stamps.

However, a question that remains is how to address such aging when there is no

new document hash to be added to the skip list for a long period. To solve this

issue, we propose that the archivist simply adds an arbitrary hash (e.g. a string

of zeros) to the skip list, generates the necessary hash links, and time-stamps the

generated links.

Nonetheless, the above procedure does not address the aging of the used hash

function h1. It is necessary to generate new evidence showing that the document

hashes, the hash links, the time-stamps, and the verification information already

existed before h1 became insecure. For this, the archivist needs to select a new hash

function h2, compute a hash from all these objects, and apply a new time-stamp on

the computed hash. We detail these procedures in the following.

To compute a hash from the above objects efficiently, we suggest to use a binary

hash tree as proposed by Blazic et al. [3]. This can be, for instance, a Merkle tree

(see Section 2.4). Assume for i ∈ [1, n] that document hashes h1(di) have been added

to the skip list and that Tn is the most recent time-stamp. Evidence Ei for docu-

ment di contains the shortest path from h1(di) to Tn, i.e. the links that a retriever

cannot compute by herself, the preceding time-stamp if necessary, time-stamps for

the links, and the corresponding verification information. The archivist computes

hashes h2(di||Ei) as the leaves of a new binary hash tree. Next, he calculates every

internal node and the Merkle tree root r1 as described in Section 2.4. Furthermore,

he computes the authentication path Ai,1 from each leaf h2(di||Ei) to the root r1.

To time-stamp the computed hash, i.e. the Merkle tree root r1, the archivist uses

a new skip list. He initializes an empty skip list and adds r1 as the first element.

Next, he requests a time-stamp on r1 as for the first document hash in the first skip

list.

As we described before, the evidence contains the hashes in the shortest path

100 7 A new time-stamping scheme

from the document hash to the most recent time-stamp in the skip list. Now, we

need to extend this evidence such that retrievers can check whether the archivist has

addressed the aging of the used cryptography. For the aging of signatures nothing

changes in the evidence. This is because the archivist simply added an arbitrary

hash instead of a document hash to the skip list. For the aging of hash functions,

the evidence Ei for a document di is augmented by the authentication path Ai,1

from di to the Merkle tree root r1.

A retriever verifies the extended evidence for document di as follows. She generates

the missing hash links and verifies the time-stamps as before. The exception is when

checking the time-stamp on the Merkle tree root r1. In this case, she first selects

the hash function h2 used to generate r1. Next, she recomputes the Merkle tree root

r1 from di, its evidence Ei, and the corresponding authentication path Ai,1. Finally,

she verifies the signature on the time-stamp using the recomputed root r1 and the

needed verification information.

Note that after the Merkle tree root r1 was time-stamped, new documents can also

be time-stamped. In this case, they must be hashed using the latest hash function

h2 and the computed hashes must be added to the new skip list. For the documents

time-stamped before r1 was generated, the evidence must also include the shortest

path from r1 to the most recent time-stamp.

An example of the above situation is given in Figure 7.4, where two skip lists

are illustrated. The first skip list is initialized at time t0 and contains document

hashes, hash links, and time-stamps generated until time t4 using hash function h1.

The second skip list is initialized at time t5, when h1 is replaced by hash function

h2. The second skip list contains a Merkle tree root r1 computed from the objects

stored in the first skip list. Also, it contains the document hashes added after t5.

The set of hashes and time-stamps in the shortest path from an added hash to the

last time-stamp in a skip list is denoted by S. Thus, at time t > t8, the evidence

E0 for document d0 contains S1, the authentication path from d0 to r1, and S5. For

document d6, the evidence contains only S6.

Moreover, the archivist must generate a new Merkle tree root whenever the latest

used hash function is about to become insecure. However, when computing the

leaves of the new Merkle tree, the authentication paths in the previous trees must

also be hashed. More precisely, for j > 0 assume that the evidence E for document

d was initialized using hash function hj. Now, for k > j+1 assume that the archivist

selects a new hash function hk and that he computes a new Merkle tree root rk. For

this, he computes the leaf hk(d||E) and E must include the authentication paths

from document d to the previous roots rj, . . . , rk−2.

7.2 Performance analysis 101

time
t0

h1(d0)

t1

h1(d1)

t2

h1(d2)

t3

h1(d3)

t4

h1(d4)

t5

r1

t6

h2(d6)

t7

h2(d7)

t8

h2(d8)

S1 S5
S6

1st skip list 2nd skip list

Figure 7.4: Two skip lists. The first skip list is used to provide proof of existence for the

documents d0 to d4 until time t4 using the hash function h1. The second skip list contains

the Merkle tree root r1 computed from the objects in the first skip list using the hash

function h2. It also contains the hashes of the objects d6 to d8. The shortest path from

an added hash to the last time-stamp in a skip list is denoted by S.

7.2 Performance analysis

This section provides a performance analysis for CIS and CISS while they are used

to generate and verify evidence for a set of documents in an archive. The generated

evidence is a single sequence of time-stamps which is shared by these documents.

The documents are signed by their owners, and new documents can be added to the

set and time-stamped after the evidence was initialized. We do not consider other

schemes from previous chapters because they were not designed for the described

scenario. Moreover, we do not repeat the analysis from Chapter 5 for CISS, where

the number of documents in the set is fixed. For this scenario we have already shown

that the time-stamping scheme ERS and the notarial schemes are the best options.

As in Chapter 5, we first present an analytical evaluation. Next, we run experi-

ments using prototypical implementations and analyze the obtained results. In the

evaluation and experiments, we compare the schemes with respect to time and space.

Time refers to the times needed to generate and verify evidence. Space refers to the

size of the generated evidence. We do not evaluate the communication complexity

of these schemes because they are expected to use the same number of time-stamps.

7.2.1 Analytical evaluation

In this section we analyze how CIS and CISS differ in performance without taking

any specific cryptographic primitives into account. As before, we assume that the

most time-consuming operations in these schemes are hashing and signature verifi-

cation. Therefore, we use the numbers of hashed objects and verified signatures to

compare the schemes.

102 7 A new time-stamping scheme

In contrast to previous analytical evaluations, we cannot count the hashed objects

and verified signatures as a function of the iteration in which evidence is updated

or verified. The reason is that the evidence must be updated when new documents

are time-stamped, however we cannot predict in which iteration the next document

will be time-stamped. Therefore, instead of iterations we will use the length k of the

time-stamp sequence and the number f of documents in the set, where f = k = 0

before the first document is time-stamped, and 1 ≤ f ≤ k before the (f + 1)th

document is time-stamped.

Moreover, for this analysis we assume that the documents are signed by their

owners before being time-stamped.

Performance of evidence initialization

We start with the performance of evidence initialization, which takes place when

an archivist time-stamps the first signed document. In this evaluation we count

the objects the archivist must hash in each scheme. In CIS and CISS, he hashes

the same objects: the initial document, the signature on the document, and the

verification information for the signature. Therefore, CIS and CISS are expected to

perform similarly.

Performance of evidence update

We now analyze the performance of updating an initialized sequence of k time-

stamps for f signed documents, where 1 ≤ f ≤ k. We count the objects the

archivist must hash when requesting the next time-stamp. However, here we need to

distinguish between three situations: when a new signed document is time-stamped,

when the signature lifetime of the last time-stamp is about to end, and when the

lifetime of the last used hash function is close to expire. We next analyze each

situation individually.

We first analyze the situation where a new signed document is time-stamped. For

this situation, we refer to CIS as CIS-F and to CISS as CISS-F in Table 7.1. Note

that for CISS-F the number of hashed time-stamps and verification information

depends on the hash links to be created from the unexpired time-stamps. Since we

cannot predict how many time-stamps have not expired when the next document

is time-stamped, we assume the worst-case scenario for CISS, where the maximum

number g+1 of hash links are generated. Recall that g = log2(k/m), wherem ∈ [1, k]

is odd (see Equation 2.5 in Section 2.12).

The table shows that the number of objects to be hashed in CIS-F is proportional

to k and f whereas in CISS-F it is proportional to g + 1 ≈ log2 k in the worst-case

7.2 Performance analysis 103

Table 7.1: The numbers of objects being hashed while updating a sequence of k time-

stamps which is used as evidence for f documents, where 1 ≤ f ≤ k, g = log2(k/m), and

m ∈ [1, k] is odd.

Scheme Documents Signatures Time-stamps Ver. info Hashes

CIS f f k k + f 2k + f − 1

CIS-F f + 1 f + 1 k k + f + 1 2k + f

CISS-F (worst-case) 1 1 g + 1 g + 2 2g + 2

CISS-O 0 0 1 1 2

CIS-N k k k 2k 3k − 1

CISS-N (best-case) k k 3k − 2 4k − 2 5k − 3

scenario. It follows that for larger k and f CISS-F is expected to outperform CIS.

Next, we compare CIS and CISS when the next time-stamp is needed to address

the aging of the last time-stamp signature. The number of hashed objects for CIS

and CISS corresponds to CIS and CISS-O in the table. In this case, CISS-O is

independent of k and f . Therefore, when k and f grows CISS-O is expected to be

faster than CIS.

Finally, we compare the schemes as they address the aging of the last used hash

function. Let us first explain how we count the objects that must be hashed to

compute a Merkle tree in CISS. As explained in Section 7.1.2, these objects are

every document and its evidence, which contains the hash links, time-stamps, and

the corresponding verification information in the shortest path from the document

time-stamp to the last time-stamp in the skip list. However, since we cannot predict

the shortest path, we make two simplifications. First, we assume 1 ≤ f = k, i.e.

new time-stamps were only created when a new document was time-stamped. This

simplification is needed because, if we also consider the time-stamps generated to

address the aging of cryptography, we cannot predict whether a document hash was

added to the skip list before addressing the aging of cryptography.

In the second simplification, we assume the best-case scenario for CISS, where

the shortest path from each document hash to the last time-stamp contains only

a single hash link. Thus, the evidence for each document is minimal and contains

one hash link and up to three time-stamps: 1) the time-stamp generated before

the document was time-stamped, 2) the time-stamp on the document, and 3) and

the last time-stamp. Also, the evidence contains a document signature and all

verification information needed.

In the table, CIS-N and CISS-N stand for the numbers of hashed objects for CIS

and CISS when the schemes replace the last used hash function. As can be seen

104 7 A new time-stamping scheme

from the expression, for large k CISS-N should be slower since it hashes more time-

stamps, verification information, and hashes. Since CISS-N is slower than CIS in

the best-case scenario, for any scenario CIS should outperform CISS-N.

Performance of evidence verification

To analyze the performance of evidence verification, we compare CIS and CISS with

respect to only the number of signatures to be verified. Although in Chapter 5 we

have also counted the objects to be hashed, the experiments presented so far have

shown that hashing is insignificant during evidence verification.

As before, we assume that there exists a sequence of k time-stamps which is used

as evidence for a set of f signed documents, where 1 < f ≤ k. Moreover, we

assume a retriever wants to verify the first document time-stamped in the set (the

worst-case scenario). For CIS, this verification requires the retriever to check the k

time-stamps (i.e. k signatures). In CISS, she can check fewer time-stamps because

of the hash links between nonconsecutive time-stamps in the skip list. These links

are generated when creating the f − 1 time-stamps on the other documents in the

set. (Whether the links are created depends on the position of the new time-stamp

in the skip list and the number of unexpired time-stamps.) If these links exist in

the skip list, then the retriever skips the verification of the time-stamps between

any two linked time-stamps. Consequently, she verifies less than k time-stamps. It

follows that CISS is expected to outperform CIS.

Space complexity

To analyze how CIS and CISS differ in space complexity, we count the objects stored

as evidence. In CIS, the document signatures, time-stamps, and verification infor-

mation are stored. In addition to what is stored in CIS, in CISS hashes are stored,

such as hash links and authentication paths. Since these hashes are significantly

smaller than the other objects, CIS is expected to require slightly less space than

CISS.

7.2.2 Experiment

This section provides an experiment that was carried out to compare the perfor-

mance of CIS and CISS in practice. First, we present the prototypical implemen-

tation for CISS. Next, we describe the experiment. Finally, we discuss the results

comparing them with the predictions presented in the analytical evaluation.

7.2 Performance analysis 105

Implementation design

To allow for comparing CISS with CIS in practice, we implemented a prototype

for CISS using the same technologies mentioned in Chapter 5. Furthermore, we

executed the prototypes for CIS and CISS on a personal computer with an Intel i5

M560 2.67 GHz processor and 4 GB RAM running Solaris 11. The executions used

no code optimization (i.e. just-in-time-compilation) because we cannot guarantee it

equally improves the performance of all prototypes.

As before, the public keys needed to verify signatures are distributed in the form

of X.509 certificates. These certificates are the last certificates c3 of certificate chains

c1, c2, c3. For each certificate in the chains there is an empty certificate revocation

list.

Experiment design

In this experiment, two sequences of time-stamps are generated. The first sequence

contains the time-stamps created by the CIS prototype. The second sequence con-

sists of the time-stamps generated by the CISS prototype. The time-stamps are gen-

erated and added to the sequences when a new signed document is time-stamped.

Both sequences are initialized in 2013, when the first document and its signature

are time-stamped. Then, in every year from 2014 to 2113, a new document and

signature are time-stamped and the two time-stamp sequences are updated.

As in Sections 5.2.2 and 6.2.2, each received document is 30720 bytes in size and

every generated time-stamp is expected to be valid for five years after its generation.

The key sizes used to sign documents and time-stamps are selected in accordance

to the conservative predictions by Lenstra [31]. For each generated signature, the

selected key size is expected to be secure for five years after the signature generation.

The selected key sizes are found in Table 5.7.

The hash function SHA-256 is also used to generate the signatures and skip list

until 2085. Since SHA-256 is expected to be secure until 2090 and every time-stamp

is expected to be valid for five years, we replace this hash function by SHA-384 in

2086. In this year a new time-stamp is generated for CIS and CISS but no signed

document is received in the archive. For CISS, in this year a Merkle tree is built.

As said, a new time-stamp is added every year from 2013 to 2113 and each time-

stamp is expected to be valid for five years. Thus, every time the time-stamp

sequences are updated, there are up to four unexpired time-stamps. Therefore,

depending on the position of a new time-stamp in a skip list, CISS can generate

hash links from the unexpired time-stamps to the new time-stamp. When verify-

ing the time-stamp sequence, such links allow for skipping up to three consecutive

106 7 A new time-stamping scheme

time-stamps. Figure 7.5 illustrates this situation when the fifth time-stamp T4 is

generated and hash links from the unexpired time-stamp T0, T2, and T3 to T4 are cre-

ated. The time-stamps T1, T2, and T3 can be skipped upon verifying the time-stamp

sequence for the first document d0.

time
2013

d0, s0

2014

d1, s1

2015

d2, s2

2016

d3, s3

2017

d4, s4

T0

T1

T2

T3

T4

Figure 7.5: The time-stamp sequence T0, . . . , T4 generated for the documents d0 to d4
and the corresponding signatures s0 to s4 in the experiment. “•” indicates when a time-

stamp is generated, while “◦” shows when it becomes invalid. The arrows stand for the

hash links in the skip list.

For each year, we measured the running times CIS and CISS used to update

or verify their time-stamp sequences. Moreover, we measure the space that these

schemes required to store the time-stamp sequences, verification information, and

document signatures. For CISS, the space is also used to store hash links and

authentication paths.

Results

In this section we discuss the results obtained from the experiment. We compare the

measured performance with the predictions presented in Section 7.2.1. This compar-

ison is done for the performance of evidence initialization, update, and verification

and for space complexity. As we will see, some results differ from the predictions.

In this case, we point out possible reasons for such differences.

Figure 7.6 compares the running times needed to generate evidence. To allow

the reader to compare the measured times visually, we have not corrected them

in accordance with Moore’s law. In 2013 the schemes use approximately the same

running times to initialize the time-stamp sequences. This confirms the predictions

that the schemes should be comparable when initializing evidence.

Next is the performance of evidence update. In the years when a new document

7.2 Performance analysis 107

2013 2033 2053 2073 2093 2113

0

0.2

0.4

Year

T
im

e
(s
ec
on

d
s)

CIS
CISS

Figure 7.6: The times needed to generate a time-stamp sequence for a set of documents.

The sequence is updated every year, when a new document is added to the set.

is time-stamped (2013 to 2095 and 2097 to 2113), we can see that the running times

do not confirm the advantage of CISS over CIS predicted in Table 7.1. Instead, the

schemes are comparable, being CISS is slightly faster from 2013 to 2095 and slower

from 2097 to 2113.

This contradiction indicates that the analytical evaluation did not include the

operations that compensate the shorter hashing times for CISS. By profiling the

CISS prototype, two operations other than hashing seem to use non-negligible run-

ning times during evidence update. First is the translation of data between the

formats used for the evidence files (viz. ASCII) and for the input and output of

hash functions and signature schemes. Second is the parsing of the evidence files.

Next, we compare the schemes as they generate evidence and replace hash function

SHA-256 by SHA-384 in 2086. In this year, CISS is slower than CIS as predicted in

Table 7.1. Moreover, although the performance of CISS was expected to be worse,

note that it is also affected by the two time-consuming operations mentioned above.

Figure 7.7 illustrates the running times measured when verifying the sequence of

time-stamps for the initial document (the worst case). These running times have not

been corrected with Moore’s law. As predicted, CISS is faster than CIS because the

hash links can allow for skipping the verification of time-stamps (depending on the

hash link, up to three time-stamps can be skipped in the experiment). Also, not only

time-stamps are skipped but also their certificate chains, whose verification is quite

time-consuming. Moreover, note that the advantage of CISS increases significantly

over time. This is because the longer the time-stamp sequence is, the more time-

stamp and certificate chains can be skipped.

108 7 A new time-stamping scheme

2013 2033 2053 2073 2093 2113

0

20

40

60

Year

T
im

e
(s
ec
on

d
s)

CIS
CISS

Figure 7.7: The times needed to verify a time-stamp sequence, which is used to protect a

set of documents. The verification is done for the first document time-stamped (the worst

case).

Finally, Figure 7.8 compares CIS and CISS with respect to their space complexi-

ties. As predicted, CIS wins with a small advantage over CISS. Note this advantage

is larger after the hash function is replaced in 2086. The reason is that in CISS the

authentication paths for 85 documents must be stored. Theses paths are needed

when verifying the time-stamp created on 2086, i.e. the time-stamp on Merkle tree

root, for the documents received until 2085.

2013 2033 2053 2073 2093 2113

0

0.5

1

Year

E
v
id
en

ce
si
ze

(M
b
y
te
s)

CIS
CISS

Figure 7.8: The sizes of evidence for a set documents. Every year a new document is

added to the set.

8 A new public key certificate

In Chapter 5 we showed that when a retriever verifies the evidence generated by

the long-term protection schemes, most of the time is spent on checking certificate

chains. Moreover, this time is even longer using the time-stamping schemes, because

they accumulate certificate chains when generating evidence. Thus, in this section

we first revisit certificate chains, showing why their verification usually leads to per-

formance issues. Next, we describe and analyze a solution for these issues proposed

by Silva et al. [45]. Their solution provides a faster verification of time-stamps by

replacing the certificate chain needed to verify a time-stamp by a small verification

information produced by a root certification authority. It turns out that their solu-

tion is not efficient when the number of time-stamps issued by a TSA grows largely.

Thus, afterwards we propose a new solution called re-signed certificates and provide

a corresponding performance analysis confirming its efficiency. The content of this

chapter was published as parts of [53].

8.1 Problem specification

When verifying the signatures contained in the evidence of a document, the length

of the certificate chains plays an important role. More precisely, a public key is

needed to verify a signature on a time-stamp. The link between the public key

and the corresponding TSA is provided by a certificate, which we refer to as the

conventional certificate cn, n > 1. These certificates are signed by CAs which

likewise have certificates that bound them to their public keys. This leads to a

chain of certificates c1, . . . , cn, where for each 1 ≤ i < n, the public key contained

in ci is used to verify the signature on ci+1. The public key required to verify the

signature on c1 is unsigned or self-signed and bound to a special type of certification

authorities (CAs) called root CAs. These CAs serve as trust anchor and are assumed

to be fully trustworthy. Moreover, each CA provides revocation information for the

certificates it issues. This information is usually signed. Since trust anchors are

fully trustworthy, no revocation information is needed for them.

110 8 A new public key certificate

Thus, when verifying a time-stamp signature with the TSA public key certificate

cn, a retriever must also check that cn is valid. More precisely, for each certificate

c ∈ {c1, . . . , cn} she checks that c and its verification information contain valid

signatures and that c is neither revoked nor expired. Therefore, since the verification

of a signature is a time-consuming operation, when the retriever checks the time-

stamp signature, she spends most of the time on verifying the validity cn.

To mitigate this issue, our experiments indicated that longer signature lifetimes

can be used to reduce the number of time-stamps. Since fewer time-stamps are

used, when verifying them fewer certificate chains are necessary. However, this is

only possible to a limited extent for two reasons. First, because chains still contain

most of the signatures to be verified. Second, because the lifetime of the keys must

be chosen in a way that forgery during their lifetime is unlikely.

Another solution for the same problem was proposed by Silva et al. [45]. It consists

of replacing the certificate chains and revocation verification needed to verify time-

stamps by a new, smaller verification information. In the next section we describe

and analyze their approach.

8.1.1 Re-signed time-stamps

To reduce the long times spent on checking certificates, Silva et al. propose a new way

of generating verification information for time-stamps which needs neither certificate

chains nor revocation information. To generate such verification information, a root

CA is used as follows. First, the root CA receives a time-stamp. Next, the root

CA verifies that the signature on this time-stamp is valid. Then, the root CA

re-signs the time-stamp, generating a new signature to be used as the verification

information for this time-stamp. Thus, since the root CA’s public key requires

neither a certificate chain nor revocation information, when a retriever uses the

new verification information to check the time-stamp, she verifies only the root CA

signature.

Next, we detail the protocol and procedures needed to realize the above approach.

More precisely, we first make clear the difference between the time-stamps used by

Silva et al. and the time-stamps introduced in Section 2.8. Then, we describe how the

root CA generates the new verification information for the time-stamps. Afterwards,

we show how archivists generate evidence using the new verification information and

how retrievers verify evidence. Finally, we analyze this approach and show where

performance can be improved.

8.1 Problem specification 111

Signature-based time-stamps

The time-stamps used in this approach are constructed exactly as explained in Sec-

tion 2.8. The only difference is that they contain additional data. More precisely, a

TSA generates a time-stamp T by creating a signature s on h||y||t, where h identifies

a hash function, y = h(·) is the hash of the object to be time-stamped, and t is the

current time. However, T contains not only h, t, and s as before, but also y. As we

will see later, including y allows to verify time-stamps without checking signature s.

Preparation

In this protocol, all time-stamps issued by a TSA are sent to a root CA. For per-

formance reasons, the TSA sends only a compact representation (a Merkle tree

root) of all time-stamps. The root CA then returns a signature on this compact

representation.

Assume a TSA has issued time-stamps T1, . . . , Tn using a hash function h. Then,

the following steps are executed.

1. The TSA generates a Merkle tree root r from the time-stamps T1, . . . , Tn,

where h(T1), . . . , h(Tn) are the leaves of this tree.

2. The TSA generates a signature u on h||r.

3. The TSA sends u, h, r, and its certificate c to the root CA.

4. The root CA checks whether u is a valid signature on r using the public key

in c. As explained before, this check requires verifying the certification chain

from c to the trust anchor.

5. If u is invalid, the root CA returns an error message and the protocol is aborted.

6. The root CA creates a signature σ on h||r.

7. The root CA returns σ to the TSA.

This protocol is repeated when the TSA issues further time-stamps.

Evidence generation

We now explain how an archivist generates evidence for the documents in the archive.

Assume he has an initialized sequence of time-stamp T1, . . . , Tk for a document and

the validity of Tk is about to end. Also, assume that the TSA Uk that issued Tk

112 8 A new public key certificate

has already executed the preparation protocol presented above. Thus, the archivist

requests the next time-stamp Tk+1 as follows.

1. The archivist selects the latest used hash function hk.

2. The archivist obtains from the TSA Uk the authentication path Ak from the

time-stamp hash hk(Tk) to the Merkle tree root rk, and the root CA signature

σk on hk||rk.

3. The archivist selects a hash function hk+1 (the selection of hk+1 is explained

in Section 3.1).

4. The archivist computes the hash yk+1 = hk+1(Tk||Ak||σk) (depending on the

time-stamp scheme, he also hashes other objects, e.g. the previous time-

stamps).

5. The archivist request a new time-stamp Tk+1 on hk+1||yk+1 from a distinct

TSA Uk+1 at time tk+1.

6. The archivist stores Ak, σk, and Tk+1 together with the document, T1, . . . , Tk,

A1, . . . , Ak−1, and σ1, . . . , σk−1.

Evidence verification

We now explain how evidence is verified. Assume a retriever has the time-stamp

sequence T1, . . . , Tk, the authentication paths A1, . . . , Ak−1, and the root CA signa-

tures σ1, . . . , σk−1 as evidence for a document d. Then, she executes the following

steps.

1. Request from the latest used TSA Uk the authentication Ak and the root CA

signature σk needed to verify the most recent time-stamp Tk.

2. For each Ti ∈ {T1, . . . , Tk}:

a) select the hash function hi from Ti;

b) compute the time-stamped hash yi such that yi = hi(d) if i = 1, otherwise

yi = hi(Ti−1||Ai−1||σi−1) (see the generation of evidence, step 4);

c) check that yi ∈ Ti;
d) compute the root ri using the authentication path Ai and the hash hi(Ti);

e) verify that the signature σi on hi||ri is valid at the time ti+1 ∈ Ti+1.

8.2 Re-signed certificates 113

Finally, note that although the signature si contained in time-stamp Ti is not

verified, proof of existence, authenticity, and non-repudiation are still guaranteed.

The proof of existence of the time-stamp Ti−1 (i > 1) or the document d (i = 1) is

guaranteed because the retriever computes the hash yi from Ti−1 or d (step b) and

checks that yi ∈ Ti (step c). The authenticity and non-repudiation of Ti are ensured

because she computes the Merkle tree root ri (step d) and checks that the root CA

signature σi on hi||ri is valid (step e).

Performance issues

The presented approach addresses the performance problem of verifying TSA cer-

tificate chains because they are replaced by single root CA signatures. However,

the approach raises other performance issues. More precisely, since a TSA can issue

numerous time-stamps, we identify the following issues that can appear when the

number of issued time-stamp grows significantly.

• A TSA needs to recompute the Merkle tree several times as new time-stamps

are issued.

• Since root CAs are usually kept off-line, they have to be turned on several

times to sign all Merkle tree roots.

• A TSA requires more time to compute a Merkle tree because of the large

number of leaves.

• A retriever needs more time to verify the time-stamps because authentication

paths become longer.

• More data must be exchanged between archivists, TSAs, and root CAs.

Next, we propose a solution that also addresses the problem of verifying certificate

chains, but allows for better performance when the number of time-stamps grows

largely.

8.2 Re-signed certificates

Similar to the approach presented before, we propose to use a trust anchor (not nec-

essarily a root CA) to shorten the certificate chains and to eliminate the revocation

information needed to verify time-stamps. Next, we first describe our approach and

114 8 A new public key certificate

then we present the protocols needed to realize it. We compare our approach and

the previous solution with respect to performance in Section 8.3.

To shorten certificate chains and to eliminate the revocation information, a trust

anchor can be used as follows. Assume that a TSA has signed time-stamps and

its public key is certified by the certificate cn in the chain c1, . . . , cn, where n >

1. Then, before the TSA public key becomes invalid, every time-stamp sequence

containing time-stamps from this TSA must be updated. To do this, first, the

trust anchor verifies that cn is valid at the current time by checking the chain

and the corresponding revocation information. Afterwards, the trust anchor re-

signs cn, generating the re-signed certificate c′n. This new certificate constitutes the

verification information for any time-stamp issued by that particular TSA and can

be added as verification information to the updated time-stamp sequences.

The verification of a time-stamp needs no additional checks in our approach. A

retriever verifies the signature on the time-stamp as usual, using the TSA public

on the re-signed certificate c′n. Also, she verifies the trust anchor signature on c′n.

No revocation information is needed for c′n, because the trust anchor has already

checked it.

Next, we present the protocols and procedures needed to realize our approach.

Evidence generation

We now describe how an archivist generates evidence. Assume that he has an

initialized time-stamp sequence T1, . . . , Tk for a document d in the archive. Thus,

when the most recent time-stamp Tk is about to become invalid, the archivist starts

the following protocol.

1. He sends the certificate ck needed to verify signature sk on time-stamp Tk to

the trust anchor.

2. The trust anchor checks whether ck is valid at the current time. This veri-

fication requires checking the certificate chain and corresponding revocation

information for ck.

3. If ck is invalid, the trust anchor returns an error message and the protocol is

aborted.

4. The trust anchor re-signs the content of ck, generating a new certificate c′k.

5. The trust anchor returns c′k.

8.2 Re-signed certificates 115

6. The archivist requests a new time-stamp Tk+1 on hk+1||hk+1(Tk||c′k) from a

fresh TSA, where hk+1 is a hash function and c′k the verification information

for Tk. (The selection of hk+1 is explained in Section 3.1.2).

7. The archivist stores Tk+1 and c′k together with d, T1, . . . , Tk, and c′1, . . . , c
′
k−1.

Note that the above protocol can be optimized when distinct archivists use time-

stamps from the same TSA and when both put trust in the same trust anchor. In this

case, only one archivist needs to submit the TSA certificate ck to the trust anchor.

Afterwards, c′k can be published in a public repository where the next archivists can

simply download the re-signed certificate without contacting the trust anchor.

Evidence verification

The verification of evidence remains the same described in Chapters 3 and 7. As

we will see next, the difference is that now only for the most recent time-stamp a

certificate chain and revocation information is necessary.

Assume a retriever obtains a time-stamp sequence T1, . . . , Tk and the re-signed

certificates c′1, . . . , c
′
k−1 for a document d. Then, she executes the following steps.

1. Collect conventional verification information (i.e. certificate chain and revo-

cation status) required to verify the most recent time-stamp Tk.

2. Verify that the signature on Tk is valid at the current time using the collected

verification information.

3. For time-stamp Ti ∈ {T1, . . . , Tk−1}:

a) verify that the signature on Ti is valid at time ti+1 using the public key

in the re-signed TSA certificate c′i;

b) verify that c′i is a valid certificate at time ti+1 using the trust anchor

public key (no revocation information is checked).

Note that, contrary to the previous solution, we do not restrict our approach to

root CAs. This is because in some contexts, trust anchor such as notaries could be

employed. Nevertheless, we suggest selecting as trust anchor the same trust anchor

needed to verify the TSA’s conventional certificate (i.e. the root CA). The reason

is that, since anchors are fully trustworthy but can be compromised, reducing the

number of anchors is desired.

116 8 A new public key certificate

Another difference from the previous solution is that the number of time-stamps

a TSA issues does not affect the effort to generate the re-signed certificate c′n. More-

over, this certificate needs to be issued only once for each TSA, when its conventional

certificate is about to expire. Note that this is the time when archivists must up-

date the time-stamp sequences. In the next section we provide a more detailed

performance analysis.

8.3 Performance analysis

This section provides a performance analysis where we compare the approaches

re-signed certificates, re-signed time-stamps, and conventional certificates. As per-

formance, we analyze the time and the communication complexities required to

generate verification information for time-stamps. Moreover, we also analyze the

times needed to verify time-stamps.

As in Chapter 5, we measure time and communication complexity analytically.

More precisely, we approximate time by counting the signatures to be verified and

created. If there are objects to be hashed, they are also counted. To quantify

communication, we count the objects exchanged between the involved parties.

To make the approaches comparable, we assume the following.

• Conventional certificate chains contain k > 1 certificates.

• A revocation information is signed and required for each conventional certifi-

cate.

• A TSA issues n = 2l time-stamps during its lifetime, where l is a positive

integer.

We next present our comparisons as follows. First, we compare the approaches as

to the times TSAs and trust anchors need to generate verification information for

time-stamps. The next comparison is with respect to times retrievers use to verify

time-stamps. Finally, we compare the approaches with respect to their communica-

tion complexity.

Performance of TSAs Table 8.1 presents the numbers of objects and signatures

a TSA must hash and create, respectively, when generating evidence for n time-

stamps. Since in the approach using conventional certificates the TSAs do not

generate verification information for their time-stamps, there are neither hashed

objects nor verified signatures.

8.3 Performance analysis 117

Table 8.1: The objects and signatures a TSA must hash and create, respectively, when

generating verification information for n = 2l time-stamps.

Approach Hashed objects Created signatures

Time-stamps Hashes

Conventional certificates 0 0 0

Re-signed time-stamps n 2n− 2 1

Re-signed certificates 0 0 0

The table shows that when using re-signed time-stamps, the performance of the

TSA depends on the number n of time-stamps the TSA has issued. This is because

the TSA builds a Merkle tree from the n time-stamps and signs the root. In contrast,

when using conventional and re-signed certificates, no operation is required from

the TSA. Therefore, they allow for a better performance than when using re-signed

time-stamps.

Performance of trust anchors Table 8.2 compares the approaches as to the per-

formance of the used trust anchor. The performance is measured by counting the

signatures to be verified and created when generating evidence for time-stamps.

Since trust anchors generate no verification information using conventional certifi-

cates, signatures are neither verified nor created.

Table 8.2: The numbers of signatures a trust anchor needs to verify and create when it

is used to generate verification information with neither certificate chains nor revocation

information.

Approach Verified signatures Created signatures

Conventional certificates 0 0

Re-signed time-stamps 1 + 2k 1

Re-signed certificates 2k 1

From Table 8.2 we can see that the re-signed time-stamps and certificates are

inferior to conventional certificates. However, re-signed certificates still allow for

a better performance than re-signed time-stamps. The reason is that when using

re-signed time-stamps the trust anchor not only checks the TSA certificate chain of

length k, but also the signature on a Merkle tree root.

118 8 A new public key certificate

Performance of retrievers We analyze the performance of retrievers while they

verify a single time-stamp. Their performance is approximated by the signatures

and the objects to be verified and hashed in Tables 8.3 and 8.4, respectively. Since

the number of hashed objects can differ from one protection scheme to another, we

assume that the time-stamp to be verified was applied on the previous time-stamp

in a time-stamp sequence together with the corresponding verification information.

Table 8.3: The numbers of signatures to be checked when verifying one time-stamp.

Approach Signatures

Conventional certificates 1 + 2k

Re-signed time-stamps 1

Re-signed certificates 2

Table 8.4: The numbers of objects to be hashed when verifying one time-stamp.

Approach Certificates Revocation info. Hashes Signatures

Conventional certificates k k 0 0

Re-signed time-stamps 0 0 2l 1

Re-signed certificates 1 0 0 0

The tables show that the re-signed time-stamps and certificates are superior to

conventional certificates. This is because, when using conventional certificates, re-

trievers are required to verify the TSA certificate chain of length k, whereas in the

other two approaches this chain is not checked.

When comparing re-signed certificates and times-stamps, we need to take into ac-

count the number n = 2l of time-stamps a TSA issues during its lifetime. For a small

n, the re-signed time-stamps are expected to be faster since they require checking

one signature less. However, for a large n this advantage can be compensated by

the time required to reconstruct the Merkle tree root from the authentication path

of length l.

Communication complexity Table 8.5 presents the communication complexity for

each approach. More precisely, we count the objects archivists, a TSA, and a trust

anchor need to receive when generating n = 2l time-stamps and the corresponding

verification information. For simplicity, we assume the trust anchor signs a Merkle

tree root and the TSA certificate only once.

To compare the schemes in the table, we distinguish between small and large

numbers n = 2l of time-stamps. For a small n, we count the number of large objects

8.3 Performance analysis 119

Table 8.5: The numbers of objects exchanged between archivists, a TSA, and a trust

anchor.

Approach Certificates Rev. info. Hashes Signatures

Conventional certificates nk nk n 0

Re-signed time-stamps k k n+ nl + 1 n+ 2

Re-signed certificates n+ k k n 0

(certificates and revocation information). We can see that re-signed time-stamps

are the best approach (lowest communication complexity), followed by re-signed

certificates and conventional certificates.

For a large n, we analyze the asymptotic behavior of the expressions. We can

see that the communication complexity is proportional to nk in the conventional

certificates, k and nl = n log2(n) in the re-signed time-stamps, and n and k in re-

signed certificates. Therefore, when n goes to infinity, re-signed certificates is the

best approach, followed by conventional certificates and re-signed time-stamps.

9 Conclusions and future work

In this work we analyzed and improved solutions that provide one or more of the

protection goals integrity, authenticity, non-repudiation, and proof of existence for

archived documents. First, we surveyed the solutions that can provide protection as

long as the documents remain in the archive. Since archival periods can be longer

than the lifetime of cryptographic primitives, a requirement for these schemes is

addressing the aging of cryptography properly. Interestingly, only few solutions

fulfill this requirement. They are: the time-stamping schemes Advanced Electronic

Signatures (AdES), Content Integrity Service (CIS), and Evidence Record Syntax

(ERS); the notarial scheme Cumulative Notarizations (CN); and the replication

scheme Lots of Copies Keep Stuff Safe (LOCKSS).

Next, we analyzed the above protection schemes as to trustworthiness and perfor-

mance. The trustworthiness analysis was divided into two parts. In the first part,

we analyzed trustworthiness qualitatively by evaluating the required trust assump-

tions. We showed that the time-stamping and notarial schemes are expected to be

more trustworthy than LOCKSS because they provide evidence that can be used to

verify the protection goals.

In the second part of our analysis, we showed how to use a belief trust model

to approximate the trustworthiness of evidence generated by time-stamping and

notarial schemes. More precisely, we used the trust model to compute the trust a

user puts in the evidence given the reputation of the parties involved in the creation

of this evidence. Since the reputation of these parties is needed, we also designed

a reputation system. In this reputation system, participants verify evidence and

use the verification results to evaluate the involved parties. Namely, notaries, time-

stamp authorities, and certificate authorities.

The analysis of the trust model and reputation system led to two important

conclusions. First, when a document is archived for several years and many parties

are involved in generating evidence for this document, the trustworthiness of the

evidence tends to degrade. Therefore, as important as addressing the aging of

cryptography is coping with the decay of the trustworthiness of evidence. Second,

121

a solution to mitigate this decay is to raise the trustworthiness of involved parties.

To this end, the reputation system can be used to realize incentives for these parties

to build good reputation, and, therefore, become more trustworthy.

Afterwards, we evaluated the performance of the time-stamping and notarial

schemes as to time, space, and communication complexities. This evaluation con-

tained an analytical evaluation and experiments. In the analytical evaluation, we

evaluated performance without taking specific cryptographic primitives into account.

By contrast, in the experiments we analyzed the performance of prototypical imple-

mentations for the schemes using practical (state of the art) cryptographic primi-

tives.

The experiments confirmed the analytical evaluation, although some deviations

were expected. This is because the analytical evaluation does not consider all op-

erations carried out by the prototypical implementations, such as the overhead of

parsing evidence files. Moreover, the use of XML also impacts on the performance of

the implementations, because they have to translate evidence from the text format

(i.e. ASCII) to the format required as input for the cryptographic primitives.

The performance analysis showed that the notarial scheme CN is the fastest

scheme, at the cost of the highest communication complexity. Next comes the time-

stamping schemes ERS, followed by AdES and CIS. The analysis also demonstrated

that the verification of certificate chains is the most time-consuming operation when

verifying evidence. Furthermore, since the time-stamping schemes accumulate cer-

tificate chains, the experiments showed that longer signature lifetimes can be used to

reduce the number of chains and improve verification times. In contrast, the notarial

scheme does not benefit from this solution because it accumulates no chains.

Based on these findings, we then designed three solutions to improve the perfor-

mance of notarial and time-stamping schemes. The first solution is named Attested

Certificates (AC) and is based on the notarial scheme CN. AC requires significantly

less space and communication than CN. Furthermore, both schemes are comparable

with respect to time and trustworthiness.

The second solution is called Content Integrity Service with Skip Lists (CISS) and

is based on the time-stamping scheme CIS. CIS is useful for archives where a set

of documents uses a single time-stamp sequence as evidence for these documents.

However, contrary to ERS, CIS allows these documents to be submitted to the

archive sequentially and not as a set. But when submitting documents sequentially,

several time-stamps may be created such that their validities overlap. We addressed

this issue in CISS by using a data structure called skip list that reduces the number

of time-stamps that must be checked during verification. Furthermore, CISS hashes

less data than CIS when generating or verifying time-stamps used to address the

122 9 Conclusions and future work

aging of cryptography.

To compare CIS and CISS, we provided a performance analysis. It showed that

CISS is significantly faster than CIS when new documents are submitted and time-

stamped on a regular basis. However, although CISS hashes less data than CIS when

addressing the aging of cryptography, this led to no improvements with respect to

the times required to generate and verify evidence. The reason seems to be that the

differences between CIS and CISS in the hashing times are compensated by the extra

overhead of more complex evidence files used for CISS. However, when protecting

archived documents of larger sizes, the advantage of CISS in hashing is expected to

magnify.

Finally, we designed a public key infrastructure-based solution to reduce the ver-

ification time for long certificate chains in time-stamping schemes. More precisely,

we proposed to use a trust anchor to verify and attest the validity of time-stamp

authority certificates. Compared with other solutions for this issue, our approach

reduces the effort of a time-stamp authority when it issues numerous time-stamps

during its lifetime.

9.1 Future work

In this work we analyzed the trustworthiness of long-term protection schemes qual-

itatively and quantitatively. In the qualitative analysis, we compared the required

trust assumptions. However, not all trust assumptions evaluated are well understood

yet. For instance, widely visible media, where it is assumed that public records are

not corrupted and that they contain the dates when they were created. It has of-

ten been suggested to employ widely visible media for time-stamping, and some

time-stamp authorities already do so by using newspapers. However, more work is

necessary to evaluate whether users in the far future will trust this approach. This

is because users may be unable to assess the integrity and proof of existence of old

newspapers by themselves. In this case, it is unclear whether they will trust the

archivist who preserves the newspapers.

To analyze trustworthiness quantitatively, we proposed to use a belief trust model

together with a reputation system. This approach can be further extended. With

respect to applying the trust model, it can be used to analyze the trustworthiness

of more complex evidence. For example, when creating two redundant time-stamp

sequences for the same document such that, if only one sequence is compromised,

then the protection goals are not lost. As to the reputation system, it can also be

extended to provide the reputation of the involved archivists, since they participate

9.1 Future work 123

in the generation of evidence.

The performance of the reputation system could be analyzed and improved. One

interesting approach to improve performance is to use a compact representation of

evidence instead of the evidence itself when submitting or requesting reputation in

the system. This approach would require developing methods for the reputation

system that provide long-term proof of existence for its internal data.

The migration of evidence between protection schemes raises interesting questions.

More precisely, can an archivist change the used protection scheme after evidence

was initialized? If the migration is between notarial and time-stamping schemes,

how is trust assessed after migration?

Cloud and mobile computing are important technologies that could also be used

for digital archiving. This leads to new performance questions. For example, can

a document be replicated among several cloud providers whereas the evidence is

generated and stored by a single provider? A challenge would be to design a long-

term secure link between the replicas and the evidence. As to mobile computing

and its performance constraints, can the verification of evidence be optimized, e.g.

by outsourcing the verification with the help of verifiable computing?

The time-stamps presented in this work are based on calendar dates. Such time-

stamps are used to determine when a document existed and whether its evidence

was renewed timely, i.e. before the used cryptography became insecure. By contrast,

time-stamps using relative dates can only establish whether one bit string existed

before another bit string. Therefore, further research is needed to show how to use

these time-stamps in the long term such that they also allow retrievers to check

whether the aging of the used cryptography has been addressed timely.

Replacing the used hash function is a time-consuming operation in all presented

schemes, because documents and their entire evidence need to be re-hashed. A

challenging question is whether the replacement of hash functions in protection

schemes can be done more efficiently.

The new time-stamping scheme Content Integrity Service with Skip Lists (CISS)

allows for verifying the protection goals of one document from a set of time-stamped

documents. More precisely, during the verification a retriever hashes no documents

other than the document to be checked and verifies a minimal number of time-

stamps. However, in some scenarios using evidence that requires hashing the whole

document set may be useful to, say, guarantee that the archivist has not deleted

any document. Thus, extending CISS to allow for verifying documents individually

or as a set is a desirable feature.

The protection schemes presented in this work achieve the protection goals in-

tegrity, authenticity, non-repudiation, and proof of existence for documents in digi-

124 9 Conclusions and future work

tal archives. More research is needed to evaluate how these schemes perform when

combined with solutions that provide long-term confidentiality. This is necessary,

for example, for digital archives storing sensitive documents such as testaments

and health records. Moreover, designing a trust model that also approximates the

trustworthiness of long-term confidentiality is to the best of our knowledge an open

question.

Furthermore, realizing confidentiality requires an identity management system.

To the best of our knowledge, designing such system with long-term capabilities is

still a challenge. Also, an interesting question is how to deal with the confidentiality

of a document when its owner passed away.

Finally, the presented solutions can further be analyzed and extended as to the

life cycle of documents. For example, documents may require format migration and

even destruction. Therefore, more research is needed to allow for generating evidence

showing that the semantics of a document is preserved after format migration. As

to the destruction of documents, schemes such as ERS, CIS, and CISS need to

be extended to allow for the removal of documents and, optionally, their complete

evidence from the archive.

Bibliography

[1] Dave Bayer, Stuart Haber, and W. Scott Stornetta. Improving the efficiency and

reliability of digital time-stamping. In Renato Capocelli, Alfredo De Santis, and

Ugo Vaccaro, editors, Sequences II, pages 329–334. Springer New York, 1993.

Cited on pages 12 and 20.

[2] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge

functions. In ECRYPT hash workshop, 2007. Cited on page 49.

[3] Aleksej Jerman Blazic, Svetlana Saljic, and Tobias Gondrom. Extensible

markup language evidence record syntax (xmlers). RFC 6283, July 2011. URL

https://tools.ietf.org/html/rfc6283. Cited on pages 23 and 99.

[4] Johannes Braun, Johannes Buchmann, Ciaran Mullan, and Alexander Wies-

maier. Long term confidentiality: a survey. Designs, Codes and Cryptography,

71(3):459–478, 2014. Cited on page 3.

[5] Johannes Braun, Florian Volk, Jiska Classen, Johannes Buchmann, and Max

Mühlhäuser. CA trust management for the web PKI. IOS Press: Journal of

Computer Security, 2014, June 2014. Cited on pages 37 and 45.

[6] Johannes Buchmann. Introduction to Cryptography. Springer, 2002. Cited on

pages 8 and 9.

[7] Johannes A. Buchmann, Evangelos Karatsiolis, and Alexander Wiesmaier. In-

troduction to Public Key Infrastructures. Springer Berlin Heidelberg, 2013.

Cited on pages 10 and 11.

[8] Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisen-

bahnen. Bekanntmachung zur elektronischen Signatur nach dem Signaturgesetz

und der Signaturverordnung (Übersicht über geeignete Algorithmen). 2015. URL

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/ElekSignatur/

Algorithmenkatalog_Entwurf_2015.pdf. Cited on page 13.

https://tools.ietf.org/html/rfc6283
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/ElekSignatur/Algorithmenkatalog_Entwurf_2015.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/ElekSignatur/Algorithmenkatalog_Entwurf_2015.pdf

126 Bibliography

[9] Judith Burns and Kara Scannell. Broadcom, sec settle backdating case, 2008.

URL http://www.wsj.com/articles/SB120890020229436085. Cited on page

2.

[10] Stefania Cavallar, Bruce Dodson, Arjen K. Lenstra, Walter Lioen, Peter L.

Montgomery, Brian Murphy, Herman te Riele, Karen Aardal, Jeff Gilchrist,

Gérard Guillerm, Paul Leyland, Jöel Marchand, François Morain, Alec Muffett,

ChrisandCraig Putnam, and Paul Zimmermann. Factorization of a 512-bit rsa

modulus. In Bart Preneel, editor, Advances in Cryptology — EUROCRYPT

2000, volume 1807 of Lecture Notes in Computer Science, pages 1–18. Springer

Berlin Heidelberg, 2000. Cited on page 2.

[11] S. Chokhani, W. Ford, R. Sabett, C. Merrill, and S. Wu. Internet X.509 Public

Key Infrastructure Certificate Policy and Certification Practices Framework.

RFC 3647 (Informational), November 2003. URL http://www.ietf.org/rfc/

rfc3647.txt. Cited on page 30.

[12] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk.

Internet X.509 Public Key Infrastructure Certificate and Certificate Revoca-

tion List (CRL) Profile. RFC 5280 (Proposed Standard), May 2008. URL

http://www.ietf.org/rfc/rfc5280.txt. Cited on page 11.

[13] Department of Health and The Rt Hon Jeremy Hunt. Nhs challenged to go

paperless by 2018, 2013. URL https://www.gov.uk/government/news/

jeremy-hunt-challenges-nhs-to-go-paperless-by-2018--2. Cited on

page 1.

[14] DH/Digital Information Policy. Records management: Nhs code of practice

(2nd edition), 2009. URL http://systems.hscic.gov.uk/infogov/links/

recordscop2.pdf. Cited on page 1.

[15] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Proposed

Standard), January 1999. URL http://www.ietf.org/rfc/rfc2246.txt.

Obsoleted by RFC 4346, updated by RFCs 3546, 5746, 6176, 7465, 7507. Cited

on page 45.

[16] Lúıs Felipe dos Santos Gonçalves. Xades4j: a java library for xades signature

services, 2014. URL https://code.google.com/p/xades4j/. Cited on page

54.

[17] ETSI. CMS Advanced Electronic Signatures (CAdES). Number TS 101 733.

1.7.4 edition, Jul 2010. Cited on page 21.

http://www.wsj.com/articles/SB120890020229436085
http://www.ietf.org/rfc/rfc3647.txt
http://www.ietf.org/rfc/rfc3647.txt
http://www.ietf.org/rfc/rfc5280.txt
https://www.gov.uk/government/news/jeremy-hunt-challenges-nhs-to-go-paperless-by-2018--2
https://www.gov.uk/government/news/jeremy-hunt-challenges-nhs-to-go-paperless-by-2018--2
http://systems.hscic.gov.uk/infogov/links/recordscop2.pdf
http://systems.hscic.gov.uk/infogov/links/recordscop2.pdf
http://www.ietf.org/rfc/rfc2246.txt
https://code.google.com/p/xades4j/

Bibliography 127

[18] European Telecommunications Standards Institute. Electronic Signatures and

Infrastructures (ESI); XML Advanced Electronic Signatures (XAdES). Number

TS 101 903. 1.4.2 edition, dec 2010. URL http://www.etsi.org/deliver/

etsi_ts/101900_101999/101903/01.04.02_60/ts_101903v010402p.pdf.

Cited on page 21.

[19] Diego Gambetta. Can we trust trust? In Diego Gambetta, editor, Trust:

Making and Breaking Cooperative Relations, pages 213–237. Blackwell, 1988.

Cited on page 14.

[20] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature

scheme secure against adaptive chosen-message attacks. SIAM J. Comput., 17

(2):281–308, 1988. doi: 10.1137/0217017. URL http://dx.doi.org/10.1137/

0217017. Cited on page 13.

[21] T Gondrom, R Brandner, and U Pordesch. Evidence Record Syntax (ERS),

2007. URL http://www.ietf.org/rfc/rfc4998.txt. Cited on page 23.

[22] Simon Goodley. Property title fraud costs land registry £26m in compen-

sation, 2011. URL http://www.theguardian.com/money/2011/may/15/

land-registry-title-fraud-compensation. Cited on page 2.

[23] Stuart Haber and Pandurang Kamat. Content integrity service for long-term

digital archives. In Archiving Conference, pages 159–164. Society for Imaging

Science and Technology, 2006. Cited on page 22.

[24] James Heather and David Lundin. The append-only web bulletin board. In

Pierpaolo Degano, Joshua Guttman, and Fabio Martinelli, editors, Formal As-

pects in Security and Trust, volume 5491 of Lecture Notes in Computer Sci-

ence, pages 242–256. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-01464-

2. doi: 10.1007/978-3-642-01465-9 16. URL http://dx.doi.org/10.1007/

978-3-642-01465-9_16. Cited on page 40.

[25] Audun Jøsang, Ross Hayward, and Simon Pope. Trust network analysis with

subjective logic. In Computer Science 2006, Twenty-Nineth Australasian Com-

puter Science Conference (ACSC2006), pages 85–94, 2006. Cited on pages 15

and 16.

[26] Dorel Kiik. Personal communication, mai 2014. Cited on page 1.

[27] David King. The Commissar Vanishes: The Falsification of Photographs and

Art in Stalin’s Russia. Metropolitan Books, 1997. Cited on page 2.

http://www.etsi.org/deliver/etsi_ts/101900_101999/101903/01.04.02_60/ts_101903v010402p.pdf
http://www.etsi.org/deliver/etsi_ts/101900_101999/101903/01.04.02_60/ts_101903v010402p.pdf
http://dx.doi.org/10.1137/0217017
http://dx.doi.org/10.1137/0217017
http://www.ietf.org/rfc/rfc4998.txt
http://www.theguardian.com/money/2011/may/15/land-registry-title-fraud-compensation
http://www.theguardian.com/money/2011/may/15/land-registry-title-fraud-compensation
http://dx.doi.org/10.1007/978-3-642-01465-9_16
http://dx.doi.org/10.1007/978-3-642-01465-9_16

128 Bibliography

[28] Donald Ervin Knuth. The art of computer programming. Pearson Education,

2005. Cited on page 28.

[29] Legion of the Bouncy Castle Inc. The legion of the bouncy castle java cryp-

tography apis, 2014. URL https://www.bouncycastle.org. Cited on page

54.

[30] Dimitrios Lekkas and Dimitris Gritzalis. Cumulative notarization for long-term

preservation of digital signatures. Computers & Security, 23(5):413–424, 2004.

Cited on page 25.

[31] Arjen K. Lenstra. Key lengths. In Hossein Bidgoli, editor, Handbook of in-

formation security, volume 2, pages 617–635. John Wiley, Hoboken, N.J, 2006.

Cited on pages 13, 55, 61, 82, and 105.

[32] Arjen K. Lenstra, James P. Hughes, Maxime Augier, Joppe W. Bos, Thorsten

Kleinjung, and Christophe Wachter. Public keys. In Reihaneh Safavi-Naini and

Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of

Lecture Notes in Computer Science, pages 626–642. Springer Berlin Heidelberg,

2012. Cited on page 9.

[33] Feng Luan, Mads Nyg̊ard, Lars Gaustad, and Gustavsen Inger-Mette. The

challenges of migration as a long-term preservation strategy: The findings of

team norway and longrec. In InterPARES 3 International Symposium, pages

279–300, jun 2009. Cited on page 1.

[34] Petros Maniatis and Mary Baker. Secure history preservation through timeline

entanglement. In 11th USENIX Security Symposium, pages 297–312, 2002.

Cited on pages 11, 18, and 91.

[35] Petros Maniatis, Mema Roussopoulos, Thomas J. Giuli, David S. H. Rosenthal,

and Mary Baker. The lockss peer-to-peer digital preservation system. ACM

Transactions on Computer Systems (TOCS), 23(1):2–50, 2005. Cited on page

26.

[36] D Harrison McKnight and Norman L Chervany. The meanings of trust. Techni-

cal Report MISRC Working Paper Series 96-04, University of Minnesota, 1996.

Cited on page 14.

[37] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor,

Advances in Cryptology — CRYPTO’ 89, volume 435 of Lecture Notes in Com-

puter Science, pages 218–238. Springer New York, 1990. Cited on page 8.

https://www.bouncycastle.org

Bibliography 129

[38] Gordon E. Moore. Cramming more components onto integrated circuits. Pro-

ceedings of the IEEE, 86(1):82–85, Jan 1998. Cited on page 13.

[39] National Institute of Standards and Technology. Recommendation for Key

Management – Part 1: General (Revised). 2007. URL http://csrc.nist.

gov/groups/ST/toolkit/documents/SP800-57Part1_3-8-07.pdf. Cited on

page 13.

[40] National Institute of Standards and Technology. SHA-3 Standard:

Permutation-Based Hash and Extendable-Output Functions, 2014. Cited on

page 8.

[41] Alina Oprea and Kevin D. Bowers. Authentic time-stamps for archival stor-

age. In 14th European Symposium on Research in Computer Security (ES-

ORICS’09), pages 136–151, 2009. Cited on page 28.

[42] William Pugh. Skip lists: A probabilistic alternative to balanced trees. In

Algorithms and Data Structures, Workshop WADS ’89, pages 437–449, 1989.

Cited on page 16.

[43] Sebastian Ries. Certain trust: a trust model for users and agents. In 2007 ACM

Symposium on Applied Computing, pages 1599–1604, 2007. Cited on page 15.

[44] Jordan Robertson. Digital health records’ risks emerge as deaths blamed

on systems, 2013. URL http://www.bloomberg.com/news/2013-06-25/

digital-health-records-risks-emerge-as-deaths-blamed-on-systems .

html. Cited on page 1.

[45] Nelson da Silva, Thiago Acórdi Ramos, and Ricardo Custódio. Carimbos do

tempo autenticados para a preservação por longo prazo de assinaturas digitais.

In XI Simpósio Brasileiro de Segurança da Informação e de Sistemas Computa-

cionais, pages 57–70, 2011. Cited on pages 5, 109, and 110.

[46] Sangchul Song and Joseph JáJá. Techniques to audit and certify the long-term

integrity of digital archives. International Journal on Digital Libraries, 10(2–3):

123–131, 2009. Cited on page 28.

[47] Richard Stiennon. Trusted third party time stamps, October 2006. URL http:

//www.zdnet.com/article/trusted-third-party-time-stamps. Cited on

page 13.

http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-57Part1_3-8-07.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-57Part1_3-8-07.pdf
http://www.bloomberg.com/news/2013-06-25/digital-health-records-risks-emerge-as-deaths-blamed-on-systems.html
http://www.bloomberg.com/news/2013-06-25/digital-health-records-risks-emerge-as-deaths-blamed-on-systems.html
http://www.bloomberg.com/news/2013-06-25/digital-health-records-risks-emerge-as-deaths-blamed-on-systems.html
http://www.zdnet.com/article/trusted-third-party-time-stamps
http://www.zdnet.com/article/trusted-third-party-time-stamps

130 Bibliography

[48] Surety, LLC. Ensuring Record Integrity with Absolute ProofSM. Technical

whitepaper, 2003. Cited on page 12.

[49] Revenue Irish Tax and Customs. Annual report 2013, 2014. URL http://www.

revenue.ie/images/ar_13_en/annual_report_summary.pdf. Cited on page

1.

[50] Vernon Turner, John F. Gantz, David Reinsel, and Stephen Minton. The digital

universe of opportunities: Rich data and the increasing value of the internet of

things. Technical Report #IDC 1672, 2014. URL http://idcdocserv.com/

1678. Cited on page 1.

[51] Moshe Y. Vardi. Moore’s law and the sand-heap paradox. Communications of

the ACM, 57(5):5–5, May 2014. ISSN 0001-0782. Cited on page 55.

[52] Victoria - Public Record Office. Victorian Electronic Records Strategy Final

Report. 4 edition, 1998. ISBN 0731155203. Cited on page 27.

[53] Mart́ın Vigil and Ricardo Custódio. Cleaning up the PKI for Long-Term Sig-

natures. In XII Simpósio Brasileiro de Segurança da Informação e de Sistemas

Computacionais, pages 140–153, 2012. Cited on page 109.

[54] Mart́ın Vigil, Cristian Thiago Moecke, Ricardo Felipe Custódio, and Melanie

Volkamer. The notary based PKI - A lightweight PKI for long-term signa-

tures on documents. In Public Key Infrastructures, Services and Applications

- 9th European Workshop, EuroPKI 2012, Pisa, Italy, September 13-14, 2012,

Revised Selected Papers, pages 85–97, 2012. Cited on page 68.

[55] Mart́ın Vigil, Daniel Cabarcas, Johannes Buchmann, and Jingwei Huang. As-

sessing trust in the long-term protection of documents. In 2013 IEEE Sympo-

sium on Computers and Communications (ISCC 2013), pages 185–191, 2013.

Cited on pages 29 and 68.

[56] Mart́ın Vigil, Christian Weinert, Kjell Braden, Denise Demirel, and Johannes

Buchmann. A performance analysis of long-term archiving techniques. In 2014

IEEE International Conference on High Performance Computing and Commu-

nications, 6th IEEE International Symposium on Cyberspace Safety and Secu-

rity, 11th IEEE International Conference on Embedded Software and Systems,

pages 878–889, 2014. Cited on page 47.

[57] Mart́ın Vigil, Christian Weinert, Denise Demirel, and Johannes Buchmann.

An efficient time-stamping solution for long-term digital archiving. In IEEE

http://www.revenue.ie/images/ar_13_en/annual_report_summary.pdf
http://www.revenue.ie/images/ar_13_en/annual_report_summary.pdf
http://idcdocserv.com/1678
http://idcdocserv.com/1678

Bibliography 131

33rd International Performance Computing and Communications Conference

(IPCCC 2014), pages 1–8, 2014. Cited on page 89.

[58] Mart́ın Vigil, Johannes Buchmann, Daniel Cabarcas, Christian Weinert, and

Alexander Wiesmaier. Integrity, authenticity, non-repudiation, and proof of

existence for long-term archiving: A survey. Computers & Security, 50(0):

16–32, 2015. Cited on pages 19, 29, and 47.

[59] Andrew Waugh, Ross Wilkinson, Brendan Hills, and Jon Dell’oro. Preserving

digital information forever. In Fifth ACM Conference on Digital Libraries,

pages 175–184, 2000. Cited on page 27.

[60] Ahmad Samer Wazan, Romain Laborde, François Barrère, and Abdelmalek

Benzekri. The X.509 trust model needs a technical and legal expert. In IEEE

International Conference on Communications (ICC 2012), pages 6895–6900,

2012. Cited on pages 37 and 45.

[61] Adam Wierzbicki. Trust and Fairness in Open, Distributed Systems, volume

298 of Studies in Computational Intelligence. Springer, 2010. Cited on page

14.

[62] Aydan R. Yumerefendi and Jeffrey S. Chase. Strong accountability for network

storage. ACM Transactions on Storage (TOS), 3(3), 2007. Cited on page 27.

[63] Philip R. Zimmermann. The Official PGP User’s Guide. MIT Press, Cam-

bridge, MA, USA, 1995. ISBN 0-262-74017-6. Cited on pages 10 and 45.

Wissenschaftlicher Werdegang

April 2011 - Juli 2015 Wissenschaftlicher Mitarbeiter und Doktorand in der Ar-

beitsgruppe von Professor Johannes Buchmann, Fachbereich Informatik, Fachgebiet

Theoretische Informatik – Kryptographie und Computeralgebra an der Technischen

Universität Darmstadt.

September 2007 - August 2010 Studium der Informatik (M.Sc) und wissen-

schaftlicher Mitarbeiter in der Arbeitsgruppe von Professor Ricardo Custódio, Fach-

bereich Informatik, Fachgebiet Computersicherheit an der Universidade Federal de

Santa Catarina, Brasilien.

Januar 2003 - Juli 2007 Studium der Informatik (B.Sc) an der Universidade

Federal de Santa Catarina, Brasilien.

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit – abgesehen von den in ihr

ausdrücklich genannten Hilfen – selbständig verfasst habe.

Darmstadt, Juli 2015

	List of Publications
	Abstract
	Contents
	Introduction
	Motivation
	Contributions
	Structure

	Preliminaries
	Terminology
	Protection goals
	Cryptographic hash functions
	Merkle trees
	Signatures
	Public key infrastructures
	Signature verification
	Signature-based time-stamps
	Widely Visible Media-based time-stamps
	Lifetime of cryptographic algorithms
	Trust
	Definitions
	Quantifying and operating on reputation
	Quantifying and operating on trust

	Skip lists

	Protection schemes for long-term archiving
	Time-stamping schemes
	The validity of a time-stamp
	Time-stamp sequences
	Advanced Electronic Signatures
	Content Integrity Service
	Evidence Record Syntax

	Notarial schemes
	Notarial attestations
	Cumulative Notarizations

	Replication schemes
	Schemes that fail to provide long-term protection

	Trustworthiness analysis
	A qualitative analysis based on trust assumptions
	Quantifying the trustworthiness of evidence
	Overview
	Computing trust scores
	Realizing a reputation system
	Alternative approaches
	The trustworthiness of evidence over time

	Performance analysis
	Analytical evaluation
	Experiments
	Implementations design
	Comparing schemes in the long term
	Comparing schemes for distinct signature lifetimes

	Final comparisons and possible improvements

	A new notarial scheme
	Improving Cumulative Notarizations
	Attested Certificates
	Retrievers check document signatures by themselves
	Proof of existence is provided only by notaries
	Addressing the aging of cryptography

	Performance evaluation
	Analytical evaluation
	Experiment

	Trustworthiness analysis

	A new time-stamping scheme
	Improving the performance of CIS
	Combining skip lists with time-stamps
	Addressing the aging of cryptography

	Performance analysis
	Analytical evaluation
	Experiment

	A new public key certificate
	Problem specification
	Re-signed time-stamps

	Re-signed certificates
	Performance analysis

	Conclusions and future work
	Future work

	Bibliography

