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Abstract

Computing the joint spectral radius of a finite matrix family is, though interesting
for many applications, a difficult problem. This work proposes a method for de-
termining the exact value which is based on graph-theoretical ideas. In contrast to
some other algorithms in the literature, the purpose of the approach is not to find
an extremal norm for the matrix family. To validate that the finiteness property
(FP) is satisfied for a certain matrix product, a tree is to be analyzed whose nodes
code sets of matrix products. A sufficient, and in certain situations also necessary,
criterion is given by existence of a finite tree with special properties, and an algo-
rithm for searching such a tree is proposed. The suggested method applies in case
of several FP-products as well and is not limited to asymptotically simple matrix
families.
In the smoothness analysis of subdivision schemes, joint spectral radius determina-
tion is crucial to detect Hölder regularity. The palindromic symmetry of matrices,
which results from symmetric binary subdivision, is considered in the context of
set-valued trees.
Several illustrating examples explore the capabilities of the approach, consolidated
by examples from subdivision.

Kurzzusammenfassung

Die Berechnung des gemeinsamen Spektralradius (joint spectral radius) einer end-
lichen Matrixfamilie ist, obgleich für viele Anwendungen interessant, ein schwie-
riges Problem. Diese Arbeit schlägt eine Methode zur Bestimmung des exakten
Wertes vor, die auf graphentheoretischen Ideen basiert. Im Gegensatz zu einigen
anderen Algorithmen aus der Literatur zielt dieser Ansatz nicht darauf ab, eine
Extremalnorm zu finden. Um zu bestätigen, dass die Endlichkeitseigenschaft (fi-
niteness property, kurz: FP) von einem gewissen Matrixprodukt erfüllt wird, wird
ein Baum analysiert, dessen Knoten Mengen von Matrixprodukten kodieren. Eine
hinreichende und in gewissen Situationen auch notwendige Bedingung ist durch
Existenz eines endlichen Baumes mit speziellen Eigenschaften gegeben, und ein
Algorithmus für die Suche nach einem solchen Baum wird präsentiert. Die darge-
stellte Methode gilt auch im Falle von mehreren FP-Produkten und ist nicht auf
asymptotisch einfache Familien beschränkt.
Im Rahmen der Glattheitsanalyse von Subdivisionschemata ist die Bestimmung
des gemeinsamen Spektralradius äußerst wichtig, um die Hölder-Regularität zu
ermitteln. Die palindromische Symmetrie von Matrizen, die aus symmetrischer
binärer Subdivision resultieren, wird im Kontext der mengenwertigen Bäume be-
trachtet.
Mit mehreren illustrierenden Beispielen werden die Möglichkeiten des Ansatzes
erkundet und durch Beispiele der Subdivision ergänzt.
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1 Introduction

The joint spectral radius determination has been a fascinating topic for this thesis.
First, there is a broad range of applications, connecting various fields of mathe-
matics to linear algebra. Second, although the concept of the joint spectral radius
(JSR) generalizes the spectral radius of a single matrix in a natural way to a fam-
ily of matrices, the theoretic results concerning computability are discouraging.
Third, the notion of the JSR has an interesting story. Rota and Strang introduced
the JSR in 1960 in a paper of only three pages [RS60]. “The notion seems to be
useful enough in certain contexts to warrant the following elementary discussion,“
was one of the first sentences. These contexts were not specified, it says only that
the notion developed in a course on matrix theory. There was no further research
on the topic for almost 30 years until Daubechies and Lagarias rediscovered the
concept 1992 for a paper on wavelets [DL92a]. Nowadays, the joint spectral ra-
dius is very popular and plays an important role not only in the context of refinable
functions and subdivision, but also in problems of discrete mathematics, combi-
natorics, probability theory, ordinary differential equations and switched linear
systems; see [Jun09, GZ09, PJB10] and references therein for an overview.

Consider a finite set A =
�

A1, ..., Am
	

of matrices in Cd×d . To deal with products
of its elements, we introduce the sets

I0 := {;}, Ik := {1, . . . , m}k, I :=
⋃

k∈N0

Ik,

of completely positive index vectors of length k ∈ N0 and arbitrary length, respec-
tively. By contrast, an index vector may contain also negative entries, whose special
meaning will be explained in Chapter 3.
For k ∈ N, we define the matrix product

AI := Aik · · ·Ai1, I = [i1, . . . , ik] ∈ Ik.

Otherwise, if k = 0, let A; := Id be the identity matrix. The length of the vector
I ∈ Ik is denoted by |I | := k. That is, any index vector I ∈ I encodes a matrix
product AI with |I | factors.
With ‖ · ‖ being a submultiplicative matrix norm, the joint spectral radius

ρ̂(A ) := limsup
k→∞

max
I∈Ik
‖AI‖

1
k

characterizes the largest asymptotic growth of arbitrary products ofA normalized
by their length.
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Denoting by ρ the standard spectral radius of a matrix, the so-called three-
member-inequality, established in [BW92], states

max
I∈Ik

ρ(AI)
1
k ≤ ρ̂(A )≤max

I∈Ik
‖AI‖

1
k k ∈ N. (1.1)

It inspired many algorithms for approximating the JSR, as for example [Gri96,
Mae96]. Since the lower and upper bounds converge, certain variants on breadth-
first search up to some level k on the tree of all products of A lead to an ap-
proximation using any submultiplicative norm. However, these graph-theoretical
approaches are computationally expensive when striving for high accuracy, since
the number of products to consider grows exponentially.
Another line of research is the computation of a norm adapted to the matrix family
to ensure fast convergence of the upper and lower bound of (1.1) in order to ob-
tain approximation algorithms that are computationally less expensive. Some ap-
proaches in that spirit are presented in [BN05, Pro05, PJB10, AS98, BNT05, PJ08].
However, there are intrinsic limitations for the efficiency of approximation algo-
rithms. It is shown in [BN05] that no algorithm for an approximation with rel-
ative error ε exists which is polynomial in both the dimension of the matrices
d and 1/ε, unless P=NP. Approaches to an exact determination as developed in
[GWZ05, GZ08, GZ09, GP13, JCG14] attempt to compute a norm such that the
lower and upper bound coincide and therewith determine ρ̂(A ). To be precise,
these methods aim at finding a so-called extremal norm ‖ · ‖∗ satisfying

max
I∈Ik

ρ(AI)
1
k =max

I∈I1
‖AI‖∗ (1.2)

for some finite k. The computational effort is shifted from the evaluation of upper
and lower bounds for increasing k to the determination of the unit ball defining
‖·‖∗. In case of success, the exact value of the JSR is determined. Otherwise, some
of these algorithms terminate with an approximation.
Achieving (1.2) requires the existence of a product AJ , J ∈ Ik with

ρ(AJ)
1
k = ρ̂(A ) (1.3)

for some k ∈ N. We say that A has the finiteness property (FP) if such a J exists,
and call J satisfying (1.3) an FP-product. In the literature, such a product is also
called an optimal product or a spectrum maximizing product.
Any of the approaches to an exact determination mentioned above is based on the
assumption thatA has the finiteness property and aim to validate (1.3) for a pre-
sumed FP-product. [LW95] conjectured that any finite matrix family has the finite-
ness property, which was disproven non-constructively in [BM02, BTV03, Koz05],
while an explicit counterexample is given in [HMST11]. Nevertheless, we do not
know of an example resulting from applications that did not exhibit the FP.
This work presents a graph-theoretical approach instead of a norm computation in
order to determinate the exact value of the JSR. Our method also attempts to es-
tablish the FP but is based on an arbitrary submultiplicative norm, which links this
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strategy to graph-theoretical approximation. But the tree to perform the search on
is different. The knots represent sets of matrices rather than single matrix prod-
ucts. This crucial idea potentially reduces the analysis of infinite sets of products
to a study of finite subtrees. In particular, this aspect facilitates automated verifi-
cation of the FP by computer programs. Furthermore, the number of products of
a certain length that are to be considered is potentially reduced dramatically by
proceeding from breath-first search to depth first search.
The set-valued tree approach accounts for finite complex matrix families and ap-
plies also in case of several FP-products. The theoretical foundation, being an
essential part of this work, was published in [MR14]. We additionally present an
algorithm for families of real matrices, which was implemented in MATLAB. To
obtain a rigorous mathematical proof that a product satisfies (1.3), the method
principally allows for performing the calculations analytically or by means of in-
terval arithmetic.

This thesis is structured as follows: To introduce the topic, Chapter 2 clarifies
notations and recalls some well-known facts. Chapter 3 develops the notion of
set-valued trees and presents the theoretical results which connect these trees to
JSR determination. A sufficient condition to characterize the situation ρ̂(A ) = 1
is the existence of a so-called J -complete tree, which is a finite set-valued tree
with certain properties. Furthermore, it is shown that the existence of such a tree
with respect to an appropriate norm is also a necessary condition if the family is
product bounded and has a spectral gap at 1.
The algorithmic search for a J -complete tree and practical issues of implementa-
tion are discussed in Chapter 4, involving two different approaches to compute an
upper bound for the infinite set of products coded by a node. The choice of norm
is another issue to be considered. Although the strategy applies for any submul-
tiplicative norm, the choice of norm has an impact on the shape of a J -complete
tree.
To put the set-valued tree method into context, Chapter 5 discusses the literature
concerned with the problem of computability as well as other methods for approx-
imation and exact determination.
Though the JSR plays an important role in various fields of mathematics, this work
concentrates on its application in the context of smoothness analysis of subdivi-
sion schemes, being topic of Chapter 6. To be precise, our focus is put on the class
of univariate, linear, stationary, uniform, compactly supported schemes, for which
smoothness analysis is well understood. The corresponding results needed for our
purposes are summarized. In particular, the subdivision matrices for schemes of
arbitrary arity are derived and an explicit formula for the entries is provided. In
case of symmetric binary subdivision, the subdivision matrices are palindromic,
which leads to a symmetric situation in some sense. The consequences for the
set-valued tree method are discussed: When choosing an adequate norm, the set-
valued trees are symmetric, which reduces the computational effort. However, by
symmetry of spectral radii, FP-products occur in pairs such that a spectral gap at
1 is in general not to expect. Therefore, the so-called palindromic transformation
of the matrix family is developed, which, in certain situations, leaves the JSR un-
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changed but induces a spectral gap at 1.
The capabilities and limitations of the method were investigated by applying the
algorithm to illustrating examples, including subdivision matrices. The strategy
was successful for matrix families with diverse properties. Chapter 7 presents the
results. Conclusion and outlook are given in Chapter 8.
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2 Basic facts

Several different notations are common in the literature to describe the setting of
joint spectral radius determination. This chapter introduces the notation of this
work and presents some basic facts.

2.1 Setting

We consider a finite set A =
�

A1, ..., Am
	

of matrices in Cd×d . To deal with prod-
ucts of its elements, we introduce the sets

I0 := {;}, Ik := {1, . . . , m}k, I :=
⋃

k∈N0

Ik,

of completely positive index vectors of length k ∈ N0 and arbitrary length, respec-
tively. By contrast, an index vector may contain also negative entries, whose special
meaning will be explained in Chapter 3.
For k ∈ N, we define the matrix product

AI := Aik · · ·Ai1, I = [i1, . . . , ik] ∈ Ik. (2.1)

Otherwise, if k = 0, let A; := Id be the identity matrix. The length of the vector
I ∈ Ik is denoted by |I | := k. That is, any index vector I ∈ I encodes a matrix
product AI with |I | factors.
Let ‖ · ‖ be a submultiplicative matrix norm. In this work, we assume throughout
that the matrix familyA is finite. So it is in particular bounded.

Definition 2.1 The joint spectral radius (JSR) ofA is defined as

ρ̂(A ) := lim sup
k→∞

max
I∈Ik
‖AI‖

1
k .

As a consequence of Fekete’s Lemma, the limit exists such that

ρ̂(A ) = lim
k→∞

max
I∈Ik
‖AI‖

1
k , (2.2)

see [Jun09] for a proof.
IfA consists of a single matrix A, then

ρ̂(A ) = lim
k→∞
‖Ak‖

1
k .
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By Gelfand’s formula, this equals the standard spectral radius ρ of A. Therewith,
the JSR indeed is a generalization of the concept of the spectral radius.
The JSR is a property of a set of matrices, being independent of the norm due to
norm equivalence: For two submultiplicative norms ‖ · ‖1,‖ · ‖2 being related by

α · ‖ · ‖1 ≤ ‖ · ‖2 ≤ β · ‖ · ‖1,

for all I ∈ Ik holds that

α
1
k · ‖AI‖

1
k
1 ≤ ‖AI‖

1
k
2 ≤ β

1
k · ‖AI‖

1
k
1 .

With limk→∞α
1
k = limk→∞β

1
k = 1 follows the claim.

2.2 The three-member-inequality

Daubechies and Lagarias showed in [DL92a] that upper and lower bounds on
ρ̂(A ) are given by the so-called three-member-inequality

max
I∈Ik

ρ(AI)
1
k ≤ ρ̂(A )≤max

I∈Ik
‖AI‖

1
k , k ∈ N. (2.3)

Further, they introduced the generalized spectral radius, which bases on the lower
bound of (2.3),

ρ∗(A ) := limsup
k→∞

max
I∈Ik

ρ(AI)
1
k .

Berger and Wang showed in [BW92] that the equality

ρ∗(A ) = ρ̂(A )

holds for bounded familiesA .
As a consequence, evaluation of spectral radii and norms of matrix products allows
in principle an arbitrarily good approximation of the JSR.

In some cases, the three-member-inequality leads to the exact value of the JSR,
namely in cases when lower and upper bound coincide, as in the following exam-
ple. ConsiderA = {A1, A2, A3} with

A1 =
�

−1 0
3 0

�

, A2 =
�

3 0
0 −1

�

, A3 =
�

0 −1
0 3

�

.

Due to ρ(A2) = 3 and ‖A1‖∞ = ‖A2‖∞ = ‖A3‖∞ = 3, it follows from the three-
member-inequality that ρ̂(A ) = 3.
This example results from smoothness analysis of subdivision schemes, see Chap-
ter 6. A can be deduced from the linearization of the ternary median interpolat-
ing scheme presented in [XY05]. The result ρ̂(A ) = 3 confirms that the maximal
Hölder regularity of the linearized scheme is given by β∗ = 2− log3(3) = 1.
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2.3 Irreducibility and product-boundedness

Definition 2.2 The matrix family A is called reducible if the matrices A1, . . . , Am
have a common invariant linear subspace, i.e., there exists an invertible Matrix T
and an integer d ′ < d such that, for i = 1, . . . , m,

TAi T
−1 =

�

Bi Ci
0 Di

�

(2.4)

with Di ∈ Cd′×d′. Otherwise,A is said to be irreducible.

The problem of determining the JSR of a reducible family can always be trans-
formed to a problem involving only irreducible families. A family with com-
mon invariant subspace can be split into lower-dimensional families, which can
be analyzed separately. If (2.4) holds, then ρ̂(A ) = max{ρ̂(B), ρ̂(D)} with
B := {B1, . . . , Bm} and D := {D1, . . . , Dm}. See e.g. [Jun09] for a proof.

Nevertheless, we do not assume the matrix family to be irreducible unless indi-
cated otherwise. Most of our results also hold for reducible families such that a
check for irreducibility is not required. However, in practice, the splitting of a
given problem might be very useful for its analysis.

Definition 2.3 A is called product bounded if the set of all products {AI : I ∈ I }
is bounded.

Product boundedness implies ρ̂(A )≤ 1. With cA being the bounding constant,

lim
k→∞

max
I∈Ik
‖AI‖

1
k ≤ lim

k→∞
c

1
k
A = 1.

The following lemma ([Els95], Lemma 4) reveals the relation between the two
properties.

Lemma 2.4 (Elsner) If ρ̂(A ) = 1 and A is not product bounded, then A is re-
ducible.

We will refer to this in Chapter 3.

2.3 Irreducibility and product-boundedness 7



2.4 Finiteness property

The set A is said to have the finiteness property (FP), if there exists a completely
positive index vector J ∈ Ik such that

ρ(AJ)
1
k = ρ̂(A ). (2.5)

A vector J ∈ Ik which satisfies (2.5) is called FP-product. The method suggested
in this work as well as ideas developed in [GP13, CGSCZ10, GZ09, GZ08, Mae08,
GWZ05, Mae00], are based on verifying (2.5) for some sophisticated guess J . A
standard approach to find a candidate J is based on spotting repeating patterns in
possibly long index vectors I which maximize either ‖AI‖ or ρ(AI).

The standard spectral radius as well as the JSR are homogeneous functions, i.e.,

ρ(βAJ) = |β |ρ(AJ), ρ̂(βA ) = |β | ρ̂(A ), β ∈ C, (2.6)

where βA := {βA1, . . . ,βAm}. Hence, discarding the trivial case ρ(AJ) = 0, we
can scale the family A such that at least one of the leading eigenvalues of AJ
equals 1, and in particular ρ(AJ) = 1. Equation (2.5), which has to be demon-
strated, then reads

ρ̂(A ) = ρ(AJ) = 1. (2.7)

By (2.3), this is possible only if

ρ(Ai)≤ 1, i = 1, . . . , m, (2.8)

so that we assume this property, throughout.

Given some index vector J ∈ I , let π(J) be the set of all cyclic permutations of J .
Arbitrary repetitions of such vectors form the set

Π(J) := {I k : I ∈ π(J), k ∈ N}.

It is an elementary result of linear algebra that ρ(AJ ′) = ρ(AJ) for J ′ ∈ π(J),
see [Mae96] for a proof. In particular, if ρ(AJ) = 1, then also ρ(AJ ′) = 1 for all
J ′ ∈ Π(J).

8 2 Basic facts



3 Set-valued tree method

This section presents the theoretical foundation for our approach to exact deter-
mination of the joint spectral radius of a finite family A of matrices from Cd×d .
We already published most of these results in [MR14]. Nevertheless, they are an
essential part of this thesis and form the basis for the results presented in the other
chapters. Certainly, the exposition of facts as well as notations closely resemble
those in [MR14]. Section 3.1 introduces the mathematical structures and nota-
tions that are convenient to formulate and prove our findings. The main result
in Section 3.2 gives a sufficient condition to establish ρ̂(A ) = 1 in terms of set-
valued trees. This is also a necessary condition in certain situations as discussed in
Section 3.3. In particular, irreducible families with a spectral gap at 1 as defined
below can always be handled by the set-valued tree approach.

3.1 The concept of set-valued trees

As explained in Chapter 2, we aim at verifying some guess for the FP-product.
Hence, we consider a matrix family A = {A1, . . . , Am} satisfying (2.8) for which
the normalized equation (2.7) shall be proven.

A matrix family having the FP possesses in general more than one FP-product.
Trivial additional FP-products are given by cyclic permutations: If AJ is FP-product,
then AJ ′ is the same for any J ′ ∈ Π(J). But there might exist more FP-products. We
consider a family J ⊂ I coding our candidates for FP-products. In order to show
(2.7), candidates for FP-products are given by index vectors J with ρ(AJ) = 1. The
existence of such a J is guaranteed by the scaling procedure. Moreover, for good
reasons, we allow also index vectors with ρ(AJ) < 1. As will be demonstrated
by an example in Section 7.1, such index vectors may reduce significantly the
complexity of the trees to be constructed.

Definition 3.1 Given matricesA = {A1, . . . , Am}, consider some non-empty set J =
{J1, . . . , Jn} of completely positive index vectors Ji ∈ I . If

max
J∈J

ρ(AJ) = 1,

then J is called a generator set ofA , and each element J ∈ J is called a generator
of J . A generator J is called strong if ρ(AJ) = 1, and weak otherwise.
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That is, strong generators code candidates for FP-products while weak genera-
tors usually code matrix products with spectral radii close to 1. A generator set
contains at least one strong generator.

It is our goal to relate properties of generator sets to the equality ρ̂(A ) = 1. By
(2.3), existence of a generator set implies ρ̂(A )≥ 1, so that (2.7) becomes equiv-
alent to ρ̂(A ) ≤ 1. In the following, let the set A = {A1, . . . , Am} of matrices
and the generator set J = {J1, . . . , Jn} be fixed. Whenever a generator is men-
tioned, it is understood as a generator of J . To address products of matrices in
A conveniently, we introduce the sets

K0 := {;}, K` := {−n, . . . ,−1,1, . . . , m}`, K :=
⋃

`∈N0

K`,

of index vectors of length ` ∈ N0 and arbitrary length, respectively. As before, the
length of K ∈K` is denoted by |K | := `.
Index vectors K ∈ K encode sets of matrix products in the following way: While
single positive indices correspond to singletons, single negative indices correspond
to infinite sets containing special matrix powers,

Ai :=

(

{Ai} if i > 0,

{Ak
J−i

: k ∈ N0} if i < 0.

Defining products of sets as sets of products, i.e., P ·Q := {PQ : P ∈ P ,Q ∈ Q},
let

AK :=Ak` · · ·Ak1
, K = [k1, . . . , k`] ∈K`,

for ` ∈ N, and A; := {Id}. This definition is similar to (2.1), but AI is a single
matrix, whileAK is always a set, even if K ∈ I is completely positive. In this case,
AK = {AK} is a singleton, while otherwise, it is typically1 a denumerable set.
We need some more notations and definitions: Concatenation of vectors P ∈ Kh
and S ∈K` is denoted by

[P, S] := [p1, . . . , ph, s1, . . . , s`] ∈Kh+`.

Powers indicate concatenation of an index vector with itself,

K1 := K , K`+1 := [K`, K].

If K = [P, S], then P is a prefix and S is a suffix of K . The sets of prefixes and
suffixes of K ∈K are denoted by

P (K) := {P : K = [P, S] for some S},
S (K) := {S : K = [P, S] for some P},

respectively.
1 For instance, if all eigenvalues of the matrices AJ happen to be 0, thenAK is finite even if K is

not completely positive.
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Example 3.2 Let J = {J1, J2} with J1 = [1,2] and J2 = [2, 2,1] be a generator
set for a matrix set A = {A1, A2}. We have A[−1] = {(A2A1)k : k ∈ N0} and
A[−2] = {(A1A2

2)
k : k ∈ N0}. For K = [1,1,−1, 1,2], we obtain

AK = {A2A1(A2A1)
kA2

1 : k ∈ N0}.

The first two entries of K generate the rightmost factor A2
1, the negative entry −1

refers to the generator J1 = [1, 2] and leads to the powers (A2A1)k, and the last two
entries generate the leftmost product A2A1. The index set P = [1, 1,−1] ∈ P (K)
is a prefix and S = [1,2] ∈ S (K) is the complementary suffix of K . In this special
case, we observe that AK ⊂ AP , what might be surprising at first sight. This
phenomenon, where a set of matrix products is completely covered by that of a
prefix, will play a prominent role below.

In a natural way, the setK of index vectors can be given the structure of a directed
tree, denoted by T : The elements of K are the nodes, the empty vector ; is the
root, and an edge is connecting the parent node P with the child node C if and
only if C = [P, i] for some index i ∈K1.

Definition 3.3 A node K ∈K is called

• positive or negative if so is the suffix i ∈K1 when writing K = [P, i].

• 1-bounded if ‖AK‖ := sup{‖A‖ : A∈AK} ≤ 1.

• strictly 1-bounded if ‖AK‖ := sup{‖A‖ : A∈AK}< 1.

• covered if there exists a prefix P ∈ P (K) such thatAK ⊂AP , and the comple-
mentary suffix S is completely positive and not empty.

Typically, covered nodes appear in the following situation: Let P = [P ′,`] be a
negative node, i.e., ` < 0. Then its descendant K = [P, J−`] is covered since

A[`,J−`] =AJ−` · A` = {A
k+1
J−`

: k ∈ N0} ⊂ {Ak
J−`

: k ∈ N0}=A`.

Example 3.2 is constructed in exactly this way. We call such a node [P ′,`, J−`]
combinatorially covered.

The (m+n)-ary tree T depends only on the number m of matrices, and the number
n of generators. The property of being positive or negative is independent of A
and J , too. To decide if a node is combinatorially covered, we need knowledge
about J but not about A . In contrast, the (strictly) 1-boundedness of a node
depends onA and on the chosen norm.

3.1 The concept of set-valued trees 11



Definition 3.4 A finite subtree T∗ ⊂ T is called J -complete descending from K if

• K is root of T∗ and has m positive children

• every leaf of T∗ is either 1-bounded or covered,

• every other node of T∗ has either exactly m positive children or an arbitrary
number of negative children.

Such a tree is called minimal if removing any of the nodes implies that at least one of
the above conditions is not satisfied anymore.

To shorten notation in the important particular case K = ;, T∗ is called J -complete
if T∗ is J -complete descending from ;.

See Figure 3.1 for a visualization. Definition 3.4 can be extended without changes
to the case J = ;, although, technically speaking, ; is not a generator set. Every
node of a ;-complete tree is completely positive and has either m positive children
or is a 1-bounded leaf.
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Figure 3.1: Visualization of J -completeness for m = 3 and J = {[1], [3]}. Col-
ors and shapes of markers indicate properties of nodes: green ¬ 1-
bounded, white ¬ covered, square ¬ negative child w.r.t. generator
J1 = [1], triangle ¬ negative child w.r.t. generator J2 = [3], red ¬
other. The tree on the left is J -complete and minimal. In contrast, the
tree in the middle is J -complete but not minimal since there is a node
with more than one negative child and a 1-bounded node which is not
a leaf. The tree on the right is not J -complete because there is a leaf
which is neither 1-bounded nor covered as well as a node with only 2
positive children.

A ;-complete tree (descending from K) whose leaves are all strictly 1-bounded
is called contractive tree (descending from K). This type of tree characterizes the
situation ρ̂(A )< 1 as shown in [HMR09]:

Lemma 3.5 ρ̂(A )< 1 if and only if there exists a contractive subtree T∗ of T .

12 3 Set-valued tree method



3.2 A sufficient condition for ρ̂ = 1

The following theorem provides a sufficient condition in terms of set-valued trees
to establish (2.7) and therewith the JSR of the unscaled family. This condition is
based on properties of a finite subtree of T and thus can be verified (though not
falsified) numerically or analytically in finite time.

Theorem 3.6 Let A = {A1, . . . , Am}. If there exists a generator set J and a J -
complete tree T∗ ⊂ T , then ρ̂(A ) = 1.

Algorithmic methods to validate this criterion for a given family are discussed in
Chapter 4. To keep the computational effort as low as possible, such methods
target a minimal J -complete tree.

As explained in Section 2.3, we may assume that our matrix family is irreducible.
But Theorem 3.6 is valid also in case of a reducible family. If T∗ exists, then the
products are either bounded or polynomially bounded as explained below.

The proof of Theorem 3.6 is based on the following ideas: By the existence of a
generator set, it is ρ̂(A ) ≥ 1. To establish ρ̂(A ) ≤ 1, it suffices to show that
there exists a monotone increasing polynomial p : N0 → R such that all matrix
products are bounded with respect to their length, ‖AI‖ ≤ p(|I |). Convergence of
|I |
p

p(|I |) leads to the desired upper bound of ρ̂(A ). To reach this goal, a partition
for completely positive index vectors, depending on T∗, is defined. Lemmata 3.9
and 3.10 give upper bounds for the factors of this partition, together leading to
the existence of p.

In the following, T∗ is assumed to be a fixed subtree of T according to the condi-
tions of the theorem. Dependencies of variables on T∗ will not be declared explic-
itly. The finite set of nodes of T∗ is denoted by K∗, and the union of all contained
matrix products byA∗ :=

⋃

K∈K∗
AK .

For any node K ∈K∗, there is h ∈ N0 such that

K = [I1,− j1, . . . , Ih,− jh, Ih+1]

with Ii ∈ I for 1≤ i ≤ h+ 1 and ji1 ∈ {1, . . . , n} for 1≤ i ≤ h+ 1. We write

I ,→ K

if

I = [I1, I k1
J j1

, . . . , Ih, I kh
J jh

, Ih+1]

for some k1, . . . , kh ∈ N0. Obviously, AI ∈AK for I ,→ K .
Let

I∗ := {I ∈ I : ∃K ∈K∗ with I ,→ K}.

The set I∗ can be thought of as the set of completely positive index vectors corre-
sponding toA∗ since {AI : I ∈ I∗}=A∗, and K∗ ∩I ⊆ I∗.

3.2 A sufficient condition for ρ̂ = 1 13



Example 3.7 Consider the tree with nodes K∗ = {;, [1], [2], [1,−1]}. With J :=
J1, it is

A∗ = {Id, A1, A2} ∪ {Ak
JA1 : k ∈ N0}

and

I∗ = {;, [1], [2]} ∪ {[1, J k] : k ∈ N0}.

Obviously, I∗ 6⊂ K∗ and K∗ ∩I = {;, [1], [2]} ⊆ I∗.

The index vectors in K are ordered completely by setting K < K ′ for |K | < |K ′|,
and applying lexicographic order for index vectors of equal length. To any com-
pletely positive index vector I ∈ I \ {;}, we assign the following two objects:

• The I∗-maximal prefix

M(I) :=max{K ∈ P (I) : K ∈ I∗}

of I is defined as the longest prefix of I which is contained in I∗.

• The K∗-maximal node

N(I) :=max{K ∈K∗ : M(I) ,→ K}

of I is defined as the maximal node in K∗ with the property that M(I) ,→ K
for the I∗-maximal prefix M(I). The according setAN(I) contains the product
AM(I).

We note that, in general, M(I) is not a node of T∗ while N(I) is by definition. On
the other hand, N(I) is generally not a prefix of I . Further, M(I) is completely
positive by definition, coding the singleton {AM(I)}. In contrast, N(I) may have
negative entries, then coding a denumerable set of products which contains AM(I).
If I ∈ I is a node of T∗, then M(I) = I .
Further, for any I ∈ I \ {;}, the length of the I∗-maximal prefix M(I) is at least 1
because the first entry of I is necessarily a child of the root of T∗.
The following example illustrates these definitions.

Example 3.8 For a matrix family A = {A1, A2} with generator set J = {[1,2]},
let T∗ be the J -complete tree visualized in Figure 3.2. We consider the com-
pletely positive index vectors I1 = [1,2], I2 = [1, 2,1, 2] and I3 = [2, 1,1, 1,2].
I1 and I2 are elements of I∗, I1 is additionally a node of T∗. I3 is neither a node
of T∗ nor an element of I∗. Since I1 ∈ I∗, M(I1) = I1. In this case, M(I1) is a
node of T∗. Nevertheless, N(I1) 6= M(I1) since M(I1) is not maximal. Instead,
N(I1) = [1,2,−1]. In case of I2, M(I2) = I2 such that M(I2) is not a node of T∗.
But [1,2, 1,2] ,→ [1, 2,−1] and [1,2, 1,2] ,→ [1,2,−1,1, 2]. Therefore, by max-
imality, N(I2) = [1,2,−1,1, 2]. The I∗-maximal prefix of I3 is necessarily shorter
than I3 since I3 /∈ I . Indeed, M(I3) = [2] and N(I3) = M(I3). In Figure 3.2, the
I∗-maximal nodes are labeled.

14 3 Set-valued tree method
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Figure 3.2: Exemplary tree to illustrate the definitions M(I) and N(I) for I1 =
[1, 2], I2 = [1,2, 1,2] and I3 = [2, 1,1, 1,2]. In this case,A = {A1, A2}
and J = {[1, 2]}.

Lemma 3.9 If I 6∈ I∗, then its K∗-maximal node N(I) is a 1-bounded leaf of T∗.

Proof. Let P := M(I) and K := N(I) denote the I∗-maximal prefix and the K∗-
maximal node of I , respectively. First, assume that K has positive children. Writing
I = [i1, . . . , ik] and P = [i1, . . . , i`], we know that `+ 1 ≤ k because I 6∈ I∗. Since,
by assumption, positive children always come as a complete set of m siblings,
K ′ := [K , i`+1] ∈ K∗ is a node of T∗. Consider the prefix P ′ := [i1, . . . , i`+1] of I .
Then

AP′ = Ai`+1
· AP ∈Ai`+1

· AK =AK′ ⊂A∗.

This implies P ′ ∈ I∗, contradicting maximality of the prefix P in I∗.
Second, assume that K has a negative child K ′ = [K , j] for some j < 0. Since
A j = {Ak

J− j
: k ∈ N0} contains the identity matrix, we have AP ∈ AK ⊂ AK ′,

contradicting maximality of K .

Third, assume that K is a covered node. Thus, by definition, K = [Q, S] for some
S ∈ I \ {;} and AP ∈ AK ⊆ AQ. By properties of S, Q has positive children.
Again, the argument used in the first part of this proof yields a contradiction to
maximality of the prefix P.

The first two cases imply that the node K is one of the leaves of T∗. These are
either 1-bounded or covered, the latter being excluded by the third case. �

The I∗-maximal prefix partition P1, . . . , Pr of I ∈ I \ {;} is characterized by

I = [P1, . . . , Pr]
P` = M([P`, . . . , Pr]), `= 1, . . . , r.

3.2 A sufficient condition for ρ̂ = 1 15



Algorithmically, the vectors P` can be determined by a recursive process, starting
from P1 = M(I): Regard the complementary suffix of I respective to prefix P`.
Then P`+1 is its I∗-maximal prefix. The algorithm terminates finding a I∗-maximal
prefix Pr = M(Pr), which implies Pr ∈ I∗. The number r cannot exceed |I | because
I∗-maximal prefixes of non-empty vectors have length ≥ 1. Lemma 3.9 provides
information on the I∗-maximal prefixes P1, . . . , Pr−1, while the suffix S = Pr is
covered by the following result:

Lemma 3.10 There exists a monotone increasing polynomial p : N0→ R, depending
only onA and T∗, such that

‖AS‖ ≤ p(|S|)

for any S ∈ I∗.

Proof. Let B := {A1, . . . , Am, AJ1
, . . . , AJn

}. Since ρ(B) ≤ 1 for all B ∈ B , the
entries of powers Br grow at most in a polynomial way. That is, there exists a
monotone increasing polynomial q : N0→ [1,∞) with

‖Br‖ ≤ q(r), B ∈B , r ∈ N0.

Let h := max{|K | : K ∈ K∗} denote the depth of T∗. Then p := qh is also a
monotone increasing polynomial on N0 and, due to the co-domain of q, q` ≤ p
for ` < h. For S ∈ I∗, the product AS is a member of the set AK for some K =
[k1, . . . , k`] ∈K∗, and thus can be written as

AS = Br`
`
· · ·Br1

1 , (3.1)

where ri ∈ N0, Bi ∈B , and Bri
i ∈Aki

.
The exponents are bounded by ri ≤ |S|, and the number of factors by `≤ h. Hence,

‖AS‖ ≤
∏̀

i=1

‖Bri
i ‖ ≤

∏̀

i=1

q(ri)≤ q(|S|)` ≤ p(|S|),

as stated. �

The following example illustrates the notation in (3.1).

Example 3.11 Assume that J1 = [1, 2] and therewith [1,1, 2,1, 2,2] ,→ [1,−1,2]
such that A[1,1,2,1,2,2] ∈ A[1,−1,2]. Then B1 = A1 ∈ A1, r1 = 1, B2 = AJ1

= A[1,2],
r2 = 2 and B3 = A2 ∈A2, r3 = 1. Also, Br2

2 = A2
J1
∈A−1.

For a better understanding how the maximal prefix partition allows to apply lem-
mata 3.9 and 3.10, we provide another example.
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Example 3.12 Consider T∗ and I3 = [2, 1,1, 1,2] from Example 3.8. The I∗-
maximal prefix partition P1, P2, P3 of I3 is given by P1 = M([2,1, 1,1, 2]) = [2],
P2 = M([1,1, 1,2]) = [1,1] and P3 = M([1,2]) = [1,2]. Since [P1, P2, P3] =
[2, 1,1, 1,2] /∈ I∗ and [P2, P3] = [1, 1,1,2] /∈ I∗, the according I∗-maximal
nodes N([2,1, 1,1, 2]) = [2] and N([1,1, 1,2]) = [1, 1] are due to Lemma 3.9
1-bounded leaves of T∗, see also Figure 3.2. Since P3 = M(P3) ∈ I∗, Lemma 3.10
states that N(P3) = [1, 2,−1] is polynomially bounded.

Now, we are prepared to accomplish the proof of Theorem 3.6:
Proof. Let I ∈ Ik be any completely positive index vector, and P1, . . . , Pr its I∗-
maximal prefix partition. Then

AI = APr
· APr−1

· · ·AP1
.

For i = 1, . . . , r − 1, [Pi, . . . , Pr] /∈ I∗ and APi
∈AN([Pi ,...,Pr]) by construction. So,

‖APi
‖ ≤ ‖AN([Pi ,...,Pr])‖ ≤ 1

due to Lemma 3.9.

A bound on the norm of Pr is given by Lemma 3.10. By monotonicity of the
polynomial p and |Pr | ≤ |I |= k, we obtain

‖AI‖ ≤ ‖APr
‖ ≤ p(|Pr |)≤ p(k).

Hence, by (2.3),

1=max{ρ(AJ) : J ∈ J } ≤ ρ̂(A )≤ k
p

p(k).

As k→∞, the right hand side converges to 1, thus verifying the claim. �

We thus showed that the existence of a J -complete tree validates ρ̂ = 1, a crite-
rion which can be established algorithmically.

As mentioned before, there are two different types of covered nodes: There are
nodes that are covered for any familyA because of their combinatorial structure,
being of the form [P,− j, J− j]. Other covered nodes may occur by coincidence
of products, which depends on the matrix family. Theorem 3.6 holds for arbi-
trary covered nodes. But the verification that a node is covered is difficult if it
is not combinatorially covered. The implemented algorithm therefore identifies
only combinatorially covered nodes. In the examples presented in Section 7, all
covered nodes are of that type. We assume henceforth that leaves of a J -bounded
tree are 1-bounded or combinatorially covered.

3.2 A sufficient condition for ρ̂ = 1 17



In Definition 3.4, we request the root ; of T∗ to have positive children for two
reasons. First, ; is 1-bounded for any familyA and we want to exclude the trivial
tree that consists only of ;. Second, positive children of the root simplified the
proof of Theorem 3.6. We could equivalently demand that T∗ has a positive node
which is not the root:
Identifying a tree with its set of nodes, we consider

T∗ = {[− j, S] : S ∈ S }

for j ∈ {1, . . . , n} and S ⊂K such that T∗ is a minimal J -complete tree descend-
ing from [− j]. We show that

T̃∗ :=

(

S ∪ {[J j,− j, S] : S ∈ S } if J j ∈ S ,

S else

is J -complete.

If J j /∈ S , all leaves [− j, L] of T∗ either 1-bounded, or covered such that [− j, L] =
[− j, P,− j̃, J j̃] for some J j̃ ∈ J ,P ∈ K . Since L ,→ [− j, L], 1-bounded leaves of
T∗ induce 1-bounded leaves of S . If [− j, L] is covered, i.e., L = [P,− j̃, J j̃], then
L is covered. Inheriting the combinatorial structure of T∗, the tree T̃∗ := S is
J -complete.

If J j ∈ S , then T∗ contains the covered node [− j, J j], but J j is neither covered
nor, in general, 1-bounded. Hence, S is not J -complete in that case. By mini-
mality of T∗, J j is a leaf of S . Since T∗ is J -complete descending from [− j], no
negative sibling but all m positive siblings of J j are contained in S . Therewith,
any node of S ∪ {[J j,− j, S] : S ∈ S } has either m positive children or an arbi-
trary number of negative children. The leaf [J j,− j, J j] is covered. For all other
leaves, the properties are inherited: SinceA[J j ,L] ∈A[J j ,− j,L] ⊂A[− j,L], the leaves
[J , L] and [J ,− j, L] are 1-bounded if the leaf [− j, L] is 1-bounded. Considering
a leaf [− j, P,− j̃, J j̃] of T∗, the according leaves [P,− j̃, J j̃] and [J j,− j, P,− j̃, J j̃] are
covered. This implies that T̃∗ = S ∪ {[J j,− j, S] : S ∈ S } is J -complete, see
Figure 3.3 for a visualization.

The described transformation from T∗ to T̃∗ eliminates a negative node which has
no positive prefix. It can be applied iteratively in order to achieve a tree whose
root has positive children, and the number of steps is bounded due to finiteness of
T∗ . By requesting that T∗ has at least one positive node which is not the root, we
make sure that S is not empty, such that we terminate with a non-trivial tree T̃∗.
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Figure 3.3: J -complete tree descending from a negative child of the root (left)
and a corresponding J -complete tree (right) for J = {[1,2]}. The
tree on the left implies the existence of the one on the right.

Although including weak generators is often convenient, see Chapter 7, they are
not essential for the existence of a J -complete tree:

Proposition 3.13 Let J be a generator set for a familyA and

˜J := {J ∈ J : ρ(AJ) = 1}

the subset of strong generators. If there exists a J -complete tree T∗, then there exists
a ˜J -complete tree T̃∗ as well.
Moreover, this still holds when requiring the 1-bounded leaves of both trees to be
strictly 1-bounded.

Proof. Assume w.l.o.g. that T∗ is minimal. By existence of J , ˜J is non-empty,
and it is a generator set. Consider J := J j ∈ J \ ˜J . We show that any subtree of
T∗ with root [P,− j] can be substituted such that the resulting tree is J -complete.
In the following, we identify a tree with its set of nodes. Let S ⊂ K such that the
subtree of T∗ with root [P,− j] is given by

TS := {[P,− j, S] : S ∈ S }.

Since T∗ is J -complete, TS is a J -complete tree descending from [P,− j]. We
show that the tree

TS ,` :=
⋃

0≤k≤`

{[P, J k, S] : S ∈ S }

is J -complete descending from P for some ` ∈ N0, based on the following prelim-
inary considerations:
Since T∗ is J -complete, a node S ∈ S has either m positive children or 1 negative

3.2 A sufficient condition for ρ̂ = 1 19



child. If a leaf [P,− j, S] of TS is (strictly) 1-bounded, then [P, J k, S] is, for any
k ∈ N0, a (strictly) 1-bounded leaf of TS ,` since [P, J k, S] ,→ [P,− j, S]. For a cov-
ered leaf [P,− j, M ,− j̃, J j̃] holds that [P, J k, M ,− j̃, J j̃] is, for any k ∈ N0, a covered
leaf of TS ,`.
We distinguish the following cases:
If TS has no covered leaf [P,− j, J j] then TS ,0 is J -complete. Otherwise, J j ∈ S .
This is a positive node, so all m positive siblings are contained in S . Therewith,
TS ,`, ` ∈ N0 inherits of S that any node which is no leaf has either m positive
children or 1 negative child. Since J is a weak generator, ρ(AJ)< 1. Hence, there
exists k0 ∈ N0 such that ‖Ak0

J ‖ < 1, i.e., [P, J k0] is strictly 1-bounded. Together
with the preliminary considerations, this implies that TS ,k0−1 is J -complete.
Since T∗ is finite, only finitely many nodes [P,− j], P ∈ K , exist. Therewith,
finitely many such transformations lead to a tree T̃∗ which contains no negative
nodes corresponding to a weak generator. Then, T̃∗ is a ˜J -complete tree. �

3.3 Existence of a J -complete tree in case of ρ̂ = 1

We will see that in some situations the existence of a J -complete tree is not only
a sufficient but also a necessary condition for ρ̂ = 1. This is the case, at least for
a particular norm, if the spectral radii in the set of matrix products separate as
described in the following.

Given a strong generator J , ρ(AJ) = 1 immediately implies ρ(AI) = 1 for any
index vector I ∈ Π(J), see Section 2.3. A spectral gap at 1 means that the spectral
radius of no other product matrix can come close to 1. More precisely, we define:

Definition 3.14 The matrix family A has a spectral gap at 1 if there is exists a
completely positive index vector J with ρ(AJ) = 1 such that

• there exists q < 1 such that

ρ(AI)≤ q (3.2)

for any product AI , unless I = ; or I = [S, J r , P] for some r ∈ N0 and some
partition [P, S] = J of J ,

• the Jordan normal form Λ of AJ is

Λ := V−1AJ V =
�

1 0
0 Λ∗

�

, ρ(Λ∗)< 1. (3.3)

In this case, J is called a dominant generator.
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Recall that, sinceA is finite, the JSR equals the generalized spectral radius:

ρ̂(A ) = lim sup
k→∞

max
I∈Ik

ρ(AI)
1
k .

Therefore, a spectral gap at 1 implies ρ̂(A ) = 1.

Assume that A is product bounded. That is, there exists a constant cA such that
‖AI‖ < cA for all I ∈ I . An algorithm for computing an admissible constant can
be found in [Pro96]. If, in addition,A has a dominant generator J , we may scale
the matrix V in (3.3) such that its columns v j and the columns wi of W := V−t

satisfy ‖w1‖2 = 1 and ‖v j‖2 ≤ c−1
A , j ≥ 2, where the constant cA is taken with

respect to the Euclidean norm ‖ · ‖2. Now, we define the matrix norm

‖A‖V :=max
j

∑

i

|wt
iAv j|

as the standard 1-norm of the transformed matrix W tAV . At least with respect to
this norm, the implication of Theorem 3.6 is in fact an equivalence:

Theorem 3.15 Let A be product bounded with spectral gap at 1. Using the norm
‖ · ‖V , there exists a tree T∗ ⊂ T according to the specifications of Theorem 3.6.
Moreover, all nodes in this tree can be requested to be completely positive.

Recall that due to Elsner’s lemma (see Section 2.3), an irreducible family A with
spectral gap at 1 always satisfies the condition of Theorem 3.15, and that we can
always transform the problem such that irreducible matrices are to be analyzed.
Therefore, demanding a spectral gap at 1 is the crucial condition.

To prove Theorem 3.15, we define the following: Let I := (ik)k∈N denote a se-
quence of positive indices ik ∈ {1, . . . , m}. Adapting notation in the obvious way,
we denote prefixes of I by Ik := [i1, . . . , ik] ∈ P (I). Further, J∞ := [J , J , . . . ] is
the sequence obtained by infinite repetition of J . If ‖AIk‖> 1 for all k ∈ N0, then I
is called an infinite path. The proof of Theorem 3.15 consists of three steps: First,
in Lemma 3.16, we characterize the structure of such an infinite path. Second,
in Lemma 3.17, we exclude the existence of an infinite path with respect to the
V-norm ‖ · ‖V . Third, we deduce the finiteness of a certain set-valued tree which
satisfies the specifications of Theorem 3.6 and has only completely positive nodes.
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Lemma 3.16 Let J be a dominant generator of the product bounded familyA with
spectral gap at 1. Then any infinite path has the form I = [P, J∞] for some prefix
P ∈ I .

Proof. Let I be an infinite path. SinceA is product bounded, the sequence (AIk)k
has a convergent subsequence B` := AIk(`),` ∈ N0, with limit B∗ := lim` B`. For any

` ∈ N0 and λ ∈ N let L`,λ ∈ I such that
�

Ik(`), L`,λ
�

= Ik(`+λ). Then

B`+λ = C`,λB`, C`,λ := AL`,λ, ` ∈ N0.

The right hand side of

‖(C`,λ− Id)B∗‖= ‖C`,λ(B∗− B`) + B`+λ− B∗‖ ≤ cA ‖B∗− B`‖+ ‖B∗− B`+λ‖

tends to 0 as `→∞. Thus,

lim
`→∞

C`,λB∗ = B∗.

By assumption, ‖B`‖ > 1 for all ` and hence B∗ 6= 0. So, recalling (3.2), the
displayed equation shows that there exists `0,λ ∈ N such that ρ(C`,λ) > q for all
`≥ `0,λ. Since J is dominant, we obtain by definition

L`,λ = S`,λJ r`,λP`,λ, `≥ `0,λ,

for partitions [P`,λ, S`,λ] = J . Substituting this representation into [L`,1, L`+1,1] =
L`,2 yields

S`,1J r`,1 P`,1S`+1,1J r`+1,1 P`+1,1 = S`,2J r`,2 P`,2

for ` ≥ `0 :=max{`0,1,`0,2}. Since |S`,2| ≤ |J | and |P`,2| ≤ |J |, this is possible only
if P`,1S`+1,1 = J , implying P`,1 = P`+1,1 and S`,1 = S`+1,1. That is, P`,1 = P`0,1 and
S`,1 = S`0,1 for all `≥ `0.

By definition of L`,1, the infinite path is given for any ` ∈ N0 by

I = [Ik(`), L`,1, L`+1,1, L`+2,1 . . . ]

We abbreviate ri := r`0+i,1, P̃ := P`0,1, S̃ := S`0,1 to find

I = [Ik(`0), S̃, J r0, P̃, S̃, J r1, P̃, . . . ] = [Ik(`0), S̃, J∞],

and the claim follows with P := [Ik(`0), S̃]. �

While the lemma above makes no assumptions concerning the underlying norm,
the next one shows that the V -norm ‖ · ‖V is special.
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Lemma 3.17 IfA is product bounded with spectral gap at 1, then there is no infinite
path with respect to the V -norm.

Proof. Assume that there exists an infinite path. According to the previous lemma,
it is given by I = [P, J∞] with J being a dominant generator. The correspond-
ing limit of matrix products S := limk A[P,Jk] exists because Λ∞ := limkΛk =
diag([1, 0, . . . , 0]) exists. Since ‖AJk‖V = ‖Λk‖1 = 1 for k sufficiently large, P
cannot be empty. In this case, we know that ‖A[P,Jk]‖V > 1 and ρ(A[P,Jk]) ≤ q < 1
for all k ∈ N. Hence, ‖S‖V ≥ 1 and ρ(S)≤ q. With T := AP , the matrix S̃ :=W tSV
is given by

S̃ = Λ∞W tT V =











wt
1Tv1 wt

1Tv2 · · · wt
1Tvd

0 0 · · · 0
...

...
...

0 0 · · · 0











.

Since S and S̃ are similar, we have |wt
1Tv1| = ρ(S̃) = ρ(S) < 1. Further, recalling

‖w1‖2 = 1 and ‖v j‖2 ≤ c−1
A , we find |wt

1Tv j| ≤ ‖wt
1‖2 ‖T‖2 ‖v j‖2 < 1 for j ≥ 2.

Thus, we obtain the contradiction 1≤ ‖S‖V = ‖S̃‖1 < 1. �

The lemma enables us to prove Theorem 3.15:
Proof. Let T∗ be the largest subtree of T with the following properties: ; is con-
tained as a node, all nodes are completely positive and each 1-bounded node is a
leaf. Assuming that the set K∗ of nodes is infinite, we define K ′ ⊂ K∗ as the set
of nodes which are prefix of infinitely many other nodes in K∗. Then K ′ is not
empty because the root ; belongs to it. Further, if K ∈ K ′, then there exists at
least one child [K , k] ∈K ′. That is, the recursion

ik :=min{i ∈ I1 : [i1, . . . , ik−1, i] ∈K ′}

defines an infinite path I = (ik)k∈N, contradicting Lemma 3.17. �

Hence, an irreducible family with a spectral gap at 1 always possesses a J -complete
tree with respect to ‖ · ‖V , even when requesting all nodes to be positive. On the
premise that the family has these properties, the search for a J -complete tree is
very simple: A depth-first search on the tree with nodes I is guaranteed to ter-
minate when backtracking in nodes which are 1-bounded w.r.t. ‖ · ‖V . The class
of irreducible families with a spectral gap at 1 is stressed also by other authors.
Therewith, the result is important for comparison of the set-valued tree approach
and other methods in the literature, see also Chapter 5. While termination is
guaranteed for this class of families, it is not excluded for others. In fact, the set-
valued tree strategy has proven to useful for families with most diverse properties,
see Section 7 for examples.
Despite the theoretical importance, the practical value can be questioned. Theo-
rem 3.15 states the existence of a J -complete and therewith finite tree but gives
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no bound on its depth. Furthermore, the J -complete tree with respect to ‖ · ‖V is
not necessarily trim. In that regard, other norms are potentially preferable.
Although requesting all nodes to be positive simplifies the search, the numerical
realization is difficult since this involves checks on equality. This can be avoided
when allowing a single negative node in the tree. Details on the algorithmic search
are discussed in Section 4.4.

The following result concerns the stability of a J -complete tree under small per-
turbations.

Proposition 3.18 Consider a family A ω which continuously depends on ω ∈ R.
Assume that A 0 has a spectral gap at 1 with dominant generator J , and J = {J}.
Let T∗ be a J -complete tree for A 0 whose leaves are either strictly 1-bounded or
covered.
Then there exists ε > 0 such that T∗ is J -complete for Bω := 1

ρ(AωJ )
|J |A ω with

|ω| ≤ ε.

Proof. By assumption, A0
J is FP-product of A 0. Since the spectral radius is a

continuous function of the matrix and the family has a spectral gap at 1, AωJ is
FP-product ofA ω for |ω| sufficiently small. There existsω∗ > 0 such that J is also
dominant generator of Bω for |ω| ≤ ω∗. The property of a node to be covered2

does not depend on the matrix family. To show that T∗ is J -complete for Bω,
it suffices to prove that leaves which are strictly 1-bounded for A 0 = B0 are 1-
bounded forBω.
Let K be a leaf of T∗ which is not covered. If K is completely positive, then

‖Bω
K ‖= ‖B

ω
K ‖=

1

ρ(AωJ )
|J |‖A

ω
K‖.

Since 1
ρ(AωJ )

|J |‖AωK‖ is continuous in ω and ‖A0
K‖=

1
ρ(A0

J )
|J |‖A0

K‖< 1, there exists ωK

such that K is 1-bounded w.r.t.Bω for |ω| ≤ωK .
Assume that K has one negative entry, that is, K = [P,−1, S] for some P, S ∈ I . De-
note by λω the subdominant eigenvalue of BωJ . Let µ := 1

2
+ 1

2
maxω∈[−ω∗,ω∗] |λω|.

By dominance of J on [−ω∗,ω∗], (BωJ )
k = Tω + o(µk), and Tω depends continu-

ously of ω. Then

‖Bω
[P,Jk,S]

‖= ‖BωS · (B
ω
J )

k · BωP ‖

= ‖BωS · Tω · B
ω
P + BωS · o(µ

k) · BωP ‖
≤ ‖BωS · Tω · B

ω
P ‖+ o(µk) (3.4)

Since ‖B0
[P,−1,S]‖ = supk∈N0

‖B0
[P,Jk,S]

‖ < 1, and limk→∞ B0
[P,Jk,S]

= B0
S · T0 · B0

P , it
holds that

‖BωS · TωBωP ‖< 1

2 We assumed that covered leaves are combinatorially covered, see Section 3.2.
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for |ω| sufficiently small. Since µ < 1, there exists k0 ∈ N0 such that (3.4) is
bounded by 1.
For the finite number of cases k < k0, the arguments for completely positive nodes
apply. Hence, there exists ωK such that 1-boundedness is given for both k < k0
and k ≥ k0 on [−ωK ,ωK], which implies ‖Bω

K ‖ ≤ 1 for |ω|<ωK .

Analogous argumentation applies for a node K with ` ≤ |K | negative entries, and
|K | is bounded by the depth of T∗. Since the number of leaves is finite,

ωT :=min{ωK : K is strictly 1-bounded leaf of T∗}

exists. Since we assumed all non-covered leaves to be strictly 1-bounded w.r.t.A 0,
the tree T∗ is J -complete w.r.t.Bω for |ω| ≤min{ω∗,ωT}. �

We conjecture that a similar result holds for a family which has no spectral gap at
1. The scaled familyBω has to satisfy that J is a generator set forBω, that is,

Bω :=
1

maxJ∈J ρ(AωJ )
|J |A

ω.

For I completely positive, BI depends continuously of ω such that all arguments
for completely positive nodes are similar. The proof that a leaf K with a negative
entry, being strictly 1-bounded w.r.t.A 0, is 1-bounded forBω with |ω| sufficiently
small, becomes more complex, though.
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4 Algorithm

We established a theoretical connection between JSR and set-valued trees in Sec-
tion 3.2, including a sufficient condition involving J -complete trees. Neverthe-
less, it remains the question how to prove the existence of a J -complete tree for
fixed A and J . This section presents an algorithm for finding such a tree based
on depth first search. In Section 4.1, the theoretical framework without consider-
ation of practical aspects is presented. These issues are discussed in Section 4.2,
and in particular the question of how to check if a node is 1-bounded. Two ap-
proaches to this concern are developed in Section 4.3. The very important role of
the underlying norm is topic of Section 4.4. A variant of the algorithm can be used
to verify ρ̂(A ) < 1 by searching for a contractive tree, see Section 4.5. Part of
this work is an implementation of both algorithms in MATLAB. The intention was
to give a proof-of-concept as well as to better understand the importance of the
different parameters. Therefore, the implementation is not optimized in terms of
efficiency or runtime. Nevertheless, a range of examples was completed success-
fully, most of them on a time-scale of seconds or minutes on a standard PC, see
also Chapter 7.

4.1 The algorithm in theory

Let T̃ be an infinite subtree of T such that ; is root of T̃ having m positive children
and that every other node of T̃ has either exactly m positive children or exactly
one negative child.
Traverse T̃ by depth-first search and backtrack if the current node is 1-bounded
or covered1. If the search terminates, the visited subtree of T̃ is obviously J -
complete. The shape of the tree depends on the chosen norm and there is no a
priori bound for its depth or the number of nodes.
This algorithm is very simple and its correctness is apparent. But its termination
depends not only on the existence of aJ -complete tree but also on the choice of T̃ ,
which has to be picked from the infinite set of trees with that special combinatorial
structure.
It seems a natural idea to introduce a search level MAXLEVEL where the choice of
T̃ can be revised. That is, if there exists a J -complete tree with depth smaller or
equal to MAXLEVEL, it can be determined by considering a finite number of trees
T̃ . If the depth-first search terminates for any of these trees successfully, that is,
1 Recall that we assume a covered node to be combinatorially covered, which can be easily

checked by comparison of index vector entries. The intention of introducing covered nodes
was to obtain a finite structure for periodic infinite paths generated by J j ∈ J such that
combinatorially covered nodes are the essential ones.

26



any visited node in level MAXLEVEL is 1-bounded or covered, then ρ̂ (A ) = 1 is
established due to Theorem 3.6.

Definition 4.1 We call T̃ ⊂ T a search tree of depth k if

1) ; is root of T̃ and has m positive children

2) every node of length k is a leaf

3) every other node of T̃ has either exactly m positive children or exactly one neg-
ative child.

To achieve an automated search by computer programs, we have to predefine
the order in which the search trees of depth MAXLEVEL shall be considered. If
we find a node K in level MAXLEVEL that is neither 1-bounded nor covered, the
choice of search tree was not successful. Clearly, we do not want to re-start in
root ; but rather retain the successfully visited branches unchanged and update
the problematic part of the tree. That is, we update the search tree by modifying a
subtree that starts in some prefix of K . We have to make sure that the updated tree
still satisfies condition 3) of Definition 4.1 and want to retain as many successfully
visited branches as possible. Therefore, the root should be chosen maximal such
that it has a negative child. For any node K , we denote by

NEGPARENT(K) :=max{R ∈K : ∃ j < 0 s.t. [R, j] is prefix of K}

the maximal prefix of K which has a negative child being a prefix of K as well,
saying that NEGPARENT(K) exists if it is non-empty.

In the following, we identify a set-valued tree with its sets of nodes, writing K ∈ T̃
if K is a node of T̃ . By updating the subtree of P := NEGPARENT(K), we mean that
T̃ is transformed by removing the nodes [P, S] ∈ T̃ and adding nodes [P, S′] such
that the transformed tree T̃ remains a search tree of depth MAXLEVEL.
If K = [P, i] is negative, then NEGPARENT(K) = P. In this case, the update is
a replacement of the node K by either one of its negative siblings or by its m
positive siblings.

Clearly, there are different update strategies as well as different choices for the
initial search tree. The basic concept for the algorithm is the following:
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Algorithm 4.2 Basic concept: Search for J -complete tree

Input: A = {A1, . . . , Am}
generator set J = {J1, . . . , Jn}
submultiplicative matrix norm
maximal search level MAXLEVEL

initial search tree T̃ of depth MAXLEVEL

Output: J -complete tree T∗ or "no result"

Traverse T̃ by depth-first search (DFS):
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If Algorithm 4.2 terminates with output "no result", no J -complete tree with a
depth up to MAXLEVEL was found. This could result from the fact that our initial
guess for the FP-product was wrong but not necessarily: We cannot exclude that a
J -complete tree exists which could have been computed with increased MAXLEVEL

or using a different update strategy.

An update strategy is complete for T̃ if it allows to generate any other search tree of
depth MAXLEVEL from T̃ . In that case, termination with output "no result" implies
that no J -complete tree with depth smaller or equal to MAXLEVEL exists.

For example, an update strategy which is complete for T̃ = {[i, (−n)k] : i ∈ I1, 0≤
k ≤ MAXLEVEL − 1} is given by first trying all types of negative children in lexico-
graphical order before passing on to positive children: Assume that a subtree with
root R having the negative child [R, j] is to be updated. The modified subtree is
given by the set of nodes

Kmod =

(

⋃m
i=1{[R, i, (−n)k] : 0≤ k ≤ MAXLEVEL− |R| − 1} if j =−1

{[R, j+ 1, (−n)k] : 0≤ k ≤ MAXLEVEL− |R| − 1} else.

4.2 Practical issues

In the worst-case, any complete update strategy has to deal with an enormous
number of search trees that is exponentially increasing for raising MAXLEVEL. Not
only for that reason it is sensible to choose an update strategy that selects just
some of the search trees in a sophisticated way. There are search trees being very
unlikely to have J -complete subtrees. Consider for example T̃ = {[i, jk] : i ∈
I1, 0 ≤ k ≤ MAXLEVEL− 1} for some j < 0. T̃ has no covered nodes, and if [i, jk]
is 1-bounded for some j < 0, then [i] is 1-bounded as well. Hence, T̃ has a
J -complete subtree if and only if [i] is 1-bounded for any i ∈ I1. That is, the
corresponding norm is extremal forA .
Furthermore, if a search tree has no J -complete subtree, we can conclude
that a whole family of trees has none: Two succeeding negative nodes of
the same type [P, j] and [P, j, j], j < 0 code the same set of matrix prod-
ucts. For S ∈ KMAXLEVEL−|P|−1, denote by Sk its prefix of length k. If the path
([P, j, Sk])1≤k≤|S| contains neither a 1-bounded nor a covered node, the same holds
for ([P, j`, Sk])1≤k≤|S|−`+1. The update strategy should therefore avoid to generate
a tree which contains two or more succeeding negative nodes of the same type.

On one hand, if ρ̂(A ) = 1 is true and the chosen norm does not satisfy2 ‖AJ‖= 1,
a necessary condition for a search tree T̃ to have a J -complete subtree is the ex-
istence of at least one negative node in T̃ . On the other hand, the computational
costs for checking if a node is 1-bounded increase with the number of negative

2 ‖AJ‖= 1 holds in particular if ‖ · ‖ is an extremal norm, see [GWZ05].
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prefixes, see also Section 4.3. Introducing a parameter NEGLIMIT, the update strat-
egy therefore should control that the number of negative nodes in any path of the
generated search tree does not exceed NEGLIMIT.
A J -complete tree is not unique, so that different values of NEGLIMIT may lead to
different trees, see the example in Section 7.6. Choosing NEGLIMIT too large there-
fore might lead to unnecessary computations. But there are situations with two or
even more nested infinite paths, where choosing NEGLIMIT > 1 is mandatory. This
is the case for the family C in Section 7.1.

From a heuristic point of view, a search tree is more or less promising depending
on the location of negative nodes. For j < 0 and J := J− j and arbitrary ` ∈ N0,
P, S ∈ K , we expect rather [P, J`, j, S] to be 1-bounded than [P, j, S]. To motivate
this, assume that (Ak

J)k converges to a limit matrix A∞J . If ‖AIA
∞
J AP‖ < 1 for some

I ∈ I , then there exists ` ∈ N0 such that ‖AIA
k
JAP‖ ≤ 1 for k ≥ `, implying

that [P, J`, j, I] is 1-bounded. In contrast, 1-boundedness of [P, j, I] means that
‖AIA

k
JAP‖ ≤ 1 for all k ∈ N0, a much stronger requirement, which, if satisfied,

implies also 1-boundedness of [P, J`, j, S]. Therefore, the implemented update
strategy has an input parameter STARTLEVEL and involves only search trees whose
negative nodes are of the form [P, J`− j, j] for `≥ b(STARTLEVEL− 1)/|J− j|c.

The computations for completely positive nodes are very efficient in comparison
to negative nodes or their successors. Therefore, we do not want to compute a
long path with a negative node [P, j] in a low level. Instead, we prefer to stop
the computation even before reaching MAXLEVEL and to update the subtree such
that [P, J`, j] is node of the search tree. The parameter AFTERNEG, by default set
to dMAXLEVEL/3e, bounds the length of a node which has a negative prefix. For
sake of simplicity, this parameter will be neglected in further descriptions of the
algorithm.

Saving a search tree T̃ of a potentially high depth that is constantly updated re-
quires lots of RAM. In fact, it is not necessary to know all successors of the current
node, it suffices to know its children. Instead of traversing a search tree that is
a priori fixed by input or update strategy, the search strategy should work locally.
The implemented algorithm corresponds in principle to Algorithm 4.2 but uses,
whenever the level is to be increased, a decision routine DECISION whose output
specifies the children of the current node.

Since the decision routine operates locally, we have to define the backtracking
appropriately to make sure that the combinatorial structure of a J -complete tree
is achieved. If a positive node [P, 1] was analyzed, the algorithm should not return
T∗ before its m − 1 positive siblings were visited. If K is a node with an entry
1≤ i ≤ m− 1, we define

UNFINISHED(K) :=max{[P, i+ 1] : [P, i] prefix of K , 1≤ i ≤ m− 1}.
When the backtrack criterion is satisfied, the algorithm has to check if
UNFINISHED(K) exists for the current node K .

This leads to the following algorithm:
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Algorithm 4.3 Search for J -complete tree

Input: A = {A1, . . . , Am}
generator set J = {J1, . . . , Jn}
submultiplicative matrix norm
maximal search level MAXLEVEL

Output: J -complete tree T∗ or "no result"

4.2 Practical issues 31



The implemented decision routine works as follows.

Algorithm 4.4 Decision routine

Input: node K
generator set J = {J1, . . . , Jn}
flag argument OLD

parameters MAXLEVEL, STARTLEVEL, NEGLIMIT

Output: Child [K , i] with i ∈ {−n, . . . ,−1} ∪ {1}

i← 1
if OLD == 1 do

return [K , i]
else

NEGNUMB ← number of negative entries in K
if |K |+ 1≥ STARTLEVEL && |K |+ 1< MAXLEVEL && NEGNUMB < NEGLIMIT

for j from 1 to n do
if J b(STARTLEVEL−1)/|Ji |c

i is suffix of K
i←− j
break

end
end

end
return [K , i]

end

The backtrack criterion is satisfied if the current node K is either covered or 1-
bounded. The check if a node is covered corresponds to comparing the entries
of [− j, J j] and the suffix of K with the according length. The more complicated
and computationally expensive check is the one for 1-boundedness. If K ∈ I , we
simply have to compute the norm of one matrix product. But if K /∈ I , AK is
an infinite set of products and K is 1-bounded if and only if ‖AK‖ = sup{‖A‖ :
A ∈ AK} ≤ 1. In practice, we determine instead of ‖AK‖ an upper bound NK as
discussed in Section 4.3. Additionally, when computing NK numerically, we accept
K to be 1-bounded only if NK < 1 − SAFETYCONST to avoid incorrectness due to
numerical inaccuracy. The same holds for K ∈ I . The examples in Chapter 7
are typically computed with SAFETYCONST = 10−7. For these reasons, a 1-bounded
node might not be detected, especially if it is not strictly 1-bounded.
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4.3 Upper bounds for norms

When implementing Algorithm 4.3, it is to decide how to compute an upper bound
of the norm ‖AK‖ for K /∈ I . A tight upper bound for a nodes’ norm is of great
importance since 1-boundedness is a backtrack criterion. Equally, the runtime of
the algorithm depends strongly on the computation of norms since it has to be
performed in every node. In order to achieve numerical efficiency as well as a
tight bound, the structure of the coded matrices should be taken into account.

Two approaches to a computation of an upper bound NK , having different require-
ments, are presented in the following. The approach presented in Section 4.3.1
requires that, for any J ∈ J , AJ has a unique real leading eigenvalue with equal
algebraic and geometric multiplicity. It then benefits from the convergence of
powers Ak

J and leads in principle to arbitrarily close bounds. In contrast to that,
the approach introduced in Section 4.3.2 requires that complex eigenvalues of
matrix products only occur as conjugate pairs, as it is the case for a real matrix
family A . In general, this approach is numerically expensive for increasing di-
mension such that most of the examples in Chapter 7 are computed using the first
approach. Both approaches assume the generator matrices AJ for any J ∈ J to
be diagonalizable. As the Jordan normal form is sensitive to perturbations, it is
numerically unstable. Therefore, a generator matrix which is not diagonalizable
is hardly encountered in practice.

4.3.1 Balls of matrices

In the following, we assume that for any J ∈ J , there is a unique leading eigen-
value of AJ being real and having equal algebraic and geometric multiplicity. In
case that J is a strong generator, we request the leading eigenvalue additionally to
be positive3. To simplify forthcoming arguments, we assume that AJ is diagonaliz-
able for any J ∈ J . The matrices described by a node K in some sense differ only
by powers of generator matrices. When those powers tend to infinity, the matrices
converge. We use this property to define a superset of AK which provides an up-
per bound for ‖A‖K that is easy to determine.
For any j ∈ {1, . . . , n} and J := J j, the powers Ak

J converge to a limit matrix A∞J .
Hence, there exists a ball on Cd×d with midpoint A∞J which contains A[− j]. To
obtain a superset forAK , K ∈ K , we appropriately define a multiplication on the
space of matrix balls. Furthermore, by defining the extent Ξ(·) of a ball such that
‖AK‖ ≤ Ξ(B) ifAK ⊆ B, the computation of an upper bound bases on determining
an enclosing ball forAK .

3 If J is the only generator, this can always be achieved by appropriate scaling of the family. In
principle, the approach applies also in case of a negative leading eigenvalue. Then, (Ak

J)k has
two convergent subsequences and a superset is given by the union of two matrix balls centered
in the two limit points.
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Definition 4.5 Given a norm ‖ · ‖, we denote by B = (C , r) with C ∈ Cd×d and
r ∈ R≥0 the matrix ball B := {X ∈ Cd×d : ‖C − X‖ ≤ r}. Then, we define a product
of balls B = (C , r) and B̃ =

�

C̃ , r̃
�

by

B ∗ B̃ :=
�

C · C̃ ,‖C‖ · r̃ + ‖C̃‖ · r + r · r̃
�

.

Further, we define the extent of a ball B = (C , r) by

Ξ(B) := ‖C‖+ r.

Obviously, ‖X‖ ≤ Ξ(B) for all X ∈ B. For any finite number of sets, the product
of their enclosing balls is a ball enclosing their product. This results by induction
from the following lemma:

Lemma 4.6 ForAS ⊆ B andAP ⊆ B̃, it holds thatA[P,S] ⊆ B ∗ B̃.

Proof. Let B = (C , r) and B̃ = (C̃ , r̃). An element of A[P,S] is a product A · Ã with
A∈AS and Ã∈AP . By assumption, A∈ B and Ã∈ B̃.

‖C · C̃ − A · Ã‖= ‖C · (C̃ − Ã) + (C − A) · Ã‖
≤ ‖C‖ · ‖C̃ − Ã‖+ ‖C − A‖ · (‖C̃‖+ r̃)

≤ ‖C‖ · r̃ + ‖C̃‖ · r + r · r̃.

Therewith, A · Ã∈ B ∗ B̃. �

Consider a node K ∈ K . Then AK is a finite product with factors AI , I ∈ I
and/orA[− j], j ∈ {1, . . . , n}. In case of I ∈ I , it is trivial thatAI = {AI} ∈

�

AI , 0
�

.
It remains to find an enclosing ball for A[− j]. By assumption, AJ with J := J j is
diagonalizable, ρ(AJ) ≤ 1 and all eigenvalues with absolute value 1 are real and
positive. So there is 0 ≤ ` ≤ d such that w.l.o.g. λi = 1 for 1 ≤ i ≤ ` and |λi| < 1
for ` + 1 ≤ i ≤ d. Then, with uT

i and v i being the left resp. right eigenvector

corresponding to λi, the matrices Ti =
vi ·uT

i
uT

i ·vi
allow the representation

Ak
J =
∑̀

i=1

Ti +
d
∑

i=`+1

λk
i Ti. (4.1)

Obviously, A∞J := limk→∞Ak
J =
∑`

i=1 Ti. Defining

rJ : N→ R≥0

rJ(k) =
d
∑

i=`+1

|λi|k‖Ti‖,

rJ is a monotonically decreasing function with limk→∞ rJ(k) = 0 such that

Ak
J ∈
�

A∞J , rJ(k̃)
�

(4.2)

holds for all k ≥ k̃. The following result is now a direct consequence of Lemma 4.6.
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Figure 4.1: Visualization of a ball
�

A∞J , rJ(0)
�

. The matrix powers Ak converging to
A∞J are indicated for 0 ≤ k ≤ 16 by the black dots. 0 denotes the zero
matrix.

Corollary 4.7 Consider an arbitrary node K ∈ K . Let h ∈ N be the number of
negative entries, then K = [I1,−i1, . . . , Ih,−ih, Ih+1] for some I1, . . . , Ih+1 ∈ I and
i1, . . . , ih ∈ {1, . . . , n}. With

BK :=
�

AIh+1
, 0
�

∗
�

A∞Jih
, rJih
(0)
�

∗
�

AIh, 0
�

∗ · · · ∗
�

A∞Ji1
, rJi1
(0)
�

∗
�

AI1, 0
�

,

it holds that

AK ⊆ BK

and therewith ‖AK‖ ≤ Ξ(BK).

An advantage of this approach is that the balls
�

A∞J , rJ(0)
�

can be computed a
priori for each J ∈ J . In each node, the computation of the upper bound then
reduces to a multiplication of balls and determination of the extent of this product.

When determining a superset ofAK , the ball BK is one possibility. But also a union
of balls can be considered:

Definition 4.8 Let B = [B1, . . . , Br], r ∈ N be a vector of balls. We say that A ∈
B if A ∈

⋃r
i=1 Bi and define Ξ(B) := maxi∈{1,...,r}Ξ(Bi). Furthermore, we extend

the multiplication of balls to vectors of balls: For B and B̃ = [B̃1, . . . , B̃r̃], B ∗ B̃ is
understood as a vector of balls of length r · r̃ with entries Bi ∗ B̃ j, i ∈ {1, . . . , r}, j ∈
{1, . . . , r̃}.

It is not difficult to see that ‖A‖ ≤ Ξ(B) for A ∈ B, and that A · Ã ∈ B ∗ B̃ for A ∈ B
and Ã ∈ B̃. Most important, since we aim to determine a tight bound for AK , the
extent of B= [B1, . . . , Br] is smaller than or at most equal to the extent of any ball
enclosing

⋃r
i=1 Bi.
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For k0 ∈ N, let

AJ ,k0
:=
h

(A0
J , 0), . . . , (Ak0−1

J , 0),
�

A∞J , rJ(k0)
�

i

.

With (4.2), it follows that

A[− j] ⊆ AJ ,k0
. (4.3)

Figure 4.2: Supersets of {Ak
J : k ∈ N0}:

An enclosing ball is given by
�

A∞J , rJ(0)
�

(left). The union of
�

A∞J , rJ(k0)
�

and the non-contained trivial balls (right) is described by
the ball vector AJ ,k0

having length 12.

The following observation is not important for the theory, but useful in practice
to keep ball vectors short: If Ai

J is contained in
�

A∞J , rJ(k0)
�

, then AJ ,k0
can be

reduced to
h

(A0
J , 0), . . . , (Ai−1

J , 0), (Ai+1
J , 0) . . . , (Ak0−1

J , 0)
�

A∞J , rJ(k0)
�

i

. The union
of entries remains the same set, and the extent does not change.
An analogous result to Corollary 4.7 with a closer upper bound follows immedi-
ately with (4.3):

Corollary 4.9 For K as in Corollary 4.7, k0, j ∈ N0 for j = 1, . . . , n, and

BK :=
�

AIh+1
,0
�

∗AJih
,k0,ih
∗
�

AIh,0
�

∗ · · · ∗AJi1 ,k0,i1
∗
�

AI1,0
�

,

it holds that

AK ⊆ BK

and therewith ‖AK‖ ≤ Ξ(BK).

AJ ,k0
can be computed and reduced a priori. In a node, the determination of the

bound reduces to computing the ball products, determining the extent of each
entry, that is, adding the midpoints’ norm to the radius, and eventually finding the
maximal extent.
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It remains the question of how to choose the constants k0, j appropriately. Details
are postponed to Section 4.3.3 in which the implemented solution is described.
There is a tradeoff since the upper bound becomes tight for large k0, j but the
vector of balls AJ j ,k0, j

becomes long such that the runtime in each node increases.

The implemented solution bases on the following idea. If the ball
�

A∞J , rJ(k0)
�

with J := J j is contained in a ball (C , r), then

A[− j] ⊆
⋃

0≤`<k0

{A`J} ∪ (C , r) (4.4)

holds. Therefore, we can substitute
�

A∞J , rJ(k0)
�

in the ball vector AJ ,k0
by (C , r).

If C is chosen such that Ak
J is contained in (C , r) for k < k0, we can reduce AJ ,k0

by these powers Ak
J and obtain a valid upper bound for a shorter vector of balls,

see Figure 4.3 for an illustration. The tightness of the bound then depends on r.
Details on how to find (C , r) are postponed to Section 4.3.3.

Figure 4.3: The figure on the left visualizes the powers Ak
J that are not contained

in
�

A∞J , rJ(k0)
�

. Choosing (B, r) as displayed on the right, the number
is significantly reduced.

The problem of long ball vectors is aggravated in case of weak generators: To be
useful in practice, a weak generator J has a spectral radius ρ(AJ) = 1− ε. As a
consequence, convergence of the powers to the zero matrix is very slow, and so
is the decay of rJ(k). To obtain a tight bound for AK , k0 then has to be chosen
very large, leading to long ball vectors AJ ,k0

although the subdominant eigenvalue
might converge rapidly to zero. To avoid this problem, we change the midpoint
of the non-trivial ball by separating the leading eigenvalue: Again, we can assume
w.l.o.g. that λ1 = · · · = λ`, for some 1 ≤ ` ≤ d, |λ1| = 1− ε and |λi| < |λ1| for
`+ 1≤ i ≤ d. Since



Ak
J



=




d
∑

i=1

λk
i Ti



≤




∑̀

i=1

Ti



+




d
∑

i=`+1

λk
i Ti



, (4.5)

all the arguments from above hold equally when substituting the zero matrix A∞J
by ÃJ :=

∑`

i=1 Ti. We could think of ÃJ as the limit matrix when changing for AJ
the leading eigenvalue λ with |λ|= 1− ε to λ= 1.

4.3 Upper bounds for norms 37



4.3.2 Bounding the eigenvalues

The following approach leads to an alternative upper bound NK for K /∈ I . The
basic idea is to substitute the powers of eigenvalues by combinations of upper and
lower bounds and therewith to get an upper bound for all matrix powers coded by
the node. In the following, we assume that all complex eigenvalues of AJ , J ∈ J
occur as conjugate pairs.

Consider a node K with ` negative entries. Then K is of the form

K =
�

I1,− j1, I2, . . . ,− j`, I`+1
�

with j1, . . . , j` ∈ {1, . . . , n} and Ii ∈ I for i = 1, . . . ,`+ 1. Hence,

AK = {AI`+1
Ak`

J j`
AI` · · ·A

k1
J j1

AI1 : k1, . . . , k` ∈ N0}

and

‖AK‖= sup
k1,...,k`∈N0

‖AI`+1
Ak`

J j`
AI` · · ·A

k1
J j1

AI1‖. (4.6)

In the following, we abbreviate P := I1, S := I2, J := J j1 k := k1 j := j1 and s := s1
whenever it is convenient.
We assumed AJ j

to be diagonalizable for all j ∈ {1, . . . , n}, denoting

AJ j
= Vj D jU j

with U j = V−1
j and D j = diag

�

λ j,1,λ j,2, . . . ,λ j,d

�

. We denote by Mi,: the i-th row
and by M:, j the j-th column of a matrix M . Then, with Hs := (ASVj):,s · (U jAP)s,:, it
is

ASAk
JAP = ASVj D jU jAP =

d
∑

s=1

λk
j,s ·Hs.

To avoid powers of complex numbers, we transform as follows:
If λ j,s is real, we define

Ts := Hs and µ j,s,k := λk
j,s.

Otherwise, there is by assumption s̃ such that λ j,s and λ j,s̃ are complex conjugates.
Then we define

Ts := Hs +Hs̃, and Ts̃ := i · (Hs −Hs̃)

together with

µ j,s,k :=ℜ(λk
j,s) and µ j,s̃,k := ℑ(λk

j,s).
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Due to

λk
j,sHs +λ

k
j,s̃Hs̃ =ℜ(λk

j,s) · (Hs +Hs̃) + ℑ(λk
j,s) · i(Hs −Hs̃),

it is
d
∑

s=1

µ j,s,k · Ts =
d
∑

s=1

λk
j,s ·Hs,

and the scalars µ j,s,k are real.

Substituting ASAk
JAP =

∑d
s=1µ j,s,k · Ts into (4.6) and repeating the arguments for

i = 2, . . . ,` leads to defining µ ji ,si ,ki
analogously to µ j,s,k, and to the recursive4

definition

H(s1,...,si) = (AIi+1
Vji):,si

· (U ji T(s1,...,si−1))si ,:

Depending on whether λ ji ,si
is real or complex with conjugate λ ji ,s̃i

, either

T(s1,...,si) := H(s1,...,si)

or

T(s1,...,si) := H(s1,...,si)+H(s̃1,...,s̃i) and T(s̃1,...,s̃i) := i ·
�

H(s1,...,si)−H(s̃1,...,s̃i)

�

.

This leads to

‖AK‖= sup
k1,...,k`











d
∑

s1,...,s`=1

µ j1,s1,k1
· · ·µ j`,s`,k` · T(s1,...,s`)











. (4.7)

Since |λ| ≤ 1, ℜ(λk) and ℑ(λk) are bounded. With λ= reiϕ, it is

inf
k∈N0
{rk cos(kϕ)} ≤ ℜ(λk)≤ sup

k∈N0

{rk cos(kϕ)} (4.8)

and

inf
k∈N0
{rk sin(kϕ)} ≤ ℑ(λk)≤ sup

k∈N0

{rk sin(kϕ)}. (4.9)

Figure 4.4 illustrates these bounds. Real eigenvalues are a particular case and do
not need to be considered separately. The bounding box of λk then reduces to a
line or, if λ= 1, to a point.

4 The definition is recursive since T(s1,...,si−1) depends on H(s1,...,si−1).
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Figure 4.4: Bounding box for λk, exemplarily with λ= 0.8ei π6 .

Therewith, upper and lower bounds asi
≤ µ ji ,si ,ki

≤ bsi
are given in case µ ji ,si ,k =

ℜ(λk
ji ,si
) by (4.8) or in case µ ji ,si ,k = ℑ(λ

k
ji ,s̃i
) by (4.9) for any i ∈ {1, . . . ,`} and

si ∈ {1, . . . , d}. Set Ω ji := [a1, b1]×[a2, b2]×· · ·×[ad , bd] and Ω := Ω j1×· · ·×Ω j`.
For any power k, the vector (µ ji ,1,k,µ ji ,2,k, . . . ,µ ji ,d,k) is an element of Ω ji . Using
this fact, we define a function f whose maximum value boundsAK .

Proposition 4.10 The maximum of the function f : Ω→ R+,

f (x1, . . . , x`) =











d
∑

s1,...,s`=1

(x1)s1
. . . (x`)s` · T(s1,...,s`)











is attained at a vertex of Ω, and is an upper bound of ‖AK‖.

Proof. Recalling (4.7) and the definition of Ω, it is not difficult to see that ‖AK‖
is bounded by the maximal value of f .
Obviously, Ω is convex and bounded for any ` ∈ N. We show by induction on `
that the maximum is attained at a vertex. Set x := x1. For `= 1,

f (x) =











d
∑

s=1

xsTs











is convex, implying the claim. In the induction step, we show that f (x1, . . . , x`+1)
attains its maximum at a vertex of Ω = Ω j1 × . . .Ω j`+1

. Consider fixed
�

x̃1, . . . , x̃`+1
�

∈ Ω. Define

f x̃`+1
(x1, . . . , x`) := f (x1, . . . , x`, x̃`+1)

and

f( x̃1,..., x̃`)(x`+1) := f ( x̃1, . . . , x̃`, x`+1).
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By the induction hypothesis, f x̃`+1
attains the maximal value at some vertex

(v1, . . . , v`) of Ω j1 × . . .Ω j`, and

f (v1, . . . , v`, x̃`+1) = f x̃`+1
(v1, . . . , v`)≥ f x̃`+1

( x̃1, . . . , x̃`) = f ( x̃1, . . . , x̃`+1).

Furthermore, f(v1,...,v`) attains the maximal value at a vertex w of Ω j`+1
. Hence,

f (v1, . . . , v`, w) = f(v1,...,v`)(w)≥ f(v1,...,v`)( x̃`+1) = f x̃`+1
(v1, . . . , v`).

Altogether, (v1, . . . , v`, w) is a vertex of Ω satisfying

f (v1, . . . , v`, w)≥ f ( x̃1, . . . , x̃`+1)

for arbitrarily chosen ( x̃1, . . . , x̃`+1) ∈ Ω. �

Remark: Due to Proposition 4.10, an algorithm which searches all vertices of Ω
to find the maximum value will lead to the desired upper bound for the node K .
Now, there are about5 2d` vertices, with d being the space dimension and ` the
number of negative entries in K . Hence, this is numerically expensive already for
relatively small values of ` and d. Though Ω ji can be computed a priori for each
generator J ji , ji ∈ {1, . . . , n}, the matrices T(s1,...,s`) depend on K .

If ` = 1, the bound for AK can be improved by computing the norm of the first
powers separately such that the upper bound is to be determined for eigenvalue
powers starting from some k0 ∈ N which allows smaller bounding boxes,

‖AK‖= sup
k≥0

ASAk
JAP = sup

k≥0

d
∑

s=1

λ j,s,k · Ts

=max

(

max
k≤k0−1

‖ASAk
JAP‖, sup

k≥0

d
∑

s=1

µ j,s,k0+k · Ts

)

.

For λ= reiϕ, bounds are given by

inf
k≥k0
{rk cos(ϕk)} ≤ ℜ(λk0+k)≤ sup

k≥k0

{rk cos(ϕk)}

and

inf
k≥k0
{rk sin(ϕk)} ≤ ℑ(λk0+k)≤ sup

k≥k0

{rk sin(ϕk)}.

Using these bounds to define Ω, Proposition 4.10 can be adapted. Figure 4.5
visualizes the bounding box exemplarily for k0 = 4 in comparison with the original
bounding box.
5 To be precise, eigenvalues λ= 1 decrease the number of vertices since lower and upper bounds

coincide.
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Figure 4.5: Bounding box for λk with k ≥ k0 = 4 (solid line) and for comparison
k ≥ 0 (dotted line). In this example, λ= 0.8ei π6 .

Choosing k0 > 0 improves the check for 1-boundedness even for small k0. Addi-
tionally, if evaluating the norms of the first k0 − 1 powers reveals that a node is
not 1-bounded, the numerical expensive bound has not to be computed.

4.3.3 Upper bounds for norms implemented

By construction, the spectral radius of the matrix corresponding to a strong genera-
tor equals 1. When computing the spectral radius and scaling the family, numerical
errors occur. But even a little perturbation of the leading eigenvalue can change
the situation completely because the generator matrix powers tend to zero or to
infinity. For the implementation, it is therefore crucial to substitute the computed
spectral radius by the exact value 1.

Falsifying that a node is (strictly) 1-bounded is sufficient to exclude backtracking.
In case of the bounding eigenvalue approach, we stop the computation of an upper
bound as soon as a vertex with value ≥ 1 is found. When using vectors of balls, we
perform a pre-check before computing the extent of the whole vector: The upper
bound cannot be smaller than 1 if the extent of the first ball or the extent of the
last ball has a value greater or equal to 1.

When computing the upper bound as proposed in Section 4.3.1, we have to bal-
ance the length of the ball vector AJ ,k0

and the tightness of the upper bound.
This is guided by the user-defined parameters LIMRADCOMPUT, LIMRADCONSTR and
MAXK0 as follows.
A ball vector AJ ,k0

is constructed such that rJ(k0) ≤ LIMRADCONSTR: To this pur-
pose, we determine k0 by

k0←

&

loga

 

LIMRADCONSTR
∑d

i=`+1 ‖Ti‖

!'
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with a being the absolute value of the subdominant eigenvalue of AJ . Choosing
LIMRADCONSTR very small simplifies finding a ball (C , LIMRADCOMPUT) that con-
tains

�

A∞J , rJ(k0)
�

. To prohibit extremely long ball vectors during this step, the
user bounds the length with the parameter MAXK0. That is, if k0 >MAXK0 was de-
termined, then k0 is set to MAXK0 such that the computed vector AJ ,k0

has a length

of at most MAXK0. As illustrated in Figure 4.6 (left), a ball
�

Ak̃
J , LIMRADCOMPUT

�

,

k̃ < k0, containing
�

A∞J , rJ(k0)
�

is computed. When doing so, k̃ is chosen such
that the number of contained powers Ak, k < k0, is maximized. If there is no such
ball, the further computation is done with the vector AJ ,k0

. Otherwise, a vector of

the non-contained balls (Ak, 0), k < k0 and
�

Ak̃
J , LIMRADCOMPUT

�

is built.

It may seem at first sight somehow paradox to first compute a — potentially very
long — vector for the small radius LIMRADCONSTR and then to quit that accuracy
when doing further computation steps with radius LIMRADCOMPUT. A compari-
son of Figure 4.6 (left) and (right) shows the benefit. This 2-step-process allows
us to shift the midpoint and therewith reduce the length of the ball vector that
would have occurred if we had directly build up a vector with the desired radius
LIMRADCOMPUT.

Figure 4.6: To illustrate the benefit of the 2-step-process,
�

Ak̃
J , LIMRADCOMPUT

�

containing
�

A∞J , rJ(k0)
�

(left) is opposed to
�

A∞J , LIMRADCOMPUT
�

(right). Powers Ak
J that are contained in the non-trivial ball in one but

not both cases are highlighted in green. In case of this illustrating ex-
ample, the resulting ball vector after the 2-step-process has length 9
(left) in contrast to length 12 (right).

4.4 Choosing a norm

It is obvious that the norm has an important impact on the shape of T∗ since
1-boundedness is a backtrack criterion of Algorithm 4.3. If ρ̂(A) = 1 holds, an
extremal norm leads to a J -complete tree with depth 1. But the computation of
such a norm is equally difficult, see Chapter 5. Since the set-valued tree approach
allows any submultiplicative norm, there is some potential to optimize the runtime
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of the algorithm by an appropriate choice of the norm. The examples in Chapter 7
are computed with different norms, sometimes with several to compare the result-
ing J -complete trees. Many of these examples can be handled with norms that
are implemented in MATLAB, as ‖ · ‖1, ‖ · ‖2, or ‖ · ‖∞. It depends onA which one
is the best to choose.

Norms that are adapted to the matrix family can lead to very trim and short trees
such that the computational effort for finding the tree is reduced, at the expense
of finding the norm. A very simple idea is to choose, if possible, a weighted norm
‖A‖S = ‖S−1AS‖ such that S−1AJS is diagonal for a strong generator J and
‖ · ‖ is an axis-oriented6 norm. If AJ is diagonalizable and S contains its eigenvec-
tors, ‖AJ‖S = 1. Obviously, this does not imply that nodes in other branches have
small norm values, especially if J is not dominant. In particular, the symmetry
of the problem in case of palindromic matrices is destroyed such that Proposi-
tion 6.10 is not applicable anymore, see also Chapter 6. The current implementa-
tion allows to set a flag indicating if the basis transform by S shall be done.

A closely related but refined approach is pursued by the definition of the norm
‖ · ‖V in Section 3.3. If we conjecture that A has a spectral gap at 1, it seems
reasonable to base the search on ‖ · ‖V : In case that our conjecture is true and
A is product bounded7, Theorem 3.15 guarantees a J -complete tree with all
nodes being completely positive. In other words, Algorithm 4.2 with initial search
tree T̃ = {I ∈ Ik : k ≤ MAXLEVEL} terminates without updating T̃ when choosing
MAXLEVEL sufficiently large.
As it is defined, ‖·‖V depends on a product bounding constant. The computation of
this constant is possible, see [Pro96], but experience shows that good results can
be achieved if we interpret the constant as a freely selectable parameter w. Slight
modifications of the corresponding norm lead to an easy-to-implement variant
‖·‖w. Instead of searching for a tree with only completely positive nodes, we target
a J -complete tree with exactly one negative node. Therewith, a test on equality
to 1 in the nodes J k is avoided. Conjecturing thatA has a spectral gap at 1, such a
norm has the advantage that the number of search trees to consider is dramatically
lowered. The decision routine gets the input NEGLIMIT = 1 and specifies a child to
be negative only in the path ([J k])k. Furthermore, the computation of a tree
with mainly completely positive nodes is very efficient. The downside is that,
although finiteness is guaranteed for sufficiently large w, other branches might
get very long. Hence, a high value of MAXLEVEL may be required to find the 1-
bounded leaf and eventually a J -complete tree, which often is not very trim, see
also the examples in sections 7.2, 7.3 and 7.5. It might seem intuitive to choose
w large as it replaces the product bounding constant. Figure 7.16 and Figure 7.12
demonstrate that this is not always recommendable.

To avoid the shortening of some branches to the expense of others, the adapted
norm should take all matrices of the family A into account. Generating the unit

6 We call ‖ · ‖ axis-oriented if ‖diag(λ1, . . . ,λd)‖=max1≤i≤d |λi |.
7 IfA has a spectral gap at 1 andA is not product bounded,A is reducible.
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ball of a norm based on all products up to a certain length seems a natural idea. For
a family of real matrices, the computation of a polytope norm ‖ · ‖poly is described
in the following. The process resembles the computation of extremal polytope
norms, see Chapter 5. Since we do not target an extremal norm, we end the
process after an a priori specified number of iterations IT. Heuristically, this is
a good compromise between optimizing the norm and searching the tree. The
following algorithm defines the unit ball for ‖ · ‖poly adapted toA .

The convex hull of a finite set V ⊂ Rd is a bounded and convex polytope being
the intersection of finitely many half-spaces. So, there exists C ∈ R`×d and b ∈ R`
with ` ∈ N minimal such that conv(V ) = {x ∈ Rd : C x ≤ b}. We use this notation
in the following algorithm.

Algorithm 4.11 Unit ball construction

Input: real familyA = {A1, . . . , Am}
set of start vectors V0
maximal number of iterations IT

Output: set of vertices V ⊂ Rd

matrix N such that conv(V ) = {x ∈ Rd : N x ≤ 1}

Start with k := 1

1) Xk← {Ai x : i ∈ {1, . . . , m}, x ∈ Vk−1}

2) Vk← {v : v vertex of conv(Xk ∪ Vk−1)}

3) k← k+ 1

4) if k ≤ IT go to 1)

5) V ← Vk ∪−Vk

6) determine C , b as defined above

7) if 0 is an entry of b, re-start with modified V0, otherwise go to 8)

8) N ← diag(b)-1 ·C

9) return V and N

4.4 Choosing a norm 45



Remarks:
There are sophisticated ways to choose V0. The extremal norm approaches refer-
enced to in Chapter 5 treat this topic in detail. Since we do not target an extremal
norm, this is neglected in the current implementation. The computation of step 2)
and 6) make use of the build-in MATLAB function convhulln. C and b are com-
puted in step 6) with use of vert2con.m from MATLAB file exchange8.
Let N := {n ∈ Rd : nT is row of N}. We define for x ∈ Rd

‖x‖poly :=max
n∈N

nT x =max
i
(N x)i. (4.10)

This is a norm on Rd: Step 5) induces point symmetry such that v ∈ V ⇐⇒ −v ∈
V . Since nT · v = 1 ⇐⇒ (−n)T · (−v ) = 1, this implies n ∈ N ⇐⇒ −n ∈ N .
Therewith, positivity of (4.10) is guaranteed. Furthermore, ‖x‖poly = 0 only if
x = 0 since {x : N x ≤ 1} is bounded by construction. Absolute homogeneity and
triangle inequality are easily verified.

Define V as a matrix such that v is a column of V if and only if v ∈ V . For the
induced matrix norm ‖ · ‖poly holds

‖A‖poly =max
i, j
(NAV )i j. (4.11)

To see this, note that max‖x‖poly=1 ‖Ax‖poly is obtained in an extremal point of
conv(V ) since ‖ · ‖poly is convex. Therewith,

‖A‖poly =max
v∈V
‖Av‖poly =max

v∈V
max

i
(NAv )i =max

i, j
(NAV )i, j.

4.5 A variant of the algorithm to establish contractivity

A variant of Algorithm 4.2 can prove the existence of a contractive tree: Due to
Lemma 3.5, a depth-first search on the infinite tree T = I with backtracking in a
strictly 1-bounded node terminates forA = {A1, . . . , Am} if and only if ρ̂ (A )< 1.
Introducing a maximal search level MAXLEVEL enforces termination in case that
ρ̂ (A ) ≥ 1. If the algorithm terminates due to reaching the maximal search level,
T∗ is not contractive and the output is "no result". We cannot deduce that the fam-
ily is not contractive since there might be a contractive tree whose depth exceeds
MAXLEVEL.
For Algorithm 4.12, issues as a decision routine or the computation of upper
bounds for norms are irrelevant. But the chosen norm determines the shape of
a contractive tree and therefore influences the output.

8 submitted by Michael Kleder, Delta Epsilon Technologies, LLC, 22 Jun 2005 (Updated 11 Jul
2005)
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Algorithm 4.12 Search for contractive tree

Input: A = {A1, . . . , Am}
submultiplicative matrix norm
maximal search level MAXLEVEL

Output: contractive tree T∗ or "no result"

Traverse T̃ = {I ∈ I : |I | ≤ MAXLEVEL}:

4.6 Saving and visualization

The program package includes functions to save and visualize the output tree. To
this aim, a MATLAB class NODE was created. The class properties allow to assign
to an object NODE the type (1-bounded, covered, negative, or else), its norm, its
children, the number of negative entries and the number and types of generator
edges that occur in its subtree. The implementation makes use of this class such
that saving the root suffices to keep all information that are necessary to recon-
struct the tree and collect information about particular nodes a posteriori. There
are class functions implemented that allow for a certain node, and in particular
for the root, to plot its subtree, to compute the depth of its subtree and to count
the number of nodes of its subtree. It is possible to query if a certain index vector
is a node of the output tree, and if it is, to access the corresponding NODE object.
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5 Related work
The computation of the JSR became a topic of intense research in recent years.
Section 5.1 presents some results from the literature concerning computability,
which show that the JSR is at least theoretically extremely hard to determine or
even to approximate. Nevertheless, there exist a few algorithms that are useful
in practice. Roughly speaking, there are two lines of research. One of them at-
tempts to compute a norm adapted to the matrix family in order to achieve close
or even coinciding bounds in the three-member-inequality. The other one more
or less neglects the choice of norm and bases on the convergence of bounds for
increasing product length k, pursuing graph-theoretical ideas on the tree of matrix
products. Both approaches lead to algorithms of approximation, the first one in
addition proved to be useful for establishing the FP and therewith determining the
exact value of the JSR. The set-valued tree method can be put into the context of
the graph-theoretical one, but also aims to validate the FP.
Without claim to completeness, we give a short overview on existing methods for
approximation in Section 5.2 and for exact determination in Section 5.3. The con-
tractivity of a matrix family, though not the main focus of this work, is a problem
of some importance in applications and shortly taken up in Section 5.4.

5.1 Computability

In some cases, the JSR of a matrix familyA is easily determined: If, by a similar-
ity transformation, A can be transformed simultaneously to normal, symmetric,
hermitian or triangular matrices, then the JSR equals the largest spectral radius of
the matrices inA . Proofs or references can be found in [Jun09].
For certain classes of pairs of (2 × 2)-matrices, there exist explicit formulas for
the joint spectral radius, see [Möß10, BZ00, LR94, GMW94]. [Gri96] provides
a condition for a finite family A which is sufficient to conclude that ρ̂(A ) =
max{ρ(A) : A∈A}.

For a family A of nonnegative matrices without entries between zero and one,
there exists a polynomial time algorithm to decide whether ρ̂(A )< 1, ρ̂(A ) = 1
or ρ̂(A )> 1, see [Jun09]. Without this restriction on the matrix entries, the situ-
ation is different: If the family consists of matrices with real or even with rational
entries, determining if ρ̂(A ) ≤ 1 is, according to [BT00], a Turing-undecidable
problem. Hence, no algorithm exists in general that determines the joint spectral
radius in finite time.
The results for an approximation are discouraging as well. We say that a value ρ∗

approximates the JSR ρ̂ with relative accuracy 1− ε if

(1− ε)ρ∗ ≤ ρ̂ ≤ ρ∗
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and the relative error is ε. According to [BN05], there exists, unless P=NP, no ap-
proximation algorithm which is polynomial in both the dimension of the matrices
d and 1/ε.

5.2 Approaches to approximation

In principle, the three-member-inequality displayed in Section 2.2 allows to ap-
proximate the JSR with arbitrary accuracy. Let T be the m-ary set-valued tree
T that results from J = ;, i.e., the nodes in level k code the products AI with
I ∈ Ik. Performing a breadth-first search on T , every level provides lower and
upper bounds which converge towards the JSR. The costs are exponentially in-
creasing with the level, since mk products are involved in level k.
Gripenberg proposes in [Gri96] a branch and bound algorithm which is a modifi-
cation of this method. The idea is to discard branches that start in nodes whose
norms are too small in some sense compared to the spectral radii of the already
visited nodes. The products coded by these nodes are known not to determine
the supremum in Definition 2.1. Fix δ > 0 and consider in level k the recursively
defined set of nodes

Sk =
�

[I , i] : I ∈ Sk−1, i ∈ I1,‖AI‖ ≥ αk−1+δ
	

with αk = max
n

αk−1, supI∈Sk
ρ(AI)

1
k

o

, S1 = I1 and α1 = maxI∈I1
ρ(AI). With

β1 =maxI∈I1
‖AI‖ and

βk =min

¨

βk−1,max

¨

αk +δ, sup
I∈Sk

ρ(AI)
1
k

««

,

upper and lower bounds for the JSR are given by αk ≤ ρ̂(A )≤ βk for each k ∈ N.
Furthermore, limk→∞(βk − αk) ≤ δ. Adapting δ, the method is capable to find
arbitrary small enclosing intervals.

An independent idea to improve the efficiency of the breadth-first search on T ,
which can be combined with Gripenberg’s approach, is presented by Maesumi in
[Mae96]. Instead of calculating the spectral radii of mk products of length k,
the same result is obtained by computing no more than mk/k matrices. Maesumi
shows that the spectral radius is invariant under cyclic permutation of the index
vector, i.e., ρ(AI) = ρ(Aπ(I)). Furthermore, if ρ(AI) is determined, spectral radii
of products AI`,` ≥ 1 are given without further matrix computations by ρ(AI`) =
ρ(AI)`. Elimination of Π(I) leads to mk

k
remaining nodes in level k.

There is an obvious problem when applying this type of algorithm. To satisfy
βk−αk ≤ ε for some ε > 0, k might have to be chosen very large. Due to [GP13],
the number k grows as C/ε, with ε being the relative error of the approximation
and C > 0 a constant that might be large for high dimensions d. Additionally,
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the number of products might be exponentially increasing despite of the proposed
modifications.

In contrast, [Pro05] presents an algorithm for approximation with relative error
ε which is, for fixed dimension d, polynomial with respect to 1

ε
. This geometric

approach accounts for irreducible families of real matrices. It is shown that such a
family always possesses an invariant body M ⊂ Rd , that is, M is convex, compact,
with non-empty interior, centrally symmetric with respect to the origin such that

conv(A1M , . . . , AmM) = λM

for some λ ∈ R+. The invariant body of A is not unique. But for any invariant
body, we have

λ= ρ̂(A ).

Constructing iteratively polytopes, an invariant body is approximated. The algo-
rithm terminates after N = c(A ) · ε−1 steps, with c(A ) being a constant that can
be computed from the eigenspaces of A . The desired approximation of ρ̂(A )
is given by n

1
N+1 with n := maxv∈V ‖v‖2 and V the vertices of the polytope con-

structed in the last iteration.

For fixed relative accuracy 1− ε, [BN05] provides an algorithm that runs in time
polynomial in d ln(m)/ε, with m being the number of matrices. The approximation
bases on the following idea: If the matrix family A possesses a proper invariant
cone1, then lower and upper bounds for ρ̂(A ) are given by spectral radii of certain
sums of Kronecker products of A . Introducing a so-called semidefinite lifting, a
proper invariant cone can be enforced such that a combination of semidefinite
lifting and generation of Kronecker products leads to the desired approximation
for the JSR of the original family.

To improve the computational complexity for high dimensions d, [PJB10] pro-
poses a method in the same spirit that avoids the generation of Kronecker prod-
ucts. By a semidefinite lifting, a matrix family with common invariant cone K is
attained. Then upper and lower bounds for the joint spectral radius are given for
each k ∈ N by the so-called joint conic radius of {AI : I ∈ Ik}, which depends
on K and is efficiently computable in the framework of conic programming. An
approximation with relative error ε is obtained for k ≥ (ln 1/α) ·ε−1, with α being
the largest number such that for any compact convex set G ⊂ K there exists v ∈ G
for which 1

α
v − G ∈ K .

There exist further approaches to approximate the JSR, as by computation of an
ellipsoidal norm [AS98, BNT05] or by using polynomial sums of squares [PJ08].

1 For the definition of a proper invariant cone, see [BN05].
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5.3 Approaches to exact determination

Rota and Strang showed in [RS60] that the JSR of a bounded family can equiva-
lently be defined by

ρ̂(A ) = inf
‖.‖

max
A∈A
‖A‖. (5.1)

If the infimum is attained for a norm ‖ · ‖∗, it is called an extremal norm2. A
familyA of complex matrices possesses an extremal norm if and only ifA is non-
defective, which means that the family ρ̂(A )−1 · A is product bounded. Hence,
by Elsner’s lemma3, irreducible families always have an extremal norm. If AJ is an
FP-product, then the coinciding bounds of the three-member-inequality

ρ(AJ)
1
|J | =max

A∈A
‖A‖∗

determine the JSR. Therewith, ρ(AJ) = 1 implies that a norm with maxA∈A ‖A‖=
1 is extremal and that AJ is FP-product. In terms of the set-valued tree approach,
the trivial tree with nodes {;}∪I1 is J -complete for J = {J} with respect to this
norm.

This motivates the methods presented in the following. Analogous to the set-
valued tree method, one first conjectures an FP-product AJ and scales the family
A as described in Section 2.4 such that J is a generator of the scaled family. In
contrast to our approach, the common idea is to determine an extremal norm by
computing the corresponding unit ball based on AJ . If the computation stops after
finite time, a unit ball is established, proving that the generator matrix AJ is an
FP-product.

The approach in [Mae00, Mae08] is targeted on constructing a special extremal
norm, the so-called optimal norm. For any non-trivial bounded set S, such a norm
is induced by the unit ball being the intersection of all extremal unit balls contain-
ing S. The iterative computation of such a unit ball starts with determining the
invariant ball of AJ being the maximal set G with AJ G = G and supx∈G ‖x‖ < 1
for some vector norm ‖ · ‖. Set Gq = conv

�

Gq−1 ∪A Gq−1

�

with G0 := G. If
Gq = Gq−1 for some q, then Gq is the optimal unit ball and AJ is proven to be an
FP-product. [Mae08] introduces a negative exit for the algorithm in case that AJ
is no FP-product, giving a criterion involving certain interior points of Gq.

[GWZ05] introduces the so-called complex polytope norms to obtain an extremal
norm. Let absco(X ) be the set of all finite absolutely convex combinations of
vectors in X ⊂ C d , i.e.,

absco(X ) :=

(

x ∈ Cd : x =
∑̀

i=1

λi x i with λi ∈ C, x i ∈ X and
∑̀

i=1

|λi| ≤ 1

)

.

2 Even singleton familiesA = {A} do not necessarily possess an extremal norm.
3 see Section 2.3
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A bounded set P ⊂ C is called a balanced complex polytope (b.c.p.) if there exists
a finite set V = {v1, . . . , v`} spanning Cd such that P = absco(V ). Any b.c.p.
is the unit ball of a so-called complex polytope norm. It is shown that the set of
norms to be considered in (5.1) can be limited to the set of all possible induced
complex polytope norms and conjectured that any non-defective family that has
the FP possesses an extremal complex polytope norm. The authors were able to
proof a result with a quite restrictive condition on the matrix family. They call a
family A asymptotically simple if it has a minimal4 FP-product AJ with only one
leading eigenvector such that the set

{x : x is leading eigenvector of AJ ′, J ′ ∈ π(J)}

equals the set of leading eigenvectors of all finite or infinite5 FP-products. A suf-
ficient condition for the existence of an extremal complex polytope norm is given
by the small complex polytope extremality (CPE) Theorem: Consider an asymp-
totically simple family with leading eigenvector x and denote by T (A , x) the
trajectory of x under the scaled family A . If T (A , x) spans Cd , then S(A , x) :=
absco (T (A , x)) is a b.c.p. Furthermore, due to [GZ08], if T (A , x) is additionally
a bounded subset of Cd , then A is non-defective, S(A , x) is the unit ball of an
extremal complex polytope norm and ρ̂(A ) = 1. [GZ08] presents an algorithm
for the construction of S(A , x), with x being the leading eigenvector of a gener-
ator matrix. In case that the algorithm terminates after a finite number of steps,
S(A , x) is a b.c.p. and if the vertices span Cd , then the according complex poly-
tope norm is extremal. That is, ρ̂(A ) = 1 is verified.
Obviously, asymptotic simplicity leads to strong restrictions for the eigenvalues of
the FP-product. In particular, it implies that an FP-product of a real matrix family
is not allowed to have a complex conjugate pair of leading eigenvalues. To ex-
tend the small CPE theorem to this case, the definition of asymptotic simplicity is
relaxed in [GZ09] such that the minimal FP-product is allowed either to have a
unique real leading eigenvector or to possess a unique pair of complex conjugate
leading eigenvectors. Furthermore, the algorithm from [GZ08] is modified for real
families to incorporate the new result.

Even the relaxed definition of asymptotic simplicity is a strong limitation for the
matrix family but it is a necessary assumption for the existence of a b.c.p. con-
structed as described above. [GZ08] exhibits two examples which are not asymp-
totically simple and for which no b.c.p. can be found by the algorithm [GZ08].
The set-valued tree method, in contrast, settles both problems, see Chapter 7. The
corresponding J -complete trees are even rather slim.

By computing extremal real polytope norms for all pairs of 2 × 2 sign-matrices,
[CGSCZ10] established the finiteness property for this class of matrices. This is an
interesting result since, due to [Jun09], the finiteness property holds for all finite

4 Minimal means here that AJ is not a power of another FP-product.
5 To be precise, we defined FP-products for finite length. See [GWZ05] for the generalized

notion for infinite products, called l.s.m.p.
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sets of rational matrices if and only if it holds for all pairs of sign-matrices with
arbitrary dimension.

[GP13] modifies the complex polytope approach developed in [GWZ05, GZ08,
GZ09] to be able to deal with higher dimensions d. Instead of generating the
unit ball from the trajectory of the leading eigenvector xJ of one FP-product AJ ,
all leading eigenvectors xJ ′ of cyclic permutations AJ ′, J ′ ∈ π(J) are taken into
account. The authors define a graph, called cyclic tree, whose nodes are vectors
from the trajectories T (A , xJ ′), J ∈ Π(J) and whose edges symbolize multiplica-
tion with elements of A from the left. They avoid the computation of arbitrary
powers of cyclic permutations of the generator in an elegant way by defining the
root of the cyclic tree to be a cycle of the vectors xJ ′, J ′ ∈ Π(J). The paths in the
tree starting in the root cycle reduce to suffixes whose corresponding prefixes are
elements of Π(J). In other words, all trajectory points A[J ′k,S]xJ ′, k ∈ N0 are de-
scribed by the node v = AS xJ ′. The complex polytope of the k-th iteration can be
computed by knowledge of the nodes up to level k of the tree. The computation
is made more efficient by saying that a node coding a vector from the interior of
the current polytope is a dead leaf, and the branch can be cut. If there exists a
level with only dead leaves, then the b.c.p. does not change with respect to the
iteration before. That is, this b.c.p. is the unit ball of an extremal norm and the al-
gorithm terminates. If the algorithm does not stop after a certain number of steps,
the complex polytope norm computed in the last iteration is used for approximat-
ing the JSR by the three-member-inequality. Furthermore, a stopping criterion is
introduced that reveals if a generator matrix is no FP-product. See [GP13] for a
detailed description of the cyclic trees and the resulting algorithm. Variants allow-
ing a more efficient computation in case of real and nonnegative matrix families
base on the same concept.

Clearly, the cyclic tree differs from the set-valued tree in many aspects. Neverthe-
less, both depend in their combinatorial structure of the generator J . The cyclic
root of the tree has the same functioning as the introduction of negative nodes,
namely the subsumption of an infinite set of generator powers in order to obtain a
finite structure. The set-valued tree approach subsumes only the powers of J and
in general not additionally those of π(J) since the powers J k+1 and π(J)k differ
only in terms of a finite prefix and suffix.
Although the algorithm of [GP13] is theoretically applicable to all complex matrix
families, it is capable to determine the exact value of the JSR if and only if the fam-
ily has a spectral gap at 1: The algorithm terminates after finitely many iterations
if and only if J is a dominant generator forA . This is an even stronger restriction
than asymptotic simplicity, which principally allows several strong generators. For
the set-valued tree approach, Theorem 3.15 states that a J -complete tree exists
always if A has a spectral gap at 1. Choosing an appropriate norm, this case is
in fact trivial because the nodes of the tree can all be chosen to be completely
positive, i.e., no infinite sets of matrices have to be employed. Several examples in
Chapter 7 show that it is possible to establish the JSR of families which do not have
a spectral gap at 1. Despite possible principal advantages, we have to acknowledge
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that typical run-times of our current implementation can hardly compete with the
impressive results presented in [GP13].

[JCG14] combines the semidefinite lifting method of [BN05, PJB10] with the iter-
ative construction of a polytope norm [GWZ05, GZ08, GZ09] by searching for an
extremal conitope, which provides an extremal norm for the lifted family. This val-
idates the FP if the algorithm terminates in finite time. Two different but closely
related algorithms are presented. One of them attempts to verify that a generator
is FP-product, stopping after a finite number of steps either confirming the FP or
with an approximation of the JSR. The other one is an approximation algorithm
that aims to achieve rapidly converging bounds. The sufficient condition for ex-
istence of an extremal conitope norm is inherited from the one of an extremal
polytope norm. If a family is irreducible and asymptotically simple, then the lifted
matrix family admits an extremal conitope norm.

In the context of smoothness analysis of subdivision schemes, [Rio92] discusses
three different methods to determine upper6 bounds for the JSR of a pair of ma-
trices. The first one corresponds to the breadth-first search with respect to ‖ · ‖∞
on the tree of products and therewith providing in general an approximation of
the JSR by the three-member-inequality. The second one refers to [DL92b] and is
an attempt to construct an extremal norm of A = {A1, A2} but can by design be
successful only if ρ̂(A ) = maxi=1,2ρ(Ai). Assume that ρ(A1) ≥ ρ(A2) and B is a
matrix whose columns are eigenvectors of A1. The idea is to find a parametriza-
tion of B by d numbers, one for each column, and a matrix norm such that
‖B−1A2B‖ ≤ ρ(A1). In that case, ρ̂(A ) = ρ(A1) holds due to ‖B−1A1B‖ = ρ(A1).
The third method accounts for a special class of matrix families, that is, subdivi-
sion matrices with a strictly linear phase mask, i.e., the mask is symmetric and
the Fourier transform of the scheme’s symbol b

�

e−iξ
�

is positive for ξ ∈ [−π,π].
An upper bound for the JSR can be computed by determining the spectral radius
of some single matrix, avoiding a joint spectral radius analysis. Under some addi-
tional conditions, the upper bound is sharp. This approach is reviewed and refined
in [FM12]. Weaker conditions for optimality of the bound are shown and an al-
ternative matrix of a smaller dimension is constructed whose spectral radius is to
be computed.

5.4 Contractivity

Many applications rather need to check whether ρ̂(A ) < 1 than to obtain the
exact or approximated value. If A has the finiteness property, this problem is
decidable [Jun09]: Perform a breadth-first search on the tree of products T and
compute for each level the bounds of the three-member-inequality. If there is a
level such that the lower bound equals or exceeds 1, stop and declare ρ̂(A ) ≥ 1
and if the upper bound falls below 1, stop and declare ρ̂(A ) < 1. This algorithm
6 Upper bounds of the JSR transform to lower bounds for Hölder regularity of a scheme, see

Chapter 6.
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terminates since the case ρ̂(A ) = 1 and lower bounds being strictly smaller than
1 for all k is excluded by the finiteness property.

To validate ρ̂(A )< 1, it is actually not necessary to perform a breadth-first search.
The number of products to consider is dramatically reduced by traversing the tree
with a depth-first search, see also [HMR09] and references therein.

[HMR09] considers a parametrized family Aω that results from the smoothness
analysis of a subdivision scheme, the generalized 4-point scheme proposed in
[DLG87], and determines explicitly the interval of parameters with ρ̂(Aω) < 1.
Although the approach was adapted to this concrete matrix family, the set-valued
tree method bases strongly on the underlying ideas. The tree defined in [HMR09]
corresponds to the set-valued tree with J = ;, which is traversed by depth-first
search with backtracking in a strictly 1-bounded node. The notion of a generator7

is established to deal with long periodic paths. The observation that generators
induce for the scaled family an infinite periodic path in the tree of all products
inspired the idea of subsuming such a path by introducing negative children. With
some modifications, some of the proof techniques turn out to be very useful for
our purpose as well, as for example the idea of calculating the limit of generator
matrix powers A∞J or the splitting of I ∈ I into nodes of the tree, which motivated
the I∗-maximal prefix partition of K ∈K .

7 Note that a generator set in [HMR09] is defined differently than in this work, the main idea
though is the same.
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6 Joint spectral radius in subdivision

The analysis of subdivision schemes is one of many mathematical topics involving
the JSR. There are many different classes of subdivision schemes. To exemplarily
demonstrate an application of the set-valued tree method, we concentrate on the
most simple class of schemes, that is, on univariate, linear, stationary, uniform,
compactly supported subdivision schemes. Section 6.1 aims to shortly introduce
the general idea of subdivision schemes, to clarify the notation and to recall some
key results of smoothness analysis. Section 6.2 explains in detail how matrices
can be derived from a scheme in order to analyze its regularity. In particular,
an explicit formula for schemes of arbitrary arity m is provided. In Section 6.3,
the specific properties of palindromic subdivision matrices, which occur in case
of binary symmetric subdivision, are examined with respect to the set-valued tree
approach. It is shown that, due to the symmetry of the matrices, considering half
of the set-valued tree is sufficient when choosing the norm adequately. As an-
other consequence, the matrices in general do not possess a spectral gap at 1 such
that Theorem 3.15 is not applicable. An exception are families with generators
of length 2. To handle other cases, the so-called palindromic transformation is
developed.

6.1 A short introduction to subdivision

A subdivision scheme S is a set of rules which determine how to generate from
a given sequence Pk of values in Rd , called control points, a denser one Pk+1.
Subdivision is the iterated process of applying these rules, which, as functions of
the control points, may be linear or non-linear. One application of the rules is
called a refinement step, and the control points we started with are referred to
as old points and the arisen ones as new points. The scheme is called uniform if
the same rules are applied all over the sequence of control points, and stationary
if the rules do not change from one refinement step to the next. If the number
of points doubles/triples/quadruples in one subdivision step, the scheme is called
binary/ternary/quaternary. More generally, if the number of points multiplies by
m, we call it an m-ary scheme, and m is the arity. It is symmetric, if the subdivision
step commutes with reversion of the order of control points. The scheme has
compact support if only finitely many old points contribute to the generation of
a new one. Considering univariate schemes, the control points are associated in
step k with abscissae m−kZ. By linear interpolation of the control points, we obtain
a sequence of piece-wise linear functions when applying the subdivision scheme
iteratively.
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In the following, we assume a subdivision scheme to be univariate, linear, sta-
tionary, uniform and compactly supported. Given such a scheme S, obviously the
question as to the existence of a limit function arises. If the control points are in
Rd , the limit function maps from R to Rd . The smoothness analysis can be done
separately for each component, so we assume in the following control points in R
so that we can restrict ourselves to the analysis of real-valued functions.
Denote by SkP0 : R → R the function interpolating

�

m−ku, Pk
u

�

and being linear
on m−k[u, u+ 1] for any u ∈ Z. If (SkP0)k converges compactly to a continuous
function f : R → R, we call f the limit function corresponding to P0 and write
f =: S∞P0. The basic limit function of S is given by ϕ := S∞δu,0 and plays an
important role in Section 6.2.
S is termed convergent if, for any bounded initial sequence P0, there exists a limit
function S∞P0 which is nontrivial for at least one sequence of initial data. If the
iterated refinement steps map any bounded initial data sequence to zero, S is con-
tractive.
Convergence of a scheme imposes the question as to the smoothness of the limit.
If the limit function is in C k for any initial data sequence, S is called C k or
C k-convergent.
Our main focus is on Hölder regularity of the limit function: For k ∈ N0 and
α ∈ (0,1], let

C k,α := { f ∈ C k : ∃c ∈ R>0 s.t. ‖ f (k)(x)− f (k)(y)‖ ≤ c · ‖x − y‖α}.

That is, a function in C k,α has continuous derivatives up to order k, and the k-th
derivative is Hölder continuous with Hölder exponent α. Define

C r
∗ := { f ∈ C k,α : k+α < r}, r ∈ R.

If S∞P0 ∈ C r
∗ for any initial sequence P0, we say that S is C r

∗ and has Hölder
regularity r. If S is C r

∗ but not C r+ε
∗ for any ε > 0, we say that r is the maximal

Hölder regularity and α∗ := r −brc is the critical Hölder exponent of S. That is, the
critical Hölder exponent is a sharp upper bound for the Hölder exponents of S but
it is not necessarily Hölder exponent of S itself.

For the class of schemes considered here, the refinement rule

Pk+1
u =

∑

v∈Z
au−mv Pk

v (6.1)

defines S, with m being the arity. The sequence of coefficients (au)u∈Z is called
the mask of S. Since S has compact support, the mask has finitely many non-
zero elements. With a := min{i : ai 6= 0} and a = max{i : ai 6= 0}, the mask is
represented by the finite vector

a :=
�

aa, . . . , aa

�

and suppa := [a, a] is its support. The symbol of S is the Laurent polynomial
a(z) :=

∑

u∈Z auzu, a useful tool for smoothness analysis. We denote the scheme S
by Sa if the dependance of a scheme on the mask resp. symbol shall be indicated.
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In the following, we recall some well known results that are crucial for the smooth-
ness analysis of a subdivision scheme. If Sa is convergent, then

∑

u∈mZ+`

au = 1, ` ∈ {0, . . . , m− 1}.

This implies for the mth roots of unity ξk
m := e

i2πk
m that

a(ξk
m) =

m−1
∑

`=0

∑

u∈mZ+`

au(ξ
k
m)

u =
m−1
∑

`=0

(ξk
m)
`
∑

u∈mZ+`

au =

(

m for k = 0

0 for k = 1, . . . , m− 1.

Hence, a(1) = m and the divisibility of a(z) by
∑m−1

i=0 z i are necessary conditions
for convergence of Sa and will be assumed, throughout.

A central method is to analyze the difference scheme, a subdivision scheme that
relates differences of Pk to differences of Pk+1. If Sa is a scheme with symbol

a(z) =
�

∑m−1
i=0 z i

�

b(z), then Sb is its difference scheme, see [Sab10]. It allows to
characterize convergence of Sa as follows:

Theorem 6.1 Sa is convergent if and only if Sb with b(z) = 1
�

∑m−1
i=0 zi

�a(z) is contrac-

tive.

Proof. For m= 2, this corresponds to [DL02], Theorem 4.8. The arguments of the
proof are analogous for arbitrary arity, displayed below in the generalized variant.
It is not difficult to see that Sb, being the difference scheme, is contractive if Sa is
convergent. To prove the converse, we use the z-transform L(Pk; z) =

∑

u Pk
u zu of

a sequence Pk to show that (Sk
a P0)k is, for arbitrary P0, a Cauchy sequence with

respect to the sup-norm if Sb is contractive. This implies that Sa is convergent.
As piecewise linear function, Sk

a P0 attains its extreme values at the breakpoints.
Therewith,

sup
x∈R

�

�Sk+1
a P0(x)− Sk

a P0(x)
�

�= max
i∈{0,...,m−1}

�

sup
u∈Z

�

�Pk+1
mu+i − gk+1

mu+i

�

�

�

,

where

gk+1
mu+i :=

m− i

m
Pk

u +
i

m
Pk

u+1. (6.2)

In terms of the z-transform, (6.2) is represented by

L(gk+1; z) =
m−1
∑

i=0

∑

u∈Z
gk+1

mu+iz
mu+i

=
m−1
∑

i=0

�

m− i

m
z i +

i

m
z i−m

�

·

 

∑

u∈Z
Pk

u zmu

!

=
m−1
∑

i=0

�

m− i

m
z i +

i

m
z i−m

�

· L(Pk; zm)

=
zm+1− 2z+ z−m+1

m(z− 1)2
· L(Pk; zm). (6.3)
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It is not difficult to see that L(Pk+1; z) = a(z)L(Pk; zm) and L(Pk; z) = (1 −
z)L(∆Pk; z) where ∆Pk denotes the sequence of differences (Pk

u+1 − Pk
u )u∈Z. To-

gether with (6.3), we obtain

L(Pk+1; z)− L(gk+1; z) = a(z)L(Pk; zm)−
zm+1− 2z+ z−m+1

m(z− 1)2
L(Pk; zm)

=

 

1− zm

1− z
b(z)−

1− zm

1− z

∑m−1
i=0 z i−m+1

m

!

L(Pk; zm)

=
b(z)− 1

m

∑m−1
i=0 z i−m+1

1− z
L(∆Pk; zm).

Let d(z) := b(z)− 1
m

∑m−1
i=0 z i−m+1. Since b(z) = 1

�

∑m−1
i=0 zi

�a(z) and a(1) = m, it is

d(1) = b(1)− 1= 0. Hence, e(z) := d(z)
1−z

is a Laurent polynomial and

L(Pk+1; z)− L(gk+1; z) = e(z)L(∆Pk; zm).

Therewith, Pk+1 − gk+1 = Se∆Pk = Se(Sk
b∆P0). Following the argumentation

in [DL02], this together with Sb being contractive implies that Sk
a P0 is uniformly

convergent. �

In [DL02], it is shown that 1+z
2

is a smoothing factor in the binary case. That is, if
a(z) = 1+z

2
b(z) and Sb is C k, then Sa is C k+1. The smoothing factor for arbitrary

arity m is specified in [Sab10] to be
∑m−1

i=0 zi

m
. Therefore, further smoothness analy-

sis requires to regard the divided difference scheme of some scheme Sa, given by Sb
with b(z) = m

∑m−1
i=0 zi a(z).

Theorem 6.2 Let a(z) =

�

∑m−1
i=0 zi

�k+1

mk b(z) and Sb contractive. Then Sa is C k.

Proof. For m = 2, this corresponds to [DL02], Theorem 4.11, [DL02], Corol-
lary 4.21 and [DL02], Corollary 4.22. With the generalized smoothing factor, the
claim follows from Theorem 6.1 with similar arguments. �

In general, the implication of Theorem 6.2 is no equivalence. This is only the case
if the scheme Sa is stable: We follow the definition of [Rio92], saying that Sa is
stable if

∑

n∈Z
ϕ(n)einω 6= 0 ∀ω ∈ R

with ϕ being the basic limit function of Sa. This implies that Sa is L∞-stable as
defined in [DL02]: There are constants 0< C1 ≤ C2 <∞ such that

C1 sup
u∈Z
|Pu| ≤











∑

u∈Z
Puϕ(x − u)











∞

≤ C2 sup
u∈Z
|Pu|

for any sequence (Pu)u∈Z.
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Theorem 6.3 If Sa is C k and stable, then a(z) is divisible by
�

∑m−1
i=0 z i

�k+1
, and Sb

with b(z) = mk
�

∑m−1
i=0 zi

�k+1 a(z) is contractive.

Proof. For m = 2, this corresponds to [Rio92], Theorem 9.2 or to a combination
of [DL02], Theorem 4.18 and [DL02], Corollary 4.22. Generalizing the smoothing
factor, the claim follows with similar arguments basing on Theorem 6.1. �

That is, we have to check the difference scheme of the k-th divided difference
scheme for contractivity in order to prove that the original scheme is C k. Further-
more, Hölder regularity can be derived from that very scheme, as we explain in
Section 6.2.

6.2 Subdivision matrices and their JSR

Let S be a univariate, linear, stationary, uniform, m-ary subdivision scheme with
mask a and compact support. To begin with, we assume that S is convergent with
basic limit function ϕ. To simplify arguments, we assume a ≤ 0 ≤ a. Defining the
bi-infinite linear operator A by Au,v := au−mv , the refinement rule (6.1) reads

Pk+1 = APk. (6.4)

We will see that m finite submatrices of A contain all information about the
smoothness of S. Their dimension d × d is given by the number of translated
basic limit functions that have influence on [0, 1].
With ϕ being the basic limit function, the limit function corresponding to P0 sat-
isfies

S∞P0 =
∑

u∈Z
P0

uϕ(· − u) (6.5)

due to uniformity and linearity of S.
When starting the subdivision process with initial data assigned to a grid m−kZ
instead of Z, this leads to the basic limit function ϕ(mk·). Since S is stationary, it
is

S∞P0 = S∞Pk =
∑

u∈Z
Pk

uϕ(m
k · −u). (6.6)

Set L := {u : supp(ϕ(· − u)) ∩ [0,1] 6= ;}. Since S has compact support, ϕ has
compact support and therefore L is a finite set. More precisely, suppϕ(· − u) =
[u + a, u + a]. Hence, L = {−a + 1, . . . ,−a} and d := a − a is the number of
elements in L. By assumption, 0 ∈ L.

Due to (6.5), the limit function corresponding to P0 depends in the interval [ j, j+
1] only on the values {P0

u : u− j ∈ L}:

S∞P0
�

�

[ j, j+1] =
∑

u− j∈L

P0
uϕ(· − u)
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Further, (6.6) implies that {Pk
u : u − j ∈ L} determines the limit function on

m−k[ j, j+ 1] by

S∞P0
�

�

m−k[ j, j+1] =
∑

u− j∈L

Pk
uϕ(m

k · −u). (6.7)

By linearity of the subdivision rules, we can define a family of matrices A =
{A1, . . . , Am} that maps values of refinement step k to values of step k + 1 such
that, for i = 1, . . . , m,

Ai : {Pk
u : u− j ∈ L} 7→ {Pk+1

u : u− (mj+ i− 1) ∈ L}. (6.8)

Then Ai maps values determining the limit function on m−k[ j, j + 1] to those
determining it on m−(k+1)[mj + i − 1, mj + i] = m−k[ j + i−1

m
, j + i

m
]. Due to

uniformity of S, these matrices are independent of j. According to (6.4), Ai is the
d× d-submatrix of A which consists of the rows1 L+ i−1 and the columns L, i.e.,
(Ai)s,t = A−a+i+s−1,−a+t . This leads to the explicit formula

(Ai)s,t = a(m−1)a−1+s−m·t+i. (6.9)

Possibly, the matrices in A share one or more zero column. This implies that the
family is reducible and the problem can be split into lower dimensional ones as
described in Section 2.3.

So, with knowledge of {P0
u : u ∈ L}, we can describe an arbitrarily small interval

of the limit function via a product of the matrices inA . Let

Pk
m−k[ j, j+1]

:=
�

Pk
−a+`+ j

�

`=1,...,d
for k ∈ N0, j ∈ Z.

That is, Pk
m−k[ j, j+1]

determines S∞P0 on an interval of length m−k in the sense of
(6.7), and (6.8) reads

Pk+1
m−(k+1)[mj+i−1,mj+i]

= AiP
k
m−k[ j, j+1]

. (6.10)

Hence, infinite products of A lead to values of the limit function: For x ∈ R,
the value S∞P0(x) is related to the infinite product given by its m-adic expansion
x =

∑∞
i=0 dim

−i with d0 ∈ Z, di ∈ {0, . . . , m − 1} for i > 0. By the principle of
nested intervals, the product AIP

0
[d0,d0+1] with I = [d1 + 1, d2 + 1, . . . ] describes

S∞P0(x). This is illustrated for m = 3 and x = 11
27

in Figure 6.1. Moreover, since
we assumed that 0 ∈ L,

Pk
u =

�

Pk
m−k[u,u+1]

�

a
for u ∈ Z. (6.11)

To motivate the construction of the matrices, we assumed S to be convergent
such that continuous limit functions and a non-trivial basic limit function exist.
That enabled us to connect products of A to the limit functions of S. But the
construction of the subdivision matrices does not depend on convergence of S.
Given any symbol with finitely many non-zero coefficients, we can build matrices
according to (6.9) such that (6.10) and (6.11) hold. That allows us to check if a
scheme is contractive:
1 summation with the index set element-wise
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Figure 6.1: Illustration of the effect ofA for m= 3 and x = 11
27

.

Theorem 6.4 S is contractive if and only if ρ̂(A )< 1.

Proof. We assume ρ̂(A ) < 1. Then there exists M ∈ N \ {0} such that ‖AI‖∞ <
1 for any I ∈ Ik, k ≥ M . Set C := max{‖AI‖∞ : I ∈ Ik, k < M} and µ :=
max{‖AI‖∞ : I ∈ IM}< 1.
Consider u ∈ Z and v = m−ku. Let P0 be an arbitrary bounded initial sequence.
Due to (6.11),

�

�Pk
u

�

�≤




Pk
[v ,v+m−k]







∞
=




AIP
0
[bv c,bv c+1]







∞

for some I ∈ Ik that is determined by the m-adic expansion up to order k of
v . Splitting I into index vectors Ii ∈ IM and a suffix S with |S| < M such that
I = [I1, . . . , Ib k

M c
, S], it follows that

�

�Pk
u

�

�≤ ‖S‖∞









AI
b k

M c









∞
· · ·


AI1





∞





P0
[bv c,bv c+1]







∞
≤ C ·µb

k
M c


P0




∞ .

Regard x ∈ R with xk being its m-adic expansion up to order k and u := mk xk.
Due to the definition of SkP0,

�

�SkP0(x)
�

�≤max
��

�SkP0
�

m−ku
��

�,
�

�SkP0
�

m−k(u+ 1)
��

�

�

=max
��

�Pk
u

�

�,
�

�Pk
u+1

�

�

�

→ 0.

Hence, S∞P0 ≡ 0 for all bounded initial sequences P0, which means that S is
contractive.

Let S be contractive and assume that ρ̂(A ) ≥ 1. According to [HMR09], there
exists a sequence I ∈ I such that



AI(k)



 ≥ 1 for all k ∈ N0, with I(k) being the
prefix of I with length k. Consider an initial sequence P0 with values in {-1,1} such
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that for every c ∈ {−1, 1}d , there exists u ∈ Z that satisfies c = [P0
u−a+1, . . . , P0

u−a+d]
or, reformulated, c = P0

[u,u+1].

Let bk be a row of AI(k) such that


AI(k)





∞ =


bk





∞. Define ck ∈ {−1, 1}d such
that the signs of ck and bk coincide entry-wise. With ck = P0

[uk,uk+1], there exists
v ∈ Z such that

1≤


AI(k)





∞ =


AI(k)ck





∞ =




AI(k)P
0
[uk,uk+1]







∞
=




Pk
m−k[v ,v+1]







∞
.

This implies Pk
−a+`+v = SkP0(m−k(−a+`+v ))≥ 1 for some 1≤ `≤ d. But since S

is contractive, there exists k0 ∈ N such that SkP0(x)< 1 for any x ∈ R and k ≥ k0,
leading to a contradiction. �

For smoothness information on S, the (divided) difference schemes must be con-
sidered: LetA be the matrix family deduced from Sb with symbol b(z). According

to Theorem 6.2, Sa with a(z) =

�

∑m−1
i=0 zi

�k+1

mk b(z) is C k if ρ̂(A ) < 1, the converse
holds due to Theorem 6.3 if Sa is stable.
Hölder regularity is determined by the value of ρ̂(A ), as Theorem 6.5 states. If

a(z) is divisible by
�

∑m−1
i=0 z i

�`

for `= k but not for `= k+ 1, we call

c(z) =
mk

�

∑m−1
i=0 z i

�k
a(z)

the kernel of the scheme Sa, and c(z)
m

the scaled kernel.

Theorem 6.5 Let a(z) =

�

∑m−1
i=0 zi

�k+1

mk b(z) andA be deduced from Sb.

a) Sa is C k+α
∗ with α=− logm(ρ̂(A )). Moreover, α≤ 1.

b) If Sa is stable, the following holds: If either α = 1 and b(z) is the scaled kernel
of Sa or α < 1, the Hölder regularity k+α is maximal.

We remark that α is not necessarily positive such that we do not call it Hölder
exponent of Sa. The smoothness C bk+αc and the Hölder exponent

β = k+α− bk+αc

arise from k+α= bk+αc+ β .
Proof. In case m = 2, this is a direct consequence of [Rio92], Theorem 1.11.
Translated to our notation, Rioul therein defines a Hölder regularity estimate k+α j

by

2− jα j
=max

I∈I j
‖AI‖∞
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and proves that (α j) j converges to α := sup j α
j ≤ 1, and further, that Sa is C k+α

∗ .
With

α= lim
j→∞

α j =− log2

�

lim
j→∞

max
I∈I j
‖AI‖

1
j
∞

�

=− log2(ρ̂(A )),

it follows a). Furthermore, Rioul proves that k+α is maximal in the setting of b).

All arguments are analogous for arbitrary m, using theorems 6.2 and 6.3. �

6.3 Palindromic symmetry of binary schemes

Applications usually require subdivision schemes to be symmetric. Given a finite
number of control points, it should not make any difference if a designer starts his
input with the first or with the last one. In case of binary schemes, this leads to a
special symmetry relation of the matrices inA :

Definition 6.6 A family A = {A1, A2} is called palindromic if A2 = RA1R with R
being the matrix with entries 1 on the counter-diagonal and 0 elsewhere:

R= (ri j)i, j=1,...,d with ri j =

(

1 i = d − j+ 1

0 else
.

Although our interest for palindromic families arises from analyzing symmetric
subdivision schemes, the results of this section are not restricted to subdivision
matrices but hold in general for palindromic familiesA = {A1, A2}.
As discussed below, the palindromic symmetry of the matrices has consequences
for the set-valued tree method. Choosing the norm adequately, it allows to signifi-
cantly reduce the computational effort. But as another consequence, a palindromic
family rarely possesses a spectral gap at 1. As we will see later on, families with
generators of length 2 are an exception. To handle other cases, we present a
transformation that, in certain situations, leaves the JSR unchanged but induces a
spectral gap at 1 such that Theorem 3.15 becomes applicable.

The following notations may appear rather technical but allow a very compact
display of results and proofs.

Definition 6.7 For i ∈ I1 = {1,2}, we set ī :=

(

2 if i = 1

1 if i = 2
and for I =

[i1, . . . , i`] ∈ I`,` ∈ N0,

Ī := [ī1, . . . , ī`].
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We observe that palindromic families induce a symmetric setting in terms of spec-
tral radii: Due to R = R−1, it is AI = RA ĪR

−1 and consequently ρ(AI) = ρ(A Ī).
Therefore, we assume in the following that J ∈ J if and only if J̄ ∈ J . That is,
generators only come in pairs.

Against this background, Definition 6.7 can be generalized from completely posi-
tive to arbitrary index vectors:

Definition 6.8 We call {Ji, J j}, 1 ≤ i, j ≤ n a generator pair of J = {J1, . . . , Jn} if
Ji = J̄ j. With −i :=− j, we denote for K = [k1, . . . , k`] ∈K`

K̄ := [k̄1, . . . , k̄`].

Obviously, ¯̄K = K .

In case of choosing an adequate norm, the symmetric situation, which we observed
in terms of spectral radii, is extended to a symmetry of the tree T in terms of node
properties such that regarding half of the tree is sufficient. This is stated more
formally by Proposition 6.10. The result is not difficult to prove but an important
observation since it allows to reduce the complexity of the algorithms described in
Chapter 4 to a half. To include norm ‖ ·‖poly as defined in Section 4.4 in the result,
we need the following lemma.

Lemma 6.9 Let ‖ · ‖poly be a norm whose unit ball is constructed by Algorithm 4.11
with start vectors V0 for the iterated construction process. If v ∈ V0⇔ Rv ∈ V0, then
‖RAR‖poly = ‖A‖poly.

Proof. Assume that v ∈ V0 ⇔ Rv ∈ V0. The following notations correspond to
those in Algorithm 4.11.
By induction on k, we show that

v ∈ Vk⇒ Rv ∈ Vk

holds for all iteration steps k. The converse holds due to v = RRv trivially.
For k = 0, this is true by assumption. Let v ∈ Vk and Yk := Xk ∪ Vk−1. We show
that Rv ∈ Yk:
Since v ∈ Yk, either v ∈ Vk−1 or v ∈ Xk. In the first case, Rv ∈ Vk−1 ⊆ Yk by
induction hypothesis. In the second case, there exists Ai ∈ A and ṽ ∈ Vk−1 such
that v = Ai ṽ . Therewith,

Rv = RAi ṽ = RAiRRṽ = AiRṽ .

By induction hypothesis, Rṽ ∈ Vk−1, implying Rv ∈ Xk ⊆ Yk.
It remains to show that Rv is a vertex of conv(Yk). Assume that there is a proper
convex combination

Rv =
∑

y∈Vk

λy y.
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Then

v =
∑

y∈Vk

λyRy.

But we know that Ry ∈ Yk since y ∈ Vk ⊂ Yk. Hence, v is proper convex com-
bination of elements of Yk which contradicts the property of v to be a vertex of
conv(Yk). Therewith, Rv is an element of Vk.
This implies that v ∈ V if and only if Rv ∈ V . Furthermore, nT v = 1 if and only if
(nT R)(Rv ) = 1. If {x : nT x ≤ 1} is non-redundant for the description of conv(V ),
then so is {x : nT Rx ≤ 1}. Hence, by construction, nT is a row of N if and only
if nT R is a row of N . So, up to permutation of rows and columns, NRARV equals
NAV and therefore ‖A‖poly =maxi, j(NAV )i j =maxi, j(NRARV )i j = ‖RAR‖poly. �

Proposition 6.10 Let A be a palindromic family with generator set J , consider as
norm ‖ · ‖1, ‖ · ‖2, ‖ · ‖∞ or ‖ · ‖poly satisfying the condition of Lemma 6.9.

a) If there exists a J -complete tree descending from 1, then ρ̂(A ) = 1.

b) If there exists a contractive tree descending from 1, then ρ̂(A )< 1.

Proof. The proof is done in the following steps: First, we show that ‖AK‖= ‖AK̄‖
for the specified norms. That implies that K is (strictly) 1-bounded if and only if so
is K̄ . Second, we show that K is covered if and only if so is K̄ . Third, we construct
a J -complete resp. contractive tree descending from ;, which shows a) resp. b).

An important relation of K ∈K and K̄ is given by

AI ∈AK ⇔ RAIR ∈AK̄ , I ∈ I . (6.12)

This is obvious for K being completely positive since R = R−1. Assume that K has
exactly one negative entry, K = [P,−i, S] with i > 0. Then

AK = {ASAk
Ji

AP : k ∈ N0}= {RAS̄R(RAJ̄i
R)kRAP̄R : k ∈ N0}

= {RAS̄Ak
J̄i

AP̄R : k ∈ N0}= {RAR : A∈AK̄ .}

(6.12) follows by induction on the number of negative entries.

For the specified norms, ‖A Ī‖ = ‖AI‖ for I ∈ I : This corresponds to Lemma 6.9
for ‖ · ‖poly satisfying the condition v ∈ V0 ⇐⇒ Rv ∈ V0. Since R is unitary, the
equality holds for the unitarily invariant norm ‖ · ‖2. The norms ‖ · ‖∞ and ‖ · ‖1
are invariant under permutation of rows and columns.
It follows from (6.12) that ‖AK‖= ‖AK̄‖ for K ∈K .

Consider a covered node K , i.e., K = [P, S] with AK ∈ AP and S completely
positive. Then also K̄ = [P̄, S̄] is covered: Since S is completely positive, S̄ is as
well, and A∈AK̄ ⇒ RAR ∈AK ⇒ RAR ∈AP ⇒ A∈AP̄ .
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Let T∗ be a J -complete resp. contractive tree descending from 1, K∗ the set of its
nodes and K̄∗ := {K̄ : K ∈ K∗}. By definition of k̄ for k ∈ K1, [1, I] ∈ K∗ has the
same number of positive or negative children as [2, Ī] ∈ K̄∗. In particular, L̄ is a
leaf of T̄∗ if and only if L is a leaf of T∗ and therefore (strictly) 1-bounded or cov-
ered. Hence, T̄∗ is J -complete resp. contractive descending from 2. This obviously
implies that the tree with nodesK∗∪K̄∗∪; is J -complete resp. contractive. Then
a) follows with Theorem 3.6 resp. b) with Lemma 3.5. �

While the set-valued tree method benefits from the symmetry of norms, the sym-
metry of spectral radii is a disadvantage: A palindromic familyA admits a spectral
gap at 1 only if J̄ ∈ Π(J). If |J | = 2, this is always the case: If [1,1] resp. [2,2] is
a strong generator, then [1] resp. [2] is a strong generator as well. Hence, [1,1]
resp. [2,2] is no candidate for a dominant generator. The situation that remains
to consider is J = [1,2], and J̄ = [2,1] ∈ Π(J).
But in general, appearance of a spectral gap is particular. Instead of a dominant
generator, we expect A to admit a dominant pair, sharing a spectral gap as we
define here:

Definition 6.11 The matrix family A has a shared spectral gap at 1 if there exists
a generator set J = {J , J̄} such that

• there exists q < 1 such that

ρ(AI)≤ q (6.13)

for any product AI , unless I = ; or I = [S, J r , P] for some r ∈ N0 and some
partition [P, S] = J of J , or I = [S, J̄ r , P] for some r ∈ N0 and some partition
[P, S] = J̄ of J̄ .

• the Jordan normal form Λ of AJ is

Λ := V−1AJ V =
�

1 0
0 Λ∗

�

, ρ(Λ∗)< 1. (6.14)

In this case, {J , J̄} is called a dominant pair.

Theorem 3.15 guaranteed the existence of a J -complete tree in case of a spectral
gap at 1, but not in case of a shared spectral gap at 1. Hence, most palindromic
families will not satisfy the conditions of Theorem 3.15. In order to save the result
for the palindromic situation, we introduce a transformed family.
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Definition 6.12 If A = {A1, A2} is palindromic, we call the family E = {E1, E2}
with E1 := A1R and E2 := RA1 the palindromic transform ofA .

We will see that E is palindromic as well, see Lemma 6.16. Furthermore, proving
ρ̂(A ) = 1 is equivalent to proving ρ̂(E ) = 1:

Lemma 6.13 If E is the palindromic transform ofA , then

ρ̂(A ) = ρ̂(E ).

Proof. It is easy to verify that {EI |I ∈ I2}= {AI |I ∈ I2} and so obviously

{EI |I ∈ I2k}= {AI |I ∈ I2k}

for any k ∈ N. Therewith,

ρ̂(E ) = lim
k→∞

max
I∈Ik
‖EI‖

1
k = lim

k→∞
max
I∈I2k

‖EI‖
1

2k

= lim
k→∞

max
I∈I2k

‖AI‖
1

2k = lim
k→∞

max
I∈Ik
‖AI‖

1
k

= ρ̂(A ) = 1.

�

For a compact description of the relation between A and E , we establish the
following notation:

Definition 6.14 For I = [i1, . . . , i`] ∈ I`, define I by

(I) j :=

(

ī j if j odd

i j if j even

for j = 1, . . . ,`.

Obviously, I = I .

Theorem 6.15 exhibits the benefit of the palindromic transformation.

Theorem 6.15 Consider a palindromic family A that is product bounded and has
a shared special gap at 1 with dominant pair {J , J̄}. If |J | is odd, then E is product
bounded and has a special gap at 1 so that E satisfies the conditions of Theorem 3.15.
In that case, Ĵ := [J , J̄] is a dominant generator of E .

In order to prove Theorem 6.15, the following lemma links the products of E with
those ofA .
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Lemma 6.16

a) Ei = AiR= RAī for i = 1,2.

b) EI = AI for I ∈ I with |I | even.

c) EI = RAI for I ∈ I with |I | odd.

d) E Ī = REIR for any I ∈ I . In particular, E is palindromic.

e) E[I , Ī] = AI2 for I ∈ I with |I | odd.

Proof.

a) The claim follows from (6.12).

b) This is easy to verify for EI with |I | = 2. Regard a product of length 2k as
product of length k with factors being products of length 2. Then use the fact
that for K , L ∈ I with K , L even, [K , L] = [K , L].

c) |I | is odd, hence I = [P, i] with |P| even and i ∈ {1, 2}. It follows with a) and
b) that EI = Ei EP = RAīAP = RA[P,ī] = RAI

d) The claim follows trivially for I ∈ I1. For I = {i1, . . . , ik} ∈ Ik, REIR =
REikR · · ·REi2RREi1R= E Ī .

e) This is a consequence of c).

�

Now, we are able to prove Theorem 6.15:
Proof. It is obvious that E is product bounded if A is product bounded: Due to
Lemma 6.16 a) and b), ‖EI‖ ≤max{‖R‖ · ‖AI‖,‖AI‖}.

We show that E has a spectral gap at 1. By Lemma 6.13, ρ̂(E ) = 1. {Ĵ , ¯̂J} is a
generator set since ρ(EĴ) = ρ(AJ2) = ρ(A2

J) = ρ(AJ)2 = 1 due to Lemma 6.16 e).
Furthermore, ¯̂J = [J̄ , J] is a cyclic permutation of Ĵ .
To see that Ĵ is dominant, we regard the products of E , distinguishing products of
even and odd length.
Considering products of even length, recall that {EI : I ∈ I2k} = {AI : I ∈ I2k}.
With q < 1 from (6.13), we know by dominance of {J , J̄} that {AI : I ∈ I2k}
contains at most 2 · |J | products A with ρ(A) ≥ q, namely the matrices according
to even powers of |J |, |J̄ | and their cyclic permutations. So there are at most |Ĵ |=
2 · |J | products E with ρ(E) ≥ q. Since |Ĵ | is the number of cyclic permutations
π(Ĵ) and ρ(EJ) = ρ(Eπ(J)), ρ(EI)< q for I /∈ Π(Ĵ) even.
Considering products of odd length, assume that there is EI with I ∈ I2k+1 such
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that ρ(EI)≥
p

q. Then ρ(EI2)≥ q.
Furthermore, EI = RAI by Lemma 6.16 c). Therewith,

EI2 = RAIRAI = A ĪAI = A[I , Ī].

Due to dominance of {J , J̄} for A , [I , Ī] = π(J)` or [I , Ī] = π(J̄)` with cyclic
permutation π and ` ∈ N.
So, 2 · |I |= ` · |J |. Since |J | odd, `= 2 · ˜̀ for some ˜̀. Hence,

[I , Ī] = [Π(J)˜̀,Π(J)˜̀]

or

[I , Ī] = [Π(J̄)˜̀,Π(J̄)˜̀].

But this, together with |I | = | Ī |, implies I = Ī , which is impossible. It follows that
ρ(EI)<

p
q for all I ∈ I2k+1.

Summarizing, for any product EI with I not being power of Ĵ or of its cyclic
permutations, we showed ρ(EI)<

p
q.

With ΛĴ resp. ΛJ being the Jordan normal form of EĴ resp. AJ , it is

ΛĴ = V−1EĴ V = V−1A2
J V = (ΛJ)

2 =
�

1 0
0 Λ2

∗

�

.

Hence, Ĵ is dominant for E . �

Summarized, the symmetrical situation of palindromic families can be utilized
to reduce the complexity of the problem as specified in Proposition 6.10. But
the symmetrical appearance of generators prohibits in general the desirable sit-
uation of a spectral gap at 1. There is no problem in the quite typical case of
generator length 2, occurring systematically for palindromic 2 × 2-matrices, see
[Möß10]. The palindromic transform allows to handle the cases with generators
of odd length. For the transformed family, Theorem 6.15 guarantees the existence
of a J -complete tree under certain conditions.
This result is theoretically important. In practice, the palindromic transformation
does not necessarily lead to shorter or trimmer trees as some of the examples in
Chapter 7 demonstrate. Note also that the norm ‖ · ‖V resp. ‖ · ‖w as defined in
Section 3.3 resp. Section 4.4 destroys the symmetric situation. Therefore, Propo-
sition 6.10 cannot be applied to E when searching for the tree whose existence is
guaranteed.
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7 Examples

The examples presented in this chapter serve several purposes. They shall demon-
strate the capabilities of the method presented in this work. This was the aim of
the current implementation of Algorithm 4.3, which is not optimized in terms of
runtime. Furthermore, they illustrate the algorithmic details discussed in Chap-
ter 4, as the use of different parameter values or different choices of norm. Sec-
tion 7.1 presents several elementary examples, illustrating the method for families
with spectral gap at 1 at well as for families with more than one strong genera-
tor. Most of the other examples result from smoothness analysis of subdivision
schemes, providing the exact Hölder regularity of these schemes. Families with
m> 2 are represented by ternary and quaternary schemes. As benchmarks for the
implemented algorithm serve the parameter depending families of the primal and
dual 4-point scheme.
Algorithm 4.12 was applied to answer the open question if parameter values exist
for which the parametrized 8-point scheme is C4.
The trees in Section 7.1 are calculated analytically with use of MAPLE. All other
examples are computed in MATLAB, and a node K is recognized to be 1-bounded
if and only if ‖NK‖ < 1− 10−7 is numerically true. Unless indicated otherwise,
the check for 1-boundedness bases on the approach using balls of matrices as de-
scribed in Section 4.3.1.

Recall that the input A of Algorithm 4.3 is a family for which ρ̂(A ) = 1 is to
be validated. Therefore, a family A resulting from applications has to be scaled
as explained in Section 2.4. Please note that all J -complete trees displayed in

the following correspond to the scaled family ρ(AJ1
)−

1
|J1|A , implying1 that J1 is a

strong generator of the generator set J = {J1, . . . , Jn}.

Clearly, the numerical results in this chapter cannot be taken as rigorous mathe-
matical proves. The numerically computed J -complete tree is to be taken as a
strong indication that the JSR of the exact scaled family equals 1. In Section 3.3,
stability under sufficiently small perturbations is discussed. In principle, the nature
of the problem allows a treatment via interval arithmetic. When scaling the matrix
family in such a framework, it is important to ensure that the leading eigenvalues
of the generator matrix are not described by an enclosing interval but, since their
values are known by construction, are the precise values with modulus 1. Oth-
erwise, the special behavior of strong generator powers, which neither tend to

1 Otherwise, J would not be a generator set for the scaled family.
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infinity nor to zero, is not modeled. In fact, also the MATLAB implementation
makes use of the knowledge of the leading eigenvalue of a strong generator, see
Section 4.3.3.

A few of the following examples were also published in [MR14] for illustrative
purposes.

7.1 Illustrating Examples

In this section, we illustrate aspects of our method by considering some model
problems. Unless indicated otherwise, all trees are constructed with respect to the
maximum absolute row sum norm ‖ · ‖∞.

First, letA = {A1, A2} with

A1 =

�

10
9

1
3

−1
3

0

�

, A2 =

�

0 1
5

p
1− ε

−1
5

p
1− ε 26

25
− ε

�

.

Then ρ(A1) = 1 and ρ(A2) = 1− ε. Let us consider a few special cases:

• For ε = 1
8
, we choose the generator set J = {[1]}. It leads to a J -complete

tree, i.e., the conditions of Theorem 3.6 are satisfied, see Figure 7.1 (left).
Therewith, ρ̂(A ) = ρ(A1) = 1.

• For ε = 0, both matrices A1, A2 have spectral radius 1. Hence, A does not
have a spectral gap at 1. Figure 7.1 (right) shows the J -complete tree for
J = {J1, J2} with J1 = [1], J2 = [2], thus proving ρ̂(A ) = 1 also in this case.

• For ε close to 0, the asserted benefits of generators J with ρ(AJ)< 1 become
apparent. For ε = 0.01, the spectral radius of A2 is 0.99. In principle, it is
sufficient to use only the generator J1 = [1], see Figure 7.2 (left). However,
Figure 7.2 (right) shows that the depth of the resulting tree is reduced signif-
icantly when using the additional weak generator J2 = [2]. This is because
the slow decay of norms of matrix powers ‖Ak

2‖ is subsumed in the single
negative node marked by a triangle. For smaller values of ε, the effect be-
comes even more drastic. For instance, ε = 0.001 leads to depth 224 when
using a single generator, while the two generators still yield the same trim
pattern shown in Figure 7.2 (right).

The next two examples are taken from [GWZ05]. These pairs of matrices are
not asymptotically simple, prohibiting a validation by means of a finite structure
when following the approach suggested there. In contrast, our method meets the
challenge and establishes the JSR in a rather efficient way.

LetB = {B1, B2} with

B1 =
�

cos(1) − sin(1)
sin(1) cos(1)

�

, B2 =

�

1
2
− i

2
0 0

�

.
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When choosing J = {[1]}, we obtain a J -complete tree, see Figure 7.3 (left).
Thus, ρ̂(B) = ρ(B1) = 1.

Let C = {C1, C2} with

C1 =
3−
p

5

2

�

2 1
1 1

�

, C2 =
3−
p

5

2

�

1 1
1 2

�

.

With J = {[1], [2]}, we obtain a J -complete tree, see Figure 7.3 (right). Thus,
ρ̂(C ) = ρ(C1) = ρ(C2) = 1.

Let D = {D1, D2} with

D1 =
�

1 1
0 1

�

, D2 =
9

10

�

1 0
1 1

�

.

In [GP13], this example illustrates the method, and the unit ball of the extremal
norm was computed in two iterations. With J = {[1, 2]}, Algorithm 4.3 ter-
minates with the J -complete trees of depth 8 visualized in Figure 7.4 in a sub-
second. This confirms ρ̂(D) = ρ(D2D1)

1
2 . The tree on the left corresponds to ‖·‖2,

the one on the right to ‖ · ‖poly with IT = 3. The parameter values for the computa-
tion were in both cases set to LIMRADCONSTR = 1

100
and LIMRADCOMPUT = 1

17
. With

these parameter values and ‖·‖∞, the algorithm terminates in MAXLEVEL = 50 with
output "No result“. Comparison of the trees indicates that ‖ · ‖poly is, at least for
small IT, not necessarily a better choice than the non-adapted norm ‖ · ‖2.
Furthermore, the value of LIMRADCOMPUT is important here. When changing
LIMRADCOMPUT to 1

16
, the algorithm also terminates for the norms ‖ ·‖2 and ‖ ·‖poly

in MAXLEVEL = 50 with output "No result“.

The set-valued tree method in principle abandons conditions on the matrix family
as irreducibility or product boundedness. Although transforming the problem to
the analysis of lower-dimensional irreducible families is certainly to recommend,
it is pleasing that no a priori check for irreducibility has to be performed. The
following simple example demonstrates successful termination of Algorithm 4.3
for a reducible family. Consider F = {F1, F2} with

F1 =

�

1
4

0
−1

2
1
2

�

, F2 =

�

1 −1
4

0 1
2

�

.

F is product bounded but not irreducible since F1 and F2 share the eigenvector
(1, 2)T . With J = {[2]}, the family possesses the J -complete tree visualized in
Figure 7.5 (left), validating ρ̂(F ) = ρ(F2).

In case of a family which is not product bounded, the approach works if the un-
bounded products can be subsumed in negatives nodes. Consider G = {G1, G2}
with

G1 =
�

1 1
0 1

�

, G2 =

�

0 0
0 1

2

�

.

(Gk
1)k is unbounded. But since G2 ·Gk

1 = G2, aJ -complete tree shown in Figure 7.5
(right) exists for J = {[1]}.
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Figure 7.1: J -complete trees for A with ε = 1/8 (left) and ε = 0 (right), and
generator set J = {[1], [2]}. Colors and shapes of markers indicate
properties of nodes: green ¬ 1-bounded, white ¬ covered, square ¬
negative child w.r.t. generator J1 = [1], triangle ¬ negative child w.r.t.
generator J2 = [2], red ¬ other.
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Figure 7.2: J -complete trees forA with ε = 0.01, and generator set J = {[1]}
(left) respective J = {[1], [2]} (right).
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Figure 7.3: J -complete trees for B with J = {[1]} (left) and for C with J =
{[1], [2]} (right).
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Figure 7.4: J -complete trees for D with J = {[1, 2]} and Norm ‖ · ‖2 (left) re-
spective ‖ · ‖poly with IT = 3 (right).
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Figure 7.5: J -complete trees for F with J = {[2]} (left), and G with J = {[1]}
(right).
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7.2 3-point scheme

Consider the binary 3-point scheme that is given by the symbol

a(z) =
1

32

�

−3(z−2+ z3) + 5(z−1+ z2) + 30(1+ z1)
�

.

Figure 7.6 illustrates how old points are mapped to new points. Checking the
divided difference schemes with symbols 2

(1+z)2
a(z) and 4

(1+z)3
a(z) for contractivity

shows that the original scheme is C1 but not C2. To compute Hölder regularity,
we therefore have to analyze a scheme with the symbol 2k−1

(1+z)k
a(z) and k ≥ 2. For

k = 2, the corresponding matrix familyA = {A1, A2} is given by

A1 =
1

32







22 −6 0
−6 22 0
0 22 −6






, A2 =

1

32







−6 22 0
0 22 −6
0 −6 22






.

For k = 3, the corresponding matrix familyB = {B1, B2} is given by

B1 =
1

32

�

56 0
−12 −12

�

, B2 =
1

32

�

−12 −12
0 56

�

.

The 3-point scheme has maximal Hölder regularity β∗ = 1+α∗ = 1−log2(ρ̂(A )) =
2−log2(ρ̂(B)). The set-valued tree approach is successful for both familiesA and
B withJ = {[1], [2]}. Figure 7.7 presentsJ -complete trees that are obtained for
different choices of parameters values. The runtime is on a sub-second timescale.
Any of the trees displayed in Figure 7.7 is J -complete and therewith satisfies
the condition of Theorem 3.6. We conclude ρ̂(A ) = ρ(A1) = ρ(A2) =

7
8

and
β∗ = 4− log2(7)≈ 1.1927.

With ‖·‖2, LIMRADCONSTR = 1/100 and LIMRADCOMPUT = 1/10, a J -complete tree
of B is computed whose visualization is equivalent to the tree 1a in Figure 7.7.
Hence, ρ̂(B) = ρ(B1) = ρ(B2) =

7
4
, confirming the result for β∗. Additionally, this

accords with the explicit formula of [Möß10] for palindromic (2× 2)-matrices.

Student Version of MATLAB Student Version of MATLAB

Figure 7.6: Visualization of the 3-point scheme, showing the control points after
the first (red) and second (blue) subdivision step in comparison to the
initial control points (black).
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Figure 7.7: J -complete trees for the 3-point scheme and J = {[1], [2]} with dif-
ferent choices of parameters and norms.
The default values are chosen to be norm ‖·‖2, LIMRADCONSTR = 1/100
and LIMRADCONSTR = 1/10 leading to tree 1a.
With norm ‖ · ‖∞ instead of ‖ · ‖2, tree 1b is computed.
When transforming the basis such that A1 is diagonal, we get tree 2a
instead of 1a.
The trees 2b, 3a and 3b are with respect to the palindromic transform
ofA . The default values lead to 2b. Norm ‖ · ‖w with w = 3 instead of
‖ · ‖2 leads to tree 3a.
Tree 3b is computed with LIMRADCONSTR = 1/100, comparison with 2b
shows a little difference below the left negative node.
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7.3 Primal 4-Point-Scheme

The parametrized 4-point scheme proposed in [DLG87] is a generalized ver-
sion of the interpolatory four-point scheme introduced by Dubuc in [Dub86].
This scheme was used as a benchmark problem for the implementation of Al-
gorithm 4.3. [HMR09] determined explicitly the set of parameter values ω for
which the scheme is C1, namely (0,ω∗) where ω∗ ≈ 0.19273 is the unique real
solution of the equation 32ω3+ 4ω− 1= 0. The parametrized family of schemes
is given by the symbol

aω(z) =−ω
�

1+ z6
�

+
�

1

2
+ω

�

�

z2+ z4
�

+ z3.

In order to determine Hölder regularity for values in (0,ω∗), consider the subdivi-
sion matrices of the scheme with symbol 2

(z+1)2
aω(z), which are

Aω1 =
� 4ω 4ω 0 0
−2ω 1−4ω −2ω 0

0 4ω 4ω 0
0 −2ω 1−4ω −2ω

�

, Aω2 =
�−2ω 1−4ω −2ω 0

0 4ω 4ω 0
0 −2ω 1−4ω −2ω
0 0 4ω 4ω

�

.

For ω= 1/16, the scheme corresponds to the Dubuc 4-point scheme. In that case,
A ω = {Aω1 , Aω2 } is reducible such that the problem could be reduced to lower di-
mension. However, the Dubuc 4 point scheme is already known to be C2

∗ , see for
example [HS08]. For other values of ω, the Hölder regularity is to be determined,
andA ω corresponds to the scaled kernel.

Conjecturing ρ̂(A ω) = max

¨

ρ(Aω1 ),ρ
�

Aω[1,2]

�
1
2

«

, we select 1000 equidistantly

sampled parameter values ω⊂ (0,ω∗) with 1
1000
≤ω≤ω∗−10−13 to validate the

conjecture for these cases.
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Figure 7.8: Lower bounds for the JSR of the 4-point scheme in dependency of
ω which are conjectured to be sharp (left), and a zoom on a small
neighborhood of ω = 1

16
(right). The dotted lines indicate the closest

lower and higher value ofω for which the conjecture was validated.
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Denote byωi the i-th of ordered samples, withω1 =
1

1000
andω1000 =ω∗−10−13.

Due to

ω321 ≈ 0.0624<
1

16
<ω322 ≈ 0.0626,

we choose for A ωi the generator set J = {[1], [2]} if i ≤ 321 and J = {[1, 2]}
otherwise. See also the visualization of the conjecture in Figure 7.8.

For 999 out of 1000 samples, the conjecture was validated. For i ≤ 321 and
i ≥ 325, the computation was successful with parameter values LIMRADCOMP =
LIMRADCONSTR = 1/1000, MAXLEVEL = 100, STARTLEVEL = 3, NEGLIMIT = 1 and
‖ · ‖poly with IT = 15. Figure 7.10 shows J -complete trees descending2 from [1]
for different parameter values ωi.
For i ∈ {323,324}, the algorithm terminated with output "no result" for this choice
of parameters, but successfully found a J -complete when choosing IT = 25. For
the remaining sample i = 322, the algorithm terminated with output "no result"
for IT = 25,30, 35.

We thus observe that the computations require more effort forω↘ 1
16

. Forω= 1
16

,
both [1,2] and [1] are strong generators. The spectral radius of the weak gen-
erator [1] converges towards 1. The trees displayed in figure 7.10 show that the
branch generated by powers of Aω1 grows. But including [1] in J in order to
subsume these branches was not successful. The runtime rose due to more pos-
sibilities in the search tree update but the algorithm led to similar results. This
probably results from the fact that the weak generator Aω[1] has for ω↘ 1

16
a com-

plex conjugate pair of leading eigenvalues. Possibly, the computation of upper
bounds in this case does not lead to sufficiently tight results such that 1-bounded
nodes were not detected.
Interestingly, there was only a slightly increasing difficulty to observe for ω↗ 1

16
although the situation is similar with [1, 2] becoming a strong generator. This may
result from the ratios of the leading eigenvalues of weak and strong generator: If
ρ(Aω1 ) and ρ(Aω[1,2])

1
2 are close, the scaled family possesses a weak generator with

a spectral radius close to 1 such that, for powers of the weak generator matrix, de-
cay of the norm is slow. Hence, long paths have to be computed. Figure 7.9 shows
the spectral radii of the strong and the weak generator matrix in dependance ofω,
indicating that the weak generator is very close to being strong for ω↘ 1

16
. The

runtime increases for ω→ 1
16

. On a standard PC, it was on a subsecond time-scale
for i ≤ 320 and i ≥ 330. For ω ↗ 1

16
, the runtime was less than 3 minutes. In

contrast, the computation for i = 328 took 6 minutes and for i = 325 18 minutes.

The length of the vector of matrix balls AωJ ,r which is used for computing the
upper bound of a norm, compare Chapter 4, indicates how fast the powers (AωJ )

k

converge. The computational effort for the computation in each node increases
with the length. Interestingly, the difficult parameters slightly bigger than 1

16
do

not possess very long ball vectors. For example, it is of length 9 in case ω324,
2 Since the family is palindromic, we can apply Proposition 6.10.
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Figure 7.9: Visualization of the spectral radii corresponding to the weak and strong
generator matrices of the 4-point scheme, in dependance ofω.

which is short in contrast to length 97 in case of ω321 while, using the default
parameters, the runtime for ω324 was approx. 34 minutes and the runtime for
ω321 less than 3 minutes.

Comparing the results for the norms ‖·‖poly, ‖·‖2 and ‖·‖∞ shows that ‖·‖poly is the
best choice for the parametrized family. See Figure 7.11 for an exemplary visual
comparison. Although there are parameter values ω for which the difference in
the trees is negligible, ‖ · ‖2 and ‖ · ‖∞ were unsuccessful for certain parameter
values, as for example ω328. While ‖ · ‖poly with IT = 15 leads in this case to
a tree with depth 24, the algorithm terminates for both of the other norms in
MAXLEVEL = 100 with "no result”.

For ω > 1
16

, the family apparently possesses a spectral gap at 1 since J̄ = [2, 1]
is a cyclic permutation of the strong generator J̄ = [1,2]. To achieve such a
situation for ω < 1

16
, the palindromic transform of the family is to be considered.

Figure 7.12 allows to compare the J -complete3 trees of ω300 with ‖ · ‖poly before
and after transformation as well as results obtained with ‖·‖w. It illustrates that the
palindromic transform does not necessarily lead to trimmer or shorter trees. But
it allows to compute a J -complete tree with only one negative child when using
‖ · ‖w. Comparison for two different values shows that choosing w appropriately
does not imply choosing it large.

Figure 7.13 allows to compare trees computed with different STARTLEVEL and norms
‖ · ‖poly generated with different IT. It additionally shows a tree which was com-
puted with usage of a weak generator (second row, on the right).

3 Proposition 6.10 is not applicable when choosing ‖ · ‖w .
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Figure 7.10: J -complete trees descending from [1] of the 4-point scheme ob-
tained for different valuesωi:
With J = [1], [2]: 1a forω1,ω100 andω300, 1b forω321.
With J = [1, 2]: 2a forω325, 2b forω328, 3b forω350,
3c forω400, 4a forω600, 4b forω1000.
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Figure 7.11: J -complete trees descending from [1] of the 4-point scheme forω300
(left) andω600 (right).
First row: ‖ · ‖poly with IT = 15
Second row: ‖ · ‖2
Third row: ‖ · ‖∞
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Figure 7.12: J -complete trees of the 4-point scheme resp./ its palindromic trans-
form forω300.
First row: for ‖ · ‖poly before (left) and after (right) palindromic trans-
formation
Second row: after palindromic transformation for ‖ · ‖w, with w = 3
(left) and w = 5 (right)
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Figure 7.13: J -complete trees descending from [1] of the 4-point scheme with
ω321 and ‖ · ‖poly and, unless indicated otherwise, J = [1], [2] and
STARTLEVEL = 3.
First row: IT = 15 (left), IT = 20 (right)
Second row: IT = 25 (left), IT = 25 and J = {[1], [2], [1, 2]} (right)
Third row: IT = 15 and STARTLEVEL = 6 (left), IT = 25 and
STARTLEVEL = 6 (right)
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7.4 Dual 4-Point-Scheme

[DFH05] proposes a parametrized family of dual 4-point schemes with symbol

aω(z) =
(1+ z)3

4

�

z−1+ 4ω(−5z+ 8− 6z−1+ 8z−2− 5z−3)
�

.

According to [DFH05], the scheme is C2 forω in the range of (0, 1
48
]. Forω= 1

128
,

Hölder regularity is 4− log2(9)≈ 2.8301, as shown by [HS08]. The matrix family
A ω = {Aω1 , Aω2 } deduced from the scaled kernel is given by

Aω1 =
�

32ω 32ω 0 0
−20ω 1−24ω −20ω 0

0 32ω 32ω 0
0 −20ω 1−24ω −20ω

�

, Aω2 =
�−20ω 1−24ω −20ω 0

0 32ω 32ω 0
0 −20ω 1−24ω −20ω
0 0 32ω 32ω

�

.

We sample ω⊂ (0, 1
48
] equidistantly by 100 parameter values ωi such that

1

1000
≤ωi ≤

1

48
.

Denote by ωi the i-th of ordered samples. The conjecture

ρ̂(A ω) =max

¨

ρ(Aω1 ),ρ
�

Aω[1,2]

�
1
2

«

is visualized in Figure 7.14, and was validated for i ≤ 35 as well as for i ≥ 66.
In between, the computation was not successful. For these parameter values, the
leading eigenvalue of the generator matrix is not real. The exemplary J -complete
trees descending from [1] forω34 andω68 in Figure 7.15 were computed with up-
per bounds of norms which are determined via bounds of the eigenvalues instead
of matrix balls, see Section 4.3.2.
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Figure 7.14: Lower bounds for the JSR of the dual 4-point scheme in dependency of
ω which are conjectured to be sharp (left). The dotted lines indicate
the closest lower and higher value of ω for which the conjecture was
validated.
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Figure 7.15: J -complete trees descending from [1] of the dual 4-point scheme.
First row: ω34 with J = {[1], [2]} and ‖ · ‖2 (left)
resp. ‖ · ‖poly with IT = 10 (right)
Second row: ω68 with J = {[1, 2]} and ‖ · ‖2 (left)
resp. ‖ · ‖poly with IT = 10 (right)

7.5 DD 6-point scheme

The Dubuc-Deslaurier (DD) 6-point scheme proposed in [DD89] is a symmetric
interpolatory subdivision scheme which reproduces polynomials of degree 5. It
has the symbol

a(z) =
1

256

�

3
�

z−5+ z5
�

− 25
�

z−3+ z3
�

+ 150
�

z−1+ z
�

+ 1
�

,

and the scaled kernel b(z) = 25

(1+z)6
a(z) leads toA = {A1, A2} with

A1 =
1

8











−18 −18 0 0
3 38 3 0
0 −18 −18 0
0 3 38 3











, A2 =
1

8











3 38 3 0
0 −18 −18 0
0 3 38 3
0 0 −18 −18











.

With J = {[1], [2]}, a J -complete tree with ‖ · ‖2 is found and displayed in
Figure 7.16 top left. Palindromic transformation leads to the tree top right for
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‖ · ‖2, and to trees with only one negative child for ‖ · ‖w with parameter w = 3
bottom left and for ‖·‖w with parameter w = 10 bottom right. Comparison of these
two figures shows that choosing w large is not always to recommend.

We deduce that ρ̂(A ) = ρ(A1) =
9
2
. Therewith, the DD 6-point scheme has Hölder

regularity β = 5− log2(ρ̂(A ))≈ 2.8301.
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Figure 7.16: J -complete trees of the DD 6-point scheme with J = {[1], [2]}
First row: ‖ · ‖2 before (left) and after palindromic transform (right)
Second row: ‖ · ‖w after palindromic transform with w = 3 (left) resp.
w = 10 (right)
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7.6 DD 8-point scheme

The 8-point scheme proposed by Deslaurier and Dubuc ([DD89]) has the symbol

a(z) =

�

−5
�

z−7+ z7
�

+ 49
�

z−5+ z5
�

− 245
�

z−3+ z3
�

+ 1225
�

z−1+ z
�

+ 1
�

2048
.

Considering 25

(1+z)6
a(z), we obtain the subdivision matricesA = {A1, A2} with

A1 =
1

64

























30 −14 −14 30 0 0 0 0
−5 −56 154 −56 −5 0 0 0
0 30 −14 −14 30 0 0 0
0 −5 −56 154 −56 −5 0 0
0 0 30 −14 −14 30 0 0
0 0 −5 −56 154 −56 −5 0
0 0 0 30 −14 −14 30 0
0 0 0 −5 −56 154 −56 −5

























A2 =
1

64

























−5 −56 154 −56 −5 0 0 0
0 30 −14 −14 30 0 0 0
0 −5 −56 154 −56 −5 0 0
0 0 30 −14 −14 30 0 0
0 0 −5 −56 154 −56 −5 0
0 0 0 30 −14 −14 30 0
0 0 0 −5 −56 154 −56 −5
0 0 0 0 30 −14 −14 30

























With J = {[1], [2]} and norm ‖ · ‖2, a J -complete tree is found. The results for
different parameter values STARTLEVEL and NEGLIMIT are visualized in Figure 7.17.
Hence, ρ̂(A ) = ρ(A1) ≈ 2.7299. Hölder regularity of the DD 8-point scheme is
given by 5− log2(ρ̂(A ))≈ 3.5511.
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Figure 7.17: J -complete trees for E with generators J = {[1], [2]} and ‖ · ‖2.
First row: STARTLEVEL = 2 and NEGLIMIT = 1 (left) resp. NEGLIMIT = 2
(right)
Second row: NEGLIMIT = 1 and STARTLEVEL = 4 (left) resp. STARTLEVEL =
10 (right)
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7.7 Ternary 4-point scheme

In [HIDS02], a C2 ternary subdivision scheme with parameter µ is proposed.
Its Hölder regularity was analyzed in [ZZYZ07] using Rioul’s method [Rio92].
According to [ZZYZ07], the highest smoothness is obtained for µ = 1

11
with

2 − log3(
9

11
) ≈ 2.1827. Consider the difference scheme of the second divided

differences with mask 1
11
· [−4, 5,9, 5,−4]. After reducing dimension in order to

obtain an irreducible family, this leads to analyzingA = {A1, A2, A3} with

A1 =
1

11







5 −4 0
−4 5 0
0 9 0






, A2 =

1

11







−4 5 0
0 9 0
0 5 −4






, A3 =

1

11







0 9 0
0 5 −4
0 −4 5






.

For J = {[1], [2], [3]}, there is a J -complete tree with respect to norm ‖ · ‖2, see
Figure 7.18. We conclude that ρ̂(A ) = ρ(A1) =

9
11

. Hölder regularity is given by
2− log3(ρ̂(A )), confirming the result of [ZZYZ07].

7.8 Quaternary 3-point scheme

A quaternary scheme can be constructed by sampling 4 new points from a
quadratic polynomial q which interpolates 3 old points. Choosing the points
q(−3

8
), q(−1

8
), q(1

8
) and q(3

8
) leads to a scheme Sa with mask

a=
1

128
[−15,−7, 9,33, 110,126, 126,110, 33,9,−7,−15]

with according symbol a(z). From Sb with

b(z) =
4

(1+ z+ z2+ z3)2
· a(z) =

1

32

�

−15(z5+ 1) + 23(z4+ z) + 8(z3+ z2))
�

,

we deduce four (5× 5)-matrices, but they share two zero-columns such that they
are reducible. Splitting into lower dimensional families leads to only one family
A = {A1, A2, A3, A4} being non-zero, with

A1 =
1

32







23 −15 0
−15 23 0

0 8 0






, A2 =

1

32







−15 23 0
0 8 0
0 8 0







A3 =
1

32







0 8 0
0 8 0
0 23 −15






, A4 =

1

32







0 8 0
0 23 −15
0 −15 23







With J = {[1], [4]} and ‖ · ‖2, a J -complete tree exists, see Figure 7.19. Hence,
ρ̂(A ) = ρ(A1) =

19
16

and Sa has Hölder regularity β∗ = 1 − log4(ρ̂(A )) = 3 −
log4(19)≈ 0.8760.
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Figure 7.18: J -complete tree of the ternary 4-point scheme with J =
{[1], [2], [3]} and norm ‖ · ‖2.
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Figure 7.19: Tree of the quaternary 3-point scheme with generators J =
{[1], [4]} and norm ‖ · ‖2.
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7.9 Lane-Riesenfeld C-schemes

In [CHR13], the Lane-Riesenfeld algorithm of [LR80] is generalized. The so-called
C-schemes given by the symbol

a(z) =
�

1+ z

2

�k+4
�

−z−1+ 10− z

8

�k
�

−z−1+ 4− z
�

are proposed and lower and upper bounds for their Hölder regularity are derived
for 0 ≤ k ≤ 4. The set-valued tree approach reveals that the upper bounds are
sharp. The scaled kernel is given in dependence of the parameter k by

b(z) =
1

2

�

−z−1+ 10− z

4

�k
�

−z−1+ 4− z
�

.

For 0 ≤ k ≤ 4, J -complete trees for the subdivision matrices were found when
choosing J = {[1], [2]} and ‖ · ‖2. Although the dimension of the matrices in-
creases with k, all examples were computed on a standard PC on a sub-second
timescale. For example, the algorithm terminated for k = 4 with a pair of (10×10)-
matrices in less than 0.3 sec. Comparison with the runtime for the (4×4)-matrices
of the 4-point scheme for values close to 1

16
shows that long runtimes do not nec-

essarily correspond to high-dimensional problems.

The subdivision matrices of the kernel for k = 0 are

A1 =
1

2

�

4 0
−1 −1

�

, A2 =
1

2

�

−1 −1
0 4

�

.

This example can be handled by the 3-member-inequality:

ρ(A1) = 2≤ ρ̂(A )≤ 2= ‖A1‖∞ = ‖A2‖∞

The corresponding J -complete tree of the scaled family consists of the nodes
{;, [1], [2]} and the scheme has Hölder regularity 3− log2(2) = 2, i.e., the scheme
is C2

∗ .

For k = 1, we obtain the (4× 4)-matrices

A1 =
1

16











1 42 1 0
0 −14 −14 0
0 1 42 1
0 0 −14 −14











, A2 =
1

16











−14 −14 0 0
1 42 1 0
0 −14 −14 0
0 1 42 1











The corresponding J -complete tree is displayed in Figure 7.20 top left. Hence,
ρ̂(A ) = ρ(A1)≈ 2.5935, and the scheme has Hölder regularity 4− log2(ρ(A1))≈
2.6251.
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For k = 2 we obtain the (6× 6)-matrices

A1 =
1

128







24 448 24 0 0 0
−1 −183 −183 −1 0 0
0 24 448 24 0 0
0 −1 −183 −183 −1 0
0 0 24 448 24 0
0 0 −1 −183 −183 −1






, A2 =

1

128







−1 −183 −183 −1 0 0
0 24 448 24 0 0
0 −1 −183 −183 −1 0
0 0 24 448 24 0
0 0 −1 −183 −183 −1
0 0 0 24 448 24






.

The corresponding J -complete tree is displayed in Figure 7.20 top right. Hence,
ρ̂(A ) = ρ(A1)≈ 3.3891, and the scheme has Hölder regularity 5− log2(ρ(A1))≈
3.2391.

For k = 3 we obtain the (8× 8)-matrices

A1 =
1

1024











−34 −2302 −2302 −34 0 0 0 0
1 424 4846 424 1 0 0 0
0 −34 −2302 −2302 −34 0 0 0
0 1 424 4846 424 1 0 0
0 0 −34 −2302 −2302 −34 0 0
0 0 1 424 4846 424 1 0
0 0 0 −34 −2302 −2302 −34 0
0 0 0 1 424 4846 424 1











A2 =
1

1024











1 424 4846 424 1 0 0 0
0 −34 −2302 −2302 −34 0 0 0
0 1 424 4846 424 1 0 0
0 0 −34 −2302 −2302 −34 0 0
0 0 1 424 4846 424 1 0
0 0 0 −34 −2302 −2302 −34 0
0 0 0 1 424 4846 424 1
0 0 0 0 −34 −2302 −2302 −34











.

The corresponding J -complete tree is displayed in Figure 7.20 bottom left. Hence,
ρ̂(A ) = ρ(A1)≈ 4.4567, and the scheme has Hölder regularity 6− log2(ρ(A1))≈
3.844.

For k = 4 we obtain the (10× 10)-matrices

A1 =
1

8192















44 6576 53064 6576 44 0 0 0 0 0
−1 −765 −28290 −28290 −765 −1 0 0 0 0
0 44 6576 53064 6576 44 0 0 0 0
0 −1 −765 −28290 −28290 −765 −1 0 0 0
0 0 44 6576 53064 6576 44 0 0 0
0 0 −1 −765 −28290 −28290 −765 −1 0 0
0 0 0 44 6576 53064 6576 44 0 0
0 0 0−1 −765 −28290 −28290 −765 −1 0
0 0 0 0 44 6576 53064 6576 44 0
0 0 0 0 −1 −765 −28290 −28290 −765 −1















A2 =
1

8192















−1 −765 −28290 −28290 −765 −1 0 0 0 0
0 44 6576 53064 6576 44 0 0 0 0
0 −1 −765 −28290 −28290 −765 −1 0 0 0
0 0 44 6576 53064 6576 44 0 0 0
0 0 −1 −765 −28290 −28290 −765 −1 0 0
0 0 0 44 6576 53064 6576 44 0 0
0 0 0−1 −765 −28290 −28290 −765 −1 0
0 0 0 0 44 6576 53064 6576 44 0
0 0 0 0 −1 −765 −28290 −28290 −765 −1
0 0 0 0 0 44 6576 53064 6576 44















.

The corresponding J -complete tree is displayed in Figure 7.20 bottom right.
Hence, ρ̂(A ) = ρ(A1) ≈ 5.8917, and the scheme has Hölder regularity 7 −
log2(ρ(A1))≈ 4.4413.
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Figure 7.20: J -complete trees for the Lane-Riesenfeld C-schemes and J =
{[1], [2]}, computed with ‖ · ‖2.
First row: (left) k = 1, (right) k = 2
Second row: (left) k = 3, (right) k = 4

7.10 A parametrized 8-point scheme

The parametrized 8-point scheme with symbol

aω(z) =−ω ·
�

z−7+ z7
�

+ (5ω+
3

256
) ·
�

z−5+ z5
�

− (9ω+
25

256
) ·
�

z−3+ z3
�

+ (5ω+
75

128
) ·
�

z−1+ z
�

+ 1

is a linear blend of the DD 6-point scheme, obtained forω= 0, and the DD 8-point
scheme, obtained forω= 5

2048
. Although these schemes are only C2 respective C3,

there are values ω such that the parametrized 8-point scheme is C4, as we could
numerically validate by means of Algorithm 4.12. To this aim, the scheme with
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symbol 24

(z+1)5
a(z) is to be checked for contractivity. The subdivision matrices to

analyze are given by

Aω1 =





























192 w 832 w−9/4 832 w−9/4 192 w 0 0 0 0

−32 w −512 w+3/8 −960 w+19
4 −512 w+3/8 −32 w 0 0 0

0 192 w 832 w−9/4 832 w−9/4 192 w 0 0 0

0 −32 w −512 w+3/8 −960 w+19
4 −512 w+3/8 −32 w 0 0

0 0 192 w 832 w−9/4 832 w−9/4 192 w 0 0

0 0 −32 w −512 w+3/8 −960 w+19
4 −512 w+3/8 −32 w 0

0 0 0 192 w 832 w−9/4 832 w−9/4 192 w 0

0 0 0 −32 w −512 w+3/8 −960 w+19
4 −512 w+3/8 −32 w





























Aω2 =





























−32 w −512 w+3/8 −960 w+19
4 −512 w+3/8 −32 w 0 0 0

0 192 w 832 w−9/4 832 w−9/4 192 w 0 0 0

0 −32 w −512 w+3/8 −960 w+19
4 −512 w+3/8 −32 w 0 0

0 0 192 w 832 w−9/4 832 w−9/4 192 w 0 0

0 0 −32 w −512 w+3/8 −960 w+19
4 −512 w+3/8 −32 w 0

0 0 0 192 w 832 w−9/4 832 w−9/4 192 w 0

0 0 0 −32 w −512 w+3/8 −960 w+19
4 −512 w+3/8 −32 w

0 0 0 0 192 w 832 w−9/4 832 w−9/4 192 w





























The lower bounds of the tree member inequality allow to localize a promising
parameter interval, see Figure 7.22. For 8 values ω ∈ (0.003341, 0.003989), a
contractive tree was found with ‖ · ‖2. One of these trees is exemplarily shown in
Figure 7.21.
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Figure 7.21: Contractive tree for the 8-point scheme withω= 0.00375 and ‖ · ‖2.

The runtime of the computation on a standard PC varied for the 8 samples between
3 seconds for ω ≈ 0.003797 leading to a contractive tree with 33362 nodes and
51 hours for ω≈ 0.0033411 and a tree with 2 · 109 nodes.

7.10 A parametrized 8-point scheme 95



0 0.01 0.02 0.03 0.04 0.05
0

2

4

6

8

10

12

ρ(A1)

ω

Student Version of MATLAB

2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4

x 10−3

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

ω

ρ(A1)

ρ(A[1,2])
1/2

ρ(A[1,1,2,2])
1/4

Student Version of MATLAB

Figure 7.22: Lower bound for the JSR of the unscaled 8-point scheme family in de-
pendency of ω (left) and a zoom on the promising interval in the red
box with additional lower bounds (right).
The black dots indicate parameter values for which we validated con-
tractivity numerically.

We conjecture that the lower bounds for the JSR as visualized in Figure 7.22
(right) are sharp. Nevertheless, there is no confirmation by Algorithm 4.3 de-
spite various trials to compute a J -complete tree with different choices of norms
and parameters. The blended schemes DD 6-point and DD 8-point itself are not
difficult to compute.

Under the premise that our conjecture for the FP-products is true, Figure 7.22 indi-
cates for which values of ω the smoothness is maximized. For the promising value
ω∗ ≈ 0.0036563, we could improve the lower bound for the Hölder exponent:
When applying Algorithm 4.12 to the family 1

0.98
· A ω∗ , a contractive tree was

found. Therewith, ρ̂(A ω∗) < 0.98 such that a lower bound for Hölder regularity
of Saω∗

is given by 4− log2(0.98)≈ 4.0291.
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8 Conclusion

The proposed strategy for joint spectral radius determination is an alternative to
computing an extremal norm. Both approaches can only be successful if the con-
sidered matrix family has the finiteness property since they attempt to validate that
a conjectured product is FP-product. The set-valued tree method offers a sufficient
criterion, namely the existence of a J -complete tree, which is satisfiable also in
case of more than one FP-product. Additionally, these products do not have to
meet requirements as asymptotic simplicity as demonstrated by settling the exam-
ples proposed in [GWZ05]. In theory, even product boundedness or irreducibility
is not required. Very simple illustrating examples prove that the criterion is satis-
fiable without. Clearly, it is recommended for practical applications to decompose
the problem if the family is reducible. If an irreducible family has a spectral gap
at 1, which is a necessary condition for termination of the algorithm suggested
in [GP13], the existence of a J -complete tree is guaranteed for a certain norm.
Therewith, the set-valued tree method is in theory potentially functional in many
cases which cannot be handled by certain extremal norm approaches.

Principally, all calculations of the method can be performed analytically or by
means of interval arithmetic such that the strategy can be used for rigorous proofs.
The latter would also allow a treatment of parametrized families, by subdividing
the parameter interval into sufficiently small sub-intervals and finding for each of
them a J -complete tree that is valid for all contained parameter values.

To judge the practical value of the method, an algorithm was developed which
bases on a variant of depth-first search on set-valued trees. A node of such a tree
codes a set of matrix products, which is typically infinite. The backtrack criterion
involves the check whether these matrix products are bounded by 1 with respect
to some norm. The challenge was to compute an upper bound for the coded
products which is on the one hand as close to the supremum as possible and on
the other hand efficiently computable, leading to two different approaches. Both
of them have certain requirements concerning the eigenvalues of the products,
which restricts the algorithm in its present form to real matrix families.

In the smoothness analysis of linear subdivision schemes, JSR determination is
needed to obtain Hölder regularity. This application initially motivated the thesis.
The theoretical background for smoothness analysis of linear, univariate, station-
ary, uniform and compactly supported schemes with arbitrary arity is summarized
and an explicit formula for the subdivision matrices is provided. It is shown that
considering half of the tree is sufficient for certain norms in case of palindromic
matrices. As another consequence of the symmetric situation, a palindromic fam-
ily rarely possesses a spectral gap at 1. Families with a dominant generator pair of
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length 2 are an exception and, as subdivision matrices, occur quite often1. To han-
dle other cases, we present a transformation which, for a family with a dominant
generator pair of odd length, leaves the JSR unchanged but enforces a spectral
gap at 1. An appropriate transformation in case of generators with even length
remains to be found.

The algorithm was implemented in MATLAB for families of real matrices in or-
der to give a proof-of-concept. It proved to be useful for a range of examples,
some illustrating the capabilities of the method for matrices with certain proper-
ties, others resulting from smoothness analysis of subdivision schemes. Numerical
tests with high-dimensional or random matrices were not performed since the im-
plementation is not optimized in terms of runtime and cannot compete with the
impressive results of [GP13] in that respect.
However, long runtimes do not result necessarily from high-dimensional prob-
lems. An example from applications involved a pair of (10× 10)-matrices and the
computation was successful in sub-seconds, while termination might take days
or weeks for certain lower-dimensional examples. The reason for difficulties in
the computation should be analyzed systematically in future work. The algo-
rithm apparently struggles in case of matrix products which are close to being
an FP-product. So-called weak generators were introduced to handle these cases.
Although this concept was successful for model problems, it seems to increase
the computational effort a lot. Further problems may occur if the leading eigen-
value and the subdominant eigenvalue of an FP-product are very close in modulus,
causing a slow decay of the subdominant eigenvalue of the powers with effect on
the computational costs. Moreover, difficulties were observed in cases where an
FP-product has a complex conjugate pair of leading eigenvalues. Possibly, the com-
puted upper bound often is not close enough to detect a 1-bounded node in these
cases such that an improvement of the bound estimation in case of complex eigen-
values is desirable.
The implementation involves different freely selectable parameters. In order to
perform extensive test series, a framework should be built so that the computa-
tion is re-started with sophisticatedly changed parameter values if a test was not
successful.

Although set-valued trees can be analyzed with respect to any submultiplicative
norm, the choice of norm has an impact on the efficiency of the method. A combi-
nation of the set-valued tree approach and the extremal norm approach seems to
be very promising. In case that the unit ball computation does not terminate after
a certain number of iterations, some of these methods return an approximation of
the JSR. If instead the computed norm is used for the set-valued tree approach,
this possibly leads to the exact instead of an approximated value of the JSR for
very short, and therewith efficiently computable, J -complete trees. This might
especially be interesting in cases of non-asymptotically simple families where the
existence of certain extremal norms is not guaranteed.

1 For example, palindromic (2×2)-matrices either satisfy ρ̂(A ) = ρ(A1) or ρ̂(A ) = ρ(A[1,2])
1
2 ,

see [Möß10]
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