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Tag der Einreichung: 16.03.2015

Tag der mündlichen Prüfung: 30.04.2015
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Abstract

In Public Key Infrastructures (PKIs), trusted Certification Authorities (CAs) issue

public key certificates which bind public keys to the identities of their owners. This

enables the authentication of public keys which is a basic prerequisite for the use

of digital signatures and public key encryption. These in turn are enablers for e-

business, e-government and many other applications, because they allow for secure

electronic communication. With the Internet being the primary communication

medium in many areas of economic, social, and political life, the so-called Web

PKI plays a central role. The Web PKI denotes the global PKI which enables the

authentication of the public keys of web servers within the TLS protocol and thus

serves as the basis for secure communications over the Internet.

However, the use of PKIs in practice bears many unsolved problems. Numerous

security incidents in recent years have revealed weaknesses of the Web PKI. Be-

cause of these weaknesses, the security of Internet communication is increasingly

questioned. Central issues are (1) the globally predefined trust in hundreds of CAs

by browsers and operating systems. These CAs are subject to a variety of jurisdic-

tions and differing security policies, while it is sufficient to compromise a single CA

in order to break the security provided by the Web PKI. And (2) the handling of re-

vocation of certificates. Revocation is required to invalidate certificates, e.g., if they

were erroneously issued or the associated private key has been compromised. Only

this can prevent their misuse by attackers. Yet, revocation is only effective if it is

published in a reliable way. This turned out to be a difficult problem in the context

of the Web PKI. Furthermore, the fact that often a great variety of services depends

on a single CA is a serious problem. As a result, it is often almost impossible to

revoke a CA’s certificate. However, this is exactly what is necessary to prevent the

malicious issuance of certificates with the CA’s key if it turns out that a CA is in

fact not trustworthy or the CA’s systems have been compromised.

In this thesis, we therefore turn to the question of how to ensure that the CAs an

Internet user trusts in are actually trustworthy. Based on an in depth analysis of the

Web PKI, we present solutions for the different issues. In this thesis, the feasibility
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and practicality of the presented solutions is of central importance. From the prob-

lem analysis, which includes the evaluation of past security incidents and previous

scientific work on the matter, we derive requirements for a practical solution.

For the solution of problem (1), we introduce user-centric trust management for

the Web PKI. This allows to individually reduce the number of CAs a user trusts in

to a fraction of the original number. This significantly reduces the risk to rely on a

CA, which is actually not trustworthy. The assessment of a CA’s trustworthiness is

user dependent and evidence-based. In addition, the method allows to monitor the

revocation status for the certificates relevant to a user. This solves the first part of

problem (2). Our solution can be realized within the existing infrastructure without

introducing significant overhead or usability issues. Additionally, we present an

extension by online service providers. This enables to share locally collected trust

information with other users and thus, to improve the necessary bootstrapping of

the system. Moreover, an efficient detection mechanism for untrustworthy CAs is

realized.

In regard to the second part of problem (2), we present a CA revocation tolerant

PKI construction based on forward secure signature schemes (FSS). Forward secu-

rity means that even in case of a key compromise, previously generated signatures

can still be trusted. This makes it possible to implement revocation mechanisms

such that CA certificates can be revoked, without compromising the availability of

dependent web services. We describe how the Web PKI can be transitioned to a

CA revocation tolerant PKI taking into account the relevant standards.

The techniques developed in this thesis also enable us to address the related prob-

lem of “non-repudiation” of digital signatures. Non-repudiation is an important se-

curity goal for many e-business and e-government applications. Yet, non-repudiation

is not guaranteed by standard PKIs. Current solutions, which are based on time-

stamps generated by trusted third parties, are inefficient and costly. In this work, we

show how non-repudiation can be made a standard property of PKIs. This makes

time-stamps obsolete.

The techniques presented in this thesis are evaluated in terms of practicality and

performance. This is based on theoretical results as well as on experimental analyses.

Our results show that the proposed methods are superior to previous approaches.

In summary, this thesis presents mechanisms which make the practical use of PKIs

more secure and more efficient and demonstrates the practicability of the presented

techniques.



Zusammenfassung

Public Key Infrastrukturen (PKIs) ermöglichen, mittels der Ausstellung von dig-

italen Zertifikaten durch vertrauenswürdige Zertifizierungsautoritäten (CAs), die

Authentisierung von öffentlichen Schlüsseln. Das ist eine grundlegende Vorauset-

zung für den Einsatz digitaler Signaturen und Public Key Verschlüsselung. Diese

wiederum sind für eBusiness, eGovernment und andere Anwendungen unabdingbar,

da sie eine sichere elektronische Kommmunikation ermöglichen. Mit dem Inter-

net als primärem Kommunikationsmedium in vielen Bereichen des wirtschaftlichen,

sozialen und politischen Lebens kommt somit der sogenannten Web PKI eine zen-

trale Rolle zu. Die Web PKI bezeichnet die globale PKI, welche die Authentisierung

der öffentlichen Schlüssel von Web Servern im Rahmen des TLS Protokolls möglich

macht und damit als Basis für sichere Kommunikation über das Internet dient.

Der Einsatz von PKIs ist in der Praxis jedoch mit vielen bisher ungelösten Prob-

lemen verbunden. Zahlreiche Sicherheitsvorfälle in den vergangen Jahren haben

Schwachstellen in der Web PKI sichtbar gemacht und dazu geführt, dass die Sicher-

heit der Internetkommunikation zunehmend in Frage gestellt wird. Im Zentrum der

Kritik stehen dabei (1) das global durch Browser und Betriebssysteme vordefinierte

Vertrauen in hunderte von CAs, welche den unterschiedlichsten Rechtssprechungen

als auch Sicherheitsregularien unterliegen. Dabei genügt es eine einzige CA zu kom-

promittieren um die Sicherheit der Internetkommunikation zu unterwandern. Und

(2) der Umgang mit Revokation von Zertifikaten. Revokation wird benötigt um

Zertifikate ungültig zu erklären, wenn diese beispielsweise fehlerhaft erstellt wurden

oder der zugehörige private Schlüssel kompromittiert wurde. Nur so kann der Miss-

brauch durch Angreifer verhindert werden. Revokation ist jedoch nur wirksam, wenn

diese auf verlässliche Weise publik gemacht wird, was im Rahmen der Web PKI ein

schwieriges Problem darstellt. Desweiteren ist hier die enorme Abhängigkeit einer

Vielzahl von Services von einzelnen CAs ein schwerwiegendes Problem. Dadurch

ist es häufig nahezu unmöglich das Zertifikat einer CA zu revozieren und damit

zu verhindern, dass mit dem entsprechenden Schlüssel weiterhin gültige Zertifikate

ausgegeben werden können. Genau das ist jedoch notwendig wenn sich herausstellt,
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dass eine CA tatsächlich nicht vertrauenswürdig ist oder ihre Systeme von einen

Angreifer kompromittiert wurden.

In dieser Arbeit wenden wir uns daher der Fragestellung zu, wie sichergestellt

werden kann, dass die CAs, denen ein Internetnutzer vertraut auch tatsächlich ver-

trauenswürdig sind. Ausgehend von einer detailierten Problemanalyse stellen wir

Lösungsverfahren für die einzelnen Teilprobleme vor. Dabei ist Umsetzbarkeit und

Praktikabilität von zentraler Bedeutung. Aus der Problemanalyse, welche die Un-

tersuchung bisheriger Sicherheitsvorfälle und bereits existierender Lösungsansätze

beinhaltet, werden Anforderungen für die Problemlösung abgeleitet.

Zur Lösung von Problem (1) führen wir nutzerzentriertes Vertrauensmanagement

für die Web PKI ein. Dies erlaubt es die Anzahl der als vertrauenswürdig betra-

chteten CAs nutzerindividuell auf einen Bruchteil der ursprünglichen Menge zu re-

duzieren. Damit wird das Risiko auf eine CA zu vertrauen, die tatsächlich nicht ver-

trauenswürdig ist, signifikant reduziert. Die Beurteilung der Vertrauenswürdigkeit

von CAs erfolgt dabei individuell und evidenzbasiert. Darüber hinaus erlaubt uns

das Verfahren, den Widerrufsstatus der nutzerrelevanten Zertifikate zu überwachen

und somit ein Teilproblem von (2) zu lösen. Die Lösung ist im Rahmen der bestehen-

den Infrastruktur ohne Performanz- oder Nutzbarkeitseinbußen umsetzbar. Desweit-

eren stellen wir eine Erweiterung mittels Online-Diensteanbietern vor. Damit er-

möglichen wir die lokal gesammelten Vertrauensinformationen anderen Nutzern zur

Verfügung zu stellen und damit die notwendige Initialisierung des Systems zu verbes-

sern. Darüber hinaus wird ein effizienter Erkennungsmechanismus für nicht vertrau-

enswürdige CAs realisiert.

Bezüglich des zweiten Teilproblems von (2) stellen wir eine PKI Konstruktion

vor, welche robust gegenüber der Revokation von CA Zertifikaten ist. Dies wird

über den Einsatz vorwärtssicherer Signaturverfahren erreicht. Vorwärtssicherheit

bedeutet, dass selbst im Falle einer Kompromittierung des privaten Schlüssels, zuvor

erzeugten Signaturen weiterhin vertraut werden kann. Damit lässt sich ein Wider-

rufsmechanismus umsetzen, der es erlaubt CA Zertifikate bei Bedarf zu revozieren,

ohne die Erreichbarkeit der abhängigen Web Services zu gefährden. Wir zeigen, wie

die Web PKI unter Berücksichtigung der relevanten Standards in eine solch robuste

PKI überführt werden kann.

Die in dieser Arbeit entwickelten Mechanismen erlauben es uns, zusätzlich das ver-

wandte Problem der Nichtabstreitbarkeit digitaler Signaturen anzugehen. Nichtab-

streitbarkeit ist ein wichtiges Sicherheitsziel für viele eBusiness und eGovernment

Anwendungen und erfordert im allgemeinen den langfristigen Gültigkeitserhalt digi-

taler Signaturen. Dies wird von PKIs nicht standardmäßig unterstützt und erfordert

bisher aufwändige Zusatzmaßnahmen wie Zeitstempel durch vertrauenswürdige Zeit-
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stempeldiensteanbieter. Wir zeigen in dieser Arbeit, wie Nichtabstreitbarkeit als

Standard-Eigenschaft von PKIs etabliert und somit auf Zeitstempel verzichtet wer-

den kann.

Die in dieser Arbeit vorgestellten Verfahren werden im Hinblick auf Praktikabilität

und Performanz evaluiert. Dies basiert zum einen auf theoretischen Resultaten zum

anderen auf experimentellen Ergebnissen und Analysen. Unsere Ergebnisse zeigen,

dass die vorgestellten Verfahren bisherigen Lösungsansätzen überlegen sind.

Zusammenfassend stellt diese Arbeit Mechanismen zur Verfügung, welche den

praktische Einsatz von PKIs sicherer und effizienter gestalten und belegt die Prak-

tikabilität der vorgestellten Verfahren.
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1 Introduction

Electronic communication has become an integral part of daily life. In 2015, a

monthly traffic of more than 83 exabyte of data being sent over the Internet will

be reached [178]. The Internet offers a nearly inconceivable mass of applications to

its users such as e-commerce, e-banking, e-government and online social networks

just to name a few. As of mid 2014 more than 3 billion Internet users [135] use the

services provided by more than 1 billion hosts [134] all around the world. Looking

at the different growth rates concerning Internet usage, it is safe to predict that this

is by far not the end.

Because of its importance, Internet communication must be protected. Most

of the applications mentioned above typically involve sensitive data, for example

credit card numbers, medical data or industrial secrets. Security of communication

not only refers to the protection of business assets and monetary values but also

to the protection of the privacy of the communication partners. And at least since

the disclosures of Edward Snowden [124] it is commonly known, that the attackers

which aim at the interception, surveillance and the control of the communication

are not limited to criminals and totalitarian regimes but also comprise intelligence

agencies and other governmental organizations even of democratic countries. In

many cases such attackers have a big budget and far-reaching capabilities to intercept

the communication channels of the Internet.

The protection of the communication requires: authentication, integrity and con-

fidentiality. This means, the communication partners must be sure with whom they

communicate (authentication), that the sent data has not been changed on the way

from the sender to the receiver (integrity) and that no unauthorized third party

can access the communication (confidentiality). Secure Internet communication is

realized using the Transport Layer Security (TLS) protocol, which relies on digital

signatures and in many cases public key encryption. Digital signature schemes as

well as public key encryption schemes belong to the field of public key cryptography

and require key pairs: a private key, which is only known to the owner of the key pair

and a public key, which must be provided to any potential communication partner.
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In digital signature schemes, the key owner uses the private key to sign messages,

and the public key is used to verify the correctness of the signature. In encryption

schemes, the public key is used to encrypt messages and the private key is used to

decrypt the ciphertexts.

A necessary condition for security of digital signatures and public key encryption

is the possibility of public key authentication, i.e., the assertion to which entity a

public key belongs. Without this possibility, an adversary can sign messages in the

name of any other entity by pretending that his own public key belongs to that en-

tity. Or, in the case of encryption there would be no guarantee, that the entity which

is able to decrypt a ciphertext is actually the entity which is intended to be able to

do this. The problem with authentication is that the communication partners must

authenticate the public keys of each other before they can use digital signatures and

public key encryption for the establishment of secure authenticated and encrypted

communication channels. But, when considering global communication, it must be

assumed that the communication partners have never met in person or communi-

cated through an a priori secure channel which would allow the authentication of

their public keys.

This authentication problem is solved with Public Key Infrastructures (PKIs).

PKIs reduce trust in the authenticity of a public key of an entity to the trust in the

authenticity of a Certification Authority’s (CA’s) public key and the trustworthiness

of this CA. In fact, in PKIs chains of trust reductions that involve several CAs reduce

the trust in the authenticity of a public key to the authenticity of the public key and

the trustworthiness of a Root CA which serves as a trust anchor. CAs are trusted

third parties that issue public key certificates which bind public keys to their owners.

Certificates are electronic documents that contain the public key together with the

key owner’s name and are digitally signed by the CA. By issuing certificates, the CA

guarantees for the authenticity of public keys. Furthermore, CAs are responsible for

the revocation of certificates, which ends the binding between a public key and an

identity established through a formerly issued certificate. Revocation is for example

necessary when the respective private key has been compromised in order to prevent

misuse of the key in the name of the legitimate key owner.

The certificates are used to authenticate the public keys of the communication

partners and subsequently the communication partners themselves. In TLS mainly

unilateral authentication is applied, i.e., only the web servers are authenticated by

certificates.

This raises the important question which CAs are in fact trustworthy to issue

certificates. In recent years, it has repeatedly happened that supposedly trustworthy

CAs issued fraudulent certificates to attackers and showed serious breaches of duty
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in regard to the handling of security incidents. This enabled attackers to spoof web

servers and intercept private communication of Internet users.

Currently, the decision which CAs are to be considered trustworthy is left to

operating system and browser vendors. Operating systems and browsers contain

root stores: lists of Root CAs which are directly trusted. CAs themselves can

delegate trust to subordinate (Sub) CAs making them trusted by operating systems

and browsers as well. This is done by issuing CA certificates to the Sub CAs. For

technical details on how this is realized we refer the reader to Sections 2.2 and 3.1.3.

The PKI which comprises all these trusted CAs is referred to as the Web PKI.

Currently, the Web PKI consists of approximately 1,590 CAs which are controlled

by 683 private as well as governmental organizations and are located in 57 different

countries [17]. There are several issues why the Web PKI fails to provide the desired

security which we highlight in the following:

• The huge number of CAs together with the fact that the security relies on

the weakest link of the system has disastrous consequences for security: Each

of the CAs is equally trusted. Thus, an attacker controlling a single one of

the CAs may impersonate arbitrary entities. This is especially problematic

because:

– Any CA must be seen as being ultimately fallible, e.g., due to implemen-

tation errors, poor operational practices or human errors.

– There is no globally standardized mechanism that ensures the trustwor-

thiness of CAs.

– Governments, which were identified as potential attackers, have in many

cases control over CAs. Either the CA is being operated by a govern-

mental organization or access may be obtained through jurisdiction of

the country in which the CA resides.

• Revocation of certificates in general and in particular the revocation of CA

certificates is problematic.

– The provision of revocation information to billions of users has shown to

be a particular challenge in the Web PKI. However, if the availability of

revocation information cannot be guaranteed, this may render the whole

revocation mechanism useless.

– CA certificates can often not be (immediately) revoked, although a CA

compromise or CA misbehavior would actually make this step necessary.
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In many cases the authentication of thousands of service providers de-

pends on a single CA. Upon revocation of such a CA’s certificate all these

services would become unavailable. This makes the removal of faulty CAs

problematic if not impossible.

Therefore, the research goal which this thesis addresses is:

To ensure that the CAs which an entity trusts in are actually trustworthy.

Our contribution to achieving this goal will take into account the following critical

success factors imposed by the global scale of the Web PKI:

• Scalability: The solutions must scale to billions of users and services and, at

the same time, must not depend on being implemented globally.

• Usability: In general, the users are non-experts and cannot be expected to

understand the functioning of PKIs.

• Backward compatibility and deployability within the existing infrastructure.

In this work we introduce user-centric CA trust management. It addresses the

research goal by individually reducing the number of trusted CAs. The reduction is

based on evidence of the trustworthiness of CAs. This significantly reduces the risk

to rely on a CA, which is actually not trustworthy. Furthermore, user dependent

data collection allows to continuously monitor the revocation status for certificates

relevant to a user.

Secondly, we present a CA revocation tolerant PKI construction based on forward

secure signature schemes (FSS). The forward security property of FSS maintains

the validity of signatures generated prior to a key compromise. Making use of this

property, revocation mechanisms can be implemented such that the revocation of CA

certificates becomes feasible without being restricted by availability requirements.

We show that these solutions solve the above mentioned issues without introducing

significant overhead.

The techniques developed in this thesis that allow for forward security in PKIs also

enable us to address the security goal “non-repudiation” which is not guaranteed

by standard PKIs. It refers to an entity not being able to deny being the origin

of a certain piece of data. For example, non-repudiation is important in many e-

business and e-government contexts. Non-repudiation requires long term verifiability

of digital signatures. We show how non-repudiation can be made a standard property

of PKIs.

In the following, the contributions are summarized and the organization of this

thesis is presented.
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Contribution and outline

The main contributions of this thesis are:

1. Concept and realization of user-centric CA trust management which enhances

the trustworthiness of CAs in the Web PKI.

2. Techniques that enable the Web PKI to tolerate CA certificate revocation and

provide non-repudiation.

The contributions are divided into several parts as described in the following.

Chapter 2 – Background In this chapter, the relevant background for this thesis

is provided. This includes relevant definitions regarding public key cryptography

and an introduction to hierarchical PKIs. We also provide background on Internet

communication and introduce computational trust. In particular, we present Cer-

tainTrust, the trust model which is used throughout this thesis to represent trust.

Chapter 3 – The Web PKI requires user-centric CA trust management In this

chapter we provide an in depth analysis of the Web PKI and a problem exposition.

The practical relevance of the identified problems is demonstrated based on an

analysis of past security incidents regarding the Web PKI. Also, previous scientific

work as well as practical proposals for the solutions regarding the described problems

are reviewed and weaknesses are identified. This enables us to identify challenges

and requirements for a practical solution.

Starting from this, we define the user-centric trust model for the Web PKI meaning

that trust decisions are individualized and trust settings regarding CAs are tailored

to the user-specific requirements of a relying entity. Based on a user study, we show

the potential of user-centric CA trust management in regard to the reduction of the

attack surface of the Web PKI.

Chapter 4 – CA-TMS: User-centric CA trust management Based on the find-

ings in Chapter 3, we develop CA-TMS: a CA trust management system that realizes

the user-centric trust model. The core of CA-TMS are trust views that serve as a

local and user dependent knowledge base for trust decisions. Trust views achieve

two goals: The number of CAs a user trusts is reduced. This leads to a reduction

of the attack surface by more than 95%. Secondly, for the trusted CAs the revo-

cation status can be continuously monitored, which enables a reliable provision of

revocation information.
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An important aspect of CA-TMS is, that it realizes user-centric trust management

without involving the user into decision making. This is achieved by means of

computational trust along with learning processes and automated trust decisions

based on defined decision rules. CA-TMS exclusively builds on data which either is

initially available or is collected over time. In contrast to existing proposals, CA-

TMS does not require recommended trust values embedded into certificates or the

evaluation of certificate policies and expert opinions.

Techniques of previous proposals like public key pinning and certificate notaries

are integrated and combined as building blocks. These different building blocks

complement each other such that it allows to overcome scalability and usability

problems of previous proposals.

Chapter 5 – Service providers for CA-TMS CA-TMS as presented in Chapter 4

protects relying entities from fraudulent certificates issued by CAs that are not part

of their trust view or do not fulfill the trust requirements for a specific application.

CA-TMS works autonomously and does not require an additional check of every

(new) certificate once the trust view is bootstrapped.

The extension of CA-TMS by service providers solves two specific issues: Boot-

strapping in case no or only limited input data is available and protection in the

face of CAs that are already considered to be trustworthy but suddenly change their

behavior and become untrustworthy.

The bootstrapping problem is solved by a reputation system. It makes the knowl-

edge of other relying entities available to a relying entity whenever its own expe-

rience is insufficient for decision making. With this mechanism, we speed up the

bootstrapping process. The second problem is solved with a push service. CA-TMS

implements a function which detects suspicious certificates. The service providers

monitor the trust views collected within the reputation system’s database. Upon

detection of a CA becoming untrustworthy, this information is pushed to all clients

whose trust view contains the CA in question.

Chapter 6 – CA revocation tolerant PKI In this chapter we show how to trans-

form a PKI into a CA revocation tolerant PKI. This is achieved by the application

of forward secure signature schemes. The special properties of FSS allow the adap-

tation of certificate validation and revocation mechanisms such that CA certificates

can be revoked in a secure way without invalidating former signatures. This prevents

the unavailability of dependent services.

Besides providing the concepts, we describe how to implement the solution in the

Web PKI. The results show that the implementation is feasible without infrastruc-
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tural changes and is covered by current standards.

The performance evaluation includes a comparison to the standard setup where

common signature schemes like RSA or (EC) DSA are used. It turns out, that a

CA revocation tolerant PKI admits good performance in regard to runtimes and

certificate as well as signature sizes.

Chapter 7 – Providing non-repudiation and long term verifiability In contrast to

authentication scenarios, in use-cases that require non-repudiation, digital signatures

must remain valid and verifiable for a long time. A common example is contract

signing.

This solution is a significant improvement of the current solutions which are based

on time-stamps generated by trusted third parties. In order to guarantee non-

repudiation, time-stamps must be applied to each signature directly after signature

generation. This is costly and therefore has prevented the broad application of

digital signatures as a replacement for handwritten signatures so far.

Extending the mechanisms used in Chapter 6, in Chapter 7, we provide a solution

based on FSS which establishes non-repudiation as an inherent guarantee provided

by the PKI. This guarantee is preserved as long as the used signature scheme is

considered secure. Additionally, we present possibilities to prevent the sudden break

down of the security of signatures based on special properties of XMSS [12], a hash-

based FSS.

Chapter 8 – Conclusion Finally, in this chapter we conclude our thesis and discuss

future research directions.





2 Background

In this chapter we present the necessary background for the work at hand. We

provide the definitions and concepts used throughout this thesis. We start with

an introduction to public key cryptography and cryptographic building blocks in

Section 2.1. Afterwards, we describe the components and processes of public key

infrastructures in Section 2.2. This is followed by a short introduction to secure

Internet communication in Section 2.3. In Section 2.4, computational trust models

are introduced and in particular CertainTrust, which is used to represent trust in

this thesis. Finally, further related work is listed in Section 2.5.

This chapter contains revised and extended parts of the background sections pub-

lished in [B2, B4, B5, B6, B7, B8, B10].

2.1 Public key cryptography

The security goals relevant to this thesis are integrity, confidentiality, authentication,

data authenticity and non-repudiation. Integrity refers to the fact, that data has not

been modified since its generation. Confidentiality denotes the property, that data is

not available to an unauthorized entity. Authentication is the process of confirming

the identity of some other entity. Data authenticity refers to the determination of

the originator of data. Non-repudiation is the property, that an entity cannot deny

to have performed a certain action, such as having signed a document.

These security goals can be and are in practice achieved with public key cryptog-

raphy. In general, public key cryptography requires key pairs: a private key (also

called secret key) sk that is only known to the owner of the key pair as well as a

public key pk, which must be provided to the other participants in a cryptographic

protocol. Furthermore, it is generally required to ascertain a relation between a

public key pk and the identity of its owner, i.e. to verify the authenticity of a public

key. This shows a dilemma: in order to enable authentication, authenticated cre-

dentials need to be available to the participants. This also shows the central role of

authentication in cryptography.
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The authentication of public keys is achieved with public key infrastructures which

are explained in Section 2.2. First, several cryptographic mechanisms will be ex-

plained in more detail.

2.1.1 Hash functions

Hash functions are important cryptographic building blocks. Generally, a hash

function h : {0, 1}∗ → {0, 1}n maps bit strings of arbitrary length {0, 1}∗ to bit

strings of length n ∈ N. h(x) can efficiently be computed for any x ∈ {0, 1}∗.
To be used in cryptographic applications, hash functions require special properties.

These are one-wayness, second-preimage resistance and collision resistance. We only

give an informal description of the properties and refer the reader to [34] for formal

definitions. One-wayness denotes the property that it is infeasible to invert the

hash function, i.e. it is infeasible to compute x ∈ {0, 1}∗ such that h(x) = s for a

given s ∈ {0, 1}n. Second-preimage resistance means, that it is infeasible to find a

collision for a given x ∈ {0, 1}∗, i.e. to find an x′ ∈ {0, 1}∗ with x 6= x′ such that

h(x) = h(x′). Finally, collision resistance denotes the property that it is infeasible

to find any collision, i.e. it is infeasible to find any pair x ∈ {0, 1}∗ and x′ ∈ {0, 1}∗
with x 6= x′ such that h(x) = h(x′). Hash functions that are collision resistant are

also called cryptographic hash functions. Collision resistance is for example required

to generate digital signatures which will be described in Section 2.1.2.

Collision resistance is the strongest of the explained security properties. Collision

resistance implies second-preimage resistance which in turn implies one-wayness,

however this does not hold the other way around. A one-way function can be

used to construct a second-preimage resistant hash function. But, collision resistant

hash functions are not known to be constructable from one-way functions nor from

second-preimage resistant hash functions [34, B8].

Another security property of hash function families is pseudorandomness. It

means, that a function randomly drawn from a pseudorandom function family is,

concerning its in- and output behavior, indistinguishable from a function randomly

drawn from all functions with the same in- and output sets. Pseudorandom function

families can as well be constructed from one-way functions. Thus, again the collision

resistance is a stronger security assumption than pseudorandomness [34].

2.1.2 Digital signature schemes

A digital signature scheme S = (KGen, Sign,Ver) is given by three algorithms:

KGen The key generation algorithm, on input of security parameter 1λ, λ ∈ N
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generates a key pair (sk, pk) consisting of a secret signing key sk and a public

verification key pk.

Sign The signing algorithm, on input of a secret key sk and a message m ∈ {0, 1}∗,
outputs a signature σ.

Ver The verification algorithm, on input of public key pk, a message m, and a

signature σ, outputs 1 iff σ is a valid signature on m under pk, else 0.

S is correct if for all λ ∈ N, (sk, pk)← KGen(1λ), m ∈ {0, 1}∗, and σ ← Sign(sk,m),

Ver(pk,m, σ) returns 1 as output.

In general, a message m ∈ {0, 1}∗ is not signed directly, but the according hash

value h(m) is used as input for Sign. Where h is a collision resistant hash function.

When referring to a signature scheme, we refer to a secure digital signature scheme.

Secure means, that an adversary is unable to forge signatures without knowing

the private key. For formal definitions of the security of signature schemes like

existential unforgeability under chosen message attacks (EU-CMA), we refer the

reader to [25, 34].

In the following, we introduce key evolving signature schemes and forward secure

signature schemes and explain their specific properties.

Key evolving signature schemes

In contrast to conventional signature schemes, in key evolving signature schemes

(KES) the secret key sk changes over time, while the public key pk remains the

same. The lifetime of a key pair is split into several intervals, say t. These intervals

can be defined in different ways. Either an interval corresponds to a time period,

e.g., one day. Or an interval ends after the key was used to create a certain number

of signatures. Note that this implies that the length of two intervals might differ.

Especially, it is possible to associate the intervals with single signatures.

The number of intervals t becomes a public parameter of a KES and is taken as an

additional input by the key generation algorithm. A KES key pair has t secret keys

sk1, . . . , skt; one secret key for each of the t intervals. The key generation algorithm

outputs (sk1, pk), where sk1 is the first secret key. To obtain the subsequent secret

key, a KES has an additional key update algorithm KUpd, which updates the secret

key at the end of each interval. The signing algorithm takes as additional input the

index of the current interval. This index also becomes part of the signature and is

therefore available for the verification algorithm. Finally, if a user generates a valid

key pair and the key update algorithm is called at the end of each interval, then a
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signature generated with the current secret key and the index of the current interval

can be verified by any user with the corresponding public key. A signature is verified

as valid if the signature is a valid signature on the message under the given public

key and the index of the interval included in the signature.

Forward secure signature schemes

The idea of forward security for digital signature schemes was introduced by Ander-

son [4] and later formalized in [8]. In one sentence, the forward security property

says that even after a key compromise, all signatures created before remain valid.

A forward secure signature scheme (FSS) is a KES that provides the forward

security property. The forward security property guarantees, that an adversary that

is allowed to launch a chosen message attack for each interval and learns the secret

key ski of an adaptively chosen interval i is unable to forge a signature for any

interval j < i. In particular, this means that an adversary is unable to invert the

key update algorithm KUpd.

To maintain the forward security in practice, it is indispensable that KUpd is

executed on-time at the end of each interval and no keys of past intervals are kept

e.g. as a back up. Otherwise, an adversary might be able to compromise a secret

key ski of a past interval which would destroy the forward security.

For a formal definition of FSS we refer the reader to [8]. Note that forward security

implies the standard notion of EU-CMA extended to the case of KES.

2.1.3 Public key encryption schemes

In public key encryption schemes, the key owner also has a key pair (sk, pk) which

is generated with a key generation algorithm. The public key is used to encrypt

messages, which can then only be decrypted with the corresponding private key. A

public key encryption scheme is defined as follows.

A public key encryption scheme PKE = (KGen,Enc,Dec) for message space M ⊆
{0, 1}∗ is given by three algorithms:

KGen The key generation algorithm, on input of security parameter 1λ, λ ∈ N
generates a key pair (sk, pk) consisting of a secret decryption key sk and a

public encryption key pk.

Enc The encryption algorithm, on input of a public key pk and a message m ∈M ,

outputs a ciphertext c.
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Dec The decryption algorithm, on input of a secret key sk and a ciphertext c

outputs the decrypted message m′ ∈ {invalid} ∪M

PKE is correct if for all λ ∈ N, (sk, pk)← KGen(1λ), m ∈M and for c← Enc(pk,m)

m′ ← Dec(sk, c) it is m′ = m.

2.2 Public key infrastructures

A Public Key Infrastructure (PKI) supports the use of public key cryptography by

handling keys and providing public key certificates, first introduced in [44]. The

most basic operations of PKIs is the issuance and the revocation of certificates.

Certificates bind the key owner’s identity (e.g. a name) to his public key. In contrast,

a revocation ends a previously established binding between an identity and a public

key. The fundamental question is who is trusted to issue certificates. For this two

basic principles exist. Either certificates are issued by users themselves to other

users like in the OpenPGP Web of trust [75] or it is left to trusted third parties.

The latter is the case in hierarchical PKIs, which are explained in the following.

Whenever we refer to a PKI in this thesis, we refer to a hierarchical PKI.

2.2.1 Hierarchical PKI

In hierarchical PKIs, the trusted third party which is responsible for the issuance

and management of certificates is called Certification Authority (CA). By issuing a

certificate, a CA attests that a public key belongs to a particular entity, namely the

subject of the certificate. Entities can request certificates from CAs. Before issuing

a certificate, the CA must verify the identity of the requesting entity and that the

public key for which the certificate is requested is indeed owned by the requesting

entity, i.e. the requesting entity possesses the corresponding private key. As these

verification processes are complex, a CA is usually supported by a Registration

Authority (RA), which checks the credentials of a subject in order to attest its

identity. A CA may in general be also supported by multiple RAs. A CA together

with its RAs and further components is sometimes referred to as a Certification

Service Provider [13]. Throughout this thesis we refer to entities authorized to issue

certificates as CAs, disregarding its exact organizational structure.

The subject of a certificate may be an organization, an individual, a server or

any other infrastructure component. The entity that actually contracts the CA and

pays for the service of issuing certificates is called the subscriber. Subscriber may
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be the subject of a certificate itself, or another entity. For example, an organization

might request certificates for its employees.

Finally, there is the relying entity, which can be any individual or entity that

relies on the certificates. For example, a relying entity may be an individual that

verifies a signature or encrypts messages using a public key certified in a certificate.

There is not necessarily a business relationship of any kind between a CA and the

relying entity. However, a relying entity must trust the issuing CA in order to be

convinced that the binding between subject and public key is valid.

In general, certificates are signed by the issuing CA (also referred to as the issuer).

Thus, to verify the signature on a certificate, the relying entity must know the issuer’s

public key, and the relying entity must be able to verify the authenticity of that key.

In a hierarchical PKI, CAs are organized in a tree structure. The CA that builds

the root of the tree is called Root CA. The Root CA (also called trust anchor) acts

as the trust basis for the whole PKI. Root CAs sign certificates for subordinate CAs

(Sub CAs) and end entities such as web servers or individuals. Sub CAs themselves

sign certificates for other Sub CAs as well as end entities. A sample PKI is shown

in Figure 2.1.

Sub CA1

end entity 
Ԑ3

Root CA

Sub CA2

end entity 
Ԑ2

end entity 
Ԑ1

Figure 2.1: Hierarchical PKI. The boxes represent different entities, the arrows represent

certificates.

By issuing a certificate to another CA, the issuer delegates trust to the Sub CA

and authorizes the Sub CA to issue certificates itself. The authenticity of the Sub

CA’s key is guaranteed by the certificate issued by the CA on the next higher level.

This reduces the key authentication problem to the secure pre-distribution of the

Root CA’s public key, which is to be realized via some out of band channel. Trust

in the authenticity of an entity’s public key is then established by the chain of

certificates starting with the Root CA’s certificate and ending with the end entity’s

certificate. This chain of certificates is called certification path. In a hierarchical

PKI, a relying entity thus trusts any CA which has a valid certification path from
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the Root CA to the CA’s certificate.

The process of checking the certification path for correctness and validity is called

path validation, which we explain in more detail in Section 2.2.4. In general, a

certification path is a sequence p = (C1, ..., Cn) of n ∈ N certificates Ci, with the

following properties [13]:

• Except for Cn, the subject of a certificate is the issuer of the subsequent

certificate.

• The issuer of the first certificate C1 is the trust anchor.

• The subject of the last certificate in the path Cn is the end entity.

The Root CA’s certificate C1 is usually a self-signed certificate. Self-signed means

that a certificate is issued by an entity to itself and is signed with the private key

associated to the public key in the certificate.

The most common type of hierarchical PKIs is the X.509 PKI which is an ITU-T

standard [97] and was adopted by the Internet Engineering Task Force (IETF) [83].

In particular, the Web PKI which we explain in detail in Chapter 3 is an X.509

PKI. In the following, PKIs are assumed to be constructed according to the X.509

standard.

2.2.2 Certificates

As already stated, the binding between a public key and an identity is established

through certificates. Certificates are data structures, that contain several fields.

X.509 certificates are specified in the Abstract Syntax Notation version 1 (ASN.1)

[96]. The most relevant contents of a certificate are the name of the subject and

the subject’s public key. Furthermore, a certificate specifies with which public key

algorithm the certified public key is to be used. Also the name of the issuer is

given in the certificate. This is required to identify the public key used to verify

the issuer’s signature on the certificate. Certificates also contain restrictions on the

purpose for which the certified public key may be used. Even though a multitude of

different key usages are possible, we only differentiate between CA certificates and

end entity certificates. CA certificates are issued to (Sub) CAs and allow certificate

signing. In general, this is not allowed for end entity certificates. To make certificates

identifiable, they contain serial numbers. Together with the issuer’s name, the serial

number is a globally unique identifier for a certificate. Further auxiliary information

can be included into certificates within so called certificate extensions. Please refer

to [83] for details on standard extensions in X.509 certificates.
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A certificate provides a binding between subject and public key only for a limited

time period. This time period is called validity period and is defined in the certificate

by the fields NotBefore and NotAfter. After the date given in the NotAfter field, a

certificate is considered as expired. The binding between a public key and a subject

can also be ended by a revocation, which we explain in the following section.

2.2.3 Revocation

Revocation means the invalidation of a certificate during its validity period. Re-

vocation is done by the CA that certified the binding. The main mechanisms for

revocation are Certificate Revocation Lists (CRL) [83] and the Online Certificate

Status Protocol (OCSP) [104]. There are many reasons, why a revocation may be

required, such as organizational changes, identity changes regarding the subject’s

identity, or the private key was compromised. In the last case, revocation is espe-

cially important, in order to prevent the malicious use of the key by an attacker.

In order to trigger a revocation the compromise needs to be detected first. This is

only possible with a certain delay. The time period between compromise and its

detection is called gray period. During the gray period, the PKI is in an insecure

state, in particular, when a CA’s key is compromised.

CRL

CRLs are defined in [83]. CRLs are released by CAs in regular intervals and specify

certificates that are revoked and have not yet expired. Within CRLs, the revoked

certificates are identified by the issuer’s name together with the certificate’s serial

number. Furthermore, they also may contain information about the reason for a

certificate revocation and a date from which on the certificate needs to be considered

invalid. There exist different forms of CRLs, such as full, delta or indirect CRLs

which we do not explain here. For more details on the different CRL types we refer

the reader to [13, 83].

CRLs are an offline mechanism for revocation checking. Relying entities can

download the CRLs in regular time intervals from the CAs’ servers and then use

these CRLs to check the revocation status of certificates during path validation.

From where to get the CRL relevant for a certain certificate is specified in the

cRLDistributionPoints extension of the certificate.
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OCSP

CRLs can get rather large and introduce delays into revocation until the next update

of a CRL is published. Therefore, the Online Certificate Status Protocol [104] was

defined. As the name says, it is an online mechanism to check the revocation status

for a certificate. To provide the OCSP service, so called OCSP servers are operated,

either by the CAs themselves or by an additional service provider. OCSP servers are

special servers from which relying entities can request revocation status information

of a certificate on demand. Within the request, the relying entity specifies the

certificate using the issuer’s name and the certificate’s serial number. OCSP also

allows to request the status of several certificates aggregated into one request.

The OCSP responder replies to a request with a signed response. Three different

answers are possible:

• revoked, which states that the specified certificate has been revoked.

• unknown, which states that the OCSP server has no information about a cer-

tificate and is unable to give any answer about the status of the certificate.

• good, which indicates that the certificate is not revoked.

The answer good does not necessarily mean that a certificate is valid. The certifi-

cate might be expired or never have been issued. The actual behavior is left open

to the implementation. OCSP servers that reply with revoked to requests for non-

issued certificates must include the extended-revoke extension according to RFC

6960 [104].

Besides these possible status answers, an OCSP response may contain any infor-

mation contained in CRLs, and includes the date showing when the response was

generated.

OCSP is capable to provide up-to-date revocation information. However if OCSP

responders base their answers on CRLs, this advantage is lost. To sign OCSP

responses, OCSP servers normally use their own signing key and a certificate that

was issued by the CA for which the OCSP server is operated. As for CRLs, the

address of the OCSP server responsible for a certain certificate is specified in the

authorityInfoAccess extension.

OCSP stapling OCSP stapling means that an OCSP response is not provided by

the OCSP server to relying entities, but by the key owner himself. To do so, a key

owner requests the status for his own certificate (or all certificates in the certification

path of his certificate) from an OCSP server as described above. The responses are
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then transferred to the relying entity by the key owner. As the responses are signed

along with the date of their generation by the OCSP server, the relying entity can

verify their authenticity and timeliness as in standard OCSP. This is especially rel-

evant in scenarios where the key owner and the relying entity communicate directly

and exchange the certification path during the communication as in TLS which will

be detailed in Section 2.3.2. OCSP stapling has been specified as the certificate sta-

tus request TLS extension [76] for a single certificate, and was extended to multiple

certificates in [103].

Compared to the standard use of OCSP, OCSP stapling has the advantage that

additional online communication with the OCSP server can be omitted. This saves

overhead and also protects the relying entity’s privacy, as the OCSP server is not

able to track the communication of the relying entity. An additional benefit can be

seen in the fact that the key owner can reuse the OCSP response for a certain time

interval, depending on the required freshness of the response to be accepted by a

relying entity. Thus, an OCSP response does not have to be newly generated every

time a relying entity is verifies the key owner’s certification path.

2.2.4 Path validation and validity models

In this section we explain how the validity of a certification path is evaluated. The

outcome of path validation determines, whether a relying entity considers the public

key certified within an end entity certificate as authentic or not.

There are two requirements for the validity of a certification path. The first is that

for each digital signature on a certificate in the path, the corresponding verification

algorithm Ver on input of the signature, the certificate (which is the signed message)

and the issuer’s public key must output 1, i.e., the signature is a valid signature under

the given public key. This basic requirement is assumed to hold in the following.

The second requirement is the semantic correctness of the certification path. It is

evaluated according to a validity model. The validity model specifies how the revo-

cation information and the validity periods of the involved certificates are evaluated.

In literature, three validity models can be found [6], which we shortly explain.

Shell model To formally describe the models let n ∈ N be the length of the

certification path. C1 is the self-signed certificate of the Root CA. Cn is the certificate

of the end entity. We denote by Ti(k) the starting date of the validity period of Ck
and by Te(k) its expiration date. Tv denotes the time of verification. The shell

model is defined as follows and depicted in Figure 2.2.



2.2 Public key infrastructures 19

Definition 2.1 (Shell model). A certification path is valid at verification time Tv
if all certificates in the certification path are valid at time Tv: Ti(k) ≤ Tv ≤ Te(k)

for all 1 ≤ k ≤ n and no certificate is revoked at time Tv.

time

Root CA 
certificate

Sub CA 
certificate

end entity 
certificate

Ts Tv

Figure 2.2: Shell model. The signature generation time is Ts and the verification time is

Tv. Vertical arrows show the point in time used for validation of the certificates.

For a successful verification, all certificates in the path have to be valid at the

time of verification. Thus, a relying entity can use the public key pkn certified in Cn
to encrypt messages or to verify signatures (depending on the allowed key usage)

during the time period where all certificates are valid. Currently, most applications

implement the shell model for certification path validation [6]. In particular, RFC

5280 [83] establishes the shell model as the standard validity model for the Web

PKI.

Note that in the shell model a certification path becomes invalid once one of

the certificates in the path expires or is revoked. This subsequently invalidates all

signatures generated by subordinate entities. However, there are scenarios where

this is not acceptable. For example, when data authenticity and non-repudiation

are desired security goals. These properties must often be preserved for indefinite

time periods. Therefore, two additional validity models have been defined for (end

entity) signature validation. These models explicitly consider the points in time,

where signatures have been generated.

Extended shell model In the following, let Ts be the time of signature generation

by an end entity. Note that while the knowledge of Tv is trivial for a verifier (the

relying entity), the knowledge of Ts is not, because Ts is not provided by a digital

signature and thus requires a trustworthy time information, such as a time-stamp by

a trusted third party (see Section 2.2.7). The end entity signature is also assumed

to be a valid signature under the end entity’s public key. Then, the extended shell

model is defined as follows. Figure 2.3 depicts the model.
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Definition 2.2 (Extended shell model). A digital signature is valid at verification

time Tv if all certificates in the certification path are valid at time Ts: Ti(k) ≤ Ts ≤
Te(k) for all 1 ≤ k ≤ n and no certificate in the path is revoked at time Ts.

time

Root CA 
certificate

Sub CA 
certificate

end entity 
certificate

Ts Tv

Figure 2.3: Extended shell model. The signature generation time is Ts and the verification

time is Tv. Vertical arrows show the point in time used for validation of the certificates.

In the extended shell model (also called hybrid or modified shell model) Ts is

used instead of Tv during validation. This means that the certificates in the path

are checked for validity and revocation status at generation time of the end entity

signature.

To implement this model, the signature generation time needs to be tied to the

signature such that it can be checked that the certificates in the path were not

revoked and were valid at that time. Furthermore, as the expiry of a certificate

does not invalidate previously generated signatures, revocation information for the

involved certificates must be preserved beyond certificate expirations, which in gen-

eral is not necessary when applying the shell model. This also holds for the chain

model explained in the following.

Chain Model The chain model is defined as follows and depicted in Figure 2.4.

Definition 2.3 (Chain model). A digital signature is valid at verification time Tv
if:

1. The end entity certificate Cn is valid at the signing time Ts: Ti(n) ≤ Ts ≤ Te(n)

and Cn is not revoked at time Ts.

2. Every CA certificate in the certification path is valid at the issuance time of

the subordinate certificate in this path: Ti(k − 1) ≤ Ti(k) ≤ Te(k − 1) and the

certificate Ck−1 is not revoked at time Ti(k) for all 2 ≤ k ≤ n.

In the chain model, any signature in the certification path is validated using its

signature generation time, i.e. the issuance time of the certificate. The start date



2.2 Public key infrastructures 21

time

Root CA 
certificate

Sub CA 
certificate

end entity 
certificate

Ts Tv

Figure 2.4: Chain model. The signature generation time is Ts and the verification time

is Tv. Vertical arrows show the point in time used for validation of the certificates.

of the validity period can be used as an approximation. Thus, this date must lie

within the validity period of the superordinate certificate.

If time-stamps are used in the implementation of the chain model, one time-stamp

is required for every signature within the certification path [6]. This is because

different dates prior to the signature generation time of the end entity signature

have to be considered for the path validation. Both, the extended shell model as

well as the chain model allow signature validation at any point in the future.

2.2.5 Certificate policies and certificate practice statements

In PKIs, the CAs are considered as trusted third parties. This trust is based on so

called Certificate Policies (CP). The CP of a CA provides a set of rules for its oper-

ation and the internal procedures to which the CA committed itself. For example,

a CP comprises information about authentication of subjects, security controls and

also covers liability issues. A CA additionally describes the implementation of these

rules in a Certificate Practice Statement (CPS). The CP and the CPS may be used

by relying entities to evaluate whether to rely on the certificate issued by the CA in

a specific application or not. A framework for CPs and CPSs is provided by [82].

2.2.6 Object identifiers

Object identifiers (OIDs) are used to refer to standardized objects, such as crypto-

graphic algorithms or policies. OIDs can be used to identify any arbitrary object.

For example, the OID 1.2.840.113549.1.1.1 identifies the RSA public key encryption

scheme. OIDs are globally unique identifiers organized in a tree. The triadic root

of the global OID tree is defined as follows:

0: ITU-T

1: ISO
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2: joint-iso-itu-t

This means that the Telecommunication Standardization Sector of the Interna-

tional Telecommunication Union (ITU-T) [93] is responsible for OIDs starting with

0, while the International Organization for Standardization (ISO) [92] is responsible

for OIDs starting with 1. A leading 2 identifies jointly assigned OIDs.

2.2.7 Time-stamping

The process of adding a trusted time to electronic data is called time-stamping.

Time-stamps are issued by a trusted third party called Time-Stamping Authority

(TSA). Time-stamping can be implemented in different ways [77, 78, 95]. In general,

time-stamping is achieved by signing the data along with the current date and time.

With its signature, the TSA certifies that the time-stamped data existed at a certain

point in time, typically at the time of the generation of the time-stamp. To verify

a time-stamp, the TSA’s public key must be known and authenticated. This in

general is achieved with a hierarchical PKI.

Time-stamping is used for long term archiving of electronic documents and to

achieve non-repudiation in practice [66]. Time-stamping can be provided as an

additional service by a CA, which than acts as a TSA.

2.3 Internet communication

The Internet is a global open network of computer systems based on the TCP/IP

protocol. It is subdivided into Autonomous Systems (AS) operated by different

network operators called Internet Service Providers (ISP). An AS itself is a collection

of IP networks. When data is sent from one computer system to another over the

Internet, the data is routed through these different networks over a multitude of

infrastructure devices such as routers. In general the route from the sender to

the receiver is dynamically chosen depending on the configuration of the involved

routers. In particular, the route is not chosen by the communication partners.

Web servers, to which we also refer as hosts, provide services to client systems.

A typical example is accessing a web page on a web server through a web browser.

The server is identified by its domain name given as a URL, such as example.com.

The Domain Name System (DNS) [102] is responsible for resolving domain names to

IP addresses, the actual network addresses where the server can be reached. To do

so, DNS name servers are operated, for example by ISPs. From these name servers,

clients can request the IP address for arbitrary domain names.
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Basically, anyone can register for a domain name under which he can operate a

web server. The entity who legitimately registered a domain is referred to as the

domain owner.

This high level overview reveals that communication over the Internet in general

is neither authentic nor confidential. Any device on the network path between

communication partners can in principle act as a man-in-the-middle and alter and/or

intercept the communication.

We first provide more information about DNS and DNSSEC. Afterwards, the

Transport Layer Security (TLS) protocol is described, which provides secure com-

munication.

2.3.1 DNS and DNSSEC

DNS is a hierarchical directory service for domain names. It divides the domain

name space into so called zones according to the hierarchical structure of the do-

main name space. The zones are represented by data structures containing resource

records. These resource records either point directly to IP addresses of hosts for

specified domain names, or if not directly responsible for a domain name, to a sub-

ordinate DNS server, which maintains the respective child zone. The child zone in

turn contains resource records, thus building a hierarchical structure.

DNS itself does not provide any protection mechanisms against the malicious al-

teration of DNS records. Therefore, DNS is susceptible to attacks like DNS spoofing

or DNS cache poisoning, which aim at manipulating the IP address assigned to do-

main names, finally leading clients to a server which is actually not operated by the

domain owner but by an attacker.

To counteract such attacks, the Domain Name System Security Extensions (DNS-

SEC) [79] have been specified and are currently in the process of being deployed.

With DNSSEC, the zones and the contained records are digitally signed. The owners

of the keys used for zone signing are the zone administrators. DNSSEC has a single

trust anchor and each zone can only delegate trust to its direct child zones. Basically

this is done by signing the hash of the key of the child zone.

2.3.2 Transport Layer Security

The TLS protocol [84] is the de facto standard for secure Internet communication.

It is the successor of SSL [88] which is considered insecure because of several

vulnerabilities that have been detected in the past. TLS has been updated several

times to its current version TLS 1.2. Many higher level communication protocols
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such as HTTPS, FTPS or SMTPS build on TLS, which shows its outstanding im-

portance for secure Internet communication. Through HTTPS, TLS secures the

communication between web browsers and web servers.

TLS enables authentication and the establishment of confidential channels be-

tween clients and servers. Even though TLS supports client authentication, in most

applications, e.g. in HTTPS, only web server authentication is used. Authenti-

cation is achieved using X.509 certificates. Domain owners subscribe at a CA for

a certificate. The private key of their key pair is installed on the web server for

authentication purposes. Thus, the security relies on the security of the underlying

public key infrastructure, which is the Web PKI and will be described in Chapter 3.

During the TLS handshake, the server sends its certificate along with the certifi-

cation path to the client (the relying entity). The client validates the certification

path and if the validation is successful, client and server establish session keys. The

key exchange protocol uses the server key pair. The server proves the possession of

the private key and thus is authenticated as being the entity specified in the subject

field of the certificate. The session keys are then used to encrypt the communica-

tion between client and server. This procedure ensures that the client communicates

with the intended web server and that no unauthorized third party may access or

manipulate the communication.

Browsers show the establishment of a secure channel to a web server by displaying

locks and other visual items. If the validation of the server’s certificate fails, warning

messages are displayed to the user giving him a choice to abort the connection or to

continue the potentially insecure communication.

2.4 Computational trust

In this thesis, we apply computational trust models to explicitly represent and eval-

uate trust placed in CAs. Computational trust is a means to support entities in

making decisions under uncertainty, that is, under incomplete information. The two

most widely-used definitions of trust are reliability trust and decision trust. Gam-

betta describes reliability trust as a subjective probability of performance without

the option to monitor the performed action [20]. While this definition only captures

the beliefs of an entity that is potentially unaffected by its trust, Jøsang defines

decision trust as the will to depend on a trusted entity (Jøsang [40], inspired by

McKnight and Chervany [55]):

Definition 2.4 (Decision trust). Decision trust is the extent to which a given party

is willing to depend on something or somebody in a given situation with a feeling of

relative security, even though negative consequences are possible.
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Computational trust models calculate an approximation to the quality of future in-

teractions. Recommendations, experiences from previous interactions, and context-

related indicators of trustworthiness can serve as input for this calculation. Based

on the outcome, a decision can be made according to a pre-defined set of decision

rules.

2.4.1 CertainTrust

The CertainTrust trust model by Ries [58] is used in this thesis. CertainTrust was

extended with CertainLogic, which is a set of operators to combine CertainTrust

opinions. These operators are similar to those of propositional logic, but consider

the inherent uncertainty of CertainTrust opinions. CertainTrust and CertainLogic

are equivalent to the Beta Reputation System and Subjective Logic, both by Jøsang

et al. [37, 38, 39]. These models both rely on binary experiences that are combined

using a Bayesian approach with beta probability density functions. An overview on

different trust models that rely on this computational approach and similar ones

can be found in the surveys by Jøsang et al. [40] and Ruohomaa et al. [60].

CertainTrust can handle and express trust-related information in two ways:

• The experience space collects results from interactions as binary experiences,

i.e., an interaction was either positive or negative.

• The opinion space uses triples (t, c, f). With such a triple an opinion oS
about a statement S is expressed. The value t ∈ [0; 1] represents the trust

in the correctness of the statement, while the certainty c ∈ [0; 1] represents

the probability that t is a correct approximation. c scales with the amount

of information (for example, the number of collected experiences): the more

information is available, the more reliable is the approximation. Finally, f ∈
[0; 1] defines a context-specific, initial trust value in case no information was

collected, yet. This parameter serves as a baseline and represents systemic

trust. Besides that, CertainTrust has a system-wide parameter n, which defines

how many experiences are expected on average for a statement. This means

after the collection of n experiences, for one opinion, the opinion’s certainty

is 1.

Between the experience space and the opinion space there exists an ambilateral

mapping by parameterizing a Bayesian probability density function with the amount

of positive and negative experiences. For details, see [57].
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A CertainTrust opinion represents a statistical estimate whether the next experi-

ence will be a positive one. Based on the experiences already collected, a maximum

likelihood estimate for the next experience is given by the trust value. The concor-

dant certainty value represents the confidence in the estimate. Positive and negative

experiences are weighted equally in order to supply an unbiased estimate for the bi-

nary experiences – thereby forming a binomial sample.

From opinions, an expectation can be computed. It represents the expectation

for future behavior. In CertainTrust, the expectation of an opinion oA is defined as:

E(oA) = tA · cA + fA(1− cA)

With increasing certainty (which means that a larger amount of experiences is avail-

able), the influence of the initial trust f ceases.

2.4.2 CertainLogic operators

There are several operators to combine different opinions. From two opinions about

two independent statements a combined opinion about the statement regarding the

truth of both input statements is computed with the AND operator of Certain-

Logic [58]:

Definition 2.5 (CertainLogic AND operator). Let A and B be independent state-

ments and the opinions about these statements be given as oA = (tA, cA, fA) and

oB = (tB, cB, fB). Then, the combined opinion on the statement regarding both A

and B is defined as follows:

oA ∧ oB = (tA∧B, cA∧B, fA∧B) with

cA∧B = cA + cB − cAcB

− (1− cA) cB (1− fA) tB + cA (1− cB) (1− fB) tA
1− fAfB

if cA∧B = 0: tA∧B = 0.5

if cA∧B 6= 0: tA∧B =
1

cA∧B
(cAcBtAtB

+
cA(1− cB)(1− fA)fBtA + (1− cA)cBfA(1− fB)tB

1− fAfB
)

fA∧B =fAfB

The CertainLogic AND operator is commutative.
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Besides combining independent opinions, there might be the need to combine

dependent opinions, i.e. opinions on the same statement made by different entities.

CertainLogic provides three FUSION operators for this task [28].

For this thesis, the cFUSION operator is required. It combines opinions by taking

their inherent conflict into account. For example, asking different entities about the

trustworthiness of a CA might result in two completely different opinions based on

different previously made experiences. One opinion oA1 might be positive with high

certainty cA1 ≈ 1, while the other opinion oA2 might be negative, also with high

certainty cA2 ≈ 1. Obviously, these two opinions carry some conflict as they cannot

both be correct at the same time. The cFUSION operator handles this conflict by

lowering the certainty of the combination result. Other FUSION operators, e.g.

[38, 28], do not account for conflict and only average the trust and certainty values

of the resulting opinion. Furthermore, cFUSION allows to assign weights to input

opinions to give them higher or lower importance. cFUSION is defined in [28]:

Definition 2.6 (CertainLogic cFUSION operator). Let A be a statement and let

oA1 = (tA1 , cA1 , fA1), oA2 = (tA2 , cA2 , fA2), . . . , oAn = (tAn , cAn , fAn) be n opinions

associated to A. Furthermore, the weights w1, w2, . . . , wn (with w1, w2, . . . , wn ∈
R+

0 and w1 + w2 + · · · + wn 6= 0) are assigned to the opinions oA1, oA2, . . . , oAn,

respectively. The conflict-aware fusion of oA1, oA2, . . . , oAn with degree of conflict

DoC is denoted as:

⊕̂c(oA1 , oA2 , . . . , oAn) = ((t⊕̂c(A1,A2,...,An), c⊕̂c(A1,A2,...,An), f⊕̂c(A1,A2,...,An))) with

if all cAi = 1: t⊕̂c(A1,A2,...,An) =

n∑
i=1

witAi

n∑
i=1

wi

if all cAi = 0: t⊕̂c(A1,A2,...,An) = 0.5

if {cAi , cAj} 6= 1: t⊕̂c(A1,A2,...,An) =

n∑
i=1

(cAitAiwi

n∏
j=1, j 6=i

(1− cAj))

n∑
i=1

(cAiwi

n∏
j=1, j 6=i

(1− cAj))
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if all cAi = 1: c⊕̂c(A1,A2,...,An) = 1−DoC

if {cAi , cAj} 6= 1: c⊕̂c(A1,A2,...,An) =

n∑
i=1

(cAiwi

n∏
j=1, j 6=i

(1− cAj))

n∑
i=1

(wi

n∏
j=1, j 6=i

(1− cAj))
· (1−DoC)

f⊕̂c(A1,A2,...,An) =

n∑
i=1

wifAi

n∑
i=1

wi

DoC =

n∑
i=1, j=i

DoCAi,Aj

n(n−1)
2

DoCAi,Aj =
∣∣tAi − tAj ∣∣ · cAi · cAj · (1−

∣∣∣∣wi − wjwi + wj

∣∣∣∣)

The CertainLogic cFUSION operator is commutative.

2.5 Further related work

In this section we shortly summarize further related work relevant in the context of

this thesis.

The multitude of problems and disadvantages of the currently deployed Web PKI

is described by well known researchers [18, 26, 27, 63]. Monitoring of the Web

PKI reveals its enormous size and shows that indeed malpractices are common

[17, 32, 125].

The enhancement of PKI with trust computation has previously been proposed by

several researchers. However, the proposals so far lack practical applicability. Jøsang

proposes an algebra for trust assessment in certification paths in [36] but mainly ad-

dresses trust networks similar to PGP [75]. Huang and Nicol [33] also define another

trust model for trust assessment in PKI. Both approaches require trust values recom-

mended by the intermediates to evaluate trust chains. Such recommendations are in

general not included within commercial certificates. Different certificate classes like
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domain validated (DV) or extended validation (EV) can be indicators for such trust

values, but are to coarse grained for trust evaluation and are also not CA specific.

Other researchers base trust evaluation in CAs on their policies and the adherence

to those [15, 69]. This requires policy formalization [71, 15, 69] for automated pro-

cessing. Such formalized policies are not provided by CAs, and are in general far to

complex to be evaluated by the relying entities. Therefore, such approaches require

technical and legal experts to process policies [70].

By including recommendations, systems using computational trust can generally

be extended toward trust management systems. A survey on systems that evolve

local trust into global trust can be found in [11] and, more specific to reputation-

based trust management systems, in [60, 50, 31].

Key compromise and revocation can cause a huge impact on PKI systems, which

is a well known problem. Many researchers have criticized how revocation is im-

plemented in X.509. In this context, several proposals came up to either avoid

revocation or mitigate its impact.

The complete elimination of revocation in PKIs by the use of short lived certifi-

cates is proposed by Rivest [59] and applied by e.g. Gassko et al.[21]. Yet, this

approach comes with a considerable overhead of repeated certificate issuance and,

in case of CA certificates, rebuilding the whole certificate hierarchy.

Other authors propose to distribute trust among multiple instances. While Ma-

niatis et al. [22] propose a Byzantine-fault-tolerant network of TSAs to provide

protection against TSA compromise, Tzvetkov [65] proposes a disaster coverable

PKI model based on the majority trust principle. The first uses additional proofs of

existence based on threshold signatures but requires a complex infrastructure and

generates a huge overhead during verification of the signatures and time-stamps. In

the latter, to tolerate the compromise of a minority of CAs, each certificate has to

be signed in parallel by different CAs.

The use of write-once and widely witnessed media (e.g. official gazettes or news-

papers) is an alternative to anchor digital objects in the time-line. Combined with

the application of hash chains, as done by the TSA Surety [179], this can be im-

plemented more efficient, but the usability and the preservation (e.g. of printed

journals) in long term raise concerns.

Different proposals to use FSS in the area of PKI exist. Kim et al. [42] propose to

use FSS for CAs to ensure business continuity in case of a CA key compromise. Thus,

they use FSS in a similar way as this thesis. Yet, their work lacks the integration

into the different PKI related mechanisms such as path validation in hierarchical

PKIs and revocation. This is highly interwoven with the properties of FSS and

must be adequately implemented to benefit from the specific properties.
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Several other works apply FSS within PKI [24, 43, 72, 45, 46], but there are

significant differences regarding the goals and the use of FSS compared to this thesis.

Go [24] considers FSS for CAs, yet within the threshold setting in mobile ad-hoc

networks – which significantly differs from our PKI setting – concluding that no

existing scheme fulfills the specific requirements.

Koga et al. [43] propose a PKI model where the certificate chain for validation

always has length one. They propose different constructions where either FSS or

key-insulated signatures schemes (KIS) are used by the Root CA to generate the

secret keys for the Sub CAs. While this allows the keys of Sub CAs to remain valid

in case of a Root CA compromise, in case of the construction based on FSS, the

compromise of a Sub CA implies the compromise of all Sub CAs that obtained keys

with higher indices. Multiple Root CA key pairs or KIS solve this problem but at

the cost of additional overhead. The KIS approach is further developed by Le et

al. [45]. Nevertheless, in both works [43, 45] CAs always use their unique key to

sign end entity certificates. Thus, all user certificates issued by a certain CA are

invalidated in case of this CA being compromised. Furthermore, the CA keys need

to be securely transferred from the Root to the Sub CAs. The approach of Le et al.

even needs the transport of tamper resistant sub devices to the CAs.

In another work Le et al. [46] propose to use FSS in reverse order to allow to easily

invalidate signed credentials. That is, a credential is signed with many keys obtained

from an FSS key pair. Credentials can be invalidated by successively publishing the

keys in reverse order. While this could be used to obtain short lived certificates, the

applicability to establish a PKI is limited. As a key pair can obviously only be used

to sign a single document, this would imply the management of a huge number of

signing keys that are exposed to a possible compromise as the reverse order does

not allow the deletion of former FSS keys.

Xu and Young [72] focus on compromise detection to finally obtain a robust sys-

tem. To keep track of the key usage, signatures are deposited at highly secured

systems and published on bulletin boards. FSS are used to provide a stateful au-

thentication for the upload of signatures. Tampering can be observed based on

inconsistencies in the authentication key states.
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In this chapter we first give a problem exposition. Second, we show the practical rel-

evance of the problems and third, it is shown that user-centric CA trust management

is a promising solution to the described problems.

In Section 3.1 we show why the Web PKI – the globally trusted PKI, which is

the basis for secure Internet communication – fails to provide trustworthy public

keys. To show this, first the security model and the attacker model are presented.

Based on these models, the Web PKI is analyzed and a detailed description of the

problems leading to the failure of the Web PKI is presented.

The security model describes the involved entities and gives a definition of secure

Internet communication which requires authenticity, integrity and confidentiality.

In the attacker model, the attacker’s goal, capabilities and limitations considered in

this thesis are defined. Generally, the attackers we consider can generate certificates

that are signed by a trusted CA and contain a subject chosen by the attacker.

This capability can for example be achieved by compromising a CA’s private key.

Additionally, the considered attackers can inject certificates into TLS connections

between web servers and clients, for example by DNS spoofing and acting as a man-

in-the-middle on the network path between server and client. Based on the attacker

and security model, we then show that the reasons for the failure of the Web PKI

are the current trust model and shortcomings in the handling of revocation. The

current trust model – which we refer to as the system-centric trust model – considers

all public CAs fully trustworthy. The shortcomings in the handling of revocation

refer to the reliable provision of revocation information and the hurdles preventing

the revocation of CA keys, also known as the too-big-to-fail problem of CAs.

In Sections 3.2 and 3.3, we show the practical relevance of the trust management

problem and the revocation problem described in the first part and that these are

still open issues. This is done by analyzing publicly known security incidents and

the examination of existing proposals that aim at the mitigation or the solution of
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the problems of the Web PKI. We analyze these proposals regarding suitability and

practicality.

In Section 3.4, it is shown that user-centric CA trust management, whose re-

alization is presented in Chapters 4 and 5, is a promising solution for the trust

management problem. The potential of user-centric CA trust management is evalu-

ated by analyzing real world browsing histories and examining how relying entities

experience the Web PKI. It is shown that relying entities individually only require a

small subset of the globally trusted CAs and that user-centric CA trust management

has the potential to reduce the attack surface spanned by the entirety of globally

trusted CAs by more than 95%. Additionally, user-centric CA trust management

enables the continuous monitoring of revocation information, which solves the prob-

lem of a reliable provision mechanism for revocation information. This will be shown

in Chapter 4. For the too-big-to-fail problem, we provide a solution in Chapter 6.

Section 3.5 concludes this chapter.

Parts of the contributions of this chapter were published in [B4], which covers

the examination of the Web PKI from a user’s perspective. This chapter extends

the published results by a detailed analysis of the Web PKI and its weaknesses, the

analysis of past CA security incidents as well as the evaluation of known concepts

for the mitigation of the described weaknesses.

3.1 The defectiveness of the Web PKI

First the security and the attacker model are presented. Then, the Web PKI is

analyzed and a detailed description of the problems causing the failure of the Web

PKI is given.

3.1.1 Security model

In Chapters 3 - 6 of this thesis, secure communication over insecure networks, namely

the Internet, is considered. Secure communication means, that a cryptographically

secured connection is established between the communicating entities, where at

least one of the entities authenticates itself to the communication partner. The

secure connection provides authenticity, integrity and confidentiality. In general,

this refers to secure communication between web browsers and web servers, where

the web server authenticates itself to the web browser (and subsequently the Internet

user that operates the browser). Secure connections are established using the TLS

protocol. Authentication is achieved by presenting a public key certificate issued by

a CA of the Web PKI. We give a formal description of the security model. The web
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browser and the user operating it are considered as a unity and referred to as one

entity.

In the security model we consider two entities E1 and E2. E1 establishes a TLS

connection to E2 which needs to authenticate itself. The problem is to decide whether

the connection is trustworthy for E1. A connection is considered trustworthy by E1,

if E2’s public key pk that was used in the TLS connection establishment, is trusted

by E1 to be a valid public key of E2. This requires:

1. A valid certificate C that binds pk to E2 is available to E1.

2. E1 trusts the issuer of C.

The first requirement is a standard PKI issue (cf. Chapter 2.2 for details). To fulfill

requirement 1, E1 requires a certification path p = (C1, ..., Cn) such that:

(a) Cn = C

(b) p passes path validation

Requirement 2 is fulfilled if p additionally passes trust validation. Explicit trust

validation is not incorporated in the current deployment of the Web PKI but trust-

worthiness is assumed for all CAs of the Web PKI (cf. Section 3.1.3). Explicit

trust validation is the core mechanism of user-centric trust management, which is

described in Chapters 4 and 5.

Note that a trustworthy connection to E2 does not imply the trustworthiness of

E2 itself. The trustworthiness of E2 comprises, for example, the quality of its web

page and the provided content. This is not addressed in this thesis and requires

additional mechanisms like the Web of Trust [190] or commercial web page ratings,

e.g., Norton SafeWeb [166] or McAfee SiteAdvisor [146]. In general, authentication

is a basic requirement for such mechanisms.

3.1.2 Attacker model

In the following, the attacker’s goal, capabilities, and limitations are defined. The

attacker A aims at breaking the authenticity, integrity, and/or confidentiality of

secure communication which was described in the previous section. The availability

of communication is out of scope of this thesis. We focus on attackers that make

use of the malfunctioning of the Web PKI to attack the communication. In Section

3.1.3, we explain why the Web PKI fails to prevent such attacks. In general, the

TLS protocol and the used cryptographic primitives are assumed to be secure. TLS

vulnerabilities, as well as implementation errors are out of scope of this thesis.



34 3 The Web PKI requires user-centric CA trust management

Attacker goal A targets at TLS connections of a relying entity E1. The goal is to

impersonate web server E2, which is the intended communication partner. During

the attack, A may be the end point of the communication channel or acts as a

man-in-the-middle in the secure communication as shown in Figure 3.1. The attack

is successful if A is not detected. To achieve this, A presents a fraudulent certificate

to E1 for which he controls the private key during TLS connection establishment.

This allows A to impersonate E2 towards E1. A optionally establishes a second

connection to E2. This gives A full control over the communication, while the attack

is transparent to E1 and E2.

TLS TLS

Ԑ1 (relying entity) Ԑ2 (web server)attacker

Figure 3.1: Attacker impersonating the intended communication partner.

Attacker capabilities A is generally capable to position himself on the network

path between E1 and E2, for example by DNS spoofing. Additionally, A can generate

certificates that are signed by a CA of the Web PKI and contain a subject chosen

by A. We refer to such certificates as fraudulent certificates. In contrast, certifi-

cates where the subject actually identifies the entity who controls the corresponding

private key are called legitimate certificates. Fraudulent certificates may be issued

by a CA for example by compromising a CA’s private key and using it to issue

certificates. Note that self-signed certificates are unsuitable for attacks as they will

be detected during standard path validation.

Attacker limitations A can only generate fraudulent certificates on behalf of one

CA of the Web PKI at the same time. The CA is chosen by A and fixed afterward.

This assumption is justified by the fact that the issuance of fraudulent certificates on

behalf of a CA is not trivial in practice. We discuss security incidents that enabled

an attacker to manage such a malicious issuance in Section 3.2.

E1 and E2’s IT-systems are assumed to be secure and not compromised. Thus, A
is unable to access or manipulate locally stored data. Furthermore, A has no access

to E2’s private key corresponding to E2’s public key pk certified in E2’s legitimate

certificate. A is not capable of breaking the cryptographic algorithms or circumvent

the establishment of secure connections. In particular this means, once a secure
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channel has been established between E1 and E2 using E2’s legitimate certificate,

A cannot eavesdrop on the content of the communication or manipulate the data

without being detected.

3.1.3 The Web PKI

With the success of the Internet, the Web PKI gained more and more importance.

Its size and its complexity have continuously been growing. In recent years severe

vulnerabilities have been discovered in the design and implementation of the Web

PKI. They have led to the ongoing crisis of confidence in the Web PKI. According to

the IETF Web PKI OPS Working Group [107], the Web PKI is defined as follows:

Definition 3.1 (Web PKI). The Web Public Key Infrastructure (Web PKI) is the

set of systems, policies, procedures and people required to issue manage, distribute,

use, store and revoke public key certificates in order to protect the confidentiality, in-

tegrity, and authenticity of communications between Web browsers and Web content

servers.

In this thesis we follow this definition. The CAs of the Web PKI are the globally

trusted CAs that issue certificates to web content and application providers. The

use of the certificates issued by the Web PKI for the TLS protocols makes the Web

PKI to the indispensable basis for secure Internet communication.

However, the Web PKI fails in many respects to provide the desired security.

This is described in the following. We start with an overview on the Web PKI and

a description of its characteristics. Then, the current trust model – which we refer

to as the system-centric trust model – and the shortcomings regarding revocation

handling as the reasons for the failure of the Web PKI are discussed in detail.

The characteristics of the Web PKI

The Web PKI is a hierarchical PKI according to the X.509 standard [83]. Special

about the Web PKI is its global nature. Because of its scope to enable secure

communication on the Internet, interoperability is a central requirement. On the

one hand, the group of relying entities is virtually unlimited. Namely, any of the

more than 3 billion (stats for June 30, 2014 [135]) individual Internet users as well

as organizations and governments rely on certificates issued by the Web PKI. In

general, the relying entities are non-experts and cannot be expected to understand

the functioning of a PKI [5]. On the other hand, the group of potential certificate

subjects is virtually unlimited. Any web server operator or domain owner may own



36 3 The Web PKI requires user-centric CA trust management

one or more certificates. The customers of CAs can be organizations, governments,

or individuals.

To deal with this complexity, the Web PKI has evolved to a global system of CAs

distributed around the world. These CAs are not organized in a strict hierarchy

with a single Root CA, but a set of Root CAs which serve as trust anchors for

certificate validation. Each of the Root CAs spans a hierarchical PKI as explained

in Section 2.2, while it is also possible that Sub CAs have their keys certified by more

than one superordinate CAs. Because of the huge number of CAs and the fact that

relying entities are non-experts, it is impossible to leave the management of trust

anchors to the relying entities. Instead, this is done by browser and operating system

vendors. The public keys of Root CAs are distributed within trusted lists called root

stores , contained in operating systems and browsers. Thus, browser and operating

system vendors globally define – according to their specific policies [148, 157] which

comprise certain security and audit requirements – which CAs are trusted. Besides

these individual rule sets, the CA/Browser Forum has defined baseline requirements

[81] that CAs of the Web PKI must meet and reflect in their policies. For Root CAs,

the adherence to the different policies is enforced through annual security audits,

while it is in general left to the CAs themselves to ensure this for Sub CAs.

The number of Root CAs has been constantly growing. For example, the root store

of the Mozilla browser comes together with the NSS crypto library [155] and contains

about 160 CAs [32, 156] while Microsoft’s root store even contains about 264 CAs

[63]. The total number of trusted CAs can only be estimated through broad scale

web scanning surveys [17, 32, 125] because there is no public directory that identifies

the existing (Sub) CAs. In this thesis, we use the numbers presented by Durumeric

et al. [17], which is the most complete survey to the best of our knowledge. By

scanning the address space of the Internet and downloading the certification paths

from publicly visible web servers, the CAs of the Web PKI are identified. They are

extracted from the collected certification paths by the use of their issuer names in

conjunction with their public keys. This results in a lower bound of 1,590 trusted

CAs which are controlled by 683 private as well as governmental organizations and

are operated under the jurisdictions of 57 different countries.

Also, there is no central directory service where end entity certificates are reg-

istered. This also results from the global nature of the Web PKI, where a central

directory does not scale. In general, a web server presents its certificate along with

the certification path to the relying entity during the TLS handshake. The relying

entity validates the certification path and checks if it starts with a trusted Root CA

and if the last certificate identifies the intended communication partner. If so the

relying entity trusts in the authenticity of the server. The public key is extracted
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                                                                                                                   root store

Root CA1 Root CA3Root CA2

Ԑ1

Sub CA2

Sub CA1 Sub CA5Sub CA4Sub CA3

Ԑ2 Ԑ3

...

Ԑ5Ԑ4

Figure 3.2: Example Web PKI

from the certificate and used to establish session keys to secure the communication.

A simplified example of the resulting Web PKI is depicted in Fig. 3.2. Here,

an exemplary certification path exists from Root CA1 to end entity E1, where the

arrows represent certificates. The circular arrows represent self-signed certificates,

which are often issued by Root CAs to themselves in order to publish their keys. To

validate E1’s certificate, only the key of Root CA1 must be known. All other keys

are contained in the intermediary certificates. In this small example, it can also be

seen, that it is difficult to determine all the trusted CAs. For example if Root CA3

were removed from the root store, its direct Sub CA4 would still be trusted due to

the additional chain from Root CA2. However, as there exists no public directory

of all certificates, the existing chains are in general unknown to relying entities until

they are presented during connection establishment.

Having explained the set up of the Web PKI, in the following sections the main

problems – the system-centric trust model and the shortcomings in the handling of

revocation – are described and it is shown, how they support the attackers described

in Section 3.1.2.

The system-centric trust model of the Web PKI

The universal applicability of the Web PKI makes it impossible to differentiate

between CAs on a global level. Any restriction on the trustworthiness of CAs by

browsers and operating systems also limits their operational capability which contra-

dicts the requirement of universal applicability, i.e., browsers and operating systems

must work for anybody and thus need to be capable of verifying any certificate

deployed on web servers.

This constitutes the system-centric trust model. By this we mean that Root
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CAs as well as Sub CAs are generally considered as trusted third parties, i.e. they

are assumed to be fully trustworthy. By issuing a Sub CA’s certificate, the issuer

delegates all its privileges to the Sub CA, which leads to the above mentioned

1,590 fully trusted CAs. Also, there are no restrictions for CAs with respect to the

domain names for which they are allowed to issue certificates or certificate uses.

Although the name constraints extension [83] can be used to limit the power of a

CA, in practice it is almost never used [1]. Thus, each of the trusted CAs can sign

certificates for any web service or domain.

The system-centric trust model directly leads to a weakest-link situation, where

the security of the whole system is determined by the weakest CA. An attacker as

defined in Section 3.1.2 who can obtain fraudulent certificates (by compromising a

CA or by a CA failure) from one of the trusted CAs can potentially impersonate

any web server and mount a man-in-the-middle attack on any TLS secured connec-

tion without users even noticing the attack. Thus, the system-centric trust model

creates an attack surface growing with each additional trusted CA. This attack sur-

face determines the attacker’s capability concerning the acquisition of a fraudulent

certificate.

The baseline requirements, certificate policies, and security audits enforce a basic

level of security. However, they cannot provide guarantees. The security incidents

in the past clearly show that the issuance and use of fraudulent certificates is a real

threat (cf. Section 3.2). It has also been shown [23] that certificate policies do not

allow to differentiate between CAs regarding their security in a fine grained manner.

As it is impossible to completely eliminate CA failures, the goal must be to min-

imize the attack surface of the Web PKI. However, as a global limitation of the

trusted CAs is not possible, we propose user-centric CA trust management, where

trust decisions are made on a per user level. In Section 3.4 the potential of the

approach is shown. Its realization is presented in Chapters 4 and 5.

Revocation in the Web PKI

Revocation of a certificate is required whenever the certified key needs to be in-

validated before the end of its validity period. Revocation is indispensable as it

transitions the system into a secure state after key compromise, or a malicious or

erroneous certificate issuance. Without revocation, an attacker can use fraudulent

certificates until they expire, which in general is an intolerable time span. Given a

revocation of a certificate, the attacker cannot further use it for attacks as soon as

the relying entity is aware of the revocation.

However, the Web PKI faces several problems concerning the revocation of certifi-
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cates: the reliable provision of revocation information and the too-big-to-fail prob-

lem.

First we describe the provision of revocation information. A relying entity must

obtain the revocation information during TLS connection establishment after having

obtained the certification path of the server’s certificate. Ideally, the connection

establishment and page loading must be blocked until the revocation status of the

certificate in question is checked. However, these online revocation checks on the

one hand introduce latency, which users are not willing to accept [56] and on the

other hand, there is no guarantee that the CA’s OCSP or CRL service is accessible

at the time when revocation checking is required. Because these online revocation

checks fail so often, all major browser vendors turned to so called soft-fails1 [182].

This means that if the revocation information for a certificate cannot be obtained, it

is simply evaluated as not revoked. However, this renders revocation useless exactly

when it is required, namely in the presence of an attacker as defined in Section

3.1.2. The attacker is able to manipulate the relying entity’s communication. Thus,

he can also block revocation checking leading to the acceptance of the fraudulent

certificate, although it might have already been revoked [138, 159]. OCSP stapling

does not solve this problem, as again the attacker can suppress the OCSP response

(cf. Section 3.3). In Chapter 4 it is shown how user-centric CA trust management

solves the provision problem by enabling the continuous monitoring of revocation

information.

The too-big-to-fail problem of CAs refers to the practical impossibility to revoke

CA keys. It is more severe the more services depend on the respective CA and the

more critical these services are. The revocation of a CA certificate subsequently in-

validates all certificates that contain the revoked certificate in their certification path

because of the validation according to the shell model (cf. Definition 2.1). This in

turn means, that all services using such an invalidated certificate for authentication

become unavailable until their certificates are exchanged by new ones. Considering

the huge customer bases of CAs of the Web PKI shows that deploying new certifi-

cates on all affected web servers is problematic. This is not an automated process

but requires manual changes by web server operators. In many scenarios, such a

temporal unavailability of services is not acceptable and thus, either requires that

the revocation of a CA key is considerably delayed or even completely avoided. For

example, revoking a certain Comodo Root CA would invalidate more than 200,000

TLS certificates [5] making the corresponding web services unavailable. The publicly

known incidents evaluated in Section 3.2 show the relevance of this problem. In none

1Note that Google even disabled online revocation checking completely in the Chrome browser

[141].
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of the incidents, browser or operating system vendors were willing to let security go

beyond connectivity. Furthermore, the huge impacts of a CA certificate revocation

and the related effects for the CA’s reputation provide strong incentives not to re-

port security breaches in order to circumvent public attention [5]. A solution for the

too-big-to-fail problem is provided in Chapter 6.

3.2 CA failures and compromises

We show the practical relevance of the trust management and the revocation prob-

lems described in Section 3.1.3. This is done by analyzing publicly known security

incidents concerning the CAs of the Web PKI.

Security incidents have several different reasons. On the one hand, a CA may

intentionally misbehave, e.g., due to economic motives, governmental orders, or a

CA is owned by the government and is used for surveillance [63]. In such cases

the CA intentionally issues fraudulent certificates to be used to attack TLS secured

connections. Subsequently, no security mechanisms set up by the CA itself can

help to detect or prevent such attacks. On the other hand, security incidents may

result from unintentional misbehavior, e.g., because of weak security practices or

implementation errors, social engineering and other attack vectors that are exploited

by attackers to obtain fraudulent certificates.

3.2.1 Categories of CA security incidents

The unintentional security incidents can further be categorized into four scenarios.

These four scenarios are the following [184]:

• Impersonation: The attacker impersonates another entity when registering

with a CA and tricks the RA into falsely validating the attacker’s pretended

identity. This leads to the issuance of a certificate binding the attacker’s key

to the identity of the impersonated entity.

• RA compromise: The second scenario goes one step further. In this scenario,

the attacker infiltrates the RA systems, e.g., by malware or stealing the cre-

dentials of a legitimate RA user account and is enabled to directly authorize

the issuance of (arbitrary) certificates by the related CA.

• CA system compromise: The CA system compromise describes the scenario,

where the attacker directly manipulates the certificate signing processes. In

this scenario, the attacker does not have access to CA’s signing key, but is able
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to directly initiate the issuance of fraudulent certificates, e.g., by querying the

security module containing the key. As the attacker has access to the CA

systems, he may also be able to manipulate security mechanisms of the CA

such as the logging mechanisms and thus conceal the compromise.

• CA signing key compromise: This is the most severe scenario. In this case,

the attacker obtains a copy of the CA’s private key, e.g., by stealing the key,

attacking the underlying algorithm or by a cryptanalytic attack. With the

CA’s key the attacker can arbitrarily issue fraudulent certificates, even after

he loses control over the compromised CA systems.

3.2.2 History of CA security incidents

In this section, publicly known CA security incidents are evaluated. Regardless

the severity of the failures and the threats for global communication no official

investigation and reporting from the affected CA’s side about the incidents can be

found in many cases. The sources of information are discussions between security

experts found on their Internet blogs, discussion forums of browser and operating

system vendors, or the online press.

01.11.2008 31.12.2014
01.01.2009 01.01.2010 01.01.2011 01.01.2012 01.01.2013 01.01.2014

17.06.2011 - 01.11.2011
DigiNotar 

15.03.2011 - 23.03.2011
GlobalTrust.it, InstantSSL.it / Comodo

21.05.2011
ComodoBR SQL injection attack 

(proofs found, exact date unclear)

22.12.2008 - 23.12.2008
Certstar / Comodo

20.12.2008 - 21.12.2008
StartSSL

15.06.2011 - 15.06.2011
StartSSL

09.09.2011

GlobalSign web server hacked 
(proofs found, exact date unclear)

08.08.2012 - 08.01.2013
TürkTrust

30.06.2012 - 09.07.2012
Cyberoam DPI devices 

(start date unclear)

08.07.2009 - 17.07.2009
Etisalat

03.12.2013 - 12.12.2013
ANSSI 

(attack duration unknown)

03.11.2011 - 10.11.2011
DigiCert Sdn. Bhd

04.11.2011
KPN/Getronics

09.08.2010

Verisign breaches
(detected, extend and dates unclear)

26.01.2012
TrustWave

(attack duration unknown)

30.04.2013
KPN Web Server hacked

25.06.2014 - 03.07.2014
NIC / India CCA

Figure 3.3: Timeline of CA failures, compromises and attacks
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Figure 3.3 shows the timeline of publicly disclosed security incidents. In the

following we evaluate these incidents and the respective countermeasures that were

taken upon detection. This will show, that the system-centric trust model is not

justified, the reactions on security incidents are highly influenced by the too-big-

to-fail problem and furthermore, revocation as currently implemented within the

Web PKI is not at all trusted to fulfill its purpose. We note that it is a general

presumption that the estimated number of unreported cases is much higher than

the publicly disclosed incidents [5, 114, 188, 27].

Impersonation

There are many ways how impersonation attacks can be carried out depending on

the mechanisms in place to verify the subscriber’s identity. Examples are using

a compromised employee email account, faxing forged business licenses and even

a case, where the attacker simply told the CA not to do anything bad with the

certificate has been reported [27]. Most of those incidents do not lead to a public

disclosure but to a silent revocation if the erroneous issuance is detected. Even an

incident in 2001 where Verisign erroneously issued two code signing certificates for

Microsoft products to an attacker only lead to a short note on the Microsoft support

pages [153]. The certificates did not contain a CRL distribution point extension and

thus a Windows update was required in order to invalidate them. In the following,

we discuss two impersonation incidents which have been covered by the media and

lead to broad discussions in the community.

Both incidents happened by the end of 2008, one at StartCom ltd., which main-

tains the StartSSL Root CA and the other one at CertStar, one of Comodo’s resellers

of certificates issued by PositiveSSL CA, a Comodo Root CA. While both vulnera-

bilities in the verification processes where discovered by security experts, there are

many differences in the two incidents. The one at StartCom resulted from an im-

plementation error. The exploit was detected by unspecified security mechanisms

implemented by the CA while the exploit was still running and the erroneously is-

sued certificates were immediately revoked (within a few minutes) by publishing a

CRL. Furthermore, investigations immediately started and lead to an update of the

CA’s systems as well as a full disclosure of the incident by the CA itself [163, 164].

In contrast, the impersonation attack at CertStar was possible because of the com-

plete absence of the verification of the subscriber’s identity. In order to prove this,

the attacker bought a certificate for mozilla.com and publicly disclosed the vulner-

ability [112, 110]. Only because of the disclosure by the attacker, the vulnerability

was noticed. Comodo revoked the mozilla.com certificate and initiated an audit of
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CertStar’s RA processes as well as suspended the RA’s ability to request certificates

during the investigation. However, not only a report of the investigation results

is still missing, but Comodo also played down the incident and claimed that the

vulnerability is simply a well known problem of domain validated certificates [110].

Furthermore, because of to the absence of control mechanisms, it is totally unclear

if the vulnerability was previously exploited by real attackers.

The incidents illustrate that the system-centric trust model is not justified.

RA compromises

In 2011, severe RA compromises happened at two of Comodo’s resellers Global-

Trust.it and InstantSSL.it [144]. Both had the privileges to request certificates

from the Comodo owned CA UTN-USERFirst-Hardware [122] without any fur-

ther approvals. This practice makes an RA compromise nearly as severe as a CA

system compromise, with the difference that attackers are not able to manipulate

the CA’s monitoring and logging systems. The attacker managed to compromise

user accounts of the RA and requested 9 certificates for high value domains, of

which at least one was used during man-in-the-middle attacks in Iran [122, 117].

The attack was detected within a time span of several hours and the certificates

where revoked. This time, Comodo additionally informed all major browser ven-

dors, the related domain owners as well as governmental authorities. Subsequently,

the browser vendors additionally blacklisted the fraudulent certificates within their

browsers [137, 185, 109, 152]. It took one week until all browsers where patched.

This was the first time, that such black listing functionality was used to deal with

fraudulent certificates. A public disclosure in the press was actively hold back un-

til all updates where finished [109]. In the aftermath, Comodo investigated the

incident and published an incident report [117]. Additional control and detection

mechanisms where set up which turned out to be effective during another attack on

RA systems one week later, where the issuance of certificates could be prevented.

Besides that, the organizational structure was changed such that each RA obtains

its own Sub CA certificate [108].

First, the incident shows that revocation cannot be considered to securely prevent

attacks with fraudulent certificates. Second, it shows the relevance of the too-big-

to-fail problem as the certificate of the issuing CA could not be revoked due to

its relevance in the certification business [27], which ultimately lead to the change

in Comodo’s business practices. Finally, it demonstrates the tendency to prevent

publication as described in [5], which leaves relying entities unprotected until the

final elimination of the threat.



44 3 The Web PKI requires user-centric CA trust management

CA system compromises

In 2011, two CA system compromises occurred, which are both assumed to be related

to the Comodo RA compromise earlier that year. One occurred at the StartSSL CA

and one at DigiNotar. The attack on StartSSL happened in June 2011 and the

attacker gained access to the CA systems. Yet, the attack was detected in real time

due to monitoring and other unspecified security mechanisms [174] and the issuance

of certificates could be prevented.

The DigiNotar compromise, which presumably was initiated by the Iranian gov-

ernment, turned out to be the most severe incident related to certification that

happened in the history of the Web PKI. The severity of the incident, “which put

the security and privacy of millions of citizens at risk” [127] and threatened the

lives of people in Iran, was due to an accumulation of missing or inappropriate secu-

rity mechanisms combined with misjudgment, inadequacies in reporting about the

incident to relying entities and governments and the attempt to conceal the whole

incident from the public. This had severe consequences and exposed at least 300,000

Iranian Internet users to man-in-the-middle attacks and the interception of personal

communication. It was even argued, that activists had died as a consequence of

this security breach [127]. The attack(s) took place over the period of nearly one

month until they were detected. During this time, the attacker successively compro-

mised the CA systems until he obtained administrative access to all of DigiNotar’s

CA servers including the qualified ones managing the Dutch governmental PKIOver-

heid. However, the attack was not publicly disclosed upon detection. This happened

an additional month later, when fraudulent certificates for Google were detected by

Chrome users because of Google’s pinning mechanism for Google pages. At that

time, DigiNotar informed the Dutch government as well as major browser vendors.

Yet, in contrast to the Comodo RA compromise, the fraudulent certificates could

not be blacklisted as they were unknown because the attackers had also manipu-

lated the CA log files. This finally lead to the decision to completely revoke all

DigiNotar CA certificates and remove it as trusted CA from the Web PKI, which

ultimately lead to the bankruptcy of DigiNotar. However, the final and complete

removal was delayed for two more months. The reason for this intended delay was

not to interrupt the proper functioning of governmental applications that widely

relied on DigiNotar certificates. Investigations of the external IT specialist FoxIT

later revealed that a minimum of 531 fraudulent certificates for high value domains

like Google, Facebook, governmental pages as well as CA certificates on the name

of several other CAs of the Web PKI were issued [129].

Another CA system compromise happened mid 2014 [140] at the National Infor-
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matics Centre (NIC) which is a Sub CA of the India CCA Root CA in the Microsoft

root store. Again it was detected by Google’s pinning mechanism and not by the

CA itself. Thus, the exact duration of the attack is unknown. Google blacklisted the

certificates and alerted NIC, India CCA and Microsoft. This time, all CA certifi-

cates of NIC could be revoked within one day since NIC had only limited relevance

in the certification business. Investigations by India CCA revealed that NIC’s is-

suance process was compromised and certificates for Google and Yahoo were issued

to the attacker. However, Google detected additional certificates other than those

reported by India CCA. This puts the reliability of the investigations in question

and shows that the complete extent of the incident is unknown.

These incidents again illustrate that the system-centric trust model is inappropri-

ate and reveal the threats that can result from fraudulent certificates. Besides that,

the DigiNotar incident shows that the too-big-to-fail problem also concerns CAs

that have a relatively low relevance compared to the big players in the certification

business. However, work arounds that avoid the revocation of CA certificates are

not always effective which shows the necessity of the solution for the too-big-to-fail

problem.

CA signing key compromises

Regarding CA signing key compromises no incidents have been reported so far.

Given such an incident, there is no other measure than revoking the certificate that

certifies the compromised key. This is because in such a case, an attacker can issue

arbitrary certificates with that key, without any possibility to stop the attacker from

doing this.

CA misbehavior

Intentional CA misbehavior is another problem in the Web PKI. Also incidents where

a governmental order forces a CA to issue fraudulent certificates, see e.g. [63], belong

to this class if incidents. The special characteristic of such incidents is that the CA

has full control over its private signing key. No internal control mechanisms can

prevent such misbehavior because no real attack on the CA systems takes place.

Over the years a multitude of such incidents where revealed, which illustrate the

inadequacy of the system-centric trust model. The first one which has been publicly

reported happened in 2009, when Etisalat, a telecommunication company of the

United Arab Emirates, misused a code signing certificate it legitimately owned to

distribute spyware to the Blackberry subscribers among its customers [186, 172].

The spyware was masked as a regular update by RIM [173]. The incident was only
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detected by chance, as the spyware lead to a significant loss in battery life. The

Sub CA certificate also owned by Etisalat was – as far it is known – not misused,

and therefore was never revoked [120]. Thus, Etisalate is still a trusted CA of the

Web PKI even though it may be suspected that a company which intentionally

enabled the surveillance of 145,000 customers [143], also makes malicious use of its

CA certificate.

In 2011, the Malaysian company DigiCert Sdn. Bhd acted not really malicious

but highly irresponsible and violated the policies and baseline requirements of the

CA/Browser Forum [81]. DigiCert Sdn. Bhd issued 22 certificates certifying weak

512 bit RSA keys, which are insecure and prone to factorization. Furthermore,

strictly required extensions as CRL distribution points were missing [126, 136].

This made the revocation of the affected certificates useless. Entrust, the parental

CA detected these policy violating practices and informed the major browser ven-

dors. Subsequently, DigiCert’s CA certificate was revoked by Entrust and all major

browser vendors blacklisted the certificates in question within one week after detec-

tion [165, 116, 149].

In 2012, a policy update of Trustwave revealed that prior to the update Trust-

wave knowingly sold CA certificates to its organizational customers for monitoring

purposes within organizational networks. This allowed a hidden surveillance of the

employees (and potentially of any other Internet user) as there is no need to manually

install an additional trusted CA certificate on the employees’ systems as normally

required when such monitoring devices are used. In a clarification statement Trust-

wave notes [183] that this was only done once and the certificate was installed within

a hardware security module to prevent misuse of the certificate outside the orga-

nization. But, Trustwave claims that this is common practice in the business [5].

Such behavior becomes even more questionable, when taking into account another

incident at Cyberoam in 2012. It turned out that the deep packet inspection devices

sold by Cyberoam [118] allowed the export of the installed CA key [113]. Cyberoam

itself is not a CA of the Web PKI, however the combination of these two incidents

shows the threat potential of Trustwaves former business practices.

Also in 2012, TürkTrust erroneously issued CA certificates instead of end entity

certificates to two of its customers. One of these certificates was revoked two days

later on request of the customer who detected the error. The incident became public

more then four month later, when the second CA certificate which was still not

revoked, was used in a man-in-the-middle attack. The attack was again detected

by the pinning mechanism of the Chrome browser. Investigations by TürkTrust

revealed that the erroneously issued Sub CA certificate was installed on a company’s

checkpoint firewall [111] to regulate access to Google by internal clients. By then,
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TürkTrust also revoked the second fraudulent certificate. However, the fact that

TürkTrust was not aware of the second erroneously issued CA certificate illustrates

its insufficient security practices. Even though no signs of exploits for fraudulent

purposes [176] could be found, the erroneously issued certificates were additionally

blacklisted in major browsers [150, 176].

At the end of 2013, it turned out, that a certificate which chained up to a public

Root CA of the Web PKI, namely ANSSI a CA of the French government, was

used to inspect encrypted traffic of employees [139]. Subsequently, ANSSI revoked

the Sub CA certificate which was used to issue the certificate employed during the

monitoring activities. Additionally, the Sub CA certificate was blacklisted within

browsers [189, 151] while Google additionally limited trust for ANSSI to only issue

certificates for French and related top level domains [139]. While the impact of

this incident is assumed to be limited [139], it is another example for untrustworthy

behavior of CAs and policy violations.

Further incidents

Several other security incidents at CAs but not directly related to the certificate

issuing systems happened over the past years. In 2012, an investigation by Reuters

[147] revealed that the corporate network of Verisign was breached back in 2010.

Verisign never reported this incident except for a short comment in a in quarterly

report in 2011 [187] which does not reveal details, thus leaving the extent of the

breach totally unclear. In 2011, another Comodo RA, namely ComodoBR [132]

was target of a SQL-injection attack on the RA’s web facing servers, that revealed

information related to certificate signing requests, in addition to email addresses,

user IDs, and password information for a limited number of employees but did not

enable the attacker to make use of the certification infrastructure. Also in 2011, a

peripheral web server of GlobalSign was hacked [131] which lead to the temporal

suspension of certificate issuance and further investigations. These two incidents are

commonly assumed to be related to the other RA and CA compromises in 2011, and

could be unsuccessful attempts to compromise further CAs. Another incident hap-

pened at KPN/Getronics [128], which took over large parts of DigiNotar’s business

after its bankruptcy. An audit, which was conducted after the DigiNotar incident,

revealed that several of the company’s web servers were compromised four years

earlier and the attack remained undetected although the attackers left attack tools

for distributed denial of service attacks behind.



48 3 The Web PKI requires user-centric CA trust management

3.2.3 Wrap-up

The analyzed security incidents related to CAs have shown the practical relevance

of the problems discussed in Section 3.1.3. The issuance of fraudulent certificates

is evident, as is their use in attacks against Internet users. The multitude of CA

incidents often in combination with poor security practices and inadequate reactions

to incidents as well as the many cases of intentionally misbehaving CAs show that

the system-centric trust model is inappropriate. Also, it was shown that revocation

as implemented today cannot be considered sufficient in case of CA compromises and

failures. In many cases, browser vendors reacted with emergency updates to blacklist

fraudulent certificates. However, it was shown that this is not a general solution as

it requires the complete knowledge of all fraudulent certificates. Furthermore, even

emergency updates face delays until they can be published and are actually installed

within browsers. Besides that, the too-big-to-fail problem was identified to prevent

the revocation of compromised CAs’ certificates, which would have lead to a much

faster protection of the users than the mitigating measures taken to circumvent a

complete revocation of the corresponding CA certificate. Although many incidents

have been reported, one must assume that the number of incidents and intentional

CA misbehavior is much higher [121]. This is due to poor reporting practices as

observed in some of the described incidents. Furthermore, it must be assumed that

governments that force CAs [63] to cooperate in the surveillance also prevent a

public disclosure of such activities.

3.3 State of the art: Concepts for mitigation

In this section, we show that the problems described in Section 3.1.3 are unsolved so

far. This is done by the examination of existing proposals that aim at the mitigation

or the solution of these problems.

3.3.1 Proposals for the system-centric trust model problem

Many attempts exist to circumvent the problems related to the system-centric trust

model. In the following we analyze the different proposals and show, that none

of them completely resolves the problem in practice. The proposals have in com-

mon, that they limit the reliance on CAs by introducing additional mechanisms for

certificate reconfirmations.
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Public key pinning

Public key pinning [87, 170] means that a relying entity locally stores information

that uniquely identifies a public key and relates it to a host name that has previously

been accessed. Public key pinning exists in different forms regarding the stored

information and how this information is bootstrapped.

Regarding the stored information it can be differentiated between certificate pin-

ning, public key pinning and CA pinning. Certificate pinning means that either

the certificate or the certificate’s fingerprint is stored. Public key pinning refers to

the storage of the public key or the key’s fingerprint itself. CA pinning refers to

the method, that instead of the end entity’s key, the key (or certificate) of a CA

is stored. This CA must be present in the certification path to the end entity’s

certificate.

Regarding the bootstrapping it can be differentiated between pre-installed infor-

mation, bootstrapping by user interaction and the trust on first use (TOFU) ap-

proach. TOFU means that, when a URL is first accessed, the presented certificate

(and key) is trusted and stored, while during subsequent connections, the same key

is expected. Bootstrapping by user interaction means that the user is asked whether

a certificate is trustworthy whenever a new certificate is received, while pre-installed

information means that public keys are pre-installed, e.g., within software bundles.

The different approaches were invented to resolve problems of public key pinning,

but none of them completely succeeded. One major issue is that public key pinning

is a static approach, while key management on the web is highly dynamic. The

assumption that underlies public key pinning is that a key assigned to a service re-

mains constant, and a key change indicates fraud. However, there are many reasons

why different keys occur reaching from certificate expiry over necessary key length

increase to key exchanges because of a compromise. Furthermore, having a service

with the same URL hosted on different servers like in content distribution networks

(CDN) often results in different certificates that certify different keys and are issued

by different CAs. In general, it is difficult to distinguish between legitimate and

fraudulent key exchanges.

Also the bootstrapping and update mechanisms are problematic. Pre-installed

keys are not a general solution for bootstrapping due to the lack of scalability.

Thus, key pre-installation can only be applied on a very limited scope and is always

application specific. An example for this is Google’s Chrome browser [142], which

is shipped with the public keys for Google services. This in fact led to the detection

of several security incidents as was discussed in Section 3.2. For a general scope,

user interaction or the TOFU approach is applied. Yet, in the first case this implies
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warnings whenever a new key or a key exchange is observed. Studies [64, 30, 2]

show, that warnings are nearly useless in practice and most users simply ignore

them. This in turn makes pinning useless as it is likely that a fraudulent certificate

will be accepted as a legitimate key change. Besides that, one cannot assume that

users can distinguish between legitimate and fraudulent certificates.

The TOFU approach is the only viable approach when considering pinning for

an unlimited scope of applications. As it implies that a possible attacker must

be present during the first connection establishment to a website, it provides a

clear security benefit by reducing the freedom of action for possible attackers. Yet,

legitimate key changes are still problematic as these are not clearly distinguishable

from fraudulent ones. Simply accepting a new key or falling back on the Web PKI

would nullify the security benefits from pinning.

Finally, all pinning approaches must be able to recover from a successful attack

or for example when a pinned key becomes unusable due to loss on the key owner’s

side. Then the question evolves how to inform the systems about such a case without

enabling attackers to make use of such a mechanism.

There also exist several proposals [87, 100] which allow the operator of a web host

to instruct clients which public keys they should accept in future connections. While

still relying on the Web PKI for the initial connection establishment, the approaches

handle legitimate key changes by informing clients in advance and installing backup

keys for potential errors. This aims at allowing hard-fails, when a non authorized

key change is detected. However, these proposals bear a high potential of server

unavailability due to misconfiguration or mismanagement of the keys, which is left

to server administrators. This concern is also reflected by the fact, that the proposals

come with fall back mechanisms such as limiting the lifetime of pinning information

in order to recover from configuration errors or even from pinning keys of an attacker

during the initial connection establishment. Due to these drawbacks, such server

assisted pinning solutions will rather stay niche solutions than being widely deployed.

Multi path probing and notaries

Multi path probing of certificates refers to the technique to contact a web server

through different network paths to retrieve and compare the certificates served by

the web server. The approach can detect man-in-the-middle attacks whenever there

exists a path to the intended web server that is not controlled by the attacker because

this leads to certificate mismatches. A clear advantage of multi path probing is the

freshness of the used information, meaning that mismatches do not occur due to

legitimate certificate changes. The difficulty is to establish such different paths as
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the web infrastructure is not designed to allow that routing is controlled by clients.

Thus, the connection to a server must be established starting from different entry

points within the Internet.

Such different entry points are often realized by certificate notaries. Notarial

solutions [145, 115, 171] may consist of single servers or a network of servers which

can collaborate or operate independently. These notary servers can be queried to

reconfirm certificates. The communication with the notary servers is secured by

pre-installed keys distributed within the corresponding software bundles. When

using notaries to evaluate the quality of certificates, trust is deferred from CAs to

the notaries or rather a majority of notaries. As notary servers are distributed

around the world, the resulting network paths to the target for which a certificate

is to be reconfirmed differ from each other. This allows multi path probing of

certificates. Additionally, notaries often maintain databases containing formerly

observed certificates. This data is collected through passive monitoring of network

traffic or active periodic monitoring of a given set of web servers.

On the one hand, multi path probing may suffer from false positives when different

certificates for the same domain are served. This can happen when multiple servers

are operated under the same domain as in CDNs. Then, a domain name does not

always resolve to the same server, but the actual server is chosen according to load

balancing rules or the geo location of the client. Well known examples for this are

Google and Facebook. In such cases, the probing end point may differ during multi

path probing and thus lead to certificate mismatches, even if all gathered certificates

are legitimate. On the other hand, certificate databases cannot provide information

about freshly deployed certificates or, when the reconfirmation of certificates of

servers which have not previously been monitored are requested. However, the

combination of certificate databases with multi path probing provides a robust set

up, as the techniques compensate their mutual weaknesses.

While allowing the reconfirmation of certificates the main drawback of notaries

is scalability and performance which prevents their broad application. For notaries,

the same holds as for OCSP (cf. Section 3.3.2). Hard-fails must be enforced in order

to provide protection against attackers that can potentially block connections to the

notaries. However, this requires a highly available infrastructure, which the OCSP

infrastructure fails to achieve since years. Furthermore, when multi path probing

is applied, additional delays are introduced due to the connection establishment to

a target server. These delays cannot be influenced by the notaries themselves. For

example, measurements for the Crossbear notary [171] and Perspectives [115], which

are used in the implementation of CA-TMS presented in Section 4.3, show varying

round trip times between 0.2 and 1.2 seconds. A further drawback is the additional
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network load, which is induced by multi path probing, which at least doubles the

number of TLS connections to the target server.

We note, that multi path probing independent from notaries has also been pro-

posed [3]. The proposal realizes multi path probing with the use of TOR. A second

connection through the TOR network is opened to a server in order to retrieve the

certificate and compare it to the certificate obtained in the normal connection. How-

ever, the approach can also not meet the performance requirements, as performance

is one of the major problems of TOR. Another approach, to ubiquitously integrate

multi path probing into the web infrastructure has been proposed in [B1] and is

ongoing research of the author of this thesis.

Public logs

Public logs are publicly accessible servers that maintain databases of public keys

and relate them to domain names. These servers can be used to look up the public

keys of web servers, similar to a global phone book. Two experimental proposals

currently exist, namely Certificate Transparency [98] and Sovereign Keys [123]. The

main difference of these proposals lies in the scope of the public logs. Certificate

Transparency aims at making all certificates issued by any CA of the Web PKI

publicly visible to allow public monitoring of CAs. The goal is to enable domain

owners to monitor the logs for fraudulent certificates issued for their domains in

order to be able to initiate counteractive measures like revocation.

Sovereign Keys aims at the registration of additional, so called sovereign keys

which are chosen and managed by domain owners themselves. Once a sovereign key

is registered, it is used by the domain owner to cross-sign the server’s TLS key or

alternatively a CA key contained in the certification path to the server’s key. Clients

can then verify the authenticity of the server’s key using the sovereign key registered

for a domain.

Both proposals require a complex infrastructure for monitoring and auditing in

order to prevent the manipulation of the public log servers and it is an open question

who can operate this infrastructure in a reliable manner. Besides that, Certificate

Transparency faces the same problem as OCSP and OCSP stapling. As long as

it is not a common standard and implemented by all server operators and CAs,

clients cannot reject connections simply due to the fact that a certificate is not

found on a public log, otherwise many services become unavailable. However, this

allows attackers to simply not report fraudulent certificates to prevent detection

by public monitoring. The Sovereign Keys project introduces a very complex key

management of the sovereign keys, which bears a high potential for misconfiguration
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and the eventual unavailability of web servers.

While Google pushes forward the implementation of Certificate Transparency and

implements a workaround by crawling the web to overcome the problem of limited

support at least for extended validation (EV) certificates, the Sovereign Keys project

is unmaintained since 2012. For none of the proposals a broad adoption is to be

expected, which is at least for Certificate Transparency a basic requirement for its

functioning.

DNS-based authentication of named entities (DANE)

An often discussed alternative to the Web PKI is the binding of certificates directly

to DNS resource records. These resource records are to be secured against manip-

ulation by DNSSEC. DANE [90] defines an additional TLSA-resource record. It

allows zone administrators to specify the public keys of the web servers that are

operated under the domain names managed in that respective zone. These keys are

provided by the web server operators to the zone administrators. DANE allows to

directly specify the web server’s certificate (including self-signed certificates) or CA

certificates which then need to be present within the certification path presented

during the TLS handshake. Thus, DANE allows to alternatively or even exclusively

validate server certificates based on the chain of trust given by the DNSSEC infras-

tructure. When comparing the DNSSEC infrastructure to the Web PKI, one can

compare the zone operators to CAs. Other than realized in the Web PKI, DNSSEC

has only one single trust anchor and each zone can only sign entries for a limited part

of the domain name space, namely its direct child zones. This is seen as the biggest

advantage over the Web PKI. However, despite being a strict hierarchy, DNSSEC

has similar problems as the Web PKI. The trust management problem remains. On

the one hand, each zone has limited power. On the other hand, there is absolutely

no possibility to distrust one of the zones, as alternative trust paths are impossible.

Thus, the system is even more susceptible to local law. Furthermore, it is important

to know, that the zone operators are mostly the same players as the CAs, as e.g.

Verisign for the top level domain .com.

Another drawback of DANE is the current deployment progress of DNSSEC,

mainly on the client side [7]. Compared to the Web PKI, DNSSEC is a young

technology and automatic support, e.g. to register server keys in resource records

is missing. Furthermore, most DNS resolvers on client hardware like computers

and smartphones are not capable to validate DNS records secured with DNSSEC

[49]. Thus, the validation is in general delegated to some DNS name server, which

simply indicates to the client if DNSSEC validation succeeded or not by setting a so
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called DO-Bit (DNSSEC OK) in its answer. However, this requires that the name

server must be trustworthy and the attacker must not be capable to manipulate the

connection to the name server. This is in general not guaranteed.

From these findings we conclude, that DANE is a valuable addition for security

and provides a means to reconfirm a web server’s certificate obtained during the

TLS handshake. However, it cannot be seen as a replacement for the Web PKI.

3.3.2 Proposals for the provision problem of revocation

information

As shown in Section 3.1.3, revocation must be combined with hard-fails in order

to be effective. Hard-fail means that a certificate must be evaluated as revoked if

its actual status is unclear. Yet, even if revocation checking fails in only 1% of the

connections, this prevents hard-fails from being implemented as the use of OCSP

has shown over the past [158, 161].

OCSP stapling (cf. Section 2.2.3) theoretically resolves this and allows hard-fails

[158], because the OCSP response is provided by the web server. This implies that

revocation information for a service is available if the web server itself is. Yet, an

attacker can remove the stapled OCSP responses. Once the deployment rate of

OCSP stapling approaches 100%, the absence of stapled OCSP responses can be

attributed to the presence of an attacker. However, according to the current SSL

survey of Netcraft [162], OCSP stapling is only implemented on 24% of the web

servers, which makes it impossible to decide whether an attacker blocked OCSP

stapling or the web server simply does not implement it. Thus, up to now hard-fails

are impossible.

The not yet standardized OCSP must staple extension [89] provides an opt in for

hard-fails for server operators as it allows to anchor the OCSP stapling within the

certificate. But still, protection relies on the deployment of OCSP stapling.

Because it is hardly assessable how long this will take, browser vendors like Google

and Mozilla [141, 159] implement revocation pushing strategies called CRLSet and

oneCRL. In both cases, these are aggregated CRLs which are pushed to browsers

on a daily basis using the browsers’ auto update features. Yet, as this approach

does not scale, Google focuses only on high value domains, while Mozilla puts the

focus on Sub CA certificates and extended validation (EV) certificates. While it

is not reported, which web pages are actually covered, one can assume that these

strategies are far from providing complete protection.

Besides that, blacklisting is another common approach to deal with the revocation

problem. However, it requires all browser vendors to be informed of fraudulent
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certificates which cannot be guaranteed as the incidents analyzed in Section 3.2 have

shown. In Chapter 4 it is shown how user-centric CA trust management resolves

the provision problem by enabling continuous monitoring of revocation information.

3.3.3 Proposals for the too-big-to-fail problem

Two closely related solutions exist for the too-big-to-fail problem. The first is to

apply multiple signatures [52] by independent CAs. This would allow to revoke one

of the involved CA keys, while certificates could still be verified based on the second

signature.

The second solution is to add a trusted time-stamp to each certificate, generated

by a TSA (cf. Section 2.2.7). The time-stamp would allow to securely identify which

certificates have been issued before a revocation and which afterwards, thus certifi-

cates issued before a revocation of the CA certificate could further be considered

valid.

Both approaches face several disadvantages. Firstly, they require the collabora-

tion of independent CAs or of a CA with a TSA during certificate issuance which

introduces overhead and requires the adaptation of currently deployed processes

and business practices. Secondly, they introduce overheads into certificate valida-

tion. As both signatures on the certificate have to be verified, including revocation

checking and path validation of independent certification paths, the overhead is

doubled. Furthermore, this would require the adaptation of current standards, and

their implementation on clients and web servers. These drawbacks have prevented

the deployment of such solutions so far and the hurdles to realize such broad scale

infrastructural changes will also do so in the future. Thus, these solutions are of

limited practical relevance. We provide a solution for the too-big-to-fail problem in

Chapter 6, which does not require infrastructural changes and is easily deployable

within the current Web PKI.

3.3.4 Wrap-up

We have discussed the most prominent proposals for the mitigation or the solution

of the problems described in Section 3.1.3 and it was shown, that none of these pro-

posals comes without its own drawbacks, sometimes completely preventing a broad

deployment. Other approaches are currently being deployed, however deployment

is a tedious process in large scale systems like the Internet. This has also become

evident in relation to the very serious Heartbleed vulnerability. It’s removal simply

required an update of the OpenSSL library on the affected servers. However, two
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month after the bug was discovered, only half of the 600,000 affected servers had

been patched. And security experts expect thousands of servers to be vulnerable

even in ten years [169].

In Chapter 4 we present our solution for the trust management problem as well as

the reliable provision of revocation information. The solution is based on the concept

of user-centric CA trust management. It does not require a broad application in

order to function. It makes use of several of the presented approaches without

imposing perfect availability requirements in the integrated systems. It employs

certificate pinning and notarial solutions, also additional mechanisms like Certificate

Transparency or DNSSEC can be integrated as additional validation services used

to reconfirm certificates.

3.4 The Web PKI from a user’s perspective

In the following, it is shown that user-centric CA trust management is a promising

solution for the trust management problem of the Web PKI. This is shown by ana-

lyzing real world browsing histories and examining how relying entities experience

the Web PKI. It is shown that relying entities individually only require a small sub-

set of the globally trusted CAs and that user-centric CA trust management has the

potential to reduce the attack surface spanned by the entirety of globally trusted

CAs by more than 95%.

3.4.1 The user-centric trust model for the Web PKI

In the user-centric trust model, trust decisions are made on a per user level. A

central aspect of the user-centric trust model is that trust settings are individually

set according to the requirements of the relying entity. Trust decisions further involve

the relying entity’s preferences and the subjective knowledge, the relying entity has

collected during previous interactions.

For the Web PKI, a user-centric trust model implies user-centric CA trust manage-

ment. Relying entities only trust the CAs they really need to validate the certificates

they observe during the daily use of the Internet.

In the following, the potential of the approach is shown. Based on a user study,

we evaluate how the currently deployed Web PKI is observed from a relying en-

tity’s point of view. We show, that the set of CAs relevant to a relying entity is

indeed highly dependent on the individual browsing behavior. Our findings confirm

that relying entities unnecessarily trust in a huge number of CAs, thus exposing

themselves to unnecessary risks.
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3.4.2 Web PKI user study - setup

For the pilot study whose results are presented in Section 3.4.3, we analyzed histories

of 22 volunteers. To support the user study, the tool called Rootopia was developed.

It automatically analyzes a relying entity’s browser history and extracts the data

regarding CAs the relying entity has observed in the past. Basically, it extracts the

hosts that were accessed via TLS and extracts the related CAs. For more technical

details on the tool please refer to [B4, 61].

An opt-in process was chosen for data collection, i.e., the users are required to

actively hand over the results of the analysis of their browser histories. Besides

that, we collected metadata using a questionnaire to be able to group the people

into different categories.

Four persons provided two histories, either from different browsers they use in

parallel, or different PCs. Thus, a total of 26 histories could be analyzed. All

participants currently live in Germany, but have different cultural backgrounds. 16

of the participants originate from Germany, 2 from Poland, 2 from Morocco, 1 from

Iran and 1 from China. The participants reach from IT experts to persons that only

occasionally use a PC. The participants are between 25 and 57 years old. All of the

participants either use Chrome or Firefox.

3.4.3 Findings

During the analysis of the collected data sets, user specific information as well

as similarities and differences among user groups were derived. Table 3.1 shows

aggregated numbers concerning history lengths and observed CAs. In the analysis

we distinguish between true Root CAs and CAs that were seen both as Root and as

Sub CAs (Root/Sub CAs). This resulted from cross-certification between Root CAs

or the occasional inclusion of superordinate CAs into the certification path, even if

one of the intermediate CAs is also present in the root store. As both Root and

Root/Sub CAs must be present in the root store to be able to validate all observed

certification paths, in the following we refer to them as the Root CAs.

Interestingly, none of the users – even those with a huge number of different TLS

hosts – did see more than 22 different Root CAs, which is about 13.4% of the 164

CAs included in the Firefox root store. Furthermore, a maximum of 75 Sub CAs

was reached. The absolute maximum of CAs in total seen by a single Internet user

was 96, which is 6% of the 1,590 trusted CAs of the Web PKI. Even fewer CAs were

found when only considering CAs that issued end entity (host) certificates. These

CAs represent the minimum number of CAs that need to be trusted by a user to be
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Criterion Average Min Max

Duration of analyzed period (months): 18 4 38

Total number of TLS hosts: 168 12 636

Total number of TLS connections: 18,475 162 159,882

Total number of Root CAs: 10 4 14

Total number of Root/Sub CAs: 4 0 8

Root + Root/Sub CAs: 14 4 22

Total number of Sub CAs: 36 11 75

Number of CAs that issued end entity cer-

tificates:

33 8 68

Table 3.1: History sizes and numbers of observed CAs

able to verify all the certificates of the hosts he connected to. The maximum value

of such CAs was 68 or 4.3% of the currently trusted CAs. The ratio of CAs issuing

end entity certificates was in the span of 50%-75% of the total CAs found for the

respective user and reached 63% on average.

Considering the total number of different Root and Sub CAs observed by the

whole group of participants, namely the union of all sets of CAs, leads to 28 Root

CAs and 145 Sub CAs. The numbers show that there is a high potential in limiting

the number of trusted CAs. Furthermore, for certain user groups, there is a high

overlap in the CAs (i.e. CAs that were observed by several persons). The overlap

is significantly higher for Root CAs than for Sub CAs. This is reflected in the set

union of Root CAs which is only 27% larger than the maximum number of Root

CAs of a single user, while in the case of Sub CAs the set union consists of twice

the number of Sub CAs seen by a single user. However, the significant differences in

the numbers for different users – reflected in the minimum and maximum values –

shows, that true minima for a single user can only be reached by individualization.

One influencing factor leading to a low number of different CAs is the fact, that

there are only few large CA companies with a high market share in the certification

business. However, the distribution we observed among those large players turned

out not to be according to the market shares from the Netcraft SSL Survey [162].

Most significantly, VeriSign, Inc. is involved in more than 20% of the certification

paths relevant for our user group, while it has only around 6% of the market share

in the Netcraft Survey. In contrast, Go Daddy with more than 20% of market share

was a Root CA in less then 4% of the certification paths in our data. This is another

indication, that it highly depends on the individual browsing behavior of the users,

which CAs are actually relevant for them.
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The observed CAs were also grouped by country. It turned out that – compared

to the total of 57 countries – CAs from only 14 different countries were relevant for

the considered user set. The overwhelming majority of CAs is from the US (US)

followed by Germany (DE), Great Britain (GB) and Belgium (BE). Considering the

other countries, less than 5 CAs were observed from those and only by very few

users.

Temporal evolution

In the following, we discuss our findings concerning the development of the individual

views on the Web PKI over time according to the dates when related hosts were

accessed. It turns out that the number of observed CAs does not grow linear but

shows limited growth with high growth rates in the first few months. Considering

Root CAs, the upper bound is reached after several months. However, growth rates

depend on the intensity of Internet usage or rather on the number of TLS hosts a

user connects to.

Considering users with high numbers of TLS hosts, the upper bound is reached

faster than for users that only connect to TLS occasionally. For Sub CAs, the

development is similar to the Root CAs, however, it is less significant. Thus, the

number of Sub CAs tends to keep growing over a long time. To build user groups,

we used the number of different TLS hosts averaged over the length of the analyzed

time span. The average was approximately 9 hosts per analyzed month.

For the ten users that use TLS connections less intensively (i.e., who used less

than 5 different TLS hosts per month), it takes a much longer time until the number

of CAs approaches an upper bound. Yet, the upper bounds are strictly below the

ones observed for users which use TLS a lot (i.e. the four users that used more than

18 hosts per month). On the other hand, there also exist users, that only connect

to a very limited number of hosts but where the upper bounds on CAs are reached

after very few months. This can be seen best in one data set, where the maximum

of 4 Root CAs is reached after 3 months and is constant afterward (16 months).

The picture for Sub CAs is nearly the same in that data set. A personal discussion

showed, that the data belongs to a person using e-banking and e-commerce services,

but besides that only occasionally surfs the Internet.

To summarize our findings on the development over time, we state that it is not

possible to give a concrete number of months after which all relevant CAs have been

seen and the number of CAs stagnates. This is highly depended on the individual

browsing behavior. In many cases – due to the regular deletion of the histories –

these are not long enough to derive the upper bound and the set of relevant CAs
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for the respective user completely. Yet, in general, our observations show that the

number of CAs tends towards an upper bound significantly below the total number

of existing CAs. This in turn shows the potential for the possible attack surface

reduction.

CA countries

As stated above, most of the observed CAs are from the US. The second most

observed country in our set of participants is Germany. However, this is also a user

group dependent outcome and results from the set of analyzed histories. A large part

of the participants is either from the scientific community or students at a university.

Building two groups, the first containing people with academic background and the

second one without, shows that German CAs occur much less often in the second

group. The percentage of German CAs is on average 18.3% of all observed CAs per

user in the first, and only 7.1% in the second group. It results from the fact, that

most universities have their own CAs, certified by the DFN Root CA. Those CAs

are completely irrelevant for the non-academic users. The distribution of CAs over

the other countries did not change significantly.

We also grouped the data into users that originate from Germany and those who

do not. Yet, interestingly this did not have significant effects on the distribution over

the countries. However, when considering single users, the relevant CA countries

can depend on the country of origin as we observed it for a user from Poland (PL).

Considering all data sets, there are some country codes that were observed for

most of the participants, yet where the respective CA was always one and the same.

These are SE, ZA, NL, and IE.

For the remaining countries (KR, PL, UK, BM, FR, AU) no fix pattern is observ-

able. From these, FR and BM are observed most often.

Relevance of CAs

The relevance of a CA for a user was measured based on the number of hosts related

to the respective CA. Interestingly, the number of Sub CAs that are related to only

one host lies between 20% and 60% of the total number of Sub CAs found for a

user, and is about 43% on average. This shows that Internet users observe many

CAs whose relevance is really low. Thus, it is highly questionable if the benefits for

the user due to fully trusting in those CAs counterbalances the imposed risks, not

speaking about the CAs a user never observes.

As it might occur that a single host is accessed extremely often by one user and

thus the related CA becomes more relevant to him, we also measured the number
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of visits, namely taking into account how often a host was accessed. As expected,

the number of Sub CAs only observed during a single connection is lower. But still,

rates of up to 38% of the total number of CAs for single users are reached and are

17.5% on average. This shows that many of the CAs are only observed by chance.

Furthermore, our data shows that a user observes the CAs most relevant for him

during the first months, while CAs which are found later are less relevant.

For each CA, we also averaged the CA’s relevance over all users that observed the

respective CA. It turns out, that there is a strong correlation between the number

of users that observed a CA, and the averaged relevance of the respective CA. From

these findings we conclude, that building user groups and taking the CAs which

most users of that group have in common can be a good starting point to set up an

individualized set of trusted CAs, e.g., for a user where no history data is available.

Number of CAs and overlaps

We computed the union of CAs for different user groups. To identify the similarity

of the views on the Web PKI within a group, we computed overlaps in the CA sets,

namely how many users have how many CAs in common. If not differently specified,

in the following with overlap we mean the ratio of CAs that all group members have

in common.

The group of the four users with most TLS hosts as specified in Section 3.4.3

jointly observed a total of 25 Root CAs and 108 Sub CAs. With 64% the overlap

of Root CAs is twice the overlap of Sub CAs (31%). That shows, that the set of

Root CAs relevant to a user is less dependent on the individual browsing behavior.

This also holds for the other groupings we analyzed and is as expected, as the total

number of existing Root CAs is nearly ten times smaller than the number of Sub

CAs. Comparing the 25 Root CAs and 108 Sub CAs with the complete set of CAs

jointly observed by all users, it turns out that the CAs seen by the users with most

TLS connections make up for 89% of all Root CAs and 74% of the Sub CAs. Thus,

most of the CAs required by the other users are also seen by the users with most

TLS connections.

When comparing the groups of academic and non-academic users, the first ob-

serves significantly more CAs (27 vs. 19 Root CAs and 140 vs. 63 Sub CAs). This

seems to result from the fact, that all the users with most TLS connections are also

part of the academic group. The overlaps in the academic group are higher than in

the non-academic group.
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3.4.4 Discussion of the results

With the study we showed that the risk to be affected by CA malfunctions is unnec-

essarily high in the system-centric setting. It turned out, that the individual views

on the Web PKI tend towards a stable individual set of CAs. The temporal evolu-

tion described in Section 3.4.3 actually shows different courses, thus confirming that

the set depends on a user’s individual browsing behavior. Our analysis indicates

that a reduction of the number of trusted CAs by more than 95% is possible with-

out restricting the respective user in his daily Internet use. We note, that a global

limitation of the trusted CAs is no viable solution. The sets of required CAs are too

distinct between different users. Thus, a global minimization of CAs cannot lead to

an optimal solution. Furthermore, it would lead to interoperability problems and

additional warnings whenever a certificate issued by an unknown CA is presented

to the user.

We also found large differences in the relevance of the CAs, which leaves further

room for improvement. However, it turned out that it is a challenging task to

completely define the set of relevant CAs for an individual user. One problem is the

unavailability of sufficient data about the user’s browsing history, e.g. because of its

periodical deletion. In such cases, grouping users and deriving group profiles can help

to provide a starting point for the limitation. The study has shown that such groups

exist, even though it is not possible to completely derive these groups from our data.

This indeed would require a large scale study with users revealing a multitude of

privacy sensitive information, which in turn prevents a broad participation in such

studies. In Chapter 5 we provide a reputation system which exploits the fact that

user groups exist, but realizes the grouping in a privacy sensitive manner without

the need of predefined user groups.

Furthermore, mechanisms are needed to deal with CAs that are newly observed.

Our data shows, that the number of CAs approaches a certain upper bound. How-

ever, new CAs can even occur after long time periods. Thus, views derived from

past browsing behavior might always lack some CAs that are required in the future.

In the next Chapter 4 we present our solution to locally and dynamically manage

an individualized set of trusted CAs.

3.5 Conclusion

In this chapter, the defectiveness of the Web PKI was analyzed. The security and

the attacker model have been presented. The Web PKI has been explained, along

with its problems and how they support the described attackers. It was shown that
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the problems are the system-centric trust model and the and shortcomings in the

handling of revocation.

Afterward, CA security incidents have been analyzed. The described problems

indeed make millions of Internet users susceptible to man-in-the-middle attacks.

The large impact of security incidents can be explained with the system-centric trust

model of the Web PKI, while the problems with revocation prevent fast and effective

countermeasures. The CA security incidents reach from the erroneous issuance of

certificates over CA system compromises to intentional CA misbehavior. Together

with the observed reactions to these security incidents by the CAs themselves this

shows the inadequacy of the system-centric trust model.

The scientific community is aware of the weaknesses of the Web PKI, thus many

proposals for their mitigation have been made. These proposals have been ana-

lyzed and their strengths and weaknesses have been discussed. It was shown that

the problems of the Web PKI are unsolved in practice. However, many of the

proposed approaches can be combined as building blocks for user-centric CA trust

management. Our solution will be described in the following chapter. The potential

of user-centric CA trust management has been shown by a user study, where real

world browsing histories have been analyzed. The study showed that the number of

trusted CAs can individually be reduced by around 95%, thus reducing the attack

surface of the Web PKI. Furthermore, as will be presented in the following chap-

ter, the fact that relying entities individually only require trust in a small sub set of

CAs of the Web PKI, user-centric CA trust management also enables the continuous

monitoring of revocation information.
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agement

In this chapter, we present our solution for the trust management problem and how

to enable a reliable provision of revocation information. First, the realization of user-

centric CA trust management complemented with continuous revocation monitoring

is described. We call this system CA Trust Management System (CA-TMS). In the

second part we show how CA-TMS is implemented. The last part of this chapter is

concerned with the evaluation of CA-TMS.

In Sections 4.1 and 4.2 we present CA-TMS realizing user-centric CA trust man-

agement and continuous revocation monitoring. The components and mechanisms

of CA-TMS and the parameters that control the system behavior are described. For

these parameters, a parameter setting is presented.

The main idea of CA-TMS is to restrict the trust placed in CAs of the Web PKI

to trusting in exactly those CAs actually required by a relying entity. To achieve

this the certificate validation procedure is extended by trust validation. Trust vali-

dation is executed by a client program, the CA-TMS client. It communicates with

the browser via a browser plugin. As input, trust validation gets a user dependent

knowledge base called trust view. The trust view contains the user dependent in-

formation concerning required CAs and user preferences. The CA-TMS client also

provides the algorithms for trust establishment, learning processes and information

collection as well as bootstrapping. It allows the user to manage his trust view and

to control whom he trusts and to which extent. Continuous revocation monitoring

is implemented as an additional module. It becomes feasible due to the user-centric

CA trust management and the related information collected in the trust view. The

presented parameter setting is deduced from simulating CA-TMS based on real

world browser histories and analyzing the system behavior for different settings.

Section 4.3 is concerned with the implementation of CA-TMS. We present the

architecture and the modular design of CA-TMS. The implementation is available

as open source software.
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In Section 4.4 we evaluate CA-TMS regarding security and performance. It is

shown that CA-TMS provides the aimed attack surface reduction of more than 95%

compared to the standard system-centric setting as stated in Chapter 3. Also, it

is shown that the solution is practical. We give a security analysis based on the

attacker model presented in Chapter 3. To measure the attack surface reduction a

metric is presented. This metric is evaluated on data obtained from the simulation

of CA-TMS with real world browser histories using our proposed parameter setting.

The performance of CA-TMS is evaluated in terms of the overhead induced by trust

validation and additional certificate reconfirmations as well as continuous revocation

monitoring. Section 4.5 concludes this chapter.

The contributions of this chapter were published as parts of [B2, B5]. This chapter

extends the published contributions by continuous revocation monitoring and the

implementation of CA-TMS. Furthermore, the evaluation of CA-TMS was revised

and extended. The data sets used in the original evaluation were complemented

with additional browsing histories collected after the publication of [B2].

4.1 Trust view and trust validation

User-centric CA trust management means that CA-TMS restricts the trust placed

in CAs of the Web PKI to trusting in exactly those CAs actually required by a

relying entity. The number of trusted CAs is individually reduced. To achieve this,

the certificate validation procedure is extended by explicit trust validation in order

to evaluate the trustworthiness of a connection according to the security model

presented in Section 3.1.1. Different trust requirements for different applications

are considered during trust validation. For example, there is a difference in the

trust needed to visit a search engine and the trust needed to supply an online-

shopping web site with credit card information. The core of CA-TMS is the trust

view. It serves as a local and user dependent knowledge base for trust decisions.

We illustrate the mechanisms for the establishment and the management of the

trust view. Moreover, we implement learning processes and define decision rules for

automated trust decisions. Trust is represented by employing computational trust

models. The real trustworthiness of CAs is approximated by subjective probabilistic

trust values.

CA-TMS is focused on applicability, thus we only use data which is initially avail-

able or is collected over time. However, the system is open for extensions with

additional information sources. We build on existing techniques like public key pin-

ning and certificate notaries and combine different mechanisms that complement
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each other. Different from those existing mechanisms, CAs in the entity’s trust

view have different trust levels and may even be fully trusted depending on the con-

text. Furthermore, trust evaluation is based on local experiences of the entity, not

requiring recommended trust values embedded in certificates or the evaluation of

certificate policies and expert opinions. Thus, our solution can work autonomously

and does not require an additional check of every (new) certificate. CA-TMS pro-

vides a trade-off between overhead due to reconfirmations and solely relying on

CAs. Furthermore, the management of local experiences guarantees that CAs are

only trusted after they have previously been encountered and checked. A CA is

only trusted when the entity needs this CA to authenticate a web service – indepen-

dent from the CA’s global reputation. This protects the entity from malfunctions

of CAs that in general follow good security practices but are actually irrelevant for

the entity itself.

From the analysis of the Web PKI and the existing mitigations for its weaknesses

in Chapter 3, several constraints for the realization of user-centric CA trust man-

agement can be deduced. We present the challenges in the following.

4.1.1 Challenges

The set of CAs required by an entity is not fixed but changes over time. The

challenge is to establish and manage a trust view in a dynamic way. We identified

the following constraints for dynamically updating the set of trusted CAs as well as

for assigning trust levels to them:

1. Minimal user involvement: an informed assessment of the quality of a CA’s

certification processes is beyond the capabilities of the average Internet user

[30, 64]. Warnings should be omitted as far as possible, because users get used

to and tend to ignore them, even leading to a weakening effect.

2. Incomplete information on CA processes: data on the quality of a CA’s

certification process might be incomprehensible and non standardized, incom-

plete, or not available at all [23]. Also, published policies are no guarantee for

compliance [119].

3. Incomplete information on the relying entity’s requirements: in gen-

eral, the web services that an entity will contact in the future are unknown

and thus also the CAs that are required to verify the certificates of these web

services.
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4. Minimal latency for connection establishment and avoidance of block-

ing online verifications: in order to be accepted and used by relying entities,

the latency added to page loading must be kept as small as possible. Users

in general do not tolerate waiting time [56] or blocked connections due to the

unavailability of validation services (cf. Section 3.3.2).

4.1.2 Modeling trust validation

In the following we describe how trust validation is modeled. The final outcome of

trust validation is an estimate for the key legitimacy of the public key pk certified

in a certificate C. The key legitimacy of pk denotes the level of trust concerning its

authenticity, i.e., whether pk in fact belongs to the identity contained in the subject

field of C.

For a relying entity, in order to be convinced of the key legitimacy of pk, two

things are required [36, 54, 75]. First, the relying entity must be convinced of the

key legitimacy of the CA’s public key with which the signature on C is verified.

Second, the relying entity must trust the CA to issue trustworthy certificates. The

latter is called issuer trust in the CA.

In this thesis the CertainTrust trust model is used to represent trust. Please refer

to Chapter 2.4 for a detailed introduction and the definition of the related Certain-

Logic operators. CertainTrust together with CertainLogic provides the respective

operators required in our context. Recall, that CertainTrust expresses trust-related

information as opinions o = (t, c, f), where t represents the trust, c denotes the cer-

tainty about the correctness of t and f defines an initial trust value which represents

systemic trust.

With this, key legitimacy okl and issuer trust oit are represented as independent

opinions. The issuer trust assigned to a CA is further split into issuer trust for end

entity certificates oeeit and issuer trust for CA certificates ocait . The key legitimacy of

a key is computed as the key legitimacy of the CA’s key in conjunction with the

issuer trust in the CA. In CertainLogic, the conjunction is realized with the AND

operator.

Now let C be an end entity certificate binding the public key pk to the subject E .

C was issued by the CA CA, i.e., it is signed with CA’s private key and the signature

can be verified with CA’s public key pkCA. Then, the key legitimacy of pk is denoted

with

okl,pk = okl,pkCA ∧ o
ee
it,CA.

The computation of the key legitimacy based on a certification path p = (C1, . . . ,

Cn) of length n > 1, follows directly from chaining this rule, while for intermediate
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certificates the respective issuer trust for CA certificates is used. For 1 ≤ i ≤ n− 1

let okl,i be the key legitimacy of the public key in Ci and oit,i the issuer trust assigned

to the subject in Ci (the subject in Ci is always the issuer of Ci+1). Then:

okl,n = okl,1 ∧ ocait,1 ∧ ocait,2 ∧ . . . ∧ oeeit,n−1.

The key legitimacy of keys distributed through an out of band channel can be

assumed to be complete. Thus, the key legitimacy of the first key pk1 in the path is

okl,1 = (1, 1, 1) because it is the Root CA’s key and distributed within the root store.

As for the AND operator holds: if oA = (1, 1, 1) then oA ∧ oB = oB, the formula for

the key legitimacy can be simplified to:

okl,n = ocait,1 ∧ ocait,2 ∧ . . . ∧ oeeit,n−1.

In the following we describe trust views as the user dependent knowledge base that

contains the information trust evaluation is based on. Furthermore, we describe

the algorithms for initialization, information collection, bootstrapping and trust

validation in detail.

4.1.3 The trust view

For trust validation, entity E1 has a trust view View. The trust view is the local

knowledge base of E1 and contains all previously collected information about other

entities and their keys. It is built incrementally during its use for trust validation.

View consists of:

• a set of trusted certificates

• a set of untrusted certificates

• a set of public key trust assessments

The trusted certificates are all certificates that have previously been used to es-

tablish a trustworthy connection to another entity. The untrusted certificates are

those certificates, for which the connection was evaluated untrustworthy. Further-

more, there is one public key trust assessments for each known pair (pk∗, CA∗), i.e.

for which a certificate binding pk∗ to CA∗ was contained in a previously evaluated

certification path. A trust assessment represents all information collected for the

respective pair during prior trust validations.
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A public key trust assessment TA is a tuple (pk, CA, S, okl, o
ca
it , o

ee
it ), where

• pk is a public key.

• CA is the name of a certification authority.

• S is a set of certificates. It contains all the certificates with subject CA and

public key pk that have previously been verified by E1.

• okl is an opinion. It represents the opinion of E1 whether pk belongs to CA or

not (key legitimacy of pk).

• ocait is an opinion. It represents the trust of E1 in CA to issue trustworthy

certificates for CAs (issuer trust in CA when issuing CA certificates that are

verifiable with pk).

• oeeit is an opinion. It represents the trust of E1 in CA to issue trustworthy cer-

tificates for end entities (issuer trust in CA when issuing end entity certificates

that are verifiable with pk).

In order to decide whether the connection to entity E2 is trustworthy, entity E1

runs the trust validation algorithm (cf. Section 4.1.5). First we describe how trust

assessments are initialized.

4.1.4 Initialization of trust assessments

A trust assessment TA = (pk, CA, S, okl, o
ca
it , o

ee
it ) is initialized whenever a pair (pk∗,

CA∗), for which there is no trust assessment in the trust view View, is observed within

a CA certificate C. We assume that a root store is available during initialization.

Then, TA is initialized as follows:

• pk = pk∗

• CA = CA∗

• S = {C}

• okl = (1, 1, 1) if the CA is a Root CA, else okl = unknown.

• The initialization of oxit for x ∈ {ca, ee} is the following:

1. If there exists T̃A ∈ View such that (C̃A = CA) ∧ ((CA is a Root CA) ∨
(the issuer of C equals the issuer of one C̃ ∈ S̃)), then set ocait = õcait and

oeeit = õeeit .
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2. If there exists no such T̃A then:

a) If for 1 ≤ i ≤ n there are trust assessments TAi ∈ View with Ci ∈ Si,
where the issuer of Ci is equal to the issuer of C, then compute fx =
1
n

∑n
i=1E(oxit,i) and set oxit = (0.5, 0,min{maxF , fx}) for x ∈ {ca, ee}

and maxF = 0.8. min{a, b} denotes the minimum of the input values.

b) Else set ocait = oeeit = (0.5, 0, 0.5).

The key legitimacy is set to complete (okl = (1, 1, 1)) for Root CA keys as these

keys are confirmed via the root store. For other CA keys, key legitimacy is computed

during trust validation as long as key legitimacy is unknown. During the evolution

of the trust view, key legitimacy may be fixed and set to complete as soon as enough

evidence has been collected. We discuss this in Section 4.1.6.

Step 1 of the oxit initialization realizes the transfer of earlier collected information

about a CA to TA, which is especially relevant for CA key changes. The requirement

of either being a Root CA, i.e., being authenticated via the root store, or having the

same issuing CA ensures that the collected information undoubtedly belongs to the

CA in question.

Step 2 provides an initialization mechanism if no prior information about the

CA is available. If the new CA’s key is certified by a CA that certified keys of

several other CAs, i.e., there are siblings for which experiences have already been

collected, we use the average over the expectations of the respective issuer trusts

for initialization. The reason is that a CA evaluates a Sub CA before signing its

key, and thus, these Sub CAs are assumed to achieve a similar level of issuer trust,

like a stereotype [14]. While Burnett et al. apply machine learning techniques to

identify the features that describe stereotypes, the solution presented here assumes

that being certified by the same CA is the only relevant feature for stereotyping.

Therefore, all known CAs that are certified by the same CA form a stereotype.

We bound the initial trust value f by maxF in order not to overestimate a CA’s

trustworthiness (cf. Section 4.1.8 for a discussion of the effects of the parameter

choice for maxF ). If also no siblings are available in the trust view, the issuer trust

oxit = (0.5, 0, 0.5) reflects that no experiences have been collected and that the CA

may either be trustworthy or not.

Optimally, further information is collected for initialization. CA-TMS is open

for such extensions. In Chapter 5, we describe how to realize a reputation system,

which recommends the issuer trust of a CA to an entity based on the trust views

of other entities. Further information could be gathered from policy evaluation as,

e.g., proposed by Wazan et al. [69, 70]. A drawback of this approach is its need

for some kind of expert or expert system to evaluate the certificate policies and
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practice statements, because these documents cannot be processed automatically at

the time being [23]. So far, no such services are available in practice. Yet, given

such additional data, it can be mapped into an opinion and integrated into the

initialization process.

4.1.5 Trust validation

Now the trust validation algorithm is described. It takes the trust view of entity E1

and a certification path for the certificate of entity E2 as input and computes the key

legitimacy of E2’s public key to decide whether a connection established with E2’s key

is to be considered trustworthy. The decision depends on the security criticality of

the application that is to be executed between E1 and E2. The information available

in the trust view may not be sufficient to complete the trust validation. In such a

case, validation services are used as a fall back mechanism. Given a service provider

as described in Chapter 5 is available, untrusted certificates can be reported to it.

We include this optional step for completeness. For details on this functionality refer

to Section 5.3.1. We present the detailed trust validation algorithm in the following:

Input:

• The certification path p = (C1, ..., Cn) without intermediary self-signed certifi-

cates

• The trust view View of E1

• A security level l ∈ [0; 1] for Cn. l is selected by E1 and represents the security

criticality of the application that is to be secured by the connection from E1

to E2. The higher l, the more security critical is the application.

• A list of validation services VS = (VS1, ..., VSj) with outputs

Ri = VSi(C) ∈ {trusted, untrusted, unknown} for 1 ≤ i ≤ j on input of a

certificate C.

• (optional) A service provider SP (as described in Chapter 5) for the report of

untrusted certificates.

Output: R ∈ {trusted, untrusted, unknown}

The algorithm proceeds as follows:

1. If Cn is a trusted certificate in View then R← trusted
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2. If p contains a certificate that is an untrusted certificate in View then R ←
untrusted

3. If Cn is not a certificate in View then

a) For 1 ≤ i ≤ n − 1 set pki to the public key in Ci and CAi to the subject

in Ci.

b) Initialize the trust assessments for pairs (pki, CAi) for which there is no

trust assessment in View (as described in Section 4.1.4). Store the new

trust assessments in the temporary list TL.

c) For 1 ≤ i ≤ n − 2 set okl,i to the key legitimacy of pki and ocait,i to the

issuer trust (for CA certificates) assigned to pki in View.

d) Set okl,n−1 to the key legitimacy of pkn−1 and oeeit,n−1 to the issuer trust

(for end entity certificates) assigned to pkn−1 in View.

e) Set h = {max(i) : okl,i = (1, 1, 1)}

f) Compute okl,n = (t, c, f) = ocait,h ∧ ocait,h+1 ∧ . . . ∧ ocait,n−2 ∧ oeeit,n−1

g) Compute the expectation exp = E(okl,n)

h) If exp ≥ l then R← trusted

i) If exp < l and c = 1 then R← untrusted

j) If exp < l and c < 1 then

i. For 1 ≤ i ≤ j query validation service VSi for Cn and set Ri =

VSi(Cn).

ii. Set Rc to the consensus on (R1, . . . , Rj), then R← Rc.

k) Update View (see Section 4.1.6 for details).

l) (optional) If R = untrusted trigger the report of p to SP

4. Return R

Security levels

Entity E1 assigns security levels to classes of applications according to their value-

at-stake (cf. [69] for a similar approach). That means, E1 defines which security

level the trust evaluation must achieve for the certification path in question in order

to be accepted without further reconfirmation. Note that E1 does not rate the

trustworthiness of applications.
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A security level is a real number between 0 and 1. The higher the security level

l is, the higher is the required key legitimacy for a connection to be evaluated

trustworthy. The assignment of security levels is a subjective process and depends

on the risk profile of E1, which is out of scope. We propose to apply three classes of

security levels lmax = 0.95, lmed = 0.8 and lmin = 0.6 (cf. Section 4.1.8 for details on

the choice of security levels and the associated effects). An exemplary assignment

of applications to the security levels could then be lmax for online banking, lmed for

e-government applications, and lmin = 0.6 for social networks.

Validation services

A certification path containing previously unknown CAs results in a low key legit-

imacy for the key certified in the end entity’s certificate. On the one hand this is

intended, as it leads to firstly distrusting in keys certified by unknown CAs. However,

this is not necessarily due to malicious behavior, but due to a lack of information.

Thus, whenever the key legitimacy is too low to consider a connection trustworthy,

and the certainty is less than one, validation services like notary servers (cf. Sec-

tion 3.3.1) are queried to reconfirm a certificate. Please refer to Section 4.3.1 for a

list of currently supported certificate notaries. The communication with validation

services is to be secured with keys distributed over out of band channels. This is

achieved with distributing the public keys of the employed notaries within the CA-

TMS software. Note that also solutions like certificate transparency or DNSSEC

could be integrated as validation services. If a certificate is reconfirmed to be le-

gitimate, the connection is considered trustworthy. If the validation services reply

with unknown, i.e., it is unclear if the certificate is legitimate or not, the algorithm

outputs unknown. Only in this case, the relying entity is asked for a decision.

In Section 3.3.1, latency introduced by validation services and their scalability

were stated to be the main drawbacks of these solutions. As part of trust validation,

these problems are circumvented. As will be shown in Section 4.4.3, reconfirmations

are only required occasionally. Delayed page loading due to a necessary reconfir-

mation once every 10 days is acceptable taking into account the security gain by

CA-TMS. Furthermore, the load on validation services is reduced drastically as only

less than 0.7% of an average relying entity’s TLS connections require a reconfirma-

tion which mitigates the scalability problems. Additionally, only little information

about the relying entity’s browsing habits is leaked to validation services.

User interaction

As stated in Section 4.1.1, CA-TMS aims at minimal user involvement. While there

exists a user interface for CA-TMS, where experienced users may change the system
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parameters described in Section 4.1.8, and also have direct access to the trust view,

this is not intended to be used during normal operation. Initialization of trust as-

sessments, trust validation and the trust view update is performed autonomously in

the background. It is built on passively collected local information (from past be-

havior and interactions) and input from validation services as well as the reputation

system presented in Chapter 5.

User interaction during normal operation is limited to the specification of the

security level the relying entity requires for the web site or web service he is about

to open. While an automatized decision on the security level by the determination of

the class of application together with a predefined rule set would be desirable, this is

out of scope of this thesis. Possible solutions can, for example, be based on content

filtering (as also used to detect phishing sites [74]) or based on analyzing the type

of entered data (cf. [53]). For now, the required security level can be specified by

the entity, using radio buttons that provide the different options for security levels

from which an entity may choose as part of the browser’s user interface.

Additional user interaction is only required as a fallback mechanism in cases where

neither the local information is sufficient nor validation services can provide a deci-

sion on the acceptance of a certificate. Then, the relying entity must decide upon

acceptance. In such cases no experiences are collected for the involved CAs, as the

lack of expertise makes user decisions unreliable. The certificates in question are put

on a watch list and experiences are collected after a later reconfirmation. This also

allows the system to react to wrong decisions by the user and prevents collection of

erroneous data. As the lack of expertise makes user involvement problematic, the

unknown case needs to be avoided whenever possible by the use of an adequate set

of validation services. The reputation system presented in Chapter 5 adds an ad-

ditional information source to fasten bootstrapping. Thus, the amount of external

reconfirmations and potential user interactions is reduced.

Apart from these cases no user interaction is required. In particular, relying en-

tities do not actively provide their personal assumptions about the trustworthiness

of certificates or CAs. This is also one of the main differences to other user-centric

approaches, like PGP [75], where users have to state their opinion about the trust-

worthiness of other users and the legitimacy of their public keys or the Web of Trust

[190], where users vote for the trustworthiness of provided content.

4.1.6 Trust view update

New information needs to be incorporated into the trust view to be available during

future trust validations. Based on the output of the trust validation, either positive
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or negative experiences are collected for the involved trust assessments. Repeated

experience collection for the same activity must be prevented. Therefore, for each

certificate it is checked whether it was contained in a certification path during earlier

evaluations. Given a service provider as described in Chapter 5 is available, a

recommendation for new CAs can be requested and incorporated into the trust view.

We include this optional Step 3 for completeness. For details on this functionality

refer to Section 5.2.1 in the following chapter. We present the detailed trust view

update algorithm in the following:

Input:

• A certification path p = (C1, ..., Cn) without intermediary self-signed certifi-

cates

• A trust view View

• An output of the trust validation R

• A list of new trust assessments TL

• A boolean value v ∈ {true, false} indicating whether Cn was validated by

validation services or not

• A list of validation services VS = (VS1, ..., VSj) with possible outputs

Ri = VSi(C) ∈ {trusted, untrusted, unknown} for 1 ≤ i ≤ j on input of a

certificate C

• (optional) A reputation system RS (as described in Chapter 5) which outputs

recommended issuer trusts RS(pk, CA) = (õcait , õ
ee
it ) on input of a pair (pk, CA).

Output: The updated trust view.

The algorithm proceeds as follows:

1. If R = unknown then return View

2. For 1 ≤ i ≤ n−1 set pki to the public key in Ci, set CAi to the subject in Ci and

set TAi = (pki, CAi, Si, okl,i, o
ca
it,i, o

ee
it,i) to the corresponding trust assessments.

3. (optional) If (R = trusted) ∧ (v = true) then ∀TAi ∈ TL do:

a) Request RS(pki, CAi) = (õcait,i, õ
ee
it,i) from RS

b) If RS did not return unknown do:

If (i < n− 1) set ocait,i = (0.5, 0, E(õcait,i)), else set oeeit,i = (0.5, 0, E(õeeit,i)).
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4. If R = trusted then

a) For 1 ≤ i ≤ n− 1 do

i. If Ci /∈ Si then add Ci to Si

ii. If (i = n − 1) then update oeeit,i with a positive experience, else if

(TAi+1 ∈ TL) ∨ (Ci+1 /∈ Si+1) then update ocait,i with a positive expe-

rience.

iii. If TAi ∈ TL then add TAi to View.

b) Add Cn to View as trusted certificate.

5. If R = untrusted then

a) Set h = {max(i) : (TAi /∈ TL) OR (the consensus of (VS1(Ci), ..., VSj(Ci))

= trusted)}.

b) For 1 ≤ i ≤ h− 1 do

i. If Ci /∈ Si add Ci to Si

ii. If (TAi+1 ∈ TL) ∨ (Ci+1 /∈ Si+1) then update ocait,i with a positive

experience.

iii. If TAi ∈ TL then add TAi to View

c) If Ch /∈ Sh add Ch to Sh

d) If TAh ∈ TL then add TAh to View

e) If Ch+1 is not an untrusted certificate in View then: if (h < n−1) update

ocait,h else update oeeit,h with a negative experience.

f) Add Ch+1 to View as untrusted certificate.

6. Return View

Given a new certificate that was evaluated as trusted, a positive experience is col-

lected for the issuer. In case the certificate was evaluated as untrusted, a negative

experience is collected. For the calculation of the trust value alone, every negative

experience cancels out a positive one and vice versa. In many situations, negative

experiences should have a stronger influence on trust than positive ones: a certifi-

cate that failed the evaluation should not be trusted less but not at all. To meet

these concerns, the affected untrusted certificate is immediately added to the list

of untrusted certificates, in addition to the collection of a negative experience for

the CA that issued the certificate. Thus, the certificate will never be accepted in
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the future. Moreover, the actual impact of negative experiences on the final out-

come of the trust evaluation can be controlled by using adequate security levels (cf.

Section 4.1.5 and 4.1.8).

Example

An example of the evolution of a trust view is shown in Figure 4.1. It visualizes

the experience collection process, starting with an empty trust view. The arrows

represent observed certificates.
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Figure 4.1: Evolution of the trust view

(a) CA-TMS obtains the path Root CA1 → Sub CA1 → E2. Trust validation

returns trusted for E2’s certificate. A positive experience is added to each

involved CA.

(b) The path Root CA1 → Sub CA2 → E3 is obtained. Trust validation returns

trusted for E3’s certificate. A positive experience is added to each involved

CA.

(c) The path Root CA1 → Sub CA2 → E4 is obtained. Trust validation returns

untrusted for E4’s certificate. A negative experience is added to Sub CA2.

However, the certificate Root CA1 → Sub CA2 was approved during prior

observations, thus no negative experience is added to Root CA1.

(d) The path Root CA2 → Sub CA3 → E5 is obtained. Trust validation returns

untrusted for E5’s certificate. Thus, the certificate Root CA2 → Sub CA3
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must be checked. Assuming its reconfirmation, a negative experience is added

to Sub CA3, while a positive experience is added to Root CA2.

(e) The path Root CA1 → Sub CA2 → Sub CA3 → E6 is obtained. Trust vali-

dation returns trusted for E6’s certificate. A positive experience is added to

Sub CA2 and Sub CA3. Root CA1 → Sub CA2 was evaluated during prior

observations, no new experience is added.

Fixing the key legitimacy

Different from the issuer trust, which might change over time, key legitimacy the-

oretically is constant once it is approved. From that point on, the issuer trust in

superordinate CAs is of no further relevance. To consider this fact in the trust vali-

dation, key legitimacy is set to okl = (1, 1, 1) as soon as enough evidence for the key

legitimacy of a public key is available. We fix the key legitimacy after a CA’s key

was observed within several certification paths served by different web servers. This

strategy is similar to multi path probing applied by certificate notaries. To realize

the strategy, we introduce the parameter fix kl and set fix kl = 3, meaning that we fix

the key legitimacy after collecting three positive experiences for the respective trust

assessment. We refer the reader to Section 4.1.8 for an evaluation of the effects on

the trust view for different parameter choices.

Cleaning the trust view

To prevent a continuous growth of the trust view and to allow the adaptation to

current requirements (e.g., changed browsing behavior), a removal mechanism is

integrated. A trust assessment TA is removed from the local trust view after a fixed

time period has been passed since TA was last used within trust validation. The

length of this time period can be implemented as a system parameter, e.g., one year.

4.1.7 Bootstrapping

Despite the fact that an entity will often access the same services and see the same

CAs repeatedly, it takes a certain time until enough experiences are collected such

that the system may operate mainly autonomously (cf. Section 4.4.3 for details).

Therefore, a bootstrapping procedure is required to face possible delays and usability

problems due to the involvement of additional validation services as described in

Section 4.1.5.
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Bootstrapping is realized based on scanning the browsing history. This technique

has already been used to evaluate the potential of user-centric CA trust manage-

ment presented in Section 3.4.1. From the history, the hosts that have previously

been accessed via a TLS connection can be identified and the respective certification

paths can be downloaded. The paths are then used to bootstrap the trust view and

collect information about the CAs relevant to the relying entity. Bootstrapping does

not require additional algorithms. Trust evaluation along with certificate reconfir-

mations as described is executed on the certification paths obtained from history

scanning one after another. This initial bootstrapping is only to be performed once

and afterward, the system can mainly fall back on the collected experiences.

A limitation in the approach evolves from the fact, that many users delete their

history – partly or completely – quite often for privacy reasons. In such cases,

it is not possible to derive the CAs relevant to the user. Then, the trust view

has to be bootstrapped in parallel to normal browsing with the drawback of high

reconfirmation rates at the beginning of the trust view evolution. This problem is

solved with the reputation system presented in Chapter 5.

4.1.8 Parameters and system behavior

The system behavior is controlled through different system parameters. In the

following, the effects of these parameters on the system behavior is evaluated and a

parameter setting is deduced. This is done based on real world browsing histories

collected during the survey presented in Section 3.4.1.

Parameter n

The parameter n of CertainTrust opinions is the number of the expected average

number of experiences for a statement. It is a system-wide parameter. We propose

n = 10, which means that after collecting ten experiences for one of the opinions,

its certainty becomes 1.

Due to its impact on the certainty of an opinion, the parameter n of CertainTrust

influences the development of the expectation of opinions during the course of col-

lecting experiences. This is shown in Figure 4.2 for different values of n. While n

has only little influence on the expectation during the collection of the first three to

four experiences, n significantly influences the number of required positive experi-

ences to reach expectation values approaching the upper bound of 1. That means,

n in conjunction with the security levels can be used to adjust how fast CAs are

considered fully trustworthy, while n concurrently has only minimal influence on the

CAs that are approaching minimal security levels. Thus, increasing n mainly means
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Figure 4.2: The influence of n on the development of the expectation of a CertainTrust

opinion.

shifting CAs from the group of fully trustworthy CAs to medium trustworthy CAs

while the group of CAs that reach the minimal security level remains unaffected.

Security levels

The expectation value of CertainTrust opinions is continuous. Thus, the required

security level l for each application could also be chosen as any number between

0.5 and 1. We propose to assign applications to three distinct classes as already

presented in Section 4.1.5. Doing so makes the system clearer and easier to use for

potential users, as it reduces the complexity to decide which security level to require

for an application.

The security levels to which a user may assign applications are lmax = 0.95,

lmed = 0.8, and lmin = 0.6. Once the the expectation of the derived key legitimacies

for certificates issued by a CA exceeds lmax, the CA is referred to as fully trustworthy

(medium or minimally trustworthy respectively).

Given a complete key legitimacy of the CA’s key and n = 10, at least one posi-

tive experience has to be collected prior to reaching the minimal security level for

certificates issued by the CA. The medium security level requires three positive ex-

periences while the maximum security level requires seven. For the presented choice

of security levels, increasing n, e.g., up to n = 30 would have no influence on when

a CA is considered minimally or medium trustworthy, but twelve instead of seven

positive experiences would be required for the CA to be considered fully trustworthy.
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Parameter fixkl

In Section 4.1.6, we proposed to fix the key legitimacy of a CA’s key after observing

a CA’s key within fix kl certification paths. After the fixation of the key legitimacy,

superordinate CAs have no further influence on the evaluation of certificates issued

by the CA. Then it relies solely on the experiences made with the CA directly. We

propose to fix the key legitimacy after three positively evaluated encounters, i.e., set

fix kl = 3.

Similar to n, increasing fix kl mainly reduces the number of fully trustworthy CAs,

while the number of medium and minimally trustworthy CAs grows. This is shown

in Figure 4.3. It depicts, exemplary for the most evolved trust view from the data set

of the survey presented in Section 3.4.1, how the distribution of hosts associated with

CAs reaching the different trustworthiness levels changes for values from fix kl = 1

up to fix kl = 80. The distribution is measured for the bootstrapped trust view after

observing 604 different TLS enabled hosts.
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Figure 4.3: Percentage of total hosts that are assigned to fully, medium, mimimally

trustworthy and untrustworthy CAs for different values of fixkl. For one exemplary trust

view.

The effects yielded by fixing the key legitimacy is explained by the fact that

the expectation for the key legitimacy of issued certificates is not lowered by the

trustworthiness of superordinate CAs (which is due to transitively lowering the key

legitimacies along the certification path).

The value of fix kl also has influence on how fast a CA achieves its previous trust-

worthiness level after its key was changed. Directly after the key renewal, the derived

key legitimacy of certified end entity keys will be low, as the key legitimacy of the

CA’s key is computed based on the path from the root to the CA’s (new) certifi-

cate. After fix kl encounters of the CA’s key, the previous trustworthiness level is
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reestablished, i.e. the system solely relies on the experiences collected for the CA in

question.

Stereotyping and parameter maxF

Stereotyping is a means to derive trust for newly observed CAs based on experiences

collected for other CAs. This, on the one hand, allows to trust in CAs never observed

before. Thus, the number of required reconfirmations is reduced. On the other hand,

the anticipated trustworthiness of the CA is not based on the CA’s behavior directly

and information gained from stereotyping should not be overestimated to prevent

threats. Threats may evolve when a less trustworthy CA profits from the reputation

of its siblings. Therefore, we limit the influence of stereotyping by selecting the

parameter maxF = 0.8. This limits the certificates that are directly trusted due

to stereotyping to low security applications. The difference in the functioning of

stereotyping compared to fixing the key legitimacy is that the fist affects newly

observed CAs and the certificates issued by those, while the latter affects newly

observed end entity certificates issued by already known CAs.

4.2 Continuous revocation monitoring

In Section 3.1.3 the lack of a reliable provision mechanism for revocation informa-

tion in the face of an attack was identified for the Web PKI. Together with the

currently implemented soft-fail methodology in browsers, this may render revoca-

tion completely useless. In Section 3.3.2, OCSP stapling was discussed as a potential

solution to this problem. Yet, it was shown that because of deployment issues and

the related impossibility to enforce OCSP stapling by client software, this does not

solve the problem.

We now present a mitigation to this problem that can be implemented without

external support and without the requirement of a broad deployment and infras-

tructural changes.

As described in Section 4.1 all certificates trusted by a relying entity are collected

within his trust view. These certificates contain the CRL distribution points or

OCSP server addresses. Thus, the data collected within the trust view enables

to continuously monitor the revocation status for known hosts as well as known

CAs. Thus, the revocation status of certificates is already available at the time of

connection establishment in most cases.
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4.2.1 Functionality

To realize continuous revocation monitoring, CA-TMS maintains a list of revocation

access points. Whenever a new certificate is added to the trust view as trusted certifi-

cate, the revocation access points are extracted from the certificate’s extensions (CRL

Distribution Point and Authority Information Access extensions). These ac-

cess points are stored in the list. Concordant access points are aggregated, which

mostly happens for certificates issued by the same CA. Once a certificate expires or

is considered untrusted, the revocation access points of the certificate are discarded

from the list. This procedure keeps the list up-to-date.

On a daily basis, CA-TMS iterates through the list and fetches revocation in-

formation for the certificates in the trust view. Given one of the certificates is

revoked, the status of the certificate is set to untrusted within the trust view. If an

OCSP server or a CA’s server that provides the CRLs is unavailable at the time of

revocation checking, the request is delayed and later retried.

4.2.2 Advantages of revocation monitoring

The main advantage of this continuous revocation monitoring is, that it decouples

fetching of revocation information from browsing. It runs in the background, thus

does not block page loading, which makes longer round trip times acceptable. When-

ever a relying entity accesses a web server, revocation information is already avail-

able. Furthermore, despite not being impossible, it is much harder for an attacker

to block revocation checking as there is no direct relation between service access and

the retrieval of revocation information. Other than revocation pushing strategies as

discussed in Section 3.3.2, revocation monitoring covers all certificates relevant to

the relying entity, including CA certificates. Note that downloading CRLs from all

trusted CAs contained in the trust view additionally covers certificates issued by

these CAs but not yet observed by the relying entity.

4.3 Implementation of CA-TMS

This section is concerned with the implementation of CA-TMS. We present the

architecture and the modular design of CA-TMS. The source code is available under

the Apache Software License 2.0 [181] at https://github.com/ca-tms/CA-TMS.

Trust validation is executed by a client program, the CA-TMS client. It commu-

nicates with the browser via a browser plugin. The CA-TMS client is implemented

in Java [168]. As browser, the Firefox browser was chosen and an according plugin

https://github.com/ca-tms/CA-TMS
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was implemented that realizes the communication between browser and CA-TMS

client. The CA-TMS client is designed to be application independent. The setup is

displayed in Figure 4.4.

Browser CA-TMS clientCA-TMS
browser plugin

Figure 4.4: CA-TMS setup

The CA-TMS client maintains the user’s trust view and implements the algo-

rithms for trust validation, learning processes and information collection as well as

bootstrapping and revocation monitoring. Additionally, it allows the user to manage

his trust view and to configure the user preferences through a user interface.

Here, we focus on the system design and give an overview on the implemented

functionality. For implementation details and a manual for installation we refer the

reader to the project web page.

4.3.1 The CA-TMS client

In the following the architecture of the CA-TMS client is described. The client is

organized into different layers that group related functionality. The layers them-

selves are subdivided into different components. We first describe the top level

architecture and summarize the functionality of the layers. Afterwards, we give a

detailed specification of each layer and the contained components. The design is

based on the Layered Application Guidelines of the Microsoft Application Architec-

ture Guide [154].

The high level architecture is shown in Figure 4.5. It is structured into five

layers and a cross-cutting (CC) module. The layers are the presentation layer (PL),

the services layer (SL), the business layer (BL), data access layer (DAL) and the

support services access layer (SSAL). The PL contains all components to provide

user interaction. It enables user input and user information. The SL contains all

components to expose the functionality of the CA-TMS client to other applications.

The BL encapsulates the business logic of the CA-TMS client and implements its

core functionality. The DAL comprises the components related to data access and

representation of user-specific data. The SSAL provides access to support services

and implements components that enable the consumption and processing of data

provided by support services. The CC implements functionality that spans layers.
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Figure 4.5: High level architecture of the CA-TMS client

In the following we describe the layers and explain which functionality they im-

plement.

Presentation layer

The PL provides the means for user interaction, like input fields and dialogs. The

PL is divided into a graphical user interface (GUI) component and a presentation

logic component. The GUI implements the visual elements of the application like

buttons and message dialogs which are used to display information to the user and

accept user inputs. The GUI of the CA-TMS client is a management GUI, which is

not required during normal use.

The different processes for user interaction are encapsulated within the presen-

tation logic component. Thus, the presentation logic component defines the logical

behavior of the client during user interaction. Furthermore, it defines how data from

the underlying layers is presented to the user. This is realized in a platform inde-

pendent way using the interfaces provided by the GUI component. Furthermore, it

manages how the application reacts to user inputs.

The PL realizes a management GUI for the CA-TMS client and allows the user to

configure the CA-TMS client and execute initialization processes like bootstrapping.

It also provides the possibility to export the user’s trust view or to import an existing

trust view into the system. User interaction directly related to browsing, such as

warning dialogs and reconfirmation requests are realized through the browser plugin,

which extends the browser’s user interface.
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Services layer

The SL contains all components to expose the functionality of the CA-TMS client

to other applications. It defines how the client and other applications interact. The

service interfaces and the message types are defined here. On the other hand a

common interface is provided to the BL. Thus, the SL abstracts from the actually

supported service consumers.

The CA-TMS client exposes its services to other application via a web server

binding. The CA-TMS client implements a web server that can be queried by the

browser plugin with JSON encoded messages over HTTP.

Business layer

The BL encapsulates the business logic of the CA-TMS client. It implements the core

functionality of the client such as trust evaluation for given certification paths and

the management of the trust view. In particular, it implements the trust validation

and trust view update algorithms. Furthermore, the logic for continuous revocation

monitoring is implemented in this layer. The BL exposes the functionality of the

client to higher layers as PL and SL. For data access or information retrieval from

external services, the BL falls back on functionality provided by the lower layers,

namely the DAL and the SSAL. Furthermore, it manages escalation rules if no

decision can be made based on the available data. For example, the user can be

triggered and the decision can be requested if no automatized decision is possible.

For trust representation and computation the CertainTrust library [180] is integrated

into the client. It provides the necessary operators for combination and aggregation

of CertainTrust opinions.

Data access layer

The DAL comprises the components related to data access and representation. Be-

sides that it handles import and export of trust views for backup and recovery.

The DAL provides a common interface to retrieve and store user data from and to

different sources.

For example, through the DAL, the components of the BL can access data on

internal or external data sources. The CA-TMS client stores the trust view and the

user’s preferences within an SQLite [177] database. The encapsulation of data access

within the DAL allows a convenient integration of other storage technologies, as the

actual data source is transparent for the other client components. An example could

be a remote data base server or a cloud storage.
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Support service access layer

The SSAL provides common interfaces to access external support services such as

certificate notaries for the reconfirmation of a certificate or OCSP servers for re-

vocation checking. The SSAL allows to access different services in a standardized

manner. It manages the semantics of communication with the external services.

The SSAL is used by the BL components. Access to notary services is encapsu-

lated in a separate library, which is developed in a sub project and available at

https://github.com/ca-tms/sslcheck. At the time of writing, it implements

connectors for the Crossbear notary [171], Perspectives [115], Convergence [145],

ICSI [133] and SignatureCheck [175].

The encapsulation of external service access within the SSAL allows to extend

CA-TMS with additional services in a convenient way. In particular, the integration

of CA-TMS service providers as described in Chapter 5 can be realized within the

SSAL.

Cross-cutting

The client components use cryptographic functions and communication protocols.

This functionality is encapsulated within the respective cross-cutting components.

4.3.2 The browser plugin

The browser plugin has been implemented as a Firefox extension. The extension

manages the communication between the browser and the CA-TMS client. It im-

plements an SSL Listener, that is triggered whenever a web site is opened via the

HTTPS protocol. Path validation is left to the browser implementation. If path

validation has succeeded, the extension extracts the certification path and passes it

to the CA-TMS client for trust validation. The loading of the web page is blocked

until the validation result is obtained from the CA-TMS client. If trust validation

succeeds, the web page is loaded. Otherwise, a warning message is displayed which

informs the user about the outcome of trust validation and allows to temporarily

override the trust validation result if required.

Additionally, the extension provides a simple user interface to set the required

security level during browsing. The security level is transferred to the CA-TMS

client when trust validation is requested.

https://github.com/ca-tms/sslcheck
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4.4 Evaluation

In this section, we evaluate CA-TMS regarding security and performance. We start

with the analysis of direct attacks against CA-TMS in Section 4.4.1. Afterward in

Section 4.4.2 we present an analysis of the reduction of the attack surface. Then in

Section 4.4.3, the performance analysis of CA-TMS is presented.

We show, that CA-TMS is robust against the manipulation of an entity’s trust

view. Furthermore, a metric is presented to measure the reduction of the attack

surface. With this metric it is shown that CA-TMS provides an average attack

surface reduction of more than 95% compared to the system-centric setting. The

performance of CA-TMS is evaluated in terms of the overhead induced by trust

validation and additional certificate reconfirmations as well as continuous revocation

monitoring. It is shown that the use of CA-TMS does not interfere browsing in

practice.

The attack surface and performance evaluation are based on simulations using

real browsing histories. The data was collected using the tool Rootopia which was

developed for the user study presented in Section 3.4.2. From the analyzed his-

tories, the web services (hosts) accessed via TLS connections have been extracted

along with the respective certification paths. These paths are available sequentially

ordered based on the date when they where first accessed. This sequentially ordered

paths allow to simulate the evolution of the respective trust views. Note that in the

simulation, the collection of experiences is limited to positive experiences. Due to

only collecting positive experiences, the resulting opinions on the issuer trusts form

an upper bound for the actually derived trustworthiness in real life applications.

The original evaluation of CA-TMS published in [B2] was based on twenty data

sets collected during the original user study. After the publication, additional data

was collected during a second user study. In total, data about browsing histories

from 64 different entities were collected. The evaluation was revised and extended

to the complete data set. We note, that the key findings from [B2] remain intact.

4.4.1 Attacks against CA-TMS

The security analysis is based on the attacker model presented in Section 3.1.2.

Recall that attacker A is an active man-in-the-middle attacker on the connection

between relying entity E1 and web server E2. A can generate certificates that are

signed by a CA of the Web PKI. The systems of E1 and E2 are assumed not to be

compromised, nor can A break the employed cryptographic algorithms. Also, the

validation services are assumed to function correctly.
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This section is focused on attacks against specific components of CA-TMS. The

attacks aim at the manipulation of E1’s trust view. Following from the attacker

model, the intention behind these attacks is to prevent detection whenA attacks E1’s

communication employing a fraudulent certificate. Following the analysis framework

of Hoffman et. al [31], the attack vectors are identified based on the separation into

formulation, calculation, and dissemination components of CA-TMS.

Formulation resembles the reputation metric and sources of input. A CA’s rep-

utation is stored as opinion, which is updated by positive or negative experiences.

The information source are observed certification paths along with the responses of

validation services. Thus, A can positively or negatively influence the trust in a CA

if he succeeds in serving manipulated certification paths.

Calculation concerns the algorithms that derive trust from the input information.

In CA-TMS, these algorithms are deterministic and executed locally. Thus, as E1’s

system is assumed not to be compromised, A cannot influence the calculation other

than by injecting manipulated input data.

Finally, dissemination concerns all transfer of data between system components.

The communication with validation services is secured using pre-established keys,

and cannot be manipulated. A may block or disturb the communication, which

is only relevant in case CAs are observed anew, or not enough information has

previously been collected. However, the unavailability of validation services does

not allow the manipulation of the trust view, even in case E1 manually accepts a

manipulated certification path (cf. Section 4.1.5).

Attack vectors

Following from the analysis, the possibilities to manipulate and influence the trust

evaluation of CA-TMS under the given assumptions is limited to injecting false input

data. We now explain the attack vectors A might use to inject false data into E1’s

trust view, and explain the respective protection mechanisms. We also discuss social

engineering which may serve as a auxiliary attack vector to support other attacks.

Certification path manipulation To directly inject information into the trust view,

A needs to inject manipulated certification paths into E1’s communication during the

connection establishment. In order to inject positive experiences (for a CA of which

A controls the private key), he must inject the CA’s certificate into certification

paths such that trust validation succeeds.

To inject the CA’s certificate, A can either replace the whole path, by generating

a new certificate for the web service with the CA’s key, or by issuing a certificate for
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one of the intermediary CAs contained in the original path sent by the web server.

Therefore, this certificate replaces only the part from the Root CA to the newly

issued Sub CA’s certificate. In both cases, standard path validation succeeds.

The first option is exactly from what CA-TMS shall protect and will be analyzed

in detail in Section 4.4.2. A may only succeed if the compromised CA is already

trusted by E1. This means that this attack vector may only be used to increase the

trust in CAs that are already trusted. The second path manipulation option will

not be detected as the end entity certificate remains unchanged. Yet, this way the

attacker can only increase the corresponding issuer trust for issuing CA certificates.

Injecting fraudulent certificates in order to generate negative experiences is im-

possible for CAs A does not control, as he cannot generate certificates in the name

of CAs of which he cannot access the keys.

Social engineering In general, social engineering means an attacker tries to ma-

nipulate other entities such that they behave differently than they would in the

absence of a social engineering attacker.

The direct influence of social engineering attacks on the reputation of a CA is

limited, as long as a relying entity does not use the management GUI of the CA-TMS

client to manipulate trust scores. Such an attacker cannot be prevented by technical

means and is therefore not considered further. However, we note that to prevent

such attackers educating relying entities to be security aware is indispensable.

CA-TMS does not intend relying entities to manually set the key legitimacy or

issuer trust assigned to a CA. User involvement is minimal. Relying entities only

have to make their own decision on the acceptance of a certificate if their trust view

does not contain sufficient information and at the same time all queried validation

services respond with unknown. However, if a relying entity manually accepts a

certificate, no experiences are collected. The only possibility to directly influence

the trust view of a relying entity is to lead the relying entity to web pages whose

certificates were legitimately signed by the CA controlled by the attacker. This

can either introduce additional CAs into the trust view or result in the (legitimate)

collection of additional experiences for a CA.

Another possibility for an attacker is to influence a relying entity to setting the

required security level l to a low value, which would increase the probability for the

attacker’s certificate to be accepted. Therefore, CA-TMS recommends a minimal

security level such that CAs are never trusted without at least one legitimate obser-

vation. To prevent misconfiguration, automatic detection of the required security

level according to a specific rule set in conjunction with the content of a web page

is an interesting future research direction.
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Also, an attacker could try to gain information about the relying entity’s browsing

behavior, for example by interviewing the relying entity. This in fact would help

the attacker to (partially) derive the relying entity’s trust view and subsequently

distinguish between those entities that are attackable with certificates issued by a

certain CA and those that are not. Anyway, these sorts of social engineering attacks

are limited to single relying entities and are thus costly to execute.

Attacker goals and defenses

The previous subsection discussed the attack vectors that A can use to manipulate

trust views. In this section, specific attacker goals, their possible realization, and

how they apply to CA-TMS are discussed.

Self-promoting Self-promoting describes actions ofA towards making him or a CA

under his control appear more trustworthy. This in fact is the attacker goal with

highest relevance as it increases the success probability of A when finally employing

fraudulent certificates to attack secure communication.

A self-promoting attacker can approach his goal by injecting manipulated certi-

fication paths. As shown above, certification path manipulation only works for the

issuer trust concerning the issuance of CA certificates. This might subsequently

allow A to issue CA certificates with high key legitimacy. However, he cannot in-

fluence the issuer trust concerning the issuance of end entity certificates, which in

fact is required to benefit from the attack. This is only possible for CAs that are

already trusted making the attack needless.

Slandering In opposition to a self-promoting attack, slandering aims at lowering

the reputation of a specific CA. As A does not directly benefit from decreased trust

in CAs, he might only aim at disturbing the proper functioning of CA-TMS. As

shown above, A cannot inject fraudulent certificates on behalf of CAs he does not

control, thus he cannot utilize the attack vector of manipulated certification paths

to inject negative experiences.

Whitewashing Whitewashing describes the approach of an entity with negative

reputation to re-appear under a new, clean identity.

If A controls a CA with negative reputation, he might want to give this CA a

new identity to issue certificates that will appear trustworthy. However, whitewash-

ing does not apply to CA-TMS. Newly observed certificates are not automatically
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trusted and thus, A gains no advantage from whitewashing. Moreover, whitewash-

ing is prevented by standard PKI mechanisms as for a CA to re-appear under a new

identity, its new CA certificate either needs to be added to the root stores or needs

to be certified by some CA which is already part of the Web PKI.

4.4.2 Attack surface evaluation

In this section, we evaluate how CA-TMS reduces the attack surface of the Web PKI.

When E1 uses CA-TMS, trust validation must succeed for a presented certification

path. Otherwise, validation services are queried and a potential attack is detected.

Recall that A might block the access to validation services to prevent a definite

detection. However, in such cases the connection is temporarily blocked and E1 is

informed about the suspicious certificate.

Trust validation can only succeed if the certificate is already a trusted certificate

in E1’ trust view View or if the involved issuers are contained in View. Furthermore,

those CAs must be considered sufficiently trustworthy for the required security level

of the application. Thus, A must compromise a CA with sufficiently high issuer

trust in order to be successful.

Attacking a specific group of entities requires the compromise of a CA with a

sufficiently high issuer trust in each of the group member’s trust views. The same

holds when attacking a specific service. In this case, the relevant set of trust views

are those of the group of service users. Otherwise, A risks an immediate detec-

tion of the compromise when the validation services are triggered. As shown in

Section 3.2, several past CA compromises have been detected in exactly that way

where the compromised CA was not trusted by the Chrome browser. As trust views

are specific to individual entities and not publicly visible, it is hard to identify such

a sufficiently trusted CA. Even if the identification is possible, it is questionable if

A can purposefully compromise that CA. In Chapter 5, a push service for CA warn-

ings is presented to also protect entities whose trust view already contains the CA

controlled by A as a trusted CA. The detection mechanisms is shown to be effective

even if only a small fraction of the targeted entities does not trust the compromised

CA.

Generally speaking, by the use of CA-TMS, A can hardly exploit accidental CA

failures. The possible damage is reduced due to the limitation of the number of

attackable entities accompanied by the increased compromise detection probability.

Furthermore, with CA-TMS, the damage a compromised CA may cause highly de-

pends on the CAs visibility in the certification business. The result of using CA-TMS

is a much more natural setting than each existing CA being equally critical.
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Measurement of the attack surface

The attack surface is individually reduced by CA-TMS by limiting the number

of trusted CAs. The attack surface is a measure for the individual risk to rely

on a fraudulent certificate. We measure the effectiveness of CA-TMS by adapt-

ing the metric of Kasten et al. [41], which measures the attack surface as AS =∑
CA∈PKI dom [CA], where dom [CA] is the number of domains which CA is allowed to

sign. PKI describes the set of all CAs which are part of the Web PKI. We adapt the

metric to:

AS(View) =
∑

CA∈View

(bCA1 · dommax + bCA2 · dommed + bCA3 · dommin)

with

bCA1 =

{
1 if for CA : E(okl,ee) ≥ lmax

0 else
,

bCA2 =

{
1 if for CA : E(okl,ee) ≥ lmed

0 else
,

bCA3 =

{
1 if for CA : E(okl,ee) ≥ lmin

0 else
,

where dommax, dommed, and dommin are the respective numbers of domains for

which the relying entity E1 requires a maximal, medium or minimal security level.

The input View represents the trust view of E1. A CA is contained in View, if

it contains the according trust assessment. Note that CAs not contained in View

are not considered, as these are not trusted by E1 to sign any certificate. okl,ee =

okl,CA ∧ oeeit,CA is the derived key legitimacy of keys certified by a certificate that was

issued by CA. The key legitimacy okl,CA of the CA’s key depends on the certification

path as described in Section 4.1.5.

Further it holds: dommax + dommed + dommin = dom. dom describes the total

number of validly signed domains, i.e., for which a valid TLS certificate exists. Note

that in our metric dom is not parametrized by the respective CA as the restriction

of domains for which a CA is allowed to issue certificates is not considered. This is

according to the current deployment of the Web PKI (cf. Section 3.1.3).

Attack surface measurements for real trust views

In the following, the reduction of the attack surface for the 64 trust views simulated

based on the data sets collected in the user studies is presented. For all simulations,
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the proposed parameter setting: lmax = 0.95, lmed = 0.8, lmin = 0.6, maxF = 0.8,

fix kl = 3, and n = 10 is used.

The calculation of the attack surface of the Web PKI in the system-centric setting

is based on the number of 1,590 CAs observed by Durumeric et al. [17]. With

the system-centric trust model for the Web PKI, all CAs are trusted for signing

certificates for any domain, thus AS = 1, 590 · dom, which equals the attack surface

computed with the original metric from [41].

The adapted metric enables the relative quantification of the reduction of the at-

tack surface resulting from the use of CA-TMS with the above specified parameters.

The relative attack surface for a trust view View is defined as:

ASrel(View) =
AS(View)

AS
.

Then, the reduction of the attack surface can be quantified as:

RedAS = 1− ASrel(View).

The distribution of the domains to dommax, dommed, and dommin depends on the

relying entity’s preferences. Data about the distribution of security levels to domains

is not available to us. The analysis is done for the three generalized cases where

either lmax, lmed or lmin is assigned to all domains. We denote the respective relative

attack surfaces with ASrel(View, lmax), ASrel(View, lmed) and ASrel(View, lmin). In

these cases, the relative attack surface results as the quotient of CAs in the trust

view that can issue certificates for the given security level, divided by the total

number of CAs of the Web PKI. Further details about the data sets can be found

in Tables 1 and 2 in the appendix.

For the 64 analyzed trust views we found 0 ≤ ASrel(View, lmax) ≤ 0.028, 0 ≤
ASrel(View, lmed) ≤ 0.049 and 0 ≤ ASrel(View, lmin) ≤ 0.057.

The minimum numbers result from the least evolved trust views where nearly no

CAs are trusted. In most cases this results from short histories and the related low

number of observed hosts. However, considering the 48 trust views resulting from

browsing histories with a minimum length of six months only slightly increases the

minimal relative attack surfaces to 0, 0.001 and 0.001. The averages for these 48 trust

views are ASavgrel (View, lmax) = 0.009, ASavgrel (View, lmed) = 0.019 and ASavgrel (View,

lmin) = 0.026.

This shows a reduction of the attack surface of at least 94.3%, even for the security

level lmin. On average, a reduction of 97.4% is achieved in our data sets.

To generalize these results, the relative attack surface is evaluated depending on

the number of observed hosts. The attack surfaces for the different security levels
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Figure 4.6: ASrel(View) for security levels lmax, lmed and lmin. (Real data.)
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Figure 4.7: ASrel(View) for security levels lmax, lmed and lmin. (Extrapolated for host

numbers larger than 466.)

are measured during the simulations after each observation of a new host. The

resulting attack surfaces are then averaged over all simulated trust views. The

results are shown in Figure 4.6. It shows an under proportional growth depending

on the number of different hosts that are accessed via TLS secured connections.

The gaps within the graph result from trust views ending with the according

number of observed hosts. Thus, the results for the high numbers of observed hosts

depend on a low number of trust views. In our data sets, only 7 trust views contained

more than 466 different hosts. Furthermore, the results for more than 639 hosts are

based on a single trust view with 1013 hosts in total. This trust view also formed an

upper bound for the number of observed CAs. Thus, the averaged results for high

numbers of observed hosts are biased towards a larger attack surface. To have an

estimate for the average relative attack surfaces, the data from the measured values

below 466 observed hosts is extrapolated. This is depicted in Figure 4.7.
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The extrapolation is done with an exponential estimator. The average rate of

change was computed with a sliding window of size 50. The resulting curve was

approximated with an exponential approximation function, which was used to ex-

trapolate values of the attack surface for more than 466 hosts. Figure 4.7 shows

that the relative attack surface on average stays below 0.05 even for the security

level lmin.

The reduction of the attack surface comes at the cost of querying validation ser-

vices whenever new CAs are observed or not enough trust experiences have previ-

ously been collected. In the next section we show, that the rate of reconfirmations

is kept in an acceptable range and does not interfere browsing in practice.

4.4.3 Performance of CA-TMS

The performance of CA-TMS is evaluated in terms of the overhead induced by

trust validation and continuous revocation monitoring. The evaluation is focused

on noticeable delays during the use of CA-TMS, i.e. during browsing. As all com-

putations are done locally, trust validation itself does not lead to a noticeable delay.

However, requesting reconfirmations from validation services introduces communi-

cation overhead and delays, as page loading is blocked until the certificate has been

reconfirmed. Thus, the performance of CA-TMS is evaluated based on the rate of

reconfirmations. The performance of continuous revocation monitoring is evaluated

in terms of daily OCSP requests.

Reconfirmation rates

The evolution of the 64 trust views is simulated based on the collected browsing

histories. For all simulations, the proposed parameter setting: lmax = 0.95, lmed =

0.8, lmin = 0.6, maxF = 0.8, fix kl = 3, and n = 10 is used. The reconfirmation

rate is measured during the simulations after each observation of a new host. The

reconfirmation rate is defined as:

RRate =
hr
h
,

with hr denoting the number of hosts where a certificate reconfirmation was required

and h denoting the total number of different hosts. The reconfirmation rates for the

three different security levels lmax, lmed and lmin are measured independently. The

results are averaged over all simulation runs of the 64 data sets.

Figure 4.8 shows the reconfirmation rates depending on the number of observed

hosts. It shows how the percentage of hosts, for which a reconfirmation is required,
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Figure 4.8: Reconfirmation rates: Percentage of observed hosts for which a reconfirmation

is required, concerning the security levels lmax, lmed and lmin.

develops on average over the course of the evolution of trust views. The rates of

reconfirmation continuously drop during the trust view evolution. Thus with each

additional observed host, CA-TMS increasingly relies on local information. While

for the first 50 observed hosts, the rates lie between 0.58 and 0.94 depending on the

chosen security level, these drop to 0.34 and 0.08 for trust views with 1000 hosts.

While Figure 4.8 shows the continuous change of reconfirmation rates, Table 4.1

depicts the average rate for a block of 100 hosts after a certain number of hosts has

already been observed. For example, given the security level lmin, 42% of the first

one hundred hosts have to be reconfirmed, while this is only the case for 14.5% of

the second one hundred accessed hosts.

The development of the reconfirmation rates shows the perceived improvement

due to bootstrapping, even for incomplete histories. Already a small number of

hosts leads to a significant drop in the reconfirmation rates. In Figure 4.9 it is

depicted, when the reconfirmations occur during the evolution of a trust view with

1000 hosts. It shows, that most reconfirmations happen at the beginning. For the

security level lmin 50% of all reconfirmations happen during the observation of the

first tenth of hosts, and for the security level lmax 56% of all reconfirmations have

Number of observed hosts

100 200 300 400 500 600 700 800 900 1000

lmax 0.880 0.620 0.431 0.308 0.274 0.267 0.190 0.110 0.220 0.090

lmed 0.654 0.364 0.214 0.138 0.134 0.125 0.070 0.030 0.100 0.020

lmin 0.424 0.145 0.064 0.031 0.042 0.047 0.007 0.030 0.040 0.010

Table 4.1: Average rates of reconfirmation for blocks of 100 hosts during the evolution

of trust views for the security levels lmax, lmed and lmin.
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Figure 4.9: Percentage of the total number of reconfirmations during the evolution of

trust views, concerning the security levels lmax, lmed and lmin.

happened during the observation of the first 30% of all hosts.

Repeatedly accessing a host does not lead to additional reconfirmations. Con-

nections to new hosts on average make up for less than 1% of the total number

of TLS connections (see also Table 4.2 below). Together with the reconfirmation

rates presented above that means – depending on the security level – only between

0.27% and 0.69% of the TLS connections require a reconfirmation for an average

user. Thus, delays induced by CA-TMS are hardly recognizable.

The reconfirmation rates can further be lowered with a reputation system as

presented in Chapter 5. In the next section we evaluate the reconfirmation rates

concerning known hosts.

Marginal reconfirmation rates

Once a trust view is bootstrapped, the certificates for the hosts are known and

can be used during browsing without further checks or reconfirmations. However,

these certificates are renewed every one to two years, whenever their validity ends

or a new key is deployed on a server. Given that in most cases new certificates are

obtained from the same CA [17], the reconfirmation rates for known hosts can be

derived from the distribution of hosts to minimally, medium, and fully trustworthy

CAs. We call these reconfirmation rates marginal reconfirmation rates. These are

shown in Figure 4.10. For example, a trust view with 400 hosts only needs a second

reconfirmation for 20%, 6% and 2% of the certificate changes of known hosts when

browsing on the security levels lmax, lmed or lmin.

Assuming, the security levels are required for the same number of hosts, this

results in an aggregated marginal reconfirmation rate of 9.3%. With a certificate

renewal once a year, this implies one reconfirmation every 10 days. Thus CA-

TMS only leads to delays in page loading occasionally. A relying entity which only
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Figure 4.10: Marginal reconfirmation rates: Expected percentage of reconfirmations for

certificate renewals of known hosts, for security levels lmax, lmed and lmin, depending on

the number of different hosts associated to the trust view.

accesses a set of 100 different hosts via TLS secured connections is faced with higher

reconfirmation rates. However, this is compensated by the lower total number of

observed hosts. In this case, an aggregated marginal reconfirmation rate of 33%

leads to one reconfirmation every 11 days.

The effects of stereotyping and fixing of the key legitimacy

The effects of stereotyping and fixing of the key legitimacy are evaluated by compar-

ing the resulting reconfirmation rates during trust view evolution with and without

these mechanisms. Over all security levels, enabling stereotyping and fixing of the

key legitimacy reduces the reconfirmation rates by 50%-60%. However, for security

levels lmax and lmed the main part of the reduction results from fixing the key legiti-

macy. Less than 10% of the reduction results from stereotyping. Thus, the limitation

of the effects of stereotyping with parameter maxF to low security applications is

effective.

For security level lmin both mechanisms are equally effective. Equal parts of the

reduction result from stereotyping and fixing the key legitimacy. The effects of the

single mechanisms accumulate.

To sum up, using both strategies concurrently, significantly reduces the number

of hosts for which a reconfirmation is required.

Continuous revocation monitoring

For the evaluation of the overhead induced by continuous revocation monitoring,

we assume that the majority of certificates can be checked with OCSP. CRLs are

only downloaded if OCSP is not available for a certificate. The evaluation focuses
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min max avg

Number of daily TLS connections <1 407 61

Number of CAs 6 138 67

Number of hosts 2 1,013 214

Number of TLS connections 11 159,882 23,138

Table 4.2: Measurements for number of CAs, hosts and TLS connections from 64 browsing

histories.

on the number of OCSP requests. In the current deployment, OCSP requests are

sent during each TLS connection establishment. Thus, the number of daily OCSP

requests equals the number of daily TLS connections. The numbers of daily TLS

connections presented in Table 4.2 are averaged values over the total time periods

covered by the respective browsing histories.

For continuous revocation monitoring, we propose a daily update of the revocation

information. Thus, the daily amount of OCSP requests equals the number of CAs

in the trust view. This is because requests for different hosts can be aggregated into

one request when the same OCSP server is to be used (cf. Section 2.2.3), which in

general is the case when certificates were issued by the same CA.

The measurements in Table 4.2 show that continuous revocation monitoring intro-

duces additional OCSP checks if relying entities access few servers via TLS connec-

tions, and saves OCSP requests when many TLS connections are used. On average,

comparable numbers for OCSP requests can be observed. Thus, continuous revo-

cation monitoring does not introduce additional overhead. Even more, continuous

revocation monitoring allows load balancing, as the requests are independent from

the actual use and can be run in background.

4.5 Conclusion

In this chapter, the user-centric CA trust management system CA-TMS was pre-

sented. It maintains a minimal set of trusted CAs. By this user-centric management

of trusted CAs, the attack surface of the Web PKI is reduced. With the presented

parameter setting, CA-TMS achieves a reduction of the attack surface of more than

95%. This prevents attacks induced by CA failures and compromises. By making

use of validation services, a relying entity’s trust view is dynamically adapted to the

individual needs, while user interaction can be kept to a minimum. Furthermore,

CA-TMS assigns different ratings to each CA, such that trust decisions can be made

depending on the context. Thus, the risk of relying on a fraudulent certificate can be
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governed by the assignment of adequate security levels to applications. This enables

more restrictive trust decisions for critical applications like e-banking, where secu-

rity is more important and less restrictive rules for less security critical applications.

These rules can be adapted to the relying entity’s risk profile.

The provision problem of revocation information was solved with continuous re-

vocation monitoring, which decouples revocation checking from the actual use of

certificates.

Additionally, an implementation of CA-TMS has been presented. It integrates

currently available solutions for certificate reconfirmation such as certificate notaries,

and allows the flexible addition of more information sources to further improve

reconfirmation and data collection processes. The core functionality of CA-TMS can

be implemented locally on top of the existing infrastructure without its alteration.

The performance evaluation showed that the need for reconfirmations fades out

the more local experiences are collected. This continuously reduces the overhead and

possible delays. Once the system is bootstrapped, reconfirmations on average occur

once every few days. A reconfirmation is only required for 0.27% to 0.69% of the

TLS connection establishments. In summary, this shows that the use of CA-TMS

does not interfere normal browsing. The performance analysis also showed that

continuous revocation monitoring can be implemented without additional overhead.

CA-TMS so far protects relying entities from CA compromises concerning CAs

not rated trustworthy in their trust views. Exploiting the individuality of these

trust views enables a detection mechanism for fraudulent certificates, which we

present in Chapter 5. Combined with a push service, this mechanism extends the

protection capabilities of CA-TMS to also protect from CAs which suddenly change

their behavior.
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In Chapter 4, it was shown how to protect relying entities from fraudulent certificates

issued by CAs that are not part of their trust view. A bootstrapping of the trust view

based on a relying entity’s browser history was proposed and it was shown that the

presented system provides good performance once the trust view is bootstrapped.

However, problems evolve when no browser history is available for bootstrapping

or when CAs that are already considered to be trustworthy change their behavior

and become untrustworthy. The lack of a browser history implies that the trust

view needs to be bootstrapped on the fly during browsing, which then is performed

over the course of several months. This is problematic because the certificate checks

during bootstrapping lead to interruptions and delayed page loading. Furthermore,

the availability of external validation services is critical whenever a new service is to

be accessed. The problem with behavioral changes of CAs is, that relying entities

that consider a certain CA as trustworthy will accept certificates issued by that CA

without further checks. If such a CA suddenly starts to issue fraudulent certificates,

e.g., because of a compromise, this stays undetected by the group of relying entities

that trusts this CA.

In this chapter, we solve these two problems by extending CA-TMS with online

service providers to realize a centralized reputation system for CA trust scores and

a push service to warn relying entities. After a functional description, the services

are evaluated.

In Sections 5.1 - 5.3 we describe the functionality of the service providers. The

bootstrapping problem is solved with the reputation system. It makes the knowledge

of other relying entities available to a relying entity whenever his own experiences are

insufficient for decision making. With this mechanism, we speed up the bootstrap-

ping process. We describe the trust view selection and trust aggregation mechanisms

and show how protection against malicious recommenders is realized. The second

problem is solved with the push service. The service providers monitor the CA trust

scores collected within the reputation system. Upon detection of a CA becoming

untrustworthy, this information is pushed to all clients whose trust view contains
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the CA in question. We describe the detection mechanisms and how the pushed

information is processed on the client side.

In Section 5.4 the presented services are evaluated. First, we extend our attacker

model from Chapter 3 with additional attack vectors induced by the incorporation

of trust information provided by other relying entities, e.g., such as sybil attacks.

Then, we evaluate the security of the proposed services based on the extended

attacker model. The functionality and the performance is evaluated based on simu-

lations using real world browsing histories. We simulate the bootstrapping process

of trust views with and without the reputation system. The timings required for

bootstrapping as well as data loads and traffic overheads are compared between the

two settings. With the metric presented in Chapter 4 for the measurement of the

attack surface, we evaluate the effects of the inclusion of the reputation system on

the overall attack surface. The push service is evaluated in terms of an attacker’s

success probability for different attack scenarios. Section 5.5 concludes the chapter.

Parts of the contributions of this chapter were published in [B2], which covers the

concept of the reputation system. This chapter extends the published contributions

by the sections concerned with the push service and its evaluation. Additionally,

the performance evaluation for the reputation system was added.

5.1 Architecture and system model

To realize the reputation system and the push service to warn relying entities about

behavioral changes of CAs, we introduce online service providers to CA-TMS. This

is realized in a centralized architecture, which for scalability reasons can be ex-

tended to a network of service providers. The relying entities register at the service

provider and upload their trust views. Note that the authentication of a single ser-

vice provider is not considered a problem. E.g., its certificate may be hard coded

into the client software. Due to the registration, relying entities can be re-identified

when accessing the provided services.

Model For a common understanding, we extend the system model from Chapter 4

with service providers. Recall that there exists an entity E1 with trust view View

and another entity E2. E1 establishes a TLS connection to E2 and needs to decide

whether the connection is trustworthy or not.

Now, other entities U1, . . . ,Un (other Internet users) with trust views View1, . . . ,

Viewn and a network of service providers SP1, . . . , SPm are additionally included in

the model. The service providers are assumed to have pre-established trust relation-
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ships and are able to communicate securely, i.e. their keys are exchanged using an

out of band channel. The network of service providers does not need to be complete,

i.e., a service provider is not required to trust any other service provider. We assume

that E1 and U1, . . . ,Un have registered at SP1 and uploaded their trust views to the

database of SP1. In general, an entity can choose which service provider to use.

Thus, each service provider has its own customer base and set of trust views. The

clients’ local trust views are regularly synchronized with the ones in SPi’s database.

Figure 5.1 depicts the architecture.

SP3

SP1

 U2
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Ԑ1
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...
SPm
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View

Figure 5.1: Service provider architecture

5.2 Reputation system for CA trust management

In Chapter 4, we have described how the trust view is established incrementally by

querying validation services for any certificates as long as not enough locally collected

information is available. In this section it is shown how to integrate an additional

reputation system to increase the amount of data that decisions are based on from

local experiences to aggregated opinions from people with similar browsing behavior.

The service provider realizing the reputation system aggregates the opinions from a

set of trust views in his database to a recommendation and provides it to a requesting

entity. While doing this, the trust views are kept minimal in order to adhere to
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the principle of least privileges, which is currently not followed in the Web PKI

[17]. Therefore, an entity’s requirements concerning CAs have to be considered

during the aggregation of the recommended issuer trust. Otherwise, experiences

collected for application uses completely irrelevant to the requesting entity might

lead to unnecessarily high trust values in this entity’s trust view. Furthermore,

the reputation system is only queried after the relevance of a CA for an entity

was approved due to the CA being part of a reconfirmed certification path (cf.

Section 5.2.1). The purpose of the reputation system is to improve the bootstrapping

of the trust view and to evolve an entity’s trust view towards a stable state. When

reaching a stable state, CA-TMS may work mainly autonomously, even for entities

that only collect few own experiences.

The remainder of this section is organized as follows. First, the basic functionality

of the reputation system is described in Section 5.2.1. Afterward, in Section 5.2.2, we

present a strategy to select trust views for the computation of the recommended is-

suer trust. Then, it is shown how the selection of trust views is dynamically adapted

to the maturity of an entity’s trust view. In the case of insufficient information on

the reputation system’s side, a service provider handover may be performed as de-

scribed in Section 5.2.3. Finally in Section 5.2.4, we discuss privacy aspects that

arise from uploading personal trust views to the reputation system.

5.2.1 Functionality

The reputation system provides recommendations for the issuer trust assigned to a

CA. Whenever E1 updates his trust view View with a new trust assessment TA for

CA CA with public key pk, E1 requests a recommendation for the associated issuer

trust from SP1. SP1 aggregates the correspondent opinions for CA from j different

trust views by applying the conflict aware fusion operator cFUSION (cf. Definition

2.6). In case SP1 does not have information about CA with key pk, SP1 forwards the

request to other service providers he trusts.

The process is the following:

1. E1 establishes a TLS connection to SP1 and authenticates itself (e.g., by using

a user name and password).

2. E1 sends the pair (pk, CA) to SP1 using the secure connection.

3. Depending on View, SP1 selects j ≥ 0 trust views View1, ...,Viewj from its

database (see Section 5.2.2 for the selection strategy).
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4. If j > 0 do

a) For 1 ≤ i ≤ j SP1 extracts ocait,i and oeeit,i for (pk, CA) from Viewi.

b) SP1 aggregates the opinions on the issuer trust with the cFUSION oper-

ator: õcait = ⊕̂c(ocait,1, ..., ocait,j) and õeeit = ⊕̂c(oeeit,1, ..., oeeit,j).

5. If j = 0 (i.e., SP1 has no information for (pk, CA)) SP1 forwards the request to

another service provider it trusts. The other service provider responds with a

recommendation (õcait , õ
ee
it ) or with unknown. This step may be repeated or run

in parallel for several service providers.

6. SP1 responds to E1 with either the aggregated issuer trust opinions (õcait , õ
ee
it )

or, if no recommendation is available, with unknown.

7. E1 integrates the recommendation into View.

Before describing in detail how SP1 selects trust views for the aggregation and

how to aggregate opinions to a single recommendation, we recap how the reputation

system is integrated into CA-TMS on the side of E1. As described in Chapter 4,

E1 requests a recommendation for newly observed CAs as part of the trust view

update. We shortly recap Step 3 of the trust view update algorithm presented in

Section 4.1.6:

3. (optional) If (R = trusted) ∧ (v = true) then ∀TAi ∈ TL do:

a) Request RS(pki, CAi) = (õcait,i, õ
ee
it,i) from RS

b) If RS did not return unknown do:

If (i < n− 1) set ocait,i = (0.5, 0, E(õcait,i)), else set oeeit,i = (0.5, 0, E(õeeit,i)).

The trust view update algorithm ensures that two preliminaries are fulfilled before

the reputation system RS is queried and recommendations are integrated into E1’s

trust view View. First the outcome of trust validation for the certification path

in question is required to be trusted: (R = trusted). This ensures, that the

CAs for which a recommendation is requested are indeed relevant to E1 as parts of a

legitimate certification path. Second, the certification path has to be reconfirmed by

validation services: (v = true). This second condition ensures, that indeed external

information is required and not enough local information was already available for

trust validation. Thus, the principle of least privileges is realized as stated above.

E1 integrates the recommendations into View by setting the initial trust value f of

the according issuer trust opinions in View to the expectation of the recommended

issuer trust opinions (õcait,i, õ
ee
it,i). With this, it is ensured that E1 only relies on external
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information as long as local information is missing. Recall that the influence of f

on the expectation of an opinion ceases with a growing amount of experiences.

Second, it prevents circular dependencies between locally collected experiences and

the recommendations, thus preventing a bias of the system.

5.2.2 Trust view selection and trust aggregation

First the selection and aggregation strategy is presented. Afterward, it is shown

how to apply clustering for pre-computation and efficiency improvements.

Trust view similarity weighting and cut off

The aggregation of the recommended issuer trust should consider an entity’s indi-

vidual requirements. This cannot be achieved by simply averaging the respective

opinions over all trust views in the service provider’s database. The recommendation

should be based on the trust views of entities that have comparable requirements

as the requesting entity, namely entities with similar browsing behavior and similar

security requirements. Because CAs mostly issue certificates for a limited set of

domains [41] and because trust views depend on the subjective browsing behavior

as shown in Chapter 3, we deduce that trust views reflect an entity’s requirements

in respect to the relevance of CAs. The correctness of this assumption will be shown

in Section 5.4.3.

Thus, the input opinions for aggregation are weighted according to the similar-

ity between the trust views from which they originate and the trust view of the

requesting entity. Furthermore, all opinions with a similarity below a certain lower

bound b ∈ R are cut off. Similarity of trust views can be measured with the Jaccard

similarity index [16].

Similarity of trust views The Jaccard similarity index is a measure for the simi-

larity of sets. Given two sets A,B, the Jaccard similarity index is defined as

J(A,B) =
|A ∩B|
|A ∪B|

,

where |A| is the cardinality of A. Informally speaking, J(A,B) is the number of

common elements divided by the total number of elements contained in the two

sets. Only considering the sets of trust assessments contained within trust views,

the Jaccard similarity index can be applied to trust views as follows. For this, we

consider two trust assessments as equal, if the contained CA name and key are



5.2 Reputation system for CA trust management 109

identical. Then:

J(View1,View2) =
n

n1 + n2 − n
,

where ni is the total number of trust assessments contained in Viewi, i ∈ {1, 2} and

n is the number of trust assessments shared by View1 and View2. Note that the

inclusion of certificates into the computation is omitted due to privacy issues (cf.

Section 5.2.4). In Section 5.4.3 we evaluate the suitability of the Jaccard similarity

and show that it fits the requirements.

Selection and aggregation To compute the opinions for the recommendation SP1

retrieves all trust views from its database that contain a trust assessment for (pk, CA)

specified in the request by E1. Let TV(pk,CA) be the set of these trust views. Then,

using E1’s trust view View, SP1 computes for each Viewi ∈ TV(pk,CA) the corresponding

weight wi = J(View,Viewi). Afterward, any trust view Viewi with wi ≤ b is discarded

from TV(pk,CA).

From the remaining j trust views, SP1 extracts the opinions on issuer trust ocait,i and

oeeit,i for (pk, CA) and aggregates them using the cFUSION operator (cf. Definition 2.6)

using the corresponding weights wi. Thus, opinions originating from trust views that

are more similar to View have a stronger influence on the aggregated recommendation

than opinions from less similar trust views. Furthermore, if there exist conflicting

opinions on the trustworthiness of the CA, the cFUSION operator handles this by

lowering the certainty of the result.

Trust views with weights below the bound b are cut off in order to prevent trust

views that are highly dissimilar to View from being taken into account. This is

done because the cFUSION operator only considers weights relatively. In case that

solely trust views with a low Jaccard similarity are found, this would result in

relatively high weights. Cutting off those trust views may come at the cost of not

finding adequate trust views but prevents the recommendation of high issuer trusts,

if the importance of a CA to an entity is not plausible. Besides that, the similarity

weighting and cut off strategy provides protection against Sybil attacks which we

discuss in Section 5.4.2.

Because CA-TMS incrementally learns an entity’s trust view over time, the reflec-

tion of the browsing behavior is limited during the bootstrapping phase. In order

not to cut off trust views just because of the lack of local information, the bound

b is dynamically adjusted to the maturity of a trust view. This is described in the

following.
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Dynamic adaptation of the bound b

As soon as a trust view has a sufficient maturity, the Jaccard similarity can be

used to identify trust views of other entities with similar browsing behavior. Yet as

mentioned above, during the bootstrapping phase no or only limited information is

available about an entity’s own trust view and thus its browsing behavior. This has

two effects. First, the significance of the similarity to other trust views is limited.

Second, it results into low similarity values to evolved trust views that potentially

contain information about newly observed CAs, leading to their exclusion from

the aggregation of a recommendation if the bound b for similarity cut off is not

adequately set.

To overcome these problems, b is dynamically increased during the bootstrapping

of a trust view. This dynamic adaptation is chosen such that trust views resulting

from identical browsing behavior but with high maturity are not excluded from

recommendation aggregation.

A low value of b at the beginning subsequently leads to the inclusion of a broad va-

riety of trust views resulting in generalized recommendations. By the dynamic adap-

tation, the choice is increasingly focused on trust views from the same user group,

thus providing increasingly individualized recommendations. In parallel, similarity

weighting ensures, that already collected information is mirrored in the recommen-

dation aggregation and the input opinions from the more similar trust views have

stronger influence on the recommendation than opinions from less similar ones.

The adaptation function for b is derived from the set of 64 real world browsing

histories also used for the evaluations. From each of the histories the final state

of the associated trust view is derived and its evolution is simulated. During the

simulations, the Jaccard similarity to the trust view’s final state is computed after

each observation of a new host. The development of these similarities for each trust

view is displayed in Figure 5.2. For each number of observed hosts, the minimal

similarity value is extracted. This minimum forms the lower bound of similarities

for all sets. From the data series formed by the minimal similarity values, the

logarithmic approximate function is computed as:

f(h) = 0.2223 · ln(h)− 0.5036,

where h represents the number of observed hosts. f(h) is displayed as the blue

curve in Figure 5.2. The respective coefficient of determination is R2 = 0.9706. The

approximate function is used to dynamically compute b depending on the number

of observed hosts. We set b = f(h) for h < 352. The dynamic adaptation is stopped

at h = 352, where f(h) approaches 0.8. Afterward, the bound is fixed at b = 0.8 to
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Figure 5.2: Evolution of Jaccard similarities of 64 trust views. The similarities are

calculated between the final trust view state and the trust view after observation of x

hosts.

ensure that additional CAs are accepted within the trust views selected for opinion

aggregation.

Trust view similarity clustering

A drawback of trust view similarity weighting and cut off is the computational cost

and scalability. To identify the j trust views for aggregation, the Jaccard similarity

index needs to be computed for all trust views in SP1’s database that contain a

trust assessment for (pk, CA). This can be done more efficiently by clustering the

trust views and then performing a local search within the cluster to which View is

assigned.

Trust views can be clustered according to their similarity. The resulting clusters

can be used to find similar trust views by only measuring a trust view’s similarity to

a few cluster centers. Even though the result will in general be less precise compared

to computing the full set of similarities, it still contains nearby trust views. Clusters

can be used to realize a pre-selection of trust views and realize the cut off of distant

trust views more efficiently when the service provider’s database contains many trust

views. Now we explain how clustering is realized. Note that clustering can be done

as a pre-computation within regular time intervals.

K-means clustering With K-means clustering and the Jaccard similarity index for

trust views, κ clusters of similar trust views can be built. According to [29], the

main steps of K-means clustering are:

• initially select κ random trust views as cluster centers

• repeat the following steps until cluster center convergence:
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assignment: assign each trust view to the cluster center for which the Jaccard

similarity is maximal

update: reselect the cluster center within each cluster such that the arithmetic

mean of Jaccard similarities of the new center with all other trust views

in the cluster is maximized

K-means tends to make cluster sizes equal and each trust view is assigned to only

one cluster. Equal sized clusters have the advantage of always providing a certain

number of candidate trust views for the aggregation step, and the computational

effort is bounded during request.

On the other hand, K-means clustering often fails finding the natural partitioning

[35], where entities may belong to multiple groups and groups may have very different

sizes and shapes. Furthermore, K-means clustering only finds local optima.

To escape local optima, K-means clustering is normally run several times with

different initializations and for different sizes of κ. The outcomes are then compared

using the arithmetic mean of similarities to the cluster centers. For the selection

of the most suitable outcome, the criterion of maximizing the arithmetic mean of

similarities (which solely considered would lead to clusters of size one) and the

criterion of adequate cluster sizes for aggregation need to be balanced.

Initially, the parameter κ, which steers the number of clusters and thus their sizes,

is chosen such that searching for the right cluster and searching within a cluster is

balanced. Thus, given the service provider’s database contains n trust views, we set

κ =
√
n.

5.2.3 Service provider handover

In case the service provider SP1 has no trust views to compute a recommendation

for (pk, CA) – either there is no trust view with a trust assessment for (pk, CA) at all

or none that meets the minimal similarity constraint given by the bound b – SP1 can

request a recommendation from other service providers SP2, . . . , SPm it trusts.

SP1 queries SP2, . . . , SPm for their recommendation. If more than one answers

with a recommendation (õcait , õ
ee
it ), the responses are aggregated using the cFUSION

operator with equal weights. Querying other service providers is transparent to the

requesting entity. If all service providers SP2, . . . , SPm respond with unknown, SP1

also responds with unknown to the requesting entity E1.

In order to enable SP2, . . . , SPm to locally perform the aggregation of opinions to

a recommendation as described in Section 5.2.2, SP1 hands over E1’s trust view. To

protect E1’s privacy, the trust view is shortened by all end entity certificates.
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5.2.4 Privacy aware data collection

Trust views contain the certificates of CAs and end entities that a user has had

contact with. The data from trust views can be used to profile users and their web

browsing habits at least concerning services that use secure connections. Thus, trust

views are sensitive data in terms of privacy which needs to be considered when this

data is not exclusively maintained locally but uploaded to a service provider.

In this case privacy protection has two aspects. First the privacy sensitive data

revealed to the service provider is to be kept minimal depending on the necessity.

The service provider only requires the trust assessments in plain to be able to realize

the reputation system as well as the push service presented in the following section.

To protect a user’s privacy, the parts of the trust view that reveal which services a

user consumes (namely the set of trusted and untrusted end entity certificates) are

stored encrypted with a user specific key. The privacy criticality of the information

associated with the trust assessments themselves is limited because CAs in general

sign certificates for arbitrary web services.

The second aspect of privacy protection concerns the information which is revealed

to other potentially untrusted third parties, which refers to the recommendations.

Recommendations are aggregated knowledge of several of the service provider’s

users. The recommendations are furthermore not linked to the source of infor-

mation. Thus, a recommendation reveals the trust in a single CA in an anonymous

fashion and therefore are not considered privacy critical. Trust views are never

revealed as a whole to the public.

5.3 Push service for behavioral changes of CAs

CA-TMS collects experiences concerning past behavior of CAs and uses this in-

formation to estimate the CA’s trustworthiness concerning future transactions. In

Section 5.2 a reputation system was described, that enables to speed up information

collection, finally enabling autonomous decision making by CA-TMS.

In this section we elaborate on the issue of behavioral changes of CAs and describe

a detection mechanism which enables a push service to inform relying entities about

such behavioral changes. Behavioral changes may lead to false decisions, because

then, collected experiences do not reflect the real behavior anymore at the time of

decision making. The slow adaptation to behavioral changes is a common property of

many computational trust models [67]. In the case of CA-TMS, only a sudden change

from trustworthy to untrustworthy is security critical. A change from untrustworthy

to trustworthy is not a problem. In this case the relying entity queries validation



114 5 Service providers for CA-TMS

services to reconfirm certificates issued by the CA and finally learns the changed

behavior.

The problem with the first case is, that relying entities that already consider a

CA as trustworthy will accept certificates issued by that CA without further checks.

And if this CA suddenly starts to issue fraudulent certificates, e.g. because of

a compromise, this stays undetected. Furthermore, relying entities do not query

the reputation system regularly and update their trust scores accordingly. This

would weaken the individuality of the trust views. Thus, a relying entity might not

recognize the change even if others already detected it. Even if the misbehavior

is later detected and negative experiences are collected in retrospect, the attack

already occurred and because of the slow trust adaptation it is still possible, that

further wrong decisions are made.

Preventing relying entities from attacks therefore requires immediate measures.

This is solved by integrating the push service that informs users about behavioral

changes of CAs contained in their trust views. To overcome the drawback of slow

trust adaptation, we follow the proposal from [67]. Relying entities that are warned

about a CA directly suspend it and prune the CA’s performance history completely.

This way, the relying entity learns the actual trustworthiness anew and does not

rely on outdated information.

In the following Section 5.3.1, we describe how behavioral changes are detected

by the service provider in collaboration with its clients. Section 5.3.2 presents how

warnings are pushed to relying entities. In Section 5.3.3 it is described how relying

entities process such push messages.

5.3.1 Report functionality for behavioral changes

In order to detect untrustworthy CAs automatically, the fact that trust views differ

between relying entities is exploited. Let the target group be the group of relying en-

tities which are attacked, i.e., which use the service for which the attacker obtained

a fraudulent certificate. Our mechanism relies on the assumption, that a certain

fraction of the target group does not trust the issuer of the fraudulent certificate. If

this certificate is delivered to such an entity, it will subsequently be reconfirmed with

validation services and be evaluated as untrustworthy. If this happens, the entity

reports the certificate to the service provider as suspicious. The service provider

validates the correctness of the report and in case it is confirmed, it pushes warn-

ings to all its clients that have the issuing CA in their trust views. The detection

capability of this mechanism is evaluated in Section 5.4.4.
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Integration of the report functionality on the relying entity’s side

The report functionality is integrated into the trust validation algorithm (cf. Section

4.1.5) as Step 3.l and is executed, whenever the trust validation algorithm evaluates

a certification path as untrusted. The report protocol is the following:

Input:

• The certification path p = (C1, ..., Cn).

• The URL url of E2 from which p was obtained.

Output: Whether the reporting was successful or not.

The protocol proceeds as follows:

1. E1 establishes a TLS connection to SP1 and authenticates itself (e.g., by using

a user name and password).

2. E1 sends the tuple (p, url) to SP1 using the secure connection.

3. SP1 confirms the report to E1 with a success message.

If the protocol does not finalize with the success message, E1 puts the report

(p, url) into a queue and retries until the report can be sent.

Processing untrusted certificate reports on the service provider’s side

To prevent false warnings, service providers validate each untrusted certificate report

for correctness before pushing a warning to its clients. Note that costly reconfir-

mations are acceptable, as this is done by a single service provider and not by a

huge amount of relying entities. Furthermore, delays of several seconds or even min-

utes outweigh false warnings which lead to the erroneous suspending of CAs and

subsequently to non-justified page loading delays on the relying entity’s side.

When the service provider obtains a report (p, url) about an untrusted certificate

from one of its clients, it evaluates its correctness as described in the following:

Input:

• An untrusted certificate report (p = (C1, ..., Cn), url).

• A list of validation services VS = (VS1, ..., VSj) with outputs

Ri = VSi(C) ∈ {trusted, untrusted, unknown}, 1 ≤ i ≤ j on input of a

certificate C.
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Output: V ∈ {valid, invalid, unknown}.
The protocol proceeds as follows:

1. SP1 performs standard path validation (including revocation checking) on the

certification path p.

2. If path validation fails then V ← invalid

3. If path validation succeeds then

a) For 1 ≤ i ≤ j query validation service VSi for Cn and set Ri = VSi(Cn).

b) If ∃i ∈ {1, ..., j} with Ri = untrusted then V ← valid

c) Else if ∃i ∈ {1, ..., j} with Ri = trusted then V ← invalid

d) Else V ← unknown

4. Return V

If the report validation outputs valid, SP1 pushes a warning to its clients and to

the other service providers. If the report is invalid, it is discarded. In case the

validity of a report is unknown it is queued and retried later. Note that the unknown

case is very uncommon, when combining different types of validation services based

on different principles such as multi path probing and notaries that cache valid

certificates.

5.3.2 Pushing CA warnings to relying entities

Pushing warnings to clients is performed depending on the necessity. If the un-

trusted certificate report is valid, first the report is broadcast to all other service

providers. Furthermore, for each valid report (p = (C1, ..., Cn), url) (either obtained

by a client or another trusted service provider), SP1 searches its database for trust

views that contain a trust assessment for the key pk of CA CA certified in Cn−1. For

each such trust view, the CA warning (pk, CA, Cn) is pushed to the push address

of the according relying entity. The push address is defined, when a relying entity

registers at the service provider. The push service can be realized by implementing

a push server, e.g. using the SimplePush API [160] specified by Mozilla, to which

relying entities connect when they are online. Another possibility would be to use

existing infrastructure and realize the push service via email. In this case, the client

software would connect to the relying entity’s email provider and monitor the inbox

for push emails by its service provider. The latter option saves resources on the ser-

vice providers side, while the email providers’ infrastructures are in general already
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available and are designed to handle such requests, as common email clients such as

Thunderbird or Outlook synchronize the inbox every few minutes anyway.

5.3.3 Processing CA warnings

On receipt of an CA warning (pk, CA, Cn) pushed by the service provider, the relying

entity directly suspends CA, the issuer of Cn. This is done by resetting the opinions in

the respective trust assessment to the initialization values. Furthermore, a negative

experience is collected for CA. The untrusted certificate Cn is added to the relying

entity’s list of untrusted certificates. The CA’s certificate is not marked as untrusted.

With this, the relying entity learns the actual trustworthiness of the CA anew,

and even allows the CA to become trustworthy again. This is important, as the

issuance of a single fraudulent certificate may result from a temporary error. On

the other hand, no certificates issued by the CA will be trusted without a previous

reconfirmation until the relying entity learned that the CA is trustworthy again.

This has the effect, that a relying entity is also protected from further fraudulent

certificates issued by the same CA, even if they are not reported through the service

provider. Certificates that are already in the list of trusted certificates are kept, as

the current behavior the CA has no retroactive effects.

The whole process is transparent to the relying entity and runs in background

except for the case, that Cn is found in the list of trusted certificates. In this case,

an attack has already happened, and the relying entity must be informed about the

incident such that it can take adequate measures, as e.g., blocking his bank account,

to prevent further damage.

5.4 Evaluation

In this section we evaluate the reputation system and the push service. First, in

Section 5.4.1 the attacker model from Chapter 3 is extended with additional attack

vectors induced by the use of the reputation system. Then, in Section 5.4.2 we

evaluate the security of the proposed system based on the extended attacker model.

Afterward, in Section 5.4.3 the functionality and the performance of the reputation

system is evaluated based on simulations using real world browsing histories. It is

shown, that the Jaccard similarity index is adequate for weighting and trust view

pre-selection within the reputation system. Then, we show, that the reputation

system speeds up the data collection and improves the bootstrapping process. We

simulate the bootstrapping process of trust views with and without the reputation

system. The timings required for bootstrapping as well as data loads and traffic
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overheads are compared between the two settings. With the metric presented in

Chapter 4 for the measurement of the attack surface, we evaluate the effects of the

inclusion of the reputation system on the overall attack surface. Finally, in Section

5.4.4, the push service is evaluated in terms of an attacker’s success probability for

different attack scenarios.

5.4.1 Attacker model

The security analysis is based on the attacker model presented in Section 3.1.2.

Recall that attacker A is an active man-in-the-middle attacker on the connection

between relying entity E1 and web server E2. A can generate certificates that are

signed by a CA of the Web PKI. The systems of E1 and E2 are assumed not to be

compromised, nor can A break the employed cryptographic algorithms. Also, the

validation services are assumed to function correctly.

The incorporation of a reputation system RS into CA-TMS induces additional

attack vectors. The attacker has the following additional capabilities and limitations.

Additional capabilities A has all capabilities of regular entities. For example, the

attacker can register at a service provider and upload trust views to RS. Furthermore,

A may compromise some of the other users U1, . . . ,Un of RS.

Additional Limitations RS itself is assumed not to be compromised, i.e., A is un-

able to arbitrarily manipulate the database of RS or its computation processes. Even

further, it is assumed that the communication between E1 and RS is secure. Intru-

sion detection and attacks on user systems are separate fields of security research

and are out of scope of this thesis.

5.4.2 Attacks against CA-TMS

This section is focused on attacks against specific components of CA-TMS. It extends

the evaluation of Chapter 4 by attacks aiming towards manipulating the external

reputation system. This ultimately leads to a manipulation of E1’s local trust in-

formation. Following from the attacker model, the intention behind these attacks

is to prevent detection when A attacks E1’s communication employing a fraudulent

certificate. Recall that RS is only queried when a new trust assessment is initialized

after the legitimate use of the CA’s key has at least been reconfirmed once. Thus,

RS cannot be employed by A to introduce additional trust assessments into E1’s

trust view View. As in Chapter 4, the analysis is based on the framework from [31]
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and identifies the attack vectors according to the separation into formulation, cal-

culation, and dissemination components of CA-TMS. We shortly recapitulate their

meaning and explain where the incorporation of RS adds new components.

Formulation resembles the reputation metric and sources of input. RS extends

CA-TMS by an indirect information source regarding a CA’s reputation. The infor-

mation source for RS are trust views uploaded by its users. Thus, A can positively

or negatively influence the trust in a CA by influencing the recommendations served

by RS. RS itself may be influenced via uploading manipulated trust views.

Calculation concerns the algorithms that derive trust from the input information.

With RS, non-local calculations concerning the recommendations are added to CA-

TMS. The recommendations are calculated deterministically and centrally by RS.

Thus, as RS is assumed not to be compromised, A cannot influence the calculation

other than by injecting manipulated input data into the database of RS.

Dissemination concerns all transfer of data between system components. As

communication between user systems and RS as well as between different service

providers is secure, A cannot manipulate the communication. A may indeed block

or disturb the communication and thus, perform a denial-of-service (DoS) attack on

RS. In this case, CA-TMS falls back on local information. As a validated certifica-

tion path is always checked by validation services before RS is queried, a DoS does

not introduce a direct threat. The blocked information can be resent later. DoS

attacks are therefore of limited relevance for security and are not considered further.

Attack vectors

Following from the analysis, the possibilities to manipulate and influence the trust

evaluation of CA-TMS under the given assumptions is limited to injecting false input

data. We now explain the attack vectors A might use to inject false data indirectly

via the RS, and explain the respective protection mechanisms. Note that the attack

vectors discussed in Chapter 4 are basic tools for A to influence RS’s data, as the

directly manipulated trust views are finally uploaded to RS.

Sybil attacks When targeting RS, A needs to inject manipulated trust views into

the database of RS to finally manipulate the recommendations. This is done using

the scheme of a Sybil attack. Performing a Sybil attack means A forges or controls

a large amount of entities and acts on behalf of them. Also, a large amount of

entities that act in a coordinated manner when uploading manipulated trust views

resembles a Sybil attack. Whereas a single entity acting maliciously only has limited

influence, as its opinions would be overruled by a majority of honest entities.
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Whenever A is able to register itself with several forged identities at RS (or A can

control the systems of already registered entities), A can upload manipulated trust

views in their name to RS. As RS generates its opinions based on the trust views of its

users, A can influence the recommendations either negatively or positively by adding

a suitable trust assessment for the targeted CA to the trust views he controls. If A
controls a large enough fraction of RS’s user base, A effectively controls the content

of the recommendations generated by RS.

There are several defense mechanisms to prevent Sybil attacks. Countering Sybil

attacks usually includes making the registration of new users costly to prevent at-

tackers from generating and registering fake identities. Popular mechanisms include

user authentication upon registration, a registration fee or computationally com-

plex registration processes, e.g., CAPTCHAs. As our reputation system requires a

registration of its users anyway, these are adequate measures.

Furthermore, the selection strategy for the computation of recommendations using

similarity weighting (cf. Section 5.2.2) provides protection against Sybil attacks (cf.

[68] for a similar approach). When RS is requested to calculate a recommendation on

the issuer trust for a CA, only those trust views are selected that are similar to the

one of the requesting entity E1. However, E1’s trust view in general is unknown to

A. A trust view uploaded by A is only by chance considered during the calculation.

This makes it difficult for A to generate and submit trust views to manipulate

the recommendation without knowing the E1’s trust view. The trust view is only

communicated over secured connections. Thus, gathering information about trust

views requires observing the TLS traffic of the E1 or sophisticated social engineering

attacks. Even if A manages to tailor the manipulated trust views for one target

entity, the overall success is limited.

Moreover, proactive techniques can be implemented to protect RS against Sybil

attacks. The upload of a large amount of trust views within a certain time interval or

sudden changes of a CA’s issuer trust within trust views can be statistically detected

as shown in [73]. Besides that, Sybil attacks can be lessened when RS considers only

trust views or trust assessments of a certain minimal age. The presented techniques

significantly increase the costs of an attack, as they increase the time span during

which the attack is to be executed. This helps to bridge the gray period. After the

fraudulent certificate has been revoked or blacklisted, the attack is anyway without

effect.
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Attacker goals and defenses

The previous subsection discussed the attack vector of Sybil attacks that A can use

to manipulate the recommendations provided by RS. In this section, specific attacker

goals, their possible realization, and how they apply to CA-TMS are discussed.

Self-promoting Self-promoting describes actions ofA towards making him or a CA

under his control appear more trustworthy. This in fact is the attacker goal with

highest relevance as it increases the success probability of A when finally issuing

fraudulent certificates to attack the secured communication.

A self-promoting attacker can approach his goal by a Sybil attack on RS. To use

a Sybil attack, A must overcome the above described defense mechanisms. Addi-

tionally, as RS is only queried when a trust assessment is newly initialized, the CA

controlled by A must be new to E1. On the other hand, due to the use of valida-

tion services, the CA must be legitimately observed first, which in fact can hardly

be steered by A for multiple entities. Even for a single entity, this requires social

engineering coordinated with the Sybil attack and perfect timing.

Slandering In opposition to a self-promoting attack, slandering aims at lowering

the reputation of a specific CA. As A does not directly benefit from decreased trust

in CAs, he might only aim at disturbing the proper functioning of CA-TMS.

The only possibility is to use a Sybil attack on RS. Again, A must overcome the

defense mechanisms and may only influence newly initialized trust assessments on

E1’s side. During the bootstrapping of a trust view, this has a certain impact, but

afterward, the attack is of limited relevance. Furthermore, the attack in the worst

case increases the number of required reconfirmations. In this case, local experi-

ences are collected, which leads to a fade out of the influence of the manipulated

recommendation.

Whitewashing Whitewashing describes the approach of an entity with negative

reputation to re-appear under a new, clean identity. Whitewashing was already

shown not to apply to the Web PKI in Chapter 4.

5.4.3 Reputation system performance

The performance evaluation is based on simulations using 64 real browsing histories

also used in Section 4.4. To evaluate the effects of the reputation system, the

evolution of each trust view is simulated with and without the use of the reputation
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system and the resulting trust views are compared. For the simulation, the 63 trust

views derived from the remaining browsing histories serve as the knowledge base

from which the reputation system aggregates the recommendations.

The remainder of this section is organized as follows. First, we show the suitability

of the Jaccard similarity index, which is a central tool to the reputation system for

trust view pre-selection and weighting during the computation of recommendations.

Then, the improvements of information collection provided by the reputation system

are presented. Third, the influence of the reputation system on the attack surface is

evaluated. The last part of this section is focused on data loads and communication

overheads.

Suitability of the Jaccard similarity index

In the following, we show that the Jaccard similarity index is a suitable measure to

facilitate opinion aggregation.

Suitability for pre-selection We first show that the Jaccard similarity index is

suitable for pre-selecting trust views as potential input for the aggregation of a

recommendation. To test this, the probability that a trust assessment for a requested

CA is contained within the pre-selected trust views is evaluated depending on the

Jaccard similarity.

The tests are as follows: One trust view Viewi serves as the one of the requester

and one of the trust assessments in Viewi serves as the requested trust assessment TA.

TA is removed from Viewi and the Jaccard similarity J(View∗i ,Viewj) of the modified

trust view View∗i to all other trust views Viewj, j 6= i is computed. Now, for x ∈ {0,
1, . . . , 19} let the intervals Ix be defined as Ix = ]ax, bx] with ax = x · 0.05 and

bx = (x+ 1) · 0.05. Further let MIx,TA = {Viewj|J(View∗i ,Viewj) ∈ Ix ∧TA ∈ Viewj}
and MIx = {Viewj|J(View∗i ,Viewj) ∈ Ix}. Then, the probability to find TA in the

considered trust views is computed as:

pr(TA) =
|MIx,TA|
|MIx|

.

The test is repeated for each trust assessment in Viewi as well as for each possible

choice of Viewi. The computed probabilities are averaged.

The results of this test are shown in Figure 5.3. The probability to find TA in a

pre-selected trust view grows with growing Jaccard similarity. From the results it

can be deduced that pre-selecting trust views based on the Jaccard similarity and

subsequently not considering trust views with low similarity does not lead to a loss

of information.
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Figure 5.3: Probability pr(TA) to find a trust assessment for a newly observed CA in

another trust view depending on the Jaccard similarity.

Suitability for similarity weighting We show that the Jaccard similarity is suitable

to group trust views according to user groups within which the trust values are com-

parable. This is directly related to the recommendation quality, when using weights

wi = J(View,Viewi) to aggregate a recommendation as defined in Section 5.2.2.

To test this, the deviation of the expectations depending on the Jaccard similarity

of the trust views is measured. We first compute the similarity between each pair

of trust views J(Viewi,Viewj), i, j ∈ {1, ..., 64}, i 6= j and group them pairwise

into GIx = {(Viewi,Viewj)|J(Viewi,Viewj) ∈ Ix} with Ix as defined above. Then,

within each GIx the average deviation of the expectation values for the issuer trusts

∆E(ocait ) and ∆E(oeeit ) over all pairwise joint trust assessments is computed.
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Figure 5.4: Average deviation of (a) E(ocait ) / (b) E(oeeit ) depending on the Jaccard

similarity.

The results are shown in Figures 5.4a and 5.4b. With growing Jaccard similarity

the deviation of the expectation of opinions concerning common trust assessments

shrinks. That means trust views with similar CA sets on average also contain

similar opinions on the common CAs. Thus, the Jaccard similarity index is suitable
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for similarity weighting during the aggregation of a recommendation. It puts the

more weight on opinions, the better they reflect the requesting entities final opinion.

From these results, we conclude that the Jaccard similarity is suitable to pre-

select the relevant trust views for the aggregation of recommendations and provides

a natural weighting for the influence of single opinions into the aggregated recom-

mendation.

Improvement of information collection

We show that the use of the reputation system significantly improves the information

collection of CA-TMS and thus speeds up the bootstrapping of an entity’s trust

view. This is shown based on reconfirmation rates. The need for reconfirmations

represents the absence of sufficient information for decision making. Thus, lower

rates imply that more information is available to the system at a certain point in

time, while achieving the same rate at an earlier point in time shows the speed up

in information collection.

We measure the average reconfirmation rate with and without the use of the

reputation system. For each simulation run, we select one of the 64 browsing histories

and simulate the evolution of the trust view. The 63 trust views derived from the

remaining 63 histories form the knowledge base of the reputation system. The

reconfirmation rates for the three different security levels lmax = 0.95, lmed = 0.8

and lmin = 0.6 are measured independently. The simulation results are averaged

over all simulation runs.

Figure 5.5 shows the improvements achieved with the reputation system con-

cerning reconfirmation rates. It shows how the percentage of hosts, for which a

reconfirmation is required, develops on average over the course of the evolution of
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Figure 5.5: Percentage of observed hosts for which a reconfirmation was required with

and without the use of the reputation system, concerning the security levels lmax, lmed
and lmin.



5.4 Evaluation 125

trust views. This is shown for the three different security levels.

For each of the different security levels, the reconfirmation rate with the use of

the reputation system lies significantly below the rate without reputation system.

For example, given a required security level of lmin, the use of the reputation system

reduces the reconfirmation rates for the first one hundred hosts from 42% to 20%.

The differences of the respective rate with and without the reputation system after a

given number of observed hosts are depicted in Figure 5.6. Note that several histories

in our data set end at around 630 hosts leading to the gap in the averaged rates.

The differences are higher in the early phase of the trust view evolution because the

rates themselves also drop with a growing number of observed hosts. This means

that the reputation system has the strongest effects at the beginning of the trust

view evolution where an accumulation of reconfirmations occurs and thus is most

important for the user experience. In summary, the reconfirmation rates drop faster

and stay below the rates without reputation system. Hence, a user of CA-TMS is

confronted with less delays due to reconfirmations during the bootstrapping phase.
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Figure 5.6: Differences in reconfirmation rates for security levels lmax, lmed and lmin.

A second measure that shows the bootstrapping speed-up by the reputation sys-

tem is the difference of hosts that need to be accessed until a comparable level of

the reconfirmation rate is reached with and without the reputation system. As a re-

confirmation represents the lack of information for decision making, reconfirmation

rates indirectly measure the amount of collected CA trust information. Figure 5.7

depicts the differences of required hosts until certain target reconfirmation rates are

achieved. The differences are given as percentage of the hosts that need to be ac-

cessed when no reputation system is used. Figure 5.7 shows that the numbers of

required hosts for experience collection are 50% - 85% lower due to the reputation

system. This shows the speed-up of the bootstrapping due to the reputation system.
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Figure 5.7: Differences in required hosts to reach target reconfirmation rates for security

levels lmax, lmed and lmin.

Effects on the attack surface

In this section it is shown, how the reputation system affects the individual size of the

attack surface. Again this is based on simulations based on the 64 browsing histories.

Recall that in the simulations no negative experiences are included, meaning the

results lead to an upper bound for the attack surface.

Figure 5.8 shows the measurements for the average difference in the expectation of

issuer trust opinions assigned to the CAs between simulation runs with and without

the reputation system. The deviations have their maximum for trust views of low

maturity, namely between 10 and 30 observed hosts. Afterwards, the deviations

fade the more experiences are collected. This shows that the reputation system

does not simply lead to an increase of the trust values, but boosts them towards

their final state. Besides that, the deviation is always smaller than 0.2. This means

that the trustworthiness of a CA is at most increased to the next security level by

the reputation system.
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Figure 5.8: Average difference in expectation values E(ocait ) and E(oeeit )

Figure 5.9 shows the average number of CAs trusted for the different security

levels with and without the reputation system. These numbers directly correspond

to the size of the attack surface (according to the metric presented in Section 4.4.2)

for the three extreme cases where either lmax, lmed or lmin is assigned to all domains.
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Figure 5.9: Number of CAs trusted to issue certificates concerning the required security

levels lmax, lmed and lmin with and without reputation system.

Figure 5.9 shows that the speed-up achieved by the reputation system comes at

the cost of a slight increase of the attack surface compared to CA-TMS without

reputation system. This results from the additional trust information which allows

that some CAs reach the next security level at a lower number of observed hosts.

The highest difference is observable for the security level lmed, while the effect on the

attack surface concerning the security levels lmax and lmin are much smaller. This

shows, that mainly CAs are shifted from the class of minimum trustworthy CAs

to the class of medium trustworthy CAs. The differences in the sizes of the attack

surfaces fade, the more experiences are collected, i.e. the more evolved the trust

views are. This again shows, that the reputation system evolves the trust views

towards their final state.
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Figure 5.10: Growth of the attack surface due to the reputation system concerning the

required security levels lmax, lmed and lmin in relation to the attack surface spanned by

the 1,590 trusted CAs of the Web PKI.

Figure 5.10 depicts the effects of the reputation system on the attack surface

in relation to the system-centric setting with 1,590 trusted CAs, where the attack

surface is defined as AS =
∑

CA∈PKI dom [CA]. dom [CA] is the number of domains

which CA is allowed to sign. PKI describes the set of all CAs which are part of the

Web PKI. Figure 5.10 shows that the set of CAs additionally trusted due to the use
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of the reputation system makes up for less than 1% of the attack surface AS. The

maximum attack surface increase again is reached for the security level lmed.

In summary, the reputation system provides a speed-up of the bootstrapping of

more that 50% while leading to minimal increases of the attack surface of less than

1%.

Data loads and communication overheads

The use of the reputation system reduces the number of reconfirmations. However,

the reputation system is queried for recommendations. We compare the traffic

overheads and data loads in the two settings during browsing. We assume, that

the user is registered at the reputation system and its current trust view is already

available to the reputation system. Thus, requesting a recommendation for a new CA

requires the transmission of the CAs name and its public key, which can be realized

by sending the CA’s certificate to the reputation system. A reconfirmation request

to a validation service also requires the transmission of the certificate in question.

The exact message sizes depend on the respective implementation, however wlog. it

can be assumed that the message sizes of the requests are of comparable size. The

same holds for the size of the response messages. Thus, the evaluation focuses on

the number of requests and their timing criticality.

The number of reconfirmations is counted during the simulation runs, while the

number of queries to the reputation system is given by the number of CAs. We

present the differences depending on the number of observed hosts in Table 5.1. It

shows that the absolute number of queries to the reputation system is higher than

the number of saved queries to validation services, which yields additional traffic.

This has several reasons. First, newly observed CAs are always reconfirmed whether

or not the reputation system recommends the CA as trustworthy to guarantee that

adding a new CA to the trust view is always justified. Furthermore, despite a

recommendation the derived trust level might not be high enough for the acceptance

of a certificate.

However, there is a fundamental difference between requests to validation services

and requests to the reputation system. The first are blocking, i.e., browser page

loading must be delayed until the response of the validation services is obtained,

while requests to the reputation system provide information for future browsing and

can be done in the background. These requests can even be delayed if the reputation

system is temporarily not available as they are transparent to the user.

The overall traffic considering requests to the reputation system per time interval

depends on the number of users and the number of new CAs they observe on average.



5.4 Evaluation 129

Number of observed hosts

25 50 100 200 400 600

lmax

req(VS) 25 47 88 150 224 278

reqRS(VS) 21 36 60 97 140 182

∆ req(VS) 4 11 28 53 84 96

req(RS) 27 41 57 79 99 122

lmed

req(VS) 21 39 65 102 137 163

reqRS(VS) 16 26 41 63 84 110

∆ req(VS) 5 13 24 39 53 53

req(RS) 27 41 57 79 99 122

lmin

req(VS) 18 29 42 57 66 75

reqRS(VS) 12 16 21 27 31 40

∆ req(VS) 6 13 21 30 35 35

req(RS) 27 41 57 79 99 122

Table 5.1: Numbers of requests to validation services and the reputation system for

the required security levels lmax, lmed and lmin. req(VS) denotes the number of requests

to validation services in the setting without reputation system, reqRS(VS) the respective

number when the reputation system is used. ∆ req(VS) denotes how many requests to

validation services are saved due to the use of the reputation system and req(RS) denotes

the number of requests to the reputation system.

In our data sets we found an average of seven new CAs per month. Thus, the

reputation system is on average queried seven times a month per registered user.

For example, assuming a user base of one million users would yield 162 requests

per minute. Peaks that might come up, e.g., because of day and night rhythms,

can easily be balanced because the requests to the reputation system are not time

critical.

5.4.4 Push service evaluation

In this section the proposed push service is evaluated in terms of success probabilities

of an attacker. We compare the system-centric setting with the user-centric setting

without and with the push service and show the security gain by such a service.

First, the detection capability for behavioral changes of our system depending on

the class of the compromised CA is evaluated. Based on these findings, the success

probabilities of an attacker are presented.
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Detection of behavioral changes

The performance of the detection mechanism is evaluated in terms of successfully

attacked entities until the service provider SP detects the maliciously issued certifi-

cate due to reports send by its clients. For the analysis we consider an attacker A
according to the attacker model given in Section 3.1.2. A possesses a fraudulent

certificate C for the web service S issued by CA. A uses C to attack relying entities

when connecting to S. Thus, we consider the users of S as the target group G of

attacked relying entities. A could also attack several web services in parallel, yet

this would only increase the size of the target group. Thus, for the analysis we

assume, that A only attacks one web service at a time.

Let q be the percentage of entities G that consider CA as trustworthy to issue

certificates for S in the user-centric setting. Trusting CA to issue certificates for S
means that CA reaches a sufficiently high issuer trust for end entity certificates in

the respective trust views. We call q the trust rate. Then, the probability that for

entity E∗, randomly chosen from G, trust validation outputs trusted for C is q and

the probability that it outputs untrusted and E∗ subsequently reports the attack

to SP is (1 − q). Thus, the probability that the n-th entity detects the fraudulent

certificate when connecting to S is prdet(n) = qn−1 · (1− q). The expectation value

for the number of successfully attacked connections to S until a detection occurs,

can be computed as:

Expcon =
∞∑
n=1

prdet(n) · n =
∞∑
n=1

qn−1 · (1− q) · n =
1

1− q
2

From this follows, that given q per cent of the entities trust CA, A on average can

successfully attack Expcon − 1 = 1
1−q − 1 entities until the attack is detected and

reported to SP. Table 5.2 shows the average number of successfully attacked entities

for different values of q. The numbers show that an attacker must compromise a

CA that achieves a trust rate approaching one within the target group in order not

to be rapidly detected. Even for q = 0.99 an attack is on average detected after 99

successfully attacked entities.

q 0.1 0.3 0.5 0.7 0.9 0.95 0.99

Expcon − 1 0.111 0.429 1 2.333 9 19 99

Table 5.2: Number of on average successfully attacked connections depending on q

2
∑∞

n=1 q
n−1 · (1 − q) · n =

∑∞
n=1 q

n−1 · n −
∑∞

n=1 q
n · n =

∑∞
n=0 q

n · (n + 1) −
∑∞

n=1 q
n · n =∑∞

n=0 q
n·n+

∑∞
n=0 q

n−
∑∞

n=1 q
n·n = q0·0+

∑∞
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p lmin lmed lmax
≥ 0.1 82 (26.8%) 63 (20.6%) 30 (9.8%)

≥ 0.2 57 (18.6%) 42 (13.7%) 24 (7.8%)

≥ 0.3 40 (13.1%) 29 (9.5%) 15 (4.9%)

≥ 0.4 30 (9.8%) 16 (5.2%) 9 (2.9%)

≥ 0.5 19 (6.2%) 13 (4.2%) 8 (2.6%)

≥ 0.6 16 (5.2%) 11 (3.6%) 5 (1.6%)

≥ 0.7 12 (3.9%) 7 (2.3%) 2 (0.7%)

≥ 0.8 7 (2.3%) 4 (1.3%) 0 (0.0%)

≥ 0.9 0 (0.0%) 0 (0.0%) 0 (0.0%)

Table 5.3: Number of CAs (per cent of total) for which at least the trust rate q is reached

for different required security levels for the attacked web service. The percentage refers to

the CA super set of 306 CAs found together in the analyzed 64 trust views.

Table 5.3 shows how many CAs achieve a certain trust rate q in our data set of

64 trust views. The super set of CAs found together in the 64 trust views contains

306 different CAs. For example, it can be observed that if entities require a security

level lmin for S, then only 26.8% of the CAs in the super set reach a trust rate of

q ≥ 0.1. For lmax this even shrinks to 9.8%. None of the CAs reaches a trust rate

of q = 0.9. Additionally, all CAs not contained in the super set are not trusted by

any entity in the target group. Thus, a fraudulent certificate issued by one of those

CAs would be immediately detected. In summary this shows, that in practice, it

is very improbable that A can identify and compromise a CA that achieves a high

trust rate in the target group, which would prevent an immediate detection of the

attack. Even compromising the CA which issued the legitimate certificates for the S
is no guarantee for a high trust rate, because the trust views of the attacked entities

might lack additional positive experiences for this CA for other web services.

Attacker success probabilities

The success probability of A is evaluated based on the trust rate q of the CA from

which A obtained the fraudulent certificate. In the previous section it was shown,

after how many attacked connections the attack is detected on average. With the

use of the push service, A’s success probability depends on the number of attacked

connections and drops to zero once the attack is detected. Most important, this

bounds the absolute number of entities that can be successfully attacked independent

from the size of the target group.

In the user-centric setting without a push service, the success probability directly
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depends on q, while the success probability in the system-centric setting is 100%.

This is depicted in Table 5.4. The evaluation concerns the time period between the

issuance of the fraudulent certificate and its revocation, from which on the certificate

cannot be used for an attack in any setting. However, while a revocation of the

fraudulent certificate protects from the misuse of this single certificate, a warning

by the push service leads to suspending the CA, which means further fraudulent

certificates issued by the same CA will also be detected.

Setting: system-centric user-centric user-centric

with push

service

Success probab. 100% q qn

Table 5.4: Success probability for an attack depending on q reached by the CA that

issued the fraudulent certificate. n denotes the number of entities A has attacked prior to

this attack.

5.5 Conclusion

To conclude this chapter we summarize the results. Service providers for CA-TMS

realizing a reputation system and a push service for CA warnings were presented.

The services have been evaluated in terms of security and performance. It was

shown that the reputation system speeds up the information collection and thus the

bootstrapping by more than 50% while only minimally increasing the attack surface

by less than 1% compared to the strictly local information collection. Differences in

trust views resulting from the use of the reputation system fade out, the more evolved

a trust view becomes. This shows, that the reputation system fastens the evolution

of trust views while not changing their individual character. Traffic overheads are

kept at a low rate of approximately seven requests per month on average per user

of the reputation system. These requests are non-blocking and thus do not lead to

any delays during browsing.

The presented push service solves the problem of relying entities making decisions

based on outdated information in case a CA changes its behavior from trustworthy

to untrustworthy. It was shown that the presented detection mechanism is capable

to detect maliciously behaving CAs, even if a majority of relying entities already

trusts the CA in question. Moreover, the push service puts an absolute bound on

the number of entities that can be attacked until the attack is detected. A detection
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leads to an immediate warning of the relying entities and the elimination of the

threat. For our test group of Internet users, the analysis showed that there does

not exist a single CA which is trusted by at least 90% of the group members. This

illustrates the detection and attack prevention capability in practice. Even a trust

rate of 90% in the target group of the attack on average leads to a detection after 9

attacked entities.

In summary, the proposed service providers highly improve the user experience of

CA-TMS because of the speed-up of information collection and thus the prevention

of delays and the reduction of the dependence on external validation services. At the

same time, service providers impose strong security benefits by adding highly effi-

cient detection mechanisms for fraudulent certificates and the subsequent prevention

of attacks.
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In this chapter, we present a solution for the too-big-to-fail problem of CAs. This

problem refers to the impossibility to revoke the key (and the according certificate)

of a large CA, even if actually required from a security perspective. In public key

infrastructures, revocation of a certificate is required whenever a key needs to be

invalidated before the end of its validity period. For example, in order to prevent

misuse when a key was compromised. However, the revocation of a CA’s key subse-

quently invalidates all certificates that contain the revoked key in their certification

path. This in turn means, that all services using such an invalidated certificate

for authentication become unavailable until their certificates are exchanged by new

ones. In many scenarios, such a temporal unavailability of services is not acceptable

and thus, either requires that the revocation of a CA key is considerably delayed or

even completely avoided. In Chapter 3, it was shown that this behavior is a huge

problem in practice and leads to security flaws.

In Section 6.1, we present a solution to the too-big-to-fail problem of CAs. The

problem is solved with forward secure signature schemes (FSS). FSS provide a (par-

tial) chronological ordering of the signatures generated with one key. It is guar-

anteed, that even an adversary that compromises the key cannot manipulate the

ordering of previously generated signatures. This property allows to revoke a key

without invalidating former signatures, thus the unavailability of dependent ser-

vices is prevented. We provide the concepts and implementation details concerning

changes in the standard path validation and revocation mechanisms and protocols.

We show how to implement the solution in the Web PKI in Section 6.2.

In Section 6.3, the solution is evaluated in regard to practicality. For the evalua-

tion we use a reference implementation of XMSS [12], a hash-based FSS. It is shown

that our solution provides good performance and practical data loads by present-

ing runtimes as well as certificate and signature sizes. These are compared to the

standard setup where common signature schemes like RSA or (EC) DSA are used.

Furthermore, we compare our solution to an alternate approach based on time-

stamps and show that time-stamps are not a viable solution to the too-big-to-fail
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problem. Section 6.4 concludes this chapter.

The contributions of this chapter were published as parts of [B10]. The publication

covers the theoretical results presented in Section 6.1. This chapter extends these

results with implementation details and an evaluation regarding the practicality of

the solution.

6.1 Realizing CA revocation tolerance with forward

secure signatures

In Chapter 3 it was shown that the too-big-to-fail problem results from the implicit

revocation of all certificates that rely on a revoked CA certificate, i.e. that have the

revoked CA certificate in their certification path. To resolve this problem, revocation

of CA certificates and the according revocation checking must be realized such that

legitimately issued certificates stay valid despite a revocation of superordinate CA

certificates. This requires the possibility to securely distinguish between legitimate

signatures and such generated by an attacker who compromised a CA’s private

signing key. We call a PKI that realizes the property of preserving the validity

of legitimately issued certificates in the face of CA certificate revocations a CA

revocation tolerant PKI.

In the following, a CA revocation tolerant PKI is achieved by replacing the con-

ventional signature schemes used for certificate signing by forward secure signature

schemes (cf. Section 2.1.2) in combination with an adapted version of the chain

model for path validation. End entities further use conventional signature schemes,

such as RSA and (EC) DSA, to minimize the deployment efforts. For authentica-

tion purposes, one does not gain a benefit from using FSS because signatures are in

general verified in close temporal proximity to signature creation. An extension of

the CA revocation tolerant PKI to FSS also being used by end entities in scenarios

where non-repudiation is required is presented in Chapter 7.

An exemplary certification path given a CA revocation tolerant PKI realized with

an FSS is shown in Figure 6.1. In each certificate an FSS public key is certified

except for the end entity certificate. The signatures on all certificates are generated

using the FSS.

In the following, we present the solution in detail. First, it is explained how FSS

enable to securely distinguish between legitimate signatures and such generated by

an attacker. Then, fine grained revocation is presented, which makes use of the

FSS’ special properties during the revocation of a certificate. Finally, we present

the adapted version of the chain model for path validation.
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6.1.1 The chronological ordering of signatures

Recall that in FSS, as presented in Section 2.1.2, each signature is accompanied by

an index specifying the interval of the key pair’s lifetime in which the signature was

generated. By this index, the signatures are chronologically ordered. Concerning

signatures generated prior to a compromise, this ordering is immutable. Manip-

ulating the ordering would require the generation of signatures for past intervals.

This is prevented by the forward security property. Thus, given the index of the

interval in which a key compromise occurred, distinguishing between legitimate and

fraudulent signatures can be done by comparing indices. How to identify the index

of the interval in which the key compromise occurred depends on the way how the

intervals are defined for the used FSS. This is discussed in Section 6.2.2.

If the used FSS allows multiple signatures to be generated in one interval, the

ordering is only a partial ordering. For the signatures generated in the same inter-

val, fraudulent and legitimate signatures cannot be distinguished based on indices.

Therefore, FSS that evolve the key after each signature generation are optimal re-

garding this property. However, even for FSS that allow multiple signatures in one

interval, the number of signatures for which the origin is unclear is limited.

6.1.2 Fine grained revocation

The forward security property allows to handle revocation in a fine grained manner.

In case of a key compromise, the forward security property guarantees that all

signatures created prior to the compromise originate from the certificate owner.

So there is no need to render these signatures invalid. As all signatures contain

the index of the interval they were created in, the validity of the certificate is not

revoked in general, but only for all intervals starting from the interval when the key

was compromised. Given the compromise happened in the interval with index c, the

revocation starts at index c. A signature including index i is accepted as valid if i < c
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Figure 6.1: Examplary certification path in an CA revocation tolerant PKI with one

intermediate Sub CA
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and invalid if i ≥ c. Thus, a revocation of a certificate additionally has to include a

revocation index. How this can be realized with current revocation mechanisms is

shown in Section 6.2.2. For FSS which allow multiple signatures in one interval, fine

grained revocation invalidates all signatures whose origin is unclear. This may also

affect a limited number of legitimate signatures but is required to maintain security.

6.1.3 Adaptation of the validity model

The chronological ordering of signatures and fine grained revocation must be consid-

ered during path validation to realize a CA revocation tolerant PKI. An appropriate

validity model is given in Definition 6.1, which we call chain model for FFS with

time limitation. It is an adapted version of the original chain model combined with

properties of the shell model. Both were given in Definitions 2.1 and 2.3 in Sec-

tion 2.2.4.

For the definition let n ∈ N be the length of the certification path p = (C1, . . . ,

Cn). C1 is the self-signed certificate of the Root CA. Cn is the certificate of the

end entity. We denote by Ti(k) the starting date of the validity period of Ck and

by Te(k) its expiration date. Additionally, let Is(k) be the signing index used to

sign certificate Ck and Ir(k) a possible revocation index for certificate Ck. Further

let Ir(k) =∞ in case there is no revocation for certificate Ck. Note that Is(k) and

Ir(k − 1) are indices belonging to the same key pair. The revocation of end entity

certificates is done in the conventional way.

Definition 6.1 (Chain model for FFS with time limitation). Given all signature

schemes involved in the certification path are FSS except for the end entity scheme,

then a certification path is valid at verification time Tv if:

1. Cn is valid at verification time Tv: Ti(n) ≤ Tv ≤ Te(n) and Cn is not revoked

at Tv.

2. Every CA certificate in the path is valid at the verification time Tv: Ti(k) ≤
Tv ≤ Te(k) and not revoked for the signing index Is(k + 1) used for the subor-

dinate certificate in this path: Is(k + 1) < Ir(k) for all 1 ≤ k ≤ n− 1.

The adapted validity model is required, because the shell model, which is the

standard validity model in the Web PKI [83], does not allow the consideration of

a chronological ordering of signatures. The validity of all certificates in the cer-

tification path is evaluated at the time of signature validation and no individual

differentiation is made for the signatures that are verified along the certification

path. In the chain model, this is addressed based on the signature generation times.
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The chain model considers a certificate as valid if it is not revoked nor expired and

was issued before a potential superordinate CA certificate revocation or expiration.

As a consequence, subordinate certificates remain valid, even after the invalidation

of superordinate certificates. However, the original chain model (cf. Definition 2.3)

has a drawback. It allows signature validation at any point in the future. This

implies that the according revocation information for each involved certificate must

be stored for an indefinite time, because the time when a potential attacker makes

use of a compromised key cannot be controlled. However, in the Web PKI the

availability of revocation information is in general only guaranteed until the expiry

of the according certificate [81]. The chain model for FFS with time limitation re-

solves these issues. Certification paths are invalidated upon the expiry of one of the

included certificates, while revocations are handled in the fine grained manner as

described above.

6.2 Implementation in the Web PKI

In this section, it is shown how the Web PKI can be transitioned to a CA revoca-

tion tolerant PKI. We note that a standardization of the FSS itself is required to

allow interoperability. This standardization is not part of this thesis. However, we

highlight where standardization is required.

First the representation of FSS keys within X.509 certificates is explained. Then,

the adaptation of revocation mechanisms in order to cover fine grained revocation

is presented. Finally, we discuss necessary changes in path validation specified in

RFC 5280 [83] and give an overview over deployment efforts.

6.2.1 FSS and X.509 certificates

At first we consider the use of FSS in X.509 certificates. It is shown how keys

are represented and how this can be mapped to the requirements of FSS. X.509

certificates are specified in the abstract syntax notation version 1 (ASN.1)[96]. List-

ing 6.1 shows the ASN.1 representation of an X.509 certificate. There are three

fields, where signature algorithm and key information are stored in a certificate: the

signatureAlgorithm field and the signature and subjectPublicKeyInfo fields

within the tbsCertificate element. The first two fields are of type Algorithm-

Identifier and contain the identifier for the cryptographic algorithm used by the

CA to sign this certificate. Signature algorithms that are supported are listed in

[80, 105, 99]. However, it is explicitly allowed to support additional signature algo-

rithms.
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C e r t i f i c a t e : := SEQUENCE {
t b s C e r t i f i c a t e TBSCert i f i cate ,

s ignatureAlgor i thm A l g o r i t h m I d e n t i f i e r ,

s i gnatureVa lue BIT STRING }

TBSCert i f i cate : := SEQUENCE {
ve r s i o n [ 0 ] EXPLICIT Vers ion DEFAULT v1 ,

ser ia lNumber Cer t i f i ca t eSe r i a lNumber ,

s i g n a t u r e A l g o r i t h m I d e n t i f i e r ,

i s s u e r Name,

v a l i d i t y Va l id i ty ,

s ub j e c t Name,

sub jec tPub l i cKeyIn fo SubjectPubl icKeyInfo ,

i s suerUniqueID [ 1 ] IMPLICIT U n i q u e I d e n t i f i e r OPTIONAL,

−− I f present , v e r s i on MUST be v2 or v3

subjectUniqueID [ 2 ] IMPLICIT U n i q u e I d e n t i f i e r OPTIONAL,

−− I f present , v e r s i on MUST be v2 or v3

ex t en s i on s [ 3 ] EXPLICIT Extens ions OPTIONAL

−− I f present , v e r s i on MUST be v3 }

SubjectPubl icKeyInfo : := SEQUENCE {
a lgor i thm A l g o r i t h m I d e n t i f i e r ,

subjectPubl icKey BIT STRING }

A l g o r i t h m I d e n t i f i e r : := SEQUENCE {
a lgor i thm OBJECT IDENTIFIER ,

parameters ANY DEFINED BY algor i thm OPTIONAL }

Listing 6.1: X.509 certificate [83]

The subjectPublicKeyInfo field contains the public key, that is certified with

this certificate and additionally the algorithm to be used with the certified key. The

algorithm in the subjectPublicKeyInfo is as well of type AlgorithmIdentifier.

Thus, whether the CA’s signing key or the certified key is to be used with a FSS,

this is specified in the same way.

The algorithm identifier is used to identify a cryptographic algorithm using an OID

and optionally allows to specify parameters. These parameters may vary depending

on the algorithm.

There are two possibilities to specify parameters for an algorithm. Either they

are encoded within the OID of the algorithm as proposed in [101], meaning there is

a standard set of parameters for the given algorithm. Or, they are explicitly stated

within the parameters field of an AlgorithmIdentifier [83].

Thus, the use of FSS is covered by the X.509 standard and does not require

any changes. The FSS algorithm itself needs to be standardized and have an OID

assigned. This OID needs to directly identify the required parameters or, this stan-

dardization must include a definition of required parameters to be included in respec-

tive AlgorithmIdentifier fields in the certificate. For examples of such parameter
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sets please refer to [80]. Concerning FSS, the parameters might in particular include

the maximum number of allowed intervals for the certified key.

6.2.2 Adaptation of revocation mechanisms

CRLs and OCSP are the standard mechanisms to provide revocation information

as described in Chapter 3. Thus, it must be possible to provide a revocation index

within these data structures to enable fine grained revocation checking as described

in Section 6.1.2.

In general, a revocation of a certificate is published as a CRL entry within a CRL

or within an OCSP response. For the purpose to provide auxiliary data associated

to a CRL entry or an OCSP response, CRL entry extensions have been defined [83].

These can be included in the crlEntryExtensions field as part of an CRL entry

(cf. Listing 6.2) as well as into OCSP responses within the singleExtensions field

as shown in Listing 6.3 [104].

C e r t i f i c a t e L i s t : := SEQUENCE {
tb sCe r tL i s t TBSCertList ,

s ignatureAlgor i thm A l g o r i t h m I d e n t i f i e r ,

s i gnatureVa lue BIT STRING }

TBSCertList : := SEQUENCE {
ve r s i o n Vers ion OPTIONAL,

−− i f present , MUST be v2

s i g n a t u r e A l g o r i t h m I d e n t i f i e r ,

i s s u e r Name,

thisUpdate Time ,

nextUpdate Time OPTIONAL,

r e v o k e d C e r t i f i c a t e s SEQUENCE OF SEQUENCE {
u s e r C e r t i f i c a t e Cer t i f i ca t eSe r i a lNumber ,

revocat ionDate Time ,

c r lEntryExtens ions Extens ions OPTIONAL

−− i f present , v e r s i o n MUST be v2

} OPTIONAL,

c r l E x t e n s i o n s [ 0 ] EXPLICIT Extens ions OPTIONAL

−− i f present , v e r s i o n MUST be v2

}

Listing 6.2: CRL [83]
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Sing leResponse : := SEQUENCE {
cert ID CertID ,

c e r t S t a t u s CertStatus ,

thisUpdate GeneralizedTime ,

nextUpdate [ 0 ] EXPLICIT General izedTime OPTIONAL,

s i n g l e E x t e n s i o n s [ 1 ] EXPLICIT Extens ions OPTIONAL }

Listing 6.3: OCSP single response [104]

The definition of an according extension for the revocation index enables its X.509

standard conform transmission. Listing 6.4 shows an X.509 extension and the pro-

posed definition of the revocationIndex extension. An extension is associated

with an OID to identify it. Optimally, the OID should be a member of the id-ce arc

(2.5.29) for ISO/ITU-T jointly assigned OIDs for certificate extensions. The number

represented by the placeholder ‘XXX’ needs to be requested during the standard-

ization procedure.

Extens ions : := SEQUENCE SIZE ( 1 . .MAX) OF Extension

Extension : := SEQUENCE {
extnID OBJECT IDENTIFIER ,

c r i t i c a l BOOLEAN DEFAULT FALSE,

extnValue OCTET STRING

−− conta in s the DER encoding o f an ASN. 1 value

−− cor re spond ing to the extens i on type i d e n t i f i e d

−− by extnID

}

id−ce−r evocat ionIndex OBJECT IDENTIFIER : := { id−ce XXX }

RevocationIndex : := INTEGER ( 0 . .MAX)

Listing 6.4: Revocation index extension

The revocationIndex extension is to be a non-critical extension in order to guar-

antee backward compatibility. A client not supporting the extension would then

ignore it and consider the complete certificate as revoked.

The revocation index needs to be identified, when a certificate is to be revoked.

Considering a revocation because of a CA compromise, the identification of the

revocation index depends on the type of FSS. Either, the index depends directly

on the date of the compromise, or on the index of the last signature which was

legitimately generated with the compromised key. Therefore, the certificate owner

has to keep track of his key updates. In case of a CA, this can be done by logging the

last used index with the current date to a write once memory during key update.

Then, given the date of the key compromise, it is possible to determine the last

index used before the compromise.
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6.2.3 Adaptation of path validation

Given the revocation index is provided along with a revocation, the path validation

needs to be adapted such that the revocation index is evaluated during revocation

checking.

The implementation of the validity model given in Definition 6.1 only requires

minor changes of the path validation specified in RFC 5280 [83] in order to con-

sider revocation indices. Revocation checking is part of Section 6.1.3. Basic

Certificate Processing in RFC 5280. According to the shell model, in step

(a) (3), it is checked whether the certificate (called current certificate) is revoked

at the current time or not. In order to realize the chain model for FFS with time

limitation a differentiation between certificates that certify an FSS key and common

certificates needs to be done. If the current certificate certifies an FSS key, it must

be checked that the signature index extracted from the signature on the subsequent

certificate in the path is smaller than a potential revocation index. Otherwise it

must be checked that the certificate is not revoked at the current time.

This way, path validation is fully backward compatible and even certification

paths where CAs do not exclusively use FSS can be processed. In particular, this is

relevant when transitioning a PKI to a CA revocation tolerant PKI.

6.2.4 Deployment

For the deployment of a CA revocation tolerant PKI, the standardization of FSS is

required in order to ensure interoperability. This must happen before CAs can start

to employ FSS, as standardization is a preliminary for implementation on the client

side. The client applications (e.g. web browsers) have to support the used FSS

first. Otherwise clients become unable to verify certification paths once CAs employ

the new schemes. Given standardization has happened, the verification algorithms

of the FSS as well as the adapted path validation have to be implemented within

major libraries and crypto providers, as e.g. OpenSSL [167] and NSS [155]. Once

supported in major libraries, CAs can start to employ FSS for certificate issuance.

On the side of web servers, changes are only required if client authentication is

done based on certificates. Otherwise no changes are required due to the use of

conventional signature schemes for end entities. This in particular means, that no

changes in the TLS specification are required.
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6.3 Evaluation

In the following, the proposed solution is evaluated regarding practicality, which

includes the availability of an appropriate FSS. We show that the eXtended Merkle

Signature Scheme (XMSS) [12], a hash-based FSS, fulfills the requirements regarding

efficiency and security. Runtimes, key sizes and signature sizes are presented, which

show that a CA revocation tolerant PKI realized with XMSS provides good perfor-

mance and practical data loads in comparison to the standard setup with common

signature schemes like RSA or (EC) DSA.

6.3.1 eXtended Merkle Signature Scheme (XMSS)

Although our proposal works with arbitrary FSS, we propose to apply XMSS. It is

as fast as RSA and (EC) DSA although it is forward secure and it provides practical

key sizes. These are the major requirements for a practical implementation of a CA

revocation tolerant PKI. Furthermore, at the time of writing, the standardization

process for XMSS has already been started [91, 130].

Besides that, XMSS comes with additional properties that bring additional bene-

fits for the Web PKI besides solving the too-big-to-fail problem of CAs. We shortly

summarize the properties of XMSS. It is hash-based and thus a post quantum sig-

nature scheme. Furthermore, XMSS can be realized with any secure hash function.

For XMSS, an interval is hard linked to one single signature and the key is auto-

matically updated by the signature algorithm. In case of a CA, this allows the most

fine grained revocation handling that is possible.

Thus, the deployment of XMSS for the Web PKI brings the additional benefit

that an alternative to RSA (which is currently used by more than 99% of all CAs

for certificate signing [17]) is available once quantum computers are realized. Then,

RSA as well as (EC) DSA become insecure and an alternative must be available

anyway. Furthermore, XMSS brings the possibility to base security on different

mathematical problems without requiring different signature schemes by using dif-

ferent hash functions for instantiation. This allows diversity without the additional

standardization efforts for further signature schemes.

Furthermore, with XMSS the probability of a sudden breakdown caused by ad-

vances in cryptanalysis can be efficiently minimized [12]. On the one hand, it requires

minimal security properties to be secure, thus the break of harder properties can

be seen as an early-warning system. On the other hand, so-called hash combiners

(i.e. see [19]) can be used, such that the resulting combination is secure as long as

at least one of the hash function families is secure. Such a property is especially
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relevant, when considering end entity signatures requiring long term verifiability as

presented in Chapter 7.

The following evaluation is based on the efficiency of XMSS to show that the

realization of a CA revocation tolerant PKI is practical.

6.3.2 Practicality of the CA revocation tolerant PKI

To evaluate the performance of our solution, it is analyzed, where the use of an FSS

leads to computational overheads and additional data loads. Overheads may evolve

from the use of the signature scheme itself and during the transmission of keys. Thus,

we evaluate the performance of key generation, signature generation and verification.

Concerning data loads, differences to the current setup may evolve from certificate

sizes. The additional data resulting from the revocation index extension in CRLs and

OCSP responses is considered negligible as it consists of a single integer value. The

evaluation is based on [34], which provides an in depth analysis of the performance

of XMSS and different parameter settings. An excerpt of timings and key sizes is

presented in Table 6.1. The timings are measured with a C implementation, where

XMSS is instantiated with hardware accelerated AES (AES-NI) using 128 bit keys.

The bit security for XMSS deduced from known attacks is 128 bit in all cases. In

brackets, a lower bound on the provable security is given. Note that such proofs do

not exist for RSA and DSA. For RSA and DSA to reach a bit security of 128, a key

length of 4440 bit is required according to the heuristic of Lenstra and Verheul with

updated equations [48, 47]. A bit security of 128 is assumed to be secure until the

year 2090, which shows that the chosen parameter setting is suitable to be used in

the practice regarding security.

Signature generation and verification

For signature generation, and most important signature verification XMSS provides

better timings than RSA2048 and DSA2048. This performance gain would even be

stronger for longer key sizes in the case of RSA and DSA. Thus, XMSS provides a

performance gain during path validation.

Limited number of signatures and key renewal

With XMSS the limited number of possible signatures has to be considered. How-

ever, while this would be a drawback when XMSS was used by end entities during

a TLS handshake for authentication, in the case of certificate issuance this is no

hindrance in practice.
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t Timings (ms) Sizes (byte)

Alg. (*1,000) Keygen Sign Verify Secret key Public key Signature b

XMSS 1 55 0.24 0.07 804 596 2,292 128 (101)

XMSS 1 77 0.33 0.06 804 564 1,236 128 (88)

XMSS 65 3,505 0.41 0.07 1,332 788 2,388 128 (92)

XMSS 65 4,915 0.56 0.06 1,332 756 1,332 128 (82)

XMSS 1,000 56,066 0.52 0.07 1,684 916 2,452 128 (84)

XMSS 1,000 79,196 0.71 0.06 1,684 884 1,396 128 (78)

RSA 2048 - 3.08 0.09 ≤ 512 ≤512 ≤256 90-95

DSA 2048 - 0.89 1.06 ≤512 ≤512 ≤ 256 90-95

Table 6.1: XMSS performance for different parameter settings, instantiated with AES-

NI. Measurements on a computer with an Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz

and 8GB RAM. t denotes the number of possible signatures with one key pair. b denotes

the bit security, numbers in parentheses denote a lower bound on the provable security.

AES-NI is used with 128 bit keys. [34]

CA keys are exclusively used to sign certificates and CRLs. Thus, 1,000,000

possible signatures before a key renewal is required is considered sufficient. For

example, one of the most active CAs in the certification business has signed around

90,000 TLS certificates directly [5]. Assuming a yearly renewal of TLS certificates

and a weakly issuance of CRLs this implies that a CA can use its key pair for

more than ten years. For Root CAs and Sub CAs that do not issue end entity

certificates even one thousand signatures might suffice, as the number of Sub CAs a

CA issues certificates for is normally limited to a few tenth. Note that an extension

of XMSS, namely XMSSMT is available, that allows for a virtually unlimited number

of signatures [34].

Key generation timings are of limited relevance. XMSS key generation can be

performed in less than 1.27 minutes as shown in Table 6.1. Taking into account,

that this is only done once and it is an offline task, this does not interfere the use

of XMSS.

Certificate sizes

Assuming the parameters are encoded within the OID that identifies the signature

algorithm, the impact on certificate sizes by the employed signature scheme results

from the subject public key and the CA’s signature on the certificate. An XMSS

public key is only included within CA certificates. Depending on the respective

parameter setting, Table 6.1 shows that signature sizes are one to two kilobytes larger

than those generated with RSA or DSA, while public key sizes are at most doubled.
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Regarding certificate sizes this leads to a growth by 1-2.5 kilobytes. However, once

key sizes of RSA and DSA need to be increased to 4096 bit, this disadvantage

shrinks. We note that EC DSA would allow for shorter key lengths. However, less

than 0.3% of the trusted CAs of the Web PKI make use of EC DSA keys [17]. Thus,

EC DSA has no relevance for the comparison.

For an exemplary certification path that includes 2 Sub CAs, the data overhead

during a TLS handshake due to certificate sizes is approximately 3,524 bytes. Note

that the Root CA certificate needs not be transmitted during the handshake. This

shows that the use of XMSS for certificate signing is practical. The average size of

a web page listed in the Alexa Top 1 Million is 1.8 MB [9]. Thus, the additional

data due to certificate sizes on average would make up for less than 0.2% of traffic

overhead.

Hardware requirements

In [34], it has been shown that the use of XMSS does not require special hardware.

The timings presented above have been measured on a standard computer, and even

the applicability on a smart card has been shown.

The larger size of the private key in comparison to RSA or DSA is of minimal

relevance. It is only to be stored and used on the CA’s hardware security module,

which is unproblematic for the key sizes given in Table 6.1.

Organizational changes

Required organizational changes is another aspect which is important for the de-

ployment in practice. As the use of FSS for certificate signing simply requires the

exchange of the used signature algorithm, no procedural changes for certificate re-

quests and issuance are required. However, it should be noted that CAs must ensure

the appropriate update of the private key according to the specification of the inter-

vals of the key pair’s lifetime. Using XMSS, this is ensured by an automatized update

after each signature generation. However, as the correct key update is indispens-

able to achieve a CA revocation tolerant PKI deployment, this update requirement

should be reflected in the CAs’ policies and the approval of the implementation of

adequate measures should become part of regular security audits.

6.3.3 Comparison to time-stamping

An alternate approach to distinguish between legitimately and maliciously issued

certificates in the face of CA compromises is to add time-stamps by an independent
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trusted TSA. The time-stamping approach has been proposed to implement the

chain model in a secure way [6]. We shortly summarize, why time-stamps are not a

practical solution for the too-big-to-fail problem.

To implement the chain model based on time-stamps, a time-stamp for any cer-

tificate in the certification path would be required [6]. With this, for each certificate

it could be securely distinguished whether a certificate existed before a compromise

and thus can be considered as legitimately issued. However, the approach has serious

drawbacks and performance issues.

Firstly, the setup and maintenance of an additional and independent TSA infras-

tructure and the trustworthiness of the TSAs to apply the correct date and time is

required. The time-stamping service may be provided by a CA, however this CA

must be independent from the CAs in the certification path that is to be protected.

Otherwise, a compromise that invalidates the certification path also invalidates the

time-stamp. This means for each time-stamp in the certification path, an additional

certification path has to be verified to authenticate the TSA’s certificate. In the

best case when all CAs use the same time-stamping service, at least one additional

certification path has to be processed. However, this case is hardly imaginable with-

out highly limiting the flexibility of the PKI because the time-stamp needs to be

requested during or directly after the certificate issuance. This means, on the CA’s

side the certificate issuance processes would have to be adapted, as well as different

CAs would have to cooperate in order to prevent different TSAs for the protection

of one certification path.

Furthermore, besides the time-stamps, the additional certification path(s) have

to be delivered to the clients for path validation. Thus, the amount of transmitted

certificates as well as the efforts for revocation checking during the TLS handshake

would at least be doubled. The additional provision of time-stamps and independent

certification paths also requires the adaptation of current standards. Furthermore,

the independent paths need to be processed by the clients, requiring the adaptation

of path validation algorithms.

Finally, time-stamps relying on electronic signatures themselves face the same

problems concerning compromise and expiration as common electronic signatures

do. Time-stamps only defer the problem to the TSA infrastructure and do not solve

it. That is, upon the compromise of a TSA or any superordinate CA, the issued

time-stamps become invalid which then would require their renewal facing the same

problems as certificate renewal in case of CA compromise. All together, we deduce

that time-stamps are only a theoretical solution for the too-big-to-fail problem but

not applicable in practice to realize a CA revocation tolerant PKI.
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6.4 Conclusion

In this chapter, it was presented how to realize a CA revocation tolerant PKI using

forward secure signature schemes. The CA revocation tolerant PKI preserves the

validity of legitimately issued certificates in the face of CA certificate revocations. It

prevents the undifferentiated invalidation of all certificates that rely on a revoked CA

certificate and the associated unavailability of dependent web services. Thus, CA

certificates can be revoked in case of a compromise to prevent misuse by a attacker.

Moreover, due to the precise impact of revocation in the CA revocation tolerant PKI,

a certificate can even be revoked on suspicion of a compromise. It was shown, that

the Web PKI can be transitioned to a CA revocation tolerant PKI with minor efforts

once forward secure signature schemes are standardized. No organizational changes

are required, thus allowing a transition parallel to normal operation. All changes

can be realized fully backward compatible and are covered by current standards.

The proposal has been evaluated regarding practicality and performance. It was

shown that with XMSS an appropriate FSS is available, which in fact is currently

being standardized. XMSS allows the implementation of a CA revocation tolerant

PKI without limitations. The only drawback is slightly increased data loads during

the TLS handshake, while no special hardware is required and signature verification

speed can even be increased. The usability and the computational effort to use the

PKI services is equal to conventional signature schemes. Thus, the presented CA

revocation tolerant PKI is a practical solution to the too-big-to-fail problem of the

Web PKI.





7 Providing non-repudiation and long
term verifiability

Public key infrastructures provide the possibility to verify the authenticity of public

keys at the time the keys are being used. In the previous chapters, we have shown

how to maintain this guarantee in practice. However, digital signatures as used

today do not provide non-repudiation and long term verifiability. These properties

require additional mechanisms.

Conventional signature schemes such as RSA and DSA cannot guarantee non-

repudiation as there exists no possibility to distinguish between signatures generated

by the legitimate key owner or an attacker that compromised the key. This fact can

be exploited by the key owner to repudiate formerly generated signatures by pre-

tending that his key has been compromised. Long term verifiability has two aspects.

First it requires an alternate validity model, called the chain model. The second

aspect is the preservation of the security of signatures. Signature schemes become

insecure over time. Thus, in the future an attacker might be able to forge signatures

without knowing the according key. At that point, all signatures generated with

the affected signature scheme become insecure because of the indistinguishability of

legitimate and forged signatures.

Today, both problems are solved with time-stamps generated by time-stamping

authorities. Yet, this solution is costly and therefore has prevented the broad appli-

cation of digital signatures as a replacement for handwritten signatures so far.

In Section 7.1, we present a solution based on FSS, adopting the mechanisms used

in Chapter 6. Non-repudiation is achieved by preventing back dated revocation.

To do so, we exploit the chronological ordering of signatures provided by FSS. The

state of the signature key is securely tracked by a trusted third party. This approach

additionally allows reconfirmations for signature generations, e.g. similar to mTAN

as known from online banking, which prevent unnoticed key misuse. Long term

verifiability is addressed in Section 7.2. Firstly, FSS allow the application of the

chain model without time-stamps. The second aspect of long term verifiability



152 7 Providing non-repudiation and long term verifiability

is addressed with the use of XMSS, a hash-based FSS. We present possibilities

to prevent the sudden break down of the security of signatures based on special

properties of XMSS.

In Section 7.3, our solution is evaluated. The correctness is shown with a for-

mal PKI model. The efficiency is evaluated by comparing the presented solution

to the time-stamping based one. We evaluate data loads, runtimes and security

requirements in the different setups and show that the FSS based solution has clear

advantages. Section 7.4 concludes this chapter.

The contributions of this chapter were published as parts of [B6, B7, B8, B10].

7.1 Guaranteeing non-repudation

In this section we show how to achieve non-repudiation with FSS. First, an intro-

duction to the non-repudiation scenario is given and the difficulties are explained in

Section 7.1.1. Afterward, it is shown how to generally apply FSS for end entities in

Section 7.1.2 and the model for signature validation is presented in Section 7.1.3. To

eventually be able to guarantee non-repudiation, the secure tracking of key states of

end entities is required. This is solved with the Sign & Report approach presented

in Section 7.1.4. Finally, it is shown in Section 7.1.5, how to extend the Sign &

Report approach with a compromise detection mechanism using a reconfirmation

procedure.

7.1.1 Non-repudiation – motivation and problems

Over the past few years, the importance of e-business and e-government has been

steadily growing. More and more processes are handled online without physical

interaction. To guarantee for authenticity and non-repudiation in such processes,

digital signatures are used. Moreover, many countries allow to replace handwritten

signatures by digital signatures and consider these as legally binding [106]. This

theoretically allows to transfer many processes to the digital world that formerly

required a media disruption, e.g. in many countries applying for a bank account.

However, there are several hurdles that lead to a rather low adoption of digital

signatures as a replacement for handwritten ones over the past years.

Other than in authentication scenarios as considered in the previous chapters

where the validity of a signature is only to be checked once at the time of authenti-

cation, for use-cases that require non-repudiation the validity of a signature must be

provable as long as the signature is of any interest. In many cases, non-repudiation
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must be preserved for ten years and more by law, which also directly links to long

term verifiability covered in Section 7.2.

Now, there is a fundamental difference between handwritten and digital signa-

tures. While handwritten signatures are naturally bound to a single person, the

binding between digital signatures and a person is artificial and thus fragile. This

binding, which is provided by PKIs is only temporary, terminated either by expiry

of the certificate or its revocation. And this is where the non-repudiation property,

which is guaranteed by the digital signature in theory fails in reality if there are

no additional measures. The private key, required to generate signatures, can be

applied by anyone who knows it or has access to it, without any possibility to dis-

tinguish which signature has been generated by whom. And because in principle a

compromise is possible, a key owner can simply claim that his key was compromised,

ascribing the generation of signatures to an attacker and thereby repudiating valid

signatures. To prevent such a repudiation attack, a provable chronological order of

events is required and must be considered during signature validation. A signature

should then be verified as valid, if it was generated before a key compromise.

In the following we show how to establish a provable chronological order of events

and maintain non-repudiation based on FSS. The use of FSS enables us to get rid

of the drawbacks connected to the current solution with time-stamps.

7.1.2 FSS for end entities

In Chapter 6, it was shown how to employ the chronological ordering of signatures

given by FSS to prevent the invalidation of legitimately issued certificates upon a

CA certificate revocation. In this section, this mechanism is applied for end entity

signatures in order to prevent the invalidation of legitimately generated signatures

upon revocation of an end entity certificate.

Basically, the extension of the mechanism is achieved by additionally replacing

the conventional signature schemes used by end entities with FSS and realizing fine

grained revocation for end entity certificates analogously to Section 6.1.2.

However, in the case of end entities, the issue of triggering the key update algo-

rithm must be taken into account. Recall that on-time key updates are indispensable

to preserve forward security. The key update algorithm can either be called manu-

ally by the user, scheduled to run at the end of a certain time period, or be part of

the signature algorithm, depending on the way the intervals of the key pair’s lifetime

are defined.

For end entities, FSS where the periods are based on the number of signatures are

to be used. FSS based on the number of generated signatures have the advantage
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that key update can be performed automated, based on a counter contained in the

key holding device. The drawback is, that the key indices are not linked to real

time, which complicates correct revocation in practice. This is because the index

at the time of compromise must be traceable. Yet, this is achievable as shown in

Section 7.1.4.

In comparison, the key update problem of FSS where intervals are defined in terms

of time periods makes their application problematic. For these schemes, where e.g.,

one time period corresponds to one day, the key update algorithm must be triggered

periodically. This can only be automated on systems that have an internal clock

and that are active each time an update is necessary. On smartcards, which are the

common place to store end entity signature keys, a manual update is required and

thus does not allow any guarantees for on-time key updates.

In the following we assume an FSS that evolves the key after each signature

generation. With XMSS an efficient scheme of this type is available as shown in

Chapter 6.

7.1.3 Adaptation of the validity model

Extending the use of FSS to the end entity case requires a slight adaptation of the

validity model given in Definition 6.1 to also consider the end entity signature. The

adapted version is given in Definition 7.1.

For the definition let n ∈ N be the length of the certification path p = (C1, . . . ,

Cn). C1 is the self-signed certificate of the Root CA. Cn is the certificate of the

end entity. We denote by Ti(k) the starting date of the validity period of Ck and

by Te(k) its expiration date. Tv is the time of signature verification. Additionally,

let Is be the index used for end entity signature generation, let Is(k) be the signing

index used to sign certificate Ck and Ir(k) a possible revocation index for certificate

Ck. Further let Ir(k) = ∞ in case there is no revocation for certificate Ck. Recall

that Is(k) and Ir(k − 1) are indices belonging to the same key pair.

Definition 7.1 (Chain model for FFS with time limitation – signature validation).

A digital signature with index Is is valid at verification time Tv if:

1. Cn is valid at verification time Tv: Ti(n) ≤ Tv ≤ Te(n) and Cn is not revoked

for Is: Is < Ir(n) .

2. Every CA certificate in the path is valid at the verification time Tv: Ti(k) ≤
Tv ≤ Te(k) and not revoked for the signing index Is(k + 1) used for the subor-

dinate certificate in this path: Is(k + 1) < Ir(k) for all 1 ≤ k ≤ n− 1.
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This validity model still limits the validity of signatures to the validity periods

of the involved certificates to guarantee the availability of revocation information.

Thus, it does not allow long term verification which requires the time limitation to

be dropped. This will be considered in Section 7.2.

The application of FSS for end entity signatures solves the unintended invalidation

of legitimately generated signatures. However, the assumption of dishonest end

entities aiming at repudiating their own signatures leads to an additional challenge.

Namely how to guarantee the correctness of the revocation index. This is solved

with the Sign & Report approach presented in the following section.

7.1.4 Sign & Report

With the use of FSS for end entity signatures and the validity model given in Defini-

tion 7.1 legitimate signatures are not invalidated by a revocation, given the revoca-

tion index is correct. In order to guarantee non-repudiation, the PKI must ensure the

correctness of the revocation index. In particular, a PKI that offers non-repudiation

must not allow back dated revocation (for a formal proof refer to Section 7.3.1).

However, when considering the facets of back dated revocation there are different

security goals that contradict each other. This conflict needs to be resolved, and is

discussed in the following. Afterwards, we present the Sign & Report approach to

effectively prevent back dated revocation.

Back dated revocation

There are certain scenarios that require back dated revocation. Namely, whenever

it is possible that the signature key might get compromised and maliciously used

without being noticed immediately by the key owner. For example, consider a

classical setup for digital signatures where the private key is stored on the user’s

system (e.g., PC). Here, the detection of a key compromise may take some time

in which the attacker who stole the key may already have generated signatures.

Then, it is clearly impossible to prohibit back dated revocation because back dated

revocation is required to invalidate the signatures generated by the attacker before

the compromise detection.

However, as back dated revocation contradicts non-repudiation, scenarios with

such a (possibly large) gray phase must be excluded or the gray phase must be

eliminated by technical means. Therefore, the secret key has to be protected in

a way that prevents unnoticed compromises. A common solution that allows for a

minimal gray phase is to store keys on smartcards, trusted platform modules (TPM)

etc. Private keys are not extractable from these devices and can only be used when
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the according secret, such as a PIN, is known. This allows for the assumption

of immediate key compromise detection and subsequently the prohibition of back

dated revocation in the sense that an attacker is not able to immediately crack

the additional secret and thus use the stolen key before the key compromise, i.e.

disappearance of the key storage device, is detected. In Section 7.1.5 we describe

how the Sign & Report approach can be extended to explicitly support the detection

of illegitimate key uses. This further justifies the assumption of a marginal gray

phase, thereby eliminating the need for back dated revocation.

Sign & Report

To prevent back dated revocation, the responsible CA must know the current index

of an end entity’s key pair and be able to verify its correctness. To achieve this,

the Sign & Report approach for FSS is defined. The basic idea is that the current

index is reported to the CA after signature generation. This procedure enables the

CA to keep track of the signing index and prevent the key owner from back dated

revocation and repudiation of signatures. The index reporting protocol is presented

in the following. Recall that an FSS is applied that evolves the key after each

signature generation. Thus, each signature is directly linked to a unique index.

Index reporting protocol The index can be reported either by the signer or the

verifier. This might be chosen depending on the specific application. The first

case is desirable when the verifier is offline. However, then the signer needs to be

able to prove the reporting. This can be realized by a validity token obtained from

the CA and additionally serving as proof for the absence of a revocation making

additional revocation checking obsolete. In the second case, reporting can directly

be performed in one combined step during online revocation status checking and

would reflect the natural ambition of the verifier to obtain non-repudiation.

Figure 7.1 shows the protocol for the first case, but the adaptation to the second

is straight forward. After signature generation (Step (a)) the signature σ is sent to

the CA together with the message m and an identifier ID of the signer (Step (b)).

The ID can in particular be the certificate serial number of the signer’s certificate.

Recall, that in general, the hash of the message h(m) is signed instead of signing

m directly. If the signature scheme applied by the signer uses this initial hashing

only for compression, but it would also be secure to sign messages directly, then it

suffices to send h(m) to the CA in Step (b) instead of m. This conceals m from the

CA and in general prevents data overhead.

The CA checks the signature for validity (Step(c)) and generates a validity token
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CA Signer Verifier

(a) σ = Sign(sk,m)

(b)
ID,σ,m←−−−−−

(c) If Verify(pk, σ,m) and

(pk is not revoked):

generate proof π

(d)
π−−−−−→

(e)
σ,π,m−−−−→

(f) If Verify(σ,m) and

(g) (π is valid): accept

Figure 7.1: Index reporting protocol

π for the signature index contained in σ to confirm the logging. The signature

verification ensures, that the signer’s certificate is not revoked. Additionally, the

reporting as well as the confirmation of wrong index information is prevented. π is

sent back to the signer and subsequently transmitted (together with σ and m) to

the verifier (Steps (d)-(e)), who can now validate the signature and the token.

By the index, the validity token is bound to a specific signature. Thus, it can be

used for all future verifications without further online requests. Additionally, due to

the forward security, the token for a certain index i can serve as a validity token for

all preceding indices. Thus, if several signatures have to be validated, the logging

request can be aggregated to only one, by requesting the token for the highest index.

The validity token can be realized as (public key, index) pair signed by the CA. A

convenient realization is shown in the following.

Integration into OCSP The index reporting can be integrated into OCSP. The

OCSP standard allows extensions according to the extension model for X.509 cer-

tificates for OCSP requests as shown in Listing 7.1.

Request : := SEQUENCE {
reqCert CertID ,

s ing l eReques tExtens i ons [ 0 ] EXPLICIT Extens ions OPTIONAL }

Listing 7.1: OCSP (single) request [104]

The definition of an appropriate extension allows the reporting of a new signature

(index). The proposed definition of the indexReport extension is shown in List-

ing 7.2. The extension can then be included in the singleRequestExtensions field

of an OCSP request.
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id−pkix−ocsp−indexReport OBJECT IDENTIFIER : := { id−pkix−ocsp XXX }

IndexReport : := SEQUENCE {
messageValue BIT STRING,

s ignatureVa lue BIT STRING }

Listing 7.2: Signature index report extension

The extension is associated with an OID to identify it. Optimally, the OID should

be a member of the id-pkix-ocsp arc (1.3.6.1.5.5.7.48.1) for ISO assigned OIDs for

OCSP. The number represented by the placeholder ‘XXX’ needs to be requested

during the standardization procedure, which is out of scope of this thesis. The

extension contains the message m (in general represented by the hash value h(m))

in the messageValue field and the signature σ in the signatureValue field. The

signature index is contained within σ. The certificate and thus the signer’s public key

is identified by the CertID contained in the OCSP request. With this information,

the OCSP server can verify the signature and subsequently generate the validity

token.

The validity token π is the standard OCSP response containing good as certificate

status and the highest so far reported index for this certificate incremented by one

in the revocationIndex extension defined in Listing 6.4.

Note that the OCSP server needs to implement the index logging functionality

and requires access to the CA’s certificate database. Furthermore, there can exist

multiple OCSP responses for one certificate specifying different revocation indices

as long as the response contains good as certificate status. Once the certificate is

revoked, the OCSP response contains revoked as certificate status and the revoca-

tion index must not be changed anymore. However, even a response declaring the

certificate as revoked can serve as a validity token for lower signature indices due to

the forward security property of the signature scheme applied by the signer.

7.1.5 Incorporation of compromise detection

The Sign & Report approach makes it possible to monitor key usage and support

end entities in the detection of illegitimate key usage and trigger revocation. Thus,

the justification for immediate revocation can be strengthened. Compromise detec-

tion and the prevention of gray periods can be addressed by adding an additional

reconfirmation procedure for signature generation. Before confirming the logging of

the index, the CA can request a reconfirmation from the key owner. A possibility

to do so is to apply mobile transaction numbers (mTAN) as commonly known from

e-banking or similar to the usage presented in [B11].
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The protocol flow with reconfirmation is shown in Figure 7.2. In Step (c) a random

transaction number TAN is generated instead of the validity token π. The TAN is

sent to some out of band device (OOBD) of the signer, e.g. its smartphone (Step

(d.1)). The signer reads the TAN ∗ from the OOBD and then sends it back to the

CA if he indeed used his private key and wants to report this to the CA (Steps (d.2)

- (d.3)). Sending back the TAN ∗ reconfirms the will of the signer to report a new

index. If TAN ∗ sent back by the signer equals TAN sent by the CA, then the CA

generates the proof π and hands it to the signer (Steps (d.4) - (d.5)). The rest is

analogue to the protocol shown in Figure 7.1.

As the signer is actively involved into the logging process and is informed about

key usage via an independent channel, unintended key usage can be discovered.

Thus, undetected usage of the key is significantly less probable, and even such cases

can be detected, where e.g., the smartcard is left unwatched for a certain time span.

Even reconfirmation of the actually signed message can be realized. By sending

the message m in plain instead of its hash h(m) to the CA, m could additionally

be sent back and displayed on a smartphone for verification. A drawback of the

reconfirmation procedure is that it cannot be integrated directly into OCSP, because

OCSP is not designed for an interactive challenge response approach.

CA Signer OOBD Verifier

(a) - (b) as shown in Figure 7.1

(c) If Verify(pk, σ,m) and

pk is not revoked:

generate TAN

(d.1)
TAN−−−−−−−−−−−−−−−−→

(d.2) Display TAN ∗

to signer.

(d.3)
TAN∗
←−−−−

(d.4) If TAN
?
= TAN ∗

generate proof π

(d.5)
π−−−−−→

(e)
σ,π,m−−−−−−−−−−−−−−−−−→

(f) - (g) as shown in Figure 7.1

Figure 7.2: Index reporting with reconfirmation

7.2 Long term verifiability of end entity signatures

In this section, it is described how long term verifiability is achieved. First, in

Section 7.2.1, it is explained how the time limitation of the validity model presented
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in Definition 7.1 can be dropped in order to support long term verifiability. Then,

in Section 7.2.2, the second aspect of long term verifiability – the preservation of the

security of signatures – is addressed with the use of XMSS. We present possibilities

to prevent the sudden break down of the security of signatures based on special

properties of XMSS.

7.2.1 Chain model without time limitation

The chain model for FSS without time limitation is given in Definition 7.2. It allows

the verification of a signature independent from the verification time, thus allowing

long term verifiability. As mentioned in Section 7.1.3, the availability of revocation

information is a particular challenge, when considering the validity of signatures

upon the expiry of the certificates in the according certification path. So far, this

availability was indirectly ensured by the time limitation. As this is not the case

when the time limitation is dropped, the availability of revocation information is

added as an explicit requirement.

For the definition let n ∈ N be the length of the certification path p = (C1, . . . ,

Cn). C1 is the self-signed certificate of the Root CA. Cn is the certificate of the end

entity. Tv is the time of signature verification. Let Is be the index used for end

entity signature generation, let Is(k) be the signing index used to sign certificate Ck
and Ir(k) a possible revocation index for certificate Ck. Further let Ir(k) = ∞ in

case there is no revocation for certificate Ck. Recall that Is(k) and Ir(k − 1) are

indices belonging to the same key pair.

Definition 7.2 (Chain model for FSS – signature validation). A digital signature

with index Is is valid at verification time Tv if:

1. A valid revocation status is available for all certificates in the path p.

2. Cn is not revoked for Is: Is < Ir(n) .

3. Every CA certificate in the path is not revoked for the signing index Is(k + 1)

used for the subordinate certificate in this path: Is(k + 1) < Ir(k) for all

1 ≤ k ≤ n− 1.

Preserving revocation information

In order to allow long term verifiability valid revocation information must be avail-

able. In general it can be assumed that the initial verification of a signature is in

close temporal proximity to the signature generation. As the verifier is always in-

terested in obtaining a valid signature, he will never accept and store a signature



7.2 Long term verifiability of end entity signatures 161

without validating it. Due to this temporal proximity, the initial validation can

be performed according to Definition 7.1, thus guaranteeing the availability of re-

vocation information. To prevent the possibility of good statements for non-issued

certificates, non-repudiation scenarios should require that revocation information is

obtained from OCSP servers that respond with revoked to requests for non-issued

certificates. Such OCSP responders must include the extended-revoke extension

according to RFC 6960 (cf. Section 4.4.8 in [104]). For the end entity signature,

the validity token as defined in Section 7.1.4 is to be used. It directly states, that

the signature in question has been reported to the CA and the according certificate

is not revoked. Note that the signatures on the revocation information also need to

be verified. Thus, in case the CA delegated the provision of revocation information,

the according certificate must be stored in addition.

Then, the verifier can preserve the revocation information by storing it along with

the obtained signature and the signed document. Thus, path validation according

to Definition 7.2 is possible at any point in the future as long as the involved sig-

nature schemes are considered secure. This refers to the second aspect of long term

verifiability and will be addressed in the following section.

7.2.2 Preventing the sudden break down of signature security

Having solved the theoretical aspect of long term verifiability with FSS, in this sec-

tion we address the issue of signature schemes becoming insecure over time. This is

especially relevant in scenarios, where the validity of signatures and the authentic-

ity of stored data must be preserved over decades or even many generations. Many

such scenarios exist, for example digital records in land registers, medical data or

tax statements [B3, 66].

One major reason requiring preservation mechanisms for digital signatures is, that

cryptographic algorithms underlie an aging process. Because of continually growing

computational power and progress in cryptanalysis algorithms become weak over

time. Thus, in the future an attacker might be able to forge signatures without

knowing the according key. At that point, all signatures generated with the affected

signature scheme become insecure because of the indistinguishability of legitimate

and forged signatures. In practice, this aging process is counteracted with the adap-

tation of security parameters such as increasing the key lengths. The signatures

that already have been generated and whose security needs to be preserved, have to

be renewed whenever the employed parameters are about to become insecure. Re-

newal means, that existing signatures are signed together with the document by a

trusted third party using a secure signature scheme and parameters. For this aspect,



162 7 Providing non-repudiation and long term verifiability

a multitude of archival solutions exists that face this continuous aging of signature

algorithms [66].

However, there is another aspect. Signature schemes can, as any cryptographic

algorithm, suddenly become insecure. This happens, when unexpectedly an algo-

rithm is found that solves the underlying mathematical problem in an efficient way.

For example, once quantum computers can be built, all currently used signature

algorithms become insecure because quantum computers can solve the discrete log-

arithm and the factorization problem [62]. In such a case not only the parameters

need to be adapted, but the complete signature algorithm needs to be replaced.

Even more severe, if such a break happens unexpectedly, there might not be enough

time to maintain the validity of signatures with signature renewal.

With XMSS the probability of a sudden break down caused by advances in crypt-

analysis can be efficiently minimized. Being a hash-based signature scheme, XMSS

is constructed using hash function families as building blocks. In particular, the

construction of XMSS requires a second-preimage resistant hash function and a

pseudorandom function family. These two required properties are strictly weaker

security assumptions than collision resistance as discussed in Section 2.1.1. How-

ever, collision resistance is normally required from a hash function in order to be

considered as secure. Being a strictly harder security assumption, collision resis-

tance of a hash function is normally broken before there are attacks against the

second-preimage resistance or pseudorandomness. Thus on the one hand, the break

of harder properties such as collision resistance can be seen as an early-warning

system. Once an attack against collision resistance of an employed hash function is

available, there is still time for signature renewal.

On the other hand, so-called hash combiners can be used to replace the used hash

function family. Hash combiners use two families per property, such that the result-

ing combination is secure as long as at least one of the families is secure. There are

folklore hash combiners for these properties (i.e. see [19]). Denote the message input

of a function by m and the key input by k. Given two second-preimage resistant

hash functions h1, h2, the Concatenation-Combiner Hh1,h2
|| (m) = (h1(m)||h2(m)) is

known to guarantee second-preimage resistance, as long as at least one of the used

hash functions has this property. Similarly, for pseudorandom function families f1,

f2 the XOR-Combiner Hf1,f2
⊕ (k,m) = (f1(k,m) ⊕ f2(k,m)) is known to guarantee

for pseudorandomness, as long as at least one of the used functions has this property.

As these hash combiners themselves are (hash) functions, they can be easily plugged

into XMSS. So there is no need to use two different signature schemes to base the

security on two different mathematical problems. One only has to use two different

(hash) functions, based on different problems or with different constructions.
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With this approach, signatures stay secure even if one of the underlying primi-

tives becomes insecure which keeps enough time for signature renewal. Furthermore,

signature renewals have to be performed less often, only depending on the contin-

uous development of computational power and not on the anticipation of potential

breakthroughs in cryptography.

7.3 Evaluation

In this section we evaluate our solution. First, a formal PKI model is presented

that allows to model revocation and formally define non-repudiation. Within this

model, we prove the correctness of the Sign & Report approach and that it indeed

guarantees non-repudiation. The practicality to replace contemporary signature

schemes by XMSS has already been shown. Please refer to Section 6.3.2 for this

issue. The over all efficiency of our solution is evaluated based on a comparison

to the application of time-stamps, which is the current standard to provide non-

repudiation and long term verifiability [85, 86]. Data loads, runtimes and security

requirements in the different setups are evaluated and it is shown that the FSS based

solution has clear advantages.

7.3.1 The Sign & Report approach provides non-repudiation

In the following it is shown, that Sign & Report provides non-repudiation. To show

this, a new extension to the formal security model introduced by Maurer in [54] is

presented. In the analysis, CAs are assumed to be trustworthy and non compro-

mised. It is focused on non-repudiation, which is an issue concerning malicious end

entities. Following this assumption, the model only considers relations starting from

Sub CAs that sign end entity certificates. How to handle attacks against CAs such

that these do not invalidate legitimate signatures was presented in Chapter 6 and

integrated into the solution as presented in Section 7.1.

Formal PKI Model

The model by Maurer [54] was extended by Marchesini et al. [51] and Bicakci et al.

[10]. The model presented here is built upon [51] as they introduce a smooth notion

of how to handle time. We generalize their model in the sense that we do not depend

on real time, but allow any indexing that admits a chronological ordering. This still

includes the usage of real time information for indexing. While all former models are

static, meaning they model one snapshot of a PKI, we introduce transitions between
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snapshots of the PKI, making the model dynamic. Then, explicit definitions of

revocation handling and end entity signatures are added. This allows to discuss

non-repudiation using our model. Those parts of former models used to model a

web of trust are dropped.

A PKI is modeled as View of a potential user at a specific time t. A user’s View

is a set of statements. We define six different statements. Trust expresses the trust

in a (Sub) CA, obtained according to the higher hierarchy or by explicitly trusting

this CA. Cert says that the user has seen an end entity certificate of the respective

person. If a user has seen a certificate once, it remains in his view. The same holds

for Signature and Revoc, which model that a user has seen a document signature

or revocation information, respectively. Furthermore, there are two different Valid

statements, which model that a user is convinced of the validity of an end entity’s

certificate Cα,β,γ,ε or document signature Sζ,η,δ. These two Valid statements can

be inferred from other statements, using inference rules defined later. As we allow

transitions between views, every View is indexed with a time t ∈ N. Note that

indices used inside statements might be independent from the indices of the views.

We write Viewt for the View at time t and View if no specific t is needed.

Definition 7.3 (Statements). Let CA denote a (Sub) CA, E an end entity’s identity,

D a document and I a (time) interval. A Viewt = {stmt1, . . . , stmtn} at point in

time t consists of n ∈ N statements stmti. There exist the following six statements:

Trust(CA, I) denotes the belief that, during the interval I, CA is trustworthy for

issuing certificates, i.e. models the axiomatic trust in (Sub) CAs.

Cert(CA, E , i, I) denotes the fact that CA has issued a certificate for E at index i,

which, during I, binds E’s public key to the certificate.

Signature(E , D, i) denotes the fact that E has signed a document D at index i.

Revoc(CA, Cα,β,γ,ε, i) denotes the fact that CA has revoked the certificate Cα,β,γ,ε, rep-

resented by statement Cert(α, β, γ, ε), at index i.

Valid(Cα,β,γ,ε, i) denotes the belief that certificate Cα,β,γ,ε is valid at evaluation index

i.

Valid(Sζ,η,δ) denotes the belief that signature Sζ,η,δ, represented by statement Signature(ζ,

η, δ), is valid.

A statement is valid if and only if it is in the View or can be derived from it

using one of the inference rules defined below.
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Signature Validation Definition 7.4 gives the inference rules used to validate sig-

natures, i.e. derive valid for a Signature. The rules depend on the validity model

used for certification path validation, and are according to the chain model given in

Definition 7.2.

Definition 7.4 (Inference Rules). Statements can be derived from an existing Viewt

according to the following rules:

Certificate Validity ∀ CA, E , ir ≤ iv, ic ∈ I1, iv ∈ I2 : Trust(CA, I1),Cert(CA, E , ic,
I2), (¬Revoc(CA, CCA,E,ic,I2 , ir)) ` Valid(CCA,E,ic,I2 , iv)

Signature Validity ∀ CA, E , D, is ∈ I2 :

Valid(CCA,E,ic,I2 , is), Signature(E , D, is) ` Valid(SE,D,is)

Dynamization of the model So far the model is static. To allow the definition of

non-repudiation transitions between views are introduced. The transitions model

that new information enters a user’s View in form of certificates, signatures or revo-

cation information. Besides that, a user might trust a new (Sub) CA.

Definition 7.5 (Time & Transitions). Let Viewt be the View at time t and Viewt
trans−−−→

Viewt+1 denote the transition from Viewt to Viewt+1. Let CA denote a (Sub) CA, E
an end entity’s identity, D a document and I an interval. We allow the following

four transitions between views:

• Viewt
Sign(E,D,i)−−−−−−→ Viewt+1 adds Signature(E , D, i) to View.

• Viewt
issue(CA,E,i,I)−−−−−−−−→ Viewt+1 adds Cert(CA, E , i, I) to View.

• Viewt
trust(CA,I)−−−−−−→ Viewt+1 adds Trust(CA, I) to View.

• Viewt
revoke(CA,Cα,β,γ,ε,i)−−−−−−−−−−−→ Viewt+1 adds Revoc(CA, Cα,β,γ,ε, i) to View.

Derived statements are temporary. After a transition between two views, the

inference rules are used again, to obtain the full set of statements. With View we

denote the set of all statements that can be inferred from View. So, if stmt ∈ Viewt

it does not have to be the case that stmt ∈ Viewt
′

for t 6= t′. For example, if a

certificate gets revoked, Valid might be inferable beforehand but not after Revoc has

been added to the View.
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Non-repudiation and back dated revocation

Now, the classic non-repudiation definition [94] is given in the presented model. This

allows a more precise analysis of repudiation adversaries.

Definition 7.6 (Non-repudiation). A PKI offers non-repudiation if the following

implication is always true, even in presence of a malicious end entity that might

sign arbitrary messages, request new certificates and ask any CA to revoke any of

his certificates at anytime.

∀ i, t ≤ t′ : Valid(SE,D,i) ∈ Viewt ⇒ Valid(SE,D,i) ∈ Viewt
′
.

We briefly discuss the implications of this definition. The left part of the impli-

cation – Valid(SE,D,i) ∈ Viewt – implies that

{Signature(E , D, i),Trust(CA, I1),Cert(CA, E , ic, I2)} ⊆ Viewt

with ic ∈ I1, i ∈ I2 according to the previously given inference rules and definitions.

Furthermore, Revoc(CA, CCA,E,ic,I2 , ir) 6∈ Viewt for all I2 3 ir ≤ i. In other words,

three things must be in Viewt: (i) trust in the certification authority CA that issued

the end entity certificate for the document signing entity E , (ii) the certificate of

E that has been issued while CA has been trusted, (iii) a signature on the verified

document D that has been issued by the end entity E while his certificate has been

valid, i.e. was not revoked or expired. The right part of the implication only differs

in the time of inference of the Valid statement. Thus, everything above must hold

for all future points in time t′.

Accordingly, the goal of the repudiation attacker is to produce a valid document

signature Signature(E , D, i) such that there exists a point in time t′ where the sig-

nature is verified as invalid, after it has been verified as valid. Therefore, we define

back dated revocation and show, that its prevention implies non-repudiation and

vice versa in the chain model.

Definition 7.7 (Back dated revocation). Let Viewt be the View at time t and Viewt+1

denote the view after a transition. According to the revocation transition, back dated

revocation is defined as:

Viewt
revoke(CA,CCA,E,ic,I ,ir)−−−−−−−−−−−−→ Viewt+1, if ∃ Viewt

∗ 3 Valid(SE,D,is), with t∗ ≤ t ∧ is ≥ ir.

Theorem 7.8 (Non-repudiation ⇔ no back dated revocation). A PKI offers non-

repudiation according to Definition 7.6 if and only if it does not allow back dated

revocation according to Definition 7.7.
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Proof. ⇐: If there was a successful repudiation attack, then there must exist two

views Viewt ⊇ {Valid(SE,D,is),Trust(CA, I1),Cert(CA, E , ic, I2)} and Viewt
′ ⊇ {Trust(CA,

I1),Cert(CA, E , ic, I2),Revoc(CA, CCA,E,ic,I2 , ir)}, with t ≤ t′, ir ≤ is. As Valid(SE,D,is)

is contained in Viewt, it can not contain Revoc(CA, CCA,E,ic,I2 , ir). Hence, Revoc(CA,

CCA,E,ic,I2 , ir) must have been added later, which exactly corresponds to Definition

7.7.

⇒: If the PKI allows back dated revocation, the attacker is allowed to ask CA to add

Revoc(CA, CCA,E,ic,I2 , ir) with ir ≤ is to the Viewt
′
.

The Sign & Report PKI provides non-repudiation

Now the Sign & Report PKI is defined. Then, it is shown that it provides non-

repudiation.

Definition 7.9 (Sign & Report PKI). A Sign & Report PKI implements the model

defined in Section 7.3.1 replacing the abstract indices and intervals as described

above. Let R denote a trusted third party in the PKI, e.g. a CA, which is responsible

(and exclusively able) to issue the revocation of an end entity E’s certificate CCA,E,ic,I,

when requested by E. Whenever E generates a signature, the used key index i∗

is reported to R that stores i∗. On input of revocation request by E, R publishes

Revoc(CA, CCA,E,ic,I , i
∗ + 1).

We next show that a Sign & Report PKI provides non-repudiation, assumed that

the index reporting is secure.

Theorem 7.10 (Sign & Report PKIs provide non-repudiation). A Sign & Report

PKI as defined above provides non-repudiation according to Definition 7.6.

Proof. If the index reporting is implemented in a secure way, i.e. it is not possible

for an end entity to manipulate the reporting, back dated revocation is efficiently

prevented. This is the case, because the index used for revocation is greater than

any index used by this end entity before. The non-repudiation property follows from

Theorem 7.8.

7.3.2 Comparison to time-stamping

In this section we compare our solution to the common approach of time-stamping.

In Section 6.3.3, it was already shown, that time-stamps are inadequate to implement

a CA revocation tolerant PKI.

Therefore, the evaluation is focused on a time-stamping approach that only pro-

vides non-repudiation and long term verifiability, but no CA revocation tolerant PKI
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capabilities. Thus, the time-stamping approach is therefore inferior to the solution

presented in this chapter. During the evaluation, we assume that TSAs also use

conventional signature schemes. Basically, a time-stamp is added to an end entity

signature directly after signature creation. The time-stamp also includes the certifi-

cation path of the end entity certificate. The certification path must be included in

order to prove its existence at the time of signature creation, otherwise a later CA

compromise would necessarily invalidate the signature. As the time-stamp shows

the time of signature creation, back dated revocation of the end entity certificate can

be prevented by including the current time into the revocation, thus achieving non-

repudiation in the face of repudiation attackers. Note, that in general the approach

enables the validation according to the extended shell model (cf. Section 2.2.4).

The main drawback of the time-stamping approach is, that the TSA must be

independent from all CAs involved into the certification path in order not to be

affected in case of a CA compromise. Thus, the setup and maintenance of an

additional and independent TSA infrastructure and the trustworthiness of the TSAs

to apply the correct date and time is required. This independent infrastructure is

not required in the solution based on FSS, as the forward security guarantees for the

validity in case of CA compromises. In Section 7.1.4, it has been shown that even

the index reporting can conveniently be integrated into the OCSP infrastructure.

Considering the validation of signatures, the independence requirement implies

that for the verification of time-stamp signatures at least one additional certification

path has to be processed. This doubles the runtime for signature validation. The

FSS based solution does not introduce additional overhead for signature validation

as shown in Section 6.3.2. The verification of the validity token is included in

revocation checking as shown in Section 7.1.4, which is necessary anyway.

During signature generation, an additional online request to the TSA to generate

the time-stamp is required. Such an online request can be completely omitted in the

FSS based solution, if the verifier reports the signature during revocation checking.

If the index reporting is realized by the signer, the online request during signature

validation can be saved because of the provision of the validity token. Besides that,

in the TSA solution signer and verifier need to agree on a TSA which is trusted by

the verifier, while the FSS based solution is covered by the anyway trusted CAs.

Considering the data that has to be stored for future signature validations it

is comparable in both cases. The TSA approach requires the storage of the two

signatures (the document signature and the time-stamp) as well as two certification

paths and related revocation information. The FSS based solution comes with only

one signature and one certification path however increased signature and certificate

sizes (cf. Section 6.3.2). But, compared to the validity token the storage of the
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time-stamp is critical. If it is lost, the proof of existence of the signature is lost and

can only be renewed for a later point in time. For a validity token, this is not the

case as it can be obtained anew by requesting the revocation information (at least

as long the end entity certificate has not expired).

This also shows a further issue with the TSA approach. Time-stamps relying

on digital signatures themselves face the same problems concerning compromise as

common digital signatures do. Upon the compromise of a TSA or any superordinate

CA, all issued time-stamps become invalid and the proof of existence is lost. Thus,

requiring the renewal of time-stamps which can only be made at a later point in

time if no additional measures had been taken to guarantee the legitimacy of the

time-stamps themselves.

For the long term preservation of signatures beyond the time when the involved

signature algorithms might become insecure both solutions require archival systems.

We refer the reader to [66] for an overview on common solutions. Basically, common

solutions also apply time-stamps with up to date signature schemes. Such archival

solutions are not covered in this thesis, we only remind the reader that the applica-

tion of XMSS can protect from the sudden and unexpected break down of signature

security as presented in Section 7.2.2. This is especially relevant for defining the

frequency of repeated time-stamping.

7.4 Conclusion

In this chapter, it was presented how to achieve the non-repudiation property and

long term verifiability for end entity signatures. This was realized by extending

the mechanisms presented in Chapter 6 for the implementation of a CA revocation

tolerant PKI to the end entity case. FSS were employed for end entity signatures.

Together with tracking key states of end entity keys, non-repudiation can be guar-

anteed without any need for an additional trusted third party. This makes the

presented solution clearly superior to the time-stamping based solution. Other than

this, our solution comes with virtually no overhead as even the tracking of key states

can be integrated into the revocation checking. Furthermore, it allows for a conve-

nient integration of an additional reconfirmation step to detect compromises of end

entity keys and to improve the overall security. In the evaluation, the existing formal

models for a PKI have been extended such that it became possible to describe the

non-repudiation property. The model was then used to prove the correctness of the

presented solution.

Long term verifiability is achieved as FSS support signature validation according
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to the chain model in a natural way. Besides that, the use of XMSS allows to prevent

the sudden break down of signature security by basing the security on different

underlying mathematical problems. This helps to minimize efforts in scenarios were

signatures have to be archived for indefinite time periods and provides protection

against sudden advances in cryptanalysis.



8 Conclusion

In this thesis we introduced CA-TMS to realize user-centric CA trust management

for the Web PKI. Further we have shown how to combine FSS with today’s PKIs

in order to first build a CA revocation tolerant PKI, and second to establish non-

repudiation as an inherent guarantee provided by PKIs.

For our proposed solutions the efficiency and practicality has been evaluated. The

results have shown that the solutions are ready to use. As non of the proposals re-

quires fundamental changes in the PKI processes, they can be implemented parallel

to normal operation. Furthermore, none of the solutions requires broad deployment

to be effective. CA-TMS, for which we provided an open source implementation, be-

ing installed on a single computer already protects that relying entity from malicious

CAs. The use of FSS within PKIs solely requires that client systems do support the

FSS. For deployment in the Web PKI standardization of the FSS is a preliminary.

However, the expected benefits justify this effort.

CA-TMS reduces the attack surface by more than 95% for an average relying

entity, thus providing protection from attacks based on fraudulent certificates. Other

than existing solutions, CA-TMS on the one hand is dynamic and adapts to the

changing requirements of a relying entity using certificate reconfirmation if it lacks

sufficient local information for decision making. On the other hand, reconfirmations

are only required for a small fraction of a relying entity’s TLS connections, namely

for approximately 0.27% to 0.69%. This solves scalability issues and limits the

overhead as well as possible delays due to reconfirmations. We have also shown, that

the user-centric data collection enables continuous revocation monitoring where for

all certificates relevant to a relying entity the revocation status is at least checked

once a day. It turned out that the expected load on OCSP servers is in the same

range compared to online revocation checking as used today. The introduced service

providers are an optional extension to CA-TMS. While providing valuable additions,

these service providers are no preliminary for CA-TMS to work. By the realization

of a reputation system, bootstrapping can be speed up by more than 50%. The

individuality of trust views is preserved such that the use of the reputation system
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only leads to a minimal increase of the attack surface by around 1%. Additionally,

we have presented a push service for CA warnings to deal with behavioral changes.

The related detection mechanism exploits the individuality of trust views and it

has been shown to be highly efficient. Even if 90% of the members of the group

of attacked entities trust the CA issuing the fraudulent certificates, on average this

still leads to a detection after 9 attacked entities. We remind the reader, that in our

test group of 64 relying entities, not a single CA achieved to be trusted by 90% of

the entities.

Further we have shown how to build a CA revocation tolerant PKI by the applica-

tion of FSS. The CA revocation tolerant PKI preserves the validity of legitimately

issued certificates in the face of CA certificate revocations. Thus, CA certificate

revocations need not be delayed but CA certificates can even be revoked on suspi-

cion of a compromise. A secure state of the PKI can be reestablished immediately

once a threat through a misbehaving CA or a CA failure has been detected. It

was shown, how to transition the Web PKI into a CA revocation tolerant PKI. The

performance analysis backs the claim that the proposed solution is practical and can

be implemented without limitations.

The mechanisms of the CA revocation tolerant PKI have been adopted for sce-

narios where non-repudiation is required. Non-repudiation was established as an

inherent guarantee provided by the PKI. This guarantee is preserved as long as the

used signature scheme is considered secure. This makes time-stamps obsolete, thus

saving the related overhead during signature generation and verification. The need

for time-stamps can be postponed until the natural aging of the signature scheme

makes a signature renewal necessary. In order to protect from unforeseeable develop-

ments and the sudden break down of signature security we have presented solutions

based on hash-combiners, given XMSS is used as signature scheme. This ensures,

that there is always enough time for signature renewal in scenarios were long term

verifiability is required beyond the lifetime of the signature scheme itself.

Future work Still, there are several challenges and interesting research topics re-

lated to this thesis. One refers to the use of validation services for certificate recon-

firmations, which is currently solved by the use of certificate notaries. While working

good and in combination with CA-TMS the load on these services can be limited

to face scalability problems, there is one major drawback. Such services must be

operated by some third party which will always limit the number of such services.

However, once such systems are not niche solutions anymore, they themselves might

get the target of attacks. A more robust solution would be to integrate validation

services as an integral component of the web infrastructure. A first attempt into
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this direction has already been taken in [B1], where ubiquitous support of multi

path probing was proposed. Having millions of potential servers providing means to

reconfirm a certificate would significantly harden the system against attacks.

Also, compromise detection still is an issue and will be subject to future research.

While the proposed service providers have been shown to enable this, the information

must be fed back into the PKI in order to trigger revocations. Such processes

should be automatized. Furthermore, we think that means for certificate owners

to check their certificates from the outside are very important additions to a PKI.

Again, multi path probing, and public logs like Certificate Transparency can be

good starting points for future research.
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Appendix

Details on data sets extracted from browsing histories

Trust

View

Number

of hosts

Number of hosts assigned to CAs with trustworthiness

w/o RS with RS

full med min full med min

1 2 0 0 0 0 0 1

2 4 0 0 0 0 1 2

3 5 0 0 1 0 2 2

4 5 0 0 0 0 1 3

5 10 0 3 1 3 1 4

6 15 0 6 4 3 7 5

7 21 0 11 3 12 4 4

8 22 7 5 2 14 5 3

9 26 0 19 3 19 3 2

10 44 4 25 5 26 14 4

11 46 7 23 7 37 5 2

12 47 7 18 8 26 11 8

13 48 0 22 13 24 14 10

14 48 11 24 7 33 13 2

15 51 9 26 6 35 6 8

16 55 9 21 13 30 17 8

17 63 19 19 13 43 13 5

18 68 18 25 16 48 16 4

19 83 55 10 3 66 9 7

20 84 42 23 8 65 11 7

21 90 43 18 15 58 15 17

22 94 38 30 12 66 21 7

23 95 50 22 14 76 8 11

24 101 44 30 15 78 14 9

25 102 45 30 17 72 22 6

26 105 44 38 19 84 15 5

27 107 31 45 18 78 20 9

28 110 62 21 14 85 11 14
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29 134 53 48 20 101 22 9

30 144 99 22 13 118 19 7

31 151 86 37 16 113 30 8

32 152 88 40 13 131 12 7

33 157 78 47 15 110 34 13

34 166 96 39 21 131 18 15

35 176 125 25 13 146 15 14

36 178 93 62 13 119 46 11

37 180 72 75 21 129 37 6

38 181 93 68 13 156 18 7

39 202 123 48 14 158 26 8

40 203 137 46 7 173 15 11

41 218 134 57 20 176 25 13

42 240 160 49 18 191 34 10

43 255 168 58 15 208 30 13

44 278 213 37 15 238 26 7

45 281 188 71 19 249 24 8

46 330 245 54 19 275 39 8

47 340 236 77 15 291 33 10

48 341 233 78 21 262 60 13

49 341 233 71 19 273 53 9

50 347 278 38 19 299 33 10

51 351 256 64 23 283 49 13

52 371 267 80 15 329 32 8

53 388 275 81 19 328 37 12

54 400 289 84 20 326 64 7

55 419 337 51 19 355 46 11

56 463 392 50 15 424 30 5

57 466 384 60 14 425 32 5

58 475 395 55 13 438 29 7

59 506 425 61 15 455 41 8

60 532 447 54 22 483 37 8

61 540 453 59 21 491 37 8

62 604 517 65 13 543 47 10

63 639 535 76 17 575 49 5

64 1013 903 77 20 912 82 8

Table 1: Numbers of hosts and their distribution to CAs with different security

levels for different trust views.
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Trust

View

Number

of CAs

Number of

host signing

CAs

Number of CAs with trustworthiness

w/o RS with RS

full med min full med min

1 6 2 0 0 0 0 0 1

2 7 3 0 0 0 0 1 1

3 11 5 0 0 1 0 2 2

4 10 4 0 0 0 0 1 2

5 16 7 0 1 1 1 1 3

6 17 10 0 2 3 1 4 5

7 25 13 0 3 3 4 4 4

8 23 11 1 1 2 4 4 3

9 17 10 0 4 2 4 2 2

10 38 19 1 5 4 8 7 4

11 37 20 1 6 6 13 4 2

12 41 24 1 5 5 7 9 6

13 44 25 0 5 9 8 8 9

14 31 18 1 6 5 8 8 2

15 39 22 2 6 4 8 4 8

16 40 26 2 5 9 8 11 7

17 49 27 2 6 9 12 9 4

18 48 29 3 7 12 14 11 4

19 46 27 8 3 3 12 7 7

20 49 26 5 5 6 10 9 6

21 52 33 6 5 10 12 7 14

22 57 32 5 8 9 15 12 5

23 54 32 6 7 10 16 5 11

24 63 37 5 9 12 17 12 8

25 59 34 6 7 12 15 12 5

26 49 30 3 10 13 15 9 5

27 55 34 4 10 11 15 12 7

28 48 30 6 5 9 12 7 11

29 75 48 6 16 15 23 16 7

30 58 38 11 8 11 17 14 7

31 66 42 8 11 13 16 18 8

32 71 44 11 13 11 26 11 6

33 72 48 8 17 10 19 18 11

34 69 44 9 13 14 19 12 11

35 64 39 12 6 10 17 10 11

36 80 59 10 30 12 18 31 9

37 91 61 7 27 17 22 27 5

38 65 44 8 18 12 24 13 7

39 79 50 11 15 11 20 16 7

40 69 43 14 11 7 23 7 10

41 72 52 12 20 15 21 18 11

42 88 59 14 19 15 23 22 9

43 80 52 13 16 13 21 18 9
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44 93 60 22 16 11 29 19 6

45 86 57 19 21 14 36 16 5

46 94 66 22 18 16 30 21 7

47 89 59 15 21 13 27 19 7

48 97 73 17 32 15 24 33 10

49 114 79 20 29 16 31 35 7

50 83 56 21 10 15 25 18 8

51 112 80 22 33 18 31 34 10

52 90 62 18 25 12 32 22 6

53 108 73 21 28 13 32 23 9

54 113 83 23 40 14 33 42 5

55 105 71 26 22 14 32 25 8

56 79 54 25 18 8 34 15 3

57 95 65 26 19 12 36 20 5

58 104 68 28 20 11 39 22 6

59 103 70 29 25 11 36 26 6

60 111 74 30 19 17 40 24 7

61 109 74 31 21 15 41 22 7

62 103 76 29 29 11 35 30 7

63 132 91 33 32 15 46 31 4

64 138 98 45 33 13 47 41 4

Table 2: Numbers of CAs and host signing CAs and their respective trustworthiness.
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