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1 Introduction

Cold and ultra-cold neutral atoms in external traps have become a workhorse in modern atomic
physics and quantum optics. A key aspect of these systems is their high controllability, allow-
ing for investigation of fundamental questions as well as practical measurement devices with
unprecedented precision.

An important milestone on the way to controlling atoms in a trap was the development of laser
cooling. Noteworthy in this context are works of CHu, CoHEN-TANNOUDJI, and Puirrips [1-3] who
were awarded the NoBkeL prize in 1997. The major breakthrough in cold-atom physics, however,
was the experimental realization of Bose-EINSTEIN condensation in atomic gases in 1995 [4-6]
which was honored with the NoBeL prize in 2001, awarded to CorNELL, KETTERLE, and WIEMAN.
The theoretical concept of this exotic state of matter dates back to the early days of quantum
mechanics [7-9]. The availability of atomic condensates or ultra-cold atoms gathered a huge
amount of interest and the number of related scientific publications exploded. Among these,
many theoretical works closely followed experimental observations [10-16]. Basic results and
general overvies on the physics of Bose-EINSTEIN condensates are given in the books of PETHICK
and SwmitH [17], Prtevskir and STRINGARI [18], and the review article of DaLrovo [19].

In the first decade of the new millenium, bulk research interest shifted from the condensate
itself to sophisticated applications of it. Quite popular are systems of ultra-cold atoms in optical
lattices [20, 21] which constitute versatile simulators of various quantum systems. Moreovet,
condesates are brought in contact with another quantum-mechanical object like microscopic
cantilevers [22,23] or carbon nanotubes [24-28] to name but a few. These are used both ways:
to coherently manipulate, as well as to read out microscopic details of the contacted object. Last
but not least, in fact being the main focus of this work, cold atoms are utilized for building matter
wave interferometers [29, 30]. The availability of these devices, allowing measurements with
unmatched precision, opened possibilities for novel experiments on fundamental questions [31,
32]. These include, for instance, measurements of the gravitational acceleration [33] and tests
of the equivalence principle [34,35]. In this spirit, the QUANTUS collaboration! (Quantengase

unter Schwerelosigkeit) is working on platforms for studying cold atomic gases and matter wave
interferometers in micro gravity [36-39]. Therefore, a freely falling capsule in the ZARM drop
tower in Bremen (figure 1.1) is utilized as a host for experiments. Based on this, future plans
involve cold gas experiments during a parabola flight on a sounding rocket.

A particular advantage of eliminating external influences, like gravitational acceleration, is the
possibility of very long expansion times after releasing an atomic cloud from its trap. Numer-

1 http://www.iqo.uni-hannover.de/quantus.html
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(@) Tower from the outside (b) Tower from the inside

Figure 1.1.: ZARM drop tower in Bremen

ically simulating these scenarios, however, brings forth some challenges. A micrometer-scaled
initial distribution may expand over millimeters, requiring evaluation on grids that are finely
spaced and cover large areas at the same time. One solution of this problem is the scaling ap-
proach, describing the time-dependent state in a co-expanding frame [40-43]. The ray tracing
approach that is described and used in this work is based on a similar idea. The evolution of
distribution function follows trajectories in phase space. These constitute a coordinate transfor-
mation that converts the initial state into the evolved one.

In the first part of this work, we present the theoretical background for describing the physics
of atomic gases. The classical theory is discussed in chapter 2 while the quantum-mechanical
formalism is considered in chapter 3. Next, in the applications-part, we start with studying a
stationary solution of the nonlinear LiouviLLE equation in chapter 4. The latter governs the dy-
namics of phase space distributions. Thereafter, we examine the influence of micro-mechanical
objects (carbon nanotubes, fullerenes, etc.) on a condensate of atoms, using semi-classical
hydrodynamic equations. Finally, the last two chapters are dedicated to matter wave interfer-
ometry. We present a formalism for describing the evolution of phase space distributions through
an interferometer setup in chapter 6, before presenting a ray tracing formalism for simulating
matter wave interferometers in chapter 7.
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Theoretical foundations







2 Classical description of atomic gases

Since a great deal of this work is based on the classical or semi-classical description of atomic
clouds, we consider classical mechanics in this chapter, and its applications to atomic gases.
Classical mechanics, as being taught in undergraduate courses, is covered by many textbooks.
Among these, the undisputed standard is 'the GoLpsTEIN’ [44], comprising what could be called
common knowledge for physicist. Moreover, the book of ScHeck [45] elaborates on the geo-
metrical aspects of the subject and the contribution of ABranam [46] concentrates on required
mathematics. Especially important for this work, however, are the formal similarities between
classical and quantum mechanics. These are nicely exposed in the book of BarLescu [47].

Our presentation of classical mechanics is organized as follows. First we recapitulate basic
formulations and results of Hamiltonian mechanics in section 2.1. Using Lie-group formalism
[48], expressions are already reminiscent to what is familiar from quantum mechanics. The truly
striking analogies come about, when introducing distribution functions for classical ensembles
in chapter 2.2. Next, in section 2.3, we discuss the important special case of quadratic systems.
Nomenclature and results from this chapter will be used over and over again in the rest of
this work. Finally, we show how a system of interacting particles can be described by effective
few-particle distribution functions in section 2.4.

2.1 Hamiltonian mechanics

Consider a system of N particles moving through D-dimensional position space under the influ-
ence of an external potential V. In classical mechanics, the state of such a system is uniquely
described by DN generalized coordinates q = (qy,...,qpy) and their time derivatives q. We
leave the dimension of the problem D unspgciﬁed here because in addition to the realistic case
of D = 3 it is often instructive to discuss simple one-dimensional models, D = 1. Moreover, in
many cases, continuous symmetries may be exploited to construct effective models of reduced
dimension.

In order to systematically obtain the equations of motion, one starts with writing down the
LANGRANGE function of the system,

Lg, @) = T(@)—V(q), 2.1)

being the difference between kinetic energy T and potential energy V. Of course, this is not
the most general form of LANGRANGE functions one might encounter. For example, it does not
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describe the dynamics of charged particles in a magnetic field which would have required a ve-
locity dependent potential energy, V (g, q). The form written above is, however, general enough
to cover all systems that will be considered in this work.

Once the Lagrangian L(q,q) is known, one can calculate the generalized momenta as p; =
0L/3q;. Furthermore, the HamiLTon function is obtained via a LEGENDRE transform of the Lan-

GRANGE function,
DN
H(QJB):Zqz'Pi—L- (2.2)
i=1

It plays a central role in classical mechanics for generating time evolution. This is expressed by

HamILTON’S equations

~ O0H(q,p)
q; = T (2.3a)
Pi
_ 9H(g,p)
b= (2.3b)
q;

providing equations of motion. Its solutions are closed trajectories in the 2DN-dimensional
phase space which is spanned by generalized positions g; and associated conjugated momenta
p;- The entirety of all possible trajectories is called phase space flow. It may be represented
as a function ¢, mapping phase space coordinates at a certain time instance onto time-evolved
phase-space points at a later time instance, (q,p,t) — (¢’,p’,t') = ®(q, p; t;, t;). Alternatively,
grouping the 2DN coordinates together to form a compgsit_e phase spgcg vector z = (q, p), one
can express phase space flow by an operator S

2(6) = Z(t) = U (t1,6,) Z(t1), 2.4)

acting on elements of the 2DN-dimensional phase space. In general, this mapping is non-linear.
Clearly, the only case where phase space flow can be adequately represented graphically, is for
single-particle dynamics in one dimension, i.e. D =1, N = 1, which implies a two-dimensional
phase space.

A very useful characterization of trajectories is the action

S = J jdt L(g(t),g(t), t) (2.5)

that is accumulated along the solution (q(t),q(t)). It provides the notion of a length in phase
space. -

One central goal of classical mechanics (and any other theory) is to find expressions which
describe the behavior of quantities that are — at least in principle — measurable. These quantities

10



generally depend on all phase space coordinates. Obvious examples are the total energy, the
total angular momentum of the system or, simply, positions and momenta of individual particles,
q; and p;. All conceivable properties of a classical system can be described by real functions of
2DN phase space coordinates. They are called dynamical functions a(q, p). It is straightforward,
using HaMmILTON’s equations (2.3), to find the equation of motion for ;ny arbitrary dynamical
function to be

a=—{H,a} =—Z%a. (2.6)

We have used the Poisson bracket notation,

da b da db
b} = - 2.
ta, b} Z(aqiapi 3pi3qi)’ @7

to write the equation of motion (2.6) in a compact form. The action of the Poisson bracket
containing the Hamiltonian on dynamical functions a can be compactly subsumed into the Li-
OUVILLE operator . = {H,-}. It is similar to a first-order differential operator, i.e. it is linear and
satisfies the product rule.

2.1.1 Propagators and Lie group formalism

The evolution equation for dynamical functions (2.6) can be formally solved, writing

a(t) = % (to, t)a(ty), (2.8)
where we have defined the classical propagator as

D (ty, t) =e 7102, (2.9)

Note that we have tacitly implied the Hamiltonian to be independent of time. Abandoning
this constraint, the formal solution can be easily generalized, by replacing the product At &
with the integral fOAt dt &. For notational convenience, however, we ignore any explicit time-
dependence of the Hamiltonian in the current discussion. The operator % constitutes the phase
space mapping or phase space flow discussed above.

It is quite illuminating to consider some general mathematical properties of propagators. For
instance, every % that solves HAMILTON’S equation must satisfy the relations

(t,t) a(t) = a(t), (2.10)
U(t,ty) U(ty, t1) alty) = % (to, ts) alty). (2.11)
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In prose, the former expression (2.10) states the existence of a neutral element that leaves
subjected functions unaltered. It is the mathematical version of the trivial insight that system
properties should not change when evolving them for a vanishing time span. The latter relation
(2.11) says that subsequent application of propagators result in a composite propagator and,
vice versa, every propagator can be subdivided with respect to consecutive time spans. Both
features, (2.10) and (2.11), make the set of all % (t) with t € R a group or, to be more specific,
the Lie group of time translations of dynamical phase space functions. The privileged function
H is called the generator of the group.

Split operator approximation

If exact solutions are not available for a particular classical problem, one may exploit a specific
form of the Hamirron function to develop useful approximation schemes. Usually, the Hamil-
tonian is the sum of kinetic and potential energy, H(z) = T(p) + V(q), where the former only
depends on momenta and the latter only on positions. By virtue of the Liouvillian being linear,
it can be split accordingly into two parts, £ = £, + £,, also acting separately on positions
and momenta. This decomposition of the LiouviLLE operator can be utilized to draw conclusions
about the form of the propagator, being the operator exponential

U(t) = exp (—t(.ﬁT + ,‘2\,)). (2.12)

Indeed, operator exponentials like this have kind of a tradition in quantum mechanics [49].
Most famous in this regard is the Baker-CampBELL-HAUSDORFF formula (BCH) [48, 50, 51] for
joining the product of two operator exponentials into a single one. To third order, it reads

exp(A) exp(B) = exp (A+]§ + %[A,é] + %[A, [A,B]]+ 1—12[14, [B,B]]+ ), (2.13)

using the commutator [A, B] = AB — BA. An expression which is dual to BCH is the ZASSENHAUS
formula [50, 51], expanding the exponential of a sum of operators into a product of operator
exponentials,

exp(A+B) =exp(A) exp(B) exp(—3[A B]) exp (:[B,[A B]]+ t[A[ABI]) ... . (214

With this recipe, one can expand the compact propagator (2.12) into expressions that are po-
tentially more convenient for calculations. One prominent example of great importance is the
construction of higher order symplectic integrators for numerical propagation of Hamiltonian
systems [52]. To first order, for example, evolution about a small time span is approximately
given as

a

A > 1 > 1o
W(t)=e 4t e 29Vl Lrtea vt (2.15)

12



Canonical transformations

One particularly useful feature of the introduced group of transformations is the invariance of
the general structure of phase space dynamics. That is, if a(t = t;) satisfies HamiLToN’s equations
of motion (2.6) then so does % a(t; > t;). This structure preserving feature is however not
unique to time-evolution generated by H. In fact, every one-parameter group of transformations
defined as

{es‘% s€E IR} , ,‘éG a=1{G,a}, (2.16)

i.e. that is generated by an arbitrary dynamical variable G, leaves equation (2.6) invariant.
These structure preserving maps are called canonical transformations. In practice, they are often

used to simplify or facilitate the solution of dynamical equations.

2.1.2 Symplectic phase space notation

The insight that phase space is the appropriate frame for describing classical dynamics suggests
a formulation of HaMILTON’s equations in terms of a unified phase space vector z, instead of
treating positions and momenta coordinates separately. Defining z = (g, p)T, equation (2.6) is
expressed as o

a=(v,a)" JV,H
=—(V,H)" J V,aq, (2.17)

containing the matrix representation of the Liouvillian
$=(V,H)"JV,. (2.18)

In these expressions, we have used the matrix representation of the symplectic form [45, 46]

J= Ol (2.19)
-1 © '

with identity 1 and zero matrix © of the DN-dimensional space. It can be interpreted as a
metric in phase space which is skew-symmetric, JT = —J. Furthermore, considering a canonical
transformation z; — 2| = es‘%zi with transformation matrix elements U;; = Jz;/ az]’. it can be
shown that the identity

utJu=1J (2.20)

is satisfied. Beyond that, any matrix J is called symplectic if it satisfies condition (2.20). Note
that in general the transformation matrix U may depend on phase space coordinates. Only in
case of a quadratic Hamiltonian, U is associated with a linear map. We elaborate on quadratic
Hamiltonians in section 2.3.

13



2.2 Dynamics of statistical ensembles

The formalism discussed in the previous section is particularly suitable for describing single or
few particle physics with negligible inner degrees of freedom, i.e. point-like or rigid bodies.
However, considering macroscopic systems like crystal lattices or, in case of this work, atomic
gases, one is confronted with several practical and conceptual problems. Subsection 2.2.1 pro-
vides a brief qualitative discussion of these problems, motivating the quantitative treatment
in subsection 2.2.2. This will eventually lead to the concept of classical phase space distribu-
tions. The associated formalism bears some striking resemblances to the quantum mechanical
formulation which will be presented in the following chapter.

2.2.1 From microscopic to macroscopic

Macroscopic systems are many-body systems with an astronomically high number of con-
stituents. Even the clouds of cold and ultra-cold atoms that are produced in the laboratories
typically consist of 10%...10° atoms. Directly using the formalism of Hamiltonian mechanics as
presented in the last section, we would have to solve differential equations with an exorbitant
number of degrees of freedom. Neither analytical treatment, nor numerical computations are
possible in such a microscopic description, respecting every particle.

In addition to overburdening complexity, there is another reason to seek a more effective de-
scription. In any experiment, one starts with preparing an initial state. This means the system
of interest has to be controlled such that certain observables attain definite values. In terms of
dynamical functions as defined in the last section, this would imply to have precise control on
all particles, being able to reproduce a definite phase space configuration each time an experi-
ment is started. In practice of course, initial many-body states are not prepared by microscopic
control but rather by setting macroscopic conditions such as temperature, particle number, sys-
tem boundaries, trapping potentials etc. Clearly, these conditions do not determine a unique
microscopic configuration. They rather allow for a multitude of different configurations, each
having a certain probability. The entity of all possible realizations with their associated proba-
bilities is called an statistical ensemble. This way, we can assign a macroscopic observable to each
dynamical function by summing over all values of a(z) weighted with an associated probability
factor.

Besides, aiming for realistic descriptions of N-particle systems in three dimensions, we will
specify D = 3 in the following.

14



2.2.2 Classical phase space distributions

We want to cast the ideas formulated in the last subsection into a mathematical mapping from
the microscopic to the macroscopic world. Based on the dynamical functions a(z) living in
6N -dimensional phase space, their macroscopic pendants shall be given by

Ax) = f d®z a (x‘g)f(N)(g). (2.21)

The classical N-particle phase space distribution function f™)(z) = f®™)(q, p), which we have
introduced here, assigns a probability factor to each configuration. Thus, we require it to be

normalized,
J dNz FM(z) =1. (2.22)

Furthermore, being a probability distribution, f is positive for all phase space coordinates,
f®™(@)=o0.

An example for mapping (2.21) is the total energy. For the systems we are interested in,
the energy in terms of microscopic phase space coordinates is given by the Hamirton function
a(x|z) = H(z). The energy in macroscopic description is just the expectation value of H that
corresponds to a certain distribution function. Another example is the microscopic density of
point-like particles, represented by a distribution of delta peaks,

N
™9 (xlz) = > 5(x—x), (2.23)
i=1

where the vector x; that comprises those coefficients of z that describe the position coordinates
of the i-th particle. Clearly, this microscopic density is a highly irregular function, giving infinite
values for x = x; and zero in between. Its macroscopic pendant according to definition (2.21) is
the total particle number N, independent of a particular choice of the distribution f ™). Under
macroscopic density n(x), however, one usually understands the mean particle density at some
point in space. To this end, one can define a coarse grained density, avaraging expression (2.23)
over an extended area ./ in position space,

ﬁ(mic)(X|E): 1 fdgx’n(mic)(x+xllz), (2.24)
<1l J .,

with ||.«/|| denoting the volume of the area .. Now, if the spatial extent of .«/ is large enough
to cover many particles on average but at the same time far smaller than macroscopic length
scales on the order of, say, the system’s size, the macroscopic density defined as

n(x) = J d®z A (x]z) f M(2), (2.25)

15



is indeed a smooth function describing the particle density on macroscopic length scales.

Below, we will derive equations of motion for distribution functions using results from the
last section. Note however that the form of the initial distribution f, cannot be explained
with Hamiltonian mechanics in general. Arguments leading to particular f, usually involve
irreversible, i.e. non-Hamiltonian processes. A popular example for finding a distribution exclu-
sively with statistical arguments is the canonical ensemble [53]

exp (—5,7)

fl2)= [as exp (_ f;}))

(2.26)

valid for a systems in equilibrium with a thermal bath at temperature T. The BoLrzmaNN con-
stant is denoted kj.

Time evolution

Suppose we have prepared the system such that the initial dynamical function a can be written
as a(x|z, ty) = ay(x|2z). By definition (2.21), the corresponding macroscopic observable value at
initial time instance is

Ag(X) = A(x, t =0) = J 4z ay(xl2)f,(@). (2.27)

There are now two ways to formulate its time evolution.
First, making use of HawmiLTON’s equations, one may propagate the dynamical function
a(xlé, t) = Q}(to, t) aO(X|E)7 ertlng

Ax, t) = J d®Nz a, (x| @(t)g) fO(N)(g). (2.28)

This equation can be described as follows. The initial dynamical function a is expressed in terms
of a collection of phase space points {z}. As the system evolves, these points are displaced
according to the equations of motion, yielding a new dynamical function that emanates from
the old one by following the trajectories,

ay(x|z) = a(x|z,t) = q, (x| 022(0;). (2.29)
The associated weight factors fO(N)(g), however, remain constant in time. Thinking of the distri-

bution function f®) as the classical analog to the quantum mechanical state, this formulation
corresponds to the HEISENBERG picture of quantum mechanics, i.e., the states are constant while

16



the observables evolve in time. Therefore, one can call this approach the Heisenberg picture of
classical statistical mechanics.
The second alternative to formulate time evolution implies evolving distribution function and

constant dynamical functions. It can be derived by substituting the evolved coordinates,

= %(t)z. (2.30)

z —

| &

Being a canonical transformation, the Jacobian of the coordinate transformation described by
9 (t) = e~ is unity and thus the integral (2.28) can be transformed to

A(x, ) = J ANz ao(x12) fM (2 08). (2.31)

Indeed, we have expressed the time-dependent macroscopic observable value A in terms of a
constant microscopic observable a,(x|Z) and a time-dependent distribution function

FM,0) = (24 0z). (2.32)

This may be called the ScHRODINGER picture of classical statistical mechanics. It is of course
equivalent to formulation (2.28). Equation (2.32) suggests a palpable notion of phase space
dynamics. The values of a propagated distribution at certain phase space coordinates are given
by the initial distribution evaluated at the back-propagated coordinates. The latter follow the
solutions of HamiLTON’s equations as indicated by the propagator %/~ '. In analogy to the pre-
vious section, where we discussed the evolution of dynamical variables in phase space, the
time-dependence of the distribution function can also be cast into an evolution equation

fW) = (g, fN} = @ M), (2.33)

This is the famous LiouviLLE equation of classical statistical mechanics. It is equivalent to HAMIL-
TON’s equations. Moreover, the evolution of dynamical variables a, subject to HaMILTON’S equa-
tions (2.6), and the evolution of distribution functions f®), subject to LiouviLLE’s equation
(2.33), are generated by the same dynamical function, the Hamiltonian H. Mind, however, the
opposite sign comparing equations (2.6) and (2.33). This sign change also comes to attention
when comparing the equations of motion in the HEISENBERG picture (2.28) and the SCHRODINGER
picture (2.31). In prose, assume we know the initial distribution and want to compute its value
for a certain phase space configuration at a later time. We can either (i) propagate the whole
distribution forward in time via LiouviLLE’s equation (2.33) and plug in the desired point, or
(ii) we take the phase space configuration we are interested in, propagate backwards in time
utilizing HamirTon’s equations (2.3), and look up the value of the initial distribution at the
back-propagated phase space point.

The equivalence of Hamiltonian and Liouvillian holds only in case of conservative systems.
While the former only exists for conserved total energy, it is possible to introduce generalizations
of the Liouvillian, describing dynamics of non-conservative, e.g. dissipative, systems.
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2.2.3 Moments and cumulants

Rather than explicitly writing the distribution function, it is often convenient to characterize f
by small set of numbers. This may be achieved by calculating the moments of the distribution,
given by

6N
(zm) = J dVz | [2m £ (@), (2.34)
n=1

where we have used tuple notation with m = (my, ..., mgy). We may include the special case

(z;) = J dz 2, f (2), (2.35)

simply yield the expectation value of the quantity z;, for example the mean position or mean
momentum of a single particle along a certain axis. In addition to that, second moments,

(zi7;) = J dVz z;z; f (2), (2.36)

also contain information about the width of the distribution.

Efficiently describing distribution functions by a minimal set of numbers is best realized by
considering the characteristic function and its expansion into cumulants [54]. The characteristic
function is defined as Fourier transform of the distribution,

P(s) = <exp(i§T§)> = f d®Ng exp(—ing)f(g). (2.37)

Expanding the logarithm of ¢ into increasing powers of s, the cumulants <<§m>> are given as the

expansion coefficients,

1
— M
ng()= > ™ > — s (), (2.38)
M=1  |m=M &
with |m| = m; + ... + mgy and m! = m; - ... - mgy. This expression cannot be inverted to yield a

general formula to calculate all cumulants. However, by simply comparing powers of s one can
express, for instance, the three lowest cumulants in terms of moments,

(=z:) = (=) (2.39)
(ziz) = (z:2;) — (=) (2;), (2.40)
(zizj21) = (zi2j21) — (220 (20) — (Zizic) (25) — (252000 (20) + 2(2:) () () - (2.41)
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The great advantage of the cumulant expansion comes from the fact that in many practical cases
either a limited number of cumulants contribute (cf. law of large numbers [53, 54]) or higher
cumulants cannot be reliably determined due to limited number of measurements. Hence, all
essential informations about a distribution are quite often covered by the first two cumulants.
Hence, we can approximate the characteristic function as

d(s)~exp [i > (z)si—3 > (=5)) s

i ij

=exp [i Z's— %§TC§] (2.42)
defining the vector

2= (z) = ((21), o (o)) (2.43)
and the matrix
(Bm) - (zem)

C=2(zz") =2 : : : (2.44)

(z126n) -+ (zenzon)

The distribution function associated with the characteristic function (2.42) is obtained by in-
verse FouRIER transformation, yielding a Gaussian in 6N dimensions

exp[—(z—2)TC ' (z—2)]
flz)~ N ) (2.45)

In the remainder of this work, we will write any Gaussian in the form of expression (2.45),
explicitly revealing its first two cumulants’. We call C the correlation matrix and z the offset
of the distribution. Expression (2.45) can be easily generalized to the D-dimensional case,
replacing the normalization factor (7 det Q)P /2 in the denominator of (2.45).

In many cases, Gaussian functions provide adequate (if not perfect) approximations to dis-
tributions that facilitate analytic treatment. They are therefore of great importance in a large
number of theoretical models. Some useful properties are presented in appendix A.

1 One might be bothered, by the factor of two in the definition of matrix C in (2.44) and the consequential

absence of the factor 1/2 in the exponent of expression (2.45). This complies, however, to most of the liter-
ature on quantum mechanical harmonic oscillators (see e.g. [55,56]) which write the Gaussian ground state
wave function in the form 1,(x) o< exp(—3x?/a2 ), with a?, = f1/(Mw). The factor 1/2 disappears when
calculating the absolute square, i.e. the position distribution.
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2.2.4 Special case: noninteracting particles

One of the simplest models utilizing classical distribution functions is that of an ideal gas of
N identical particles in an external potential. Discussing the distribution functions of a many-
particle system, it is convenient to subdivide the phase space coordinates along all degrees of
freedom, z = (2, ..., 2¢y ), into groups of coordinates belonging to same particles,

z2=1(2y,...,2Zy) with z; = (xi,pi)T, (2.46)

being the six-dimensional phase space coordinate of the i-th particle. This way, any N-particle
distribution is a function of N single-particle coordinates,

FM(2) = FN(zy, ..., zy). (2.47)

One elementary mathematical requirement for functions describing classical distributions of

identical particles is invariance under permutation of particles. It can be formulated simply as

N N
f( )(...,Zi,...,Zj,...)zf( )(...,Zj,...,zi,...).
Furthermore, neglecting interactions between particles, the Hamiltonian is written

H (E) =H kin(g) +H trap (g)

2
ZZ (213_]\14 + Vext(xi))

= h(z), (2.48)

where V,,, denotes the trap potential or, generally, the trap potential plus all single-particle
energies that may be involved in the system, e.g., gravity, superimposed optical lattices, etc.
Expression (2.48) is merely a sum of single-particle terms which means that the dynamics of
each particle is not influenced by the presence of the other particles. Since we require the
Hamiltonian to be also symmetric under particle permutation, all single-particle contributions
h(z;) are indeed the same function evaluated at different phase space coordinates. In this model,
loosely speaking, every particle evolves on his own, and thus one has to solve effectively a single-
particle problem. Nevertheless, inter-particle interaction does enter the model when preparing,
e.g., thermalized initial states. For the system to relax to thermal equilibrium, energy has to
be exchanged between the system’s constituents which is accomplished by mutual interactions.
In case of an ideal gas, however, these interactions are assumed to be weak enough to not
significantly influence the shape of the equilibrated distribution function or its dynamics. It is
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a powerful approximation for gases in a high temperature thermal state, where inter-particle
distances are huge compared to typical interaction lengths.

We now specify the LouiviLLE equation (2.33) for noninteracting distributions. In order to make
the notation in following calculations more compact, we use the symbol J; for differentiation
with respect to the momentum coordinates of the i-th particle while V; is exclusively reserved
for spatial derivatives,

(2.49)

Accordingly, the Hamiltonian (2.48) generates time evolution such that the distribution is sub-
ject to
p.
of ™ = Z(—Ml Vi + (ViVey) 3 )F M. (2.50)
As mentioned above, we effectively deal with a single-particle problem. Thus, the N-particle
distribution function f ™) is merely a product of N identical single-particle distributions,

N
fNzy,z) =] ] £ (2. (2.51)
i=1

Again, by virtue of permutation symmetry, all single-particle contributions can be expressed as
the same function evaluated at different coordinates. In this case, it is practical to work with an
effective single-particle distribution, defined as

f(z) = NJ d®z,...d%y fM(z,, ..., zy), (2.52)

instead of f™). Obviously, f is normalized to the total particle number N. The corresponding

LioUVILLE equation reads

of = —%Vf +(VVo)df. (2.53)

The effective single-particle distribution is a function of only two three-dimensional coordinates,
f®(x,p). The description of many-particle problems with single-particle distributions will be
discussed in detail in section 2.4.
The connection to the HEISENBERG picture can be drawn by considering the total time derivative

of the distribution df /dt. Plugging in equation (2.53) for the partial time derivative yields

df _ . .

E:(x—aH)-Vf+(p+VH)-af. (2.54)
Clearly, the round brackets vanish if Hamiiton’s equations (2.3) are satisfied. It implies that
the values of the phase space distribution remain constant along the trajectories generated by
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Hamiltonian dynamics. This notion can be expressed more manifestly by writing the solution of
(2.54) as

F(x,p, 1) = J d*x’ d®p’ 5(X(x,p,t) —x') 6(P(x,p, ) — ') fo(X, P). (2.55)

Here, we have utilized the coordinates of the classical trajectories, X and P, traveling backwards
in time, being solutions of HamILTON’s equations

. OH ) J0H
X = —_—, —P = —_—, 2.56
ap ox ( )
with initial conditions
X(x,p,0) =x, P(x,p,0) = p. (2.57)

This relationship provides the basis for our ray tracing approach formulated in chapter 7.

2.3 Quadratic Hamiltonians and examples

In this section, we examine systems that are described by quadratic noninteracting Hamiltoni-
ans. These are well suited for analytical treatment and will hence be used again and again in
the rest of this work to provide illustrative examples as well as benchmarks for numerical algo-
rithms. Moreover, classical trajectories that are associated with quadratic HamirTon functions
have been used extensively to describe semi-classical propagation of matter-waves [57,58].

In its most general form, a quadratic single-particle Hamiltonian is written

H(z) = % z'ANz+ Az (2.58)

The symmetric matrix A has real elements. Its associated bilinear form z'Az can be divided
into three parts, one that is quadratic in position, x' A, X, one that is quadratic in momentum,
pT/\pp p, and one that contains both to linearly, pT/\xp p. Clearly, A, corresponds to the kinetic
energy implying A = 1/M. Similarly, A, can be easily deduced from the quadratic potential.
Moreover, the linear term that is proportional to the real vector A covers linear potentials causing
constant acceleration of particles. With these definitions, HamILTON’s equations can be expressed

as

z=JNz+JA. (2.59)

It is a linear inhomogeneous ordinary differential equation of first order. With initial condition
z(ty) = z,y, equation (2.59) is solved [59] by an affine transformation

z(t) = Q}(t—to)zo = Ult—10)Z¢ + Z(t —t,). (2.60)
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The first part, Uz, is a solution of the homogeneous equation z = JAz while the second part, z,
is a particular solution of the inhomogeneous equation. Plugging this ansatz into (2.59) yields

evolution equations for the time-dependent transformation matrix and offset vector,

dy-Jau (2.61)
dt
d
—(U'z)=Uu"Ya. 2.62
n (U'z) (2.62)

For finding the second equation, one has to exploit the symplectic relation (2.20) to write the
inverse propagation matrix as U™* = JTUT J having the time derivative (d/dt)U™! = —U~tUU.
The first equation is readily solved by

Ute—t,) = eltt0lIA, (2.63)

while the second yields

t—to
Z(t—ty) = U(t—to)f dt’ Uy Ja (2.64)
0

In analogy to the abcd-formalism in geometrical optics [60], any propagation matrix can be
separated into four blocks, two that exclusively act on positions and momenta, respectively, and
two that mix position and momentum coordinates. One writes explicitly

u=(?" (2.65)
=2 ) .

Going from the HEISENBERG to the SCHRODINGER picture of classical mechanics, one also needs to
know the inverse of the propagation matrix,

7)) = U_l(t,.j)(zuj) —AZ(tU)). (2.66)

Using the symplectic relation (2.20) and the abcd-matrix expression according to equation
(2.65), the inverse propagation matrix can be written as

Ul=JTuTy= ( d _bT) (2.67)
- - T T : :
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Evolution of distribution functions

Since we assumed our quadratic Hamiltonian to be free of interactions between particles, we
may consider the effective single-particle distribution f as a representation for the system’s
dynamics. Knowing the initial distribution function f, at time instance t, = 0, according to the
HEISENBERG picture, its time-evolved version is given by

f(z,t)=fo (% 0)2) :fO(U_l(t)(z—E(t))). (2.68)

Although this relation is true for any distribution function, it is most convenient to consider

Gaussians. Suppose we write the initial distribution as

_ Tc—l
fo(z)=N exp (72 G Z), (2.69)

v médetC,,

with C,, being the correlation matrix (2.44). By virtue of the evolution being described by an

affine transformation, the distribution will remain Gaussian after propagating for a time span t,

exp[—(z—2z)" ;1) (z—Zw)]

f(z,t)=N : (2.70)
v/ modet Co)
The inverse of the time-evolved correlation matrix is given by
) =U"TuC U . (2.71)

Knowing the propagated distribution, one can calculate physical observables as integrals over
f times a dynamical function. Permanently reoccurring examples are position and momentum
density, n(x) = fd3p 1£(z), n(p) = fd3x 1 f(p) or distribution momenta (x™) = fd6z X" f(z).
In case of Gaussian distributions, the result of integration over some (not all) axes can again
be expressed with a Gaussian having an effective correlation matrix. The latter lives in the
subspace that has not been integrated. For example, being interested in the position density, we
divide the inverse phase space correlation matrix into four blocks,

A A
Cl=|[""* =P |, (2.72)
z A A

px pp

acting on position and momentum subspaces and mixing them, respectively. From C;r =C

follows A, , = AIX, Ap = Agp, and A,, = AIP. According to section A.2, the density can then be
written as
—\T ~—1 —
exp|(x—x) C "(x—x
n(x)=N it ) & ( )], (2.73)

v/ m3detC,
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with the inverse effective correlation matrix

-1 -1
T EAL—AGA, A (2.74)
A prominent example for Gaussian distributions is the preparation of a thermal state in a
harmonic trap potential V., (x) = (M/2)x' Q"x with temperature T. In this case, the initial
condition is given by the canonical ensemble (2.26) in a harmonic oscillator, obtaining

detQ?
2ntkg T

3
fo(z) =N ( ) exp[ by (MAT2x+ 2p2)]. 2.75)

Obviously, the phase space correlation matrix is

ZkBT —2
Co=| ™ & 0 _[Co O (2.76)
O  2MkgT 1 O Cho

The matrices that define distribution in the position and momentum subspaces are not indepen-
dent from each other. They are related by C,, = (M Q)2 C,,. Calculation of the density profile,
associated to the distribution (2.75), is straightforward. One obtains

M TQZ

3/2
_ Mdeth ok TX
ny(x) =N ( kg T ) e kB

X

(2.77)

Having a phase space correlation matrix of the form (2.76), we can directly use its “position
block” C,, to express the position density.

Expression (2.75) is referred to as MaxwEiLL-BorLrzmaNN distribution. Consequently, we call
(2.77) the MaxwEeLL-BorTzMANN density.

2.3.1 Free propagation

The most simple system is realized by a freely moving particle without inner structure. In the
absence of external potentials, the Hamiltonian is merely the kinetic energy, H = p?/(2M), and
consequently, HAmILTON’S equations read

(= —, 5 = 0. 2.78
X= 7 P (2.78)

In terms of the general quadratic Hamiltonian expressed in (2.58), we have

O O 0
(2) 2-(9)
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with 1 and O denoting 3 x 3 unity and zero matrix, respectively, and 0 being a vector of zeros.
Consequently, evolution is described by a matrix multiplication z(¢;) = U(;) z(¢,) with ¢; i=ti—t

(1 st
U(t)_((D L ) (2.80)

for which one finds

This matrix displaces only the position coordinate, with the displacement distance depending
on the momentum coordinate. The latter remain constant during evolution. Inverting the free

propagator U(t) means changing the sign of the time parameter,

N —3it
U (t) =U( t)—(@ 1 ) (2.81)

Thus, finding the evolved distribution is quite simple. We obtain

fx,p,t)=fo(x—pt, p). (2.82)

Geometrically speaking, it has been sheared in comparison to its preceding version. The phase
space flow is illustrated in figure 2.1.

Concerning the correlation matrix of Gaussians, we assume the initial distribution to be de-
scribed by C,, as given in (2.76). Consequently, applying prescription (2.71), the inverse of the
propagated phase space correlation matrix reads

c! — Lt
Clo= x0 o Mx0 i (2.83)
: ~1C0t Coo+3Co0 2

The corresponding effective correlation matrix in position space is found to be

2kgT
Co(8) =Cyo+ 178~ ¢2

1
:CXO + mcpo

=(]l +ta2) Cso- (2.84)

t2

It describes an isotropically spreading position density profile. This means that any initially
anisotropic distribution becomes isotropic as t — 0o. The spreading of a freely evolving density
profile can be conveniently pictured for one dimension. In this case, one replaces the correlation
matrix C, and the potential matrix {2 by the squared scalar-valued width oi and the squared
scalar-valued frequency w?, respectively. The time-dependent width,

o, (t)=V1+w2t2o,, (2.85)

is plotted in figure 2.2. On the other hand, the distribution in momentum space remains the
same. This means correlation matrix as well as center of mass are unaltered in momentum
subspace by free propagation, Cp(t) = CpO and p(t) = p(o).
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0
x

Figure 2.1.: Phase portrait of free propagation. Trajectories are parallel to the position axis.

Distributions, sketched with gray lines, are sheared.

o (t)
Jx0

Figure 2.2.: Time-dependent width of a one-dimensional Gaussian distribution in position space
according to equation (2.85). The initial state is confined in a harmonic potential

with frequency w. Dashed lines indicate the asymptotic limit o,.(t —» 00) = 0, wt.
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2.3.2 Linear gravity

Most systems that evolve without spatial confinement are not truly free but experience constant
acceleration by the earth’s gravity. Being sufficiently far from the gravity center, say at least the
radius of the earth, the potential is very well approximated by a linear term and the Hamiltonian
reads H = p?/(2M) + Mg x;. Here we have chosen a typical coordinate system in which the
gravitational acceleration is aligned with the x5 component. Ignoring the first two components,
we can discuss an effective one-dimensional system being described by

¢ = —, ) =—Mg. 2.86
X= p g (2.86)

Thus, instead of a six-dimensional phase space we consider a two-dimensional one with ele-

ments z = (x,p)". In terms of general quadratic Hamiltonians, we assign

0 0 0
(00) a(2)

which implies the evolution transformation z(:) = U() z(0) + Z(¢), including

U(t) = L w s 2 (2.88)
o 1) 9T\ Mgt/ '

Obviously the matrix part of the transformation is identical to free evolution. Consequently,
initial distributions are also sheared in the course of propagation. In addition to that, all points
are shifted along quadratic curves in phase space. An illustration of the phase space flow is
found in figure 2.3. Assuming an initial condition f;, at t, = 0 that is centered in phase space
around (x, p) = (0,0), the time-evolved distribution becomes

f(xap:t)sz(x_%t_%gtzn P+Mgt) (289)

Its mean momentum is p = —M gt while its mean position is X = —gt2/2. The shape and center
of evolved distribution function becomes more apparent when transforming to coordinates that

are centered at its mean position and momentum,

X(t)Ex—E(t):x+%gt2, (2.90a)
P(t)=p—p(t)=p+Mgt. (2.90b)
In this freely falling frame that is co-moving with the distribution’s center in phase space, one
writes
P(t)
FEX(0),P(t), ) = fo | X(£) —— =t, P() ), (2.91)

exhibiting only shearing of the initial distribution. Consequently, the time-dependent phase
space correlation matrix C,(t) is the same as in case of free propagation. That is, the width of
the distribution in position space expands, while its shape in momentum space remains constant.
The only difference to free propagation is translation of the center in phase space.

28



Figure 2.3.: Phase portrait of linear gravity. Trajectories are parabolas. Distributions, sketched

with gray lines, are sheared.

2.3.3 Harmonic oscillator

A very important system which is suitable for describing many confided systems is the harmonic

oscillator. Its Hamiltonian
2

_ P M 1t
H(x,p)—2M+ 2x Q“x (2.92)

comprises a quadratic potential, quantified by the real symmetric matrix Q2. In this case, HamiL-
TON’S equations are

X = —, y = —MQ?x. 2.93
X= p X (2.93)

In terms of expression (2.58) we write

MQ2 @) (0)
A= . A= . (2.94)
( O ¥ 0

Like in the equations of free evolution, we have no inhomogeneities A, and thus propagation is
described only by matrix multiplication, z(:;) = U(;)z(t). Here, U is a rotation matrix in phase

space,
Qt MQ)™! sin(Qt
ey = oS (M) sin(@e) (2.95)
—MQ sin(Qt) cos(€2t)
Hence, a propagated distribution that emanates from an initial function f,, reads
flx,p,t)= fo(cos(Qt)x —(MQ) tsin(Qt)p, MQsin(Qt)x + cos(Qt)p), (2.96)

again assuming the initial time instance to be t, = 0. The phase space flow is depicted in figure
2.4.
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T

Figure 2.4.: Phase portrait of harmonic oscillator. Trajectories are circles. Distributions, sketched
with gray lines, are rotated.

2.4 Effective few-particle distributions

In order to formulate a model which contains interaction between particles but is as simple as
possible, we add a two-particle interaction term to the Hamiltonian of trapped particles (2.48).
In doing so, one ignores processes with more than three particles involved. It is thus only valid
if the probability of such more-particle encounters can be safely neglected in comparison to the
occurrence of two-particle encounters. This is certainly true for very dilute systems. In contrast
to ideal gases discussed above, two-particle interaction shall have significant influence on equi-
librium distributions and dynamics. Turning to mathematical expressions, the Hamiltonian of

binarily interacting particles comprises three terms,
H == Hkln + Htrap + Hint' (2-97)

The first two terms are the kinetic and the trap potential energy, respectively, known from the
Hamiltonian (2.48) of the noninteracting model. As we mentioned above, they are simply sums
of single-particle contributions. On the contrary, the interaction term depends on all possible
pairs of position coordinates,

N N
1
Hine =5 > D, Vi, %,). (2.98)

i=1i#j=1

Of course, binary interaction between classical identical particles is symmetric under particle
permutation, Vi (X1,X;) = Vip(X9,%X;). Moreover we require V,Vi, (X;,Xy) = =V Vin(Xx1,%5),
where V; denotes the derivative with respect to the i-th particle’s position. This is an expression
of NEwToN’s third law, ’actio equals reactio’. Both of these symmetry requirements are met by
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constricting possible interaction potentials to Vi (x;,%X;) = Vi,(|x; —X5|). All contributions to
the Hamiltonian (2.97) are symmetric under permutation of particles.

Having defined the basic model Hamiltonian, we are now interested in the time evolution it
generates. The Liouvillian of equation (2.33) can be expressed as & = >.:((V:H)3,—(8,H)V,).
Since & is a linear operator, it can be decomposed into a sum of terms, £ = Lyip + Loyt + Lot
associated with the several Hamiltonians, Hy,, Hirap, and Hiy, respectively. First of all, the
single-particle contributions were already given above when discussing noninteracting particles.
In the following, they are abbreviated as

N

N
Giin+ Lo = ) (2 + (ViVad 2 ) = D (2.99)
i=1

i=1

Moreover, one can exploit the symmetry of the binary interaction to write the two particle
contribution to the Liouvillian as

Doy = ZZ(vvm)(a 3

i= 11;&] 1

— _Z Z e(mt), (2.100)

i=1i#j=1

In summary, the dynamics of a system of binarily interacting trapped particles can be expressed
as

atf(N)—Z(e += Z e(lm))f(’v) (2.101)

17&] 1

where the indices i and j denote on which particle the operators ¢ and 0" act. At first sight,
equation (2.101) is merely a rather cumbersome way to re-express LIOUVILLE’S equation (2.33).
Its profitableness lies in providing a good starting point for obtaining useful approximations to
the full N-particle LiouviLLE equation.
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2.4.1 Reduced distributions

We already showed that if the Hamiltonian comprises only single-particle terms, the N-particle
distribution is an effective single-particle function, given the initial distribution is also a single-
particle function. In the following, we present the systematic generalization of this idea to
effective few-particle distribution. First of all, note that any N-particle dynamical function a can
be expressed as

a(z, ..., zy) a<°>+Z a(z) + - Z Z a(z;,,2;,)

11 1117&12 1
1 N N
il a®
ot 5 Z Z (Zi> - 2 ) + ..
1121 11757515—1
1
o ma(N)(zl,...,zN), (2.102)

such that for every s = 1,...,N, the object a® is a function of no more than s phase space
coordinates and cannot be expressed in terms of functions depending on lesser variables. By
virtue of particle permutation symmetry, the s-th order term is a sum over the same function
a"®) evaluated at different arguments z,, ...,z,. Therefore, the above decomposition is merely
another (at first sight more complicated) way to express a. The true power of this approach
becomes evident when using it for the computation of expectation values. The latter are written

(a) = J d*z a(z) fM(2)

= J d®z,...d%y a(zy, ....zy) f N (zy, ..., zy)

== f dézl...d6ZN

(0)+Z a(z)+..+— Z Z (s)(zll, zZ; )+ ...

'11 1 i1 #.#i=1

x fMN(zy, ..., zy). (2.103)

Exploiting again permutation symmetry of all terms, the integrals of the sums simplify to

(a) =a(0)f d®z,...d%y fM(z,, ..., zy)

NJ d®z,...d%y aM(zy) FM(zy, . zy) + ...

NI

WJ d®z,...d%y a“(zy, ..., 2) f Nz, .o zpy) + oo (2.104)
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In the very first term, the integral is just the normalization condition of the distribution function,
which is chosen to be unity here, f d®Nz f = 1. The higher terms can be written more compactly
by defining effective s-particle distribution functions,

N!

() -
f (zl,...,zs)—(N_S)!

J d®z,...d%y fM(zy, ..., zy). (2.105)

We are now able to rewrite the expectation value of a(z) in a simple form that is reminiscent of
a scalar product [47],

N
1

(a) = Z s_'J dz,...d%, a¥)(z,, ...,z,) f S (zy, ..., Z,)
s=0 """

=a® + f d®z, aW(z)) fV(z)) + %f d®z,d%, a'P(z1,2,)f P(zy,25) +....  (2.106)

Being interested in single- or few-particle observables, one can terminate this expansion at some
order s. This idea is used again in the next subsection in order to simplify the equation of motion.

2.4.2 Time evolution and the BBGKY-hierarchy

Loosely speaking, the BBGKY-hierarchy [47, 61], named after BocoLiuBov, BORN GREEN, KIRk-
woob, and YVoN, is used to substitute a single equation of motion in a complex microscopic
function, like the LiouviLLE equation (2.33), by a series of equations in less complex functions.
In the current case of classical phase space distributions, the complex microscopic function is
the full N-particle distribution f ™, and the less complex ones will be the reduced distributions
f®) defined in (2.105).

Again, we assume a system of binarily interacting particles in external potentials described by
equation (2.101). Clearly, Hamiltonian dynamics leaves the norm of distribution functions un-
altered, o, f dNg f(N )(g, t) = 0. Furthermore, one can also show that the phase space integral
over the individual terms of (2.101) vanish, i.e.

J d6zi 2if(N)(zlj w2y, t) = O, (2.1073)

J d®s; d6zj @S.m)f(m(zl, v Zy, £) = 0. (2.107b)

These relations follow from GreeN’s theorem neglecting boundary terms. Mind that we can
safely neglect contributions from integration borders because we integrate over the entire phase
space and consider normalizable distributions only. With this result, the time dependence of the
reduced distribution function can be expressed as

N N
N! s 1 A
8 o, ) = sy J d%1-d%y D, 1 “5-; KE}“O f®zy, ). (2:108)
i= i#j=
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The first term, being a sum of single-particle expressions, is calculated straightforwardly. Utiliz-
ing equation (2.107a) and the definition of reduced distributions (2.105), one finds

(1st term) =Z@if(s)(zl,...,zs). (2.109a)
i=1

The second term contains the two-particle interaction Liouvillians. It can be further decomposed
with respect to indices.

* Both, i and j, are in {1, ...,s}. In this case, the associated contribution to the total Liouvil-
lian is calculated similar to the first term (2.109a). Using relations (2.107b) and (2.105),
we obtain

M= Z Z 10F Oz, ..., 2y). (2.109b)

i=1i#j=1

* The index i is in {1,...,s} while j isin {s+1,..., N} and vice versa. This implies

=3

i=1 j=s+1

S
N!
:Z N —9)] (N _S)J d®z,,;...d%y Kflfflf(N)(zl, o Zy)

f d6 Zs41 6513-?1 [(N (S + 1))' J d6Zs+2"'d6zN f(N)(Zl; -°~’ZN):|

=Zf d®z,,, KETPI F6(z,, . z00). (2.109¢)

(N _5)' J d%,..d%y LM F M (zy, ... 2y)

Going from first to the second line, we have again exploited the particle permutation sym-
metry of f@).

* Both,iand jarein {s+1,...,N}. Here, the associated contribution vanishes due to relation
(2.107b),

(1) = Z Z

i=s+1 l;é]—s+1

_s)l f d°%,;..d02y £ F M (zy, ..o zy) = 0. (2.109d)

Summing up all terms, the equation of motion for the reduced s-particle distribution is expressed

as

8.fO =2 | li+y Zﬁ“”” O = J a2y LT FCH0. (2.110)

i=1 l7é] 1
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So far, no approximation has entered the theory since the formulation of the Hamiltonian (2.97).
The evolution equation in terms of the reduced distribution (2.110) is fully equivalent to the
general LiouviLLE equation (2.33). The former is, however, not a single closed equation but a
hierarchy of N equations. The evolution of the reduced distribution of any order f© is coupled
to the next higher order f©*1) except, of course, on the highest rung of the ladder when s = N.
The explicit form of the three lowest orders are

2,f®=0 (2.111a)
[0 = 11]f Pen= J doz, 15, f P 2) (2.111b)
(8= — b= 155°) f Pz 2 = f doz (0359 +055°) fDtar ) (2.111¢)

The zeroth order equation (2.111a) is simply the norm conservation. Now, the subsequent
low order equations are truly beneficial if one is not interested in tiny details of the system or
many-particle correlation. This is especially true when discussing mainly macroscopic aspects
of a system. Consequently, one breaks the hierarchy by neglecting all orders except the lowest
few, say s < 2. This way, one obtains a closed system of equations in effective few particle

distribution functions ), containing all relevant information.

2.4.3 Effective single-particle distributions

A very fruitful application of the procedure presented above is the description of interacting
weakly correlated many-particle systems with single-particle function. This implies a breaking
of the hierarchy after the first (non-trivial) equation, neglecting orders s > 2. If we simply
set the next-higher order distribution f® zero, however, we ignore interactions completely
and would merely reproduce the result we have obtained for noninteracting systems in section
2.2.4. A more thorough examination of f® leads to proper inclusion of interaction effects
into the single-particle distribution f). Therefore we note that two-particle distribution can
in general be decomposed into a factorization of single-particle functions on one hand, and a

two-particle correlation function g® on the other,

FA(z1,2,) = FV(2)f V(zp) + £ P (21, 25). (2.112)

Likewise, three-particle distributions can be expressed in terms of single-particle functions, two-
particle, and three-particle correlation, as

f(S)(zl,zz,zg) = f(l)(z1)f(1)(zz)f(1)(z3)
+f(1)(zl)g(2)(221 Z3) + f(z)(zz)g(z)(zb Z3) + f(l)(z3)g(2)(z1, z,)
+8¥(zy, 25,23), (2.113)
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and so forth. An effective single-particle description is adequate if correlations between parti-
cles, quantified by g(®, are negligible. This way, we can write

fP(zy,2,) ~ f(21)f (2,), (2.114)

which indeed breaks the BBGKY-hierarchy. Aiming for expressions exclusively in terms of single-
particle distributions f (), we have omitted again the superscript, catering to our laziness. Only
for higher orders s > 2, we explicitly write f). The right-hand side of the remaining evolution
equation (2.111b) can now be written as

f 462, 109 (7, ,)
_ f 02, 99 (2,)f (2,)
_ f 82, (V3Vin) (32— 301 (2)f (25)

= [f d°z, (Vzvint)azf(zz)]f(zl)_ [J d®z, (Vzvint)f(zz)} 01f(z9). (2.115)

Utilizing GreEN’s theorem and neglecting boundary terms, one can see that the first term of
the last line vanishes. The second term, on the other hand, can be expressed as (V,V¢)df,
introducing the mean field potential

Vine(X) = J d*x, Vint(xlsx2)f(1)(22)° (2.116)

It is a functional on the single-particle function f which results in a position dependent potential
that adds to the external potential V,,,. Thus, recalling the explicit form of the single-particle
Liouvillian ¢, written in expression (2.99), the evolution equation for single-particle distribution
(2.111b) becomes a closed partial differential equation,

p _
[8t+MV—V(Vext+me[f])]f —o. (2.117)

In contrast to its microscopic pendant (2.33), it possesses a non-linearity. One may say that for
arriving at a closed equation, we had to pay the price of abandoning the linearity of microscopic
description. Equation (2.117) is well-known in the context of plasma physics as VLAsov equation
[47,61,62]. In that case, the two-particle interaction V;,, is given by the long-ranged CouLoms
potential. In case of neutral atoms, typical interaction potentials decay on very short length
scales. Below, we specify mean field evolution in the limit of infinity short-ranged interaction
potential.
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Energy functional

To every solution f of equation (2.117) corresponds a total energy

E[f]= J d?’xdep (%wexﬁivmf[f ])f. (2.118)

It is straightforward to check that it remains constant during evolution.

(' 2
0,E[f1=| & | &®p (;—M+v+vmf)atf

_r 3 [ 3 P’ p

_J de dp(m+v+vmf (—M-Vf+V(V+me).f)

(o [ P P

o de dp(V(V+me)-M—M-V(V+me))f

=0, (2.119)

where we have used again GREeN’s theorem poing from the second line to the third. Moreover,
the factor 1/2 that is attached to the mean field potential in expression (2.118) is compensated
in the first line of equation (2.119) by differentiating the squared distribution.

Contact interaction

We now discuss a very useful approximation of the interaction potential V;,;. Considering a gas
of neutral interacting atoms, as is done in the main part of this work, two-particle interactions
are short-ranged. That is, particles only interact with each other if their distance is below a
certain value and are free, or subject to external forces only, otherwise. If, moreover, the typical
interaction length is sufficiently small, the exact inter-particle potential is well approximated by
a contact interaction,

Vine(X1,X5) = 28 (X1 — X,), (2.120)

quantified by a single parameter, the interaction strength g. The factor of 2 which may appear
somewhat arbitrary here is introduced to be consistent with the quantum mechanical evolution
equations, that are discussed in the next chapter. Assumption (2.120) leads to a simple mean
field interaction potential,

Vin(x) = 2g n(x) (2.121)

where the spatial density is the momentum integral over the distribution function, n(x) =
f d3p f(x,p). Hence equation (2.117) can then be written explicitly as

i =—%Vf+vu-af. (2.122)
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We have combined the external potential and the mean field interaction into a single self-

consistent potential function,

U(x) = Vo (x) + 2gn(x). (2.123)

The associated energy functional reads

2
E[f] :fd3xfd3p (21)—M+Vext+gn)f. (2.124)
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3 Quantum-mechanical description of
atomic gases

In many cases it is totally sufficient to describe the dynamics of a thermal atomic gas in terms
of classical mechanics, as we did in the preceding chapter. Above the critical temperature,
the thermal pe-BrocLiE wave length of the particles is well below the mean particle distance

[17,53,63]. Thus, quantum-mechanical aspects can be safely neglected. In contrast to that, the
condensed atoms, possessing long-range phase coherence [64,65], are collectively described by
a macroscopic wave function.

In the classical discussion, we quantified the system’s state with a phase space distribution
function. A quantum-mechanical equivalent to this entity is the WiGNER function [66, 67]; a
phase space representation of quantum-mechanical states that yields the classical distribution
function in the high temperature limit. Furthermore, under certain conditions, its evolution is
subject to the same equations as the classical distribution which allows us to reuse many results
of the preceding chapter.

We begin the current chapter with a brief reminder of single-particle quantum mechanics
[55,56,68]. Although assuming the reader is quite familiar with this topic, we give some ba-
sic relations, particularly showing similarities and differences to the classical formalism [47].
Based on these refreshed basics, we introduce the single-particle WiGNER function and cor-
responding equations of motion. Finally, we show how inter-particle interactions enter the

formalism, especially concentrating on mean field approximations.

3.1 Brief reminder of basic single-particle quantum mechanics

The key difference between classical and quantum mechanics is the mathematical representa-
tion of observables by self-adjoint operators in HiLBERT space, 4" = @, rather than dynamical
functions a(q, p, t). Additionally, the state of the system is described by an element |v)) of that
HILBERT spac_e._At the very basis of quantum mechanics is the relation

fixing the algebra between position and momentum operator. Defining now the eigenvectors
of X and p as X|x) = x|x) and P |p) = p|p), respectively, one obtains the wave function in po-
sition space, Y (x) = (x|}, and in momentum space, }(p) = (p|y). They can be considered
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as tangible representations of the abstract HiLBERT space element [¢). The position represen-
tation of the momentum operator is obtained by exploiting its role as the generator of position

displacements,

(x+ Ax|yp) = (x|e">PM|ap).

A comparison with the TayLor expansion of y(x + Ax) yields the useful identity

(xIplyp) = —iAVp(x). (3.2)

From the elementary operators, X and p, more complicated observables can be constructed.
Having a classical dynamical function a(x, p), its quantum-mechanical pendant is given by re-
placing position ond momentum coordinates with operators X and p. For example, the angular
momentum operator reads L = & x p. Nevertheless, there are quantum-mechanical observables
which do not have a classical counterpart. One prominent example is the spin of atomic or
sub-atomic particles.

Time evolution

Evolution of states is described as the action of a unitary operator,

() = U(t — o) I9h(to)) - (3.3)

Unitary, UT = U, ensures the norm conservation of evolving states. Like the classical propaga-
tors 9/, introduced in chapter 2, these time-translation operators constitute a single-parameter
Lie group. Consequently, two successive evolutions about the intervals t, —t; and t; — t, re-
spectively, are equal to a single evolution about the combined interval t, — t,. These conditions
constrain the form of U to

O(t) = e UM, (3.4)

The privileged observable H is the HamiLron operator. Similar to the HamirTon function in
classical mechanics, it is the generator of time translations. Equivalently, the evolution operator

is a solution of the differential equation

iho, [y) =H), (3.5)

which is known as SCHRODINGER equation. Splitting the Hamiltonian into kinetic and potential
part and adopting position representation, one writes

H?v?2
oM

ihoyY(x)= (— + V(x)) Y (x). (3.6)
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The stationary form is obtained with the help of the Hamiltonian’s eigenstates |m) which satisfy
H|m) = €,,|m). Making the ansatz ¥)(x) = ¢,,(x)e"“mt/" where ¢ (x) = (x|m) is the position
representation of the eigenstate, yields

(—h;;z V() — em) 6 (x)=0. 3.7)

Expression (3.6) implies that time dependence is carried by the states, while observables are
constant operators. This is known as the ScHRODINGER picture of quantum mechanics. Looking
at the expectation value of an observable in a time-dependent state,

a(t) = (Y(te)| UT(t —ty) @ U(t —t0) Ip(to)), (3.8)
it is obvious that one may equivalently define time-dependent observables,
a)=U0"(t—ty)alU(t—t,), (3.9)

while keeping the states constant. This approach is known as the HEISENBERG picture of quantum
mechanics. It implies the evolution of observables to be subject to the HEISENBERG equation,

ind.a =—[H,a)]. (3.10)

Apart from the factor if, it is formally similar to the equation of motion in classical dynamical
functions (2.6), replacing the Poisson brackets with the commutator.

Mixed states

Whenever one has not complete knowledge of the system’s state, it has to be described by a
density matrix (or density operator) 5. Suppose the probability for the m-th eigenstate of the
system, |¢,,), to be populated is &,,. The density matrix is defined as the sum over projectors
on all involved states, weighted with the associated probability,

p= Pulbn) ($ul. (3.11)

In this formulation, observable values are given as traces of the product of the density matrix
and the operator of interest,

(@) =Trp a. (3.12)
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The equation of motion for the density matrix is calculated straightforwardly. By differentiating
(3.11) with respect to time and plugging in the SCHRODINGER equation (3.6), one obtains the

vON-NEUMANN equation,
ihd.p=[H,p] (3.13)
One can recognize its formal resemblance to the classical LiouviLLE equation (2.33). Solutions
to (3.13) read
p©)=Ute—t0) pe) U (e = 10). (3.14)
Writing this expression, we have chosen again the ScHRODINGER picture. Translation to the

HEISENBERG picture is achieved by writing down the time-dependent expectation value of an
observable in terms of the density matrix,

a=Tr p,U'a0, (3.15)

exploiting the trace’s invariance under cyclic permutations of subjected operator products. One
identifies the time-dependent observable

)= U=t at) Ut —to) (3.16)

in the HEISENBERG picture, being a solution of the HrisENBERG equation (3.10). Thus, states
and observables are subject to similar equations of motion. Mind however the different signs.
Like in the classical case, it can be said that observables propagate forward in time using the

HEISENBERG picture while states propagate backwards in time in the SCHRODINGER picture.

3.1.1 Example: Release from harmonic trap

As a simple example, we consider the free propagation of a quantum state after being released
from a harmonic trap. The latter is described by the potential function

V(x)= %XTQZX. (3.17)

Pure ground state

The ground state’s wave function [56] is a Gaussian,

M T
exp|—sz X Qx
$o(x) = [3 2 1}4. (3.18)
() deta1]
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Its correlation matrix is given by C,, = fi/(MQ)™!. In case of one dimension, having a scalar-
valued oscillation frequency w, the correlation matrix is merely the square of the distribution’s
width aﬁo =h/(Mw). The parameter ay,, is called oscillation length of the quantum-mechanical
harmonic oscillator. In three dimensions, one can define the geometrical mean of the oscillator
length as 51210 =h/(Mw), where w = (]_[l.g=1 w;)'/? is the geometrical mean of the eigenfrequen-
cies of 2. The ground state’s position density is

ny(x) = ¢§(X) ¢o(x)
_exp [—xTC lx]

- [73det C,,]"2 ‘

(3.19)

Free evolution, wave packet spreading

Now, switching off the harmonic confining potential at t = 0 we let the state evolve freely
thereafter. At any later time instance t > 0, the time-evolved state is given by

W%, 6) = (xle~ Bmt| o)

1 _
— dets(t)¢° (s (t)x). (3.20)

We have expressed the result in a compact form, defining the matrix

)2, (3.21)

s()=(1+igCat
which acts on position vectors. Time evolution is thus described in terms of the initial function
¢o(x) and a complex coordinate transformation applied to its argument. The wave function
(3.20) is spreading in position space but it also develops a quadratic phase as time progresses.

Based on the wave function (3.20), the density profile of the evolved state becomes

n(x, t) =Y*(x, t)Y(x,t)

1 .
=——— n,("oso) 1t x). 3.22
det(s(0)s(0)) 0 (( @s0) ) ( )

It is also written in terms of the initial density n, and a coordinate transformation. The latter is
represented by a real matrix

s'os) = [11 +(LcY’ t2]1/2

=[1+022]". (3.23)
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Hence, the evolved density can be expressed more explicitly as

exp [—XT C;l(t)X]
Lt) = , 3.24
n(x, t) [73det C,.(n]1/2 ( )

utilizing the time dependent correlation matrix
Co(t) = (14 Q%) Cyo. (3.25)

This equation is identical to the time-dependent correlation matrix of a freely expanding clas-
sical density distribution (2.84) in terms of the potential frequency matrix (2. Here, the only
difference between classical and quantum case is the initial correlation matrix C,,. In the
former, it is determined by the competition between thermal energy kzT and potential en-
ergy V(x) of the initial state. In the latter, being the quantum-mechanical ground state, the
correlation matrix is the ratio of zero-point energy and potential energy.

Thermal state

A model that is more suitable to many practical situations involves a thermalized initial state. It
is described by the density matrix in the canonical ensemble [53]

. eo(gr)
Po=— - (—k%) (3.26)

Assuming the trapping potential again to be a harmonic oscillator, the position representation of
the initial state, po(x,x’) = (x| po|X), is obtained by inserting the identity operator in terms of
harmonic oscillator eigenfunctions, 1 =Y, | m) (m ’ In three dimensions, these are numerated

by a triple of quantum numbers, m) = |m,, m,, m3). Without loss of generality, we chose a

coordinate frame that aligns with the harmonic oscillator axes. Hence, the frequency matrix of
the potential is a diagonal, 2 = diag(w;, w,, w3). The Hamiltonian in its eigenbasis reads

(m'|Alm) =k ) (mye; +73).

i=1

The position representation of the eigenstates is

(&lm) = [ | o o (£ €572

l_ ml/4(2m,)1/2

-
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Figure 3.1.: Temperature dependence of the factor €; defined in equation (3.28). It determines
the shape of the thermal harmonic oscillator along the i-th axis.

with dimensionless coordinates &; = (M w, /h)'/?x;. Furthermore, H,, is the m-th order HERMITE
polynomial (see A.3). Exploiting some basic relations in H,, (A.19, A.20, A.21), one finally
obtains

3 Mw Mw 1
A ' 1 ' 2 2
Po(x,X') = !le Gi(lT) exp{ 7 . [Gi(T) (x; + xl{) + €;(n(x; x{) ]} . (3.27)

For ease of notation, we have defined a dimensionless factor

1
tanh(ﬂ).

kg T

e(T) = (3.28)

Being a strictly monotonic function of T, it quantifies the influence of temperature on the initial
state po(x,x’). A plot of the function ¢;(T) is displayed in 3.1.

It is interesting to consider the extreme temperature limits of expression (3.27). On one hand,
for T = 0 we have €; = 1. This way, we indeed recover the density matrix of the pure ground
state,

Po(x,X") = ¢ps(x') po(x), (3.29)

where ¢, is given in (3.18). In this limit, p, is a spherically symmetric function in the x-x’-
space, which implies significant off-diagonal contributions, p(x,x") # 0 for x # x’. The state is
said to have non-diagonal long-range order [64, 65]. Physically, this indicates phase coherence
across the complete spatial extent of the state. In contrast, turning to high temperatures, we
obtain €; — 2kz T /(hw;) as T — oo. This asymptotically leads to

et 02 3/2
po(x,x") = (%) exp (—% x' sz) o(x—x). (3.30)
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The position representation of the density matrix extends along the diagonal for rising tempera-
ture, reproducing the density profile of the MaxwELL-BorLTzMANN distribution (2.77). Meanwhile,
it shrinks along the anti-diagonal, leaving only non-zero contributions for x = x’. This corre-
sponds to a total loss of phase coherence between different positions.

Although it is straightforward to calculate the time-evolved density matrix,

p(x,x,t)= X |U(t) po U (1) |x), (3.31)

we postpone discussing the evolution of thermal states after their release until we have intro-
duced the WiGNER function in the following section.

3.2 Quantum mechanical phase space distributions

Although there have already appeared some formal similarities between quantum and classical
formalism, like the Lie group structure of time evolution, the most striking correspondence
emerges when introducing phase space representations of quantum states. This way, one is
able to obtain expressions which, under certain conditions, exactly reproduce the equations
governing classical statistical ensembles. To begin with, since there exist many phase space
representation in quantum mechanics [66], we have to chose a representation that fits our
needs best. As far as classical mechanics is concerned, phase space distributions have two useful
features. First, they are positive everywhere. This allows for identifying them as probability
densities. Second, integrals over momentum coordinates yield the position density, while those
over position coordinates yield the momentum density.

Unfortunately, there does not exist a phase space representation of quantum-mechanical states
that fulfills both of these requirements. Discarding positivity in favor of direct connection to
density profiles, we chose to represent our state by the WigNEr function. As we show below,
one can obtain position and momentum densities directly by integration, while negative values
are possible. Rather than judging the non-positivity of the WiGgNEr function as shortcoming,
it can be exploited to study the departure of the “true” quantum formalism from classical and
semi-classical formulations.

A comprehensive discussion of WiGNER functions is found in the book of ScHiEIcH [67].

3.2.1 Single-particle Wigner function

The WiGNER function can be motivated starting with WEyL’s correspondence rule [47]. The
latter is a prescription for associating quantum-mechanical observables @ to complex functions

in phase space coordinates [69, 70],

a= f d3k f d3j a(k, j) e'0&HiP), (3.32)
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Using this relation, the expectation values of a can be expressed as
(@) = f d3k f d%j a(k,j) Tr {p e'0&+D} (3.33)

Now, the traced term can already be considered a distribution function that relates to a particular
state p and determines the expectation value (). However, it is a function of rather abstract
coordinates, k and j. We can translate it nevertheless into a function in terms of position and

momentum via FourIER-transformation,
Tr {p e'0&H/P)} = J d3xJ d3p ! HP) £(x p). (3.34)

Based on this relation, the WiGNER function f in terms of the density matrix ¢ can be expressed
as

f(x,p)= Jd% TP (x4 5] pIx—3). (3.35)

1
(2mh)3
This equation can be paraphrased as following. The WiGNER function along the position axes is
given by the diagonal of the matrix element (x|5|x’). On the other hand, the distribution along
the momentum axes is obtained by Fourier-transforming (x|/|x’) over its anti-diagonal matrix
elements which are parametrized in expression (3.35) as . Note that we use the same letter
f to denote the WiGNER functions as well as classical phase space distributions. We do this not
by accident but rather to emphasize the similarities between both descriptions that will become
apparent in the course of this discussion.

Integrating definition (3.1.1) over momentum or position coordinates, one indeed obtains the

position density or the momentum density,

Jdgp fx,p)=1{xlp), fd?’x fxp)=lpl)I%, (3.36)

respectively. Moreover, the above calculations imply that the expectation value of any observable
can be expressed as

(@) = f dx f d°p f(x,p) a(x,p), (3.37)
where the phase space representation of a is given by

1
(2mh)3

a(x,p) = J d3e e 8P/M (x 4 %| alx— %) (3.38)
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As we noted above, the WiGNER function can have negative values. This can be seen by con-
sidering two orthogonal states satisfying Tr 0,0, = 0. In terms of WiGNER functions, it can be

written

J d3x d3p fl(x: p)fZ(x) P) =0.

Assuming the distributions to have overlapping support in phase space, this expression can only
be true if either f;, or f,, or both are allowed to become negative. Nevertheless, the position as
well as the momentum density, calculated on basis of f are positive everywhere.

3.2.2 Time evolution

For finding an equation that governs the evolution of quantum-mechanical phase space dis-
tributions in phase space, one can simply translate the von NEumMaNN equation (3.13) into an
equation of motion in the WiGNEr function. Let the Hamiltonian, that governs the system’s dy-
namics, comprise a kinetic and a potential term. Plugging relation (3.13) into definition (3.35)
yields the time derivative of the WiGNER function,

_ 1
- (2mh)3

o.f f d3E e EPM (x4 5| [V 51+ [V, 5] [x—5). (3.39)

The potential V has to be evaluated at different position arguments, depending on whether it
acts on the bra <x+ &/ 2| or the ket vector (x— &/ 2|. Assuming V(x) to be sufficiently smooth

in position space, one may TavLor-expand the displaced function V(x &+ &£/2) in order to ex-

press the potential contribution in terms of the undisplaced function V(x). Furthermore, the

2
x+&£/2

spatial derivatives in position and mometum subspace, we reuse the notation V = & /dx and

displaced Laplacians V can be expressed in terms of V, and V.. For compactly writing

J = J/0dp, introduced in section 2.2.4. After all, one arrives at

| & ) Y o m
(0+ 3 V= (¥V)-2 )5 = > o 3) méﬂ (vmv) amf, (3.40)

abbreviating the tuples m = (my, m,, ms), their norm |m| = m; + my,+ms, and higher derivatives

o\ 20 Y2 0 \™
VR =  — 3.41
(8x1) (axz) (axg) ’ (3.41)

o\ 0 \Y2( 9 \™
amz( ) ( ) (_) . (3.42)
op, op, ops3

Expression (3.40) is termed the quantum-LiouviLLE equation. The second term on the left-hand

side relates to the kinetic contribution of the Hamiltonian. The third one is just the first-order
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term of the TayLor expansion of the potential. The higher-order terms, involving multiple mo-
mentum derivatives, have all been arranged on the right-hand side. This way, we have separated
all terms which carry a non-zero power of i from the classical terms without #. Neglecting the
right-hand side of the quantum-LiouviLLE equation (3.40), we obviously recover the classical
LiouviLLE equation (2.53) for non-interacting particles (2.50). This approximation is justified if
spatial derivatives of V of the order | = 3 and higher are negligible, which is certainly true for
a harmonic oscillator but also for sufficiently smooth potentials. Although phase space dynam-
ics is ruled by a classical equation in this case, the function f still represents a quantum state,
which may depart from classical distributions, for example by being partially negative. This
semi-classical approximation is also called the truncated WiGNER approach.

The fact that the evolution of the quantum-mechanical phase space distribution is — under
certain conditions — subject to the classical LiouviLLE equation has truly advantageous con-
sequences. We can reuse results from the evolution of classical distributions. In particular,
time-evolved WiGNER functions are connected to their preceding versions via a coordinate trans-

formation,
f(z,t;) =f(“22‘1(ti,~) z, tl-). (3.43)

The classical propagator % (1) is introduced in chapter 2. The trajectories it generates are so-
lutions to HamiLTON’s equations (2.3). In case relation (3.43) is valid, one speaks of classical
transport. It is of central importance for developing a ray tracing formalism that describes
matter wave propagation. In order to evaluate the WiGNER function at certain phase space coor-
dinates, on has to trace back this point along the classical phase space flow to a preceding time
instance and query the distribution value there.

3.2.3 Example: Release from harmonic trap Il

In order to give an example for evolving WiGNER functions, we continue the discussion of the
release of atom clouds from harmonic traps which we have adjourned at the end of subsection
3.1.1. We have presented an expression for the thermal density matrix in coordinate represen-
tation (3.27). The formulation of time-dependence is quite convenient in terms of the WiGNER

function and, moreover, similar to classical expressions.

Thermal equilibrium in trap

Plugging expression (3.27) into the definition (3.35) yields, as initial distribution, the quantum-
mechanical phase space distribution of a thermal harmonic oscillator,

fox,p) = l‘[m [ ei(lT)(M;’ixinrM;wipf)]. (3.44)
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In order to obtain a more compact notation which also reveals the correlation matrix of the
phase space distribution more clearly, we define the diagonal matrix

— how; 2
b = tanh [ ——L | =5,
g = tan (Zkgr)ha% i

2
—_* 5.
he;e(T) Y

(3.45)

Now, going to coordinate frames that do not align with the symmetry axes of the harmonic
potential, the above defined diagonal matrix becomes a symmetric non-diagonal matrix. Similar
to the transformation of the frequency matrix,

w; 0 O
Q=R"| 0 w, 0 |R, (3.46)
0 0 ws

where R is a rotation, the non-diagonal b-matrix is

-1
b=RTbR — {25119) » T—=0

kT

} (3.47)
1, T — o0

The quantum-mechanical ground state and the classical case are included as extreme temper-
ature limits. With this, the WigNER function for a thermal harmonic oscillator for arbitrary

coordinate systems is written

detb
(2mh)3

folx,p) = exp (—%XTbQZX— ﬁpT bp) ) (3.48)
In this form, the quantum-mechanical distribution has great resemblance to its classical coun-
terpart (2.75). However, the scalar factor 1/(kgzT) is replaced by the matrix b, which includes
compliance with HEISENBERG’S uncertainty relation in the zero-temperature limit. The most
compact phase space notation is obtained by defining the six-dimensional block matrix

B= b O (3.49)
h— @ b . .
Reusing the matrix of the bilinear harmonic oscillator Hamiltonian,
MQ* O
A= 1 (3.50)
O 31
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we can write the quantum-mechanical WiGNER function of a harmonic oscillator with finite

temperature as

v/ det BA
fo(z) = (27)3 exp (—% z' B /\z) . (3.51)
The associated density profile in position space is
ny(x) = (%)3/2 y/ det(b$22) exp (—ﬁ x' bQ? X) . (3.52)

Consider again the extreme temperature limits. At first, the zero-temperature limit means kg T
is negligible compared to all three energies ficw;, ficw,, and hwy. In this case, the position
correlation matrix is {x;x;) = h/(2M Q) j» Meanwhile, for momentum coordinates we have
{pip;) = MAS2;;/2. Both, the position and the momentum density, are shaped by the harmonic
potential. The fact that increased frequencies €2;; leads to smaller widths in position space but to
extended widths in momentum space is a manifestation of HEISENBERG’S uncertainty principle.
In contrast, the high temperature limit implies neglecting all energies fiw; (i = 1,2,3), which
leads to (x;x;) = kgT/M(Q272);; and (p;p;) = MkgT. The increase in temperature entails a
significantly broadened phase space distribution. In particular, the momentum density is now
isotropic and solely determined by temperature, while the position density’s shape is subject to
the potential as well as temperature. Clearly, the high temperature limit of the WiGNER function
is exactly identical to the classical phase space distribution given in (2.75).

Free expansion after release

Again, we release the harmonically trapped cloud by switching off the potential at t = 0. In the
absence of external forces, V = 0, the right-hand side of (3.40) vanishes exactly. We are thus
in the comfortable situation of using the classical equation of motion without the need of semi-
classical approximations. Consequently, the expressions we seek have already been calculated
in section 2.3.1 when we discussed the free expansion of a classical distribution. We briefly
recapitulate on the results.

The initial distribution f,), be it Gaussian or not, evolves according to

fxp.t)=fo(x— 3Pt p). (2.82)

The difference to the classical discussion is that in the current context, f and f, are WIGNER
functions. This means they can not only be non-Gaussian but also assume negative values. The
evolution, nevertheless, follows classical phase space flow.

The inverse correlation matrices in position and momentum subspace that correspond to the
initial distribution (3.48), are

Co=%b0?% Cl=s5ub, (3.53)
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respectively. Like in the classical discussion in section 2.3.1, these two matrices are related by
Coo = (M 0?)C,,. Now, being subject to free propagation, the phase space correlation matrix
becomes

Ccl — Ll
C—l — x0 M ~x0 . 2.83
o (—%C;ét Coo +312Csa .

This implies a time-dependent position correlation matrix
C,(t) = (1+Q2%t%) Cyo. (2.84)

Meanwhile, the momentum correlation matrix, on the other hand, remains unaltered in the
course of propagation, C,(t) = C,o. Expression (2.84) describes the spreading of the initial
state. It can be conveniently pictured in the one-dimensional case, as we have done in figure
(2.2).

3.3 Interacting boson gases

Neglecting interaction between particles, we can use the single-particle formulation presented
in this chapter so far to describe the physics of atomic clouds. Taking into account interac-
tion effects, however, one has to extent the formalism to many-particle quantum mechanics for
realistic models [71, 72].

The transition from single to many-particle physics is already challenging in classical mechanics
(cf. section 2.4). In quantum mechanics, it is additionally complicated by the indistinguishably
of identical particles. This gives rise to many-particle wave functions which are either symmetric
(bosons) or anti-symmetric (fermions) under particle permutation. Typical textbook discussions
of many-body quantum mechanics split into two separate parts for bosons and fermions. How-
ever, since this work exclusively considers boson gases, we assume all states to possess even
permutation symmetry from now on.

3.3.1 Reduced distributions for binarily interacting gas of bosons

A concise derivation of effective single-particle equations that describe the physics of quantum
gases is given by CasTiN [73]. In analogy to our discussion of classical interacting gases in
section 2.4, we assume inter-particle interactions to be binary. Consequently, the Hamiltonian
comprises single- and two-particle terms,

ﬁ:iflﬁ i V. (3.54)

i=1 i#j=1

N
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The former contains the kinetic contribution as well as the energy in the external potential
of each particle. The latter corresponds to the energy of particle pairs in their inter-atomic
scattering potential. Particularly useful are the matrix elements of these contributions in position

representation,
\ v
(Xllhl|x:) = 5(Xl _X;) (_2—]\41 + Vext(Xl)) 5 (355)
(X1X2|‘712|X/1X/2) =0(x; _xll) (%, —Xll) Vine(1%1 —%3). (3.56)

The function V;,; possesses the same properties as the one introduced in equation (2.98). That
is, Vi, is symmetric and V, Vi, is antisymmetric under particle permutation. The time evolution
of the N-body density matrix p), describing the complete many-particle state, is given by the

vON-NEUMANN equation

ihd, pN =[A, pM1. (3.57)
Needless to say, despite the formal simplicity of this equation, the object p™) is extremely
unpractical. Similar to section 2.4, we aim for an effective formalism in terms of few-body

distributions. These are obtained from the N-body density matrix by tracing over the "rest
particles",

P1=Try n IS(N); (3.58a)
Pra=Trs npN, (3.58b)

Similar to the classical case discussed in section 2.4, these few-body representations give rise to
a hierarchy of equations called BBGKY hierarchy [47,61,73]. Its first order equation reads

ihatlé1_[f11;[31] :Trz[vlz;ﬁu], (3.59)

being the quantum-mechanical analog to equation (2.111b). Our goal is to break the hierarchy

by approximating p;, in terms of p,, ignoring many-particle correlations of the atoms.

Hartree-Fock approximation for the pure condensate

An exclusive feature of boson gases is a phase transition to Bose-EINSTEIN condensates below a
critical temperature T.. This condensation implies a macroscopic occupation of a single state
which we assume, for instance, to be the system’s ground state. Thus, the single-particle density
matrix can be written [53, 63, 72]

p1=No o) (bol + D i i) (@, (3.60)

k>0
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with Ny > v,. The macroscopic occupation number is a consequence of Bosg-EINSTEIN statistics
which, in turn, follows from the symmetry of bosonic many-particle functions. We consider
the extreme case T = 0 and additionally ignore excited states completely. The single-particle
density matrix can then be written as

P12~ N [¢o){(¢ol, (3.61)

implying N ~ N,. The state p; possesses off-diagonal long-range order [64, 65], i.e. it is phase-
coherent across the entire cloud. Moreover, the HARTREE approximation for the two-body density

matrix reads
P12~ P1® P1 = N2, do) (o, Pol- (3.62)

Note that this two-particle state is already symmetrized. With these approximations, the BBGKY
hierarchy is broken, yielding the closed equation

0,61 = [fn " ( f &3y Vi (%, —x2|)n(x2)) %) (31, m] (3.63)

where we have used the matrix element of V;,; in position representation as introduced in equa-
tion (3.56).

Hartree-Fock approximation for thermal gas

The second case we consider is a thermal gas with a temperature well above T.. In this limit, the
single-particle density p; does not possess off-diagonal long-range order since phase coherence
is destroyed by thermal fluctuations. Furthermore, as an opposite to the pure condensate limit,
we assume the occupation numbers of all states to be on the order of one. We can then apply
the HArRTREE-Fock approximation to the two-body density matrix [61,73] as

P12~ (1+P1y) p1® 1. (3.64)

Remembering to symmetrize the bosonic many-particle state, we have utilized the operator P,,,
permutating particles 1 and 2. The contribution p; ® §, is called direct or HARTREE term, while
Py, p1® P is called exchange or Fock term. Breaking the BBGKY hierarchy with relation (3.64),
the evolution equation for the thermal single-particle density matrix becomes

0,61 = [ﬁl " 2( f &3y Vi (% —x2|)n(x2)) %) (x4, p] (3.65)

Obviously, this expression is quite similar to its counterpart (3.63) in case of a pure conden-
sate. The only difference is a factor of 2 in the interaction term of equation (3.65). It is a
manifestation of the different occupation statistics in both cases.
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3.3.2 Mean field theory at zero temperature

We now take a closer look at some features of a pure condensate (T = 0) with binary inter-
actions. To this end, we define the macroscopic wave function in terms of the macroscopically
occupied single-particle state as

W(x) = VN (x]¢). (3.66)
Moreover, the inter-atomic interaction shall be approximated by a contact potential
Vi (x—x") =g o(x—x). (3.67)
The corresponding equation of motion is then given by a nonlinear SCHRODINGER equation,

292
maw (-4
2M

+Vext+g|¢|2)\lf, (3.68)

known as Gross-PitaEvskil equation. The macroscopic wave function is normalized to the total
particle number,

J dx |¢|> =N. (3.69)

In this work, we only consider repulsive interaction, g > 0. In analogy to the classical mean
field theory, one attains a macroscopic description of an interacting many-body system involving
a single equation at the expense of giving up the linearity of the microscopic equations. Mind
that the influence of the nonlinear term g|¢|? does not only depend on the value of g but also
on the particle number N which is hidden in the wave function’s normalization.

Hydrodynamic formulation

Describing the atom cloud in terms of two real fields instead of a single complex function ¢,
yields two equations of motion that are equivalent to the Gross-PiTaevskil equation (3.68).
Therefore, the complex wave function is explicitly written in terms of its modulus and phase,

U(x,t) =n"?(x,t) e RS0, (3.70)

This is known as the MapLuNG ansatz. Inserting it into the GRoss-PITAEvVskil equation, we can

separate two coupled equations in two real fields,

dn+ =V -(nVS)=0, (3.71a)
S + ﬁ(VS)Z + Vexe T8N+ Uq[nl/z] =0. (3.71b)
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We have abbreviated the quantum pressure term as

w2 _g2pnl/2

oM 2 (3.72)

U,[n'?]=
Equations (3.71b) is, apart from interaction gn and quantum pressure U, similar to the classical
HamirToN-JacoBt equation. This implies that we can identify S, i.e. the phase in units if i, with
the classical action. An alternative formulation is obtained by using the velocity field v(x,t)
instead of S. It is given by

oW (V) — (VY 1

= —VS. 3.73
2iM ME M (3.73)

Exploiting this relation, we derive the continuity equation from expression (3.71a). It reads
on+V-(nv)=0, (3.74)

describing the norm conservation of the particle flow. Moreover, equation (3.71b) can be refor-
mulated in terms of the velocity field, yielding

1
Mﬁtv+V[§MV2+Vext+gn+Uq[n]] =0. (3.75)

This is, apart from the quantum pressure U, the EuLer equation, describing the dynamics of a
classical fluid without viscosity. Inclusion of U, leads to quantum dispersion of the macroscopic
wave function ¥. The occurrence of the (quantum-) EuLErR equation suggests conceiving the
condensate as a quantum fluid.

Although we present the hydrodynamic formulation here in the context of condensates of in-
teracting atoms, it is not limited to this case. Clearly, starting with the SCHRODINGER equation,
which is formally obtained from the Gross-PiTaEvskil equation by setting g = 0, one obtains the
continuity, the Hamirron-Jacosr, and the EULER equation just as well.

Stationary state

For the stationary state, we make the ansatz
Wo(x, t) = ny/*(x) e /M, (3.76)

comprising a phase that is constant in space and linear in time. The stationary wave function
modulus satisfies the stationary Gross-Pitaevskii equation

h*v? 12
—W + Voge + &Ng— U n, (x)=0. (3.77)
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The above ansatz implies S,(t) = —ut which can be plugged into equation (3.71b) to obtain a
relation that determines the shape of the ground state density;,

gy = pt— Ve — Uy[ng/?1. (3.78)

It can be shown that u is indeed the chemical potential d E/JdN. The actual shape of the ground
state is subject to the competition of three energy contributions. The quantum dispersion U, and
the repulsive interaction gn, favor a widely spread wave function, while the external potential
Vexe counteracts these forces and confines the wave function.

The energy of the condensate [17,73] is given by a functional in the mean field,

2| V|2 1
(#+Vext|¢|2+§g|\ll|4). (3.79)

E[W,¥*] = J d3x
Based on this expression, the stationary Gross-PITAEVsKIl equation is obtained via a variational
approach. The condition for ¥ making the functional E[¥, ¥*] extremal under the constrain of
constant particle number is just expression (3.77). Thereby, the chemical potential u enters the
equation as a LAGraNGE multiplier, ensuring compliance with the constraint (3.69).

In the limit of vanishing interaction g = 0, one recovers the non-interacting SCHRODINGER
equation from expression (3.78). The corresponding ground state density n, becomes a smooth
function of the position variables since quantum dispersion U, penalizes rapid variations with
an energy cost. The only relevant length scales are fixed by the competition between quantum
dispersion and potential energy. In one-dimensional or radially symmetric systems, it is given by
single parameter a, being the distance from the potential minimum where quantum dispersion
equals potential energy. It is thus a solution of V. (x = a) = h*/(2Ma?). For more complicated
geometries, this equilibrium condition is satisfied for a iso-surface of the potential, requiring
more parameters for proper description. Considering a harmonic oscillator, for example, the
typical length scale is given by the harmonic oscillator length aﬁo =h/(Mw).

Having non-negligible mean field interaction gn, # 0, the ground state is no longer described
by a single energy ratio but rather by two independent ratios. These are repulsion versus quan-
tum dispersion on one hand, and repulsion versus external potential on the other. The former is
characterized by the so-called Healing length

h
v 2M g ny(x) ‘

Physically, it can be described as follows. The presence of interaction energy facilitates the

E(x) = (3.80)

creation of spatial density variations on length scales shorter than the harmonic oscillator width.
The length scale on which the interaction energy gn exactly balances the quantum dispersion
energy U, is given by the Healing length. Note that £, depending on the density ny(x), is a local
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feature of the trapped cloud. Hence, at the edge of the atom cloud, lower density entails an
increased Healing length.

In terms of £, the quantum pressure can compactly be written as
U,[ng*1= &2 n)> v2n}/>. (3.72)

Inside the interaction dominated regime gn > U,, the healing length £ becomes negligibly
small. The ground state’s shape is then solely determined by interaction and potential energy.
In this case,it is a solution of

g Tl(X) = Utp — Vext(x)> (381)

being called the THomas-FErmI density [10, 18]. Note that the n is calculated with equation
(3.81) only where u > V,,,(x) and is zero otherwise.

Analytical insight into the solution of equation (3.81) is greatly facilitated by choosing a definite
potential form. In order to not over-complicate the discussion, we assume to have an isotropic
harmonic oscillator, V,,(x) = Mw?x?/2. Remember that every anisotropic harmonic oscillator
can be made isotropic via a coordinate transformation (see appendix A). With this choice of V.,
the THomAs-FErMI density is written

Mo? (p2 2 2 2
=— |R57;—Xx%), Xx* <R
n(x) = { 28 (Re =) , gF . (3.82)
0, X > Rigp
It has the shape of an inverted parabola. The THomAs-FermI radius
Al 2UTE
Rpp = U wo? (3.83)

quantifies the spatial extent of the strongly interacting atom cloud. Moreover, R can be ex-
pressed in terms of the particle number by virtue of the normalization condition. Integrating
the THomAs-FErMI density (3.82) over a sphere of radius Ry yields

n?? Mo? 5

— ) (3.84)
D TF
I'(z+2) 2g
And finally, the chemical potential in terms of the particle number can be expressed as
2/(D+2)
D M ? b/
prp=|T(5+2) o Ng : (3.85)

Thus, for interaction dominated systems, urp is related to N by a power law. For noninteracting
systems, in contrast, it is independent of the particle number, y = Aw/2. In figure 3.2, the
density of the Gross-PrTaEvskil solution is compared to the THomas-FErmI density for an one-
dimensional harmonic oscillator.
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Figure 3.2.: Comparison of numerical solution of the Gross-PiTAEvskil (solid lines) to the THomAs-
Fermi limit (dashed lines) in a one-dimensional harmonic oscillator. The latter is given
in expression (3.82). The colors blue, green, and red indicate interaction strengths
Ng of 10hw/ay,,, 50hw/ay,, and 100hw/ay,, respectively. The dotted curve is for
zero interaction (Gaussian, according to e.g. (3.19)).

Sound wave excitations

Suppose we have prepared a condensate in a trapping potential. How does this state respond to
small perturbations? To answer this question, one linearizes the equilibrium density and phase,

n(x, t) = ny(x) + An,(x, t), (3.86a)
S(x,t) =Sy(t) + AS;(x, t). (3.86b)

The dimensionless auxiliary factor A is useful for keeping track of the order of perturbation. Lin-
ear perturbation theory implies ignoring all terms containing A2 or higher powers. Thereafter,
one sets A = 1. According to the ground state we defined above, the zeroth order modulus n,
is time independent, while the zeroth order phase Sy(t) = —ut is spatially constant. In order to
obtain a single equation of motion in the linearized perturbations, one differentiates the conti-
nuity equation (3.74) with respect to time, inserts the ansatz (3.86). After neglecting all higher
order terms one has

n
aﬁh—v(%fvm):o. (3.87)
This equation describes the propagation of sound waves in an inhomogeneous medium. One can
identify the speed of sound as c?(x) = gny(x)/M, which is spatially varying. The inhomogeneity

results from the ground state density n,. In this spirit, we can identify the position dependent
speed of sound c(x), satisfying

2=20 (3.88)
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In the THomAs-FErMI limit and in case of a three-dimensional harmonic potential, the above
equation can be solved applying a power series ansatz [74]. In the simple case of a one-
dimensional harmonic oscillator with frequency «w, sound wave propagation in the strongly
interacting regime is subject to

ony — %EX((Rz —x?) 8xn1) =0. (3.89)

Introducing dimensionless coordinates z = x/R and making the ansatz n;(z,t) = n(z)e™", it
can be expressed as

2
(1—2) 3% —2z 3,1+ zﬁﬁ ~0 (3.90)

This is just LEGenprE’s differential equation, which is solved by LEGeNDRE polynomials, n,(z) =
P,(2) [75]. The frequencies of the solutions must satisfy v, = w (£(£ —1)/2). Consequently, the

general solution for sound waves in one dimension is

0(e=1)
ny(x,t)= Z a, P, (i) e_‘Tl wt, (3.91D)

7 Rp

3.3.3 Wigner functions with mean field interaction

WiGNER functions, introduced in the context of single-particle physics in section 3.2.1, are easily
generalized to describe many-body states. The N-particle WigNEr function is defined as

1

(N) .o _
(%, P15 XN, Py) = (2mh)

J d3£1...d3§N e l(E1p1t.+EN PN/
R3N

X <X1+%,,X1+€TN|pA(N) |X1_%J-"Jx1_€TN>‘ (392)

It is a phase space representation of the full N-body density matrix 5. Similar to the dis-
cussion of classical phase space distributions in section 2.4.1, we can define reduced WiGNER

functions as

N

Oz, .zy) = (N —s)!

J d®z,,,...d%y FM(zy, ..., Zy), (2.105)
being an effective few-particle representation of the N-particle state. We have combined position
and momentum into phase space coordinates, z; = (x;, p;). Again, one finds a closed evolution
equation for the effective single-particle WiGner function f = f¢=U by breaking the BBGKY
hierarchy [47,61]. We can also directly WigNERr-transform equations that resulted from the
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HarTREE-Fock approximation in section 3.3.1. This way, the effective single-particle WiGNER
function, describing an interacting gas, is subject to

| SN o
(e o v—(v0)2)f = > o 3) méﬂ (v2v) amf. (3.93)

Here, the position dependent function U comprises a contribution from the external potential
Vext> @s well as mean field interaction. Assuming again contact interaction (3.67), the explicit
form of U that follows from equation (3.63) is

U=V, +gn, (3.94)

in case f describes a pure condensate. Its dependence on the density makes (3.93) a non-linear
equation in the WiGNER function. Meanwhile, in case f is the phase space representation of a
thermal gas, we can WiGNER-transform equation (3.65), to obtain an evolution equation that

contains

U = Vo +2gn. (3.95)

As already mentioned, the different factors of the mean field terms are due to particle statistics.

Identifying the semi-classical limit of equation (3.93), where we can ignore all contribution
with fi, is slightly more involved than in the noninteracting case. Since the WiGNER function is
subject to a self-consistent potential, we require both, the external potential V,,, as well as the
density profile of the cloud itself to be slowly varying in position space. If these conditions are
fulfilled we can again apply the truncated WiGNER approach. In this case, evolution of WIGNER
functions is approximately described by

atf+%Vf—(VU)8f:O. (3.96)

Being identical to its classical counterpart (2.122), we can utilize classical phase space propa-
gation to describe the evolution of interacting WiGNER functions in the semi-classical limit. The
energy content of a pure condensate is calculated by the expression

2
E[f]= f dBx d®p (;—M Vot %gn) f, (3.97)

being a non-linear functional of the WignNER function. For a thermal gas, the energy functional
E[f]1is identical to (3.97) except that the mean field term gn enters without a factor 1/2.
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4 The Lambert density solution

A particular stationary solution of the nonlinear LiouviLLE equation, which we call LAMBERT
density, is studied in the this chapter. As we will see, it reproduces approximations to the
density profile of a trapped gas in the strongly and weakly interacting limit. For intermediate
interaction strengths, it interpolates continuously between the extreme parameter regimes.

In the first section, we directly give the separating ansatz solution and study its extreme param-
eter limits. We then compare it to numerical solutions of the Gross-PITAEVsKkil equation. After
that, going away from the assumption of harmonic potentials that facilitate analytical treatment,
we calculate the LaMBERT density and corresponding results for a chip-trap potential.

4.1 Seperating anstatz solution to stationary Liouville equation with interaction

The stationary solution f,(x,p) of the interacting classical LiouviLLE equation (2.122) or the
semi-classical limit of the interacting quantum-LioUVILLE equation (3.96) is found by solving,

{H,f}=0. (4.1)

As we saw in chapters 2 and 3, we can use equation (4.1) to describe classical gases as well
as condensates. In case of the latter, we have to assume the truncated WigNEr approach to be
valid. In both scenarios, the Hamirton function of a trapped gas with mean field interactions

can be expressed as

2

.
H=_—+UX), (4.2)

where the function U comprises the external potential and the mean field interaction,

U(x) = V(%) + K%. 4.3)

The main difference between considering a thermal gas and a condensate is the interaction
parameter k. Assuming a contact interaction potential of the form V,(x,x’) = g6(x —x’), one
obtains the mean field contribution

N gn(x), condensate
kn(x) = (4.4)
2N gn(x), class. gas
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to the Hamirron function. Aiming for a formulation that suits both cases, we will just write k in
the following. Meanwhile, we keep in mind expression (4.4) if we have to decide whether we
describe a condensate or a thermal gas.

The way we have written the mean field interaction term here may seem a little cumbersome
compared to 2gn in equation (2.121) or gn in (3.94). It has nonetheless some advantages.
On one hand, the parameter x properly quantifies the mean field interaction strength which
depends on both, the interaction parameter g and the total particle number N. In most cases,
the former is fixed by the choice of atom type. On the other, the ratio n(x)/N is an intrinsic
observable.

Clearly, equation (4.1) is satisfied by any function of the classical Hamiltonian f (H). A simple
ansatz to solve the stationary LiouviLLE equation is to split position and momentum dependence
into separate functions that enter the stationary WiGNEer distribution as a product,

fo&x,p) = n(x)u(p). (4.5)

The position density is normalized to the particle number

J d®x n(x) =N. (4.6)

Since the WiGNER function is also normalized to N, the momentum distribution has to be nor-
malized to unity,

J dpu(p)=1. (4.7)
Now, with the separating ansatz (4.5), the stationary LiouviLLE (4.1) equation becomes

Fpu(p)
u(p)

P n(x) _

M n(x) (4.8)

8,U(x)

It is readily solved by density functions being exponentials of the position- and the momentum-
dependent term of the Hamiltonian, respectively,

n(x) oc e bUG), u(p) oc e~ bP*/CM), (4.9)

Their proportionality factors are subject to the normalization of the phase space distribution
fo(x, p). The factorizing stationary solution in the D-dimensional case can thus be written as

b \"?
u(p) = (M) e b /Cm) (4.10)
n(x) =N a(b,x) e V™, (4.11)
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Figure 4.1.: Lambert density profile for different values of b in a one-dimensional harmonic oscil-
lator. Length scale is a;,, = [1/(Mw)]"/2. Interaction strength is k = 50 iiwl},,. The
b-axis is scaled logarithmically.

where n(b, N) is determined by the normalization condition
J dPx (b, k) e PV = 1. (4.12)
RD

Expression (4.11) is a self-consistent equation in the position density n. It can be solved by a
closed relation,

n(x) = bﬂ w [bK n(b, k) e_bVeXt(x)] , 4.13)
K

utilizing the LamBerT function W(z) (see appendix B). We will refer to it as LAMBERT density.
Solution (4.13) as well as the momentum density (4.10) depend on a parameter b, which needs
a physical interpretation assigned to it. Its influence on the position density profile is depicted in
figure 4.1 in case of an one-dimensional harmonic oscillator with fixed interaction strength. On
one side, we can observe how the width of the Gaussian-like density profile decreases while b is
increased starting from small values. This is akin to a thermal gas of trapped classical particles
that localizes at the trap center for higher 3 = (kzT)™! (i.e. lower temperature). On the other
side of the parameter range, the density profile approaches a shape with finite width — akin
to the THomAs-FErwmI limit (3.82) — rather than producing arbitrarily sharp distributions. It is
tempting to interpret b as a variation parameter that assumes an optimal value when minimizing
the system’s energy. We will see in the following subsections, however, that E(b) does not have
a minimum for finite values of b. Alternatively, since b also appears in the Gaussian momentum
density profile (4.10), its proper value can be deduced by estimating the momentum variance
Ap? = b/M. This estimation can either involve thermal movement, quantum pressure or both.
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4.1.1 Energy and particle number of D-dimensional isotropic, harmonic systems

Discussing the LamBERT density solution (4.13) is greatly facilitated by considering isotropic
harmonic oscillators as trapping potentials, V,,.(x) = Mw?x?/2. In this way, the radial extend
of the corresponding ground state, a,, = [i/(Mw)]"/?, is a manifest length scale. Note that
even for anisotropic harmonic oscillators, coordinates can be rotated and rescaled to render the
potential isotropic. For convenience, we also define the parameter v(b, k) = In[bkn(b, x)], so
the position density (4.13) can be written as

N
n(x) = —W [ br-bManC/2], (4.14)
bx

First of all, we take a look at the parameter v which depends on b and k. Using definition (B.6),
the normalization condition (4.12) may be rearranged to

M w? br2 2
(5) o= e | @xw ()= 50 415
w

By virtue of ﬂlgl)(v) being strictly monotonically increasing (see appendix B.2), for fixed trap
parameters M and w, we have a one-to-one relation between the normalization parameter v and
the product k bP/?*1, In particular, the conditions for weakly interacting (x — 0) and strongly
interacting (k — ©0) regimes translate to v —» —o0 and v — 00, respectively. A key-observable
of the gas is the total energy which comprises three additive contributions,

E[f] = Eyin + Eext + Ennr

2 2.2
- J dPx dPp [ZPM + MO; x4 K n](\;()]u(p) n(x). (4.16)

Firstly, calculation of the kinetic term is straightforward. The position integral is just the nor-
malization condition on n(x) and the momentum integral is the variance of the Gaussian u(p).

We obtain
b P D
Ein(N,b,x)=N | d°p —u(p)=N—. 4.17
The second contribution accounts for the potential energy of the atoms inside the trap. Since
the integral over the momentum distribution merely yields unity, we are left with

N b M w? 5
EeXt(N; b, K) = WJ de TXZ w |:ev(b,;<) bMw=x /2:|

_1py ( o )D/z 28 (b, x)]

= DN (== T (4.18)
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Figure 4.2.: Comparison of contributions to the total energy functional E[f ] for different in-
teraction strengths, k = 100fiwa,, (W) and k = 10fAwa,, (®) in case of an one-
dimensional harmonic oscillator potential. Colors and line styles are used to distin-
guish between energy contribution in the following way. Total energy is black solid,
kinetic part is red dotted, trap part is blue dashed, and mean-field part is green
dash-dotted. Expressions for the energy comntributions Ey;,,, E..:, and E s are given
in (4.17), (4.18), and (4.19), respectively.

where we have used definition (B.6) in the last step. Similarly, the meanfield term with its
quadratic density dependence can be written as

_ D 2 v(b,K)—wa2x2/2
Emf(N,b,K)—zszJd xW2[e ]

_ 1 (2n " A0 1(b,)] .

"2 (Mcoz) bD/2+2)c (4.19)

The influence of the parameters b and « on these contributions is depicted in FIG. 4.2. Appar-
ently, in the limit b — o0, all energy terms either vanish or assume a finite value. The limit
values for E.,, and E_¢, which increase for stronger interactions, are calculated in section 4.1.2.
As expected, the kinetic energy is independent of the interaction strength. Remarkably, the to-
tal energy does not possess a minimum at finite b, which could have given rise to an optimal
b-value. Moreover, figure 4.2 compares the total energy for medium and strong interaction, i.e.,
Kk = 10Awly, and ¥ = 100 Fiwl;,,. We observe that for zero interaction, the kinetic and the trap
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contribution to the total energy coincide, which is typical for harmonic oscillators. Trivially, the
mean field energy vanishes in this case. For increasing interaction, however, the mean field part
assumes non-zero values growing with b while the trapping energy rises above Ey;,. The latter
remains independent of the interaction strength (at least in our model).

4.1.2 Extreme parameter regimes of the Lambert density

We are now able to calculate the Lambert density and corresponding observables for arbitrary
mean field interactions k. Nevertheless, much analytical insight into solution (4.13) is gained
by considering extreme parameter regimes. In this way, we can also check for consistency with
well-established theories for both, noninteracting classical gases and interacting condensates.
The density expressions for strongly and weakly interacting gases given below hold for arbitrary
external potentials. For the sake of calculating observables that involve integrals of the Lambert
density (e.g. particle number, energy) analytically, we assume again a harmonic trapping poten-
tial V.,(x) = Mw?x?/2. This way, we can use the results ot the preceding subsection. It should
be noted, however, that these calculations can be performed for arbitrary confining potentials

as well.

Strongly interacting limit

In the case of strongly interacting gases in atom traps, k — 00, areas of different particle den-
sities demand different approximation schemes. Near the cloud center (I), mean-field effects
are dominant. In terms of Eq. (4.14), this condition is reflected in v largely overwhelming
the potential term which allows us to apply the asymptotic expression of the LamBERT function
(B.4). Far beyond the cloud edge (III), the trapping potential V,,, dominates the cloud’s behav-
ior. Densities become very small, and thus we may expand W in a series as instructed in (B.3).
However, in the intermediate region at the cloud edge (II) where the argument of the Lambert
function in expression (4.14) is around one, neither approximation scheme is appropriate (see
appendix). The transit between the asymptotic regimes in regions I and III is roughly character-
ized by v ~ bV (x). This condition - in case of radially symmetric potentials — gives rise to the
definition of a radius,

2y

RP=——,
b M w?

(4.20)
assuming a harmonic trap. Close to the trap minimum, |[X| < R (region I), the density profile is
subject solely to the competition between potential energy and mean field interactions. Outside
the bulk center, densities at and beyond the cloud edge (region II and III) are comparatively
small and assumed to be negligible. Moreover, we keep only the In(z) term of the asymptotic
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expression (B.4) as it is the most dominant one for large z. Altogether, the above assumptions

lead to
v(b,x)
b

for |x| < R. This is exactly the density profile of the THomas-FErMI approximation, introduced

n(x) ~ % [ — V(x)] , (4.21)

in section 3.3.2. This way, we can identify the ratio of the parameters v and b as chemical

potential,

b
Mrp = A Z;K)- (4.22)

Note that expression (4.21) is constricted to a sphere with radius R, given in (4.20), while
n(x) ~ 0 for |x| > R. With identity (4.22), expression (4.20) exactly reproduces the THoOMAS-
Fermi radius Rpp defined in equation (3.83). Calculating v in terms of k and b as given in
relation (4.15), we use approximation (B.10) for the integral I ](31)(1)) to find

pja 72/(0+2)
) K] . (4.23)

2

prst) = |1 (3 +2) (%2

Note that this expression has lost any b-dependence. In case of D = 3, result (4.23) is well-

known from studies of the THomAs-FErwmi limit of ultra cold gases [17, 19] where one finds

urp o< N?/°. Being interested in the total energy of the gas, we use again the asymptotic
expression (B.10) to simplify the energy contributions (4.17)-(4.19) and sum them up to

DN D+2
E(N,b,k)=—+

5 T D72 N prp(x). (4.24)

Furthermore, the chemical potential can be calculated as

JOE D
u(b,x) = 3N 2h + pp(x). (4.25)

In contrast to expression (3.85), the chemical potential given in equation (4.25) comprises an
additional term that accounts for the finite spread of the distribution function in momentum
space. Since urp is independent of b, neither the energy nor the chemical potential posses a
minimum for finite b, as we have mentioned in the last subsection. Nevertheless, the results
of the THomAs-FErmI are reproduced exactly in the limit b — oo, making the kinetic energy
contribution vanish completely. Figure 4.3 shows a comparison of the Lambert density and the
Tuomas-FermI density for several values of the interaction strength. Obviously, the arbitrarily
chosen b-value of 1000w ™ is sufficiently large to make the Lambert density visually indis-
tinguishable from npp. Although it is satisfactory to see that familiar results are obtained for
b — o0, this limit implies zero momentum variance. The conflict of Ap = 0 with the uncer-
tainty principle may be solved by postulating a minimal Ap and thus an upper bound on b. We
further elaborate on this aspect when comparing the Lambert density solution with numerical
results of the Gross-Pitaevskii equation in Section 4.2.

71



T T T T T T T T
2 2 l
o
> 02} 1
‘®
c
[} L 4
©
-8 -4 0 4 8
x[a,.]
100 T T T T T T T T T
b
o
< 4
'g10 ¢ . ®  gececee, ° N 3
c AAA AAAAAXAAAAAAAAAQAAAA AAA
!'l... ........l“lllllllllllllllllllll‘:....-... ...l-;
‘8 Im 1 1 1 1 1 1 1 ..I
10 -8 -4 0 8
x [a,]

Figure 4.3.: Comparison of Lambert density (n,z) to Thomas-Fermi density (ny¢) for strong in-

teraction in a one-dimensional harmonic oscillator with constant parameter b =
1000 (1) ™!, Part a: Direct comparison of n g (markers) and ny (solid lines). Part
b: Absolute value of difference between n g (markers) and nq. Various interac-
tion parameter values are k = 10hway,, (blue o), k = 100Away,, (green A), and

Kk = 1000 fiway,, (red m).
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Weakly interacting limit

For the case of weak interactions, we may use the series expansion of W (B.3) to approximate
the LamBERT density (4.13). In order to develop a formalism which comprises interaction effects
to the lowest non-trivial order, we linearize the Lambert density (4.13) in «,

n(x) =ne PVext® _ prep? 720 Vex(®), (4.26)

Clearly, the effect of the perturbation term is to flatten the density profile in the cloud center.
Mind that the factor n ensures normalization of n(x) to N and thus also depends on « and b.
Stipulating again harmonic oscillator potentials, the linear approximation of the normalization
condition (4.15) takes the form

_ _ _ w2 D/2
n—2 D/Zbknzz(bl\g—n) s 4.27)
which is solved by
D/2 D/2
m= ()™ [ (242) b o) . (4.28)

Hence, expression (4.26) is written

() = (2e2)" e e (242’ [2—D/2 e e—”M‘“ZXZ] +0(x*) (429
Comparing this expression to (2.77), it is satisfactory to see that one recovers the classical
noninteracting density profile in harmonic potentials when setting k = 0 exactly and identifying
b = (kgT)!. In order to evaluate the linear approximation of the several energy contributions
we utilize the series expansions (B.8) and (B.9) of the overlap integral ﬂ[()m)(v). Consequently,
the contributions from the trap energy,

DN 1 bMw2\""?
EeXt(N7b7K)=E|:1+§( 47:)) bK+0(K2) , (430)

the mean-field energy

N [ bM w?
Emf(N,b,K)z—( 47_[

D/2
5 ) k + 0(x?), (4.31)

and the interaction independent kinetic energy of the gas,

DN
Eyin(N,b) = oA (4.32)
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sum up to yield the total energy

D._ D Mw?\"?
E(N,b,K)=—N+ :4N(b4” ) K. (4.33)
s
The corresponding chemical potential in this limit reads
D D+4(bMw?\""?
u(b,x) = PR ( 4: ) K. (4.34)

The formal correspondence between the parameter b and the inverse temperature, which be-
comes apparent in the weakly interacting limit, can be justified more rigorously by regarding
expression (4.33) in the context of the equipartition theorem. Assuming each degree of freedom
to carry the energy kT /2, leads to the identity

E(N,b,x) = DN kgT. (4.35)

This equation can be solved iteratively by

/2
1 D+4( Mw* Y\
2 n kT — . 4.36
b P 4D (47'ckBT+...) « (4.36)

Hence, for weak mean field interactions in combination with high temperatures, we can estimate
D/2
Mw K
(7)) &< (4.37)
In this case, we can ignore the interaction corrections in equation (4.36) and simply use
b=—. (4.38)

A comparison between the classical noninteracting density (2.77) and the weakly interacting
Lambert density is shown in figure 4.4. The former is plotted for several values of (kgT)™! and
the latter is plotted for corresponding values of b. The Lambert density matches the nonin-
teracting Gaussian solution quite well, especially for high temperatures. For low temperatures,
however, mean field effects become more important, lowering central densities of the interacting
Lambert density solution compared to expression (2.77).

When trying to assign a physical meaning to the parameter b, we concentrated exclusively
on the correspondence of the Lambert density to the Maxwell-Boltzmann theory in case of hot
weakly interacting gases. Nevertheless, the Lambert density is also consistent with the noninter-
acting quantum mechanical ground-state of the harmonic oscillator at zero temperature. In this
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Figure 4.4.: Comparison of Lambert density (n,z) to the noninteracting MAXwEeLL-BOLTZMANN
density (nyg) in an one-dimensional harmonic oscillator, identifying b = (kgT)7?,
with constant interaction strength k = 0.01 iway,,. Part a: Direct comparison of n g
and ny,g. Part b: Absolute value of difference between n,z and ny,;. Values for b-
parameters are b = 10 (iw) ™! (blue @), b =1 (fw) ™! (green A), and b = 0.1 (hew) ™!
(red m).
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case, one simply has b = 2/(fiw). The WicNER function that describes a quantum-mechanical
thermal state in a harmonic oscillator was given in expression (3.44). Its extend in phase space
along a particular axis scales with the temperature dependent factor

1
fiw )’
tanh (W)
Consequently, these results for noninteracting gases are obtained from the LaAMBERT denisty in
the limit k — 0, if we identify

e(T) =

b

2/(h knT < hew/2
1 {mwx T < He/ (439

T e(T) 1/(kgT), kgT > Hew/2

4.2 Comparison of the Lambert density to the Gross-Pitaevskii solution

So far, we have shown that approximations of the Lambert density for extremely strong or
extremely weak interactions are consistent with well-established theories concerning those
regimes. To check its validity for condensates at zero temperature with arbitrary interactions, we
compare solution (4.13) to the numerical solution of the stationary Gross-Pitaevskii equation,

[ n*v?2 ¢ ()2

U+ ——— _Vext(x)_K

M N } ¢(x)=0, (4.40)

with varying interaction strength x. To keep mathematical expressions and visualizations sim-
ple, we consider again an one-dimensional harmonic oscillator.

Looking for the ground state of a quantum-mechanical system, we require a b-value that min-
imizes the energy but respects the uncertainty principle at the same time. By virtue of the
momentum distribution (4.10), a particular value of b fixes the momentum variance Ap. Since
we have neglected quantum pressure on the way to find the Lambert density solution (4.13),
we have to postulate a minimal Ap if we want the uncertainty principle to re-enter our model.
On one side, in the interaction dominated THomas-FErRMI limit, the position variance Ax? is on
the order of 2u/(Mw). Consequently, the uncertainty principle leads to b = 2u/(fiw)?. On the
other side, neglecting interaction effects, the ground-state momentum variance is well-known
to be Ap = Mhw/2 and consequently b = 2/(hw). As a rough estimate, we patch together
those distinct regimes as follows.

f
ul) = ==+ (), (4.41)
b() = 2 p()/(hw) , w>ho (4.42)
- hw , ,u<71co’ .
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Figure 4.5.: Comparison of the LAMBERT density to the numerical solution I: Integrated devia-
tion of n (blue dashed) and ng; (red dash-dotted) to ngp over varying interaction
strength k.

where urp is given in equation (4.23). The Lambert density that corresponds to this estimated
b-value is denoted n.g. The ground state mean field of the Gross-PiTaEvskil equation, ¢(x), is
calculated numerically, using imaginary time propagation. The associated density distribution
is called ngp = |¢|?. Suspecting the estimate (4.42) to diverge from the "true" value of b in the
intermediate parameter regime, Kk ~ hway,,, we calculate another Lambert density function by

fitting the b-parameter to match ngp. We denote this solution by ng;.

In order to compare the various solutions for different interaction strengths in a comprehen-
sible way, figure 4.5 shows the integrated absolute deviation of n.i and ng.. We define these
deviations as

Aest = f dx |nGP — Negtls Aﬁt = f dx |nGP — nﬁt'- (443)

According to figure 4.5, both, A, and Ag;, become negligible in the limits of weak and strong
interaction, meaning very good agreement of the LaMBERT density to the numerical solution
ngp. For intermediate interaction strengths x ~ hway,,, however, the agreement becomes worse.
Although ng; is slightly closer to ngp in this regime, both realizations of the Lambert density fail
to match the Gross-Pitaevskil density as close as in the case of extreme values of k. Figure
4.6 shows a comparison of the three density functions for a specific interaction strength of
Kk = 0.5 Aiway,. The relatively good agreement of ng, to ngp in the center of the trap (part a)
comes at the cost of higher deviation far from the cloud center. The estimated LamBERT density,
on the other hand, matches the far-from-center behavior of the Gross-PrtaEvskii solution quite
well but deviates in the center.
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Figure 4.6.: Comparison of the LamBERT density to the numerical solution Il: density shape. Den-
sity distributions ngp (black solid), n. (blue dashed), and ns; (red dash-dotted)
are compared in the center of the trap (a) and at the cloud edge (b). Interaction

strength is k = 0.5 Awl},.

Finally, we compare the energy contents that are calculated using the three different den-
sity profiles. The energy functional of the Gross-PiTaEvskil wave function solution is given by
expression (3.79). In terms of the LaMBERT density solution, the energy of the condensate reads

2

P 1 n(x)
E[n,u]= Nf d®p M u(p) + J d3x (Vext(x) + EK N n(x) (4.44)
Figure 4.7 shows the energy curves associated with the various solutions. Once again, values of
E belonging to the Lambert density agree best with those belonging to ngp in extreme parameter
regimes, while exhibiting some deviation for intermediate interaction strengths. The linear slope
of E(x) in the limit k — 00 is given by the exponent of urp in equation (4.23). It is 2/3 in the

three-dimensional case.

4.3 The Lambert density of a thermal gas in a chip trap potential

In order to demonstrate the usability of the Lambert density solution beyond the simplifying
assumption of harmonic potentials, we calculate the density profile of an interacting thermal
gas in a realistic trap. Therefore, we consider a trapping potential created by a z-shaped wire,
which is often found on atom chips (z-trap). Figure 4.8 shows a sketch of the atom chip, the BEC,
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Figure 4.7.: Comparison of the LAmMBERT density to the numerical solution 1ll: Energy of den-
sity profiles ngp (black solid), ne (blue dashed), and ny; (red dash-dotted) plotted
against interaction strength .

and the reference frame’s orientation. The current inside the wire, I, creates an inhomogeneous
magnetic field which can be calculated with Biot-Savart’s law,

I —
Bx) =20 | dgsx X5 (4.45)
3
4n wire |X_ S|

where s is a line element along the wire. The shape of the wire leads to a local minimum
of the magnetic field corresponding to a minimal Zeemann energy shift AE = u|B| of atoms
near the chip. Consequently, this potential minimum constitutes an atom trap. In our specific
example, the center of the trap is situated at (x, yy,2%,) = (100.50, —1.66, 227.06)um, where
the z-component indicates the distance to the chip surface. Close to the potential minimum,
the harmonic approximation agrees very well with the real potential, as can be seen in the
visualization of the chip trap potential in figure 4.9. Along the z-direction (parts c, f), we observe
the largest deviation of the harmonic approximation from the real potential. Roughly speaking,
the weakly bound direction of the cigar shaped trap geometry is aligned to the x-axis. In the y-z-
plane, the potential is radially symmetric. The eigenfrequencies of the harmonic approximation
are (wq,wy, ws) = 21 - (19, 325, 328) Hz which entail a geometric mean frequency of w =
2m-127Hz.

For a thermal cloud of trapped 8’Rb atoms, we want to compare observables associated with the
Lambert density solution to results from MaxwEtLL-BoLTzMANN theory. Considering 8’Rb atoms,
the binary interaction is g = 0.076 haaﬁo. As mentioned in the beginning of this chapter, we
have to recall that in case of thermal gases, the mean field interaction gives rise to a contribution
2gn to the Hamirton function which is twice as high as in the case of a condensate. Varying the
particle number N in order to realize several values of k, we must be careful to stay above the
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Figure 4.8.: Part a: Model of the wire geometry of the chip trap. Part b: Illustration of the
cloud'’s postition relative to the atom chip and reference frame orientation.
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Figure 4.9.: Visualization of potential energies of Z-trap. a-c: Potential along x-, y-, and z-axis,
respectively, around the potential minimum. Numerically calculated Z-trap potential
(solid line) and harmonic approximation (dashed line). d-f: Difference between Z-
trap potential and harmonic approximation.
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Figure 4.10.: Visualization of densities along coordinate axes as one-dimensional excerpts of the
three-dimensional density. The latter was evaluated on a position grid with 323
points. Parameters are T = 300 nK, N =7-10% and g = 0.076 ioa; . Upper row,
a-c: Lambert density (black solid line) and Maxwell-Boltzmann density (red dashed
line) along x-, y-, and z-axis, respectively, around the potential minimum. Lower
row, d-f: Difference between Lambert density and Maxwell-Boltzmann density.
The trapping potential is visualized in figure 4.9.

critical temperature T, of the BEC phase transition. Its relation to the particle number of the
trapped gas [19] is given by

ksT. (N '/
et _(@) . (4.46)

Assuming for instance N < 7 -10%, all temperatures must satisfy T > 236 nK to exclude
the existence of a condensate. Furthermore, restricting the discussion to particle numbers
below 7 - 10* and temperatures above 240nK, the ratio of interaction to thermal energy,
(Mw/ (4nkBT))D/ k) (kgT), remains below 0.0246. Thus, by virtue of relation (4.36), we can
simply identify b = (kg T) ™ .

As a first step, for any combination of values for b and «, one has to determine the nor-
malization factor n. Unlike the previously discussed case of harmonic potentials, where the
normalization condition is a closed equation (4.15), we have to solve Eq. (4.12) for v numer-
ically. Figure 4.10 shows the Lambert density, the MaxwEeLL-BorTzMANN density (parts a-c), as
well as their difference (parts d-f) for T = 300 nK. In the considered regime, where the spatial
extent of the cloud is determined by thermal fluctuations rather than interatomic interactions,
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Figure 4.11.: Comparison of energy calculation methods. We have subtracted the energy non-
interacting classical gas, 3NkzT, from each contribution. Solid lines: energy of
LAMBERT density in the z-trap. Dotted lines: energy of LAMBERT density in harmon-
ically approximated trap. Dashed lines: energy of density with linearized weak
interaction in harmonically approximated trap according to (4.33). Different tem-
peratures are T = 240 nK (blue A), T = 300 nK (green ), and T = 360 nK (red
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the Lambert density differs only up to ~0.2% in the center of the trap and is thus a negligible
correction to the MaxweLL-BorTzMANN result. However, the weakly interacting regime is well
suited for studying the behavior of first-order corrections to global observables like total energy,
derived in section 4.1.2.

In figure 4.11, we show the result from directly integrating the energy functional (4.16) nu-
merically. Therefore, we compare the energy we obtain from using the LamBERT density to that
resulting from the noninteracting MaxwEtLL-BorTzMANN density. This reveals the influence of
weak interaction onto the total energy. In addition, we also plot the energy curve according
to the analytical relation (4.33) that gives a linear approximation to the energy of a weakly
interacting gas. Comparing it to the above calculations that utilize the z-trap potential, we can
see how anharmonicities affect the results.

82



83






5 Condensates in hybrid systems

Hybrid systems, like microscopical objects immersed into BECs, are an active field of research.
Prominent examples are the resonant coupling of ultra-cold atoms to micro-mechanical can-
tilevers [22,23]. Recent experiments focused on the interaction of a BEC cloud to even smaller
objects like carbon nanotubes [24-28] or single ions [76, 77]. Motivations for studying hy-
brid systems are manifold and include advances in quantum information technology as well as
precision measurement of microscopical forces.

In the following, we investigate the influence of a microscopical object (MO) on a cloud of ultra-
cold atoms which we describe with the mean field approach utilizing hydrodynamic equations.
The MO may be a carbon nanotube, a fullerene, or the like. To this end, we formulate a simple
model for the local response of the atomic cloud on the perturbation with an MO. Furthermore,
we examine the dynamics of the global number of condensed atoms.

5.1 Model

In order to obtain an effective equation of motion for a BEC being in contact with a MO, we
identify the main effects, the immersed body has on the condensed atoms. These are attraction
of neutral atoms towards the MO on one hand, and the loss of condensed atoms on the other.
The former results from the interaction between neutral objects that carry dipoles which are
induced by vacuum fluctuations. This phenomenon is known as Casimir-PoLDER effect [78, 79].
Its influence on the BEC’s dynamics is described simply by an additional potential, Vp(x). The
latter effect, the loss of condensed atoms, is due to their inelastic scattering at the surface of
the MO. Without considering microscopic details, we assume a local single-particle loss rate for
the condensate I'(x) to effectively cover these processes. Clearly, the space dependence of T is
supposed to resemble the spatial shape of the MO. Moreover, both entities, Vp and I', can be
equipped with time dependence in order to describe the immersion of the initially seperated
systems into each other.

5.1.1 Modified hydrodynamic equations

For describing the condensate’s dynamics, we start with the time dependent Gross-PITAEVSKII
equation (3.68), assuming the cloud’s behavior to be dominated by mean field interactions.
Thus, we neglect thermal excitations as well as two-particle correlations. Based on that, the
two effects of MO immersion described above (attraction and loss) are reflected by two extra
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terms in the equation of motion. Assuming the cloud is held in an external trap V., the CASIMIR-
PoLpER potential adds up to a total potential, V., +Vp. At the same time, the inelastic scattering
of condensed atoms leads to a damping of the macroscopic wave function of the condensate.
This can be modeled by adding an imaginary term —ikI'/2 to the real potentials. All in all, our
modified macroscopic wave equation reads

(i1, + £ V% — Ve (%) — glp (%, O | W(x, 0) = [Veplx, 1) — ET(x, )] W(x, 1), (5.1)

arranging the terms of the original Gross-PiTaEvskil equation (3.68) on the left-hand side and
those describing the MO interaction on the right-hand side. Re-applying now the steps that
led to the hydrodynamic formulation in section 3.3.2, we obtain the modified hydrodynamic
equations in density n action S,

o,S + ﬁ(VS’)Z + Voge + Uq[n] + gn =—Vp, (5.2)
8tn+%v-(nvs)=—lﬂn, (5.3)

which are fully equivalent to the modified wave equation (5.1). In the following, we assume
the cloud’s dynamics to be dominated by its mean field interaction gn so that quantum pressure
U, can be neglected and the density profile of the unperturbed atom cloud, n, shall be well
approximated by the THomas-FErmI density (3.81).

5.1.2 Time and space dependence of immersed object

Choosing definite functions for the MO potentials Vp and T', to model the immersion process,
one can go arbitrarily deep into detail. For instance, the object is brought to overlap with the
condensate, following a certain immersion trajectory r(t). Attraction and loss would then be
of the form Vp(x—r(t)) and T'(x —r(t)), respectively. If this process is too rapid, complicated
excitations may be triggered in both subsystems, BEC and MO. Rather than incorporating every
minor effect, we opt for a quite basic model. After all, being interested in global features, like
loss of total particle number, microscopic details are less relevant. Also, local effects like sound
waves can be studied on an elementary level.

In our model, instead of a smooth immersion process, we let the MO appear instantaneously at
certain position inside the atom cloud. Once popped up, it rests motionless for the interaction
time until it instantaneously disappears again. Moreover, we assume the MO’s spatial extend to
be far smaller than the cloud size. It is thus effectively described by a delta function. Based on
that, the influence of elongated objects like CNTs may be modeled by adding up the effects of
many point-like disturbances.6
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5.2 Perturbation theory

Assuming the influence of the MO on the BEC to be sufficiently small, we derive approximate
expressions for the hydrodynamic equations (5.2) and (5.3). As noted above, prior to any inter-
action with the MO, we assume the atom cloud to be completely condensed to the interaction
dominated ground state, described by the THomas-FeErm1 density (3.81). The response of the
condensate is expanded into a perturbation series. To keep track of the order of perturbation,
we introduce the smallness parameter A which formally quantizes the strength of interaction
between BEC and MO. This means we write Vcp — AVp and I' = AT and, eventually, set A — 1
when expressing final results. Thus, the response of the atom cloud to MO immersion can be
expanded as

n=> Mn; §=>As,. (5.4)
j=0 Jj=0

The zeroth order describes the unperturbed ground state values. According to section 3.3.2,
these are a time-independent density and a position-independent phase,

nO(X) = é(nu* - Vext(x)): (55)
So(t) = —ut. (5.6)

Plugging ansatz (5.4) into the modified hydrodynamic equations (5.2) and (5.3), with the quan-

tum pressure U, neglected, yields a hierarchy of differential equations. Isolating first-order
terms carrying A!, we obtain an equation of motion for linearized deviations from the ground

o, g\[S1)_ [ Ver
(%Vnov at)(nl)_ (nol")' (5.7)

We arranged the homogeneous part of the partial differential equation on the left-hand side and

state,

the inhomogeneity on the right-hand side. Moreover, gathering terms with A2, one finds the

o, 8 Sy __ ﬁ(vsl)z (5.8)
%V?‘LOV at n2 %V * (nlvsl) + Fnl ‘ ‘

Equations (5.7) and (5.8) as well as any higher-order equation can be written in the form

second order to be

A

DY, =h,, (5.9)

87



combining the j-th order phase and density into a vector v, = (S;, nj)T. All members of the
hierarchy (5.9) have the same differential operator

N a
D= ( o g) . (5.10)

The perturbation terms in the various orders have also been written in a vector notation h i =
(hsj, hnj)T. We can formally solve these equations,

Y(x,t)= J dt’f dPx’ G(x, t|x/, t')h, (X, t), (5.11)
—00 R3

introducing the Green’s function G to the differential operator D. It is defined by satisfying the

relation

D G(x, t|x,t) = 6(x—x)5(t — t))1. (5.12)

Note that we took the liberty to leave the dimension of the problem unspecified in order to cover
the real three-dimensional system as well as simple one-dimensional models.

5.2.1 Local density approximation

Finding a differential operator D that satisfies relation (5.12) is greatly simplified, by neglect-
ing the spatial variation of the ground state density n,y. This is justified if the perturbation
introduced by the MO is limited to areas which are tiny compared to the spatial extend of the
cloud. This way, the ground state density is approximately constant in the vicinity of the per-
turbation, and hence we may assume Vn, ~ 0. Consequently, the differential operator D is
independent of position and time, giving rise to a GReeN’s function that is just a function of
position and time differences, Ax and At, respectively. A solution can now be easily calculated
by Fourier-transforming equation (5.12). The resulting equation in the transformed GREEN’s
function G(k, w) can be solved algebraically, obtaining

Gk, w) = ;( 0 _g). (5.13)

2

4 kZ .
- Lw
4

We have used again the speed of sound of the condensate ¢ = (gn,/M )72 introduced in section
3.3.2. Finally, inverse Fourier transformation from the k-w-space into the x-t-space yields the

retarded GREEN’s function

J —g 1 J b,y Sin(clk|At)
G(Ax,At) =O(At d’k e ————. (5.14)
( ) =6 )(—gaf o, ) (2m)P clK|
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Clearly, the advanced Green’s function G(Ax,—At) is also a solution of equation (5.12). How-
ever, we are only interested in the retarded solution describing the response of the BEC as causal
consequence of the MO immersion. The definite form of the GrReeN’s function given in (5.14)
depends on the dimension of the problem. Relevant in most situations are the three-dimensional
and the one-dimensional case. The former for realistic descriptions of most experimental setups,
the latter for simple models that provide valuable insight. For these cases, we find the following.

1D: In the one-dimensional case, the retarded GrReeN’s function is found to be

—8

t
—152 2,

G(Ax,At) = %@(At)(
g7t

)[@(Ax+cAt)—@(Ax—cAt)]. (5.15)

Obviously, Any local perturbation of the BEC propagates with sound velocity ¢ in both
directions.

3D: In the three-dimensional case, on the other hand, one has

(5.16)

G(Ax,At)zﬁ@(At)( % _g) o(lx[—cAt)

1
_Eatz 8t |X|

The expression 6(|x|—ct)/|x| may be familiar from the solutions of the HELMHOLZ equation
for the propagation of electro magnetic waves [80]. The response to a perturbation can be
constructed by spherical waves that expand radially with c.

For the sake of brevity and ease of demonstration, we will only use the one-dimensional GREEN’s
function in the subsequent discussion. All calculations can however be easily repeated for the
three-dimensional case.

5.3 First-order effects on BEC

We now examine the linear response of the BEC to the immersion of a MO. We thus assume the
BEC-MO interaction quantified by V;p and I to be sufficiently small so that higher orders can be
neglected.

5.3.1 Perturbation functions

Having available the Green’s function, the evolution of phase and density of the BEC can be
calculated straightforwardly by appointing the first-order inhomogeneity

hs, (X, 1) _ Vep(x') /
(hnl(xﬁ f’>)_ ( r(x'))@“ > (5.17)
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Concerning the time dependence, as elaborated above, our model assumes the MO to instanta-
neously appear inside the condensate. This discontinuous behavior is described by the function
©(t’) in expression (5.17). For the BEC-MO interaction potential Vp we use

Mmax
C
m

Vep(x) = mZZ; (%')—mﬂ,

decaying for larger distances at least as fast as |x|™2, i.e. faster than the CouLoms potential.

(5.18)

Simultaneously, it assumes finite values for smaller distances. Furthermore, we describe the
position dependent loss of particles by a Gaussian

r'(r)= ye_|X|2/b2, (5.19)

with y being a constant rate. In both expressions, the parameter b is connected to the spatial
extent of the MO.

5.3.2 Sound waves in one dimension

In order to gain some insight into the behavior of the BEC after the immersion of an MO, we
consider a one-dimensional system in local density approximation. Gathering ingredients from
previous sections, the linear response of the condensate is expressed as

51 _ _1 > / ‘ / at —&8 . . VCP(X/)
(nl)_ cJ_Oodx L dt (—éaf at)[@(AercAt) O(Ax —cAr)] (nor(x’))' (5.20)

From expression (5.20) we can extract the linearized deviation of the ground state density,

x+ct

n,(x,t) =—§(2vcp(x)—vcp(x +ct)—VCp(x—ct))—%f dx’ T'(x). (5.21)
x—ct

One recognizes the propagation of the perturbation to both directions, traveling with velocity

c. Remember that we are in local density approximation. Hence, the ground state density n, as

well as speed of sound £c are constants. Solution (5.21) is visualized in figure 5.1b assuming an

attractive potential Vp and a tightly localized loss area I'. The attraction towards the MO leads

to an increased density in the vicinity of the object at x = 0. The shock wave that is triggered by

instantaneous onset of BEC-MO interaction erodes through the density profile. The shape of the

wave front is determined by the potential Vip as well as the antiderivatives of the loss function

fx dx’ T'(x").

In addition, the solution for the action response is found to be

1 x+ct M x+ct x'—ct
Si(x,t)= _Ef dx’ Vep(x') + ?J dx’f dx” T(x"). (5.22)
X X x/

—ct
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Figure 5.1.: Numerical solution of GP equation with MO perturbation. Part a: Action over posi-
tion and time since immersion. Part b: Density response over position and time since
immersion. Note: The time axis in part a is reversed compared to that of part b for
enhanced visibility of plots. Parameters of MO potentials as defined in (5.18) and
(5.19) arey =0.2¢/b, C, = —0.2 gn,.
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Like the first-order density (5.21), the perturbation in S spreads in the form of a shock wave. It
is plotted in figure 5.1a. Inside the wave fronts, the action grows linearly towards the location
of the MO at x = 0. Recalling the velocity field to be proportional to the action gradient,
v = 0,S/M, this means that in the wake of the shock wave, particles are flowing uniformly
towards the MO, where they are scattered to unobserved channels and thus lost. The linear slope
of the action solely depends on the loss function I" or, more precisely, on its double antiderivative
in the second term of the right-hand side in equation (5.22). This can be best realized by
considering the ideal case of T' being a delta function, I'(x) = yb 6(x). In this case, the simple
antiderivative is a square function. Consequently, the double antiderivative is a piecewise linear
function. Its slopes are given by £M by, corresponding to a velocity by with which the particles
flow towards the origin.

5.3.3 Beyond local density approximation

Extending the local solutions beyond the spatial vicinity of the perturbation, we consider the full
ground state density profile ny(x). Typically, going away from the center, it decreases mono-
tonically towards the cloud edges. Thus, sound wave excitations that are born in the MO, start
to propagate with velocity o< n(l)/ %(0), are decelerated when moving towards regions of lower
densities and, eventually, reflected at the cloud edge. Being interested, for instance, in the evo-
lution of the density only, we differentiate the lower component of equation (5.7) with respect
to time and plug in J,S; given by the upper component. This way, we have rewritten a system of
first order differential equations as a single second-order differential equation in the first-order
density response,

(02— (& a,ng) 8, — &np 82 |ny = & 8,(10 8, Vep ) ©(£) — o T 5(1). (5.23)

The coefficients of the terms with second derivatives have opposite signs, making (5.23) a hy-
perbolic equation [81,82]. In this case, the propagation of its solutions can be described by its
characteristics, defined by the ordinary differential equation

dx© . gny

=+4/=. 5.2
1 Y (5.24)

One easily recognizes the definition of the speed of sound on the right-hand side. In deed, if
the ground state density n, is assumed to be constant as in last subsection, the characteristics
are trivially given by x()(t) = +ct, describing the wave front propagation with constant speed
of sound. Abandoning the local density approximation in favor of the THomas-FERMI approxi-
mation, the spatially varying ground state density is given equation (3.82). In this case, from
relation (5.24) one obtains the characteristics

x©(t)=+R sin(%) : (5.25)
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Figure 5.2.: Density response from numerical GP solution. Dashed lines are characteristics of
PDE (5.23), explicitly given in (5.25) for TF ground state. Parameters of system are
M =87amu, w =27 -3s !, g = 0.499%way,.

Thus, sound wave excitations oscillate back and forth across the density profile being reflected
at the cloud edge at x = %R.

The density response upon a realistic condensate in a harmonic potential is shown in figure
5.2. To this end, we have solved the time-dependent modified Gross-Pitaevskil equation (5.1)
numerically. One can see that the characteristics (5.25), that are indicated as dashed lines,
trace the wave front propagation quite well. In addition to the sound waves, the condensate is
constantly loosing atoms. Consequently, equation (5.23), describing the linear response n; on
top of a time-independent ground state n,(x), becomes inadequate in the long term. Rather
than circulating incessantly across a static medium, the sound waves erode the bulk density;
inevitably shrinking it. Nevertheless, if we can assume the total number of particles that are lost
during a single sound wave circulation to be small, i.e. N < w/+/2, we can adequately describe
wave front propagation with expression (5.25) in the limit of a few cycles. Looking closely at
figure (5.2), one can already recognize that wave fronts do not reach as far from the center
after a few cycles as they do in the very beginning. The shrinking of the bulk density on longer
time scales and its implications for the dynamics of the total particle number is discussed in the

following section.
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5.3.4 Particle loss

So far, we have priorly considered local effects of a BEC. In contrast to local phenomena like
sound wave excitations, we now discuss the decay of the global particle number that is triggered
by interactions with the MO. For this purpose, we assume the linear density response to be suf-
ficiently small compared to the ground state density. Thus, we can write the evolution equation
for the complete density as

dn=—=-v(nVS;)—Tn, (5.26)

exploiting relations n = ny + n; ~ ny and d,n = d,n;. While the one-dimensional model was
useful to obtain simple results and illustrative visualizations in the last subsection, we consider
the more realistic three-dimensional case in the following. A differential equation for the particle
number is obtained by integrating equation (5.26) over the complete system and neglecting
boundary terms. This yields

C(li—]z[ = —J d®x n(N,x) I'(x). (5.27)
Hence, the total loss rate is the overlap of position dependent loss function I' and density n. As
mentioned above, we now ignore local excitations. In deed, one can check that all sound waves
that are caused by the sudden switch-on of the MO attraction, Vp(x) ©(t), vanish exactly during
integration. For example, spatially integrating expression (5.21), the density bump at the origin
described by 2Vp(x) is compensated by two traveling dimples given by —Vp(x £ ct).

In addition to sound wave excitations, particles are constantly flowing towards the MO where
they are lost from the condensate. As discussed in the last subsection, this particle loss entails
a steadily shrinking condensate. Thus, one has to consider the density as a function of N as we
have indicated in expression (5.27). We again assume the condensate to be initially prepared
in a trap and dominated by mean field interactions such that THomas-Ferwmi limit applies. The
particle-number-dependent density is then written as

n(N, %) = (urp(N) = Ve (%)), (5.28)

where urp > V. and n = 0 otherwise. As an example we consider an anisotropic harmonic
trapping potential V., (x) = Mw?x?/2 and a point-like MO, so that the loss function can be
written as ['(x) = y¥ 6(x). Here, the factor y is a constant loss rate in inverse time units and ¥
describes an effective volume quantifying the spatial extent of the loss area. Approximating I'
with a delta function, of course, we have presumed the effective volume ¥ to be small on the
length scale of the cloud. In this case, the right-hand side of the differential equation for the
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Figure 5.3.: Decay of particle number of a BEC in harmonic trap with point-like MO

particle number (5.27) becomes —y¥ u(N)/g. Consequently, using relation (4.25) with D = 3

to write out the chemical potential in THomas-Ferwmi limit for a harmonic oscillator, we obtain

dN
— = —y(N?/5. 5.2

In order to arrive at this compact form, we have defined the effective loss rate in the mean field

regime as

2/5 ( M2 )3/°
rme=(32)" (%) . (5.30)
In the regime of large particle numbers, N > 1, equation (5.29) is readily solved by

5/3
N = (Ng”* = 2ymet) (5.31)

describing an algebraic decay of the particle number. This solution is valid as long as N is large
enough to make mean field interaction dominant so that TF limit applies.

After a critical time t, = 5/(3y,), only few particles are left, i.e. N Z 1. In this regime, particle
interactions can be neglected and the behavior of the remaining atoms is rather described by
the single-particle SCHRODINGER equation. If we assume the condensate density after t. to be
described by the ground state of the noninteracting quantum-mechanical harmonic oscillator,

n(N,x)=N (%)S/Z exp (—%xz) , (5.32)

the differential equation in the particle number (5.27) becomes

dN
E = _YniNs (533)

implying an exponential decay of the particle number. Here, we have identified the effective
loss rate in the noninteracting regime,

Mw)?/?
Yni — (E) "V’)/. (5.34)

The evolution of N(t) is shown in figure 5.3.
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6 Phase space description of atom
interferometers

Interferometry with neutral atoms is an active research field that is thematically situated be-
tween atomic physics and quantum optics. Nevertheless, the beginnings of matter wave inter-
ferometry date back to the early days of quantum mechanics. A comprehensive review on optics
and interferometry with atoms and molecules was given by A. CRoNIN, J. SCHMIEDMAYER, and D.
PrITCHARD [29].

Roughly speaking, matter wave interferometry is about coherently splitting the motion of atoms
and molecules into two or more paths. These paths separate spatially so that atoms following
different paths will be subject to different external influences. Eventually, they are — completely
or partially — recombined to produce a detectable density profile that contains information about
the difference of phases that are accumulated along different evolution paths. This way, matter
wave interferometry is, of course, completely analog to traditional interferometry utilizing light
beams. This discipline was developed more that 100 years ago [83-86] and is an essential part
of textbooks which are considered standard (see e.g. [87]). There are many advantages that
come with extending these quasi-ancient ideas of optical interferometry to massive particles.
Clearly, the earliest motivation was the experimental confirmation of pE BROGLIE’S matter wave
picture formulated in 1923 [88]. This wave picture for massive particles was first demonstrated
for electrons by Davisson and GErRMER in 1927 [89]. The first experiment on atom diffraction
was already done in 1930 by EstermMAN and STerN [90]. Later, interference phenomena were
also observed for neutrons [91]. Nowadays, the high controllability of atoms in laser fields
enables the design of sensor devices with unprecedented precision.

In most cases, coherent manipulation of the atom’s transverse motion is achieved by imposing
periodical potentials on them. These can be realized by laser fields [92] as well as massive
structures forming transmission gratings [93]. In this work, we consider only interferometer
elements that are based on atom-light interactions. Moreover, the interferometer scheme shall
be a MAcH-ZEHNDER interferometer (MZI), sketched in figure 6.1.

In the following, we first recapitulate on how atomic beam splitters are realized with atom-
laser interactions. These aspects are standard elements of many textbooks on quantum optics
[30,94,95]. After that, we formulate a simple model of beam splitters in phase space and
consider the propagation of wave functions through a MZI-setup. Finally, we translate the wave
function formulation into a phase space language utilizing WiGNER functions. This enables us to
describe these elements in our ray tracing formalism that will be subject of chapter 7.
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Figure 6.1.: Sketch of atomic and optical MAcH-ZEHNDER interferometer (MZl). a: MZI for atoms
realized by three laser pulses. We will elaborate on this configuration in section 6.3.
b: Optical MZI with two beam splitter and two mirrors

6.1 Optical beam splitters for two-level atoms

The splitting of an incident atomic wave function into two or more paths by a light field shall be
realized by a two or 2N,,-photon transition. Therefore, consider two counter-propagating laser
beams with wave vectors k; = k; and k, = —k;, forming a standing wave. The electrical field is
given by

E(x, t) = %Eo el@tt cos (klx + %) +h.c., (6.1)

including the laser frequency w; = c|k;| and an arbitrary offset { /2. The atoms that are exposed
to the laser field shall be described by two-level systems with internal states |g) and |e). The
Hamiltonian for the complete system comprises two parts,

H=H,+H,,. (6.2)

If the atomic energies are given by iw, and Aiw,, respectively, the atomic Hamiltonian reads

b
2M

2
H, =Hhw, |g) (g + 7w, |e) (e] + —. (6.3)

We have explicitly taken into account the external degrees of freedom, appearing in the kinetic
contribution p?/(2M). In the following, we will refer to |g) as the ground state and to |e) as

excited state. Their energy difference is denoted by fiw,,. The interaction between the neutral
atoms and the light field through the electric dipole moment [x gives rise to a lattice potential
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k2 = _kl

Figure 6.2.: Sketch of laser field interacting with two-level atom

that can be described by the reciprocal lattice vector G = k; —k, = 2k;. Using electrical dipole

approximation, the interaction Hamiltonian is written as

Hipe = —t- E(R)
_ MOR ¢ igkigia L —ikigeg/2Y ([ —iont
=— (e L +e ) (e i le) (g| +h.c.), (6.4)
introducing the Rasi-frequency wp = —E, - (e|flg) /i [30,94,96]. The atom-field system is
sketched in figure 6.2. Expanding the position dependent factor in H;,, as

etk = J d’p |p£hk) (pl, (6.5)

one can see that the interaction of atoms with the laser field couples the states |g,p) with
le, p £ fik; ). Physically, this transition is achieved by absorption of a single photon with energy
fik, by the atom. Subsequent emission of a photon then couples |e,p + fik;) to |g,p + 2kk;).
Consequently, chaining these absorption/emission processes together, a 2N,,-photon transfer
results in | g,px 2Nphhkl>. Here, we utilize a wave function in 3+1 degrees of freedom. On one
hand, there is the external translational motion of the atoms in three dimensions, quantified by
the momentum p. On the other, the internal degree of freedom is spanned by atomic states |g)
and |e). In a more rigorous notation, one would write e.g. |g,p) =|g) ® |p).

Of course, the two-level model does not describe the coupling of the excited state to unobserved
states other than |e). This effectively leads to a loss of population from |g) quantified by a loss
rate I'. The influence of such a dissipative mechanism can however be minimized by chosing
the laser frequency to be sufficiently far detuned from resonance,

Wee—w; =0>T. (6.6)

eg
Starting with an atom in its ground state |g), the excited state can then be adiabatically elimi-
nated. Hence, the resulting wave function is produced by 2N,,,-photon transitions between two
ground states |g,p) and |g, p = 2nhk;) with the excited state |e, 0) being a virtual intermediate
state. In the following, we assume condition (6.6) to be always fulfilled.
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Concerning the course of events, we let the atoms enter the laser field at time instance t; —7/2
where they are subject to atom-light interactions until t; + 7/2. Depending on the interaction
time T and depth Awpg of the optical potential, the passage of the wave packet through the
beam splitter is ruled by different regimes [96-98]. Two cases that are particularly useful in the
context of matter wave interferometry are the Kapirza-Dirac and the Bracc regime which will
be briefly discussed in the following.

6.1.1 Kapitza-Dirac diffraction

In the limit of short interaction time 7, the atomic state that results from interaction with the
laser field is described by Kapitza-Dirac diffraction [92,96,99-101]. Assuming T < 1/wWyec,
with wpe. = ﬁkl2 /(2M) being the recoil frequency, the kinetic contribution to the total Hamil-
tonian can be neglected. This approximation is referred to as Raman-NaTH regime [30, 102].
Eliminating the excited state |e), the atom-light interaction is effectively given by an AC-STARK
shift potential

A(t) = 1 i@ (t) cos?(kk +¢/2), 6.7)

(2)
R

field acts as phase grating for the incident wave function |1/)(t1 -3 > Respecting the on- and

using the effective two-photon Ras! frequency wy (1) = wa()/(26). Hence, the periodical light

off-switching process of the laser pulse, the temporally varying intensity gives rise to a time-

(2)

dependent effective RasI frequency wy

(t). The output wave function is then written as

t1+7/2

(e, + ) = exp H f

tl—T/z

de’ PAI(t/):| lw(t,— D). (6.8)

Plugging in expression (6.7) for the Hamiltonian, we obtain the resulting wave function as a
superposition of many copies of the incident wave function being affected by different operators
exp (i{Gx),

[t +5)) = > ay (1) |y (e, — ). (6.9)
{=—00

The coefficients a, of this superposition depend on the interaction time 7 and are given in terms
of BessktL functions of the first kind [75] as

t1+7/2
a, (1) =it J,(90) €6, with (7)) = f dt’ wQ(t). (6.10)

tl—T/Z

We have abbreviated the argument of the BesseL functions as a parameter () that grows lin-

early with interaction time 7, assuming the laser intensity and thus the Ras1 frequency col(f )(t) to
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scattering
propability |7+ 7
a?=720) |

Figure 6.3.: Probabilities |a,|> of KariTza-DIRAC scattering orders { over interaction parameter
according to (6.10). Integrated stem plot indicates probabilities for a fixed choice of
T~ 1.4347.

be zero outside the interval (t; —7/2,t; + 7/2). From equation (6.9) we can easily extract an

operator

[ee]
Ui (9) =™ > i (9) %%, (6.11)

{=—00

that acts on incident states and produces the resulting state of a Kapitza-Dirac pulse,
|¢(t1 + %)) = Uyp ‘1/)(t1 - %))

At first glimpse, the output state (6.9) is a superposition of infinitely many scattering orders £.
The number of contributing orders is then successively increased by extending the interaction
time 7. Only for longer interaction times 7, more diffraction orders come into play. A compari-
son of several coefficients for variable interaction time is shown in figure 6.3. Note that the sum
of all scattering probabilities must be unity,

D lalP= D p®m=1, (6.12)
E:—oo K:—oo

where the second equal sign is justified by NEumann’s addition theorem for BesseL functions
[75].
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Figure 6.4.: Sketch of first-order BraGG diffraction by means of two-level dispersion relation [96,
106]. The laser field resonantly couples to external states of atomic motion with a
two photon transition.

6.1.2 Bragg diffraction

Bracc diffraction [96, 98, 103-105] occurs in the limit of long interaction times and shallow
optical potentials. Taking into account the kinetic contribution to the Hamiltonian which cannot
be neglected anymore, only few transitions are permitted by energy conservation. For the sake
of brevity, we limit our discussion to first order BRAGG scattering. This means that single-photon
transitions only couple the ground states |g,+k;) to the excited state |e,0) and vice versa as
indicated in figure 6.4. Respecting the kinetic energy, emission and absorption of laser photons
leads to an increase or decrease of the translational energy of Aw,.., respectively, where the
recoil frequency is given in terms of the laser wave length as w,. = ﬁkl2 /(2M). Recalling the
interpretation of exp(+ik;X) as kick operators as indicated in expression (6.5), the complete

Hamiltonian is written

I:\I = hweg |€, 0) (690| + hwrec(|g:_kl> (g)_kll + |g’ +kl) <g9 +kl|)
h(x)R
2

[e7it (/% ]e,0) (g,— k| + e7*/%]e,0) (g, +k;|) + h.c.]. (6.13)

In contrast to Kapritza-DirAc pulses, dealing now with longer atom-laser interaction times 7, we
ignore the details of switching on and off, assuming the Ras1 frequency wg to be constant inside
the interval (t; — /2, t; + 7/2), and zero outside. The SCHRODINGER equation if1 d, [)) = H |v)
with the Hamiltonian (6.13) can be solved using the ansatz

[p(0)) = a_(t)e™ et g, —k) + ap()e ™ “es" e, 0) + a, (t)e et g, +K;) . (6.14)
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This leads to differential equations in the time-dependent coefficients,

dO :_7R61At(e—1§/2a_+e+1§/2a+)’ eilg/quc :—7R6_1At(10, (615)

where we have abbreviated the effective detuning A = w_..+6 (including photon recoil). In the
limit of large detuning A% > a)}%, the coefficients, after having passed the optical field, become

(2) (2) : w(z)T
a_(n+3)= e2 [cos a_(t, -5+ ie " sin o (t— )] (6.16a)
i (2) (2) (2)
A+ =ez®rR " [le CsinR ™ o (t,— 2)+cos% a+(t1—g)]. (6.16b)

where we encounter again the effective two photon Ras1 frequency, w ( ) = coR/ (26). Hav-
ing now available a mapping between amplitudes, it is easy to write a mappmg between the
wave function before and after the Bragg pulse. Therefore, assuming the incident state to be a
superposition

Y, -9) =a_t,-D|g, k) + a6 -DIg, +k) (6.17)

of the two ground states |g, +k;) with no population in the excited state |e,0), a(t;—7/2) =0
the output wave function becomes

e+ 5) = e"”/z[(cos% g, —k) +isind e g, +k))) (g, k|- 5)

+(isinge—i§ |g,—kl)+cos% |g,+kl)) (g, K|y, - )] (6.18)

. o . . . _ @
identifying again an interaction parameter ¥ = wy

7. This solution describes an oscillation of
population between two momentum states at Fk; as we tune the interaction time 7. It is known
as Pendellosung in diverse physical contexts [107-109]. Like before, we can easily extract an

operator from expression (6.18),

Ug(9) = [(cos S +ising el(G"J’g)) lg,—k) (g,— k|
+(1s1n —UGHD) 4 cos T )lg,+kl)(g,+kl|], (6.19)
acting on incident states to produce the outcome of the Bragc pulse, [Y(,+3) =

Ug(®) [4p(,— ). It contains the projectors |£k;) (xk;| on the two external momentum states
that are coupled by the two-photon transition.
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Influence of momentum width

The above discussion only treats states |+k;) that are infinitely sharply localized in k-space. In
this model, momentum states that deviate from the BracG condition — even by an arbitrarily
small amount — are not affected by the laser pulse. In fact, the BrRagc condition is not infinitely
sharp. The coupling efficiency rather decreases continuously when diverging about dk from the
resonant cases k = +k;. SziGeTI et al have considered the coupling of states |£k; + 6k) being
described by modified coefficients a,(6k,t) [110]. For initial conditions a_(6k,t) = 1 and
a.(6k,t) = 0 they have calculated the absolute square of the resulting coefficient a, to be

1 2 @
la, (8K, t;+ 3)* = 5 sin \J 1+ (:Zr)‘;:l 5k) wRZ “ . (6.20)
4w R
1 rec k
+(wg)kz5 )

Thus, the coupling efficiency from |—k;) to the kicked state |+k;) as a function of the deviance
6k = |6K]| is oscillating with a LorenTz-shaped envelope. It can nevertheless be considered
approximately constant for small deviations dk < klwg ) /(4wyec)- The “softening” of the Braga
condition means that not only the momentum states |+k;) are coupled. Also complete wave
packets with finite but sufficiently small width in k-space are affected. Consequently, the most
general incident state that is completely affected by a BraGc pulse is a superposition of two
wave packets that are centered at k = £k,

- 5) = f K (| +K) (ki) + [+ +K) (ki) ). (6.21)

The functions |¢..) shall satisfy (¢ |k|¢.) = 0 and (¢ [k%|¢p.) < (4klwrec/w§))2. After passing
the beam splitter, the resulting state is

e +5) = /2 J dSk[(cosgﬂsingei(Gﬁ%)) -k, + k) (K|¢p_)

+ (i sin% e (G0 4 (o %) |+k; + k) (k|¢p.,) ] (6.22)

Extracting a beam splitter operator that unifies the mapping between the wave functions (6.21)
and (6.22) is not as straightforward as in the case of momentum eigenstates. There, we have
expressed Uy in (6.19) in terms of projectors |+k;) (£k;|. Assuming now the coupling efficiency
to be approximately constant in the near vicinity of the BRAGG condition, i.e.

k—X;| < 6k < kjw$/(4wrec),
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Figure 6.5.: lllustration of how BrAGG pulses affect incident wave packets that are within a small
domain of extent 2 6k around the resonant wave numbers *k;.

these infinitely sharp projectors may be extended as
Py = f &’k ©(5k —|K) |£k; + k) (£k; +K|. (6.23)

With this definition, the operator that maps the input wave function on the output wave func-
tion, [Y(t, +1/2)) = 03 |, —7/2)), is written as

Up(®) = [(cos ?+isind ei(G’H:)) Py + (i sin 2 ¢TG4 cos g) Py, ] (6.24)
The softened Bracc condition is illustrated in figure 6.5.

The restriction to incident states with small widths in k-space is not only useful for theoreticians
that want to avoid overly complicated models. In deed, a large incident momentum width
would result in only a fraction of the wave packet being affected by the Bragc pulse. This, in
turn, has negative consequences for interferometry applications, e.g. signal-to-noise ration of
interference fringes [110]. Decreasing the momentum width may be achieved practically by
applying a confining potential for a short time span, also known as delta-kick cooling [111,112].
Alternatively, one can velocity-select incident atoms by yet another Bracc pulse [113-115].
Clearly, one disadvantage of the latter method is a loss of atoms and thus an decreased signal in
the output of an interferometer.

In the following, we assume the momentum width of the incident state to be small enough,
so that BrRAGG pulses affect the entire wave packet (given it is centered at the right spots in

momentum space). This will allow for a simple model of interferometer elements.
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Figure 6.6.: Sketch of time spans for applying a beam splitter at t; between two periods with
time spans ty; and t;, of classical transport.

6.2 Beam splitter in phase space

As we saw in section 3.2.2, the WiGNER function is well suited for examining the dynamics of
quantum states in quadratic or relatively smooth potential. In that case, one can safely ignore all
quantum corrections o< f to the classical equation of motion (3.40). However, this smoothness
condition is heavily violated when the atoms enter rapidly oscillating laser fields that utilized as
interferometer elements (e.g. beam splitters). Being subject to periodic potentials that vary on
very short length scales, the evolution of the WiGNER function is dominated by the terms on the
rhs of (3.40), entailing phase space dynamics that differ significantly from classical transport.
Nevertheless, these building elements of matter-wave interferometers can be expressed rather
simply in terms of wave functions (see last section). These wave function expressions may
then be translated onto phase space distributions. Evolution before and after the beam splitter
shall be ruled by classical transport. Comparing these two regimes of propagation, i.e. classical
transport and laser pulse application, we assume the atom-laser interaction time to be negligible
on the time scale of classical transport, T — 0. This means, we describe the laser pulses to act
instantaneously: An incident state right before the laser pulse at, say, t; = t; —7/2 is mapped
onto the output state right after it at t]” = t; + 7/2. In contrast, classical transport leads to a
continuous transformation of states.

6.2.1 Beam splitter model

After having presented two widespread methods for splitting atomic states in the last section,
we want to stipulate a generic beam splitter operator. An essential ingredient to all discussed
beam splitting processes was the application of a kick operators to different orders £. Thus, we
assume a generic beam splitter operator that is simply an arbitrary linear combination of these

kicks, writing

(0]
Ops= >, agel®X. (6.25)
f:—oo

Comparing this definition with last section’s results, it is clearly trivial to see the connection
to Kapitza-Dirac diffraction. Inserting the coefficients (6.10) into expression (6.25) exactly
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Figure 6.7.: lllustration of atomic beam splitters. Part a: BRAGG pulse. Part b: BRAGG pulse with
tilted laser beam. Part c: KariTzA-DIRAC pulse.

yields the operator Uy as given in (6.11) (apart a phase that is common to all orders). Here,
one disadvantage is the presence of many scattering orders, far more than one usually needs to
build an interferometer. For example, given we require a beam splitter that equally populates the
unkicked and the kicked state, £ = 0, 1, and we need only those two for subsequent applications.
An interaction parameter of # ~ 1.43 does the trick to yield equal output probabilities |ay|*> =
|a;|? ~ 0.30. However, about 40% of the incident population are lost to unobserved scattering
orders £ # 0,1 in this case. If we filter out the few scattering orders that are needed, every
application of such a beam splitter therefore involves a loss of the total (observed) population.

In case of BraGG pulses, on the other hand, we are dealing with two scattering orders right from
the start. The associated coefficients a, and a, are fixed by relation (6.16), renaming indices
from + to 0,1. One apparent inconsistency is that in 6.1.2 the involved states were centered
at k = £k, = +G/2 rather than, as we suggest now, at k = 0 and k = G. In many practical
realizations, the incident wave packet is not at rest but rather traveling with momentum p =
p, — fik;. Here, p, is perpendicular to the laser while —fik; is obviously parallel to it. The
resulting states after the pulse comprises two parts. Both still travel with p, in the perpendicular
direction but with +#k,; parallel to the laser. Thus, taking the trajectory of the incident state as
a reference axis, say x-axis, rather than the laser beam, the latter is slightly tilted in the, say,
x-y-plane. Keeping the momentum component p, constant, the BRacc pulse couples now the
momentum components p, = 0 and p, = G. In this setup, the atoms enter a laser beam which
is slightly tilted to the normal plane of the incident motion (see figure 6.7).

As an additional remark, note that laser phases { which we have written explicitly in the last
section are now included in the amplitudes of the superposition (6.25).
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6.2.2 Formulation in terms of density matrices and Wigner functions

Right before the application of the beam splitter at t] = t;—7 /2, we assume a state that has only
been subject to classical transport since its release from the trap at t = t,. The corresponding
density matrix thus reads

P = Uttor) Po Ut (6.26)

The HiBERT space operator that corresponds to classical transport is simply U(t) =
exp(—iH,.t/h) where the Hamiltonian H,, is either quadratic or possesses small higher-than-
quadratic contributions. With this incident state, applying the operator (6.25), the output state
right after the beam splitter becomes

puen=UpeU"

oo
— Z apa, Ky Ut o Ut K. (6.27)

{,/=—00

Obviously, the input state 6(t]) is mapped onto a sum of copies of itself which are “sandwiched”
by kick operators

K, = €% (6.28)
and weighted with an amplitude product a,a;,.

The physical content of these expressions is revealed nicely by translating it into phase space
distributions. Therefore, in contrast to the foundations chapters 2 and 3, we use WiGNER func-
tions in terms of position and velocity rather than position and momentum. This saves us from
explicitly writing factors 1/M in many places. The WiGNER function in terms of position and
velocity is calculated from the density matrix as

fx,v,t)= (Zﬂnh)g Jd?’i e_i%gv<x+ %‘ﬁ(t))x-i— %> (6.29)

The great advantage of using WiGNER functions instead of wave functions and density matrices is
the greatly simplified formulation of classical transport that comes along. As we have seen above
in section 3.2.2, it is expressed by a coordinate transformation in phase space. For instance, this
allows us to write the WiGNER function right before the application of the beam splitter as

f(z,t7) = fo (% e 2) (6.30)

combining position and velocity into a phase space coordinate z = (x,v)". Now, for finding the
phase space distribution that corresponds to the density matrix after the beam splitter p(t7),
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we can translate the rhs of equation (6.27) according to expression (6.29) term by term. From
the auxiliary relation

M \° ,
(&) faectoters

ilGX A —it’'Gx

e pune x+%>

— ei(f—f’)GXf (X, v— E—E_WVG’ tl_) 5 (631)

one can already see that the resulting WiGNER function after the beam splitter is a sum of several

contributions,

F@ )= fulz )+ fulzt]), (6.32)
14

<’

divided into diagonal (£ = {’) and non-diagonal terms (£ # {’). The kick velocity v = hG/M
which results from atom-laser interaction is also called two-photon recoil velocity in the literature.
The first term on the right-hand side of equation (6.32) contains contributions of the form

fux,v, 1) = |ag|2f(x, v—{Lvg, t1_)- (6.33)

They are copies of the original distribution displaced by integer multiples of the kick velocity v;.
Terms of the form (6.33) will be also called ’classical’ because they carry no information about
phase coherence between different scattering orders. In contrast, the off-diagonal terms with
{ # (' are given by

frr(x,v, t7) = 2%Re [ae a;, ei(e_Z/)GX] fo (x, v— ‘ZZ—CMVG, t_) . (6.34)

These contributions are also copies of the input distribution which sit half-way between the
classical terms. However, they are modulated by a factor which oscillates parallel to the lattice
vector G in position space. Its frequency is proportional to the separation of the corresponding
classical parts f;, and f;/, in velocity space. Extracting the phases of the amplitudes as

acay, = |agllag e, (6.35)
we can rewrite the interference term as
For 6, ) = 2l lay| cos[ (%, 6] fo (%, v =5, 7)), (6.34)
identifying the oscillation phase
Qoo (x,t7) = (L —L)Gx+ Ly (6.36)

The time argument to ¢, already indicates that the oscillatory pattern will not remain fixed
during subsequent classical transport. We discuss its evolution below. An example of a beam
splitter producing two direct contributions and their interference term is drawn in figure 6.8.
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Figure 6.8.: Example of a WiGNER function after a beam splitter with two orders £ = 0, 1 an equal
amplitudes a;, = a,.

The interference vector

Aiming for a formulation exclusively in terms of phase space coordinates z, we express the scalar

product Gx in three-dimensional position space as a scalar product Q,z in six-dimensional phase

o) 637
o=\o] .

This way, the vector Q, characterizes the oscillatory pattern in phase space that describes the

space, defining

interference between the classical parts. We therefore call it the initial interference vector. Thus,
the oscillation phase can be written as

Qo (z,t7) = (L — ') Qoz + {4y (6.36)

Classical transport after the beam splitter

Exiting the beam splitter, we let the complete state follow classical transport. Thus, for a time

interval t,, = t, —t; after the beam splitter, the density matrix becomes

Pts) = Ultoy) e Uleor)

= Z Ay a;/ 0(%2 ) eiGﬁ 0(%1) pA() ﬁi‘(foﬂ e_in( ﬁ‘i.(flz)- (6.38)
1744
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Each part that is produced by the beam splitter evolves differently after its application at ¢;.
Once again, this becomes quite obvious by switching to the corresponding phase space formu-
lation. The WiGNER function that had emanated from the output of the beam splitter at ¢t} and
has followed classical transport thereafter until ¢, reads

f(z,ty) = Zfee(Z, ty) + wa(Z, ts). (6.39)
{

o<t

We can express the evolved distribution f (z, t,) in terms of the initial one f,,(z) simply by apply-
ing phase space coordinate transformations. On one hand, as elaborated, the transformations
corresponding to classical transport are given by the phase space propagators % (). On the
other, the laser pulses instantaneously add multiples of the kick velocity v to the distributions’
coordinates. We denote these by a discrete map .#, such that

Hpz=| Alz=| ¥ (6.40)
T \vrevg e v—vg )’ '

Consequently, the classical terms of expression (6.39) can be written explicitly as

fu(z, t3) = fu (@2_1%2)2, tf)
= |aﬂ |2 fO(OZQ_l(tm)«%/\g_l 022_1&12) Z); (6.41a)

while the interference terms are

f“/(z, t2) = fN’ (022_1&12) Z, t;—)

= 2|ay| || cos[gow(@?_l(tu)z, tf)] fo (022_1&01)9?[&, 022_1(t12)z). (6.41b)
2

The notational and conceptual convenience of the WiGNER function formulation in this context is
obvious. We can express all contributions to the final distribution in terms of the same function,
i.e. the initial distribution f,,. Each of these contributions is thus uniquely described by a phase
space coordinate transformation that is composed of classical transport % and discrete kicks
2 . In addition, the phases of the interference term oscillations evolve according to

@u(2, t2) = (% ez, t]) = (L —£)Qp % ez + Ly (6.42)

This way, classical transport does not only change position and shape of the distributions’ en-
velope but it also modifies the oscillatory patterns in phase space. Here and in the following,
we call all functions, that emanate from the initial distribution f, via coordinate transforma-
tion, envelopes. They are assumed to vary on a much shorter length scale the oscillations of the
interference terms.
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Special case: quadratic Hamiltonians

Assuming classical transport to be ruled by quadratic Hamiltonians allows for a more concrete
and illustrative formulation of the above results. As shown in section 2.3, phase space evolution
that is produced by these potentials can be described by affine transformations. Consequently,
during classical transport the WiGNER function evolves as

flz,t)=f (U‘l(r,-]-)(z—i(tij)), ti): (2.68)

where we have denoted the propagation matrix as U and the time-dependent offset as z. This
way, according to expressions (6.41a) and (6.41b), the contributions to the final distribution

function f(z, t,) are written

fu(z, ) = loy|* fo(Z M tonz— U 0 26), (6.43a)

for(z,t5) = 2|ay | |ay| cos[cpw(z, t2)] fo (022_1(%2)2 — %U_l(tu)zc,\) . (6.43b)
Obviously, since % (¢, z describes the evolution without the presence of the laser pulse, the
restriction to quadratic potentials enables us explicitly isolate the influence of the beam split-
ter on the motion of the distribution functions in phase space. These are given by the terms

proportional to v in the arguments of f,, in equations (6.43a) and (6.43b).
Concerning the oscillation phase ¢,,/, in quadratic potentials we can write

@ (2, t5) = (L —0)Q) (U ) 2— Z(t1)) + Ly (6.44)

In this picture, we have a constant interference vector Q, and transformed phase space coordi-
nates z. Equivalently, the evolution of ¢, can be described by a time-dependent interference

vector and constant coordinates, writing

or(Z,t5) = (L —€)Q(t1)Z— P (1), (6.45)

This way, the frequency and orientation of the oscillatory pattern are described by the time-
dependent interference vector

M) _
Q) = (q t ) = U T(1,) Qo, (6.46)

p(t)

and a time-dependent phase offset

E@Z/(t) = —(E — 6/) QO Z(t) + CN" (647)
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Since all coordinate transformations are affine transformations, the oscillation phases ¢, re-
main linear function of the phase space coordinate. Directly after the beam splitter, it lies com-
pletely in the position subspace, i.e its projection along all velocity axes is zero, Qy = (qy(,0)" =
(G,0)". This means the oscillation of the laser field with wave vector G is directly imprinted
on the position density profile. As time progresses, however, the interference vector evolves
in phase space such that its velocity components become non-zero, Q, — Q(t) = (q,(t),q,(®) .
Writing the propagation matrix U as abed-matrix as in (2.65),

a b
U(t) = ( (t) (t)) ’
ct) de
the evolved interference vector can be expressed as Q(:) = (d(1) G, —bct) G)'. In case of free prop-

agation, for example, one has d = 1 and b(r) = 1 t. This special case of quadratic Hamiltonians
is discussed in detail below.

6.2.3 Obtaining the position density

Being interested in the position density n(x), one has to integrate the phase space distribution
f (z) over the velocity axes. Since this is a linear operation, expression (6.39) can be integrated
term by term so that the resulting density profile may be written as

n(x) = J d3v f(z)
= Z TlM(X) + Z T’IN/(X). (648)
1)

o<t

The contributions from the direct terms, n,,(x) = f d3v f,,(z), are positive everywhere and add
up to a classical density profile, i.e. without any signature of interference. The contribution
from the interference terms, n,, = fd3 v fy, in contrast, are oscillating between positive and
negative values. Of course, the total position density (6.48), which is the sum of all contributions
— classical and interference — is positive everywhere and may exhibit signature of interference
between individual parts.

Right after the beam splitter, all contributions to the phase space distribution are fragmented
along the velocity axes but are located at the same position. In particular, all classical contribu-
tions to the density n,, are identical, being exact copies of the input density. In addition to that,
the interference contributions n,,, bring forth an oscillatory modulation of the envelope, where
each term adds an oscillation with frequency (¢ — ¢’)|G|. After some evolution time, the sev-
eral contributions follow different trajectories and separate in position subspace. Consequently,
the associated density contributions, at first sitting on top of each other, travel apart as time
progresses. Particularly interesting is the behavior of the interference terms in the limit of long
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evolution time after the beam splitter. Integrating f,,» over velocity axes, the higher the interfer-
ence vector component |q,|, the smaller will be their contribution to the total position density

since many oscillations cancel in the integral.

Special case: Gaussians in quadratic potentials

In order to obtain more concrete results, it is quite convenient to consider again Gaussian phase
space distributions and assume classical transport to be determined by quadratic Hamiltonians
(see 2.3). In this case, the initial distribution is written as

T -1
o2 CzOX

fo(z) =N ———. (6.49)

After propagating in quadratic Hamiltonians, the correlation matrix becomes,
C.t2) = Utter) Coo U (t)-

The velocity kicks that are given by the laser pulses do not affect C,. In addition to the evolving
shape, the distribution centers are shifted. These offsets, in contrast to the correlation matrix,
invlove influences of the laser kicks and are thus denoted by (z),,,. Since the initial distribution
fo is centered at the phase space point z = 0, the time-evolved centers are given by

(Z)e(/ = z(foz) + %ZG’ (650)
where z(t,,) is the offset of propagation without the beam splitter. Altogether, the classical
contributions to the phase space distribution thus read

e~ (z(@)e)" 1 (z—(2)e0)
fu(z) =N |ay|? (6.51a)

v/ médetC,

and
e—(z—(z)N/)T Cz_l (z—(2) 1)

v/ modetC, ’

respectively. Based on these entities that live in six-dimensional phase space, one can deduce

(6.51b)

for(z) = 2N |ay| |ay| cos(pe)

the three-dimensional correlation matrix and offset that determine the position density profile.
For the sake of notational compactness, we absorb the COM into the position coordinate by
defining X, = x — (x);,,. According to equations (2.73) and (2.74), all classical contributions
to the density profile after the beam splitter, can then be written as

T —1
e_XU Cx Xy

J/mPdetC,

Tlu(X) =N |ae|2 (652)
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The correlation matrix of the position density C, can be easily derived from the full correlation
matrix C, as shown in section A.2. To this end, we subdivide the inverse phase space correlation

matrix as
. (Axx Axy) 6.5)
Avx Ay
to arrive at
C;l =A.—A, A;llj Ay (6.54)

In expression (6.52), the drifting-apart of the several contributions is hidden in the dynamical
offsets (x),,,. Moreover, the oscillating interference contribution to the density can be obtained
using relation (A.16). We find

T —1
e—Xel/ CX lel

J/m3detC,

Ny (x) = 2N |ay||ay| G cos [kiXpp + §gpr] (6.55)

The last factor on the rhs is the Gaussian envelope of the oscillating interference term. It is
similar to the profile of the classical contributions. The first two factors relate to the oscillatory

pattern of the interference terms, i.e. the contrast
G =exp(—34, A, Q) (6.56)
and the spatial frequency of the interference pattern
kit =q, —Ac,A,, 4, (6.57)
The former leads to a damping of the amplitude, the latter to decreasing frequency of spatial

oscillations, as the velocity component of the interference vector q, increases. Both depend on
the widths and orientation of the distribution envelope.

Example: Freely propagating Gaussians

The above results can be made more comprehensible by considering free propagation as a spe-
cial case of classical transport. This assumption is convenient as well as adequate for modeling
many simple systems. In particular, for describing the beam splitter, one only needs to consider
dynamics along the direction of the laser pulse which is independent of the other directions. We
are thus effectively dealing with a one-dimensional problem and thus a two-dimensional phase
space. The initial distribution f, is a Gaussian with widths o, and o, along the position axis
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and the velocity axis, respectively. Both are related to each other by o, = wo ., where w is the
trap frequency defining the initial distribution. Thus, we write

2 2 2
exp (_M) 6.58)

fO(x7 U): 0_2

2
VILORNIN ) %0

x0
which implies the initial density to be

2
—x—z) (6.59)

N (
——— exp
Vo2, O%o0

Before and after the beam splitter, the atom cloud shall be subject to free propagation. Traveling

no(x) =

for a total time interval t,,, we can, according to prescription (2.83), replace the blocks of the
inverse phase space correlation matrix (6.53) as A,, — 0';2, A, — —0';2 tos, and A,, —
0;2 + o;z t(z)z. In the output of the beam splitter at t;", each classical contribution to the density
ny, moves uniformly with velocity £ v;. Consequently, after another interval t,, = t; — t, it has
traveled a distance £ vt off the origin. Altogether, we write

(6.60)

x—Lugty)?
) = Gt |,

N [
———— exp
Vo2 o2(0)

Here, the function o,(t) = (1 +w?t2)1/2 00, known from section 2.3.1, describes the spreading
of the cloud after release from the trap. The interference contributions f;,,, on the other hand,
move with velocity £+Te’ v;. This means they remain located exactly halfway between their cor-
responding classical parts, f,, and f;/,,. Concerning their oscillatory patterns, the components

of the interference vector become q,, — G and q, — —Gt;,, and hence

N (x -4 Vthz)Z
Ny (x, ty) = Gy cos[(é —E’)kifx] —————exp |— : (6.61)

Vo2 o2

The contrast is now explicitly given as

(0,(L =G (wty,)?
Gie(tos) = —1= : 6.62
while the spatial frequency of interference fringes reads
1+ w?tot
Kif(top) = G ——— 0L 02 (6.63)

242
1+w too

In these expressions, the factor wt;, can be seen as a dimensionless measure for the spatial
separation of the classical contributions, while wtg,/(1 + w? t(2)2) corresponds to the spreading
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n((), z2, 0) [/‘m43]

Figure 6.9.: Freely expanding density after beam splitter with scattering orders £,£" = 0,1. The
3D density is plotted only along the direction of the laser beam, which was chosen
to align with the x, direction in this case. Relevant parameters are w, = 800 Hz,
M =1.67-10"%" kg (H-atom), T =1 nK, N=1, G = 2.094 um™, t,; = 0.05 us.
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K (t12)
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0 i wtq2

0 V1+ w2t

Figure 6.10.: Wave number (a) and wave length (b) of interference pattern depending on time
after the beam splitter, t,,, according to equations (6.63) and (6.64), respectively.
The first one is doubled (the latter on is halved) at t;, = co_lw/ 1+ wztfz. In this
example the time before the beam splitter is given by wty; = 1.2.
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of the Gaussian envelopes. The wave length that is associated with k;; is known as interference
fringe spacing Ay. It is given by the inverse of expression (6.63) multiplied with 27t. In the
current case, we obtain

o 1+ w?td,

Af=—/ ————. 6.64
776 1+ w2ty ty, (6.64)
In the asymptotic limit t,, — 00, the fringe spacing grows linearly,
toz—00 27T t 2nh
Ay Cn 2lo2 _STR (6.65)

G ty a Mugty;

An example of a density profile after the beam splitter is displayed in figure 6.9. One can
observe that the contrast of the interference fringes decreases with vanishing overlap of the
two classical contributions, n; and n,. In addition to the contrast, the wave number of the
interference pattern is decreasing as time progresses. Both, wave number and wave length are
plotted in figure 6.10.

6.3 Mach-Zehnder interferometer

Having discussed the beam splitter in the last section, we assemble now a complete MacH-
ZeHNDER interferometer and describe it in phase space. The sequence of this setup is as follows.

* t =t,: Release from trap. Initial state is centered at k = 0.
* t, <t <t;: Classical transport.

* t = t;: First beam splitter, producing two paths. These are an un-kicked path at k = 0
(path ’a’) and a kicked path at k = G (path ’b’).

* t; <t <ty Classical transport. The two paths separate in position space.

* t = t,: m-pulse. Now, path ’a’ is kicked to k = G while path ’b’ is kicked back to k = 0
again. Loosely speaking, the two paths are swapped in k-space.

* t, <t < tg: Classical transport. The two paths are closing in again in position space.

* t = t5: Second beam splitter. The two paths are split another time, producing two output
ports which are centered at k = 0 and k = G in phase space. Each of the ports is a
recombination of the paths ’a’ and ’b’, potentially exhibiting interference effects.

* t, <t < tg: Classical transport. The two output ports separate in position space.

t = t4: Detection.

The sequence is visualized in figure 6.11.
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time

Figure 6.11.: Sketch of MacH-ZEHNDER interferometer indicating time instances of laser pulse ap-
plication and path labeling.

6.3.1 Model for interferometer elements

For conveniently expressing the MZI elements as a propagation of states, we formulate two
model operators. First, for the two beam splitter pulses, we write

Ups = (a+ B &%) By + (a— p*e7'%) Bg. (6.66)

In comparison to the more general beam splitter model of the last section (6.25), the operator
(6.66) is defined explicitly for un-kicked and singly kicked input states, i.e. centered at k = 0 and
k = G, respectively. It produces a superposition of an un-kicked and a “positively kicked” copy
of the former, and an un-kicked and “negatively kicked” copy of the latter. Since we consider
only two scattering orders, we distinguish their amplitudes by different letters a, 3, rather than
by indices. Moreover, we use now amplitude indices to denote to which of the three laser pulses
a particular amplitudes relates. In addition to beam splitters, the MZI scheme comprises a laser
pulse that leaves the total number of paths constant swaps the two paths in k-space. Referring
to the nomenclature of the BRAGG regime, we call

b, (6.67)

the operator of a m-pulse. It can be realized, for example, by using a BRaGc-pulse with interac-
tion parameter ¥ = .

One might object that the operator (6.67) is merely a special case of (6.66). So for Uy, to be
a genuine beam splitter, we may demand a, 8 # 0. On the other hand, we do not necessarily
require the condition |a + 8|> = 1 to be satisfied. Consider for example a beam splitter pulse
in the KariTza-DirAC regime, where only two scattering orders are used and the others are
masked, as already discussed in section 6.2.1. Losing population to unobserved orders clearly
implies |a + 3| < 1.
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6.3.2 Wave function formulation

Before coming to the phase space description of the atom cloud, we give an expression for a
wave function passing the MZI. We denote the initial state that is released from the preparing
trap at t, as |[3,). Retracing the several steps of the MZI that were outlined in the beginning of
this section, we use propagators of classical transport % (1), as well as the laser pulse operators,
U, and U, defined above. With these, the final wave function becomes

[Yt)) = Uty Upg Uttan) Uy Ui Upg Utton) |40)
= [Ya1) FYp1) FYao) +1Ypo) - (6.68)

It can be written as the sum of four parts. They relate to the different paths of the scheme as
indicated in figure 6.11. Each of which can be expressed in terms of an associated composite

propagator and amplitude
1Y) =70, o),  £€{al,bl,a2,b2}, (6.69)

where the complex coefficients y, are products of three amplitudes, relating to the laser pulses
in the MZI scheme:

Ya1 = — 1233, Y1 = —P1B, s, Ya1 = +a1 0203, Y1 = —PB1B5Bs. (6.70)
Furthermore, the propagators, that connect the individual parts to the initial state, are
Uyy = Utes) e Uez) 7 Uy,
Upy = Uty e U e Oy,
gy = Ut €7 ey,

Ups = Uttsr) % Ulttyy) e U(er,) X Ueyy). (6.71a)

The composition of these can be easily understood by retracing the individual paths in figure
6.11. One can read from these expressions that all contributions to the first output port end up
in momentum states centered at k = 0, while those in the second output port end up in a kicked
momentum state at k = G.

A popular special case of the above description involves symmetric beam splitters. Since they
are, in case of BRaGG-pulses, realized by an interaction parameter of 4 = 7t/2 (see e.g. expres-
sion (6.24)), symmetric beam splitter pulses are generally termed 7t/2-pulses. Consequently,
the coefficients of the laser-induced kicks are

a, = %: [51 = %el{l: ﬂZ = eiCZ’ a3 = %7 ﬁB = %eigg. (672)
Note that we have allowed each laser pulse to have a different phase offset {; which reoccurs

in the phase of the amplitudes. The composite coefficients of the final wave function are easily
found to be

Yo = _%ei(Cz—Cs)’ Yo = _%ei(h—Cz)J Yo = +%ei52’ Yoo = _%ei(C1—Cz+Cg)’ (6.73)
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6.3.3 Phase space formulation

We now translate the wave function expressions into a phase space formulation in terms of
WiGNER functions. For calculating f(z,t,) we have to first find the final density matrix. As-
suming the initial state to be described by g, the evolved state that arrives at the detector is
written

pled= D 1 Uepely, (6.74)

£,0’e{al,bl,a2,b2}

utilizing the four composite propagators U,;, Uy;, U,,, and Uy,, we have defined in (6.71). The
double-summation in equation (6.74) comprises 16 terms in total. The final WiGNER function
can again be divided into a sum of several contributions,

F@t) =D filzt)+ D fur(z,ta), (6.75)
1)

L<e’

akin to expression (6.32) in section 6.2.1. Like before, the first term on the rhs is a sum over
the classical contributions. They are given by

3 —iMey Nooa T
fre(z, t3) = ly,l? (ZMﬁ) fdgi e s <X+§ U 6o U, X—%>
=yl fo (%" 2). (6.76)

Similar to the final wave function that is connected to [),) via a HILBERT-Space operator ZAJE, the
final WiGNER function is given as the initial contribution that has been coordinate-transformed.
The transformations describing the classical parts are

Ugy = U (1) g U (1) Hg U (t02), (6.77a)
WUy = U (t2) K U (1)) Kg Y (o), (6.77b)
Uy = U (62) Hg U (t02), (6.77¢)
By = W (t3) Hgg U (t) A U (612 Hg W (t0r). (6.77d)

They show formal resemblance the operators defined in (6.71). The transformations that de-
scribe the velocity kicks .7, were defined in (6.40). Concerning the second term of the rhs of
(6.75), the summation prescription £ < ¢’ may seem absurd for indices ¢, £’ running over path
labels, ’al’,’b1’,’a2’, ’b2’, rather than numbers. We use it, nevertheless, as shorthand indication
that each combination of different paths appears only once, regardless of index ordering. This
means, the interference contributions to the total WiGNER function are defined as

Fur(z,t3) = (Rey,yi) (z%)gfdgge_i%gx <x+§ (U, po U;;+h.c.)‘x—§>. (6.78)
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Directly combining the WiGNER function parts that relate to U, p (AJE', and U, p 05' into a one
term, yields a single real-valued distribution that describes the interference between the paths
¢ and {’. The fact that f;, is a real function is made more obvious by separating the phase from
the amplitudes as

vj = lrjle’s.

With this, the interference contributions in terms of the initial distribution read

frr(z,tg) =2yl lye| cos(ou) fo (%) 2). (6.79)

The involved phase space coordinate transformations are

Yarpr = U (e3) Ko U t1) K j2 U (e, (6.80a)
Vpa = U (t3) R o U tr) Ko U (tor), (6.80b)
Vraz = W (t3) K3 W (1) Hg U (1), (6.80¢)
0221;1172 = U () c%/}c;/z U (t) J‘?_G ACH) Ji}c U (t), (6.80d)
022a1b2 = 622(ﬁ4) jgc/z 022(%1), (6.80¢e)
022a2b1 = Y (t2) fg/z Y (t01), (6.80f)

These give rise to trajectories that run in between the trajectories that are connected to the
classical contributions. Moreover, the oscillation of f;,/, a signature of interference between the
associated paths, is described by the phases

Paib1 = QO (022_1013) j__cl/z J22_1(%4) —2 J12_1“23) j__g/z 022_1“34) + 022_1034)) zZ+ 5&: (6813)

Pazb2 = Qo (@_l(tm)jg_l 022_1034) —2 022_1(@3)3?_1 @2_1(rg4) + J22_1(r34)) z+6f+m, (6.81b)

G/2 G/2
Parv2 = Qo (Z ) — 2% N0 + 2% 1)) 2+ § — 285 + 24, (6.81¢)
Pazp1 = Qo (Z Mt =2 ) 2+ {1 — 205 + 7, (6.81d)
Paraz = Q% ez + {5+, (6.81e)
Pataz = Qo % (1) 2+ {3, (6.81f)

where we have abbreviated 6¢ = {; — 2{, + {5 and the initial interference vector has been
defined as Q, = (G,0)". We exemplify the emergence of the phase expressions for the case of
(¢’ = albl. The first beam splitter at t; kicks path ’b’ and leaves path ’a’ unaltered, implying a
leap of the interference phase about Q,z + ;. Until detection, this z-dependent phase evolves
along the trajectories of its associated envelope, described by %,,;,;. Taking now the propagator
(6.80a) between the laser-induced phase leap at t; and detection at t,, leads to the occurrence
of the inverse of the composite propagator % (t,,) % /2 9 (t,5) in the first term of the phase
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(6.81a). Next, the m-pulse at t, kicks both paths with opposite velocities, resulting in a phase
leap of —2(Q,z + {,). Subsequent evolution is expressed by the propagator % (t,,) #_ /2 Y (t59).
Finally, the second beam splitter kicks path ’a’ and leaves path ’b’ unaltered , giving again a
phase leap about Q,z + 5. Evolution until detection is described by % (t,,). Obviously, the final
oscillation phase ¢,;3; is a sum of all these evolved phase leaps. All other expressions in (6.81)
can be made plausible in a similar way.

Distributions of the output ports

The composition of propagators and the interference phase evolution is illustrated for the con-
tributions of output port 1 in figure 6.12. When discussing the final WigNER function in the
remainder of this work, most of the time we will not consider the complete final distribution
f(z,t4) but only parts of it that are associated with the two output ports. From all contributions
fer that were introduced above, we can assemble the WiGNER function of the first output port
as

@ =lral®fo (022;112)"'|Yb1|2f0( )+2|Ya1| 7 b1l COS(‘Pa1b1)fo( a1b1 ) (6.82a)

On the other hand, the distribution of the second output port is

F22(@) =¥ aal® fo (Z5'2) + 1752l fo (%, 2) + 27 a2l Y b2] €OS(0a2p2) fo (Zphz).  (6.82b)

The individual shapes of these parts as their relative population exhibit interference effects due
to different phase accumulation along the paths ’a’ and 'b’ between the time instances t; and
ts. This will become more apparent below when considering some examples.

The WigNeR functions f; and f, do not comprise all parts of the final distribution. The missing
parts relate to the interference between the two ports. They are given by

flz(z) _2|Ya1| |Ya2| COS(SOalaZ) fO( a1a2 )+2|Yb1| |Yb2| COS(QDble) fO( b1b2 )
+ 2]y a1y p2l COS(‘Palbz)fo( a1b2 )+2|Yb1||}’a2| COS(SDbmz)fo( b1a2 ) (6.83)

If we assume f; and f, to be well separated in position space, the interference terms in f;, are
oscillating in velocity space, approximately with a frequency < Gts,. Computing the density
profile, for example, these rapidly oscillating contributions cancel during integration over the
phase space density. Therefore, we will often neglect f;, in the following.

6.3.4 Quadratic Hamiltonians

As was the case in our discussion of a single beam splitter, we gain valuable insight in the above
solutions by considering quadratic Hamiltonians. Consequently, we write again

W wyz=Uwz+z0), (6.84)
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Figure 6.12.: lllustration of phase space propagators in a MZI. Only paths of the first output port

are shown.
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where U(r) is a matrix and z(r) a vector. We first discuss the classical parts, before considering the
interference terms in the output ports. This enables us to specify expressions (6.82) for f; and
f, in case of quadratic Hamiltonians. The four interference terms between the two output ports
(Cala2’,’b1b2’,’al1b2’, and ’a2b1’), subsumed in expression (6.83), are ignored altogether.

General distribution functions

With classical transport being an affine transformation, the propagators %/, that determine the
classical contributions to the final WigNER function have the form

022@ Z= U(t04) Z+ E(to4) + 5Ze
= Wy(to)Z+ 52,. (6.85)

This way, we have isolated the influence of the MZI elements on the evolution (6z,) from the
classical transport which is independent of MZI elements (% (to)). The offsets that emanate
from the laser-induced kicks are

6241 = [U(tz) — U(ts)] 26, (6.86a)
52 = [Utt) — Ut Zg, (6.86b)
6245 = U(t20) Zg, (6.86¢)
8zyy = [U(t) — Ut + Utz Zg, (6.86d)

Consequently, the classical terms can be expressed as

fou@ ta) = lrel? fo (% o (2—62))). (6.87)

This expression reveals nicely, that the laser-induced kicks do not influence the distributions’
shapes but only their offsets. Similarly, the envelopes of the interference terms are connected to

the initial distribution f, via transformations of the form
OZQM/ Z7Z= 022(1‘.04) + 5ZM" (688)

Here, the MZI-induced offsets 6z, are located exactly halfway between the offsets of their
corresponding classical, i.e.

0Zg1p1 = %(5Za1 +62p1), (6.89a)
5Zaopy = 3 (5240 + 62y)). (6.89b)
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Moreover, by virtue of all propagators being affine transformations, the oscillation phases of the

interference terms remain linear functions of phase space coordinate,

Pppr = QZ+¢N” (690)

The final interference vector Q(t,) and phase space offset ¢, (t,) have already been introduced in
the context of a single beam splitter at the end of section 6.2.2. We postpone explicit expressions
for Q and ¢,/ until we consider special cases of quadratic Hamiltonians (free propagation, linear
gravity) at the end of this chapter. With the above specifications, the interference terms in the
two output ports are written as

fa1p1(Z, t4) = 2|7 a1l |y p1l COS(Q(t4) z+ ¢a1b1(f4)) fo (512(1_11;,1(2 - 5Za1b1)) > (6.91a)
faop2(Z, t4) = =2|7 2l l7p2] COS(Q(t4) z+ ¢a2b2(f4)) fo (@&Ez(z — 5Za2b2)) . (6.91b)

All envelopes of the final WigNER function contributions have equal shapes: they are all ex-
pressed by a common transformation 4 (tos). The only difference between the envelopes are
the differently shifted centers, expressed in 6z, and 6z,,. These differences are caused by the
laser-induced kicks and subsequent evolution. A particular benefit of quadratic Hamiltonians
is that oscillation phases of the interferecne terms are merely linear functions in coordinates z.
This implies straight-lined oscillatory patterns in phase space.

Gaussian distributions

Let the initial WiGNER function be a Gaussian,

_ Tc—l
fo(z)=N exp (21 G (tO)z). (6.92)

v/ tdetC,(0)

Then, in case of quadratic Hamiltonians we can specify the above results to write the classical

parts of the final distribution function as

exp [ —(z = Z(to) — 52¢) T € (t00) (2 — Zito0) — 52¢) ]

v/ 0 det C,(to4)

Remember, that z denotes the offset from classical transport while 6z, arises due to the laser

fre(z,t3) =N ly,l? : (6.93)

pulses. Furthermore, the interference terms read

fue(z,t4) = 2N |yl lye] cos QM) z 4+ B pu(e00)
exp [ —(z — Z(tos) — 52¢¢1) T C; t0) (2 — Z(toy) — 52¢¢) ]
X .

v/ 6 det C,(to4)

(6.94)
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Thus, all contributions have the same correlation matrix, given in terms of the initial correaltion

matrix as
C.(tos) = Uttos) Coo U (100,

Like the WiGNeR function f (z, t4), the corresponding position density n(x, t,) is again a sum of
classical and interference terms. Considering only the two output ports, we write

n(x,t,) = J d®v f(z,t,)
= Z ng(X, tg) + Z (X, t4). (6.95)

tefal,b1,a2,b2} (¢,6")e{alb1,a2b2}
All density contributions are Gaussians in position space. Finding expressions for all these terms
is quite similar to corresponding procedures in case of a single beam splitter, discussed in section
6.2.3. For instance, the correlation matrix C,, common to all density contributions, is calculated
from C, by writing Cz_1 as block matrix, as instructed in equation (6.53), to arrive at the inverse
of the effective correlation matrix in position space,

-1 -1
Cltte) = A —ALA A
Hence, the classical contributions to the final position density are given by

exp | —(x —X(to) — 6% )T Cl (ton) (X — X(to) — 6%))
ny(x, t4) =N |y, [ = i v ]. (6.96)

v/ 3 det C(to4)

The main difference to section 6.2.3 are the offsets 6x,. They involve several laser-induced kicks

with subsequent classical transport. Furthermore, for conveniently expressing the interference
terms,

Ny (X, tg) = 2N |y, |yp| G cos [kifx+@tz’:|
_ T ~— _
y exp [—(X—X(t04)—5XM/) Cxl(t04) (x—X(rM)—SXM)l 6.97)

v/ 13 det C (t04)

we have divided the interference vector into a position and a velocity component, Q = (q,,q,)" .

The abbreviations for contrast and wave number of the oscillatory pattern,

1 Ta-1
Cgif = e_qu Avv qV’

kif =qx— Ava;$qv7

respectively, is formally identical to section 6.2.3. The difference is hidden in the details. Passing
a complete MZI instead of a single beam splitter, the explicit form of the interference vector Q
in the current case is slightly more complicated. This is demonstrated in the context of the
following examples.
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Figure 6.13.: Scheme of a MAcH-ZEHNDER interferometer for freely expanding matter waves.

6.3.5 Example 1: Free evolution

The most simple but also most important example, is propagation in the absence of external
forces. For a detailed discussion of free propagation see section 2.3.1. According to expres-
sion (2.80), evolution of positions and velocities over a time interval t is described by the

% x| [x+vt) 1 1t X 6.98)
(t)v_ v o 1 v/’ ’

being a simple matrix multiplication. The only effects that determine the distribution are the

transformation

velocity kicks imparted by the interferometer elements and the free expansion of the cloud. The
former shifts the distribution centers while the latter leads to a spreading of the position density
profile. The behavior of n(x) passing the MZI is sketched in figure 6.13.

Before dealing with the distribution functions, we take a look at the propagation of their central
points in phase space, (z),(t). Starting at the minimum of the trap at (z), (t,) = (0,0), the
center of each part rests until it is kicked by a laser pulse. Thereafter, it moves uniformly with
the kick velocity until it receives a kick in the opposite direction. In output port 1, all central

velocities are zero after leaving the interferometer,
(V)1 (t) = (V) p1 () = (V) g1p1 (t) = O, (6.99a)

while the mean positions become

(X) a1 (t) = 6X,1 = Vg3, (6.99b)
(X)p1 (t) = OXpq = Vgiio, (6.99¢)
(X)q1p1 (t) = 0Xg1p1 = %Vths- (6.99d)
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The spatial separation of the parts is directly proportional to the pulse distances of the laser,
t19, ty3. In case of symmetric interferometers, t;, = t,3, they coincide. The contributions to the
second output port, on the other hand, exit the recombiner with their velocities being centered
around the kick velocity,

(V) gz (ta) = (V) 2 () = (V) g2p2 (ta) = V. (6.9%¢)

The associated mean positions at the detector are

(X)az (ty) = 5Xa2 == VG t24, (6996
(%) p2 (t) = 0Xpy = V(1o + t34), (6.992)
(%) a2b2 (t) = 8Xqopa = %Vc(ﬁs + 2t34). (6.99h)

These are the mean positions from the first port (6.99b)-(6.99d) plus a common offset v;ts,
that separates both ports in position space.

Wigner function

Applying formulas for distribution parts evolving in a MZI with quadratic Hamiltonians (see
6.3.4) to the current case of free propagation, the classical contributions are written

fa(zt)) =lral® fo (X_Vt04 —Vglas, V) ) (6.100a)

fo1(z,tg) = lyml® fo (X_Vf04 —Vglio, V) ) (6.100b)

far(Zt) = a2l® fo (X— (v —vg)tos —Vgta, V_VG) ) (6.1000)

Fo2(2: t4) = Iyl fo (x = (v—vg)tos = V6(t1a + t3s), V—Vg). (6.100d)

These expressions explicitly contain the shifted centers given in equations (6.99b-6.99h). One
can also recognize the shearing of the phase space distribution by subtraction of (v— (v),)ty, in
the position argument describing a spreading position density. Moreover, the final interference
vector that characterizes frequency and orientation of the oscillatory pattern is

Q(ty) = ( 0 ) : (6.101)

G(ty3 —t15)

Obviously, the interference terms oscillate only along the velocity axis with a frequency propor-
tional to the asymmetry of the interferometer, i.e. t,3 — t;,. The complete interference term of
the first output port is

\'
f11(z,t4) = 2|y g1l lyp1| cos [G (V"' ?G) (ta3—t1) + 55]

Xfo (X_Vt04_V?Gt13, V), (6102a)
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while the one of the second output port reads

v
f22(z,t4) = =2|y 42| 742l cos [G(V— EG) (tys —t1) + 5C]
X fo (x —(V—=vg)tos — VEG(tB + 2t3,), V—VG) (6.102b)

The total WiGnNER function f(z,t,) is the sum of all terms found in equations (6.100) and
(6.102). Remember that we have neglected interference terms between the two output ports,
which were collected under the label f;, and written in equation (6.83). This was justified
by assuming f; and f, to be sufficiently far separated in position space. Figure 6.14 shows an
example for the propagation of the WiGNER function through the MZI.

Action along paths

It is interesting to note that the offsets to the oscillation phases in expressions (6.102) can be
related to the difference of actions that are accumulated along different paths. The action, being
the integral of the Lagrangian along a certain trajectory (see (2.5)), is very easy to calculate for
free propagation. One finds

tij
S(t;)= J dt L(x(), v(1)
0

= 5(t;) + ¥Vt (6.103)

i
As mentioned in section 3.3.2, the action can be identified with the wave function’s phase in
units of . Hence, in addition to the dynamical phase that is acquired during the periods of
free propagation (given in (6.103)), the laser pulses give rise sudden phase leaps. These are a
byproduct of the application of kick operators exp[+i(Gx + {;)]. Consequently, applying a laser
pulse at a certain time instance t; such that the wave function of path ¢ is kicked,

[W(£))) = la| expli(Gx+¢)] [(e)), (6.104)
the associated action leap is
Sy(t7) =S,(¢7) £ r(Gx + ;). (6.105)

With these relations, the final actions along all paths are found to be
2

S (ts) = —M%tzg R —Ca), (6.106a)
U2
Spy(ts) =—M7Gt12+h(§'1—§2), (6.106b)
1/2
S.o(ty) = M?Gt% +HL,, (6.106¢)
1/2
Spo(ty) = M?G(t12 — by + tag) + (L — Lo + (3. (6.106d)
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Figure 6.14.: Contour plots of WiGNER function before and after the laser pulses of an asymmet-
ric MZI assuming free propagation. Time instances of laser pulse application are
(t1,t5,t3) = (1, 2, 2.3)w™, lattice vector of optical potential is G = 27/(0.8 7).
a: t = t], before the first beam splitter. b: t = ], after the first beam splitter. c:
t = t;, before the m/2-pulse. d: t = t;, after the m/2-pulse. e: t = t, before the
second beam splitter. f: t = t7, after the second beam splitter, output port 1. Mind

the different scalings of the axes.
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Their differences in units of f are just the offsets of the oscillation frequencies of the interference

terms,

_ 1
Pars (0= = (Sn) = Sare), (6.1072)

_ 1
¥ a2p2(ts) = %(sz(%)—saz(%)). (6.107b)

Position density

Being interested in the position density associated with a Gaussian phase space distribution,
we can apply the recipes from section 6.3.4 for the current special case of free propagation.
The shape of all contributions is determined by the correlation matrix. Starting initially with a
Gaussian phase space distribution

exp(—z' C} z)

fo(z) = :
° v/ médetC,,
including
C O
Co=| = | (6.108)
O Q7°C,
the inverse time-evolved correlation matrix in phase space becomes
cl —t04C 2 A, A
Clep=| >0, %0 = | (6.109)
# —tosCo (= +15,)C, Apx Ay

This is equivalent to expression (2.83). Having identified the block matrices of C,, the correla-
tion matrix of the position density is found to be

Cott = (1 + Q%) Croer (2.84)

using the prescription from the appendix A.2. The classical contributions to the final density
profile are thus written as

exp [—(x— 5XL;)T C;é (x— 5x4)]

(X, ty) = |yl (6.110)
\/7'53 det C,o(1 +Q2¢3,)
while the interference terms read
. exp I:—(X—5XM/)T C;l (x—5xw)]
Ny (X,t4) = 2N |yellypl G cos(kix + 9yy) 0 (6.111)

y/ 3 det Coo(1 +Q2t2,)
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All laser-induced offsets 0x, and 0x,,, were given in equations (6.99). The phase offsets ¢,
were expressed in terms of the classical action. Additionally, the contrast and wave number of
the oscillatory pattern is given by

G = exp[ —5(tz3 — t12)° G' CoQ*(1+ Q%¢2,) 7' G, (6.112)
Kif = toq(tos — t15) (1 +Q? t§4)_1 G,, (6.113)

respectively. Both of these essentially depend on two quantities. On one hand, the fringe
frequency increases for bigger asymmetries of the pulse timings, t,3 — t;,. This asymmetry
is proportional to the separation of the paths inside one output port. The farther these are
seperated, however, the lower will be the contrast %6 of the interference fringes. On the other
hand, free expansion of the cloud leads to a spreading of the interference fringes. Their wave
length in direction of the laser pulse is given by

2.2
_27'5 1+w to4
if —

— , (6.114)
G w?tgyltays — Loyl

including w? = G'Q?G/G2. Keeping all laser pulse timings fixed and increasing only the time
span between the second beam splitter and the detector, t;4, the fringe spacing grows linearly
in the asymptotic limit,

f34:0° 27T t3q

A L
' G |tg3—ty,]

(6.115)
This relation can be rewritten in terms of the distance between the two paths d = hG|ty3—t15|/M

as
t34— 00 h

Aif N mtu (6.116)

where h = 27th is PLanck’s quantum of action. Figure 6.15 shows an example of a 1D density
profile after a MZI. Furthermore, for the case of a 1D density profile, figure 6.16 displays the
wave number of the interference pattern over time after the last laser pulse for various path
separations.

Symmetric interferometer

When we discussed the influence of interference on the final density so far, we always considered
the oscillatory patterns in the position density profile. In addition to this phenomenon, the
relative distribution of density between both output ports changes depending on laser pulse
timings. This is most conveniently studied in case of symmetric interferometers. Here, the

meaning of symmetric is twofold. First, the time spans between the laser pulses are equal,

t12 == t23 =T.
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Figure 6.15.: Position density in output port 1, associated to the WiGNEer function drawn in part
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Figure 6.16.: Interference fringe spacing A; against time after recombination t;, for various
pulse timings in an one-dimensional model. The initial state is assumed to be pre-
pared in a harmonic trap with frequency w. Various colors represent different time
spans wt,3 and thus different amounts of asymmetry t,; — t,,. Part a: Fixed time
spans are wty; = wt,, = 2. Part b: Fixed time spans are wt,; = wt;, =0.1.
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Second, we assume symmetric beam splitters, creating 50-50 superpositions of incident states
so that we finally obtain the coefficients

aal = 1l = ool = lrsel = 5.
In this setup, the total WiGNER function reads
f(z,t4) = f11(2, t4) + f12(2, t4)
= cos? (%) fo(x—vt04 —vgT, V)

+ sin? (%) fo(x— (v—=vg)tos — VT —Vgtay, (V—VG)), (6.117)

being a sum of two contributions. The corresponding densities , n;; = f d®v f, and n,, =
f d3v f,, are separated by a distance v;t5,. They add up to the complete density profile,

n(X, t34) - nll(X, t34) + n22(x, t34). (6.118)

If the spatial separation between the two output ports is sufficiently large, one can distinguish
the individual contributions simply by looking at the complete density profile. According to the
distribution (6.117), the relative population of both output ports is

t
n(x, t,) ~ cos? (%), (6.119a)
n(x, ty) + n(x+vgtsy, ty) 2
+Vgtag, t
nX+vetants) o (ﬁ) _ (6.119b)
n(x, ty) + n(X+Vgtas, ts)

Obviously, we can redistribute density among the output ports by tuning the phase differences
of the lasers, 6 = {; —2L5+ 5.

6.3.6 Example 2: Linear gravity

Having just discussed system without any forces on the particles during classical transport, the
next more complicated model involves a constant force. In the absence of trapping potentials,
the atoms are usually subject to gravity. Typically, for experiments on the earth’s surface, the
true 1/r potential of Newtonian gravity is very well approximated by a linear-slope potential,
entailing constant acceleration. Choosing the third component x5 to be orthogonal to the isosur-
face of the gravity potential, we have v = (0,0,—g)". The value for linear gravity acceleration
is around ¢ = 9.81m/s? on the earth’s surface.

Classical phase space trajectories for linear gravity has been discussed in section 2.3.2. For the
sake of notational convenience, we consider only dynamics the direction of the acceleration.
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Figure 6.17.: Sketch of position (a) and velocity (b) in a MZI with linear gravity potential. Colors
and dashed lines have the same meaning as in figure 6.18.

This allows us to utilize a one-dimensional formalism. Then, according to expression (2.88),
the phase space propagator reads

, (x) (x+ vt—§t2> (1 t) (x) (—%ﬂ)
U (v = = + . (6.120)
v v—gt 0 1/\v —gt

It comprises matrix multiplication as well as vector addition. Without the laser pulses of the MZI,
a trajectory that starts at time t, in the origin of phase space, (z) (t,) = (0,0)7, ends up in the
point Z(ty,) = (—%tfw —gty,) after freely falling towards the gravity center. As we have shown
with equations (6.86) and (6.89b), the MZI-induced offsets depend only on the kick velocity v,
and the matrix part U(:) of the affine transformation (6.120). This matrix part, however, is the
same for constant acceleration and free propagation. Hence, the influence of the laser pulses
on the phase space trajectories, denoted by 6z, is the same as in the case of free evolution. In
output port 1, on one hand, the contribution of the MZI offsets to the mean velocities is zero,
O0Vy;; = Oy = OUypp; = 0, while the position offsets are 6x,; = Ugtas, 0Xp = Ugtqo, and
0Xgq1p1 = %I}G t13. In the second output port, on the other, the laser pulses lead to an offset
in the mean velocities of d v,y = OVpy = OVy9py = Vg, and in mean positions 6x,9 = Ugtoy,
Oxpy = Ug(tig + tas), and Oxyopy = %(tlg + 2t34). The only difference of linear gravity to
free propagation is the offset due to constant acceleration. It is expressed by the addition of
(—gt?/2, —gt) in equation (6.120). Altogether, the center coordinates in phase space for all
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Figure 6.18.: Sketch of classical phase space trajectories of MZl in linear gravity potential. The col-
ors blue and red indicate the lower ans upper path, respectively. The laser induced

velocity kicks are represented by dashed lines.

final contributions are

(Z) g1 (t) = (_%t‘z"‘; thZB), (6.121a)
—8&los4

(Z)p1 () = (_%t‘%“; UGt”), (6.121b)
—8lo4

(Z)g1p1 (ta) = (—§t34g‘*; %tlg) , (6.121¢)

—8lo4
(2) g2 (e) = (_ig;o::i%)’ (6.121d)
(2) o (t) = (_%t‘%“ *vgltiat t?"‘)), (6.121e)
—8los+ Vg

8.2 UG
—$62, 4+ 2(t5 +2¢
2 (t3 34)). (6.121f)

(Z)asz(f4):( 204

—8tos + Vg
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Wigner function

Having calculated the distribution centers, one can easily find the classical contributions to the
final WiGNER function by applying the formulas from section 6.3.4. They are

fa(z, t))=fo (X — Ugtys — Vitpa, V) , (6.122a)
fi1(z, t4) = fo (X — vgtyy— Vi, V), (6.122b)
far(Z,t4) = fo (X — vgtos— (V= vg)tos, V — 15), (6.122¢)
fro(z,t4) = fo (X —Vgt1a—(V—vg)tos, V — vG). (6.122d)

We have transformed the phase space coordinates to the freely falling frame, using

X =x+3gt2,, V=v+gty. (6.123)
This way, the WiGNER functions that have been subject to linear gravity are formally similar to
their freely propagating counterparts expressed in (6.100a)-(6.100d). Furthermore, the inter-
ference terms are

v g
fa1p1(z, t4) = cos [G (V + ?G) (tas —t12) — GE (t§1 _2t§2 + t§3) + 55]

x f, (X Vg, — %tlg, v) (6.124a)

for the first output port and

1% g
faop2(Z,t4) = —cos [G (V - EG) (tas —t12) — GE (t(zn - 2t(2)2 + t(2)3) + 5§]

X fo (X —(V—vg)tos— %(t13 +2t34), V— UG) (6.124b)

for the second. Once again, some terms are familiar from the discussion of the free MZI in
the last subsection: the oscillation is oriented along the velocity axes in phase space and its
frequency is proportional to the asymmetry of the interferometer. Having been subject to gravi-
tational acceleration since release, the velocity argument is shifted by gt,,. Moreover, the offset
of the laser fields ({4, {5, {3) influence the oscillation phase. In contrast to the results (6.102),
however, the interference term depends on G(g/2)(t5, — 2tg, + tg,). This phase contribution
is related to the mean position of the distribution by the time of each laser pule application. It
depends on the time spans in which the atoms have been subject to constant acceleration before
entering a particular laser field. For asymmetric interferometers, this term merely introduces yet
another offset to the interference fringes. Nevertheless, it has useful consequences for symmet-
ric cases, as we will discuss below. Again, for providing a physical explanation for the offset to
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the oscillation phases @/, we take a look at the actions that are accumulated along the paths.
For classical transport in a linear gravity potential between the time instances ¢; and ¢;, one
finds

V2

where we have abbreviated x; = x(t;) and v; = v(t;). In addition to action accumulation due
to classical transport, like before, the laser-induced phase leaps related to the kick operator
exp[+i(GX + ;)] lead to

S(t7) =S(t7) £A(Gx +{;). (6.105)

Going through the complete sequence, the final actions are found to be

2

4 4 4
Sar(ts) = M?tg’4 —hG [(gt04 + ?G) t =7 (e2,— t(z)g)] +H(l,—C5), (6.126a)
2
Sp1(ts) = M%t84 —hG [(81—'04 + %) tia— % (3, — t(z)z)] +h(81 —C5), (6.126b)
2 v
Sao(ts) = Mg?t8’4 —HhG [(gt04 - ?G) tos — %tfm] +hl,, (6.126¢)

2 v,
Spa(ty) = M%t84 —hG [(8%4 - ?G) (t1o+t3s) — % (t§1 - t§2 + tﬁg)] +H(1 =85+ E3).

(6.126d)

Like in the case of free propagation between the laser pulses in (6.106), the action depends
on the time intervals in which the trajectories have traveled with kicked velocity. The term
M g2t34/ 3 is common to all paths and thus irrelevant when considering differences between
actions. Contributions of the form gtgl./ 2 are connected to the position of the distribution part
by the time they enter a laser field at time ¢t;.

Utilizing the actions given in equations (6.126), we can express the offsets to the oscillation
phases again as

_ 1
Pa1b1(ts) = %I:Sbl(tzt)_sal(%)]: (6.127a)

_ 1
P a2paltsd = %[sz(%) - Saz(f4):|- (6127b)

These allow us to write all terms in the oscillatory factor of expressions (6.124) that do not
depend on v as a simple difference of actions.
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Position density

The correlation matrix which is essential for calculating the position density profile can be writ-
ten as a product comprising the initial correlation matrix and the matrix part of the affine
transformation %7. Since both propagators, (6.98) and (6.120), have identical matrices, the re-
sultant density of an MZI with linear gravity has the same shape as in case of free propagation.
Additionally, frequency and orientation of the oscillations in phase space are identical in both
cases. The only difference is that constant acceleration shifts both, the distribution centers as
well as the oscillation offset. Expressions for the position density will, however, still have the
form (6.110) and (6.111), plugging in appropriate position offsets 6x, and phase offsets .
These can be easily read off the results above. Moreover, the wave vector of the interference
fringes k;; is the same as given in (6.113).

Symmetric interferometers

In order to conveniently examine the influence of interference onto the relative distribution of

density among the output ports, we consider again a symmetric interferometer setup, including

tip =1ty =T,

Va1l = o1l = [va2l = 752l = 3.

For this choice of parameters, the final WiGNER function becomes

f(z,t4) = cos* (%g — %GgTz) fO(V —Vitgs—vgT, V)
+ sin? (% — %GgTz) fO(V —(V—=v5)tgs—vT, V— vG), (6.128)

abbreviating again X = x + gt(z) ,/2and V = v + gto,. We again assume the output ports to be
sufficiently separated in position space. In the same way we arrived at expression (6.119), we
find the relative populations of the output ports to be

n(x,t,) 2(5¢ 1 2
=cos’| =—5GgT*|, 6.129a
n(x, ty) + n(x+vgtsy, ty) (2 278 ) ( )
n(x+vegtqs, t .
( Gt3a,ta) _ Slnz(i_@_%GgTZ)’ (6.129b)

n(x, ty) + n(x+vgtsy, ty)

One can measure gravitational acceleration [116] by varying the interferometer time 2T and
reading off the frequency of the population oscillation between both ports.

The dependence of the relative population on the interferometer time is connected to different
phases that are accumulated along different paths through the interferometer. Note, however,
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that this phase difference does not come from the dynamical phase accumulation during classical
transport. It is rather a result of the phase leaps that are induced by the laser pulses along
different paths. The offset in each path’s co-moving frame depends on how long it has been
freely falling before entering the laser pulses. In detail, the lower path is unaffected by the first
pulse, kicked by the second when it sees an offset —g t(z)2 /2, and kicked back by the third when
the offset is —g t(2)3 /2. Analogously, the upper path is kicked and kicked back, seeing offsets
—g t(z)1 /2 and —g tgz /2, respectively. The phase difference, that is connected to these different
offsets, is just GgT? in case of a symmetric interferometer. This gives rise to the population
oscillation expressed in equations (6.129).
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7 Ray tracing with coherent matter waves
in three dimensions

The present chapter treats the numerical computation of time-evolved phase space distributions
and associated observables. Suppose evolution is properly described by the semi-classical limit
of the quantum LiouviLLE equation (3.40), neglecting all terms carrying non-zero powers of i
(i.e. truncated WiGNER approach). Having now formulated a partial differential equation, i.e.
the classical LiouviLLE equation, a manifest — or maybe naive — strategy for finding a solution
would be to discretize phase space and numerically iterate the distribution on this grid. This
may indeed be practical for one-dimensional systems that entail a two-dimensional phase space
grid. Provided the grid spacing is sensibly chosen and the WigNER function is in some sense
well-behaved, this strategy demands manageable numerical effort. Going to realistic three-
dimensional settings, however, things are heavily complicated by considering the corresponding
six dimensional phase space. Even very coarse grids with, say, 2* = 16 points along each
dimension consists of 212 = 4096 grid points in total. Needless to say that any grid that is
supposed to reproduce a proper distribution function with some details will be far beyond what
current machines can handle. Thus, we dismiss the approach of solving the partial differential
equation directly and utilize a ray tracing approach for matter waves described in the following
subsections. As the name suggests, matter wave ray tracing is completely analog to optical ray
tracing. In the latter method, optical fields, are propagated not by solving MAXwELL ’s equations
but rather by tracing rays through a given optical setup.

We introduce some basic concepts of our ray tracing approach before we elaborate on how ob-
servables are computed. To demonstrate its applicability, we conclude this chapter with showing
some simulation results.

7.1 Ray tracing concepts

In previously used terms, switching from the PDE approach to the ray tracing approach, is
nothing else than going from ScHRODINGER to the HEISENBERG picture. As we discussed in detail
in section 2.2.1, directly solving the LiouviLLE equation is one of two dual concepts for describing
phase space dynamics. The other alternative is to reconstruct the final WigNer function with
values of the initial distribution flowing on classical trajectories through phase space. These
trajectories are solutions of HamirTon ’s equations of motion (2.3). The analogy to optical ray
tracing is most striking if interactions between particles are ignored. In this case, the trajectories
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are independent of each other and hence dynamics takes place in a six-dimensional phase space.
Moreover, calculations can be very efficiently parallelized.

Including binary interactions between N particles, the proper frame for microscopic dynam-
ics is a 6N-dimensional phase space. As we discussed in section 2.4.3, the WiGNER function
of the microscopic phase space may, under certain circumstances, be reduced to an effective
single-particle distribution, living in a macroscopic six-dimensional phase space. In this case,
interaction effects are covered by non-linear mean field interactions. One way to include these
interactions into the ray tracing procedure is to reconstruct the density profile n(x) in each iter-
ation step. This is done by binning the phase space points to a 3D position space grid [117,118].
Alternatively, we can equip the trajectories with an effective interaction that is equivalent to the
inter-particle interaction in terms of distribution function evolution. Note that in this context
trajectories’ does not necessarily refer to (physical) particles of a cloud of N &~ 10* atoms. They
are rather abscissas, sampling the phase space distribution. Each of these sampling points may
be thought of as representing the dynamics of a batch of physical particles. It is thus also called
quasi- or super-particle.

Assuming relatively low densities, we neglect inter-particle interactions in this work, discussing

a ray tracing formalism with independent phase space trajectories.

7.1.1 Classical transport

A simple ray tracing procedure for numerical computation of time-dependent WiGNER functions
can be given as following. Suppose the initial distribution f;(z) is known. Make a sampling,
i.e. a set of phase space points {z,(t,)} lying in the support of f, and compute their associated
function values F, = fy(z,(t)). Now, solve HamiLToN ’s equations — if necessary numerically —
for each sample point z, with z,(t,) being the initial condition. Note that the HEISENBERG picture
implies that the values F, remain unchanged during classical transport. They are “attached” to
their associated phase space points which travel along the classical trajectories. As a result, at a
final time instance t;, we obtain a collection of points which are scattered across a limited area in
phase space, each one carrying a different value. A naive way to recover the distribution function
f(z,t;) would be to interpolate the scattered data on a rectangular grid. This is obviously not
the best idea since we are forced to revert to six-dimensional grids we wanted to avoid in the
first place. Anyway, our ultimate aim is not the computation of the WiGNER function itself, but
rather expectation values of observables we can calculate with it. As we discuss further below,
this notion can be exploited to bypass six-dimensional grids when calculating three-dimensional
or scalar observables.

In order to put the above ideas in a more mathematical language, we make some definitions.
First, as a finite representation of a phase space distribution function f, we define the collection
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of r phase space points together with associated distribution values. We call the ordered set of
r phase space points at a certain time instance,

2(t) = (), .., 2:(D)), (7.1)

a phase space element (PSE). It can be pictured either as a collection of points in six-dimensional
phase space, or as a single point in (an element of) a 6r-dimensional phase space. Each PSE is
connected to an ordered set of initial distribution values,

F = (folz@), s folz, )
= fo(z(t), (7.2)

In the last step, we have implied the function f,, to act on each member of the PSE separately.
Moreover, similar to the formalism in the previous chapter, classical transport can be expressed
in terms of the classical propagator %/(t). For evolution between the time instances t; and t;, we

write

E(t]) = (@(tij)z]_(ti)n ceey 012(%') Zr(ti))
= azz(tij)z(ti)‘ (7.3)

Talking about numerics, the propagators of classical transport can in general be well approxi-
mated by symplectic integrators [52]. In our favorite special case of quadratic Hamiltonians,
that are elaborately discussed in section 2.3, propagators are given by affine transformations

E(t]) = OZQ(tU)E(tJ + E('fij)) (74)

where vector addition and matrix multiplication of z have also been defined element-wise.
In summary, the main characteristics of classical transport are utilization of HamiLToN’s equa-

tions and invariance of distribution values at their solutions.

7.1.2 Non-classical interferometer elements

In the last section, we have introduced some definitions which are useful for describing propaga-
tion of rays through phase space, assuming classical transport is valid. As we have seen before,
interferometer elements which are realized by rapidly oscillating laser fields are far outside the
regime of classical transport. Like in the last chapter, the non-classical devices have to be treated
separately and we have to extend our formalism in order to cover them adequately.

145



First beam splitter

Recalling the results from section 6.2, a two-path beam splitter splits an incoming distribution
into three copies. All of which have envelopes that are equal in their shapes but displaced by 0,
v;/2, and v, along the velocity axes. To reflect these results in the ray tracing formalism, we
split each point of an incoming PSE into three copies which are displaced accordingly.

In terms of our notation, a PSE right before the laser pulse is written as z(:;). Passing the beam
splitter, it shall be mapped onto three PSEs

z, (t]) =z(t)), (7.5a)
z,(t7) = z(t]) + 32, (7.5b)
z,(t]) =2z(t]) +zg, (7.5¢)

In subsequent evolution through the interferometer, each of these three PSEs is affected differ-
ently by classical transport as well as non-classical interferometer elements. We are therefore
not considering not just a single PSE but several channels of PSEs. These channels correspond to
the unkicked, the kicked, and the interference contribution to the total distribution. We call the
composite entity z = (z,,2,,,2,) the set of phase space channels (PSC). This way, an incoming

state that has a collection of points in the first channel and none in the others can be written as
z(t7) = (2z(+), 0, 0). Passing the beam splitter, it is mapped onto the output state represented by

2= (2, zD+326, 2 +12g). (7.6)

Thus, in our ray tracing formalism, the laser pulses act on the complete set of phase space
channels z rather than on individual phase space elements z,.

In addition to the fragmentation of the envelope, the interference term of the contribution
fap is spatially oscillating, described by the position dependent phase Qqz. Consequently, the
proper distribution values belonging to the interference channel are products of the original
values f,(z(t,)) with factors cos Qyz(t,). Yet again, we combine the interference pattern phases of
all points into a single object ¢ . Right after the beam splitter, at t =t it reads

—a
+y — T + T +
£ab(t1) - (QO Zl(tl )) e QO Zr(fl ))
= Qg Z, (1), (7.7)
depending on all phase space locations of the PSE. In contrast to classical transport, the dis-
tribution values associated to the interference channel do change each time they pass an inter-

ferometer element. Using the beam splitter model introduced in section 6.3.1, the distribution
values after the laser pulse become

F_ e =lai*folz,), (7.82)
F 5 = 2|a4]|B1] cos(Qg Z,, (1) folZyp (1)), (7.8b)
Fo, )= Bl fo(zy (). (7.8¢)
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The values of all channels are then combined to

E= (F F Ebb)‘ (7.9)

~aa’=—ab’

After leaving the beam splitter, the state is again subject to classical transport. The evolution of
the set of all phase space points z is expressed by applying the operator %/ (t,,) to the constituents,

Z(t;) = OZ}(HZ)ZUD
= (Q}(tlz)gl(q), cees @(tlz)gr(tf)), (7.10)

while the phases of the interference channel ¢ ; remain constant until the next laser pulse.
—a

m-pulse

In order to find a map for PSEs that adequately describes the behaviour of phase space distri-
butions passing m-pulse, we consider the WiGNER function right before the application of the

laser,
fz )= (%) J LT (x+ Pk —35), (7.11)
including the density matrix
p() = Ut Ups Uttor) o Utton) U U1, (7.12)

to the one right after the m-pulse,
3 Mgy A A
flzth) =(%) J &3 e T (x+ 5|0, pap Ul [x—3), (7.13)

where Uy, and U, are given in expression (6.66) and (6.67), respectively. According to the
transformation of the WiGNER function, the PSE channels after the laser pulse are

Z(t;) = (Za(tz_) + Zg, Zab(tg_)) Zb(tz_) - ZG)- (714)

One recognizes the momentum exchange between the classical channels which are the first and
the last component of z(t;) in this notation. At the same time, the phase of the oscillatory
pattern leaps about —2Gx which leads to

fab(t;) =£ab(t;) —2Q02Z,;,(t3)
=Qo (z,,(th — 22, () (7.15)

at the output of the m-pulse. This phase leap is connected to the sudden change of the oscillation.
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contrib. | splitter | redirector | recombiner | sum of kicks
label

al 0 +z; —Z; 0
b1 +z¢ —Zg 0 0
a2 0 +zg 0 +z;
b2 +z; —Zg +z; +z;
albl +z/2 0 —25/2 0
a2b2 +z;/2 0 +z;/2 Zg
alb2 +z;/2 0 0 Zg/2
a2bl +z;/2 0 0 Zg/2
ala2 0 +z; —2Z;/2 Zg/2
b1b2 +z; —Z +z;/2 Zg/2

Table 7.1.: Overview of kicks in non-classical interferometer elements

Second beam splitter and detection

As we saw in section 6.3.3, the phase space distribution after the second beam splitter comprises

10 parts in total. These are 4 classical distributions f,, and 6 terms f;,, describing the interfer-

ence between them. The transformations of the WiGNER envelopes leads to the following map

of classical PSE channels.

z,(t3) =2z,(t5) — 2z, (7.16a)
z,,(t3) =z, (t3), (7.16b)
z,,(t3) =2,(t3), (7.16¢)
z,,(t3) =2z, (t5) + 2. (7.16d)

Remember that the letters a and b refer to the path in the interferometer between t; and t5 and
the number in the indices to the output port. Next, for the interference channels one finds

2,141 (63) = 2,(3) — 32, (7.16¢)
Zoopo(t3) =24, (t5) + 37, (7.16f)
2150 (£5) = 2oy, (£5) = 245 (£5), (7.16g)
Z105(t5) = 2,(t5) — %ZG, (7.16h)
Zypy,(£3) :Eb(t;)"‘%zc- (7.161)

An overview of all velocity kicks given by the laser pulses is presented in table 7.1.
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Finally, in order to completely determine the state at the output of the recombiner, one needs
to know the phases of the interference terms’ oscillations. The various laser-induced phase leaps

are
P arp ) TP, ) T Qo 2y, (1)) + {3, (7.17a)
P =P () + Qo2 () + {5+, (7.17b)
P a1pa) TP ) T QoZ,(t)+ 3+, (7.17¢)
P oaop1 ) =L, (02 (7.17d)
LR =Q02,(:) + Cs, (7.17e)
P 102) T Q0Ze() + E + 7. (7.176)

Table 7.2 summarizes all phase leaps that alter the interference pattern during propagation. Just
like the final WiGNER function given in section 6.3.3, which comprises 10 summands in total,
the final function values F(:}) can be divided into 10 channels,

EH= (Ealal(r;), F 1) Fpipi (e,
F 1020 E1pa() F o6, F o6,
F 12020 E (), Ebez(q))' (7.18)

Note that we have arranged the contributions of the first and second output port in the first and
third line of expression (7.18), respectively. The interference channels between the ports are
written in the second line. Classical parts are represented by value sets of the form

Fo ) =1yl folz,0), (7.19)

while the interference parts are described by

F o) = 2|y llve| cos @y fo(zp (o) (7.20)

The coefficients of the contributions are given in expression 6.70. The distribution values in the
classical channels are, apart from coefficients y,, identical to the initial function values. On the
other hand, the values in the interference channels are modified with a factor cos ¢/, that is
related to the interference between the paths. Finally, until reaching the detector at t = t,, the
function values given above do not change any more.

7.1.3 Forward versus backward propagation

So far, we have discussed ray tracing as a method that propagates distribution samples forward
in time. We start with sampling the initial function f;, at a set of chosen points. After a complete
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Figure 7.1.: lllustration of mappings of phase space points passing a laser pulse. Part a: First
beam splitter according to (7.5). Part b: 7-pulse according to (7.14). Part c: Second
beam splitter according to (7.16).
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contrib. | splitter | redirector | recombiner || sum of leaps
label

albl +Gx —2GXx +Gx 0

a2b2 +Gx —2Gx +Gx 0

alb2 +Gx —2Gx +2Gx Gx
a2bl +Gx —2Gx 0 —Gx
ala2 0 0 +Gx Gx
b1b2 0 0 +Gx Gx

Table 7.2.: Overview of interference phase leaps in non-classical interferometer elements. Note
that in addition to the position-dependent phases (o< Gx) the phase offsets of the
laser pulses (denoted with {) contribute to the phase of the interference pattern.

propagation sequence, we obtain a set of final distribution values with associated phase space
coordinates. These will depend on our choice of initial sampling points. However, as expressions
of the form f,(%/ ' z) suggest, the evaluation of the final WiGNER function is actually done by
propagating backwards in time to query the initial values. We illuminate this notion with a brief
example.

Assume we follow the channel ’a1b1’ along its propagation through the MZI. In terms of initial
sampling points z,, their final pendants in the associated channel are z_,,,(t,) = q}alblzo' A
definition of %,;,, can be found in expression (6.80). According to the propagation rules of last
subsection, the corresponding distribution values are

F 1100 =27 allvpil cos[Qo (2,00 + 5 — 22,5 (6 + 5 + 2,5+ 5) | folZy)- (7.21)

In deed, this result depends on the initial sampling z, being subject to different propagators.
However, typically we want to evaluate the final distribution not in terms on initial abscissas but
rather at certain points in phase space. Now, in order to reformulate equation (7.21) in terms of
specified final sampling points z_,,,(t,), one has to express the initial points as back-propagated

versions of the final abscissas, z, = % _|

1 .
1b1 Za1p1(ta)- We obtain

Fapi() =
COS I:QO (Q}_l(tlii) j__Gl/Z 622_1&34) - 2 @_1(1-23) ‘%’}__Gl/z Q}_l(t34) + 022_1(1‘34)) Ealbl(t4)i|
x fO (022a_11b1 Ealbl(t4)) . (7.22)

This expression resembles the corresponding contribution to the final WiGNER function discussed
in section 6.3.3.

Thus, ray tracing with backwards propagation is not only convenient for evaluating final dis-
tributions at specified points, we can furthermore recognize previous results from chapter 6.
Nevertheless, as we show in the following section, we need both, forward and backward propa-
gation, for practical calculations.
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7.2 Computing observables

As we noted above, we want to efficiently calculate observable values without constructing the
final WiGNER function completely. These values are generally obtained by integrating f(z,t)
over some or all axes in phase space. As we discussed in the introduction chapters, expectation
values of observables are obtained by

(a) = J d®z f(z)a(z). (7.23)

Examples are the mean momentum or the mean velocity of an atom cloud along the i-th co-
ordinate axis, for which one has to insert a(z) = x; and a(z) = v;, respectively. In the fol-
lowing, we will frequently consider the density at position x’, denoted as n(x’), which implies
a(z) =6(x—x).

Of course it is numerically impossible to integrate an unknown function along entire axes in
phase space. Therefore, we first have to gain some rough ideas about the final distribution,
in order to adjust our integration method. These “rough ideas” will be represented by pilot
distributions, introduced in the next subsection.

= backwards
propagation

P [opo]

/_\
5 : (n(z,t;) = [dp f(z,p, tjD
v

057

n(z) [o]

5 0 5 -5 0 5
x [UxO] xT [UmO]

Figure 7.2.: lllustration of computation of density profile by summing over back-propagated
phase space points for free propagation in 1D.
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We consider propagation of Gaussian distributions with quadratic Hamiltonians as ideal case.
Corresponding results are conveniently expressed by affine transformations (see e.g. section
2.3. Proper integration areas for the true (read: potentially non-Gaussian distribution) can
then be deduced from the parameters of the Gaussian distribution. The problems we want
to tackle with ray tracing methods shall be small deviations from the ideal case. This means
that we require the distribution functions to differ only slightly from a perfect Gaussian and
higher-than-quadratic contributions to Hamiltonian to be small corrections.

7.2.1 Pilot distributions

In order to narrow down the location and extent of the final distributions’ support, we start our
simulation procedure by propagating a pilot distribution through the system forward in time.
Therefore, we take the center z(t,) and correlation matrix C(t,) of the initial distribution and
define a PSE that represents this data properly. With these parameters, we can write the initial
pilot distribution as

exp[—(z — Z(to))T Cito)(z— E(ro))]
v/ o det Cey) ’

being a Gaussian that approximates the true initial distribution f,(z). The pilot distribution is

fP(z)=N (7.24)

an auxiliary object that enables us to chose the optimal method for numerical integration.

Envelopes

Center and widths of a single distribution envelope are sufficiently represented by 7 rays. First,
the center is given by

E(to) = <Z)f0 . (725)

Next, the widths and orientations are given by the correlation matrix which can be encoded by
six phase space vectors. These may be constructed as follows. Being symmetric, the correlation
matrix can be diagonalized (see appendix A),

C(ep) = P diag(o?,...,02) PT, (7.26)
where 0%, v oé are the eigenvalues of the correlation matrix C(t,). This means they satisfy
(C—o?1)e; =0. (7.27)

The transformation matrix in equation (7.26) comprises the eigenvectors as columns,

P={(ey,...,e€). (7.28)
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Figure 7.3.: Representing 1D phase space distribution with 3 phase space points.

Hence, the correlation matrix can be represented by a set of six vectors,
O'i(to)=0'i ei, 1= 1, ceey 6. (729)
They can be combined into a matrix

Z(fo) = (Gl(to); ) 06(%))
= Pdiag(o,...,04), (7.30)

which is the CHoLEsky decomposition of the correaltion matrix, C = ¥¥.". Altogether, the set of
seven phase space points

2P0 = (2w, Z+ 0100, . . Ee)+ O6) (7.31)

constitutes the pilot phase space element containing information about the center and the corre-
lation matrix of the associated distribution f,. It can be pictured as a six armed cross in phase
space that is a skeleton of the real distribution it describes. An illustration of this ray repre-
sentation for a 1D case is shown in figure 7.3. Clearly, for describing the final WigNER function
of an MZI, we have to define a pilot distribution for each channel. Concerning non-classical
interferometer elements such as beam splitters, the WiGNEr function is fragmented into several
channels and, likewise, the pilot distribution values and sampling points are fragmented into
corresponding channels. The final PSEs are given by

2”0 = Uy z” ), (7.32a)
28 () = Yyt 20 o). (7.32b)
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Using this expressions, the final pilot distributions in the classical channels can be written as

xp[—(z—Z0)" C o) (z2—Z(0)]

(p) 2 €
fo (Z,8) =N |y , (7.33)
t v/ modet Co)
its correlation matrix is given by
Co=XmX
-
= Utton) Z(to) (Utton) i)
= (0 1(0), vrs 0'6(t))T((Tl(t), ey O (1)) (7.34)
Similarly, the interference terms are
— T--1 —
) exp [—(z —Zy(®) Cr(z— zw(r))]
fopr' (2, 8) = 2N |y llye| cos ey , (7.35)
. v/ modet Cr)
where the pilot phases are discussed below. The complete distribution
L o<’

approximates the true WiGNER function in its most basic characteristics, these are its center and
their widths.

Interference pattern

The contributions that describe the interference between classical paths exhibit rapid oscillations
in phase space. These may render numerical integration cumbersome if not impossible. Thus,
we will have to “separate” the strongly oscillating term from the rest of the slowly varying
integrand. Therefore, we require the pilot distribution channels to be a guidance, not only for
centers and widths of the true distribution, but also for its oscillations in phase space. To each

interference channel we hence associate a pilot oscillation phase

(p) (P —(p)
P = Q2+ Py (7.37)
(P

—(P)
o

comprising an interference vector Q,,; and an offset ¢,,,. The latter is independent of z. Being
subject to quadratic Hamiltonians, for example, the interference vector is transformed by simple

matrix multiplication,
QEIZI)(tj) = UT(fij)nglgx)(fi)- (738)

Geometrically speaking, the interference pattern is rotated, stretched and compressed and can
thus always be described in the form of (7.37). In contrast, higher-order Hamiltonians entail
more complicated transformations that may distort the initially straight-lined interference pat-
tern, which cannot be described by a constant interference vector anymore. Again, we assume
these higher-than-quadratic contributions to be sufficiently small so that expression (7.37) gives
a good approximation to the interference pattern of a certain channel.
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7.2.2 Integrating phase space distributions

Consider for instance, we want to calculate the position density n(x) at a certain point x after
some propagation time t, being aware only of center z and correlation matrix C of the pilot dis-
tribution. Aiming for an efficient numerical integration method that requires a minimal number
of function evaluations, we have to exploit all “hints” that are given by the pilot distribution
f®_ The details of these methods depend to large extend on how fast the integrand oscillates.
In any case, we divide the final distribution parts f;,/(z, t4) into products of two or more func-
tions, one of them being the propagated initial pilot distribution f,(¥~!(z —Z)). The latter is
given in terms of the pilot PSE.

Non- or slowly oscillating distribution parts

Writing the true WiGNER function as

feer(z,8) = 0(p)(2‘1(r)(z—i(t>)) g(z, 1), (7.39)

i.e. a product of the Gaussian pilot distribution f®, expressed in (7.37), and an initially un-
known function g, the integral of f(z) over some or all axes can be approximated by Gauss-
HerwmITE quadrature. As pointed out in appendix A.4, this integration method works well if g is
a polynomial of limited order. A condition that is very likely to be satisfied by the classical parts
of the final WiGNER function, f,, but clearly violated by rapidly oscillating interference parts®,
feer- We start with discussing the former case before treating the latter ones.

If we can assume the ratio of the true distribution and the pilot, g, to be a limited order
polynomial, we can directly utilize expression A.27 to integrate f;,/(z) over all axes. The Gauss-
HerMmiTE quadrature rule [119,120] reads

J d6Z fw/(z, t) N |det Z' Z ﬁ/mful(zm(t), t), (7.40)
R6

Im|<r

with 6-tuples m = (my,...,mg) and their sum |m| = m; + ... + mg. The number of phase space
points r, is the number of abscissas sampling f;,,;. The series coefficients are products of the

~

corresponding quadrature weights w,, = w,,. - ...

| "+ Wpn,. The nodes where the final distribution

is evaluated are given by

Z() = 20§, +2(0), (7.41)

Although it is possible to approximate the oscillatory modulation in the support of the Gaussian envelope by a
finite-order polynomial, one had to go to very high orders to achieve sufficient accuracy. Apart from requiring
more function evaluations, the largest coefficient of a HErMITE polynomial H,, grows very fast with increasing
the order. This makes numerical root finding more and more unstable.
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using the dimensionless vector § = (§,,,,...,& m6)T whose components are the n;-th roots of the
r-th order HErMITE polynomial. If g(z) is of order 2r — 1 or lower, the equation (7.40) is exact.
In this procedure, the correlation matrix C = XY and the offset Z determine the phase space
locations of the integration abscissas. They do not necessarily coincide with the correlation
matrix and offset of the complete distribution to integrate, f. Nevertheless, the parameters ¥
and z are obtained from the pilot PSE, as prescribed in the last subsection, and should therefore
provide a good approximation to the true distribution f.

For classical contributions f;,, the values of the final distribution in the sum in (7.40) are
calculated by propagating abscissas z, backwards in time and query the values of the initial
distribution at the back-propagated abscissas,

ffé(zm(t4)’ t4) =l |2 fo (0221{_1(%4) Zm(f4)) . (7.42)

Like before, the forward-propagated WiGNER function is expressed as the initial distribution with
back-propagated phase space coordinates. Tracing back phase space trajectories, starting at the
integration abscissas (7.41), to evaluate the corresponding distribution values can be considered
the core routine of our ray tracing procedure. In case classical transport is ruled by quadratic
Hamiltonians, one can revert to analytic results given in section 6.3.4. These are used as a
benchmark to our numerical algorithm.

Integration with Gauss-HErMITE quadrature may be not only suitable for classical contributions
but also for interference terms that are slowly oscillating in phase space. These may for example
occur in the output ports of a nearly symmetric MZI. Periodic modulations are included simply
by attaching an interference phase to each abscissa,

foor @), ta) = 2l7¢llyer| cos(@u(Zmnc)) fo (%) o Zmn). (7.43)

Assuming the oscillation to be sufficiently slow, i.e. |V,¢| < |detX|, the ratio of f;,, to the
Gaussian fo(p)(Z_l(z—E)) is still well approximated by a limited order polynomial. The value of
¢, can be calculated successively while propagating the abscissas to the initial time instance.
St;u’ting with a phase of zero, we add a phase leap every time the rays pass a non-classical
interferometer element as given in table 7.2. This procedure was exemplified in section 7.1.3.

In addition to integrals of distributions over complete phase space, we also consider observables
which are obtained by integrating only over part of all phase space axes. The most important
quantity of this kind is the position density n(x). Following expression (A.28), we find

n(x, t) = f Py V)= D W f (X Vo). (7.44)
R3

|m|<r

The sampling points in velocity subspace

Vo 0) = A—l/zgﬂ— ALA, (x—X)+V (7.45)

vv
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are determined by the position x, the position and velocity parts of the pilot’s offset, X and v,
respectively. The pilot’s correlation matrix C has been subdivided into block matrices A, A, ,,
and A, , as instructed in (A.9). Of course, the above calculation goes analogously if one wants
to integrate e.g. over all position axes to obtain a density in velocity space 7(v) or over all but
one axis to obtain a 1D density n(x).

Furthermore, the above quadrature formula can be trivially extended to calculate all kinds of
moments of the final distribution. These are given by integrals over the distribution times a
polynomial in phase space coordinates, & (z) f (z), which are calculated simply by substituting
2 f for f on both sides of expression (7.40) and (7.44).

Strongly oscillating distribution parts

In contrast to slowly varying Gaussian-like distribution parts, rapidly oscillating contributions
to the total WiGNER function are not suitable for Gauss-HERMITE quadrature. Assuming the pilot
interference vector Q® to describe the oscillatory behavior sufficiently well, we separate the
considered distribution as

exp [—(z —Z2)TCl(z— E)]
vmédetC

fu(z) = cos(QP z+7) g(2) (7.46)
such that g is again a limited-order polynomial. The parameters z, C, and ¥ are known from
the pilot PSE. This way, we can apply the recipe from appendix A.5 to obtain the integral

d6 , — 26 () Z4+0 _q2/4 S I + 0 m m. 7.47
[ =2 cos(@93+3) e Seos(5+9) S a7

1=0 Iml=t

The monomials in the sum are explicitly written as ¢* = qu S qgl6 with the dimensionless
vector q = X' Q® being the scaled interference vector. Its absolute value is a measure for the
number of oscillations within the support of the envelope. The sum coefficients c,, are obtained
by projection of g onto the multivariate HermiTE polynomials H,(z) = H,p,, (21) ... - Hp,, (26) with
respect to the Gaussian weight function f ®,

_ f £ exp [—(z —z2)TC 1l (z— E)]
R6 v rodetC

H,[Z ' (z—2)] g(2). (7.48)

A consequence of g being a limited-order polynomial is that the coefficients c,, are non-zero
only for a limited number of combinations m. Consequently, the sum in (7.48) terminates
after a few terms with [ < r’. Hence, the integral (7.47) is limited by the factor exp(—q?/4).
This means, for growing magnitudes of q, which either means shorter laser wave length or larger
atom cloud (e.g. via temperature increase), contributions from interference terms to the density
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become negligible. The projection integral (7.48) can again be calculated with Gauss-HERMITE
quadrature,

n=25 D W Hy (T (2 — D)) 8(2). (7.49)

Remember that the abscissas z,,,,, are part of the r-th order quadrature rule. Hence, the matrix
elements the linear equation (7.49), wy HE(Z_l(zm/ —z)), are fixed by the orders r and r’.
The former is just our choice of quadrature order. The latter relates to the function g. Accurate
results are obtained for r > r’.

Again, the function evaluations f(z,,) and g(z,,) involve backward propagation to the initial
distribution, as instructed in (7.42).

7.2.3 Description of algorithm

We now have available the ingredients to formulate a ray tracing procedure for the calculation
of observables that correspond to propagated states at the detector of a MZI. The complete
algorithm is sketched in figure 7.4.

The first step is propagate the pilot distribution (or pilot PSE) forward in time. The final pilot
distributions then contain basic informations of (or approximations to) the true final distribu-
tion.

Concerning numerical integration that is involved in the computation of observables, we exploit
the pilot distribution to make an educated guess for optimal integration method and abscissas.
Thereby, we have to consider all channels. This means, in each channel we generate a set of
abscissas. Propagating them backwards in time, of course, each channel hosts different trajecto-
ries leading to different samplings of the initial distribution. This is exemplified in figure 7.5 for
density calculation after a single beam splitter. Clearly, as long as basic system parameters (e.g.
trap frequencies, particle mass, etc.) are not changed, we can use the same pilot distribution
that has been generated once, over and over again for computing different observable.

7.3 Results of simulating a Mach-Zehnder interferometer

We now present results of applying the ray tracing algorithm described in section 7.2.3. There-
fore, we consider an MZI with symmetric beam splitters, implying

1Ya1l = Ivp1l = lvaal = lvp2l = % (7.50)

The initial state shall be a thermal cloud of N, = 10° rubidium atoms, held in a harmonic trap
with frequencies (w;, w4, w4) = 2m(127.3, 127.3, 31.8) Hz. The lattice vector of the optical
potentials is assumed to be G = (0, 0, 31.42) um™.

length of A; ~ 400 nm.

The latter corresponds to a laser wave
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initial distribution
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reconstruction of final
pilot distribution
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. . .
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query function values
at init. dist.

backward propagation
of integration
abscissas

1) < —

'

5.:
integration of final
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Figure 7.4.: Schematic overview of observable computation via ray tracing. For a given set of
experimental parameters, the upper row (steps 1-4) has to be executed once to de-
termine the final pilot distribution. For each observable value, e.g. for the position
density at each position, the lower row (steps 5-7) has to be run through anew.
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v[o,l
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x0]

Figure 7.5.: Quadrature abscissas for calculating the position density after a single beam splitter

in one dimension. Initial distribution is a Gaussian in a harmonic trap with frequency
w. Parameters are 0,,G = 0.6, wty; = 1.5, wty, = 0.3. Part a: Abscissas for inte-
grating the final WiGNER function along the velocity axis, overlaid with iso-lines of all
pilot distribution parts. The interference term of the pilot distribution is additionally
modulated according to the pilot interference vector. Parts b, ¢, d: Back-propagated
abscissas overlaid with iso-lines of initial distribution for lower (d), upper (b), and

interference (c) channel.
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7.3.1 Interference fringes of an asymmetric interferometer

To begin with, we examine the oscillatory pattern of the density profile that results from an
asymmetric MZI (t;, 7# to3) with free propagation between the laser pulses. We consider
the three-dimensional density of the first output port along the direction of the laser pulse,
n11(0,0,x). A detailed discussion of the second output port is omitted since the main character-
istics of its interference fringes (i.e. ki, 6j;) are identical to those of output port 1. According to
the results (6.110) and (6.111) from section 6.3.5 it is written as

N

v/ m3detC(e,)
_(x—th23)2 _(X—th12)2 _(X_VGt13/2)2
Xse

o%te) 4 0%4) 4+ 2@ cos(kyx)e o) } (7.51)

nll(O, O, X) = %

We have denoted the width along the third laser pulse direction, which is common to all contri-
butions, as o. It is given in terms of the initial width as

o(t)=vV1+w?t20, (7.52)

where w is the trap frequency along the laser pulse direction. The initial width is given in terms
of the this frequency, the temperature and the particles’ mass,

1
ol= (7.53)

Mw Aw
tanh (W)
according to section 3.2.3. For quantitatively discussing frequency and contrast of the interfer-
ence fringes, we compute the absolute value of the Fourier transform of expression (7.51),

(k)| = | J dx e7**ny;(0,0,x)|

n2detC,

—N o2 |:C052 w e_02k2/4 + ? Z e_az(kq:kif)/4i| (7.54)
:F

It has a central maximum at k = 0 and two outer maxima at k = £k;;. Obviously, the contrast
of the fringes is given as the ratio of the outer maxima to the central maximum.,
_ 1Akl + (ke

72(0)]

Analytic expressions for fringe frequency and contrast are given in equations (6.113) and

Gy (7.55)

(6.112), respectively. In the current setting, they can be written as

_ w? toq(tas —t13)

. G (7.56)
if b
1+ w?t],
%= exp| —1 @ty —tia) 202 (7.57)
if folvw?, 0] '
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Temperature dependence of fringe contrast

First, we want to demonstrate occurrence of interference fringes in the density profile of a single
output port. The contrast of these fringes should decrease for higher temperatures. This is ex-
pressed in relation (7.53), showing that the initial width o, becomes larger if T is increased. An
extended phase space distribution means an interference term that consists of more oscillations.
These, in turn, cancel each other quickly in the course of free expansion. The dependence of the
fringe contrast on the initial width is expresses in relation (7.57).

In our example, the time spans between the laser pulses are t;; = 20ms (release - 1st beam
splitter), t;, = 10ms (1st beam splitter - 7t-pulse), ty3 = 9.9ms (n-pulse - 2nd beam splitter),
ts4 = 10ms (2nd beam splitter - detector). Figure 7.6 shows the resultant density for a choice
of different temperatures 100nK, 500nK, and 1000nK.

One can already recognize a loss of contrast for higher temperatures by only regarding the 2D
and 1D slices of the density in the left and middle column, respectively (parts a, b, d, e, g, h).
The loss of contrast is however most obvious when considering the absolute value of Fourier
transform of the 1D density slices in the right column (¢, f, i). Here, the reduction on % is
revealed by the decreasing ratio of side maxima to the central maximum according to equation
(7.55).

For creating the 1D plots (figure 7.6, parts b, e, h), we calculated density values on a posi-
tion grid with 512 points. For the 2D plots (figure 7.6, parts a, d, g) we used a mesh grid with
64 x 64 points. Absolute values of the Fourier transforms of the 1D-density sclices (figure 7.6, c,
f, i) were computed with fast-Fourier-transform routines (FFT). The density contributions from
the classical terms were computed with Gauss-HErMITE quadrature using r =5 x5 x5 =125
abscissas. Although this is an extremely low number for numerically integrating the three-
dimensional velocity distribution at a particular position, the quadrature rule would be exact
even for Gaussians times an eleventh-order polynomial and not just a simple Gaussian. In addi-
tion, the interference terms exhibit oscillations along some velocity axis. For medium oscillation
frequencies the Gauss-HeErMITE quadrature is replaced by the trapezoidal rule, using 32 abscis-
sas along that direction. Thus, for computing the density contribution from an interference term
at a single position, we use r =5 x 5 x 32 = 800 abscissas. Finally, since the complete WiGNER
function in the first output port comprises two classical and one interference term, for creating
each 2D plot in figure 7.6 we have propagated r,; = 4,300, 800 rays in total.

7.3.2 Free expansion of interference fringes

Next, we examine how the final density profile changes with variable time span between recom-
bination and detection, t5,, keeping all other time spans (tys, t;9, to3) fixed. The wave number
of the interference fringes, depending on the laser pulse timings is given in equation (7.56). For

163



x107%
1.2
1000 = b
|
— g
g 208
= —
g 0 §
S04
2
~1000 =
0

1000 0 1000

-1000 0 1000

3 [pm]

-1000

0

x10~3
1000 i
El g
= = 2
g =
2
-1000) |
0—=000 0 1000 C——=1 0 o1
~1000 0 1000 - : e
3 [pml] k3 [pm™]

y [pm]

Figure 7.6.: Ray tracing results of position density after passing an asymmetric MZI. Various tem-
peratures of the initial state are considered. These are T = 100nK (1st row, a,
b, ¢), T = 500nK (2nd row, d, e, f), and T = 1000nK (3rd row, g, h, i). The
left column (parts a, d, g) shows 2D slices in the x,-x3-plane with x;=0 of the 3D
density. The middle column (parts b, e, h) displays the densities along the x5 axis
with x; = x, = 0. The right column (parts ¢, f ,i) shows the absolute values of
Fourier transforms of densities along the x5 axis, depicted in the middle columns.
Initial state parameters are (w;, w4, w3) = 21m(127.3, 127.3, 31.8)Hz, M = 87amu,
N = 10°. MZI parameters are t,; = 20ms, t;, = 10ms, ty; = 9.9ms, ty, = 10ms,
G=(0, 0, 31.42)um™".
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the current disscussion we also consider the corresponding wave length A = 27 /ky. It was
given in equation (6.114) and explicitely reads

2 14 w?(tgs + tas)?
Aif(tsq) = = 3 (tos + to4) . (7.58)
G w?(tgz + t34)(tys —t13)

We saw that it grows linearly in the asymptotic limit

t34—00 27T t
A N~ =3 (6.115)
G |ty3 —tqyl

Consequently, since the width of the cloud also grows linearly long time after its release, the
number of fringes across the cloud remains constant in the long term.

For examining the expansion of the interference fringes, we keep the temperature fixed at
T = 100nK and vary the time spans between the second beam splitter and the detector, t;, =
(10, 50, 100) ms. All other parameters are the same as before. Looking at the results shown
in figure 7.7, one can observe the typical spreading of the atom cloud being subject to free
expansion. At the same time, the number of visible fringes in the middle column always adds
up to ~10. The growth of the fringe spacing and the equivalent decrease of the fringe wave
number can also be observed in the right column of figure 7.7, where the outer maxima of the
density’s Fourier transform move to lower k-values as time progresses.

The number of rays that were used to create the plots in figure 7.7 is identical to the corre-
sponding number of figure 7.6.

Comparison to analytic results

We can analyze the time dependence of fringe spacing and contrast more quantitatively by fit-
ting the analytic result (7.54) to the absolute values of the Fourier transforms of the density
slices, |fi(k)|. Using more values for the time span ts, and applying non-linear least-square fit-
ting procedures [121], we obtain values for fringe spacing and contrast that are plotted in figure
7.8. The data points that are connected to our ray tracing formalism are identical to the analyt-
ical curves. The fringe spacing grows linearly with time and is smaller for “more asymmetric”
interferometer schemes, i.e. for larger values of |t;, — ty3]. The contrast increases for longer
time spans t5, and approaches the optimum C;; = 1. This suggests that the fringe pattern can be
observed most clearly for long time spans between recombination and detection. Mind however
that Cj; is a relative quantity and the maximum density is constantly decreasing as time evolves.
Hence, in a real experiment, going to longer time spans ts,, it becomes increasingly difficult to
distinguish an interference pattern from noise recorded by a ccd-camera.
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¢, f ,i) shows the absolute value of the Fourier transform of the density along the
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Figure 7.8.: Fringe spacing (part a) and contrast (part b) over free expansion time after second

beam splitter, t34, in case of an asymmetric MZI. Several asymmetries t;, — to3 are
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respectively. Other parameters are t5; = 20 ms, t15, = 10 ms, N, = 10°, M = 87

amu, T = 100 nK, G = 31.42um™!. Initial trap is harmonic with (¢, w,, w3) =

27(127.3, 127.3, 31.8)Hz.
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Figure 7.9.: Population of output ports after a symmetric MZI (t;, = t,3) under influence of
constant gravity acceleration x; = —g = 9.81,um/msz. Part a: Ray tracing re-
sults for complete position density n = n;; + ny, over vertical direction x; and
interferometer time t,5. Part b: Relative population of output port 1 ober inter-
ferometer time t;5. Squares denote ray tracing results. Solid line is analytic result
according to equation (6.129). Other parameters are ty; = 20ms, t34 = 100ms,
N =10°, M = 87 amu, T = 100nK, G = 31.42um™". Initial trap is harmonic with
(w1, wq, w3) =2m(127.3, 127.3, 31.8)Hz.

7.3.3 Symmetric interferometer with linear gravity

Apart from interference fringes in the position density, we can study the relative population
of the output ports of the interferometer. As we have seen in the end of section 6.3.6, the
population of the output ports of a symmetric MZI (t;5 = t,3) is oscillating as the interferometer
time t,5 is varied. The associated density profiles are separated in position space by vgts,. If
this separation is sufficiently large, we can use expression (6.129) to analytically calculate the

relative population of the output ports,

n(x,t,) 2(5¢ 1 2
=cos’| =—5GgT*|, 6.129a
n(x,ty) + n(x+vgtsy, ty) (2 278 ) ( )
n(x+vegtqs, t .
( Gt3a,ta) — in? (52_5 _ %GgTZ). (6.129b)

n(x, ty) + n(x+vgtsy, ty)
In order to determine the relative populations from the ray tracing results, we fit a sum of two
Gaussians to the density slices along the x5 axis. To this end, we utilize again non-linear least-
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square fitting. Using the same initial conditions and optical potential as before and time spans
to; = 20ms, ty, = 100ms, the results we obtain for varying interferometer times t,53 = t;5,/2 =
ty3/2 are shown in figure 7.9. We have chosen a long time span between recombination and
detection, t4,, so that the clouds of the output ports have enough time to separate spatially and
are clearly distinguishable in figure part a. In part b, the ray tracing results are overlaid with
the analytical values which show perfect agreement. The oscillation of output port population
can be exploited to measure the gravitational acceleration [116].
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Summary

This work considers the semi-classical description of two applications involving cold atoms. This
is, on one hand, the behavior of a Bose-EINSTEIN condensate in hybrid systems, i.e. in contact
with a microscopic object (carbon nanotubes, fullerenes, etc.). On the other, the evolution
of phase space distributions in matter wave interferometers utilizing ray tracing methods was
discussed.

For describing condensates in hybrid systems, one can map the Gross-PiTaEvskil equation, a
differential equation in the complex-valued macroscopic wave function, onto a system of two
differential equations in density and phase. Neglecting quantum dispersion, one obtains a semi-
classical description which is easily modified to incorporate interactions between condensate
and microscopical object. In our model, these interactions comprise attractive forces (CASIMIR-
PoLpER forces) and loss of condensed atoms due to inelastic collisions at the surface of the
object. Our model exhibited the excitation of sound waves that are triggered by the object’s
rapid immersion, and spread across the condensate thereafter. Moreover, local particle loss leads
to a shrinking of the bulk condensate. We showed that the total number of condensed particles
is decreasing potentially in the beginning (large condensate, strong mean field interaction),
while it decays exponentially in the long-time limit (small condensate, mean field inetraction
negligible).

For representing the physics of matter wave interferometers in phase space, we utilized the
WiGNER function. In semi-classical approximation, which again consists in ignoring the quantum
dispersion, this representation is subject to the same equation of motion as classical phase space
distributions, i.e. the LiouviLLE equation. This implies that time evolution of the WiGNER function
follows a phase space flow that consists of classical trajectories (classical transport). This means,
for calculating a time-evolved distribution, one has know the initial distribution and one has to
solve the classical equations of motion.

Concerning the initial distribution, we have studied a stationary solution of the nonlinear Li-
OUVILLE equation, the LaAMBERT density. We saw that it agrees very well with results from single-
particle quantum mechanics as well as the MaxweLL-BortzmANN distribution in the weakly in-
teracting limit. Likewise, in the strongly interacting limit, familiar results of the THomAs-FERMI
approximation are recovered.

A distribution that is first prepared in a trap and then released can be described quite conve-
niently in terms of WiGNER functions. However, propagation in optical potentials associated to
the interferometer elements (beam splitter, 7-pulse) do not satisfy the condition of the semi-
classical approximation. Nevertheless, one finds discrete before-after mappings that describe
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the effect of these elements on incident distributions. This leads to several channels of phase
space propagation which relate to the interferometer paths and interferences between them.

The formalism for WiGNER functions in an interferometer can be translated straightforwardly
into a ray tracing algorithm. As mentioned above, this algorithm solves the classical equations
of motion and computes time-evolved distributions, using values of the initial distribution. This
procedure, in contrast to most analytical solutions, does not require the Hamirron function to
be quadratic (e.g. free propagation, const. acceleration, harmonic oscillator). We compared
simulation results to analytic expressions in case of freely propagating Gauss distribution. They
showed perfect agreement, especially for the functional dependence of wave length and contrast
of interference fringes on the laser pulse timings.

172



Part IIl.
Appendix







A Gaussian distributions

A.1 Basic properties

A general anisotropic Gauss-distribution in R” can be paramettized by its center X and its cor-
relation matrix C = 2(xx' ) (see section 2.2.3),

exp[—(x—%)TC(x—%)]
vrP detC ’

gD (x—%) = (A1)

with D-dimensional vector x = (x4, ..., xD)T. Assuming the correlation matrix C to be symmetric,

we can diagonalize it as

C=PDPT, (A.2)

where the transformation P is orthogonal, i.e. P~' = PT, and D is the diagonal matrix of
eigenvalues of C,

D= . (A.3)

The distribution %g))(x— X) is normalizable if all of these eigenvalues have a strictly positive
real part. We define the sigma matrix as

Yy =PD? (A.4)

which allows us to write C = ¥ X" and thus to simplify the bilinear form in the exponent of
equation (A.1), x'Clx = §T§ , with the transformed vector § = Y ~!x. The Jacobian of this
transformation is v/ det C. Interpreting the above distribution as a density, we write

dPx P (x—%) = d°g 9P (&), (A.5)

where the special Gaussian distribution

T

3
9O =" (A.6)
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is the normal form of Gaussian distributions, also called normal distribution. It is radially sym-
metric and has width 1/2.

Instead of using definition (A.4), we also can decompose the correlation matrix into a product
of matrices that are also symmetric. Therefor, we insert unity 1 = PTP into the diagonalization
relation (A.2), obtaining

C=PDY2pT ppY/2pT
= Cl/2 /2, (A.7)

where we have identified C1/2 = PDY2PT,

A.2 Integrals over arbitrary axes

This section considers integrals of Gaussians in R°*™ that run over a subspace R¥ ¢ RP*M
which shall be called integration subspace. Clearly, this procedure yields a distribution in RP.
The M coordinates of RM are labeled y = (v, ..., Yu )T and are referred to as unobserved axes.
On the other hand, the D coordinates of its complement that remains un-integrated are labeled

RD+M

x = (xq, ...,xD)T and termed observed axes. The elements z of the complete space are

given by a concatenation of vectors from both subspaces, z = (x4, ..., Xp, Y1, -+, yM)T. With this
naming convention, the subspace integral we want to calculate reads

I= f dMy Mz -72), (A8)
RM :

For further analysis, we divide the correlation matrix into four blocks that represent mappings
within or between the two subspaces, respectively,

A A
C'= ( o ) (A.9)
Ayx A)’)’

Consequently, the bilinear form in the explonential function of the Gaussian expands as
Tr—1g _ T T T T
ZTCZ=X"A X+X"A Y+Y'A X+Y'A Y, (A.10)
with abbreviations Z =z—2z, X =x—X, and Y = y—y. From Cz_1 being a symmetric matrix
it directly follows that A,, and A, are symmetric and that A, = AxyT. In order to separate

x-dependent terms, one can compactly write

Z2'C'Zz=X"C'X+n'n, (A.11)
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identifying an effective correlation matrix of the distribution in the observed subspace,
-1 _ -1
C. =An— Ay AL Ay (A.12)
and transformed coordinates in the integration subspace,

—A2(g_ T —1/2 _=
n—Ayy(y y)—l—Ayy Ay (x—X). (A.13)

Substituting the integration variable y in (A.8) with n(x,y) gives rise to a factor 1/detA,,.

Furthermore, one can write the normalization factor of %éD+M) in terms of the block matrices as
1 Axx Ax y -1
detC~ =det A A =detA,, det(Axx—AxyAyyAyy)
yx yy
_ -1
—detAyy det C_ . (A.14)

Finally, expression (A.8) can be calculated,

—xx)TC 1 x—=x)
_. e x 1
J dMy {géDJrM)(z—z) — - J dMT) e—nTn
RM z vV TCD det Cx TCM/ RM
0TI (x%)
— . (A.15)

VD detC,

Gauss-Cosine integrals

Another important integral occurring in this work runs over the product of a cosine and a
Gaussian. Since the cosine is just the sum of two complex exponentials, the above results can
be easily modified to solve this Gauss-cosine integral,

T, 0T
e 2 C; z+iq,y

dMy cos(Q'z) 9P M(z) = Re el dMy
J i G av /DM derC,
e—xTczlx

v/ P detC, ’

1 Ta- T
= e_4q;Ay;qy cos [(qx — AxyA;}llqy) x] (A.16)

where the oscillation vector has been divided as Q = (q,, qy)T.
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A.3 Hermite polynomials

One particularly useful class of functions in the context of Gaussian distributions is given by
HEerwMITE polynomials. A comprehensive discussion of their features can for example be found in
[75]. We present here only a collection of properties which are relevant for this work. To begin
with, HErmITE polynomials are orthogonal in the domain (—oo, 00) with respect to a Gaussian
weight function,

J dx H,(x)H,,(x) e = 5nm\/ﬂn!. (A.17)

—0oQ

They are thus well suited for expanding functions with Gaussian envelopes. In turn, HERMITE
polynomials can be expressed as a series expansion,

,_
[N

J (—1)'n!

n—2¢
2012 M

Hn(x) =

[

(=0

where the floor function I_%J returns the closes lower integer. Furthermore, representations
which explicitly comprise Gaussian functions are the Ropricues formula,

d n
)= e (1) e (A19)
the generating function,
oo
H
Z n(X)Zn — erz—zz, (A.20)
n=0 n!

and the integral representation

zneXZ o0

de he~t>+2ixt, A21
iy ) ., (421

H,(x) =

A.4 Gauss-Hermite quadrature

Gauss quadratures [119,120] are numerical integration formulas involving a specified choice of
abscissas and corresponding weights. For N-th order quadrature, these abscissas are the roots
of an N-th order polynomial and the accuracy of the formula is of order 2N — 1. As the name
suggests, Gauss-HERMITE quadrature utilizes the roots of HERMITE polynomials.
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One-dimensional case

In the 1D case, the quadrature formula comprises the integral over the product of an arbitrary

function with a Gaussian,

J dx e_ng(x) A .Q](Vl)[f]

—0o0

N
— an g(&), (A.22)
n=1

where &, are roots of N-th order HErmITE polynomial and the weights are given as

_ 2V INIYT
N2H2 (&)

Like all Gaussian quadrature formulas, expression (A.22) is exact if g(x) is polynomial of de-

(A.23)

Wy

gree 2N — 1 or lower. Sets of abscissas and associated weights are either tabled [75] or easily
accessible by program packages (e.g. [122]). Suppose now, we have a function

X—X

f)=e o g(x) (A.24)

that can be written as a product of a general Gaussian and a function g. Then expression (A.22)

can be reformulated to a more practical version,

J dx f(x) ~ 23 [f]
oo )
=0 > W, f(0,+X) (A.25)
n=1

with modified weights w,, = exp(—£2) w,,.

Multi-dimensional case

Generalization from one- to multi-dimensional case is straightforward. For integration over all
axes of a multivariate function that can be written as

f(2)=exp[~(z-2)" ;' (z-D)] 5(2) (A.26)
one finds
f d’z f(z) ~ 2[f]
: =detY, > W, f(L.§,+7) (A.27)
[n|]<N
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~

with tuple n = (ny,...,np), its sum |n| = n; + ... + np, product of weights w,, = Wy, « ... - W,
and abscissa vectors & = (&, En,) )T. We made use of definitions from the beginning of this
chapter. B

For integration over arbitrary axes, we can revive notation from A.2 and use transformation

(A.13) to obtain

J dMy f(x,y) ~ Z Wy f (X, Yn(0) (A.28)
RM

In|<N

with y, 0 = A;}l,/ 2§£— A;;,Ayx (x— AX) + Ay. The tuple n has M < D elements.

A.5 Oscillating integrands with Gaussian-like envelope

One-dimensional case

Consider intergeneration with an integrand of the form

Flx)=e™ cos(qx + ) g(x). (A.29)

We define an 1D oscillating integrand with Gaussian-like envelope as

sD[g]= % f dx e cos(qx + ) g(x) (A.30)

Assume we can expand the function g in terms of HERMITE polynomials,

g(x) = > ¢, Hy(x) (A.31)
n

with expansion coefficients

c, = 1 " dx e H (x)g(x) (A.32)
n— »\/E o X g * *
By virtue of its linearity, we can perform the integral (A.30) term by term, involving expressions
1 oo
(1) _ N 14 —x2+iqx
2 [H,]= %eﬁe f_oo dx e H,(x)

= ZCOS(% + C) q" e_q2/4, (A.33)

where we have applied relation (A.21). Consequently, the result of (A.30) can be assembled to

FPMg1=2e704 ) Te, cos (B +0) " (A.34)

n
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Multi-dimensional case

The above result can be straightforwardly generalized to the D-dimensional case. Let the inte-

grand be
F) =e™ cos(qx+{) g(x).

(A.35)

With the compact notations n = (ny,...,np), |n| = ny + ... + np, Hy(x) = ]—[?:1 H, (x;), and

— n n .
¢"=gq," -...-q;’, one obtains

SPMg1= f dPx ¢ cos(ax + ) g(x).

RD

We expand the g-function again in HERMITE polynomials,

g =D >, Hy(x),

N |nj=N

having coefficients

1 D —x2
Cp = 72 fRDd x e Hp(x) g(x).

Hence, the result of the integral (A.36) is

fq(D)[g] = 2De_q2/42cos(¥ + Q’) Z ¢, .

N Inj=N

(A.36)

(A.37)

(A.38)

(A.39)

181






B The Lambert function

B.1 Definition and approximations

The Lambert function W (z) or product logarithm [123] is implicitly defined as solution of
we" =z. (B.1)

for —1/e < z < 0o. It attains the value W(-1/e)=-1 and vanishes linearly at the origin W(0) =

Its derivative

i w
Wi(z)= z—(l Wy (B.2)

is always positive. Thus, the Lambert function is strictly monotonic increasing.

Small argument approximation

From definition (B.1) one can calculate a Taylor series expansion,

n—1
W(z )—Z( il (B.3)

The series coefficients are rapidly increasing with order n, limiting its radius of convergence to
z < 1/e. Alinear approximation W (z) = z + 0O(22) is useful for very small arguments, z < 1/e.

Large argument approximation

In case of large arguments z > 1, the Lambert function approximately satisfies

In (In(2))
In(z) ’

which is dominated by the logarithmic term. The graph of W(z) is plotted in Fig. B.1 along

W(z) =1In(z) —In(In(z)) + (B.4)

the above approximations. Expression (B.4) apparently fits the original form of W(z) very
well for arguments z > 3. The simple approximation In(z) does not come as close, but still,
it roughly resembles the large-argument behavior of the Lambert function. In summary, we
have two approximations to W (z) which are applicable on well separated domains of the argu-
ment. In between these domains, for z &~ 1, both expressions (B.3), (B.4), fail to provide useful
approximations.
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z
Figure B.1.: Lambert function W(z) (black solid line), the linear argument approximation
W(z) = z (blue dots), the large argument approximation of Eq. (B.4) (red dashed
line), and simplified approximation W(z) = In(z) (green dash-dotted line).

B.2 Useful integrals

Calculating observables with the Lambert density (4.13) in case of a D-dimensional radially
symmetric harmonic oscillator, one encounters overlap integrals of the form

m 1 V—X m
ﬂlg )= (Zn)D/zdeXW(e 2/2) : (B.5)

By virtue of radial symmetry, the D-dimensional integral can be reduced to an one-dimensional
radial integral with d°x = 272/2rP~1dr/T(D/2). Substituting y = x>/2, we write

1 (% m
ﬂ}gm)(,,) — mjo dy yD/2—1W(ev—y) . (B.6)
2

An integer exponent m > 1 is required for higher powers in the density, e.g., mean-field energies
with n?(x). Like the Lambert function, ﬂ[()m)(v) is strictly monotonic increasing. While seeking
approximate expressions, it may be more convenient to regard the overlap integrals as functions
of z = exp(v) rather than ».

For v — —o0, or likewise z — 0, the Lambert function in (B.6) may be replaced by identity,
yielding

m

m g™ > 1 Z
j’[() )(In(2)) ~ - J dy yP/> e = o7 (B.7)
(2) Jo m

r

As long as the value of the argument z stays below 1/e, we can use the Lambert function’s power
series expansion in order to successively improve the lowest order approximation. Integrals
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with m = 1, which appear in the normalization condition as well as in non-interacting energy
contributions, are then given by

0 A
2P (n(z) = > (u zl 7. (B.8)
=1

Those with m = 2 emerge inside contributions representing two-body interactions. Their series

expansion reads

@ B 0 (_l)l—l(_l/)l’—l "
S (nE) = >, o (DR (B.9)
L/=1 " °

In the opposite limit, for v — oo, integral (B.6) is dominated by contributions from y < »
for which we can approximate the Lambert function W(z) with In(z). Neglecting contributions
from higher y, we cut off the integral at y = v, and obtain

1 v
dy y?/# H(v—y)m
F(%)Jo

ﬂém)( V) A

m!
_— D/2tm (B.10)
r(2>+m+1)

In figure B.2, numerically computed values of ﬂlgm)(v) are plotted for several parameter values
and for negative and positive arguments separately. In part a, one recognizes the exponential
decay as v — —o0. Part b shows the algebraic growth described in (B.10) for v — oo.
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Figure B.2.: Behaviour of ﬂ]gm)(v) versus v for dimension D =1, 2,3 and powers of the Lambert

function m = 1, 2. Left figure (a) for v < 0 and right figure (b) for v > 0. Parameter
values D and m are as follows. D =1 and m =1 (black). D =1 and m = 2 (green).
D =2and m =1 (magenta). D =2 and m = 2 (blue). D = 3 and m = 1 (cyan).
D =3 and m = 2 (red).
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Zusammenfassung

Die vorliegende Arbeit beschéftigt sich mit semiklassischen Beschreibungen zweier Anwendun-
gen von kalten Atomen. Dabei handelt es sich zum einen um das Verhalten von Bose-EINSTEIN
Kondensaten in hybriden Systemen, d.h. im Kontakt mit anderen mikroskopischen Objekten
(Karbon-Nanorohrchen, Fullerene etc.). Zum anderen wurde die Evolution von Phasenraum-
Verteilungen in Materiewellen-Interferometern mit Hilfe von Raytracing-Methoden untersucht.

Zur Beschreibung von Kondensaten in hybriden Systemen, kann die Gross-PiTaEvskii-
Gleichung, eine Differentialgleichung in der koplexwertigen makroskopischen Wellenfunktion,
abgebildet werden auf ein System von zwei Differentialgleichungen in Dichte und Phase. Unter
Vernachldssigung der Quantendispersion, erhilt man eine semiklassische Beschreibung, die sich
sehr einfach modifizieren lasst, um die Wechselwirkung von Kondensat und mikroskopischem
Objekt zu beriicksichtigen. Diese Wechselwirkung umfasst in unserem Modell attraktive Kréfte
(CasimIr-PoLpER-Krifte) und Verlust kondensierter Atome durch inelastische Stof3e an der Ober-
flaiche des mikroskopischen Objekts. Unser Modell zeigte die Anregung von Schallwellen,
welche nach dem plotzlichen Eintauchen des Objekts entstehen und sich anschlieend {iber
das gesamte Kondensat ausbreiten. Weiterhin fiihrt lokaler Teilchenverlust dazu, dass das Kon-
densat insgesamt schrupft. Es zeigte sich, dass die Gesamtzahl kondensierter Atome zu Beginn
(groldes Kondensat, starke Selbst-Wechelwirung) potentiell abnimmt, wahrend sie im Langzeit-
Limes (kleines Kondensat, Selbst-Wechelwirkung vernachlassigbar) exponentiell sinkt.

Um die Physik von Materiewellen-Interferometern im Phasenraum darzustellen, benutzten
wir die WigNer-Funktion. In der semiklassischen Naherung, die auch hier wieder in der Ver-
nachldssigung der Quantendispersion besteht, folgt diese der gleichen Bewegungsgleichung wie
klassische Phasenraumverteilungen, namlich der LiouviLLE-Gleichung. Dies impliziert, dass die
Zeitentwicklung von WigNER-Funktionen dem Phasenraum-Fluss folgt, der durch die klassischen
Trajektorien gegeben ist (klassischer Transport). Das heildt um eine Zeit-entwickelte Verteilung
zu bestimmen muss man erstens die Anfangsverteilung kennen und zweitens klassische Bewe-
gungsgleichungen losen.

Beziiglich der Anfangsverteilung haben wir eine stationdre Losung der nichtlinearen Liou-
viLLE-Gleichung, die sog. LamBEerT-Dichte, untersucht. Es zeigte sich, dass diese sehr gut mit
Ergebnissen der Einteilchen-Quantenmechanik, sowie der MAxwELL-BorTzMANN-Verteilung im
schwach wechselwirkenden Grenzfall iibereinstimmt. Auch im stark wechselwirkenden Grenz-
fall konnten die bekannten Ergebnisse der THomas-Fermi-Naherung reproduziert werden.

Eine Verteilung, die erst in einer Atomfalle prapariert und anschliel3end freigelassen wird, lasst
sich zwar sehr gut mit WiGNErR-Funktionen im Rahmen von klassischem Transport beschreiben.
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Die Propagation in den optischen Potentialen der Interferometer-Elemente (Strahlteiler-Puls, 7-
Puls) erfiillen jedoch nicht die Voraussetzung der semiklassischen Ndherung. Nichtsdestotrotz
findet man diskrete vorher-nachher-Abbildungen, welche die Wirkung dieser Elemente auf
WicNER-Funktionen beschreiben. Dies fithrt dazu, dass man mehrere Kanile der Phasenraum-
Propagation betrachten muss. Jene beziehen sich auf die verschiedenen Interferometer-Pfade
und Interferenzen zwischen ihnen.

Der Formalismus fiir WigNER-Funktionen im Interferometer lasst sich nun in einen Raytracing-
Algorithmus tibersetzen. Dieser 16st, wie oben angedeutet, die klassischen Bewegungsgleichun-
gen und konstruiert mit Hilfe der bekannten Anfangsverteilung eine Zeit-entwickelte Verteilung.
Er ist dabei nicht auf eine quadratische Hamirton-Funktion (z.b. freie Propagation, konst.
Beschleunigung, harmonischer Oszillator) angewiesen, welche in den meisten Féllen Vorausset-
zung fiir analytische Losungen ist. Wir haben Simulationsergebnisse mit analytischen Resultaten
im Fall von frei propagierenden Gauss-Verteilungen verglichen. Dabei zeigte sich speziell fiir die
funktionale Abhéngigkeit von Wellenldnge und Kontrast der Interferenzmuster zu zeitlichen
Abstinden der Laser-Pulse perfekte Ubereinstimmung von Simulation und Theorie.
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