
STATSREP-ML: Statistical
Evaluation & Reporting
Framework for Machine
Learning Results
Technical Report submitted by
Christian Guckelsbergera, Axel Schulzb

a Goldsmiths, University of London, Computational Creativity Group, UK
b Technische Universität Darmstadt, Telecooperation Lab, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/76649438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Please cite this document as:
URN: urn:nbn:de:tuda-tuprints-42940
URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/4294

This document is provided by tuprints,
the E-Publishing-Service of Technische Universität Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

This report is published under the terms of the Creative Commons Licence:
Attribution – Non-Commercial – No Derivatives – 2.0 Deutschland
http://creativecommons.org/licenses/by-nc-nd/2.0/de/

i



1 Introduction

Data mining aims at finding regularities and patterns in data or extracting valuable
data automatically by differentiating noise from relevant information. For example,
in the emergency management domain, social media data is automatically filtered
using information extraction and machine learning techniques [8, 6, 7]. During
the last decades, many different classifiers and approaches for feature extraction
have been developed to perform this automatic classification. However, finding
the best approaches is challenging due to the large number of possible combinations.

In the past 10 years, standardized qualitative and inferential statistical methods
for comparing machine learning results were proposed as a replacement for rather
arbitrary approaches [5, 2, 4, 3]. Nevertheless, evaluating machine-learning
models manually with traditional statistics packages such as R1 or SPSS2 is
labour-intensive and error-prone due to the complex evaluation procedure and the
correct choice of methods. Furthermore, many packages do not offer dedicated
procedures for reporting results from this particular domain in a comprehensive way.

STATSREP-ML3 is an open-source solution for automating the process of eval-
uating machine-learning results. It calculates qualitative statistics, performs the
appropriate tests and reports them in a comprehensive way. It largely, but not
exclusively, relies on well-tested and robust statistics implementations in R, and
uses the tests the machine-learning community largely agreed upon. Since this is an
ongoing debate, the framework was designed in an extensible fashion so addition
tests can be added easily.

STATSREP-ML is supported by the DKPro Text Classification (TC) Framework4 [1],
which alleviates supervised machine learning experiments with any kind of textual
data. DKPro TC provides a report class to export machine learning data into the
STATSREP-ML format, fostering the seamless integration of model learning, testing,
evaluation and reporting.

In detail, the features of STATSREP-ML are:

• Straight-forward configuration, either programmatically or using an XML file.

• Support for sample input from k-fold cross-validation, repeated cross-validation
on one or multiple datasets, and train-test splits.

1 http://www.r-project.org
2 http://www.ibm.com/software/de/analytics/spss/
3 https://code.google.com/p/statistical-evaluation-for-machine-learning/
4 http://code.google.com/p/dkpro-tc/

1 Introduction 1



• Support for two or > 2 values of the independent variable, i.e. either classi-
fiers or features. The appropriate tests for the number of groups are selected
automatically.

• Support for sample sets with two independent variables, by automatically split-
ting the data along a predefined fixed independent variable value.

• Integration of both parametric and non-parametric omnibus- as well as post-
hoc tests that are commonly used for comparing machine learning results.

• Integration of specific parametric and non-parametric tests to compare multiple
models against a baseline, and support for input data annotations to indicate
the baseline model.

• Automatic p-value correction and integration of several more and less conser-
vative techniques for p-value adjustment.

• Testing of parametric test assumptions such as normality and sphericity, allow-
ing an easy application of these algorithms.

• Generation of both a plain-text and a better structured LATEX report, comprising
sample tables, qualitative statistics, basic graphs and the evaluation results.

We describe the scope of the STATSREP-ML framework in more detail in Section
2. We then show how the framework can be set-up and configured in Sections 3
and 4, respectively. In Section 5, we describe the required sample data format,
available methods for importing data and several examples highlighting typical use-
cases. Section 6 describes the types of reports resulting from the evaluation and their
content. To meet the future requirements of the research community, we added an
additional Section 7 with detailed instructions on extending the framework by new
tests. We then conclude our report in Section 8, followed by an appendix comprising
setup guidelines and a short bibliography.

2 Scope

STATSREP-ML supports a large number of different types of evaluations, arising from
the combination of the number of models to be evaluated, the sampling strategy of
the performance values, the independent variable and the type of model compar-
ison. In this section, we describe these parameters and their possible values in detail.

The system accepts data sampled from k-fold cross-validation and repeated cross-
validation on one or multiple datasets as well as from train-test splits. In k-fold
cross-validation, the original data is partitioned into k equally sized folds of sub-
samples. Subsequently, the models are trained on k-1 of these folds and tested on
the remaining one. This process is repeated k times until each subsample was once

2 Scope 2



used for testing. A k-fold cross-validation generates k samples of the performance
measure. In a repeated cross-validation, this process is repeated for an arbitrary
number of times. Both versions can be performed over multiple datasets, too. In
the latter two cases, STATSREP-ML expects the samples to be already averaged over
repeated cross-validations and / or datasets. In the train-test scenario, the model
is trained on one dataset and tested on another. This is usually done for multiple
training- and testing-datasets. Please note that both cross-validation and train-test
splits have their drawbacks: On the one hand, performance samples sourced from
cross-validation are pairwise statistically dependent because they were trained on
k-2 common folds. On the other hand, measures from train-test splits and sampling
procedures involving multiple datasets in general might be incommensurate [2].
The framework does currently not process samples, e.g. by means of aggregation,
any further. Selecting the sampling source of data is currently only required for
correctly reading the samples from the input file and setting specific variables in the
report.

STATSREP-ML accepts up to two independent variables, i.e. either the clas-
sification algorithms, feature sets or both can be varied. Nevertheless, the
non-parametric tests only allow for one independent variable. In the case of two,
one user-predefined variable is therefore fixed and the data is split into multiple
sample sets and evaluated separately, resulting in multiple reports.

The framework supports both the comparison of two and more than two models.
In this context, we understand a "model" as unique combination of a classification
algorithm and a feature set. If more than two models are compared, both omnibus
and post-hoc tests are performed to determine whether there is a significant differ-
ence in the performance of all models, and to identify which individual models differ
significantly. It is important to note that the comparison of more than two models
is subject to the multiple comparisons problem: When more than one hypothesis is
examined, the individual test’s p-values must be adjusted in order to draw conclu-
sions over all hypotheses. The module supports different more or less conservative
methods for adjustment5, but they all come with the same drawback: the p-values
are increased with each individual comparison, making it harder to find significant
results. A larger number of samples per model can contribute to better p-values and
can thus be used to compensate p-value inflation. STATSREP-ML offers two addi-
tional means to cope with this problem: The user can set a parameter to constrain
the compared models only to the best k according to a chosen performance measure.
Furthermore, the user can choose between different means to compare more than two
models: In pairwise comparisons, each model is compared with each other, result-
ing in N×(N−1)

2 comparisons. In a baseline comparison, N − 1 models are compared

5 Bonferroni, Hochberg, Holm, Benjamini-Hochberg, Benjamini-Yekutieli

2 Scope 3



against a baseline model, but not with each other, resulting in only N − 1 compar-
isons. A baseline comparison provides less information, but inflates the p-values less.
In the next section, we describe how STATSREP-ML has to be set-up in order to work
properly.

3 Setup

The qualitative and inferential statistics as well as the diagram plotting routines are
not directly implemented in Java, but executed in R. This makes it possible to rely
on the wide range of validated statistical packages available on CRAN6, the Com-
prehensive R Archive Network. The rJava framework7 facilitates the communication
between Java and R. STATSREP-ML does therefore not run standalone, but required
the user to set-up R, the JRI framework and few path variables beforehand. The
operating-system specific instructions are given in the appendix. In the next section,
we describe how STATSREP-ML can be configured.

4 Configuration

STATSREP-ML can be configured either programmatically or by preparing an
XML-based configuration file. Both methods have the same power. The class
ExampleInputTester.java illustrates how the configuration is set programmati-
cally. Alternatively, the configuration file is read into STATSREP-ML by using the
following java code in the main class:

StatsConfig config = StatsConfig.getInstance("config.xml");

For illustration purposes, Figure 4 shows the standard xml configuration file that
comes with the current version of the framework. In detail, the configuration file
comprises the following evaluation parameters:

• tests: an array comprising the concrete parametric and non-parametric om-
nibus and post-hoc tests to be used when evaluating two or multiple models
pairwise or against a baseline.

• pCorrections: an array comprising the methods for p-value correction to be
used after multiple comparisons in a post-hoc test.

• significanceLevels: a set of values for low/medium/high significance lev-
els for which test results with p-values below would be deemed low/moder-
ate/strongly significant in the report.

• selectBest: two fields that allow the evaluation of a subset of models to keep
p-value inflation low. The user has to specify the maximum number of models

6 http://cran.r-project.org
7 http://rforge.net/rJava/

3 Setup 4



<conf igura t ion >
<t e s t s >

<t e s t >
<c la s s >TwoSamplesParametric</c l a s s >
<name>DependentT</name>

</t e s t >
<t e s t >

<c la s s >TwoSamplesNonParametric</c l a s s >
<name>WilcoxonSignedRank</name>

</t e s t >
<t e s t >

<c la s s >TwoSamplesNonParametricContingency</c l a s s >
<name>McNemar</name>

</t e s t >
<t e s t >

<c la s s >Mult ip leSamplesParametr ic </c l a s s >
<name>RepeatedMeasuresOneWayANOVA</name>

</t e s t >
<t e s t >

<c la s s >MultipleSamplesNonParametric </c l a s s >
<name>Friedman</name>

</t e s t >
<t e s t >

<c la s s >Mult ip leSamplesParametr icPosthoc </c l a s s >
<name>Tukey</name>

</t e s t >
<t e s t >

<c la s s >MultipleSamplesNonParametricPostHoc </c l a s s >
<name>Nemenyi</name>

</t e s t >
<t e s t >
<c la s s >Mult ip leSamplesParametr icPos thocBase l ine </c l a s s >
<name>Dunett</name>

</t e s t >
<t e s t >

<c la s s >Mult ipleSamplesNonParametr icPostHocBasel ine </c l a s s
>

<name>PairwiseWilcoxonSignedRank </name>
</t e s t >

</t e s t s >
<pCorrec t ions>

<pCorrect ion>bonferroni </pCorrect ion>
<pCorrect ion>holm</pCorrect ion>
<pCorrect ion>hochberg</pCorrect ion>
<pCorrect ion>hommel</pCorrect ion>

</pCorrect ions>
<s i g n i f i c a n c e L e v e l s >

<s i g n i f i c a n c e L e v e l >
<leve l >low</leve l >
<value >0.1</value>

</s i g n i f i c a n c e L e v e l >
<s i g n i f i c a n c e L e v e l >
<leve l >medium</leve l >
<value >0.05</value>

</s i g n i f i c a n c e L e v e l >
<s i g n i f i c a n c e L e v e l >
<leve l >high</leve l >
<value >0.01</value>

</s i g n i f i c a n c e L e v e l >
</s i g n i f i c a n c e L e v e l s >
<s e l e c t B e s t >

<count>10</count>
<measure>Weighted F−Measure</measure>

</s e l e c t B e s t >
<f ix IndependentVar iab le>FeatureSet </f ix IndependentVar iab le>
</conf igura t ion >

Figure 1: The standard xml configuration file

4 Configuration 5



that should be evaluated, and the name of the performance measure according
to which they should be selected. A baseline model will always be preserved.

• fixIndependentVariable: as the framework only supports one independent
variable, this entry allows to either fix the Classifiers or the FeatureSets inde-
pendent variable if both vary, and split the data into multiple sample sets for
separate evaluation.

The allowed key-value pairs for these parameters are stored in the class
StatsConfigConstants.java. The available tests, measures and correction meth-
ods are listed there as well. When altering the used tests, please verify that a chosen
post-hoc test matches the respective a priori test. For example, a Mann-Whitney-test
cannot be used post-hoc to Friedman’s test, because it is not based on the Tukey
statistic. In the next section, we describe how input data must be structured and
imported in order to perform a statistical evaluation.

5 Importing Sample Data

The framework requires externally defined performance samples as input. In the
following, we first describe the required data format. We then elaborate on how
the data is imported into STATSREP-ML and illustrate them by means of several
examples.

5.1 Specifying Evaluation Data

This data must adhere to the format in Table 5.1, and should be stored as .csv with
an arbitrary separator. In the following, we describe the different columns in detail:

Train Test Classifier FeatureSet Measure Value IsBaseline
Dataset1 Dataset2 LibLinear nGrams: 2 F-Measure 0,549661 0
Dataset1 Dataset3 LibLinear nGrams: 2 F-Measure 0,553766 0
Dataset1 Dataset4 LibLinear nGrams: 2 F-Measure 0,549661 0
Dataset2 Dataset1 LibLinear +ALL, nGrams: 2 F-Measure 0,439875 1
Dataset2 Dataset3 LibLinear +ALL, nGrams: 2 F-Measure 0,574944 1
Dataset2 Dataset4 LibLinear +ALL, nGrams: 2 F-Measure 0,66053 1
· · · · · · · · · · · · · · · · · · · · ·

Table 1: Format of externally defined data from a Train-Test sampling.

• Train/Test: These two columns specify the names of the datasets used for
training and testing. If evaluations on a single dataset are performed, e.g. an
ordinary cross-validation, columns one and two must be identical. It is statisti-
cally critical to group samples that were evaluated on the same dataset. In case
of an ordinary cross-validation with non-aggregated performance samples, it is

5 Importing Sample Data 6



therefore required to add a unique identifier for every fold, separated by a dot
".", after the dataset name. For example, both columns may contain the entries
"Boston.Fold1’ in one row, followed by "Boston.Fold3" and "Boston.Fold2’ in the
next rows.

• Classifier: This column is used as the naming of the respective classifier
names and parameters used for configuring the classifier. This value repre-
sents an independent variables. Avoiding typos is thus critical for successful
processing.

• FeatureSet: In this column, the unique name of a certain feature combina-
tion is listed. As in the prior case, avoiding typos is critical for successfully
distinguishing values of the independent variable.

• Measure: Several measures might be used for evaluation, and can be specified
in the same file. This column comprises the names of these measures.

• Value: This column contains the value of the performance measure calculated
on the models’ score on the datasets specified in the same row.

• IsBaseline: This entry is used to specify if a specific classifier/feature combi-
nation should be used as a baseline. If a baseline is given, all other models are
compared against this baseline. Please note that if models should be compared
against a baseline in the case of two independent variables, one baseline model
must be specified for each value of the fixed independent variable. Section 5.3
contains examples for this case.

Please note that statistical tests require a minimum amount of samples per
model to deliver meaningful results. This minimum has been set to five in STATSREP-
ML, although it is highly recommended to provide at least ten or more samples per
model. The evaluation will not be continued if either less samples are provided, or
if the number of samples differs between models.

5.2 Reading Evaluation Data

It is critical to choose the appropriate import method for the given input data to
ensure correct processing and reporting. The class StatsProcessor.java contains
three methods for importing and evaluating data:

• evaluateCV(StatsConfig config, String pathToCsvFile, String outputPath, char
separator)

• evaluateRepeatedCV(StatsConfig config, String pathToCsvFile, String output-
Path, char separator, int nFolds)

• evaluateTrainTest(StatsConfig config, String pathToCsvFile, String output-
Path, char separator)

5.2 Reading Evaluation Data 7



Each method requires an object representing the current configuration as a first
argument. Also, the paths to the input and output files needs to be given. Finally,
the user can specify the separator that is used in the CSV file. In the case of a
repeated CV, the number of folds needs to be provided. Please note that this is only
used for correctly reporting the results; the framework still expects the data to be
already aggregated. In case of a repeated k-fold cross validation, the samples could
be averaged over all folds, resulting in as many samples per model as there are
repetitions.

5.3 Examples

STATSREP-ML provides several examples for typical use cases in class
ExampleInputTester.java:

• The CV methods reads an example file with performance samples from a cross-
validation of three classification algorithms and a fixed feature set. Since this is
only about a single independent variable, it returns one report in which models
are compared based on their classification algorithm.

• The CV2IV method reads an example file with performance samples from a
cross-validation for four classification algorithms and two feature sets. Because
this implies two independent variables, STATSREP-ML will split the dataset ac-
cording to the value set in setFixIndependentVariable and conduct separate
evaluations for each subset. In this case, the feature sets are fixed and only
different classification algorithms with the same feature set are compared. Fur-
thermore, results are also generated for the variation of feature groups and
keeping the classifier fixed, eventually showing the best feature combination
on the datasets.

• The CVClassifierBaseline method is a subset of the first example. In this
case, only one feature combination is present, but multiple classifiers are com-
pared. In contrast to the first example, one feature group/classifier combina-
tion is used as a baseline strategy, eventually indicating whether other combi-
nations are outperforming this one.

• The CVFeaturesBaseline method is equivalent to the second example, but in
this case several feature combinations are evaluated for only one classifier. Also
here, a baseline comparison is used.

• The TrainTest2FeaturesBaseline method reads an example file with per-
formance samples from training and testing one classifier with 10 different
feature sets on 10 datasets. One feature set represents a baseline which the
others extend and which they are compared against.

The examples also illustrate the different approaches to configure STATSREP-
ML: While in CV, the configuration is done exhaustively and programmatically,

5.3 Examples 8



i.e. all parameters are set manually, the method CV2IV uses a default con-
structor to load standard configuration values which can be modified later on.
CVClassifierBaseline demonstrates a third approach by reading the configura-
tion from an xml file.

The input files used in the examples are located in the
src/main/resources/examples package. The first four sample sets were cal-
culated with DKPro TC8 [1] on the Twenty Newsgroups dataset9. The examples
illustrate that STATSREP-ML allows to evaluate the best feature groups and best
classifiers and to select the most appropriate comparison method for a given
learning problem. In the next section, we describe how the evaluation results will
be reported.

6 The Evaluation Reports

STATSREP-ML always produces two types of reports: a plain-text file and a little more
comprehensive, better structured and readable LATEX-file with tables and additional
diagrams. The latter must be compiled separately. Both reports contain:

• An overview of the evaluated models, listing their feature sets and classifiers.

• A description of the type of evaluation, including a list of the datasets used and
additional information specific to the sampling procedure, e.g. the number of
folds in a k-fold cross-validation.

• A table with the individual samples for each performance measure.

• A description of both omnibus and post-hoc parametric and non-parametric
tests performed, including tests of their assumptions as well as parameters.

• Tables with uncorrected and corrected p-values for post-hoc tests.

• An ordering of relationships between the models based on their statistically sig-
nificant differences, or a sentence indicating that no such ordering is possible.

• A short summary of the findings.

Ordering models using their significant differences is done in accordance with
[3] based on topological ordering of a directed acyclic graph. In addition to better
readability, the LATEX report offers:

• A description of the statistical significance levels and corresponding annota-
tions in the p-value tables.

8 http://code.google.com/p/dkpro-tc/
9 http://qwone.com/~jason/20Newsgroups/

6 The Evaluation Reports 9



• Different table formats for listing samples from a single- or from multiple
datasets.

• Different table formats for pairwise and baseline comparisons.

• Various diagrams:

– A Q-Q-plot for visually validating the assumption of normality, comparing
the quantiles of the samples with the quantiles of a normal distribution.

– A Box-Whisker-plot contrasting the performances of the individual models.
The means were added as red dots.

– A directed graph representing the statistical differences between the mod-
els. If an ordering between all models cannot be inferred, this graph can
be used to manually infer an ordered subset of models.

The output folder of the reports is logged. Please activate the logger output level
"INFO" to see it. The next section will focus on how to extend the present methods
and also represent new tests in the report.

7 Extending STATSREP-ML with New Tests

STATSREP-ML is highly extensible thanks to Java’s Reflection facilities, and can thus
be adapted to new developments in the machine learning evaluation community.
New statistical tests can be added by following these steps:

1. A new test, either as a wrapper method including R code or a as a native
implementation, must be added to the class Statistics. Either the JRI javadoc
10 or the present tests can be used to learn about the JRI syntax. The method
has to adhere to the following rules:

• The name of the test method must start with “test”, followed by the test’s
name.

• An omnibus test must return an object of type TestResult, while a post-
hoc test must return an object of class PairwiseTestResult. While the for-
mer can only represent a single p-value, statistic, etc., the latter can store
several p-values from multiple comparisons. Tests in R often return ob-
jects of type htest or pairwise.htest. The method AbstractTestResult
toTestResult(String resourceName) can be used to translate these ob-
jects into their Java counterparts, by first transforming them into an object
of class AbstractTestResult and then casting them to either TestResult
or PairwiseTestResult.

• The method must return null if the test fails.

10 forge.net/org/docs/

7 Extending STATSREP-ML with New Tests 10



• Post-hoc tests must indicate in their results whether p-values must still be
corrected. The method setRequiresPValueCorrection(bool requires)
on the test object must be used to set the appropriate flag.

• Omnibus tests for two samples require two double arrays as sole parame-
ters, one for each sample set.

• Omnibus tests for > 2 samples and the corresponding post-hoc tests re-
quire a 2-dimensional double-array as sole parameter, where columns rep-
resent the different models and rows the samples.

• The test should be implemented in a robust way, allowing to deal with
empty or incomplete parameters, and include proper exception handling
and logging. The existing tests can be used as a template.

• The test should be properly documented, and contain references if it rep-
resents a less known approach.

2. The exact name of the new test (case sentitive!) must be added to the respective
category in StatsConfigConstants.java in order to make it available to the
configuration.

3. A key-value pair from the test’s name to the test’s pretty-print name must be
added in StatsConfigConstants.java.

4. To use the test, its (non pretty-print) name must be added to the config.xml
file in the respective category, or must be used in the programmatic configura-
tion.

8 Conclusion

In this report, we introduced the STATSREP-ML framework for performing and
reporting qualitative and inferential statistics on machine-learning results. The
framework requires the performance samples from machine learning experiments
to be stored in a CSV file, and can therefore be used as part of a larger evaluation
pipeline. It can be configured both by means of an XML file or programmatically,
fostering the direct integration in other frameworks. For instance, the DKPro TC
framework supports STATSREP-ML to join automated model learning and testing
with performance data evaluation and reporting. STATSREP-ML was already used
extensively for evaluating results in the domain of tweet classification, illustrating
the capabilities the framework offers for scientific research.

In the future, we plan to adapt the framework to developments in the research
community and to add additional tests. It is also planned to integrate additional
diagrams, such as Demsar’s critical difference diagram for illustrating Friedman-
style ranking results and pairwise significance [2]. Further improvements will be

8 Conclusion 11



presented on the project’s website11 and contributions of future users are highly
appreciated.

9 Appendix: Setup Guidelines

STATSREP-ML requires the user to set-up dynamic libraries for R and JRI as well
as path variables. This process varies slightly between different operating systems.
Please make sure to use the same architecture (x64 or x86) for the different compo-
nents (R, rJava, Java).

9.1 Windows

Tested on Windows 8.1

1. Download R12 and install it.

2. Open the right binary (architecture wise), e.g. for x64: C:\Program Files\R\R-
3.1.0\bin\x64\R.exe (use admin rights).

3. Use install.packages("rJava") to download rJava, remember the given
folder path.

4. Navigate to that path and extract the zip, preferably somewhere together with
the R installation.

5. Specify a PATH variable in the run configurations (of your main
or testing class), where you add the paths to the native libraries
(jri.dll, jvm.dll, R.dll). E.g. (be careful with the architecture
folders): “C:\Program Files\R\R-3.1.0\rJava\jri\x64;C:\Program
Files\Java\jdk1.7.0_51\jre\bin\server;C:\Program Files\R\R-3.1.0\bin\x64”
(jvm.dll is sometimes not in \server but in \client).

9.2 Linux

Tested on Ubuntu 14.04 Trusty Tahr

1. Download R12. and install it. You may also use your distributions’ package
manager to download and install the software: In Ubuntu, type sudo apt-get
install r-base into your console to download and install the R base package
and all dependencies.

2. Please ensure that a link to your R executable is in your /bin or /usr/bin di-
rectory. This should be the case if you install the software using the native
package manager. Typing the command R in the console will start the R com-
mand prompt.

11 https://code.google.com/p/statistical-evaluation-for-machine-learning/
12 http://www.r-project.org/

9 Appendix: Setup Guidelines 12



3. Retrieve the R installation path by typing R.home(component = "home") into
the R command prompt. Set the R_HOME path variable to the directory where
R has been installed. Example: export R_HOME=/usr/lib/R. To fix path vari-
ables, add them to the .bashrc file or the respective profile file in your distribu-
tion.

4. On the R command prompt, type install.packages("rJava") to download
and install rJava. This interface will allow communication between R and the
MUGC software.

5. Locate the rJava installation directory with the command sudo find / -name
rJava. Add the subdirectory jri with the JAR files JRIEngine.jar, JRI.jar,
REngine.jar to the CLASSPATH. Example: export CLASSPATH =.:/usr/lib/R/
site-library/rJava/jri/.

6. Add the native JRI-library to the LD_LIBRARY_PATH variable. It should
be located within the same directory as the JAR files. Example: export
LD_LIBRARY_PATH = /usr/lib/R/site-library/rJava/jri/.

9.3 MacOS

Tested on OSX 10.10 Yosemite

1. Download R12 and install it. You may also use homebrew13 to download and in-
stall the software: brew tap homebrew/science; brew install gcc; brew
install r;.

2. Install JRI library in R. Via command line: r; install.packages(’rJava’).

3. Determine library folder. In R, type .libPaths().

4. Add a reference to the JRI libraries as additional VM arguments. E.g.,
-java.library.path=/Library/Frameworks/R.framework/Versions/3.1/ Re-
sources/library/rJava/jri/.

5. Specify R_HOME as path variable (in eclipse, use the run configurations tab
of your main or testing classes) and add the path to the native libraries of R.
E.g., R_HOME = /Library/Frameworks/R.framework/Versions/3.1/Resources/.

STATSREP-ML may ask to install additional R packages during the first run. Con-
firming this will install the required packages into the project folder.

13 http://www.brew.sh/

9.3 MacOS 13



References

[1] Johannes Daxenberger, Oliver Ferschke, Iryna Gurevych, and Torsten Zesch.
DKPro TC: A java-based framework for supervised learning experiments on
textual data. In Proceedings of 52nd Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages 61–66, Baltimore, Maryland,
June 2014. Association for Computational Linguistics.

[2] Janez Demsar. Statistical Comparisons of Classifiers over Multiple Data Sets.
Journal of Machine Learning Research, 7:1–30, 2006.

[3] Manuel J. A. Eugster, Torsten Hothorn, and Friedrich Leisch. Exploratory and
inferential analysis of benchmark experiments. Technical Report 030, 2008.

[4] Francisco Herrera. An Extension on “Statistical Comparisons of Classifiers over
Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine Learning
Research, 9:2677–2694, 2008.

[5] Mohak Jakowicz, Nathalie; Shah. Evaluating Learning Algorithms. A Classifica-
tion Perspective. Cambridge University Press, Cambridge, 2011.

[6] Axel Schulz, Aristotelis Hadjakos, Heiko Paulheim, Johannes Nachtwey, and Max
Mühlhäuser. A multi-indicator approach for geolocalization of tweets. In Inter-
national AAAI Conference on Weblogs and Social Media, 2013.

[7] Axel Schulz and Frederik Janssen. What is good for one city may not be good for
another one: Evaluating generalization for tweet classification based on seman-
tic abstraction. In CEUR, editor, Proceedings of the Fifth Workshop on Semantics
for Smarter Cities a Workshop at the 13th International Semantic Web Conference,
volume 1280, pages 53–67, 2014.

[8] Axel Schulz, Petar Ristoski, and Heiko Paulheim. I see a car crash: Real-time
detection of small scale incidents in microblogs. In The Semantic Web: ESWC
2013 Satellite Events, number 7955 in Lecture Notes in Computer Science, pages
22–33. Springer Berlin Heidelberg, 2013.

References 14


