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ABSTRACT

Long-term monitoring for activity recognition opens up new possibilities for deriving
characteristics from the data, such as daily activity rhythms and certain quality
measures for the activity performed or for identifying similarities or differences
in daily routines. This thesis investigates the detection of activities with wearable
sensors and addresses two major challenges in particular: The modelling of a person’s
behaviour into rhythmic patterns and the detection of high-level activities, e.g.,
having lunch or sleeping. To meet these challenges, this thesis makes the following
contributions:

First, we study different platforms that are suitable for long-term data recording:
A wrist-worn sensor and mobile phones. The latter has shown different carrying
behaviours for various users. This has to be considered in ubiquitous systems for
accurately recognizing the user’s context. We evaluate our findings in a study with
a wrist-worn accelerometer by correlating with the inertial data of a smart phone.

Second, we investigate datasets that exhibit rhythmic patterns to be used for recog-
nizing high-level activities. Such statistical information obtained over a population is
collected with time use surveys which describe how often certain activities are per-
formed by the user. From such datasets we extract features like time and location to
describe which activities are detectable by making use of prior information, showing
also the benefits and limits of such data.

Third, in order to improve on the recognition rates of high-level activities from
wearable sensor data only, we propose the use of the aforementioned prior informa-
tion from time use data. In our approach we investigate the results of a common
classifier for several high-level activities, after which we compare them to the out-
come of a maximum-likelihood estimation on the time use survey data. In a last step,
we show how these two classification approaches are fused to raise the recognition
rates.

In a fourth contribution we introduce a recording platform to capture sleep and
sleep behaviour in the user’s common environment, enabling the unobtrusive moni-
toring of patterns over several weeks. We use a wrist-worn sensor to record inertial
data from which we extract sleep segments. For this purpose, we present three
different sleep detection approaches: A Gaussian-, generative model- and stationary
segments-based algorithm are evaluated and are found to exhibit different accuracies
for detecting sleep. The latter algorithm is pitted against two clinically evaluated
sleep detection approaches, indicating that we are able to reach an optimum trade-off
between sleep and wake segments, while the two common algorithms tend to overes-
timate sleep. Further, we investigate the rhythmic patterns within sleep: We classify
sleep postures and detect muscle contractions with a high confidence, enabling
physicians to efficiently browse through the data.
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ZUSAMMENFASSUNG

Langzeitaufnahmen von Sensordaten zur Aktivitätserkennung ermöglichen die
Detektion von Merkmalen innerhalb dieser Daten, wie z.B. Rhythmen und Qualitäts-
muster für die durchgeführten Aktivitäten. Diese Informationen können zur Bestim-
mung von ähnlichen oder unterschiedlichen Alltagsroutinen genutzt werden. Diese
Arbeit untersucht die Erkennung von physischen Aktivitäten mit Hilfe von trag-
baren Sensoren und konzentriert sich dabei auf zwei wichtige Herausforderungen:
Das Modellieren von rhythmischen Mustern abgeleitet aus dem Verhalten der Perso-
nen und die Detektion von komplexen Aktivitäten, wie z.B. ’zu Mittag essen’ oder
’schlafen’. Um diese Herausforderungen anzugehen, leistet diese Arbeit folgende
Beiträge:

Zunächst untersuchen wir die Nutzung verschiedener Plattformen zur Langzeit-
datenerfassung: Einen Handgelenksensor sowie Mobiltelefone. In Bezug auf Mo-
biltelefone gibt es verschiedene Trageverhalten, welche zur Kontexterkennung in
ubiquitären Systemen berücksichtigt werden müssen. Wir evaluieren das Tragever-
halten mittels der Korrelation von Beschleunigungsdaten des Handgelenksensors
mit den Bewegungsdaten des Mobiltelefon-Sensors.

Zweitens untersuchen wir Datensätze, die wiederkehrende Aktivitätsmuster
aufweisen, um komplexe Aktivitäten zu erkennen. Solche statistischen Daten beziehen
wir aus Zeitbudgeterhebungen die beschreiben, welche Aktivitäten zu bestimmten
Zeiten von Einwohnern eines Landes ausgeführt werden. Aus diesen Datensätzen
extrahieren wir Features wie Zeit und Ort, um aufzuzeigen welche Aktivitäten mit
Hilfe dieser Informationen erkannt werden können. Weiterhin untersuchen wir die
Vorteile und die Grenzen der Nutzung solcher Daten.

Drittens verwenden wir diese statistischen Informationen zur Verbesserung der
Erkennungsraten von komplexen Aktivitäten. Unsere Vorgehensweise besteht darin,
die Ergebnisse der Erkennung von komplexen Aktivitäten eines üblicherweise ver-
wendeten Klassifizierers mit denen aus der Bestimmung des Maximum-Likelihood
von Aktivitäten der Zeitbudgetdaten zu vergleichen. Daraufhin vereinen wir die
Ergebnisse beider Vorgehensweisen und zeigen wie die Erkennungsraten dadurch
verbessert werden.

Der vierte Beitrag führt ein Aufnahmesystem ein, welches das Überwachen des
Schlafes und des Schlafverhaltens über mehrere Wochen in der gewohnten Umge-
bung des Benutzers ermöglicht. Wir verwenden dabei einen Handgelenksensor
zur Erfassung von Bewegungsdaten, in denen wir Schlafsegmente detektieren. Wir
stellen drei verschiedene Schlafdetektionsalgorithmen vor: Eine Gauss-, eine auf einem
Generativen Modell und eine auf stationären Segmenten basierende Vorgehensweise,
die verschiedene Genauigkeiten in der Erkennung des Schlafes aufweisen. Der let-
ztere Algorithmus wird mit zwei medizinisch evaluierten Algorithmen zur Schlafde-
tektion verglichen. Unsere Ergebnisse zeigen, dass Schlaf- und Wach-Segmente
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mit unserem neuartigen Algorithmus gleich gut erkannt werden können, während
die zwei üblicherweise eingesetzten Algorithmen die Schlafdauer überschätzen.
Weiterhin zeigen wir, wie rhythmische Muster innerhalb des Schlafes detektiert
werden können: Schlafpositionen und Muskelzuckungen werden mit einer hohen
Genauigkeit erkannt, wodurch Ärzten die Möglichkeit geboten wird, die Schlafdaten
effizient zu begutachten.
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1I N T R O D U C T I O N

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Previously Published Work . . . . . . . . . . . . . . . . . . . . . . . . 7

It has become trivial to equip oneself with sensors, either embedded in the
mobile phone or directly worn on the body. The widespread trend to quantify
oneself is driven by benefits that arise from the use of these devices, like being

motivated during workouts or knowing how many kilometres one has covered. In
such scenarios, we would benefit from the knowledge of what people are doing
currently, i.e., what activities people perform. Additionally, it would be beneficial
to capture when an activity reoccurs periodically, i.e., in a rhythmic way, so that
we are able to predict what the person is going to do in the future. Analysing a
person’s activities enables us to place a person in a situational context, especially
when considering rhythmic behaviours. Activities surround us in everyday life and
define our nature. Therefore, an activity performed is the key input for a recognition
system that is able to determine the activity carried out expressed by movement,
body orientation or light intensity. Considering these environmental characteristics,
we can define a persons behaviour.

1.1 motivation

Temporal patterns have been used in many scenarios in the past, with the most
traditional example being rhythms in musical patterns. But other fields make use of
periodicity as well: In the theory of civilization, the rhythms of history are commonly
scrutinized to predict future events (Blaha, 2002). The idea is to investigate the social
properties of the population to get a clear view on the challenges that civilization was
facing in the past. In theory, a certain social behaviour recurs in time, which is why
rhythmic events are depicted and discussed in Blaha (2002). The behaviour and thus
the activities of one or many people and their ability to deal with crises describes how
well people are coping with a situation. To this day we are determined to scrutinize
past knowledge in order to make assumptions about future events. Unlike then,
today we are able to gather even more information from various sources to asses
what people have been doing and are going to do. These days we gather information

1



2 chapter 1. introduction

from the environment by the use of different sensing modalities, e.g., accelerometers
or gyroscopes that are embedded in wearable devices. With such data we can make
assumptions concerning the user’s activities and with that about the context in the
field of activity recognition and ubiquitous computing. Rhythmic patterns obtained
by a wearable platform are interesting for many reasons. When modelling human
behaviour we support the awareness of applications, e.g., a system that knows the
consecutive steps in a working process can assist by displaying current work steps to
new recruits (Lukowicz et al., 2007). Being aware of a person’s rhythms can aid in
the daily workplace by knowing when a colleague is usually available (Begole et al.,
2003). Such a rhythm awareness can be beneficial for an activity recognition system,
especially for activities that are hard to detect with just the sensor data. Therefore,
the use of past knowledge to improve on the recognition rates requires activities that
exhibit circadian frequencies.

With a high variety of platforms the question is now: How can we make use
of such data, most of which is today utilized for advertising purposes (Haddadi
et al., 2010). Is there a platform that can be used out of the box by everyone? One
answer could be the use of wearable devices, as we experience a rise in the market
for wrist-worn sensing devices that can be purchased to perform simple tasks, like
tracking GPS coordinates while jogging. The abilities of such devices are limited
though, since most of them cannot be used to extract raw sensor data. Another
answer to a wearable platform could be the use of smart phones which cannot only
log data but the framework gives the possibility to directly use such data and even
download it for offline evaluation. Still, the question whether such a platform is
suitable for activity recognition has not clearly been answered yet. We come to the
conclusion that the optimum platform depends on the application for which we
might use it.

In order to enable rhythm detection in the aforementioned scenarios, we need a
system that provides (1) empirical data that has been gathered over a long period of
time, (2) yields reliable detection results for the activity performed and (3) is robust for
various recording scenarios, e.g., that can be worn while doing workouts or other
sports. Therefore, this thesis deals with the detection of rhythms within inertial data
that has been recorded with wearable motion sensors by making use of machine
learning techniques. We will introduce several wearable recording systems that can
be used for a long period of time by the user and sense specific user characteristics,
such as the activity performed and patterns within a certain activity. With such
systems it is possible to record data in a real-world scenario, instead of following
scripted activity sequences in a lab set-up. One of these systems has already been
used in a healthcare scenario, to motivate the user to move more whenever the
sensor detects insufficient movement (Seeger et al., 2011). As already mentioned,
commercial devices can detect simple activities like walking or jogging but assessing
their algorithms is almost always impossible, since the systems are closed-sourced.
In such scenarios it may be problematic to have ones well-being assessed by a system
that has not been thoroughly evaluated by physicians.

We identify one important field for rhythm detection which is the monitoring
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of daily activities in healthcare scenarios to determine if user behaviour and more
specifically a patient’s behaviour, is changing. People tend to follow certain routines
in daily life, depicted by psychological measurements as described in Monk et al.
(1990) by the social rhythm metric. Such a routine could be, for example, going to
sleep at certain times of the day. Changes in such rhythmic behaviours might give
insight into outliers and therefore valuable information about oneself. In order
to detect outliers it is important to first find similarities in daily routines and more
specifically differences to other people or to healthy persons. Thus, whenever we are
not able to keep a log of our activities it is crucial to use a system that automatically
logs what we are doing. In psychiatric research, patients usually have to keep a diary
of their activities performed, which helps physicians to evaluate the severity of their
illness as for example when suffering from a bipolar disorder. The problem here is
that patients tend to forget keeping logs, especially patients that live through major
mood swings. But we can think of other healthcare-related fields: The monitoring of
elderly who are living on their own, where the detection of behavioural outliers are
crucial in emergency situations.

This thesis presents approaches to improve on the recognition of healthcare-
related activities. More specifically, we detect sleep and its characteristics by using
only a wearable device. With sleep researchers steadily discovering new ways in
which sleep impacts quality of life, it has already been shown that a healthy sleep is
at least equally important for our well being as nutrition (Everson et al., 1989), and
that it contributes significantly to regeneration and recovery (Bonnet and Arand,
2003). Therefore, detecting sleep accordingly is important not only to assess sleep
itself but daily life as well, since there is a reciprocal relationship between sleep and
daily life, with shortcomings and problems in one area tending to easily influence
the other. Since general awareness concerning the importance of sleep is increasing,
personal sleep monitoring applications have recently undergone a surge in variety
and commercial success. Many of these units are meant to be worn only during
the night while being charged on the night stand during the day; other types of
units are recording full circadian rhythm data for a number of successive days that
give more insight into changes in the user’s habits and rhythms. We will evaluate
sleep-wake cycles by presenting an observation technique that describes a person’s
sleeping schedule.

In the following we will present important challenges that are met in this thesis
and describe the outline of this work in more detail.

1.2 challenges

In this section, we will discuss the challenges addressed in this thesis. A first
challenge for identifying rhythms is to collect data that have been recorded over a
long period of time. Additionally, this is a major challenge for activity recognition
tasks as well, since many algorithms need a significant number of training data to be
able to classify activities. As pointed out earlier, the recurrence of the same activity
constitutes a rhythm. We identify the following challenges:
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Long-term Monitoring. Activity recognition tasks require a huge number of data
that have been collected over a longer timespan in order to capture all possible
variations of an activity represented by the sensor data. Gathering data over a longer
stretch of time is not always trivial: Additionally to the data recordings, the ground
truth, i.e., what really happened during the time recorded, has to be logged. For
these scenarios the user usually has to keep a diary of his or her activities, either
by pencil and paper, on demand or by other means like keeping a smart phone
log. Especially in long-term monitoring scenarios this becomes annoying and highly
inaccurate (Coughlin, 1990), since the burden to keep an accurate log lies on the
user. Either the user simply forgets to log what happened or is not in the mood to
do so. These scenarios have two possible solutions: (1) The user does not have to
log any activities because an unsupervised recognition system is being used or (2) a
priori knowledge is utilized which enables the prediction of what the user might be
doing next. The latter scenario requires less annotations since the activity has to be
known only for the training phase. When considering the first scenario, we would
completely rely on the data patterns and guess what the user is going to do.

Prior Knowledge. A recognition system has to be trained from scratch on a lot of
sensor data. This way, the system cannot be reused in other environments since it
relies on the specific domain for which the data have been accumulated. One way to
reduce the number of training data is to make use of prior knowledge. Additional
information, such as an approximation of the user’s typical schedule, could be
combined with real-time sensor data. Previous work has already shown that such a
transfer of knowledge is promising and could lead to better results in a recognition
system that suffers from insufficient sensor data (Partridge and Golle, 2008).

Rhythm Modelling. As mentioned before, prior knowledge enables us to predict
what the user is going to do. For this purpose, not only prior information is useful
but also reoccurring representations of an activity in the sensor data - for example,
a meeting scheduled for 9:30am every Monday morning - provides a recognition
system with an assumption of the performed activity. The obtained occurrences
of daily activities enable us to model a rhythm of these activities. Researchers in
Van Laerhoven et al. (2008) proposed the use of reoccurring activities to improve on
the recognition rates. Yet, such rhythmic data has to be obtained by a system that
detects the activities with a high confidence.

High-level Activity Recognition. Tracking the user’s activities over longer peri-
ods with a body-worn sensor device is in particular interesting regarding various
healthcare issues (Pansiot et al., 2007; Van Laerhoven et al., 2008): Many mobile and
wearable systems1 that monitor the user’s movements and fitness activities (Avci
et al., 2010) are commercially available. Mobile phone platforms are being used as
hubs to gather such data or collect information from on-board sensors to determine
what the user is doing (Brezmes et al., 2009; Sun et al., 2010). Recognition perfor-

1such as www.actigraphcorp.com/, last access 09/2014
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mance for activities like walking or sitting from mobile sensors are already promising
(Bao and Intille, 2004; Jean-Louis et al., 2001b; Lee and Mase, 2002). More diverse
activities, however, such as having lunch or vacuum cleaning, are less pronounced:
The complex nature of high-level activities requires not just performant machine
learning techniques and considerable numbers of training data but person-specific
information as well. Especially in battery-driven and resource-limited wearable
platforms, it is an additional problem that data acquisition comes with a substantial
cost.

Limited Dataset. In many scenarios, especially when monitoring people while
sleeping, little training data are available. Depending on the machine learning
technique used, more training data lead to higher recognition rates for the monitored
activity. On the other hand, it is desirable to score a high recognition rate although
data are either missing or simply not available. In addition to that, a sleeping pattern
is very similar to the pattern of a person just lying on the couch and watching TV.
When it is desirable to obtain sleeping data, the data of a person lying around leads
to a confusion of both classes sleeping and lying. Therefore, extracting significant
features for the activity is not a trivial task and decreases the performance of a
recognition system.

Recording System. For the activity recognition task we have to use a reliable wear-
able system that records the required data for several weeks without maintenance.
Additionally, it is crucial that the placement of the sensor does not change, otherwise
it will be almost impossible to detect the desired activity, since a change of the sensor
placement leads to different sensor data. This is also the reason for many research
groups to perform studies in a lab-environment instead of in the real world. When
thinking of mobile phones, for example, those platforms are seldom carried in the
same fashion, leading to different sensor recordings. Nevertheless, researchers have
overcome the problem of mobile phone orientation in various ways (Sun et al., 2010).

Furthermore, it is required that the used hardware does not consume too much
power and is comfortable to wear. When thinking of mobile phones again, those
devices tend to run out of battery power within one day or less when used excessively.
Imagine now that an application is running on such a device and gathering sensor
data in addition to that. In such a scenario the application has to be programmed in
such a fashion that it does not draw too much power. The need for high-frequency
measurements demands a hardware system that can be used without running out of
battery power or disk space, especially in small-sized devices.

1.3 contributions

The main task of this thesis is to answer the following three questions: (1) How can
we gather long-term activity data, (2) how can we detect rhythms in such data and (3)
benefit from it when performing activity recognition? We contribute to the answers
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to these questions by first introducing rhythmic data that is already available and
showing how we can make use of it. Additionally, we evaluate platforms that can
be used to gather sensor data in order to assess rhythms within such data, not only
in the field of classical activity recognition but in sleep medicine as well. In this
context, we present a novel approach to detect sleep and rhythmic behaviour during
sleep. We show how rhythmic data from wearable sensors can be used to improve
the recognition of common activities.

Mobile Sensing Platforms. We first analyse the mobile phone as a platform for
recording sensor data in the context of activity recognition. As most people own a
mobile phone, it is essential to evaluate not only the proximity of the phone to the
user but which portion of the day the phone is actually carried by the user. This topic
has been discussed in different groups (e.g., Dey et al. (2011a) and Patel et al. (2006))
but only the proximity of the mobile phone has been scrutinized, not the carrying
of the mobile phone on the body. Further, we introduce a mobile sensing platform
that allows us to supervise the activity ’sleep’: For this purpose, we make use of an
infrared camera attached to a netbook to obtain video footage of participants going
to bed and waking up. This system enables us to not only monitor sleeping times
but sleep characteristics as well, such as sleeping postures or spontaneous muscle
contractions during sleep.

Statistical Data. We introduce statistical data from which we extract rhythmic
information that gives us insight into a person’s habits. For this purpose we analyse,
in a first step, statistical data that was obtained by the government. These time
use surveys (TUS) usually contain a three-day diary of participants keeping log of
what they did, where they were at the time and with whom. Such information is
already available since many countries perform such inquiries to obtain statistical
information about the population, yet such data has not been used in activity
recognition. In a second step we evaluate which features perform best to recognize
the activities that have been logged in the time use survey. We further introduce
common activities that can be spotted by using only time use information.

Activity Recognition Using Prior Information. In this thesis we propose to im-
prove the recognition rates of common classifiers for activity spotting by embedding
statistical data obtained over a population in the classification process. For this
purpose we make use of time use surveys and show how recognition rates increase
when using a Support Vector Machine output in an ensemble with a maximum-
likelihood output performed on the time use database only. Further, we derive
common habits in sleep assessment by using a Hidden Markov Model that is trained
on data obtained from many different participants over several weeks. With the use
of features such as time of day, number of accelerometer movement and light sensor
intensity, sleep can be detected in long-term recordings.
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Sleep Detection and Rhythmic Behaviour. Sleep is a very important activity, not
only because we sleep one third of our life but also because whenever it is disturbed,
the human body performs poorly when, e.g., accessing power or studying by simply
being unable to concentrate. For this purpose it is important to know when people
are sleeping. Still to this day monitoring of sleep is a challenge, since most systems
are obtrusive and disturb the normal way of sleeping. Many commercial products do
detect sleep with body-worn sensors but sleep is usually overestimated in comparison
to medically evaluated approaches (especially polysomnography). Additionally, a
common procedure to detect sleep via an inertial sensor is not publicly available.
In this thesis we will introduce a novel sleep detection algorithm which not only
detects sleep but wake states as well, since most medical devices tend to neglect the
detection of wake segments by overestimating sleep. With such information, not
only can we gain insights into sleep patterns but also into the rhythmic behaviour of
sleep itself.

Dataset Sharing. This thesis makes use of datasets that were recorded for different
studies performed in this work. Several of these datasets are unique: One dataset
consists of sleeping lab data obtained from polysomnography that has been synchro-
nized with inertial data recorded on the wrist. To our knowledge, such data is not
yet available and could give other researchers the opportunity to conduct their own
experiments without going through the lengthy process of recording and annotating
such data. Furthermore, we obtained long-term recordings of inertial data that
were annotated with sleep segments and sleep postures of the participants. Another
dataset includes smart phone sensor data and wrist sensor data that were correlated
to spot when the user moved with his smart phone or not. The rich content of these
datasets leaves room for further evaluation in different fields of research.

1.4 thesis outline

The thesis is structured as follows: We begin with a detailed discussion of research
work that relates directly to this thesis, in Chapter 2. Then, we introduce the evalua-
tion of platforms which have been used throughout the thesis in the experiments
in Chapter 3 after which we show circadian rhythms that are already present in
different data sources in Chapter 4. We continue to introduce detection techniques
to highlight a most rhythmic activity - sleep - in Chapter 5, followed by Chapter 6 in
which classification of postures during sleep as well as muscle contractions that give
a clue about the person’s sleep habits are scrutinized. We then use prior knowledge
to detect common activities, in Chapter 7. We conclude this thesis in Chapter 8 with
a final discussion of future work.



8 chapter 1. introduction

1.5 previously published work

In the past years, some aspects of this thesis have already been published in confer-
ence proceedings mostly in collaboration with other colleagues. In this section I will
reference all published papers and mention my contribution to each scientific work.

1. Marko Borazio, Ulf Blanke and Kristof Van Laerhoven, Characterizing Sleeping
Trends from Postures, Proceedings of the 14th IEEE International Symposium on
Wearable Computers (ISWC 2010), Seoul, South Korea, IEEE Press, pp. 167-168,
10/2010.
Inspired by my diploma thesis in 2008, I followed up the idea of scrutinizing
sleep and the way we sleep by taking into consideration sleeping postures. With
the assistance of Ulf Blanke in the evaluation process, we were able to visualize
sleeping postures and to sketch a possibility of sleep quality assessment.

2. Holger Becker, Marko Borazio and Kristof Van Laerhoven, How to Log Sleeping
Trends? A Case Study on the Long-Term Capturing of User Data, The 5th European
Conference on Smart Sensing and Context 2010 (EuroSSC 2010), vol. 6446,
Passau, Germany, Springer Verlag, pp. 15-27, 2010.
With the help of my diploma student Holger Becker, I was able to set up
a long-term recording system in the field of sleep studies. On the basis of
my idea of monitoring people at home, Holger Becker recorded a dataset of
sleeping postures that could be used for publication later on.

3. Marko Borazio and Kristof Van Laerhoven, Predicting Sleeping Behaviors in
Long-Term Studies with Wrist-Worn Sensor Data, International Joint Conference
on Ambient Intelligence (AmI-11), vol. LNCS 7040, Amsterdam, Springer
Verlag, pp. 151156, 11/2011.
This work focuses mainly on predicting how the sleeping behaviour varies
on different days of the week. With the gathering of long-term recordings of
people sleeping, I was eager to know how people change their sleeping schedule
according to different observational features, e.g., weekends vs. weekdays.

4. Marko Borazio and Kristof Van Laerhoven, Combining Wearable and Environmen-
tal Sensing into an Unobtrusive Tool for Long-Term Sleep Studies, 2nd ACM SIGHIT
International Health Informatics Symposium (IHI 2012), Miami, Florida, USA,
ACM Press, 01/2012.
This work combines the topics of papers 1.-3. I conducted the experiments that
yielded a lot of data to asses when the user is sleeping - based on wrist-sensor
data. Additionally, I took a different approach to cluster sleeping postures
that might be used in medical studies in the sleeping lab. I implemented the
algorithm that detects muscle contractions of the wrist while sleeping.
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5. Marko Borazio and Kristof Van Laerhoven, Improving Activity Recognition with-
out Sensor Data: A Comparison Study of Time Use Surveys, 4th International
Augmented Human Conference , Stuttgart, Germany, ACM Press, 03/2013.
The use of statistical data obtained over a population enabled us to extract user-
specific information from a large variety of people. I obtained the database for
this study directly from the Federal Statistics Office in Germany and conducted
the further evaluation of extracting relevant features for activity recognition.

6. Marko Borazio and Kristof Van Laerhoven, Using Time Use with Mobile Sensor
Data: A Road to Practical Mobile Activity Recognition?, 12th International Con-
ference on Mobile and Ubiquitous Multimedia, Lulea, Sweden, ACM Press,
12/2013.
As a contribution to paper 5., I obtained sensor data by monitoring many users
with a wearable sensor. Additionally, the participants were asked to keep a
diary of their activities. The scripts to classify the activities afterwards were
implemented by myself.

7. Marko Borazio, Eugen Berlin, Nagihan Kücükyildiz, Philipp M. Scholl and
Kristof Van Laerhoven, Towards Benchmarked Sleep Detection with Inertial Wrist-
worn Sensing Units, ICHI 2014, Verona, Italy, IEEE Press, 09/2014.
Additionally to the idea of monitoring people’s sleep in their home, I estab-
lished an algorithm of detecting sleep with an accelerometer-based device and
put the results of this algorithm in contrast to commonly known algorithm re-
sults. Eugen Berlin supported the implementation of the new algorithm, while
Nagihan Kücükyildiz and Philipp M. Scholl helped at the data acquisition
stage.

8. Marko Borazio, Jan Hendrik Burdinski and Kristof Van Laerhoven, Wear is Your
Mobile? An Empirical Comparison between Wearable and Mobile User Monitoring,
in submission.
My original idea to use the smart phone as a sensing platform was supported
by the implementation of an Android application by my Master student Jan
Hendrik Burdinski. His initial data acquisition was continued by myself, which
led to a total number of 51 participants in this study. The evaluation of the
data was conducted by myself.
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The spotting of complex human activities has been scrutinized from different
angles, showing not only the progress over the past years but the limitations
of activity recognition as well. The idea of using observational information

from past activities in the field of activity recognition was proposed, as well as
different data sources to obtain such information.

In the following sections we will introduce the concept of activity recognition
and the advances in this field, highlighting their potential and their limitations in
Section 2.1 as well. Further, we provide insight into the concept of rhythmic data
and to which extent they are used in the field of activity recognition. Specifically, we
will describe the general idea of rhythms and how such daily routines have been
spotted in previous work. Then, we introduce statistical data that are gathered by the
government and which already exhibit many daily routines of a country’s population
in Section 2.2. We will describe the datasets and highlight relevant studies that make
use of prior knowledge like statistics. Additionally, in Section 2.3, we will introduce
the rhythmic activity sleep and current methods of investigating sleep in medical
trials. Section 2.4 describes the spotting of sleep with medical and commercial
devices, giving an overview of commonly used sleep detection algorithms that are
relevant for the rest of this thesis.

11
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2.1 activity recognition - a summary

The idea of sensing the user’s context and therefore the user’s current situation was
first introduced by the term context-aware computing by Schilit et al. (1994). In order
to sense the user’s context, it is important to detect current activities performed.
For the purpose of activity recognition wearable sensors are used which appear in
different shapes and variations. For example, in medical research in the early 1970s
physical activities were measured by the use of a questionnaire evaluating energy
expenditure (Taylor et al., 1978). With the advances in the technology of wearable
devices, such questionnaires have been replaced by activity recognition systems that
automatically capture the user’s movements.

2.1.1 Applications

Recognizing activities accurately led to applications that are situated in many dif-
ferent scenarios in industry or in healthcare. We will describe the areas in which
activity recognition systems are used and highlight their approaches.

Healthcare Applications. The use of new technology like inertial sensors or wire-
less sensor networks (WSN) opens up new ways of observing what people are doing
without invading their privacy compared to using visually based systems like cam-
eras. One of the overall goals is to monitor elderly persons or patients in order to
provide the medical staff with sufficient information about their well-being (Lym-
beris and Olsson, 2003) or to monitor them over a longer timespan for diagnostic
purposes (Wu et al., 2008; Plötz et al., 2012). This way, early indications for a disease
or an emergency situation are provided, enabling us to immediately respond to such
scenarios (Jafari et al., 2007). The evaluation of well-being to prevent the user from
situations that might lead to an unhealthy lifestyle cover many different scenarios
like the monitoring of one’s physical work-out activities to stay in shape (Seeger et al.,
2011). By using a body-worn sensor to estimate the user’s current work-out activity
(e.g., performing curls), the data is displayed on a mobile phone to determine if the
user has reached his movement quota as prescribed by the physician. In Amft et al.
(2007), feedback is given regarding one’s lifestyle by monitoring nutrition habits.
Dietary intake cycles are categorized into different groups by the use of body-worn
sensors to classify eating and drinking events.

One prominent area of using sensor technology these days is in assisted living
scenarios. The goal is to distinguish different activities in order to assist the residents
while, for example, cooking to provide chronically ill with the possibility of living
on their own (Bächlin et al., 2010) or to predict what the user is going to do based
on past observations (Kautz et al., 2003). For this purpose location information
and the surrounding noise are used to detect the resident’s current whereabouts to
track unusual patterns in their behaviour. With such a system, the performance of
activities of daily living (ADL) are measured. Helping elderly persons to take their
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medication was explored in De Oliveira et al. (2010) by engaging people in a social
game. Similarly, researchers in Jafari et al. (2007) detected emergency situations
(such as falling) in the homes of elderly people in order to generate automatically an
emergency call.

In such a domain it is important to monitor ones sleep-wake cycles as well
to determine if the circadian rhythm is disturbed (Adami et al., 2003; Jean-Louis
et al., 2001a). A damaged sleep rhythm has negative effects on other daily physical
activities and on well-being (Liang, 2013) which is why more and more commercial
products are available on the market. Detecting sleep in a home set-up will be
discussed in more detail in Section 2.4 and in Chapter 5.

These examples show that the gathering of medical data provided by sensor data
is a major challenge. Not only do the local hospital or other physicians have to be
supplied with sufficient data but one has to find new ways of improving the quality
of clinical research as well. Additionally, having a database containing information
over, for example, a 5-year period might enable physicians today to re-evaluate
previous data in order to detect the origin of certain deceases. For such a scenario it
is necessary to make use of centralized databases that can be used by physicians all
over the world to enable multi-center clinical studies (Sahoo et al., 2011).

Industrial Applications. In industry activity recognition has been used to support
workers in their tasks, to guide new recruits through the work-flow process or to
avoid mistakes (Lukowicz et al., 2007; Stanford, 2002). With such a system it is
possible to overview the whole work process and to assess it, while being provided
with sufficient information to automatically generate a manual of the performed
steps. In such scenarios it is desirable that the user has his hands free and is guided
by a system that is unobtrusive but still lets the worker perform his normal routine.

There are many examples of studies with the main goal of reaching a higher qua-
lity in the work process, e.g., when assembling cars (Maurtua et al., 2007; Stiefmeier
et al., 2008). In such an automotive environment it is desirable to overview the qua-
lity of the car building process by making use of sensors embedded in the workers’
clothing and environmental sensors. In other scenarios like a wood workshop the
tracking of consecutive steps has been pursued, such as drilling or hammering (Ward
et al., 2006). With such a system, it is possible to provide the user with a proactive
assembly instruction, for instance, when putting together furniture (Antifakos et al.,
2002).

Sports and Entertainment. The quality of activities performed plays a key role
in many applications. Especially athletes benefit from knowledge about their own
performance. In Ladha et al. (2013) for example, a climbing performance analysis
system is presented as an automatic coaching system for climbers. The movements
are captured by evaluating inertial data which are categorized according to power,
control, stability and speed. Other activities can be recognized with the use of body-
worn sensors as well: Researchers in Ermes et al. (2008) detected cycling, Nordic
walking or rowing. Other work used sensor devices embedded in the protection
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suit of Taekwon-Do tournaments to assist referees in detecting a score (Chi, 2005).
Additionally to detecting the activity performed, sensing units are designed to
measure the energy expenditure level as well (Bonomi et al., 2010).

In the entertainment sector embedded sensors have been used for gaming pur-
poses: Heinz et al. (2006) introduced the approach of user interaction with martial
arts movements (Wing Chun) to apply an expertise score. In the commercial field,
Nintendo successfully introduced the Wii in 2006 which was further developed in
the gaming console Wii U2. The controller of the Nintendo Wii uses motion sensors
to determine the user’s movements which is the direct user input for video games.
Microsoft’s XBox One3 on the other hand makes use of the Kinect, a video camera
that enables the capturing of full body-motions, similar to Sony’s Playstation 4

4

camera.

Other Application Areas. Activity recognition research is found in many diffe-
rent domains. In the military, sensors are used for modern warfare which enable
the gathering of environmental information for mission planning by embedding
sensors directly in the soldiers’ clothing (Minnen et al., 2007b; Schlenoff et al., 2010).
Additionally, the soldiers’ movements and actions are identified such as crawling
or kneeling. For prevention of emergency situations people’s location changes at a
festival have been evaluated in Blanke et al. (2014). This way, predictions are made
about public spaces and whether they will be overcrowded, the intention being to
prevent such a scenario by the local police.

2.1.2 Recognizing Physical Activities

In this section we give an overview of common terms, characteristics used and
machine learning approaches for activity recognition with mobile and wearable
sensors. The term physical activity can be divided into two sub-terms, namely low-
level activities and high-level activities. These terms are not standardized in the
activity recognition community, which is why we introduce them here. Low-level
activities are activities like jogging, walking or standing. They are described by one
single, completed event that lasts only for a short period of time, i.e., a few minutes.
In contrast to that, high-level activities are of a more complex nature and imply
low-level activities that, strung together, describe a high-level activity. Examples of
such are eating lunch, assembling furniture or cooking, which usually last longer than
only a few minutes.

Many researchers take different approaches to recognize activities. Usually, a lot
of sensor data have to be recorded in order to train a new model that recognizes
activities. Depending also on the setting, such data have to be recorded again and
again which is why it is difficult to compare approaches of different researchers.
One way to minimize the need of excessive training data has been shown in Blanke

2http://www.nintendo.com/wiiu, last access 09/2014

3http://www.xbox.com/en-US/xbox-one/innovation, last access 09/2014

4https://www.playstation.com/en-us/explore/ps4/, last access 09/2014

http://www.nintendo.com/wiiu
http://www.xbox.com/en-US/xbox-one/innovation
https://www.playstation.com/en-us/explore/ps4/
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Figure 2.1: Activity recognition process.

and Schiele (2010). Here, high-level activities are defined as composite activities and
researchers propose to transfer knowledge from one composite activity to others by a
partonomy-based approach. It consists of single activities like drilling or screwing that
are part of two different workshop scenarios assembling a bookshelf and assembling a
mirror. The idea is to recognize activities in one scenario and use that information
in the second scenario. The results in Blanke and Schiele (2010) show that such
an approach is feasible and increases the recognition performance for composite
activities when compared to standard approaches.

After the recording phase, the data has to be labelled accordingly to the activity
that really occurred (which is called the ground truth). By extracting interesting pro-
perties from the data (the so-called features), we obtain a description of the activities
and minimize the classification effort on the hardware side. The preprocessed data
is then trained on and the classifier yields a confidence score for the recognized
activity. Figure 2.1 shows the whole activity recognition process.

Feature Extraction

An important step in the activity recognition process is the extraction of relevant
characteristics in the recorded data stream. Such features hold valuable information
in distinguishing various activities. Usually, finding the right features to apply in the
classification process is done by manual observation of the data. With such a feature
extraction the basis is given for an input to pattern recognition or machine learning
algorithms. The challenge in the algorithm design is to find the best feature that
captures relevant motion characteristics and which is at the same time insensitive to
inaccuracies that result from the limited resolution and sampling rate of the sensor
used. Variations in sensor placement or other sources of noise need to be minimized
as well like environmental magnetic fields. The most common features are described
in the following paragraphs.

Time-Domain Features. The most prominent features used in activity recognition
are mean and variance which express the user posture and acceleration of the user
over a specific time-frame respectively (Bao and Intille, 2004; Huynh and Schiele,
2005; Lester et al., 2006; Maurer et al., 2006; Ward et al., 2005). Huynh and Schiele
(2005) assessed the use of such features by utilizing cluster precision to rank the
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features. Other features are standard deviation (Ravi et al., 2005) or peak extraction
where characteristic peaks are detected and used for classifying activities (Van
Laerhoven et al., 2003). In the medical field, zero crossing techniques are used as
features to determine movement segments for sleep detection. In Chapter 2.4.1
we will discuss such algorithms in more detail, showing also how a movement or
non-movement segment is detected efficiently in Chapter 5.

Other Features. Frequency-domain features such as spectral energy, entropy or Fast
Fourier Transformation (FFT) are used for activities with recurring motion patterns
(Huynh and Schiele, 2006b; Lester et al., 2006). In Berlin and Van Laerhoven (2012a)
the raw sensor data is first approximated by linear segments, then modelled by
symbols in order to detect similar sequences that represent motifs of activities.
Another type of feature that is applied in activity recognition is based on wavelet
transform to characterize non-stationary signals for recognizing low-level activities,
e.g., walking or running (Preece et al., 2009).

Evaluation Measures

A common measurement for describing the recognition rate for an activity is accuracy,
which can be derived from a confusion matrix. A confusion matrix is a n× n matrix,
where n is the number of classes in the classification. The rows of the matrix
represent the ground truth, i.e., the actual class, while the columns represent the
predicted classes. A benefit of a confusion matrix is that it directly shows if the
system is confusing two classes, i.e., commonly mislabelling one as another. Consider
the confusion matrix in Figure 2.2 (left) with n = 3. Accuracy is the sum of the
diagonal divided by the sum of all occurrences (here: 15/21 = 0.71).

The overall accuracy is often not enough to reveal particular details of the system’s
performance. To gain this information, calculating per class performance values,
namely precision and recall, are necessary. For this purpose, the confusion matrix
of n > 2 has to be considered as a two-class matrix, by summing up the rows and
columns outside the actual class. We obtain the confusion matrix in Figure 2.2 (right).
True positives (TP) are the correctly predicted classes according to the ground truth
and the f alse positives (FP) are the wrongly predicted classes in regard to the ground
truth. The f alse negatives (FN) on the other hand are all the activities labelled as one
class but do actually belong to another class. The true negatives (TN) are the sum of
all the true positives of the other classes, i.e., the sum of all correctly predicted classes.
Here, precision is the amount of correct labelled classes (TP) that was labelled as the
activity in the ground truth:

precision =
true positives

true positives + f alse positives
(2.1)

From equation (2.1) we calculate for class 1 in Figure 2.2: 6/(6 + (1 + 1)) = 0.75.
Recall is defined as the proportion of the data originally labelled as an activity that
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C2′ FN TN

Figure 2.2: Left: Example of an confusion matrix with three classes C1, C2 and
C3. Right: Confusion matrix shown as a two-class matrix, with classes C1 and
C2′ = C2&C3.

was correctly classified as the activity:

recall =
true positives

true positives + f alse negatives
(2.2)

leading to a recall of 6/(6 + 1) = 0.86 for class 1.
With such measurements, we are able to describe the performance of our algo-

rithms, by either obtaining a high recall or precision value or a trade-off between
these two, depending on the study being conducted.

Platforms for Activity Recognition

Most research studies propose sensor platforms that are required to be unobtrusive
and that find acceptance in everyday life. Therefore, sensor systems are used that
can be easily integrated into existing equipment like watches (Lester et al., 2006)
or into garment (Dunne et al., 2006; Paradiso et al., 2005; Philipose et al., 2004).
Mobile phones are being considered as well since they already embed many sensors
like accelerometers or gyroscopes (Kwapisz et al., 2011). Apart from using one
sensor to detect activities, another approach is the combination of sensors such as
accelerometers with audio (Ward et al., 2005) or video (Brashear et al., 2003). For
the latter purpose, acceleration is compared to video data to correct misclassified
movements.

Sensor Types. In order to measure rapid movements, Kunze et al. (2006) used
several accelerometers with gyroscopes to recognize basic martial arts movements.
In garments, piezoresistive fabric sensors for acceleration, respiration sensors and
ECG electrodes are used in the context of health care for patient monitoring (Paradiso
et al., 2005). Another sensor type worked into the back part of the garment is the
plastic fiber sensor (POF), a light sensor used to measure the amount of light that
is being transmitted (Dunne et al., 2006). The light sensor detects electromagnetic
radiation in a spectral range in order to monitor the sitting position to inform the
user of a wrong sitting position. RFIDs are considered, for example, in gloves
for identifying tagged items nearby (Patterson et al., 2005). This way activities are
recognized such as holding a cup which is equipped with an RFID-Tag. Textile
pressure sensors (Meyer et al., 2006) and force sensitive resistors (FSR) (Amft et al.,
2006) are used in experiments for detecting muscle activity. Two electrodes equipped
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with conductive yarn on both sides of a compressible spacer are worked into the
textile. The electrodes establish a capacitor whose capacitance changes when the
spacer is compressed (Meyer et al., 2006).

Sensor Systems. Many different approaches and sensor systems have been pur-
sued by research groups for capturing sensor data. One prominent example is the
use of a wrist-worn device5 that logs inertial and light data over a long timespan.
With such a device it is possible to capture low-level activities (Seeger et al., 2011)
and high-level activities (Scholl et al., 2013). The device will be introduced in more
detail in Chapter 3. Other examples are the use of electroocculography to trace
the eye movements to detect activities (Bulling et al., 2011) or platforms that are
equipped with a 2-axis accelerometer, a skin temperature, a galvanic skin response
and a heat flux sensor (Sunseri et al., 2009). The latter is used to monitor the activity
performance during work-outs and while resting, e.g., sleeping.

Commercial platforms like the Nike+ Fuelband6 or Fitbit One7 are available for
many researchers but scarcely used due to the closed-source nature that prevents the
use of the raw sensor data. Such fitness devices raise an interest in the community
since they can be used directly and display information about oneself, e.g., how
many steps one has taken per day or how many kilometres one jogged. Although
the Fitbit has been used in Montgomery-Downs et al. (2012) for assessing sleep, the
device was found to misidentify sleep patterns.

Activity recognition with mobile sensors has been investigated for some years
now (Brezmes et al., 2009; Sun et al., 2010), with researchers also analysing if it is
feasible to use a mobile device for detecting activities (Patel et al., 2006). In Brezmes
et al. (2009), basic human movements (walking, sitting, standing, climbing stairs) are
detected in real-time on a mobile phone by analysing the accelerometer data with
a high confidence. Similar results are obtained by researchers in Sun et al. (2010),
again detecting basic activities on a mobile phone but considering the orientation
of the device as well. The performance of the system is high, stating that basic
activities can be captured with a mobile device. Patel et al. (2006) on the other hand
investigated for which portion of the day a mobile device (smart phone) is with the
user. Interestingly, results indicate that half of the time the mobile phone is not with
the user.

We will show in detail in Chapter 3 that a mobile phone can be used in certain
ubiquitous computing scenarios for activity recognition.

Activity Recognition Approaches

Many machine learning algorithms are commonly used for activity recognition with
wearable sensors. In the following we will highlight a few to show the achieved
progress and to introduce methods that are used within this thesis.

5http://www.ess.tu-darmstadt.de/hedgehog, last access 09/2014

6nikeplus.nike.com/, last access 09/2014

7www.fitbit.com/one, last access 09/2014

http://www.ess.tu-darmstadt.de/hedgehog
nikeplus.nike.com/
www.fitbit.com/one
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Supervised Learning. Supervised learning or classification is a technique for cre-
ating a classification function from the training data. The training data consist of
pairs of input objects, feature vectors, and class labels (ground truth). The task of
the supervised learner is to predict the value of the function for any valid input
object after having observed a number of training examples. A common method
is the Support Vector Machine (SVM) (Anguita et al., 2012; Cortes and Vapnik, 1995;
Cristianini and Shawe-Taylor, 2000), for which a classification process looks as fol-
lows: (1) Gather sensor data and simultaneously the ground truth. (2) Label the
data according to the ground truth and extract appropriate features. (3) Divide the
dataset into training and test sets, whereat the training and test sets are interchanged
before testing it again. (4) Training is repeated several times according to the new
combination of data. (5) Validate the algorithm by using the test set. A so-called
cross-validation (steps 3-4) ensures that by several combinations of data the classifier
yields a high confidence of the recognized activity.

There are several other methods that follow the same procedure, such as k-
Nearest-Neighbour (kNN) (Kunze et al., 2006; Maurer et al., 2006; Ravi et al., 2005),
Naı̈ve Bayes (Maurer et al., 2006; Ravi et al., 2005) or decision trees (Bao and Intille,
2004; Maurer et al., 2006; Ravi et al., 2005). A Hidden Markov Model (HMM) (Brashear
et al., 2003; Lester et al., 2006; Murphy, 2003; Patterson et al., 2005), for example,
is a statistical approach in which the system being modelled is assumed to be a
Markov process with unknown parameters and the challenge is to determine the
hidden parameters from the observable parameters. The extracted model parameters
can then be used to perform further analysis, for example, for pattern recognition
applications.

Ensemble learning is the idea of fusing two or more classifiers to improve the
recognition rate for activity recognition and has been mentioned in several works
(Alexandre et al., 2001; Polikar, 2006; Su et al., 2009; Tax et al., 2000). Zappi et al.
(2008), for example, use multiple body-worn sensors for activity recognition in the
context of quality assurance in a car assembly factory. Using a discrete HMM, the
results led to an improvement in the recognition rate. In Polikar (2006), different
ways of classifier fusion or ensemble classifiers are being discussed, like mixture of
experts, bagging, boosting or algebraic combination rules. The latter are usually majority
voting, sum and product rule. Researchers in Alexandre et al. (2001) evaluated the two
common combination rules (the sum and product rule) for fusing classifiers by their
posterior probabilities.

In Section 6.2 we will use the kNN approach to classify sleeping postures. SVMs
are used in Section 6.2 to classify exceptional movements during sleep and in
Chapter 7 to detect common daily activities. An Ensemble of classifiers is presented
in Chapter 7 as well to embed prior knowledge in the classification process in order
to increase the recognition rate.

Unsupervised Learning. In contrast to a completely supervised learning method,
unsupervised learning is the classification of activities without the knowledge of
the user’s activities. The common approach taken is completely different from the
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supervised learning approach, since the labelling and training phase are not required.
Instead, a model of the data is created, such as when using a clustering routine
like the Kohonen Self Organizing Map (KSOM) (Kohonen, 1990; Van Laerhoven et al.,
2003). The data is allocated to specific centroids because of their similarity to those
centroids, which enables the detection of similar data.

Other examples for unsupervised learning techniques are k-means (Huynh and
Schiele, 2005; Krause et al., 2003; Kwon et al., 2014), motifs (Fuchs et al., 2009; Minnen
et al., 2006, 2007a; Murakami et al., 2005) and multiple Eigenspaces (Huynh and Schiele,
2006a,b).

In Chapter 6 we will use the KSOM to allocate sleep postures to different color
codes in order to illustrate similarities.

Semi-Supervised Learning. A semi-supervised approach is situated between the
supervised and the unsupervised learning domain and is applied when the obtained
data are only partially labelled. The gathering of sensor data usually comes with
a high cost: For a supervised learning technique lots of training data is needed,
which requires a lot of effort in first of all obtaining the ground truth and afterwards
annotating the sensor data accordingly. A semi-supervised approach is beneficial
when only small parts of the data need to be known and for real-world settings.
Transductive Support Vector Machines (TSVM), for example, infer the correct labels for
unlabelled data by using only a small portion of labelled data (Zien et al., 2007).
Other examples of semi-supervised approaches can be found in Longstaff et al.
(2010); Stikic et al. (2008, 2009); Subramanya et al. (2006).

2.1.3 Rhythm Detection

An important research field in activity recognition is the detection of temporal
patterns such as recurring activities at specific point in time. The daily routine of a
person is defined by his or her behaviour. For example, before a co-worker starts to
work he will probably follow his usual routine and first get a coffee and have small
talk with his colleagues. As this is true for most of the colleagues in an office, such
pattern knowledge can be used to describe the social context the user is currently
in. In many different scenarios such information is helpful to determine a priori
knowledge, i.e., knowing what a person is going to do in the future. Predictions have
been used in various scenarios for activity recognition (Farrahi and Gatica-Perez,
2011; Krumm and Brush, 2011; Scott et al., 2011; Tominaga et al., 2012; Zhu et al.,
2013). We will summarize related work that motivates the topic of this thesis.

Behavioural Rhythms

Being able to predict when someone is available is beneficial in many different
scenarios. For example, if it is known when a person is currently at his work-desk,
distributed team members are aware of the availability of their co-worker. Hill and
Begole (2003) observed for such a purpose the computer activity and established
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a namespace for different locations and associated with that location the activity,
e.g., commuting from office to home. Such a model of patterns gives the possibility
to not only show the availability of a person but reflects what the person is doing
throughout the day.

Recently, researchers in Tominaga et al. (2012) predicted a person’s going-out
behaviour in order to asses if the person is going to leave the home or not. A rhythm
of a person’s habits has been established by using a camera to determine if the user
is at home or not. This information was then used as a prior for a Hidden Markov
Model (HMM). Here, time histories of people leaving or entering the home have
been generated.

A similar social aspect has been monitored by Eagle and Pentland (2006) by
observing the location and proximity of mobile phones in order to detect weekly
patterns. The idea of using mobile phones not only for real-time activity recognition
but also for gathering useful information about the user and the activities, has
been investigated in Farrahi and Gatica-Perez (2008), in order to develop rhythmic
behavioural data that can be used to detect daily routines. We will have a look at
such data in Chapter 4, which has not been gathered by mobile devices but by other
means.

Daily Routines

The work in Van Laerhoven et al. (2008) uses diary data to extract daily routines
in order to improve activity recognition. The first step to capture routines without
the user having to interfere is to gather environmental data, either from a wearable
sensor, or from sensors that are installed, for example, in the home or workplace.

Especially in healthcare such scenarios have to be considered, when, for example,
elderly people living on their own are monitored in order to be able to respond
to emergencies. Daily routines can help here by predicting what the user will be
doing most likely. A similar idea is being pursued in Krumm and Brush (2011),
by gathering prior information by keeping a diary and additionally obtaining GPS
information about a person being at home. The paper shows how the prior location
improves the prediction.

In Farrahi and Gatica-Perez (2011), on the other hand, individual and group
behaviours have been investigated in a large mobile phone dataset. A probabilistic
topic model has been used on the data, detecting routines in the data to determine
behavioural patterns that give an insight into daily routines. Overall, the research
community is interested in what people are doing next, predicting the behaviour not
only from the same persons but from various individuals as well. Such information
could then be used in different models that deal with sequential data where such
prior probabilities or even posterior probabilities might improve the classification
results. An example of such a classifier is the Conditional Random Field (CRF) (Wallach,
2004), which is a temporal probabilistic model.

In the following section we will have a close look at daily routines and behavioural
data from governmental databases.
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2.2 time use surveys

The idea of using prior knowledge led to an investigation of databases that are
already publicly available (Partridge and Golle, 2008). More specifically, several
countries perform inquiries from which statistical information about the population
can be derived. These time use survey data are usually obtained by keeping a diary
for one or more days, which give, for example, an insight into a countries’ activities.
Such data has been gathered since the 19th century, with Russian officials being the
first to collect statistical information of peasant families starting from the 1860s (the
zemvsto statistics, Gershuny (2011)). Over the years the idea of keeping track of
the population became more and more prominent, especially for the purpose of
capturing a nation’s well-being. First, each country performed their own time use
survey data collection but with the possibility to store data digitally in databases,
time use surveys have become more and more standardised. This way the databases
can be used internationally, enabling comparisons between different countries or
fusing surveys to one big survey, like the Multinational Time Use Survey (MTUS8)
or the Harmonised European Time Use Survey (HETUS9). The HETUS is being
maintained by EuroStat, the statistical office of the European Union, and embeds
time use data from 15 different European countries since 1993. Data analysis can be
conducted directly on the HETUS web page, though displaying summary statistical
information only. All participating countries are using the same database structure
in order to be able to fuse the data afterwards. Additionally, activity and location
descriptors are being logged in the database and abstracted: They are categorized
in tiers and recorded for at least 24 hours. Participants are included according to a
rigid selection process and financially recompensed, and for each a standard and
anonymised set of demographic information is available.

The usage of time use data is not trivial: Although some databases are freely
available, they are not useful for the purpose of deriving activity information about
the population, because they contain only summarized statistical information. In
the following, we will have a closer look on the German Time Use Survey (GTUS)
2001/2002 dataset that was used in Chapters 4 and 7 of this thesis, as well as the
American Time Use Survey (ATUS10) 2006 database that was used in recent work
(Partridge and Golle, 2008).

2.2.1 The American Time Use Survey

The ATUS dataset is one of the few time use study databases that is freely available
without restriction and is being updated every year since 2003. Self-reported activities
of US residents are logged for 24-hours. It contains 18 different (Tier 1) activity
groups and in total a distinction is made between 462 activities (Shelley, 2005). In

8http://www.timeuse.org/mtus/, last access 09/2014

9https://www.h2.scb.se/tus/tus/, last access 09/2014

10http://www.bls.gov/tus/datafiles 2006.htm, last access 09/2014

http://www.timeuse.org/mtus/
https://www.h2.scb.se/tus/tus/
http://www.bls.gov/tus/datafiles_2006.htm
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addition to the activities, participants logged the time the activity started, how long
it lasted and where it took place. The dataset is anonymised after collection and
contains information about gender and age for all 12,943 participants.

The dataset was primarily used by Partridge and Golle (2008). The work contains
a detailed description on how these data might be applied for activity recognition,
and reports on a study using a 10-fold cross-validation analysis of the features,
showing that the hour of day and location are the most useful features for activity
estimation. The authors note in their paper that studies performed by different
nations vary in terms of participant behaviour (observed, for instance, in response
rates) and constructs (motives range from quantifying unpaid work to measuring
exposure to environmental pollutants). This is exactly the motivation for the work
conducted in Chapter 4, as it reports on studies and comparisons with the time use
data from a large European country. For more information on the dataset we refer
to the original work in Partridge and Golle (2008) that scrutinized the ATUS 2006 in
depth. We will now introduce the time use survey that is the basis for the work in
Chapters 4 and 7.

2.2.2 The German Time Use Survey

The GTUS was first surveyed in 1991/1992, being updated every 10 years and is
only accessible by regional government employees, after going through a formal
admission process. The data acquisition takes usually a year (therefore it is labelled
1991/1992), in order to compensate seasonal bias and also to capture certain popula-
tion groups (e.g., a single mother or father). We used the survey from 2001/2002,
since the data from the current measurement period (2011/2012) will be available
the earliest in 2015.

The 2001/2002 GTUS consists of data from 13,798 participants, all older than
10 years, who kept a detailed diary for three days each. They wrote down which
activity they performed in 10-minute slots. The diary keeps account of the location
where the activity took place, as well as whether a secondary activity was performed
(e.g., watching TV while eating) and who was present at the time (e.g., a household
member). Additionally, personal information like relationships between household
members are being logged. In total 272 single activities were distinguished and
allocated to three hierarchical tiers, with Tier 1 containing generic descriptions such
as personal care, household activities and mass media, Tier 2 including a more precise
description of the activity, like sleeping, cooking and reading, while Tier 3 contains the
highest specificity, such as sewing clothes, doing laundry, and traveling on a bus.

Table 2.1 depicts an example of such a dataset (of the household with the ID
no.123), displaying the first two household members and their age (ph01b2x) and
gender (ph01c), citizenship (ph01d), marital status (ph01e) and if they are in parental
leave (p05). Within a household, each member is allocated to an ID (idpers), whereas
each household is assigned to an unique ID (idhh). A second dataset shown in Table
2.2 holds for the same household the main performed activities (zhc76) for timeslot
76 (which corresponds to the time interval between 16:40 and 16:50), as well as the
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idhh idpers ph01b2x ph01c ph01d ph01e ... p05 ...

123 1 34 female german married ... yes ...

123 1 34 female german married ... yes ...

123 1 34 female german married ... yes ...

123 2 36 male italian married ... no ...

... ... ... ... ... ... ... ... ...

Table 2.1: The person-specific GTUS 2001/2002 dataset, displaying the household
ID (idhh), person ID (idpers), age (ph01b2x), gender (ph01c), citizenship (ph01d),
marital status (ph01e) and parental leave status.

idhh idpers idtag ... zhc76 ... zvc76 ... zgc76 ...

123 1 1 ... cooking ... at home ... listening to radio ...

123 1 2 ... going shopping ... in car ... listening to radio ...

123 1 3 ... cooking ... at home ... talking on the phone ...

123 2 1 ... eating ... restaurant ... talking ...

... ... ... ... ... ... ... ... ... ...

Table 2.2: Entries from the GTUS 2001/2002 dataset, displaying the household ID
(idhh), person ID (idpers), recorded day (idtag = {1,2,3}), main activity in time-slot 76

(zhc76), location or means of transportation in time-slot 76 (zvc76) and simultaneous
activity in time-slot 76 (zgc76).

locations (zgc76) and simultaneous activities (zgc76). In Chapter 4 we use these two
datasets by fusing them both into one table for feature extraction in the context of
activity recognition.

2.2.3 User Monitoring

Monitoring hundreds to thousands of participants over a longer time-span, as it is
being done with the time use survey approach, has in recent years become easier
especially in mobile activity research. Some large-scale studies involving many
participants being monitored continuously over weeks to months have been reported
that are relevant in the context of this thesis. For instance, Do and Gatica-Perez (2011)
describe an experiment involving smartphone-based monitoring of 40 participants
over a year to mine for human interactions. This study was widened recently in the
framework of the Lausanne Data Collection Campaign11 to 200 participants. Another
work also uses data from mobile phones of 215 subjects over 5 months to analyse

11 http://research.nokia.com/page/11367, last access 09/2014

http://research.nokia.com/page/11367
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dwelling times, places, and mobility patterns (Eagle et al., 2009). As wearable and
ubiquitous sensors are harder to deploy, similar studies in this area have had far
less participants, though some studies have monitored their participants for several
weeks (Van Laerhoven et al., 2008). A different approach was taken in Berchtold
et al. (2010) by crowdsourcing data annotation for a wearable activity and context
recognition, using the mobile phones of the participants.

2.3 sleep

In this section we will introduce the activity sleep and give insight into important
aspects, such as circadian rhythms and how sleep is being assessed in a medical
set-up. This knowledge is particularly important for understanding how to detect
sleep with an activity recognition system. After an introduction to sleep itself, we
will have a closer look at sleep studies in a sleep laboratory.

2.3.1 A Definition

About one third of our life we spend sleeping which sustains the fact that sleep is as
important as proper nutrition and common exercising. It is an essential part of our
life and has been identified to be crucial to our health for a variety of reasons. Sleep
deprivation is known to lead to stress, a disturbed circadian rhythm, weight loss
and, eventually, to death (Banks and Dinges, 2007; Siegel, 2009; Van Dongen et al.,
2003). Yet little is known about sleep which is why researchers are determined to
conduct more research in that field.

Sleep is a rhythmic activity and reoccurs every day, according to the circadian
rhythm which is the self-regulation of one’s 24-hour cycle, including sleeping be-
haviours. Sleep manifests itself in two different sleep phases. The sleep phases
consist of Non-REM and REM (Rapid Eye Movement), whereat the latter is also called
the dream phase. The Non-REM phase is divided into three different sleep stages (S1

- S3) which depict the transition from falling asleep to deep sleep. While stages S1

and S2 are light sleep stages, S3 describes the deep sleep stage. Note that traditionally,
a 4th sleep stage (S4) is sparsely present in the dataset’s polysomnography section,
although the concept of this sleep stage was abandoned in 2012. During the night we
go through different sleep stages peaking in the REM phase, in which we show no
movement at all due to the shut-down of all body muscle activities. Solely the brain
itself is still active and lets one experience vivid dreams. The typical characteristics
of each stage can be captured by muscle contractions especially around the eyes
(which is why it is called rapid eye movement). This is also primarily the reason
why sleep cannot accurately be evaluated outside a sleeping laboratory environment:
Without proper sensing systems to capture certain characteristics, it is very hard to
determine when a person has really fallen asleep or when one passes over into a
different sleep stage.
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Figure 2.3: Left image: The author in a sleeping lab attached to 25 hard-wired
sensors to capture sleep stages. Right image: The resulting sensor readings of one
night, browsable in a sleeping lab tool, showing additionally to EEG and EMG a
video feed of the patient while sleeping.

2.3.2 Polysomnography

Polysomnography (PSG) is the golden standard for observing sleep-wake patterns.
It incorporates multiple sensing modalities to capture relevant sleep information
with typically 20, mostly wired sensors attached to the patient’s face, torso and
limbs (see Figure 2.3, left image, for an example of such a wired set-up). In addition,
the patient is recorded by video for the entire night. As a result, relevant data can
be accurately captured allowing in depth analysis. However, PSG is limited for
short-term observations, that is, often a few nights are observed only, due to its
cumbersome set-up. Such monitoring tends to be uncomfortable and less feasible
over longer periods.

Sleep is assessed by using information that is obtained by electroencephalography
(EEG), electrooculography (EOG) and electromyography (EMG) (Kushida et al., 2005;
Rechtschaffen and Kales, 1968). With such information and certain changes in the
electrophysiological recordings it is possible to divide sleep into REM and Non-
REM. Usually, such information is presented in a hypnogram which depicts time
elapsed sleep stages for one night. Additionally, cardio-respiratory information, leg
movements and a video feed are recorded during a stay in the sleep lab. Depending
on the reason for assessing ones sleep, more or less sensors are attached to the body.
Through the additional information gathered, other aspects of sleep during certain
stages can be captured and evaluated. An example of such a recording is shown
in Figure 2.3, right image. The figure depicts the analysed data after a stay in the
sleeping lab, which can be browsed through with the standard software, showing for
each timestamp the sensor information and the video feed of the patient sleeping.

Figure 2.4 shows an example of an hypnogram obtained by a healthy patient. It
lists additionally information like total sleep time (TST), sleep latency or the percentage
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Figure 2.4: A typical hypnogram established usually after a few days of the stay in
the sleep laboratory. It shows additional information such as total sleep time (TST),
average heart frequency or arterial oxygen saturation (SaO2). [With kind permission by
the head of the sleep laboratory Dr. Steinmetz in the Marienhospital in Darmstadt, Germany
and the patient.]

of the occurrence for each sleep stage during the night. In the hypnogram, the REM
phase is marked by a thick bar to highlight this phase. Per night, each healthy person
passes a fixed sequence of sleep stages. These sleep cycles are characterized by an
average length of 90-110 minutes. Per night 4 to 6 sleep cycles occur for a healthy
young male. Such a typical sleep cycle is shown in Figure 2.5. For more information
on polysomnography in general we refer to Peter et al. (2007).
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Figure 2.5: The typical sleep cycle for a healthy young male. The transition from
awake (sun) to Non-REM1 (S1) usually lasts only a few minutes. The whole cycle
of S2, S3, REM, S2 repeats itself 4 to 6 times throughout the night, with varying
durations of each sleep stage.

The detection of sleep stages without the use of polysomnography is not trivial
and has not yet reached a scientific standard. There exist portable polysomnographic
appliances that are more comfortable to use since the patient can sleep in his or her
common environment (Mykytyn et al., 1999). Still, the electrodes and other sensors
need to be attached to the body, usually by the patients themselves, which leads to
faulty or incomplete data. This requires to repeat the polysomnography at home and
is a burden for the patients. The patient still feels like a ”marionette” (according to a
sleep lab patient that has been interviewed during the course of this thesis) through
the hard-wired sensors that keep him most of the time in one position. Additionally,
the accuracy of a sleeping lab set-up is never reached. Such a portable solution is
applied whenever the patient is not able to sleep in a laboratory or whenever sleep
in the usual environment has to be captured.

Nevertheless, researchers try to find new ways not to replace polysomnography
but to enable the investigation of sleep stages or certain sleeping characteristics by
other means than polysomnography (Herscovici et al., 2007; Kawamoto et al., 2013;
Walsh et al., 2011). Other common techniques include non-wearable solutions that
deploy sensors in the home of the patient. Bain et al. (2003) describe, for instance,
a pressure mapping technology that could give an extremely detailed view on the
total body posture of the patients throughout the night. Recent research in sensor
networks (Hoque et al., 2010) have offered similar fine-grained approaches to detect
and monitor the patient’s body positions and movements by active RFID-based
accelerometers (WISPs) placed on the mattress. Camera-only methods have been
explored as well (Liao and Yang, 2008), e.g., with the sleeper’s motion detected by a
night stand camera’s frame-by-frame differences and estimates of body posture.

In Chapter 6 we will introduce the detection of sleeping postures which can be
used as a sleep quality measure. In the following section we will give an overview
of standard approaches to detect sleep with actigraphs for medical purposes and
commercial devices for private use.

2.4 sleep detection

The importance of finding out more about the way we sleep and whether our sleep
is sufficient is not limited to traditional disciplines such as somnology, neurology or
psychiatry: Providing a better picture on how well we sleep is relevant to everybody.
Many off-the-shelf commercial devices can be bought for this purpose in a wristband
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form factor, from relatively compact devices such as the FitBit One12, the Nike+ Fuel-
Band13 or the Jawbone UP14 that are primarily aiming at fitness and activity tracking,
to clinically evaluated devices such as the Actiwatch (Cambridge NeuroTechnology,
Cambridge, UK, Kushida et al. (2001)). Some evaluations of commercial devices
have shown that sleep information obtained from many such devices, like total
sleep time (TST), is not sufficiently accurate for sleep disorder assessment, (e.g.,
Montgomery-Downs et al. (2012), which compares the FitBit to a commonly used
actigraph for sleep evaluation). Such devices might be a benefit for private use but
have been found to overestimate sleep by a large margin (Pollak et al., 2001).

While PSG captures in-detail data during sleep over a single or a few nights only
(see Section 2.3.2), this method is expensive, time-consuming, and the first-night-effect
(Agnew et al., 1966), i.e., a bad perception of sleep due to a novel environment, is
inevitable. Therefore, alternative solutions, e.g., accelerometer-based wrist-worn
devices that might provide additional long-term information on top of polysomnogra-
phy, are being pursued and investigated as a complementary instrument. Actigraphy
has been used in somnology as the de facto method for observing long-term trends
that become only evident during weeks or months (Welk et al., 2004). These devices
are not necessarily deployed by every sleeping lab, since they tend to be expensive to
acquire, to maintain, and to replace. Nevertheless, given such long-term capabilities,
actigraphy then also captures activity levels during the day, resulting in a more
holistic view on human activity.

In this section we will introduce the commonly used sleep detection algorithms
and then describe commercially available products and their benefits in regard to
sleep detection.

2.4.1 Algorithms of Clinically Tested Devices

Several research groups have investigated the use of actigraphy for sleep disorder
assessment such as sleep-wake disorders, sleep-schedule disorder, periodic limb
movement (PLB), narcolepsy and sleep apnoea (Jean-Louis et al., 1999; Morgenthaler
et al., 2007; Sadeh et al., 1995; Sadeh, 2011). The results indicate that actigraphs can
be used in addition to polysomnography, especially if it is important to monitor the
patient in his or her usual environment, over longer stretches of time, or in paedi-
atric treatment. The actigraph approach typically captures levels of activity on a
minute-by-minute basis. The data returned consist of activity counts, a measurement
that has not been standardized across devices, and interpreted by each actigraphy
manufacturer individually, making it challenging to compare the different algorith-
mic approaches with each other. It is most commonly implemented as a wrist-worn
device that can be easily deployed and worn without any additional effort. However,
in order to interpret the data captured, patients are usually required to annotate
the sleeping and awake times (Littner et al., 2003). Nevertheless, actigraphs are also

12http://www.fitbit.com, last access 09/2014

13http://nikeplus.nike.com, last access 09/2014

14http://www.jawbone.com, last access 09/2014

http://www.fitbit.com
http://nikeplus.nike.com
http://www.jawbone.com
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known to be less accurate in detecting wake segments during sleep and for sleeping
disorders that exhibit vast amounts of such motionless periods such as in insomnia
(Lichstein et al., 2006).

Based on the activity count measure, two validated algorithms have been intro-
duced in previous research that calculate sleep parameters as well as sleep-wake
cycles in actigraphs: (1) Oakley (1997) is used for the Actiwatch (Cambridge Neu-
roTechnology, Cambridge, UK, Kushida et al. (2001)), and (2) Cole et al. (1992) is
the basic approach for the Mini-Motionlogger actigraph (de Souza et al., 2003). For
both algorithms, the sleep-wake cycle is calculated offline, requiring the data to
be downloaded after recording. Many sleep studies make use of these formerly
mentioned devices, detailing how accurate these devices can detect sleep for a large
variety of disorders (Benson et al., 2004; Jean-Louis et al., 2001a; de Souza et al., 2003;
Weiss et al., 2010). These algorithms also form the basis of many novel devices that
are equipped with a 3D MEMS (Microelectromechanical System) accelerometer, as
opposed to the traditional actigraphs that contain an omni-directional accelerometer.

Cole et al.

Cole et al. in their approach make use of the zero-crossing technique (Jean-Louis et al.,
2001a) to calculate first the activity counts for a specified epoch, i.e., a time interval
in which activity counts are being calculated. The activity counts per epoch are used
to determine the total activity count D by considering a 7-minute window according
to the following equation:

D = P ·
2

∑
i=−4

Ai ·Wi (2.3)

which essentially detects sleep whenever D < 1. In this formula, P is the scaling
factor and W the weighting for each activity count, calculating the weighted sum
over the epochs 4 minutes prior (A−i) and 2 minutes after (A+i) the current epoch
(A0). The common parameters according to Takeshima et al. (2014) are:
P = 0.0033, W−4 = 1.06, W−3 = 0.54, W−2 = 0.58, W−1 = 0.76, W0 = 2.3, W+1 =
0.74 and W+2 = 0.67.

Oakley

Oakley presented a similar approach in his paper (Oakley, 1997) to detect sleep
and wake phases, making use of amplitude-based activity counts. The algorithm
examines the epochs in the 2 minutes before and the 2 minutes after a scored epoch:

A =
1

25
a−2 +

1
5

a−1 + 2a0 +
1
5

a+1 +
1

25
a+2 (2.4)

where A is the total activity count for the scored epoch a0, a−x is the activity
count before the scored epoch and a+x the one after, with x ∈ [1, 2] minutes. Each
surrounding epoch is multiplied by a weighting factor ( 1

25 and 1
5). The sensitivity

threshold for A can be set to high (80), medium (40) or low (20) sensitivity, detecting
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sleep whenever A < threshold. Low and medium sensitivity thresholds correlate to
a high degree with sleep estimated by polysomnography (Kushida et al., 2001).

We will focus in this thesis solely on the algorithms and their ability to accurately
detect sleep and wake phases, from any source of inertial sensor data. In Chapter 5

the aforementioned algorithms are used to evaluate a novel sleep detection approach
by using a raw 3D MEMS acceleration sensor.

Several studies are dedicated to the detection of body posture and movements
during the sleep, motivated especially by sleep apnoea (Hedner et al., 2004) and as
a tool to measure for sleep quality (Liao and Yang, 2008). This thesis addresses in
Chapter 3 the long-term challenges in particular by integrating methods for night
segmentation, posture clustering, and myoclonic twitch detection, in order that these
can be applied in behavioural monitoring.

2.4.2 Other Commercial Products

Accelerated developments in the use of inertial sensors in cars and personal compu-
ting devices has led to the introduction of many commercial inertial loggers that can
be worn around the wrist for several weeks at a time, and which are used to monitor
both sleep and physical activity of the wearer. Most of these products are intended
to be used in preventive health care scenarios by the users themselves to track and
quantify their lifestyle. Verification of these commercial devices for clinical trials is
rarely a priority. These devices generally estimate the times when the user is asleep,
and several also contain models of sleeping cycles and individual stages (such as
REM and Non-REM). These models and their different hardware solutions are mostly
closed-sourced, which makes the validation of the used algorithms challenging.

Several recent wearable products have been targeting sleep phase detection
specifically in order to allow the wearer to wake up at a more convenient sleep stage,
or display sleeping trends for the users so that they can keep track of their own
circadian rhythms. The most prominent are summarized below:

• The Sleeptracker15 is a wristwatch-shaped unit that apart from telling the time,
also infers whether the user is in deep sleep, light sleep, or awake, using an
accelerometer.

• The aXbo alarm clock16 is packaged as a stand-alone application in the form of
an alarm clock that wirelessly communicates with a wrist-band unit. It wakes
you up in the optimum sleep phase by evaluating online the sensor data from
the wrist-worn device.

• Somnus sleep shirt17 is a ”smart shirt” that embeds sensors in the garment to
measure respiratory patterns. With such knowledge, the detection of REM and
Non-REM are feasible according to the study in Lipoma et al. (2011).

15SleepTracker: http://www.sleeptracker.com, last access 09/2014

16aXbo: http://www.axbo.com, last access 09/2014

17Somnus: http://nyxdevices.com, last access 09/2014

http://www.sleeptracker.com
http://www.axbo.com
http://nyxdevices.com
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• The BodyMedia SenseWearTMArmband18 is used to monitor ones activity,
especially during workouts and while resting, e.g., sleeping (Sunseri et al.,
2009), and is worn on the upper arm. Additional information, such as how
much activity has been performed or a step counter are accessible as well,
enabling the user to keep track of his fitness status.

• The FitBit One19 is an inertial sensor-based device that can be clipped to
clothing or an arm strap, and comes with software to extract basic sleep
information. Additionally, it provides fitness status and motivates the user by
pre-defined goals like reaching a certain amount of steps per day.

• The Nike+ FuelBand SE20 is designed as an activity tracker to be able to
compare every day’s activities to other people in the Nike+ community. It does
not provide sleep analysis but can track your daily sleep duration.

• The Samsung Gear Fit21 is not a classical sleep detection device but rather a
fitness tracker with smartwatch abilities. With such, it provides the possibility
to track fitness trends and sleep itself by the use of certain sleep apps on the
device (e.g., S Health Sleep).

Unfortunately, a minority of the above products reveal details on how night
segments are calculated from the basic actigraphy log, making their detection
mechanism hard to reproduce. Additionally, many devices are not fit to be used in
sleep studies since they tend to overestimate sleep, as researchers in Montgomery-
Downs et al. (2012) have shown.

Not discussed here but interesting to note is the research (Chen et al., 2013; Lane
et al., 2011; Natale et al., 2012) and the vast number of applications (such as Sleep
Cycle22 or Sleep as Android23) for detecting sleep on the smart phone. Such an
approach makes sense in regard to the progress in smart phone technology but it
has still not been properly evaluated scientifically. Studies in Natale et al. (2012), for
example, suggest the use of smart phone sensors to track total sleep time but reach
only the same estimation accuracy for sleep parameters as common actigraphs.

18SenseWear: http://sensewear.bodymedia.com/, last access 09/2014

19FitBit: http://www.fitbit.com, last access 09/2014

20Nike+: http://nikeplus.nike.com, last access 09/2014

21Gear Fit: http://www.samsung.com/us/mobile/wearable-tech/SM-R3500ZKAXAR, 09/2014

22http://goo.gl/3SYG3z, last access 09/2014

23http://goo.gl/pP9EPs, last access 09/2014

http://sensewear.bodymedia.com/
http://www.fitbit.com
http://nikeplus.nike.com
http://www.samsung.com/us/mobile/wearable-tech/SM-R3500ZKAXAR
http://goo.gl/3SYG3z
http://goo.gl/pP9EPs
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Wearable systems have gained an increasing amount of popularity since
the use of sensors in modern devices increases. The usage of these devices
for recording sensor data seems reasonable, since they are equipped with

several different sensing modalities but is often limited due to the closed-source
format, as described in Chapter 2.4.2. Therefore, researchers tend to establish their
own sensor platforms that suit their study set-up.

In this chapter we first introduce a wrist-worn sensing unit that has been applied to
many scenarios throughout this thesis. With such a system we are able to record long-
term sensor data to detect activities and with such activity rhythms. Additionally,
we determine the smart phone usage of users with the aforementioned device, in
regard of having their phone carried on the body or not. Such an evaluation is crucial
since the usage of smart phones in general for recognizing activities has not been
fully explored yet. In addition to that, we show how a home set-up for sleep studies
looks like, by again using the wrist-worn sensor and adding an infrared camera to
the system to capture sleep rhythms and its characteristics.
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3.1 introduction

Activity recognition requires a certain amount of sensor data in order to detect an
activity’s characteristics. In this chapter we focus on finding suitable sensor platforms
that can record the needed sensor data that is later on used to recognize activities.
The choice of a sensor platform influences the quality of the obtained sensor data and
therefore has to be chosen according to the task it should accomplish. Despite many
research efforts into creating platforms or even environments for activity recognition,
many studies use a laboratory set-up to record sensor data instead of making use of
the sensor systems in real-world scenarios. The urge to perform such experiments
”in the wild” has been described in Rattenborg et al. (2008), showing that animals
behave differently when observed in the wild than when they are locked-in in a zoo.

The main contribution of this chapter is to evaluate sensing platforms that can be
used in real-world set-ups. More specifically, we contribute an in-depth analysis of
smart phone usage for activity recognition tasks. The usage of these general-purpose
platforms is experiencing an unprecedented uptake: In 2013, almost 1 billion devices
have been sold worldwide24; In the year before, a recent publication by the United
Nations Organization claimed that more people worldwide had access to a mobile
phone than to a clean toilet25. Additionally, approximately 6 billion people in the
world have access to a mobile phone. Statistics show a steady increase in the number
of smart phone owners all over the world, indicating also that user behaviour has
been gradually changing over the past years, with smart phone usage topping that of
desktop computers. At the same time the phones are being used more frequently by
the user. Since the acceptance of these mobile devices has become so high, they have
been targeted increasingly to be used as devices for self-monitoring (Bardram et al.,
2012; Bielik et al., 2012; Oresko et al., 2010). These trends have caused researchers
to study to what degree these mobile devices have become suitable for activity
recognition and user monitoring, in several studies over the past years (Dey et al.,
2011b; Patel et al., 2006). The results of these studies suggest that the phone is within
the user’s arms reach about half of the time, indicating that the use of a mobile
platform may not be suitable for any user monitoring application.

In addition to a mobile platform, we introduce a novel domestic sleep monitoring
system that consists of an infrared (IR) camera and a wrist-worn device to determine
when a person is sleeping. With such a set-up we are able to record data over a long
period of time, which enables the detection of sleep postures that are interesting
in many different areas like personality evaluation26 or obstructive sleep apnoea
(Oksenberg et al., 2009). The emphasis here is put on the sensing modality and a
high performance on recording data for a longer timespan.

The remainder of this chapter is structured as follows: In Section 3.2, we introduce
a wrist-worn sensing platform that has been used not only in this chapter but
throughout the whole thesis for various studies. Following that, in Section 3.3, we

24http://goo.gl/mcTmha, last access 09/2014

25http://www.un.org/apps/news/story.asp?NewsID=44452, last access 09/2014

26http://news.bbc.co.uk/2/hi/health/3112170.stm, last access 09/2014

http://goo.gl/mcTmha
http://www.un.org/apps/news/story.asp?NewsID=44452
http://news.bbc.co.uk/2/hi/health/3112170.stm
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use that wrist-worn sensor to determine when a smart phone is with the user, i.e.,
being carried on the body. Finally, in Section 3.4, we present our sleep recording
system that does not only capture sleep itself but also certain sleep characteristics.

3.2 wrist-worn sensor platform

The use of wearable recording systems equipped with different sensors has been
investigated for various scenarios. Usually, an expensive sensor platform has to be
bought but other researchers tend to build their own devices that suit their current
study. Throughout this thesis, we will make use of such a self-built sensor platform
- called the HedgeHog27. The device was introduced by Laerhoven and Gellersen
(2004) and revised ever since to meet the requirements of the activity recognition
studies:

1. Unobtrusiveness. Users of a wearable platform prefer systems that are
lightweight and small. Additionally, the system should be worn comfortably
for a longer period of time without limiting the user in his or her movements.

2. Long-term recording capabilities. The wearable system should be able to
record and store the sensor data over several weeks. Additionally, the battery
should last at least that long, with the possibility of recharging it.

3. Data recovery. The possibility of extracting raw sensor data without any
preprocessing should be given.

In the following sections we introduce the device and examples of the application
of such a sensor in previous studies.

3.2.1 The HedgeHog

The HedgeHog is a self-contained wrist-worn device that records 3D acceleration data
with a default sensitivity range of ±4g that are sampled at 100Hz, as well as ambient
light readings and time and calendar information. The on-board accelerometer, the
ADXL345 from Analog Devices, can be reconfigured from sensitivity ranges from
±2g up to ±16g and supports sampling rates of several thousands of samples per
second. The whole unit fits in a plastic enclosure that protects the module to prevent
damage from falls and accidental splashes of water. The device has to be removed
when showering or swimming. It is small enough to be worn comfortably on the
wrist and is attached with an elastic strap to it.

It can record sensor data on a local flash storage (a removable microSD card)
for about 2 weeks before its rechargeable battery is depleted. Figure 3.1 depicts the
prototype with and without enclosure and straps. With the OLED display mostly
powered off (the wearer can request the current time by double-tapping the watch),

27http://www.ess.tu-darmstadt.de/hedgehog, last access 09/2014

http://www.ess.tu-darmstadt.de/hedgehog
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Figure 3.1: The wrist-worn prototype is intended to be worn continuously and is
able to function as a basic wristwatch (via its OLED display and integrated realtime
clock). It stores data from a 3D accelerometer at 100Hz, as well as ambient light data,
on a local microSD-based flash memory.

the sensor unit runs for about 2 weeks on a 600mAh Li-Ion rechargeable battery at
100Hz, which can be extended significantly by lowering the sampling rate. When
the data is uploaded, the USB connection provides additionally power to an on-
board recharging circuit connected to the battery. With this prototype, continuous
logging is feasible with 2 week intervals for charging and downloading the data. It is
important to note that nothing more is required from the wearer of the sensor after
starting and attaching it: Apart from its double function as a wristwatch, the user is
normally not required to press buttons, annotate data, or fill in questionnaires.

3.2.2 Application Examples

The HedgeHog has been used in many different research scenarios. We will name a
few here to underline the feasibility of the device to be used in long-term activity
recognition studies. The most prominent ones cover research areas like leisure acti-
vity recognition (Berlin and Van Laerhoven, 2012a), for which the user was wearing
the device while performing certain activities like Zumba (a martial-arts fitness mix),
playing the guitar, or housekeeping recognition (Stikic and Van Laerhoven, 2007).
In addition to that, the device was used to detect sleep postures (Van Laerhoven
et al., 2008), daily patterns in long-term recordings (Van Laerhoven et al., 2008) and
in the determination of train types (Berlin and Van Laerhoven, 2012b). For the latter
purpose the sensor was attached directly to the railway track which yielded different
train patterns, depending on the train that passed the track. The various fields
of applications show the validity of the sensor platform, as well as the capability
of using it in everyday activity recognition areas. In Scholl and Van Laerhoven
(2012) for example, the HedgeHog was used to determine if a person was currently



3.3 mobile recording platform 37

smoking or not in order to urge people to cease smoking for a better well-being.
In this thesis we use this sensor in two types of studies: First as a typical wrist-

worn sensor unit to assess if the user is moving with his smart phone. Second
in the detection and characterisation of sleep by modelling sleep postures and
certain non-natural movements that occur while sleeping. In the following section
we introduce another sensing platform and evaluate its usability in the context of
activity recognition.

3.3 mobile recording platform

Mobile phones have become generic and personal computers that fit in the user’s
pocket. They are used by an enormous number of people around the world. We
use them to manage our schedules and appointments, as music players, navigation
systems, gaming platforms and to obtain updates on daily news28. Their computing
capacity is rising steadily, enabling the current generation of smart phones to be used
for various research experiments (Berchtold et al., 2010; Farrahi and Gatica-Perez,
2008; Kwapisz et al., 2011; Sahami Shirazi et al., 2013). Such mobile devices have been
deployed especially for sensing the user’s immediate surroundings and to recognize
the physical activities of the user (Ashbrook and Starner, 2002; Brezmes et al., 2009).

In this thesis we present a novel study approach that estimates how frequently
the mobile phone is on the user, i.e., being carried by the user. For this purpose, we
make use of a wrist-worn, accelerometer-based unit (see Section 3.2) which registers
the user’s physical movements, along with a custom-built Android application that
enables us to log from the sensing modalities the smart phone has embedded (see Fi-
gure 3.2). Both were designed so that they would minimally impact the participant’s
phone use and maintenance behaviour (e.g., recharging or otherwise interacting
with both devices), and that they would allow also continuous deployment with the
user for up to two weeks.

With this system, we carried out a study in which 51 participants installed our
Android application on their personal phone and were asked to continuously wear a
wrist-worn accelerometer logger over the course of one to two weeks. This resulted
in a total of 638 days / 15,300 hours worth of mobile and wearable accelerometer
data, reflecting how often the phone and the wrist-worn unit were actively worn by
the 51 users. The results are analysed in this section for the span of time the two
device types were worn but our investigations also show more in-depth analysis on
how different users manage their mobile and wearable devices, and how consistent
(or variable) these different behaviours are between users.

3.3.1 Usability of Smart Phones - Method Overview

Whether a mobile device is suitable as a continuous sensing platform, and whether
it stays in the user’s proximity, has been investigated before by Patel et al. (2006)

28http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats, last access 09/2014

http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats
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Figure 3.2: Our study uses a wrist-worn device (left, top plot) and an Android
application running on the user’s smart phone (right, bottom plot), that both record
3D inertial data. Our method compares these to estimate when the phone was on the
user.

and followed up by Dey et al. (2011b). Both studies conclude that users are farther
away from their phones than one might expect, by making use of the received signal
strength of a neck-worn Bluetooth token to record its distance to the mobile phone
as within arms length, within room or no signal, based on calibration data. The study’s
findings suggest that the phone is within arms length less than 50% of the day, within
the room for about 65% of the time and switched off for most of the remaining time.
Interestingly, the portion of the day for which the phone is within arms length seems
to decrease from 2006 to 2011 while the amount of time the phone is in the same
room has increased. In addition, both studies indicate that the proximity of smart
phones to their users has not changed significantly in the meantime. Since both
of these studies had a relatively small user base focused on North America, these
findings may vary elsewhere and may have changed in the past years. Additionally
to the proximity evaluation, both studies recorded a vast amount of sensor data
from the phones and users were interviewed in order to produce a journal about
their activities during the experiment. With such a journal, the user behaviour was
structured into 15 to 20 classes of activities each related to one of the three smart
phone distances. Using a decision tree, the recorded data were matched to one of
these classes. An accurate prediction was reached by ranking the different features
based on the ground truth data using the Bluetooth tokens. Interestingly, the study
did not find a ”one-fits-all” decision tree: The ranking of the single features for an
accurate decision differed from participant to participant.
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This thesis presents (1) an alternative method to those presented in Dey et al.
(2011b) and Patel et al. (2006) to research user proximity to their phone, by requiring
study participants to wear an accelerometer-based logger on the wrist and install an
accelerometer-logging application on their Android phones. As a second contribu-
tion, we present (2) a study that uses this system with 51 participants (almost double
the size of Dey et al. (2011b) and Patel et al. (2006)). Our proposed method depends
on two sources of information that need matching: (1) A miniature wrist-worn
sensor that records the user’s motions, and (2) a sensor data recording application
for Android. In this approach, the data measured by the wrist-worn unit serve as
an indication on when the user was physically active, while the data recorded by
the mobile phone characterize when the mobile phone was experiencing accelera-
tion. A comparison of both could therefore result in estimating when the phone
is experiencing the same acceleration as its user, and therefore when the mobile
phone was on the user. This effectively means that the proximity measure for our
method will be restricted to on the user or elsewhere, yet we argue that this measure
in itself is already interesting for research, and that our method does have significant
advantages over the wearing of Bluetooth transceivers.

Recording Platforms

In this section we will present the description of the respective information sources.

The wrist-worn unit was configured for our experiments to record at a sensitivity
of ±4g and a frequency of 100Hz (i.e., a 3D acceleration vector every 10 millise-
conds). Once the data are uploaded after the study period (via USB), they have
to be converted to acceleration values in g for comparing the data later on to the
mobile phone values. An example of such raw values gives an impression on when
participants have been moving or not, as depicted in the top plot of Figure 3.3 for a
time period of 24 hours. While sleeping, for instance, (here between 03:00 and 12:00)
the inertial data exhibits significantly less movement, with the data changing only
whenever the user is transitioning between sleep postures.

The Android application has been developed based on the Android framework to
compare the inertial data from the wrist to those from a phone, therefore recording
similar data with a mobile phone, using its built-in sensors. The application is
compatible with phones running Android 2.3.3 or higher (covering a majority of
Android phones) and can record from all sensors available within the Android
sensor framework. In Figure 3.4, the menu for selecting the sensors’ channels that
can be logged are shown with the possibility to define a maximum storage size that
is reserved for the application to store the data directly on the internal memory of
the phone. The sensor data is directly put into an SQLite database as provided by
the Android framework.

The first challenge that is met when developing an Android application is that it
has to be installable on various Android versions and should operate robustly. With
that in mind, we encountered a first obstacle in the Android framework, since its
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Figure 3.3: Raw acceleration data from a male participant (age 27), along with the
acceleration data from his smart phone. Note here, that this participant put his
phone on the mattress while sleeping, visible in the bottom plot by peaks in the
phone data (6:00 to 11:45) that correlate with some of the sleep pose transitions in
the wrist-worn’s data (top plot).

policy for management of resources can have different priorities for processes and
their threads. The policy provides several priority levels that will influence schedul-
ing of the processes and threads. Additionally, Android distinguishes between
processes in the foreground and processes in the background, which is important to
consider for our application. A foreground process is, for example, an application
that the user can currently interact with, like an on-screen application. A background
process is, on the other hand, an application that is not actively being used, e.g.,
file downloads or other processes that do not need user interaction. In resource
critical situations, the processes will be handled differently by the framework, such
as being shut-down automatically. For this reason we implemented our recording
software as a background service, so that it does not impact the recording software
according to the user’s phone behaviour by using a partial wake lock, which basically
requires only the CPU to stay awake. With such a design of recording data in the
background it is possible that periods of time exist when the application is not recor-
ding any data. This was especially the case with older phone models with limited
processing resources (like single-core processors) and while users were talking on the
phone. Therefore, we implemented our Android application to automatically restart
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Figure 3.4: Android recording application for all sorts of sensors detected on the
smart phone. Apart from starting the application (left), the menu allows to choose
from different sensing modalities to be stored in the database internally (middle
image, green check mark). Additionally, the current sensor readings can be displayed
directly (right).

itself after an unexpected shut-down. This impacted only slightly the selection of
participants in our study, as most participants owned newer Android phone models.

The Android sensor framework uses the International System of Units (SI, m
s2 )

instead of g for the inertial data, which is stored directly in the database to ensure
that no accuracy is lost. Preliminary tests showed that a reliable sampling rate, like
the one of the wrist-worn sensor, is difficult to obtain in the Android framework
(100Hz being unobtainable). Some exemplary data recorded with the Android
application are shown in Figure 3.3 bottom, along with the previously-discussed
wrist-data. The comparison of both plots in Figure 3.3 already allows to make a
coarse-grained inspection about when the phone might have been with the user or
not. Immediately noticeable is that the phone data exhibits far more ’flat’, motionless
segments than the wrist data. This particular user was carrying the phone in the
front pocket (as approximately 57% of males tend to: Ichikawa et al. (2005); Steinhoff
and Schiele (2010)) during the day and on the mattress during the night but one
could ask oneself whether this is representative for most phone users.

Data Comparison

For this study, we rely on motion from the smart phone and the participant’s wrist.
However, the data recorded by both platforms cannot be compared directly for
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the following reasons: (1) Both devices are carried in different positions and will
therefore experience different motion patterns and force of acceleration. (2) With
such, the axes of the sensor coordinate systems will unlikely be aligned to each other
most of the time. (3) Data is recorded by both systems independently, since intervals
between smart phone sensor readings (readings were time-stamped on the phone as
they were obtained) tend to vary substantially, with the most robust rates obtained
for 10Hz, while the wrist-worn sensor records accurate equidistant 3D acceleration
samples.

In order to compare the two datasets from both wearable and phone over longer
stretches of time, we calculate the variance of the magnitude of the 3D acceleration
vector over a one-minute time interval. By using the magnitude of the 3D acceleration
we have to consider only one rotation-invariant scalar value. The variance has the
advantage that it does not require calibration with respect to gravity, as the mean
would have to. To estimate whether the wearable and mobile devices moved in
conjunction, we defined different thresholds on the variances to detect movement
segments. The impact of the threshold will be explored in detail in Section 3.3.3.

3.3.2 User Study

In order to illustrate our method, a study was held with 51 participants, in which
they were asked to install our logging application on their Android phone and wear
the wrist-worn sensor during a period of two weeks. This section will describe the
details of the set-up for our experiment and will give an overview of the collected
data.

Participants Recruitment

The 51 participants were recruited through a local poster advertisement campaign.
As this was done in a university town, about half of them were university staff and
students, with the other half including mostly housewives and office employees.
The number of 51 was initially much larger but only one out of five persons that
responded to the advertisement participated in the study. The reasons for not being
part of the experiment were either because people did not respond after a first
contact or they decided not to participate after a detailed explanation of it. Although
the data in our method was stored locally on the device, especially students cited
mostly privacy concerns as a reason for not participating. Interestingly, comfort
concerns for wearing the wrist sensor were rarely mentioned for their decision not
to take part in the study. Only two participants had to take off the sensor for a few
hours due to being uncomfortable with it.

Observations. The participants’ ages range from 14 - 62 years, including also one
pupil and two senior citizens. In total, 10 female and 41 male participants participated
in the study. The high number of male participants can be explained by the fact that
we advertised the study at a technical university which is attended mostly by males.
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user age gender % wrist % phone #charges #days

1 32 male 97.62 92.76 11 21

2 29 female 54.13 43.04 5 11

3 26 male 98.64 98.89 10 6

4 32 male 87.50 90.63 5 9

5 36 female 85.04 99.62 10 11

6 28 male 72.86 100.00 11 17

7 27 female 99.14 65.23 4 7

8 33 male 89.62 96.19 18 11

9 31 male 88.37 99.70 19 14

10 27 male 99.42 99.23 10 11

11 27 female 99.33 99.66 6 6

12 27 male 80.84 34.36 3 9

13 20 female 98.95 98.95 17 10

14 33 male 87.85 98.21 11 10

15 25 male 97.00 95.71 9 10

16 23 male 98.42 92.53 6 9

17 26 male 54.01 93.88 13 10

18 27 female 93.57 95.48 8 9

19 27 male 82.19 73.80 8 14

20 25 male 93.19 99.28 11 11

21 26 male 98.92 98.39 5 4

22 24 male 99.63 98.88 9 11

23 30 male 70.85 98.52 13 11

24 31 male 98.93 98.72 11 10

25 28 male 89.09 90.88 14 15

26 38 male 30.70 99.53 9 9

27 20 female 80.38 100.00 13 11

28 58 male 43.69 98.63 12 12

29 26 male 99.11 99.70 16 14

30 38 male 99.57 99.45 31 34

31 33 male 96.94 97.28 27 37

32 25 male 89.97 97.16 28 14

33 25 male 57.78 97.01 14 14

34 21 male 87.36 98.10 25 15

35 25 male 76.32 99.86 16 15

36 25 male 90.15 95.82 26 14

37 26 male 96.63 93.25 5 7

38 27 male 77.78 52.36 ? 15

39 33 male 99.05 100.00 6 5

40 33 male 87.46 93.05 12 14

41 31 male 98.80 96.54 17 14

42 23 male 74.67 100.00 9 14

43 25 male 93.91 99.84 15 13

44 62 male 92.56 94.35 6 7

45 55 female 94.92 99.58 10 10

46 28 female 95.73 00.00 ? 14

47 35 male 96.87 92.24 13 14

48 35 male 94.51 96.59 12 14

49 14 female 97.87 100.00 9 7

50 50 male 85.76 99.70 15 14

51 33 male 99.04 99.84 6 13

Table 3.1: Variety of participants for this study, including the information of how much data from
both sides, wrist-worn sensor and smart phone, are missing in the dataset, as well as how often the
phone was charged during the study.
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The participants were asked to partake in this study with their personal (Android)
phone. The study was advertised with the purpose of obtaining inertial data to
detect daily activities afterwards, not telling the participants that we investigate the
user’s phone carrying habits, to avoid bias. We met with the participants three times
during the study: An initial meeting explained the purpose of this study, showing
the participants our privacy policy ensuring anonymization of the data after the trial
would be completed. Additionally, the wrist sensor functionality was explained and
the sensor handed out to the participants. In addition to wearing the sensor, we
asked the participants to keep a journal of their sleeping times. A second meeting
was held after one week to ensure that data had been properly recorded, followed a
week later by a third meeting for returning the sensor, downloading all data from
the smart phone. The participants’ data was evaluated directly to show and explain
the real purpose of the study. In addition, we conducted a post-study interview
concerning wearing comfort of the sensor and their perception of how often, in their
estimate, they carry their phone on the body. Additionally, we asked about the
power consumption of the Android application.

Table 3.1 summarizes the demographic information on all the 51 participants that
took part throughout the study, additionally showing the amount of data obtained
from the wrist-worn sensor and the smart phone, as well as how often the user
charged the smart phone during the study, plus the total number of days recorded.
As expected, we gathered almost a continuous recording of smart phone data for
all the participants. A few outliers (users 2, 7, 12, 19, 38 and 46) are visible, because
either the application stopped recording due to the power saving mode of the phone
(which is always switched on when battery power is low enough) or the phone
running out of battery power. In these cases, participants switched off the application
by themselves, unfortunately sometimes also forgetting to switch it back on again.
Participant 46 represents an exceptional case: During the study she was cleaning
up her phone storage and by accident deinstalled our Android application, which
resulted in a swiping of the database entries. Nevertheless, we could obtain the
wrist-sensor data, as shown in the table. Due to a not totally functioning smart
phone, participant 38 had problems using his smart phone which is why it was
switched off most of the time during the study (almost 50% of the time). This is
probably also the reason why the charging status could not be logged by the Android
application for this user.

Recording data with the wrist-worn sensor suffered from other obstacles: Ob-
taining almost 100% of the data over the recording time is almost impossible, since
whenever the sensor is taken off long enough, mostly for showering or swimming,
the recording is interrupted. For 27 participants, we nevertheless obtained almost
100% of recording over the study period. 5 participants (users 2, 17, 26, 28 and 33)
found it uncomfortable to wear the wrist sensor during most nights, which is why we
obtained such a significantly smaller portion of inertial data from their wrist-worn
sensors. Additionally, most of the participants tended to take off the sensor on
weekends for leisure activities or family celebrations (wearing the sensor with a
shirt seemed too uncomfortable). Participant 26 was also on holidays while wearing
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Figure 3.5: Raw acceleration data from a female (age 20, left plot) and male (age
33, right plot) participant for both wrist sensor data (top) and smart phone data
(bottom). Both plots show the diversity in behaviours: The female participant carries
her phone intermittently throughout the working day but less in the morning and
evening; The male participant carries his phone mostly throughout the morning and
in the evening.

the sensor, which resulted in data from the wrist-sensor of 30.7 % for the whole
recording period of 9 days, showing again that wearing devices on the body is hard
to accomplish when travelling for private reasons. Two of the study participants were
willing to wear the wrist-sensor and log phone data for over five weeks, resulting in
a recording time of 34 and 37 days for users 30 and 31 respectively. The coverage of
obtained data from both modalities for these two participants was also remarkably
high: For participant 30 we gathered over 99% of wrist and smart phone data and for
participant 31 around 97% from both recording platforms. On average, we obtained
87.31% of wrist data and 91.22% of smart phone data from all participants.

Figure 3.5 shows examples of the raw acceleration data from two participants
(left: female, age 20 and right: male, age 33). The top plots depict the wrist-sensor
data and the bottom plots represent the smart phone’s inertial data. We observe
here two different phone carrying behaviours: The female participant carries her
phone mostly during the day from approximately 7 to 19 o’clock while the male
participant carries it mostly from the morning until the early afternoon and in the
evening. Note here that the smart phone was used shortly before going to bed and
again immediately after waking up by both participants. Most participants used
their phones as an alarm clock.

Variety in Mobile Phones

The fact that participants were using their own phones throughout the study led
to a high variety of different models, for which not all of the built-in accelerometer
modules were previously known. Additionally, it was not guaranteed that the
Android application would be running properly on all devices, since manufacturers
tend to modify the Android OS according to their needs, leading to possible problems
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for recording continuously without interruption. Fortunately, we obtained most of
the data with the Android application, as indicated in Table 3.1 by the amount of
data recorded by the smart phone. The majority of the phones were from Samsung
(23), followed by HTC (11), Sony (8), LG (6), Motorola (2) and Huawei (1). The
Android OS installed on the smart phones varied from 10 to 19, with platform
version 10 corresponding to Android OS 2.3.x (9 participants), platform versions
14 and above to Android 4.x.x (OS 15 = 5, OS 16 = 9, OS 17 = 8, OS 18 = 7 and
OS 19 = 13 participants). Note here that Android OS versions 11 to 13 are only
installed on Android Tablet models and therefore are not present in this study. None
of the above mentioned Android phones or OS versions caused problems in the
application, which is why recording data over a two week timespan was feasible. As
already mentioned, two participants used the application for over a month without
any drawbacks in their smart phone usage.

3.3.3 Evaluation and Results

To estimate whether the phone is on the user, our method compares each of the
detected motion segments from the wrist sensor to the motion segments present in
the phone data. For this purpose, we first needed to obtain a proper threshold for
both datasets to detect these motion segments. We first discuss the chosen parameters
and their effect, and then present the wearable-phone correlations obtained in the
data.

Threshold Selection

Key to our method is the choice of a proper variance threshold for the detection
of motion in the one-minute windows. We believe that there should be one best
threshold that detects accurately all motion segments over all devices and OS
Android versions. Therefore, we aimed to set a threshold that applies for all models,
with which we primarily filter out noise and artefacts due to the unstable logging
frequency which the Android framework delivers29.

Essentially we made the following assumptions to determine the thresholds for
the entire study:

1. A phone never moves without its user. We assume this to be true most of the
time when using large and long-term datasets. Nevertheless, a user might lend
his phone to someone else or leave the phone where it experiences motion
(e.g., a stationary phone that vibrates due to a received message or email might
generate phone motion without the user moving). This might, however, lead
to a bias in small studies, though we haven’t found such occurrences in our
dataset.

2. The phone does not move while charging or during the user’s sleep. Al-
though it is imaginable that users sleep in means of transport (e.g., bus or

29Android only takes a desired delay between sensor readings as a configuration parameter.
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Figure 3.6: Results for two male subjects for one day showing from top to bottom:
Battery charge status, sleep as annotated by the participant, raw acceleration data
from the wrist-worn sensor, motion as detected by the wrist-worn sensor and the
thresholded detection of movement according to the smart phone’s acceleration data.
The left plot shows a participant who put his phone on the mattress while sleeping
as depicted by the black bars that represent the movement per minute.

plane) and could be charging their phone in transit (e.g., in the car or in a
train), none of our study participants was found to have done so.

With these assumptions, we found by experiment that a threshold of 0.000012g
delivered the best results among all participating devices: Higher thresholds do not
increase the precision but lead to a further drop in recall, meaning that motion of
the phone might have been missed. Additionally, lower thresholds tend to detect
phone motion where there is assumed to be no motion, e.g., when the participant is
sleeping.

Mobile Phone vs. Wearable Data

We applied the threshold on the variances of the inertial data using a window size
of one minute. A first glimpse at estimated movements on both the wrist and the
phone data is given in Figure 3.6. It shows for two male participants in each plot
from top to bottom: The battery charging status, the sleep segments as annotated by
the participant, the raw inertial data from the wrist sensor, the detected movement
segments from this sensor and the detected movement intervals of the smart phone
data for one day. In the left plot, several motion segments are immediately visible
during the night, although one might expect that the phone should not be moving.
During the study, this participant put the phone on the mattress while sleeping,
which is why we observe motion during sleep in the smart phone data. Additionally,
we see for both participants that the wrist sensor recorded far more motion segments
during the day in contrast to while sleeping, which makes sense since we move
mostly during the night when we change postures. Note here, that two different
charging behaviours can be observed: On the left, the participant was charging his
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phone during the night, while on the right the participant charged only during the
day while at home. In total, over 46% of the charging events from all 50 participants
happened during the night. 31% of the charging occurred during the day between
9:00 and 18:00, mostly while people are at work or in the university. The other 23%
happen in the morning or when people are at home in the evening.

On average, participants carried their phone with them for 22.19% of the time
throughout the whole study. Per participant the results vary a lot however: From
3.87% up to 52.91%, highlighting also that the results depend on the individual
user’s habits. The dataset includes participants who excessively used their phone,
most noticeably for playing Ingress30 (3 users: 13, 21 and 22), an augmented-reality
game which correlates with high smart phone usage. For these users the carrying
phone results are substantially higher than the average (up to 52%). Some participants
forgot to charge their phone on a few occasions during the study, which led to a
shut-down of the recording application and therefore to data loss. 5 participants
found it uncomfortable to wear the wrist-worn sensor during the night, which is
why they took off the sensor on most nights.

Smart phones are on the user at different times of the day. The results listed in
Table 3.2 depict when the users had the smart phone on them at defined times of
the day (using the divisions as in Dey et al. (2011b)): in the morning (7:00 to 9:00),
during the day (9:00 to 18:00), in the evening (18:00 to 23:00) and during the night (23:00

to 7:00). Additionally, we calculated the amount of wearing time during the whole
day (from 9:00 to 23:00, last column). As expected, users carried their phone mostly
during the day. In contrast to the overall results of 22%, participants, on average,
carry their phone for 35.59% of the time from 9:00 to 23:00. Depending on the
participants time schedule (especially between students and office employees), the
individual results vary highly. Participant 1, for example, uses his smart phone
almost only while being at the office (9:00-18:00), while user 49 seems to be carrying
his phone almost all day long. These findings suggest that not only the type of user
monitoring application but also the habits on phone usage of the targeted user need
to be known in advance. Note here that user 46 was excluded from the evaluation
step, since the phone data was deleted by accident.

We further investigated if there are differences in phone carrying between genders
and age-groups. For the first case, we obtained a daily smart phone usage of 22% for
female and 34% for male participants. Interestingly, male participants tend to use
their phone in equal shares during work (9:00-18:00) and in the evening (18:00-23:00).
This matches the female participants’ perception who stated that during the day the
smart phone is in the purse most of the time. Males are the classical ”quick trip”
participants, which according to Dey et al. (2011b) describes the behaviour of taking
the smart phone with them when leaving the desk or for coffee breaks. For the
second case we created four different age groups according to their occurrence in the
study: (1) 10-19, (2) 20-29, (3) 30-39 and (4) ≥ 50. The most active mobile phone users
during the day are age groups (1) and (3) with around 60% and 35% respectively.
Unfortunately, age-group (1) is not representative, since only one participant is in

30https://www.ingress.com/, last access, 09/2014
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user 7-9 9-18 18-23 23-7 9-23

1 3.82 25.43 11.26 1.18 20.98

2 6.67 11.30 3.78 0.83 9.57

3 3.02 28.00 30.62 4.60 29.43

4 34.86 30.92 55.22 7.64 44.68

5 5.31 24.98 18.42 1.04 23.45

6 5.19 36.48 28.80 7.40 34.54

7 22.38 15.95 23.19 0.30 21.79

8 18.71 27.91 25.70 5.83 29.87

9 10.77 50.23 40.38 6.07 48.35

10 9.77 30.88 31.39 6.50 32.52

11 25.42 16.42 13.94 2.50 19.25

12 15.83 19.26 12.57 7.71 19.15

13 24.58 37.33 21.23 6.64 35.23

14 24.33 29.94 7.87 8.15 25.61

15 0.28 18.64 23.15 4.00 20.29

16 31.20 32.82 33.30 9.93 37.55

17 5.50 48.22 66.20 19.00 55.55

18 10.65 19.11 16.56 2.29 19.75

19 14.38 46.10 45.00 7.54 47.84

20 5.14 35.08 37.86 3.23 36.85

21 35.42 36.11 38.00 9.74 41.90

22 30.83 70.89 68.61 27.88 74.58

23 7.00 51.63 52.00 7.15 52.86

24 15.95 55.11 33.05 13.21 49.62

25 13.97 19.97 15.69 0.71 20.51

26 39.06 25.90 4.17 16.74 23.75

27 3.67 35.96 32.03 6.25 35.13

28 24.92 36.18 15.57 0.19 32.44

29 11.25 28.89 35.36 12.96 32.84

30 25.15 40.42 31.16 1.11 40.83

31 18.03 41.14 39.58 4.16 43.28

32 5.12 33.93 16.55 7.69 28.50

33 6.73 28.94 56.08 21.64 39.68

34 16.89 43.25 24.00 7.19 38.86

35 13.00 35.79 37.40 9.30 38.30

36 17.08 52.22 53.93 16.12 55.40

37 22.78 28.06 26.50 1.95 30.89

38 3.43 27.28 14.37 5.42 23.17

39 20.00 30.00 52.08 17.66 40.89

40 21.79 28.52 40.05 7.01 35.89

41 13.99 38.85 33.07 8.12 38.88

42 5.75 22.46 36.47 21.85 28.37

43 52.14 27.42 55.55 6.44 45.02

44 6.46 15.56 28.58 0.57 21.19

45 4.25 15.83 16.04 4.06 16.52

47 30.89 50.71 43.55 8.93 52.67

48 33.27 47.36 11.44 3.35 39.42

49 40.00 73.07 58.14 7.65 73.62

50 48.01 52.82 36.13 23.25 53.82

51 6.67 17.26 17.13 5.98 18.22

avg 17.43 33.93 31.37 7.93 35.59

Table 3.2: Results for all users showing in percent if they were wearing their smart phone at specific
segments of the day with maximum values highlighted.
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that group. Nevertheless, we suspect that the smart phone usage among teenagers
is higher than in other age-groups31. In the following section we will discuss the
benefits and drawbacks of this study and especially the results.

3.3.4 Monitoring User-Behaviour: A Discussion

We identify many different topics with regard to using a smart phone as a sensing
platform in this section and highlight our most interesting findings in the following:

Demographic User Behaviour. In contrast to the work of Dey et al. (2011b) and
Patel et al. (2006), which evaluated the proximity to the phone in the North American
region, we investigated the carrying behaviour in a European country. We believe
that cultural differences exist which is being reflected in the behaviour of a countries’
population as well. To our best knowledge such an experiment as presented in this
section has not been conducted yet outside North-America.

Acceptance of the Wrist-Worn Unit. The wrist sensor used for this study was
perceived as comfortable to use by most of the participants and most reported that
they quickly forgot about it while wearing it. The fact that the device’s battery
charge lasts more than 14 days, meant that participants did not have to charge or
manage the device themselves. Although for five participants the device was not
comfortable enough to wear during sleep, these users did remember to wear their
unit again after waking up. The data was reliably recorded for the day-time periods.

Platform Differences. We encountered a difficulty in the evaluation process that
has to be considered in future studies that make use of the accelerometer on the
smart phone: Due to the vast number of different mobile phones that participated in
this study, the algorithm for detecting motion segments had to be insusceptible to
noise, jitter or other sources of disturbance. Additionally, different OS versions led to
an unbalanced priority for our application to obtain sensor data, since it is handled
differently by the OS. Such scenarios should not occur, especially if continuous data
is needed to detect, for example, activities with a smart phone. A benefit of using the
accelerometer though, is the fact that it does not require any security permissions,
which is why most of the applications available in the Google Play store use it.

Power Consumption of the Android Application. According to the participants,
their behaviour of charging the smart phone did not change significantly, since most
of the users charge their phone overnight (almost 47%), as depicted in Table 3.1. The
smart phone’s battery lasts for typically a minimum of 24 hours under normal usage
while having the app running. This was an early design constraint for the application
since an application that drains too much power will quickly be deinstalled by the

31http://www.reuters.com/article/2013/03/13/us-usa-internet-teens-idUSBRE92C04C20130313.
The article states that the ownership of smart phones among teenagers is steadily increasing, which
supports the idea in a rise of phone usage amongst teenagers.



3.3 mobile recording platform 51

user. In this study, participants had to charge their phone only once. An exceptional
case were the two senior citizens in our study: Since both of them are using their
smart phones only to make phone calls and take pictures every now and then, our
application forced them to charge the phone every day, instead of every three days
as reported by the participants. In total, two users contacted us during the trial to
discuss the higher power consumption. We suspect that the power consumption
depends on the CPU as well, which provides the application with the sensor values
when requested, as well as the Android OS version.

Proximity to the Phone. Our study shows that participants have their phone on
them for 36% during the day time on average, and 22% over the whole study on
average. This is over a half of the time reported by Dey et al. (2011b); Patel et al.
(2006) that the phone is within arm’s length of the user (58% and 53% respectively).
Interviews showed that indeed many participants put their phone on the desk or at
a table nearby, especially while working and during the night. Additionally, some
participants put their phone on the mattress while sleeping, either because they
used it before falling asleep or to have it immediately on hand when waking up.
Exceptional cases were met for the 14-year old participant that was supposed to
switch off the smart phone while attending class but rather muted it during the whole
day. During that time, the smart phone was always in the front pocket and therefore
being carried on the body most of the time. The senior citizens are an exception to
the rule: As low profiled phone users a mobile application should motivate them
to use the phone more often, e.g., by including a healthcare application. We argue
that the on the user proximity information could give extra insight in future studies,
especially those that explore the use of smart phones as wearable devices.

The User’s Perception. Especially when we interviewed the participants after the
study, we asked them about their perceived smart phone behaviour. Interestingly,
many participants underestimated their smart phone usage. The most common
answer was ”I almost never use the phone while being at work.”. This was proved
wrong for most of the participants. Even though the smart phone is lying on the
table while the user is at his desk, whenever the user leaves his desk the smart phone
is put in the pocket. Many participants became aware of that fact after the study.
For context-based systems such knowledge is crucial, since it shows that the smart
phone is a suitable platform for sensing the environment. In their conclusion, Dey
et al. (2011b) and Patel et al. (2006) stated that the mobile phone is farther away from
its user than expected. In contrast to that, we conclude that the mobile phone is
being carried on the body more often than assumed by the users.

Rich Dataset. The recorded dataset consists of almost 638 days of sensor data
from two modalities that can be used in future studies: (1) The smart phone data
implies not only acceleration data and battery status information but also light
intensity values and the proximity sensor values. (2) The wrist-worn sensor logged
the inertial data and, at the same time, the light intensity. Additionally, the dataset
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contains a sleep diary from almost every participant. Such information enables
future studies that aim at detecting, for example, sleep segments with a mobile
phone only. The dataset is publicly available for download at http://www.ess.
tu-darmstadt.de/smartphone14.

3.4 sleep monitoring system

In contrast to using a mobile phone based platform to sense the user’s activities as
shown in the previous section, we will introduce here a system that records sleep as
an example of an especially important rhythmic activity. The monitoring of sleeping
behaviour is an important challenge, especially when monitoring the user outside
of a sleep laboratory. Many different approaches are commercially available (see
Section 2.4.2) but other researchers try to apply their scenario to the real-world of
a patient (see Section 2.3.2). In this section, we will describe the requirements of a
sleep monitoring system that is unobtrusive and can be deployed over several weeks
without the user having to interfere with it.

3.4.1 Challenges for Sleep Monitoring

Three challenges are in particular important to enable the long-term monitoring in
domestic environments:

Reliability. A system to be deployed over longer stretches of time (from months
to even years) without maintenance needs to be reliable in collecting data. For that it
has to detect the observed characteristics accurately. In such real-world deployments,
the capturing of specific phenomena is often impossible, due to the presence of noise
and irrelevant data, as well as limitations on the sensor’s behalf. This, for example,
is the case when direct video footage is covered and body-worn sensors cannot be
worn continuously (because the device is not waterproof and has to be taken off
when showering).

Privacy. By recording everyday activities, privacy is a critical factor when larger
sections of our lives are recorded. The safety of the data needs to be guaranteed since
the sensors register data in a most sensitive context. Therefore, ethics’ guidelines
need to be kept to ensure the privacy of the user. For the case study of observing
one’s sleep (see Chapter 6), the used sensing modality could automatically record
and reveal any activities related to the user’s most sensitive environment: The
bedroom and bathroom (Hong et al., 2004).

Deployment. A monitoring system needs to be easy to deploy and has to be
modular. With such a system, less time is spent on the installation of the system and
the moving of it to another environment, lowering the costly installation procedure.
Dependability and usability of the system are additional key factors, i.e., not having

http://www.ess.tu-darmstadt.de/smartphone14
http://www.ess.tu-darmstadt.de/smartphone14
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to maintain the system due to hang-ups, or avoiding failures in critical medical
applications. In the case study of detecting sleep, the recording system needs to
remain running for at least several hours per day, also without interfering with the
user’s daily routine. Causes for interfering could be frequent battery changes or
required system interactions.

With these requirements, we describe in the next section such a monitoring
system, which has been used in the sleep studies in Chapters 5 and 6.

3.4.2 Unobtrusive Monitoring System

This thesis sets out to investigate first and foremost the detection of sleep related
characteristics to capture its rhythmic nature and to show outliers of the obtained
rhythms. We will focus on the wrist-worn sensor from Section 3.2 which is used for
these detections. For visual feedback of the detections, an active IR night-vision unit
is used that is synchronized with the wrist-worn sensor, which is introduced in the
following.

IR Camera. For this study, the TrendNet TV-IP422W was chosen for deployments
as it provides an adequate resolution at a frequency of 30 frames per second, and
is equipped with an array of IR Light Emitting Diodes (LEDs) which are powerful
enough to sufficiently illuminate an area from up to 5 meters away (see Figure 3.7).
It can be configured to provide the recordings on a network drive via ethernet or
the local wireless network but on local flash storage via an USB connector as well.
A pan-tilt motor allows the camera to re-adjust itself to fully focus on the sleeping
subject. At deployment, the camera’s embedded real-time clock is synchronized to
that of the wrist-worn sensor so that data can be merged afterwards.

The IR camera is powered from a wall-socket and as such can be activated for
longer periods of time. The camera is scheduled to automatically switch off between
11:00 and 19:00, and is by default configured to store still pictures on the local flash
storage and movies in 10-minute chunks to an ethernet-attached netbook. Since
the data produced by the camera for one single day sizes to about 9 Gigabytes on
average, this recording set-up can remain unmaintained for longer stretches of time.
The wireless capability of the camera was turned off.

The studies in this thesis used one camera as a means to obtain the ground
truth concerning (1) whether the test subject was sleeping, (2) the posture the test
subject was lying in, and (3) excessive movement characteristics spotted in the data.
The intended scenario in this section uses the camera for visual inspection by a
somnologist: By filtering out everything but the relevant sleeping postures and short
movies of possible limb twitches, a sleep expert has the required material for visual
inspection on a PC.
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Figure 3.7: The IR camera (shown right) is an off-the-shelf logging device, illuminat-
ing the observed area with an array of 7 strong IR LEDs and producing high-quality
640x480 images, tagged with second-resolution timestamps. Left are some examples
of test subjects.

3.4.3 Method Overview

This thesis’ proposed method to find significant events in sleep, based on motion
from a highly deployable system, consists of three major steps. First, the continuously
recorded information from the wrist-worn sensor is automatically processed and
segmented into awake and sleep. After that, non-motion data in the resulting sleep
segments that occur and re-occur are automatically clustered into postures in order
to visualize general trends over several nights. In a last step, excessive movements
are segmented out of the remaining motion segments. Figure 3.8 illustrates how the
original raw data from the wrist-worn sensor is processed.

The envisioned scenario of our method comprises the following steps, from
preparation to data analysis:

1. The user obtains the camera and wrist sensor.

2. The user places the camera in the bedroom, synchronizes with the wrist sensor,
and wears the wrist sensor.

3. Throughout the monitoring phase of multiple weeks, both camera and wrist
sensor record their data continuously.

4. After the monitoring phase, the wrist sensor is synchronized with the camera,
and the proposed method provides:

• The sequence of clustered postures per night.

• The detected myoclonic twitches per night.

• Video footage of extracted events.
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Figure 3.8: Overview of the detection system: Long-term inertial, time, and ambient
light data from a wrist-worn unit are analysed for sleep events of interest, and
synchronized with camera footage for easy visual inspection.

3.4.4 Privacy Issues

Recording subjects via a video camera in a most private room - the bedroom - is a
delicate matter and requires a privacy consent signed by the subject. For this purpose
we used privacy guidelines that were elaborated with the local data protection officer
of the university. It was ensured that all the data was anonymized, stored in a secure
place and used only by researchers with a permit. From our experience with the test
subjects, ensuring the privacy with a privacy policy is the minimum requirement for
conducting such studies.

Additionally, the data collection process has to be evaluated in regard to se-
curity and privacy insurance. We identified three different steps for this: (1) The
configuration implies the user’s set-up of the camera in order to capture the right
angle of the recording scope. For this purpose, the camera has to be accessed via
the web-interface using either a connection via LAN or WLAN. (2) The recording
comprises the storage of video footage on an external device, by either streaming
it via the network (LAN or WLAN) or via an attached USB drive. (3) The transfer
consists of the transmission of the recorded data from the storage device to another
computer for later on post-processing.

More specifically, the data has to be transferred in a secure way. For this purpose,
we established three different possible scenarios that are scrutinized in regard of
privacy. The first scenario is the use of the camera’s wireless abilities, which transmits
data only with WEP encryption in an ad-hoc mode which is highly insecure (Tews
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Figure 3.9: Potential difficult situations for vision-based recognition that were ob-
served during the study (from left to right): Multiple participants in the scene,
reflecting metallic objects such as piercings, pets moving into the bed and thick
blankets covering the entire participant.

et al., 2007). A second scenario would imply the use of a WLAN router that supports
a more secure encryption technique like WPA2. However, studies show that a
person’s sleep can be disturbed by the radiation of a wireless transmission (Hyland,
2000), which is why we decided to apply a third scenario: We make use of a wired
connection to meet privacy concerns, as well as to increase the reliability of the
system, which requires a nearby PC or laptop. With the latter set-up we can not only
decrease the user’s interaction with the system but also increase trust in the system
by having the camera physically disconnected from any open network connection.

3.4.5 System Discussion

During the process of building and perfecting the prototypes for this system and
instructing subjects on its usage, several surprising issues and obstacles had to be
solved. Apart from the predictable difficulties that come with designing robust
measurement prototypes and deploying ubiquitous technology in domestic envi-
ronments, especially those worn 24/7, other interesting lessons were learned. The
following sections will discuss these in more detail.

Video Footage. One advantage of the continuous logging that has not been specifi-
cally focused on so far, is the ability to correlate activity during the day with possible
effects for the following nights. This requires an activity recognition component,
however, which might be added at a later stage. Similarly, one might expect the video
footage to be exploited more and analysed for steady body postures and sudden
motions instead of relying on a body-worn sensor. An initial study investigating
this avenue met with a lot of obstacles during the first datasets, as illustrated in
Figure 3.9. The same limitations apply to the visual inspection: Especially in case of
occlusion by blankets, exact body postures and twitches are sometimes hard to verify.
In our experiment that was mostly conducted during wintertime, these problems
concerned about 18% of all twitches observed in the wearable data.

Timing Considerations. As monitoring periods will be extended to the scale of
months, one issue that can be expected to become prominent is a possible larger
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drift between the wrist sensor’s timestamps and those embedded in the pictures and
movies. For the study data recorded for this thesis, an extra 2 seconds were attached
before and after the signal, and a variable offset was built in the visualization tool to
match the 100Hz accelerometer signal and the recorded movie more perfectly. As
drifts due to temperature and humidity fluctuations continue over longer periods,
this approach might become less scalable when aiming at year-long logs.

3.5 conclusions

In this chapter we investigated the use of different wearable sensor platforms that
were applied in the course of this thesis to detect activities. The focus of this chapter
is on the challenges of the presented recording systems regarding the hardware
requirements and the user acceptance of the systems. More specifically, we showed that
a wrist-worn data logger can be used in two different scenarios: (1) For detecting
movement of a person which is used to correlate inertial data with accelerometer
data from a user’s smart phone and (2) to obtain inertial data from the wrist and
ground truth data with an IR camera to determine sleep and its parameters. Both
scenarios are crucial for the rest of this thesis, since they pave the way for the
experiments conducted in Chapters 5, 6 and 7 to obtain data that can be scrutinized
for the rhythmic nature of the performed activities.

In the first scenario we presented a novel approach to estimate how often the
smart phone is on the user, by using an additional wrist-worn sensor and comparing
the inertial data from both the user’s smart phone and the wrist sensor. The approach
can be combined with the previously suggested methods (Dey et al., 2011a; Patel
et al., 2006), and allows for a characterization of when the phone’s built-in sensors
could be expected to monitor the user, for instance, to detect the user’s physical
activities (sedentary, walking, running, etc.). We performed a 51-participants study
using this method over two weeks, resulting in a dataset of over 638 days (more
than 15,300 hours) of recorded data from both modalities used. The analysis of these
data indicate that the users’ smart phones are on the user on average for 22% of
the time (day and night). This figure is considerably higher for some users (up to
52%) and considerably less for others (4%). During day time (9:00-23:00), our results
show that users have their phone on them on average 36% of the time. The study
also suggests that users have very different habits in phone charging behaviour
and usage, stressing the importance of knowing the target users when designing
monitoring applications for smart phones that require the user to be carrying their
phone with them. We argue that the method of investigating phone use through
the comparison of inertial data from phone with a wrist-worn sensor is particularly
interesting for long-term studies.

In the second scenario a monitoring tool is presented, which combines low-effort
deployment with the capturing of sleep. Given automatically detected events during
sleep, data is synchronized with a camera to highlight relevant sections and extract
them from a large corpus of data which cannot possibly be skimmed by humans.
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Given these properties it enables video analysis at home and additionally uses a
power-efficient wrist-worn activity sensor for long-term recordings.
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In this chapter, we statistically evaluate data with regard to its rhythmic nature.
Our method is based on (1) a governmental database and (2) sleeping patterns
obtained from inertial data. The novel approach of using statistics shows how

crucial such information is for an activity recognition system in the context of
ubiquitous computing. By using large datasets in the experiments, we are able to
perform an in-depth analysis of features that we extracted from these statistical data.
The features are particularly interesting for future studies, in which prior knowledge
is used to improve the recognition rate of activities.

4.1 introduction

An activity recognition system is usually prototyped and evaluated by first recor-
ding typical data from one or many different sensing modalities to then create an
optimal classifier with distinctive features from such data. The results have been
found satisfying when classifying low-level activities with clear links to the sensed
modalities: Motion and posture sensors have, for instance, shown to be suitable for
detecting activities like walking, standing, sitting (Huynh et al., 2008; Lee and Mase,
2002; Lester et al., 2006) or sleeping (de Souza et al., 2003; Jean-Louis et al., 2001b).

When considering high-level activities like having lunch or commuting to work,
finding distinctive sensing modalities and features is often as hard as designing an
appropriate classification system. In these cases, having good and sufficient training
data available is crucial to the performance of the system. Especially the variability
among study participants in how they execute the target activities, as well as in how
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long these activities tend to last and when they occur at different times, has been
shown to be quite an obstacle as large sets of exemplar data are required (Bao and
Intille, 2004).

In this chapter we investigate a topic that has not been addressed thoroughly so
far: The use of statistical data obtained over a population in the activity recognition
process. The first contribution of this chapter is therefore a new type of region
specific information source that describes what people are usually doing. For this
purpose we consider all activities a person performs in order to determine certain
rhythmic activities. To achieve this, we use different features that can be extracted
directly from the database to describe the activities. We evaluate these features for a
specific European region and assess their value for activity classification. The results
indicate that the combination of features yields the highest results for classifying
activities.

Further, we pick out an exemplary activity that in itself can contribute to its
rhythmic occurrence: By investigating sleep patterns from several weeks, we obtain
features describing recurring patterns for sleep-related characteristics. More specifi-
cally, we show how sleeping behaviour changes when comparing weekend days to
working days and also single days of the week with each other. Results indicate that
it is possible to model a subject’s nights by using past observations to categorize
new nights into regular or irregular ones.

This chapter is organized as follows: First, in Section 4.2, we introduce time use
survey data as a statistical database obtained over a population that is used to extract
certain features like location to classify activities, using the database’s information
only. Then, in Section 4.3, a sleeping pattern is presented that allows us to extract
sleep related features to model a subject’s nights according to the normal sleeping
habits.

4.2 rhythms within time use surveys

To make use of the information from large time use surveys was suggested in
Partridge and Golle (2008) as a valuable instrument for designing activity recognition
systems for which it is hard to obtain training datasets with sufficient variability.
For a substantial proportion of a population these national surveys capture which
activities are executed at which times during the day, and in which locations (see
Section 2.2). This would allow, for instance, a classifier to use the current time
and location to estimate what activity the user is most likely to perform, based on
matching entries in the time use database. For wearable sensing systems one can
assume that further user properties such as gender, profession or age, are readily
available and can be used to refine this search. Although such estimates could be
accurate enough for some applications, they would at the very least be promising as
priors in a sensor-based activity recognition system.

In this section, we investigate the possibilities of using data from a recent Eu-
ropean time use survey with activity logs from 13,798 participants for activity
recognition in general, and compare the results to a previously published analysis
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from a similar-sized North-American time use study. Three contributions are made
in particular:

• We give a qualitative and quantitative comparison of the US-based data analysis
given in Partridge and Golle (2008) with that of comparable time use data from
across the Atlantic - showing cultural differences. This includes a discussion
on the use of large datasets and time use studies in wearable computing and
the challenges in extracting data from these large datasets.

• We argue for a leave-one-household-out cross-validation methodology and
perform such an evaluation in order to study the time use survey features for
activity classification.

• We discuss results from single activities for a specific European region and
evaluate different features that can later on be used for activity recognition.

In Section 2.2 we already introduced time use surveys as a promising data source
which has to be investigated in more detail. In the following we will compare the
database used in Partridge and Golle (2008) with the German Time Use Survey
(GTUS) to emphasize the need of inspecting such data for specific regions.

4.2.1 Comparison of Time Use Data

The GTUS can be compared easily to other European countries’ time use surveys
since the data is similarly structured. The American Time Use Survey (ATUS) on the
other hand is built up differently, not logging activities, location and simultaneous
activities in 10-minute slots but recording when the activity started and how long it
lasted. Nevertheless, research groups like the Centre for Time Use Research (CTUR32)
are maintaining the Multinational Time Use Survey (MTUS, see Section 2.2) in order
to create a huge time use database, including to this day ATUS and Harmonised
Eutopean Time Use Survey (HETUS, see Section 2.2).

Table 4.1 lists the basic properties in terms of the type and the amount of data
that was included for the ATUS and GTUS sets: Both datasets are similar in regard
to the number of participants and the time-period monitored. GTUS identified
more activity episodes (the number of activities occurring in the dataset), which
can be explained by the fact that more days per participant are included and that
activity episodes are logged in 10-minute intervals. A previous research study on
the ATUS dataset (Partridge and Golle, 2008) considered hour-of-day (60 mins) as a
time interval for simplicity.

A further property of the GTUS is that it keeps track of the time use for all
members in a household above the age of 10, whereas ATUS explicitly chooses single
participants from one household. We keep in mind that ATUS is updated every year,
by interviewing participants over the phone and keeping track of their activities for

32www.timeuse.org, last access 09/2014

www.timeuse.org
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Property ATUS 2006 GTUS 2001/2002

participants 12,943 13,798

households 12,943 5,160

# activities per tier (1 / 2 / 3) 18 / 110 / 462 10 / 48 / 272

# locations 27 8 / 21

time interval (mins) dataset / study 1 / 60 10 / 10

monitoring period 1 day 1-3 days
activity episodes 263,286 356,910

Table 4.1: Comparison of the basic properties of the ATUS 2006 taken from Partridge
and Golle (2008) and GTUS 2001/2002. The time interval for ATUS was remodelled
in Partridge and Golle (2008) from minutes to hour-of-day, displaying therefore not
the original intervals (duration of an activity in minutes).

one day. Therefore, the dataset is always up-to-date in contrast to the GTUS, which
is refreshed every 10 years. The following section will display quantitative results for
the GTUS, as well as the ATUS, highlighting promising features from the datasets.

4.2.2 ATUS vs. GTUS Demographic Analysis

The contributions of this section are threefold: (1) We will discuss a demographic
comparison between GTUS and ATUS. (2) We show quantitative results for the GTUS
dataset and (3) we highlight important activities from the GTUS for probable mobile
and wearable research.

In order to perform a graphic comparison, a few conversion steps had to be taken.
A first hurdle is the difference in categorization and hierarchy of activities for both
datasets: The most relevant tier 1 and tier 2 activities of the GTUS were translated
to the corresponding 18 tier 1 activities of ATUS. Furthermore, to reflect the 10-
minute segments in the GTUS dataset, all entries from the ATUS were converted to
10-minute time slots.

The resulting more in-depth visualization of both datasets is shown in Figure
4.1. Displayed are all 18 tier 1 activity groups from the ATUS 2006, showing the
performed activity of the participants in percent per time-of-day. The figure shows
some differences that exist in the activity reporting: Where the ATUS dataset contains
significant digit bias (i.e., a bias of participants rounding off start and stop times
of reported activities toward full or half hours, visible as jagged edges in the plot),
this is less pronounced in the GTUS even though the reporting time intervals are
relatively small for both. A second, rather cultural, difference which can be identified
from this visualization is that the GTUS dataset shows stronger time dependencies
for particular activities (see the larger increases around the times for breakfast,
lunch and dinner for instance), including a sharp rise in leisure activities after
20:00. The plot displays significant differences in both US and European regions,
pointing to the importance of using time use data for specific regions only, since
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Figure 4.1: A visual comparison of both the ATUS 2006 (left) and the GTUS
2001/2002 (right), depicting per time-of-day the normalized occurrences of common
tier 1 activities over all participants. Slight cultural differences appear in digit bias
(jagged edges on the left) and activity clusters (e.g., breakfast, dinner on the right).

demographic characteristics have to be considered. We will now have a closer look
at the GTUS data, describing how time use data is used to infer which activity has
been performed.

4.2.3 Feature Extraction

Methodology. We use all 5,160 households from the GTUS for a leave-one-house-
hold-out cross-validation analysis: Each of the 5,160 households is left out to calculate
the maximum likelihood of an activity for the rest of the 5,159 households. For each
member of the left-out household we compare the activity to the most likely one
from all the other households. For each household a confusion matrix is stored, from
which precision, recall and accuracy are calculated for later analysis. We believe that
within a household, participants tend to engage in the same activities when spending
time together, leading to biased results. Therefore, we exclude a complete household
and observe the activity distributions for the rest of the households, constructing
maximum likelihood classifiers. For this we use the maximum conditional probability
P(A| f1, f2, ..., fn) which the classifier derives for a target activity A given different
features f1, ..., fn as input.

Features. Many different features can be extracted from the GTUS, like gender or
even location. In Section 4.2.2, we remodelled the GTUS to fit the ATUS. Here, we
use the GTUS as it is, changing only minor things (the changes will be discussed
later in this section). To evaluate the features for activity recognition from time use
data, we consider different aspects similar to Partridge and Golle (2008). Therefore,
as features we use:

1. Time. Time is a significant feature for activity recognition as derived in Eagle
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and Pentland (2006) and Farrahi and Gatica-Perez (2008), since people tend to
stick to their behaviour patterns. The fine granularity as given by the GTUS for
logging activities in 10-minute slots will confirm that. Therefore, we will not
use hour-of-day as Partridge and Golle (2008) did.

2. Prev. act. A previous activity is an activity that took place prior to a different
activity. We are not considering the activity prior to a time-slot, which would
lead to a biased result like for sleeping: Prior to sleep we most likely would be
sleeping.

3. Location. The idea that knowing the location might lead to the activity that is
being performed, was mentioned in Eagle and Pentland (2006) and Ashbrook
and Starner (2003). For our work, this feature needs some remodelling, fusing
all 20 different means of transportation (e.g., in the bus, by foot or in car) into
one transportation variable to simplify the use of this feature and to minimize
classification runtime. We obtain 10 different locations out of 29 from the
original dataset.

4. Gender. Recently, researchers in Maekawa and Watanabe (2011) and Krassnig
et al. (2010) used gender to infer which activities are being performed by parti-
cipants of the same sex. Other physical characteristics have been added as well
but we will focus on gender itself as a feature.

5. Age. The age in the GTUS varies from 10 to 80 years, which is why we divided
the datasets into groups each covering 5-year spans (10-14, 15-19, ..., 75-80),
just as in previous work (Partridge and Golle, 2008). This was done not only to
simplify the calculation but also to preserve a significant number of participants
per age group when using the classifier.

In the process of evaluation, we do not only use single features but also several
combinations of the features, e.g., by combining time and location. A list of these
combinations can be observed in Figure 4.2, left side.

In the course of this work, we considered travelling (e.g., travelling between the
home and the office or from school to the home) as an important activity, which is present
in all of the 10 tier 1 activity groups of the GTUS as individual activities (e.g., within
the tier 1 group work, going to work would be an activity). To detach travelling from
the tier 1 groups, we create an 11

th tier 1 activity group travel to which we relocate
all travel codes from the other tier 1 groups. A complete list of the GTUS tier 1

activity groups as used in this section is shown in Table 4.2, left side.

4.2.4 Recognizing Activities

In the following sections we will present our evaluation results for suitable features
and their combinations to detect activities efficiently.
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Figure 4.2: Precision and recall results for different features and their combinations
from the GTUS, plotted as box plots with the median (red line), upper and lower
quartile (75% and 25% respectively, end of boxes), whiskers for highest and lowest
values and fliers (’+’) as outliers. The combination of prev.act., time and location yields
the highest results.

Feature Evaluation

Figure 4.2 shows precision and recall for different features and feature sets as box
plots. We see the median being displayed within the boxes as a red line, the upper
and lower quartile (75% and 25% respectively), the whiskers which show the whole
range of the data, as well as the fliers (’+’), displaying the outliers within the results.
Starting with none we can observe how the values for precision and recall vary as
we add more and more features to the classifier. None yields a very low precision
and recall (4.17% and 9.09% respectively), since the results are biased by the activity
sleep, which is the most probable activity (this is the case also for age and gender,
leading to the same overall results as none). For single features, precision and recall
are below 25% and 28% respectively, whereas the highest results are gained by
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using prev.act.+time+location (precision of 40.79% and recall of 40.25%), showing also
outliers in the 60% region.

Location has the highest impact on the results: For location alone the results are
already quite high but can even be increased by adding time as a feature, resulting
in 34.58% precision and 35.24% recall. Some improvement can still be achieved by
adding prev.act. to the feature set. However, time seems to have a higher impact here,
since the results are not far apart, whereas prev.act. contributes little but significantly
to the results.

We showed that a combination of features yields the highest probable result for
inferring the right activities over a large-scale dataset from the GTUS, highlighting
especially time, location and prev.act. as proper features. We will now have a look at
the results taken from Partridge and Golle (2008) for the ATUS dataset and compare
them to the GTUS results, also showing accuracy for different features.

GTUS vs. ATUS

In order to perform a quantitative comparison of the GTUS and ATUS, we display
the results for different features for both in Figure 4.3. Note here, that from Par-
tridge and Golle (2008) only the results presented in a barplot graph were available.
Unfortunately, both of the authors did not have the original result sets, which is why
we read off the approximate results from their paper.

For different feature combinations Figure 4.3 shows the distributed accuracy per
household as box plots, highlighting the median (red line in the box). Additionally,
a red ’X’ marks the accuracy from the ATUS dataset for the same features and their
combinations. We can observe that the accuracy results for the GTUS exceed the
ATUS results, especially for the highest accuracy, when prev.act. is combined with
time and location (the median is always above the ATUS accuracy).

Prev.act. showed promising results in Partridge and Golle (2008), which is why
we use it in combination with location, resulting in an accuracy of 67.7%. Compared
to location on its own, a slight increase of +6.54% is achieved. The same can be
observed for the ATUS. Adding now also time to the feature set prev.act.+location,
accuracy rises to 74.78%, leading to the highest results. In contrast to that, if we use
prev.act. with time, we achieve a better result than using time on its own (51.76%).
We can conclude that previous activity is rather a weak feature but combined with
time and location, the results are promising. Compared to previous research, similar
findings have been reported for the ATUS. Time combined with location yields an
accuracy of 67.72%, again increasing the accuracy by +15.96% compared to time itself.
Adding age or gender to time, a marginal increase of 1% to 2% in contrast to time by
itself is observable. The results indicate that activity inferences perform better for
the GTUS.

Note here, that the duration of an activity has not been considered. As shown
in Partridge and Golle (2008), a duration weight for the activity can increase the
accuracy. Since we consider a 10-minute interval of the given activities as sufficient,
we left out a duration weighting. In the next section we will evaluate the results
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Figure 4.3: Box plots of the accuracy results per household from the GTUS and
overall average results from the ATUS (values taken from Partridge and Golle (2008))
marked as a red ’X’ for different features and their combinations. Here, the GTUS
results exceed the ATUS results, marked by the median box plot (red line in each
box).

for single activity groups of the GTUS dataset, highlighting important features for
recognizing certain individual activities.

Results for GTUS Tier 1 Activities

In order to perform a more in-depth analysis, we again use the maximum likelihood
classifier in a leave-one-household-out cross-validation (the same method which was
used in Section 4.2.3). We calculate for the best performing feature combinations
from Figure 4.2 the precision and recall for single tier 1 activity groups of the GTUS.
We include travel here, thus resulting in 11 groups in total. Table 4.2 displays the
results for precision and recall. Additionally shown are average duration per day
for the activities, describing how participants spend their time during the day on
average. The hyphens in the table indicate that an activity group was never chosen
by the classifier, because other activities were preferred. Results for the ATUS, which
are taken from Partridge and Golle (2008), are also shown in the table. Activity
groups hobbies, mass media and unknown do not occur as single tier 1 activity groups
in the ATUS, which is why ’n/a’ was put in the corresponding rows of the table.
Note here that we are not comparing the ATUS to the GTUS but rather displaying
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Activity

Average
time

time time
location

location location +
hh:mm + + + prev.act. +
per day age prev.act. time time

GTUS ATUS*
GTUS ATUS GTUS ATUS GTUS ATUS GTUS ATUS GTUS ATUS GTUS ATUS

Pre Pre Pre Pre Pre Pre Pre Pre Pre Pre Pre Pre

Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec Rec

Personal
11:00 9:23

68.8 74.5 72.5 77.8 80.8 84.0 60.2 56.8 80.3 82.3 85.7 86.6
care 86.7 87.2 78.3 85.8 89.2 88.2 97.7 100 86.6 89.0 92.1 89.1

Work 2:00 3:27
22.6 30.2 22.9 36.7 32.0 44.8 53.3 93.7 53.3 93.6 56.1 95.0
2.6 61.3 32.2 68.5 42.8 74.5 60.8 87.9 60.8 87.9 60.4 87.6

Education 0:40 0:27 - - 10.7 32.9 - 44.1 - 70.0 - 70.0 6.9 72.2
15.2 39.0 4.4 64.7 64.3 1.2 59.8

Houshold
2:50 1:49

23.9 - 26.4 - 34.7 28.6 37.8 52.3 37.1 31.5 50.2 34.0
activities 53.9 38.0 52.5 11.6 16.0 0.1 55.4 14.2 71.9 22.2

Volunteer
0:10 0:07 - - - - - 15.7 - - 0.1 2.9 6.2 24.7

activities 0.8 0.0 0.0 1.8 2.9

Socializing
1:30 4:31 - 39.3 4.3 39.8 24.5 41.6 - 47.8 36.9 47.1 45.2 49.0

and pleasure 52.1 0.4 57.5 11.3 61.0 14.3 23.5 71.2 28.5 73.8

Sports 0:30 0:18 - - - - - 16.8 19.4 48.5 24.9 47.2 35.8 48.8
0.4 23.8 36.4 19.0 35.5 29.6 31.3

Hobbies 0:30 n/a - n/a 4.2 n/a - n/a - n/a 0.1 n/a 3.4 n/a
5.5 0.0 0.7

Mass media 2:30 n/a 40.7 n/a 38.2 n/a 54.1 n/a - n/a 49.7 n/a 60.2 n/a
43.7 44.2 54.2 43.0 57.1

Travel 1:20 0:11 - - 5.6 - 41.0 49.4 98.0 97.0 98.0 96.8 98.4 96.1
0.4 19.4 31.8 99.3 96.0 99.3 95.9 99.3 94.8

Unknown 0:00 n/a - n/a - n/a - n/a - n/a - n/a 0.5 n/a
0.2

*The values and results for the ATUS are taken from Partridge and Golle (2008)

Table 4.2: Our tier 1 precision and recall results for the GTUS database, alongside
the results from the ATUS tier 1 activity results for reference (as mentioned in
Partridge and Golle (2008)). The best performing features from Figure 4.2 are used
for displaying the results for the 11 activity groups. A hyphen indicates that the
activity was never predicted, and ’n/a’ indicates that the activity group is non-
existent in the ATUS database.

the results as a reference in the table.
Immediately visible in Table 4.2 is that location yields high results for specific

activities. Personal care achieves a high recall of 97.7% and a precision of 60.2%.
Location results are again biased by the activity sleeping, which is a tier 2 activity
of personal care, and since participants usually sleep at their home, this activity is
preferred by the classifier. This explains the poor results for household activities for
location as well, although one might expect that this activity is mostly performed
at home. Adding time raises the results for household activities. Note here, that
while household activities gains in recall, for personal care it drops, showing that
misclassifications are being corrected. On the other hand, recall drops for personal
care.

For some activities adding features leads to an increase in precision and recall,
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the highest results again achieved by the combination of location, prev.act. and time
in almost all the activity groups. Thus, volunteer activities can now be predicted,
whereas a drop in the results of education is observable. Therefore, adding features
does not always yield better results. Travel is a striking example here, since precision
and recall exceed both 90%, although prev.act. is not adding much to the results.
Location and time are the preferred features here. Travel as well as sports are an
example of activities that cannot be inferred from the feature time. Additional
features correct that, especially location has an impact on the results for sports, which
seems to be performed in specific locations.

Rather poorly detected are volunteer activities, education and hobbies, for which
none of the features yield high results in recognizing these activities. For the
latter two activities we believe that activity recognition systems can help raise the
recognition rate, whereas volunteer activities could be hard to predict. A key factor
here is the time spent on performing the activity: Volunteer activities are carried out
10 minutes per day on average. The 10-minute slots of the GTUS could lead to other
activities preferred by the classifier. In addition to that, not every participant of the
GTUS is engaged in volunteer activities.

We conclude that for specific activities, a combination of features yields the
highest results for recognizing the activities. Such information could be used as a
prior for activity recognition systems. Note here that with the GTUS a demographic
analysis for the activities is being performed. We believe that using such information
in combination with a classification system that considers a user’s activity pattern,
even higher recognition rates could be achieved.

4.2.5 Time Use Surveys: A Summary

Having analysed the GTUS 2001/2002 dataset in detail, we conclude the following
from the results shown throughout the previous section:

• The two time use survey databases experimented on (ATUS 2006 and GTUS
2001/2002) have fundamental differences in composition and structure, like
how to log activities in the survey (i.e., start and stop time versus 10 minute
slots). These make it challenging to apply time use surveys across regions.
Especially for activity recognition systems, it would be important to have more
unified datasets with identical activities and survey data collection approaches.

• Demographic differences were found between the data from North-America
(ATUS 2006) and Germany (GTUS 2001/2002) concerning when and for how
long activities are carried out. Therefore, it is important to use time use data
from the same region one would like to study.

• We detected location and time as the best performing features in the GTUS
dataset, which is in line with previous work in this area. Activities such as
personal care or travel can best be represented by location and time. Prev.act. was
also highlighted during the evaluation but made only minor contributions
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to the overall results. Similar results were found in recent work (Partridge
and Golle, 2008), with the exception that prev.act. had a higher impact on the
results.

The idea of observing past knowledge will be applied in the next section, high-
lighting how sleep patterns in long-term recordings enable the portraying of sleep
rhythms in regard to different working days or specific days of the week.

4.3 sleep as a key rhythmic activity

While the significance of sleep was identified as an important factor in the med-
ical field, it also attracted interest from psychology due to its impact on daytime
behaviour, and from an increasing group of consumers who want to track their
sleeping behaviour (see Section 2.4). Scientists also analyse sleep to assess its quality
and to discover potential irregularities (Gregory et al., 2004).

This section contributes with a behavioural sleep model based on actigraphy-like
motion data from a wrist-worn sensor (see Section 3.2), collected in a long-term
and continuous dataset of 141 days. From the original 100Hz sensor samples, user-
specific data from nights is categorized into four different features, which forms the
behavioural model. These features are: Amount of motion, duration of sleep, sleep start
time and sleep stop time. In this preliminary study, our model is capable of capturing
regularities from working days, weekends, as well as from individual days of the
week, enabling it to predict future sleeping behaviour by observation of past nights,
and discover irregularities that deviate from prior observations.

4.3.1 Sleep Patterns and Sleep Behaviours

After multiple discussions with sleep experts in the medical field, we identified
several characteristic features based on inertial-only measurements for characterizing
sleeping behaviours. We will first describe these features and then discuss their
value for current behavioural research.

Sleep Duration. Observing a person’s sleeping hours gives an insight into the
habits as well as into irregularities, i.e., shows whenever a person does not reach the
usual number of sleeping hours. Healthcare systems benefit from such information,
since it enables physicians to detect nights that are out of the ordinary. Although
there are different theories on how much a person should sleep, a deviation in the
daily routine makes irregularities immediately visible.

Start and Stop Time of Sleep. Persons tend to have regular habits, especially
during working days, and therefore this feature is an important characteristic in a
person’s sleep and sleep behaviour. People tend to go to bed earlier on working
days in contrast to weekends.
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Motion. Movement during the night is an indicator for sleep quality: Increased
movement is considered as a sign for a qualitatively bad night. Sleep scientists, for
example, relate the number of posture changes to a normal (15-20 posture changes) or
abnormal night (over 30, Gordon et al. (2004)). Here, motion not only appears while
changing postures but also during spontaneous movements in the same posture. In
order to describe a person’s night, we use the number of motions detected between
non-motion segments.

Discussion. Sleep quality estimation is an interplay of the previously mentioned
features. Extracting these features from long-term and especially continuous motion
data is therefore important in such assessments. This work focuses on prediction of
sleeping behaviours based on previous nights for following nights.

In interviews with sleeping specialists from the local sleeping lab, the value of
the chosen features was discussed. Since sleep is usually investigated in sleeping
labs, long-term studies are only conducted to assess a patient’s circadian rhythm,
which is the self-regulation of one’s 24-hour cycle that includes sleeping behaviours.
Sleeping disorders like Delayed Sleep Phase Syndrome are usually immediately visible
in such long-term observational studies, since the start and stop times of sleep are
logged. With the focus in this study on sleeping behaviour for night prediction,
the importance in further studies is apparent and strengthens the selection of our
features.

4.3.2 Comparison of Sleep Rhythms

The main reason for building a sleep model based on past behaviour is to first predict
a user’s upcoming night to discover regularities as well as irregularities and evaluate
a person’s sleep on a long-term basis. We will illustrate how data is collected and
further processed, resulting in a preliminary evaluation on night prediction.

Method and Dataset

The dataset used for this purpose was obtained from a healthy 30 year old male. The
sensor was worn on the non-dominant wrist, recording inertial data at 100Hz from
the embedded 3D accelerometer, which resulted in an almost continuous dataset
of 141 days. In the beginning of the recordings minor problems were experienced
in the hardware, leading to a few gaps in the dataset. The last 105 days were then
continuously recorded 24/7.

The data was further processed by extracting night segments with a threshold-
based algorithm, which uses motion, light intensity and sleep time for classifying
potential night segments. Ground truth is provided by a time diary maintained by
the test subject. The resulting night segments are used to calculate the sleep duration
given by start and stop time of sleep.

The motion segments are identified as follows: Over a window of 2sec the
variance of the acceleration is calculated. Whenever the variance exceeds a threshold
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Figure 4.4: Screenshots of the obtained video footage of the test subject.
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Figure 4.5: All 141 nights (gray = workdays, red = weekends) are displayed with
portions of day data (blue) prior and after sleep. The black lines describes the
average falling asleep and waking up times calculated over the whole dataset.

vthresh of 1, a motion segment is detected, until the variance is below vthresh. We
experimentally estimated vtresh by video observation. An example of the obtained
video footage is shown in Figure 4.4.

Evaluation

The obtained features are used in two different scenarios. The first depicts how well
the features describe usual sleep habits in the weekend (Friday and Saturday night)
and during workdays (Sunday to Thursday night). The second scenario displays
what sleep habits the same weekdays exhibit.

Weekend vs. Workdays. We state that there is a significant difference between a
person’s sleeping behaviour on weekends and that on working days. The weekends
are defined by Friday and Saturday, due to the fact that the person is not working
the next day.
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In Figure 4.5, all examined nights (gray = workdays, red = weekends) are dis-
played with the average falling asleep and waking-up times depicted as black lines.
By visual inspection, differences between weekends and working days are already
visible, showing different patterns in both environments. It seems as if the subject
goes to bed later on weekends and also wakes up later, while following a more strict
behaviour of going to bed before midnight during the week. The average falling
asleep and waking-up time confirm our observation when comparing the black lines
to the start and stop times of sleep for weekends and working days.

The overall results from the features extracted for this scenario are displayed in
Table 4.3. The difference in all features depicts the deviation between both, weekends
and workdays, showing almost none in sleep duration and number of movements
but a significant one in falling asleep and wake-up times. As expected, the person
falls asleep later on weekends, exhibiting a completely different pattern in contrast to
workdays. Interestingly, the user shows an average sleep duration of approximately
430 minutes for both environments, strengthening the theory that a person uses
a typical amount of sleep. We conclude that it is possible to detect differences in
sleeping behaviours between weekends and working days. The knowledge gained
from the features provides us with the information needed to categorize the subject’s
night into weekend or workday nights. In the next section a more fine-grained
approach is performed by comparing same weekdays to each other, giving more
insight into a user’s sleep.

sleep duration start end #movements

weekends 428 min 01:55 08:02 61

workdays 434 min 23:47 07:01 59

diff 6 min 2hrs 8min 1hr 1min 2

Table 4.3: Average sleep duration, falling asleep time, waking-up time, and number
of movements for all nights, observed during weekdays and weekend days.

Same Weekdays. Only a dataset covering about six months makes it possible to
gather a sufficient amount of data to observe which sleeping behaviour exists on
same weekdays. On average we obtained data on 20 days for each weekday and
then built the model. In order to examine the features for these days, we performed
a leave-one-day-out cross-validation, by calculating the average for all other features
and by comparing the results to the day that was left out. For this, we used a
threshold for all features, which displays how well the model fits to the night. The
thresholds are: Duration of sleep ±45 minutes, wake-up or falling asleep time each
±45 minutes and number of motion-detections ±15.

The results are displayed in Table 4.4, which shows how the allocation of the
same weekday to the model of the other same weekdays performed. Overall, we can
state that crucial parameters for similar nights are falling asleep and waking-up times.
These are regular during all scrutinized nights, which strengthens the assumption
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accuracy for... sleep duration start sleep end sleep #movements

Sundays 79% 95% 89% 79%
Mondays 62% 86% 90% 76%
Tuesdays 71% 76% 86% 76%

Wednesdays 76% 76% 100% 67%
Thursdays 53% 79% 63% 68%

Fridays 62% 81% 76% 52%
Saturdays 53% 89% 89% 42%

total 65% 83% 85% 66%

Table 4.4: Accuracy results for the leave-one-day-out cross-validation over all week-
days (Sunday, Monday, ..., Saturday). The last row lists how well the four features
were captured overall by the prediction model.

that a person tends to follow a time-critical sleep habit. Although the sleep duration
and the number of movements vary a lot on same weekdays, these features need
more individual analysis in the context of sleep quality. As stated in Section 4.3.1,
movement is an indicator for sleep quality, as well as sleep duration.

4.4 conclusions

An important finding of this chapter is the use of statistical data obtained over a
population to be applied in activity recognition scenarios. For this purpose we
investigated two different information sources: First, we evaluated the feasibility of
using time use databases for wearable activity recognition systems, contributing with
the analysis of the GTUS specifically. We showed for different population groups
(e.g., arranged in age, gender, etc.) what types of activities they perform at specific
times of day, reflecting how common these activities are. We compared the results
from this study with previous work in Partridge and Golle (2008) and discussed the
use of these time use data in wearable activity recognition. The comparison of a
US and European time use survey revealed that demographic differences need to
be considered. Results of feature analysis for both datasets show that time is a very
important feature, and that even when considering more fine-grained time slots of
10 minutes, the activity estimation with just time is still 50% accurate on average,
without using any sensor datasets to train from. Another import feature is location,
which shows strong affiliation to certain activities, for example, when considering
travelling or sleeping. The best results were achieved when using a combination of
the features location, prev.act. and time, showing an overall accuracy across all tier
one activity classes of almost 75%.

Such knowledge transfer derived from statistical data can be used for other
activity recognition systems. Making use of prior knowledge was introduced in Van
Kasteren et al. (2008) as well, showing how a sensor network system can profit from
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knowledge of other sensor network systems in a similar environment. Time use
data reflect how common activities are performing for their residents, additionally
exhibiting rhythmic behaviour in their activities. Our finding is limited to the same
region in which data will be recorded for activity recognition.

Further, this chapter investigates the usage of sleep related information to charac-
terize trends such as workdays, weekends and individual days. For this purpose,
we use sleep data features to describe sleeping trends, on a continuous dataset
of 141 days from a 30 year old healthy (not suffering from sleep disorders) male.
Furthermore, we could assess the test subject’s night by our prediction model as a
prior, using new nights as input to the model. With such information the rhythmic
nature of sleep is depicted, especially by its regular occurrence on, for example, same
working days. We illustrated the feasibility of our technique on the obtained dataset,
modelling the user’s normal nights, which can be put into contrast to a model of an
irregular night.

The results presented in this chapter are a first approach to make use of prior
knowledge for recognizing activities. As pointed out earlier, sleep is an important
activity and can be modelled with such prior knowledge. Therefore, in the next
chapter, we will focus on detecting sleep accurately and evaluate novel approaches
by comparing standard sleep detection algorithms to ours.
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In this chapter we rely on the extracted features from the previous chapter of
two different data sources: Time use surveys and a person’s inertial wrist data.
We concluded that such features from the aforementioned sources can be used

in the activity recognition process. With sleep being a very important activity that
exhibits a most prolific rhythm, we employ such information for detecting it. First,
we use inertial data only and then we add additional information on top of the
accelerometer data. For these scenarios, we propose three different sleep detection
algorithms that are based on (1) a novel approach that considers immobility segments,
being comparable to traditional sleep detection algorithms, as well as (2) a Gaussian
and (3) a generative model-based approach. We give a thorough evaluation of these
procedures and highlight important findings in the field of sleep research.

5.1 introduction

The importance of evaluating sleep in healthcare scenarios has been presented in
Section 2.3, highlighting especially traditional techniques to detect sleep segments.
Such techniques are used in actigraphy devices for the diagnosis of sleeping disorders
like sleep apnoea or to detect shifts in sleeping patterns. They tend to overestimate
sleep, which is why such devices are not necessarily deployed by every sleeping lab.
The devices’ algorithms are based on the activity count measure, which describes
the activity level per minute, to determine sleep segments. Additionally, in order to
interpret the data captured, patients are usually required to annotate the sleeping
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and awake times (Littner et al., 2003).
In this chapter, we evaluate three different sleep detection algorithms that can be

used in long-term monitoring scenarios to capture the user’s sleeping patterns. More
specifically, we argue that wearable wrist-worn activity loggers can be deployed as
an additional instrument to complement the traditional polysomnography (PSG)
observation method, on the premise that the internal algorithms that estimate sleep
and sleep stages are verified to work on benchmark data. For this purpose we obtain
two different datasets to evaluate our algorithms:

(1) We first recorded a dataset which consists of PSG patient and inertial data
from 42 subjects to determine the feasibility of our novel sleep detection algorithm
based on immobile segments. The sleeping lab scenario is used to obtain the actual
sleep ground truth, i.e., it shows when people are really sleeping or lying awake in
bed. Comparing the traditional algorithms to detect sleep and wake cycles (as for
example being used by the Actiwatch - see study in Weiss et al. (2010) - and the
Mini-Motionlogger - see study in de Souza et al. (2003)), we show that the novel
algorithm for sleep-wake phase detection yields a mean detection accuracy of 79%. For
this purpose, we explicitly detect segments of idleness, as opposed to being based
on detected activity counts, which are simple representations of accelerometer data,
as is prevalent in related work. Additionally, with the contribution of a dataset
consisting of raw acceleration data from a wrist worn device with ground truth
as PSG outputs, detection algorithms can be pitted against each other and results
can be reproduced. To our knowledge, such data are not publicly available. One
exception is a dataset that includes inertial data (Tilmanne et al., 2009), though the
authors focused in their paper on a device that was worn around the waist, which is
a common procedure for detecting the body posture outside a sleeping lab.

(2) Then, we use our sleep monitoring system (see Section 3.4) to obtain data from
8 subjects monitored in their home environment over a long timespan to evaluate a
generative model- and Gaussian-based approach to detect night segments, i.e., when
a person is lying down in bed and getting up again. As ground truth we use video
footage obtained from a camera that is set up in the user’s bedroom. In contrast to
the first study, which relies on inertial data only, we embed additional information,
like time use data and light sensor readings. We will show the detection of night
sleep segments with a high confidence, given a dataset that illustrates a subjects
common sleep routine.

For the remainder of this chapter, we introduce the following terminology in
regard to the presented sleep detection algorithms: (1) We will use the terms sleep-
wake cycles, phases or segments to describe intervals in which a person is actually
sleeping, i.e., being in a sleep stage or being awake by lying in bed without moving.
(2) In contrast to that, night/ly sleep segments or night segments refer to intervals in
which a person is lying down to fall asleep and getting up after awakening at
night-time.

In Section 5.2, we will first present the novel algorithm based on accelerometer
values only, comparing our results to traditionally used approaches that detect sleep
with data provided by actigraphs, i.e., activity counts. Further, in Section 5.3, we
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describe the evaluation of two approaches to detect night segments on long-term
datasets, which rely not only on inertial data but take into consideration other
information like time of day and light intensity.

5.2 sleep detection with accelerometers only

In order to capture sleep segments in sensor data streams, we established a novel
sleep detection algorithm that uses detailed information from the accelerometer
data. We rely on the knowledge that we move a lot less when sleeping than when
being awake. We evaluate our approach on a benchmark dataset that we obtained
in a sleeping lab, allowing to determine the exact time of a person falling asleep.
Additionally, we use two traditional algorithms (Oakley, 1997; Cole et al., 1992) from
medical sleep trials which we compare directly to our approach.

5.2.1 Algorithm Details for the Comparison Study

In Section 2.4.1, we introduced two clinically tested algorithms to detect sleep-wake
cycles. In this section, we discuss the reproduction of both algorithms, Oakley (1997)
(which is used for the Actiwatch) and Cole et al. (1992) (which is the basic approach
for the Mini-Motionlogger actigraph), that we apply on inertial data. In order to
compare their results to ours, it is necessary to calculate an activity count that is
similar to the ones provided by the two aforementioned actigraphs. The calculation
of the activity count can vary substantially, depending on the device that is used.
Several research efforts, e.g., Virkkala (2012), have performed comparison studies to
map raw accelerometer data to activity counts, such as those from the Actiwatch 7

(CamNtech Ltd.), to show that it is possible to use a 3D accelerometer to calculate
the activity counts. This has been evaluated on sleep data that have been recorded
with an accelerometer and the Actiwatch in parallel, and is based on the findings
of van Hees et al. (2010), where accelerometer data during the day were matched to
an actigraph output. More recent work (te Lindert and Van Someren, 2013) took a
similar approach to derive the activity count solely from inertial data to be able to
use traditional sleep detection and sleep parameter algorithms. The algorithms were
evaluated by data obtained from 15 healthy subjects in their home environment,
showing high agreement rates between epochs (i.e., observed time intervals in sleep
research, typically 30 seconds long) for an actigraph and a Microelectromechanical
System (MEMS). We will pick up these approaches and show how accelerometer
data obtained from our wrist-worn device has been processed to apply the sleep
detection algorithms.

Data Processing

The data processing chain for all algorithms can be described in four distinct steps:
(1) Obtaining the raw 3D accelerometer data, (2) band-pass filtering the data, (3)
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Figure 5.1: Time series of the data abstraction steps performed in this study, to
compare methods that detect sleep-wake phases based on 3D acceleration. The
raw accelerometer data (top) is first treated with a band-pass filter (middle, in red),
after which method-specific features, called activity counts, are computed per epoch
(bottom, in black) to detect the sleep and wake phases.
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calculating the algorithm-specific features per epoch33 and (4) applying the sleep
detection algorithms on this feature set. Figure 5.1 depicts plots from this process
up to the feature extraction for the algorithms by Cole et al. and Oakley. Before
any of the algorithms are being used, we filter the raw acceleration data to remove
any noise present in the raw data, as well as any high-frequency motion artefacts,
as argued for in (Ancoli-Israel et al., 2003). For this purpose we use a 1st-order
Butterworth band-pass filter with different low-cut (Oakley: lowcut = 3.0, Cole
et al.: lowcut = 0.5) and same high-cut (both = 11.0) frequencies that have been
experimentally verified for sleep and wake phase detection in Virkkala (2012). The
activity counts for both methods have been implemented as follows:

Oakley. In order to be able to evaluate against the algorithm by Oakley, we use
the approach presented in Virkkala (2012) to obtain activity counts for Oakley’s
algorithm equivalent to the Actiwatch output. The activity count is estimated by
using the z-axis34 only to determine the maximum absolute value inside 1-second
windows. These per-second values are accumulated over the observed epoch length
and scaled by two parameters, x and y, accordingly: A = x · G + y, where A = total
activity count equivalent to the Actiwatch activity count, G = activity count over the
epoch length derived from inertial data, x = 66 and y = −3.3. In the experiments
of Virkkala (2012) the scaling factors have been estimated for the commonly-used
epoch length of 30 seconds for a wrist-worn, 3D accelerometer-based device, which
is why we will use this same epoch length for our comparison study to calculate the
activity count. The use of a different epoch length will require the reassessment of
the scaling factors.

Cole et al. For the algorithm by Cole et al. we implemented a windowed zero-
crossing count on the inertial data to obtain the activity count. For this purpose
we conducted the zero-crossing on the accelerometer’s z-axis as detailed by Karlen
et al. (2008). We replicated this approach with these parameters, counting the
zero-crossings on the filtered data for every 1-second interval.

The activity counts for both algorithms were accumulated over epochs of 30

seconds, enabling the use of these two algorithms with the exact same parameters
as introduced in previous work. It is important to note that the results from these
re-implementations might still deviate slightly from the algorithms’ designs in the
way they are embedded in the Actiwatch and Mini-Motionlogger devices, since they
operate on essentially different sensor modalities. However, the two independent
studies that our implementations are based upon (Virkkala, 2012; van Hees et al.,
2010) report encouraging approximation results between the respective activity
count methods (embedded in hardware) and their 3D MEMS accelerometer-based
reproduced variants, indicating that differences can be expected to be small.

33A time interval in which activity counts are being calculated.
34This is taken to be the axis that is perpendicular to the hand palm.
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Figure 5.2: Our approach focuses on the detection of sustained periods of idleness
during sleep, in which the 3D acceleration signals remain flat. We use these segments
and their duration (grey bars at the bottom of the plot, duration in seconds) as a
basis for sleep detection, as opposed to sliding a fixed-width window over the data
as in traditional activity count-based analysis methods.

5.2.2 The ESS Approach

We present in this section our alternative method for detecting sleep segments, called
ESS (Estimation of Stationary Sleep-segments), that is inherently different from the
methods of Oakley and Cole et al. since it does not rely on activity counts (whether
produced by amplitude or zero crossings) over pre-defined timespans. Instead, it
relies on the presence of long periods of idleness that in 3D acceleration data manifest
themselves as flat horizontal signals. These are typically interchanged now and then
with short transitions where the patient changed his or her sleeping posture. These
segments are then used similarly to the epochs in the previous two methods, along
with their duration (in seconds) as weights. Figure 5.2 illustrates this concept on
typical sleep data from a 3D acceleration sensor (in mg) recorded at 100Hz over
a timespan of 50 minutes before awakening (at 4 : 27am): The intervals between
motion segments are typically quite long during normal sleep. The detection of
these segments is based on the following method:

Sδ =

{
1, if

√
1

99 ∑100
i=1(zi − z)2 > δ,

0, otherwise.
(5.1)

Our approach consists of two steps: The first one applies a strong low-pass
filter to the data to identify the segments in which there are no movement patterns
present in the accelerometer data, as detailed in the formula above. Similar to the



5.2 sleep detection with accelerometers only 83

Figure 5.3: An illustration of time series data from a wrist-worn 3D accelerometer
(top) and polysomnography (PSG), suggesting that there is a strong correlation
between sleep-wake phases (middle) and the number of activities (bottom).

implementation for Oakley and Cole et al., we use solely the z-axis readings to which
the filter is applied to. This is achieved by a sliding window approach in which
the standard deviation (STD) is calculated over a 1-second interval, after which the
resulting value is thresholded for δ. The second step then performs the identification
of entire segments and collects these segments’ start and stop times along with their
length in seconds in a lookup table for later reference. A second threshold parameter
is required here to select the minimal length (in seconds) for such intervals in which
the accelerometer values remain unchanged.

5.2.3 Experiment Set-Up

For a comparative study between the methods from Oakley, Cole et al. and our
proposed ESS sleep-wake phase detection method, we collected 3D acceleration
data from 42 patients spending a night in a sleeping lab, while being supervised by
somnologists and monitored with PSG. The latter is used as so-called ground truth
for the patients’ actual sleep-wake phases, as well as to provide more details on the
individual sleep phases (such as REM vs. Non-REM). For logging 3D acceleration
data we use our wrist-worn device, set to a sensitivity of ±4g by logging data at
100Hz. An example of the obtained data is shown in Figure 5.3, illustrating the
inertial data at the top, the obtained PSG ground truth in the middle and the number
of activities in the bottom plot. Just by visual inspection there seems to be a strong
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number of nights: 45

number of patients: 42

gender distribution: 22 male, 20 female
age distribution: 24 - 86

disorders (diagnosed): insomnia, narcolepsy, SAS, RLS
data (in minutes): 24,475

Table 5.1: Some key properties of the collected benchmark data (SAS = sleep apnoea
syndrom, RLS = restless leg syndrom).

correlation between sleep-wake phases and the number of activities.

Study Participants. We gathered data from 42 sleeping lab patients aged between
28 and 86 years, suffering from a variety of sleeping disorders (though most were
later diagnosed with primarily sleep apnoea syndrome (SAS), restless leg syndrome
(RLS), or narcolepsy). In total, we recorded 45 nights worth of data, whereby three
patients wore the sensor for two nights in a row, attesting for over 409 hours of
100Hz acceleration samples, annotated with ambient light readings (which are not
used in this study but have been included in the benchmark dataset for incorporation
in later algorithms) and the PSG details. Table 5.1 summarizes the main details of
the patients, indicating how much data we obtained from the wrist sensors as well.

The patients were recruited by staff of the sleeping lab and monitored for at least
one night via the standard PSG method, as well as with the wrist sensor. After a
short introduction on how the wrist sensor works and what type of data it captures,
each patient was asked to start wearing the sensor unit at least one hour before going
to sleep and to take it off one hour after waking up. The patients signed a privacy
policy and a consent form, allowing the scientific use of the obtained anonymized
data from both the PSG as well as from the wrist sensor. Furthermore, they were
given documents that describe the experiment in detail and stipulate how the data
will be anonymized afterwards in order to enable sharing of the dataset with other
researchers for future studies.

In general, the acceptance of wearing the wrist-worn device in addition to the
PSG set-up was high: Many patients expressed interest in future studies of the
device and responded positively to the idea of having such devices complement PSG
for recording in their usual home environment.

Dataset. Data obtained in this study consists of over 409 hours of inertial and
PSG data. The sensor was instructed to be worn on the dominant wrist, although
previous studies have shown that the wrist placement is not crucial in sleep studies
(Sadeh et al., 1994). Before the sensor distribution, the real-time clock embedded on
the accelerometer-based device was configured to be aligned to the clock of the PSG
system in the sleeping lab, in order to obtain a synchronized dataset. On return
of the wrist-worn sensors, their data logs were visualized to the patients as part of
the privacy policy (see Figure 5.4, the two bottom plots, for an example of such a
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Figure 5.4: TOP: Sleep phases from a 24-year-old female subject, showing awake (W),
movement (M), REM (R, red rectangles in the plot) and the Non-REM phases (1, 2,
3). MIDDLE: Inertial data from the sensor worn at the dominant wrist. BOTTOM:
Light sensor values for the entire recording period.

visualization).
The patients’ PSG data was scored in 30 second epochs by standard procedure

obtained after a few days of monitoring, since the medical staff had to analyze the
data first, after which the doctor had to summarize these diagnostic findings. The
data consists of the patients’ demographic information, the wake and sleep stages,
with sleep being displayed by REM and Non-REM (sleep phases 1-3) and sleep
characteristics, e.g., total sleep time (TST). We refer to Section 2.3.2 for an example of
such a diagnosis.

The sleep phases are divided into three different stages, labelled ’1’, ’2’ and ’3’.
Additionally, periods of particularly high amounts of limb movement are marked in
the dataset (”M”), as well as when the PSG detected a wake phase (”W”).

5.2.4 Evaluation

In order to find the optimum minimum length for the intervals of non-movement,
we defined six different interval thresholds (300, 360, 480, 600, 720 and 900 seconds)
and evaluated their performance in regard to sleep detection, using the PSG dataset
as ground truth. We take the accuracy for detecting sleep and wake phases into
account, and use the precision and recall to investigate further differences between
the individual parameters’ performances. We observe that the mean accuracy is best
for the 600 interval which is why we choose this interval to determine immobile
segments. Additionally, we set the standard deviation (STD) threshold to 6, as
derived by experimental evaluation of different thresholds.

For each of the three sleep estimation algorithms we compare the results to the
PSG output. Figure 5.5 shows the visual results for all three algorithms together
with the raw data and the PSG estimation for sleep and wake (blue and yellow
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Figure 5.5: Sleep-wake estimation results for a 24-year-old female suffering from narcolepsy.
Displayed are the evaluation of the activity count-based algorithms (Oakley and Cole et al.,
middle plots) and the ESS algorithm (bottom plot) compared to the PSG output. Additionally,
we see the raw 3D inertial data of the wrist-worn sensor (top plot). Precision and recall are
similar for all three algorithms (87%-99.9%).

Figure 5.6: Sleep-wake estimation results for a 69-year-old male suffering from SAS.
Displayed are the evaluation of the activity count-based algorithms (Oakley and Cole et al.,
middle plots) and the ESS algorithm (bottom plot) compared to the PSG output. Additionally,
we see the raw 3D inertial data of the wrist-worn sensor (top plot). Especially at the beginning
of the recording a sleeping segment is detected, which is due to immobility of the patient
while starting the PSG. ESS shows clearly detected wake segments, outperforming the other
two algorithms by 10%-20% in accuracy.

respectively). For Oakley’s algorithm we use the most sensitive threshold of 2035 to
mark the epoch as ’sleep’. By visual inspection we see that Cole et al. overestimates
sleep and fails to detect small wake segments. Oakley exhibits many, mostly short
wake segments within sleep intervals but detects most of the sleep. Interestingly, ESS
detects the initial wake segment which is almost identical to the PSG output, while
sleep is being detected accurately. Quantitative results confirm the observations:
Accuracies vary for all three in the range of 82% - 85%. More visual results are

35As described in Section 2.4, the sensitivity can be set to 20, 40 or 80.
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Figure 5.7: Sleep-wake estimation results for a 72-year-old male patient suffering from SAS.
Displayed are the evaluation of the activity count-based algorithms (Oakley and Cole et al.,
middle plots) and the ESS algorithm (bottom plot) compared to the PSG output. Additionally,
we see the raw 3D inertial data of the wrist-worn sensor (top plot). ESS clearly detects the
initial wake segment while Oakley and Cole et al. tend to detect short sleep intervals.

Parameter PSG Oakley Cole et al. ESS

TST 287 min ±92 413 min ±42 406 min ±44 328 min ±88

SE 66% ±20% 94% ±3% 93% ±4% 76% ±18%

Table 5.2: Total sleep time (TST) and sleep efficiency (SE) for all nights accord-
ing to PSG, the two activity count-based algorithms and our approach (ESS). ESS
estimations are closer to the PSG results as opposed to Oakley and Cole et al.

shown in Figures 5.6 and 5.7, indicating a better performance for the ESS algorithm
in contrast to Oakley and Cole et al.

Additionally to the visual inspection, we investigated some sleep parameters to
complete the dataset’s description. We calculated total sleep time (TST) and sleep
efficiency (SE) for each algorithm and compared these values. Total sleep time is
the amount of sleep in minutes being detected by the algorithm. Sleep efficiency is
the quotient of TST and total recording time (here: PSG start and PSG end). Table
5.2 shows the results for these parameters, indicating a very low mean value for
TST as determined by PSG. In comparison to that, Oakley and Cole et al. tend
to overestimate TST, while ESS represents a TST value between PSG and Oakley.
Here, the inevitable problem can be observed: Activity count-based systems tend to
overestimate sleep in general, as depicted in Montgomery-Downs et al. (2012). The
same is shown here in SE: Oakley and Cole et al. exhibit high values of 94% and
93% respectively, while ESS is very close to the PSG SE. We can state here that all
three algorithms differ from PSG, ESS less than Oakley and Cole et al.

Accuracy results for all algorithms are shown in Figure 5.8 as boxplots. We
observe that the median (red line in the box) for ESS is slightly higher than for
Oakley and Cole et al. Median accuracy values for the three approaches ESS
(78.83%), Oakley (74.94%) and Cole et al. (73.75%) are all close to each other. Overall,
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Figure 5.8: Accuracy results for the ESS (median: 78.83%) algorithm compared to
Oakley (median: 74.94%) and Cole et al. (median: 73.75%). Both median (red line in
the box) and interquartile results indicate that the proposed ESS outperforms the
traditional actigraphy-based approaches, while all approaches still leave ample room
for improvement.

however, ESS’ performance is slightly better over all participants in the study, which
can also be seen by observing the interquartile borders. Note here that for each
algorithm an outlier is visible (lowest ’+’ for each boxplot): This is explained by a
69-year-old female patient, who lay awake most of the time during recording, while
her inertial data log exhibited almost no movements. For this strong outlier case, all
three algorithms estimated sleep instead of wake.

Additionally, we show in Figure 5.9 precision and recall results for both sleep
and wake segments (left plots: precision and recall for sleep, right plots: precision
and recall for wake). Recall is the portion of sleep (or wake) segments that were
correctly identified as sleep (or wake) during the classification. We observe for
sleep that precision results are slightly better for ESS (median: 78.95%) and Oakley
(median: 78.29%), whereas Cole et al. rests at 72.91%. We can highlight here that
all three algorithms perform similarly in retrieving sleep segments from the given
dataset. Cole et al. exhibits a high recall for sleep (median: 98.74%), which can be
explained by the fact that Cole mostly detects sleep throughout the whole dataset,
while Oakley (median: 92.93%) and ESS (median: 94.12%) highlight wake states
more often. Interestingly, wake is being detected with a high variety in precision
for all three algorithms, showing a higher recall for Oakley and ESS (both over 20%
higher than Cole et al.).

The approach suggested by Cole et al., while detecting almost all the sleep
intervals, fails to detect the relevant wake segments resulting in a much lower
recall. The problem for detecting wake segments in this dataset in particular from a
sleeping lab is visible in the results and is a challenge for most sleep-wake detection
algorithms. It is also important to note here that the ESS algorithm keeps an adequate
balance of detecting sleep and wake segments in the dataset, as opposed to Oakley
and Cole et al., which tend to neglect wake segments (see Figure 5.9).
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Figure 5.9: Precision and recall results (left: sleep, right: wake) for ESS compared to
Oakley and Cole et al. Sleep precision (leftmost plot) for Oakley (median: 78.29%)
and ESS (median: 78.95%) are on the same level, while Cole et al. exhibits a better
recall (median: 98.74%). For wake the results are inverted: Oakley (median: 38.86%)
and ESS (median: 45.42%) show a higher recall, while Cole et al. yields a higher
precision (median: 91.14%).

5.2.5 Discussion

This study compares two commonly used sleep detection algorithms to the results
of the ESS approach on sleep-wake detection with data from sleeping lab patients.
The accuracies for detecting sleep and wake segments are very promising already, as
shown in the previous section, yet we believe that parameters can be optimized to
improve on the detection of such sleep and wake intervals. We will focus here on
finding good candidates for these parameters, as well as what impact the dataset
has on future studies.

Dataset. The dataset recorded for this study is a challenging one: First of all, most
of the subjects observed suffer from a sleep disorder (diagnosed after their visit
to the sleep lab), which makes it difficult to determine when the patient is really
awake or just exhibiting spontaneous muscle contractions. This we observed, for
example, for a 69-year-old female subject, suffering from sleep apnoea syndrome
(SAS). According to PSG the patient was sleeping but this sleep was interrupted by
various incidents which let the sleep-wake algorithm detect wake segments even
though the patient was sleeping. Second, the dataset includes also healthy patients
(though a minority at 5/42 in total), which makes it a rich dataset not only on
various sleeping disorders. All sleeping lab patients were diagnosed several days
after their stay in the sleeping lab, we did not include healthy patients in the dataset
on purpose. Additionally, three patients had to spend two consecutive nights in
the sleeping lab, which produced particularly useful data as it should minimize the
first-night-effect drastically on the second night.

Our dataset with PSG data is enriched with acceleration data from a wrist-worn
sensor and enables follow-up research to use data that is not only based on activity
counts similar to actigraphs but also on more fine-grained and relatively high-
resolution (100Hz) signals. Especially in the paediatric sleep research (Insana et al.,
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Figure 5.10: Different idleness segment thresholds (x-axis, in seconds) compared
among each other, indicate that 600 seconds (10 minutes) is the optimum interval
length threshold for the ESS algorithm.

2010) such a set-up could lead to a more reliable detection of sleep-wake segments,
since children have been observed to move more during sleep.

Some limitations of the dataset have to be considered here as well: (1) The
benchmark dataset contains recordings that are mostly from patients spending one
night in the sleeping lab, which is bound to have a drastic impact on the dataset.
Normal sleep that approximates that of the patient’s home environment usually is
achieved on the second night in the sleeping lab. According to the medical staff, the
patients’ diagnoses could be obtained by spending only one night in the sleeping
lab. A minor part of the dataset was obtained from patients who did spend two
subsequent nights in the sleeping lab but most of the data can be regarded as
atypical and challenging for detecting sleeping patterns. Further evaluation needs to
be conducted on how such an effect is influencing the overall results. (2) We assessed
only few healthy patients, which is why the behaviour of the ESS algorithm still
has to be investigated under ”normal” circumstances, i.e., observing sleep in the
home environment. This obviously becomes a challenge when ground truth data
(PSG recordings) are needed to asses and evaluate the algorithm. Due to this focus
on sleeping lab patients, the results on this dataset are therefore likely not to be
representative for healthy subjects.

Parameters. As mentioned before, we determined an immobile segment length
of 600 to mark the segment as sleep. This immobility threshold when varied
yields different accuracy results on our dataset, as depicted in Figure 5.10 for the
aforementioned thresholds (300, 360, 480, 600, 720 and 900). We observe an increase
of the median until 600, after which it slightly drops again. Whether other thresholds
can improve on the results has still to be investigated. For this purpose we have
to take into consideration the STD threshold for detecting immobile signals within
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Figure 5.11: Accuracy results for different STD thresholds (2, 4, 5, 6 and 7) for
idleness interval length thresholds (540, 600, 660, 720, 780, 840 and 900 seconds).
These two parameters were varied to achieve the optimum recognition rate for
detecting both sleep and wake segments across all patients.

the inertial data. In Figure 5.11 we show the accuracy results for each immobile
threshold length and the individual STD thresholds (2, 4, 5, 6 and 7). A too small
STD leads to a lower accuracy, while the highest depicted here (7) stays steady over
all immobile lengths. Not shown here is that for lower thresholds, we receive a
very high precision for sleep but a very low one for wake, which would contradict
a system that should detect both sleep and wake segments. We can conclude that
depending on the scenario, the thresholds can be varied and that for this study, the
optimum thresholds of 6 for the STD and 600 seconds for the idleness interval length
return optimal results.

Activity count-based methods such as the ones by Oakley and Cole et al. take
the surrounding epochs into consideration to smooth out the sleep detection over
longer intervals of time. Such a step is not implemented in the ESS algorithm. One
possibility to embed this is to determine all the stationary segments and detect
smaller movement segments in-between these segments. These could be filtered out
by setting a specific windowed threshold for these movement segments (e.g., 2-3
seconds) that are additionally marked as sleep. Nevertheless, these are considerations
for future studies that need to be evaluated more thoroughly.

This section’s topic was limited to the identification of sleep and wake phases
present in the 3D accelerometer data. Since the presented dataset contains more fine-
grained sleep phase annotations as well, an interesting further line of investigation
would be to take a deeper look into algorithms that not only determine sleep-wake
intervals but also estimate further phases such as REM and Non-REM, based on
wrist-worn accelerometer data. As an initial investigation on how indicative the
presence of activity in the data is for particular sleep phases, a histogram was
constructed that shows the number of occurrences for each sleep phase per variance
bin, as depicted in Figure 5.12 by a distribution of variances over 1 second for
all sleep phases (SP1-3 and REM) including wake segments. As can be observed,
REM (red) occurs only on the low ranges of variance, indicating that this phase
exhibits low variances only (which is in support of what is know about limb motion
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Figure 5.12: Histogram of variance occurring in the different sleep phases REM and
Non-REM (SP1-SP3) and wake phases. REM occurs only in low variance intervals.

during the REM phase). However, how well any algorithm could manage to estimate
REM/Non-REM phases needs much more investigation on the dataset itself.

5.3 sleep detection with additional information

In the previous section we introduced a sleep detection algorithm that is based on
inertial data only. In contrast to that, we present in this section an adaptive method
that extracts nightly sleep segments from continuous recordings of inertial data, using
an approach that can be bootstrapped from time use data and personal recordings,
combined with measured light intensity and physical motion. Additionally, we
compare our approach to one baseline algorithm that performs simple histogram-
based thresholding on the training data. For this purpose, we make use of the
sleep monitoring system presented in Section 3.4 to obtain 8 datasets from study
participants that have been recorded over a longer period of time. We will first
describe the dataset used for the evaluation, then the approach to detect night
segments.

5.3.1 Experiment Set-Up

From our sleep monitoring system set up in the bedroom of 8 participants, we
obtained video footage and 3D acceleration data from the wrist-worn device which
was set to a sensitivity of ±4g to log data at 100Hz. The data from the IR camera is
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used as ground truth, showing the exact timestamps of the participants going to bed
and getting up again.

In total, we obtained over 4,416 hours / 184 days of continuous recordings from
the wrist-sensor with ground truth data from a variety of test subjects as summarized
in Table 5.3: These were selected to ensure that several different types of subjects
were included and that the segmentation algorithm can be properly stress-tested
with sufficiently contrasting types of sleeping behaviours. Two of the test subjects
were included that are diagnosed with a specific sleep disorder, one female subject
was monitored being 5 months pregnant, and one elderly test subject was included.
All subjects were recruited outside the sleep lab environment to test the set-up within
a real-world scenario at the participant’s home.

Subject Gender Age Hours of data Comments

1 female 33 336 at 5th month of pregnancy
2 male 30 1,344 normal sleep
3 male 30 432 normal sleep
4 male 28 694 irregular night segments
5 male 35 360 periodic limb movement disorder
6 male 35 672 delayed sleep phase syndrome
7 male 61 648 early morning awakening
8 male 26 576 irregular night segments

Table 5.3: The group of participants used in the evaluation, specifying gender, age,
the length of their dataset in hours, and additional factors which are likely to be
sleep-relevant. Two of the participants were diagnosed with a sleep disorder, the six
others have no known sleep disorders.

5.3.2 Night Segmentation Approaches

The method to detect sleep consists of using as features the time of day, ambient light
and physical amount of motion to estimate the start and stop times, as well as the
duration, for the night segments in continuously recorded long-term data. First
we discuss the chosen features in more detail, followed by a discussion of the two
multi-modal classifiers.

Features for Sleep Detection

Time of Day. The time of day is generally a strong clue for estimating the night
segment in a day, as most people tend to adhere to a strict circadian rhythm with
regular bed- and wake-times. Furthermore, with the help of time use databases, it is
feasible to start off with a prior estimate that is generated from a sizeable amount of
questionnaire results as introduced in Section 4.2.
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Figure 5.13: An example of typical sleeping times, taken from the GTUS (left) for
males between 30-34 years of age, and a one-person (32-years-old) dataset over 30

days (right). The sleeping times of the user match to a high degree to the ones in the
GTUS (e.g., shortly after 4:00 both diagrams reach their maximum). The feature time
of day is used in the classification process.

The wrist-worn sensor logs its data with timestamps that are provided by the
on-board real-time clock. With an expected deviation of approximately 2 seconds
per week, this is sufficient to fuse the recorded data with those from other modalities
such as the IR camera. For characterization of the night segment, the minute of the
day36 is extracted from the complete timestamp (which holds other information such
as year, month, day, and day-of-week as well).

A user-specific model for linking time of day to the nightly sleep segment is
trained from recorded data, as will be done for the other two features. However, in
the case of time of day, it is also possible to use existing information as presented in
Section 4.2 in the form of time use surveys. We illustrated the use of these often large-
scale datasets to create informed activity classifiers, which we found particularly
promising in the special case of sleep. For this activity an exceptionally large number
of samples are available in time use study data. More specifically, we will make
use of the German Time Use Survey (GTUS) for one night segmentation approach
(see later in this section). In Figure 5.13, the left plot depicts a minute-by-minute
normalized histogram of sleep collected from the GTUS and, in comparison to that,
the right plot shows the same information from one of our test subjects from the
dataset obtained for this study. The similarity indicates that such time use survey
data reflects the common sleep habits of a German citizen.

Ambient Light. A second feature candidate for detecting nightly sleep segments
is the absence of light in the environment, as most people tend to sleep in darkened

36In more detail: Midnight corresponds to minute 0, while 23:59 to minute 1439
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environments. Studies have shown that the gradually dimming light at dusk and
increasing light at dawn are used to regulate sleep and wake up times, and that
these could be used in sleep therapy (Partonen and Magnusson, 2001). The mean of
several light sensor values of a specified time frame is used as a feature.

The wrist-worn sensor has been designed so that the ambient light sensor is
directed outward, to avoid as much as possible an occlusion by long sleeves or jackets.
Furthermore, the sensor, a TSL250 photodiode, has been chosen and configured
for maximal sensitivity to light while providing a low dark (offset) voltage. The
prototype reads the voltage at full 12-bit resolution, providing a sensor reading
that is capable of detecting particularly small lighting changes under poorly-lit
environmental settings.

Physical Activity Intensity. A large body of research, including many studies
using actigraphy, indicates that activity intensity levels tend to be more elevated
during the day and fairly low during the night for subjects with normal sleeping
behaviours. As such, this can be used as a discriminant feature for the recognition
of the nightly sleep segments. Since the wrist sensor in our studies is worn on the
dominant hand, and since the sampling of the on-board accelerometer is set at a
frequency of 100Hz in order to capture even slight movements, the calculation of
standard deviation provides a robust value to represent the wearer’s activity level.

Classification Techniques

Before we apply the following algorithms, we split up the dataset for each participant
into separate subsets with a duration of 24-hours each, from noon on one day to
noon on the next, so that each timespan would contain exactly one nightly sleep
segment. The classification performance of the segment was then measured in (1)
a leave-one-day-out and (2) a leave-one-user-out cross-validation experiment. The
purpose of these two experiments is to first see how well the algorithm performs on
previously trained data from the same user, and second, how well the classification
does on data from a new user.

Classifier 1: Gaussian model-based approach. The first algorithm is a Gaussian
model-based classifier that calculates the variance and mean parameters for the light
intensity and motion data from the training data, and uses a likelihood per minute of the
sleep state from the GTUS. New data is used as input to the model and a thresholded
vote among all values over a sliding window of several (5, 10, and 15) minutes is then
used to classify the night sleep data in a robust way. The threshold is experimentally
determined and set to 0.1 for both mean light values and variance of motion.

Classifier 2: Generative model-based approach. The second algorithm is based
on two two-state discrete Hidden Markov Models (HMMs), which enables capturing
changes in sleep habits for new training data efficiently. As features the variance
of acceleration, mean of light and time of day (in minutes) are used. The first HMM
models the data taken during the awake state, and the other for the sleep state. After
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Figure 5.14: The recall values for the Gaussian-based (Thresh) and HMM-based
classifiers for the best performing window size of 10 minutes, obtained through leave-
one-night-out cross-validation and displaying the total recall (T). Both classifiers
perform similar but the HMM approach is able to capture person-specific sleep
habits (which is why the recall for subject 5 is higher).

training the HMMs, the highest likelihood for new sequences for each classifier of
several minutes (5, 10 and 15 minutes) from the testing data decides whether the
method assigns the latest observation in this sequence as asleep or awake data. In
the following we present the results for both classifiers.

5.3.3 Evaluation

Results for recall are summarized in Figure 5.14, depicting the cross-validation
results for person-dependent training. A comparison between the two classifiers
resulted in a set of close detection scores, both peaking at a window length of 10

minutes. However, in case of subject 5, where a lot of motion is present during the
night, larger differences can be observed in the results for both person-dependent
and cross-subject training. The Gaussian-based classifier uses as prior for sleep the
time use database, leading to lower recall in contrast to the HMM-based classifier,
which trained on the participant’s data. In the following we will scrutinize the
impact of an HMM model being trained on a person’s data or on all the participants’
data.

Table 5.4 lists the results for the HMM-based method using a 10-minute window,
which performed best over all tested parameters. In general, the results perform well
for most subjects, with cross-user training performing slightly better for most test-
subjects. A significant outlier is the result set from subject 7, where the recognition
results are hurt from cross-user training. This is explained by the severe early
morning wake-up times (4am on average) and the overall higher incidence of motion
throughout nights, hurting especially the recall of night segments.

Figure 5.15 shows an example where the night segments for several weeks of data
from one person (subject 2) are classified. Gaps in the data correspond to sections
of the dataset between recordings or sections where the device was intentionally
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Per subject [%] Across subjects [%]
Subject pre rec acc pre rec acc

1 79 98 91 88 98 95

2 92 98 97 92 96 96

3 87 98 94 95 98 97

4 87 97 94 92 97 96

5 82 98 92 95 89 94

6 72 98 86 96 97 97

7 93 98 97 80 75 84
8 89 98 95 96 98 98

total 85 98 93 92 94 95

Table 5.4: The HMM precision (pre), recall (rec), and accuracy (acc) results for all
subjects under per-subject training (left half of table) and cross-subject training
(right half of table). Results are from leave-one-day-out and leave-one-subject-out
cross-validation respectively. The results perform slightly better for the per-subject
training, since the cross-subject approach lacks of sufficient training data to capture
all possible variations of sleep habits (see results for subject 7).

turned off. Typical false positives can be seen as small sections in the late evenings,
where the test subject was often watching television in a darkened environment.
Such false positives were discarded by selecting the largest segment only as the most
likely night sleep segment for further analysis.

Discussion. From the night sleep segmentation approach we follow that a high
recall classifier can extract most of the night sleep segments from continuous activity
data, using additionally information on when sleep occurred and the illumination
of the environment. A suitable scenario for the HMM classifier is the detection of
advanced or delayed sleep phase syndrom (Weitzman et al., 1981), since we train
the classifier on personal sleeping habits, which is identified by the classifier in the
shift of night segments. This sleeping disease is characterized by a patient’s habit
to go to bed late and wake up late (delayed) or go to bed early and wake up early
(advanced). Deriving a prior from such a sleeping habit is feasible with our system
and requires a person dependent training.

Although all the test subjects were asleep only during the night, the HMMs
should be able to detect sleep during the day. Data from a person napping during
the day could be used as training data for the HMMs, which is able to adapt to this
scenario. Further studies need to be conducted to confirm this theory.
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Figure 5.15: The raw classification output from night segmentation (black rectangles)
for 51 days of test subject 2 (with each row representing a day’s acceleration data)
for the HMM-based classifier.
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5.4 conclusions

With the advent of 3D accelerometer MEMS chips that are both small and power-
efficient enough to be included in wearable devices, long-term monitoring of sleep
and wake phases has become an attractive and cost-effective instrument to comple-
ment traditional sleep lab studies using PSG. The systematic evaluation of algorithms
that detect sleep and wake phases in such accelerometer data is still lacking, since
current personal sleep devices and systems on the market are closed-source and not
meant to be clinically deployed.

This chapter contributes to such systematic evaluation of detection algorithms by
presenting two challenging and publicly-available datasets: (1) Over 409 hours worth
of PSG-annotated 3D acceleration data logged at 100Hz for 42 sleep lab patients and
(2) over 4,416 hours (184 days) of continuous recordings from the same wrist-worn
sensor for 8 subjects, including ground truth data for night segments. The datasets
enable the extraction of sleep rhythms for subjects with different properties, for
instance, exhibiting certain sleeping disorders or normal sleep.

We furthermore presented a novel method to detect sleep and wake phases
evaluated on the 1st dataset by correlating between sleep stages and inertial data:
The ESS algorithm is compared to two traditional activity count-based methods on
the PSG dataset. Results show that the ESS algorithm achieves an overall median
accuracy of almost 79% for detecting sleep and wake intervals. Compared to the
other two methods of Oakley and Cole et al., relevant wake segments are detected
with a higher confidence.

Using the 2nd dataset consisting of data from 8 test subjects with a high variety
of sleeping patterns, we detected night segments by adding more information to
the inertial data: We used light intensity and the information of sleep times to
detect these segments. With such additional modalities, evaluation shows that night
segmentation with high recall (i.e., almost all sleep segment data is retrieved) can be
achieved by using an HMM-based method. Compared to a Gaussian model-based
approach, the HMM classifier adapts to person-specific sleep habits and yields high
results when trained on all data available, due to the high variety of test subjects
in the dataset. In addition, the sleep monitoring system has been evaluated which
enables video analysis in the wild for long-term recording. Visual inspection is built
in the tool by means of an IR camera, which together with detection techniques
make the output available for scrutinizing by sleep experts. As a result, the time
to analyse long-term video footage can be downsized significantly, since only the
relevant sleep segments are made available to physicians for further analysis.
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In the previous chapter, we showed how night segments are detected within
inertial sensor data. Once we extracted the night segments, we discovered mostly
rhythmic behaviours in a person’s sleep. Such rhythms reflect recurring sleep

postures or spontaneous but periodic limb movements. Knowing what is happening
during sleep is most important to assess, not only for spotting sleeping disorders
but also to derive a sleep quality measure from the obtained data.

In this chapter, we will introduce two different approaches to model sleep data
and to visualize its rhythmic nature: By dividing a night segment into non-motion
and motion intervals, we (1) present two techniques to visualize sleep postures and
their recurrence during sleep. For this purpose, we rely on the sensor data only
and describe each posture individually. (2) Further, we inspect sleep data to spot
periodic limb movements, so-called myoclonic twitches, that could be linked to
possible health-related issues, like restless leg syndrom (RLS) (Lugaresi et al., 1985)
or Parkinson’s disease (Caviness and Brown, 2004).

6.1 introduction

This chapter focuses on visualizing rhythmic patterns within night segments. For
this purpose, long-term data has to be obtained and evaluated to detect such patterns.
We identified two areas of interest which were arrived at after discussions with the
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leading somnologist of the local sleeping lab:

(1) Persons without sleeping disorders tend to change postures between 12 and 20

times during relaxed nights (Gordon et al., 2004). This can rise significantly in other
situations and this can also change drastically over the course of a night. A view on
how often the patient changed posture and between which reoccurring postures this
happened is therefore helpful, not only to asses quality of sleep (De Koninck et al.,
1983) but especially for particular sleeping disorders such as obstructive sleep apnoea
(where certain postures increase apnoea, see Oksenberg and Silverberg (1998)) and
restless leg syndrome (where frequent posture changes are witnessed). Therefore,
our first contribution in this chapter is the presentation of an effective low-cost
posture detection method. Further, we discuss how the visualization of postures
may give insights into their recurrence and the assessment of sleep quality in long-
term data. As a second contribution, we visualize sleep posture trends without the
knowledge of the actual ground truth of a participants’ postures. Early research
has shown that sleeping quality manifests itself in a low incidence of motion (e.g.,
few awakenings) during the nights (Peter et al., 2007). When regarded over a longer
timespan, these motion models can be used to identify changes and abnormalities
in sleeping behaviours. With the modelling of sleep postures into sequences, the
spotting of such irregularities is possible. Additionally, such a visualization provides
the possibility to observe postures that reoccur periodically.

(2) A second area of interest are involuntary muscular contractions made during
sleeping, commonly known as myoclonic twitches, that some people tend to experi-
ence when drifting off to sleep but also during the REM phase, or while dreaming.
Their detection is not straightforward as these range from subtle and short flexings
of (mostly limb) muscles to violent shakes that can last over a few seconds (Caviness,
1996; Roze et al., 2009). As a third contribution of this chapter, we present a method
to detect twitches with high precision for additional analysis by physicians. Based
on such events, video data is pre-filtered in order to extract and show only relevant
parts to the expert and speed up the analysis significantly.

These areas were selected as a trade-off between (a) the modalities of interest for
several sleeping disorders and diagnosis types and (b) the attempt to ensure minimal
involvement of the patient. Furthermore, with a visualization of sleep postures and
the detection of myoclonic twitches we contribute to the spotting of rhythms within
sleep, enabling the categorization of such patterns as ’normal’ or ’deviant’.

In Section 6.2, we first introduce a posture visualization technique that is based
on the classification of sleep postures by training a model with obtained ground
truth. In Section 6.3, we illustrate posture sequences without using ground truth
data, to visualize sleep posture trends over long periods of time that enable the
spotting of rhythmic posture behaviour. In Section 6.4, we analyse movement data
and present a detection technique for myoclonic twitches, discussing their meaning
in sleep research and the value of the approach within this domain.
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6.2 detecting sleep postures

Sleep specialists have studied sleeping postures for monitoring disorders and re-
vealing a subjects personality37. The BBC article is based on the work of Idzikowski
(2000), who categorized sleeping postures according to Figure 6.1, which define a
person’s personality depending on the preferred sleeping posture.

In this section we use inertial data to detect sleep postures similar to Idzikowski
(2000). For this purpose, we deployed our sleep monitoring system (see Section
3.4) to obtain data from two healthy subjects monitored in their home environment.
The goal is to classify their postures by using video footage as ground truth and to
visualize postures sequences. Additionally, we describe a procedure that might be
used to assess sleep quality.

Figure 6.1: Which sleeping posture is your favourite? Personality clues can be
derived from sleep postures as described by Idzikowski (2000). [The images have been
recreated by kind permission of Prof. Chris Idzikowski]

6.2.1 Methodology

Definition of Sleep Postures. The postures detected in this section are defined
in previous work (Van Laerhoven et al., 2008) and are described in Table 6.1. They
are divided into four basic (1-4) and four extended sleep postures (5-8). The first
two, left lateral (1) and right lateral (2) are lying on the left and right respectively. For
supine (3) the subject is lying on the back. When the body is slightly tilted to one
side in this position, a right supine (5) or left supine (6) posture is present. Finally,
prone (4) means that the subject is lying on the chest. Again a slightly tilted body
results in right prone (7) or left prone (8). Throughout this section we will make use of
the color-codes representing a posture, as depicted in Table 6.1.

37http://news.bbc.co.uk/2/hi/health/3112170.stm, last access 09/2014

http://news.bbc.co.uk/2/hi/health/3112170.stm
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Posture ID Posture Colour Description

1 left lateral lying on the left
2 right lateral lying on the right
3 supine lying on the back
4 prone lying on the chest
5 right supine supine slightly tilted to right
6 left supine supine slightly tilted to left
7 right prone prone slightly tilted to right
8 left prone prone slightly tilted to left

Table 6.1: Sleep postures as described in Van Laerhoven et al. (2008). The colours are
used throughout this section to differentiate between the different postures.

Dataset Description. In this study, two test subjects at the ages of 29 (male) and
32 (female) were observed during five nights each, neither of the subjects suffering
from a sleeping disorder. The sensor was worn on the dominant wrist and data was
sampled at 100Hz with a resolution of ±4g. Recording of sleep started approximately
one hour prior and stopped one hour after sleep.

For this set-up, the monitoring system was configured to store an image of the
person sleeping each minute with the corresponding timestamp. Usually, people
tend to move very little during sleep, which is why the image sampling rate is
sufficient for posture annotation. Consequently, a night results in about 400 to 500

pictures. Experimental studies revealed that posture transitions happen on average
12 to 20 times per night (Gordon et al., 2004). Therefore, after a night’s recording,
the subject was able to browse the recorded images and annotate them with the
postures. To minimize the annotation effort of the images, a routine first analyses
consecutive images for differences and stores only the images that are different. The
threshold required for this is calculated by going over all images first, after which
the difference between Gaussian filtered images is compared against this threshold.
The subject is therefore presented with the final set of these images which consists
of typically 10-15 frames that were determined as different. With such an approach,
the annotation of one’s own sleep postures takes only a little time, making it feasible
on the subject’s side.

The postures are extracted by mapping the sensor values directly to the annotation
by relating the timestamp of the images to the timestamps of the sensor readings. It
happened twice that pictures were annotated as unknown because the test subject
was performing a movement in the picture. These unknown marked areas in the
dataset are cut out since they would lead to wrong results. An unknown marking
could contain a known posture and would have a negative influence on our results.

Extracting Non-Motion Segments. Movement during sleep happens sporadically,
which allows to detect and gather the phases when the person does not move. A
sleeping segment starts with the subject lying down to sleep and stops with the
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Figure 6.2: Example of (from top to bottom): Raw data, filtered values, postures
as obtained by ground truth and estimation for one night and images of different
postures taken with the IR camera. The estimated postures are very similar to the
ground truth, as can be seen in the second to last plots (top barplot = ground truth,
bottom barplot = estimated sleep postures).

subject getting up. A typically huge difference in standard deviation (STD) of the
acceleration data between being asleep or being awake (see Figure 6.2 top plot)
allows a threshold t in our accelerometer data to be set to detect movement vs.
non-movement. Therefore, we determine the STD over 1 minute worth of sensor
readings (since we obtained ground truth for every minute), and mark the window
as non-motion if the STD is below t = 5 (see Figure 6.2, first two plots).

A sleeping posture manifests itself in a time series plot as a constant value over
longer timespans. A transition is typically associated with lots of movement over a
small timespan, and tends to appear quite regularly as well as the wrist-worn sensor
picks up hand repositioning and twitches during sleep. By setting the t parameter,
these transitions are removed from the data and isolated from the postures.

Analysing Non-Motion Segments. In order to investigate what types of algo-
rithms can be applied most successfully to classify the sleeping postures, we have
followed a two-phase process. First, visual inspection of the data was performed
to investigate the nature of the data, with both scatter plots of the 3D data and 2D
visualizations using principal component analysis (PCA). In a next phase, the data
was clustered with k-means and afterwards these clusters were used in a standard
k-Nearest-Neighbour (KNN) classifier that was trained with posture labels and
accelerometer readings using 5-fold cross-validation, where one fold corresponds to
one night.
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(b) Subject 2

Figure 6.3: PCA visualization of sleep posture data as clusters to a 2-dimensional
space. Most of the same postures are clustered close to each other.

Typical results for this procedure are shown in Figure 6.2 in the second to
last bottom plot. The ground truth is plotted as coloured bars at the top (with
red, green, blue and magenta depicting supine, right lateral, left lateral and right
supine, respectively), while the bottom shows classifier results using the same colors.
Additionally, the image taken with the IR camera are put at the bottom, as examples
of the captured postures.

6.2.2 Results

Visual Inspection of the Obtained Data. In 3D visualizations cluster analysis
showed clear areas that are marked for each posture, with a minimum of overlap
and outliers. For better visibility, the data dimension was reduced from 3D to 2D
by using PCA on all available data per subject. In Figure 6.3, the results of this
reduction are displayed for both subjects. The different postures are coloured and
numbered individually and, although they show more overlap than in the 3D plots,
also illustrate: (1) That postures that happen frequently (in particular the lateral and
supine postures) stretch out over a larger area. (2) That these posture clusters are
not Gaussian in nature but rather tend to appear as a mixture, and (3) that there is a
large distinction between subjects concerning what postures tend to occur and in
which quantities.

Clusters can be observed for several postures per subject (1, 2, 3 and 5 for subject
1). Only posture 3 for subject 1 and posture 1 for subject 2 seem to be widely spread,
although this is less prominent in the 3D plots. The clusters for each posture can still
be identified. Interestingly, the two subjects shared their most common postures (1,
2, 3 and 5) while other postures occur rarely or never in the datasets (4 and 6), which
is in line with the theory of subjects favouring certain postures (Idzikowski, 2000).
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(b) Subject 2: Overall accuracy 88%

Figure 6.4: Confusion matrices for two subjects showing very high results for certain
postures (e.g., recall of posture 2 for subject 1 and recall for posture 1 for subject 2).

Quantitative Results. Although visual inspection of the data samples were promis-
ing already, we performed a quantitative study of our approach as well to ensure
that classifier approaches would work on unseen data in cross-validation. Figure 6.4
shows the confusion matrices for both subjects. The last row provides the posture’s
precisions, whereas the last column displays the recall figures. KNN (with K = 5)
achieves a precision of 88% and 86% for the respective subjects, and a recall of 86%
and 80%. The overall accuracy is 88% for both subjects. For postures 1 and 2 a recall
over 90% and precision above 87% was obtained for the subjects.

This confirms findings from other work with similar but less precise sensor
modalities (Van Laerhoven et al., 2008) and shows that, with using training data from
just 4 nights per subject, acceptable sleep posture recognition can be achieved. We
present a visualization of these postures in the following section for one subject to
show the recurrence of postures over a month worth of nights.

6.2.3 Visual Inspection of Long-Term Data

In addition to the 5-days dataset of the male participant in this study, 25 nights were
recorded, resulting in a dataset of 30 nights. The dataset contains each day of a
week in order to capture different sleeping habits of weekdays and weekends. The
purpose of this study is to visualize sleeping trends over several weeks, enabling the
spotting of recurring postures to be able to detect ’irregular’ nights.

Sleep Questionnaires. For the purpose of detecting sleep abnormalities, a sleep
questionnaire is still the most widely used instrument. We will introduce sleep
questionnaires here as a complementary approach to highlight irregular nights. Such
questionnaires are applied to obtain a subjective evaluation of sleep by the test
subject and characterizes its quality. If a person thinks she is feeling well prior
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in the evening

1. How do you feel right now (1=very good,...6=very bad)?
2. Did you sleep during the day? (time and duration)
3. How tired are you right now (1=very,...6=not at all)?
4. When did you go to sleep?

in the morning

5. How tired are you right now (1=very,...6=not at all)?
6. How do you feel right now (1=very good,...6=very bad)?
7. Did you wake up during the night? How often?
8. When did you get up?

Table 6.2: Eight basic sleep quality related questions that were answered by the
participant before going to bed and after awakening.

to sleep, she most certainly will sleep better than when in a bad mood and very
pessimistic about sleeping well (Buysse et al., 1989). Therefore, sleep questionnaires
are needed to detect this mood which cannot be detected by any kind of sensor.

A minimal sleep questionnaire was used for our study to be able to obtain the
ground truth for nights that differ from other, regular nights. Although a state-
of-the-art sleep questionnaire used by all medical sleep research does not exist
yet, various questionnaires are being recommended by sleep specialists (Carpenter
and Andrykowski, 1998; Johns et al., 1991). The sleep questionnaire used in this
study is based on the sleep diary described by Dr. Tilmann H. Müller38, which is
recommended to be applied for home sleep quality assessment. Some questions,
for example, whether alcohol had been consumed or medication was taken, were
deemed not relevant for this study at this stage and left out. It is important to register
healthy sleep and find irregularities when monitoring a person over several days
by considering as little information as possible. Therefore, we used only relevant
questions for our study (see Table 6.2). Since the diary has to be used for at least 14

days, we prolonged our study to 30 days.

Discussion. In Figure 6.5, all nights and the detected postures of the subject are
shown. The plot on the left displays all sensor values obtained over 30 nights,
whereas in the middle the detected postures with the classifier from Section 6.3 are
presented. The plot on the right displays the results from the questionnaire of the
questions 1 (column 1), 3 (column 2), 5 (column 3) and 6 (column 4), color-coded by
having more red for higher scores and more green for lower scores.

Although this figure presents just a one-subject study that is limited to one
month, certain patterns and observations are striking when analysing the posture’s
visualization in Figure 6.5. Several overall patterns can be witnessed, such as the fact
that this subject tends to start the night by lying on his left (red) or back (blue), and

38http://www.schlafgestoert.de/site-49.html, last access 09/2014
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Figure 6.5: Thirty nights (one per row) of subject 1: (left) Raw 3D accelerometer data,
(middle) posture classification, (right) questionnaire scores (per column from left to
right: Questions 1,3,5 and 6, with green for low and red for high values). Favourite
postures recur not only during one night but over consecutive nights as well.

gradually is positioned more on his right towards the morning. Most nights in the
first half of the month tend to start on the subject’s left, while the second half (from
the 14th day onwards) tend to start from the supine (blue) or right-supine (cyan)
posture. Additionally, we observe the rhythmic nature of sleep postures: Lying on
the right reoccures every night, mostly starting in the middle and towards the end of
the night. The subject tends to keep his usual postures and might change the posture
he is falling asleep in but will retain this behaviour in the following nights, which
was confirmed in several discussions with the sleep lab staff. Therefore, visualizing
known posture sequences is beneficial for physicians to spot irregularities.

In addition to posture rhythms, we investigated the correlation between the sleep
questionnaire and the different postures. It can be noticed that especially nights 29

and 30 are marked as poor in terms of sleeping quality by the subject. The subject
described these nights as feeling good and a bit tired before going to sleep and woke
up feeling very bad but not tired anymore. The high number of posture transitions
between left- and right-based postures during these nights is also visually clear. In
contrast to that, night 8 seemed to have been better, with less posture transitions and
following the overall regular sequence.

Investigating certain patterns in postures and modelling such patterns would
give more insight into this study’s theory and would lead to more precise findings.
To this point, the visual inspection drives these findings into the direction of being
able to model sleep by examining sleeping postures. While in this section’s scenario
we are dependent on the ground truth, we present in the next section an approach
to visualize sleeping postures without knowing the actual posture.
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6.3 visualizing sleeping trends

For this section, we utilize the night-segmented data from Section 5.3 to present
a coarse-grained visualization method based on sleeping postures over several
nights. The dataset includes data from five different subjects monitored in their
home environment over long stretches of time, where candidate night segments
were obtained. While the previous section classified sensor data to visualize known
postures, we focus here on the visualization of unknown postures to open up a
venue to describe their rhythmic occurrence in a single night and over several nights.
With such an approach, the spotting of outliers in long-term posture visualizations
is possible, enabling physicians to categorize a person’s sleep in regard to quality
and health without the need of obtaining ground truth data.

This section will look at non-movement data within night segments. Although
the filtering of this data is straightforward (see Section 6.2 for the applied technique),
the main question that will be answered in this section relates to how these postures
can be visualized most appropriately. We will first introduce the methodology used
for this purpose and then show how we evaluated our approach with an inquiry.

6.3.1 Methodology

Dataset Description. The dataset used contains five test subjects between the age
of 26 to 61, as described in Table 6.3. Additionally, the age, gender and information
about the participants sleep is displayed, as well as how many hours of night
segment data we obtained. In total, we use 1,192 hours worth of inertial data that is
scrutinized for different postures.

Subject Gender Age Hours of sleep data Comments

1 male 61 226 early morning awakening
2 male 26 208 irregular night segments
3 male 28 213 irregular night segments
4 male 35 33 delayed sleep phase syndrome
5 male 30 407 normal sleep

Table 6.3: The group of participants used in the evaluation, specifying gender, age,
the total length of their night segments and additional information that might be
sleep-relevant. In total we obtained 1,192 hours of night sleep data.

Clustering Technique. The reoccurring sleep postures are modelled by a clustering
method approach which facilitates an optimal visualization of the posture sequences
later on. Similar to the k-means method, the Kohonen Self-Organizing Map (KSOM)
(Kohonen, 1990) is a clustering algorithm that holds a fixed number of cluster
centroids, to which new data samples are clustered in an iterative way by selecting



6.3 visualizing sleeping trends 111

and updating the cluster for which the centroid is closest to this new input. 36 cluster
centroids are chosen for that, keeping the range of the 6x6 map small, which are
allocated on a semantic map created by the KSOM. Similar values are mapped close
together, while dissimilar are mapped apart. The choice for the Kohonen map brings
in this case an added value in terms of visualization: By requiring that clusters
are structured along a tight topology, neighbouring clusters obtain centroids after
training that are close in Euclidean space. By assigning a gradual color map to the
Kohonen clusters, the clustering of posture data will result in similar postures being
assigned a similar color. Thus, even if not the same cluster is assigned to 2 similar
postures, the visual representation for both will look very much alike.

The color-code is obtained by using the night segments from all subjects as
training input which leads to a unique posture colouring for each subject. The map
grid coordinates are normalized to a unit square, and each coordinate is mapped to
a color. As output we receive a grid allocation, which is used as input for a Hidden
Markov Model (HMM) classifier that is trained to show similarities through the
dataset per subject, resulting in a typical posture sequence which was used in the
following paragraph.

Evaluation Technique. The method to evaluate the posture representation is to
conduct a straightforward survey by multiple users. The participants were recruited
in the research facilities but also among family and friends. The goal of this survey
is to evaluate the uniqueness of clustered postures for each subject, by using posture
representations of several nights for all five subjects which are then shown to each of
the 60 participants (Figure 6.6). Additionally, a single night from each of the subjects
is shown to the respective participant (Figure 6.7, a-e). They are asked to assign each
of these nights to the night-collection of subjects from Figure 6.6.

The results of the survey were obtained as follows: The number of correct answers
per typical night (Figure 6.7 a-e) is divided by the number of participants, resulting
in an accuracy value per question. The overall accuracy is then calculated by the
sum of each individual accuracy divided by the number of questions.

Note here, in a first version of the survey we displayed the postures from all eight
subjects of the original dataset from Section 5.3 with their typical nights. Again,
people were asked to allocate the nights, which proved to be difficult, since too many
plots with colors were displayed at once. Therefore, the optimum representation of
five subjects was chosen, since the feasibility of assigning postures correctly is the
goal of this study.

6.3.2 Results

An overall accuracy of 92% is reached for correct allocation of the typical night to
the subjects overview plots. Figure 6.6 shows how the test subjects differ in their
postures. A suitable scenario of such a representation is to compare a new night of
a patient to the previous nights just by the color encoding which leads directly to
outliers that can be scrutinized further.
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subject001 subject004

subject002

subject003
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Figure 6.6: The color coded postures used in the survey for allocating typical nights
to subjects. Displayed are all night-collections from subjects 1 to 5.

e) 

d) 

c) 

b) 

a) 

Figure 6.7: Visualization of the typical nights of the 5 subjects (a-e). The correct
combinations to the datasets in Figure 6.6 are: 1c, 2d, 3b, 4a and 5e.

While conducting the inquiry, some users had problems allocating the typical
night to subjects 1 and 2, since they exhibit similar colouring. The postures of
subjects 3 and 4 contain a lot of turquoise-like colouring but differ in occurrence of
red. Assigning the night to subjects 4 and 5 was almost perfect with an accuracy of
about 99%, showing explicit postures for each subject. With such an approach, it is
possible to display sleep posture trends that exhibit a rhythmic behaviour.

6.3.3 Discussion

We have shown that it is feasible to classify postures with inertial data by using a
KNN classifier and ground truth from our sleep monitoring system. Additionally,
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sleep postures have been clustered with a KSOM approach to find similarities
between postures. With such an approach it is possible to illustrate rhythmic
patterns of sleep postures in long-term studies. Interestingly, the typical nights can
be assigned almost perfectly to individual subjects within our study. The results
are interesting for a different reason as well: When observing a single user only,
the same method can be used to identify non-typical nights which can serve as an
indicator for medical sleep analysis.

During the survey we displayed color-coded postures of five subjects to different
users. Without explaining for which purpose this inquiry was conducted, partic-
ipants immediately began answering the questions. This can be explained by the
way the information was presented: Using colors as representations of the posture
characteristics simplifies analysis. Such an approach is welcomed by physicians as
well, since such data is easy to scrutinize and outliers can be identified accordingly.

However, the usage of both approaches differs essentially: The classification
requires ground truth data that has to be obtained by either using a monitoring
system or letting the user annotate sleep and awake times. While the clustering
approach does not rely on ground truth data, the application scenario is essential
here. Knowing the sleep postures is especially important in the research of sleep
apnoea. If a person lies on the back most of the time and suffers from poor sleep,
this is a hint for such a disease. Whether our approach can be applied to this
scenario has still to be evaluated. But in a discussion sleep lab staff supported the
use of our classifier: Clustering of posture data is especially interesting for long-
term deployments to highlight posture changes and related to that, sleep quality
assessment. Summing up, we believe that both approaches are valid to be used in
medical sleep analysis and that the application scenario determines the approach
that should be used.

After the posture data has been removed from the night segments, the data that
remains is a mixture of motion data from the subject moving between postures,
the subject moving during wakeful periods, and a third type of involuntary motion
which requires a specific detection step. This step is described in the next section.

6.4 myoclonic twitch detection

Myoclonic twitches describe spontaneous muscle contractions and occur by sporadic
limb movements. Note, that it is not the number of twitches that is relevant to detect
but how such twitches are expressed. We will introduce a classifier to detect such
twitches but we propose to optimize the precision, leading to a low false positive
rate, to identify such events. Given few but correct twitches, the video data can
be pre-filtered and facilitate analysis for experts significantly. Our classifier is thus
optimized for high precision at the cost of lower recall.
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6.4.1 Methodology

We again make use of the dataset obtained in Section 5.3, along with the ground truth
data of video footage to detect events during sleep. The data consist of only motion
data that was left out in Section 6.3, where we extracted non-motion segments. Since
not all subjects exhibited myclonic twitches, the evaluation of the classifier was
performed on an one-person subset of the dataset only. We identified three subjects
in the original dataset of Section 5.3 that showed obvious myocloni in the video
footage. Unfortunately, only one participant, aged 35 years and suffering from a
periodic limb movement disorder, delivered a significant number of twitches. In
total, 5 nights of the test subject could be used for further evaluation.

The following two-step process is pursued to detect myoclonic twitches from the
data that was not assigned as posture: First, filtering is done on the duration of the
motion in question. Since it is known that these twitches are generally not longer
than mere seconds, any segment over three seconds is discarded. Then, we calculate
three different features, which describe a twitch pattern, from the remaining motion
data. An example of the features is shown in Figure 6.8: At first, we calculate
the length of the motion data. Further, we determine the euclidean distance of the start
and stop values of the motion segment since a twitch mostly results in almost the
same wrist position as before twitching. Finally, the distance between the minimum and
maximum of the motion data is computed since non-twitching motion data exhibits
larger peaks in contrast to twitches.

Figure 6.8: Key features used for the myoclonic twitch detection approach: The
euclidean distance of start and stop time, the length of the motion and the distance
between minimum and maximum.

These three features are used as input to a Support Vector Machine (SVM), a com-
mon linear classifier which is trained on sample data from both myoclonic twitches
as positive and posture changes as negative examples, obtained by annotations
where these events were also clearly visible in the video footage. Figure 6.9 displays
different types of myocloni which occurred in the dataset, including multiple ones
from the test subject, appearing in short intervals of several seconds. Evaluation was
performed using a 5-fold leave-one-night-out cross-validation, using video footage
to denote ground truth for the twitch detection.
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Figure 6.9: Some examples of the observed myoclonic patterns, including consecutive
multiple twitching, which occurred during nights of mostly one subject over less
than 3 seconds.

6.4.2 Results

Table 6.4 shows the precision and recall values for the SVM classifier based on
different initial windows (1, 2 and 3 seconds), showing an ideal window size
between 2 and 3 seconds. The 2 second window size exhibits for four nights the
highest precision results. For the third night in Table 6.4, the 3 second window is an
ideal size but a low recall is perceptible. From visual inspection of the false positives,
many could be attributed to external factors that were neither myocloni nor posture
changes but rather conscious short motions during awake periods. Missed detections
largely constitute very slight contractions.

The results are preliminary but demand to be further evaluated within a coop-
eration at a sleeping lab, where myocloni can be detected accurately and without
painstakingly browsing the data for possible twitches, as was done in this study.
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night 1 second [%] 2 seconds [%] 3 seconds [%]
pre rec pre rec pre rec

1 58 96 62 75 55 48

2 71 94 76 71 74 51

3 59 70 74 57 88 41

4 77 67 81 67 80 51

5 50 78 71 59 71 47

total 63 81 73 66 74 48

Table 6.4: The precision (pre) and recall (rec) results for a detection window of 1, 2,
and 3 seconds on a subset of five nights by one subject for which clear video footage
was used to obtain ground truth. Additionally, the total results for precision and
recall are shown, indicating that a 2 second window yields the optimum results for
detecting myoclonic twitches.

6.5 conclusions

This chapter presented first of all a simple posture detection technique with data
obtained from a wrist-worn sensor in long-term studies. From long-term observa-
tions, a sleep model was used to extract those postures, giving a basic insight into
a person’s sleeping trends. These first studies have shown that sleeping postures
are estimated with relatively high accuracies (88% for two subjects respectively),
and that visualizing these postures over multiple days could offer an insight into
posture rhythms and trends observed over a longer timespan. Furthermore, we
used the posture classification technique to introduce an approach to model sleep
quality. In order to obtain a sleep quality measure, the approach required a sleep
questionnaire that depicts how sleep has been perceived by the subject. Additionally,
by considering the number of posture transitions, the proposed system provides an
approximation to how well a person slept, with a high number of transitions being
an indicator for poor sleep.

Additionally, we proposed the visualization of postures without knowing the
actual posture. We derived a coloured representation of the night segmented
sensor data, which displays the sequence of postures that occurred in the data of 5

participants’ night segments. We showed that such a posture visualization is unique
for each subject, by conducting an inquiry with 60 participants, resulting in an
overall accuracy of 92% of recognized common postures for individual subjects. The
approach provides physicians with the possibility of scrutinizing long-term sleep
data to identify candidate nights that show an irregular sleep posture pattern. The
proposed method can be applied to any inertial sensor data and does not require
the ground truth of sleep postures.

By segmenting night sleep into motion parts, we display the detection of my-
oclonic twitches, optimized for a high precision (to avoid swamping the system with
false positives) which was able to achieve precision and recall results of 73% and
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66% respectively for one subject over 5 nights. Previous sleep research involving
myoclonic twitches indicates that they are more likely to occur in data from people
with an irregular sleep schedule like insomnia or in data from people with neuro-
logical disorders, such as Parkinson’s disease. The tool resulting from this study
enables the detection of myoclonic twitches over long monitoring periods with an
inexpensive set-up of devices.
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We carry our wearable devices with us while performing our daily rou-
tines and tasks. Having a wearable device that is aware of our activities
would result in a variety of benefits for its user. For instance, many com-

mercially available devices support the user with additional information about how
much they moved or detects sleep segments (see Section 2.4.2 for more examples).
The overall problem is that high-level activities, which give insight into the user’s
current context, are difficult to grasp.

Therefore, we use data from a wearable device to take a first step towards
detecting high-level activities. For this purpose, we employ the findings from Chapter
4, i.e., using the knowledge of activity rhythms present in time use surveys, in the
activity recognition process. We have obtained inertial data from 17 participants
who additionally kept a diary of high-level activities over a two week period each.
We utilize three different algorithms to detect activities which imply an approach
that indicates how prior information is used to achieve higher accuracy rates for
high-level activity recognition.

119



120 chapter 7. improving activity recognition with time use data

7.1 introduction

For the purpose of improving the recognition rates of high-level activities, we
presented the use of prior knowledge obtained from time use surveys as described
in Section 4.2. We discovered that such databases can be utilized to infer the
user’s activity based on the activities performed by similar users within the survey.
Results have thus far shown that time use survey data, when used from within the
same geographical region as the user, could enhance activity recognition systems
considerably. Additional information, such as an approximation of the user’s typical
schedule, could be combined with real-time sensor data from a wearable sensor.

The goal of this chapter is to investigate a method that makes use of activity
rhythms that are present in the time use survey for recognizing activities with a
wearable device. Therefore, it is necessary to collect data of high-level activities in a
real-world set-up. For this purpose, we obtained inertial data from 17 subjects over
a recording period of 14 days each, resulting in a dataset of 228 days in total. We
collected data for 11 activities performed by the users, additionally gathering the
ground truth by the users keeping a diary.

We apply three different approaches to detect these activities in the data, showing
which features from time use databases are important to consider when applied
on real-world data. We present a system that outperforms the Support Vector
Machine (SVM) classifier, resulting in high precision and recall values for activities
like ’sleeping’ and ’working’. Results indicate that certain activities can profit from
prior information extracted from time use surveys. An additional contribution of
this chapter is a long-term dataset which is publicly available and can be obtained on
request. The rhythmic nature of certain activities, e.g., ’having lunch’, is observable
in the dataset. With our proposed method of detecting these activities with a higher
confidence, we provide the possibility to model the rhythmic nature of certain
activities.

The remainder of this chapter is structured as follows: In Section 7.2, we describe
the methods used to determine the activities of the test subjects, additionally de-
scribing the sensor platform used. Section 7.3 presents three different algorithms
we apply to detect high-level activities. In Section 7.4, we show the results obtained
from these three different classification approaches. A short discussion about the
experiment’s findings will follow in Section 7.5. We conclude this chapter in Section
7.6 with a summary of this chapter’s contributions.

7.2 methodology

In order to detect high-level activities, we believe that sensor data is required that
are recorded in a real-world set-up. For this purpose, we decided to use a system
that is already commercially available, is comfortable to wear over a long timespan
and enables researchers to get direct access to the raw sensor data. We will first
introduce the sensor used for this study and then explain the classification process.
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Figure 7.1: BodyMedia SWA worn by a male (left) and female (right) participant.
The Armband is usually worn on the upper arm.

7.2.1 Wearable System

For this study we use the SenseWearTMArmband (SWA) from BodyMedia39. The
SWA monitors one’s activity levels, especially during workouts and while resting,
detecting ’sleeping’ (Sunseri et al., 2009) as well. It is worn comfortably on the
upper arm, as shown in Figure 7.1, and can rest there permanently day and night.
A graphical tool displays useful information to the user, like showing how data
channels change over time. Additional information such as energy expenditure or
a step counter are accessible, enabling the user to keep track of his fitness status
(Shuger et al., 2011). The device is splash waterproof, which is why it can be used
during work-outs.

The SWA embeds a 2-axis accelerometer, a skin temperature, a galvanic skin
response and a heat flux sensor. Sensor values can be stored in the internal storage in
different intervals, from 32 samples per minute up to one sample every 10 minutes.
Depending on the log frequency, the storage lasts for 2 hours only (32 samples
per minute) or a little more than two weeks (one sample per minute). The power
source is a common AAA battery, which needs to be replaced by the user after
approximately one week, depending on how often the sensor was worn and how
much the user moved. The sensor automatically starts logging when skin contact
is detected and stops logging as soon as the user takes off the unit. The recording
frequency for our study was set to one minute, being the optimal trade-off for
recording for a long timespan and not loosing too much sensor information. Had
we increased the sampling rate, the device would have run out of memory after a
few days only instead of being able to record for 14 days straight.

We decided to use the SWA for this study since it is able to record various

39http://www.bodymedia.com/, last access 09/2014
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other sensing modalities in contrast to the wrist-worn unit introduced in Section 3.2.
Additionally, we were able to collaborate with the company that builds the device,
enabling us to get direct access to the raw sensor data. Therefore, we are given
the possibility to evaluate a commercially available body-worn sensor-unit which is
already being used by many individuals around the world.

7.2.2 Dataset Description

The SWA was worn day and night by 17 test subjects for 14 days each, resulting
in a dataset of approximately 228 days. We chose to use a high variety of test
subjects as summarized in Table 7.1 to capture different data and especially different
activity behaviours specific to their profession to stress-test our algorithm. The
subjects were between 21 and 48 years old, 12 male and 5 female. The majority of the
participants were white-collar employees, working either at the university or in an
office. Students participated as well, who are known to have a completely different
daily routine than employees. The number of data recorded for each participant is
shown in Table 7.1.

While wearing the device, the subjects were asked to keep a diary of daily
activities for the entire recording period, usually recalling at the end of the day what
kind of activities they had performed. Some subjects kept a diary by writing down
the activity immediately after performance. The established list of the activities as
used in this study is shown in Table 7.2, being in accordance with the activities from
the time use survey, with one exception: The activity ’personal care’ from the time
use data includes ’sleeping’, ’eating’ and other activities in the area of ’personal
care’, such as ’showering’ or ’dressing’. We decided to split up these activities into
the first three activities as shown in Table 7.2, especially to be able to catch ’sleeping’
and ’eating’ on its own.

We obtained inertial data such as the average, longitudinal and transversal
acceleration, as well as the Mean Absolute Difference (MAD) of the acceleration.
An exemplary dataset of 14 days for a male participant is displayed in Figure 7.2,
showing in the top plot the MAD and the bottom plot the average of the longitudinal
(blue) and transversal (red) acceleration. The dataset for each day is visualized,
starting at the point where the number of the day is fixed on the x-axis. The next
dataset starts at the next number. The nights are immediately visible, characterized
by segments where the acceleration signal is low.

Additional sensor information, like skin temperature, was logged but was not
considered in this study. For the evaluation, we used only the accelerometer data
to infer the performed activity. Note here that the logged activities are not equally
distributed. Especially the number of ’personal care’ events appears rather low
with 88 hours in total as can be observed in Table 7.2. This can be explained by
the fact that the sensor was taken off for showering. Similar, sports occurs only 40

times throughout all of the datasets, either because the device was taken off during
work-outs or because the participants were not very sportive. When considering
’eating’, this activity occurs very often but does not take up as much time as ’sleep’.
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subject gender age data [hrs] comments

1 male 32 338 employee
2 female 28 334 student
3 male 31 333 employee
4 male 27 319 employee
5 male 28 284 employee
6 male 32 334 employee
7 male 30 320 employee
8 male 27 328 student
9 male 28 315 employee

10 female 35 346 housewife
11 female 29 321 employee
12 male 31 340 employee
13 male 26 274 employee
14 female 28 292 employee
15 male 21 316 student
16 male 25 334 student
17 female 48 352 housewife

Table 7.1: The test subjects that participated in this study, along with additional
information like gender and age, as well as the amount of data obtained per partici-
pant. Most of the participants were white-collar employees but also students were
recorded.

ID activitygroup occurences duration [hrs]

1 Sleeping 247 1868

2 Eating 373 257

3 Personal care 223 88

4 Working 297 1047

5 Studying 67 215

6 Household work 215 284

7 Socializing 111 249

8 Sports 40 41

9 Hobbies 72 172

10 Mass media 205 397

11 Travelling 366 864

Table 7.2: Activities taken from the time use survey that were logged by the test
subjects, additionally displaying how often each activity occurred and for how long
it lasted in total. Interestingly, ’eating’ occurred far more often than ’socializing’ but
lasted just as long as ’socializing’.
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Figure 7.2: Inertial data from the SWA’s 2-axis accelerometer from one participant
over 14 days before normalization. The top plot displays the Mean Absolut Difference
(MAD), while the bottom plot depicts the average of the longitudinal (blue) and
transversal (red) acceleration over 20,312 samples, each sample taken every minute.

7.2.3 Evaluation Measures

Most activity classes are recognized by our system (see Section 7.3), which we
observed in the various confusion matrices we established and in Figure 7.5 as well.
Nevertheless, when considering classes that have been very poorly or not at all
detected, the overall accuracy for recognizing a participants activity is still pretty
high, while precision and recall are rather low. In order to depict how well the data
describes each class, we will focus on the precision and recall values in this chapter.

With a wearable sensing platform like the SWA, we are able to record low-
frequented sensor data over a long time-span. For 17 participants in this study we
will investigate how activities can be sensed with a wearable system, evaluating the
results by applying precision and recall on the obtained classifications. We will now
have a closer look at the classification techniques and how the data was prepared for
classification, explaining how probabilities have been calculated from the wearable
sensor approach.

7.3 evaluation technique

The method proposed in this chapter can be described in three steps: (1) The inertial
data is first being evaluated with a common classifier to determine the activities, (2)
after which we use the time use dataset only to infer the activity. (3) Then, the results
from the common classifier and the time use probabilities are fused to improve on
the results from the first two steps. For Sections 7.3.1 and 7.3.2 we evaluate the
activities by dividing the dataset into five equally distributed folds per participant’s
dataset, performing a leave-one-fold-out cross-validation per test subject to enable
user-specific activity recognition.

Note here that we will use the term wearable sensors only to depict the approach
of applying a common machine learning algorithm to the inertial data and time use
only to describe the method of classifying activities by using likelihoods derived
from the time use survey database.
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7.3.1 Wearable Sensors Only

For detecting the activities within the sensor data, we used a Support Vector Machine
(SVM, see Cristianini and Shawe-Taylor (2000)). The implementation of the classifier
was done completely in Python. For this purpose, we used the sklearn40 package,
which embeds an SVM library that is based on LIBSVM (Chang and Lin, 2011). We
utilized a linear SVM, since we were dealing with large datasets and had a multi-
class problem at hand. As a strategy, the one-vs-the-rest method was applied, which
basically trained a SVM for one class and tested it against the rest of the classes.
Before starting the SVM training, we normalized the dataset. Then, we balanced the
training set by randomly choosing data rows from labelled features and duplicated
them to receive a conform dataset with an equal number of samples per activity. As
shown in Table 7.2, the occurrence of activities was unbalanced, especially sleep and
work dominated the datasets. We performed a five-fold cross-validation to estimate
the optimal penalty parameter C on a small subset of the training data, which has
been used in the training phase of the classification process. After having trained
the SVM, we estimated the classes for the test set. Additionally, we calculated the
softmax output for the test set which enabled us to derive a likelihood estimation for
the input data. The softmax output is defined as

σprob =
1

1 + e−2·d , (7.1)

where d is the decision function from the SVM, described by the Support Vectors
of the dataset. For each data point x1, ..., xi the SVM provides the decision function
f (x1), ..., f (xi), describing the distance to the calculated hyperplanes of the SVM.
The likelihoods will be used later on when fusing the wearable sensors only and time
use only results.

7.3.2 Time Use Only

The time use classification technique uses a maximum-likelihood estimation to
determine which activity took place. For this purpose, we made use of features f
within the time use survey (time, age and gender). In Section 4.2, different features
have been evaluated for their use in activity recognition, identifying time and location
as useful features. For this study, location information was not logged, since the
used sensor is not equipped with a GPS module to infer the location where the
activity took place. Having the user also log where the activity occurred would have
increased the effort of keeping a diary. Therefore, we considered time combined with
other, available information, adding age and gender as features.

We calculated a histogram from the time use dataset for each of the given features
time, age and gender and the 11 activities, obtaining a 4D histogram of the shape
[144, 5, 2, 11]. The shape corresponds to 144 10-minute time-slots per day, 5 age-

40http://scikit-learn.org, last access 09/2014

http://scikit-learn.org
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groups41, 2 gender types (male and female) and our 11 activities. According to the
3-tuple (time, agegroup, gender) we summed up all the occurrences for each of the
11 activities. We then calculated the distribution of the 11 activities for each 3-tuple
to obtain the probabilities.

The maximum-likelihood estimation calculated the probability P(ci| f1, ..., fn) for
a target class ci, i ε [1, ..., 11] and the features f1, ..., fn, classifying the activity by the
highest probability according to the 3-tuple given in the sensor dataset.

7.3.3 Ensemble: Wearable Sensors and Time Use

In this section we describe the combination of likelihoods from the wearable sensors
only and the time use only, resulting in a new likelihood-table that is used to determine
the activities. The equation

ci = argmaxi

(
P(ci|x) + P(ci|TUS)

2

)
(7.2)

describes the procedure of estimating class c by applying the mean rule (Alexandre
et al., 2001) on both likelihoods from the SVM output P(ci|x) and the time use
approach P(ci|TUS). We scale the likelihoods from both wearable sensor only and
time use only for each activity class ci, i.e., we calculate the scaling for all likelihoods
of activity ci by the equation

Pci =

(
Pci − abs(min(Pci))

max(Pci)− abs(min(Pci))

)
(7.3)

to avoid the domination of bigger likelihoods over those in smaller numeric ranges.
Note that the likelihoods could be weighted additionally, depending on how the
overall classification behaves. The weighting would be applied to equation (7.2). The
overall likelihood P(ci) would be calculated for the wearable data after the training
phase and multiplied with each class probability P(ci|x) in the test set. The same
would be done for the time use dataset, obtaining the overall probabilities P(ci|TUS).
At this stage of the study, we did not consider to apply a weighting technique but
we will consider this approach for future studies.

Figure 7.3 shows the likelihoods for one participant at the age of 32 after scaling
of the wearable data (top plots) and time use (bottom plots) likelihoods. Displayed
are the activities ’sleeping’ (blue) and ’eating’ (red) over approximately two days,
showing how likely they are to occur at a specific point in time. The rhythmic nature
of the probabilities for the time use data can be observed here, as well as for the
likelihoods for the wearable data which exhibit much more noise.

Being able to allocate likelihoods to the classification results of using only wear-
able data offers the possibility of combining the likelihoods with the probabilities

41Note here that for downsizing reasons and to obtain a representative histogram, we divided
the time use survey into 5-years age-groups (20-24, 25-29, 30-34, 35-39, 45-49), according to our
participants.
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Figure 7.3: Example of likelihoods estimated from the sensor (top plots) and the
time use (bottom plots) approach for a male subject in his thirties, displaying the
activities ’sleeping’ and ’eating’.

calculated from the time use survey. This way, we are able to not only consider
information from the participant’s wearable sensor data but additional information
from the time use survey. We will now take a look at our classification results in the
next section.

7.4 time use survey vs. common approach

In this work we compare three different classification techniques applied to the same
dataset. We will be discussing the results individually, highlighting the differences
for each approach. We will first visually inspect the outcome, then we are going to
discuss the results quantitatively.

Visual Inspection. In Figure 7.4 we display qualitative results of all three ap-
proaches. Shown are all the activities (in different colors) of a male participant in
his early thirties for the entire recording period of 14 days, describing from top to
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bottom: (1) The ground truth, i.e., what the user was actually doing, (2) the esti-
mated activities from the wearable sensor only approach, (3) the time use only results
and (4) the ensemble of the two modalities. When observing the ground truth, we
discover that a certain pattern or even rhythm is visible in the recurrence of the
activities throughout the 14 days (e.g., ’working’ and ’sleeping’, which occur mostly
during the day, or at night respectively). Such a rhythm awareness could help in the
classification process.

A rhythmic behaviour is visible in the sensor-based plot as well, which is riddled
with small detection episodes of different activities. Remarkably, this approach
shows a high variety in the detected activities, except for the activities which last
longer during a 24-hour period, such as ’sleeping’ and ’working’. The inertial data
offers a high number of diverse sensor readings for each activity class, leading to a
rich dataset for the training process, thus laying the burden of accurately detecting
the activity on the classifier.

The time use plot exhibits a clear rhythmic activity representation by displaying
the same activity sequence for each day. The time use classification takes into
consideration only the information about time, age and gender. Therefore, we observe
here the daily routine of a male person between 30-34 years of age. If we were to
take other features like day-of-the-week into account, the plot would surely differ.

The ensemble results for this participant show longer periods for detected ac-
tivities, e.g., the range of classified work episodes are wider than compared to the
wearable sensors only approach. Additionally, the plot offers a view on how other
activities are being favoured in the classification process, as for example ’socializing’
and ’eating’. For the latter it seems that the ensemble quite accurately detects ’eating’
episodes when compared to the ground truth. To confirm the visual findings, we
will now summarize the quantitative results for each approach, starting with the
wearable sensors only.

7.4.1 Results for Wearable Sensors Only

When using a SVM classifier to detect the 11 activities from the sensor data, we
observe that it is feasible to catch all of the activities but mostly with low recognition
rates. Overall, the most confident precision and recall results are obtained for
’sleeping’ (88.7% and 85.35%) and for ’working’ (30.3% and 43.68%), which is followed
by ’travelling’ (24.32% and 23.2%) as can be observed in Table 7.3. The rest of the
activities perform rather poorly. One reason being that the training data for some
activities is not distinguishable, since we balance the sensor values for each class as
described in Section 7.3.1. Classes with a larger occurrence within the dataset do
have an advantage over the other classes. The data of these classes offer a higher
variety of features, which is advantageous for the training process. Note here that the
classification technique is completely independent from the duration of each activity,
which could lead to different results when considered in a sequential classification
model.

In Figure 7.5(a) we can observe the precision (top) and recall (bottom) values
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activity sensor time use ensemble
precision recall precision recall precision recall

sleeping 88.59 85.36 92.87 82.64 83.22 95.62
eating 5.98 13.91 0.0 0.0 30.45 19.76
personal care 13.67 6.29 0.0 0.0 15.11 14.10
working 30.00 43.65 55.35 46.06 56.38 48.74
studying 3.77 9.34 0.0 0.0 11.5 9.13

household work 11.34 17.71 34.18 14.25 7.76 20.87

socializing 12.30 9.43 0.0 0.0 30.43 13.84
sports 12.65 4.03 0.0 0.0 2.39 7.73
hobbies 5.11 6.93 0.0 0.0 11.92 9.49
mass media 20.74 14.42 55.2 31.06 30.97 44.53
travelling 24.31 23.24 0.10 0.0 6.68 35.61

Table 7.3: Overall precision and recall results for each activity for all three classifica-
tion methods: Sensor, time use and ensemble. The highest score for each activity is
displayed in bold, showing how the ensemble method exceeds the results from the
sensor- and time-use-only-based approaches for most of the activities.

and how they distribute over all activities for each user. Some of them were not
performed by the user and therefore never detected, since there was no training data
for these activities. Unsurprisingly, ’sleeping’ is detected with a high confidence for
all the participants. ’Working’ varies quite a lot, depending on the participants and
the number of ’working’ phases having been logged in the diary as well. Students,
for example, do work but only a few hours per week, like participant 15. Precision is
high (43.4%) while recall degrades to 8.25%, which means that many of the ’working’
events were unidentified. Participant 1, for example, is an employee working 8 hours
every day which is being displayed in the results of precision and recall both being
in the range of 60%. We note here that the data representation plays a significant
role for the classification process.

The overall results of all the participants for wearable sensors only lead to a preci-
sion of 20.42% and a recall of 21.11%. We can conclude that it is possible to detect
certain activities with a high confidence in a dataset which contains low-frequent
inertial data (i.e., one minute intervals), using a common classifier like the SVM.
However, since the activities are discriminated rather poorly, we need to improve the
recognition rates with the help of additional information added to the classification
process.

7.4.2 Results for Time Use Only

In Table 7.3 and Figure 7.5(b) we observe that with time use only, we detect four out
of 11 activities from the dataset, namely ’sleeping’, ’working’, ’household work’ and
’mass media’. The precision and recall scores for the time use based approach for
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each activity and user are depicted here individually. As features for the time use
dataset we use as much information as possible, the features being time, gender and
age. Overall, we reach a precision and recall of 23.76% and of 17.4% respectively. The
overall results for ’travelling’ can be neglected, since precision and recall are below
1%. Remarkably, ’travelling’ was detected for a 21-year-old male participant only,
who travelled home on the weekends, having to use public transportation for several
hours. This coincides with a small segment of the estimation from the time use
dataset. Even though the other participants travelled as well, the activity lasted only
for a few minutes, which is why it is difficult to detect it. Furthermore, depending
on the time use histogram, ’travelling’ is often not the most likely activity to occur.

Overall, precision for the four detected activities range from 34.18% to 92.87%,
exceeding the results from the sensor-based approach for these activities (see Table
7.3). Nevertheless, the rest of the classes are not recognized by the system, since the
likelihoods are too small and therefore exceeded by the likelihoods of other activities.
Our findings show that the participants’ most common activities are detected with
a high confidence by the time use only approach which is in accordance with our
findings in Section 4.2.

7.4.3 Results for the Ensemble

Combination results for the wearable sensors only and time use only approaches are
displayed in Table 7.3 and Figure 7.5(c), showing again for all participants (coded
each with a different symbol and color) the classification results for the ensemble
classifier. In contrast to time use only, we now detect all the activities appearing in the
datasets. In regard to wearable sensors only, we see certain improvements for precision
and recall but degrading results for some activities as well. For ’sleeping’, we obtain
a lower precision than when applying each of the other two models to participant
16’s data (green cuboid in Figure 7.5(c)). Even though the results for precision are
lowest for wearable sensors only and time use only, we still wonder why it drops to
55%. After investigating the ground truth and estimated classes, we discovered that
participant 16 exhibits a very unusual sleeping pattern, e.g., sleeping from 8pm to
10pm, watching TV until midnight and then going to bed again, waking up quite
early the next morning. It seems that the ensemble is confusing too many classes
here, which is why precision is dropping. For the overall results of all activities we
obtain precision and recall of 28.01% and of 28.38% respectively.

The results in Table 7.3 indicate that adding time use data after the classification
process of the wearable sensor data is feasible and improves on the recognition rates
of the wearable sensors only. We will now discuss our findings in detail, highlighting
important results that have been observed during the evaluation process.
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7.5 discussion

The evaluation of 17 datasets, consisting of a total of 228 days of wearable sensor
data, leads to several interesting findings which are summarized and discussed in
the following paragraphs:

Time use surveys are highly useful to improve on the recognition rates for
activities that cover a significant portion of the user’s day. In this study we identified
the activities ’eating’, ’working’, ’socializing’ and ’mass media’. The ensemble
approach leads to better results than just using the wearable sensor only or the time
use only approach to infer the activity. These results confirm the idea of time use
data enhancing certain activity recognition systems as mentioned in Partridge and
Golle (2008). Additionally, the recognition rate benefits from activities that occur
more regularly in the time use survey for the inspected features, e.g., a male subject
in his late twenties will, most likely, be working in the afternoon.

Time use statistics fit wearable devices. We benefit from the size of the time use
database, which is below 1MB. Therefore, the data can be immediately pre-loaded
on a ubiquitous wearable device. Combined with a common classifier, activity
recognition can be improved directly on such an environment. Additionally, time
use data incorporates information about the habits not only from the current user
but from other participants in the time use survey as well. A large number of people
(here: over 10,000) are represented in the time use database, along with their daily
routines.

It is important to note that we inherently exploited the knowledge from the
time use survey data as we classified low-frequent sensor data only. It is not trivial
to detect activities with such low-frequent data using a common classifier but we
nevertheless recognized certain activities such as ’working’ with a high confidence.
Additionally, ’sleeping’ can be detected very accurately with 2D inertial data sampled
over 1 minute.

Time use surveys are less useful for detecting activities that occur only for
a short time each day, e.g., ’travelling’. Although the sensor classifier was quite
confident in detecting ’travelling’ (3rd best recognition score for wearable sensors only,
see Table 7.3), adding the time use survey information led to a drop in precision.
Note here that ’travelling’ in our study includes activities like ’going home’, ’going
for lunch’, ’taking the bus’, etc., which do not occur regularly and lasted only a short
time.

Even though our results are very promising, we believe that some aspects could
still be improved. First, the ground truth was gathered by participants keeping a
diary, where it is not clear how accurate the participants entered the activity events
in the notebook. Another way of gathering the ground truth could be achieved by
letting the user enter the activity episodes directly on a mobile device (a smart phone
would be well-suited for that task). Secondly, we might benefit from knowing the
participant’s location, which is an evaluated feature of the time use survey, as shown
in Section 4.2. GPS information is already available on most of the wearable devices,
which is why recording this information too is feasible.
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7.6 conclusions

This chapter presented a novel approach to improve activity recognition with inertial
data from a wearable platform (the SenseWearTMArmband, which embeds a 2-axis
accelerometer) by combining rhythms present in the time use survey with a common
classifier in an ensemble approach. Making use of additional information in the
classification process has many advantages, one being that the sampling rate of the
sensor data can be reduced. We obtained a dataset of 228 days of inertial data from
17 participants. The dataset has been annotated with ground truth information of 11

high-level activities and is publicly available.
We showed on this dataset how recognition rates of activities varied when using

a common classifier and a time use survey approach. Additionally, we improved
on the results for certain activities with an ensemble model that combines the two
aforementioned methods. Precision for activities like ’eating’, ’socializing’ and
’hobbies’ increased by approximately 25%, 18% and 6% respectively in contrast
to using a common approach like the SVM. We discussed certain advantages of
using time use survey data and identified the limits of embedding such data in
the classification process. The approach is a first step towards the recognition of
high-level activities in order to visualize the rhythmic nature of these activities.

Further studies could embed time use databases on wearable platforms, such
as smart phones or smart watches, to perform real-time activity recognition on the
devices. The feasibility of using a smart phone as a sensing platform has been shown
in Section 3.3, indicating that specific knowledge about the users is necessary. Such
knowledge could as well be provided by time use databases.
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Rhythmic behaviour is an important aspect in long-term activity recognition
systems, since it provides insight into a person’s daily routine. Such infor-
mation is a key ingredient of any system using data as a prior for an activity

recognition system to achieve higher recognition rates. In this thesis several ap-
proaches to detect activities have been investigated, in order to allow the modelling
of rhythmic behaviour.

Suitable recording platforms have been presented that enable the gathering of
sensor data like movement or light intensity. We show the feasibility of using these
platforms in the fields of activity recognition and of sleep monitoring (Chapter 3).
Furthermore, we introduce data obtained (1) by a government agency and (2) through
long-term monitoring (Chapter 4). For both datasets, we extract important features
from wearable sensor data that are used in the activity recognition process for
high-level activities, by employing the probability distribution of these activities as a
prior (Chapter 7). The results indicate that a combination of a common classification
approach with such prior information yields higher recognition results than without.
Having extracted features to describe a most rhythmic activity - sleep - we focused on
detecting sleep with a Gaussian-, generative model- and stationary segments-based
approach (Chapter 5). For this purpose, we use first inertial data only and then
additional information like time and light intensity from long-term data recordings.
By partitioning data into night segments, we focus on more fine-grained activity
rhythms that occur during sleep: We detect sleeping postures within non-motion
and myclonic twitches within motion segments extracted from the sensor data that
are presented to physicians to support the evaluation of sleep and to visualize the
rhythmic nature of these events (Chapter 6).

In the following sections we summarize the main findings and the contributions
of this thesis before giving an outlook on future studies.
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8.1 contributions

This thesis introduces a set of challenges in Section 1.2 that include the feasibility of
recording sensor data over a longer period and extracting activity rhythms from such
data. For this purpose, the activity recognition system has to provide accurate results
to model patterns for high-level activities. Furthermore, appropriate features have to be
extracted from various data sources to enable activity recognition. In the following
paragraphs we will address these challenges and show how we have contributed to
solving them.

Evaluation of the Smart Phone as a Sensing Platform. We have answered the
question for which scenarios the smart phone is a suitable sensing platform, taking
into consideration how often the phone is on the user. For this purpose, we collected
638 days of smart phone data (accelerometer, proximity and light sensor values)
and wrist-worn sensor data from 51 participants with additional ground truth
information of sleep segments.

Usage of Statistical Data obtained over a Population. Time use surveys are scru-
tinized to extract important features from, which are used in the activity recognition
process to improve on the recognition rates of activities.

Novel Sleep Detection Algorithm. We present a novel sleep detection algorithm
(Estimation of Stationary Sleep-segments - ESS) that, in contrast to traditional ap-
proaches, does not overestimate sleep and therefore detects wake phases with a
higher confidence. In the course of evaluating the ESS sleep detection approach,
we observed 42 sleep lab patients and obtained polysomnography (PSG) data to
annotate wrist-worn sensor data, that includes not only acceleration but also light
intensity readings.

Datasets for High-level Activity Recognition. In the course of this thesis, we
have presented many different long-term datasets that were recorded to show the
feasibility of the proposed methods. The datasets are publicly available to enable
other researchers to not only reconstruct our methods but to establish their own
algorithms without the need of recording the data themselves. The following
datasets were obtained additionally to the previously mentioned datasets in real-
world scenarios: (1) Long-term data from a wearable sensor to detect high-level
activities, containing inertial data and other information like body temperature. (2)
For long-term sleep detection studies, we obtained inertial data with ground truth
from 8 participants resulting in 184 days of continuous recordings.

We believe that all of the aforementioned datasets are of benefit for future studies
and they are therefore publicly available at www.ess.tu-darmstadt.de/datasets or at
www.borazio.de.

www.ess.tu-darmstadt.de/datasets
www.borazio.de
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8.2 conclusions

The conclusions drawn in this thesis are summarized in the following:

Appropriate platforms for activity recognition enable long-term monitoring. In
Chapter 3, we present the evaluation of different sensing platforms that are deployed
in various scenarios. We introduce a wrist-worn sensor that is able to record sensor
data over several weeks, depending on the sensor’s set-up. The sensor has been
used in two further evaluations:

(1) In a feasibility study to use the smart phone as a sensing platform with 51

participants, our results indicate that the smart phone is on the user for 22% of the
day. The results differ per user, hinting at a phone usage behaviour varying between
below 10% and over 50%. Therefore, the choice of activities to be recognized has to
be scrutinized by taking into consideration the user’s phone carrying habits.

(2) Furthermore, we present a sleep monitoring system that can be deployed over
several weeks to capture sleeping behaviours. We use a night vision camera that is
set up in the user’s bedroom to record important sleeping events that can later on be
browsed by the user himself and physicians to detect interesting segments for further
investigation. Such an evaluation of sleep patterns has been shown in Chapter 6,
in which we detect different sleep postures and myoclonic twitches to evaluate the
night. All three platforms gather sensor data over weeks or even months, enabling
the long-term monitoring of users in their common environment, instead of in a
laboratory set-up. Additionally, all these recording systems are of low maintenance,
i.e., requiring almost no user interaction.

Statistical data provide suitable features for activity recognition. Statistical data
obtained over a population is already available, since many countries gather infor-
mation of their inhabitants in databases that are mostly publicly accessible. Such
data is scrutinized in Chapter 4, resulting in a set of features that are suitable to
recognize activities. We identify the features location and time as the best-performing
features to detect activities like sleeping, personal care and travelling. When combining
the two aforementioned features with previous activity, the results are even higher,
with an overall accuracy of 75%. The proposed approach is limited to the region in
which the experiments are conducted due to the demographic differences in time
use surveys from different countries. Such statistical information reflects how often
common activities are carried out.

Statistical information can be derived from other information sources as well: We
evaluate sleep data to extract features that hint at a rhythmic pattern of sleep for
observed individuals. Features like time of day, amount of movement and start and stop
time of sleep are used to detect similar nights in order to be able to categorize new
nights. Based on a long-term dataset of 141 days we showed the rhythmic pattern of
sleep.
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Rhythmic behaviour as a prior increases the recognition rate. This thesis takes a
first step to recognize high-level activities by using wearable data and embedding
prior information in the recognition process in Chapter 7. For this purpose, we
evaluate a traditional approach to detect activities, in order to compare the results to
an evaluation which uses only prior information. We make use of statistical data
obtained over a population as described in Chapter 4. By fusing the traditional
approach of a Support Vector Machine (SVM) with the probability results from the
time use survey evaluation, we improve on the recognition rates of several high-level
activities like eating, socializing and hobbies. The results for all three are 25%, 18%
and 6% higher, respectively, than just using the wearable sensors’ features. In the
course of this evaluation, we also identify for which scenarios time use survey data
is not useful: When trying to detect activities that last only for a small time each
day, the results drop in precision, since other, more common activities, dominate the
time-frame. Such information is crucial since the approach of using prior information
is not generally valid for all activities.

Sleep and sleep pattern detection is feasible with inertial data only. In Chapter
5 of this thesis, we present three approaches to detect sleep with the use of a
wrist-worn sensor only. The first algorithm relies on inertial data only, by detecting
immobile segments over a 10-minute window. To properly evaluate our algorithm,
we conduct a study in a sleeping lab with 42 patients. The obtained data includes
polysomnography (PSG) output, the ground truth for sleep, and inertial data from
the wrist-worn device. With such a benchmarked dataset, we are able to compare our
sleep detection results from the ESS approach to traditional algorithms established
by Oakley and Cole et al. These clinically evaluated algorithms are the basis for
several actigraphy devices which are used by physicians in sleep assessment. The
results indicate that our algorithm detects sleep and wake phases efficiently, while
standard approaches tend to overestimate sleep and neglect wake segments.

Further, we evaluate the use of additional sensor data than inertial data to detect
night segments. A Gaussian model-based approach relies on the current time, the
presence of motion (variance) and light (mean). The results indicate that sleep can
be detected with such an approach but a higher accuracy can be reached by using
a Hidden Markov Model (HMM). The HMM applies the same features for sleep
detection and is able to capture the user’s sleeping routine. By training the HMM
on a long-term dataset from 8 participants, the different sleep rhythms provide a
suitable basis for capturing different sleeping habits. For such a classifier, long-term
data is needed to provide the system with sufficient training data.

Additionally, in Chapter 6, we scrutinize sleep segments and detect posture
changes within immobile and myclonic twitches within mobile segments. We are
able to detect specific sleep postures with a high accuracy (up to 88% for two subjects)
and we are able to visualize sleeping posture trends without knowing the actual
posture. In addition to that, myclonic twitches are detectable with a confidence of
73% precision and 66% recall, which is interesting especially for physicians since
such twitches can hint at certain neurological diseases like Parkinson’s disease.
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8.3 outlook

This thesis focuses on two major challenges, which are the modelling of a person’s
behaviour into rhythmic patterns to extract prior information and the detection of
high-level activities with such data. In the following we will point to possible future
work that can continue and extend our studies.

Sources of Prior Information. We introduced time use surveys and observational
data from sleep diaries as sources for rhythmic behaviour modelling. With such
data, we were able to improve high-level activity recognition, by embedding such
information in the classification process. For this purpose we mainly used the
German Time Use Survey (GTUS) from 2001/2002, since the current version is not
yet available for research purposes. Since the GTUS 2011/2012 will be released in
2015, the main research question aims at the differences between the current and
previous GTUS dataset. Interesting results are expected, indicating in how far the
personal routines of Germans have changed or not.

We believe that there are far more platforms that provide valuable information
about the user. Social networks, for example, contain activity patterns that hint at
common behaviours, with each user posting the current location and what he or she
is currently doing there. Such information can be extracted from other platforms as
well, e.g., Foursquare42 or Yelp43 to be embedded in a context-aware system.

Furthermore, such prior information could be included in the classification
process before training. For this purpose, a sequential probabilistic model could be
used, where the sensor data is weighted with prior probabilities derived, for example,
from the time use database or other modalities that exhibit personal routines.

Sleep Detection in the Wild. We showed the feasibility of detecting sleep with a
Hidden Markov Model (HMM) and various thresholds on sensor readings in the
home environment. The third approach has been evaluated in the sleeping lab only,
which is why the algorithm needs to be stress-tested in a real-world set-up. The
challenge here is the gathering of ground truth data, since polysomnography (PSG)
cannot be performed as confident as in a sleeping lab. For this purpose an additional
ground truth monitoring system has to be added to our sleep monitoring system,
which could be a mobile PSG system. The feasibility of using such a system over
several weeks could be a challenge, since the user has to attach hard-wired sensors
to the body, again resulting in an unusual sleep environment.

Improvement possibilities can be incorporated directly in the new study: We
believe that performance could be improved for our ESS approach by using additional
information, gathered, for example, from on-board sensors (like light readings that
are already recorded by the wrist-worn device). Another possibility is to include
patient-specific models on sleeping disorders and personal routines, such as usual
sleep times.

42https://foursquare.com/, last access 09/2014

43http://www.yelp.co.uk, last access 09/2014

https://foursquare.com/
http://www.yelp.co.uk
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Smart Phone-based Activity Recognition. Using the smart phone as a sensing
platform is feasible and depends on the user’s habits as we have shown in this
thesis. Activity recognition could be conducted directly on the smart phone, since
state-of-the-art devices incorporate powerful CPUs and provide the system with
sufficient RAM. Therefore, online activity recognition on a smart phone is a future
challenge that can be encountered with the usage of prior information. One scenario
would embed time use data directly in the classification process, using as a prior the
current most likely activity such as the time use survey to extract probabilities for
performed activities. Additionally, such a platform is suitable to be used by the user
as a diary for main activities that can be logged and interpreted just as the time use
data. We would like to investigate the trade-off of using such data in the recognition
process in a long-term smart phone based study.
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J. Ward, P. Lukowicz, G. Tröster, and T. Starner (2006). Activity Recognition of Assem-
bly Tasks Using Body-worn Microphones and Accelerometers, IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 28(10), pp. 1553–1567.

A. R. Weiss, N. L. Johnson, N. Berger, and S. Redline (2010). Validity of Activity-
Based Devices to Estimate Sleep, Journal of Clinical Sleep Medicine (JCSM), vol. 6(4),
pp. 336–42.

E. Weitzman et al. (1981). Delayed Sleep Phase Syndrome: A Chronobiological
Disorder with Sleep-Onset Insomnia., Archives of General Psychiatry, vol. 38(7):737-
46.

G. Welk, J. Schaben, and J. Morrow (2004). Reliability of Accelerometry-Based
Activity Monitors: A Generalizability Study., in Medicine & Science in Sports &
Exercise Vol.36 No.9 2004.

W. H. Wu, A. A. Bui, M. A. Batalin, L. K. Au, J. D. Binney, and W. J. Kaiser (2008).
MEDIC: Medical Embedded Device for Individualized Care, Artificial Intelligence
in Medicine, vol. 42(2), pp. 137–152.

P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L. Benini, and G. Tröster
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