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Zusammenfassung 

Strahleneffekte auf Halbleiter-Bauelemente am GSI Helmholtz-Zentrum für 

Schwerionenforschung nehmen stark an Bedeutung zu wegen des Anstiegs an 

Strahlintensität aufgrund des Ausbaus der Anlagen. Darüber hinaus wird derzeit 

ein neuer Beschleuniger im Rahmen des Projektes Facility for Antiproton and Ion 

Research (FAIR) aufgebaut. Die Strahlintensitäten werden hier um den Faktor 100 

und die Energien um den Faktor 10 erhöht werden. Die Strahlenfelder in der 

Umgebung der Strahlrohre werden um mehr als 2 Größenordnungen ansteigen, 

begleitet von einer entsprechenden Auswirkung auf Halbleiter-basierte Geräte. 

Daher ist es notwendig, eine Studie zur Strahlenwirkung auf elektronische Geräte 

unter Berücksichtigung der spezifischen Eigenschaften der Strahlung, die typisch 

für Hochenergie-Schwerionen-Beschleuniger ist, durch zu führen.  

Strahleneffekte auf Elektronikkomponenten in einer Beschleunigerumgebung 

lassen sich in zwei Kategorien aufteilen: kurzzeitige zeitlich limitierte Effekte und 

Langzeiteffekte mit andauernder Schädigung. Beide können problematisch für die 

richtige Funktion elektronischer Geräte sein. Die vorliegende Arbeit bezieht sich 

auf Strahlenschäden von CCD-Kameras im Strahlenfeld von 

Schwerionenbeschleunigern.  Es wurden verschiedene Serien von Experimenten 

mit Bestrahlung von Komponenten (Devices under Test DUT) durch 

Sekundärstrahlung durchgeführt, welche durch Strahlverluste entsteht. Dazu 

wurden Monte Carlo Berechnungen zur Simulation der experimentellen 

Bedingungen sowie der Bedingungen der zukünftigen Beschleuniger durchgeführt. 

Diese wurden verglichen und daraus Schlussfolgerungen gezogen. Weiterhin 

wurde eine weitere Komponente an Beschleunigereinrichtungen getestet, nämlich 

Ethernet Schalter. Zusätzlich wurden direkte Bestrahlungen von CCDs und MOS 

Chips mit Schwerionen durchgeführt. Die typischen Energien der Primärionen 

betrugen dabei 0,5 bis 1 GeV/u, die Ionensorten reichten von Natrium bis Uran, die 
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Intensitäten des Strahls bis zu 1E9 Ionen pro Spill mit Spilldauern von 200 bis 300 

ns.  

Kriterien der Zuverlässigkeit und Lebensdauern der DUTs unter spezifischen 

Bestrahlungsbedingungen wurden formuliert, basierend auf den experimentellen 

Resultaten der Arbeit. Es wurden Vorhersagen getroffen zur elektronischen 

Bauteil-Zuverlässigkeit  und Betriebslebensdauer unter den für FAIR erwarteten 

Bedingungen, basierend auf Monte Carlo Simulationen. Zusätzlich zu den 

Hauptergebnissen wurde ein neuartiger Typ von CCD-basiertem Strahlverlust-

Monitor (beam loss monitor BLM) vorgeschlagen und diskutiert.  
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Abstract 

Radiation effects on semiconductor devices in GSI Helmholtz Center for Heavy 

Ion Research are becoming more and more significant with the increase of beam 

intensity due to upgrades. Moreover a new accelerator is being constructed on the 

basis of GSI within the project of facility for antiproton and ion research (FAIR). 

Beam intensities will be increased by factor of 100 and energies by factor of 10. 

Radiation fields in the vicinity of beam lines will increase more than 2 orders of 

magnitude and so will the effects on semiconductor devices. It is necessary to carry 

out a study of radiation effects on semiconductor devices considering specific 

properties of radiation typical for high energy heavy ion accelerators. 

 Radiation effects on electronics in accelerator environment may be divided 

into two categories: short-term temporary effects and long-term permanent 

degradation. Both may become critical for proper operation of some electronic 

devices. This study is focused on radiation damage to CCD cameras in radiation 

environment of heavy ion accelerator. Series of experiments with irradiation of 

devices under test (DUTs) by secondary particles produced during ion beam losses 

were done for this study. Monte Carlo calculations were performed to simulate the 

experiment conditions and conditions expected in future accelerator. 

Corresponding comparisons and conclusions were done. Another device typical for 

accelerator facilities - industrial Ethernet switch was tested in similar conditions 

during this study. Series of direct irradiations of CCD and MOS transistors with 

heavy ion beams were done as well. Typical energies of the primary ion beams 

were 0.5-1 GeV/u. Ion species: from Na to U. Intensities of the beam up to 1e9 

ions/spill with spill length of 200-300 ns. 

 Criteria of reliability and lifetime of DUTs in specific radiation conditions 

were formulated, basing on experimental results of the study. Predictions of 

electronic device reliability and lifetime were formulated for radiation conditions 
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expected in future at FAIR, basing on Monte Carlo simulations. In addition to main 

results a new type of CCD-based beam loss monitor (BLM) was proposed and 

discussed. 
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Abbreviations 

 

APPA   Atomic physics, Plasma Physics and Applications 

BJT   Bipolar Junction Transistor 

BLM   Beam Loss Monitor 

CCD   Charge-Coupled Devices 

CCTV  Closed-Circuit Television 

CMOS  Complementary Metal–Oxide–Semiconductor 

CPLD   Complex Programmable Logic Device 

DN   Digital Number 

DPA   Displacements per Atom 

DRAM  Dynamic Random-Access Memory 

DUT   Device under Test 

EEPROM  Electrically Erasable Programmable Read-Only Memory 

EPR   Electron Paramagnetic Resonance 

FPGA   Field-Programmable Gate Array 

FPS   Frames per Second 

GSI    Helmholtz Center for Heavy Ion Research 

HHD   High energy High intensity Dump 

LET   Linear Energy Transfer 
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MOS   Metal Oxide Semiconductor 

NMOS  N-Type Metal-Oxide-Semiconductor 

PMOS  P-Type Metal-Oxide-Semiconductor 

RAM   Random-Access Memory 

SEB    Single Event Burnout 

SEE   Single Event Effect 

SEFI   Single Event Functional Interrupt 

SEGR   Single Event Gate Rupture 

SEL   Single Event Latch-up 

SES   Single Event Snapback 

SET   Single Event Transient 

SEU   Single Event Upset 

SIPMOS  Siemens P-Type Metal-Oxide-Semiconductor 

SIS18   Heavy Ion Synchrotron 

SOI   Silicon-On-Insulator 

STD   Standard Deviation 

TID   Total Ionisation Dose 

UNILAC  Universal Linear Accelerator 

VDMOS  Vertical Diffused Metal Oxide Semiconductor 

VMOS  Vertical Metal Oxide Semiconductor  

6 
 



 
 

TABLE OF CONTENT 
 

1. Introduction  ............................................................................................. 9 

2. Theory   ................................................................................................... 17 

2.1.  The influence of radiation on electronic devices  ............................. 17 

2.2.  Gamma-ray damage effects  ............................................................. 19 

2.3.  Degradation of MOS transistor parameters  ..................................... 23 

2.4.  Neutron damage effects  ................................................................... 29 

2.5.  Single event effects  .......................................................................... 33 

2.5.1.Non-destructive effects  ............................................................. 34 

2.5.2.Destructive effects  .................................................................... 36 

3. Simulations  ............................................................................................ 41 

3.1. FLUKA Monte Carlo Tool  ............................................................... 41 

3.2. Monte Carlo Simulations  .................................................................. 43 

4. Experimental methods  .......................................................................... 51 

4.1.  Beams  .............................................................................................. 51 

4.2.  Target and device setup  ................................................................... 53 

4.3.  MOS transistor testing circuit  .......................................................... 57 

4.4.  CCD readout ..................................................................................... 61 

4.4.1.Digital – LabVIEW based code  ................................................ 61 

4.4.2.Digital CCD calibration  ............................................................ 65 

4.4.3.Analogue CCD acquisition  ....................................................... 69 

4.5.  Switch testing technique  .................................................................. 73 

4.6.  Dosimetry  ........................................................................................ 75 

  

7 
 



 
 
5. Results and discussion  .......................................................................... 79 

5.1.  Indirect irradiation effects  ............................................................... 79 

5.1.1.Long term effects in CCD cameras  .......................................... 79 

5.1.2.Short term effects in CCD cameras  .......................................... 83 

5.1.3.Ethernet switch stability and SEU in digital devices ................ 93 

5.2.  Direct irradiation effects  .................................................................. 95 

5.2.1.Long term effects in MOS transistor  ........................................ 95 

5.2.2.Degradation of CCD sensor from direct ion beam  ................... 97 

6. CCD based beam loss monitors  ......................................................... 101 

7. Summary  .............................................................................................. 109 

Appendix  .............................................................................................. 111 

References  ............................................................................................ 113 

 

  

8 
 



 
 

Introduction 
 

Radiation damage to materials is a topical and wide field of study in modern 

science. Study of radiation effects on electronic components is a very important 

segment of this field, because one already can hardly imagine a world without 

various electronic devices for ordinary life, scientific or military purposes. 

Moreover silicon-based technology has proven to be relatively sensitive to 

radiation. 

Radiation effects on electronics were first observed during above-ground 

nuclear bomb tests in 1954 [1]. Spurious signals and malfunctions of the measuring 

equipment were observed. During nuclear explosion most of the energy is released 

in form of neutrons, gamma rays, alpha particles and electrons. Temporary errors 

in electronics or so called single event effects (SEEs) were mainly caused by 

neutrons, while gammas were responsible for permanent effects like modification 

of characteristics of electronic components [2]. Since 1958 similar anomalies were 

registered in electronic devices operating in space. For example heavy ions from 

cosmic rays disturbed operation of transmitting modules of Explorer 1 (Fig 1.1).  

On the ground level single event upsets (SEUs) were first reported during 2 

kB dynamic random access memory (DRAM) tests. In that case SEUs were not 

triggered by cosmic rays, but by alpha particles from the decay of Thorium and 

Uranium present in some integrated circuit packaging materials. It was the time 

when IBM first noticed a serious problem with memory reliabilities and initiated a 

research to understand the problem better. Later more cases of errors were 

observed in many applications including space, military and avionics. IBM 

employee James Ziegler noticed SEUs in commercial devices triggered by cosmic 

rays at ground level [3].  
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Fig 1.1: Explorer 1. 

Another type of radiation sources are particle accelerators. With the launch 

of the first high energy synchrotrons in Brookhaven, Dubna, CERN, DESY and 

Fermi Lab it became clear that the radiation environment of such accelerators may 

be rather harsh for electronic devices. Different components of the beam diagnostic 

and machine control tools were located in the nearest vicinity of beam path. When 

high energy particles deviated from primary trajectory or collided with dense 

material according to experiment plan, a radiation field was produced. Thereby 

electronic components were repeatedly exposed to radiation in the accelerator 

environment. 

Studies of radiation damage to electronic components may be divided into 

the following subgroups:   

1. Military purposes. Destructive effects of radiation from nuclear weapons 

and electromagnetic pulse (EMP) weapons [1-2]. 
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2. Space and aeronautics research. Effects of cosmic rays on space, aero and 

terrestrial equipment [3-5]. 

3. Particle accelerator and laser related studies. Effects of secondary 

radiation produced by beam interactions on various equipment or direct 

irradiation effects.  

Various numbers of accelerators and equipment pieces, rapid development and 

increase of intensities and therefore radiation levels make the last subgroup 

especially relevant and topical in modern science. 

 Different accelerators may have different particular qualities of radiation 

environment. That is why it is often necessary to carry out individual studies of 

radiation damage to electronic components at each facility. 

 GSI Helmholtz Center for Heavy Ion Research (GSI) is a unique facility, 

equipped with linear accelerator (UNILAC) and synchrotron (SIS18) for 

acceleration of heavy ions (Fig. 1.2). It can operate with ion species up to 

Uranium, accelerating them up to 1 GeV/u at 109 ions/spill intensity (for Uranium). 

Moreover it is being upgraded in order to have a several times maximum intensity 

increase, and it will be used as an injection for the larger accelerator – facility for 

antiproton and ion research (FAIR). FAIR concept and design was first presented 

in 2001 [6-8]. The new facility will open opportunities for experiments in high-

energy physics in the fields of nuclear structure, hadrons, atomic physics, 

biological and material sciences. FAIR will consist of a complex accelerator 

system, using GSI synchrotron SIS18 as an injection (Fig. 1.3). SIS 100 and SIS 

300 synchrotrons will be operating with 100 times higher beam intensities, than 

those that are currently available at GSI. Moreover the energy of heavy ion beams 

will increase by a factor of 10 (table 1.1).  
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Fig. 1.2: Scheme of GSI facilities. 

 Failure of digital equipment and distortions of signals from cameras as well 

as degradation of performance of some devices were already reported in GSI. With 

the upcoming upgrade and construction of FAIR this issue became critically 

important. A study of radiation damage to electronic components considering 

specific properties of the radiation environment was necessary.  
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Fig. 1.3: Scheme of FAIR. Existing GSI accelerator is colored in blue. 

 

Table 1.1: Overview of scientific topics and their demands at FAIR 

Research Field Energy Peak Intensity Average 
Intensity 

Radioactive Ion 
Beams 

0.4-1.5 GeV/u all 
Elements 5x1011 ions/pulse 3x1011 ions/s 

Antiprotons 29 GeV 4x1013 ions/cycle - 

Dense Nuclear Matter 34 GeV/u Uranium - 2x109 ions/s 

Plasma Physics 0.4-1 GeV/u 1x1012 ions/pulse - 

Atomic Physics 1-10 GeV/u - 1x109 ions/s 
 

The aim of this study was to investigate short and long term effects of radiation to 

electronic devices in conditions typical for the high energy heavy ion accelerator. 

CCD cameras were proposed as a primary object of the study for two reasons. 
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First, it is a device that has many similar electronic elements – CCD matrix cells. It 

gives a benefit of high statistics. Second, CCD cameras are a typical device, 

frequently used in accelerator facilities for surveillance, target alignment and beam 

diagnostics. Another typical device – an Ethernet network switch was tested for 

radiation induced failures. The following objectives were considered during the 

study:  

- criteria of CCD camera reliability and lifetime were formulated 

- criteria of Ethernet switch reliability were formulated  

- series of Monte Carlo simulations were performed in order to extrapolate results 

onto radiation conditions of specific locations in future facilities 

- direct high energy heavy ion beam effect on semiconductors was investigated 

- CCD camera was proven to be a good basis for construction of the new type of 

beam loss monitor (BLM) 

Structure of the thesis 

1. Introduction section gives general description of the topic being studied. It 

includes a short background on the subject. Motivation is explained by means of 

gap statement. Aims of the study and achieved objectives are briefly described. 

Structure of thesis is given. 

2. Theory section includes description of the principal phenomena causing 

radiation damage to electronic devices: ionization, displacement damage. 

Degradation of MOS parameters due to radiation is explained, single event effects 

(SEE) are classified and overviewed. 

3. Simulations section describes part of study related to Monte Carlo code 

FLUKA. It includes simulations of experiments performed during this study, 
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comparison of calculated dose levels with experimental data, simulations of 

radiation conditions at FAIR and corresponding comparisons. 

4. Experimental methods section starts with brief overview of GSI accelerator 

and used beam parameters. It follows with a description of every part of 

experimental equipment and complete assembly. This section also describes a 

development of custom LabVIEW based applications for data acquisition and 

processing. Dosimetry technique is mentioned in the end. 

5. Results and discussion section contains all the results and is divided into 

subsections for each device under test (DUT). The results are followed by 

discussions. 

6. CCD based beam loss monitors section describes how CCD camera may be 

used in a role of beam loss monitor (BLM). Advantages, disadvantages and 

possible improvements of the technique are stated. 

7. Summary section contains a conclusion and sums up all the knowledge and 

experience obtained during this work. 

8. Appendix contains further simulation results. 
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2. Theory 

2.1 The influence of radiation on electronic devices 

Radiation effects on silicon components may be divided in two main groups: 

ionizing effect and displacement damage. Semiconductor components may change 

their electronic properties due to radiation. Ionizing particles may produce charge 

in sensitive areas of devices. In general radiation effects may finally lead to 

functional failures of electronic systems and even to irreversible destructive 

effects. Neutrons and gammas are normally making the main contribution to 

radiation damage effects in accelerator environment. Table 2.1 shows the 

corresponding interaction types and significance of radiation damage type [9, 10]. 

Table 2.1: Neutron and gamma radiation effects on silicon components. 

Radiation 
type 

Energy 
range 

Main type of 
interaction 

Primary effects 
in Si and SiO2 

Secondary effects 
in Si and SiO2 

Photons 

Low Energy Photoelectric 
effect 

Ionizing 
phenomena 

Displacement 
damage 

Medium 
Energy Compton Effect 

High 
Energy Pair production 

Neutrons 
Low energy Capture and 

nuclear reaction Displacement 
damage 

Ionizing 
phenomena High energy Elastic 

scattering 
 

Interaction of high energy particles with matter may be described with the 

following phenomena: 
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1. Ionization of the material through the interaction with shell electrons 

2. Displacement of target material atoms 

3. Nuclear reaction with the target nucleus 

All of the above mentioned processes may coexist and in some cases may even be 

triggered by one incident particle. For example a neutron can first interact with 

nucleus, creating displacement damage, than generate secondary charged particles, 

which ionize the material if they have enough energy. In case of incident high 

energetic charged particles ionizing dose effect predominates [9]. Only a small 

fracture of their energy is utilized in displacement damage. Neutral particles are 

mainly responsible for displacement damage or displacement cascades.  

A rate of the energy loss of the particle along the path normalized to the 

material density is called stopping power = 1
𝜌
𝑑𝐸
𝑑𝑥

 , where ρ is the mass density of 

the target material, dE/dx is the rate of the energy loss dE along the path x.  

Slowing down of a projectile ion due to the inelastic collisions with bound 

electrons in the matter is called electronic stopping. The energy loss per distance in 

this case is described by the Bethe-Bloch equation [9, 28, 29]. 









−

−
=− 2

2

2

2

42

)1(
2ln4 β

β
π

I
vmN

vm
ez

dx
dE e

e
e

,     (2.1) 

where z is the ion charge number, e is the electron charge, em is the electron 

rest mass, eN  is the electron concentration in the substance, v is the ion speed, β is 

the ratio of v to the speed of light c, I is the ionizing potential. 

Elastic collisions between the projectile ion and atoms in the sample are 

called nuclear stopping [9]. Nuclear stopping increases with the ion mass. At low 

energy, below 0.01 MeV nuclear stopping is usually larger than electronic 

stopping.  
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2.2 Gamma-ray damage effects 

Gamma-rays deposit energy in the semiconductor components mainly by 

ionization [11]. The ionizing effect may be caused by X-rays, Ultra-Violet 

radiation or indirectly through secondary recoil particles as well [12-14]. Ionization 

of bulk material leads to: enhancement of conductivity through production of 

excess charge carriers, trapped charge, variation of electric and magnetic fields and 

chemical effects [11]. Photons interact with matter, depending on their energy in 

four ways [15]: 

1. Photoelectric effect 

2. The Compton Effect 

3. Electron-positron pairs production 

4. Nuclear photoabsorption 

Photoelectric effect prevails for low energy photons, the Compton effect and pair 

production prevails for gammas with energies higher than 0.1-1 MeV depending 

on the Z number of target material. Nuclear photoabsorption has a peak in cross 

section at about 10-30 MeV depending on the Z number of target material. 

 Free electrons produced during ionization may span the forbidden gap and 

create electron-hole pairs if they have enough energy. This temporarily increases 

the conductivity of the bulk material. Electron-hole pairs, produced in non-

conducting materials such as SiO2 may play an even greater role in changing 

electronic properties of some components, e.g. transistors. Production of electron-

hole pairs depends on two parameters: energy necessary to produce a pair and 

generation rate. Table 2.2 contains values of these parameters for silicon and 

silicon oxide [9]. The generation rate expresses the ionization capability of unit 

volume for the given material. 
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Table 2.2: The ionization energy and ionization-induced rate for silicon and silica. 

Material Eion [eV] g0 [electron-hole pairs∙Gy-1∙cm-3] 

Silicon 3.6 4E15 

Silicon Dioxide 18 8.2E14 
 

Electron-hole pairs created in the target material may recombine or diffuse, 

depending on present electrical field. Charge deposited in silicon can provoke SEE 

(Single Event Effects), charge trapped in SiO2 leads to changes of characteristics of 

components. Fig. 2.1 illustrates a process of charge generation in SiO2/Si interface 

due to gamma radiation.  

 

 

Fig. 2.1: The charge creation process in silicon dioxide, and SiO2/Si interface, 
disturbance of electric field [12]. 
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Incident gamma creates electron-hole pairs in SiO2. A fraction of created pairs 

quickly recombine. But mobility of electrons is much higher and electrons can 

leave silica instantaneously because of electric field presence as a part of normal 

circuit operation. Holes remaining in the insulator result in the charge built up in 

SiO2. The amount of this charge depends on the electric field across the oxide, 

during the irradiation. Some of the positive traps may recombine due to tunneling 

effect, others stay trapped as electrically active defects. New interface states may 

be created with the rearrangement of atomic bonds at the SiO2/Si interface [12]. 

The trapped charge has a significant effect on electrical properties of electronic 

components. Some of the generated traps, located in the nearest vicinity of SiO2/Si 

interface may act as border traps or slow interface states. This effect plays an 

important role for sub-micron technologies when SiO2 thickness is less than 5-6 

nm [16]. 
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2.3 Degradation of MOS transistor parameters 

The phenomena of charge build up in the SiO2/Si interface leads to changing 

of principal electrical parameters of MOS transistors. The most important is the 

threshold voltage Vth. Other effects of ionizing radiation on MOS structures are: 

- an increase of leakage or dark currents 

- a decrease of transconductance 

- a reduction of drain-source breakdown voltage 

- a deterioration of noise parameters 

- a reduction of surface mobility 

- an increase of the surface recombination velocity  

 

Threshold voltage shift ∆𝑽𝒕𝒉 induced by ionizing radiation may be expressed as a 

sum of two factors: holes trapped in silicon oxide Qot and interface states charge 

Qit, see equation 2.2: 

∆𝑉𝑡ℎ = −𝑒 1
𝐶𝑜𝑥

∆𝑁𝑜𝑡 ± 𝑒 1
𝐶𝑜𝑥

∆𝑁𝑖𝑡  (2.2) 

where e is the elementary charge, 𝐶𝑜𝑥 is the oxide capacitance expressed per unit 

area, ∆𝑁𝑜𝑡 and ∆𝑁𝑖𝑡 are the densities of oxide-trapped charges and interface states, 

respectively. The voltage shift due to interface states is positive for PMOS (p-type 

metal oxide semiconductors) and negative for NMOS (n-type metal oxide 

semiconductors) [17]. Fig. 2.2 illustrates the threshold voltage shift process for 

PMOS. Vth shifts towards the negative gate voltage with absorbed dose. The 

typical influence of Qit is illustrated as a dashed line on a characteristic curve. 
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Fig. 2.2: Silicon oxide and interface trapped charges in PMOS transistor. ID - VG 

characteristic curve progression with dose. Dashed line shows typical influence of 

interface states charge [12]. 

In case of NMOS, threshold voltage may have both positive and negative shifts. 

Initially Vth will be decreasing as the Qot influence dominates. At some point 

enough charge will be accumulated in the silicon oxide, and the second effect can 

start predominating. This will lead to positive shifts of Vth. 

 Threshold voltage shift depends on the gate silicon dioxide thickness. Due to 

tunneling effect Vth shifts are significantly reduced, when SiO2 layer thickness is 

less than 10 nm [18]. 
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Fig. 2.3: Silicon oxide and interface trapped charges in NMOS transistor. ID - VG 

characteristic curve progression with dose [12]. 

 

Decrease of transconductance 

Charge trapped in silicon and silicon oxide reduces carriers’ mobility in the 

transistor channel and thus leads to a decrease in its transconductance. This effect 

may be expressed using the following equation [19]: 

𝜇 = 𝜇0
1+𝛼𝑖𝑡∆𝑁𝑖𝑡+𝛼𝑜𝑡∆𝑁𝑜𝑡

,  (2.3) 

where 𝛼𝑖𝑡  and 𝛼𝑜𝑡  are the coefficients describing the effects of oxide-trapped 

charges and interface states, respectively, ∆𝑁𝑜𝑡 and ∆𝑁𝑖𝑡 are the densities of oxide-

trapped charges and interface states, respectively. The conductivity of the transistor 

reduces as well due to decrease of the carriers’ mobility. 
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An increase of quiescent or dark current 

Silicon dioxide is often used as an insulation spacer for microchip fabrication. 

Radiation induced trapped charge and interface states may cause an increase of 

quiescent or dark current in the electronic element.  

 

Fig. 2.4: The source-drain leakage path created by built-up charge in oxide [20]. 

This effect concerns CMOS, CCD, and bipolar devices using SiO2 isolation. Fig. 

2.4 illustrates how build-up charge in lateral oxide structures results in creation of 

parasitic channel between drain and source of a NMOS transistor [18]. A constant 

current flow between the source and a drain can be observed after irradiation. A 

leakage between MOS transistors and other integrated structures is also possible 

due to this effect. Fig. 2.5 shows examples of quiescent current increase in CMOS 

devices with dose. As seen on the plot saturation is typical for such process. 

Submicron CMOS devices are especially vulnerable to this effect [21]. Junction 

breakdown voltage is altered during this process and multiguard structures are used 

to improve reliability of certain devices [22]. 
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Fig. 2.5: An increase of a quiescent current as a function of absorbed dose of 

CMOS devices [12]. 

 

 

Noise increase 

It was confirmed that noise level, in particular 1/f noise or pink noise is increasing 

with total ionizing dose [18, 23]. The reason is the same - trapped SiO2 and 

interface charges. Fig. 2.6 shows noise increase for a 3 μm technology device with 

48 nm oxide layer. The gate voltage was biased with 6V during the exposure. High 

peaks on the spectrum are caused by fundamental and higher harmonies of the 

power line.  
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Fig. 2.6: 1/f noise spectra as a function of total ionizing for W32 (G1916A) wafer 

[23]. 
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2.4 Neutron damage effects 

Neutrons interact with matter in several different ways: 

- elastic scattering 

- inelastic scattering 

- capture process (n,γ) 

- nuclear reactions: (n,p), (n,α), (n,2n), (n,f) 

Scattering processes and nuclear reactions are dominating for fast neutrons 

(E>1MeV) and capture effect is more probable for slow neutrons [9]. 

 In a case, when the target material has a lattice structure, an atomic 

displacement with lattice damage may take place, because of neutron 

bombardment. This effect may be compared to a classical collision between two 

balls. If the transferred energy is higher than the displacement energy Ed, the lattice 

atom will be removed from its original position. A defect will be created. The 

recoil atom may displace other atoms or produce electron-hole pairs depending on 

the energy. Cascades of disruptions in the silicon lattice are observed for highly 

energetic particles. 

Fig. 2.7 illustrates different types of displacement effects: vacancy, 

divacancy, interstitial displacement, Schottky and Frenkel defects. Vacancies, 

Frenkel defects and interstitial displacements are more likely to appear [9]. 

Primary effects are usually unstable at room or higher temperatures. They normally 

migrate, annihilate or create more complex secondary effects. Impurities and 

doping atoms in semiconductor become a basis for permanent cluster effects at 

room temperature [26]. Permanent defect clusters act as charge trapping centers 

and increase the resistivity of the material [11]. Mobile vacancies play a role of 

recombination point for minority carriers and reduce their lifetime. Defects that act 
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like hole traps are called H defects and defects responsible for electron trapping are 

celled E defects [9]. Displacement damage affects electrical characteristics of 

electronic components mainly by changing structure of semiconductor substrates. 

 

Fig. 2.7: Various defects created due to atomic displacement in lattice [9]. 

Even being uncharged particles neutrons may ionize atoms (Fig. 2.8): 

- by collision and production of recoil elements 

- by production of gamma rays through the de-excitation process of excited 

atomic nuclei 

- by collisions followed by absorption of neutron by target nucleus 

Neutrons may initiate the following nuclear reactions: (n,p), (n,α), (n,2n), (n,f). A 

charged particle may be produced as a result of such reaction, for example: 

He3(n,p)H3, B10(n, α)Li7 [19]. Resulting particles, e.g. alpha particle may have high 

LET (Linear Energy Transfer). Besides that, alpha and heavier particles have a 

short range in silicon and the resulting ionization may be very significant. 
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Fig. 2.8: Experimental data for neutron-induced ionization in silicon [11]. 
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2.5 Single Event Effects 

Ionization in sensitive areas of electronic devices may lead to so called SEEs 

(Single Event Effects). The energy dE/dx transferred from the ionizing species to 

matter is called LET (Linear Energy Transfer). This value is expressed in  

MeV∙μm-1 or MeV∙cm2∙g-1 when it’s normalized to the specific mass of the 

absorbing material. LET is dependent on the incident particle type, energy and 

absorbing material and may be calculated using Bethe-Bloch equation [9, 28, 29], 

see 2.1. Critical LET or LETth (LET threshold) is the minimum LET value 

deposited in the electronic element for which SEE is observed. Corresponding 

charge necessary to create a SEE in the electronic element is called critical charge 

[30]. The value of this charge strongly depends on the feature size (Fig. 2.9).  

SEEs are divided into two groups:  

- non-destructive, when the device failure can be recovered by the system 

reset or reprocessing of affected data  

- destructive or hard errors, when the failure leads to permanent damage of the 

device or the system 
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Fig. 2.9: Critical charge plotted as a function of the feature size for different 

technologies [9]. 

 

2.5.1  Non-destructive effects 

Single Event Upset (SEU) is a change of the logic state of an electronic 

element due to charge production during ionization. SEUs affect mainly digital 

devices, e.g. microprocessors, FPGAs (Field Programmable Gate Arrays), 

memories. This phenomenon affects both bipolar and MOS technologies. Charged 

particles can ionize the sensitive volume of the element directly [31]. Neutral 

particles can generate SEEs through the secondary ionizing particles, which are 

born during interaction of neutral particle with absorbing material. Most of the 

neutral particles pass through silicon, but a few interact with nuclei and produce 

ionizing particles: alpha particles, protons or heavy ions (Fig. 2.10). High-LET 

particles deposit all the energy along a short path and in a small radius (typically 1 

μm). When this happens near the sensitive node of the device, e.g. drain of a MOS 
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transistor, a spike of the drain current is observed. The induced current pulse may 

be hundreds of mA and lasts for nanoseconds. If the corresponding charge is 

higher, than critical charge – SEU takes place.  

 

Fig. 2.10: Ionizing particle is created inside the sensitive volume of MOS 

transistor. SEU takes place due to ionization if the ionization charge is higher than 

critical. 

 

Single Event Functional Interrupt (SEFI) is a subgroup of SEU effects 

that happens in high-density programmable devices, like CPLDs or FPGAs. SEFI 

usually causes logical mistake and results in malfunction of system operation. A 

reset of the device is needed to normalize its operation in case SEFI happens [35, 

36]. 

 

Single Event Transient (SET) is a subgroup of SEE when the ionizing 

particle causes one or more voltage pulses (i.e. glitches) to propagate through the 

circuit. SET does not always result in a change of logical state until it propagates 

through digital circuitry and results in an incorrect value being latched in a 

sequential logic unit. Otherwise it causes distortion in analogue output signal [37, 

Neutron produces 
ionizing particle 
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38]. SET is harder to register and to correct than SEU. Techniques for SET 

correction are still under research [39-42]. This effect varies significantly with the 

device parameters: fabrication technology, current pulse amplitude, operation 

frequency. Modern technologies are becoming more vulnerable to SET, because of 

increasing frequency of operations and decreasing feature size. One particle may 

trigger multiple SETs in high density electronic components. Fig. 2.11 shows an 

example of SET triggering in the LM139 comparator with different loads. SETs 

are generated using a 815 nm laser. The comparator was supplied with 5V and the 

differential input was equal to +100 mV [43]. 

 

Fig. 2.11: SETs observed in LM139 comparator excited with 815 nm laser [43]. 

 

2.5.2 Destructive effects 

Single Event Latch-up (SEL) usually happens in CMOS-based devices and is a 

potentially destructive event. CMOS integrated circuits consist of NMOS and 

PMOS transistors. Two parasitic lateral bipolar transistors are present between 

PMOS and NMOS integrated transistors: n-p-n and p-n-p (Fig. 2.12). They may be 

considered as a parasitic thyristor structure pnpn or npnp. This thyristor is disabled 

during normal operation due to reverse-biased well-substrate junctions – there is no 
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current flow between the thyristor and the cathode. The thyristor may be activated 

when all of the following conditions are fulfilled: 

1. The gain product of parasitic transistors βnpn∙ βpnp must be greater than 1. 

2. Enough charge must be injected into base-emitter junctions of parasitic 

transistors 

3. Power supply must provide enough power to maintain the latch process 

In case of thyristor activation, a high current will flow through the low-impedance 

patch and the component will be locally overheated. This situation is called SEL 

and may lead to thermal destruction of the component. To prevent the device from 

damage the power supply must be stopped disabling the parasitic thyristor. SEL 

probability is strongly dependent on the channel length and the epitaxial layer 

thickness of CMOS integrated circuits. Therefore newer technologies are more 

sensitive to SEL [45]. 

 

Fig. 2.12: Diagram of CMOS inverter. Parasitic thyristor is illustrated in the 

bottom part of the image [44]. 

 

Single Event Burnout (SEB) happens mainly in high-power MOS transistors, like 

VDMOS or DMOS. If the ionizing particle passes through a volume of parasitic 
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bipolar transistor in VDMOS a large current density in range of 104 A∙cm2 will be 

generated in the presence of the high drain-source voltage (Fig. 2.13) [46, 47]. 

When the voltage is applied to the base-emitter junction of the inherent parasitic 

bipolar transistor, the transistor may be turned on due to the avalanche 

multiplication of the BJT (Bipolar Junction Transistor) collector current. Junction 

may overheat and device burnout may happen if local power density is large 

enough. 

 

 

Fig. 2.13: The cross-section of the VDMOS transistor [48]. 

Single Event Gate Rupture (SEGR) is a dielectric breakdown caused by 

ionizing particle [49]. Electron-hole pairs produced by the ionizing particle are 

divided by the electric field towards the gate and the drain. Positive charge, 

collected near the Si/SiO2 interface increases the electric field in the gate oxide. 

The leakage current also increases. If the transient disturbance is large enough a 

significant charge collected in the gate oxide will be discharged. This will lead to 
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local temperature increase and possible destruction of the oxide in the nearest 

vicinity [9, 48]. SEGR is typical for non-volatile memories, like EEPROMs, it 

happens during write or erase procedures when a relatively high voltage is applied 

to transistors gates. 

 

Single Event Snapback (SES) affects mainly NMOS transistors. This effect 

is similar to SEL. The inherent parasitic bipolar transistor may be turned on if the 

incident particle has high LET (Fig. 2.14). Contrary to SEL, reduction of main 

supply voltage of the circuit is not necessary to recover its operation. It may be 

done by sequencing electrical signals. SES may be destructive when the local 

current density is high enough to cause critical overheating. SOI (Silicon-on-

insulator) technology is much more resistant to SES than CMOS [50,51].  

 

 

Fig. 2.14: The inherent bipolar transistor of NMOS structure affected by high-LET 

particle [35]. 
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3. Simulations 

3.1 FLUKA Monte Carlo Tool 

FLUKA is a tool for calculations of particle transport and interaction with 

matter [52-54]. It covers a wide range of applications: target design, detector 

design, calorimetry, activation, dosimetry, shielding design, cosmic rays, neutrino 

physics, radiotherapy etc. 

  This tool can simulate with high accuracy the interaction and propagation in 

matter of about 60 different particles, including photons and electrons from 1 keV 

to thousands of TeV, neutrinos, muons of any energy, hadrons of energies up to 20 

TeV. Time evolution and tracking of emitted radiation from unstable residual 

nuclei can be performed online. 

FLUKA can handle even very complex geometries, using an improved 

version of the well-known Combinatorial Geometry (CG) package. The FLUKA 

CG has been designed to track correctly also charged particles (even in the 

presence of magnetic or electric fields). Various visualization and debugging tools 

are also available. 

There is and advanced user-friendly interface for FLUKA – FLAIR [55]. 

The philosophy of flair interface was to work on an intermediate level. Not too 

high, that hides the inner functionality of FLUKA from the user, and not so low 

that the user is in constant need of the FLUKA manual to verify the options for 

each card. It has many useful features: 

1. input editor front-end interface for an easy and almost error free editing 

as well as validation of the input file during editing; 
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2. interactive geometry editor, allowing to edit bodies and regions in a 

visual/graphical way with immediate debugging information; 

3. advanced layer mechanism for graphically displaying any information 

from the input file on top of the geometry:  

- lattices and voxel display 2D and 3D 

- density, biasing, thresholds, ... 

- technical drawing superposition 

- interactive USRBIN plotting and surface mapping 

- real-time 3D ray tracing rendering, with shadows, edges, 

clipping and projection bodies 

- customizable multiple palettes 

4. debugging, compiling, running and monitoring of the status during a run; 

5. back-end interface for post-processing of the output files and plot 

generation through an interface with gnuplot and 3D photo-realistic 

images; 

6. materials library and geometrical objects, for easier editing, storing and 

sharing among other users and projects; 

7. python API for manipulating the input files, post processing of the results 

and interfacing to gnuplot; 

8. import/export to various formats:  

- MCNP 

- GDML 

- Povray 

- DXF 

- bitmap images 
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3.2 Monte Carlo Simulations 

It was necessary to estimate prompt dose distribution in the upcoming 

experiments in order to prepare installations correctly. FLUKA code was chosen 

for this purpose as the best fitting tool. Each irradiation experiment setup was 

prepared with concern of corresponding calculations. 

The simulation process begins with modeling the geometry of the 

experimental conditions. It consists of bodies made from different materials and 

compounds. Normally it is a target, air and material samples around the target and 

a beam dump. Then a beam type, position, size, shape, and direction are set. 

Finally one has to define virtual detectors of different kinds. These may be particle 

tracking detectors, energy deposition detectors, equivalent dose detectors and so 

on. Calculation process usually takes several hours to get required statistics and 

accuracy. After the calculation process is finished the output files are generated. 

They contain all information scored by virtual detectors, defined earlier. All the 

results are usually calculated per primary particle, and should be later normalized 

to actual number of particles in the experiment. 

FLUKA calculations help to understand particle composition in the 

secondary radiation better. The preliminary calculations of doses are also very 

important. Of course the reliability of Monte Carlo calculations is always an issue. 

The agreement of the calculation results with the experiment may be checked after 

the irradiation by comparing the dosimeters readings with Monte Carlo energy 

deposition detector (Table. 3.1). Position A is a position on the camera. And 

position B is a complementary reference point (~1 m form the target). These results 

show, that FLUKA results may be trusted for this and similar situations with 

inaccuracy of 1/3 or less. Statistical error may always be reduced to at least 10 

times lower level.  
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Table 3.1: Total dose in vicinity of 0.95GeV/u Uranium beam losses 

Type of data Position Dose Percent of experiment data 
Monte Carlo (FLUKA) A 61.1 Gy 86% 
Experiment (Alanine Dosimeter)  A 71.4 Gy 100% 
Monte Carlo (FLUKA) B 11.5 Gy 75% 
Experiment (Alanine Dosimeter) B 15.3 Gy 100% 

 

Fig. 3.1 shows results of particle flux detectors. Uranium beam of energy 

0.95 GeV/u comes from the top and hits the Aluminum target. Target is a cylinder 

(coordinates 0,0). Bottom part is an iron beam dump with cylindrical entrance 

channel. As can be seen from the Fig. 3.1 a, b and c, the number of neutrons is 

about 100 times higher than protons. Number of gammas is comparable with 

neutrons. Moreover a typical space distribution may be noticed. It is forward 

directional for neutrons and protons, but for gammas it is almost isotropic. 

It is also possible to calculate energy deposition or prompt dose for each 

type of particle separately. Fig. 3.2 shows the prompt doses in the same 

experiment. It is clear, that the most of the energy is deposited by protons. There 

are also heavy fragments like alpha particles, but their number is small. Fig. 3.2 d 

shows the total prompt dose. One may notice strange circular patterns. It appeared 

that it was a contribution from electrons and the circular nature was a code bug, 

which was reported. Nevertheless is did not interfere the results in a significant 

way. After completing the total prompt dose simulation results with experimental 

results we obtain a useful reference. It allows predicting device behavior in similar 

radiation environment, based on Monte Carlo calculations for each certain area. 

Simulation of SIS18 tunnel beam losses was performed as part of this work. 

Fig. 3.3 shows a resulting prompt dose. The beam is going along the beam line and 

hits an iron magnet form inside at a small angle. There is air outside the magnet 
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and concrete walls are covering the tunnel. The red ellipse shows a position, where 

radiation sensitive equipment is located. The dose is about 1000 times lower, than 

in the ellipse in Fig. 3.2 d. It allows us to make estimates of device reliability and 

lifetime, based on experimental data from the study. 

Another simulation for radiation protection and shielding design purposes 

was performed. It is the APPA building (bld. 50), one of the components of FAIR. 

2.0 GeV/u Uranium beam is going along the beam line and is lost at 3 points, on 

the top part of the image – 3%, in the middle – 47% (target), and in the bottom – 

50% (beam dump). The experimental hall is heavily shielded with 4-7 meters of 

concrete. The dose inside the hall is rather high and is compared to what we had in 

the experiments described above. Installation of equipment is not recommended in 

such conditions. A special area was designed with additional shielding inside this 

hall – the red oval in Fig. 3.5.  The dose inside this area is already about 104 times 

lower, and conditions are more acceptable for radiation sensitive equipment. 

Another point of interest is located above the experimental hall, where a lot of 

equipment will be located, see the white oval in Fig. 3.4. The dose is already 107 

times lower, therefore conditions are excellent. 
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Fig. 3.1: Particle flux detectors (number of particle tracks per primary ion), a. - 
neutron, b. - proton, c. – gamma. Irradiation of Aluminum target with Uranium 

0.95 GeV/u heavy ions. 
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Fig. 3.2: Prompt dose detectors (Gy per hour), a. - neutron, b. - proton, c. – gamma, 
d. – overall. Irradiation of Aluminum target with Uranium 0.95 GeV/u heavy ions, 

1e9 particles/s.  
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Fig. 3.3: Prompt dose detectors. Part of SIS18 tunnel, 100% beam losses in iron 
magnet 0.95 GeV/u Uranium heavy ions, 1e9 particles/s. 

  

48 
 



 
 

 

Fig. 3.4: Prompt dose detectors. FAIR APPA hall, 3%, 47%, 50% beam losses 
along the beam line. 2.0 GeV/u Uranium heavy ions, 1e10 particles/s. 
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Fig. 3.5: Prompt dose detectors. FAIR APPA hall, 3%, 47%, 50% beam losses 
along the beam line. 2.0 GeV/u Uranium heavy ions, 1e10 particles/s. 
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4. Experimental methods 

4.1 Beams 

All experiments were performed at GSI behind the SIS18 synchrotron (Fig. 

4.1). It provides heavy ion beams of different species with energies up to ~1 

GeV/u. The heaviest ion species used was U, the lightest was Na. The synchrotron 

is able to operate in fast extraction and slow extraction modes. In the first regime 

the beam is extracted with a pulse length of 200-300 ns and a repetition rate of 

about 2-3 s. The shortest pulse in slow extraction is 200-300 ms with a repetition 

rate of a few seconds. The long pulse may reach minutes, but has a disadvantage of 

low intensity. The beam pulses extracted from SIS18 are often also called beam 

spills. 

 

Fig. 4.1: GSI, accelerators and beam lines. 
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In most experiments we gave preference to fast extraction mode, which 

allows obtaining highest intensity and reducing experimental data processing 

complexity. Initial energy of the beam is defined by synchrotron settings. Intensity 

of the beam is measured before the exit window by a current transformer, which 

has about 3% uncertainty [56]. The beam cross section was diagnosed by grid 

beam profile-meter and was approximately Gaussian. Beam spot size was less than 

3 cm in vertical and horizontal planes. It was confirmed both on profile-meter, and 

scintillating target, mounted for calibration on a moving platform behind the exit 

window. 
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4.2 Target and device setup 

 All irradiations took place in HHD experimental cave at GSI. There are two 

main reasons for this choice. The first is that this cave has the shortest transfer line 

from SIS ring, that means minimum intensity losses during beam transfer and 

fastest beam alignment, which is important for short shifts. The second is proper 

shielding, designed for high intensities and possible high activation of materials. 

Besides that most experiments, described in this work, were performed as parasitic 

along with primary experiments of metal target activation [57-58]. 

 In HHD vacuum beam pipe is ending with a steel screen. 2x2x3 m beam 

dump with a 20 cm diameter entrance channel is located about 2 meters 

downstream. The experimental setup was located within these 2 meters (Fig. 4.2). 

For each experiment some parts of setup were installed and uninstalled (Fig. 4.3).  

Two moving platforms allowed us to manipulate targets and device positions 

in horizontal plane. Metal targets for primary beam, scintillator screen for beam 

positioning, transistor chips and CCD cameras were attached to these platforms 

with holders. Ethernet switch HP ProCurve 2520G-24-PoE was located under the 

axis of beam direction at 50 cm from the axis and 50 cm downstream from primary 

metal target. An n-type transistor chip was mounted on the rear platform so that it 

may be irradiated directly with heavy ion beam. Digital CCD camera Basler 

scA640-74gm was mounted on beam line height on the rear platform so that it 

could be moved in three different positions (Fig. 4.4). Analogue CCD camera 

CONRAD 420 TVL was mounted on the same holder afterwards for direct ion 

beam irradiation. 
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Fig. 4.2: Experimental setup in the HHD cave. 
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Fig. 4.3: Schematic of the experimental setup. 

 

Fig. 4.4: Dimensions of the experimental setup. 

 The experimental setup was observed by two analogue cameras for visual 

alignment. Platforms were controlled remotely. Digital devices were connected 

through power cords, going out of the cave, for hard reset feature. Transistor chips 
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were wired outside the cave for in-situ measurements of their electrical 

characteristics. Ethernet connections were also routed with 20-30 m cables outside 

the cave for safe and reliable readout.  
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4.3 MOS transistor testing circuit. 

It was decided to perform in situ measurements of characteristic curves of the 

MOS transistor chips. A SIPMOS® Small-Signal-Transistor [59] was selected for 

tests. It is a n-channel type, enhancement mode, logic level transistor (Fig. 4.5). 

 

Fig. 4.5: Transistor chip. 

Table 4.1: Transistor specifications. 

Type  BSS131 PG-SOT23 
Package Pb-free  Yes  
Tape and reel information  L6327: 3000 pcs/reel  
Marking SRs 

 

 Two chips were soldered on a circuit board, mounted in special holders on 

the moving platform and covered with a polymer foil for verification of beam 

profile. The organic foil becomes darker proportionally to the number of ions 

passed through it (Fig. 4.6). 
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Fig. 4.6: Transistor chips setup in HHD cave. 

The challenge of the measurement was to place measuring equipment and 

power supply in the radiation safe area, but with the shortest possible cabling to the 

chip in the cave in order to reduce the effect of electrical properties of the cable. 

The principal circuit for measurement was consisting of DC power supply, AC 

power supply, 10 ohm resistor and oscilloscope (Fig. 4.7). The CH1 and CH2 

channels were connected to the oscilloscope X and Y axis. Therefore we could 

observe the characteristic curve on the screen. Oscilloscope was able to save both 

screenshots and raw data to USB stick at command (Fig. 4.8). 
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Fig. 4.7: Testing circuit. 

 

Fig. 4.8: Oscilloscope readings example. VGS to ID, VDS = 3 V. 
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4.4 CCD Readout 

4.4.1 Digital – LabVIEW based code 

 Several identical Ethernet CCD cameras were put under test during 

irradiation experiments. Ethernet protocol is very common for such applications as 

digital CCD cameras operation and acquisition nowadays. Basler scA640-74gm 

[60] is the camera model, which was tested (Fig. 4.9). It is a monochrome CCD 

camera with relatively high frame rate, designed for industrial and scientific 

purposes. Table 4.2 shows basic information about the model. 

 

 

Fig. 4.9: Digital camera for tests.  
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Table 4.2: CCD camera basic information 

 

 

Making in-situ measurements of the CCD behavior was a challenging task. 

The camera suppliers are not providing proper software development kit with the 

product. A LabVIEW development kit [61] was chosen for this task. It has a NI-

IMAQ library, which is compatible with most of modern camera drivers.  

LabVIEW is a component based development kit, which has a graphical oriented 

application building system. The typical application made in LabVIEW is 

consisting of modules, connected with each other. Each of these modules is 

consisting of smaller and simpler modules and so on until it gets to very basic 

calculation and memory access commands. A view on a part of the module 

diagram of the application, developed for this study is shown in Fig. 4.10. 
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Fig 4.10: Part of the LabVIEW block diagram. 

There are many modules available in LabVIEW libraries, e.g. for file IO (input 

output), for GUI (graphical user interface), for array and matrix operations and so 

on. The NI-IMAQ library contains very useful modules for camera acquisition and 

control, which allowed us to build rather complicated application. Besides NI-

IMAQ modules it was consisting of numeric and matrix data storage and 

operations, IO of data and several GUI elements. The application was developed 

further from experiment to experiment. GUI of one of the versions of the 

application is shown in Fig. 4.11. 
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Fig. 4.11: GUI of the camera read-out software. 

A group of controls over various camera parameters and attributes is on the left 

side of the window. In the middle there is a current picture from the camera. It is 

black with a slight background, produced by the dark current. Above the camera 

image there is a histogram and a plot, which indicates the number of pixels above 

certain level. This value was used for triggering the event selection process, 

because it has a peak during a beam pulse. A later version of the application has a 

plot of charge on the top (Fig. 4.12). It shows the sum of all pixel gray values in 

the image. This sum is proportional to the charge, collected from the matrix during 

a current frame exposition. This value is very important for prompt radiation effect 

study. 

64 
 



 
 

 

Fig. 4.12: GUI of the camera read-out software version 2. 

The signal from the camera was acquired through independent local network, built 

for this experiment with orientation on radiation safe areas. Two Ethernet cables 

were installed for the possibility of simultaneous access of 2 cameras. Two power 

cables were installed for “hard reset” feature in case of camera malfunctions due to 

high radiation.  

 

4.4.2. Digital CCD calibration 

It is important to know the actual electric charge, collected by CCD during certain 

exposure. Normally we only have pixel grey values in digital form and we want to 

calculate a charge out of this number. A principle of the CCD camera operation is 

illustrated in Fig. 4.13. Charge units accumulated by the photo irradiance is 

converted into a voltage, amplified, and finally converted into a digital grey value 

[62].  
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The whole process is assumed to be linear and can be described by a single 

quantity, the overall system gain K with units DN/e-, where DN is the Digital 

Number. 

  (4.1) 

with:  μy – signal in DN, μe – number of photo electrons, μd – number of dark 

current electrons, μy.dark – dark current signal in DN. We will use a noise 

phenomenon for further calculations. Noises in a CCD camera are a result of three 

factors: 

- shot noise (Poisson distributed):  

- all noise sources related to the sensor read out and amplifier (normal 

distributed):   

- analog digital conversion noise:  

Using the linearity of process: 

 (4.2) 

And applying equation 4.1 to 4.2 we get: 

 

This method is known as the Photon Transfer Method [63, 64]. Now we make 

shots of some equally illuminated plain surfaces. We calculate standard deviation 

(STD) of the signal in DN, mean signal in DN and signal with closed lenses in DN, 

which is the dark current signal. After series of measurements we use Ordinary 
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Least Squares method to build a linear dependency between the variance of the 

noise σ2
y and mean photo-induced signal. That is how we calculate Overall System 

Gain K (Fig. 4.14). Each camera normally has unscaled gain setting. We will call it 

camera gain. The calibration procedure was performed for 320, 640, 960 and 1020 

camera gain values (Fig. 4.15).  It is clear from the results, that the camera gain in 

not linear with the actual Overall System Gain. But calibration procedure may be 

repeated for any camera gain setting for most accurate results. Camera gain values 

of 320 and 640 were used during irradiation experiments.  

 

 

Fig. 4.13: a) Physical model of the camera and b) Mathematical model of a single 

pixel [62]. 
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Fig. 4.14: Mean gray value versus gray value STD for 320, 640, 960 and 1020 

camera gain. 

Table 4.3: Camera gain to Overall System Gain relation. 

Camera gain K 
320 0.0102 
640 0.0492 
960 0.184 
1020 0.222 
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Fig. 4.15: Camera gain to Overall System Gain relation. 

 

 

4.4.3. Analogue CCD acquisition 

The advantage of analogue CCD is the ultimate reliability of operation during 

irradiation sessions. When digital components of Ethernet cameras tend to turn into 

the error state and require reboot of the device, analogue cameras work with no 

significant failures and provide an image of CCD continuously. It was decided to 

use this advantage to study the effect of direct high energy Heavy Ion beam hitting 

the CCD matrix. Unfortunately, with the technology progress, digital products are 

taking advantage of analogue in most applications. That is why it was complicated 

to find a camera, which would meet the experiment requirements for 100%. The 

one, which was available for a reasonable price was not a professional industrial 

one, so the information about gain and some other attributes was not 100% 

reliable. But for the purposes of the experiment even such a device was sufficient. 

It was a monochrome CCD camera, manufactured by CONRAD, model name 420 

TVL (Fig. 4.16). Table 4.4 shows some basic information about the camera. 
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Fig. 4.16: Analogue camera for tests. 

 

Table 4.4: Analogue camera basic properties. 

Resolution 420 TVL 
Output 1x BNC 75 Ohm 1Vss 
Operating voltage 12V/DC 
Operating temperature range -10 to +50 C 
Image sensor 8.5 mm 
Focal length 3.6 mm 
Light sensitivity 0.05 lx 
Protection type  IP65 
Power consumption Max 200 mA 

 

The existing GSI cable system was used to transfer the camera signal from the 

cave to the main control room. At this point it was acquired with a CCTV video 

receiver card. An application was saving images continuously with a 24 frames per 

second rate. These image stacks were later processed with another LabVIEW 

based application, designed for offline image processing. It was calculating the 
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sum of pixel gray values over the whole frame for these groups of images, as well 

as mean pixel gray value and its standard deviation over the frame. The system was 

operating with no failures, and analogue CCD readout was proven to be reliable 

even under direct heavy ion bombardment. 
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4.5. Switch testing technique 

An Ethernet switch HP 2520-24-PoE [65] was selected for tests, because it is one 

of the models, which were ordered for installation in GSI network system, 

including accelerator network in vicinity of “hot spots”, where radiation conditions 

are critical for semiconductors (Fig. 4.17).  Specifications are presented in Table 

4.5. 

 

Fig. 4.17: HP 2520-24-PoE Ethernet Switch 

 

The switch was configured as a nod of the accelerator network of GSI. It was 

connected to another network nod in a nearest rack box outside the cave in a 

radiation safe area, behind the concrete shielding. The switch was given a static IP 

address. A batch script for a windows command line was written so, that it was 

pinging given IP every second, writing a status in a command line window and 

saving a log in a text file. For a packet loss situation a warning beeping sound was 

implemented. That allowed us to notice failure immediately and safely hard reset 

the switch. A power supply cable was routed outside the cave for such a scenario. 
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Table 4.5: HP 2520-24-PoE Ethernet Switch specifications. 

Address table size 8000 entries  

Form Factor 1U height  

Input Frequency 50/60 Hz  

Input Operating Current 3.3/1.6 A 

Input Voltage 100-127/200-240 VAC  

Power consumption 257 W (maximum)  

Power consumption, standby 21.6 W  

Product dimensions (W x D x H) 9.69 x 17.44 x 1.75 in.  

Total Number of Network Ports 26 

Number of PoE (RJ-45) Ports 24 

Number of Network (RJ-45) Ports 2 

Port/Expansion Slot Details 24 x Fast Ethernet Network 
2 x Gigabit Ethernet Expansion Slot 

Media & Performance Network 
Technology 

10/100/1000Base-T 
10/100Base-TX 

Ethernet Technology Gigabit Ethernet 
Fast Ethernet 
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4.6. Dosimetry 

 Irradiation experiments always require estimations of doses and deposited 

energy in the tested material. In the current studies we use two approaches for dose 

estimation and verification.  

Firstly we carry out simulations of the experiment scenario with Monte 

Carlo codes and placement of virtual detectors to score energy depositions and 

doses. This allows us to have an estimation of the expected dose levels in different 

points of the experimental cave with given beam parameters and design the 

experiment accordingly. Monte Carlo calculations are described in detail in a 

separate chapter of this work.  

The second approach is the experimental measurement of the dose by 

passive dosimeters. Alanine Electron Paramagnetic Resonance (EPR) dosimetry 

technique was chosen for current study because of several advantages, such as 

small dosimeter size, good accuracy and dynamic range, reasonable price and good 

reliability [66-68]. This technique is accepted internationally as reference standard 

dosimetry system and is often used in industrial radiation processing and 

radiotherapy. A specification of the type, used in the experiment is given in the 

Table 4.6. 

Dosimeters were mounted as close as possible to the devices under test, 

considering radiation field direction and gradient (Fig. 4.18), so that the actual dose 

on the device would be equal to the dose collected by the dosimeter. Small size of 

dosimeter units allowed us to achieve reliable accuracy. Sometimes additional 

dosimeters were mounted in the experimental area. They served as complementary 

reference points, to reproduce spatial dose map and cross check Monte Carlo 

calculations (Fig. 4.19). After irradiation, dosimeters were removed from 

experimental cave and sent for processing to the dosimetry laboratory, located in 
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Munich. Sometimes it was impossible to remove dosimeter right after the 

irradiation, because of high activation in experimental cave. Such scenarios could 

have led to small additional expositions of dosimeters to secondary ionizing 

radiation, coming from beam dump and losses in transport line. Such uncertainties 

were estimated to be less than 15%. 

 

Fig 4.18: Dosimeter (red ellipse) mounted on the CCD camera. 

 

Fig 4.19: Dosimeter (red ellipse) mounted in the vicinity of beam loss point. 
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Table 4.6: Technical information of Alanine EPR dosimeter. 
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5. Results and discussion 

5.1 Indirect irradiation effects 

5.1.1  Long term effects in CCD cameras 

 Digital CCD cameras are rather radiation sensitive, because of digital 

components, that is why they were only irradiated in secondary radiation fields, 

caused by heavy ion beam interaction with metals. During several irradiation 

sessions the cameras have collected up to several hundred grays, based on alanine 

dosimeter indications. Such dose led to significant effect in CCD sensor, and 

finally even the digital readout and processing circuits were irreversibly damaged. 

 Normally, each CCD sensor chip has some level of background noise that is 

usually stated by the manufacturer in the device specifications. It is caused by so 

called dark current. During exposure of CCD chip to radiation field the dark 

current is increasing. It is also dependent on the temperature. That is why all 

measurements were done on “warm” device, i.e. operating CCD chip at a room 

temperature environment. 

 Practically increase of dark current is observed as increase of grey level of 

each pixel. Some pixels are more damaged, some less, i.e. some appear as more 

bright dots some as less bright. All in all it results in an increase of the mean pixel 

gray value and seen as a TV screen noise, but in static. Fig. 5.1 shows an example 

of picture, filmed by the camera with closed lenses after being exposed to 70, 170 

and 400 grays. 
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Fig. 5.1: Full screen and zoomed part of the screen, filmed by the camera with 

closed lenses after a – 70 grays, b – 170 grays, c – 400 grays. 

 

 The frames were taken with the following camera attributes: exposure time – 

200 ms, camera gain – 360 (default setting). Camera gain is a conditional value; 

each manufacturer may use a different scale. The process of calculation of actual 

a.  

b.  

c.  
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physical values such as electrical charge from the pixel gray value is described in 

detail in subchapter 4.4.2 of the current work. 

 We may conclude, based on these images, that the quality of pictures from 

such a CCD camera would degrade dramatically after being exposed to doses of 

hundreds of grays. The background noise caused by dark current is so high, that it 

basically makes it impossible to get descent images from the camera. 

The physical numerical characteristic of this noise – dark current is normally 

measured in charge/pixel/sec. It may be calculated using formula 5.1. 

𝜇𝑦 = 𝐾(𝜇𝑒 + 𝜇𝑑),     (5.1) 
 

with 𝐾 – Overall System Gain, 𝜇𝑦 – grey value of the pixel,  𝜇𝑒 – number of photo 

electrons and electrons produced by ionisation in the pixel, 𝜇𝑑 – number of dark 

current electrons in the pixel.  We assume that 𝜇𝑒  = 0, because the lenses are 

closed and we take a shot, when there is no beam on, and no ionising particles are 

passing through the CCD. We have a value of K from camera calibration for 

current attributes. Fig. 5.2 shows the evolution of dark current, calculated as a 

mean value over all pixels in the CCD chip [69]. The value of TID (Total 

Ionisation Dose) is taken from alanine dosimeter readings. This result shows that 

the dark current value is increasing in direct proportion to TID in a range of up to 

400 grays. The radiation damage effect in CCD cells does not reach saturation 

under the given conditions. At about 500 grays the electronics of the camera 

stopped responding even after numerous hard resets. Most likely it means that the 

electronic components, being exposed to radiation, accumulated enough defects to 

reach a critical threshold voltage shift. It means that logical states 0 and 1 may be 

no longer distinguished in some logical components, which leads to impossibility 

of further device operation. 
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Fig. 5.2: Dark current evolution with total dose. 
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5.1.2  Short term effects in CCD cameras 

 When ionizing particles travel through the materials of a CCD chip they 

produce electron-hole pairs, which are later collected and registered by the camera 

electronics [69]. This happens at the moment when the beam interacts with a metal 

target and produces secondary radiation. Considering the fact, that the beam pulse 

is about 300 ns, the whole process takes no longer than a one frame exposure 

which is 20 ms. It means that normally each beam pulse is affecting only one 

frame in acquisition sequence. Experimental data confirm this fact. We will call 

such frame an “event frame” and all other frames in between we will call “dark 

frames”. 

 Visually an event frame looks like a dark frame, but with an addition of 

some bright pixels all over the frame. On a video sequence it looks like a short 

splash, synchronised with a beam loss. An example of typical dark frame and event 

frame is shown in Fig. 5.3. These frames are captured during irradiation of a 5cm 

long aluminium cylinder with 0.95 GeV/u Uranium beam with camera in position 

3 (Fig. 4.4) and beam intensity 1e8 ions/spill. Bright pixels on the dark frame are 

permanent defects, long term effects have been described before. Additional bright 

pixels on the event frame are formed by charges from ionizing particles, passing 

through the CCD matrix. Sometimes these pixels are grouped in clusters and even 

form discernible traces of ionizing particles. 
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a.      

b.      

Fig. 5.3: a) Typical dark frame, b) Typical event frame. Frames were captured 

during irradiation of a 5cm long aluminium cylinder with 0.95 GeV/u Uranium 

beam with camera in position 3 (Fig. 4.4) and beam intensity 1e8 ions/spill. 
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 Sometimes during the beam spill we have observed more unusual frame 

acquisition than just the normal event frame. We have noticed several types of 

distortions on some of the event frames. A digital CCD camera is a rather 

complicated device, and not only the CCD chip is exposed to radiation, but all of 

the electronics, that is responsible for correct processing and acquisition of data. 

As a result we got frames with the following distortions (Fig. 5.4):  

1. Partial loss of the frame. Upper part of the event frame is represented by 

the previous frame (dark frame). The part may be bigger or smaller. The 

1 pixel wide stripe of bright pixels is separating normal part of the frame 

from the lost part. Pixel grey value in this stripe is not uniform. 

2. Loss of every second pixel column in part of the frame. The width and 

position of the defect area is always the same - right side of the frame and 

about 1/5 part of the frame width. Each second column of the defect area 

is represented by pixels with absolute 0 grey value, i.e. the signal from 

these pixel columns is completely lost. 

3. Horizontal dark wave effect. A gradient horizontal darkening is seen on 

top of the normal event frame. The size is always the same and is about 

1/10 of frame height and full width. The position is different.  

These 3 defects appeared independently and sometimes together on the same 

frame. Detailed analysis of the principles of the occurrence of these effects has not 

been carried out as part of this work. These defects may vary, depending on 

camera model and concept. 
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a.  

b.  
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c.  
 

Fig. 5.4: a) Distortion of 1 and 2 type, b) Distortion of 2 and 3 type, c) Distortion 

of 3 type. Frames a and b were captured during irradiation of a 5 cm long 

aluminium cylinder with 0.95 GeV/u Uranium beam with camera in position 3 

(Fig. 4.4) and beam intensity 1e8 ions/spill. Frame c was captured with the same 

conditions, but 1e9 ions/spill intensity of primary beam. 

 

Visual brightness of given pixel is its grey value and is represented as a 

number from 0 to 255 in 8bit mode. This number is proportional to the charge, 

collected from the pixel during frame exposure. We may calculate total and mean 

grey values of pixels all over the CCD chip. An Overall System Gain coefficient 

defined earlier allows us to convert grey value to charge. Fig. 5.5 shows an 

example of mean pixel value evolution with time. Peaks are event frames and 

background consists of dark frames. We are subtracting mean background value 
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around the peak from peak values to calculate grey value difference and then 

charge, induced by the prompt ionizing radiation in the chip for each event frame. 

 

Fig. 5.5: Mean pixel grey value evolution in time. Data from irradiation of 10.8 cm 

long aluminium cylinder with 0.5 GeV/u N+7 ion beam with camera in position 1 

(Fig. 4.4) and beam intensity 1e9 ions/spill. 

 

The charge induced by prompt ionizing radiation is a good physical 

numerical indication of the radiation effect on CCD matrix. Fig. 5.6 shows data 

points, measured during series of 0.95GeV/u Uranium beam pulses onto the 5 cm 

long aluminium target with different intensities and camera in position 3. One can 

notice that data points are clustered along a linear relation. The spread is bigger for 

lower values, because of the logarithmic scale. We may separate the data points in 

2 general groups. The first group consists of points, clustered along the linear 

relation – these are normal event frames. The second group is located below the 

linear approximation. The charge value is significantly lower for these data points. 

The second group consists of distorted event frames. As described above all 

distortions lead to the underestimation of the total grey value and therefore the 
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charge. That is why the points are below the linear approximation and have a 

different offset. 

 

 

Fig. 5.6: Charge in CCD versus primary beam intensity. Data acquired during 

irradiation of 5cm long copper cylinder with 0.95 GeV/u Uranium beam and 

camera in position 3 (Fig. 4.4). Group 1: normal event frames, group 2: distorted 

event frames. 

 We were able to carry out measurements in primary beam intensity ranges of 

more than 4 orders of magnitude. Lower intensity would give us too much spread, 

and higher intensities were not technically available. But even at the highest 

available intensity the stability of the CCD camera operation was rather poor. It 

would stop working every 5-10 beam spills, and required hard reboot. These 

malfunctions were related to Single Event Upsets (SEU) and will be discussed 

later. Visually prompt ionizing radiation effects look a lot different within several 

orders of magnitude. Fig. 5.7 shows an example of frames with zoomed parts.  
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Fig. 5.7: Event frames with zoomed parts. Data acquired during irradiation of 5cm 

long aluminium cylinder with 0.95 GeV/u Uranium beam and camera in position 3 

(Fig. 4.4), a) 1e7 ions/spill, b) 1e8 ions/spill, c) 1e9 ions/spill. 

 

While at 1e7 ions/spill the effect of prompt radiation is not visually significant, at 

1e9 it is so great that it would definitely interfere with any kind of scientific 

a.  

b.  

c.  
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measurements and even simple surveillance. Criteria formed by this result may be 

very useful during design of future accelerators or upgrade of current machines. 

 One of the experimental goals was also to get an idea about the angular 

distribution of secondary ionizing radiation and corresponding effects on the CCD 

chip. Fig. 5.8 shows event frame data points for all three camera positions, 

measured during series of 0.95GeV/u Uranium beam pulses onto the 5 cm long 

aluminium target with different primary beam intensities. The pattern of data 

points is identical for all three camera positions. Linear approximation includes 

only event frames, which are not of distorted type. 

 

Fig. 5.8: Charge in CCD versus primary beam intensity. Data acquired during 

irradiation of 5cm long aluminium cylinder with 0.95 GeV/u Uranium beam. 

Camera positions: 1 – green diamonds, 2 – red squares, 3 – blue triangles. 

To characterize a prompt radiation effect on the CCD chip depending on 

position we may calculate a value of charge per primary beam intensity for each 
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camera position 1, 2 and 3 (Table 5.1). Graphically this value is represented as an 

offset of linear approximation for each of the three camera positions on Fig. 5.8. 

Furthermore, we may plot this value over 1/r2, where r is the distance of the CCD 

chip from the target – the source of secondary radiation. (Fig. 5.9)  

 

Table 5.1: Charge produced in CCD by prompt secondary radiation divided by 

intensity of primary 0.95 GeV/u Uranium beam for three camera positions. 

 Distance from the target, r [cm] Charge/Intensity [e-/ions/spill] 
Pos. 1 45 1.7 
Pos. 2 28 0.9 
Pos. 3 22 0.2 

 

 

Fig. 5.9: Charge/Intensity over 1/r2, where r is a distance of CCD chip from the 

target. 

 

Data points fit on the linear approximation for three camera positions that are 

located at about 25, 45 and 60 degree to primary beam direction. It means that the 

secondary radiation effect on the CCD in roughly isotropic within angles of 25 to 
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60 degree to primary the beam direction. This fact may be useful for estimations of 

radiation effects on CCD cameras in the presence of known beam losses. 

 

 

5.1.3 Ethernet switch stability and SEU in digital devices 

 The ethernet switch was tested in a 6 hour irradiation session with a 0.95 

GeV/u Uranium beam pointed at a 5cm long aluminum target at maximum 

intensity of 1e9 ions/spill. Device positioning in relation to target was chosen on 

the base of reports of similar device failure rate in SIS18 tunnel of GSI facility and 

described above. It was expected to have failures due to SEU not more often than 

every 10 minutes. Switch failed 3 times during the whole irradiation session. This 

result does not have a good statistical accuracy, but is enough to make rough order-

of-magnitude estimate. Unfortunately it was impossible to repeat the experiment, 

because of technical problems and very limited amount of beam time shifts. 

 SEUs were observed in digital CCD cameras during irradiation as well. We 

were counting every failure, which was leading to a state when the camera stopped 

responding and required a hard reset. With known beam spill repetition rate and 

known beam intensity we arranged the results in the following way (Table 5.2, Fig. 

5.10). SEU cross section for the digital CCD cameras is roughly proportional to 

1/r2, where r is distance from the target. SEU for the switch has an offset of more 

than 1 order of magnitude from digital camera SEU value. This result proves that 

SEU may vary significantly due to feature size, used in different digital devices. 
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Table 5.2: SEU cross sections. 

Device, 
position 

Distance from 
the target [cm] 

Failure rate, 
1/hr 

SEU cross 
section, 1/Ions 

Dose, 
μGy 

CCD pos. 1 45 20 2.00E-10 0.5E07 

CCD pos. 2 28 80 6.67E-10 2.0E07 

CCD pos. 3 22 140 1.17E-09 0.5E08 

Switch 55 0.5 4.17E-12 0.3E07 
 

 

 

Fig. 5.10: SEU cross sections as a function of distance between DUT 

and beam loss point. 
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5.2 Direct irradiation effects 

5.2.1 Long term effects in MOS transistor 

 Besides irradiation of semiconductor devices with secondary radiation it was 

also interesting to make some tests under direct ion irradiation. This is a situation 

which directly takes place in space where the devices are hit by HZE (high mass 

and energy) ions from Galactic Cosmic Rays. MOS transistor chip was irradiated 

with 0.5GeV/u Ta beam directly. Naturally such high energy ions are penetrating 

through the MOS chip. The total number of ions on the chip was 9.2E10 ions/cm2. 

The characteristic curve of the transistor was measured in-situ. Fig. 5.11 illustrates 

the threshold voltage shift. The plot shows the shape of the characteristic curve and 

indicates the position of the threshold voltage. Red curve is initial curve before 

irradiation. Blue curve is measured after chip exposure to 4.4E10 ions/cm2. The 

shape of the curve remains identic, but it’s position changes. 

 The evolution of characteristic curve may be divided into two stages. (Fig. 

5.11-12)  At first it was only shifting to the left, i.e. the threshold voltage was 

decreasing. When the chip had been exposed to about 4.4E10 ions/cm2 the 

behavior of evolution of the characteristic curve changed. On the second stage the 

curve would jump back and forth, i.e. threshold voltage was decreasing or 

increasing, balancing around some middle value. Assuming that the second stage 

starts from 4.4E10 ions/cm2 we can calculate the average threshold voltage value -

7.05 V, i.e. the overall threshold voltage shift is 8.6 V in negative direction. 
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Fig. 5.11: MOS transistor characteristic curve evolution during irradiation with 0.5 

GeV/u Ta beam. Red curve: before irradiation. Blue curve: after irradiation with 

4.4E10 ions/cm2. Numbers 1 and 2 indicate two stages of evolution. 

 

 

Fig. 5.12: MOS transistor threshold voltage evolution during irradiation with 0.5 

GeV/u Ta beam. Dashed line indicates two stages of Vth evolution. 
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5.2.2  Degradation of CCD sensor from direct ion beam. 

 

An interest in direct effects on CCD matrix came during our studies. A low cost 

analogue CCD camera was acquired in order to carry out such test. The camera 

was irradiated with a direct beam of 0.2 GeV/u Uranium. Each spill was about 1e9 

ions. Beam was focused in 2 cm2 area. The camera was staying in radiation 

environment before direct irradiation, and collected a rather high dose. That is why 

the image with closed lenses on the moment of direct irradiation had quite a lot 

amount of bright pixels due to high dark current. The first frame on fig. 5.13 shows 

a picture from the camera on the moment of start of direct irradiation. 

 

 

Fig 5.13: Camera image evolution during direct irradiation with 0.2 GeV/u 

Uranium over 6 beam spills consisting of 1e9 heavy ions each. Every other frame 

is taken after each spill. 
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Unfortunately this camera model had automatic gain feature and it was not 

possible to disable it. That is why we will be not focusing on absolute values in 

results processing. The evolution behavior may be described as loss of contrast and 

sensitivity of the CCD matrix. Absolute value of total grey pixel value dropped as 

well. Frames acquired during irradiation were processed with LabVIEW based 

application. Sequence of frames was processed and a plot of total pixel gray value 

versus frame number was displayed (Fig. 5.14). Significant changes are happening 

approximately every 50 frames, which is 2 seconds at 25 fps (frames per second) – 

beam spill repetition frequency.  

Frames were further processed with image analysis software to calculate 

standard deviation of pixel gray value. The STD of mean pixel grey value in this 

case describes contrast. Number of picture value on Fig. 5.14 is proportional to the 

number of beam spills value, displayed on Fig. 5.15. Each point on fig 5.15 

corresponds to frame on fig 5.13. As we see the mean pixel grey value STD drops 

even more with further irradiation after the 4th frame, it describes further loss of 

contrast and sensitivity of the CCD matrix. The same is not true for the absolute 

value of mean pixel grey value. As an outcome from this result we may summarize 

that the CCD chip is very sensitive to high intensity heavy ion beam spills. CCD 

chip completely lost sensitivity and contrast during only 20 spills of 1e9 0.2 GeV/u 

Uranium beam. And only four spills were enough to make already about 80% of 

the whole effect.  
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Fig. 5.14: Application plot area. Total grey value or total DN (Digital Number) 

versus frame number at 25 frames per second. 

 

Fig. 5.15: Evolution of mean pixel grey value and STD of this value with number 

of heavy ion beam spills. 
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6. CCD based beam loss monitors 
  

 Studies of CCD cameras behavior in radiation environment described above 

has led to idea of application of CCD cameras as Beam Loss Monitors (BLMs).  

 BLMs operation is usually based on ionization phenomenon. There are many 

different types of BLMs with different materials serving as active element. And 

there are several important properties, which characterize a BLM: dynamic range, 

time resolution, size, lifetime in radiation environment, cost etc.  

One of the most common BLMs is an Ionization Chamber (IC) (Fig. 6.1) [70-72]. 

ICs have slow response, low efficiency with gamma rays and do not register 

neutrons. But they are radiation hard and rather inexpensive. ICs are usually 

shaped as cylinders of 5-20 cm in diameter and 10-30 cm in length.  

 

Fig. 6.1: Ionization Chamber BLM (yellow). 
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 Scintillator-based BLMs [73-74] are sensitive to gamma rays, neutrons, 

electrons, and charged hadrons. They show fast response and very large dynamic 

range, but they are not radiation hard and comparatively expensive. The size of the 

active area is typically about 20x20x50 mm3, but with the housing and 

amplification they end up about the same size as ICs. 

BF3 proportional tubes (Fig. 6.2) register only neutrons [74]. Such detectors 

are usually used at power plants. They have a slow response and they are 

expensive, but radiation hard. BF3 proportional tubes are usually about 15 mm in 

diameter and 400 mm in length. 

 

Fig. 6.2: BF3 proportional tubes. 

Solid state detectors, such as PIN diodes (Fig. 6.3) are used at many 

accelerators [75-76]. They are not very sensitive, but they show fast response. PIN 

diodes are inexpensive, but they have problems with radiation hardness, as any 

silicon-based equipment. They have a small size 10x10 mm2 with an active layer of 

typically 300 μm.  
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Fig. 6.3: PIN diode beam loss monitor. 

Electron multipliers (Fig. 6.4) are about as sensitive as ICs, but they have 

fast response and are radiation hard [77]. 

Optical fibers have the advantage of very high spatial resolution. They 

happen to be slow and not very sensitive [78]. Optical fibers are relatively 

radiation hard, too. 

Results of our irradiation experiments showed at least two factors, which 

make CCD camera easy to calibrate and adjust as a detector for secondary 

radiation produced by heavy ion beam losses in a metal target. The first factor is 

good linearity and accuracy of charge versus number of lost ions within four orders 

of magnitude (Fig. 5.8). The second is good isotropic response to secondary 

radiation within angles from 25 to 60 degree to the primary beam direction (Fig. 

5.9). Moreover it is possible to make estimations of prompt radiation effect on 

CCD cameras based on results of this study, allowing proper positioning of CCD 

cameras near beam lines for BLM purposes in future.  
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Fig. 6.4: Venetian blind electron multiplier. 

 

 Another LabVIEW based application was developed for in-situ acquisition 

and processing of CCD output for BLM purposes. Fig. 6.5 shows examples of in-

situ data acquisition. These plots were captured during irradiation of a 10.8 cm 

long aluminium cylinder with a 0.5 GeV/u N+7 ion beam with camera in position 1 

(Fig. 4.4) and beam intensities of 1e10, 1e9 and 1e8 ions/spill. A 100% beam 

losses in a small volume are simulated with these experiment conditions. Peaks on 

the plots are caused by beam spills lost in the aluminum target. Background is 

caused by the dark current in CCD matrix. It may increase with total dose. It is 

seen from the plots that the difference in peak height (applicable signal) is rather 

small. We assume that beam intensity is constant for all the spills and use standard 

deviation of the applicable signal for each series of measurements as an indication 

of accuracy of technique. We also use signal to background noise ratio to describe 

a possibility to distinguish the signal. These values are collected in table 6.1. It 
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shows that for chosen camera position in relation to loss point we may use this 

technique for 1e9 ions per spill and higher with reasonable accuracy. Registration 

of 1e8 ions per spill losses was already problematic due to background noise and 

higher deviations of the applicable signal. One may choose different camera 

positions depending on the expected beam losses.  

 

 

Fig. 6.5: Mean pixel grey value evolution with time. Data from irradiation of a 

10.8 cm long aluminium cylinder with 0.5 GeV/u N+7 ion beam with camera in 

position 1 (Fig. 4.4) and beam intensities 1e10, 1e9 and 1e8 ions/spill. 

31.00
31.50
32.00
32.50
33.00
33.50
34.00

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

M
ea

n 
Pi

xe
l V

al
ue

 

Time, s 

31.50

31.60

31.70

31.80

31.90

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

M
ea

n 
Pi

xe
l V

al
ue

 

Time, s 

31.10

31.15

31.20

31.25

31.30

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00

M
ea

n 
Pi

xe
l V

al
ue

 

Time, s 

10
10

 Io
ns

/s
pi

ll 
10

9  Io
ns

/s
pi

ll 
10

8  Io
ns

/s
pi

ll 

105 
 



 
 

Table 6.1: Standard deviation (STD) of the applicable signal and signal-to-noise 

ratio 

Ion beam intensity, 
ions/pulse 

applicable 
signal STD 

signal/background 
noise 

1010 7% 73 

109 10% 8.2 

108 18% 1.1 
 

 

A BLM system based on CCDs has several advantages and disadvantages: 

+ small piece size. Compact size of such a detector allows multiple device 

installation for ultimate space resolution. 

+ preinstalled devices. Normally there are plenty of different cameras, 

installed around the beam lines. They may serve as surveillance cameras, for 

scintillator profilometer observation, for target alignment and other purposes. 

These cameras may be calibrated for beam loss monitoring purposes as well, 

especially if they are equipped with a remote control shutter system. 

+ comparatively inexpensive. Most of other BLM types have several times 

higher price per piece. 

- low reliability of digital cameras. Digital devices are affected by SEU 

phenomena in radiation environment. Cameras may suffer from malfunctions from 

time to time, depending on level of prompt radiation. Normally in such cases they 

have to be hard-rebooted, i.e. powered off and back on. This process may be 

automated though. 
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- rather sensitive to total dose. Doses of about 0.5 kGy may be a lifetime 

limit for a common camera model. Depending on manufacturing process, chip size 

and feature size this value may differ. 

Analogue cameras are proven to be much more reliable, because they are not 

affected by SEUs. A BLM system based on analogue cameras may be a very 

effective solution for the hottest spots of the accelerator and transport tunnels. 

Degradation of CCD chip with dose may be compensated by relatively low unit 

price and possibility of frequent replacement.  
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7. Summary 
 

Short and long term effects of radiation to electronic devices in conditions 

typical for high energy heavy ion accelerators were studied in this work. CCD 

cameras, Ethernet switches and single transistor chips were tested in series of 

experiments with direct and indirect irradiation in the experimental hall behind the 

SIS18 heavy ion synchrotron. Criteria of lifetime and reliability in radiation 

environment of the accelerator were formulated for these devices based on 

experiment results. These criteria may be as well applicable to other typical 

semiconductor devices, used in the vicinity of heavy ion accelerators.  Experience 

gained during this work and experimental methods used give a good groundwork 

for further detailed studies of radiation hardness on certain electronic components 

in heavy ion accelerator environment. 

A series of Monte Carlo calculations were performed. These calculations 

helped to understand the typical particle composition of secondary radiation from 

heavy ion beam losses, their influence and energy deposition portion. Moreover 

these calculations together with experimental results are a very good reference 

point. This data help to predict device lifetimes and reliability in case of 

installation in different areas of constructed facilities or in case of upgrades. Each 

new facility component is usually modeled and tested for radiation safety and 

shielding design with the same Monte Carlo code FLUKA, that was used in this 

study. This fact makes comparisons more reliable and easy. Results of this study 

help to identify tolerable radiation conditions and design proper shielding for 

electronic components in FAIR buildings. 

Prompt radiation effects on CCD cameras showed results that led to the idea 

to use CCD cameras as beam loss monitors in heavy ion accelerators. CCD 
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cameras show good linearity in response within a range of several orders of 

magnitude of beam losses. The noise level is rather low, but it increases with total 

dose, collected by the device. A calibration and simple software processing is 

required for proper interpretation of CCD camera readings into beam loss values. 

This system has certain advantages and disadvantages, but overall it may be a 

perspective direction. 
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Appendix 
 

FLUKA simulations of neutrons, protons, gammas, alphas, and heavy ions: 

 -       Particle fluence (per primary ion) 

 -       Linear energy transfer (LET per primary ion) 

 -       Displacements per atom (DPA per primary ion) 

 

 

Fig. A.1: Monte Carlo FLUKA simulations of the experiment  
with U 950 MeV/u primary beam hitting Aluminum target. Particle fluence. 
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Fig. A.2: Monte Carlo FLUKA simulations of the experiment  
with U 950 MeV/u primary beam hitting Aluminum target. Particle LET. 

 

Fig. A.3: Monte Carlo FLUKA simulations of the experiment  
with U 950 MeV/u primary beam hitting Aluminum target. Particle DPA.  
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