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1. Abstract 
 
1.1. Abstract 
 
Ionizing radiation (IR), in particular photons, is a quasi-universal tool in medical diagnostics and in tumor 

therapy. The negative side effects of this high-energy photon irradiation, which often cause secondary cancers 

or cell invasiveness, are well documented. The classical paradigm still is that all these effects can be traced 

back to irradiation induced DNA damage. Damage to other cellular compartments has been neglected for a 

long time. Recent research, however, has demonstrated that a calcium-activated K+-channel (hIK-channel) is 

activated by different types of ionizing radiation, e.g. γ-irradiation (Kuo et al., 1993), X-ray, α-particles and 

heavy-ion irradiation (Roth, 2013). The elevated K+ conductance results in a membrane hyperpolarization; the 

latter is a known signal for cell cycle progression. 

 

In the present thesis I elucidate the signal cascade, which is activated by IR and which finally activates hIK 

channels. In order to examine whether excursion in the concentration of cellular hydrogen peroxide (H2O2), or 

of the free concentration of Ca2+ ([Ca2+]cyt) are involved in signaling after IR, I employed several genetically 

encoded fluorescence sensors. The generation of reactive oxygen species (ROS), especially H2O2, was 

measured before and immediately after cells were challenged with either 405 nm UV laser micro-irradiation, 

X-rays or heavy-ion irradiation with a sensor for H2O2 (HyPer) and a sensor for the glutathione redox-buffer 

(Grx1-roGFP2). The latter is a sink for all ROS, which are eliminated in a cell by the oxidation of glutathione. 

These measurements provide for the first time robust quantitative data on the generation of ROS directly after 

irradiation in single living cells with a high temporal and spatial resolution. The data show that ROS 

molecules are generated immediately after the irradiation stress. They are rapidly buffered by an efficient 

redox-buffer system, which involves glutathione. When the buffer is exhausted the concentration of ROS is 

increasing throughout the cell; the latter could be monitored directly by an increase in the concentration of 

H2O2, a known second messenger in the cell.  

 

This general pattern is observed with some variations after exposing cells to X-ray stress (1-10 Gy) and 

405 nm UV-irradiation (0.5-4.5 mJ/µm2). The latter micro-irradiation experiments of the cells with laser light 

provide the additional information that the ROS response is maximal in the compartment, which is directly 

irradiated and that an irradiation of the nucleus generates about 2 to 3 times more H2O2 than the equivalent 

irradiation of the cytosol. Also an irradiation of cells with heavy-ions causes an increase in H2O2 concentration, 

but the response is more variable and not all cells reveal an increase in H2O2. Further experiments suggest 

that the rise in H2O2, which is generated in cells as a responds to irradiation stress, is sufficient to trigger a 

signal cascade, involving an increase in [Ca2+]cyt. The latter hypothesis is supported by the finding that an 

incubation of A549 cells and HEK293 cells in a buffer with H2O2 is triggering an elevation in [Ca2+]cyt. This 

was measured with a FRET based Ca2+ sensor (YC3.60). The fact that challenging the same cells with the 

identical amount of H2O2 is sufficient to stimulate the Ca2+-activated hIK channel suggests that channel 

activation is mediated via a H2O2 induced increase in [Ca2+]cyt. This upstream part of the signaling cascade is 
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independent of the cell type and found in HEK293 cells and A549 cells. The increase in membrane 

conductance, which is downstream of these events, is only elevated in cells like A549 cells, which express the 

hIK channel. When hIK channels are transiently expressed in HEK293 cells, also these cells, which are in 

their native form insensitive to IR, respond to the radiation stress with an increase in membrane conductance. 

Collectively the data show that cells, which functionally express hIK channels, are sensitive to ionizing 

irradiation. The activation of these Ca2+ sensitive channels, which can have severe impacts on the 

differentiation of cells, is based on an elevation in [Ca2+]cyt in these cells; the latter gain is the result of a rapid 

elevation of ROS molecules in the nucleus but also in the cytosol of cells, which under went an exposure to 

ionizing irradiation. 
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1.2. Zusammenfassung 
 
Ionisierende Strahlung wird vor allem in der klinischen Diagnose und in der Tumor-Therapie eingesetzt. Die 

Tatsache, dass diese Art der Bestrahlung negative Nebeneffekte hat und zu sekundären Tumoren führen kann, 

ist seit langem bekannt. Bisher wurde die Wirkung von ionisierender Strahlung wie z.B. Röntgen- oder 

Schwerionen-Strahlung hauptsächlich in Bezug auf Schädigung der DNA und dessen Auswirkungen 

interpretiert und untersucht. Gut dokumentiert ist, dass DNA-Schäden wie Doppelstrangbrüche, 

Einzelstrangbrüche oder Basenschäden direkt oder durch eine fehlerhafte Reparatur zu Veränderungen im 

Erbgut führen können.  

Erst seit einigen Jahren sind auch andere zelluläre Bestandteile außerhalb des Zellkerns in den Fokus der 

Untersuchungen gerückt. Vor kurzem konnte gezeigt werden, dass unterschiedliche Arten von ionisierender 

Strahlung, wie γ- (Kuo et al., 1993), Röntgen-, α- und Schwerionen-Strahlung (Roth, 2013), zu einer 

Aktivierung von Calcium-abhängigen Kalium-Kanälen, sogenannter hIK Kanäle, führt. Die erhöhte Kalium-

Leitfähigkeit, führt zur Hyperpolarisation der Zellmembran und kann damit Einflüsse auf Zellproliferation 

und Migration haben.  

 

In der vorliegenden Arbeit wurde die Signalkaskade, welche die Aktivierung von hIK Kanälen nach 

Bestrahlung zur Folge hat, genauer untersucht. Die Entstehung von reaktiven Sauerstoffspezies (ROS) wurde 

mit Hilfe von proteinbasierten Fluoreszenz-Sensoren mit einer hohen zeitlichen und räumlich Auflösung nach 

Bestrahlung von Zellen mit verschiedenen Strahlenarten, wie 405 nm UV Mikro-Bestrahlung, Röntgen- und 

Schwerionen-Strahlung, detektiert. Dabei konnte zum ersten Mal in lebenden Zellen sowohl die direkte 

Entstehung von Wasserstoffperoxid (H2O2) mit dem Sensor HyPer, als auch indirekt die Pufferung der ROS 

durch das zelluläre Redox-Puffer-System mit dem Sensor Grx1-roGFP2 gezeigt werden. Letzterer gibt ein 

Maß für die Menge an oxidiertem Glutathion. Die Daten zeigen, dass ROS unmittelbar nach Bestrahlung 

gebildet werden und schnell durch ein sehr effizientes Redox-Puffer System abgefangen werden. Wenn die 

Puffer Kapazität ausgeschöpft ist, steigt die ROS Konzentration in der gesamten Zelle an. Letzteres wurde 

direkt durch eine erhöhte Konzentration des als Signalmolekül bekannten H2O2 gemessen. 

 

Die Entstehung von ROS wurde mit einigen Variationen sowohl nach Röntgenstrahlung (1-10 Gy), als auch 

nach UV Strahlung mit 405 nm (0,5-4,5 mJ/µm2) gemessen. Die Laser Mikro-Bestrahlung konnte zusätzlich 

zeigen, dass die Konzentration an entstandenen ROS im bestrahlten zellulären Kompartiment am höchsten 

war, wobei im Zellkern 2 bis 3 mal mehr H2O2 entstand als im Cytosol. Auch nach Bestrahlung mit 

Schwerionen wurde eine erhöhte H2O2 Konzentration festgestellt. Jedoch reagierten nicht alle Zellen auf die 

Bestrahlung. 

Des Weiteren konnte gezeigt werden, dass das entstandene H2O2 eine Calcium-Signalkaskade in den 

verwendeten Zellen auslöst. Die Erhöhung der cytosolischen Calcium Konzentration wurde dabei mit einem 

FRET basierten Ca2+ Sensor (YC3.60) gemessen. Durch die gleiche Menge H2O2 konnten außerdem hIK 

Kanäle direkt aktiviert werden. Diese erhöhte Membranleitfähigkeit konnte nur in den Zellen, die hIK Kanäle 
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exprimieren, beobachtet werden. HEK293 Zellen, die in ihrer nativen Form nicht auf Strahlung reagieren, 

konnten durch die Überexpression von hIK Kanälen strahlenempfindlich gemacht werden.  

 

Zusammenfassend zeigen die Daten, dass Zellen die funktionale hIK-Kanäle besitzen auf ionisierende 

Strahlung reagieren. Die durch die Strahlung entstandenen ROS lösen eine Erhöhung der cytosolischen 

Calcium Konzentration aus, wodurch wiederum die hIK Kanäle aktiviert werden. Die Aktivierung dieser 

Calcium-abhängigen Kaliumkanäle hat gravierende Effekte auf die Zelldifferenzierung. 
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2. Introduction 
 
2.1. General introduction  
 
Ionizing radiation (IR) generates various effects in cells among which DNA damage is considered the most 

severe one. DNA double strand breaks, single strand breaks or base damage can be created directly by 

irradiation of the DNA with low-LET (linear-energy-transfer) irradiation or indirectly by reactive oxygen 

species. The former accounts for about 1/3 the latter for 2/3 of the DNA damage (Azzam et al., 2012).  

Damage to other compartments of the cell has been for a long time neglected in radiation biology. But 

considering the cytosol of a mammalian cell with many organelles and a crowded packaging with proteins and 

vesicles it seems obvious that the DNA is not the only target of ionizing radiation. Notably the most 

prominent molecule in cells is water, which makes out about 80 % of a cell. Also membranes are very abundant 

in cells and the first barrier for ionizing radiation. In the context of the large size of membranes as targets for 

ionizing irradiation also membrane proteins became in recent years a subject of interest in radiation biology.  

In this context it was for example found that potassium-channels are activated in A549 cells upon irradiation 

with different types of ionizing radiation, e.g. γ-irradiation (Kuo et al., 1993) X-ray, α-particles and heavy-ion 

irradiation (Roth, 2013). In the latter study it was found that one particular potassium (K+) channel, the human 

intermediate-conductance calcium-activated K+ (hIK) channel, is in particular sensitive to ionizing irradiation. 

This channel is activated in a dose dependent manner within 3 to 10 minutes after exposure to sparse or dense 

ionizing radiation. Activation by IR occurs to be indirect. The finding that a cytosolic Ca2+-buffer decreases 

the sensitivity of this channel to IR suggest a calcium mediated signaling cascade, which connects a primary 

radiation response with channel activation (Roth, 2013).  

 
2.2. Ion-channels 
 
Ion-channels are transmembrane protein tunnels, which enable the selective flow of ions across membranes; 

they are present is all cell membranes including the plasma membrane and the membrane of organelles. The 

activity of ion-channels is characterized by a stochastic switching between an open and a closed conformation, 

a process which is called gating (Hille, 2001). Gating and hence the activity of ion-channels can be regulated 

via different chemical and physical stimuli. The most prominent regulators are chemical ligands or voltage.  

Ion-channels play important roles in many physiological progresses. They are key players in the nervous 

system, in muscle movement or in the regulation of the heartbeat. Due to their prominent involvement in 

many cellular functions, it is obvious that aberrant functions of ion-channels are the cause of many diseases 

(reviewed in Celesia, 2001; Kim, 2014).  

 
2.2.1. Ion-channels and their role in cell cycle regulation  
 
In the last decades it was found that ion-channels are involved in processes beyond neuron firing and muscle 

movement. One of the emerging roles of channels is their role in the regulation of cell cycle regulation. There 

is experimental evidence which shows that they can control the onset of apoptosis and modulate proliferation 

and migration of cells (Wang, 2004). With this importance of channels in cell differentiation it is not 
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surprising to find that they are also involved in many aspects of cancer development (Becchetti, 2011; 

Kunzelmann, 2005; Yang and Brackenbury, 2013; Felipe et al., 2006). The most prominent ion-channel 

expressed in tumor cells is the hERG channel (KCNH2, Kv11.1) (Asher et al., 2011, 2010; Bogin, 2004; 

Camacho, 2006; Felipe et al., 2006; Huber, 2013; Kunzelmann, 2005; Lansu & Gentile, 2013; Leanza et al., 

2014; Ouadid-Ahidouch & Ahidouch, 2013; Ousingsawat, 2007; Pardo et al., 2005; Pardo, 2004; Patt et al., 

2004; Prevarskaya et al., 2010). The hERG channel is expressed in a variety of tumor cells and it has been 

shown that hERG channel activity is involved in many down-stream signal cascades, e.g. integrin adhesion 

and therefore migration and infiltration of tumor cells. 

Regarding the contrasting role of ion-channels, which favors on one side apoptosis and on the other side cell 

proliferation, it is currently believed that these membrane proteins have the role of molecular switches. The 

fade of cells is determined by a fine balance between proliferation or apoptosis and ion-channel activity favors 

depending on the type of channel or on the physiological context one or the other pathway. One hypothesis 

that explains the regulation of proliferation and apoptosis is illustrated in Fig.  1. 

 

Fig.  1  Ion-channels are molecular switches. 

Schematic illustration of environmental and intracellular 

factors determining the cell fate whether in the direction of 

apoptosis or proliferation. Ion-channel activity as well as the 

intracellular potassium concentration and calcium signaling 

maintain important factors in the determination of the cell fate. 

(Kunzelmann, 2005) 

The role of ion-channels in the regulation of cell differentiation is frequently discussed in the context of the 

channels to modulate the membrane potential (Sundelacruz et al., 2009; Yang and Brackenbury, 2013; 

Blackiston et al., 2010; Prevarskaya et al., 2007). There is evidence that the membrane potential of cells is 

depolarized in the early G1 phase. Cell cycle progression is then accompanied with a membrane 

hyperpolarization, which is essential for the transition from late G1 to S phase. This hyperpolarization is 

achieved by the activation of potassium-channels which drive the potential close to the negative Nernst 

potential for K+ (Wonderlin & Strobl, 1996). Different types of potassium-channels were so far found, which 

all have the ability to hyperpolarize the cell membrane upon activation. Hence, it appears as if there is not one 

specific potassium-channel required for this purpose in all cell types. In T-lymphocytes for example, the 

voltage-gated Kv1.3 channel is clearly associated with progression from G1 to S phase (Deutsch et al., 1991), 

whereas the Eag1 channel (KCNH1, Kv10.1) plays this role in various cell types (Borowiec et al., 2011; 

Brüggemann et al., 1997; García-Becerra et al., 2010; Kamosinska et al., 1997; Pardo et al., 2005; Pardo & 

Stühmer, 2008; Pardo & Sühmer, 2008; Pardo, 2004). The latter channel is found for example in human breast 

cancer (MCF-7) cells (Ouadid-Ahidouch & Ahidouch, 2008; Ouadid-ahidouch et al., 2004; Ouadid-Ahidouch et 

al., 2001; Wonderlin et al., 1995). Also, other voltage-gated ion-channels have been associated with cell cycle 

progression; the Kv4.1 channel is one other example (Kim et al., 2010), as well as the hIK channel (chapter 

2.2.2) (Bi et al., 2013; Faouzi et al., 2010; Ouadid-Ahidouch & Ahidouch, 2008; Ouadid-ahidouch et al., 2004; 

Tao et al., 2008; Yun et al., 2009)  
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In addition to their function in cell cycle control K+-channel activity is also critical for cell volume regulation 

(Lang et al., 2006; Sarkadi & Parker, 1991). The activity of channels allows the osmotic swelling of cells, a 

prerequisite for an increase in volume after cell division. Also, cell migration is strongly associated with 

changes in cell volume. The ability of channels to regulate the cell volume became also an important issue in 

the understanding of cell migration and invasion of tumor cells into the surrounding tissue. Here the 

aforementioned hIK channel often is delineated in this context (Cruse et al., 2006; D’Alessandro et al., 2013). 

 

2.2.2. Calcium-activated potassium-channels: the hIK channel  
 
Membrane hyperpolarization provides the electrochemical gradient for calcium influx (Kutchinsky et al., 

2003). The involvement of an elevation of cytosolic calcium during cell cycle progression has been reported for 

different cell types (Kahl, 2003; Lallet-Daher et al., 2009; Machaca, 2010). Additionally, experimental data 

show a close connection between a rise in the cytosolic calcium concentration ([Ca2+]cyt) and a hyperpolarized 

membrane potential (Panner & Wurster, 2006). The complex dependency of Ca2+ fluxes, channel activity and 

regulatory mechanisms is depicted in a model in Fig.  2. Therefore calcium-gated potassium-channels can 

capture the function of a feed-back loop in this context. T-type Ca2+ channels are transient opening, low-

voltage-dependent channels, which are activated at normal resting membrane potentials. The resulting 

increase in [Ca2+]cyt has the consequence of the activation of Ca2+ activated K+-channels. The activity of these 

K+-channels and consequently the increased K+ conductance hyperpolarizes the plasma membrane. In turn the 

T-type Ca2+ channels are inactive at this very hyperpolarized membrane potentials. Hence, both K+ and Ca2+ 

cannels mediate [Ca2+]cyt in a complex interplay (Capiod, 2013; Guéguinou et al., 2014; Lacinova, 2005; 

Panner & Wurster, 2006). 

 

  

Fig.  2  Schematic model of the complex interplay 

between Ca2+ and K+-channels in mediating cytosolic 

calcium concentrations. 

The activity of T-type calcium currents is controlled by the 

membrane potential, which is maintained by K+-channels. At 

the transition from G1 to S phase the membrane potential 

becomes hyperpolarized due to K+-channel activation. (Panner 

& Wurster, 2006) 

The class of channels, which are involved in this regulatory network, can be divided into two subclasses with 

respect to their single channel conductance, their molecular phylogenetic relation, their pharmacology and 

their mechanism of calcium sensing (Wei et al., 2005; Wulff & Köhler, 2013). One includes the voltage-

dependent BKCa-channel, which has a large ("big") single-channel conductance of 200-250 pS and an intrinsic 

Ca2+ sensitive gating mechanism (Berkefeld et al., 2010; Salkoff et al., 2006). The second group includes the 

two historically defined groups of small-conductance (SKCa; 5-10 pS) and intermediate-conductance (IKCa; 20-

40 pS) channels with a calcium sensitivity mediating calmodulin. Whereby not all of them are sensitive to Ca2+ 

(Wei et al., 2005; Wulff & Köhler, 2013). 
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The main interest in this thesis is focusing on the voltage-independent hIK channel (human intermediate-

conductance calcium-activated potassium-channel; KCa3.1, KCNN4; Ghanshani et al., 1998). This channel has 

an intermediate single channel conductance in the range of 30 - 39 pS (Hoffman et al., 2003; Ishii & Ishii, 1997; 

Jensen et al., 2001; Logsdon, 1997).  

The hIK channel consists of 427 amino acids and has the general structure of Shaker-like ion-channels. It is 

composed of four subunits each consisting of six transmembrane helices (Fig.  3) (Jensen et al., 1998; Klein et 

al., 2007). The loop between transmembrane domain V and VI has a canonical GYGD motif, which provides 

the structure for potassium selectivity. The calcium sensitivity is due to a calmodulin (CAM) binding site at 

the C-terminus of the channel (Morales et al., 2013). The consecutively bound calcium sensor CAM couples 

channel activity to the cytosolic calcium concentration. Calcium binding enables the transition from a non-

conducting to a conducting configuration (Keen et al., 1999; Li et al., 2009). A model of the hIK channel 

monomer with the important domains is presented in Fig.  3.  

 

 

 

Fig.  3  Structure of the hIK channel. 

Schematic illustration of the general structure and amino-acid 

composition of the hIK channel (human intermediate-

conductance calcium-activated potassium-channel; KCa3.1, 

KCNN4). The channel is super composed of four subunits each 

consisting of six transmembrane domains. A consecutively 

associated calmodulin at the C-terminus of the protein mediates 

the calcium sensitivity of the voltage-insensitive K+-channel. 

(Jensen et al., 2002) 

The hIK channel apparently has a wide spectrum of activities in cells. The channel is well characterized in the 

context of inflammatory effects like fibrosis and immune responses of lymphocytes, e.g. T-cell activation 

(Begenisich et al., 2004; Berridge et al., 2000; Bradding & Wulff, 2009; Feske et al., 2013; Feske, 2007; 

Ghanshani et al., 2000; Koshy et al., 2013; Kuras et al., 2012; Lewis, 2001; Nicolaou et al., 2007; Panyi et al., 

2004; Shaw et al., 2013). This include mast-cell (Cruse et al., 2011) and fibrocyte (Cruse et al., 2011) migration 

and diseases which are linked to immune responses like asthma (Bradding & Wulff, 2009), rheumatoid 

arthritis or psoriasis (Feske et al., 2013). 

 

It has further been shown by inhibition with specific blockers and by knockdown experiments that hIK 

channels regulate cell proliferation in mouse mesenchymal stem cells (MSCs) (Tao et al., 2008), human dermal 

fibroblasts (Yun et al., 2009) and breast cancer cells (Faouzi et al., 2010; Ouadid-Ahidouch & Ahidouch, 2008; 

Ouadid-ahidouch et al., 2004). Furthermore the involvement of hIK channels in migration of tumor cells like 

glioblastoma cells has been well established (D’Alessandro et al., 2013; Schwab et al., 2012). The multiple roles 

of hIK channels in important cell processes make the hIK channel an interesting target in cancer therapy. 
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2.3. Calcium 
 
Calcium is an important second messenger in cells and involved in many signal pathways such as cell cycle 

control (Kahl, 2003), cell proliferation (Ay et al., 2013), cell migration (Chen et al., 2013b; Schwab et al., 2006), 

cell division, apoptosis (Hanson et al., 2004; Ichas & Mazat, 1998; Tantral et al., 2004), or immune reactions 

(Qu et al., 2011; Schwarz et al., 2013; Shaw et al., 2013). Consequently, a deregulation of the cytosolic Ca2+ 

homeostasis can be the cause of diseases like cancer. In the latter case Ca2+ signaling is particularly important 

in tumor proliferation and progression as well as in formation of metastasis (Chen et al., 2013b; Liu et al., 2011; 

Parkash & Asotra, 2010; Prevarskaya et al., 2011).  

In addition to the previous mentioned membrane hyperpolarization, proliferating cells also require calcium 

signals in order to enter and complete the S and M phase of the cell cycle (Roderick & Cook, 2008; Skelding et 

al., 2011; Taylor, 2008). Therefore the intracellular calcium concentration is strongly regulated (Penner et al., 

1993) and a large number of channels, cellular regulators, Ca2+ buffer systems and other factors regulate and 

remodel Ca2+ homeostasis (Berridge et al., 2003).  

 

The calcium concentration in the cytoplasm ([Ca2+]cyt) is at rest only 100 nM; as a part of signaling cascades 

[Ca2+]cyt can increase transiently to up to 1-10 µM (Clapham, 1995, 2007). The endoplasmic reticulum (ER) is 

in addition to the extracellular buffer the main cellular compartment for Ca2+ storage. Calcium concentrations 

in the ER can reach from high micromolar up to low milimolar concentrations (Corbett & Michalak, 2000). 

For a signal dependent increase in [Ca2+]cyt specific channels in the plasma membrane, or in the ER membrane 

open and Ca2+ flows down its huge electrochemical gradient into the cytosol. To maintain the low resting 

[Ca2+]cyt Ca2+ ions are either buffered by binding to Ca2+ binding proteins (Clapham, 1995, 2007), or the 

excess Ca2+ is transported together with potassium and / or sodium via antiporters  (Clapham, 1995, 2007; 

Karlstad et al., 2012; Roderick & Cook, 2008) against a concentration gradient to the extracellular medium. 

Furthermore Ca2+ is also actively transported by Ca2+ ATPases into the extracellular room or into the ER 

(Berridge et al., 2003; Clapham, 1995, 2007; Karlstad et al., 2012; Parkash & Asotra, 2010; Roderick & Cook, 

2008; Vaca, 2010).  

 

In non-excitable cells the refilling of internal Ca2+ stores in the ER occurs mainly via a mechanism called 

(STIM)/Orai-mediated store-operated calcium entry (SOCE) (Karlstad et al., 2012; Lewis, 2011; Shen et al., 

2011; Targos et al., 2005; Vaca, 2010). Calcium release-activated calcium (CRAC) channels, which belong to 

the so-called Orai-family and are localized at the plasma membrane, are activated when Ca2+ is released from 

intracellular stores (ER) in the frame of a signal cascade. The decrease of Ca2+ concentration in the ER 

triggers the accumulation of the ER Ca2+ sensor protein stromal interaction molecule (STIM1), which 

interacts with the Orai in the plasma membrane, enabling the refilling of internal Ca2+ stores in the ER. In 

addition, transient receptor potential (TRP) channels are modulators of [Ca2+]cyt, which have been associated 

with cell migration and cancer progression in the last decades (Fiorio Pla & Gkika, 2013). The aforementioned 

hIK channel is also connected with SOCE (Gao et al., 2010; Millership et al., 2011). It was demonstrated that 

hIK mediated hyperpolarization promotes the CRAC mediated rise of [Ca2+]cyt followed by refilling of stores 
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via SOCE (Ferreira & Schlichter, 2013)

channels as the aforementioned T-type Ca

Ca2+ homeostasis and mediation of Ca

2013; Gao et al., 2010; Guéguinou 

2006). 

 

2.4. Ionizing radiation 
 
As the name indicates, ionizing radiation results in the ionizing of atoms when interacting with matter. This 

could occur via different physical effects: 1) the photoelectric effect, 2) the Compton effect

production. Ionizing radiation can be divided into two main classes namely dense and sparse ionizing radiation 

(Hall & Giaccia, 2006).  

Dense ionizing radiation, like for example heavy

in a confined region. In contrast to this the energy deposition is randomly dist

radiation like photon irradiation 

(D; Gy = J/kg). To compare these different kinds of ionizing radiation the energy deposition per unit length is 

indicated as the so-called linear-energy transfer (LET; keV/µm). For a comparison of diffe

radiation with respect to their impact on biological systems the concept of relative biological effectiveness 

(RBE) was implemented. The RBE value is obtained by dividing the radiation dose by a standard dose which 

elicits a defined biological endpoint 

 

2.4.1. Heavy-ion irradiation  
 
Heavy-ions deposit most of their energy along their track through matter 

number of ionization events along this track and only few ionizations in regio

secondary electrons; the so called δ

ions through matter, they loose energy and the velocity of the particle
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2.4.2. X-ray irradiation 
 
Photon radiation, which is used for radiation research or therapy purpose, is Roentgen radiation also called  

X-rays. They are classified as a low-LET radiation (Okayasu, 2012). X-rays can be generated with a X-ray 

tube, where electrons from the cathode are accelerated in vacuum by the application of voltage. The 

accelerated electrons fly towards the anode and impinge on the tungsten surface. This generates X-rays, 

which are composed of the so-called Bremsstrahlung and characteristic lines. These lines have distinct 

energies, resulting from emission of electrons of the atom shells. The Bremsstrahlung strongly depends on the 

anode surface material and the acceleration energy. The energy of the generated photons is in the range of 

100 eV and several MeV. For research and therapy purpose X-ray irradiation is filtered by aluminum or 

copper filters to eliminate softer, not tissue-penetrating, rays. The dose of X-rays on the target is in contrast 

to heavy-ion irradiation homogeneous distributed (Fig.  4). 

 
2.4.3. Laser irradiation 
 
In radiation research and here in particular when cells are imaged on a microscope, laser micro-irradiation 

becomes widely used to generate DNA damages (Dinant et al., 2007; Ferrando-May et al., 2013; Huang et al., 

2013; Mortusewicz et al., 2008, 2006, 2005), The reason is that particle radiation with the microbeam-

technique (Prise & Schettino, 2011) is not accessible for the majority of researchers. Laser micro-irradiation 

enables a distinct and directed damage in a defined region of the cell nucleus. In general the cellular DNA is 

needed to be sensitized with intercalating chemicals like Hoechst33258 or the incooperation of the thymidine 

analogue BrdU (Walter & Maximilians, 2003). But there are also studies were no sensitizers were used in this 

kind of application. The optical systems and laser wavelength used for this purpose are rather diverse. They 

reach from UV light to near infrared pulsed lasers (Botchway et al., 2010). DNA damage is induced either via 

linear light absorption, or via non-linear absorption using ultra-short lasers pulses. As a consequence various 

types of DNA damage and repair-pathways are induced (Dinant et al., 2007). An overview over the recent 

DNA repair studies using laser micro-irradiation to induce DNA lesions is reviewed in Ferrando-May et al. 

(2013). 

The comparison of laser induced DNA damage with damage induced by X-rays or heavy-ion irradiation 

remains difficult. Nevertheless, Splinter and coworkers (2010) tried to compare the different types of 

treatment with respect to biological endpoints, e.g. DNA damage based on the foci numbers of irradiation 

induced repair protein recruitment. In these experiments the local dose equivalent in an irradiated mammalian 

nucleus was estimated to be 2 to 3 Gy by using a 337 nm pulsed nitrogen laser with a radiant exposure of 

0.3 MJ/m3 and sensitization of the DNA with BrdU incooperation (Splinter et al., 2010). The results strongly 

depend on the used wavelength and laser energy. Still the data were overall in agreement with previously 

reported results concerning different biological endpoints. The estimated locally applied laser equivalent dose 

in the nuclear sub-volumes was in the range of several hundreds of Gy (Splinter et al., 2010). Since DNA bases 

absorb only in the far UV (Voet et al., 1963), it is speculated that solvated electrons and radicals are formed by 

photo-ionization events when a small volume is irradiated with a high photon density produced by a laser 

pulse (Ferrando-May et al., 2013). 
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2.5. Reactive oxygen species 
 
The initial events of ionizing radiation (excitation and ionization) are completed within 10 -15 seconds, followed 

by a chemical thermal equilibrium of the produced species. The latter lasts ca. 10-12 seconds (Pouget & Mather, 

2001); the timeline of these intermediate steps is shown in Fig.  5. The few hundred ROS molecules, which are 

generated in response to radiation by water radiolysis, are only a minor fraction compared to the large 

background of about 109 ROS/cell/day, which are generated in oxygen metabolism (Feinendegen & Toxicol, 

2002). The variety of different radical species, which emerge from water radiolysis in cell free systems, was 

intensively measured and simulated in the past (Le Caër, 2011; Meesungnoen & Jay-Gerin, 2009; Roth & 

LaVerne, 2011; Wang et al., 2010). The H2O2 yield for example was measured as a function of the radical 

scavenger concentration in aqueous solutions after high-energy heavy-ions irradiation. They demonstrated 

that the yields of H2O2 increased with LET (Wasselin-Trupin et al., 2002).  

 

 

 

Fig.  5 Timeline of the early effects of ionizing radiation. 

The physical radiolysis of water occurs within the first femto 

seconds, followed by the chemical stage, where the generated 

reactive oxygen species further react with each other and are 

recombined. The longer living radicals formed by radical 

recombination like H2O2 can be transferred via the Fenton 

reaction into more reactive radicals, which can damage DNA 

and other cellular compartments in the order of nano seconds. 

(Pouget & Mather, 2001) 

The aforementioned analyses have shown that radiolysis of water leads to a broad range of short living 

reactive oxygen species such as hydrated electrons (e-aq), hydroxyl radicals (⋅OH), superoxide radicals (O2⋅-) 

and hydrogen peroxide (H2O2). Hydrogen peroxide occupies a special role among them. Since H2O2 is not a 

radical, it is more stable and is able to diffuse until reacting with other molecules. In Monte-Carlo simulations 

the spatial distribution of different ROS after an ion traversal was simulated. Two exemplary results are 

depicted in Fig. 6. The H2O2 molecules were more persistent as e-aq. 

 

 

Fig.  6  Simulation of the distribution of ROS after an ion 
traversal. 

Monte-Carlo simulation of the spatial distribution of the e-aq 

and H2O2 in liquid water after exposure to 24 meV 4He2+ ions 

(LET approximately 26 keV/µm). The ion track is displayed in 

y-axis. In the early stage the distribution of e-
aq is more dense 

than those of H2O2, but less persistent. (Muroya et al., 2006) 
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Moreover, H2O2 is described to be a signaling molecule (Forman et al., 2010; Rhee et al., 2005; Stone & Yang, 

2006) and a regulator of signal transduction cascades (Marinho et al., 2014; Rojkind et al., 2002; Stone & Yang, 

2006; Veal et al., 2007). Cytosolic concentrations in mammalian cells can reach from 1 nM up to the sub 

micromolar range for signaling purpose (Boveris & Cadenas, 2000; Freinbichler et al., 2011). H2O2 has a dual 

role in the context as a second messenger. Whereas high intracellular concentrations (1-3 µM) are cell toxic 

and can therefore induce apoptosis (Antunes et al., 2001; Nakagawa et al., 2004) and at higher concentrations 

necrosis (Boveris & Cadenas, 2000; Valko et al., 2006), it was shown in several studies that low concentrations 

of H2O2 enhance cell proliferation (Burdon et al., 1989; Burdon & Rice-Evans, 1989; Liu et al., 2002). 

 

It was recently indicated that the diffusion of H2O2 through the cytoplasm is strongly limited. Consequently, it 

was demonstrated that H2O2 acts mostly locally in cells (Mishina et al., 2011). The nonpolar H2O2 molecules 

are able to diffuse across biological membranes, moreover it was shown that H2O2 can enter cells from the 

exogenous medium via aquaporins (Bienert & Chaumont, 2014; Bienert et al., 2007, 2006). But in spite of the 

good permeation through membranes it was depicted that endogenous produced H2O2 is more efficient to 

initiate cellular signal cascades than H2O2 from external source (Choi 2005). A concentration gradient across 

the membrane with a factor of about 10 was reported in older studies (Boveris & Cadenas, 2000), whereas 

recent studies with novel protein-based fluorescent reporters suggest that the concentration in the cytosol is 

200-500 times lower than the external concentration; hence the membrane still is a significant diffusion 

barrier for H2O2 (Bilan et al., 2013; Malinouski et al., 2011). 

  

Coming back to the relation between radicals and ionizing irradiation it must be mentioned that about 2000 

ionizations per Gy per cell are produced by ionizing radiation (Mikkelsen & Wardman, 2003). It was estimated 

that only 1/3 of DNA damage from ionizing radiation is a direct result of an impact on the DNA (Azzam et al., 

2012). An important question in this context is how the few primary ionization events, which are generated by 

clinical relevant doses are amplified to activate signal cascades inside the cell. At this point it is worth 

recalling that the primary ionization events in the cytoplasm of a cell are insignificant compared to the amount 

of endogenous ROS, which are generated by cell metabolism. Little is known about how ionization of the 

cytoplasm effect cells and how these ionizations influence nuclear processes. One publication indicates that 

ROS are amplified via plasma membrane bound NADPH-oxidase after low dose irradiation with α-particles in 

a time window of 15-60 minutes after irradiation (Narayanan et al., 1997).  

 

It has been shown that biological reactions are not only depending on the primary ROS, which are generated 

as a direct result of IR. It was reported that after the initial formation of primary ROS secondary ROS 

molecules are generated in a time dependent manner several hours after irradiation in A549 cells (Ogura et al., 

2009). The source of this secondary produced ROS are mitochondria where ROS are amplified in a calcium 

dependent manner (Leach et al., 2001; Ogura et al., 2009; Valerie et al., 2007). Changes in the calcium 

concentration lead to an increase in the mitochondrial membrane potential and an increased respiration, 

whereby ROS are generated per se by oxygen metabolism (Yamamori et al., 2012). 
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The secondary generated ROS and especially long living species are also made responsible for a phenomena 

termed "bystander effects" (Azzam et al., 2003). The latter describes a system in which a primary cell damage, 

e.g. DNA damage, is not confined to the cell which was directly hit by radiation. The primary stressed cell 

sends out signals to adjacent cell (Rzeszowska-Wolny et al., 2009; Shao et al., 2003) into the medium or via 

gap-junctions (Azzam et al., 2003; Suzuki & Tsuruoka, 2004). These adjacent cells elicit the typical reactions, 

which are observed in the primary wounded cells. 

 

2.6. Redox-buffering in cells 
 
Cells have mechanisms to cope with redox stress. On the one hand enzymes like superoxide dismutase (SOD), 

or catalase are able to eliminate superoxide and hydrogen peroxide respectively (Slupphaug, 2003). On the 

other hand there is a large number of other factors like vitamins or thioles, which prevent the cell from further 

damage.  

The thioredoxin system and the glutathione system are the two major thiol-dependend mechanisms, which 

maintain the cellular redox-state. Thioredoxins are small proteins with oxidoreductase activity. The catalytic 

reduction of substrates involves the formation of a disulfide bond that is subsequently reduced by NADPH 

(Veal et al., 2007). Glutathione (L-γ-glutamyl-L-cysteinyl-glycine, GSH) on the other hand is kind of a 

tripeptide and is present in milimolar concentrations in the cell and therefore the most abundant thiol 

(Anderson, 1998; Circu & Aw, 2008; Dooley et al., 2004; Rojkind et al., 2002; Valko et al., 2006). To preserve 

reductive conditions in the cytoplasm and the nucleus, the pool of both thioredoxins and glutathione is 

constantly reduced by specific enzymes. A recent study has shown that thioredoxin and glutathione are both 

acting as redox-buffers. Still both buffer systems have very distinct functions; they are not in a redox 

equilibrium and presumably act in different signaling cascades (Hansen et al., 2006).  

 

Here I would like to concentrate on the glutathione system. Glutathione has many cellular functions: On one 

hand it acts as an antioxidant via direct interaction with ROS, on the other hand it is the detoxification 

machinery of enzymes like glutathione peroxidases and glutathione-s-transferases (Filomeni et al., 2002; 

Meyer & Hell, 2005; Morris et al., 2014; Sies, 1999). Glutathione plays the principal role in the redox 

protection and cellular defense against H2O2, whereas catalase presumably contributes only minimal until 

GSH is depleted (Seo et al., 2004). To maintain the intracellular redox environment glutathione is present in a 

larger variety in its reduced and biological active form (GSH). Under physiological conditions the reduced 

form GSH is 10-100-fold more abundant than the oxidized form (GSSG) (Filomeni et al., 2002). It is still a 

matter of discussion weather there are different concentrations of GSH in the nucleus and in the cytoplasm. 

For A549 cells it was already shown that the nuclear and the cytoplasmic GSH pools are not in equilibrium 

(Cotgreave, 2003). Overall, it appears as if the nucleus is relatively more reducing than the cytoplasm (Hansen 

et al., 2006).  

The role of glutathione in the nucleus has been described recently, particularly in respect of high GSH levels 

in proliferating cells, like cancer cells (García-giménez et al., 2013; Markovic et al., 2007, 2010; Pallardó et al., 

2009; Schroeder et al., 2007).  
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The cellular glutathione redox-state has been causally linked to several different targets like the anti-apoptotic 

protein BCL-2 (Voehringer, 1999), the central regulator of immunity, inflammation and cell survival 

transcription factor NF-κB (Bubici et al., 2006; Filomeni et al., 2002; Schreck et al., 1992) and the transcription 

factor activator-protein-1 (AP-1) (Filomeni et al., 2002). Also, the oxidation of cAMP-dependent protein kinase 

(PKA) (reviewed in Poole and Nelson, 2009) and the regulation of MAPK cascades, that are a major signal-

pathway mediating tumor metastasis (Wu, 2006), are related to the glutathione redox-state.  

 

 

2.7. Motivation 
 
Here I want to uncover the general signal cascade, which connects primary events of IR and the activation of 

the human intermediate-conductance calcium-activated K+-channel (hIK). First experimental data pointed out 

that calcium and ROS are involved in this radiation induced signal cascade. In the following experiments I 

want to detail the dynamics and spatial distribution of these two signaling molecules after IR stress, by using 

new generation of genetically encoded fluorescence reporters. This reporter enable the real-time detection of 

signal molecules like Ca2+ and ROS, as well there buffering, with a high temporal and spatial resolution. 

Furthermore, I want to link these cellular signals directly to the activation of the hIK channel and illustrate 

their impact to the electrophysiological properties of the cells. 
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3. Matherial and methodes 
 
3.1. Chemicals 
 
All chemicals were purchased from Biochrom AG (Berlin, Germany), Sigma-Aldrich GmbH (Taufkirchen, 

Germany), AppliChem GmbH (Darmstadt, Germany), Invitrogen (Karlsruhe, Germany), Merck (Darmstadt, 

Germany, Bio-Rad Laboratories GmbH (Muinch, Germany), Qiagen (Hilden, Germany) or Invitrogen 

(Karlsruhe, Germany) if not specified further. 

Clotrimazole and Ionomycin were dissolved in DMSO and applied to the bath solution (chapter 3.4) or 

phosphate buffered saline (PBS; Sigma-Aldrich GmbH, Taufkirchen, Germany) in the concentrations 

mentioned in results. The final concentration of DMSO was less than 0.05 % (v/v).  

Hydrogen peroxide (H2O2) solutions were always freshly prepared by serial dilution of H2O2 (30 %, Sigma-

Aldrich GmbH, Taufkirchen, Germany) in the experimental solution or PBS buffer. The H2O2 concentration 

was occasionally measured at 240 nm, in order to control the stock solution and the dilution process. 

 
3.2. Plasmids 
 
The plasmids used in this work were kindly provided by: 

• pHyPer-cyto (Evrogen): Ph.D. Alex Costa (Universitiy of Milan, Milan, Italy) (Belousov et al., 2006; 

Mishina et al., 2013) 

• pSypHer-cyto (Evrogen): Ph.D. Vsevolod Belousov (Institute of Bioorganic Chemistry, Moscow, Russia) 

(Poburko et al., 2011) 

• YC3.60/pcDNA3: MD, Ph.D. Atsushi Miyawaki (RIKEN Brain Science Institute, Wako City, Japan) 

(Nagai et al., 2001) 

• pLPCX-Grx1-roGFP2: Prof. Dr. Andreas Meyer (University of Bonn, Germany) (Gutscher et al., 2008) 

• pEGFP-hKCa3.1: Ph.D. Heike Wulff (University of California, Davis, USA) 

 

3.2.1. Plasmid amplification  
 
Escherichia coli (E. coli) DH5α were prepared for transformation according the rubidiumchloride-method from 

Hanahan (1983) and stored at -80 °C. Frozen chemical competent DH5α were transformed with a 30 sec heat 

shock and plated after 1 h at 37 °C and 220 rpm in SOC media (20 % (w/v) trypton, 5 % (w/v) yeast extract, 

10 mM NaCl, 2.5 mM KCl, 20 mM MgCl2, 20 mM glucose, NaOH / pH 7.0) on LB-Agar plates (1.5 % (w/v) 

agar, 10 % (w/v) trypton, 10 % (w/v) NaCl, 5 % (w/v) yeast extract, NaOH / pH 7.5) containing kanamycin 

(50 µg/mL) or ampicillin (100 µg/mL) as selection marker. Single cones were picked and grown in LB-media 

(10 % (w/v) trypton, 10 % (w/v) NaCl, 5 % (w/v) yeast extract, NaOH / pH 7.5) containing ampicillin or 

kanamycin as selection markers at 37 °C over night. Plasmid DNA was extracted using the ZR Plasmid 

Miniprep™ Kit (Zymo-Research, Orange, Kalifornien, USA) or GenElute™ HP Plasmid Midiprep Kit 

(Sigma-Aldrich, Taufkirchen) according the manufactures protocol and the DNA concentration, as well as 

purity were estimated using NanoDrop® ND-1000 (UV-Vis Spectrophotometer; Thermo Fisher Scientific 

Inc., Waltham, MA, USA). 
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3.3. Cell culture 
 
All experiments in this thesis were performed with HEK293 (human embryonic kidney 293) cells (Graham et 

al., 1977; Jiang et al., 2002) and A549 (adenocarcinomic human alveolar basal epithelial) cells (Giard et al., 

1973). Both cell lines were purchased from the Leibniz-Institut DSMZ (Deutsche Sammlung von 

Mikroorganismen und Zellkulturen GmbH) and maintained free of mycoplasmas as determined by a test from 

Minerva Biolabs, (Berlin, Germany).  

Both adherent cell cultures were propagated in Dulbecco's Modified Eagle Medium (DMEM/ Ham's F-12, 

Biochrom AG, Berlin, Germany) media with stable glutamine supplied with 10 % (v/v) FCS (Sigma-Aldrich 

GmbH, Taufkirchen, Germany) and 1 % (v/v) penicilline/streptomycine (Sigma-Aldrich GmbH, Taufkirchen, 

Germany) respectively. Media for A549 cells was complemented with 1 % (v/v) NEAA (non-essential amino 

acids; Biochrom AG, Berlin, Germany) additionally. Both cell cultures were passaged twice a week using 

phosphate buffered saline (PBS; Sigma-Aldrich GmbH, Taufkirchen, Germany) for washing and 1 % (v/v) 

trypsin/EDTA solution (Sigma-Aldrich GmbH, Taufkirchen, Germany) or accutase (PAA, GE health care, 

Freiburg, Germany) for enzymatic detachment of the cells. The enzymatic activity of trypsin was stopped 

using cultivation media and the cells were transferred into new cell 25 cm2 cell culture flasks. The cells were 

cultivated under standard conditions at 37 °C and 5 % CO2.  

Stock cultures were cryoconserved in FCS containing 10 % (v/v) DMSO and stored in liquid nitrogen. First 

experiments were done after the 5th passage after thawing. 

 
3.3.1. Cell culture for microscopy  
 
For microscopy cells were seeded on 25 mm round glass coverslips (No. 1.0). The coverslips were sterile 

flamed using pure ethanol. The cells were incubated at 37 °C with 5 % CO2 until the cells reached a confluence 

of about 60 %. They were transiently transfected with TurboFect (Thermo Fisher Scientific Inc., Waltham, 

MA, USA), GeneJuice (Novagen, Merck KGaA, Darmstadt, Germany) or Lipofectamine (Life Technologies 

GmbH, Darmstadt, Germany) according the manufactures protocol. 

For experiments at the X-ray microscopy setup the cells were seeded on 40 mm round glass coverslips  

(No. 1.5) and for heavy-ion experiments either on polycarbonate foil (18 mm diameter; 40 µm thickness) or 

18 mm round glass coverslips (No. 0.0). 

 
3.3.2. Cell culture for electrophysiological recordings  
 
Since HEK293 cells obtain only few voltage-activated endogenous currents, which are well characterized 

(Jiang et al., 2002), they were widely used as heterologous expression system for ion-channels in context of 

electrophysiological recordings. HEK293 cells were grown in 25 cm2 cell culture flasks for one day and 

transfected with the plasmid pEGFP-hKCa3.1 and the transfection reagent Turbofect (Thermo Fisher 

Scientific Inc., Waltham, MA, USA) according manufactures protocol and measured one day after transfection. 

A549 cells were measured after two or three days of growth in 25 cm2 cell culture flasks and incubation under 

the above mentioned standard conditions. 
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3.4. Patch clamp recordings 
 
Patch clamp recordings were performed using a portable patch-clamp device (port-a-patch, Nanion, Munich, 

Germany), the EPC-9 amplifier (HEKA Electronics, Lambrecht, Germany) and PatchMaster software (HEKA, 

Lambrecht, Germany).  

Confluent cells were measured two to three days after seeding. They were harvested according to the standard 

protocol (Brüggemann et al., 2003; Fertig et al., 2002). Cells were placed on 3-5 MΩ NPC-1® Chips (Nanion, 

Munich, Germany) and were measured in the whole-cell configuration. The sealing process was performed in 

solution containing 80 mM NaCl, 3 mM KCl, 10 mM MgCl2, 35 mM CaCl2, 10 mM HEPES/NaOH, pH 7.4. 

For normal recordings a buffer with 4 mM KCl, 140 mM NaCl, 1 mM MgCl2, 2 mM CaCl2, 5 mM Sorbitol, 

10 mM HEPES /NaOH, pH 7.4 was used as an external bath solution. The intracellular solution contained 

50 mM KCl, 10 mM NaCl, 60 mM K-Fluoride, 1 mM EGTA and 10 HEPES/KOH, pH 7.2. Some experiments 

were performed with an intracellular solution containing predefined free Ca2+ concentrations varying between 

2 nM and 1 µM. The specific concentrations were calculated according to the formula available at 

"http://maxchelator.stanford.edu/CaMgATPEGTA-TS.htm" (Schoenmakers et al., 1992), in order to obtain 

the desired amount of free Ca2+.  

The currents were measured at room temperature and provoked with a standard pulse protocol. The holding 

voltage was -20 mV for 200 ms followed by 800 ms long test pulses between -100 and +80 mV and finally a 

200 ms pulse at -80 mV (Fig.  7 A). Additionally a voltage ramp protocol was performed with a pre and post 

holding voltage of -80 mV and a continuous ramp of 800 ms from -100 to + 100 mV, followed by a final 

800 ms test pulse of +20 mV (Fig.  7 B).  

 

Fig.  7  Pulse protocols used in this thesis to elicit currents in HEK293 and A549 cells.  

A standard pulse protocol with a holding voltage of -20 mV for 200 ms followed by 800 ms test pulses between -100 and + 80 mV in 20 
mV steps, with a subsequent holding voltage of -80 mV (A). A ramp protocol from -100 to +100 mV over 800 ms followed by a +20 mV 
voltage step (B). 

 
Data were analyzed using the Patchmaster, Fitmaster software (HEKA, Lambrecht, Germany) and Microsoft 

Excel. Instantaneous currents were received in the first 5% of the test voltage and the steady-state currents 

were sampled at the end (last 5%) of the test pulse. In order to normalize the currents to the cell size they 

were normalized (if mentioned) to the cellular capacitance. Graphing was performed using IGOR Pro software 

(WaveMetrics, Lake Oswego, OR). 
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3.5. Fluorescence microscopy 
 
Single-cell imaging was performed at room temperature at a Leica confocal system TCS SP5 II with the 

software LAS AF Version 2.60 (Leica Microsystems CMS GmbH, Heidelberg). Images were acquired and UV-

laser micro-irradiation was performed with a 40x (1,3 NA) oil- immersion objective.  

A549 cells and HEK293 cells were grown on cover slips as described in (3.3.1). All measurements were made 

in PBS (Sigma-Aldrich GmbH, Taufkirchen, Germany), if not mentioned otherwise.  

 

HyPer, SypHer and Grx1-roGFP2 were sequentially excited with a 405 nm diode and with an argon laser at 

488 nm. Images (512 × 512 pixels in size) were acquired with a HyD detector at 500-550 nm. For HyPer and 

SypHer the background subtracted (selected ROIs at cell-free positions) ratio 488 nm / 405 nm is plotted for 

all experiments. For Grx1-roGFP2 the ratio was calculated by division of the background subtracted 

fluorescence intensity 405 nm / 488 nm. 

The FRET based calcium sensor YC3.60 was excited at 458 nm with an argon laser. The emission of both 

CFP (465-500 nm) and YFP (520-570 nm) respectively was detected with a HyD detector simultaneously. 

The signals were plotted as the ratio of both emission intensities YFP / CFP and corrected for background 

fluorescence signals. For calcium imaging 5-6 positions were acquired per experiment without further 

zooming.  

 

For laser micro-irradiation (m.i.) a continuous wave 405 nm diode laser was focused via a 40x (1,3 NA) oil- 

immersion objective. The power oft the laser beam was about 450 µW at the sample plane, which was 

measured by a UV dosimeter (Powermeter PM100D with S130C sensor; Thorlabs, Newton, New Jersey, 

USA). The laser beam was repeatedly scanned in the region of interest (ROI) with a pixel dwell time of 

2.54 µsec. The resulting deposed laser energy in the ROI was obtained by varying the spot size of the ROI as 

well as the irradiation time. Predefined ROIs either in the cytoplasm or in the nucleus were exposed to  

0.5 - 4.5 mJ/µm2 of 405 nm UV-laser. 

 

Image analysis was performed with the open source software FIJI (http://fiji.sc). The ratiometric images 

shown in the results have been created using FIJI and the look-up-table S-Pet after setting a threshold to 

avoid ratio-created artifacts. Data analysis was performed using FIJI and Microsoft Excel. Illustrations were 

accomplished using IGOR Pro software (WaveMetrics, Lake Oswego, OR).  

 

 
3.6. Cell irradiation 
 
Electrophysiological live-measurements in the X-ray tube (Isovolt160 Titan E, GE Sensing & Technologies, 

Ahrensburg, Germany) were performed as described in Roth (2013). The cells were irradiated with a voltage 

of 90 kV and 19 mA filtered by a 2 mm aluminum sheet. The dose rate was controlled by a dosimeter 

(DIADOS T11003 Diagnostikdosimeter) and the dose of 1 Gy was achieved by varying the distance and the 

duration of irradiation. 



 

Material and methods  20 

Live microscopic experiments were performed at the X-ray microscopy setup (GSI Helmholtzzentrum für 

Schwerionenforschung, Darmstadt, Germany). Imaging was performed with an Olympus IX71 using a 60x 

Optovar and the Andor oQ 1.10.5 software. The setup is equipped with an X-ray tube (Isovolt, GE Sensing & 

Technologies, Ahrensburg, Germany), operated at 35 kV and 80 mA (dose rate 32 Gy/min ± 10 %) or 35 kV 

and 20 mA (dose rate 8.6 Gy/min ± 10 %), filtered with a 0.5 mm aluminum sheet. The applied dose was 

controlled with a PTW D14 dosimeter (PTW, Freiburg, Germany). 

Charged particle irradiation at the beamline-microscope (Jakob et al., 2005) was performed at the Universal-

Linear-Accelerator (UNILAC) facility (GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, 

Germany) using carbon-ions (C; 11.4 MeV/u, LETH2O 170 keV/µm) or lead-ions (Pb; 4.7 MeV/u, LETH2O 

13500 keV/µm ) and the same optical setup as for live X-ray experiments. 

 
 
3.7. Matlab simulation 
 
The simulation of H2O2 generation and buffering in chapter 6.1 was performed using Matlab (The 

MathWorks Inc., Natick, MA, USA) and the ordinary differential equation function solver (ODE45) (Anyigor 

& Afiukwa, 2013). 

 

 
3.8. Statistical analysis 
 
Data are expressed as means ± standard deviations of at least three different experiments (the number of 

experiments is indicated for each experiment). Significance was estimated by using the Student’s t-test, either 

the paired Student's t-test if the same cell was measured before and after treatment or the unpaired t-test for 

population experiments. A value of p < 0.05 was considered as significant. 
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4. CHAPTER 1 - Activation of potassium-channels by ROS and calcium 
 

In a preceding study it was shown that A549 cells, an epithelial adenocarcinoma cell line, exhibit an increased 

K+ conductance and a consequent membrane hyperpolarization after irradiating cells with X-rays or high 

energy heavy-ion irradiation (Roth, 2013). 

In this preceding work the hIK channel was identified with the help of channel blockers and by expression 

studies as the candidate channel, which is presumably activated by radiation (Roth, 2013). To further confirm 

the hypothesis that the hIK channel is a target for radiation this channel was here overexpressed in HEK293 

cells, which display only a minor expression of this ion-channel under wildtype conditions (Roth, 2013). 

Furthermore it was tested if the same increase in K+ conductance, which is observed in A549 cells by external 

applied H2O2 or internal perfusion with Ca2+ could be elicited in HEK293 expressing the hIK channel.  

 
4.1. Activation of the hIK channel in A549 cells by ROS and calcium 
 
The typical current response of an A549 cell could be divided into two kinetically different components, an 

instantaneous (Iinst) and a slow activating, time dependent (Itd) conductance (Fig.  8 C). Both conductances are 

carried by K+ currents; this had been shown by measuring currents in buffers with different external K+ 

concentrations and via canonical blockers of K+-channels (Roth, 2013). These results were confirmed in the 

present study (data not shown).  

The relative contribution of both current components to the total membrane conductance is very variable 

among different A549 cells. The general picture is that the overall conductance of cells with a negative 

reversal voltage, e.g. negative free running membrane potential, comprises a relative large instantaneous 

current component (Fig.  8); cells in which the slow activating conductance dominates show a more 

depolarized membrane voltage (Fig.  9).  

 

 

 

Fig.  8  Representative current response 
of an A549 cell with a negative reversal 
potential.  

Current voltage relation of an exemplary 
A549 cell to a standard pulse protocol with 
test voltages between -80 and + 80 mV in 
20 mV steps (A). The corresponding steady-
state IstatV relation with a Vm of -60.2 mV is 
shown in B. The current can be decomposed 
into two kinetically different conductances; 
an instantaneous (Iinst) and a time dependent 
(I td) current component (C). The contribution 
of each conductance to the steady-state 
current is shown in D. 

It is well established that the free running membrane voltage (Vm) hyperpolarizes during the transition from 

G1 to S-phase (reviewed in Yang & Brackenbury; 2013). Since the A549 cells, which were used here, were not 

synchronized before electrophysiological measurements, it is possible that the differences in Vm presumably 
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stem from cells in different stages of the cell cycle. In a large body of cells tested 74.6 % of the measured cells 

(n=59) had a depolarized Vm between +5 and -15 mV, whereas 25.4 % had a hyperpolarized Vm between -15 

and -68 mV. A representative cell with a more depolarized Vm of -11.4 mV is illustrated in Fig.  9. The 

instantaneous current component Iinst is in general less prevalent in these cells compared to cells with a 

hyperpolarized Vm (Fig.  9 C). 

 

Fig.  9  Representative current response of an A549 cell with a more depolarized membrane voltage.  

Current voltage relation of an exemplary A549 cell to a standard pulse protocol with test voltages between -100 and + 80 mV in 20 mV 
steps (A). The corresponding IV relation is shown in B. Iinst and Itd contributed nearly equal to the steady-state outward current of the 
cell. Cells with a hyperpolarized Vm (-68 to -15 mV; indicated with "-"; n=15) had a significant (*** p < 0.001) larger fraction of 
instantaneous current compared to cells with depolarized Vm (-15 to +5 mV; indicated with "+"; n=44) (C).  

 

The ensemble of endogenous ion-channels in the epithelial lung cancer cells was already characterized in 

detail before (Roth, 2013). In this work the hIK channel was identified to be the most probable candidate for 

conducting the instantaneous current component. The influence of the hIK channel activator 1-Ebio and the 

inhibitors Clotrimazole and Tram-34 on Iinst, e.g. the hIK channel, was shown previously (Roth, 2013). The 

present data confirm previous results. The instantaneous conductance at +40 mV was blocked by 81 ± 33 % 

(3.3 ± 1.0 pA/pF) with Clotrimazole (Fig.  10), causing a depolarization by 18.6 ± 9.9 mV (n=3). Clotrimazole 

inhibits in the submicromolar concentrations used in this work exclusively the hIK channel (Pedarzani & 

Stocker, 2008; Wulff et al., 2000, 2001).  

 

Fig.  10  The instantaneous conductance is blocked with Clotrimazole. 

Current voltage relation of an exemplary A549 cell to a standard pulse protocol between -80 and +60 mV in 20 mV steps before (A) and 
after blocking with 300 nM CLT (B). The free running membrane voltage Vm depolarized by +29 mV as indicated with arrows in the 
I instV relation in C. The inactivated current is displayed in D as a difference of the IinstV curves from C. The time course of CLT blocking 
of the instantaneous current at + 40 mV is illustrated in E; the time point of CLT addition is indicated with an arrow.  
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To analyze the calcium dependency of the instantaneous conductance in A549 cells, cells were either:  

1) internally perfused with solutions of varying cytosolic calcium concentrations ([Ca2+]cyt) or 2) treated with 

the calcium ionophore Ionomycin in the bath solution.  

 

After exchanging the internal solution from a solution with a cytosolic free Ca2+ concentration of 10 nM to 

one with 10 µM the instantaneous conductance increased. At a reference voltage of +20 mV the average 

increase in Iinst was on average 5.1 ± 3.2 pA/pF (n=9). As a consequence of the increase in Iinst the free running 

membrane voltage shifted on average by -8.1 ± 10.7 mV (n=9). The representative example in Fig.  11 A-C 

illustrates the Ca2+ induced increase of the instantaneous conductance, which is quasi linear in the voltage 

range between -80 and +20 mV and displayed a negative slope at high positive voltages (Fig.  11 C), which 

will be further delineated as typical hIK-like behavior. The fact that the ∆IinstV relation has a reversal voltage 

close to the K+ Nernst voltage confirms the K+ nature of Ca2+ sensitive channel.  

As a second approach A549 cells were treated with the calcium ionophore Ionomycin [1 µM] to obtain a rapid 

increase of [Ca2+]cyt (Fig.  11 D-F). Upon addition of the ionophore the conductance increased at a reference 

voltage of +40 mV on average by 5.1 ± 1.5 pA/pF (n=7); concomitantly Vm shifted negative by -8.2 ± 6.7 mV 

(n=7). The results of these experiments and the fact that the activated conductance could be blocked with CLT 

support the fact that hIK channels indeed mediate the instantaneous conductance in A549 cells. 

 

Fig.  11  Calcium facilitates the activation of the instantaneous conductance in A549 cells.  

The instantaneous conductance increases quasi linear in the voltage range between -80 and +20 mV if [Ca2+]cyt was raised either by a 
direct increase of the free calcium concentration or by treatment with the calcium ionophore Ionomycin. The representative current 
response to a +20 mV voltage step of an A549 cell with an internal free calcium concentration of 10 nM (grey) and after perfusion of the 
internal solution to 10 µM free calcium (black) is shown in A. The corresponding IinstV curve, obtained by a voltage ramp from -100 to 
+60 mV is shown in B. Vm shifts by -35 mV if [Ca2+]cyt was elevated by the 1000-fold. The increase in conductance, as a difference of 
both curves from B is illustrated in C.  

A similar increase to a +20 mV voltage step was generated if the cells were treated with the calcium ionophore Ionomycin [1µM] (D), 
where the grey curve represents the same cell before and the black curve after [Ca2+]cyt was elevated. The cell was measured with a 
standard pulse protocol from -80 mV to +60 mV in 20 mV steps. The negative shift by -11 mV in Vm generated by activation of the 
instantaneous conductance is indicated with arrows in the corresponding IinstV curve (E). The ∆I instV curve in F was received by 
subtracting the IinsrV curves from E. The cell in D-F was measured with an internal EGTA concentration of 1 mM.  
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It had been shown that ionizing radiation can activate potassium-channels in A549 cells (Kuo et al., 1993). It 

was argued that most likely oxygen radicals (ROS) are a signal component in a signaling cascade, which 

connects the primary stress with channel activation. To test weather ROS are also able to activate hIK 

channels, the current voltage relations of A549 cells were recorded before and after addition of H2O2 to the 

external buffer. 

 

Overall the response of A549 cells to H2O2 was very heterogeneous. From a total of 59 examined cells 35 % of 

these cells did not respond at all to H2O2 treatment. Most of the non-responding cells had a hyperpolarized 

free running membrane potential (Fig.  12 B) prior to H2O2 stimulation. In the remaining cells H2O2 

stimulated an increase in membrane conductance. In the majority of these experiments the instantaneous 

current increased. Some other cells also showed an increase in the time dependent current (Fig.  12 A). Similar 

heterogeneous responses of the two conductances to ionizing irradiation were already observed in a previous 

work (Roth, 2013).  

 

 

 

Fig.  12  ROS mainly activate the instantaneous current component.  

Increase in current density at +40 mV in cells challenged with 0.3-3 µM H2O2. The currents were normalized to the membrane capacity 
in order to account for differences in cell size (A). The variability in the cellular response was large but on average the instantaneous 
current component increased more than the time dependent one. In a total of 59 cells tested only 65 % exhibited a response to all used 
concentrations (300 nm - 300 µM H2O2). Cells, which had a hyperpolarized membrane potential prior to H2O2 treatment, did on average 
show no response to the radical. Only cells with a depolarized voltage responded to H2O2 with a hyperpolarization (B). 

 

 

Data from a representative A549 cell, which was responding to H2O2, is depicted in Fig.  13. They show that 

the cell exhibited a fast increase in conductance immediately after challenging the cell with 3 µM H2O2  

(Fig.  13 F). In addition to the increase in instantaneous conductance (28 % at +40 mV), the free running 

membrane voltage shifted negative by -19.4 mV (Fig.  13 C). To extract information on the H2O2 activated 

conductance I calculated the difference IinstV relation by subtracting both IinstV relations in C. The respective 

data are plotted in Fig.  13 E. The ∆IinstV relation illustrates the IinstV relation of the H2O2 induced current. 

Notably the ∆IinstV relation displays the typical IV relation of hIK channels with a linear increase in 

conductance between -80 and +40 mV, a negative slope at positive voltages and a reversal voltage close to the 

K+ equilibrium voltage (-86 mV). 
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Fig.  13  ROS mediated ion-channel activation in A549 cells.  

Current response of a representative A549 cell directly before (A) and 4 minutes after treatment with 3 µM external H2O2 (B). The IinstV 
relations of the data in A and B are shown in C. The Vm value shifted by -19.4 mV negative. The current difference analysis shows that 
mainly the instantaneous conductance is activated by H2O2. The difference current was obtained by subtracting the current response to 
+40 mV in presence of H2O2 from that in the absence (D). The ∆I instV relation in (E) displays the amount of activated conductance 
calculated by subtraction of the two IinstV curves in C. The time course of channel activation upon H2O2 treatment was very fast, with a 
maximal increase after 4 minutes (F). 

 

In responding A549 cells the channel activity was enhanced even after challenging cells with low 

concentrations in the submicromolar range (Fig.  14 A); notably these concentrations are in the range of 

concentrations which can occur in the context of physiological situations in the cytosol of cells (Stone & Yang, 

2006; Stone, 2004). The data indicate an unexpected negative correlation between the applied H2O2 

concentrations and the effect on channel activation. Other than expected in typical does response relations the 

largest increase in current density was observed when challenging the cells with the lowest H2O2 

concentrations. The opposite effect; e.g. an increase with higher H2O2 concentrations in the milimolar range, 

was shown by Roth (2013). The determined half maximal activation was shown to be 450 µM.  

 

Nevertheless, the increase in conductance upon H2O2 treatment seems to depend strongly on the membrane 

voltage. The reaction to ROS was stronger in cells with a depolarized Vm (Fig.  14 B). This suggests that the 

amount of hIK channels, which could be activated by ROS is more critical than the concentration of ROS, e.g. 

H2O2. A negative Vm indicates that most of the expressed hIK channels were still active under the prevailing 

conditions (as shown in Fig.  9 C) and H2O2 had no further impact on the channel activity. Whereas cells with 

a more depolarized Vm (-15 to +5 mV) and a minor impact of the instantaneous conductance displayed an 

activation upon H2O2 treatment. This is in agreement with the observation that not all cells responded to 

H2O2 treatment (Fig.  12 B) as well as to ionizing radiation (Roth, 2013). The prevailing activity of hIK 

channels (correlating with a large impact of instantaneous current and a negative Vm) has therefore a major 

impact on the sensitivity of A549 cells to stimuli like ROS or ionizing radiation. 
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Fig.  14  I inst is activated with low physiological H2O2 concentrations and the activation is dependent on the membrane voltage. 

The increase in instantaneous current density to a voltage step of +40 mV of A549 cells challenged with different physiological 
concentrations of H2O2 indicates a negative correlation to the applied H2O2 concentration (A). The activation of instantaneous 
conductance, displayed as increase in current density to a voltage step of +40 mV was dependent on the membrane voltage (B). 

 

 
To test if hIK channels contributed to the H2O2 stimulated conductance cells were treated after addition of 

H2O2 with the specific blocker Clotrimazole. The data in Fig.  15 show that this blocker was able to inhibit the 

H2O2 induced conductance. The difference curve in Fig.  15 C clearly reveals the typical hIK like ∆IinstV 

relation, which is linear between -60 and +40 mV and decreases at positive voltages. The results of these 

experiments support the suggestion that hIK channels are activated by H2O2 treatment in the same manner as 

shown previously after ionizing radiation (Roth, 2013). 

 

 

 

Fig.  15  The inhibitor Clotrimazole blocks the H2O2 activated conductance in A549 cells.  

Current response of the same A549 cell to a pulse of +40 mV before (light grey), about 5 minutes after activation with 3 µM H2O2 
(black) and after inhibition with 300 nM Clotrimazole (CLT; grey) (A). The corresponding IinstV-curve of the H2O2 activated (filled 
symbols) and CLT inhibited (open symbols) current response are shown in B. The -3.2 mV negative shifted free running membrane 
voltage depolarized about +5.9 mV after CLT addition. The instantaneous current component was slightly elevated upon H2O2 treatment 
and reduced due to inhibition of hIK channels with CLT. The amount of blocked conductance upon CLT treatment is displayed in C 
calculated by subtracting both IinstV curves from B. 
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4.2. Activation of heterologous expressed hIK channels in HEK293 cells by ROS, calcium and  
X-ray irradiation 

 

To further examine the activation of the hIK channels, they were transiently overexpressed in HEK293 cells 

and analyzed by patch-clamp recordings. The currents of a representative control HEK293 cell and a HEK293 

cell overexpressing hIK channels are illustrated in Fig.  16. HEK293 cells display only minor activity of 

endogenous ion-channels under the prevailing conditions (Fig.  16 A and B); these data are typical for the IV 

relations of wt HEK293 cells (Jiang et al., 2002). Overexpression of the hIK channel generates a large 

instantaneous conductance, which is quasi linear over a voltage window from -80 to +40 mV (Fig.  16 D). 

Only at very positive voltages the conductance decreases. It has already been mentioned before that this 

behavior is typical for heterologous expressed hIK channels in HEK293 cells under the prevailing 

physiological conditions with high internal (110 mM) and low external (4 mM) potassium (Jensen et al., 1998). 

The results of these experiments imply that the hIK channel is dominating the IinstV relation on HEK293 cells, 

which are overexpressing the hIK channel. The expression of this channel causes an increase in conductance at 

the resting membrane voltage with the result that Vm is in cells, which express the hIK channel negative 

shifted (compare Fig.  16 B and D).  

 

 

Fig.  16  Representative current response of a HEK293 cell and a HEK293 cell overexpressing hIK channels.  

Current voltage relation of an exemplary HEK293 cell (A) and a HEK293 cell overexpressing the hIK channel (C) to a standard pulse 
protocol with test voltages between -80 and + 60 mV in 20 mV steps. The corresponding IinstV relations are shown in B and D 
respectively. The conductance at a voltage pulse of +60 mV is highlighted in grey. The endogenous currents of HEK293 cells are only 
minor and HEK293 cells are therefore a popular heterologous expression system for the characterization of ion-channels.  

Both measurements were performed with an internal free calcium concentration of 10 nM. 
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In the next step I characterized the calcium dependency of the hIK channel in the heterologous expression 

system. The cytosolic concentration of Ca2+ ([Ca2+]cyt ) was altered by an internal perfusion of the cytosol; the 

IinstV relations of the same HEK293 cell expressing hIK channels was recorded first with 10 nM  [Ca2+]cyt and 

then with 10 µM  [Ca2+]cyt (Fig.  17 A - C). The rise in [Ca2+]cyt caused a strong (here 187 % at +20 mV) 

activation of hIK channels with the consequence that the membrane hyperpolarized by -45 mV. The same 

results were obtained in 3 similar measurements, causing a negative shift of Vm by -16.7 ± 16.4 mV (n=3) and 

an increase of the instantaneous current by 19.6 ± 15.7 pA/pF (n=3) at +40 mV. 

In an alternative experiment [Ca2+]cyt was increased by treating cells with the calcium ionophore Ionomycin 

[1 µM] (Fig.  17 D and E). The result of this experiment was similar to those reported from experiments in 

which [Ca2+]cyt was directly increased by perfusion. The addition of the ionophore resulted in a strong increase 

in a conductance by 140 % at +20 mV, which was linear between -80 and + 40 mV and displayed a negative 

slope at high positive voltages. 

 

Fig.  17  Elevation of [Ca2+]cyt activates heterologous expressed hIK channels.  

HEK293 cells overexpressing the hIK channels were activated with an increase of [Ca2+]cyt either by exchange of the internal solution (A) 

or by treatment with the calcium ionophore Ionomycin [1 µM] (D).   

Changing the internal solution from a calcium concentration of 10 nM to 10 µM [Ca2+]cyt, activated overexpressed hIK channels. The 

current response to a +20 mV voltage step before (grey) and after (black) increasing of [Ca2+]cyt is shown in A. The IinstV curves with 

10 nM [Ca2+]cyt (open symbols) and 10 µM [Ca2+]cyt  (filled symbols) are illustrated in B. The calcium-activated conductance is displayed 

in C as difference of the IinstV curves from B and reveals the typical linear increase in conductance between -80 and +40 mV, with a 

negative slope at high positive voltages.  

A similar activation of hIK channels could be observed after treating HEK293 cells overexpressing hIK channels with the calcium 

ionophore Ionomycin [1µM]. The current response to a voltage ramp from -100 to +100 mV with a subsequent voltage step to +20 mV 

before (grey) and after treatment with 1 µM Ionomycin (black) is shown in D. The increase in conductance as difference of the measured 

voltage ramps before and after rise of the cytosolic calcium concentration is illustrated in E. The cell in D and E was measured with an 

internal free calcium concentration of 1 µM. 
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The hIK channel mediated conductance in HEK293 cells could be blocked with the inhibitor Clotrimazole 

(CLT) (Fig.  18). Challenging cells with 10 µM CLT caused a reduction of the conductance by about 76 % at 

+20 mV; as a result of the reduced conductance the cell depolarized by about +12 mV.  

 

 

 

Fig.  18  Clotrimazole blocks heterologous expressed hIK channels.  

Current traces of a HEK293 cells overexpressing the hIK channels to a voltage pulse protocol from -80 to +60 mV in 20 mV steps before 
(A) and after blockage with 10 µM Clotrimazole (CLT) (B). The corresponding IinstV relation is shown in C. The free running membrane 
voltage depolarized by +12 mV, as indicated with arrows. The blocked current is shown in D. The ∆I instV relation was obtained by 
subtraction of the IinstV relations from C. The cell was measured with an internal free calcium concentration of 100 nM. 

 

 

In further experiments I attempted to elucidate the signal cascade by which reactive oxygen species and Ca2+ 

affect hIK activity. Treating HEK293 cells, which overexpress the hIK channel, with 300 µM H2O2 resulted in 

an increased K+ conductance in the voltage range between -20 and +40 mV (Fig.  19 B). The mean increase in 

instantaneous current at a voltage pulse of +20 mV, which was evoked by 300 µM H2O2 was 5.7 ± 3.6 pA/pF 

(n=3); this increase in conductance caused a negative shift of Vm by -11 mV ± 2 mV (n=3). The conductance, 

which was stimulated by H2O2 could be inhibited by caesium. This is not a direct prove for a participation of 

hIK channels in the increase in conductance because Cs+ is a general blocker of potassium-channels  

(Fig.  19 C). Still the results of these experiments support the view that H2O2 causes an increase in K+ 

conductance. The fact that the latter conductance is mainly carried by hIK channels is underscored by 

experiments, in which wildtype HEK293 cells were treated with H2O2; these cells, which do not exhibit hIK 

activity, also exhibited not sensitivity to H2O2 (Fig.  19 E). Collectively the results of these experiments 

suggest that hIK channels are indeed a primary target of ROS stress in cells. 
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Fig.  19  ROS mediated activation of overexpressed hIK channels.  

Representative current response of a HEK293 cell transiently overexpressing hIK channels before (grey) and after addition of 300 µM 
external H2O2 (A). The current response was recorded with a ramp protocol from -100 to +100 mV and a final voltage step to +20 mV. 
The free running membrane voltage hyperpolarized by -12 mV. The ∆I instV-curve in B results from subtraction of the current recording 
directly before addition of H2O2 from the recording after external H2O2 was applied. The activated conductance was blocked with 
internal caesium (C), depolarizing the membrane by +16 mV (grey before and black after exchange of the internal solution). The shift in 
Vm upon challenging HEK293 cells overexpressing hIK channels with H2O2 by -11.3 ± 2.0 mV (n=3) was significant (** p < 0.05) (D). 
HEK293 wildtype cells (open symbols) showed no changes in current density, whereas the HEK293 cell which expresses hIK channels 
(filled symbols) elicited a maximal increase in current density 2 minutes after H2O2 was supplied to the external solution (E). 

 

In the same line of arguments previous work suggested that the presence of hIK channels made cells sensitive 

to ionizing irradiation. After establishing now the current voltage relations of hIK channels in the 

heterologous expression system of HEK293 cells I examined the effect of X-ray irradiation on the conductance 

of these cells. Important to note is that previous experiments have shown that this treatment had no 

appreciable effect on the current voltage relations of wt HEK293 cells (Roth, 2013). The data in Fig.  20 show 

that irradiation of HEK293 cells, which overexpress the hIK channel indeed exhibited a radiation response. An 

increase in hIK channel activity, similar to that obtained after increasing [Ca2+]cyt could be observed after 

irradiation with 1 Gy of X-ray irradiation. Fig.  20 A shows the current response of the same HEK293 cell, 

which expressed hIK channels, before and after irradiation. The difference IinstV relation, which shows the 

irradiation activated current, has the typical features of hIK channels e.g. the IV relation is linear over a 

voltage window from -60 to +40 mV, decreases at positive voltages and reverses close to the K+ Nernst 

voltage. In similar experiments an activation of hIK channels by X-ray irradiation caused an average increase 

in the instantaneous current at a reference voltage of +20 mV by 1.5 ± 0.9 pA/pF (n=7); the concomitant 

negative shift of Vm was -6 mV ± 2 mV (n=7). 
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The time-course of the normalized current response before and after radiation stress indicates that the 

activation of hIK channels is a very early effect of ionizing radiation. An increase in conductance is already 

observed in a time window of 3-12 minutes after irradiation with 1 Gy of X-ray (Fig.  20 E). This observation 

is similar to the activation of potassium-channels in A549 cells after X-ray irradiation (Roth, 2013), indicating 

that a similar mechanism activates the hIK channels in both cell types. 

 

 

Fig.  20  Activation of overexpressed hIK channels by irradiation with 1 Gy X-rays. 

Representative current response of a HEK293 cells overexpressing the hIK channel to a ramp protocol from -100 to +60 mV before 
(grey) and after (black) irradiation with 1 Gy X-rays (A). The shift of Vm by -16 mV is indicated with arrows. The increase in 
conductance as a difference of both is shown in B. The gained instantaneous conductance at a voltage step of +40 mV carried by the 
overexpressed hIK channel is illustrated in C.  

The membrane voltage was significant hyperpolarized after irradiation by 1 Gy X-ray irradiation (*** p < 0.001; n = 7) (D). The time-
course of radiation induced hIK channel activation is illustrated in E. The time-point of irradiation with 1 Gy of X-ray is indicated with 
an arrow. The mean current of a +20 mV pulse was normalized to the current directly before irradiation and the maximum after 
irradiation. The cells were measured with an internal EGTA concentration of 1 mM. 

 

The degree of hIK activation by X-ray irradiation seems to depend on the level of hIK channel expression in 

HEK293 cells (Fig.  21 A). The general picture is the following: Cells which overexpress the hIK channel had 

a negative membrane potential and these cells exhibited a strong response to IR. Cells with a negative 

membrane voltage presumably expressed a larger amount of active hIK channels while cells with a more 

depolarized voltage expressed only a low amount of active hIK channels.  

In A549 cells with a hyperpolarized membrane showed only a minor or no activation upon irradiation (Roth, 

2013) and external applied ROS (Fig.  21 B). These data indicate that radiation cannot further augment the K+ 

conductance in cells when a small number of endogenous hIK channels is already fully active in A549. In line 

with this argument radiation treatment was able to stimulate hIK activity in A549 cells, which exhibited a 

depolarized Vm e.g. a low hIK activity prior to the treatment. In this scenario the amount of endogenous 

expressed hIK channels and consequently the percentage of possibly activatable channels was limited (Fig.  21 

B). Whereas the stimulating signal, e.g. an extension of [Ca2+]cyt was the limiting factor in cells 

overexpressing hIK channels (Fig.  21 A). 
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Even though the results with HEK293 cells that heterologously expressed hIK channels are preliminary they 

support the view that hIK channels could be activated by ionizing radiation via ROS, e.g. H2O2 and Ca2+. 

 

 

 

Fig.  21  Radiation and ROS induced membrane hyperpolarization is dependent on the hIK channel activity.  

The scatter-plot illustrates the correlation of negative membrane voltage before treatment with H2O2 (open symbols) or X-ray irradiation 
(filled symbols) and the negative shift of the membrane voltage (∆Vm) of HEK293 cells overexpressing the hIK channel (A).  

A similar scatter-plot reveals that A549 cells became more hyperpolarized if their membrane voltage was depolarized before H2O2 
treatment (B). 

 

In summary the results of the electrophysiological experiments support the view that an elevation of H2O2 as 

well of [Ca2+]cyt can mimic the effect of radiation in inducing hIK channel activity in cells, in which this 

channel is expressed. The sequence of events after irradiation presumably starts with an increase in ROS; it is 

reasonable to speculate that H2O2, a ROS with a long life time, is involved in this reaction. An elevation of 

ROS concentration activates endogenous hIK channels in A549 cells as well as heterologous expressed hIK 

channels in HEK293 cells. These data strongly support the view that cells, which express hIK channels, are 

sensitive to ionizing irradiation. This stress generates an elevated conductance of this K+-channel with a 

consequent hyperpolarization of the cells. It is interesting to note that HEK293 cells, which are not sensitive 

to X-rays acquire a radio-sensitivity after expressing the hIK channel. This suggests that the events upstream 

of hIK channel activation including ROS generation and presumably [Ca2+]cyt elevation are the same in A549 

cells and HEK293 cells.  

 
 
 
4.3. ROS stimulated increase of the cytosolic calcium concentration 
 
Since the hIK channel is a calcium-activated ion-channel the most probable effect of radiation is not a direct 

effect of ROS on the channel protein. More likely is that radiation stress initiates a signal cascade, which 

finally leads to a raise in the cytosolic calcium concentration. To elucidate whether ROS are indeed able to 

trigger a calcium signal cascade, I expressed a calcium sensor in HEK293 and A549 cells and monitored the 

Ca2+ concentration in these cells before and after challenging them with external hydrogen peroxide. 
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As a Ca2+ sensor the genetically encoded FRET based calcium sensor YC3.60 was employed both in HEK293 

and A549 cells. Cells expressing the chameleon sensor show only minor FRET efficiency under resting 

conditions in which the cytosolic calcium concentration ([Ca2+]cyt ) is in the nanomolar range (Clapham, 1995, 

2007). It is well established that [Ca2+]cyt  serves as a  second messenger in cells and it can transiently raise up 

to 1000-fold in response to an appropriate stimulus. 

 

To simulate a fast increase of [Ca2+]cyt in HEK293 cells, which transiently overexpressed the chameleon 

sensor, they were challenged with the calcium ionophore Ionomycin [5 µM] (Fig.  22). Upon addition of the 

ionophore the FRET efficiency of the chameleon sensor increased dramatically. This is due to a 

conformational change of the linker between the CFP and the YFP fluorescent protein of the sensor, which is 

induced by calcium binding to the associated calmodulin (Miyawaki et al., 2013; Nagai et al., 2004; Whitaker, 

2012). The increase in [Ca2+]cyt was monitored as an increase in the ratio of the fluorescence intensities of 

YFP/CFP (Fig.  22 A). The ratio remained very stable (2.6 ± 0.4; n=140) during the time (here 60 min) over 

which cells were in a resting condition and exhibited a fast rise in response to Ionomycin treatment. The 

fluorescence ratio increased by a value of 11.8 ± 3.8 (n=140) after elevation of [Ca2+]cyt.   

 

 

 

Fig.  22 The calcium signal remains stable over a long time period. 

HEK293 cells expressing the FRET based calcium sensor YC3.60 were measured over a time period of about 60 minutes. The mean of 
YC3.60 ratio ± SD of 140 cells from a single experiment is shown in A and remained very stable over this time period (2.6 ± 0.4). The 
high amplitude at the end of the measurement was induced by treatment with 5 µM Ionomycin (IM). The calcium ionophore allows the 
adaption of the internal calcium concentration to the predefined external calcium concentration of 2 mM. The blue (=0) to red (=10) 
pseudocolored image of representative cells before and after treatment with 5 µM Ionomycin are illustrated in B (scale bar 10 µm).  

 

 

To examine the impact of ROS on [Ca2+]cyt, HEK293 and A549 cells, which transiently expressed the 

chameleon sensor, were exposed to 200 µM H2O2 in the external buffer.  

The typical response of the Ca2+ sensor to the ROS stress is shown in Fig.  23. In the present case HEK293 

cells showed after a lag period of about 2 minutes a complex elevation of [Ca2+]cyt (Fig.  23 A). In some cells 

[Ca2+]cyt started to oscillate after ROS stimulation (Fig.  23 B). The maximal increase of [Ca2+]cyt was 

observed 15.3 ± 7.9 minutes (n=140; N=5) after H2O2 was added to the external medium.  

 

 



 

Chapter 1 - Activation of potassium-channels by ROS and calcium 34 

 

Fig.  23  External applied ROS stimulate calcium signals in HEK293 cells. 

Exemplary single-cell responses of HEK293 cells transiently expressing the calcium sensor YC3.60 challenged with 200 µM external 
H2O2 (arrow) are displayed in A. The starting value of the IYFP/CFP ratio is indicated in grey. The cells showed increased calcium 
concentrations about 2 minutes after treatment. Some cells exhibited oscillations in [Ca2+]cyt (B). The blue (=0) to red (=10) 
pseudocolored ratiometric images corresponding to the signal in (B) before and 10 minutes after H2O2 treatment (maximum) is shown in 
C (scale bar 10 µm). The cells were measured in solution with 2 mM [Ca2+]ext. The 10 illustrated representative single-cell responses are 
from 4 independent experiments. 

 

Similar results were obtained with A549 cells. Also these cells responded about 2 minutes after treatment with 

external H2O2 with a significant increased [Ca2+]cyt (Fig.  24). The maximal increase of [Ca2+]cyt was observed 

22.6 ± 7.6 minutes (n=60; N=3) after H2O2 was added to the external medium.  

 

 

Fig.  24  H2O2 stimulated increase of [Ca2+]cyt in A549 cells. 

Ratiometric signal of two representative A549 cells transiently expressing the calcium sensor YC3.60 after treatment with 200 µM H2O2 
(arrow). The cells exhibited after a short lag period an increase in [Ca2+]cyt (A). The blue (=0) to red (=1) pseudocolored ratiometric 
images corresponding to the black graph before treatment and at the maximal response are shown in B (scale bar 10 µm). The mean ± SD 
of 9 cells is illustrated in C. The starting value of the IYFP/CFP ratio is indicated in grey. The cells exhibited already after 2 minutes a 
significant increase of [Ca2+]cyt over baseline niveau. The maximal increase of [Ca2+]cyt of these 9 cells was observed 20.6 ± 6.3 min 
(n=9) after addition of H2O2 to the external medium. The fluorescence intensity ratio of YFP/CFP before (-) and at the maximum after 
H2O2 (+) both normalized to IYFP/CFP after Ionomycin [5µM] treatment, exhibited a significant raise of [Ca2+]cyt (*** p < 0.001; n=60 of 
3 independent experiments) (D). The cells were measured in solution containing 2 mM [Ca2+]ext. 
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The analysis of calcium signals in HEK293 as well as in A549 cells reveals that low concentrations H2O2, 

which presumably resemble those in the cytosol of stressed cells, are able to elicit an increase in [Ca2+]cyt. The 

measured calcium responses were very diverse, ranging from only a slight elevation to recurring oscillations 

with large amplitudes. The general increase of [Ca2+]cyt which starts to occur with a lag time of about 2 

minutes after H2O2 was added to the external solution fits very well to the dynamics of hIK channel activation 

both endogenous in A549 and heterologous expressed in HEK293 cells. Also channel activation becomes 

apparent only after a lag time of about 2 min after challenging cells with H2O2 (Fig.  13 F). The results of 

these experiments strongly suggest a causal relation between ROS and hIK channel activation, which is 

mediated by a rise in [Ca2+]cyt. 
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5. CHAPTER 2 - Generation of ROS by UV-laser micro-irradiation 
 

5.1. Establishing fluorescence based sensor proteins for in vivo monitoring of ROS and ROS 
buffering in cells after UV-laser micro-irradiation   

 
The recent development of genetically encoded protein-based fluorescent-sensors opened a new avenue for the 

detection of radicals, which emerge in cells in response to stress. These protein sensors replace redox sensitive 

dyes like dichlorofluorescein derivatives, e.g. DCFDA (2'-7'-dichlorodihydrofluorescein diacetate), which have 

been used with mixed success to estimate the production of reactive oxygen species (ROS) in vivo. The new 

generation of genetically encoded fluorescence sensors overcome several of the disadvantages of the dyes. The 

reporter proteins can be targeted to cellular subcompartments via targeting sequences; they are also reversible 

and in the case of the sensor HyPer, which was used here, highly sensitive to only one ROS species e.g. H2O2 

(Belousov et al., 2006; Malinouski et al., 2011; Markvicheva et al., 2011). DCF derivatives in contrast are only 

slow oxidized by H2O2, which is one of the most relevant ROS (Mikkelsen & Wardman, 2003). 

 

HyPer is a monomeric protein and senses hydrogen peroxide (H2O2) exclusively. It was constructed from 

Belousov et al. (2006) with a circular permutated YFP that is inserted into the well characterized regulatory 

domain of OxyR; a transcription factor from E. coli (Choi et al., 2001; Kim et al., 2002; Lee et al., 2004). 

Exposure of HyPer to H2O2 leads to the formation of a disulfid bridge between Cys199 and Cys208 in the 

OxyR. This results in an increased fluorescence intensity for an excitation at 488 nm (I488 nm) and a decreased 

fluorescence intensity for excitation at 405 nm (I405 nm). Due to this opposite changes in fluorescence intensity 

at two different excitation wavelengths the corresponding ratio of the fluorescence intensity I488nm / 405nm 

increases upon oxidation of HyPer with H2O2. The data in Fig.  25 show a representative experiment in which 

the HyPer was expressed in HEK293 cells. When these cells were challenged with H2O2 in the bath solution 

the ratio of the HyPer reporter increased reporting an elevation of H2O2 in the cells. 

 

 

Fig.  25  Fluorescence properties of the H2O2 sensor HyPer.  

HEK293 cells transiently expressing the ratiometric fluorescence sensor HyPer were monitored for 10 minutes before 50 µM H2O2 was 
added to the external solution. The background corrected fluorescence intensity at an excitation wavelength of 405 nm (I405 nm) decreased 
whereas the fluorescence intensity at an excitation wavelength of 488 nm (I488 nm) increased simultaneously (A). The fluorescence ratio, 
which was obtained by dividing I488 nm / I405 nm was increasing upon H2O2 treatment. The corresponding blue (=0) to red (=1) 
pseudocolored fluorescence images of two cells expressing the sensor before and after treatment with 50 µM H2O2 are shown in B (scale 
bar 10 µm). 
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Ratiometric sensors have several advantages in that they prevent many imaging artifacts, which are caused by 

bleaching of the sensor, concentration differences between cellular compartments or by the movement of the 

object (Lukyanov & Belousov, 2013). The ratio of the HyPer sensor is independent of the amount of protein, 

which is expressed in a cell. The data in Fig.  26 show that it is also very stable over long recording periods. 

The 12 examined cells displayed a mean I488 nm / 405 nm ratio of 0.35 ± 0.03 (n=133) in the monitored time of 

30 minutes. This is a great advantage over DCF derivatives. A further problem associated with the DCF dye 

is that it generates by itself ROS during light exposure; this results in an artificial signal amplification. The 

HyPer sensor in contrast does not generate any artificial ROS upon exposure to light during image acquisition 

(Belousov et al., 2006). 

 

 

Fig.  26  Stability of the ratiometric HyPer signal over long time recording.  

The ratio I488 nm / I405 nm of the HyPer protein expressed in HEK293 cells remained stable over more than 30 min of recording (n=7; 0.35 
± 0.03). Only after addition of 30 µM H2O2 to the external solution an increase in the ratio was obtained (A). Exemplary blue (=0) to red 
(=1) pseudocolored ratiometric images before and after addition of 30 µM H2O2 to the external solution are displayed in B (scale bar 
10 µm). Experiments were performed as in Fig.  25. 

 

To calibrate the HyPer signal the sensor was transiently expressed in HEK293 and A549 cells and the cells 

were then challenged with different concentrations of H2O2 in the bath medium. The representative data in 

Fig.  27 A and B show the fluorescence ratio of the HyPer sensor with different concentrations of H2O2 in the 

external buffer. The corresponding calibration curve shows the fluorescence ratio as a function of the external 

H2O2 concentration on a log-scale (Fig.  27 C).  

The data were fitted with a sigmoidal function to obtain the concentration of H2O2 for a half-maximal (Kox) 

increase in I488 nm / 405 nm ratio (equation 1). Here ∆rmin and ∆rmax are representing the minimal and maximal 

change in I488 nm / 405 nm ratio respectively. 
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If we assume that the concentration of the membrane permeable H2O2 is the same outside and inside of the cell 

we can estimate a Kox of 31.3 µM. This value is much higher than the corresponding Kox value, which was 

obtained when the purified HyPer was calibrated in vitro. The published data from the in vitro calibration 

report a dynamic range of the HyPer protein between 25 nM and 250 nM and a Kox value of 160 nM 

(Belousov et al., 2006). Hence, the Kox value from in vitro calibrations is 200 times smaller than that of the 

present in vivo approach. The discrepancy between the in vivo and in vitro calibration may be explained by 
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several factors. First it is not known if in our in vivo calibration the internal H2O2 concentration is indeed 

identical to the external calibration. Furthermore like in the case of many other reporters we must assume that 

the fluorescence properties of the protein are affected by cellular compounds and that the in vitro calibration 

cannot be directly used for a quantification of in vivo data. In a recent report the sensitivity of HyPer 

expressed in HEK293 cells was estimated to be between 1 and 50 µM H2O2 in experiments in which the 

cytosolic H2O2 concentration was altered by adding the redox molecule to the external solution of the cells 

(Malinouski et al., 2011). Also in these experiments the sensitivity of HyPer to H2O2 was 200 to 500-fold lower 

in cells than in the in vitro experiment (Bilan et al., 2013). Hence, the estimated Kox value of 31.3 µM in the 

present experiments is in good agreement with the published dynamic properties of HyPer from in vivo 

calibrations.  

 

Fig.  27  In vivo calibration of the ratiometric fluorescence sensor HyPer. 

Representing example of the I488 nm / I405 nm ratio from HyPer in HEK293 cell in the cytoplasm and in the nucleus under the influence of 
different concentrations of external H2O2 (A). The arrows indicate the time point where 20 µM (left arrow) and 100 µM (right arrow) 
were added to the external solution of the cells consecutively. The change in I488 nm / I405 nm ratio following H2O2 treatment is reversible; 
consecutive additions of H2O2 were made once the signal had decayed back to the resting level. In these experiments the magnitude of 
the signal excursion was depending the concentration of H2O2 added to the external buffer. The corresponding blue (=0) to red (=3) 
pseudocolored images of an exemplary cell are depicted in B (scale bar 10 µm). The data show that the cytoplasm exhibited a stronger 
signal than the nucleus and that the clearance of the signal form the nucleus was faster than from the cytosol. This suggests a faster 
buffering of H2O2 from the nucleus. The calibration curve of HyPer in vivo (n=1-7 ± SD) is shown in C. The H2O2 concentration in the 
external medium is plotted on a log-scale versus the measured increase in fluorescence ratio (∆I488 nm / 405 nm). The data were fitted with a 
sigmoidal-function (equation 1). The concentration of H2O2 for half-maximal (Kox) increase in I488 nm / I405 nm ratio was determined as 
31.3 µM.  

 

5.2. UV-laser micro-irradiation generates a rapid burst of H2O2 in the irradiated compartment 
 
UV-laser micro-irradiation is widely used in radiation biology for creating distinct DNA double strand breaks 

and for analyzing the recruitment of repair proteins in living cells (Dinant et al., 2007; Ferrando-May et al., 

2013; Huang et al., 2013; Mortusewicz et al., 2008, 2006, 2005). For this reason I examined the generation of 

ROS in cells following UV-laser micro-irradiation with a 405 nm laser at a CLSM setup. HEK293 and A549 

cells, which transiently expressed HyPer, were challenged with UV-laser micro-irradiation at defined spots in 
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the cell, e.g. the cytoplasm or the nucleus. An example of a cytoplasm micro-irradiation with 2 mJ/µm2 of a 

HEK293 cell is depicted in Fig.  28. A rapid burst of H2O2 immediately after micro-irradiation was observed 

throughout the cytoplasm; a slight elevation of the H2O2 concentration also occurred in the nucleus. The same 

results were obtained with HEK293 cells and A549 cells. This implies that the response to the stress is a 

generic response of cells and not cell type specific. 

 

 

Fig.  28  UV-laser micro-irradiation in HEK293 cells elicites the generation of H2O2. 

An exemplary HEK293 cell transiently expressing the H2O2 sensor HyPer was irradiated with a 405 nm laser (about 2 mJ/µm2) in the 
cytoplasm. An elevated H2O2 concentration was observed in the cytoplasm (black); a slight elevation of the signal was also observed in 
the un-irradiated nucleus (grey) directly after irradiation (A). The starting value of the I488 nm / 405 nm ratio is indicated in grey. The 
corresponding blue (=0) to red (=1) pseudocolored images were taken before and after micro-irradiation (B) (scale bar 10 µm). The circle 
in the left image indicates the site of irradiation. The amount of H2O2, which was produced in the cytoplasm, was depending on the 
deposed laser energy (n≥4) (C). 

 

 

In most of the cells the detected signals were clearly confined and only detected in the irradiated compartment 

e.g. either in the nucleus or the cytoplasm. Examples for defined compartment specific HyPer responses to 

local UV micro-irradiation are illustrated in Fig.  29 A and B. The ratiometric HyPer signal was immediately 

distributed homogeneously throughout the irradiated compartment. Using the aforementioned in vivo 

calibration (Fig.  27) I can estimate that an energy dose of 3 mJ/µm2 generates in the exemplary A549 cells in 

Fig.  29 A and B a H2O2 concentration of 50 nM in the nucleus and about 25 nM in the cytoplasm. The same 

experiments were repeated in 80 single-cell experiments with irradiation of the cytoplasm and 21 experiments 

with nucleus irradiation with a range of laser energies. The mean elevation of the HyPer ratio in the nucleus 

and in the cytoplasm as a function of the laser energy, which was used to challenge the respective cell 

compartments is shown in Fig.  29 C. The results of these experiments show that a higher laser energy dose 

e.g. a higher UV stress is necessary to generate the same amount of H2O2 in the cytoplasm as in the nucleus. 

An increase in the HyPer ratio of 0.1 in Fig.  29 C corresponds to a treatment of cells with 8 µM external 

applied H2O2, if we use the in vivo calibration. If we use the in vitro calibration of HyPer this would translate 

into an internal H2O2 concentration of 40 nM; the latter is calculated on the assumption that the in vivo 

calibration underestimates the affinity of the sensor by a factor of 200. 
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Fig.  29  UV-laser micro-irradiation generates a rapid burst of H2O2 in the irradiated compartment. 

A549 cells transiently expressing the ratiometric fluorescence sensor HyPer were micro-irradiated with a 405 nm laser (3 mJ/µm2) either 
in the nucleus or in the cytoplasm (circles in left image). The blue (=0) to red (=1) pseudocolored ratiometric images before and directly 
after micro-irradiation are shown in A. The starting value of the I488 nm / 405 nm ratio is indicated in grey and the onset of irradiation is 
indicated by arrow. The time course of H2O2 generation as well as the recovery of the signal is shown in B.  

The irradiation elicited rise in H2O2 is shown by the rise in I488 nm / I405 nm ratio in C. The laser irradiation generated rises in H2O2 were in 
both compartments a function of the deposited energies. For the same energy doses of radiation stress the rise in H2O2 was higher in the 
nucleus (n≥4) than in the cytoplasm (n≥11). 

 
To test whether the rise in the HyPer ratio after micro-irradiation is indeed due to H2O2 generation and not a 

photochemical artifact of the sensor protein, the same cells were first micro-irradiated with the 405 nm laser 

(3 mJ/µm2) under normal experimental conditions in PBS and then treated with 6 mM N-acetylcysteine 

(NAC) (Fig.  30 A). Former studies revealed the prevention of DNA damage in presence of NAC after 

irradiation with UVA and visible light (Morley et al., 2003). Indeed was the cell permeable antioxidant NAC 

capable to scavenge the irradiation generated raise in the HyPer ratio significantly. In further experiments 

cells were stimulated by UV micro-irradiation in the presence of 10 mM NAC in the bath solution. In this case 

UV-laser micro-irradiation had no perceivable effect on the HyPer ratio (Fig.  30 B). 

 

Fig.  30  The ROS, which are elicited by laser micro-irradiation, are scavenged with the radical scavenger N-acetylcysteine.  

Ratio of Hyper in the same HEK293 cells before (pre), after micro-irradiation (m.i.) with 3 mJ/µm2 from a 405 nm laser and after treating 

the same cells with 6 mM N-acetylcyteine (NAC) in the bath medium (+NAC) (A). The radiation generated ROS were scavenged by 

NAC. Cells were also measured either in standard PBS buffer (PBS) or in a PBS buffer containing 10 mM N-acetylcysteine (NAC). 

Micro-irradiation elicited in the latter case a significantly smaller increase in the HyPer ratio (B). (** p < 0.05; *** p < 0.001) 
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Since HyPer has like almost all GFP-like fluorescence proteins a pH sensitive tyrosine containing 

chromophore, it is necessary to perform control measurements, which test the contribution of pH changes to 

the HyPer signal (Belousov et al., 2006; Bilan et al., 2013; Ermakova et al., 2014; Lukyanov & Belousov, 2013). 

For this purpose the H2O2 insensitive variant of HyPer the so called SypHer (Poburko et al., 2011) was used. In 

SypHer the critical cysteine at position 199 of the OxyR is changed into a serine, creating a ratiometric 

fluorescence sensor with the same pH sensitivity like HyPer, but with no sensitivity to H2O2 (Fig.  31 A). The 

latter should only report the effect of UV-irradiation on the cellular pH. 

 

Irradiating HEK293 cells, which transiently expressed SypHer, with the same dose of 405 nm laser 

(3 mJ/µm2) resulted in no changes in fluorescence ratio. In contrast HEK293 cells expressing HyPer showed 

the expected increase in the HyPer ratio upon irradiation (Fig.  31 B). The results of these experiments 

strongly support the notion that the observed increase in fluorescence ratio after laser micro-irradiation could 

be affiliated to a generation of H2O2 in the irradiated compartment; any photoconversion of the sensor or non 

specific signals, which are related to excursions in the cellular pH do not contribute to the changes in 

fluorescence ratio following UV-irradiation. 

 

Fig.  31  Laser micro-irradiation has no effect on the pH of the cytosol.  

HEK293 cells transiently expressing either HyPer (n=2) or a H2O2 insensitive cysteine mutant (C199S; SypHer; n=4 ± SD) were micro-

irradiated with about 3 mJ/µm2 of a 405 nm laser (arrow) and treated with 30 µM H2O2 in the bath medium afterwards (A). HE293 cells 

expressing HyPer displayed an increase in ratio after laser micro-irradiation, whereas the signal of the H2O2 insensitive mutant SypHer 

remained stable or decreased slightly. The H2O2 reporter HyPer exhibited after irradiation on average an increase in the I488 nm / I405 nm 

ration of 0.08 ± 0.095 (n=48); in contrast no significant change was observed if HEK293 cells expressing the cysteine mutant SypHer 

were irradiated with the same laser dose of 3 mJ/µm2. (*** p < 0.001) 

 
 
5.3. Cytoplasm and nucleus have different redox-buffering capacities  
 
To further analyze the generation and processing of ROS after laser micro-irradiation I employed another 

ratiometric, protein-based fluorescence sensor. The sensor Grx1-roGFP2 consists of a redox-sensitive GFP 

variant (roGFP2; Cannon and Remington, 2006) fused to the human glutaredoxin1 (Grx1). The sensor allows 

an imaging of the glutathione redox-potential. Since glutathione is the main redox-buffer in cells the Grx1-

roGFP2 signal provides an indirect measure of all ROS, which are generated during a stress and which are 

then buffered by glutathione (Gutscher et al., 2008; Morgan et al., 2011).  
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Test experiments showed that the application of H2O2 to the external solution induced a rapid and reversible 

response of the glutathione redox-potential sensor. While the fluorescence intensity at an excitation 

wavelength of 405 nm increased the fluorescence intensity at an excitation wavelength of 488 nm concomitant 

decreased. This resulted in a fast change in the ratio of this two wavelength (I405 nm / I488 nm). The latter was 

obtained by dividing the fluorescence intensity at an excitation of 405 nm (I405 nm) and at 488 nm (I488 nm)  

(Fig.  32). 

 

Fig.  32  Fluorescence properties of the redox sensor Grx1-roGFP2.  

HEK293 cells transiently expressing the ratiometric fluorescence sensor Grx1-roGFP2 were treated first with 20 µM (left arrow) and 
then with 160 µM H2O2 (right arrow). The background corrected fluorescence intensity obtained with an excitation wavelength of 
405 nm (I405 nm) increased and simultaneously the fluorescence intensity for an excitation wavelength of 488 nm (I488 nm) decreased (A). 
The calculated fluorescence ratio I405 nm / 488 nm therefore increased upon H2O2 treatment; the excursion of the signal was depending on the 
H2O2 concentration. The corresponding blue (=0) to red (=1) pseudocolored fluorescence images taken before and after treatment with 
160 µM H2O2 are shown in B (scale bar 10 µm).  

 

The ratiometric signal was stable over a long period of time. In the example shown in Fig.  33 the ratio was 

recorded over about 30 minutes in 12 cells under resting conditions without any appreciable changes in the 

ratio (0.36 ± 0.02; n=660) (Fig.  33). Only when the cells were treated with H2O2 the ratio of the sensor 

increased. The results of these experiments show that a loading of cells with ROS results in a buffering by 

glutathione throughout the cell. It has been reported that the sensor Grx1-roGFP2 is pH-insensitive under 

physiological conditions (Gutscher et al., 2008; Lukyanov & Belousov, 2013; Roma et al., 2012; Schwarzländer 

et al., 2008). Hence, it was not necessary to perform further control experiments on unspecific side effects of 

the sensor. 

 

Fig.  33 The ratiometric Grx1-roGFP2 signal is stable in long time recordings. 

The I405 nm / I488 nm ratio of glutathione redox-potential sensor Grx1-roGFP2 in HEK293 cells remained stable over 30 min of recording 
(n=12; 0.36 ± 0.02). Only after addition of 30 µM H2O2 to the external solution an increase in the ratio was obtained (A). Exemplary blue 
(=0) to red (=1) pseudocolored ratiometric images before and after addition of 30 µM H2O2 to the external solution are displayed in B 
(scale bar 10 µm). 
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In the following experiments HEK293 cells, which transiently expressed Grx1-roGFP2, were challenged with 

405 nm laser micro-irradiation in the cytoplasm and in the nucleus. The overall protocol was the same, which 

was used in the context with the HyPer sensor. Micro-irradiation of cells in the cytoplasm surprisingly caused 

a dramatic increase in the fluorescence ratio in the nucleus. The half-time (t1/2) of the regeneration of the GSH 

pool was determined by first fitting the decrease in I405 nm / 488 nm ratio with a single exponential function to 

determine the τ value and second calculating the t1/2 value (equation 2). Here the rmax represents the I405 nm / 

I488 nm ratio at maximal response. 
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The increase in ratio (∆I405 nm / I488 nm 0.17 ± 0.11; n=15) in response to a deposed laser energy of  

2.8 ± 1.0 mJ/µm2 (n=15) was transient and decreased back to a resting value with a half time (t1/2) of about 

58.4 ± 18.0 sec (n=15). While the ratio increased in the nucleus the same parameter first decreased transiently 

in the cytoplasm before returning back to the resting value (Fig.  34). The same response of the Grx1-roGFP2 

sensor in the nucleus and in the cytoplasm was obtained by repetitive irradiations. Only the amplitude of the 

excursions of the Grx1-roGFP2 ratio in nucleus was smaller in the second stimulation compared to the first 

one. 

 

Another fraction of cells displayed additionally to the signal in the nucleus a rapid enhanced signal in the 

irradiated cytoplasm (Fig.  35 E and F). In other cells this cytosolic signal occurred with a delay (Fig.  36 A 

and B; cell 1). 

 

 

Fig.  34  Repetitive micro-irradiation of the cytoplasm results in an increased glutathione-redox potential in the nucleus.  

A HEK293 cell transiently expressing the glutathione-redox sensor Grx1-roGFP2 was repeatedly irradiated with 2 mJ/µm2 from the  
405 nm laser line. The blue (=0) to red (=1) pseudocolored images in A correspond to time line in B (scale bar 10 µm). The circle in the 
first image in A indicates the region in which the cell was irradiated. The dynamics of the change in I405 nm / I488 nm ratio in the nucleus as 
well as in the cytoplasm are shown in B. The time points of micro-irradiation with 2 mJ/µm2 are indicated with arrows and the starting 
value of the I405 nm / 488 nm ratio is indicated in grey. 
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The overall response of the cells to the laser micro-irradiation of the nucleus was rather diverse. A fraction of 

cells exhibited an increased glutathione redox-potential in the un-irradiated cytoplasm (Fig.  35 C and D), 

while this direct irradiation of the nucleus caused a Grx1-roGFP2 signal in the irradiated compartment in 

another fraction of cells (Fig.  35 A and B). In the latter cell fraction the increase in I405 nm / 408 nm ratio in the 

nucleus was identical to those cells where the nucleus signal occurred without irradiation of this compartment. 

According to this the same effect was provoked independent which compartment was irradiated with the same 

laser dose of 1 mJ/µm2 (Fig.  36 C). 

 

Fig.  35  Selected examples of redox-buffering after laser micro-irradiation.  

HEK293 cells expressing the glutathione redox-sensor Grx1-roGFP2 were micro-irradiated either in the nucleus (A-D) or in the 
cytoplasm with a 405 nm laser. The values of the I405 nm / 488 nm ratio at the beginning of the time-course are indicated in grey. Some cells 
exhibited an increase in oxidized glutathione in the nucleus, after this compartment was irradiated (A+B), whereas other cells showed a 
higher signal in the un-irradiated cytoplasm (C+D). Irradiation of the cytoplasm resulted in a strong signal in the un-irradiated nucleus 
and a weaker signal in the irradiated cytoplasm (E+F). The graphs in A, C and E represent the change in I405 nm / 488 nm ratio in the nucleus 
(grey) or in the cytoplasm (black). The irradiation sites are marked in the corresponding blue (=0) to red (=0.6-1, as indicated next to the 
images) pseudocolored images in B, D and F (left image before m.i.; right image after m.i.; scale bar 10 µm). The cell in E and F was 
subsequently treated with 100 µM H2O2 in the external buffer to illustrate the different redox-buffer capacities. 

 
The data in Fig.  32 and Fig.  33 already suggest that the redox-buffer capacity for H2O2 is the same in the 

nucleus and the cytosol; when H2O2 was added to the external solution the Grx1-roGFP2 signal increased in a 

uniform manner over the entire cell (Fig. 9). In an additional control experiment I nevertheless examined 

potential differences in the buffer capacity of the two compartments. For this purpose a cell was first irradiated 

in the cytosol. This resulted in the known rise of the signal in the nucleus (Fig.  36). After the signal had 

returned to the resting level the cell was challenged with 100 µM H2O2 in the external medium. This 
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treatment caused an even signal increase throughout the entire cell in one case (cell 2) but a slightly higher 

signal in the nucleus in another case (cell 1). The comparison of the Grx1-roGFP2 responses to micro-

irradiation and H2O2 treatment in the same cell suggests that the redox-buffer capacity for H2O2 is roughly the 

same in the nucleus and the cytoplasm. On the background of these data it can be speculated that UV micro-

irradiation generates many other ROS and that the buffer capacity of the nucleus for these species is higher 

than in the cytoplasm.  

But the even signal distribution after H2O2 treatment was not true for all examined cells (Fig.  35 E and F; 

Fig.  36 A and B cell 2). The diversity of different responses to micro-irradiation might give also a hind to 

differences in sensitivity to redox stress and differences in the glutathione pool during the cell cycle (García-

giménez et al., 2013; Markovic et al., 2007, 2010; Pallardó et al., 2009; Schroeder et al., 2007).  

 

Fig.  36  Cytoplasm and nucleus have different redox-buffering capacities.  

HEK293 cells transiently expressing the glutathione redox-potential sensor Grx1-roGFP2 were challenged with 405 nm laser micro-
irradiation (3 mJ/µm2) in the cytoplasm. This elicited a dramatic increase in the oxidized glutathione in the nucleus (grey) and a delayed 
increase in the cytoplasm in cell 1 (black). The values of the I405 nm / 488 nm ratio at the beginning of the time-course are indicated in grey. 
The blue (=0) to red (=0.8) pseudocolored fluorescence images in A (scale bar 10 µm) correspond to the data shown in B. The circles in 
the left image show the sites of irradiation. After treatment with 100 µM H2O2, which was applied to the external solution, both 
compartments showed a similar increase in oxidized glutathione (cell 2).  

The increase in fluorescence ratio in the nucleus after irradiating the cytoplasm was depending on the deposed laser energy of either 
about 1 mJ/µm2 or 3 mJ/µm2 (C). A similar increase in oxidized glutathione in the nucleus (N ∆I405 nm / 488 nm) was obtained after micro-
irradiation (m.i.) of either the nucleus (N) or the cytoplasm (C) with 1 mJ/µm2. 

 

I could show here that ROS, especially H2O2, are generated upon UV-laser micro-irradiation. The increase in 

H2O2 concentration could be reliably monitored with the protein-based HyPer sensor. The signal of HyPer 

was very stable under resting conditions and the recording procedure by itself caused no artificial ROS 

production. The control data also show that the signal, which follows micro-irradiation is H2O2 specific; it is 

not a photochemical artifact and it is also not caused by changes in the cellular pH. The UV light induced 

increase in ROS concentration was transient and lasted only several minutes before it returned to the resting 

level. This implies an efficient buffering of excess redox molecules in cells. By using the Grx1-roGFP2 

reporter protein it was also possible to monitor the buffering of ROS via the glutathione system.  
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It was surprising to find that the reporter signals, which were elicited by the micro-irradiation stress, 

exhibited a compartment specificity. Irradiation of the cytosol caused a small cytosolic rise in the H2O2 

concentration. The same kind of irradiation of the nucleus caused a much larger signal, which remained mostly 

confined to the nucleus. The results of these experiments in combination with data, which show that external 

H2O2 causes an even response over the entire cell suggests that irradiation elicits a short burst of ROS 

production. The H2O2 molecules presumably diffuse faster in the compartment in which they are generated 

than across the nuclear envelope. The experimental results with the Grx1-roGFP2 sensor cannot be explained 

on the basis of H2O2 production alone. The fact that this reporter exhibits an increased signal almost 

exclusively in the nucleus irrespectively on whether the micro-irradiation is focusing on the nucleus or on the 

cytosol suggests that redox species other than H2O2 are generated, which somehow escape the cytosolic buffer. 

They may quickly travel to the nucleus, were they are buffered by glutathione.  
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6. CHAPTER 3 - Real-time detection of ROS after X-ray and heavy-ion irradiation 
 

6.1. Generation of reactive oxygen species after X-ray irradiation  
 
The UV micro-irradiation approach has the advantage that the cells can be stimulated with high precision and 

subsequently monitored with a high spatial resolution. A disadvantage is the difficulty of defining the local 

dose of a UV-light treatment (Splinter et al., 2010). A further difference between UV- and X-ray irradiation is 

that the former has a lower energy than X-rays. UV-light is unlike X-rays absorbed by different molecules; it 

is also not sufficiently strong for the radiolysis of water; hence UV- and X-ray may generate different 

responses in radicals in cells.  

 

From an experimental point of view it is difficult to measure ROS immediately after irradiating cells with X-

rays. For this reason ROS production was in the past mostly measured in the time frame of hours after 

irradiation stress (Korystov et al., 2007; Ameziane-El-Hassani et al., 2010; Narayanan et al., 1997; Tominaga et 

al., 2004; Ogura et al., 2009; Hafer et al., 2008 a;b) With these experimental limitations it is obvious that the 

ROS, which were detected in these studies, could not be the radicals, which were generated as primary 

response to radiation; the life time of radicals is much too short.  The most probable explanation for the late 

ROS response to IR is a stress-induced release of ROS from mitochondria (Leach et al., 2001; Ogura et al., 

2009; Valerie et al., 2007; Yamamori et al., 2012).  

 

In addition to the question on the relevance of the late ROS signals to the primary stress response to radiation 

also the ROS measurements per se are a matter of controversial discussion in the literature. In one study ROS 

were measured after X-ray irradiation with a DCF (2'-7'-dichlorodihydrofluorescein diacetate) derivate; a 

chemical ROS dye. These data were criticized as potential artifacts because it appeared as if they may have 

originated from irradiating of the extracellular medium (Korystov et al., 2007). The latter criticism does not 

exclude that IR generates ROS. Others could show a significant increase of ROS 20 minutes after irradiating 

cells 10 Gy of X-ray; in this study it was excluded that ROS from the cell culture medium contributed to the 

signal (Hafer et al., 2008). As a resume it can be concluded here that the question on a generation of H2O2 after 

IR is not fully answered yet. Furthermore the contribution of ROS in the early phase of stress response to IR 

has for technical reasons never been examined. 

 

 

To elucidate the generation of ROS, e.g. H2O2, I implemented both the HyPer sensor for a direct H2O2 

detection as well as the Grx1-roGFP2 sensor for an indirect measure of radicals, which are buffered by 

glutathione. A custom build X-ray microscope at GSI (Helmholtzzentrum für Schwerionenforschung GmbH; 

Darmstadt; Germany) enabled for the first time a real-time monitoring of ROS in individual living cells after 

X-ray irradiation; the dynamics of ROS could be recorded with high spatial and temporal resolution. 
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HEK293 and A549 cells, which transiently expressed HyPer, were therefore challenged with X-ray irradiation 

and the fluorescence signal of the H2O2 sensor was monitored immediately after IR. An example for the 

irradiation of two HEK293 cells with 1 Gy of X-rays is shown in Fig.  37. Immediately after irradiation both 

cells showed a transient burst of H2O2 throughout the entire cell Fig.  37 A. In another subgroup of cells this 

increase in H2O2 lasted several minutes Fig.  37 C.  

 

 

 

Fig.  37   Reaction of HEK293 cells expressing HyPer to 1 Gy of X-ray irradiation. 

Two different types of reactions were observed in HEK293 cells, which transiently expressed the H2O2 sensor HyPer, after irradiation 
with 1 Gy X-rays (arrow). The values of the I488 nm / 405 nm ratio at the beginning are indicated in grey. Some cells responded with a 
transient burst of H2O2 (A), whereas the signal persisted several minutes in another sub-group of cells (C). The blue (=0) to red (=0.2) 
pseudocolored images taken before and after irradiation with 1 Gy of X-rays in B correspond to the data in the upper graph in A (scale 
bar 10 µm). The data in the lower panel of A and C are the mean ± SD from A n=11 and C n=4 cells from at least 2 independent 
experiments. 

 
 
A rapid, transient burst of H2O2 immediately after irradiation with 1 Gy of X-rays was also observed in A549 

cells (Fig.  38 A). The I488 nm / 405 nm ratio increased conspicuously above the resting values. The raise of the 

cytosolic H2O2 concentration after 5 Gy of X-ray irradiation was in the same range as that obtained by adding 

30 µM H2O2 to the external solution (Fig.  38 B). 

 

 

 

Fig.  38  Generation of H2O2 in A549 cells 
after exposure to 1 Gy and 5 Gy of X-ray 
irradiation.   

A549 cells transiently expressing the H2O2 sensor 
HyPer were challenged with X-ray irradiation 
(arrow). The I488 nm / 405 nm ratio was normalized to 
the value directly before irradiation in order to 
correct for different starting values. The mean ± 
SD for a dose of 1 Gy (n=38; N=4) is displayed 
in A and the mean ± SD for a dose of 5 Gy (n=5; 
N=1) is displayed in B. The cells in B were 
subsequently treated with 30 µM external H2O2 in 
the buffer solution. 
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When the cells were irradiated with a high dose of X-rays (here 10 Gy) it was possible to monitor the kinetic 

of ROS generation. Three representative exemplary A549 cells, which were challenged with 10 Gy of X-ray 

irradiation, are shown in Fig.  39. The single-cell responses to the X-ray stress could be fitted with a single 

exponential function (equation 3), yielding a mean time-constant τ, of 4.2 ± 1.6 min (n=35; N=3). An 

exemplary fit with the corresponding data is shown in Fig.  39 E. 
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Fig.  39  Generation of H2O2 in A549 cells after exposure to 10 Gy of X-rays. 

A549 cells expressing the HyPer reporter exhibited a slow progressive increase of H2O2 after challenging with 10 Gy of X-rays (arrow). 
The starting values of the I488 nm / 405 nm ratios are indicated in grey. The measured I488 nm / 405 nm ratio saturated about 3-10 minutes after 
irradiation before the signal started to decline. The traces in A, C and E show three representative single-cell responses to the irradiation 
stress. An exemplary single exponential fit (equation 3) to determine the time-constant τ is shown in E (red dashed line). The blue (=0) to 
red (=0.4 or 0.6) pseudocolored ratiometric images are displayed in B, D and F respectively (scale bar 10 µm). 

 
 
As a second, indirect approach for monitoring the rise in ROS after X-ray stimulation the glutathione redox-

sensor Grx1-roGFP2 was once more transiently expressed in A549 cells. These cells were then challenged 

with 10 Gy of X-ray and the fluorescence signal of the reporter was monitored. The exemplary data in Fig.  40 

show that this treatment elicited a rapid response to the radiation stress through the cells. The radiation 

induced excursion of the fluorescence signal was again fitted with a single exponential function (equation 3), as 

exemplary shown in Fig.  40 E. This yields a time-constant τ of 0.9 ± 0.5 min (n=15; N=2). The maximal 

response of the sensor was already reached 1 minute after stimulation.  
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Fig.  40 Rapid buffering of X-ray radiation generated ROS. 

Three exemplary A549 cells, which transiently expressed the glutathione redox-sensor Grx1-roGFP2, exhibited a rapid increase in 
I405 nm / 488 nm ratio after irradiation with 10 Gy of X-rays (arrow) (A, C and E). The starting values of the I488 nm / 405 nm ratio are indicated 
in grey. An exemplary single exponential fit (equation 3) to determine the time-constant τ is shown in E (red dashed line). The blue (=0) 
to red (=1 or 1.5) pseudocolored ratiometric images corresponding to the cellular responses from A, C and E are depicted in B, D and F 
respectively (scale bar 10 µm).  

 

 

The increase in ratiometric fluorescence signals of the HyPer sensor and the Grx1-roGFP2 sensor in response 

to different doses X-ray irradiation are displayed in Fig.  41 A and B. The data underscore that any of the  

X-ray doses used for cell irradiation caused an increase in ROS. The data do not exhibit a clear-cut dose 

dependency. This may indicate that the response is already close to maximal with 1 Gy X-rays. It is also 

possible that the quality of the data is not sufficient for detecting such a dose dependency. The individual mean 

values have a very large variability; also the experiments with 5 Gy X-rays were only performed once for the 

HyPer sensor and twice for the Grx1-roGFP2 sensor. 

 

The kinetic of ROS generation upon radiation stress for both sensors are depicted in Fig.  41 C and D. Every 

single-cell response was normalized to the ratio taken directly before radiation and to the maximal value after 

X-ray irradiation. In spite of the overall scatter of the data the plot shows that the HyPer signal increases 

much slower than the one from the glutathione-sensor. To quantify this observation the response of the raw 

data of each cell was fitted as exemplary shown in Fig.  39 E and Fig.  40 E with an exponential function to 

obtain the time-constant τ. A comparison of the time-constants from both sensors shows that they are 

significantly different; the GSSG signal increases on average approximately 5 times faster than the H2O2 

signal (Fig.  41 E).  
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Fig.  41  X-ray radiation induced ROS generation and buffering. 

The increase in ratiometric fluorescence signals of the reporter proteins of both, HEK293 and A549 cells, to IR stress with either 1 Gy, 
5 Gy or 10 Gy X-rays is displayed as boxplots in A for the H2O2 sensor HyPer and in B for the glutathione sensor Grx1-roGFP2. The 
data were obtained from 3-6 independent experiments for the doses of 1 Gy and 10 Gy X-rays and from 1-2 independent experiments for 
5 Gy of X-ray irradiation. 

The kinetic of ROS generation in A549 cells was measured with HyPer (C; n=35; N=3) or Grx1-roGFP2 (D; n=15; N=2). Data were 
normalized to the minimal and maximal values of the respective ratios and shown as mean ± SD. All raw data from individual cells in C 
and D respectively were fitted with a single exponential function (equation 3) to obtain the time-constant τ, which is displayed in E for 
both ROS sensors (*** p < 0.001). 

 

 
If we assume that the response time of the sensors to their respective signals is roughly the same this 

observation suggests that H2O2 rises after an oxidation of glutathione. A straight forward explanation for 

these data is that the initial rise in H2O2 concentration is dampened by the glutathione buffer in the cell. Only 

after the buffer capacity of the glutathione pool is exhausted H2O2 rises more strongly.  

 

To test whether this explanation is feasible we simulated a simple two pool model in which we assume a 

constant glutathione (GSH) buffer concentration (dotted line) (Fig.  42 B). When a saturating burst of H2O2 

was added to the system (arrow) the signal of the Grx1-roGFP2 sensor (grey), which represents the oxidized 

glutathione (GSSG), increases with a time-constant of 54 sec; this time-constant was estimated from the 

experimental data. The signal of the HyPer sensor (black), which represents the free, non-buffered H2O2 

concentration in the system, increases much slower with a lag time and a time-constant of 252 sec. The time 

delay in this simple model is caused by the simplified assumption that only H2O2 is added to the system and 

oxidizes the GSH. In reality the cellular GSH pool is most likely oxidized by all kinds of ROS. 
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Fig.  42  Simulation of the generation and buffering of H2O2.  

The normalized mean response of the H2O2 sensor HyPer (black) and the glutathione redox sensor Grx1-roGFP2 (grey) to 10 Gy of X-
ray irradiation are displayed in A. The same dynamics of the two signals could be simulated in B with a kinetic model in which we 
assume that a saturating concentration of H2O2 was added to the system (arrow). The determined time-constants for Grx1-roGFP2 
(54 sec) and HyPer (252 sec) from Fig.  41 were implemented to the simulation. 

 
 
 
6.2. Generation of reactive oxygen species after heavy-ion irradiation 
 
It has been mentioned in the introduction that sparsely irradiation by photons interacts differently with cells 

than irradiation with heavy-ions. To test whether ROS are also generated by heavy-ion particle irradiation 

cells expressing the HyPer reporter were measured at beamline microscope at UNILAC (GSI 

Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany). In these particular experiments cells 

were irradiated with lead- or carbon-ions. Exemplary responses of cells to lead irradiation (Pb; 4.7 MeV/u) are 

illustrated in Fig.  43 The data display that also this form of IR caused an increase in the HyPer signal 

implying a generation of H2O2. The increase in I488 nm / 405 nm ratio was again fitted by a single exponential 

function (equation 3) in order to determine the time-constant τ of H2O2 production. The curve fitting provided 

a mean time-constant τ of 1.3 ± 0.9 min (n=7; N=3) for the generation of H2O2 after heavy-ion irradiation.  

 

 

Fig.  43  Generation of ROS after heavy-ion irradiation with Pb.  

HEK293 cells expressing the H2O2 reporter HyPer were irradiated with Pb (4.7 MeV/u) (arrow). They exhibited a fast increase in  
I488 nm / 405 nm ratio directly after irradiation, which indicates a rapid production of H2O2. The starting values of the I488 nm / 405 nm ratio are 
indicated in grey. The blue (=0) to red (=1.4 or 1.2) pseudocolored ratiometric images corresponding to A and C are displayed in B 
and D respectively (scale bar 10 µm). 
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The response of cells to carbon irradiation (C; 11.4 MeV/u) was rather variable. Only approximately 5 % out 

of 100 cells (N=3) irradiated with 10 Gy carbon-ions showed a response. The selected data in Fig.  44 

nevertheless show that individual cells can respond to 10 Gy carbon irradiation (Fig.  44). The results of these 

experiments show that a generation of H2O2 after irradiation with heavy-ions is not obligatory; still cells are 

able to respond with an increase in the redox signal after irradiation stress. The pertinent question on why 

only a few cells showed a response to a high dose of carbon particle irradiation remains unanswered. Still the 

combined data from stimulations with lead- and carbon-ion irradiation demonstrate that also heavy-ion 

irradiation caused measurable elevations of H2O2 in cells. 

 

 

Fig.  44  Generation of ROS after irradiation with carbon-ions.  

A549 cells expressing the H2O2 reporter HyPer were irradiated with carbon-ions (11.4 MeV/u) (arrow). Only few cells exhibited in this 
case an increase in I488 nm / 405 nm ratio after particle irradiation. This implies that a production of H2O2 is not mandatory after carbon-ion 
treatment. The time-course of the I488 nm / 405 nm ratio of a responding cell and a non-responding cell are shown in A; the starting values of 
the I488 nm / 405 nm ratio are indicated in grey. The blue (=0) to red (=0.6) pseudocolored ratiometric images before and at the maximal 
response after irradiation corresponding to the upper graph in A are shown in B (grey cell) (scale bar 10 µm). 

 

 

In summary I could demonstrate and measure the real-time generation of ROS in vivo after X-ray irradiation 

as well as heavy-ion irradiation. This findings support the hypothesis that the amount of ROS, which are 

primarily produced after irradiation, are sufficient to trigger signal cascades that finally activate ion-channels. 

Already the effect of 1 Gy X-rays on the H2O2 concentration in cells was measurable with the HyPer reporter; 

and the analyses of higher doses of X-ray irradiation revealed new insights about the kinetics of primary ROS 

generation. Cells apparently have an active redox-buffer system; the operation of this buffer system can be 

monitored with the glutathione redox sensor Grx1-roGFP2. The experimental data and the simulation of the 

interplay between GSH, GSSG and H2O2 suggest, that the rise in H2O2 after IR stress is initially damped by 

the cellular redox-buffer. Only when the buffer is exhausted ROS increase strongly. The amount of H2O2, 

which is generated by IR stress, is sufficient to saturate the buffer and to cause a significant increase in the 

concentration of H2O2 in cells.  

The results obtained by this experiments enable a new point of view on ROS induced signal cascades in cells, 

which were stressed by IR. The present data provide for the first time information on the very early events, 

which follow different qualities of ionizing radiation. 
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7. Discussion 
 
The goal of this thesis was to elucidate the signal transduction cascade, which connects primary effects of 

ionizing irradiation in cells with the activation of the human intermediate-conductance calcium-activated 

potassium (hIK) channel. The main findings, which I report here, support a model according to which a pulse 

of ionizing radiation (IR) induces a rapid and transient burst of reactive oxygen species (ROS) not only in the 

nucleus but also in the cytoplasm. This elevation of ROS in the cytoplasm triggers a rise in the concentration 

of free Ca2+ in the cytosol (later termed as [Ca2+]cyt), which can lead to oscillations or a sustained raise of the 

cytosolic calcium concentration. The elevation of the second messenger Ca2+ is sufficient to activate the hIK 

channel. The latter causes an elevated potassium (K+) conductance and a membrane hyperpolarization, a well 

known signal for cell cycle regulation. This working hypothesis is summarized in a sketch in Fig.  45. 

 

 

Fig.  45  ROS and Ca2+ mediated signal cascade activating 
the hIK channel after ionizing radiation.   

The sketch summarizes the signal cascade, which was 
determined in this thesis, leading to the activation of hIK 
channels upon ionizing radiation (IR). IR induces a rapid burst 
of ROS in the cytoplasm. These ROS, especially the known 
signal molecule H2O2 stimulates a rise of the cytosolic calcium 
concentration, which subsequently activates intermediate- 
conductance calcium-activated K+-channels. The membrane 
hyperpolarization is caused by an elevated K+ conductance. The 
events, which are triggered by the hyperpolarization, affect cell 
differentiation. 

 

 
7.1. Radiation, ROS and Ca2+ induced hIK channel activation and membrane hyperpolarization 
 
After it had been discovered that ion-channels are involved in cell differentiation and that they have an impact 

on apoptosis, cell proliferation and cell migration, it became also apparent that they play a role in cancer 

development (Becchetti, 2011; Kunzelmann, 2005; Wang, 2004; Wonderlin & Strobl, 1996). Because of this 

importance of ion-channels in cell differentiation, also researchers in radiation biology addressed the question 

on whether IR has effects on ion-channel activity and if this may interfere with cell differentiation. Some 

isolated reports suggest that this is indeed the case. It was for example reported that the activity of voltage-

gated Kv3.4-like channels had been induced in response to IR. This caused a G2/M cell cycle arrest in K562 

human erythroid leukemia cells (Palme et al., 2013). Furthermore already in the early 90th it was found that γ-

irradiation caused in A549 cells an activation of K+-channels (Kuo et al., 1993). With new methods, which are 

now available for recording channel activity with a high temporal resolution after IR stress and with 

information on the molecular nature of ion-channels in cells it was recently shown that X-rays, α-particles and 

heavy-ion irradiation trigger the activation of an interesting type of K+-channels, namely the hIK channel in 

A549 cells. (Roth, 2013). The data show that the activation of this channel is a very early response to IR; it 

occurs within the first few minutes after irradiation. The fact that the hIK channel is the channel, which is 
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responding to IR, was underscored with the help of channel blockers and by expression studies (Roth, 2013). 

The results of these experiments were confirmed in the present study by additional inhibition experiments 

with the specific hIK channel inhibitor Clotrimazole (CLT), which was used effectively at submicromolar 

concentrations (Pedarzani & Stocker, 2008; Wulff et al., 2000, 2001).  

 

The results of a previous study implied that only those cells, which functionally expressed hIK channels, were 

responding to IR with an increase in K+ conductance. This hypothesis was confirmed in the present study. 

The hIK channel was therefore transiently expressed in HEK293 cells, e.g. cells, which are in their wildtype 

(wt) form insensitive to IR (Roth, 2013). The test experiments confirmed that the hIK channels were 

functionally expressed in these cells. The instantaneous current component of the transfected cells was 

blocked by the specific inhibitor CLT. Furthermore the typical hIK-like conductance could be activated in 

transfected HEK293 cells by increasing of the [Ca2+]cyt. This was achieved either by perfusing the internal 

solution or by adding the calcium ionophore Ionomycin to the bath solution. In both cases the rise in [Ca2+]cyt 

augmented a hIK typical, quasi linear conductance in the voltage range between about -60 and +20 mV with a 

characteristic negative slope at high positive voltages. The results of these experiments confirmed that the 

hIK channel exhibits in HEK293 cells the same functional features as in native cell, which express this type of 

channel endogenously.  

 

One major finding in the present study was that HEK293 cells, which are with respect to the membrane 

conductance in their wt form IR insensitive, become sensitive when they express the hIK channel. The data 

show that an irradiation of the transfected cells with 1 Gy X-rays caused an increase in the typical hIK 

conductance; the IR induced increase in conductance in these cells is the same as that induced by an elevation 

of [Ca2+]cyt. The results of these experiments underline, that the signal transduction upstream of the hIK 

channel is the same in HEK293 cells and A549 cell. The major difference between the IR sensitive A549 cells 

and the IR insensitive HEK293 cells is the presence or absence of hIK channels respectively in these two cell 

types.  

 

Even though a direct redox regulation of ion-channels was described for instances for a KATP channel (Bao et 

al., 2005) or for hERG channels (Bérubé et al., 2001), there are no hinds in the literature for redox sensitive 

amino-acids in hIK channels. This suggests that the regulation of the hIK channel after IR stress is not direct. 

This view is supported by the finding that the channels only react after a short lag time; this implies a 

radiation induced signal cascade, which finally activates hIK channels. Kuo and coworkers (1993) already 

speculated about the impact of ROS in the context of radiation induced channel activation. The present data 

now show that the IR induced K+ conductance in A549 cells was indeed also induced by a treatment of the 

cells with external applied H2O2. This H2O2 activated conductance was blocked by the hIK specific inhibitor 

CLT, indicating that the same channels are activated by ROS, IR and Ca2+ (Roth, 2013). A similar H2O2 

induced activation of hIK channels was demonstrated in HEK293 cells, which overexpress these channels. The 

contribution of the hIK channels to the redox regulation in A549 cell is further supported by the finding that 
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the same channel also activates when expressed heterologously in HEK293 cells quasi immediately after 

addition of H2O2 to the external solution; this reaction is the same of the hIK channel in A549 cells. Important 

for the focus of the present study is that HEK293 cells, which overexpressed hIK channels, are activated in a 

time window of 3-12 minutes after 1 Gy of X-ray irradiation. This kinetics of channel activation in response to 

IR is the same as in A549 cells, which natively express hIK channels (Roth, 2013). The results of these 

experiments support the hypothesis that the presence of hIK channels renders cells sensitivity to IR; they 

furthermore indicate that ROS are involved in this process. 

 

The response of A549 cells to H2O2 was very heterogeneous and only 65 % of the cells exhibited a clear cut 

activation of the hIK channel after treatment with concentrations between 300 nM and up to 300 µM H2O2. A 

plot of the response to H2O2 as a function of the free running membrane potential (Vm) prior to the treatment 

indicates a causal relation between these parameters (Fig.  12 B). Most of the 35 % of cells, which were not 

responding to H2O2, had a hyperpolarized Vm. This suggests that these cells were proliferating (Wonderlin & 

Strobl, 1996). A similar fraction of A549 cells was also found to be insensitive to X-ray irradiation (Roth, 

2013). The fraction of responding cells, which was found here, matches well with the estimate of 65 % of A549 

cells in the resting state in an unsynchronized population, the latter was quantified by flow cytometric 

measurements (Roth, 2013). From the combination of these results it is reasonable to speculate that only 

resting A549 cells with a depolarized Vm and a low impact of the hIK channel to the instantaneous current 

component, are sensitive to externally applied ROS (H2O2) or IR induced ROS.  

 

The previous finding that hIK channel activation by IR is reduced when the Ca2+ buffer concentration is 

increased has already indicated that [Ca2+]cyt is involved in the signal cascade between IR and K+ activation 

(Roth, 2013). I could here verify the anticipated changes in [Ca2+]cyt in both HEK293 and A549 cells after 

treatment with external H2O2. Even though the calcium signals varied on a cell to cell basis, H2O2 robustly 

caused in almost all cells an increase in [Ca2+]cyt, which started after a short lag time; a maximal increase in 

[Ca2+]cyt was seen after about 15 to 20 minutes of stimulation. The ability of low, supraphysiological levels of 

H2O2 to trigger a rise in [Ca2+]cyt was already demonstrated previously. But in these studies neither the 

physiological relevance nor the mechanism, which is underlying this phenomenon were known (Stone & Yang, 

2006).  

For experimental reasons it was here not possible to analyze the response of [Ca2+]cyt to IR e.g. X-rays or 

heavy-ions directly. Hence, we can only speculate that the ROS, which are generated in the cytoplasm in 

response to X-ray radiation will be sufficient to trigger an elevation of [Ca2+]cyt. A direct monitoring of 

[Ca2+]cyt in response to X-ray or heavy-ion irradiation will be desirable in the future, because irradiation 

seems to stimulate [Ca2+]cyt in some cells, but not in others (Chen et al., 2013a; Du et al., 2008; Szumiel et al., 

1990; Todd & Mikkelsen, 1994) 
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7.2. Real-time detection of ROS after ionizing radiation 
 
A key topic of this thesis was the monitoring of changes in ROS following IR in real-time and with subcellular 

resolution. For an ionizing stimulation different types of radiation were employed: 1) 405 nm UV-laser micro-

irradiation, 2) X-ray irradiation and 3) low-LET heavy-ion irradiation. To follow the dynamic changes in the 

concentration of ROS in cells after irradiation stress, the ROS species H2O2 was monitored with the 

fluorescence sensor protein HyPer. This sensor enables the detection of this single, long-lived ROS. H2O2 is 

interesting in the context of hIK channel activation, because H2O2 was able to enhance [Ca2+]cyt as well as to 

activate hIK channels independent of the cell type. Following the generation of H2O2 after IR is also 

interesting in general terms, because it is already known to act as a signal molecule when it is present in 

physiological concentrations in the cell (Forman et al., 2010; Marinho et al., 2014; Rhee et al., 2005; Rojkind et 

al., 2002; Stone & Yang, 2006; Veal et al., 2007).  

 

The control experiments show that the HyPer sensor is indeed suitable for measuring H2O2 after IR stress. 

The sensor responds in a robust manner to an elevation of the cytosolic H2O2 concentration, which is achieved 

by adding the membrane permeable H2O2 to the bath medium of cells. As in the case of many other sensors the 

in vivo calibration of HyPer is not identical to the in vitro calibration of the sensor (Borzak et al., 1990; 

Boyarsky et al., 1988; Martinière et al., 2013). The in vivo calibration provides a value for the half-maximal 

increase in ∆I488 nm / 405 nm (Kox) of 31.3 µM. This value is ca. 200 fold higher than the corresponding value from 

the in vitro calibration (Belousov et al., 2006). The discrepancy between in vivo and in vitro calibration data in 

this study is in agreement with recent reports from the literature (Belousov et al., 2006; Bilan et al., 2013; 

Malinouski et al., 2011). One mechanism, which presumably contributes to the difference between the two 

calibration methods, is the concentration difference between H2O2 in the bath and in the cell, which is caused 

by a reduced permeability of the membrane (Antunes & Cadenas, 2000; Cordeiro, 2014). A further factor, 

which contributes to the large difference between in vivo and in vitro calibration can be ascribed to the potent 

redox-buffer system in the cells (Marinho et al., 2013). The present data show how the HyPer signal is first 

increasing and then decreasing after challenging cells with extracellular H2O2. These data underline that the 

intracellular concentration of H2O2 must be significantly lower than that in the external medium. An 

additional factor, which cannot be controlled by the experimenter, is that the fluorescence properties of GFP-

based proteins could be sensitive to the milieu inside a cell. It is well established that the signal of GFP-based 

fluorescence proteins is influenced by the pH (Llopis et al., 1998; Straight, 2007; Zou et al., 2005). This pH 

sensitivity is also well known for the HyPer sensor (Belousov et al., 2006; Bilan et al., 2013; Ermakova et al., 

2014; Lukyanov & Belousov, 2013). At this point it is impossible to really translate the fluorescence signal of 

the HyPer sensor into accurate concentrations of H2O2 inside the cell. As a first approximation the in vitro 

calibration of the sensor can be used because there are good experimental reasons, which indicate that the in 

vivo calibration is an underestimation of the real affinity of the sensor to H2O2. 

 
The lack of accuracy in the HyPer calibration can also be circumvent here by an indirect approach. The 

present experiments show that an application of 200 µM H2O2 to the external buffer solution causes a signal in 
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the HyPer sensor, which is in the same order of magnitude as that which is generated by IR stress. The fact 

that 200 µM H2O2 in the external solution are also able to trigger a Ca2+ increase in cells and to activate hIK 

channels suggests that the same rise in H2O2, which is generated by IR will also elicit a rise in Ca2+. If we 

consider the in vitro calibration as a basis of the quantification, we can conclude that the H2O2 concentration, 

which is required to induce a calcium signals in A549 and HEK293 cells, is about 1 µM inside the cell. This 

value is in the range of that described in the literature for signaling purpose of H2O2 (Boveris & Cadenas, 

2000; Freinbichler et al., 2011).  

 

The present data provide for the first time an insight into ROS signals, which occur immediately after IR 

stress on a single-cell level. They demonstrate that 405 nm UV-laser micro-irradiation generates a rapid burst 

of H2O2 in the irradiated compartment independent of the type of cells, which was stressed. These data again 

confirm that the difference in sensitivity of different types of cells cannot be explained by a difference in the 

signal cascade upstream of the hIK channel. Both cell types respond in the same manner to the stress 

suggesting that the generation of H2O2 is a genuine response of cells to this kind of stress. The experiments 

show an increase in the HyPer ∆I488 nm / 405 nm ratio of 0.1 after approximately 2 mJ/µm2 of deposed laser-

energy. This corresponds to a stress of cells with 8 µM of external H2O2. Using the in vitro calibration these 

data can be converted into an increase of the internal H2O2 concentration to 40 nM. The H2O2 concentration, 

which is induced in this manner, is in the same range as the previously mentioned H2O2 concentrations, which 

were necessary to induce calcium signals and to trigger ion-channel activation. It is worth mentioning again 

that the amount of H2O2, which was measured by HyPer, can only be used as an estimate, because HyPer 

competes with the powerful redox-buffer system in the cell (Meyer & Dick, 2010). However, since the reaction 

rate of HyPer is very fast (105 M−1 s−1) (Bilan et al., 2013) it is still reasonable to assume that the measured 

amounts of H2O2 is relatively close to that, which is required for signaling properties of H2O2. 

 

In a previous study HaCaT keratinocytes were irradiated with UVA up to 4 J/cm2 and ROS generation was 

measured with the chemical dye DCF. In this study a similar amount of ROS production was observed when 

the cells were treated with 10 mM external H2O2 for 90 minutes (Chignell & Sik, 2003). The laser energy, 

which was used in the latter study was 10.000 times smaller than the one used here. But it is difficult to 

compare micro-irradiation with whole-cell irradiation, since micro-irradiation causes a very high local in the 

irradiated subcompartment (Ferrando-May et al., 2013) but no laser energy is deposed in the rest of the cell. 

The UV micro-irradiation approach has the advantage that the cells can be stimulated with high precision and 

subsequently monitored with a high spatial resolution. A disadvantage is the difficulty of defining the local 

dose of a UV-light treatment (Splinter et al., 2010). A further difference between UV- and X-ray irradiation is 

that the former has a lower energy than X-rays. UV-light is unlike X-rays absorbed by different molecules. It 

is presumably not sufficiently strong for the radiolysis of water and may produce different responses in 

radicals. 
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There are several reasons to believe that the rise in H2O2 concentration after a low dose of UV-irradiation is 

an overestimation of the real situation. It is well established that an illumination of the DCF dye with high-

energy light causes an artificial production of ROS; the oxidation of DCFH to DCF is not reversible meaning 

that the DCF molecule accumulates over time. All this contributes to an overestimation of the real dynamics 

of H2O2 changes in cells. The application of DCF derivatives is altogether controversy discussed in the 

literature (Afzal et al., 2003; Bonini et al., 2006; Boulton et al., 2011; Chen et al., 2010; Karlsson et al., 2010; 

LeBel et al., 1992; Rota et al., 1999). It is recommended to perform experiments in PBS rather than culture 

medium; this should avoid the generation of extracellular ROS (Boulton et al., 2011), which can, after diffusion 

into the cell, contribute to the cellular signal. Furthermore it has also been proven that light irradiation of 

DCF results in an artificial ROS production independent of the presence of radicals. Hence, the data on ROS 

signals, which were measured with DCF derivatives, have to be considered with caution. The multiple control 

experiments in this study, which show that the HyPer sensor is very stable and not artificially corrupted by 

the stimulating conditions, underline that this protein-based sensor is the method of choice for measuring 

H2O2 concentrations in cells. One of the few disadvantages of the HyPer sensor is that it exhibits a sensitivity 

to pH (Belousov et al., 2006; Bilan et al., 2013; Ermakova et al., 2014; Lukyanov & Belousov, 2013). The control 

experiments, in which I used a H2O2 insensitive variant of HyPer, show that the irradiation stress has no 

impact on the cellular pH. Hence, the HyPer signal that is generated by irradiation, is most likely the response 

of an elevation of H2O2. This conclusion is further supported by experiments in which the radical scavenger N-

acetylcysteine (NAC) was able to suppress an increase in the HyPer signal after UV light stress.  

 

An interesting observation in the present study was that the HyPer signal, which evolved in response to laser 

micro-irradiation was mostly confined to the irradiated compartment; the elevated HyPer signal was either in 

the nucleus or the cytoplasm depending on which compartment was irradiated. The data furthermore show 

that the same dose of laser light causes a much higher HyPer signal in the nucleus compared to the cytosol. 

These data are not that remarkable when we consider that the nucleus is much more tightly packed with IR 

absorbing molecules (e.g. DNA) than the cytosol. Even if the DNA bases do not absorb the light at the 

wavelength of 405 nm (Voet et al., 1963), which was used here, it is still possible that DNA damage occurs 

when a small volume is irradiated with a high photon density (Ferrando-May et al., 2013). The ROS 

molecules, which are formed in this primary photo-ionization event, can then recombine to H2O2. Moreover, 

endogenous sensitizers in the cytosol and in the nucleus can support the production of ROS under the 

influence of near UV-laser. Responses, which are elicited by UVA light are oxygen dependent, indicating that 

UVA mediated DNA damage is a secondary event due to oxidative stress (Girard et al., 2011). But new 

observations summarized by Girard and coworkers (2011) strongly suggest that UVA photons are directly 

absorbed by the DNA and induce base damage; it appears as if the low energy of UVA is sufficient to directly 

excite DNA. 

 

The origin of ROS in the cytosol in response to UV-irradiation is more difficult to explain. On the one hand 

the cytoplasm is fully packed with proteins, RNA molecules and other substances, which could act as target for 
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ionization reactions like in the case of DNA in the nucleus. Some researchers also suggest that ROS are 

produced by irradiation of photosensitive chromophores in mitochondria by light in the range of 400-500 nm. 

In these studies ROS were measured, which leaked from the mitochondria. The ROS were in these cases 

measured with the aforementioned DCF dye; the dye signal could additionally be correlated with increased 

levels of calcium in the mitochondria after irradiation (Jou et al., 2002, 2004; Peng & Jou, 2004). Other groups 

reported a similar generation of ROS, which originated from the mitochondria and which caused apoptosis, as 

a response to different qualities of light from the visible spectrum. The data from these studies collectively 

indicate that mitochondria could provide the source for ROS production following irradiation with UV or near 

UV light (Huang et al., 2011; Wu et al., 2007). The published data on ROS production in mitochondria can 

however not be directly compared to the present results. The aforementioned effects of an increase of ROS 

after laser irradiation occurred in most cases only about 1 hour after the stress. In the present study the ROS 

signal was detected immediately after irradiation. Also the ROS response to irradiation, which is shown here 

was only transient and lasted only a few minutes. Taken together the present data imply that the ROS, which 

are measured immediately after irradiation are not originating from mitochondria. This conclusion is further 

supported by additional experiments. The direct irradiation with 405 nm laser micro-irradiation of 

mitochondria, revealed similar changes in the HyPer ∆I488 nm / 405 nm ratio as a random irradiation of the 

cytoplasm (data not shown). 

 

It is known that glutathione modulates the free level of ROS after UVA irradiation (Tobi et al., 2000). 

Furthermore glutathione it is the most abundant cellular thiol (Circu & Aw, 2008; Dooley et al., 2004; Rojkind 

et al., 2002; Valko et al., 2006) and therefore one of the major defense mechanisms of cells to cope with redox-

stress. On that account I employed another sensor (Grx1-roGFP2), which is measuring the glutathione redox-

potential. If we assume that all types of ROS molecules will eventually be directly or indirectly buffered by 

glutathione the signal of the senor will report the sum of all ROS, which will end up in the buffer.  

The data show that the redox-buffer is indeed responding to redox stress such as H2O2 treatment. Most 

surprising, however, was the observation that the fluorescence ratio for this sensor (Grx1-roGFP2) displayed 

after micro-irradiation a fast and distinct increase in the nucleus independently on the compartment, which 

was irradiated. Even after a robust irradiation of the cytosol with UV light the sensor lights up in the nucleus 

and only marginally in the cytoplasm. These results are difficult to interpret. One possible explanation would 

be that the redox-buffer capacity in the nucleus is higher than in the cytosol. Some evidence in support for this 

hypothesis comes from the finding that some cells had a higher extent of oxidized glutathione (GSSG) in the 

nucleus than in the cytosol after adding H2O2 to the external solution. Additional evidence comes from data 

with the HyPer sensor, which show that some cells are able to clear H2O2 faster from the nucleus than from 

the cytosol (Fig.  27 B). These data can be best explained if the HyPer signal decreases because the buffer 

regenerates the resting level of H2O2 (Belousov et al., 2013; Meyer & Dick, 2010). These findings are in 

agreement with studies, which imply that the nucleus is more reducing than the cytoplasm and that this is a 

consequence of GSH (Cotgreave, 2003; Hansen et al., 2006).  
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Since not all the cells, which were analyzed, displayed this behavior we have to assume that also other factors 

can be involved in the process of redox-buffering. One possibility is that the nuclear GSH pool may change 

during the cell cycle; this has been shown for proliferating cells (García-giménez et al., 2013; Markovic et al., 

2007, 2010; Pallardó et al., 2009; Schroeder et al., 2007). The capacity to cope with redox stress, which changes 

with the cell cycle, may influence further signal pathways and stress responses.  

 

Little was in the past known about the generation of primary ROS after X-ray irradiation in living cells. Only 

a few studies demonstrated an in vivo generation of ROS after IR. The ROS were in these studies mostly 

monitored in a time window between 20 minutes and up to several hours after X-ray IR (Ameziane-El-

Hassani et al., 2010; Hafer et al., 2008; Iyer & Lehnert, 2002; Korystov et al., 2007; Narayanan et al., 1997; 

Ogura et al., 2009; Tominaga et al., 2004). These late ROS effects to X-ray irradiation were presumably 

triggered by release of ROS from mitochondria in response to this stress (Leach et al., 2001; Ogura et al., 2009; 

Valerie et al., 2007; Yamamori et al., 2012). In one case ROS were also measured with a population of cells 

within the first 3-5 min after X-ray irradiation and the data report an X-ray induced rise in cellular ROS 

(Leach et al., 2001). But all of these studies used DCF dyes for measuring ROS and had to cope with the 

aforementioned disadvantages of the dye; this includes artificial signal amplification, a high cellular ROS 

background, no reversibility and accumulation of the signal over time. 

 

Here it was possible to monitor for the first time with real-time recordings the development of ROS in living 

cells before and directly after irradiation. The data provide the kinetics and a good spatial resolution of this 

event on the level of single-cells. These measurements were made possible by a custom build X-ray 

microscope setup at GSI (Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany). This setup 

allows a real-time observation of cells before, during and after X-ray irradiation. By using again the HyPer 

sensor it was possible to observe measurable amounts of H2O2 production in cells even after 1 Gy of X-ray 

irradiation.  

 

When cells were challenged with a higher dose of 10 Gy X-rays the HyPer signal was larger and showed a 

better signal to noise ratio. Form these data it was possible to extract the kinetics of the ROS production; the 

data reveal that H2O2 increases continuously with a maximal increase about 5 to10 minutes after IR. The same 

kind of measurements with the Grx1-roGFP2 sensor show that the latter signal also increases under the 

influence of X-ray stress; but the signal is about 5 times faster than the HyPer signal and precedes the latter. 

A reasonable speculation is that the high redox-buffer capacity of the cell prevents an initial rise in H2O2. Only 

when the buffer is exhausted H2O2 can increase in the cell. A simple simulation with a model, which considers 

an interplay of the redox-buffer and the dynamics of H2O2 evolution, and which uses the kinetic data from the 

experiments, confirmed that this scenario is reasonable. One important message of these data is that redox-

buffering is very fast in cells and that the buffer can also be exhausted if the amount of ROS is high like under 

X-ray irradiation. The high redox-buffer capacity of cells also poses the question on how a low doses of 

radiation e.g. a dose below 1 Gy, can generate sufficient H2O2 for activating hIK channels. In a previous study 
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it was found that even X-ray doses in the cGy range were able to stimulate activation of hIK channels (Roth, 

2013). One possible explanation for the efficiency of X-rays to activate hIK channels even at low doses is that 

H2O2 acts most likely very locally in cells (Mishina et al., 2011). These local effects may evade detection by the 

fluorescence sensors but may still be sufficient for initiating calcium signaling. 

 

A summary of the present data and of data, which are concerned with the activation of the hIK channel, 

provide a detailed insight into the sequence of events and on a possible causal relation in the signal 

transduction cascade proposed in Fig.  45. The data in Fig.  46 B show that IR causes an immediate rise in 

ROS in the cell. These initial ROS are buffered by a glutathione redox-buffer system. When the buffer is 

exhausted, the concentration of ROS including that of H2O2 increases. This rise in H2O2 is directly followed by 

an increase in [Ca2+]cyt (Fig.  46 A). Because of the Ca2+ sensitivity of the hIK channel the rise in Ca2+ falls 

together with an increase in the activation of hIK channels.  

 

 

Fig.  46  Time-course of ROS and Ca2+ signaling leading to an increased K+ conductance of hIK channels.  

Summary of the main data of this thesis. The mean signals of the fluorescence sensors and the single-cell current response after treatment 
with H2O2 (A) or X-ray irradiation (B) were normalized to the value before treatment (=0) and their maximal increase (=1).  

The A549 current responses after X-ray irradiation are from Roth (2013). 

 
 
7.3. Cellular and physiological consequences of ionizing radiation induced hIK channel 

activation 
 
The physiological impact of IR induced hIK channel activation was previously demonstrated: it occurred that 

low dose X-ray IR presumably stimulates cell proliferation and migration. At least in A549 cells IR does not 

induce apoptosis (Akino et al., 2009; Roth, 2013). High doses on the other hand reduced migration and 

invasion (Akino et al., 2009). Heavy-ion carbon irradiation had no stimulative effect on proliferation (Akino et 

al., 2009). The latter data are in accordance with the observation that low-LET heavy-ion radiation (from the 

UNILAC at GSI) had no significant impact on the K+ conductance in A549 cells (Roth, 2013). Here I could 

demonstrate that low-LET heavy-ion irradiation caused only in a minor fraction of cells an increase in the 

concentration of ROS. These data are in agreement with experiments, which show that heavy-ion irradiation 

had no impact on [Ca2+]cyt in several cell lines (Du et al., 2008). Collectively these data indicate significant 

differences between radiation qualities and here in particular between high- and low-LET heavy-ion 

irradiation. 
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Calcium-activated K+-channels, especially hIK channels, are delineated to numerous functions in many 

different cell types. One interesting example regarding the impact of IR is their involvement in a mechanism 

called epithelial-mesenchymal transition (EMT), which is reported as a potential reason for the radio-

resistance of cancer cells and as a cause of lung fibrosis; the latter is a negative side-effect of cancer 

radiotherapy (Gomez-Casal et al., 2013; Gorowiec et al., 2012; Jung et al., 2007; Kargiotis et al., 2010; Kim et al., 

2007; Wu, 2006; Zhou et al., 2011). Furthermore hIK channels are well known for their role in lymphocyte 

activation (Fanger et al., 1999; Jensen et al., 2002; Tharp & Bowles, 2013) and it was previously demonstrated 

that low dose IR in the cGy range was able to stimulate hIK channels and therefore activate lymphocytes 

(Roth, 2013). These findings might have an impact on the understanding of the mechanisms of low dose 

radiation treatment or radon inhalation therapy; these are common therapeutical approaches in the treatment 

of inflammatory diseases. 

Finally, the recent discovered role of hIK channels in migration of glioblastoma cells are of particular interest 

in context of IR induced channel activation (D’Alessandro et al., 2013; Huber, 2013; Ruggieri et al., 2012; 

Schwab et al., 2012). Glioblastoma multiforme (GBM) is the most common and aggressive form of brain 

tumor; it is characterized by a rapid growth, a high invasitity, a high radio-resistance and in a high recurrence 

after radiotherapy (D’Alessandro et al., 2013; Watkins & Sontheimer, 2012). Until now the mechanisms 

leading to the radio-resistance of GBM are poorly understood. The results presented here regarding the 

radiation sensitivity of hIK channels, might give new insights into the mechanism, which is leading to the high 

radio-resistance and invasitity of the tumor cells. 

 

 
 
7.4. Conclusion 
 
In summary this thesis elucidates a mechanism on how ionizing radiation induces the activation of 

intermediate-conductance calcium-activated K+-channels independent of the cell type. The general signal 

cascade, which was uncovered, includes H2O2 and Ca2+ as mediating signal factors. I could monitor for the first 

time the generation of ROS in real-time after different qualities of ionizing radiation in single living cells. The 

data indicate differences between the redox-buffer capacities in nucleus and cytoplasm, which might influence 

any further signal pathway. Furthermore the present results indicate differences between different qualities of 

IR like X-ray irradiation and low-LET heavy-ion radiation. Heavy-ion irradiation affected only some cells in 

contrast to X-ray irradiation, where all cells exhibited a robust signal, indicating the generation of ROS. 

The radiation induced increase in H2O2 in both nucleus and cytosol is capable to induce a rise of the cytosolic 

calcium concentration, which in turn activates hIK channels and hyperpolarizes cells. The stimulation of this 

signal cascade is a very early response to IR and the associated membrane hyperpolarization has an important 

physiological impact on cell proliferation and migration. Hence, it is reasonable to assume that the discovery 

of this primary signal cascade offers new insights in possible mechanisms, which lead to invasion and 

metastasis of tumors and cancer radio-resistance.  
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9. Apendix 
 

9.1. Abbreviations 
 

*OH - Hydroxyl radical 

1-EBIO - 1-ethyl-2-benzimidazolinone; hIK channel opener 

A549 - Adenocarcinomic human alveolar basal epithelial cell line 

ATP - Adenosintriphosphat 

BKCa - Big conductance calcium-activated potassium-channel 

BrdU - Bromodeoxyuridine; thymidine analogue 

[Ca2+]cyt - Cytosolic calcium concentration 

CaM - Calmodulin 

cAMP - Cyclic adenosine monophosphate 

CLSM - Confocal laser scanning microscope 

CLT - Clotrimazole; 1-[(2-Chlorphenyl)diphenylmethyl]-1H-imidazol;  

hIK channel blocker 

CRAC - Calcium release-activated calcium channel 

DCFDA - 2'-7'-dichlorodihydrofluorescein diacetate; a chemical ROS dye 

DMEM - Dulbecco´s modified minimal essential medium 

DMSO - Dimethyl sulfoxide 

DNA - Deoxyribonucleic acid 

e-aq - Hydrated electron 

Eag1 - Voltage-gated potassium-channel; KCNH1; Kv10.1 

EDTA - Ethylenediaminetetraacetic acid 

EMT - Epithelial-mesenchymal transition 

FCS - Fetal calve serum 

FRET - Förster resonance energy transfer; fluorescence resonance energy transfer 

G1-phase - Gap1-phase; cell cycle 

G2-phase - Gap2-phase; cell cycle 

GBM - Glioblastoma multiforme  

Grx1-roGFP2 - ratiometric protein-based fluorescence sensor for the glutathione redox-potential 

GSH / GSSG - Glutathione reduced / oxidized 

GSI - Helmholtzzentrum für Schwerionenforschung GmbH (Darmstadt; Germany) 

H2O2 - Hydrogen peroxide 

HEK293 - Human embryonic kidney cell line 

hERG - Voltage-gated potassium-channel; KCNH2; Kv11.1 

hIK - Human intermediate-conductance Ca2+-activated K+-channel; KCNN4, KCa3.1 

Hoechst33258  - 2′-(4-hydroxyphenyl)-5-(4-methyl-1-piperazinyl)-2,5′-bi-1H-benzimidazole 

trihydrochloride hydrate; DNA dye 
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HyPer - ratiometric, protein-based H2O2 fluorescence sensor 

Iinst - Instantaneous current (definition Fig.  8) 

IKCa - Intermediate-conductance calcium-activated potassium-channel 

IM - Ionomycin 

IR - Ionizing radiation 

Itd - Time dependent current (definition Fig.  8) 

Kv1.3 - Voltage-gated potassium-channel; KCNC1 

Kv3.4 - Voltage-gated potassium-channel; KCNC4 

Kv4.1 - Voltage-gated potassium-channel; KCND1 

LET - Linear-energy transfer (LET; keV/µm) 

M-phase - Mitosis phase; cell cycle 

m.i. - Micro-irradiation 

NAC - N-acetylcysteine 

NADPH - Nicotinamide adenine dinucleotide phosphate 

NEAA - Non-essential amino acids 

O2*- - Superoxide radical 

Orai - Calcium release-activated calcium modulator 

PBS  - Phosphate buffered saline 

pH - Potential of hydrogen 

RBE - Relative biological effectiveness  

ROI - Region of interest 

ROS - Reactive oxygen species 

S-phase - Synthesis-phase; cell cycle 

SD - Standard deviation 

SKCa - Small conductance calcium-activated potassium-channel  

SOCE - Store-operated calcium entry 

STIM1 - Ca2+ sensor protein stromal interaction molecule 

SypHer - HyPer-C199S H2O2 insensitive mutant 

Tram-34 - 1-[(2-Chlorophenyl)diphenylmethyl]-1H-pyrazole; hIK channel blocker 

TRP - transient receptor potential channels 

UNILAC - Universal Linear Accelerator 

UV - Ultraviolet (< 400 nm) 

wt - Wildtype 

X-ray - Roentgen radiation 

YC3.60 - ratiometric FRET-based Ca2+ sensor; chameleon 
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