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Zusammenfassung
In der vorliegenden Arbeit wird die numerische Berechnung von komplexen Eigenmoden von
Resonatoren mit gyrotropem Material behandelt. Zu diesem Zweck wurde ein geeigneter Löser
auf Grundlage der Methode der Finiten Integration (FIT) entwickelt, effizient implementiert
und erfolgreich verifiziert.

Eigenwertprobleme mit gyrotropen Materialien treten beispielsweise bei der Berechnung der
Resonanzfrequenzen von ferritgeladenen Resonatoren wie der GSI SIS 18 Kavität auf. Ferrite
weisen gyromagnetisches Verhalten auf. Dieses zeichnet sich durch eine anisotrope Permeabi-
lität aus, die zudem von der Frequenz des Wechselfeldes wie auch von der Vormagnetisierung
abhängt. Analog kann gyroelektrisches Material, wie zum Beispiel magnetisiertes Plasma, durch
einen frequenz- und vormagnetisierungsabhängigen Permittivitätstensor beschrieben werden.
Da diese Materialtensoren in die Systemmatrix des Eigenwertproblems eingehen, wird ein
geeigneter Löser benötigt. Im Rahmen dieser Arbeit wird FIT auf einem hexaedrischen ‚stair-
case‘ Gitter zur Diskretisierung verwendet. In der Standardformulierung ist FIT jedoch auf
diagonal anisotrope Materialien beschränkt. Ein wesentliches Ziel dieser Arbeit war es daher,
die Methode auf gyromagnetische und gyroelektrische Substanzen im Frequenzbereich zu er-
weitern. Die hergeleiteten Ausdrücke für die nichtdiagonalen Materialmatrizen sind für den Fall
nichtgyrotroper Substanzen konsistent mit der Standardformulierung. Darüber hinaus weisen
sie im verlustlosen Fall selbst für nichtäquidistante Gitter eine hermitesche Struktur auf.

Auf Grund der genannten Anforderungen ist der neu entwickelte Löser aus zwei Teilkom-
ponenten aufgebaut: Die erste ist ein Magnetostatiklöser für nichtlineares Material basierend
auf der Hi-Methode zur Berechnung des Magnetfeldes, welches durch den Vormagnetisierungs-
strom hervorgerufen wird. Mit Hilfe der berechneten Feldverteilung werden anschließend die
Materialeigenschaften am Arbeitspunkt lokal in jeder Gitterzelle ausgewertet. Die zweite Kom-
ponente ist ein Löser vom Jacobi-Davidson Typ zur iterativen Lösung des nichtlinearen Eigen-
wertproblems. Um Materialverluste berücksichtigen zu können, werden vom Eigenwertlöser
auch Systemmatrizen mit nichthermitescher Struktur unterstützt. Außerdem wird eine effizien-
te parallele Rechnung auf Maschinen mit verteiltem Speicher ermöglicht. Hierzu ist eine vom
Standardschema abweichende Anordnung der FIT Freiheitsgrade implementiert, wodurch ein
höheres Verhältnis von Rechen- zu Kommunikationszeit resultiert. Weiterhin werden alle Frei-
heitsgrade, die aus verschiedenen Gründen a priori verschwinden, vollständig aus allen Vektoren
und Matrizen entfernt. Insgesamt können so gyrotropische Eigenwertprobleme mit einer Anzahl
von mehreren Millionen Gitterzellen in einer vertretbaren Zeit gelöst werden. Die Gültigkeit der
numerischen Ergebnisse wird anhand von (semi-)analytischen Vergleichsrechnungen bestätigt.

Als Anwendungsbeispiel wird eine Eigenmodeanalyse der GSI SIS 18 Kavität durchgeführt. Da
keine ausreichenden Materialdaten aus dem Datenblatt des Herstellers verfügbar sind, wurden
Messungen der benötigten magnetischen Kennzahlen des Ferroxcube 8C12m Ferrits durchge-
führt. Ringe aus diesem Material sind in der GSI SIS 18 Kavität eingebaut. Zu den gemessenen
Größen zählen die komplexe Permeabilität als Funktion von Frequenz und Vormagnetisierungs-
feld bei niedrigem Pegel sowie die B-H-Kurve. Die verwendeten Messmethoden werden ebenso
wie die detaillierte Analyse zusammen mit den ausgewerteten Daten vorgestellt. Die so erhalte-
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ne skalare Permeabilität wird dann in der Simulation verwendet. Die berechneten Werte für die
Resonanzfrequenz und des Qualitätsfaktors der Grundmode sind mit den vorliegenden Messda-
ten vereinbar. Um das weitere Potential des Lösers aufzuzeigen, wird zusätzlich eine Analyse
von Moden höherer Ordnung durchgeführt sowie ein Ausblick zur Untersuchung von Vorma-
gnetisierungsschemen mit sich senkrecht überlagernden Magnetfeldern gegeben.
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Abstract
In this thesis, the numerical computation of complex eigenmodes of cavity resonators filled with
magnetically biased gyrotropic material is demonstrated. For this purpose, a dedicated solver
based on the Finite Integration Technique (FIT) has been developed, efficiently implemented as
well as successfully verified.

Gyrotropic field problems arise, for instance, for the calculation of the resonance frequencies
of ferrite-loaded resonators like the GSI SIS 18 cavity. Ferrites exhibit gyromagnetic properties
with an anisotropic permeability, which furthermore depends both on frequency and bias field.
Similarly, gyroelectric material such as magnetized plasmas can be described by a frequency-
and bias field dependent permittivity tensor. Since these material tensors affect the system
matrix of the eigenvalue problem, a dedicated solver is required. In this thesis, the FIT with
a hexaedral staircase filling is employed for discretization. In the standard formulation, it is,
however, limited to diagonally anisotropic materials. Hence, as one of the goals of this thesis, the
FIT has been extended to gyromagnetic as well as gyroelectric materials in frequency domain.
The derived expressions for the non-diagonal material matrices are fully consistent with the
standard FIT when applied to non-gyrotropic materials. Moreover, their structure is manifestly
Hermitian in the lossless case, even for non-equidistant grids.

Due to the above-mentioned material requirements, the newly developed solver consists of
two components: The first one is a magnetostatic solver based on the Hi-algorithm supporting
nonlinear material to calculate the magnetic field excited by the bias current. Having obtained
the field distribution, the material properties are evaluated locally in each mesh cell at the spec-
ified working point. The second component is a Jacobi-Davidson type eigenvalue solver for the
iterative solution of the nonlinear eigenproblem. To be capable of handling material losses,
the eigensolver also supports non-Hermitian eigenproblems. What is more, efficient parallel
computing on machines with distributed memory is possible. To this end, an ordering of the
FIT-DOFs different from the standard scheme is implemented, which results in an increased
computation to communication ratio. Furthermore, all DOFs that vanish a priori due to several
reasons are completely removed from the vectors and matrices. All in all, gyrotropic eigen-
problems discretized with several millions of mesh cells can be solved in a reasonable time by
the developed solver. The validity of the numerically obtained results is confirmed by thorough
comparisons with (semi-)analytical calculations.

As an application example, an eigenmode analysis of the GSI SIS 18 cavity is carried out. Since
the required material data are not available in the data sheet of the manufacturer, designated
measurements of the magnetic characteristics of the Ferroxcube 8C12m ferrite ring cores, which
are installed inside the GSI SIS 18 cavities, were performed. Among these characteristics are the
complex permeability as a function of frequency and bias magnetic field strength at low radio-
frequency power levels as well as the B-H curve. The measurement methods together with the
detailed data analysis including the presentation of evaluated data are supplemented to this
thesis. The scalar, isotropic permeability retrieved this way is used for the cavity simulations.
The obtained values for the resonance frequency and quality factor for the fundamental mode
are in accordance with available measurement data. To demonstrate the further potential of
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the solver, also higher-order modes are investigated and an outlook on possibly advantageous
2-directional bias schemes is given.
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1 Introduction

1.1 Motivation

1.1.1 GSI SIS 18 ferrite cavity

The GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt [1] operates the heavy-ion
synchrotron SIS 18 for fundamental research. Two identical cavities are installed within the ring
for the acceleration of the heavy ions. On each side of the accelerating gap, 32 ring cores of the
Ferroxcube 8C12m ferrite material are installed, which can be magnetically biased parallel to the
superimposed radio-frequency (RF) by means of six crossed (figure-of-eight) current windings
(cf. Fig. 1.1(a)). The main advantage of such ferrite cavities for the acceleration of heavy ions
in ramped operation in synchrotrons is twofold [2]: On the one hand, the high permeability
of the ferrite material causes a reduction of the wavelength compared to vacuum. This allows
the construction of smaller accelerating structures, which is beneficial in the range of relatively
low resonance frequencies in the order of a few MHz. On the other hand, the dependence of
the incremental permeability on the bias magnetic field strength enables to quickly modify the
eigenfrequency of the resonator system (cf. Fig. 1.1(b)). The tuning is particularly important
during the acceleration phase. Here the resonance frequency of the cavities has to be adjusted
to the revolution frequency of the heavy ions to reflect their increasing speed. For the SIS 18
ferrite cavity, biasing enables to alter the resonance frequency in a range of about 0.6 to 5.0 MHz
by driving the bias current from ≈ 5A up to ≈ 500 A [2]. A more detailed description of the GSI
SIS 18 ferrite cavity can be found in [2].

1.1.2 Facility for Antiproton and Ion Research (FAIR)

Though the SIS 18 synchrotron has been operated since the year 1990, new interest in a better
understanding of the SIS 18 cavity, particularly of the tuning process, has aroused recently. The
main reason is the planning of the new international Facility for Antiproton and Ion Research
(FAIR) [3], which is currently under construction at the GSI site. It is expected that FAIR will
provide unique opportunities for fundamental research in a variety of fields, including nuclear,
atomic, anti-matter and plasma physics as well as biology and bio-medical science. A schematic
sketch of the planned facility is shown in figure 1.2. One of the main components will be the
double ring synchrotron SIS 100 / 300 with a circumference of 1.1 km. A proper understanding
of the GSI SIS 18 cavity is crucial for a successful operation of the FAIR synchrotron for two
reasons: Firstly, the SIS 18 ring will be used as injector for SIS 100 / 300. Thus, the provided
beam has to fulfill the FAIR specification. Secondly, it is foreseen that several accelerating
cavities of the SIS 18 type will also be installed in the SIS 100 synchrotron. For that reason, it
is the aim of the presented thesis to develop a tool for the numerical computation of the lowest
eigenmodes of biased, ferrite-loaded resonators. Moreover, relevant material characteristics
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Figure 1.1.: (a) Simplified sketch of the main components of the GSI SIS 18 ferrite cavity. (b)
Typical dependence of the magnetic induction on the magnetic field strength (ne-
glecting hysteresis). The incremental permeability at the working point P changes
with the bias field strength Hbias.
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Figure 1.2.: Schematic sketch of the FAIR complex. The planned infrastructure for FAIR is shown
in red, the already existing one of the GSI facility in blue. [3]
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are required for the simulations. Since, however, only limited information is provided by the
manufacturer in the data sheet, designated measurements were carried out at the GSI facility.
Hence, one part of the thesis is also dedicated to the measurement and data analysis of the
magnetic properties of the Ferroxcube 8C12m material.

1.2 Overview

This thesis is structured as follows:
In chapter 2, fundamental properties of gyrotropic materials are discussed. The emphasis

is clearly put on the magnetic characteristics of ferrites and other gyromagnetic substances.
Accordingly, the structure of the permeability tensor is treated in detail. Furthermore, section
2.3 is dedicated to the permeability measurements, which were carried out at the GSI facility as
part of this thesis. After the description of the measurement methods, obtained results for the
complex permeability as a function of frequency and bias current as well as for the B-H curve
are presented.

After that, the problem of the numerical calculation of eigensystems for materials with gy-
rotropic properties is addressed in chapter 3. At first, the requirements on the applied compu-
tational model are elaborated, also taking into account aspects relevant for efficient distributed
computing. The employed method for the numerical solution of the electromagnetic field prob-
lems, in this work the Finite Integration Technique, is introduced subsequently. This includes a
detailed discussion of the structure of the involved topological matrices for different ordering
schemes of the DOFs and the extension of the standard method to materials characterized by
fully occupied material tensors in frequency domain. The properties of the gyrotropic materials
finally lead to complex nonlinear eigenvalue problems. Hence, numerical methods for their so-
lution are reviewed in section 3.5. Moreover, implementation details and numerical examples
for verification are provided in the particular sections of that chapter.

In chapter 4, the developed solver is used for the simulation of the measurement setup men-
tioned in chapter 2 as well as for the simulation of the GSI SIS 18 ferrite cavity. For the latter,
both the fundamental and higher-order modes are analyzed and an outlook on 2-directional
bias schemes is given.

The thesis closes with a summary and outlook.
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2 Material modeling and measurement of
ferrites

In this chapter, the material modeling of ferrites as well as the measurement of magnetic ma-
terial characteristics required for the eigenmode computation of ferrite-loaded devices is dis-
cussed. To begin with, Maxwell’s equations are stated for further reference. In section 2.2, an
overview of fundamental material properties of ferrites is given, which particularly focuses on
the dynamic response of a ferrite excited by an electromagnetic RF-field for different magnetized
states. Additionally, the permittivity tensor of gyroelectric materials is presented. Section 2.3
deals with the measurements that were performed at the GSI facility and their analysis.

2.1 Maxwell’s equations

Maxwell’s equations are the basis for the description of phenomena of electromagnetism. In
differential form, the macroscopic variant takes the form [4]:

∇× ~E = −∂ ~B
∂ t

, (2.1)

∇× ~H = ~J + ∂ ~D
∂ t

, (2.2)

∇ · ~D = ρ, (2.3)

∇ · ~B = 0. (2.4)

Therein, ~E is the electric field, ~D the electric displacement, ~B the magnetic induction (or mag-
netic flux density) and ~H the magnetizing field. Moreover, the total density of free charges is
denoted by ρ and the (free) current density by ~J . All of the quantities are implicitly assumed to
be dependent on position and time. The electric and magnetic fields are related to each other
by [4]

~D = ε0 ~E + ~P, (2.5)
~B = µ0 ~H +µ0 ~M , (2.6)

with the polarization field ~P, the magnetization field ~M and the permittivity and permeability
of free space ε0 and µ0, respectively. Only in the special case of linear, isotropic materials the
constitutive relations simplify to

~D = ε0 ~E + ε0χe ~E, (2.7)
~B = µ0 ~H +µ0χm ~H, (2.8)

with the material specific electric and magnetic susceptibilities χe and χm, respectively. In the
general case, however, the fields ~P and ~M may be complicated functions of both ~E and ~B. In the
following section, those relations are discussed for magnetized ferrites as well as magnetized
plasmas.
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2.2 Fundamental material properties

An overview over fundamental magnetic material properties is given in this section. After briefly
reviewing some basics on the physics of magnetism, the magnetodynamics equation taking into
account different phenomenological loss terms is stated. From this equation, the form of the
permeability tensor for the fully magnetized state is derived and expressions for more general
cases are given in subsection 2.2.3. For completeness, also the permittivity tensor as suitable for
the description of the electric characteristics of magnetized plasmas is discussed in subsection
2.2.4.

2.2.1 Physics of magnetism

The macroscopic magnetization of solids is composed of the total of all microscopic magnetic
moments of the constituents of the solid. Depending on the type of the individual magnetic mo-
ments of the constitutive atoms as well as on the interaction between them, different magnetic
phenomena are observed. Accordingly, magnetism may be classified into the following types
[5, 6].

2.2.1.1 Diamagnetism

Purely diamagnetic substances do not have a net resulting magnetic moment. Yet, an external
magnetic field induces magnetic moments in its opposite orientation, which act against the ex-
ternal field. Thus, their magnetic susceptibility χm is negative and typically in the order of −10−4

to −10−5. Though the diamagnetic effect is intrinsic to all materials, it may be overcompensated
by stronger paramagnetic contributions.

2.2.1.2 Paramagnetism

Paramagnetic effects occur in materials which are constituted by atoms featuring a net magnetic
moment independent of the applied field [6]. Due to thermal excitation, the individual atomic
magnetic moments are oriented randomly in the absence of an external field. With increasing
field strength, the magnetic moments gradually line up with the applied field resulting in a
positive macroscopic magnetization in the direction of the external field (cf. Fig. 2.1). Hence,
the magnetic susceptibility is positive and typically in the order of 10−5 to 10−3.

2.2.1.3 Ferromagnetism

Also the constitutive atoms of ferromagnetic materials exhibit a net magnetic moment, which is
due to the spin of single shell-electrons. In contrast to paramagnetism, a spontaneous magneti-
zation is observed, that is, an alignment of the magnetic moments in parallel in the absence of
an applied field [6]. Such behavior can only be explained with the help of a quantum mechan-
ical effect, the exchange interaction. If the temperature exceeds a critical point, the so-called
Curie temperature, there is no spontaneous magnetization anymore and the material becomes
paramagnetic. Despite the parallel alignment of the magnetic moments below the Curie temper-
ature, ferromagnets may be macroscopically demagnetized in their initial state if no magnetic
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Figure 2.1.: Magnetization as a function of the applied magnetic field strength for a param-
agnetic material. The pictures on the right illustrate the orientation of the micro-
scopic magnetic moments ~m at the specified points. With increasing field strength,
they gradually line up with the applied field ~H until the macroscopic magnetization
| ~M |= |∑i ~mi| reaches its saturation value Msat.

field is applied. The reason for this is that the material is divided into many magnetic domains
(Weiss domains), in which the magnetic moments are parallel to each other. The direction of
alignment of all domains is more or less random albeit the easy axes of the crystal lattice of mag-
netic anisotropic materials may be preferred. Moreover, the domains are separated by domain
walls, where the orientation of the magnetic moments rotates gradually from the direction in
one domain to the one of the other. Eventually, the fundamental reason for the formation of the
domains and walls is the minimization of the internal energy [7]. When a magnetic field is ap-
plied, the size of the domains with an orientation in the direction of the external field increases
at the expense of the others. This process is reversible for a small strength of the applied field
but becomes irreversible for higher field strengths mainly due to displacements of domain walls
over crystallographic inhomogeneities and defects. A further increased external field leads to
rotation of the domains away from the easy axis, which is a predominantly reversible process.
Finally, the magnetic moments of all domains are aligned with the external field and magnetic
saturation is reached. Due to the involved irreversible processes, the (macroscopic) magnetiza-
tion does not follow the same curve when the applied magnetic field strength is reduced again
but shows hysteresis effects. In particular, even if the external field is absent there is still a net
magnetization, called the remanence magnetization. The intensity of the magnetic field that is
required to reduce the magnetization to zero again is denoted by coercivity. The magnetization
process and the important magnetic quantities are also illustrated in figure 2.2.

2.2.1.4 Antiferromagnetism and ferrimagnetism

Antiferromagnetic and ferrimagnetic materials are characterized by two crystallographic sub-
lattices whose magnetic moments are aligned in opposite direction to each other. In the case
of antiferromagnetism, the contributions to the total magnetization of the two subsystems are
identical in magnitude and thus cancel each other resulting in a vanishing macroscopic magneti-
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~H

Figure 2.2.: Typical initial magnetization curve (dashed, red) and hysteresis loop (black, solid) of
a ferromagnet. The pictures on the right illustrate the domain configuration for the
selected points. The domains are distributed randomly in the demagnetized state
(A). With increasing magnetic field strength, at first the size of the domains with
an orientation in the direction of the external field increases (B), then domains are
rotated (C) until they are all lined up with the applied field in the magnetic saturated
state (D). Moreover, the remanence (with residual induction Br) and the coercivity
Hc are shown.

zation. In contrast, different magnetic ions occupy the sites of the two lattices for ferrimagnetic
materials. Hence, a spontaneous magnetization of the substance remains. The magnetic prop-
erties are consequently similar to those of ferromagnetic material. Examples for ferrimagnetic
substances are magnetic garnets, such as yttrium iron garnets, and ferrites. The latter are ce-
ramic oxides with a chemical structure like magnetite (Fe3O4) but with the divalent ferrous ion
substituted with one or several different divalent transition metals [6]. Depending on the type
of the compound metal, they are categorized into hard and soft ferrites. Whereas the former
exhibit a high coercivity and high remanence after magnetization, the latter have a compara-
tively low coercivity. Among the most common soft ferrites are manganese-zinc ferrites (MnZn,
with chemical composition MnaZn(1−a)Fe2O4) and the nickel-zinc ferrites (NiZn, with chemical
composition NiaZn(1−a)Fe2O4). The latter feature a particularly high electrical resistivity, which
prevents eddy currents in the cores. Also the Ferroxcube 8C12m material, which is installed
inside the GSI SIS 18 cavities, is a NiZn ferrite.

2.2.2 Magnetodynamics equation

The dynamics of the magnetization subject to an external magnetic field is governed by the
relation [5]

d ~M
dt
= γeµ0

�

~M × ~H� . (2.9)

This equation describes the precession movement of the magnetization around the axis defined
by the external magnetic field ~H of strength H (cf. Fig. 2.3(a)) with angular frequency

ω0 = −γeµ0H, (2.10)
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(a) ~H
~M

γeµ0

(
~M × ~H

)

(b) ~H
~M

γeµ0

(
~M × ~H

)

damping

Figure 2.3.: Precession movement of the magnetization ~M around the external magnetic field
~H without (a) and including damping (b). The green arrows point towards the di-
rection of the change of magnetization as described by equation (2.9), whereas the
red one in (b) indicates the damping due to a term as in equation (2.13) or equation
(2.14).

which is also known as Larmor frequency [5]. Therein, the gyromagnetic ratio is given by

γe = −
g e
2me

(2.11)

with g being the Landé g-factor, e the positive elementary charge and me the electron mass.
In order to take into account losses, damping terms have to be added to the right hand side of
equation (2.9). Though several phenomenological terms were proposed in the past, the most
common ones can be expressed in the general form of the ferromagnetic dynamical equation

d ~M
dt
= γ

�

~M × ~H�− α

M2

�

~M × � ~M × ~H��− β ~M , (2.12)

which was obtained by Callen from quantum mechanical considerations [8]. Therein, γ, λ and
α are unknown scalar functions of M , H and intrinsic characteristics of the material. By setting
γ= const.= γeµ0 =: γLL, α= const.=: λLL and β = 0, the Landau-Lifshitz equation [9]

d ~M
dt
= γLL

�

~M × ~H�− λLL

M2

�

~M × � ~M × ~H�� , (2.13)

is obtained. The Landau-Lifshitz damping term results in a precession of the magnetization on
gradually smaller cones until it is eventually aligned with the magnetic field (cf. Fig. 2.3(b)).
Equation (2.13) can be expressed in the mathematically equivalent form

d ~M
dt
= γG

�

~M × ~H�+ αG

M

�

~M × d ~M
dt

�

(2.14)

by defining γG = γLL(1+α2
G) and αG = −λLL/(γLLM) [10, 11]. This form, originally formulated

this way (with γG = γeµ0) by Gilbert [11], manifestly shows a damping proportional to the mag-
nitude in the rate of change of M . Hence, despite the mathematical equivalence, the physical
interpretation of the two distinct damping terms is quite different [12]; only in the limit of a
small damping constant αG � 1 the two coincide also from the physical point of view [6, 12].
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This condition is met for single crystal ferrites, where 0.01 < αG < 0.1 [6]. Another class of
damping terms are adapted from the Bloch equations [13], which were originally derived for the
description of paramagnetic resonance. One common characteristic consists of a non-vanishing
coefficient β in the general equation (2.12). For instance, the so-called Bloch-Bloembergen
equation takes the form [14]

d ~M
dt
= γe

�

~M × ~H�− ~ex
Mx

T2
− ~ey

My

T2
− ~ez

Mz −M0

T1
, (2.15)

where T1 and T2 are relaxation times of the longitudinal and transversal magnetization, respec-
tively, Mx , My and Mz the x-, y- and z-component of the magnetization, respectively, and M0 the
(static) saturation magnetization. Note that, unlike the Landau-Lifshitz as well as the Gilbert
damping terms, the one in equation (2.15) does not conserve the magnitude of macroscopic
magnetization and is therefore applicable to the description of relaxation processes in material
with imperfect ferromagnetic order [15].

Throughout this work a Gilbert damping term as in equation (2.14) with γG = γeµ0 will be
used. Moreover, the explicit subscript of the damping constant will be omitted, i.e. α := αG.
Note that α is related to the line width ∆H0 as [6]

α=
γe∆H0

2ω
. (2.16)

Therein, ∆H0 is defined as the difference between the two values of the magnetic field strength
at which the imaginary part of the permeability takes half of its maximum value at resonance
evaluated at a fixed frequency ω.

2.2.3 Permeability tensor

The magnetodynamic equation discussed in the previous section is the basis for the derivation
of the permeability tensor. It is thus clear that the tensor components depend on the magnetic
properties of the material as well as on the strength and direction of the applied bias magnetic
field. To begin with, an expression for the tensor will be derived for the fully magnetized state
for a static magnetic field along the z-axis of the coordinate system analogously to [6]. Sub-
sequently, the obtained formulas will be generalized for different magnetization states, namely
for the fully demagnetized state in subsection 2.2.3.2 and the partially magnetized state in sub-
section 2.2.3.3. Finally, expressions for the tensor for a general orientation of the bias magnetic
field are given in subsection 2.2.3.4.

2.2.3.1 Fully saturated state

For the derivation of the permeability tensor
↔
µ , the magnetic field and the magnetization in the

relation (2.6) are explicitly decomposed into contributions constant in time and time-dependent
parts, i.e.

~H(t) = ~H0 + ~Hd(t) = ~H0 +Re
�

~Hd · eiωt
�

, (2.17a)
~M(t) = ~M0 + ~Md(t) = ~M0 +Re

�

~Md · eiωt
�

. (2.17b)

10



In the absence of RF-components, that is | ~Hd | = | ~Md | = 0, the magnetization lines up with the
static magnetic field, i.e. ~H0 ‖ ~M0, at thermal equilibrium due to relaxation. For the following
derivation, the coordinate system is set such that this orientation is aligned with the z-axis, i.e.

~H0 = H0 · ~ez; ~M0 = M0 · ~ez. (2.18)

Throughout this subsection, only the fully magnetized state is considered, where the bias field
strength is assumed to be large compared to the superimposed RF, that is to say, | ~Hd | � | ~H0|
and consequently | ~Md | � | ~M0| with M0 = Msat. Furthermore, hysteresis effects are not taken
into account. Substituting equations (2.17) and (2.18) into the equation of motion for the
magnetization including the Gilbert damping term (2.14) then yields

iω ~Md = γeµ0Msat

�

~ez × ~Hd

�

+ (−γeµ0H0 + iωα)
�

~ez × ~Md

�

, (2.19)

where terms of order two in the components of the time-harmonic contributions Md and Hd are
neglected according to the above assumption. Evaluating the cross-products in equation (2.19)
and simultaneously solving for the three vector components of ~Md in terms of ~Hd , one obtains
the susceptibility tensor from the relation

~Md =
↔
χm ~Hd (2.20)

and from this finally the permeability tensor

↔
µ = µ0

�

13×3 +
↔
χm

�

(2.21)

as1

↔
µ = µ0





µdiag −iκ 0
iκ µdiag 0
0 0 µz





�

for ~H0 ‖ ~ez

�

(2.22)

with

µdiag = 1+χ, (2.23a)

χ =
(ω0 + iωα)ωM

(ω0 + iωα)2 −ω2
, (2.23b)

κ=
−ωωM

(ω0 + iωα)2 −ω2
, (2.23c)

ω0 = −γeµ0H0, (2.23d)

ωM = −γeµ0Msat, (2.23e)

and µz = 1. (2.23f)

1 Note that the position of the minus sign in the off-diagonal elements depends on the sign chosen in the exponent
of the time dependent part of the fields (cf. Eq. (2.17)). Hence, the occurrence of the minus sign is found to be
interchanged in some textbooks.
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In this form the tensor was first formulated by Polder [16] and is therefore often referred
to as Polder tensor. If one of the alternative damping terms introduced in subsection 2.2.2 is
considered instead of the Gilbert term, the tensor structure (2.22) remains unchanged. Only
the expressions for its components (2.23) have to be replaced by corresponding ones.

As mentioned in subsection 1.1.1, the bias current and thus the resulting magnetization of the
ferrite material is modified in a rather wide range during one operation cycle of a ferrite-loaded
cavity. Consequently, for an accurate computation of the eigenfrequencies also for low bias field
strengths, modified expressions for the partially magnetized state are required. In this regime
ferrites can by described by an effective permeability tensor, which depends on local properties
[17] and which is discussed in the following subsections beginning with the fully demagnetized
state.

2.2.3.2 Fully demagnetized state

In the completely demagnetized state, the effective permeability tensor reduces to a scalar since
the medium is assumed to be effectively isotropic due to the randomly oriented domains. Its
form was first derived by Schlömann [18]. Assuming only spin up and down domains (aligned
along the z-direction), whose local permeability is described by a tensor of the form of equation
(2.22) with H0 resulting from the anisotropy field, the effective permeability tensor in the case
of a cylindrically symmetric domain configuration takes the form

↔
µ = µ0





µeff 0 0
0 µeff 0
0 0 µz



 , (2.24)

where

µeff =
Ç

µ2
diag − κ2 (2.25)

with µdiag and κ as defined in equations (2.23). This value may be interpreted as the geometric
average µeff =

p
µ+µ− of the permeabilities µ+ = µdiag−κ and µ− = µdiag+κ for clockwise and

counterclockwise rotating circularly polarized fields, respectively [19]. Averaging over all direc-
tions for random orientation of up and down domains, yields the scalar isotropic permeability

µ̂=
1
3

�

µz + 2
Ç

µ2
diag − κ2

�

(2.26)

with µz = 1 as in equation (2.23f). Despite of the rather restrictive assumptions, it repro-
duces experimental results rather well [20]. Moreover, an alternative derivation using effective-
medium approximation by Bouchaud and Zérah [21] confirms the above formula also from the
theoretical point of view.

2.2.3.3 Partially magnetized state

The partially magnetized state is characterized by the reduced magnetization, defined as the ra-
tio of the magnitude of the present magnetization to the saturation magnetization m= M/Msat,
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being in the range 0< m< 1. The first formulation of the tensor in this regime was proposed by
Rado [22] for the limit ω0�ω and ωM �ω. Without taking into account magnetic losses and
provided that the average magnetization points into z-direction, starting from the expression for
the fully magnetized state (2.22) and (2.23) these conditions result in a tensor of the form of
equation (2.22) with 1 as the main diagonal elements, i.e. µdiag = µz = 1, and the off-diagonal
term given by

eκ= −m
ωM

ω
. (2.27)

It is found that equation (2.27) provides a reasonably good approximation for the real part of
the off-diagonal element as a function of frequency for particular materials [20, 23]. However,
it suffers from the inaccuracy of the main diagonal terms. Based on measurements on yttrium
iron garnets and magnesium-manganese (zinc) ferrites, Green and Sandy formulated empirical
expressions for

↔
µ [17, 23]. According to this, the real part of the main diagonal elements can

be described well by

eµdiag = µ̂+ (1− µ̂)m1.5, (2.28a)

eµz = µ̂(
1−m2.5) (2.28b)

with µ̂=
1
3

�

1+ 2

√

√

1−
�ωM

ω

�2
�

. (2.28c)

Note that equation (2.28c) coincides with the effective scalar permeability for the completely
demagnetized state (cf. Eq. (2.26)) for vanishing anisotropy magnetic fields and losses, i.e.
H0 = 0 and α = 0. For incorporation of losses, the above authors further assume the imaginary
part of the off-diagonal elements to be negligible, whereas Im eµdiag = Im eµz = const. throughout
the partially magnetized state. The main flaw of the above formulation is that it does not
agree with the Polder tensor (2.22) in the limit of the fully magnetized state. But even more
important for the study of ferrite loaded-cavities, the formulas are not necessarily applicable
below gyromagnetic resonance, where ω<ω0, due to the made assumptions.

An alternative expression for the effective permeability tensor is presented by Igarashi and
Naito [24]. They solved the equation of motion for the magnetization (2.14) for a static mag-
netic field with general orientation

αx~ex +αy~ey +αz~ez with α2
x +α

2
y +α

2
z = 1. (2.29)

Analogous to the derivation of Rado’s formula, spatial averaging, denoted by < · · · >, with
random domain orientations and the approximation

1− 
α2
z

�' 1− 〈αz〉2 = 1−m2 (2.30)

finally lead to

↔
µ = µ0





1+ 1
2χ
�

1+m2
� −i m κ 0

i m κ 1+ 1
2χ
�

1+m2
�

0
0 0 1+χ

�

1−m2
�





�

for ~H0 ‖ ~ez

�

. (2.31)
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Therein χ and κ are defined as for the fully magnetized state (cf. Eq. (2.23)), except that H0
is considered as a free parameter, which has to be determined from experiment. This tensor
agrees both with the one of Rado’s theory in the validity limit (i.e. ω0� ω and ωM � ω) and
with the Polder tensor for the fully magnetized state. However, Igarashi and Naito claim that the
main diagonal elements are not in accordance with experimental data for partially magnetized
ferrites.

All the before mentioned approaches do not take into account a coupling of the magnetic
moments of adjacent domains. This is accomplished by the self-consistent model of Gelin and
Berthou-Pichavant [25]. Therein, the ferrite is regarded as an assembly of independent grains
with random orientation. Each of the grains consists of interacting domains with magneti-
zation parallel or anti-parallel to its easy axis. For the calculation of the permeability tensor
components, at first the modified internal magnetic field and the magnetization equilibrium
direction due to the applied external static magnetic field are determined in each domain. In
order to incorporate interactions of adjacent domains via the Polder-Smit effect [26], two cou-
pled equations of motion with Gilbert damping term (cf. Eq. (2.14)) are solved in the second
step. Eventually, the global effective tensor components are obtained by spatial averaging of
the individual contributions over all grains. To sum up, given the saturation magnetization, the
magnetocrystalline anisotropy field, the demagnetizing coefficient depending on the shape of
the domains as well as the (Gilbert) loss factor α, this model provides analytical integral expres-
sions for the components of the permeability tensor with arbitrary magnetization state. Though
accordance of this theory with previous approaches in their validity limits is confirmed [25],
Gelin and Quéffélec point to the incorrect description of the loss mechanism for low field bias
and unsatisfactory results for the internal static magnetic field vector [20]. Hence, these two
authors generalized the Gelin-Berthou model [20] by introducing statistical distribution laws for
domain and grain demagnetizing coefficients as well as by incorporating the Stoner-Wohlfarth
hysteresis model [27]. The latter enables the reproduction of the second order hysteresis effect
[20], which was observed in experiments by Green and Sandy [23].

In the above expressions for the permeability tensor, the static magnetic field is assumed to be
parallel to the z-axis of the coordinate system. Yet, a numerical solution of the curl-curl equation
(3.5) of problems with a non-homogeneous bias field requires a form of the tensor for a fully
general orientation of ~H0, which is derived in the following subsection.

2.2.3.4 Permeability tensor for arbitrary orientation of the bias magnetic field

With the aim of deriving an expression for the permeability tensor when the bias magnetic field
is not aligned with the z-axis, let the general direction of the bias magnetic field be defined by
the unit vector

~er :=





sinθ cosφ
sinθ sinφ

cosθ



 , (2.32a)

i.e. ~H0 = H0 · ~er; ~M0 = M0 · ~er . (2.32b)

Herein, θ and φ are the polar and azimuthal angle in the spherical coordinate system, respec-
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Figure 2.4.: Unit vector ~er in the spherical coordinate system with the polar angle θ and the
azimuthal angle φ.

tively (see also Fig. 2.4). Repeating the same procedure as explained in subsection 2.2.3.1 with
vectors (2.32) instead of (2.18) leads to the permeability tensor

↔
µ (θ ,φ) = µ0





µx ,x(θ ,φ) µx ,y(θ ,φ) µx ,z(θ ,φ)
µy,x(θ ,φ) µy,y(θ ,φ) µy,z(θ ,φ)
µz,x(θ ,φ) µz,y(θ ,φ) µz,z(θ ,φ)



 , (2.33)

with

µx ,x(θ ,φ) = cos2φ(µdiag cos2 θ +µz sin2 θ ) +µdiag sin2φ, (2.34a)

µx ,y(θ ,φ) = cosφ(−µdiag +µz) sin
2 θ sinφ − iκ cosθ , (2.34b)

µx ,z(θ ,φ) = sinθ (cosθ cosφ(−µdiag +µz) + iκ sinφ), (2.34c)

µy,x(θ ,φ) = cosφ(−µdiag +µz) sin
2 θ sinφ + iκ cosθ , (2.34d)

µy,y(θ ,φ) = µdiag cosφ2 + (µdiag cos2 θ +µz sin2 θ ) sin2φ, (2.34e)

µy,z(θ ,φ) = sinθ (cosθ (−µdiag +µz) sinφ − iκ cosφ), (2.34f)

µz,x(θ ,φ) = − sinθ (cosθ cosφ(µdiag −µz) + iκ sinφ), (2.34g)

µz,y(θ ,φ) = sinθ (cosθ (−µdiag +µz) sinφ + iκ cosφ), (2.34h)

µz,z(θ ,φ) = µz cos2 θ +µdiag sin2 θ . (2.34i)

This expression is in accordance with the one given in [28] for µdiag = 1+χ and µz = 1, which
can easily be seen after applying some trigonometric identities (and taking into account the
different sign convention for κ therein). Obviously, after substituting the tensor components
µdiag, κ and µz for the effective tensor components, this expression is also applicable to the
partially magnetized state. Alternatively, the general form of the tensor (2.33) can readily be
obtained by applying the orthogonality transformation

↔
µ (θ ,φ) = R(θ ,φ)T

↔
µ R(θ ,φ) (2.35)

with the rotation matrix in three dimensions R(θ ,φ) to the original tensor for ~H0 ‖ ~ez.

2.2.4 Permittivity tensor

Though ferrites exhibit only purely gyromagnetic properties, the problem of the calculation of
eigensystems in chapter 3 will be formulated for materials with general gyrotropic characteris-
tics to allow a broader field of application. Hence, also the behavior of gyroelectric substances
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is discussed briefly in this subsection using the example of a magnetized plasma. A plasma is an
electrically quasi-neutral medium consisting of a negatively-charged electron gas, which moves
freely in front of a background of positive ions. If the electron gas is displaced by the distance
|~x | with respect to the ions, the (electric) dipole moment

~P = Nee~x (2.36)

is induced, where Ne is the number of electrons per unit volume and e the (positive) elementary
charge. Due to the Coulomb force, the electrons oscillate with respect to the ions while being
damped by particle collisions, which is quantified by the collision frequency vc. Moreover, in the
presence of a static magnetic field ~B0 with a large field strength compared to RF -components,
the Lorentz-force must not be neglected. Hence, the time-dependence of the displacement of the
electrons in a magnetized plasma can be described approximately by the differential equation
[29]

me
d2~x
dt2
+mevc

d~x
dt
= −e

�

~E +
d~x
dt
× ~B0

�

. (2.37)

In the absence of a magnetic field, the electrons oscillate accordingly with the so-called plasma
frequency

ωp =

√

√Ne e2

ε0me
, (2.38)

whereas the cyclotron frequency of the charged particles in the magnetic field is given by

ωb =
B0 e
me

. (2.39)

Inserting relation (2.36) into the differential equation (2.37) and employing the above defini-
tions (2.38) and (2.39), leads to the (electric) susceptibility tensor

~P = ε0
↔
χe ~E (2.40)

and from this to the permittivity tensor

↔
ε = ε0

�

13×3 +
↔
χe

�

. (2.41)

If the plasma is experiencing a magnetic field in z-direction, i.e. ~B0 = B0 ·~ez, the tensor takes the
form [29]

↔
ε = ε0





ε1 −iε2 0
iε2 ε1 0
0 0 ε3





�

for ~B0 ‖ ~ez

�

(2.42)
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with

ε1 = 1−
ω2

p(ω− ivc)

ω
�

(ω− ivc)2 −ω2
b

� , (2.43a)

ε2 =
ω2

pωb

ω
�

(ω− ivc)2 −ω2
b

� , (2.43b)

ε3 = 1−
ω2

p

ω(ω− ivc)
. (2.43c)

Furthermore, the permittivity tensor for a general orientation of the magnetic field can read-
ily be obtained out of the above expression by applying the orthogonality transformation (cf.
subsection 2.2.3.4)

↔
ε (θ ,φ) = R(θ ,φ)T

↔
ε R(θ ,φ). (2.44)

2.3 Permeability measurement

In the theoretical description of the properties of gyrotropic material of the previous section, a
couple of a-priori unknown parameters remain for a quantitative description. These parame-
ters have to be determined from experimental data for each particular material. As mentioned
above, it is the objective of the presented thesis to develop a tool for the numerical simulation
of the lowest eigenmodes of ferrite-loaded cavities. Evidently, accurate material characteristics
are inevitable ingredients for the numerical computations. Since ferrites exhibit only purely gy-
romagnetic and no gyroelectric properties, only the former are considered in the following. Due
to the limited information available in the data sheet provided by the manufacturer, own exper-
iments were carried out at the GSI facility. The aim of these measurements is to gain knowledge
about the magnetic properties of the Ferroxcube 8C12m ferrite material in the parameter range
where the GSI SIS 18 cavity resonators are operated. Among the properties of interest are the
B-H curve, the frequency characteristic of both the real and imaginary part of the permeabil-
ity as well as its dependence on the presence of a (quasi static) bias magnetic field of variable
strength. The measurement of these magnetic characteristics and its analysis are discussed in
the following section. Firstly, the determination of the complex permeability in a reflection and
a transmission setup is discussed including an extensive uncertainty analysis. Finally, results of
the measurement of the B-H curve which is enclosed throughout a reduced working cycle of the
cavity are presented.

This section is basically a reproduction of the part about the material measurement of the
publication [30], which is supplemented with a quantitative uncertainty analysis.

2.3.1 Measurement setup

Two different methods are used for the measurement of the frequency-dependent permeability.
Whereas the first approach is based on the measurement of the input port reflection coefficient,
the S11-parameter, transmission measurements of S-parameters are carried out in the second
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(a) (b)

Ibias
=

VNA
∼

Figure 2.5.: Picture (a) and schematic view (b) of the experimental setup in the reflection mea-
surement mode. The ferrite ring pair with bias windings is located inside the cavity
housing. The N-type cable in the center on top is connected to the VNA. A 50Ω
resistor and optionally external capacitors can be installed in parallel.

Table 2.1.: Settings of the network analyzer for both measurement methods.
Number of sample points 4001

Sweep type logarithmic frequency
Source power 0 dBm

Frequency range 0.5 MHz to 20 MHz
Bandwidth 1 kHz
Averaging 4 times

one. The basic setting of both approaches is identical: Two Ferroxcube 8C12m full size toroids
can be biased via Nbias = 105 crossed (figure-of-eight) current windings. The bias current is ad-
justed manually at the direct current (DC) power supply (Delta Elektronika SM 45-70D [31]).
Moreover, the rings together with the current windings are installed inside a copper cavity
housing. For the first approach, this housing together with one centric wire, which connects
the upper and lower plate, also serves for the coupling of the RF to the ring cores. In contrast,
for the second approach the inner wire is disconnected. Instead, two separate current wind-
ings wound closely around both ring cores are installed for excitation and pick-up of the signal.
The S-parameters of the device under test are measured with a Rohde & Schwarz ZNB4 vec-
tor network analyzer [32] in the frequency range from 0.5 MHz to 20 MHz. The used settings
of the network analyzer (VNA) are listed in table 2.1. Optionally, external capacitors, which
are soldered directly on a N-type-adapter to minimize the parasitic inductance of the connect-
ing wires, can be installed in parallel. Figure 2.5(a) shows the measurement station for the
reflection setup, figure 2.5(b) its simplified schematic view.

In order to prepare the magnetic remanence state, the bias current is driven up to the maxi-
mum value of 50 A (≈ 4.6 kA/m) for a short time in an initialization step. The measurement is
carried out for values of the bias current starting with 0 A and raising up to the maximum value
with enlarging increments. For the reflection measurement this is repeated with 1 and 2 capac-
itors with a capacitance of 1 nF each installed in parallel. The temperature of the ring cores is
controlled with a FLUKE 62 Mini IR thermometer [33]. Since no cooling system was installed,
the temperature at the surface of the material increased from 23°C to about 32°C during the
measurements due to the heating of the ferrite material. In order to reduce inaccuracies due to
residual impedances, a careful calibration of the network analyzer including the N-type cable
(type RG 214/U) was performed. Besides, a high phase stability was observed.
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Cext CdistR0

DUT

Figure 2.6.: Equivalent circuit diagram to represent the measurement setup. The resistor R0 and
optional external capacitors Cext are installed in parallel to the device under test
(DUT). The DUT itself is modeled as a distributed capacitance Cdist in parallel with a
series inductance Ls and resistance Rs.

The basic principle of the introduced methods are thus similar to approaches known from
literature, namely for instance [34–37] for the reflection measurement and [38, 39] for the
transmission measurement.

2.3.2 Analysis of the reflection measurement data

2.3.2.1 General procedure

The network analyzer records the absolute value and phase of the S11-parameter at every sample
point. Hence, after the reflection measurement the pair of values is available as a function of
frequency for the different bias current and capacitor settings. This reflection parameter is
transformed to the real and imaginary part of the admittance according to the relations [40]

Re(Y ) =
1− |S11|2

1+ |S11|2 + 2 |S11| cos(arg(S11))
× 1

Z0
, (2.45a)

Im(Y ) =
−2 |S11| sin(arg(S11))

1+ |S11|2 + 2 |S11| cos(arg(S11))
× 1

Z0
, (2.45b)

where Z0 = 50Ω is the characteristic impedance. The question how the permeability can be
extracted from the admittance data is discussed in the following. Assuming that the system can
be described by a circuit as depicted in figure 2.6, its total admittance is given by

Y =
1
R0
+ iωCext + iωCdist +

1
iωLs + Rs

(2.46)

with the external and distributed capacitances Cext and Cdist, respectively, the parallel resistor
R0 = 50Ω and the series inductance Ls and series resistance Rs of the two toroids. In reality,
neither the parallel resistor nor the external capacitor behave as ideal components. To account
for this, an additional measurement is carried out to obtain the admittance

Y0 =
1
R0
+ iωCext (2.47)

19



Quantity Value
hcore 50mm
rout 249 mm
rin 136 mm

rcav,out 340 mm
rcav,in 1.75 mm
hcav 143 mm

hcore/2

hcore/2
hcav

rcav,in

rcav,out

rout

rin r

z

Figure 2.7.: Dimensions of the cavity and the ring cores. The illustration on the right shows a
simplified two-dimensional sectional view through the center of the cavity. [30]

of these two components alone without being connected to the device under test (DUT). Hence,
the inductance Ls and the resistance Rs of the ring cores can be expressed in terms of Y and Y0
as

Ls =
ωCdist − Im(Y ) + Im(Y0)

ω
�

(Re(Y )−Re(Y0))2 + (Im(Y )− Im(Y0)−ωCdist)
2� (2.48a)

and Rs =
Re(Y )−Re(Y0)

(Re(Y )−Re(Y0))2 + (Im(Y )− Im(Y0)−ωCdist)
2 , (2.48b)

respectively. Moreover, these quantities are related to the permeability µs = µ′s − iµ′′s involving
the dimensional parameters as depicted in figure 2.7 by the relations [36]

Ls =
1
I

∫

BdA=

rcav,out
∫

rcav,in

hcav
∫

0

µ′s
2πr

drdz, (2.49a)

Rs =
iω
I

∫

BdA=ω

rcav,out
∫

rcav,in

hcav
∫

0

µ′′s
2πr

drdz. (2.49b)

This can be transformed into

Ls =
1

2π
hcore

�

µ′s −µ0

�

ln
rout

rin
+ Lair, (2.50a)

Rs =
ω

2π
hcoreµ

′′
s ln

rout

rin
+ Rcav (2.50b)

with the inductance of the air-filled resonator

Lair =
1

2π
hcavµ0 ln

rcav,out

rcav,in
(2.51)

and the resistance of the empty cavity Rcav. From equations (2.50), the real and imaginary part
of the permeability are finally obtained as

µ′s = (Ls − Lair)
2π

hcore ln(rout/rin)
+µ0, (2.52a)

µ′′s = (Rs − Rcav)
2π

ω hcore ln(rout/rin)
(2.52b)
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RpLpCext CdistR0

DUT

Figure 2.8.: Alternative equivalent circuit diagram for the measurement setup. The resistor R0
and optional external capacitors Cext are installed in parallel to the DUT. The DUT it-
self is modeled as a distributed capacitance Cdist in parallel with a parallel inductance
Lp and resistance Rp.

with Ls and Rs as given in equations (2.48). Equation (2.51) allows only a rather inaccurate
determination of the inductance of the empty cavity in practice. Hence, the inductance Lair and
also the resistance Rcav of the empty cavity are obtained instead from a separate measurement
without the toroids as explained in subsection 2.3.2.2. Furthermore, the distributed capacitance
remains unknown at this point. Its estimation is discussed in subsection 2.3.2.3.

For certain purposes it may be more convenient to define a complex parallel permeability

1
µp
=

1
µ′p
+ i

1
µ′′p

(2.53)

and to work with an alternative circuit model with a parallel inductance Lp and resistance Rp as
depicted in figure 2.8. In this case, Lp and Rp are related to the admittance by

Lp =
1

ω (− Im(Y ) + Im(Y0) +ωCdist)
, (2.54a)

Rp =
1

Re(Y )−Re(Y0)
, (2.54b)

respectively. The derivation of expressions for Lp and Rp in terms of geometric parameters is
completely analogous to equations (2.49) and (2.50). The final result thus reads

µ′p =
�

Lp − Lair

� 2π
hcore ln(rout/rin)

+µ0, (2.55a)

µ′′p =
�

Rp − Rcav

� 2π
ω hcore ln(rout/rin)

(2.55b)

with Lp and Rp as given in equations (2.54).
Besides of the values for the permeability, also the dependence of the lowest resonance fre-

quency of the whole system on the bias field is of interest. The relation between the bias current
and the applied magnetic bias field Hbias can be expressed as [41]

Hbias =
NbiasI

leff
(2.56)
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with the effective magnetic path length leff, which is usually specified by the manufacturer. For
simple toroidal shapes, leff is calculated as [42]

leff =
2π ln(rout/rin)
1/rin − 1/rout

, (2.57)

which is also supposed throughout the following analysis. Later on, also the effect of using
alternative expressions for leff, namely the arithmetic mean

leff = π (rout + rin) (2.58)

or the geometric mean

leff = 2π
p

routrin, (2.59)

is investigated with the help of simulations in section 4.2.

2.3.2.2 Measurement of the inductance Lair and the resistance Rcav of the empty cavity

In order to determine the inductance Lair and the resistance Rcav from measurement, the admit-
tance Yair of the empty cavity without the ferrite ring cores is recorded. Its real and imaginary
part are then fitted to the function

Yair =
1
R0
+

1
iωLair + Rcav

(2.60)

keeping Lair and Rcav as free parameters. As can be seen in figure 2.9, it is possible to reproduce
Yair very well with frequency-independent values of Lair = (180 ± 8)nH and Rcav = (17.5 ±
17.5)mΩ. The uncertainty estimation is discussed in detail in subsection 2.3.3.1.

As a cross-check, the value of Lair is also calculated according to equation (2.51), its uncer-
tainty according to quadratic error propagation with the estimated uncertainties ∆hcav = 3mm,
∆rcav,out = 5mm and ∆rcav,in = 0.2 mm for the input quantities. This way a value of Lair =
(151± 7)nH is found, which is not fully in accordance with the measured value. Possible rea-
sons for the slight deviation are additional inductive contributions such as those from the inner
wire and the cavity housing, which are not included in the simple calculation. Moreover, an es-
timation of the resistance Rcav from an analytical calculation taking into account the skin depth
of the copper material leads to a compatible value in the same order of magnitude as obtained
above.

2.3.2.3 Determination of the distributed capacitance

The distributed capacitance depends only weakly on frequency in good approximation [34]
since the permittivity of the ferrite material does not change significantly in the frequency range
of this measurement [41]. Thus, the distributed capacitance is assumed to be frequency in-
dependent in the following. To estimate its value, the approach suggested in [34] is pursued:
There the authors propose to measure the resonance frequency of the DUT together with two
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Figure 2.9.: Imaginary part (above) and real part (below) of the admittance Yair of the empty
cavity as a function of frequency for the reflection measurement. The area in light
red color indicates the confidence interval Yair ±∆Yair. The uncertainty of the ad-
mittance ∆Yair is estimated as discussed in section 2.3.3.1. The fitted curve (black
dashed curve) is shown for Lair = 180nH and Rcav = 17.5mΩ as obtained by a fit to
equation (2.60).
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Table 2.2.: (a) Measured capacitances for four different external capacitors at the resonance
frequencies fres. (b) Calculated values for the distributed capacitance Cdist according
to equation (2.61) for the combination of the data in table (a) for different external
capacitors.

(a) # capacitance / nF @ ( fres / MHz)
1 1.98± 0.06 @ (1.88 ± 0.02)
2 8.3 ± 0.4 @ (0.970± 0.004)
3 10.2 ± 0.5 @ (0.881± 0.003)
4 11.2 ± 0.6 @ (0.842± 0.003)

(b) combination Cdist / nF
1, 2 0.31± 0.17
2, 3 0.34± 0.17
3, 4 0.5 ± 2.9
1, 3 0.34± 0.17
1, 4 0.34± 0.17
2, 4 0.4 ± 2.2

different external capacitors. For an accurate determination of Cdist, their capacitance should be
chosen close to each other and in the same order as the distributed capacitance. Additionally,
they should be selected such that the resonance frequency is well below magnetic resonance,
where the inductance of the ferrites is approximately frequency independent. Then, Cdist can
be calculated from the two measured resonance frequencies fres,1 and fres,2 and the known
capacitances C1 and C2 of the capacitors according to the formula [34]

Cdist =
C2 f 2

res,2 − C1 f 2
res,1

f 2
res,1 − f 2

res,2

. (2.61)

In the elaborated setup, this method is employed using four different external capacitors. At
first, their capacitances have to be determined. To this end, the admittance Y0 of the capacitors
in parallel with a 50Ω-resistor alone is measured separately. The frequency-dependent value
of the capacitance can then be calculated from equation (2.47). The obtained capacitances to-
gether with the resonance frequencies are listed in table 2.2(a). Moreover, the values for Cdist
computed with equation (2.61) for different combinations of external capacitors are summa-
rized in table 2.2(b). Both tables also include uncertainties, which are obtained by considering
the extreme cases Im(Y )±∆ Im(Y ) and Im(Y0)±∆ Im(Y0), where∆ Im(Y ) is the estimated error
of Im(Y ). Then the uncertainty of the distributed capacitance∆Cdist can be estimated according
to quadratic error propagation applied to equation (2.61).

As is evident from table 2.2(b), the employed method allows only a very inaccurate deter-
mination of the distributed capacitance for this setup. This is due to the fact that here it is
not possible to attain the two above-mentioned competing goals simultaneously: On the one
hand, a high Cext is required to shift the resonance to the range of an approximately frequency-
independent µ′. On the other hand, a low Cext is necessary to be in the order of Cdist to avoid
cancellation in equation (2.61).

Therefore, a cross-check on Cdist is carried out by determining the slope of the admittance
curve Im(Y − Y0) in the high frequency range. It is found that it corresponds to that of an
ideal capacitor with a capacitance of C = 0.23nF, which might be attributed to distributed
capacitances. Yet, as the increasing raise of the Im (Y )-curve towards high frequencies in figure
2.10 suggests, this value might be influenced by parasitic resonances at higher frequencies. All
in all, the determined value for the distributed capacitance appears to be unreasonably large. To

24



5 10 15 20

−0.01

−0.01

0.00

0.01

0.01

0.02

frequency / MHz

Im
(Y
−
Y
0
)/
S

Hbias = 0 A
m

Hbias = 18 A
m

Hbias = 46 A
m

2πf × 0.23 nF− 12.5mS

Figure 2.10.: Imaginary part of the admittance Y − Y0 as a function of frequency for the re-
flection measurement setup without external capacitors using three different bias
magnetic field strengths. The slope of the admittance curves in the high frequency
range corresponds to that of an ideal capacitor with C = 0.23 nF, which is indicated
by the dashed line.

further investigate the origin of the distributed capacitance, measurements were also performed
with a second, completely closed cavity housing, which only takes one single toroid without bias
windings. Besides from that, the setup and measurement approach are identical. Nevertheless,
the two different methods for the determination of Cdist yield almost identical values. Hence, it
cannot be assumed that the large value of Cdist is due to the bias current windings. Furthermore,
also the comparison with the eigenmode simulation similar to the one in section 4.2 indicates
that stray capacitances between the ring cores and the surrounding cannot add up to such large
values. Such numerical eigenvalue simulations of the cavity resonator loaded with two ring
cores of a material with a spatially constant as well as frequency independent permeability
and a permittivity in the range as stated in the data sheet for the Ferroxcube material [41]
rather suggest a stray capacitance in the order of 0.01 nF. It might thus be assumed that the
main contribution to the parasitic capacitance is due to the connector on top of the resonator.
However, from the analysis of measurements of the empty cavity with and without additional
connectors, the order of magnitude of such a connector is estimated as only 0.01nF. Hence,
though the origin of apparent large value of Cdist cannot conclusively be clarified, the influence
of parasitic resonances at higher frequencies still seems to be plausible. Consequently, the large
values of the distributed capacitance are discarded for the data analysis.

Taking all this into consideration, the value of the distributed capacitance is taken as Cdist =
(0.01± 0.17)nF for the further data evaluation. It is noted that the actual value of Cdist plays
only an important role for high frequencies. In the frequency range relevant for the simulation
of the SIS 18 cavity even a change of Cdist from 0.23 nF to 0.01 nF for the determination of the
permeability values results in changes of the simulated resonance frequency only in the order
of 1%.
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2.3.3 Uncertainty estimation for the reflection measurement

2.3.3.1 Error calculation

The uncertainty of derived quantities, here in particular the permeability, is estimated under the
assumption of uncorrelated variables using quadratic error propagation. Accordingly, starting
from equations (2.52) the uncertainty of the permeability ∆µs is given by

�

∆µ′s
�2
=

�

∂ µ′s
∂ Re(Y )

�2
�

(∆Re(Y ))2 + (∆Re(Y0))
2�

+

�

∂ µ′s
∂ Im(Y )

�2
�

(∆ Im(Y ))2 + (∆ Im(Y0))
2�

+

�

∂ µ′s
∂ Cdist

�2

(∆Cdist)
2 +

�

∂ µ′s
∂ω

�2

(∆ω)2 +

�

∂ µ′s
∂ hcore

�2

(∆hcore)
2

+

�

∂ µ′s
∂ rout

�2

(∆rout)
2 +

�

∂ µ′s
∂ rin

�2

(∆rin)
2 +

�

∂ µ′s
∂ Lair

�2

(∆Lair)
2

(2.62)

and an analogous expression for ∆µ′′s . Of course, the equations for the calculation of the un-
certainty of the permeability in the parallel equivalent circuit representation ∆µp are identical
apart from the fact that the index s has to be replaced with p. The geometrical uncertainties
∆hcore, ∆rout and ∆rin are estimated from repeated measurements at various locations of the
toroids. In contrast, the errors of the admittance ∆Re(Y ) and ∆ Im(Y ) as well as the one of
the frequency ∆ω are governed by the specifications of the network analyzer. Note that since
the admittance Y is actually a derived quantity, only the uncertainties of the absolute value and
phase of the complex S11-parameter are known a priori. To obtain an error estimate for Y (and
analogously for Y0), the relations (2.45) together with

∆Re(Y ) =

√

√

√

�

∂ Re(Y )
∂ |S11|

�2

(∆|S11|)2 +
�

∂ Re(Y )
∂ arg(S11)

�2

(∆arg(S11))
2, (2.63a)

∆ Im(Y ) =

√

√

√

�

∂ Im(Y )
∂ |S11|

�2

(∆|S11|)2 +
�

∂ Im(Y )
∂ arg(S11)

�2

(∆arg(S11))
2 (2.63b)

are used. The uncertainties ∆|S11|, ∆arg(S11) and ∆ω as specified by the manufacturer are
available in [43]. Furthermore, the estimation of the uncertainty of the distributed capacitance
∆Cdist was already discussed in subsection 2.3.2.3. The one of the inductance and resistance of
the empty cavity determined in subsection 2.3.2.2 is estimated as follows. As revealed by the
above uncertainty analysis, Yair can be measured with highest accuracy in the high frequency
limit (cf. Fig. 2.9). This suggests to repeat the fitting procedure mentioned in subsection 2.3.2.2,
however, this time with Yair ±∆Yair and only in the high frequency range near 20 MHz in order
to obtain confidence intervals for Lair and Rcav. Due to the observed frequency independence of
Lair and Rcav, the uncertainties obtained this way are assumed to be valid in the whole frequency
range. For the resistance Rcav, the estimated uncertainty is reduced to ensure manifestly positive
values. The assumed uncertainties of all input quantities are summarized in table 2.3.
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Table 2.3.: Assumed uncertainties for the input quantities. The symbols used for the different
quantities are explained in the text.

Quantity Value
∆|S11| as depicted at the top right
∆arg(S11) as depicted on the bottom right
∆Cdist 0.17 nF
∆Lair 10 nH
∆Rcav 17.5 mΩ
∆ω 0 Hz (according to [43] O (10−6)×ω)
∆hcore 0.6 mm
∆rout 0.5 mm
∆rin 1 mm
∆rI,out 6 mm

rI,in 6 mm
∆hI 5 mm
∆I 0.5%× I + 0.02 A
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Moreover, the uncertainty of the position of the lowest resonance of the system as a function of

frequency and bias magnetic field is estimated as follows. The uncertainty of the bias magnetic
field strength is calculated according to

∆Hbias =

√

√

√

�

∂ Hbias

∂ I

�2

(∆I)2 +
�

∂ Hbias

∂ rout

�2
�

∆rI,out

�2
+
�

∂ Hbias

∂ rin

�2
�

∆rI,in

�2
. (2.64)

Here the uncertainty of the bias current ∆I is taken as specified by the manufacturer of the
power supply [31]. Furthermore, somewhat larger uncertainties for the inner and outer radius,
∆rI,in and ∆rI,out, are assumed since here the radii of the current windings instead of those of
the toroids matter. These uncertainties are also listed in table 2.3. At this point, errors due to
the approximating assumption of a constant effective magnetic field in equation (2.56) are not
taken into account. The uncertainty of the resonance frequency itself is obtained by determining
the zeros of the imaginary part of the admittance for the extreme cases Im(Y )±∆ Im(Y ).

Note that any possible other errors, in particular ones due to temperature variations, are not
considered. Furthermore, it is worth mentioning again that possible correlations of variables,
notable that of ∆Re(Y ) and ∆ Im(Y ), are not taken into account, which, however, only might
lead to an overestimation of uncertainties.

2.3.3.2 Discussion of individual uncertainty contributions

The estimated relative error for the determination of the lowest resonance frequency is fairly
below 1% since the uncertainty of Im(Y ) is small in this region. In contrast, the total estimated
error for the permeability may become very large. To better understand its origin, the different
groups of uncertainties introduced in the previous subsection are examined separately. The
qualitative results are presented in the following starting with the most important contributions.
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If not stated otherwise, the obtained uncertainties are similar both for µs and µp; in such a case
the symbol µ is used without index.

Uncertainty of |S11| and arg(S11)
The uncertainty of the complex S11-parameter presents one of the largest contributions to

the total estimated error. Whereas the caused relative error of µ′ is still moderate in the order
of 10%, the resulting relative error of µ′′ rises up to the order of 1000% for small frequen-
cies. Moreover, in general, the resulting uncertainty of µ increases significantly when external
capacitors are added.

Uncertainty of distributed capacitance
The effect of the uncertainty of capacitance is negligible for small frequencies but grows

rapidly with frequency. This is particularly the case for ∆µ′ as µ′ decreases where its rel-
ative error exceeds 100%. Yet, for the imaginary part of µ, a distinction of the series and
the parallel case is required: Whereas µ′′p is independent of Cdist, the resulting relative error
∆µ′′s /µ

′′
s is in the order of 100% around 20 MHz. A virtual limit frequency below which an error

contribution stays moderate raises as the bias current increases.

Uncertainty of inductance and resistance of the empty cavity
The uncertainty of Lair only contributes to ∆µ′. Since ∆Lair is assumed to be independent of

frequency (cf. subsection 2.3.2.2) and also independent of the bias field strength, the resulting
relative error of µ′ raises with increasing frequency and decreasing bias current. It is in the
order of 10% in a wide frequency range. In contrast, the uncertainty of Rcav may be neglected
compared to other more dominant contributions.

Uncertainty of geometry
The uncertainty of the geometry results in a relative error in the order of 1%.

As revealed by the error analysis, the resulting relative error is far above 10% for some pa-
rameter ranges. In these regions the calculated uncertainties can only be considered as rough
estimates since higher order terms are not taken into account in the error calculation.

2.3.4 Analysis of the transmission measurement data

Within the transmission measurement, the full two-port scattering matrix is recorded. The
complex permeability is then extracted as derived in the following.

The variable-frequency harmonic oscillator of the network analyzer drives a current I1(t) =
Î1 exp(iωt) through the primary winding with N1 primary turns, which in turn excites the (com-
plex) magnetic field strength

H(t, r) = N1

I1(t)

2πr
(2.65)
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Quantity Value
hI 71mm

rI,out 254mm
rI,in 131mm

U2

∼
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z

Figure 2.11.: Geometric quantities related to the location of the primary and secondary wind-
ing. The illustration on the right shows a simplified two-dimensional sectional view
through the center of the cavity. [30]

inside the toroids [38]. The secondary winding with N2 turns, which is used as sense winding,
comprises the magnetic flux (cf. Fig. 2.11)

Φ(t) =

∫

~B(t)d~A=

rI,out
∫

rI,in

�

(µcore −µ0)hcore +µ0hI

�

H(t, r)dr =
N1I1(t)

2π

�

µcorehcore ln
rout

rin
+Ψair

�

(2.66a)

with Ψair := −µ0hcore ln
rout

rin
+µ0(hcore + hI) ln

rI,out

rI,in
, (2.66b)

where µcore is the complex permeability of the ferrite ring cores. Note that the global sign on
the right hand side of equation (2.66a) depends on the relative orientation of current and sense
winding. By Faraday’s law the voltage

U2(t) = Û2 exp(iωt) = −N2
dΦ(t)

dt
= −iω

N1N2I1(t)

2π

�

µcorehcore ln
rout

rin
+Ψair

�

(2.67)

is induced in the secondary winding. Solving this complex-valued equation for the real and
imaginary part of the permeability in the series representation, i.e. µcore := µ′s − iµ′′s , finally
yields

µ′s = −
1

hcore ln(rout/rin)

�

2π Im(Z21)
N1N2ω

+Ψair

�

(2.68a)

µ′′s = −
1

hcore ln(rout/rin)
2πRe(Z21)

N1N2ω
(2.68b)

involving the impedance parameter [40]

Z21 :=
Û2

Î1

�

�

�

�

�

I2=0

=
2 S21

(1− S11)(1− S22)− S12S21
Z0, (2.69)

where Z0 = 50Ω is the characteristic impedance.
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Figure 2.12.: Assumed uncertainties for the transmission parameters S21 and S12 for the absolute
value (a) and the argument (b) following [43]. The same dependence as shown for
S21 is assumed for S12.

2.3.5 Uncertainty estimation for the transmission measurement

2.3.5.1 Error calculation

Analogous to the reflection measurement, the uncertainty of the permeability is derived using
quadratic error propagation from equations (2.68). The required uncertainty of all geometric
parameters as well as the one of ω were already summarized in table 2.3. The uncertainty of
the Z21-parameter is derived employing quadratic error propagation from equation (2.69). The
assumed uncertainties of the reflection parameters S11 and S22 therein are as shown for S11 in
table 2.3, the ones for the transmission parameters S21 and S12 as indicated in figure 2.12. It is
repeated again that possible correlations between variables, notable the one between all the S-
parameters, are neglected for simplicity. Furthermore, other uncertainties, such as ones due to
temperature variations or phase shifts due to residual inductances, are not taken into account.

2.3.5.2 Discussion of individual uncertainty contributions

For a better understanding of the origin of the total estimated uncertainty of the permeability,
the contributions of the two considered groups are examined separately. The qualitative results
are presented in the following.

Uncertainty of S-parameters
The total estimated error is dominated by the uncertainty of the complex S-parameters. The

relative error of µ′′s becomes large for small frequencies, where it is in the order of 100%. It
gradually decreases with raising frequency up to ≈ 3MHz and remains at this level beyond that
point. In contrast, very moderate relative errors around 5% are obtained for µ′s.

Uncertainty of geometry
The dependence of µ′′s on geometric parameters is the same as for the reflection measurement

and is on the order of 1%.
The uncertainty estimates should be taken with care in the regions where the resulting relative

error is far above 10% since only first order terms are taken into account in the error calculation.
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2.3.6 Measurement results

2.3.6.1 Permeability as a function of frequency and bias magnetic field strength

Reflection measurement
The values obtained from the analysis of the reflection measurement data for the real and

imaginary part of the permeability in the series representation as a function of frequency for a
few selected bias magnetic field strengths are shown in figure 2.13. In the original measure-
ment data, distortions in the real part of the admittance at low frequencies are observed, which
result in sharp resonances, where the value of µ′′s is increased and the one of µ′′p is decreased
(cf. Fig. 2.13). These distortions are present only for a non-vanishing bias current between
≈ 0.5MHz and ≈ 2.5 MHz. Furthermore, their amplitude firstly increases with bias current,
reaches a maximum at around I = 3 A (Hbias ≈ 0.3 × 103 A/m) and then gradually decreases.
At the same time, the distortions move to higher frequencies. Moreover, the frequency positions
and amplitude of the distortions are independent of the number of added external capacitors. It
is speculated that they are caused by undesired interactions between the DC current generator
and distributed capacitances of the bias current windings. This suspicion is substantiated by
the observation that the frequency of the distortions changes when the bias windings are addi-
tionally grounded somewhere in between. Exploiting this, these distortions could eventually be
eliminated by combining different sets of data which were taken with and without additional
grounding. Furthermore, as will be seen in the next paragraph, the same distortions also occur
for the transmission measurement, for which, however, no correction has been performed.

Moreover, figure 2.14 demonstrates the dependence of µ′s and µ′′s on the bias magnetic field
strength as a function of frequency. Additionally, similar plots are shown in figure 2.15 for the
parallel representation µp. As the comparison shows, the real part of the permeability is almost
identical in the two representations for low frequencies. In contrast, both the qualitative and the
quantitative behavior of the imaginary part are completely different, as expected by the known
relations between the two quantities [2].

Generally, the results could be well reproduced after dissembling and restoring the whole
setup. In order to check the sensitivity on the RF-level, tests with different settings for the
source of the VNA were carried out for the reflection measurements. No significant deviations
were observed for a source power between −20 dBm and 10dBm except for the increasing noise
at very low power levels.

Transmission measurement
The analysis of the transmission impedance parameter Z21 reveals that the measured data

are affected by undesired resonances. Experiments demonstrated that the resonance frequency
decreases by a factor of approximately

p
2 when doubling the number of sense windings but

is rather insensitive with regard to the self inductance of the windings. Such LC resonances
are known from literature [38]. In the elaborated setup, the resonance frequency is around
8MHz without biasing and increases with raising bias current. Nevertheless, an evaluation of
the data sufficiently far below the resonance is attempted in the following. To allow an easier
comparison of the results from the reflection with the transmission measurement, the obtained
values for µ′s and µ′′s are plotted in figure 2.13 for three selected bias field strengths. As can
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Figure 2.13.: Comparison of the real part (above) and the imaginary part (below) of the perme-
ability µs as obtained from the reflection and transmission measurement analysis
for three different bias magnetic field strengths. Regions in lighter color indicate
error estimates. Unlike as in the analysis for the reflection setup, no corrections for
the distortions, which result in sharp resonances, are applied for the transmission
measurement. The empirically found analytical relation (2.70) is also plotted for
comparison. The area above f = 6 MHz is grayed out to indicate the decreasing
reliability of the measurement results of the employed methods in this frequency
range.
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Figure 2.14.: Real part (above) and imaginary part (below) of the permeability µs as obtained
from the reflection measurement analysis with different bias field strengths as a
function of frequency. The area above f = 6MHz is grayed out to indicate the
decreasing reliability of the measurement results of the employed methods in this
frequency range.
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tion measurement with different bias field strengths as a function of frequency.
The area above f = 6 MHz is grayed out to indicate the decreasing reliability of the
measurement results of the employed methods in this frequency range.
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be seen there, the values are fully in accordance with each other up in the analyzed frequency
region.

The evaluated data presented so far were recorded in a setting where the sense and the
primary winding were placed diametrically opposed on the ring cores. In order to check the
influence of their relative position, the transmission measurements were repeated with another
sense winding, which was installed at an angle of 90◦ with respect to the primary winding. The
obtained Z21-parameters for the two orientations show only minor deviations. More specifically,
negligibly small relative deviations in the order of a few percent are observed without bias field.
With increasing bias strength and hence decreasing µ′, the precise shape of the sense winding
plays a more important role. Hence, for a maximal bias current relative deviations up to 20%
are found. To sum up, there is no experimental evidence for a dependence of the measured data
on the relative position of the windings.

Description by an empirical analytical relation
According to the theory discussed in section 2.2, the permeability of ferrites subject to a bias-

ing magnetic field is described by a tensor. Its components involve a couple of material-intrinsic
parameters. In this paragraph, a description of the measured permeability values as a function
of frequency and magnetic field strength with the help of a relation motivated from theory is
attempted. Since the measurements are performed at a variable field strength, the partially
magnetized state is the relevant case (cf. subsection 2.2.3.3). Since only information about the
dynamic response of the Ferroxcube 8C12m material in the direction of the static bias field is
available from the performed measurements, only terms for the µz-component of the permeabil-
ity tensor are investigated in the following. It is worth recalling that, since Mz = B(H)/µ0 − H,
the dependence of the reduced magnetization m = Mz/Msat on the bias field strength is di-
rectly determined by the B-H curve. As discussed in subsection 2.3.7, the characteristic function
(2.73) is assumed for the Ferroxcube 8C12m ferrite. It is then found empirically that the com-
plex permeability values obtained from the reflection measurements for different magnetization
states can be well fitted to the relation

eµz = 1+ (µ̂− 1)× (1−mx) (2.70)

with H0 = Hbias+Ha and the permeability of the fully demagnetized state (2.26) without claim-
ing any physical basis. A good approximation of the data up to moderate frequencies is observed
for setting the free parameters to α = 0.4, Ha = 195A/m and x = 1.15. Equation (2.70) is ob-
tained from the expression for eµz in (2.31) with two modifications: First, χ = (µdiag − 1) is
substituted with µ̂− 1. Second, the exponent x in the spatial averaging (2.30) is left as a free
parameter instead of setting it to x = 2. As discussed above, the ratio m = Mz/Msat directly de-
pends on the B-H function. Thus, the determined value for the exponent is particularly sensitive
to a change of the parameters of the characteristic function.

The obtained analytical relations are included in figure 2.13 as well as in figure 2.16 of the
following section together with the measurement data.

2.3.6.2 Reversible permeability as a function of bias magnetic field strength

The values for the reversible permeability µrev as a function of bias magnetic field strength as
obtained from both measurement methods are shown in figure 2.16. The values are evaluated
at a frequency of f = 0.5 MHz.
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Figure 2.16.: Real part of the reversible permeability in the low frequency limit, in this study
evaluated at a frequency of f = 0.5MHz as a function of the bias magnetic field
strength. Both values as obtained for the analysis of the reflection measurement
and of the transmission measurement are shown. The empirically found analytical
relation (2.70) is also plotted for comparison.

2.3.6.3 Product of µQ f

As a further figure of merit, also the µ′sQ f -product evaluated for the reflection measurement
data for the series representation is shown in figure 2.17. As expected [44], the µQ f -curve is
shifted to the bottom right with increasing bias field strength.

2.3.7 Measurement of the B-H curve of a working cycle with reduced bias range

In the working cycle of the GSI SIS 18 cavity, the bias current is modified only in the range
from zero to its maximum value without changing its polarity. Hence, not the area of the
full B-H loop but only a small part near its upper branch is enclosed. It is the aim of the
measurement described in this section to determine the curve surrounding this area by using an
approach similar to [38]. The setup which serves for this purpose is as follows. Similar to the
previous measurement setup, two full size ferrite ring cores of identical dimensions are biased
via Nbias = 24 crossed (figure-of-eight) current windings. The bias current is again driven by
the same DC power supply. Yet, for the B-H loop measurement the output current is controlled
by a sinusoidal voltage generated by an Agilent 33522A waveform generator. As a restriction,
the maximal effective bias magnetic field was limited to 1.5 kA/m due to the smaller number of
bias windings in this setup. Thus, only a reduced working cycle could be recorded. A voltage
monitor output directly proportional to the bias current is connected to the x-channel of a
LeCroy WaveRunner 44Xi oscilloscope. Taking equation (2.56) into account, this output voltage
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Figure 2.17.: Product of µ′sQ f for the series representation as obtained from the reflection mea-
surement analysis for different bias field strengths as a function of frequency. [30]

can directly be related to the effective bias magnetic field strength. Moreover, the induced
voltage signal from the sense winding with Nturns = 9 turns is recorded at its y-channel and
averaged over 50 periods. The induced voltage Uind is related to the mean magnetic flux density
B by

Uind = Nturns A
dB
dt

, (2.71)

where A is the area that is penetrated by the magnetic flux. Hence, the magnetic field at the
time tn = tn−1 +∆t can be obtained with numerical integration of the recorded voltage signal
as

B(tn) =
tn
∑

tm=t0

∆t Uind(tm)
Nturns (rout − rin)hcore

+ B0, (2.72)

where the inner and outer radius rin and rout and the thickness of the ring cores hcore are specified
in figure 2.7. The integration constant B0 = B(t = t0) is determined as follows. First of all,
a reference value for the saturation magnetization Msat is required, which is taken as 2.1 ×
105 A/m. This is the mean of the two values stated in the data sheet [41] for a temperature
of 25°C and 40°C. Furthermore, as is observed (cf. Fig. 2.18), the area enclosed by the B-H
curve is reasonably small, which justifies to neglect hysteresis effects in further considerations.
This allows to choose B0 such that the resulting saturation magnetization coincides with Msat =
2.1× 105 A/m when fitted to a characteristic function of the form [45]

B(H) =
�

a× arctan (H b) +H +M0

�×µ0 (2.73)
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Figure 2.18.: B-H curve for the working cycle with reduced bias range measured at a frequency
of 1 Hz. The solid line represents the characteristic functions (2.73) with parame-
ters a = 80.4 kA/m, b = 0.0059 m/A and M0 = 83.7 kA/m. [30]

with the free parameters a, b and M0. The latter quantity M0 may be interpreted as the re-
manence magnetization. The obtained results for a frequency of 1Hz together with equation
(2.73) for the parameters a = 80.4kA/m, b = 0.0059 m/A and M0 = 83.7kA/m are shown in
figure 2.18. This set of parameters will also be used in the numerical simulation in the follow-
ing section. Moreover, the B-H loop measurements were repeated at the frequencies 5 Hz and
10Hz. The obtained curves for all three frequencies are fully in accordance with each other
albeit some slight distortions are observed for the measurement at 10Hz.
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3 Calculation of eigensystems for materials
with fully occupied material tensors

In this chapter, the basics for the numerical computation of eigenvalues and eigenvectors of
systems with fully occupied material tensors as emerging for, e.g., resonators filled with biased
ferrites or magnetized plasmas are discussed. First of all, the problem is stated mathematically in
terms of the so-called curl-curl equation in section 3.1. After giving an overview of the applied
computational model in section 3.2, some basics on distributed computing are reviewed in
section 3.3 to facilitate the understanding of remarks on efficient parallel computing throughout
the remaining chapter. In section 3.4, the Finite Integration Technique, which is the employed
method for the numerical solution of electromagnetic field problems in this thesis, is introduced
and extended for gyrotropic materials in frequency domain. The application of this method
leads to a large, sparse as well as nonlinear and complex eigenproblem. Numerical methods for
the computation of such eigensystems are discussed in section 3.5.

3.1 Curl-curl equation

The starting point for the derivation of the governing equation for the description of a resonating
electromagnetic field inside a cavity are the two rotational Maxwell’s equations (2.1) and (2.2)
together with the constitutive relations for the electric and magnetic field. As shown in section
2.2, these relations for general gyrotropic materials take the form

~H =
↔
ν ~B, (3.1)

~D =
↔
ε ~E. (3.2)

Taking the time-derivative of equation (2.2) for time-harmonic fields ~E(t) = ~E ·exp(iωt), ~H(t) =
~H · exp(iωt) in the absence of exciting currents, this leads to the system of equations

∇× ~E = −iω
↔
ν
−1
~H, (3.3)

iω∇× ~H = −ω2↔ε ~E. (3.4)

Inserting equation (3.3) into equation (3.4), yields the so-called curl-curl equation
↔
ε
−1∇×

�↔
ν∇× ~E

�

=ω2~E (inside Ω). (3.5)

Whereas this equation determines the field inside the resonator Ω, additional conditions have
to be imposed for the field on the cavity boundary ∂Ω. For perfect electric cavity walls, the
boundary condition takes the form

~n× ~E = 0 (on ∂Ω), (3.6)

where ~n is a normal vector on the cavity boundary ∂Ω. Equation (3.5) has the form of an
algebraic eigenvalue equation with the system operator given on its left hand side and the
eigenvalue ω2.

39



Modeling and
Meshing

Visualization

CST STUDIO
SUITE®

Magnetostatic
Solver

Eigensolver

C / C++
(PETSc)

Bias magnetic field

~H0

Eigenmodes

~E1

~H1

~H0

Mν

Mε

~H, ~B

~E, ~D

Figure 3.1.: Strategy for the computation of eigenmodes of ferrite-loaded cavity resonators. For
Modeling, meshing and visualization the CST STUDIO SUITE®[48] is used whereas
the newly developed solver is implemented in C / C++ built on PETSc.

3.2 Computational model: overview

The computational model for the numerical solution of the eigenvalue problem defined by equa-
tion (3.5) and (3.6) is introduced in this section. The need for a dedicated solver arises from the
fact that for materials with gyromagnetic properties the inverse permeability tensor is involved
on the left hand side of equation (3.5), whereas for gyroelectric materials the permittivity ten-
sor is present. As discussed in section 2.2, the components of both tensors are a function of the
static magnetic field as well as of the frequency of the superimposed RF. This has important con-
sequences for the way how the eigensolutions are computed. On the one hand, this implies that
the magnetostatic field problem, more specifically, the problem of determining the magnetic
field generated by the bias current, has to be solved first. On the other hand, the frequency
dependence results in a nonlinear eigenproblem. Moreover, if material losses are incorporated,
a non-Hermitian eigenvalue problem is obtained. To satisfy these challenging requirements, a
dedicated solver has been developed in this thesis.

The solver includes two main subcomponents (cf. Fig. 3.1): The first one is a magnetostatic
solver supporting nonlinear materials for the computation of the magnetic field generated by
the bias current. The knowledge of the field distribution enables then to evaluate the charac-
teristics of the nonlinear material locally in each mesh cell at the specified working point. The
second solver component is an eigensolver for the subsequent solution of the nonlinear eigen-
value problem, which is capable of handling non-Hermitian system matrices. The whole solver
is implemented in the programming language C / C++ and is built on PETSc (Portable, Ex-
tensible Toolkit for Scientific Computation) [46, 47]. A simplified class-diagram of the solver is
provided in the appendix B. Furthermore, the employed numerical method for the solution of
the electromagnetic field problems is based on the Finite Integration Technique, which is intro-
duced in section 3.4, using a hexahedral staircase mesh. For modeling the resonator structure as
well as meshing and visualization of the simulation results, CST STUDIO SUITE®[48] is used.
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3.3 Basics principles of distributed computing

Because of the clear demand of precise calculations, the implementation particularly aims at
high performance for parallel computing on distributed memory machines. Such a computer
cluster consists of a set of computers (nodes) with own local memory and a network for the
data transfer between the nodes. When a node requires data which are stored on a different
node, communication messages have to be sent via the network. The de facto standard to
serve this purpose is the Message Passing Interface (MPI) [49, 50], which is also the basis for
PETSc. MPI is portable and supports both point-to-point and collective communication. Since
the data access via the network is comparatively slow, one should aim at a data interchange as
low as possible already at the point of selecting the algorithms and distributing the data. In this
regard, some basic knowledge of the parallel structure of vectors and matrices is worthwhile.
Commonly, vectors and matrices are distributed onto the N nodes as follows:

vector: node 1{
node 2{

...
node N{









v1
v2
...

vN









matrix: node 1{
node 2{

...
node N − 1{

node N{













D1 O1,2 O1,3 . . . O1,N
O2,1 D2 O2,3 O2,N

... . . . ...
ON−1,1 ON−1,2 DN−1 ON−1,N
ON ,1 ON ,2 . . . ON ,N−1 DN













The parts of the vectors vi as well as the main diagonal and off-diagonal matrix blocks Di and
Oi, j (i, j = 1,2, · · · , N ; i 6= j), respectively, are stored locally in the memory of node i. When a
matrix-vector product is calculated, it can be split into the products Divi and Oi, jv j. Whereas
for the former all required information is locally available on the node, messages have to be
communicated between nodes for the latter. Hence, one should take care that there are as few
nonzero elements in the off-diagonal matrices Oi, j as possible for performance reasons.

In the implementation in PETSc, all off-diagonal matrix blocks are collected in one single
matrix O on each node [47]. That is to say, a MPI-type matrix is internally built up of two stan-
dard, sequential matrices per node. To allow an overlap of communication and computation,
the sending of the required vector components is started using a non-blocking MPI function at
the beginning of the matrix-vector multiplication. While the messages are passed between the
nodes, the matrix-vector product of the main diagonal block is performed locally on each node.
After this computation and the communication have been terminated, the off-diagonal part of
the matrix-vector product is computed.

Sparse matrix format
The discretization by the FIT leads to large sparse system matrices with only few nonzero

elements. Hence, the storage scheme should take advantage of the sparsity of the matrix. By
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default, PETSc stores sparse matrices in the Compressed Sparse Row (CSR) format [51]. This
format stores the NNZ nonzero elements of a general m × n-matrix in three one-dimensional
arrays as follows:

• double (or complex) array AA of length NNZ: This array stores all nonzero elements sorted
in row-major order.

• integer array JA of length NNZ: This array contains the column indices of each element in
AA.

• integer array IA of length m+ 1: Element i of this array holds the index in array AA of the
first nonzero element of row i. Thus, element 1 of IA is always 1, whereas the last element
is always NNZ + 1.

3.4 The Finite Integration Technique

The Finite Integration Technique (FIT), a powerful method for the numerical solution of com-
plex electromagnetic field problems, is introduced in this section. For this purpose, the primary-
dual grid pair is defined in subsection 3.4.1 followed by the allocation of the degrees of freedom
(DOFs) in subsection 3.4.2 and the formulation of the Maxwell-Grid-Equations in subsection
3.4.3. Subsequently, the construction of the material matrices is reviewed in subsection 3.4.4.
In subsection 3.4.5 the representations of the discretized matrices are discussed for two com-
mon ordering schemes as well as for the first time for a fully general one. Electric and magnetic
boundary conditions are briefly discussed in subsection 3.4.6. After that, the so-called reduced
grid is introduced in subsection 3.4.7, on which, unlike in standard FIT, all for topological rea-
sons vanishing DOFs are completely removed from vectors and matrices. Therein, for the first
time an extensive discussion about the pros and cons as well as detailed remarks on an efficient
implementation is given. A central part of this thesis is then the extension of the standard FIT
to gyrotropic materials in frequency domain in subsection 3.4.8. After that, the curl-curl equa-
tion is stated in FIT notation in subsection 3.4.9 followed by some notes on the incorporation of
lumped elements in the FIT in subsection 3.4.10. Finally, the solution of nonlinear magnetostatic
field problems by means of the so-called Hi-algorithm is treated in subsection 3.4.11.

Whereas the sections about standard FIT are basically a review of [52], among the main
contributions of this thesis are: The concise statement of the ordering scheme for parallel im-
plementation, particularly with the formulation in terms of the most general ordering scheme;
the clear classification of the different vector types with regard to their zero pattern, which is
a prerequisite for the subsequent discussion of the reduced grid; the extension of the standard
FIT to gyrotropic materials in frequency domain.

3.4.1 Definition of the primary and dual grid

In the first step, the calculation domain, i.e. the relevant finite three dimensional volume in
which Maxwell’s equations are to be solved, is defined. For its spatial discretization it is then
divided into a grid of a finite number of disjunct and sufficiently small subvolumes, the mesh
cells. Though in general any geometry of the grid can be used, this work only deals with grids
parameterized by three dimensional Cartesian coordinates. For a Cartesian grid it is convenient
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to enumerate the mesh cells by a set of indices (i, j, k) specifying the cell numbers for the x-, y-
and z-direction, respectively, with 1 ≤ i ≤ Nx , 1 ≤ j ≤ Ny and 1 ≤ k ≤ Nz. Each of the mesh
cells is then characterized by a grid point P(i, j, k), a grid volume V (i, j, k), three grid facets
Ax(i, j, k), Ay(i, j, k) and Az(i, j, k) and three grid edges Lx(i, j, k), L y(i, j, k) and Lz(i, j, k).
According to ascending convention, the edge between the nodes P(i, j, k) and P(i + 1, j, k) is
denoted by Lx(i, j, k), whereas the facet Ax(i, j, k) is surrounded by the edges L y(i, j, k) and
Lz(i, j, k). An analogous notation is applicable to the other directions. The orientation of the
edges and facets points into the direction of higher indices.

The grid defined before is referred to as the primary grid. Additionally, a second grid, the
so-called dual grid, is introduced. It is constructed such a way that each primary cell contains
exactly one dual grid point and vice versa. All quantities of the dual grid are marked with the
symbol∼: dual points eP, dual edges eL, dual facets eA and dual volumes eV . In the common case of
a dual orthogonal grid, the dual edges are parallel to the ones of the corresponding coordinate
direction of the primary grid. Moreover, each dual edge intersects with a primary facet in the
center of this facet both having the same indices. This results in a descending indexing for the
dual grid. For instance, the dual edge eL(i, j, k) is located between the dual nodes eP(i − 1, j, k)
and eP(i, j, k). Note the existence of degenerated dual grid elements at the edge of the grid, as
the calculation domain is spanned by the primary grid.

3.4.2 Grid allocation of degrees of freedom

The DOFs relevant for the formulation of the Maxwell-Grid-Equations are allocated at primary
/ dual edges and facets as follows:
The electric voltages defined by

_e a(i, j, k) =

∫

La(i, j,k)

~E · d~a (a = x , y, z) (3.7)

are associated with the primary edges La(i, j, k). Both the electric fluxes

__
d a(i, j, k) =

∫∫

eAa(i, j,k)

~D · d~A (a = x , y, z) (3.8)

and the currents

__
j a(i, j, k) =

∫∫

eAa(i, j,k)

~J · d~A (a = x , y, z) (3.9)

are allocated at the dual facets eAa(i, j, k). Moreover, the magnetic fluxes given by

__
ba(i, j, k) =

∫∫

Aa(i, j,k)

~B · d~A (a = x , y, z) (3.10)
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are found at the primary facets Aa(i, j, k), whereas the magnetic voltages

_
ha(i, j, k) =

∫

eLa(i, j,k)

~H · d~a (a = x , y, z) (3.11)

are associated with the dual edges eLa(i, j, k). Finally, the electric charges inside a dual mesh cell
are defined as

q(i, j, k) =

∫∫∫

eV (i, j,k)

ρ dV, (3.12)

pseudo magnetic charges1 inside a primary cell as

qm(i, j, k) =

∫∫∫

V (i, j,k)

ρm dV. (3.13)

To sum up, from the topological point of view the DOFs can be classified into six different
types: DOFs allocated on primary edges, primary faces and primary nodes on the one hand, the
ones allocated on dual edges, dual faces and dual nodes on the other hand.

3.4.3 Maxwell-Grid-Equations

Employing the definitions of the previous section, Maxwell’s Equations (cf. section 2.1) can be
rewritten as a set of matrix equations. The procedure is illustrated for Faraday’s law for non-
moving geometries (2.4). Taking the area integration A therein as the primary facet Az(i, j, k)
and taking into account equations (3.7) and (3.10) as well as the orientation of _e a and

__
ba,

Faraday’s law takes the form

_e x(i, j, k) + _e y(i + 1, j, k)− _e x(i, j + 1, k)− _e y(i, j, k) = − d
dt

__
bz(i, j, k). (3.14)

Analogously, equations for all other primary facets are obtained, which are arranged as one
matrix equation

C_e = − d
dt

__
b. (3.15)

Herein, vectors _e and
__
b collect all electric voltages and magnetic fluxes, respectively. The topo-

logical matrix C ensures that the components of _e are added with the right signs. It is usually
referred to as the discrete curl operator at the primary grid though it actually performs the com-
putation of the contour-integral on primary facets. Note that the explicit form of C depends on
1 Though according to current conception magnetic charges do not exist, sometimes it is mathematically advan-

tageous to introduce pseudo magnetic charges, see, e.g., the Hi-algorithm (cf. subsection 3.4.11.2).
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the ordering of the elements in the vectors _e and
__
b. Though the arrangement could in prin-

ciple be chosen arbitrarily, those which allow an easy and efficient implementation should be
preferred. Two different frequently used ordering schemes together with the explicit represen-
tation of the matrix C therein are discussed in subsection 3.4.5.

In an analogous manner the remaining Maxwell-Grid-Equations are obtained:

eC
_
h=

d
dt

__
d+

__
j , (3.16)

eS
__
d= q, (3.17)

S
__
b = 0. (3.18)

Herein, the matrix S yields the integral of a vector field (allocated on primary facets) over the
surface of a primary cell and is usually considered as the discrete counterpart of the diver-
gence operator. eC and eS may be interpreted as the discrete curl and divergence operator at
the dual grid, respectively. Again, the explicit form of these topological matrices depends on
the ordering scheme of the elements in the vectors (cf. subsection 3.4.5). The electric fluxes,
currents and magnetic voltages are collected in the vectors

__
d,

__
j and

_
h, respectively. Vector

q represents the electric charges inside the dual cells. One important property of the four
Maxwell-Grid-Equations (3.15) to (3.18) is that they are exact. Approximations need, however,
to be introduced for the discretization of constitutive equations, which will be discussed in the
next section.

3.4.4 Construction of the material matrices

Besides Maxwell’s Equations the constitutive equations need to be discretized. For isotropic
linear materials the constitutive equations read (ν := µ−1):

~H = ν~B (3.19)
~D = ε ~E (3.20)

Following the notation introduced before, the discrete counterparts take the form (for compo-
nent a = x , y, z):

_
ha = (Mν)a

__
ba (3.21)

__
d a = (Mε)a

_e a (3.22)

The determination of the components of the discrete inverse permeability matrix Mν and
the discrete permittivity matrix Mε as the ratio of the approximations of the corresponding
integrated quantities is discussed below.

Permeability
For the construction of the inverse permeability matrix consider figure 3.2(a), which shows

the intersection of the magnetic flux
__
ba(i, j, k) with the primary facet Aa(i, j, k). It is assumed

that the left cell is homogeneously filled with a material with permeability µ1 whereas the right
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(a)

L̃x(i, j, k)

Bn

Ax(i, j, k)

P (i− 1, j, k) P (i, j, k)

µ1 µ2
x

z

y

(b)

L̃x(i, j, k)

L̃
(1)
x (i, j, k) L̃

(2)
x (i, j, k)

µ1 µ2

x

Figure 3.2.: (a) Intersection of the dual edge eLx(i, j, k) with the primary facet Ax(i, j, k). For
the construction of the inverse permeability matrix, the inverse permeability values
νi = µ−1

i (i = 1, 2) are averaged along the dual edge. (b) Notation for the length
of line segments of dual edges. If the superscript is present, only the partial length
within the primary cell with the index given in the superscript is considered.

cell has permeability µ2. Since the component of the magnetic flux normal to the primary facet
Bn is continuous,

__
ba(i, j, j, k) can be well approximated with

__
ba(i, j, k) =

∫∫

Aa(i, j,k)

~B · d~A≈ BnAa(i, j, k). (3.23)

The magnetic voltage
_
ha(i, j, k) along the dual edge eLa(i, j, k) is not continuous at the point of

intersection in general. Hence,
_
ha(i, j, k) can be expressed approximately as

_
ha(i, j, k) =

∫

eLa(i, j,k)

~H · d~a =
∫

eL(1)a (i, j,k)

Bn

µ1
ds +

∫

eL(2)a (i, j,k)

Bn

µ2
ds ≈ Bnνa(i, j, k)eLa(i, j, k), (3.24)

with the averaged inverse permeability (ν= µ−1)

νa(i, j, k) =
ν1eL

(1)
a (i, j, k) + ν2eL

(2)
a (i, j, k)

eLa(i, j, k)
. (3.25)

Herein, eL(1)a (i, j, k) and eL(2)a (i, j, k) are the length of the dual edge only of the part inside the
primary cell 1 and 2, respectively (see also figure 3.2(b)). Comparing the defining equation
(3.21) with equations (3.23) and (3.24), yields for the component of the inverse permeability
matrix

(Mν)a (i, j, k) =
νa(i, j, k)eLa(i, j, k)

Aa(i, j, k)
. (3.26)

Permittivity
The tangential component of the electric field Et is continuous at the interface between two

media. Hence,

_e a(i, j, k) =

∫

La(i, j,k)

~E · d~a ≈ Et La(i, j, k) (3.27)
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(a)

Lx(i, j, k)

EtÃx(i, j, k)

P (i, j − 1, k − 1) P (i, j, k − 1)

P (i, j − 1, k) P (i, j, k)

ε1 ε2

ε4

ε3

y

x

z

(b)

Ã
(1)
x Ã

(2)
x

Ã
(3)
xÃ

(4)
x

Lx(i, j, k)

ε1 ε2

ε3ε4

y

z

x

Figure 3.3.: (a) Intersection of the primary edge Lx(i, j, k) with the dual facet eAx(i, j, k). For the
construction of the permittivity matrix, the permittivity values ε1, ε2, ε3 and ε4 are
averaged on the dual facet. (b) Notation for the area of partial dual facets. If the
superscript is present, only the partial area within the primary cell with the index
given in the superscript is considered.

is a good approximation for the electric voltage _e a(i, j, k) on the primary edge La(i, j, k). How-
ever, the component of the electric fluxes tangential to the interface

__
d a(i, j, k) is discontinuous,

which is taken into account by dividing the integral into four parts (cf. figure 3.3):

__
d a(i, j, k) =

∫∫

eAa(i, j,k)

~D · d~A=
4
∑

n=1

∫∫

eA(n)a (i, j,k)

EtdA≈ Et εa(i, j, k) eAa(i, j, k). (3.28)

The averaged permittivity herein is given by

εa(i, j, k) =
4
∑

n=1

εneA
(n)
a (i, j, k)

eAa(i, j, k)
, (3.29)

where eA(n)a (i, j, k) is the partial area of the dual facet eAa(i, j, k) inside the primary cell n (see also
Fig. 3.3(b)). The component of the permittivity matrix is obtained by comparing the defining
equation (3.22) with equations (3.27) and (3.28) as

(Mε)a (i, j, k) =
εa(i, j, k)eAa(i, j, k)

La(i, j, k)
. (3.30)

The constitutive relations can also be expressed as matrix equations. To this end, all the
lengths of the primary and dual edges as well as the areas of the primary and dual facets are
collected in the diagonal matrices DL, eDL and DA, eDA, respectively. Analogously, the diagonal
matrices Dν and Dε gather the averaged values of the inverse permeability and the permittivity,
respectively. Hence, equations (3.26) and (3.30) can be expressed as

Mν = eDLDνD
−1
A , (3.31)

Mε = eDADεD
−1
L . (3.32)

Note that the above material matrices Mν and Mε are consequently diagonal in the standard FIT.
Of course, the ordering of the parameters in the matrices introduced above has to match the

47



ordering chosen for the vectors, which collect the DOFs (cf. section 3.4.3). With the definitions
(3.31) and (3.32), the component-wise constitutive relations (3.21) and (3.22) can thus be
written in matrix-vector notation as

_
h=Mν

__
b, (3.33)

__
d=Mε

_e. (3.34)

3.4.5 Discretized matrices

As mentioned in section 3.4.3, the DOFs are collected in vectors, which allows to write the
Maxwell-Grid-Equations conveniently as a set of matrix equations. The vector components can
be arranged arbitrarily as long as this is done consistently in all the involved vectors and ma-
trices. In other words, having set the ordering of the DOFs, the structure of all operators and
in particular of the topological matrices is fully fixed. When determining the ordering scheme,
aspects such as a convenient notation and the possibility of an easy and efficient implemen-
tation should be considered. The arrangement which is best suited may depend on the type
and size of the problem. In this section, the two most commonly used ordering schemes for a
Cartesian grid are introduced and the structure of the topological matrices therein is presented.
The first one was originally presented by Weiland [53] and is the standard in current imple-
mentations. As will be seen in subsection 3.4.5.1, the main advantage of this scheme is that the
topological matrices can be composed by only two independent types of two-banded submatri-
ces, which enormously facilitates both theoretical calculations and implementation. In contrast,
the second ordering scheme (cf. subsection 3.4.5.2) is advantageous for parallel computing on
machines with distributed memory. After that, a discussion of the most general form of the
topological matrices for any arbitrary ordering scheme follows in subsection 3.4.5.3. As one of
the achievements of the thesis at hand, this also allows to manifestly reveal the same topological
structure of the two before-mentioned ordering schemes. Finally, this subsection is completed by
the presentation of some important properties of the topological matrices in subsection 3.4.5.4.

3.4.5.1 Ordering 1 (standard FIT)

The following subsection reviews the discussion of [52]. In the ordering scheme of the standard
FIT, the vectors are divided into three subvectors: The first one only contains the x-components,
the second one all the y-components and finally the third one the z-components. Inside each
subvector the components are arranged as follows: One starts with the component with lowest
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cell indices (i = 1, j = 1, k = 1) and proceeds firstly in x-direction, then in y-direction and
finally in z-direction. In summary, the components of a generic vector v are arranged as:

va :=



































va(1, 1,1)
. . .

va(Nx , 1, 1)
va(1, 2,1)

. . .
va(Nx , 2, 1)

. . .
va(Nx , Ny , 1)

va(1, 1,2)
. . .

va(Nx , Ny , Nz)



































(for a = x , y, z); v :=





vx
vy
vz



 . (3.35)

The total number of vector components thus is 3 Nx Ny Nz =: 3 Ncells, where Ncells is the number of
all (primary) grid cells. Having fixed the arrangement of the components, also the structure of
the topological matrices is determined, which is derived in the following. For this purpose, it is
useful to formulate a relation between the position n of a vector component within a subvector
on the one hand and the cell indices i, j and k on the other hand, which reads

n= (i − 1) + ( j − 1)Nx + (k− 1)Nx Ny + 1

= (i − 1)M ′x + ( j − 1)M ′y + (k− 1)M ′z + 1.
(3.36)

In the last transformation in the equation above the definitions

M ′x := 1, (for ordering 1) (3.37a)

M ′y := Nx , (for ordering 1) (3.37b)

M ′z := Ny Nz (for ordering 1) (3.37c)

are introduced. The quantity M ′a (a = x , y, z) can be interpreted as the number by which the
position n increases if one proceeds one cell in direction a.

For a start, the structure of the matrix C is considered for ordering 1. As pointed out in section
3.4.3, each row of the matrix C extracts the vector components that contribute to the contour-
integral on a primary facet with the correct sign. In this ordering scheme, the first third of the
rows corresponds to primary facets with a normal vector in x-direction. The contour-integral of
the generic vector v on the n-th facet (x-direction) takes the form

∮

∂ Ax (n)

~v · d~s = vy(i, j, k) + vz(i, j + 1, k)− vy(i, j, k+ 1)− vz(i, j, k)

= vy(n) + vz(n+M ′y)− vy(n+M ′z)− vz(n).

(3.38)
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Similar expressions are obtained for facets in y- and z-direction. Since all these contour-
integrals involve expressions of the form ±va(n)∓ va(n+M ′b), (a, b = x , y, z; a 6= b), for ease of
notation the Ncells × Ncells-submatrices

[Px]p,q =







−1 q = p
+1 q = p+M ′x

0 else







, (3.39a)

[Py]p,q =







−1 q = p
+1 q = p+M ′y

0 else







, (3.39b)

[Pz]p,q =







−1 q = p
+1 q = p+M ′z

0 else







(3.39c)

are introduced, which correspond to the discretized differential operators ∂/∂ x, ∂/∂ y and ∂/∂ z.
The structure of the matrix C with dimension 3Ncells × 3Ncells can then be composed as

C=





0 −Pz Py
Pz 0 −Px
−Py Px 0



=















































0

0

0

+1

-1

-1
+1

-1

+1

+1 -1

+1
-1

-1 +1















































. (3.40)

Secondly, the structure of the matrix S is analyzed. Its n-th row measures the magnitude of
a vector field’s source at the n-th primary cell by summing up the relevant vector components
with the correct sign as
∮

∂ V (n)

~v · d~A= vx(i, j, k) + vy(i, j, k) + vz(i, j, k)− vx(i + 1, j, k)− vy(i, j + 1, k)− vz(i, j, k+ 1) =

= vx(n) + vy(n) + vz(n)− vx(n+M ′x)− vy(n+M ′y)− vz(n+M ′z). (3.41)

Again, the integrals can be conveniently written in terms of the P-submatrices as

S=
�

Px Py Pz

�

=











-1 +1 -1
+1

-1

+1










. (3.42)
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In a similar manner, the structure of the corresponding matrices on the dual grid is obtained.
However, due to the descending indexing convention (cf. section 3.4.1) additional Ncells×Ncells-
submatrices eP

[ePx]p,q =







+1 q = p
−1 q = p−M ′x

0 else







, (3.43a)

[ePy]p,q =







+1 q = p
−1 q = p−M ′y

0 else







, (3.43b)

[ePz]p,q =







+1 q = p
−1 q = p−M ′z

0 else







, (3.43c)

corresponding to the discretized differential operators on the dual grid, are required. The
matrices eC and eS then take the form

eC=





0 −ePz ePy
ePz 0 −ePx

−ePy ePx 0



=















































0

0

0

-1

+1

+1
-1

+1

-1

-1+1

-1
+1

+1-1















































(3.44)

and

eS=
�

ePx ePy ePz

�

=











+1-1 +1
-1

+1

-1











, (3.45)

respectively. For completeness, also the structure of the discretized matrix versions of the gra-
dient operator on the primary and dual grid, denoted by G and eG, respectively, is considered.
Once again, G can be conveniently expressed in terms of the submatrices P,

G=





Px
Py
Pz



 , (3.46)
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(a)

_e x(Nx − 1, j, k) _e x(Nx, j, k)

(b)

__
b z(Nx − 1, j, k)

__
b z(Nx, j, k)

x

z
y

Figure 3.4.: Examples for primary edges (a) and primary facets (b) outside the computation
domain. Solid lines and facets are located inside, dashed lines and hatched facets
outside the computation domain.

whereas eG is given by

eG=





ePx
ePy
ePz



 . (3.47)

It is important to mention that the vector, when introduced as in definition (3.35), contains
components which are allocated on elements outside the actual computation domain, more pre-
cisely, at its upper edge towards large indices. For quantities allocated on primary edges or dual
facets, such as for _e and

__
d, these are the components vx(Nx , j, k), vy(i, Ny , k) and vz(i, j, Nz).

In contrast, for vectors gathering quantities allocated on dual edges or primary facets, such
as

_
h and

__
b, these components are vx(i, Ny , k), vx(i, j, Nz), vy(Nx , i, k), vy(i, j, Nz), vz(Nx , j, k)

and vz(i, Ny , k). This is also illustrated in figure 3.4. Instead of removing these components
completely from the vector, in the standard FIT they are just zeroed in order not to damage
the band structure of the matrices. For a detailed discussion whether or not it is beneficial in
doing so is referred to subsection 3.4.7.2. Note, however, that in the preceding discussion of the
structure of the topological matrices neither the components outside the computation domain
nor potential vanishing components due to boundary conditions (cf. subsection 3.4.6) are taken
into account. This is supplemented in subsection 3.4.7.1.

The main advantage of ordering scheme 1 is obviously the clear band structure of all topo-
logical matrices. This allows both an easy and efficient implementation. Moreover, the memory
requirements for the storage of the matrices are very moderate. Yet, this ordering scheme is
not ideal for parallel computing with distributed memory. Looking for example at the structure
of the matrix C (cf. Eq. (3.40)), it clearly shows that the principle to have only a minimum
number of nonzero elements in the far off-diagonal regions of the matrix (cf. section 3.3) is not
respected. Indeed, the submatrices located in the main-diagonal of the matrix are even com-
pletely zero. Similar considerations apply for the other topological matrices. Hence, a second
ordering scheme to cope with this issue is discussed in the next subsection.

3.4.5.2 Ordering 2 (for parallel computing)

In this ordering scheme, the cells are run through in the direction x firstly, then in the direction
y , and finally in the direction z, just as in the previous scheme. The difference, however, is that
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the x-, y- and z- components of a vector for each cell are arranged directly one after another.
This results in the following assembly:

v :=
�

vx(1, 1,1), vy(1, 1,1), vz(1, 1,1),

· · · ,
vx(Nx , 1, 1), vy(Nx , 1, 1), vz(Nx , 1, 1),
vx(1, 2,1), vy(1, 2,1), vz(1,2, 1),
· · · ,
vx(Nx , 2, 1), vy(Nx , 2, 1), vz(Nx , 2, 1),
· · · ,
vx(Nx , Ny , 1), vy(Nx , Ny , 1), vz(Nx , Ny , 1),
vx(1, 1,2), vy(1, 1,2), vz(1,1, 2),
· · · ,
vx(Nx , Ny , Nz), vy(Nx , Ny , Nz), vz(Nx , Ny , Nz)

�T
,

(3.48)

where v is a generic vector (allocated either on the primary or dual grid). Consequently, also
the structure of all topological matrices has to be adapted. Following a similar approach as for
ordering scheme 1, initially a relation between the position n of a vector component and the
cell indices i, j and k is useful, which takes the form

n= (i − 1)3+ ( j − 1)3 Nx + (k− 1)3 Nx Ny + 1

= (i − 1)M ′′x + ( j − 1)M ′′y + (k− 1)M ′′z + 1.
(3.49)

The quantities M ′′a (a = x , y, z), given by

M ′′x := 3, (for ordering 2) (3.50a)

M ′′y := 3 Nx , (for ordering 2) (3.50b)

M ′′z := 3 Ny Nz, (for ordering 2) (3.50c)

are the numbers by which the position n increases if one proceeds one cell in direction a. The
matrix C now takes the form (1≤ p, q ≤ 3 Ncells):

[C]p,q =































































































case p mod 3= 1
(Ò= contour around Ax)



















−1 q = p+ 2
+1 q = p+ 2+M ′′y

�

Ò= ∂
∂ y vz

+1 q = p+ 1
−1 q = p+ 1+M ′′z

ª

Ò= − ∂
∂ z vy

0 else

case p mod 3= 2
(Ò= contour around Ay)



















−1 q = p− 1
+1 q = p− 1+M ′′z

ª

Ò= ∂
∂ z vx

+1 q = p+ 1
−1 q = p+ 1+M ′′x

ª

Ò= − ∂
∂ x vz

0 else

case p mod 3= 0
(Ò= contour around Az)



















−1 q = p− 1
+1 q = p− 1+M ′′x

ª

Ò= ∂
∂ x vy

+1 q = p− 2
−1 q = p− 2+M ′′y

�

Ò= − ∂
∂ y vx

0 else































































































, (3.51)

53



P (i, j, k)

Ay(i, j, k) = A(n)

_ex(i, j, k) =
_e(n− 1)

_e z(i, j, k) =
_e(n+ 1)

_ex(i, j, k + 1)
= _e(n− 1 +M ′′

z )

_e z(i+ 1, j, k)
= _e(n+ 1 +M ′′

x )

x

y

z

n = (i− 1)M ′′
x + (j − 1)M ′′

y + (k − 1)M ′′
z + 1

Figure 3.5.: To the structure of the matrix C in ordering scheme 2. As an example, the contour
integral around a primary area with orientation in y -direction is illustrated (i.e. for
case p mod 3= 2 in Eq. (3.51)).

wherein p mod 3 gives the remainder on a division of p by 3. For a better understanding of
its structure, figure 3.5 shows the contour integral around a primary area with orientation
in y-direction, which corresponds to case p mod 3 = 2. As indicated on the right hand side
of equation (3.51), the analogy with the analytical curl-operator is still evident also for this
ordering scheme. Yet, it does not show up in a block structure, which can be represented
by (Ncells × Ncells)-submatrices (cf. Eq. (3.40)), but in the sequence of three successive rows.
Analogously, the expression for the curl matrix on the dual grid is derived as (1≤ p, q ≤ 3 Ncells)

[eC]p,q =































































































case p mod 3= 1
(Ò= contour around eAx)



















−1 q = p+ 2−M ′′y
+1 q = p+ 2

�

Ò= ∂
∂ y vz

+1 q = p+ 1−M ′′z−1 q = p+ 1

ª

Ò= − ∂
∂ z vy

0 else

case p mod 3= 2
(Ò= contour around eAy)



















−1 q = p− 1−M ′′z
+1 q = p− 1

ª

Ò= ∂
∂ z vx

+1 q = p+ 1−M ′′x−1 q = p+ 1

ª

Ò= − ∂
∂ x vz

0 else

case p mod 3= 0
(Ò= contour around eAz)



















−1 q = p− 1−M ′′x
+1 q = p− 1

ª

Ò= ∂
∂ x vy

+1 q = p− 2−M ′′y
−1 q = p− 2

�

Ò= − ∂
∂ y vx

0 else































































































. (3.52)
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The matrix S now is given by (1≤ p ≤ Ncells; 1≤ q ≤ 3 Ncells)

[S]p,q =



































−1 q = 1+ 3 (p− 1)
+1 q = 1+ 3 (p− 1) +M ′′x

ª

Ò= ∂
∂ x

−1 q = 2+ 3 (p− 1)
+1 q = 2+ 3 (p− 1) +M ′′y

�

Ò= ∂
∂ y

−1 q = 3+ 3 (p− 1)
+1 q = 3+ 3 (p− 1) +M ′′z

ª

Ò= ∂
∂ z

0 else



































, (3.53)

the correspondent on the dual grid by (1≤ p ≤ Ncells; 1≤ q ≤ 3 Ncells)

[eS]p,q =



































−1 q = 1+ 3 (p− 1)−M ′′x
+1 q = 1+ 3 (p− 1)

ª

Ò= ∂
∂ x

−1 q = 2+ 3 (p− 1)−M ′′y
+1 q = 2+ 3 (p− 1)

�

Ò= ∂
∂ y

−1 q = 3+ 3 (p− 1)−M ′′z
+1 q = 3+ 3 (p− 1)

ª

Ò= ∂
∂ z

0 else



































. (3.54)

Finally, the gradient matrices take the form (1≤ p ≤ 3 Ncells; 1≤ q ≤ Ncells)

[G]p,q =



































−1 q = 1+ (p− 1)/3
+1 q = 1+ (p− 1+M ′′x )/3

ª

Ò= ∂
∂ x

−1 q = 1+ (p− 2)/3
+1 q = 1+ (p− 2+M ′′y )/3

�

Ò= ∂
∂ y

−1 q = 1+ (p− 3)/3
+1 q = 1+ (p− 3+M ′′z )/3

ª

Ò= ∂
∂ z

0 else



































(3.55)

and (1≤ p ≤ 3 Ncells; 1≤ q ≤ Ncells)

[eG]p,q =



































−1 q = 1+ (p− 1−M ′′x )/3
+1 q = 1+ (p− 1)/3

ª

Ò= ∂
∂ x

−1 q = 1+ (p− 2−M ′′y )/3
+1 q = 1+ (p− 2)/3

�

Ò= ∂
∂ y

−1 q = 1+ (p− 3−M ′′z )/3
+1 q = 1+ (p− 3)/3

ª

Ò= ∂
∂ z

0 else



































. (3.56)
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For further visualization, the structure of the matrices C and S is indicated for the example
with Nx = 3, Ny = 3 and Nz = 4 in the following:

C=













































= +1
= −1













































; S=











= +1
= −1











.

(3.57)

It shows that there are only a few nonzero entries located far away from the main diagonal
for this ordering scheme. The same applies both for the corresponding matrices of the dual
grid and the discretized matrices for the gradient operator. Note again that neither in the
above definitions of the matrices nor in the visualization (3.57) matrix elements which are to
be zeroed because they correspond to elements located outside the computation domain or
due to boundary conditions are taken into account. By the way, since for an efficient parallel
computation only the number of nonzeros in the off-diagonal blocks matters (cf. section 3.3),
the actual ordering of the DOFs on each single node does not affect the overall computation
performance (at least neglecting possible caching effects). Thus, one might want to combine
different ordering schemes: For instance, scheme 2 on the large scale to partition the working
domain onto different processes and scheme 1 locally for the ordering on each process.

For the sake of completeness, it should be mentioned that of course also the components of
the material matrices and the matrices containing the lengths and the areas have to be adjusted
according to the chosen ordering scheme. For diagonal matrices, neither advantages nor disad-
vantages arise due to the reordering. The situation changes, however, in case of non-diagonal
material matrices such as for gyrotropic materials (cf. subsection 3.4.8). Here, a similar effect
as for the topological matrices is achieved.

3.4.5.3 General structure

At first glance, the structure of the topological matrices of ordering 2 might seem to be very
different from the clearly structured correspondents of ordering 1. This is mainly due to the
fact that for ordering scheme 2 it is not possible to express all topological matrices in terms
of two classes of (Ncells × Ncells)-submatrices. However, as will be shown in this paragraph,
by introducing a more general set of matrices for the discretized differential operators, both
ordering schemes can actually be expressed using the same notation.

Again, the general structure of the matrix C is considered at first. As was pointed out above
(cf. Eq. (3.38)), each row of the matrix C gives the contour-integral on one facet, which can be
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decomposed into the sum of two differentials of the form ±va(n)∓va(n+Mb), (a, b = x , y, z; a 6=
b). For facets with orientation in x-direction, the discretized differential with respect to the to
y-direction for the z-component (with positive sign) and the discretized differential with respect
to the to z-direction for the y-component (with negative sign) are involved. Analogous relations
are obtained for facets oriented in direction y and z. This means that the complete matrix C
can, in full generality, be decomposed into the sum of six discretized differential matrices CP:

C= CP(z)y − CP(y)z (Ò= contour around Ax)

+ CP(x)z − CP(z)x (Ò= contour around Ay)

+ CP(y)x − CP(x)y (Ò= contour around Az).

(3.58)

As before, the subscript refers to the direction with respect to which the differential is to be
taken. The additional superscript in brackets gives the component of the subsequent vector on
which the matrix P acts. For instance, CP(y)x denotes the discretized differential with respect to
direction x acting on all y-components of the subsequent vector. The matrices CP(a)b must have
the same dimension as the matrix C, i.e. (3 Ncells×3 Ncells). Yet, it is worth emphasizing that only
one third of all rows of the matrices CP(a)b contains nonzero elements.

Looking at the structure of the matrix S, equation (3.41) suggests that the integral associated
with each row involves the sum of three differentials of the form −va(n) + va(n + Ma), (a =
x , y, z). Hence, the most general form of the matrix S can be formulated as

S= SP(x)x +
SP(y)y +

SP(z)z . (3.59)

Keeping in mind that the dimension of the matrix S is (Ncells × 3 Ncells), for dimensional reasons
alone it is clear that the matrix S cannot be composed of the same matrices P as the matrix
C. In order not to be confused with the types of differential matrices, the matrices P carry an
additional left superscript (C, S or G). Moreover, a third set of differential matrices GP is required
for the general representation of the matrix G, the discretized analog of the gradient operator:

G= GPx +
GPy +

GPz. (3.60)

For the dual grid the following definitions apply:

eC= C
eP(z)y − C

eP(y)z + C
eP(x)z − C

eP(z)x +
C
eP(y)x − C

eP(x)y (3.61)

for the curl operator,

eS= S
eP(x)x +

S
eP(y)y +

S
eP(z)z (3.62)

for the source operator and finally

eG= G
ePx +

G
ePy +

G
ePz (3.63)

for the gradient operator. To sum up, all topological matrices can be expressed in terms of in
total six different types of differential matrices. Yet, not all of the latter are independent of each
other (cf. subsection 3.4.5.4).
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Table 3.1.: Parameters for ordering 1 and 2 for the representation of the topological matrices in
terms of the general expressions.

Mx My Mz ∆x ∆y ∆z

Ordering 1 1 Nx Nx Ny 0 Ncells 2 Ncells
Ordering 2 3 3 Nx 3 Nx Ny 0 1 2

Explicit representation of the topological matrices in general form for ordering 1 and 2
The expressions for the topological matrices given before hold true for any ordering of the

FIT-DOFs. Yet, the structure of the involved differential matrices P and eP does depend on it.
Explicit expressions for these matrices both for ordering 1 and 2 are presented in the following,
starting with the ones for the primary grid.

The differential matrices for matrix C can be written as (a, b, c = x , y, or z with c 6= a; c 6= b)

�

CP(b)a

�

p,q =







−1 q = p+∆b −∆c
+1 q = p+∆b −∆c +Ma

0 else







, (3.64)

where only rows with index p =∆c + 1,∆c + 1+Mx ,∆c + 1+ 2 Mx , · · · ,∆c + 1+ (Ncells − 1)Mx
contain nonzero elements, whereas all remaining rows are identically zero. Consequently, only
columns with index q =∆b +1,∆b +1+Mx ,∆b +1+2 Mx , · · · ,∆b +1+(Ncells−1)Mx contain
nonzero elements. This definition holds both for ordering 1 and 2. The only difference between
these two are the values for the parameters ∆a and Ma, which are given in table 3.1 and can be
interpreted as follows. The quantities Ma indicate the number by which the index increases if
one proceeds one cell in direction a and were already introduced separately as M ′a in subsection
3.4.5.1 in equation (3.37) for ordering 1 and as M ′′a in subsection 3.4.5.2 in equation (3.50) for
ordering 2. In contrast, the parameters ∆a specify the change in the index when going from the
x-component of one selected cell to the y-component (∆y) or z-component (∆z) of the same
cell (i.e. ∆x = 0). Note that ∆a and Ma are not independent of each other since the total of
the index change starting from the x-component of the first cell (index 1) and ending at the
z-component of the last cell (index 3 Ncells) must always be 3 Ncells. That is to say, the condition

1+ (Nx − 1)Mx + (Ny − 1)My + (Nz − 1)Mz +∆z =

1+ (Ncells − 1)Mx +∆z
!
= 3 Ncells

(3.65)

must be fulfilled. Moreover, since 2 ∆y = ∆z and ∆x = 0 by definition, this condition fully
determines the parameters ∆a.

Moreover, for the matrix S the differential matrices take the form (a, b, c = x , y, or z)

�

SP(a)a

�

p,q =







−1 q = 1+Mx (p− 1) +∆a
+1 q = 1+Mx (p− 1) +∆a +Ma

0 else







, (3.66)

where every row contains nonzero elements, that is to say, the row index p is in the range from 1
to Ncells. This implies that only columns with index ∆a+1≤ q ≤ 1+Mx (Ncells−1)+∆a contain
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nonzeros. Again, this expression is applicable to ordering 1 and 2. The involved parameters
are the same as introduced for the matrix C (cf. table 3.1). Finally, the differential matrices for
matrix G are given by

�

GPa

�

p,q =







−1 q = 1+ (p− 1−∆a)/Mx
+1 q = 1+ (p− 1−∆a +Ma)/Mx

0 else







, (3.67)

with nonzero rows only in the range ∆a + 1 ≤ q. For the dual grid similar expressions are
obtained. The differential matrices for matrix eC read (a, b, c = x , y, or z with c 6= a; c 6= b)

�

C
eP(b)a

�

p,q =







+1 q = p+∆b −∆c
−1 q = p+∆b −∆c −Ma

0 else







. (3.68)

As for the matrix C, only rows with index p = ∆c + 1,∆c + 1 + Mx ,∆c + 1 + 2 Mx , . . . ,∆c +
1 + (Ncells − 1)Mx contain nonzero elements all remaining rows being identically zero. The
corresponding expressions for eS take the form

�

S
eP(a)a

�

p,q =







+1 q = 1+Mx (p− 1) +∆a
−1 q = 1+Mx (p− 1) +∆a −Ma

0 else







. (3.69)

Finally, the differential matrices involved in the matrix eG are given by

�

G
ePa

�

p,q =







+1 q = 1+ (p− 1−∆a)/Mx
−1 q = 1+ (p− 1−∆a −Ma)/Mx

0 else







, (3.70)

where only non-vanishing rows are present in the range of row indices from p = ∆a + 1 to
p = 1+Mx (Ncells−1)+∆a. Of course, it is understood in all above definitions that the indices p
and q are restricted to the dimension of the corresponding matrices. Again, note that additional
zero rows or columns due to boundary conditions or elements allocated outside the computation
domain have not been taken into account in the expressions mentioned before. These issues are
addressed in subsection 3.4.7.1.

To sum up, in this section it has been shown that all the topological matrices can, in full
generality, be decomposed into a sum of differential matrices, whose explicit form is determined
by the ordering of the DOFs. Moreover, it is possible to find parameterized expressions for the
involved differential matrices, which are identical both for ordering 1 (cf. subsection 3.4.5.1)
and ordering 2 (cf. subsection 3.4.5.2). This shows manifestly that these two ordering schemes
have indeed the same intrinsic characteristics. In particular, the clear structure of the topological
matrices, one of the main benefits of ordering 1, is mainly preserved in ordering 2 though it may
not be as obvious at first sight for the latter. In fact, regarding the implementation, the same
structure of both ordering schemes even enables to construct the topological matrices for both
orderings with the same code; for the selection of the wanted scheme it is sufficient to specify a
few characteristic parameters (cf. table 3.1). Yet, individual, optimized codes might be preferred
for the ease of implementation or for efficiency. Of course, as can easily be checked, applying
the general expressions of subsection 3.4.5.3 results in exactly the same topological matrices
as for the specific definitions of subsection 3.4.5.1 for ordering 1 or of subsection 3.4.5.2 for
ordering 2, respectively.
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3.4.5.4 Properties of the topological matrices

Relations between topological matrices of the primary and dual grid
As discussed in subsection 3.4.5.3, the topological matrices in the FIT can be written in terms

of six different types of discretized differential operators. In this paragraph, it is shown that
some of these are dependent on each other, which leads to some important relations between
the topological matrices. These relations, which are presented in [52] for ordering 1, hold also
for the expressions of the general ordering.

From the explicit form of the differential matrices for the matrices C (cf. Eq. (3.64)) and eC (cf.
Eq. (3.68)) for ordering 1 and 2 in the general form, it follows directly

C
eP(b)a = −

�

CP(c)a

�T
. (3.71)

Applying additionally the definitions (3.58) for the matrix C and (3.61) for the matrix eC, one
obtains the relation

eC= CT . (3.72)

Moreover, comparing the explicit form of the differential matrices for the matrices eS (cf.
Eq. (3.69)) and G (cf. Eq. (3.67)) reveals

S
eP(a)a = −

�

GPa

�T
, (3.73)

and together with the definitions (3.62) for the matrix eS and (3.60) for the matrix G

eS= −GT . (3.74)

Analogously, the relations

SP(a)a = −
�

G
ePa

�T
, (3.75)

and consequently

S= −eGT (3.76)

are obtained.
The starting point for the derivation of the relations stated above were expressions applica-

ble to ordering 1 and 2 without consideration of boundary conditions or elements outside the
computation domain. However, all the results presented in this subsection still hold in full gen-
erality for any possible ordering scheme and also with additional zero rows and columns for the
above reasons. The proof for the former can be found in appendix A.1, the latter is discussed in
subsection 3.4.7.1.
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Operator identities
The following applies [52]:

SC= 0, (3.77a)
eSeC= 0. (3.77b)

Equations (3.77) are the discretized analogs of the analytical operator identity div rot ~V ≡ 0 on
the primary and dual grid, respectively. For a proof based on local analysis of elementary cells,
which is hence independent of the structure of the grid and of the ordering scheme, is referred
to [52]. Also a second analytical operator identity rot gradφ ≡ 0 is preserved in the FIT, which
reads for the primary and dual grid

CG= 0, (3.78a)
eCeG= 0, (3.78b)

respectively. Equations (3.78) follow directly from the properties of the topological matrices
together with the identities (3.77), since, e.g., for the primary, grid CG = −eCeS = −(SC)T = 0
[52].

The fact that these analytical relations are still exactly fulfilled for the discretized field problem
is of major importance regarding the robust solution of field problems based on the FIT.

3.4.6 Boundary conditions

The two most common types of boundary conditions are discussed in this subsection. These are
the electric boundary conditions, which are characterized by vanishing tangential components
of the electric field at the boundary, and magnetic boundary conditions, for which the tangential
magnetic field components are absent. Whereas the former are essential, the latter are natural
[52]. That is to say, magnetic boundary conditions are automatically satisfied without having
to make particular adjustments. In contrast, electric boundary conditions have to be imposed
explicitly on the solution. This is done by explicitly zeroing those rows of the system matrix
that are associated with tangential electric field components on the boundary. More details,
particularly regarding symmetry considerations and the practical implementation, are discussed
in the following subsection in a more general context.

3.4.7 Reduced grid

As mentioned before, all the vectors in the standard FIT have components which are associ-
ated with elements where the field solution must a priori be zero due to three possible reasons:
Firstly, the elements are allocated outside the computation domain (cf. subsection 3.4.5.1, par-
ticularly Fig. 3.4); secondly, due to the imposed boundary conditions (cf. subsection 3.4.6); or
thirdly, the elements are allocated in perfect electric conductor (PEC) cells or wires. As a short
hand, the term pseudo-degree of freedom (pseudo-DOF) will be used for such vanishing com-
ponents in the following. The resulting zero structure is categorized for the different vectors
and topological matrices in subsection 3.4.7.1. Basically, there are two ways how to address the
issue regarding the pseudo-DOFs: The common standard is to just set those particular elements
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Table 3.2.: Classification of vectors regarding the zero structure in the FIT.
type vectors

E-field-like _e,
__
d,Dε,Dκ,

__
j ,DL, eDA

H-field-like
_
h,

__
b,Dµ,Dν, eDL,DA

primary node-like q
dual node-like qm

explicitly to zero but keep them in the data structure. Another approach is to remove them
completely, which will be referred to as “reduced grid” and which is pursued in this work. The
advantages and disadvantages of the two alternatives are weighed up in subsection 3.4.7.2. Its
implementation details are discussed in subsection 3.4.7.3 to close this section.

3.4.7.1 Zero structure of vectors and topological matrices

All the expressions for the vectors and matrices obtained so far are, strictly speaking, only valid
in the bulk of the computation domain. As pointed out above, at its boundary or due to PEC-cells
or -wires, however, some special treatment is required. Of course, this issue arises regardless of
the used ordering scheme. Before coming to the actual discussion of the treatment of these zero
values in the topological matrices, it is worth to have a look at the zero structure of the vectors
in the FIT.

Classification of vectors
Regarding the zero pattern, the vectors in the FIT can be classified into four different types as

listed in table 3.2. According to this, vectors are referred to as E-field-like, H-field-like, primary
node-like and dual node-like throughout this work. Note that, though the DOFs are allocated on
the primary or dual grid in six different ways (cf. subsection 3.4.2), there are only four distinct
vector types regarding the zero pattern. This is by virtue of the constitutive relations (cf. section
3.4.4), which connect DOFs from the primary grid to those of the dual grid.

Clearly, in case that a material matrix exhibits non-diagonal elements, as for, e.g., gyrotropic
materials (cf. subsection 3.4.8), the zero pattern of both its rows and columns must be the same
as for the purely diagonal correspondent.

Zero structure of topological matrices
As is pointed out above, all the vectors in the FIT must have the correct zero pattern. When

solving field problems, this requirement can be met by simply zeroing rows of the topologi-
cal matrices associated with one of the vector components to be zeroed. Note, however, that
by doing so the symmetric structure of the topological matrices is spoiled, which is a crucial
requirement for their properties discussed in subsection 3.4.5.4. Yet, the symmetry can be re-
stored by additionally setting those columns to zero that are associated with pseudo-DOFs of
the vector to be multiplied with. Hence, the rows and columns of all matrices in the FIT should
exhibit the zero pattern of one of the four types as for the vectors, too. Details for all topological
matrices are given table 3.3.

To formulate the above said in a mathematically more stringent way, the diagonal matrices
DA

0 for A-like vectors are introduced, where A denotes either E-field, H-field, primary node or
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Table 3.3.: Zero pattern of the rows and columns of topological matrices in the FIT.
rows columns

C H-field-like E-field-like
eC E-field-like H-field-like
S dual node-like H-field-like
eS primary node-like E-field-like
G E-field-like primary node-like
eG H-field-like dual node-like

dual node. Their diagonal entries [DA
0]p,p are either 1 (for ordinary elements) or 0 if this entry

corresponds to a pseudo-DOF. For the rest of this paragraph topological matrices without con-
sideration of these additional zero values are denoted by the subscript 0̄; the ones including the
additional zero elements miss this subscript. That is to say, employing the notation introduced
before, the following applies:

C= DH
0 C

0̄
DE

0, (3.79a)

eC= DE
0
eC

0̄
DH

0 , (3.79b)

S= Ddual
0 S

0̄
DH

0 , (3.79c)

eS= Dprimary
0

eS
0̄
DE

0, (3.79d)

G= DE
0G

0̄
Dprimary

0 , (3.79e)

eG= DH
0
eG

0̄
Ddual

0 . (3.79f)

The matrices multiplied from the left effectively zero appropriate rows whereas the ones mul-
tiplied from the right remove nonzero entries column-wise. Note again that the matrices mul-
tiplied from the left are necessary to ensure the right zero pattern of the resulting vector. The
ones multiplied from the right are, however, not strictly required at this point. The reason for
this is that, given a vector to be multiplied with in the correct zero pattern, they remove only
these elements of the topological matrices which would access vector components which are
zero anyway. Yet, the matrices multiplied from the right are important to restore the structure
of the topological matrices so that their relations presented in subsection 3.4.5.4 are fulfilled
manifestly.

Equations (3.79) should be understood rather as a helpful notation for theoretical consid-
erations than as an implementation instruction. For efficiency the zero entries should not be
assembled or even, as for the reduced grid, removed completely from the beginning.

In common field problems correct field solutions are still obtained with the FIT even if the
additional zero values are not taken into account in the topological matrices explicitly. This
is due to the fact that the topological matrices are usually accompanied by material matrices,
see, e.g., the curl-curl equation (3.5). If it is ensured that the material matrices already exhibit
the correct zero pattern, then they take on the role of the diagonal matrices DA

0 and hence also
ensure the desired structure of the result vectors. Nevertheless, throughout this work all topo-
logical matrices are constructed with the full zero pattern or alternatively as reduced matrices
where all rows and columns with only vanishing elements are removed completely as discussed
in the remainder of this section.
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3.4.7.2 Advantages and disadvantages of the reduced grid

For the decision making whether or not to remove the pseudo-DOFs completely, the following
aspects should be considered.

Disadvantages of the reduced grid
• Ease of implementation: Among the main advantages of keeping the pseudo-DOFs is

clearly the ease of implementation since the band structure of the matrices is not spoiled.
In contrast, in the reduced grid this simple band structure is not retained. This means,
for instance, that it is more involved to tell which columns contain nonzero elements for
the construction of the topological matrices. What is more, debugging the code is easier
for the non-reduced grid. This should not be underestimated, particularly, for the parallel
implementation.

• Computational costs: For the same, above-mentioned reason, some computational over-
head for the calculation of the nonzero indices is introduced. Note, however, that this only
matters for the construction of matrices (such as the topological matrices or the perme-
ability tensor), not for the usage of already assembled matrices. As the time spent for the
construction of matrices is usually very small compared with the solution of the actual field
problem, this is not a severe issue. However, if shell matrices without explicit storage of the
matrices are used, the computational overhead may become significant since the indices
of the nonzero elements have to be re-computed at every matrix-vector multiplication.

• Memory requirements: Furthermore, since for the construction of the matrices the in-
formation is required how many indices have been removed before a specific index, some
additional information about original indices of the pseudo-DOFs is stored.

The actual additional computational costs as well as memory requirements depend strongly on
the chosen implementation, which is discussed in detail in subsection 3.4.7.3.

Advantages of the reduced grid
• Computational costs: As mentioned above, the reduced grid introduces some computa-

tional overhead for the construction of matrices on the one hand. On the other hand, a
smaller number of matrix elements has to be assembled in the end. As the actual assembly
is the most expensive part for the construction of sparse matrices, this usually overcompen-
sates the negative contribution. Additionally, what is more important, also the performance
for actual computations involving the already assembled matrices is enhanced. Particularly
for the solution of systems of equations with direct solvers the computational cost is re-
duced since some equations are removed. For iterative solvers, the situation is different.
Here, only a very low computational effort would be required to solve the removed lines as
they are just trivial equations. This means that for the usage of iterative solvers the benefit
is usually only thanks to the slightly enhanced performance of the matrix-vector product
since one does not have to loop over rows of pseudo-DOFs. Notwithstanding, the positive
impact on the performance might be significant in case that the entries associated with
PEC-cells are not explicitly zeroed (and hence are assembled) in the topological matrices
as in the standard FIT (see also next item).
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• Memory requirements: The required memory for the storage of matrices and vectors is
reduced, which scales with the number of pseudo-DOFs. An estimate how many pseudo-
DOFs actually exist is given in subsection 3.4.7.3. In more detail, regarding the vectors the
saving on memory is directly proportional to the number of removed elements as the vector
data is stored in dense arrays. That is, the required memory reduces by 8 bytes (16 bytes)
for double precision real (complex) numbers for each pseudo-DOF and vector. With regard
to matrices, the actual saving on memory depends on various factors. Assuming a CSR
matrix format as introduced in section 3.3, the memory requirements shrink by at least
4 bytes for a sequential matrix format or 8 bytes for a parallel format for each removed
row, even if no entry is allocated in that row at all. Moreover, if the usage of a direct
solver is desired for a system matrix, which still includes the pseudo-DOFs, one additional
nonzero entry has to be set at all main diagonal elements associated with the pseudo-DOFs
to ensure an explicitly non-singular system. Consequently, in the reduced grid additional
4 + 8 bytes (4 + 16 bytes) are saved per pseudo-DOF for double precision real (complex)
numbers. Furthermore, the elements associated with PEC-cells are usually not set zero
in the topological matrices of standard FIT. It is only when multiplied with the material
matrices that the correct zero pattern of the field vectors is ensured (cf. last paragraph in
subsection 3.4.7.1). As a consequence, the explicitly constructed system matrix contains
many allocated entries which are actually identically zero. Yet, even more importantly, its
factorizing, e.g., for preconditioning, is not only computationally more expensive but also
leads to much more fill-in and hence a significantly increased memory requirement.

• Load balancing: Once the reduced matrices are constructed, the reduced grid results
in algorithms with enhanced load balancing. This is due to the fact that the pseudo-
DOFs, especially those due to elements outside the computation domain, are not evenly
distributed across all processes for the non-reduced grid. Hence, the last process usually
owns significantly less nonzero entries than, e.g., the first one. Given that the number of
floating point operations one processing unit has to perform is more or less proportional
to the number of nonzeros of the system matrix owned by this process, the workload
tends to be poorly balanced. Removing the pseudo-DOFs, however, enables to provide an
almost ideal load balancing (cf. Fig. 3.6). For completeness, it is noted that a similar effect
might be achieved by employing PETSc’s built-in option PCREDISTRIBUTE [47], which
redistributes already assembled matrices evenly on different processes. This was, however,
not tested in this thesis.

• Memory allocation: The reduced grid provides a noticeable speed-up for the memory
allocation at the time the preconditioner for the solution of the Jacobi-Davidson correction
equation (cf. Eq. (3.158)) is constructed. The reason for this is that the preconditioner
is computed for the system matrix which is shifted by a scaled unit matrix. Since it is
not possible to explicitly preallocate memory for vanishing diagonal elements when using
PETSc-routines for sparse matrix-matrix multiplication, the consequence is that additional
memory has to be allocated multiple times later on. This is, however, known to be an
expensive operation [47]. The complete removal of the pseudo-DOFs is one effective way
of solving this issue, which eventually results in a tremendous performance boost.

Taking all these points into consideration one comes to the conclusion that the usage of the
reduced grid on the one hand complicates the process of constructing the matrices used in the
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process 1

process 2

process 3

process 4

remove
pseudo-DOFs

reduced grid

Figure 3.6.: Typical structure of a system matrix without removal of the pseudo-DOFs (left) and
for the reduced grid (right) for ordering scheme 2. In the illustrated example a par-
allel computation with four processes is assumed. The nonzero DOFs are much more
evenly distributed for the reduced grid, which leads to an improved load balancing.

FIT. On the other hand, it results in a significantly enhanced performance and reduced memory
requirements for the solution of realistic field problems, which is even more evident when the
discretized model contains a large number of PEC-cells (cf. also subsection 3.4.7.3). That is,
if one is concerned about high-performance computations, it is recommended to remove all
pseudo-DOFs explicitly.

In this work, the implementation is optimized for the efficient usage of the reduced grid.
Yet, additionally a fully functional version without the removal of the pseudo-DOFs is available,
which can be activated with a compiler flag for debugging purposes. Thus, one can benefit from
the before-mentioned advantages of the reduced grid without loosing the advantage of efficient
debugging.
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3.4.7.3 Implementation details for the reduced grid

Number of pseudo-DOFs
As discussed in detail in the previous subsection, the performance enhancement directly de-

pends on the number of pseudo-DOFs to be removed in the reduced grid. For its determination
a case distinction for the four different vector types as introduced in subsection 3.4.7.1 is neces-
sary. A grid with dimension Nx×Ny×Nz is assumed. In general, the total number of pseudo-DOFs
NA

pseudo−DOFs for A-like vectors is the sum of the contribution of the elements outside the com-
putation domain NA

outside, the one due to boundary conditions NA
BC and the one due to elements

inside PEC-cells (or -wires) NA
PEC, i.e.

NA
pseudo−DOFs = NA

outside + NA
BC + NA

PEC. (3.80)

For E-field-like vectors one finds

NE
outside = Ny Nz + Nx Nz + Nx Ny (3.81)

and

NE
BC =

�

Ny − 1
�

Nz + (Nz − 1) Ny (if Et = 0 on xmin)

+
�

Ny − 1
�

Nz + (Nz − 1) Ny (if Et = 0 on xmax)
+(Nx − 1) Nz + (Nz − 1) Nx (if Et = 0 on ymin)
+(Nx − 1) Nz + (Nz − 1) Nx (if Et = 0 on ymax)

+(Nx − 1) Ny +
�

Ny − 1
�

Nx (if Et = 0 on zmin)

+(Nx − 1) Ny +
�

Ny − 1
�

Nx (if Et = 0 on zmax)
− (Nz − 1) (if Et = 0 on xmin and on ymin)
− (Nz − 1) (if Et = 0 on xmin and on ymax)

− �Ny − 1
�

(if Et = 0 on xmin and on zmin)

− �Ny − 1
�

(if Et = 0 on xmin and on zmax)
− (Nz − 1) (if Et = 0 on xmax and on ymin)
− (Nz − 1) (if Et = 0 on xmax and on ymax)

− �Ny − 1
�

(if Et = 0 on xmax and on zmin)

− �Ny − 1
�

(if Et = 0 on xmax and on zmax)
− (Nx − 1) (if Et = 0 on ymin and on zmin)
− (Nx − 1) (if Et = 0 on ymin and on zmax)
− (Nx − 1) (if Et = 0 on ymax and on zmin)
− (Nx − 1) (if Et = 0 on ymax and on zmax)

. (3.82)

However, the number NE
PEC cannot be estimated exactly a priori because it depends not only on

the pure number of PEC-cells NPEC and PEC-wires but also on their actual position. For instance,
each isolated PEC-cell in the middle of the computation domain would result in 12 additional
pseudo-DOFs whereas two neighboring PEC-cells would not add 24 but only 20 pseudo-DOFs
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since 4 edges are part of both cells. Similarly, also the imposed boundary conditions modify the
resulting number of additional pseudo-DOFs of PEC-cells located at the boundary of the compu-
tation domain. In order to find the exact number NE

PEC (and eventually the total NE
pseudo−DOFs) in

practice, the employed algorithm counts the number “experimentally” in a preprocessing step,
in which it checks for each element whether or not it is a pseudo-DOF. Nevertheless, for the
following considerations it is sufficient to look at its asymptotic behavior in the limit of a large
number of mesh cells, which is described by

NE
PEC ÷ 3 NPEC. (3.83)

Analogously, for H-field-like vectors it is

NH
outside = 2

�

(Nx − 1)× �Ny − 1
�

+ (Nx − 1)× (Nz − 1) +
�

Ny − 1
�× (Nz − 1)

�

+

+ 3
�

Nx + Ny + Nz − 2
�

(3.84)

and

NH
BC =

�

Ny − 1
�× (Nz − 1) (if Et = 0 on xmin)

+
�

Ny − 1
�× (Nz − 1) (if Et = 0 on xmax)

+(Nx − 1)× (Nz − 1) (if Et = 0 on ymin)
+(Nx − 1)× (Nz − 1) (if Et = 0 on ymax)

+(Nx − 1)× �Ny − 1
�

(if Et = 0 on zmin)

+(Nx − 1)× �Ny − 1
�

(if Et = 0 on zmax)

. (3.85)

For the same reasons as for E-field-like vectors, the contribution due to PEC-cells can only be
estimated asymptotically for a fine mesh as

NH
PEC ÷ 3 NPEC. (3.86)

Regarding dual nodes there is no contribution due to boundary conditions. Thus, the number
of pseudo-DOFs is just the sum of the number of cells outside the computation domain, which
is given by

Ndual
outside = (Nx − 1)× �Ny − 1

�

+ (Nx − 1)× (Nz − 1) +
�

Ny − 1
�× (Nz − 1)+

+ Nx + Ny + Nz − 2 (3.87)
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and the number of PEC-cells, that is, Ndual
PEC = NPEC. In contrast, there are no primary nodes

outside the computation domain, i.e. Nprimary
outside = 0, but the imposed boundary conditions lead to

Nprimary
BC =Ny × Nz + Nz × Ny (if Et = 0 on xmin)

+Ny × Nz + Nz × Ny (if Et = 0 on xmax)
+Nx × Nz + Nz × Nx (if Et = 0 on ymin)
+Nx × Nz + Nz × Nx (if Et = 0 on ymax)
+Nx × Ny + Ny × Nx (if Et = 0 on zmin)
+Nx × Ny + Ny × Nx (if Et = 0 on zmax)
−Nz (if Et = 0 on xmin and on ymin)
−Nz (if Et = 0 on xmin and on ymax)
−Ny (if Et = 0 on xmin and on zmin)
−Ny (if Et = 0 on xmin and on zmax)
−Nz (if Et = 0 on xmax and on ymin)
−Nz (if Et = 0 on xmax and on ymax)
−Ny (if Et = 0 on xmax and on zmin)
−Ny (if Et = 0 on xmax and on zmax)
−Nx (if Et = 0 on ymin and on zmin)
−Nx (if Et = 0 on ymin and on zmax)
−Nx (if Et = 0 on ymax and on zmin)
−Nx (if Et = 0 on ymax and on zmax)

. (3.88)

pseudo-DOFs. Again, the number of pseudo-DOFs due to PEC-cells and -wires has to be deter-
mined in a preprocessing step. One finds the asymptotic relation

Nprimary
PEC ÷ NPEC. (3.89)

Taking into account that the total number of all DOFs is NE
DOFs = NH

DOFs = 3 Ndual
DOFs = 3 Nprimary

DOFs =
3 Nx Ny Nz, the ratio of pseudo-DOFs due to elements outside the computation domain and due
to boundary conditions to the total number of DOFs scales asymptotically as

NA
outside + NA

BC

NA
DOFs

÷
1
N

, (3.90)

where N is the minimum of Nx , Ny and Nz. Hence, for a fine grid with N � 1 the contribution
of these two components becomes negligibly small. In contrast, as the number of PEC-cells also
scales as Nx Ny Nz for a fixed geometry, i.e. NA

PEC ÷ Nx Ny Nz, one obtains

NA
PEC

NA
DOFs

÷ constant. (3.91)

That is to say, the relative contribution of the pseudo-DOFs due to PEC-cells asymptotically stays
the same. Consequently, as already stated in the previous subsection, the benefits of the reduced
grid are more obvious if the model to be discretized exhibits large amounts of PEC material. This
is, for instance, the case for the simulation of the GSI SIS 18 cavity (cf. section 4.3).
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Different approaches for the determination of indices associated with the reduced grid
In practice it is often required to determine the index of a particular element in the reduced

grid given an index of the non-reduced grid. This is, e.g., the case when the reduced matrices
are constructed. To this end, the number of pseudo-DOFs that have already been removed
before this element, Nremoved, has to be known. Three different approaches, which all serve this
purpose but behave differently with respect to performance and requirements on memory, are
considered:

1. Storage of one flag (1 bit), which is 1 if the index is removed in the reduced grid (i.e. is
a pseudo-DOF) and is 0 otherwise, for each non-reduced index as a bit-array. To deter-
mine Nremoved, all bits to the right of this bit have to be counted, which takes linear time
(O (NA

DOFs)). Memory requirement: NA
DOFs/8 byte

2. Storage of all non-reduced indices that are removed in the reduced grid as an integer array.
To determine the number Nremoved of removed elements before a particular element with
non-reduced index p, a binary search algorithm is used to find the index i of the (sorted)
integer-array a such that a[i] < p ≤ a[i + 1], where a[i] denotes the i-th element of a;
Nremoved then equals the found index i. Note that a binary search locates one element
in logarithmic time, i.e. it has an average case performance of O (log(NA

pseudo−DOFs)) [54].
Memory requirement: 4NA

pseudo−DOFs byte

3. Explicit storage of Nremoved for each non-reduced index as an integer-array. Hence, it takes
only a constant, very short time to get Nremoved. Memory requirement: 4NA

DOFs byte

Comparing these three approaches, it shows that the first one has the lowest memory require-
ment up to a moderate number of mesh cells. Yet, number two requires fewest memory for
a large number of cells (with roughly ¦ 106, the exact number particularly depends on the
number of PEC-cells). Approach three on the one hand always exhibits by far the highest re-
quirement on memory, on the other hand it is the fastest one for a random access of indices. Still
with respect to runtime, approach one is found to be several orders of magnitude slower than
number two for a large number of DOFs and a random access of the indices. Besides of that, in-
dices have frequently to be accessed not in random but in ascending order. In this case, one can
easily take advantage of it with the effect that it takes only a constant, very short time to access
the subsequent index for any of the three approaches. Taking all this into consideration, ap-
proach two seems to be the best compromise between performance and memory requirements.
Consequentially, it is used throughout this work.

Though the obtained system matrices for the reduced grid enhance the performance of paral-
lelized codes (cf. subsection 3.4.7.2), the task of determining the associated index in the reduced
grid itself does not scale well. The main issue here is related to the fact that a process owns
all columns (within the range of owned rows) of a matrix. This means that every process has
to be able to determine a reduced index for any given global index, also including indices of
elements, whose associated rows are not owned by this process. Yet, due to the relations of
the matrices of the primary and dual grid (cf. subsection 3.4.5.4), it is sufficient to handle this
only for E- and H-field-like vectors since the gradient matrices, which involve primary node-
or dual node-like columns, can be obtained by taking the transpose of the source matrices (cf.
subsection 3.4.5.4). Thus, in the implementation of this work every process stores all indices
of pseudo-DOFs for E- and H-field-like vectors. Since the memory overhead is small relative
to the total used memory, this is accepted in view of the logarithmic runtime of approach two
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Figure 3.7.: Intersection of the dual edge eLx with the primary facet Ax . For the construction of
the inverse permeability matrix, averaging of the inverse permeability along the dual
edge is performed. [59]

and since taking into account that storing only a portion of the indices and communicating the
missing indices would be much slower. In contrast, for primary node- and dual node-like vectors
only indices of pseudo-DOFs associated with this process are stored. Moreover, if memory was
the limiting factor of the used code on a particular machine, the additionally allocated memory
for the construction of reduced matrices could be freed before starting the actual solver and
afterwards be re-allocated for post-processing.

3.4.8 Modeling of gyrotropic materials in frequency domain

The above described standard FIT is restricted to diagonal anisotropic materials. Yet, in order
to fully take into account the tensor characteristics of gyrotropic materials, an extension is
required. For the time domain, this was already thoroughly treated in [55–57], whereas the
problem of the simulation of gyrotropic substances in frequency domain was picked up in [58].
The modeling of gyrotropic materials in frequency domain including the derivation of explicit
expressions for the material matrices is discussed in this subsection starting with gyromagnetic
materials followed by gyroelectric ones. The main parts of this subsection are published in [59].

3.4.8.1 Modeling of gyromagnetic materials

In order to derive the form of the inverse permeability tensor for the FIT, we start from the con-
stitutive relation between the magnetic induction ~B and the magnetic field ~H for gyromagnetic
materials in the form (3.1) with its equivalence in FIT-notation

_
h=M↔

ν

__
b. (3.92)

The task is then to find an explicit expression for the non-diagonal inverse permeability tensor
M↔
ν

. To this end, the magnetic voltage
_
h x(n) along the dual edge eLx(n) is considered (cf.
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Fig. 3.7). The primary cells given by the nodes P(n − Mx)2 and P(n) are assumed to contain
material whose magnetic properties can be described by the tensors

↔
ν 1 :=





ν1,x x ν1,x y ν1,xz
ν1,y x ν1,y y ν1,yz
ν1,zx ν1,z y ν1,zz



 ,
↔
ν 2 :=





ν2,x x ν2,x y ν2,xz
ν2,y x ν2,y y ν2,yz
ν2,zx ν2,z y ν2,zz



 , (3.93)

respectively. Inserting these properties and the constitutive relation (3.1) into the definition of
the magnetic voltage (3.11) yields

_
h x(n) =

∫

eLx (n)

�

νx x Bx + νx y By + νxzBz

�

dx

=
2
∑

i=1

∫

eL(i)x (n)

�

νi,x x Bx + νi,x y By + νi,xzBz

�

dx

≈ Bxνx x(n)eLx(n) +
2
∑

i=1

�

Bi,yνi,x y + Bi,zνi,xz

�

eL(i)x (n),

(3.94)

where the integrals are approximated with an average value of the integrand times the length
of the integration interval in the last transformation. Moreover, the definition of the averaged
inverse permeability (3.25) has been employed for the x-component. In the next step the com-
ponents of the magnetic inductance occurring in the last term of equation (3.94) have to be
expressed in terms of magnetic fluxes

__
b. As already shown in equation (3.23) for the con-

struction of the diagonal permeability matrix in subsection 3.4.4, the x-component can be well
approximated with

Bx ≈
__
b x(n)/Ax(n). (3.95)

For the y- and z-components, the situation is less obvious since these components are not avail-
able on the dual edge eLx(n). As suggested by [57, 60, 61], the computationally most effi-
cient way is to perform spatial interpolations of the two field components for the y- and the
z-direction available in each primary cell. Since the dual edge eLx(n) is allocated in the mid-

2 The quantities Ma (a = x , y, z) indicate the number by which the global cell index n (i.e. the position of the
vector component of primary node- or dual node-like vectors) increases if one proceeds one cell in direction a.
Note that this definition is thus slightly different compared to the one in section 3.4.5, where the positions of
vectors with three components (i.e. E-field- or H-field-like vectors) were considered. Yet, the definition of Ma
for primary node- or dual node-like vectors both for ordering scheme 1 and 2 coincides with the one for E-field-
and H-field-like vectors for ordering scheme 1 (cf. Eq. (3.36) and (3.37)). For the ease of notation, Ma is thus
used without superscript in the following.
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dle of the facet Ax(n), the interpolation effectively reduces to the calculation of the arithmetic
mean:

B1,y ≈
__
b y(n−Mx) +

__
b y(n−Mx +My)

2 Ay(n−Mx)
, (3.96a)

B1,z ≈
__
bz(n−Mx) +

__
bz(n−Mx +Mz)

2 Az(n−Mx)
, (3.96b)

B2,y ≈
__
b y(n) +

__
b y(n+My)

2 Ay(n)
, (3.96c)

B2,z ≈
__
bz(n) +

__
bz(n+Mz)

2 Az(n)
. (3.96d)

Combining equations (3.94), (3.95) and (3.96), performing analogous derivations for the
_
h y(n)- and

_
hz(n)-components and taking into account the relations

eL( j)a (i) =
1
2

La( j) (both for i = j and i = j +Ma), (3.97)

the desired relations which implicitly define the material matrix of the inverse permeability are
obtained. In compact notation it takes the form (1≤ p, q ≤ Ncells):

�

M↔
ν

�

(a,p),(b,q)
=



















νaa(p)
eLa(p)
Aa(p)

b = a; q = p

νab(p−Ma)
La(p−Ma)

4Ab(p−Ma)
b 6= a; q = p−Ma ∨ q = p−Ma +Mb

νab(p)
La(p)

4Ab(p)
b 6= a; q = p ∨ q = p+Mb

0 else



















. (3.98)

Note that there are two possibilities for b 6= a, that is to say for direction b being different from
direction a. Thus, the inverse permeability tensor has 9 nonzero entries in each row for indices
associated with dual edges allocated completely inside gyromagnetic material. For taking into
account zero entries due to boundary conditions and DOFs located outside the computation
domain, M↔

ν
is formally multiplied from the left and the right with DH

0 (cf. section 3.4.7.1).
Expression (3.98) holds in full generality also for dual edges located at material boundaries and
regions with isotropic material for which off-diagonal terms of the inverse physical permeability
tensor νab vanish. The definition (3.98) then reduces to diagonal form as in the standard FIT
(cf. Eq. (3.26)) inside regions with isotropic material.

Moreover, for the computation of eigenmodes of models containing gyromagnetic material,
a Hermitian structure of the system matrix and consequently of the material matrices is of
particular importance. As a non-Hermitian matrix has, in general, non-orthogonal eigenvectors,
different algorithms have to be employed in such cases (cf. section 3.5). The condition for a
Hermitian inverse permeability tensor reads (cf. Eq. (3.98))

�

M↔
ν

�

(a,p),(b,q)

!
=
�

�

M↔
ν

�

(b,q),(a,p)

�∗
, (3.99)

where the complex conjugate is denoted by the asterisk (∗). This condition reduces to the form

νab(p)
La(p)

4 Ab(p)
!
= (νba(p))

∗ Lb(p)
4 Aa(p)

(3.100)
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for all tensor elements. Since

Aa(n) = Lb(n)Lc(n) with a 6= b; a 6= c; b 6= c, (3.101)

it readily follows

νab(p)
!
= (νba(p))

∗ . (3.102)

This means that, provided that losses are absent and hence the physical local permeability tensor
is Hermitian, M↔

ν
is always Hermitian, even for non-equidistant grids. Some remarks are also

due for the averaging of the off-diagonal elements for cells at the border of the computation
domain or next to PEC-cells. In order to have a correct calculation of the average value of the
magnetic field in such cells, the factor 1/2 should be omitted in equations (3.96). However, this
modification would, in general, spoil the Hermitian structure of the inverse permeability matrix.
For this reason, the above definition should not be changed for the sake of stable simulations in
the lossless case (cf. [57]).

Implementation details
The direct implementation of the row-oriented definition (3.98) is potentially inefficient be-

cause one has to access components of the inverse of the physical permeability tensor, νab,
from different (primary) mesh cells for the assembly of each row of M↔

ν
. This should partic-

ularly be avoided for a parallel computation where the values are distributed onto different
computing nodes. Thus, the above definition is expressed in a mesh-cell oriented form. For each
primary mesh cell with index p that contains gyromagnetic material, the following elements of
the inverse permeability matrix are set:

�

M↔
ν

�

(a,p),(a,p)
�

M↔
ν

�

(a,p+Ma),(a,p+Ma)

«

+= νaa(p)
La(p)

2 Aa(p)
,

�

M↔
ν

�

(a,p),(b,p)
�

M↔
ν

�

(a,p),(b,p+Mb)
�

M↔
ν

�

(a,p+Ma),(b,p)
�

M↔
ν

�

(a,p+Ma),(b,p+Mb)



















= νab(p)
La(p)

4 Ab(p)
.

(3.103)

Herein, the indices for the directions a and b loop over all possible combinations out of the
domain a, b ∈ {x , y, z} such that b 6= a. Since there are two possibilities of choosing b 6= a, in
total 30 elements are set per mesh cell. The operator += for the first two elements in (3.103)
means that the expression on the right hand side is to be added to the current value of the
specified element (assuming that the element was initialized with zero). This way, the average
value νaa is calculated according to equation (3.25) implicitly. Note that also the main diagonal
elements of cells filled with non-gyromagnetic materials which are located next to gyromagnetic
cells have to be set for a correct averaging. Clearly, also with the implementation according to
definition (3.103) elements have to be sent between different processes for the matrix assembly
on a computer cluster. Yet, since the inverse of the physical permeability is evaluated taking into
account the bias magnetic field and the current frequency in each primary cell, the evaluation
of the tensor for the same cell on different processes is avoided. What is more, if the DOFs
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Figure 3.8.: Intersection of the primary edge Lx with the dual facet eAx . For the construction of
the permittivity matrix, averaging of the permittivity on the dual facet is performed.
[59]

of the FIT are ordered as in scheme 2 (cf. subsection 3.4.5.2), the number of sent messages
can significantly be reduced. With this regard, it is advantageous to allow divisions of the
vectors (and consequently matrices) to different processes only between blocks of x-, y- and
z-components with different cell indices. Thus, in total a smaller number of messages has to be
sent compared to a direct implementation of the row-oriented definition (3.98).

3.4.8.2 Modeling of gyroelectric materials

For the derivation of the permittivity tensor for the FIT, the constitutive relation between the
displacement field ~D and the electric field ~E for gyroelectric materials as given in equation (3.2)
is considered. After transformation to FIT-notation, this relation takes the form

__
d=M↔

ε

_e, (3.104)

where M↔
ε

is a non-diagonal permittivity matrix, whose explicit form is derived in the following.
To begin with, the electric flux on the dual facet eAx(n) is considered, which is partially located in
the four primary cells with primary node indices P(n), P(n−My), P(n−Mz) and P(n−My−Mz)
(cf. Fig. 3.8). In the most general case, the dielectric properties inside each of these four cells
can be described by permittivity tensors of the form

↔
ε i :=





εi,x x εi,x y εi,xz
εi,y x εi,y y εi,yz
εi,zx εi,z y εi,zz



 , (3.105)
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where the index i refers to one of the four cells. From the definition of the electric flux (cf.
Eq. (3.8)) one then obtains

__
d x(n) =

∫∫

eAx (n)

�

εx x Ex + εx y Ey + εxz Ez

�

dA

=
4
∑

i=1

∫∫

eA(i)x (n)

�

εi,x x Ex + εi,x y Ey + εi,xz Ez

�

dA

≈Ex εx x(n) eAx(n) +
4
∑

i=1

�

εi,x y Ei,y + εi,xz Ei,z

�

eA(i)x (n).

(3.106)

In the last transformation the integrands are approximated with the average value of the field
component in this area times the integration area. Furthermore, the definition of the area-
averaged permittivity (cf. Eq. (3.29) in subsection 3.4.4) is inserted for the x-component. The
remaining task is then to substitute the occurring components of the electric field with electric
voltages _e . Recalling the relation (3.27), Ex is replaced with

Ex ≈
_e x(n)
Lx(n)

. (3.107)

However, the y- and z-component of the electric field are not immediately available on eAx(n)
and have to be approximated by spatial interpolation. Following again the minimal principle
of [57, 60, 61], these components are calculated by taking the arithmetic mean from the two
primary edges closest to the partial dual areas, i.e.

E1,y ≈ E4,y ≈
_e y(n−My) +

_e y(n−My +Mx)

2 L y(n−My)
, (3.108a)

E2,y ≈ E3,y ≈
_e y(n) +

_e y(n+Mx)

2 L y(n)
, (3.108b)

E1,z ≈ E2,z ≈
_e z(n−Mz) +

_e z(n−Mz +Mx)
2 Lz(n−Mz)

, (3.108c)

E3,z ≈ E4,z ≈
_e z(n) +

_e z(n+Mx)
2 Lz(n)

. (3.108d)

The explicit form of the permittivity tensor in the FIT is obtained by combining the last three
relations (3.106), (3.107) and (3.108) and repeating the same procedure for the electric fluxes
__
d y(n) and

__
d z(n). By taking into account the properties (a = x , y, z; b 6= a; c 6= a; c 6= b)

eA(i)a ( j) =
1
4

Lb(i)Lc(i) (for i = j, i = j −Mb, i = j −Mc or i = j −Mb −Mc ), (3.109)

as well as

La(n) = La(n±Mb), (3.110)
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the expression can be simplified to (1≤ p, q ≤ Ncells; a = x , y, z; c 6= a; c 6= b)

�

M↔
ε

�

(a,p),(b,q)
=







































εaa(p)
eAa(p)
La(p)

, b = a; q = p
�

1
8εab(p−∆b −∆c)Lc(p−∆c)
+1

8εab(p−∆b)Lc(p)

�

, b 6= a;
§

q = p−∆b
q = p−∆b +∆a

ª

�

1
8εab(p−∆c)Lc(p−∆c)
+1

8εab(p)Lc(p)

�

, b 6= a;
§

q = p
q = p+∆a

ª

0, else







































,

(3.111)

Since there are two ways of choosing the direction b 6= a in the second and third row of the
above definition, the permittivity tensor effectively has 9 nonzero entries per row inside the
computation domain provided that none of the off-diagonal elements εab vanishes. Also note
that this definition does not take into account additional zero entries due to boundary condi-
tions or elements outside the computation domain. This is, however, readily accomplished by
multiplying the permittivity matrix with the diagonal matrix DE

0 from the left and the right (cf.
section 3.4.7.1). Finally, for regions with fully isotropic material the definition (3.111) simpli-
fies to the form of the standard FIT (cf. Eq. (3.30)). Moreover, definition (3.111) results in a
manifestly Hermitian matrix for the lossless case of Hermitian physical local permittivity ten-
sors. It is notable that the structure remains Hermitian for the non-equidistant grid. In order
to retain this property, the averaging factors of off-diagonal elements should not be modified
at cells with gyroelectric material at the border of the computation domain or PEC-cells (cf.
subsection 3.4.8.1).

Implementation details
For the same reasons as mentioned for the inverse permeability tensor (cf. subsection 3.4.8.1),

an implementation according to a mesh-cell oriented definition is preferable compared to the
row-oriented definition (3.111) with regard to performance. For each primary mesh cell with
index p that is filled with gyroelectric material, the following elements of the permittivity matrix
are set:

�

M↔
ε

�

(a,p),(a,p)
�

M↔
ε

�

(a,p+Mb),(a,p+Mb)
�

M↔
ε

�

(a,p+Mb+Mc),(a,p+Mb+Mc)











+= εaa(p)
Aa(p)

4 La(p)
,

�

M↔
ε

�

(a,p),(b,p)
�

M↔
ε

�

(a,p+Mb),(b,p)
�

M↔
ε

�

(a,p),(b,p+Ma)
�

M↔
ε

�

(a,p+Mb),(b,p+Ma)
�

M↔
ε

�

(a,p+Mc),(b,p+Mc)
�

M↔
ε

�

(a,p+Mb+Mc),(b,p+Mc)
�

M↔
ε

�

(a,p+Mc),(b,p+Ma+Mc)
�

M↔
ε

�

(a,p+Mb+Mc),(b,p+Ma+Mc)



























































= εab(p)
Aa(p)

8 Lb(p)
=

1
8
εab(p)Lc(p).

(3.112)
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The indices for the directions a, b and c loop over all possible combinations out of the domain
a, b, c ∈ {x , y, z} such that b 6= a, c 6= a and c 6= b. Since there are two possibilities of choosing
b 6= a, in total 60 elements are set per mesh cell (12 elements involving εaa and 48 elements
with εab). The operator += in (3.112) denotes that the expression on the right hand side is
added to the current value of the specified element (assuming that each element was initialized
with zero). Thus, effectively an averaging of the permittivity for the main diagonal elements
according to equation (3.25) is performed. This requires also that the main diagonal elements
of cells filled with non-gyroelectric materials next to gyroelectric cells have to be set. Since four
set values contribute for the averaging of the main diagonal matrix elements and similarly two
set values for the averaging of the off-diagonal ones, the total of 60 set values is in accordance
with the 9 nonzero entries per coordinate direction of the row-oriented definition (3.111).

3.4.9 Curl-curl equation in the FIT

Analogous to the derivation of the continuous curl-curl equation in section 3.1, the one in
FIT notation is obtained as follows. Differentiation of the Maxwell-Grid-Equation (3.16) with
respect to time for time-harmonic fields, i.e. _e(t) = _en · eiωt , yields

eC
�

d
dt

_
h
�

=
d2

dt2

__
d= −ω2

__
d. (3.113)

Taking into account the constitutive relations (3.92) and (3.104) and inserting equation (3.113)
into the Maxwell-Grid-Equation (3.15) readily leads to the curl-curl equation in FIT notation

M−1
↔
ε
eCM↔

ν
C_e =ω2_e. (3.114)

Alternatively, the above equation can directly be obtained from the continuous one (3.5) by
replacing the individual elements with the correspondent ones of the FIT.

If the material matrices M↔
ε

and M↔
ν

are Hermitian, which includes also the special case of

diagonal matrices, these matrices can be written as the product of two matrices M↔
ε
=M1/2

↔
ε

M1/2
↔
ε

and M↔
ν
=M1/2

↔
ν

M1/2
↔
ν

. By introducing the transformation _e′ =M1/2
↔
ε

_e, it is thus possible to obtain

the Hermitian version of the curl-curl equation [52]

M−1/2
↔
ε

eCM↔
ν

CM−1/2
↔
ε

_e′ =ω2_e′. (3.115)

Since the above transformation may be interpreted as a similarity transformation, equation
(3.115) features the same eigenvalues as the original equation (3.114). Yet, thanks to the
manifestly Hermitian structure, specialized algorithms for the computation of the eigensystem
may be employed.

3.4.10 Lumped elements

In general, lumped elements can be incorporated into the FIT by formally adding a supplemen-
tary current

__
j L due to the lumped element in Ampère’s circuital law (3.16) [62, 63]:

eC
_
h=

d
dt

__
d+

__
j +

__
j L. (3.116)
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PEC-wire

C
P (n) P (n+ 3Mx)

x

z
y

Figure 3.9.: Lumped element capacitor with capacitance C between the two primary nodes
P(n) and P(n + 3 Mx). Since the distance between these two nodes is larger than
the length of one primary edge, the actual capacitance is allocated only on one edge
(red) whereas the remaining edges are modeled as PEC-wires (blue).

The actual form of the current
__
j L depends on the type of the lumped element. The two lumped

elements relevant for this thesis, namely capacitors and resistors, are considered in more detail
in the following for the case of time-harmonic electromagnetic fields, i.e. _e(t) = _en · eiωt .

The actual lumped element is supposed to be allocated only on one primary edge. If it is to
be set between two nodes separated by a larger distance, a path connecting these two points is
modeled as a PEC-wire while placing the actual lumped element only on one edge somewhere
on that path (cf. Fig. 3.9).

3.4.10.1 Capacitor

The additional current
__
j C due to a purely capacitive lumped element with capacitance Cn allo-

cated on the primary edge / dual facet with index n can be expressed as

__
j C = In =Cn

d
dt

Un(t) =Cn(−iω)_e n, (3.117)

since the electric voltage Un along primary edge n is given by (cf. Eq. (3.7))

Un(t) =

∫

Ln

~E(t) · d~s =: _en(t) =
_e n · eiωt . (3.118)

All lumped element capacitances Cn can conveniently be collected in one diagonal matrix MC
such that

Cn
_e n = [MC

_e]n . (3.119)

The overall effect of the lumped element capacitors is most easily seen in the modified curl-curl
equation. Analogous to subsection 3.4.9 and with the definition (3.119), it is deduced as

�

M↔
ε
+MC

�−1
eCM↔

ν
C_e =ω2_e. (3.120)

Hence, the lumped element capacitance matrix MC can simply be added to the original permit-
tivity matrix.

Lumped element capacitors are used throughout this thesis for the simulation of the reflection
measurement setup as well as to model the gap capacitance of the GSI SIS 18 cavity.
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3.4.10.2 Resistor

Given a lumped element resistor with the Ohmic resistance Rn = Un/In, which is allocated at
the primary edge with index n, the components of the associated current

__
j R reads

__
j R = In =

_e n

Rn
. (3.121)

Deriving yet another time the curl-curl equation including this additional current yields

M−1
↔
ε
eCM↔

ν
C_e =ω2_e +

iω
Rn

_e n1n, (3.122)

where 1n is an appropriate unit vector. This suggests to define the diagonal matrix (1 ≤ p ≤
3 Ncells)

[MR]p :=

�

i
ωRn

p = n
0 else

�

, (3.123)

which again can be added to the original permittivity matrix. The resistance matrix MR is purely
imaginary and frequency dependent. Thus, the incorporation of lumped element resistors leads
to complex nonlinear eigenvalue problems, which can, however, be handled by the developed
eigensolver.

Though one might want to model the resistance of, e.g., a tetrode with such a lumped element
resistor in order to simulate the loaded cavity, this does not seem to be useful in practical
applications. The reason is the complicated dependence of the resistive load on a variety of
parameters such as frequency and RF-power level, for which no accurate data are available for
the GSI SIS 18 cavity. For a comparison of measured loaded and simulated unloaded ones, a
transformation of the values as done in [64] is recommended instead.

3.4.11 Magnetostatic field problem

As pointed out in section 3.1, the inverse permeability tensor enters in the system matrix of the
eigenvalue problem if gyromagnetic material is present and similarly the inverse permittivity
tensor for gyroelectric material. Since the components of both tensors depend on the static
bias magnetic field (cf. subsection 3.4.8), the bias field has to be determined by solving the
magnetostatic field problem beforehand. To begin with, this problem is formulated in FIT-
notation in subsection 3.4.11.1. For its solution, the so-called Hi-algorithm is employed, which
is explained in subsection 3.4.11.2 including its extension for nonlinear materials in subsection
3.4.11.3. Finally, a couple of test problems is considered for verification in subsection 3.4.11.4.

The following theoretical basics are a review of [52]. Yet, the description of the Hi-algorithm
goes much more into the details as required for an actual implementation.

3.4.11.1 Statement of the problem

The magnetostatic field problem is governed by the two Maxwell’s equations (3.16) and (3.18)
for vanishing time-derivatives (in FIT-notation) [52]

eC
_
h=

__
j , (3.124)

S
__
b = 0, (3.125)
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together with the constitutive relation (3.33). The current density
__
j in equation (3.124) con-

tains all the steady currents such as ones for magnetic biasing. Note that even if gyrotropic
materials are present, the diagonal inverse (chord) permeability matrix Mν instead of the tenso-
rial expression of subsection 3.4.8.1 enters in equation (3.33) since the tensor describes rather
the dynamic response of the system than its static behavior. Nonetheless, the nonlinear charac-
teristics of the ferrite has to be taken into account.

Usually, the above stated field problem is solved by introducing a vector potential _a such that
__
b = C_a [4, 52]. This ansatz manifestly fulfills equation (3.125) and leads to the remaining
equation in _a

eCMνC
_a =

__
j . (3.126)

Unfortunately, the system matrix of the above equation is of dimension (3 Ncells)× (3 Ncells) (for
the non-reduced grid) and thus computationally comparatively expensive to solve. As shown in
[52], it is, however, possible to formulate the problem in a way such that the dimension reduces
to only Ncells×Ncells by employing the so-called Hi-algorithm, which is reviewed in the following
subsection.

3.4.11.2 Hi-algorithm

The Hi-algorithm [52] is based on the Helmholtz decomposition. According to this fundamental
theorem [65], the magnetic field can be resolved into the sum of two fields

~H = ~Hi + ~Hh (3.127)

with the solenoidal field ~Hi

∇× ~Hi = ~J (3.128)

and the irrotational field ~Hh, which can be expressed in terms of a scalar potential ϕ

~Hh = −∇ϕ. (3.129)

In FIT-notation this decomposition takes the form

_
h=

_
hi +

_
hh (3.130a)

with eC
_
hi =

__
j (3.130b)

and
_
hh = −eGΦ, (3.130c)

where the scalar potential Φ is allocated on dual nodes. The Hi-algorithm hence starts with the
construction of the field

_
hi. As this vector field may be chosen arbitrarily and may, in particular,

be unphysical, a solution as simple as possible should be preferred. To begin with, the special
case in which no currents enter or leave the computation domain is considered. Hence, there
are only closed current paths inside the computation domain. The following algorithm can then
be used (after [52]):
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Figure 3.10.: Subdivision of a subvolume in x -direction at the middle facet. For the determina-
tion of the magnetic field on the four edges 13-16, only the four side surfaces on
the left (facets a, b, d, e) are considered. The sum of all

_
hi -components along a

(dual) edge of the subvolume is denoted by
∑ _

h, whereas the sum of all currents
through a (dual) surface is denoted by

∑ __
j .

1. All
_
hi-components are initialized with 0.

2. The smallest possible subvolume that contains all current paths is determined. Since no
current runs through the surface of the subvolume, the rotational equation (3.130b) is
fulfilled trivially on the surface. The case that currents penetrate through the surface is
treated separately below.

3. The subvolume is divided into two subvolumes of approximately equal size. The
_
hi-

components have to be set on the four new edges of the interface of the subdivision
according to equation (3.130b). This is done as follows: The four side surfaces of which
one edge coincides with one of the four new edges are considered consecutively. By con-
vention only those side surfaces (of the two possible choices) are selected that have the
smaller facet indices (cf. Fig. 3.10). For each of these four side surfaces, the

_
hi-components

are already known along three of their (surface) edges. Consequently, the sum of all
_
hi-

components along the fourth (surface) edge can be determined according to equation
(3.130b). The hereby obtained value for the sum of all

_
hi-components along the fourth

(surface) edge is distributed equally on all dual edges along the fourth surface edge. Pos-
sibly different cell sizes or edge lengths are not taken into account at this point. The proof
that, following this procedure, the rotational equation (3.130b) is indeed satisfied on all
new side surfaces can be found in the appendix A.2.2.

4. Each of the new subvolumes is successively further subdivided until all
_
hi-components are

known. To avoid round-off errors, the direction of subdivisions should by altered cyclically
[52].

For the more general case of a current path going through the surface of the computation do-
main, step 2 of the algorithm has to be modified. To begin with, the initial subvolume is set
to the whole volume of the computation domain. One possible solution to initialize the

_
hi-
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Figure 3.11.: Notation used for the determination of
_
hi -components on the edges of the initial

subvolume. The sum of all
_
hi -components along a (dual) edge of the subvolume

is denoted by
∑ _

h, whereas the sum of all currents through a (dual) surface is
denoted by

∑ __
j .

components on the edges of the surface, which has been derived as part of this thesis, is (for
notation see Fig. 3.11):

∑

_
h1 =

1
4

�∑ __
j b −

∑ __
j d

�

− 1
3

__
j∆y ,

∑

_
h2 =

1
4

�∑ __
j b +

∑ __
j f

�

− 1
3

__
j∆y −

1
3

__
j∆z,

∑

_
h3 =

1
4

�

−
∑ __

j b −
∑ __

j d

�

+
1
3

__
j∆y +

1
3

__
j∆z,

∑

_
h4 =

1
4

�

−
∑ __

j b +
∑ __

j f

�

+
1
3

__
j∆z,

∑

_
h5 =

1
4

�∑ __
j d −

∑ __
j f

�

− 1
3

__
j∆y +

1
3

__
j∆z,

∑

_
h6 =

1
4

�

−
∑ __

j d −
∑ __

j f

�

− 1
3

__
j∆z,

∑

_
h7 =

1
4

�∑ __
j d +

∑ __
j f

�

+
1
3

__
j∆y ,

∑

_
h8 =

1
4

�

−
∑ __

j d +
∑ __

j f

�

,
∑

_
h9 =

1
4

�∑ __
j d +

∑ __
j b

�

+
1
3

__
j∆z,

∑

_
h10 =

1
4

�∑ __
j b −

∑ __
j f

�

− 1
3

__
j∆y ,

∑

_
h11 =

1
4

�∑ __
j d −

∑ __
j b

�

+
1
3

__
j∆z,

∑

_
h12 =

1
4

�

−
∑ __

j b −
∑ __

j f

�

− 1
3

__
j∆y .

(3.131)
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Therein, the definitions

__
j∆y :=

∑ __
j e −

∑ __
j f (3.132a)

__
j∆z :=

∑ __
j c −

∑ __
j d (3.132b)

are used. Moreover, the symbol
∑

refers to the sum of all
_
hi-components along the specified

edge or the sum of all currents through the specified surface, respectively. Obviously, if there are
no currents through the surface, all expressions in (3.131) vanish in accordance with the special
case mentioned above. For the derivation of (3.131) and the proof that these expressions satisfy
the rotational equation (3.130b) on the surface is referred to subsection A.2.1 of the appendix.

After having determined the rotational field
_
hi, the scalar potential is computed by solving

equation (3.125), which for the ansatz (3.130) takes the form

SMµS
TΦ= qm (3.133a)

with qm := −SMµ

_
hi (3.133b)

and the (diagonal) permeability matrix Mµ = M−1
ν . In equation (3.133a), the relation (3.76)

between the topological matrices has been employed to emphasize the positive (semi-)definite
structure of the system matrix. In fact, the matrix is positive semidefinite only for the non-
reduced grid but positive definite for the reduced grid (cf. subsection 3.4.7). Thanks to this
feature, efficient standard algorithms can be used for the solution of equation (3.133). Nev-
ertheless, this is still the most expensive part for the computation of the magnetostatic field
solution. In comparison, the time spent for the calculation of the

_
hi-field with the above algo-

rithm is essentially negligible.
As known from literature [52], the Hi-algorithm may suffer from loss of significance when

high-permeable materials are present. On modern systems with double-precision floating-point
format, cancellations do, however, not occur for realistic problems. Nevertheless, to be able to
solve even models with extremely high permeabilities without difficulties, the new implemen-
tation of the algorithm supports also an iterative Hi-update-method (similar to [52]). If n-fold
refinement is activated, the magnetostatic problem is solved at first for a material distribution
with a relative permeability of only µ1/2n

r of the original value µr . In each of the 2n iterations,
the permeability is then increased by the factor µ1/2n

r . This way, the calculation of the mag-
netic field at the boundary between vacuum and a material with µr = 1020 could be performed
accurately for testing purposes.

3.4.11.3 Extension for nonlinear material

For materials with nonlinear material characteristics, such as ferrites, equation (3.133) exhibits
a nonlinear character since the permeability itself depends on the magnetic field strength. In this
work, simple successive substitution [66] is applied until convergence of the value for the per-
meability is observed (for the conditions on the B-H curve for the existence of a unique solution
see, e.g., [67]). That is to say, the magnetostatic problem is solved for some initial homoge-
neous distribution of the permeability at first. Then the updated values for the permeability are
calculated according to the nonlinear characteristic equation and the current magnetic field dis-
tribution. This is repeated iteratively until the relative change of the permeability between two
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1. solve
C̃

_

hi =
__

j
(
_

hi may be unphysical)

2. solve linear equation
SMµS

TΦ = qm

with qm = −SMµ
_

hi for Φ

3. calculate
_

h =
_

hi − G̃Φ

stop |µn−µn−1|<δ
4. update

Mµ(
_

h)

no

yes

Nonlinear material

Figure 3.12.: Simplified flowchart of the Hi -algorithm. The solenoidal field
_
hi, which satisfies the

rotational equation (3.130b), is constructed at first (step 1). After that, the linear
equation (3.133), which originates from the divergence equation (3.125), is solved
for the scalar potential Φ (step 2). This allows to calculate the composed magnetic
field

_
h (step 3). For nonlinear material characteristics, equation is (3.133) is nonlin-

ear. Hence, it is solved for some initial permeability in the beginning. Taking into
account the obtained field distribution this way in step 3, the permeability matrix
is updated (step 4). The iterative solution process continues until the maximal rel-
ative change of the permeability values in all mesh cells drops below the specified
threshold δ.

subsequent iterations drops below a specified threshold δ in all mesh cells (cf. also Fig. 3.12).
Since the field solution and permeability values change only slightly in subsequent iterations,
the preconditioner used for the solution of equation (3.133) can be kept for several steps. This
reduces the total computation time drastically in practice.

Applying the Newton method to the solution of equation (3.133) instead could increase the
convergence of the nonlinear iteration up to second order in the vicinity of the solution. The
diagonal chord permittivity matrix on the left hand side of that equation would then have to
be replaced with the non-diagonal differential permeability matrix [68]. Yet, since the solu-
tion of the magnetostatic field problem takes much less computation time than the subsequent
computation of the eigenmodes anyway, the application of the Newton method is not further
elaborated in this thesis. Besides, though the convergence rate of the successive substitution ap-
proach is usually significantly inferior compared to the Newton method, the former converges
stably whereas the latter can easily suffer from instabilities [66].

For the update of the permeability matrix in each nonlinear iteration, the knowledge of the
magnetic field inside every primary cell that contains nonlinear material is required. As the mag-
netic field components are allocated on dual edges in the FIT (cf. subsection 3.4.2), averaging
of the magnetic field is required, which is discussed in the following.
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Averaging of the magnetic field strength
To begin with, the following notation is introduced. Let a magnetic voltage with additional

superscript (i) refer only to that part which is allocated (on the partial dual edge) in the primary
cell with index i. For instance,

_
h
(i)
a (n) =

∫

eL(i)a (n)

~H · d~a =: h(i)a (n) eL
(i)
a (n) (a = x , y, z), (3.134)

where the mean magnetic field component on that partial dual edge h(i)a (n) is defined by the
above equation (cf. also Fig. 3.2(b)). Accordingly, the mean value for the magnetic field strength
H(i) in the primary cell with index i is calculated as

H(i) =
1
2

s

�

h(i)x (i) + h(i)x (i +Mx)
�2
+
�

h(i)y (i) + h(i)y (i +My)
�2
+
�

h(i)z (i) + h(i)z (i +Mz)
�2

.

(3.135)

It is thus the remaining task to determine the quantities h(i)a (i) and h(i)a (i +Ma) as follows [69].
Decomposing the magnetic voltage

_
ha(i) =

_
h
(i−Ma)
a (i) +

_
h
(i)
a (i) = h(i−Ma)

a (i)eL(i−Ma)
a (i) + h(i)a (i)eL

(i)
a (i) (3.136)

and employing the condition of continuity for the magnetic field

h(i−Ma)
a (i)µ(i −Ma) = h(i)a (i)µ(i) (3.137)

yields by inserting equation (3.137) into equation (3.136)

h(i)a (i) =
_
ha(i)

µ(i)
µ(i−Ma)

eL(i−Ma)
a (i) + eL(i)a (i)

=
2
_
ha(i)

µ(i)
µ(i−Ma)

La(i −Ma) + La(i)
, (3.138)

where the relation (3.97) has been used. In case that the dual edge with index i is located at
the edge of the computation region towards small indices with respect to the orientation a, the
expression simplifies to

h(i)a (i) = ha(i) =
_
ha(i)
eLa(i)

(at the edge of the computation region). (3.139)

Analogously, one yields

h(i)a (i +Ma) =
_
ha(i +Ma)

µ(i)
µ(i+Ma)

eL(i+Ma)
a (i +Ma) + eL

(i)
a (i +Ma)

=
2
_
ha(i +Ma)

µ(i)
µ(i+Ma)

La(i +Ma) + La(i)
. (3.140)

Again, in the case that the dual edge with index i is located at the edge of the computation
region towards large indices with respect to the orientation a, this expression reduces to

h(i)a (i +Ma) = ha(i +Ma) =
_
ha(i +Ma)
eLa(i +Ma)

(at the edge of the computation region). (3.141)

Having obtained the mean value of the magnetic field and hereby also immediately the perme-
ability values inside each cell with nonlinear material, the updated inverse permeability matrix
in the FIT can readily be calculated as explained in section 3.4.4.
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Figure 3.13.: (a) Cylinder with permeability µr subject to a homogeneous magnetic field ~Hext =
H0 · ~ex . The cylinder axis is oriented in z-direction. (b) Field lines of the resulting
magnetic field inside (red) and outside (blue) the cylinder for µr = 5 according to
Eq. (3.142).

3.4.11.4 Verification

The correct implementation of the construction of the Hi-field (cf. subsection 3.4.11.2) can read-
ily be verified by performing the Hi-algorithm for any given current distribution and thereafter
checking the validity of the rotational equation (3.130b). For all tested current distributions, this
condition is found to be fulfilled up to machine precision. Hence, it remains only to verify the
solution of the divergence equation (3.133). To this end, the test model also considered in [70]
is picked up. It consists of an infinitesimally long cylinder of radius R and relative permeability
µr with its axis oriented in z-direction and located in an external homogeneous magnetic field
of strength ~Hext = H0 · ~ex (cf. Fig. 3.13(a)). The analytical solution for the resulting magnetic
field ~Hres is given by:

~Hres = H0
2

µr + 1
~ex for r ≤ R, (3.142a)

~Hres = H0 · ~ex +H0
R2

(x2 + y2)2
× µr − 1
µr + 1

�

�

x2 − y2
�

~ex + 2 x y · ~ey

�

for r > R. (3.142b)

The solution exhibits thus a homogeneous field parallel to the external field inside the cylinder
(cf. Fig. 3.13(b)). To begin with, a cylinder filling with a linear material characteristic with µr =
10 and an external field strength of H0 = 106 A/m is assumed. According to equation (3.142a),
this results in a field strength of | ~Hres|= 181818 A/m inside the cylinder. With those parameters
for µr and H0, the magnetostatic field problem is also solved with the new implementation of
the solver described before. Electric boundary conditions are imposed in the y- and z-direction
to enforce purely tangential magnetic field components at those boundaries, which allows for
a discretization in z-direction with only one effective mesh cell. Moreover, surrounding free
space with a distance of 19 × R is added in lower and upper x- and y-direction to reduce
undesired effects due to the limited discretization domain. For the spatial discretization, the
Perfect Boundary Approximation® (PBA) [48] is used for the linear material. To estimate the
accuracy of the numerical solution, the energy norm of the difference, defined as [52]

�

�

_
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_
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�

�

2
=
�_
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_
hanaly

�T
Mµ

�_
hnum −

_
hanaly

�

, (3.143)
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Figure 3.14.: Energy norm
�

�

_
hnum −

_
hanaly

�

� of the difference between the numerically obtained
magnetic field

_
hnum and the analytical reference

_
hanaly calculated on all dual edges

that are located completely inside a cylinder with radius 0.8×R as a function of the
normalized step size∆/∆0 for the cylinder experiencing an external homogeneous
magnetic field of strength H0 = 106 A/m. The values are shown for the cylinder
with linear material µr = 10 and a spatial discretization using PBA as well as for the
cylinder filled with nonlinear iron material and a staircase filling.

where
_
hnum and

_
hanaly are the magnetic voltages of the numerical and analytical solution, respec-

tively, is calculated on all dual edges that are located completely inside a cylinder with radius
0.8× R. This is repeated for different mesh resolutions. As shown in figure 3.14, the numerical
field solution converges towards the analytical one. Furthermore, the same test model is also
treated for a cylinder filled with nonlinear iron material. The measurement data for pure iron
can be found in [48, 70]. Those data points are interpolated employing the method of “straight
BH-lines” discussed in [70]. As the permeability in equation (3.142a) now depends on the mag-
netic field strength, the semi-analytical reference values are given by the roots of that equation
as | ~Hres| = 142976A/m and µr = 12.9883 inside the cylinder. Also the simulation is performed
with iron filling. However, since a PBA-mesh is not supported by the implemented solver due
to the averaging of the magnetic field strength and the construction of the permeability matrix,
staircase filling is used for the nonlinear case. The obtained deviation from the reference values
in terms of the energy norm are supplemented in figure 3.14. Obviously, stagnation is observed
below a particular threshold of the mesh resolution, which depends on the radius inside which
the field solutions are compared. In fact, local deviations from the analytical values at the sur-
face of the cylinder even raise with decreasing step size of the mesh. This problem is intrinsic
to the attempt of approximating a curved geometry with a staircase mesh and is known from
literature [67, 70].

For the independent verification of the nonlinear algorithm, the following minimalist, effective
one-dimensional test model is thus investigated. It consists of two (primary) mesh cells (cf.
Fig. 3.15): the first cell of length l1 contains a linear material with relative permeability µ1, the
second one has length l2 and is filled with a material with the nonlinear permeability µ2(H).
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Figure 3.15.: Model for the verification of the nonlinear algorithm of the magnetostatic solver.
The cell on the left of length l1 contains a linear material with relative permeability
µ1, the one on the right has length l2 and is filled with a material with the nonlinear
permeability µ2(H). The cells are subject to a homogeneous magnetic field ~Hext =
H0 ·~ex . Since the model is effectively one-dimensional, only the

_
h x -components are

calculated.

Moreover, the cells are subject to an external homogeneous magnetic field of strength H0 normal
to the interface of the two cells. The same boundary conditions as for the cylinder are imposed.
The analytical solution for the resulting magnetic field strengths H1 and H2 in the first and the
second cell, respectively, for this setup takes the form:

H1 =
µ2(H2)
µ1

H2, (3.144a)

H2 =
l1 + l2

l1µ2(H2)/µ1 + l2
H0. (3.144b)

If this field problem is solved numerically employing the averaging of the magnetic field strength
as explained in subsection 3.4.11.3, there is no error due to spatial discretization at all regardless
of the number of mesh cells, even for a non-equidistant grid. That is to say, the only contribution
to the uncertainty in the numerical solution is due to the iterative solution of the nonlinear
characteristic equation. This is confirmed by numerical studies using different length ratios l1 /
l2 as well as models for the nonlinear permeability, including, e.g., iron using the interpolation
method “straight BH-lines”. It is notable that the error due to spatial discretization is identically
zero only because the condition of continuity of the magnetic field is taken into account for the
averaging of the magnetic field (cf. subsection 3.4.11.3).

3.5 Numerical methods for the computation of eigenvectors

3.5.1 General remarks

The eigenvalue problem for a square matrix A is defined by the equation

A~v = λ~v , (3.145)

where ~v with norm ‖ ~v‖ 6= 0 is called an eigenvector to the associated eigenvalue λ. The
eigenvalues of A are the roots of the characteristic equation

det (A−λ1) = 0, (3.146)
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whereas the eigenvectors are the nontrivial solutions of

(A−λ1) ~v = 0. (3.147)

Since according to the Abel-Ruffini theorem [71] polynomial equations with degree five or
higher do not have general algebraic solutions, numerical approaches have to be employed
in practice to solve eigenvalue problems. A variety of numerical methods have been developed.
Which one is best-suited for a particular problem depends on many criteria like the number of
wanted eigenvectors, the location of the eigenvalues in the spectrum, the dimension of the sys-
tem matrix or whether or not also associated eigenvectors are desired. Among the algorithms
for small dense matrices are the power iteration method, the inverse power iteration method,
and the Rayleigh quotient iteration. Since some knowledge about these single vector iterations
is useful for a better understanding of more sophisticated approaches for large sparse systems,
they are briefly introduced in the next section. After that, a deflation technique is treated in sub-
section 3.5.3 followed by some remarks on the QR algorithm in subsection 3.5.4. In subsection
3.5.5 fundamental principles related to the concept of subspace iterations are discussed. Finally,
relevant details about the actual implementation are highlighted and verification examples are
presented.

3.5.2 Single vector iterations

3.5.2.1 Power method

The simplest method to compute an eigenpair associated with the eigenvalue of largest modulus
is the power iteration method [72]. The algorithm is as follows:

Algorithm 1 Power method
Require: initial vector ~v0 with ‖ ~v0‖ 6= 0

1: for k = 1, 2, · · · do
2: ~vk← A~vk−1
3: λk← ‖ ~vk‖
4: ~vk← ~vk/λk
5: if converged then
6: stop
7: end if
8: end for

On convergence, ~vk is an eigenvector of A associated with the (dominant) eigenvalue λk. The
power method is known to converge linearly with convergence factor |λsubdominant|/|λdominant|
[72], where λdominant and λsubdominant are the eigenvalues with largest and second largest mod-
ulus, respectively.

3.5.2.2 Inverse iteration

If one eigenvector associated with an eigenvalue inside the spectrum near some target value
σ is desired, instead of A the matrix (A− σ1)−1 can be used to iterate, which results in the
algorithm:
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Algorithm 2 Inverse shifted power method
Require: initial vector ~v0 with ‖ ~v0‖ 6= 0

1: for k = 1,2, · · · do
2: Solve (A−σ1) ~vk = ~vk−1 for ~vk
3: eλk← ‖ ~vk‖
4: ~vk← ~vk/eλk
5: if converged then
6: stop
7: end if
8: end for

On convergence, ~vk is an eigenvector of A associated with the eigenvalue λk = 1/eλk + σ.
Since the inverse iteration is effectively a power method, linear convergence with rate |λclosest−
σ|/|λ2ndclosest −σ| is observed [72], where λclosest is the closest eigenvalue to σ and λ2ndclosest
the next closest one.

3.5.2.3 Rayleigh quotient iteration

The Rayleigh quotient iteration may be regarded as an extension of the inverse iteration.
Whereas in the latter the shift σ remains unchanged throughout all iterations, here the Rayleigh
quotient, defined as

RQ =
~v ∗A~v
~v ∗ ~v

, (3.148)

where ~v is an approximation of an eigenvector of A, is taken as the new shift in the following
iteration. The algorithm thus takes the form:

Algorithm 3 Rayleigh quotient iteration
Require: initial vector ~v0 with ‖ ~v0‖= 1

1: for k = 1,2, · · · do
2: σk← ~v ∗k−1A~vk−1
3: Solve (A−σk1) ~vk = ~vk−1 for ~vk
4: eλk← ‖ ~vk‖
5: ~vk← ~vk/eλk
6: if converged then
7: stop
8: end if
9: end for

Though the Rayleigh quotient iteration features quadratic convergence and even cubic con-
vergence for Hermitian matrices (provided it converges at all) [73], it suffers from the high cost
for the solution of the equation in line 3 with a different shift in each iteration.

3.5.3 Deflation

The methods introduced in the previous section deliver only one eigenpair on convergence. For
the computation of additional ones, components of the already obtained eigenvectors have to be
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removed by deflation techniques. One useful deflation method for Hermitian matrices is briefly
introduced in the following subsection, the non-Hermitian case is addressed afterwards.

3.5.3.1 Deflation for Hermitian eigenvalue problems

Since it is possible to find an orthogonal basis for eigenvectors of Hermitian matrices, the matrix
A⊥, the restriction of the matrix A to the invariant subspace orthogonal to the subspace spanned
by the already obtained eigenvectors Q = span( ~vi), can be used for the computation of further
eigenvalues [73]. The deflated matrix then takes the form [74]

A⊥ = (1−QQ∗)A(1−QQ∗) . (3.149)

3.5.3.2 Deflation for non-Hermitian eigenvalue problems

In contrast, for non-Hermitian matrices this deflation scheme is not immediately suitable due
to the non-orthogonality of the eigenvectors. However, if the partial Schur-composition is avail-
able, the orthonormal Schur-vectors associated with the eigenvalues computed so far are useful
for the construction of the deflated matrix according to equation (3.149) [74]. The relation
between the Schur-form and the eigenpairs will be covered in more detail when discussing the
QR algorithm in the following section.

3.5.4 QR algorithm

For the simultaneous computation of all eigenvalues of a matrix, the QR algorithm is particularly
well suited. Based on the QR factorization, a sequence of similarity transformations of the
system matrix A is produced, which (under certain conditions [75]) converges to its Schur-
form. The basic algorithm is given by [73]:

Algorithm 4 QR algorithm
Require: A0 = A

1: for k = 0,1, · · · do
2: Compute QR decomposition Ak =QkRk
3: Ak+1← RkQk
4: if converged then
5: stop
6: end if
7: end for

On convergence, matrix Ak approaches the Schur-form of A, i.e. Ak = eQ∗kAeQk = U T U∗, where
eQk =

∏k−1
i=0 Q i, U is a unitary matrix and T an upper triangular matrix. The eigenvalues of A

are found on the diagonal of T since the updated matrix Ak+1 = RkQk = Q∗kQkRkQk = Q∗kAkQk
is in fact obtained by a similarity transformation out of the original matrix A. Moreover, if A is
a normal matrix3, T is a diagonal matrix and the columns of U are the eigenvectors of A. Yet,
3 A complex square matrix is normal if A∗A= AA∗ [76]. Particularly, a Hermitian matrix is normal.
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in the general case of a non-normal matrix only the eigenvector associated with the eigenvalue
on the top left position of T , entry T1,1, is immediately available as the first column of U . If
desired, the remaining eigenvectors can be obtained one after another by reordering the Schur-
form such that the eigenvalue of the wanted eigenpair appears on the top left position of T
[77]. Due to its close relation to the power iteration, the QR algorithm features (at least) linear
convergence of the eigenvalues provided that all the eigenvalues have different modulus [78].
The convergence can significantly be accelerated by applying spectral transformations [78].

Variants of the QR algorithm are for example implemented in the simple driver LAPACK-
subroutines with endings -EV and -ES [79].

3.5.5 Subspace methods with projection

Some of the most successful methods for the extraction of eigenvalues of large sparse systems
are based on the principle of subspace iteration. Its main characteristics are the projection onto a
small system using a set of vectors spanning a subspace, extracting best possible approximations
of the eigensolutions in that subspace and modifying the subspace in some manner with the aim
of obtaining better approximations in the next iteration. A variety of different methods have
been evolved, which can be categorized by the distinct approaches for the subspace extraction,
that is, how the approximate eigensolutions are obtained from the subspace, and the subspace
expansion. Regarding the first aspect, the Rayleigh-Ritz method and the harmonic Ritz method
are introduced in subsection 3.5.5.1. After that, two of the most important classes of subspaces,
the Krylov subspaces and those used in the Jacobi-Davidson method, are discussed in subsection
3.5.5.2.

3.5.5.1 Extracting eigensolutions from subspaces

This subsection addresses the computation of an approximation of an eigenpair of a system
matrix A from a given subspace V = span( ~v1, ~v2, · · · , ~vm), which is spanned by the orthonormal
columns ~vi (i = 1,2, · · · , m) of a matrix V . Different methods are available to serve this purpose.
Which one is favorable depends mostly on the location of the desired eigenvalues in the spec-
trum. Whereas Ritz values are well suited for exterior eigenvalues, the usage of harmonic Ritz
values is preferable for the interior ones. Some aspects about the two approaches are discussed
in the following two paragraphs.

The Rayleigh-Ritz method
For the computation of extremal eigenvalues, the well-known Rayleigh-Ritz approach [51, 80,

81] is recommendable. Imposing the Galerkin-condition

AV~s− θV~s ⊥ V , (3.150)

one obtains the projected eigenvalue problem

V ∗AV~s− θ~s = 0. (3.151)

with the m eigenpairs (θi,~si) as its solutions. Then θi and ~yi = V~si can be taken as approxima-
tions of eigenvalues and eigenvectors of A and are referred to as Ritz values and Ritz vectors,
respectively, in literature. They have the following properties:
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• The Ritz values θi are optimal approximations of the eigenvalues of A in the given subspace
[73].

• The Ritz interval [θi − ‖~ri‖,θi + ‖~ri‖] with the residual vector ~ri = A~yi − ~yiθi contains
an eigenvalue of A [73]. Note, however, that overlapping intervals may contain the same
eigenvalue [73].

• The full set of all Ritz pairs {(θi, ~yi)} provide the best possible approximations to the eigen-
pairs of A which can be obtained from the subspace V alone [73]. Yet, in general, one
single Ritz vector alone is not the best approximation of any of the eigenvectors of A in V
for dimV > 1 [73]. In fact, the error bound ‖A~y − ~yθ‖/‖~y‖ is not minimized by any of
the Ritz vectors (for dimV > 1) [73].

• There is no error bound on Ritz vectors [73]. Nonetheless, if the residual norm ‖~ri‖ ap-
proaches zero, convergence of the Ritz vector to an eigenvector is ensured [81].

The harmonic Ritz method
The standard Rayleigh-Ritz method as previously introduced may yield disappointing results

for the eigenvalues located in the interior of the spectrum as the Ritz values tend to converge
to exterior eigenvalues [74, 82]. Hence, if one wants to compute interior eigenvalues close to a
target τ, the Harmonic Ritz method [83] might be favorable. Here the Galerkin-condition

(A−τ1)V~s− θV~s ⊥W (3.152)

is imposed, where the subspace W is chosen as W := (A−τ1)V and is spanned by the matrix
W = (A−τ1)V . This condition leads to the generalized eigenvalue problem

V ∗ (A−τ1)∗ (A−τ1)V~s = (θ −τ)V ∗ (A−τ1)∗ V~s. (3.153)

By requiring W to be an orthonormal system, it can be reduced to the standard eigenvalue
problem [74]

W ∗ (A−τ1)−1 W~s = (θ −τ)−1 ~s. (3.154)

The m eigensolutions (θi,~si) are referred to as harmonic Ritz values and harmonic Ritz vectors,
respectively. The obtained equation (3.154) can be interpreted as an orthogonally projected
eigenvalue problem for the matrix (A−τ1)−1 (cf. Eq. (3.151)) [74]. Thus, the harmonic Ritz
values are identified as Ritz values for (A−τ1)−1, which (under certain conditions, see [84])
converge towards eigenvalues of A near the target τ. Note also that it is not necessary to ex-
plicitly invert the matrix (A−τ1) as one can compute the system matrix of the small projected
problem from the right hand side of equation (3.153) provided that the orthogonal transforma-
tions performed on W are also applied to V in order to maintain the relation W = (A−τ1)V
[74].

3.5.5.2 Expansion of subspaces

Obviously, the quality of the approximation depends on the vectors spanning the subspace V .
One can only expect to be able to extract accurate approximations of an eigenvector if the
subspace contains strong components in the direction of this eigenvector. Consequently, the
aim is to expand the subspace such a way that these components are amplified. Two important
methods are introduced in the following.
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Krylov subspace
The Krylov subspace is defined as [72]

Km(A, ~v ) ={ ~v , A~v , A2 ~v , · · · , Am−1 ~v }. (3.155)

That is, the subspace is spanned by powers of the system matrix acting on a starting vector ~v .

Jacobi-Davidson subspace
Alternatively, the subspace can be expanded by the solution ~t of a correction equation, which

is discussed in the following. Suppose ~u is a given approximation of an eigenvector of the
system matrix A with associated eigenvalue λ. Following the idea of Jacobi [85], we want to
find a correction ~t to this approximation that is orthogonal to ~u and satisfies

A
�

~u+ ~t
�

= λ
�

~u+ ~t
�

. (3.156)

As we are only interested in corrections ~t ⊥ ~u, the matrix A can be replaced by its orthogonal
projection onto the subspace orthogonal to ~u, which takes the form

A⊥ = (1− ~u~u∗)A(1− ~u~u∗) . (3.157)

Moreover, since the exact eigenvalue λ is usually not available in practice, it is obviously substi-
tuted with its currently best approximation θ . Then, equation (3.156) can be written as

(1− ~u~u∗) (A− θ1) (1− ~u~u∗)~t = ~r, (3.158)

with the residual

~r ≡ (A− θ1) ~u. (3.159)

Equation (3.158) is known as the Jacobi-Davidson correction equation.

3.5.5.3 The Arnoldi and Lanczos algorithms

Arnoldi and Lanczos type iterations combine the Rayleigh-Ritz method (cf. subsection 3.5.5.1)
with the construction of an orthonormal basis of the sequence of Krylov subspaces (cf. subsection
3.5.5.2). The Arnoldi procedure is as follows [72]:

Algorithm 5 Arnoldi iteration
Require: initial vector ~v1 with ‖ ~v1‖= 1

1: for j = 1, 2, · · · , m do
2: ~w← Av j
3: for i = 1,2, · · · , j do
4: hi j ← ~w∗ ~vi
5: ~w← ~w− hi j ~vi
6: end for
7: h j+1, j ← ‖~w‖
8: if h j+1, j = 0 then
9: stop

10: end if
11: ~v j+1← ~w/h j+1, j
12: end for
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The generated vectors ~vi (i = 1,2, · · · , m) build up an orthonormal basis of the Krylov
subspace Km(A, ~v1). Moreover, the projection of A onto Km(A, ~v1) with respect to Vm =
{ ~v1, ~v2, · · · , ~vm} is represented by the matrix Hm = V ∗mAVm, which is defined by the elements hi, j.
This matrix Hm has upper Hessenberg form [72]. In the explicitly restarted Arnoldi method,
after having performed the m steps of algorithm 5, the approximate eigenpair (~y ,θ ) for the
rightmost eigenvalue is computed according to the Rayleigh Ritz approach. If its accuracy is not
yet satisfactory, the Arnoldi iteration is repeated with the initial vector ~v1 = ~y .

In contrast, the Lanczos method generates a pair of biorthogonal bases of the Krylov subspaces
Km(A, ~v1) andKm(A∗, ~w1). The biorthogonal projection of A is then represented by a tridiagonal
matrix Tm = W ∗

mAVm, with Wm = {~w1, ~w2, · · · , ~wm}. Note that for Hermitian eigenvalue prob-
lems, the two bases coincide for the choice ~v1 = ~w1, whereas the Arnoldi matrix H also reduces
to tridiagonal form. Consequently, in that case the Lanczos and the Arnoldi methods are identi-
cal. For a detailed comparison of the two methods is referred to [86]. Finally, it should be noted
that there is a variety of more sophisticated variants of both algorithms including deflation and
implicit restart techniques available, which, for instance, are discussed in [72, 74].

3.5.5.4 The Jacobi-Davidson method

The Jacobi-Davidson (JD) method [87] is a powerful iterative approach for the computation
of one or several eigenvalues and associated eigenvectors of a large sparse system. Though
there are different variants of the JD-algorithm, which are adapted to the type of the eigenvalue
problem under consideration, they all share the same principle regarding the expansion of the
subspace by means of the JD-correction equation (3.158), which was introduced in subsection
3.5.5.2. In this subsection we limit ourselves to the discussion of the algorithm variants that
have actually been implemented and tested as part of this thesis. Among those are JD-methods
for the Hermitian eigenvalue problem employing either the Rayleigh-Ritz or the harmonic Ritz
method as well as a version for non-Hermitian matrices involving partial Schur-forms combined
with the Rayleigh-Ritz method. The following schemes are basically adopted from [74], where
also complete templates suited for a direct implementation can be found.

The Jacobi-Davidson method for Hermitian eigenvalue problems
The JD algorithm for Hermitian eigenvalue problems using the Rayleigh-Ritz method for the

extraction of eigenpairs including restart and deflation takes the form described in algorithm 6.

A simplified flowchart of the algorithm is also shown in figure 3.16. On convergence, the
eigenvectors are available as the columns of eX , the eigenvectors as the eλk. Due to the con-
vergence properties of the Ritz values (cf. subsection 3.5.5.1), this scheme is favorable for the
computation of exterior eigenvalues. In contrast, the variant with harmonic Ritz values aims at
the efficient computation of interior eigenvalues. The algorithm for the computation of the kmax
eigenvalues at the right side nearest to the target value τ is described in algorithm 7.

As both variants with the Rayleigh-Ritz method and the harmonic Ritz values for the extrac-
tion from the subspace have been implemented, comparisons were made in real applications for
the computation of the lowest nonzero eigenmodes. Hence, the desired eigenvalues are located
inside the spectrum albeit usually well separated from the static modes. To sum up, the follow-
ing conclusions are drawn: In general, both approaches work well for the computation of the
lowest eigenmodes exhibiting similar fast convergence. Under certain circumstances, however,
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Figure 3.16.: Simplified flowchart of the JD-algorithm for Hermitian eigenvalue problems using
the Rayleigh-Ritz method for the extraction of eigenpairs including restart and de-
flation. After initialization of the projection matrix V (step 1), the main loop of the
algorithm consists of projection of the system matrix A to a small system M (step
2), eigendecomposition of M (step 3), Rayleigh-Ritz extraction with subsequent cal-
culation of the residual (step 4) and the extension of V with the solution vector ~t
of the correction equation (step 5). If the maximal dimension mmax of the small
subspace is reached, a restart is performed (step 6).
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Algorithm 6 Jacobi-Davidson method for the computation of kmax exterior eigenvalues for a
Hermitian eigenvalue problem
Require: initial guess for eigenvector ~v0, target value τ, number of desired eigenvalues kmax ≥ 1

1: ~t ← ~v0, k← 0, m← 0
2: loop
3: orthonormalize ~t with respect to current search subspace V = [ ~v1, · · · , ~vm]
4: m← m+ 1
5: M ← V ∗AV
6: compute eigendecomposition M = SΘS∗ with the sorted eigenvalues:

|θ1 −τ| ≤ |θ2 −τ| ≤ . . .
7: apply Rayleigh-Ritz procedure and compute residuum: ~r ← AV~s1 − θ1V~s1
8: while ‖~r‖ ≤ ε do
9: lock eigenpair: eλk+1← θ1, eX ← [eX , V~s1], k← k+ 1

10: if k = kmax then
11: stop
12: end if
13: reduce search subspace: V ← V [~e2, · · · ,~em], S← [~s2, · · · ,~sm], m← m− 1
14: apply Rayleigh-Ritz procedure and compute residuum for next eigenpair:

~r ← AV~s1 − θ1V~s1
15: end while
16: if m≥ mmax then
17: restart: V ← V [~s1, · · · ,~smin], m← mmin
18: end if
19: θ ← θ1, Q← [eX , ~u]
20: solve ~t ⊥Q (approximately) from: (1−QQ∗) (A− θ1) (1−QQ∗)~t = −~r
21: end loop

stability issues are observed for the method involving the harmonic Ritz values. It may happen,
possibly due to round-off errors, that the relation W = (A−τ1)V is not satisfied with sufficient
accuracy anymore, which may lead to stagnation of the JD-algorithm. What is more, in such a
case the residuum is not calculated correctly in step (8) of algorithm 7. This may finally lead to
the accepting of false eigenvectors, often with an eigenvalue near the target value. Those eigen-
vectors are, however, exposed as false later on in a verification test by using directly (A− τ1)V
instead of W for the computation of the residuum. Such stability problems are more severe
when the target value is chosen close to the actual eigenvalue, which in turn normally means
that the estimate for the eigenvalue is much more accurate than the estimate for the eigenvector.
Similar issues are also know from literature [88]. The easiest way to circumvent those problems
is to choose the target value further away from the eigenvalue to obtain convergence at all. This
implies, however, that the speed of convergence decreases, too. In the end, the JD-algorithm
employing the Rayleigh-Ritz method is the preferred choice for the application throughout this
thesis.

The Jacobi-Davidson method for non-Hermitian eigenvalue problems
For the application of the JD-method for non-Hermitian eigenvalue problems obviously the

non-Hermitian structure has to be taken into account for the construction of the reduced ma-
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Algorithm 7 Jacobi-Davidson method for the computation of kmax interior eigenvalues ≥ τ for
a Hermitian eigenvalue problem
Require: initial guess for eigenvector ~v0, target value τ, number of desired eigenvalues kmax ≥ 1

1: ~t ← ~v0, k← 0, m← 0
2: loop
3: W ← (A−τ1)~t
4: orthonormalize columns of W with respect to each other and apply the same transforma-

tions to columns of V
5: m← m+ 1
6: M ←W ∗V
7: compute eigendecomposition M = SeΘS∗ with the sorted eigenvalues: eθ1 ≥ eθ2 ≥ . . .
8: apply harmonic Ritz procedure and compute residuum: ~r ←W~s1/‖V~s1‖ − eθ1V~s1/‖V~s1‖3

9: while ‖~r‖ ≤ ε do
10: lock eigenpair: k← k+ 1, eλk← eθ1/‖V~s1‖2 +τ, eX ← [eX , V~s1/‖V~s1‖],
11: if k = kmax then
12: stop
13: end if
14: reduce search subspaces: V ← V [~s2, · · · ,~sm], W ← W [~s2, · · · ,~sm], S ← [~e2, · · · ,~em],

m← m− 1
15: apply harmonic Ritz procedure and compute residuum for next eigenpair:

~r =W~s1/‖V~s1‖ − eθ1V~s1/‖V~s1‖3

16: end while
17: if m≥ mmax then
18: restart: V ← V [~s1, · · · ,~smin], W ←W [~s1, · · · ,~smin], m← mmin
19: end if
20: θ ← eθ1/‖V~s1‖2 +τ, Q← [eX , V~s1/‖V~s1‖]
21: solve ~t ⊥Q (approximately) from: (1−QQ∗) (A− θ1) (1−QQ∗)~t = −~r
22: end loop

trix as well as for the computation of its eigenvectors. Moreover, restarts and deflation can
be included by using an orthonormal set of Schur-vectors (cf. subsection 3.5.3.2). That is to
say, instead of calculating the eigenvectors of the large system immediately, its partial Schur-
decomposition is computed at first. On completion, the actual eigenvectors are obtained by
reordering as explained in section 3.5.4. For this reason, this variant of the method is also re-
ferred to as JD-style QR algorithm [89]. As for the variant for Hermitian problems, it can be
combined with the Rayleigh-Ritz or harmonic Ritz method for the extraction of the eigensolu-
tions from the subspace. For the reasons discussed in the end of the last paragraph, here only
the one using the Rayleigh-Ritz procedure is presented and later on implemented. It takes the
form specified in algorithm 8.

Convergence of the Jacobi-Davidson method
The convergence of the JD-approach is governed by the expansion of the subspace by means

of the JD correction equation. As is shown in [90], the effective expansion vector is (A−1θ )−1~u.
Hence, if the shift θ is chosen as the target value τ, this vector is identical to the one of the
inverse iteration (cf. subsection 3.5.2.2). Similarly, if θ is set to the Rayleigh quotient, the ex-
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Algorithm 8 Jacobi-Davidson method for the computation of kmax exterior eigenvalues for a
non-Hermitian eigenvalue problem
Require: initial guess for eigenvector ~v0, target value τ, number of desired eigenvalues kmax ≥ 1

1: ~t ← ~v0, k← 0, m← 0, Q← [ ], R← [ ]
2: loop
3: orthonormalize ~t with respect to current search subspace V = [ ~v1, · · · , ~vm]
4: m← m+ 1
5: M ← V ∗AV
6: compute Schur decomposition M = STS∗ with ordering: |Ti,i −τ| ≤ |Ti+1,i+1 −τ| ≤ . . .
7: apply Rayleigh-Ritz procedure and compute residuum: ~r ← (1−QQ∗)

�

AV~s1 − T1,1V~s1

�

8: while ‖~r‖ ≤ ε do

9: lock Schur vector: ea←Q∗
�

AV~s1 − T1,1V~s1

�

, R←
�

R ea
0 T1,1

�

, Q← [Q, V~s1], k← k+ 1

10: if k = kmax then
11: stop
12: end if
13: reduce search subspace: V ← V [~s2, · · · ,~sm], S← [~e2, · · · ,~em],

T ← lower m × m block of T , m← m− 1
14: apply Rayleigh-Ritz procedure and compute residuum: ~r ← (1−QQ∗)

�

AV~s1 − T1,1V~s1

�

15: end while
16: if m≥ mmax then
17: restart: V ← V [~s1, · · · ,~smin], m← mmin
18: end if
19: θ ← T1,1, eQ← [eX , ~u]
20: solve ~t ⊥ eQ (approximately) from: (1− eQeQ∗)(A− θ1)(1− eQeQ∗)~t = −~r
21: end loop

pansion vector is the same as for the Rayleigh quotient iteration (RQI) (cf. subsection 3.5.2.3).
Hence, depending on the choice of θ , the JD procedure may be interpreted as a subspace accel-
erated inverse iteration or RQI [90]. This observation allows to draw the following conclusions:
Firstly, it is sensible to perform the initial JD-iterations with θ = τ in order to enforce the con-
vergence towards the eigenvalue closest to τ. After some iterations the shift should be updated
with the current Rayleigh quotient to benefit from the fast convergence of the Rayleigh quotient
iteration in the vicinity of the exact solution. Secondly, if the correction equation is solved ex-
actly, the JD methods mimics the convergence of the inverse iteration or RQI, again depending
on the selection of the shift. Hence, in the latter case it features an asymptotically quadratic and
for Hermitian matrices even cubic convergence of the Ritz-values towards exterior eigenvalues
of A [74]. The same applies for convergence of Harmonic Ritz values towards eigenvalues λ
closest to the shift (as long as λ 6= τ).
Taking this into account, in this implementation the shift is chosen as θ = τ for the computation
of the first eigenvector as long as the relative deviation between the current estimate for the
eigenvalue and τ is greater than 0.05; for all subsequent eigenvalues the current best estimate
is always chosen for θ . Depending on the spectrum of the eigenvalues, it might be beneficial to
work with different selection criteria.
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Preconditioning
In practice, the correction equation is solved only approximately. Since both the rate of the

convergence of the eigenvalues strongly depends on the accuracy of its solution and the solution
of the correction equation is by far the computationally most expensive part of the whole JD-
algorithm, it is worthwhile to spend some effort on the choice of an appropriate preconditioner.
Among the most common preconditioners suited for this purpose are the Jacobi preconditioner
as well as the incomplete or complete LU decomposition [51]. For the Jacobi type just the main
diagonal of the system matrix is taken as the preconditioner. Hence, this type can be constructed
with very low computational effort and has very moderate memory requirements. The oppo-
site is true for the LU decomposition. Here, the time spent for the decomposition amounts a
significant part to the total computation time. Moreover, due to the usually large fill-in, the
memory requirement may become prohibitively large. Thus, the incomplete LU decomposition
with an adjustable fill-in might be a good compromise. Yet, as confirmed by own studies, it is
not recommended in practice. The reason is that, on the one hand, the observed convergence
is not significantly better than for simple Jacobi preconditioning for a low fill-in. On the other
hand, due to the mature state of libraries available for the complete LU decomposition, already
for a moderate fill-in the incomplete variant is not superior anymore to the complete one in
terms of performance (cf. also [91]). As a rule of thumb, as long as sufficient main memory is
available, it is thus recommendable to compute the LU decomposition of the system matrix at
the first time the correction equation is to be solved. Yet, often satisfactory convergence is still
observed for all subsequent steps when the same preconditioner is kept if only a few eigenvalues
are requested. The LU factorization is only updated when convergence problems are encoun-
tered. In fact, the update is computed significantly faster than the first decomposition since the
information for the symbolic factorization can be reused and no additional memory needs to be
allocated. Nevertheless, alternatively also Jacobi preconditioning leads to convergence of the
JD algorithm even for non-diagonal gyrotropic material matrices. It may thus be the method
of choice for very large problems, which could not be solved anymore with LU preconditioning
due to memory restrictions.
Besides, the preconditioner for gyroelectric materials with the permittivity tensor of definition
(3.30) can be obtained in a more efficient way by employing the relation (as published in [59])

�

M−1
↔
ε
eCM↔

ν
C−λ1

�−1
=
�

eCM↔
ν

C−M↔
ε
·λ1�−1

M↔
ε

. (3.160)

This is advantageous as one can avoid the computation of the inverse of the expression on
the left hand side, which itself includes the inverse of the permittivity matrix. Since M−1

↔
ε

has

by far more nonzero elements than the directly constructed non-inverse permittivity matrix,
the computation of the right hand side of equation (3.160) is much more efficient than the
construction of the inverse according to the expression on the left hand side.

Stopping criterion
It is sufficient to solve the JD-correction equation with a low accuracy for the first few JD-

iterations but a more accurate solution is required with an improved estimate for the eigen-
pairs. Hence, a dynamically adaption of the stopping criterion for the JD-correction equation is
favorable. Similar to [92], the stopping criterion

‖er j‖< γn‖er0‖ ∨ n≥max (nmin, ninc · n) (3.161)
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is used, where ‖er j‖ is the residual after the j-th step of the inner method for the solution of
the correction equation, n the current number of JD-iterations, and 0 < γ < 1, nmin and ninc
parameters to be set adequately. In this implementation, these values are chosen as γ = 0.1,
nmin = 10 and ninc = 1 if LU preconditioning is used and γ = 0.5, nmin = 100 and ninc = 5 for
Jacobi preconditioning.

3.5.6 Implementation of the eigenvalue solver

Of the different approaches for the computation of eigensystems introduced in the last subsec-
tion, the JD-type schemes appear to be best suited for the application in this thesis because
we are interested in the computation of only a few complex eigenpairs of large sparse sys-
tem matrices. Moreover, the JD-algorithm allows an implementation for an efficient parallel
computation on a cluster with distributed memory machines. In concrete terms, all the three
mentioned JD-variants, algorithms 6, 7 and 8, have been successfully implemented. Some
details on the implementation, in particular including remarks on efficiency, are discussed in
subsection 3.5.6.1. Furthermore, subsection 3.5.6.2 deals with the application to nonlinear
eigenvalue problems. For verification the numerically computed eigenmodes are compared
to reference solutions for a linear eigenproblem as well as for nonlinear ones including also
gyrotropic materials in subsection 3.5.6.3.

3.5.6.1 Implementation details

General
The implementation in the programming language C / C++ is based on the PETSc suite

[46, 47]. Hence, built-in PETSc routines are employed for the solution of the JD-correction
equation. Yet, the LU factorization as preconditioner is computed with the external package
SuperLU_DIST [93], which is optimized for distributed memory machines. For alternative Ja-
cobi preconditioning, an own implementation, which does not rely on PETSc’s KSP-wrapper,
is used. This leads to an approximately 5% faster application of the preconditioner com-
pared to PETSc’s built-in Jacobi preconditioner due to reduced overhead. The eigen- or the
Schur decompositions of the small projected problem are efficiently performed with adequate
LAPACK-subroutines [79]. This requires that the data are provided in continuous chunks of
memory, which is further discussed in the next paragraph.

Memory management
An appropriate memory management is the key for a high performance computation and thus

deserves special attention. In the JD-algorithm, the size of the matrices for the subspaces and
the small projected system and their associated vectors changes from iteration to iteration. It
should, however, be refrained from allocating and freeing the required memory again and again.
Instead, the maximal required memory is only allocated once in the very beginning. The large
projection matrices are not created as PETSc-matrices but rather as arrays of (PETSc-) vectors,
which allows to adjust the number of matrix columns very efficiently. What is more, the memory
of each array of vectors is allocated as one continuous chunk of memory such that individual
vector elements can also be accessed directly as for standard C-style two-dimensional arrays.
This also enables to benefit from the direct use of BLAS Level 3 routines [94, 95] for example at
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the update of the subspace matrices at restart or reduction of the search subspace. Surprisingly,
profiling revealed that the update function that makes use of the BLAS Level 3 routines is even
slower than an own implementation of the update function with the same functionality by hand.
It is speculated that this is by virtue of very good compiler optimizations, which might be more
effective for the latter. Moreover, as already mentioned in the previous paragraph, the allocation
of the memory for the small projected system as one continuous chunk is a requirement for the
usage of LAPACK-subroutines.

Matrix-free methods
PETSc supports matrix-free methods, which do not require explicit storage of the matrices

[47]. The implementation of the eigensolver makes wide use of this functionality. Firstly, the
system matrix, whose eigenvalues are to be determined, is not stored as such but is regarded as
the product of its individual submatrices (cf. Eq. (3.114)). Hence, every time a matrix-vector
product is performed, it is calculated as the sequence of matrix-vector products, i.e. as

Av=M−1
↔
ε

�

eC
�

M↔
ν
(Cv)

��

=M−1
↔
ε

�

eC
�

M↔
ν

v′
��

=M−1
↔
ε

�

eCv′′
�

=M−1
↔
ε

v′′′. (3.162)

This is indeed more efficient than the multiplication with the explicitly assembled system matrix
instead since the system matrix has much more nonzero elements than the sum of the nonzeros
of the individual submatrices. The advantage of the matrix-free representation is even more evi-
dent for nonlinear eigenvalue problems where the system matrix would have to be re-assembled
in each nonlinear iteration (cf. the following subsection 3.5.6.2). Secondly, all topological ma-
trices (cf. subsection 3.4.5) are not stored as standard PETSc-matrices. Since the topological
matrices are built up only of the elements ±1 but PETSc only supports the double (or complex)
data type for matrices, this would be an enormous waste of memory. In the implementation
used in this thesis, the following hybrid approach is pursued: Each topological matrix is stored
as a (possibly MPI-type) sparse matrix. Yet, the information on the sign of the non-vanishing
element is encoded in the sign of the column index of the sparse storage format (cf. section
3.3). Additionally, the function for the matrix-vector product is implemented such that relevant
vector elements are just added or subtracted instead of additionally being multiplied with ±1.
Of course, one might also think of a completely matrix-free format for the topological matrices
without explicit storage at all. One would then have to determine the indices of the ±1 elements
at the time of matrix-vector multiplication. For the special case of the first ordering of the DOFs
as in the standard FIT (cf. subsection 3.4.5.1) with no parallel computing, the indices are known
immediately thanks to the clear band structure. However, in any other case, i.e. for a compu-
tation with more than one process, for ordering 2 (cf. subsection 3.4.5.2), if the zero structure
of the topological matrices (cf. subsection 3.4.7.1) is taken into account, or for the reduced
grid (cf. section 3.4.7), this involves some kind of computations. Clearly, the calculation of the
indices “on the fly” would be significantly slower than the explicit storage of the elements. To
conclude, the before-mentioned implementation is regarded as the best compromise between
computational speed, memory requirements and ease of implementation.

Efficiency considerations for gyromagnetic and gyroelectric materials
The following considerations regarding peculiarities of an efficient eigenmode computation

with both gyromagnetic and gyroelectric materials or only one of the two substances are also
published in [59]. Since the inverse permittivity matrix enters in the system matrix of the curl-
curl system (3.114) but only its non-inverse expression is available directly, a LU decomposition
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of M↔
ε

is performed. This leads to the unfortunate but for robustness sake still acceptable much
larger computational effort as for models with only gyromagnetic materials. Using directly a
material matrix for the inverse permittivity instead might seem to be a computationally cheap
alternative. However, it is found that a simple construction of the inverse permittivity matrix
analogous to definition (3.98) but with the components of the permittivity tensor replaced with
its corresponding components of the inverse tensor, which is one of the schemes presented in
[96] for the finite-difference time-domain method, does not lead to the correct eigenvalues in
the limit of fine discretizations. Given that the continuity conditions of the electric field cannot
immediately be fulfilled in the FIT using that definition, the discrepancy is, however, not surpris-
ing. An alternative approach could also be the formulation as a generalized eigenvalue problem,
which can be obtained by multiplying equation (3.114) with M↔

ε
from the left. However, the

solution of the generalized eigenproblem would require a modified algorithm. Yet, since cavities
in real applications are filled with materials which exhibit only either gyromagnetic or gyroelec-
tric characteristics, the problem can be circumvented also for purely gyroelectric substances. To
this end, the allocation of the electric and magnetic DOFs in the FIT (cf. subsection 3.4.2) can be
swapped. Then it is possible to construct a material matrix directly for the inverse permittivity
in an analogous manner as for the inverse permeability for the standard allocation.

3.5.6.2 Approach for nonlinear eigenvalue problems

The JD-algorithms presented in subsection 3.5.5.4 are suited for the solution of standard lin-
ear eigenvalue problems. However, due to the frequency dependence of the material matrices
of gyrotropic materials (cf. subsection 3.4.8), nonlinear eigenproblems arise for, e.g., ferrite-
loaded cavity resonators. Though JD-type algorithms modified for nonlinear problems have
been developed [97], a simple iterative substitution scheme is used for this purpose throughout
this thesis. In fact, this approach proves to be efficient in practice by reusing as much infor-
mation as possible from preceding steps. Thus, previously computed eigenvectors are set as
initial vectors for the JD-algorithm in subsequent nonlinear iterations. Consequently, a much
smaller number of JD-iterations is required from the second nonlinear iteration on. Moreover,
the preconditioner is kept for all nonlinear iterations. What is more, the iterative substitution
approach requires to select the currently desired eigenmode out of all computed ones after each
solution of a linear problem. To this end, it is worthwhile not only to compare the eigenvalues
but also to calculate the inner products of current eigenvectors with already converged ones. In
case of non-Hermitian eigenproblems, the (orthogonal) vectors of the computed partial Schur
form are used instead to calculate the inner products. This way the solver is also capable of dis-
tinguishing different modes of degenerated eigenvalues both for Hermitian and non-Hermitian
problems. Consequently, it is ensured that all eigenvectors associated with the same eigenvalue
can be found even for nonlinear eigenvalue problems.
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Figure 3.17.: Maximal relative frequency deviation between the numerical computation and the
analytical value f2,1 for any of the five degenerated modes of the second lowest res-
onance frequency as a function of the normalized step size ∆/∆0 for the spherical
resonator.

3.5.6.3 Verification

Verification of the linear eigensolver
For the verification of the linear eigenvalue solver, a spherical cavity resonator with radius

r = 1 m is considered. The eigenfrequencies fn,m are determined by the roots of the equation
[98]

p

xn,m Jm+ 1
2
(xn,m) = 0, (3.163)

where Jn is the Bessel function of the first kind of order n and xn,m = kn,mr = 2π fn,mr/c0
the m-th zero of Jn with the speed of light in vacuum c0 and the (angular) wavenumber kn,m.
The lowest resonance frequency at f1,1 = 130.912MHz has a degree of degeneracy of three,
whereas the second lowest one is found at f2,1 = 184.662MHz with a degree of degeneracy
of five. Since no nonlinear or tensorial material is involved, the material matrices are directly
imported to the own implementation of the eigenvalue solver from CST STUDIO SUITE®[48]
with activated support of the Perfect Boundary Approximation® (PBA). Figure 3.17 shows the
maximal relative frequency deviation between the numerical computation and the analytical
value for any of the five degenerated modes of the second lowest resonance frequency as a
function of the normalized step size. As expected for PBA-meshing, convergence towards the
reference values with almost second order is observed.

Verification of the nonlinear eigensolver with gyrotropic materials
The nonlinear eigensolver is verified through the computation of eigenmodes of biased cavity

resonators of cylindrical and rectangular shape, which are filled with gyrotropic material.
Cylinder resonator: Firstly, a cylindrical resonator (radius r = 1 m, length l = 2 m) longitu-

dinally biased by a homogeneous static magnetic field is considered. The eigensolutions can be
calculated semi-analytically as briefly outlined in the following. The basic theory is due to Kales
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[99], who formulated an analytical characteristic equation for cylindrical waveguides filled with
media which is gyromagnetic only. This procedure was then modified for the case of cylinder
resonators by Chinn et al. [100]. Moreover, Trier generalized Kales’ theory to waveguides con-
taining material with both gyromagnetic and gyroelectric properties [101]. His results are the
basis for the calculation of the eigenmodes for the setup described above for a permeability
tensor of the form (2.22) and a permittivity tensor as given in equation (2.42). Following the
notation of [100], modes which become TE (TM) modes in the limit of vanishing κ and ε2 are
denoted as HE (EH) modes. The eigenfrequencies of HE and EH modes are the roots of the
characteristic equation given in [101, p. 337], which can be calculated by standard numerical
algorithms. Furthermore, the ones of the TM modes are implicitly determined by

ωn,m,0 =
xn,m

r
×
�

ε3(ωn,m,0)
(µdiag(ωn,m,0))2 − (κ(ωn,m,0))2

(µdiag(ωn,m,0))2

�−1/2

, (3.164)

where xn,m represents the m-th zero of the Bessel function of order n.
To begin with, the cylinder is supposed to be filled with a lossless, purely gyromagnetic mate-

rial whose magnetic properties can be described by the Polder tensor (cf. Eq. (2.22)) and whose
relative permittivity is εr = 1. The bias magnetic field strength is chosen as H0 = 2750A/m, the
saturation magnetization as Msat = 20 × 103 A/m. Furthermore, the Landé g-factor occurring
in the gyromagnetic ratio is set to g = 2.1. With these parameters, the 10 lowest eigenmodes,
which are computed numerically with the new implementation of the nonlinear eigensolver de-
scribed before, are compared to the semi-analytically calculated values, which are listed in table
3.4. Furthermore, to ensure a reliable verification of the eigenmodes, the field distributions
have been investigated additionally. Figure 3.18(a) shows the convergence of the numerically
computed eigenvalues towards the semi-analytical ones with order 1 as is expected for the
approximation of rounded geometries with a staircase filling.

To further test the construction of the permeability tensor for an arbitrarily oriented magnetic
bias field, the numerical computation is additionally carried out for different orientations of the
cylinder axis to the coordinate axes keeping the external magnetic field aligned with the cylinder
axis. Note that for the rotated cylinder it is particularly crucial to assign the modes correctly for
a reliable verification. If one sorts the eigenmodes simply in ascending order with respect to the
eigenvalues, by comparing the field solutions it shows that the order of the modes is different
compared to the semi-analytical calculation. This is, however, only the case for discretizations
on a rather coarse mesh. By a proper refinement of the grid, the expected order is retained.
Taking this into account, good accordance of the numerical values with the analytical results
is observed for all tested orientations. This is shown as an example in figure 3.18(b) for the
orientation as depicted therein.

In the next verification example, the same setup with the cylinder axis in z-direction is picked
up again. Yet, it is further assumed that the cylinder material exhibits both gyromagnetic and gy-
roelectric properties of the form given in subsection 2.2.4. In this example, the (angular) plasma
frequency is set to ωp = 2π×15MHz, whereas the (angular) cyclotron frequency ωb = B0e/me
is chosen as 425MHz. Again, no losses are included so far, which means that the collision fre-
quency vc vanishes. The results of this example are also published in [59]. Table 3.5 lists the
semi-analytically calculated values for the 10 lowest eigenfrequencies for the above parame-
ters. Figure 3.19 shows the convergence of the numerically computed eigenvalues towards the
semi-analytical ones with order 1 as expected for the staircase mesh for a cylinder geometry.
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Table 3.4.: Semi-analytically calculated eigenfrequencies fanaly = ωanaly/(2π) for the 10 lowest
modes of the biased cylinder resonator filled with lossless, gyromagnetic material.

# mode fanaly / MHz # mode fanaly / MHz
1 TM0,1,0 39.57 6 HE−1,1,1 66.67
2 EH0,1,1 47.04 7 HE+1,1,1 66.72
3 TM+1,1,0 62.28 8 HE−1,1,2 76.47
4 TM−1,1,0 62.28 9 HE+1,1,2 77.57
5 EH0,1,2 63.56 10 EH0,1,3 81.17
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Figure 3.18.: Relative deviation of the numerically obtained valueω to the analytical resultωanaly
as a function of the DOFs for the 10 lowest eigenfrequencies for a lossless, longitu-
dinally biased, cylindrical resonator filled with gyromagnetic material. The cylinder
is aligned with the z-axis (a) or oriented as shown on the right (b), where the cosine
of β , i.e. the angle between the cylinder axis and the x -z-plane, is

p

2/3 and the
angle α between the projection of the cylinder axis onto this plane and the z-axis
is 45◦.
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Table 3.5.: Semi-analytically calculated eigenfrequencies fanaly = ωanaly/(2π) for the 10 lowest
modes of the biased cylinder resonator filled with a material with both gyromagnetic
and gyroelectric properties. [59]

# mode fanaly / MHz # mode fanaly / MHz
1 TM0,1,0 42.27 6 HE−1,1,1 68.02
2 EH0,1,1 48.69 7 HE+1,1,1 68.07
3 TM+1,1,0 63.99 8 HE−1,1,2 77.17
4 TM−1,1,0 63.99 9 HE+1,1,2 78.33
5 EH0,1,2 64.19 10 EH0,1,3 81.43
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Figure 3.19.: Relative deviation |ω −ωanaly|/ωanaly of the numerically obtained value ω to the
(semi-)analytical reference value ωanaly as a function of the DOFs for the 10 lowest
modes for a biased, lossless, cylindrical cavity resonator filled with both gyromag-
netic and gyroelectric material. [59]

The fifth eigenmode still seems to be in a range below asymptotic convergence and features an
unexpected small relative deviation already on a rather coarse mesh.

Rectangular resonator: The second considered resonator is of rectangular shape with dimen-
sions lx = 3.142 m, l y = 2.718 m and lz = 0.100 m in x-, y- and z-direction, respectively. This
verification example is also published in [59]. As before, the homogeneous bias magnetic field
oriented in z-direction has a strength of H0 = 2750 A/m. Moreover, the resonator is filled with
a material with the same properties as for the last example with the cylinder filled with a ma-
terial with both gyromagnetic and gyroelectric properties. The only difference is that now also
material losses are included by setting α= 0.2 and vc = 10MHz. The geometric dimensions are
chosen such that there are only TM modes among the lowest eigenmodes. Their resonance fre-
quencies are identical to the ones of a waveguide with cross-section lx× l y and can be computed
semi-analytically according to the implicit equation

ωn,m,0 =
k2

x + k2
y

ε3(ωn,m,0)
× (µdiag(ωn,m,0))2

(µdiag(ωn,m,0))2 − (κ(ωn,m,0))2
(3.165)
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with the (angular) wavenumbers

kx =
nπ
lx

, ky =
mπ
l y

(n, m ∈N0). (3.166)

The 10 lowest complex eigenfrequencies as obtained from equation (3.165) are given in table
3.6. As can be seen from figure 3.20, second order convergence of the numerically computed
eigenvalues towards the reference values is evident. In fact, both the real part and the imaginary
part converge independently with the same convergence order. With the aim of testing also TE
modes, the computations are repeated for the same geometry and material but with magnetic
boundary conditions instead of electric ones (cf. subsection 3.4.6). For this boundary value
problem the eigenfrequencies are implicitly given by

ωn,m,0 =
k2

x + k2
y

µz
× (ε1(ωn,m,0))2

(ε1(ωn,m,0))2 − (ε2(ωn,m,0))2
. (3.167)

The 10 lowest modes can also be found in table 3.6. A comparison with numerically computed
modes reveals again second order convergence and thus indicates agreement with the semi-
analytical solution.
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Table 3.6.: Semi-analytically calculated eigenfrequencies fanaly = ωanaly/(2π) for the 10 lowest
modes of the biased rectangular resonator filled with a material with both gyromag-
netic and gyroelectric properties. [59]

electr. boundary cond. magnetic boundary cond.
# mode fanaly / MHz mode fanaly / MHz
1 TM1,1,0 29.35+ 1.03 i TE1,1,0 72.9+ 403× 10−6 i
2 TM1,2,0 40.87+ 1.60 i TE1,2,0 110.2+ 422× 10−6 i
3 TM2,1,0 44.03+ 1.82 i TE2,1,0 120.1+ 428× 10−6 i
4 TM2,2,0 52.26+ 2.52 i TE2,2,0 145.8+ 448× 10−6 i
5 TM1,3,0 54.69+ 2.76 i TE1,3,0 153.4+ 455× 10−6 i
6 TM3,1,0 60.72+ 3.40 i TE3,1,0 172.1+ 474× 10−6 i
7 TM2,3,0 63.46+ 3.72 i TE2,3,0 180.7+ 484× 10−6 i
8 TM3,2,0 66.74+ 4.13 i TE3,2,0 190.9+ 496× 10−6 i
9 TM1,4,0 69.19+ 4.45 i TE1,4,0 198.6+ 506× 10−6 i
10 TM3,3,0 75.56+ 5.36 i TE3,3,0 218.7+ 536× 10−6 i
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Figure 3.20.: Relative deviation
�

�|ω| − |ωanaly|
�

�/|ωanaly| of the absolute value of the numerically
obtained eigenfrequency |ω| to the (semi-)analytical reference value |ωanaly| as a
function of the normalized step size∆/∆0 for the 10 lowest TM-modes for a biased,
lossy, rectangular cavity resonator filled with both gyromagnetic and gyroelectric
material with electric boundary conditions. [59]
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4 Applications
In this chapter, the newly developed solver mentioned in chapter 3 is employed for the simu-
lation of two different cavities loaded with the Ferroxcube 8C12m material taking into account
the measured magnetic characteristics (cf. section 2.3). The first one is the setup used for
the reflection measurement described in section 2.3. Since precise measurement data for the
resonance frequency for different bias currents have been recorded, the comparison with sim-
ulation results serves as a further verification. Thereafter, a realistic model of the GSI SIS 18
cavity is considered. Obtained simulations for the fundamental mode are compared to available
measured data and to results from calculations employing nonlinear equivalent circuit models.
Moreover, to show the further potential of the solver, also higher-order modes are investigated
and an outlook on potential 2-directional bias schemes is given.

Since the resonators of both application examples are filled with same ferrite material, the
common prerequisites for the incorporation of the material data are given in section 4.1. The
simulation of the two cavities is then discussed in sections 4.2 and 4.3. The main parts presented
in this chapter are also published in [30].

4.1 Prerequisites for the material modeling

According to the computational model introduced in section 3.2, the field distribution of the
magnetic field excited by the bias current is calculated in a first step. Here, the nonlinear
characteristic equation (2.73) with the set of parameters given in subsection 2.3.7 as obtained
from measurements is taken into account. Though the solver for the subsequent solution of
the eigenvalue problem is capable of handling gyrotropic materials, the characteristics of the
ferrite material are only modeled with a complex scalar isotropic permeability. This is due to
the restriction that only information regarding the µz-component of the permeability tensor can
be retrieved from the measurement data. The local values of the µz-component in each mesh
cell are calculated by linear interpolation from a two-dimensional lookup table, which contains
all the smoothed permeability values acquired from the analysis of the reflection measurement
as a function of the bias magnetic field and frequency. The relative permittivity of the ferrite
is assumed to be 25, which is the estimated value for a frequency of 1MHz stated in the data
sheet [41]. In fact, as is confirmed by simulations, its precise value is not of importance for the
investigated fundamental eigenmode since it exhibits a very small electric field strength in the
ferrite material.

4.2 Simulation of the reflection measurement setup

The computer-aided design (CAD) model for the simulation of the reflection measurement
setup, which is described in subsection 2.3, is shown in figure 4.1. In order to accommodate for
the additional parallel capacitance, a lumped element capacitor is inserted in the center, which
is connected with thin perfectly conducting wires to the upper and lower plate of the cavity.
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Figure 4.1.: CAD-model for the simulation of the reflection measurement setup. The ferrite
toroids (blue) are located inside a PEC cavity (ocher). The perfectly conducting
wire including the lumped element capacitor is seen in the center. Moreover, the
bias current windings are only shown in one quarter.
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Figure 4.2.: Resonance frequency as a function of the bias current for the reflection measure-
ment setup with external capacitors of Cext = 1 nF and Cext = 2 nF, respectively. The
values are shown as obtained from the measurement with a capacitor installed in
parallel including the correction for its slight nonlinearity (real Cext) and as obtained
from the measurement data without external capacitor, which is modified as if an
ideal capacitor was installed in parallel (ideal Cext). Moreover, results obtained from
the eigenmode simulation are included.
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Figure 4.3.: Relative deviation of the resonance frequencies computed with the eigenmode sim-
ulation with different assumed bias magnetic field distributions compared to the
resonance frequencies obtained from measurement modified for an ideal capacitor
of Cext = 1 nF. The following simulation results are compared: Eigenmode compu-
tations with a constant effective bias magnetic field assuming an effective magnetic
path length given in equations (2.57), (2.58) and (2.59) as well as one where the
field distribution is calculated with the magnetostatic solver (for all with 1.1 × 106

DOFs for one quarter). To estimate the general accuracy of the numerical calcula-
tion also the relative deviation of the simulation with the magnetostatic solver for
0.42× 106 DOFs for one quarter is included.

Besides this exception for the centric wire all dimensions of the cavity and the ring cores are set
to the measured values (cf. Fig. 2.7). Due to the symmetry of the setup and the electromagnetic
field distribution of the fundamental mode, the field solutions are only calculated in one quar-
ter of the setup using 1.1 × 106 DOFs. The numerical computation is performed for external
parallel capacitors with capacitances of Cext = 1 nF and Cext = 2nF, for which also measure-
ments were performed. The calculated eigenfrequencies are compared to the measured lowest
resonances, which are found at those frequencies where the susceptance, i.e. the imaginary part
of Y , vanishes. For a more reliable comparison with the simulation results, the measured data
are corrected for the slightly nonlinear frequency characteristic of the capacitors as explained in
subsection 2.3.2.1. Despite that correction there is a significant deviation between the measured
values and the simulation (cf. measurement with real Cext in Fig. 4.2). Hence, the values are
also compared with data measured without external capacitor and thereafter modified in a way
as if an ideal capacitance of Cext = 1nF and Cext = 2 nF, respectively, was installed. This can
simply be achieved by subtracting iωCext from the measured admittance. Figure 4.2 shows the
dependence of the resonance frequency on the bias magnetic field strength as obtained from
measurement and numerical computation for the two capacitances.
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Figure 4.4.: CAD-model used for the numerical simulation of the GSI SIS 18 cavity. The ferrite
ring cores are shown in blue, the copper discs in yellow. The lumped element gap
capacitors are not shown. [30]

As mentioned in subsection 2.3.2.1, different approaches for the calculation of the effec-
tive magnetic path length, which enters in the spatially constant effective bias magnetic field
strength (2.56), have been established. With the help of the eigenmode simulation, a compar-
ison of the three different choices with the measurement result on the one hand and with the
simulation where the bias magnetic field is obtained from the solution of the magnetostatic field
problem on the other hand is made. The effective magnetic path lengths for the dimensions of
the ring cores are: leff = 1.139m for equation (2.57), leff = 1.210 m for equation (2.58) and
leff = 1.156 m for equation (2.59). Since the values of leff differ only slightly from each other,
this is also the case for the computed eigenfrequencies as shown in figure 4.3.

4.3 Simulation of the GSI SIS 18 ferrite cavity

The model used in the numerical simulation of the GSI SIS 18 cavity is depicted in figure 4.4.
On each side of the accelerating gap 32 ferrite ring cores are installed. Between these ferrite
cores, copper cooling discs are present, which are modeled as PEC material. Additionally, the
aluminium-oxide ceramic around the gap is taken into account with a relative permittivity of
9.5 and an electrical loss factor of 10−4. Moreover, four gap capacitors are included as lumped
element capacitors. Adopting the results of the analysis in [64], their total capacitance is set
to Ctot = 640pF. Note, however, that this value is subject to unknown, potentially large un-
certainties due to the difficulties in estimating the distributed capacitances of the resonator
system.

4.3.1 Analysis of the fundamental mode

The fundamental mode exhibits electric field components longitudinal to the beam axis in the
gap area and can be used for acceleration of the charged particles. The magnetic induction is
accordingly oriented azimuthally in the ferrite ring cores and hence parallel to the bias field.
Employing the symmetry of the CAD-model and of the fundamental mode, it is sufficient to per-
form the simulation in only one quarter of the cavity. The results of the eigenmode simulation
presented in the following were computed with 2.5×106 DOFs for the remaining quarter of the
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Figure 4.5.: Resonance frequency as a function of the bias current for the prototype cavity with
29 cores on each side of the gap for small RF-levels. The reference values are taken
from table 3.3 of [64]. The simulation results are shown for the values of the perme-
ability as obtained from the reflection measurements including error bars, which are
computed in separate computations for µ± 0.5×∆µ, where ∆µ is the uncertainty
as estimated from the error analysis of the measurement data. Moreover, resonance
frequencies calculated with the equivalent circuit model taking into account the ra-
dial dependence of the bias field are included. For completeness, the results of the
eigenmode simulation are also added for the operational cavity with two times 32
toroids. [30]

computational model. The dependence of the resonance frequency on the bias current is shown
in figure 4.5. For the estimation of its uncertainty, the computations were repeated for values
of the permeability of µ ± 0.5 ×∆µ, where µ is the best estimate and ∆µ the estimated un-
certainty of the permeability (cf. subsection 2.3.3). Furthermore, to estimate the discretization
error, simulations were performed on different meshes. A refinement from ≈ 0.3 × 106 DOFs
to 2.5 × 106 DOFs revealed relative deviations in the order of 1%. It is hence concluded that
the discretization error is negligible compared to the material uncertainty. What is more, since
reference values are only available for a special setup of the SIS 18 prototype cavity, which effec-
tively contains only 29 ferrite toroids on each side of the gap, the simulations are also performed
for the reduced number of ring cores to allow a more reliable comparison. As is evident from
figure 4.5 and 4.6, the simulation results are in accordance with measurement data [64] within
an error range of approximately 10% albeit the latter were recorded for moderate RF-levels.
Furthermore, the obtained quality factor Q = Re(ω)/(2 Im(ω)) for the complex resonance fre-
quency ω as a function of the bias current is depicted in figure 4.7, again for small RF-levels.
Since the numerical simulation reveals the unloaded quality factor, a few available reference
values for the loaded cavity and tetrode are thus accordingly transformed [64]. Nevertheless,
those results are only comparable to a limited extent.
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Figure 4.6.: Relative deviation of the resonance frequency obtained from simulation to the refer-
ence values as a function of the bias current for the prototype cavity with 29 cores on
each side of the gap. The comparison includes values from the eigenmode simulation
and the calculation using the equivalent circuit model for the simplified assumption
of an effective mean magnetic bias field according to equations (2.56) and (2.57)
as well as the model in which the radial dependence of the bias field is taken into
account. [30]
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field is also included. For completeness, the results of the eigenmode simulation are
supplementary added for the operational cavity with two times 32 toroids. [30]

Finally, it is confirmed by simulations that the effect of the copper cooling discs is fully negli-
gible with respect to the resonance frequency for the fundamental mode. The same results are
even observed when the ferrite ring cores are modeled as only one contiguous toroid with the
thickness of the sum of the individual cores. This could be exploited to reduce the DOFs and
thereby further speed up the computation.

4.3.2 Comparison with nonlinear equivalent circuit model

The calculation of the resonance frequency and quality factor for the fundamental mode is also
performed with the help of an equivalent circuit model as depicted in figure 4.8. The resonance
frequency of this circuit is implicitly given by

fres =
1

2π

√

√

√ 1
�

Ctot + Cgap

�

Ls( fres, Ibias)
−
�

Rs( fres, Ibias)
Ls( fres, Ibias)

�2

. (4.1)
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Figure 4.8.: Equivalent circuit model for the calculation of the fundamental mode of the GSI
SIS 18 cavity setup. In addition to the total capacitance Ctot = 640 nF, which is also
included in the eigenmode computation as lumped element capacitors, the gap ca-
pacitance Cgap = 30 nF is installed in parallel. The ferrite ring cores are modeled as a
series inductance Ls and series resistance Rs. [30]

To account for the nonlinear dependence of the permeability on the frequency and on the bias
magnetic field strength, the series inductance Ls and series resistance Rs are calculated according
to the relations (cf. subsection 2.3.2.1)

Ls( f , Ibias) = Ncoreshcore

rout
∫

rin

µ′s[ f , H(Ibias)]

2πr
dr + Lair, (4.2a)

Rs( f , Ibias) = 2π f Ncoreshcore

rout
∫

rin

µ′′s [ f , H(Ibias)]

2πr
dr (4.2b)

with the inside length of the cavity lcav = 2.85m, the number of ring cores Ncores and the
inductance of the empty cavity including the copper discs of height hcopper

Lair =
1

2π
lcavµ0 ln

rcav,out

rcav,in
− 1

2π
2(Ncores − 1)hcopperµ0 ln

rout

rin
= 793nH. (4.3)

As for the eigenmode computation, the values of the real and imaginary part of the permeability
are obtained with linear interpolation from the two-dimensional lookup table. For the bias mag-
netic field strength H(Ibias) either the expression involving the effective magnetic path length
(2.56) or the assumed analytical dependence

H(Ibias) =
NbiasIbias

2π r
(4.4)

is inserted. In the former case, the integral in equation (4.2) can be evaluated analytically; oth-
erwise it is solved by numerical integration. In both cases the roots of equation (4.1) are found
by standard numerical algorithms without difficulties. The obtained results for the resonance
frequency as well as the quality factor of the fundamental mode of the prototype cavity are
included in figure 4.5, 4.6 and 4.7.

4.3.3 Analysis of higher-order modes

Unlike the simple equivalent circuit model, the eigenmode computation also allows for the
analysis of higher-order modes (HOMs). To ensure that no HOM is omitted, the whole cavity
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is discretized without usage of any symmetry plane. Three different types of HOMs are found:
The type with lowest frequencies is characterized by a perpendicular electric field between
the beam pipe and the ferrite cores. The frequency strongly depends on the permeability of
the toroids. Thus, the lowest resonance frequency of this type is found at ≈ 3MHz in the
remanence state and increases up to ≈ 23MHz for Ibias = 400A. For the second type, the
electric field resides inside the ferrite toroids between the copper discs. In fact, there is a whole
spectrum of such modes for all possible combinations of relative orientations of the electric field
from one core to adjacent ones. Besides from the dependence on the permittivity of the ferrite,
also its permeability plays a crucial role for their resonance frequencies. Consequently, HOMs
of this type are found with frequencies above ≈ 7 MHz for a bias current of Ibias = 20 A but do
not show up below ≈ 30 MHz for Ibias > 400 A. Of course, the stated resonance frequencies
must be perceived as rough estimates only, due to the very high uncertainty of the permeability
for large frequencies. Finally, the third type represents a dipole mode with strong electric field
components in the accelerating gap. Its resonance frequency at ≈ 39MHz is far above the
fundamental mode. Moreover, this mode is independent of the permeability of the ferrite rings
and thus independent of the bias current. The three types have in common that they exhibit
mainly a magnetic field parallel to the bias field inside the ferrite cores. It is recalled that the
material data are available only for such parallel biasing. Thus, it cannot be excluded from the
performed analysis that there are additionally HOMs perpendicular to the magnetic bias field
within the investigated frequency range.

4.3.4 2-directional bias scheme

With the aim of showing the further potential of the eigenmode solver, possible schemes with
a superposition of a parallel and a perpendicular bias magnetic field, so-called 2-directional
bias schemes, are examined. As expected from theory [102], such bias schemes might lead
to a higher quality factor while sustaining the same tuning range. This fact has been success-
fully confirmed in recent experiments [39]. A numerical analysis of a 2-directional bias scheme
requires the knowledge of all components of the permeability tensor (2.22) for all magnetiza-
tion states. As, however, only the µz-component is available from measurements, a theoretical
model is applied to estimate the missing components utilizing the parameters α and Ha. These
parameters have been found in section 2.3.6.1 with the help of a proper fit to the available
µz-component. Two different models are tested. In the first one, it is assumed that the diagonal
component eµdiag can be described by equation (2.28a) and the off-diagonal component by [21]

eκ= κ
Mz

Msat
× eµdiag

µdiag
(4.5)

with µdiag and κ from the fully magnetized state (cf. Eq. (2.23)). The second model is the one
of Igarashi and Naito (cf. subsection 2.2.3.3), i.e. with the tensor as given in equation (2.31).
From this model also the relation for eµz was obtained (cf. subsection 2.3.6.1). For consistency
of the main diagonal elements, the expression for eµdiag is, however, modified in the same way
as it was done for eµz. It then takes the form:

eµdiag = 1+
1
2
(µ̂− 1)

�

1+
�

Mz

Msat

�1.15
�

. (4.6)
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Figure 4.9.: Resonance frequency (left) and quality factor (right) of the fundamental mode ob-
tained from numerical simulations with the modified material model as specified
in equation (2.70) and (4.6) as a function of the parallel and perpendicular bias
magnetic field strength H‖ and H⊥, respectively. [30]

It is further assumed that the anisotropy field Ha acts in the direction of parallel bias. Assuming
these characteristics, eigenmode computations of the fundamental mode of the GSI SIS 18 cavity
are performed. Here, a sweep over different values for the parallel and perpendicular bias
magnetic field strength is performed. The parallel bias field is obtained from the solution of the
magnetostatic problem as for the standard SIS 18 cavity whereas for the perpendicular one a
spatially constant homogeneous field is added. Since it was found for purely parallel biasing
that the copper discs do not significantly affect the results (cf. subsection 4.3.1), the following
simulations are accomplished without copper discs for efficiency. Whereas there is no indication
for a possible loss reduction by means of a 2-directional bias-scheme for the first choice of
parameters, promising results are obtained for the second material model. Here, the additional
perpendicular field hardly changes the resonance frequency in a wide range. Yet, the quality
factor strongly depends on both field components. Consequently, this model is compliant with
the experimental finding that a 2-directional bias scheme is beneficial [39]. The results for the
resonance frequency and quality factor are summarized in figure 4.9.

Clearly, several assumptions led to the approximation of the properties of the Ferroxcube
8C12m ferrite with the above terms. Hence, further measurements to determine all components
of the permeability tensor are desirable.
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5 Summary and outlook
To sum up, the eigenmode computation of cavity resonators filled with biased gyrotropic materi-
als has been elaborated in this thesis. In this regard, the following aspects have been discussed.

Eigenvalue problems with gyromagnetic substances emerge in the field of accelerator physics
for the analysis of ferrite-loaded cavities. As reviewed in the thesis at hand, the fundamen-
tal magnetic properties of ferrites are similar to those of ferromagnetic materials including the
presence of a spontaneous magnetization with all its consequences such as the development of
magnetic domains and a nonlinear B-H dependence. What is more, the gyromagnetic charac-
teristics of ferrites can be described by a permeability tensor whose components are a function
of the frequency of the superimposed RF as well as the bias magnetic field. Due to the lack of
material data for the Ferroxcube 8C12m ferrite, which are required for the eigenmode simula-
tion of the GSI SIS 18 cavities, goal-oriented measurements were performed at the GSI facility.
The complex permeability is determined in two different approaches, one in a reflection and
one in a transmission setup. The obtained values for low RF-levels are fully compatible with
each other within their estimated error margins up to moderate frequencies. Beyond that the
transmission approach is not applicable anymore due to LC-resonances. Moreover, an analytical
relation for the real and imaginary part of the permeability is found empirically, which properly
describes the dependence on the bias magnetic field strength and the frequency particularly in
the low frequency range. Moreover, also the B-H curve which is enclosed in a reduced working
cycle of the cavity was recorded. Though ferrites do not exhibit gyroelectric properties, also
the permittivity tensor, which is relevant for the description of gyroelectric substances such as
magnetized plasmas, has been presented.

As pointed out, the need for a dedicated solver for the calculation of eigenmodes of resonators
filled with gyrotropic substances arises from their challenging material properties. According to
the proposed computational model, the field problem is thus divided into two parts: firstly, a
magnetostatic problem for the calculation of the magnetic field excited by the bias current to
be able to evaluate the material properties locally at the specified working point; secondly, a
nonlinear and, if material losses are taken into account, also non-Hermitian eigenvalue prob-
lem. For their numerical solution, the FIT with a hexaedral staircase filling is employed in this
work. To this end, the standard formulation has been extended to gyromagnetic as well as
gyroelectric materials in frequency domain. The derived expressions for the non-diagonal in-
verse permeability and permittivity matrices reduce to diagonal form of the standard FIT if no
gyrotropic materials are present. Furthermore, due to the averaging of the material properties
by taking into account the partial length or area of the dual edges and facets, respectively, the
material matrices feature a manifestly Hermitian structure in the absence of material losses,
even in the case of non-equidistant grids. In the description of the FIT in this thesis, the focus is
particularly put on different ordering schemes of the FIT-DOFs including also remarks on a fully
general ordering. The actual implementation is based on a scheme which is well suited for a
distributed computation. Moreover, an extensive discussion on the reduced grid, in which all a
priori vanishing DOFs are completely removed, is given. Thanks to these and other elaborated
aspects affecting efficiency, the implemented solver is capable of solving gyrotropic eigenprob-
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lems discretized with several millions of mesh cells in a reasonable time. To confirm the validity
of the numerically obtained results, the nonlinear magnetostatic solver and the component for
the solution of nonlinear, non-Hermitian eigenproblems is confirmed by thorough comparisons
with (semi-)analytical calculations.

To demonstrate that the newly developed solver can be used in practical applications, the data
for the scalar, isotropic permeability retrieved from the mentioned measurements are incorpo-
rated into the computational model. For its verification, the measurement setup is successfully
simulated at first. After that, a realistic model of the GSI SIS 18 cavity is considered. The
obtained values for the resonance frequency and quality factor for the fundamental mode are
in accordance with available measurement data. Moreover, it is revealed that the analysis of
the fundamental mode of ferrite-loaded cavity resonators by means of a nonlinear equivalent
circuit model provides almost identical results as the computationally by far more expensive
eigenmode simulation. However, provided that material data of the full permeability tensor
are available, it is shown that the eigenmode computation can also help to investigate possibly
advantageous 2-directional bias schemes.

In conclusion, the developed solver provides means to efficiently analyze cavities filled with
biased gyrotropic materials taking into account aspects such as the dependence of the material
on frequency and bias field as well as material losses. Currently, the accuracy of the obtained
results is only limited by the quality of available material data. Hence, further measurements
to precisely determine all components of the material tensors are desirable. Regarding the
numerical solution, it might be interesting to extend the presented expressions for the gyrotropic
material matrices to the Conformal Finite Integration Technique [103], as accomplished for
diagonal matrices in [67], to overcome the restriction of staircase fillings.
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A Proofs

A.1 Proof of the properties of the topological matrices for arbitrary ordering schemes

In subsection 3.4.5.4 relations between topological matrices of the primary and dual grid are
discussed, which are directly deduced there only for the special cases of ordering scheme 1
(cf. subsection 3.4.5.1) and 2 (cf. subsection 3.4.5.2). In this section the missing proof that
these properties still hold for any arbitrary ordering scheme is supplied. Only the proof for the
relation between the matrices C and eC (cf. Eq. (3.72)) is given explicitly since the ones for all
other relations are completely analogous.

Any general ordering of the FIT-DOFs can be obtained out of a given ordering, say, e.g.,
ordering 1, by permuting the elements of the given scheme. More precisely, given a vector v1
with the DOFs arranged as in ordering scheme 1, the vector vA for any general ordering scheme
A is the result of the product of a permutation matrix Pπ with the vector v1. Moreover, since any
permutation can be decomposed into the product of transpositions1 P , the vector of ordering A
can be calculated as

v1→ vA = Pπv1 =
k
∏

i=1

Piv1 =P1P2 . . .Pkv1. (A.1)

As pointed out in section 3.4.5, also the structure of the topological matrices has to be adjusted.
Since the rows of the matrix C behave as E-field-like vectors and columns as H-field-like vectors
and vice versa for the matrix eC (cf. subsection 3.4.7.1), their rows and columns transform ac-
cordingly. Hence, starting from the given matrices C1 and eC1 for ordering one, the transformed
matrices take the form

C1→ CA =P E
1 P E

2 . . .P E
l−1P E

k C1 P H
1 P H

2 . . .P H
l−1P H

l , (A.2a)
eC1→ eCA =P H

l P H
l−1 . . .P H

2 P H
1
eC1 P E

k P E
k−1 . . .P E

2 P E
1 , (A.2b)

where the permutations for H-field- and E-field-like vectors are the composition of the trans-
positions P H

i and P E
i , respectively. Since transpositions are symmetric, i.e.

Pi =P T
i , (A.3)

from equations (A.2) the desired result

CT
A =

�P H
1 P H

2 . . .P H
l−1P H

l

�T
CT

1

�P E
1 P E

2 . . .P E
k−1P E

k

�T
=

=P H
l P H

l−1 . . .P H
2 P H

1
eC1 P E

k P E
k−1 . . .P E

2 P E
1 = eCA (A.4)

follows immediately provided that CT
1 = eC1.

1 A transposition is a permutation which swaps exactly two elements whereas all others stay unchanged.
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(a)

∑_
h = 1

4

∑__
j

∑__
j

∑__
j

x

z
y

(b)

∑_
h = 1

3

∑__
j

−∑__
j

∑__
j

x

z
y

Figure A.1.: Elements of the
_
hi -field due to a symmetric current going in x -direction (a) and

an asymmetric current entering in positive y -direction and leaving in negative x -
direction (b). The sum of the

_
hi -components along a dual edge is set with the sign

as indicated by the direction of the arrow. On edges where no arrow is present, no
values are set.

A.2 Hi -algorithm

In this subsection, a proof is given that the Hi-algorithm, which is presented in subsection
3.4.11.2, results in a magnetic field

_
hi which satisfies the rotational equation (3.130b). In the

first subsection, the proof is provided only for the edges along the surfaces of the initial volume,
i.e. for step 2 of the algorithm. In the subsequent subsection, it is shown that the way how
the components of the

_
hi-field are determined after each subdivision in step 3 ensures that the

rotational equation is fulfilled everywhere, eventually.

A.2.1 Initialization of the Hi-components on the surface

In the special case of closed current paths inside the computation domain, which do not go
through its surface, the rotational equation can be fulfilled trivially on the surface by setting all
_
hi-components on the surface edges to zero. If, however, current flows through the surface the
following strategy can be pursued (for notation is referred to Fig. 3.11): First of all, according
to the continuity equation the sum of currents that enter the volume must equal the sum of
currents that leave the volume, i.e.

∑ __
j a +

∑ __
j e +

∑ __
j c −

∑ __
j b −

∑ __
j d −

∑ __
j f = 0. (A.5)

The idea is then to decompose the surface currents into symmetric and asymmetric contribu-
tions. In this context the symmetric part is understood as current which enters and leaves the
volume in the same coordinate direction; the asymmetric one enters and leaves the volume in a
changed direction. As is shown in figure A.1, the field components can readily be found for such
individual contributions. Employing this, firstly the

_
hi-components due to a symmetric current
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∑ __
j b both through the left and right surface in x-direction (cf. Fig. A.1(a)) are set, that is to

say, the components are set as

∑

_
hn = +

1
4

∑ __
j b n= 1, 2,9, 10 (A.6)

∑

_
hn = −

1
4

∑ __
j b n= 3, 4,11, 12. (A.7)

Having done this, the current through the left surface must be set to
__
j∆x =

∑ __
j a −

∑ __
j b to

correct for the made error, whereas no so far unconsidered current through the right surface
remains. Secondly, the symmetric current in z-direction is considered. The

_
hi-components due

to current
∑ __

j d through both the lower and upper surface are set as

∑

_
hn = +

1
4

∑ __
j d n= 5, 7,9, 11 (A.8)

∑

_
hn = −

1
4

∑ __
j d n= 1, 3,6, 8. (A.9)

Analogously, the current through the lower surface must then be set to
__
j∆z =

∑ __
j c −

∑ __
j d to

correct for the made error, whereas no current through the upper surface remains. Thirdly, the
symmetric contribution due to a current

∑ __
j f in y-direction through the front and back surface

is considered by setting the
_
h i-components as

∑

_
hn = +

1
4

∑ __
j f n= 2, 4,7, 8 (A.10)

∑

_
hn = −

1
4

∑ __
j f n= 12, 5,10, 6. (A.11)

Again, the current through the front surface must then be set to
__
j∆y =

∑ __
j e −

∑ __
j f to correct

for the made error. Yet, no current through the back surface is left unconsidered. Up to this
point, only the asymmetric current contributions remain. Hence, fourthly, the

_
hi-components

due to an asymmetric current
__
j∆y through the left and front surface in x- and y-direction are

set as (cf. Fig. A.1(b))

∑

_
hn = +

1
3

__
j∆y n= 3, 7 (A.12)

∑

_
hn = −

1
3

__
j∆y n= 1, 2,5, 10,12. (A.13)

Afterwards, the current through the left surface must be set to
__
j∆x ,y =

__
j∆x +

__
j∆y to correct for

the made error, whereas no current through the front surface remains. Lastly, the
_
hi-components

due to an asymmetric current
__
j∆z both through the left and lower surface in x- and z-direction

are set as
∑

_
hn = +

1
3

__
j∆z n= 3, 4,5, 9,11 (A.14)

∑

_
hn = −

1
3

__
j∆z n= 2, 6. (A.15)
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After that, all current contributions have been considered since
__
j∆x ,y+

__
j∆z =

__
j∆x+

__
j∆y+

__
j∆z =

0 by virtue of the continuity equation (A.5). Thus, also no current through the left surface
remains.

To sum up, all contributions due to the currents through the surfaces have been taken into
account while satisfying the rotational equation (3.130b) by construction. The total of the set
contributions on all twelve surface edges of the volume was already summarized in subsection
3.4.11.2. Of course, the above-mentioned solution is only one out of many possibilities.

A.2.2 Determination of the Hi-components after each subdivision

The proof that the way how the components of the
_
hi-field are determined after each subdivision

in subsection 3.4.11.2 finally generates a
_
hi-field that fulfills the rotational equation (3.130b)

is by induction. The aim is to show that, provided the rotational equation is already satisfied
on all surfaces of a subvolume, it will be satisfied after the subdivision also on all new divided
surfaces. It is sufficient to consider only one subdivision in x-direction without loss of generality.
All relevant quantities referred to in the following are illustrated in figure 3.10.

The basis of the induction is that equation (3.130b) is already fulfilled on all the six surfaces
of the subvolume. That is to say, the following holds:

[front]
∑

_
h9 +

∑

_
h
′
9 −

∑

_
h5 −

∑

_
h
′
1 −

∑

_
h1 +

∑

_
h3 =

∑ __
j b +

∑ __
j g (A.16a)

[bottom]
∑

_
h1 +

∑

_
h
′
1 +

∑

_
h4 −

∑

_
h
′
6 −

∑

_
h6 −

∑

_
h2 =

∑ __
j a +

∑ __
j f (A.16b)

[left]
∑

_
h7 −

∑

_
h10 −

∑

_
h3 +

∑

_
h2 =

∑ __
j c (A.16c)

[right]
∑

_
h8 −

∑

_
h11 −

∑

_
h5 +

∑

_
h4 =

∑ __
j j (A.16d)

[top]
∑

_
h9 +

∑

_
h
′
9 +

∑

_
h11 −

∑

_
h
′
12 −

∑

_
h12 −

∑

_
h10 =

∑ __
j e +

∑ __
j h (A.16e)

[back]
∑

_
h12 +

∑

_
h
′
12 −

∑

_
h8 −

∑

_
h
′
6 −

∑

_
h6 +

∑

_
h7 =

∑ __
j d +

∑ __
j i. (A.16f)

It is ensured in step 2 of the Hi-algorithm that the above assumptions hold true.
In the induction step, the subdivision in x-direction is performed. According to step 3 of

the Hi-algorithm, the so far unknown
_
h i-components along the edges 13, 14, 15 and 16 are

determined as follows:

[front]
∑

_
h14 =

∑

_
h9 −

∑

_
h1 +

∑

_
h3 −

∑ __
j b (A.17a)

[bottom]
∑

_
h13 = −

∑

_
h1 +

∑

_
h6 +

∑

_
h2 +

∑ __
j a (A.17b)

[top]
∑

_
h16 = −

∑

_
h9 +

∑

_
h12 +

∑

_
h10 +

∑ __
j e (A.17c)

[back]
∑

_
h15 =

∑

_
h12 −

∑

_
h6 +

∑

_
h7 −

∑ __
j d . (A.17d)

One has to show now that with these values for
_
h i the rotational equation (3.130b) is automat-

ically satisfied on all remaining surfaces:

• Equations (A.16c) and (A.16d) for the left and right surface still hold true as before as they
remain unchanged.
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• The rotational equation is fulfilled on the left parts of the front, upper, lower and back
surfaces by construction. Thus, only the right parts of these surfaces still need to be con-
sidered. For symmetry reasons, it is sufficient to consider only one surface. Here the one
in front is selected without loss of generality. The contour integral around this facet takes
the form

∑

_
h
′
9 −

∑

_
h5 −

∑

_
h
′
1 +

∑

_
h14

(A.17a)
=

∑

_
h
′
9 −

∑

_
h5 −

∑

_
h
′
1 +

∑

_
h9 −

∑

_
h1 +

∑

_
h3 −

∑ __
j b

(A.16a)
=

∑ __
j g .

Equation (3.130b) is thus satisfied on this surface.

• The last facet to be considered is the one in the middle, in the plane of the subdivision.
The contour integral around this facet is given by

∑

_
h15 −

∑

_
h16 −

∑

_
h14 +

∑

_
h13

(A.17)
=

∑

_
h7 −

∑

_
h10 −

∑

_
h3 +

∑

_
h2 +

∑ __
j a +

∑ __
j b −

∑ __
j d −

∑ __
j e

(A.16c)
=

∑ __
j a +

∑ __
j b +

∑ __
j c −

∑ __
j d −

∑ __
j e =

∑ __
j k.

Hence, the rotational equation is fulfilled on the middle facet.

To sum up, it has been shown that equation (3.130b) is satisfied on all surfaces after each
subdivision.
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B Simplified class diagram of the combined
magnetostatic and eigenvalue solver

GridBase
Nx , Ny , Nz, mesh

read mesh
information
import vectors

Grid

C, S, eC, eS, G, eG

construct
topological
matrices
manage reduced
grid
export vectors

MsBase
~H, ~M , µ(i, j, k)

Ms
~Hi, Mµ

calculate Hi-field
solve linear
equation (3.133)
nonlinear iteration
save field solution

MsLoaded

load field solution

JD
~v , A, M↔

ν
, M↔

ε

construct M↔
ν

construct M↔
ε

solve
eigenproblem
nonlinear iteration

Inheritance
Unidirectional
relation

The cell-averaged values of the static magnetic field as well as the magnetization and the values
of the permeability in each primary cell are saved after calculation by the Ms-class before they
are provided to the JD-class for the eigenmode computation. The saved magnetostatic solution
can also be loaded by the MsLoaded-class. Moreover, the JD-class can optionally set imported
field vectors as start vectors for the JD-iteration.
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List of abbreviations and symbols
Abbreviations

BLAS Basic Linear Algebra Subprograms

CAD Computer-aided design

CSR Compressed Sparse Row

DC Direct current

DOF Degrees of freedom

DUT Device under test

EH Mode which becomes a TM mode in the limit of vanishing κ and ε2

FAIR Facility for Antiproton and Ion Research [3]

FIT Finite Integration Technique

GSI Institute for heavy-ion research (German: Gesellschaft für Schwerionenforschung) [1]

HE Mode which becomes a TE mode in the limit of vanishing κ and ε2

JD Jacobi Davidson

LAPACK Linear Algebra Package [79]

MPI Message Passing Interface [49, 50]

PEC Perfect electric conductor

PETSc Portable, Extensible Toolkit for Scientific Computation [46, 47]

RF Radio frequency

RQI Rayleigh quotient iteration

SIS Heavy-ion synchrotron (German: Schwerionensynchrotron)

TE Transversal electric

TM Transversal magnetic

VNA Vector network analyzer

General math

∗ Complex conjugate / conjugate transpose
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1 Unit vector / matrix

arg(a) Argument of a

∂Ω Domain boundary

det Determinant

~ea Unit vector in direction a

i Imaginary unit

Im Imaginary part

~n Normal vector

∇ Nabla operator

Φ Azimuthal angle, cf. Fig. (2.4)

θ Polar angle, cf. Fig. (2.4)

O Complexity class (computational complexity theory)

Ω Domain

P Transposition matrix

A⊥ Orthogonal projection of matrix A on a subspace

Pπ Permutation matrix

Re Real part

T Transpose

Jn Bessel function of the first kind of order n

xn,m m-th zero of Jn

Eigensystems

A System matrix

ε Stopping criterion for eigenvalue iteration

fanaly Analytical eigenfrequency

k Number of iterations (outer iteration)

K Krylov subspace, cf. Eq. (3.155)

L Lower triangular matrix

U Upper triangular matrix

λ Eigenvalue
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M System matrix of projected system

m Number of iterations (inner iteration) / dimension of V
ωanaly Analytical (circular) eigenfrequency

Q Orthogonal matrix

~r Residual vector

R Upper triangular matrix

~s Eigenvector of projected system

σ Shift / target value

~t Solution vector of JD correction equation

T Diagonal matrix

τ Target value

θ Approximation for eigenvalue / Ritz value

~u Approximation of eigenvector

~v Eigenvector

V Matrix of orthonormal columns which span subspace V
V Subspace spanned by columns of V

W Matrix of orthonormal columns which span subspace W
W Subspace spanned by columns of W

~y Ritz vector

Finite Integration Technique

A Classification of vector: E-field, H-field, normal node or dual node

A Primary facet / area of primary facet

amax a-coordinate (a = x , y, z) at the border of the computation domain towards large indices

amin a-coordinate (a = x , y, z) at the border of the computation domain towards small indices

eA Dual facet / area of dual facet

eA(n)a (i, j, k) Partial area of the the dual facet eAa(i, j, k) inside the normal cell n, cf. Fig. 3.3(b)

_a Vector potential
__
b Magnetic flux
__
b Vector collecting all magnetic fluxes
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C Discrete curl operator at the primary grid

Cn Capacitance of a lumped element allocated on the primary edge / dual facet with index n

eC Discrete curl operator at the dual grid
__
d Electric flux
__
d Vector collecting all electric fluxes

DA
0 Diagonal matrix for A-like vectors: [DA

0]p,p = 1 for ordinary components; [DA
0]p,p = 0 for

elements associated with a pseudo-DOF

DA (Diagonal) vector collecting the areas of all primary facets

Dε (Diagonal) vector collecting the averaged values of the permittivity

DL (Diagonal) vector collecting the lengths of all primary edges

Dν (Diagonal) vector collecting the averaged values of the inverse permeability

eDA (Diagonal) vector collecting the areas of all dual facets

eDL (Diagonal) vector collecting the lengths of all dual edges

∆ Step size

δ Threshold for magnetostatic solver

∆a Change in the index when going from the x-component of one selected cell to the a-
component (a = x , y, z) of the same cell

_e Electric voltage

_e Vector collecting all electric voltages

ε Average permittivity, cf. Eq. (3.29)

Et Tangential component of the electric field

G Discrete gradient operator at the primary grid

eG Discrete gradient operator at the dual grid
_
h Vector collecting all magnetic voltages
_
h Magnetic voltage
_
hanaly Magnetic voltages of the analytical solution
_
hh Irrotational magnetic field, cf. Eq. (3.130c)
_
hi Solenoidal magnetic field, cf. Eq. (3.130b)

H(n) Mean value for the magnetic field strength in the normal cell with index n
_
hnum Magnetic voltages of the numerical solution
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_
h
(i)
a (n) Partial magnetic voltage that is allocated on the partial dual edge in the normal cell with

index i, cf. Eq. (3.134)

~Hres Resulting magnetic field

i Cells number in direction x

j Cells number in direction y
__
j (Electric) current
__
j Vector collecting all (electric) currents
__
j C Current due to a lumped element capacitor
__
j R Current due to a lumped element resistor

k Cells number in direction z

L Primary edge / length of primary edge

eL Dual edge / length of dual edge

eL(n)a (i, j, k) Length of the dual edge eLa(i, j, k) only of the part inside the normal cell n, cf.
Fig. 3.2(b)

M0̄ Topological matrix without consideration of vanishing elements due to pseudo DOFs

Ma Number by which the position of a vector component / global cell index n increases if
one proceeds one cell in direction a

[M](a,p),(b,q) Element with row index (a, p), i.e. index associated with vector component of
cell with index p in direction a, and column index q, i.e. index associated with vector
component of cell with index q in direction b, of matrix M

M ′a Number by which the position of a vector component n increases if one proceeds one cell
in direction a for ordering scheme 1, cf. Eq. (3.37)

M ′′a Number by which the position of a vector component n increases if one proceeds one cell
in direction a for ordering scheme 2, cf. Eq. (3.50)

MC (Diagonal) lumped element capacitance matrix

Mε (Diagonal) permittivity matrix

M↔
ε

Permittivity tensor

Mν (Diagonal) inverse permeability matrix

M↔
ν

Inverse permeability tensor

[M]p,q Element with row index p and column index q of matrix M

MR (Diagonal) lumped element resistance matrix, cf. Eq. (3.123)
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n Position of a vector component / global cell index

Na Number of cells in direction a

NA
BC Number of DOFs to be zeroed due to the imposed boundary conditions for A-like vectors

Ncells Number of all (primary) grid cells

NDOF Number of DOFs (for the solution vector)

NA
DOF Number of DOFs for A-like vectors

NNZ Number of nonzeros

NA
outside Number of DOFs outside the computation domain for A-like vectors

NA
PEC Number of DOFs to be zeroed due to elements inside PEC-cells or -wires for A-like vectors

NA
pseudo−DOFs Number of pseudo-DOFs for A-like vectors

Nremoved Number of pseudo-DOFs that have already been removed before a particular element

ν Average inverse permeability, cf. Eq. (3.25)

p Row index (of a matrix)

Pa Differential submatrix at the primary grid (discrete differential with respect to direction
a) for ordering scheme 1, cf. Eq. (3.39)

MP(a)b Differential matrix for topological matrices of type M (M = C, §,G) at the primary grid
for a general ordering scheme: Discrete differential with respect to direction b acting on
the a-components of the vector on which the operator is applied

Φ Scalar potential, cf. Eq. (3.130c)

ePa Differential submatrix at the dual grid (discrete differential with respect to direction a)
for ordering scheme 1, cf. Eq. (3.43)

A
eP(a)b Differential matrix for topological matrices of type A (A = C, §,G) at the dual grid for a

general ordering scheme: Discrete differential with respect to direction b acting on the
a-components of the vector on which the operator is applied

q Column index (of a matrix)

q Electric charge

q Vector collecting all electric charges

qm Pseudo magnetic charge

qm Vector collecting all pseudo magnetic charges

Rn Ohmic resistance of a lumped element allocated on the primary edge with index n

§ Discrete divergence operator at the primary grid
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eS Discrete divergence operator at the dual grid
∑ _

h Sum of all
_
hi-components along a (dual) edge

∑ __
j Sum of all currents through a (dual) surface

v Generic vector

V Primary volume

eV Dual volume

General constants and field quantities Unit

A Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

~B Magnetic induction / magnetic flux density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T

C Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F

c0 Speed of light in vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m · s−1

χe Electric susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Cgap Gap capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F

Ctot Total capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F

χm Magnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

~D Electric displacement field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A · s ·m−2

~E Electric field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V ·m−1

e (Positive) elementary charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A · s
ε0 Vacuum permittivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A · s · V−1 ·m−1

f Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

fres Resonance frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

~H Magnetic field / magnetizing field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A ·m−1

hcopper Height of copper discs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

H‖ Parallel magnetic field strength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A ·m−1

H⊥ Perpendicular magnetic field strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A ·m−1

I (Electric) current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A

~J (Electric) current density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A ·m−2

k (Angular) wavenumber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m−1

L Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .H
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l Length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m

Lcav (Inside) length of the cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

~M (Magnetic) polarization / magnetization field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A ·m−1

me Electron mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg

µ0 Vacuum permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .N ·A−2

Ncores Number of ring cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

~P (Dielectric) polarization / polarization field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A · s ·m−2

r, R Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m

ρ (Electric) charge density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A · s ·m−3

ρ Electric charge density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A · s ·m−3

ρm Pseudo magnetic charge density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V · s ·m−3

ω Angular frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

t Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s

x x-coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m

y y-coordinate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m

z z-coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Material modeling and measurement Unit

a Parameter, cf. Eq. (2.73) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A ·m−1

α Damping factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

αG Gilbert damping factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

αx ,αy ,αz cf. Eq. (2.29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

b Parameter, cf. Eq. (2.73) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m ·A−1

Cdist Distributed capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F

Cext External capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .F

↔
χe Electric susceptibility tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

↔
χm Magnetic susceptibility tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

∆a Uncertainty of quantity a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [a]

∆H0 Line width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A ·m−1

ε1 Main diagonal element of the permittivity tensor, cf. Eq. (2.43) . . . . . . . . . . . . . . . . . . . . . . . . 1
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ε2 Off-diagonal element of the permittivity tensor, cf. Eq. (2.43) . . . . . . . . . . . . . . . . . . . . . . . . . . 1

ε3 Z-component of the permittivity tensor, cf. Eq. (2.43) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

εr Relative permittivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

↔
ε Permittivity tensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A · s · V−1 ·m−1

g Landé g-factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

γ Scalar function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γe Larmor frequency, cf. Eq. (2.10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A · s · kg−1

γG Scalar function, cf. page 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γLL Scalar function, cf. page 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

~H0 Static magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A ·m−1

~Ha Anisotropy field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A ·m−1

~Hbias Bias magnetic field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A ·m−1

hcav cf. Fig. 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

hcore cf. Fig. 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

~Hd Time-dependent magnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A ·m−1

hI cf. Fig. 2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

I1 Current through primary winding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A

I2 Current through secondary winding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A

Ibias Bias current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A

κ Off-diagonal element of permeability tensor (fully magnetized state), cf. Eq. (2.23) . . . . 1

eκ Off-diagonal element of permeability tensor (partially magnetized state) . . . . . . . . . . . . . . 1

Lair Inductance of the air-filled resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H

λ Scalar function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λLL, Scalar function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

leff Effective magnetic path length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Lp Parallel inductance of the ring cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H

Ls Series inductance of the ring cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .H

m Reduced magnetization m= M/Msat (partially magnetized state) . . . . . . . . . . . . . . . . . . . . . .1

~M0 Static magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A ·m−1
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~Md Time-dependent magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A ·m−1

~Msat Saturation magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A ·m−1

µcore Permeability of ring cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N ·A−2

µdiag Main diagonal element of permeability tensor (fully magnetized state), cf. Eq. (2.23) . . 1

eµdiag Main diagonal element of permeability tensor (partially magnetized state). . . . . . . . . . . . .1

µeff Effective permeability, cf. Eq. (2.25). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

µ̂ Permeability of the fully demagnetized state, cf. Eq. (2.26) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

µp Permeability in the parallel equivalent circuit representation µ−1
p = µ

′
p
−1 + iµ′′p

−1 . N ·A−2

µ′p Real component of the permeability in the parallel equivalent circuit representation
N ·A−2

µ′′p Imaginary component of the permeability in the parallel equivalent circuit representation
N ·A−2

µr Relative permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

µs Permeability in the series equivalent circuit representation µs = µ′s − iµ′′s . . . . . . . . . N ·A−2

µ′s Real component of the permeability in the series equivalent circuit representationN ·A−2

µ′′s Imaginary component of the permeability in the series equivalent circuit representation
N ·A−2

↔
µ Permeability tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N ·A−2

µz Z-component of permeability tensor (fully magnetized state), cf. Eq. (2.23). . . . . . . . . . . .1

eµz Z-component of the permeability tensor (partially magnetized state) . . . . . . . . . . . . . . . . . . 1

Mz z-component of magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A ·m−1

N1 Number of turns of primary winding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

N2 Number of turns of secondary / sense winding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Nbias Number of turns of bias current winding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Ne Number of electrons per unit volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .m−3

ω0 cf. Eq. (2.23) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

ωM cf. Eq. (2.23) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

Φ Magnetic flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T ·m2

Ψair cf. Eq. (2.66b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N ·m ·A−2

Q Quality factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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R0 External parallel resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ω

Rcav Resistance of the empty cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ω

rcav,in cf. Fig. 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

rcav,out cf. Fig. 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

rI,in cf. Fig. 2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

rin cf. Fig. 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

rI,out cf. Fig. 2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

rout cf. Fig. 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Rp Parallel resistance of the ring cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ω

Rs Series resistance of the ring cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ω

S11 Input port reflection coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

S12 Reverse voltage gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

S21 Forward voltage gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

S22 Output port voltage reflection coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

T1 Relaxation time of the longitudinal magnetization, cf. Eq. (2.15) . . . . . . . . . . . . . . . . . . . . . . . s

T2 Relaxation time of the transversal magnetization, cf. Eq. (2.15) . . . . . . . . . . . . . . . . . . . . . . . . s

U1 Voltage at primary winding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

U2 Voltage at secondary winding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

Uind Induced voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

vc Collision frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

ωb Cyclotron frequency, cf. Eq. (2.39) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

ωp Plasma frequency, cf. Eq. (2.38) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s−1

~x Displacement vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Y Admittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ω−1

Y0 Admittance without DUT, cf. Eq. (2.47) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ω−1

Z Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ω

Z0 Characteristic impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ω

Z21 Impedance parameter, cf. Eq. (2.69) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ω
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