Metadata, citation and similar papers at core.ac.uk

Provided by tuprints

Robust Wireless Localization in Harsh Mixed
Line-of-Sight /Non-Line-of-Sight Environments

Vom Fachbereich 18
Elektrotechnik und Informationstechnik
der Technischen Universitat Darmstadt

zur Erlangung der Wiirde eines
Doktor-Ingenieurs (Dr.-Ing.)
genehmigte Dissertation

von
Feng YIN, M.Sc.
geboren am 11.12.1984 in Liaoning, China

Referent: Prof. Dr.-Ing. Abdelhak M. Zoubir
Korreferent: Prof. Dr. Fredrik Gustafsson
Tag der Einreichung;: 11. 06. 2014
Tag der miindlichen Priifung: 08. 08. 2014
D 17

Darmstadt, 2014


https://core.ac.uk/display/76649231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




To my family






ITI

Acknowledgments

This doctoral dissertation summarizes the best part of my life in the past three years
and four months with the signal processing group at the Technische Universitat Darm-
stadt (TUD). This dissertation would not have been possible without the guidance, en-
couragement, and help from my advisor, colleagues, collaborators, family, and friends
over the past years.

First and foremost, I would like to express my deepest gratitude to my advisor Prof. Ab-
delhak M. Zoubir for offering me a precious opportunity to work in a vibrant group
full of brilliant fellows. To me, you are not only a great researcher and leader, but
also like a merciful father. From you, I have gained not only the knowledge but also
self-confidence. Thank you so much for taking me to the world of statistical signal
processing. The first DSP lecture and the first excursion to ATLAS Electronik in 2008
were so fascinating and unforgettable. It has been a great pleasure to be a doctoral
student under your supervison. I am also greatly indebted to Prof. Fredrik Gustafs-
son from the Linképing University, Sweden for the collaborations in the past three
years. I strongly agree with all your students that you are a never-ending source of
smart ideas and inspiration. I am also impressed by your amazing insight and magic
of folding a half-baked idea into a bigger picture. Many thanks for guiding me into the
fascinating field of Bayesian inference for localization. Your IEEE signal processing
magazine paper (2005) is the first paper that I have ever read in my PhD career—
indeed an excellent start. I can barely imagine at that time that I will work with you
and Prof. Gunnarsson in Linkoping some years later. Many thanks also go to Prof. Rolf
Jokoby, Prof. Marius Pesavento, and Prof. Ulrich Konigorski for being a member of my
PhD oral examination committee.

During my Master study, I worked in parallel as a student research associate at the
Fraunhofer Institute SIT, Darmstadt. 1 am very grateful to my mentor Dr. Huajian
LIU, who taught me patiently how to combine theory with practice and how to code
more efficiently and elegantly. It has been always a pleasure to work with you, even
late in the evening. Many thanks also go to Dr. Christian Debes, supervisor of my
Master thesis, for his generous help on everything. [ was very lucky to have met
you by accident in the corridor, talking about possible thesis topics. I owe a huge
gratitude to my collaborator Dr. Carsten Fritsche for his guidance, immense techni-
cal expertise, and fruitful discussions. You always have a full basket of fresh ideas
and strong enthusiasm for research. I have learnt a lot from you. Many thanks to
Dr. Gebremichael Teame and Dr. Roy Howard from the Curtin University, Australia,



IV

with whom I have shared an office. Many thanks also go to the members of the sig-
nal processing group, both current and past, including Adrian Sosi¢, Sara Al-Sayed,
Mouhammad Alhumaidi, Mark Balthasar, Toufik Boukaba, Nevine Demitri, Michael
Fauss, Gokhan Giil, Jiirgen Hahn, Lala Khadidja Hamaidi, Sahar Khawatmi, Michael
Lang, Dr. Stefan Leier, Michael Leigsnering, Abdelmalek Mennad, Dr. Michael Muma,
Tim Schéck, Wassim Suleiman, Christian Weif3, Dr. Zhihua Lu, Dr. Christian Debes,
Dr. Fiky Suratman, Dr. Philipp Heidenreich, Dr. Waqas Sharif, Dr. Ahmed Moustafa,
Dr. Raquel Fandos, Dr. Yacine Chakhchoukh, Dr. Ulrich Hammes, Dr. Ramon Brcic
for their kind help and fruitful discussions all along my PhD study. Special thanks
go to Dr. Michael Muma, Dr. Stefan Leier, Michael Leigsnering, Jiirgen Hahn, Chris-
tian WeiB, Adrian Sosi¢, Sara Al-sayed, Nevine Demitri, Gokhan Giil, Lala Khadidja
Hamaidi, Michael Lang, Tim Schéack for their valuable feedback on my disseration and
presentation slides. I feel very proud to have you guys around. Without the hard work
of our secretary, Renate Koschella, and system administrator, Hauke Fath, my PhD
study would not have gone so smoothly. You are the best! I am also very grateful
to Dr. Gulam RAZUL Sirajudeen and Dr. Chong Meng Samson See for their support
when [ was visiting the Temasek Lab at the Nanyang Technological University, Singa-
pore. Many thanks also go to Dr. Lei LEI, Dr. Guohua WANG, and Dr. Zhihua LU
for their warm reception. During my PhD study, I am very lucky to have quite a few
brilliant students who helped me develop and test new ideas in the Master thesis; they
are Ang LI, Di JIN, Yi ZHANG.

Lastly and most importantly, I would like to thank my wife Yiyao LI, my parents
Fengguang YIN and Lin XU, as well as my parents-in-law Dayong LI and Huichun
HE for their encouragement and endless love. I also owe a lot to my Chinese friends in
Germany; they are Hua ZHONG, Gan ZHOU, Angran YANG, Dr. Zhihua LU, Xiyue
FANG, Dr. Huajian LIU, Di JIN, Xin HUANG, Ang LI, Yi ZhANG, Zhiliang CHEN,
Zheng LI, Weibin ZHANG, Xiao LUO, Jing NING, Tai FEI for their company.

Darmstadt, 12 August, 2014



Kurzfassung

Diese Dissertation befasst sich mit dem Problem der Lokalisierung von Knoten in
verschiedenen drahtlosen Infrastrukturen, wie zum Beispiel Mobilfunknetzen und
drahtlosen Sensornetzen. Um so realistisch wie moglich zu sein, werden gemis-
chte Lokalisierungsumgebungen mit und ohne direkter Sichtverbindung (LOS/NLOS)
vorgestellt. Sowohl herkommliche nicht-kooperative, als auch neuartige kooperative
Lokalisierungsmethoden wurden grindlich untersucht. Aufgrund der zufilligen Natur
der Messungen, bilden probabilistische Methoden im Vergleich zu traditionellen ge-
ometrischen Methoden die fortgeschritteneren Ansatze. Die Quintessenz der proba-
bilistischen Methoden besteht darin, die unbekannten Positionen der Zielknoten in
einem Schétzprozess zu bestimmen. Gegeben sind hierbei verrauschte positionsbezo-
gene Messwerte, ein probabilistisches Messmodell, sowie einige bekannte Referenzposi-

tionen.

Im Gegensatz zur Mehrheit des existierenden Methoden werden strenge, jedoch prak-
tisch relevante Beschrankungen behandelt: Das gewiinschte Lokalisierungssystem bein-
haltet weder eine Offline-Kalibrierung, noch ist es moglich die Existenz einer direkten
Sichtverbindung zu erkennen. Dadurch ist die Messfehlerstatistik unbekannt, wodurch
die Folgerung von Riickschliissen eine extreme Herausforderung darstellt. Zwei neue
Klassen von Lokalisierungsalgorithmen zur gemeinsamen Schétzung von Positionen
und Messfehlerstatistik werden vorgeschlagen. In dieser Dissertation werden alle un-
bekannten Parametern als deterministisch betrachtet und es wird jeweils nach dem
Maximum-Likelihood (ML) Schétzer gesucht.

Algorithmen der ersten Klasse setzen keine Kenntnis der Messfehlerstatistik voraus
und wenden ein nichtparametrisches Modell an. Die idee besteht in der alternierenden
Anwendung einer Schétzung der Wahrscheinlichkeitsdichtefunktion einerseits, wobei
eine Approximation der unbekannten Messfehlerstatistik tiber eine adaptive Kerndicht-
eschiatzung erfolgt. Andererseits wird eine Parameterschatzung der Position aus-
gefiihrt, welche auf eine Approximation der Log-Likelihood Funktion beruht. Der
Rechenaufwand fiir Algorithmen dieser Klasse wachst quadratisch mit der Anzahl der
Messwerte, wodurch sich die Anwendbarkeit im Wesentlichen auf die nicht-kooperative
Lokalisierung in Mobilfunknetzen beschrankt. Eine zweite Klasse von Algorithmen
zielt daher auf eine Reduzierung des Rechenaufwandes ab, wofiir eine Approxima-
tion der Messfehlerstatistik mittels einer Kombination von Gaussischen Dichtfunktio-
nen verwendet wird. Iterative Algorithmen, welche zwischen Aktualisierungen von
Positionen und anderen Parametern alternieren, wurden mit Hilfe von Expectation-
Maximization (EM), Expectation-Conditional Maximization (ECM) und Joint Max-
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imum A Posteriori-ML (JMAP-ML) Prinzipen entwickelt. Wie sich herausstellte,
wachst der Rechenaufwand von Algorithmen dieser zweiten Klasse nunmehr linear mit
der Anzahl der zur Verfiigung stehenden Messwerte, wodurch eine Erweiterung des An-
wendungsbereiches auf kooperative Lokalisierung fiir drahtlose Sensornetzen maglich
wird.

Abgesehen von dem Algorithmenentwurf selbst wurden zur umfassenden Evaluierung
derselben systematische Analysen im Hinblick auf die Cramer-Rao-Schranken, den
Rechenaufwand sowie den fiir die Kommunikation anfallenden Leistungsverbrauch
durchgefiithrt. Anhand der Simulations- und Versuchsergebnisse konnte gezeigt wer-
den, dass die vorgeschlagenen Algorithmen fiir hinreichend grofie Datensatze die fun-
damentalen Schranken der Lokalisierungsgenauigkeit erreichen. Sofern der Einfluss
etwaiger Modellfehlanpassungen vernachlassigt werden kann, sind die vorgeschlagenen
Verfahren den konkurrienden weit iiberlegen.
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Abstract

This PhD thesis considers the problem of locating some target nodes in different wireless
infrastructures such as wireless cellular radio networks and wireless sensor networks.
To be as realistic as possible, mixed line-of-sight and non-line-of-sight (LOS/NLOS)
localization environment is introduced. Both the conventional non-cooperative local-
ization and the new emerging cooperative localization have been studied thoroughly.
Owing to the random nature of the measurements, probabilistic methods are more
advanced as compared to the old-fashioned geometric methods. The gist behind the
probabilistic methods is to infer the unknown positions of the target nodes in an es-
timation process, given a set of noisy position related measurements, a probabilistic
measurement model, and a few known reference positions.

In contrast to the majority of the existing methods, harsh but practical constraints are
taken into account: neither offline calibration nor non-line-of-sight state identification
is equipped in the desired localization system. This leads to incomplete knowledge
about the measurement error statistics making the inference task extremely challenging.
Two new classes of localization algorithms have been proposed to jointly estimate the
positions and measurement error statistics. All unknown parameters are assumed to
be deterministic, and maximum likelihood estimator is sought after throughout this
thesis.

The first class of algorithms assumes no knowledge about the measurement error dis-
tribution and adopts a nonparametric modeling. The idea is to alternate between a
pdf estimation step, which approximates the exact measurement error pdf via adaptive
kernel density estimation, and a parameter estimation step, which resolves a position
estimate numerically from an approximated log-likelihood function. The computational
complexity of this class of algorithms scales quadratically in the number of measure-
ments. Hence, the first class of algorithms is applicable primarily for non-cooperative
localization in wireless cellular radio networks. In order to reduce the computational
complexity, a second class of algorithms resorts to approximate the measurement error
distribution parametrically as a linear combination of Gaussian distributions. Itera-
tive algorithms that alternate between updating the position(s) and other parameters
have been developed with the aid of expectation-maximization (EM), expectation con-
ditional maximization (ECM) and joint maximum a posterior-maximum likelihood
(JMAP-ML) criteria. As a consequence, the computational complexity turns out to
scale linearly in the number of measurements. Hence, the second class of algorithms is
also applicable for cooperative localization in wireless sensor networks.
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Apart from the algorithm design, systematical analyses in terms of Cramér-Rao lower
bound, computational complexity, and communication energy consumption have also
been conducted for comprehensive algorithm evaluations. Simulation and experimental
results have demonstrated that the proposed algorithms all tend to achieve the funda-
mental limits of the localization accuracy for large data records and outperform their
competitors by far when model mismatch problems can be ignored.
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Chapter 1

Introduction

1.1 Wireless Localization and Applications

Wireless localization refers to the problem of finding the positions of some target nodes
in different wireless infrastructures such as cellular radio networks and wireless sensor
networks (WSNs) [1]. A target node can be a mobile station (MS) in cellular radio
networks or an agent in WSNs. Fig. 1.1(a) and Fig. 1.1(b) provide two illustrating
examples. Wireless localization systems serve as replacement or complement of the
conventional global positioning system (GPS) in harsh indoor environments, urban ar-
eas and underwater environments, where the GPS signals can be either largely impaired

or unavailable [2].

Over the past two decades, wireless localization has received considerable attention due
to the expanding location-based services, such as wireless emergency service Enhanced-
911 (E-911), location-sensitive billing, fraud detection, asset tracking, intelligent trans-
portation, mobile yellow pages [3], soldier and first responder locating [4,5], and animal
tracking [6], to enumerate a few. High-accuracy wireless localization will continue to
play a key role for public safety and drive many more location-based services (especially
on smart phones) in the forthcoming years [7].

) ‘\)\
@ @

o \)\
(<i>) ©® ((K))
(a) Localization of a mobile station in a (b) Localization of several sensor nodes
cellular radio network for E-911 service in (marked by circles) in a wireless sensor net-
an outdoor rural environment. work for environment surveillance in an in-

door environment.

Figure 1.1. Two illustrating examples of wireless localization.
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1.2 Localization Problems Addressed

Throughout this thesis, the unknown target node positions are inferred in an estimation
process, given a batch of noisy position-related measurements, a few known reference
nodes and a probabilistic signal model. A reference node can be a base station (BS)
in cellular radio networks or an anchor in WSNs. In [8], estimation problems are
broadly categorized into localization of stationary targets, tracking of moving targets,
self-navigation, calibration, and simultaneous localization and mapping (SLAM).

In this thesis, localization of stationary targets is mainly studied. Two fundamental
problems are distinguished as follows:

e Non-cooperative localization. Non-cooperation is a conventional paradigm
for localization in that the target nodes communicate only with a sufficient num-
ber of reference nodes. With the position-related measurements, either each tar-
get node determines its own position (mobile-based) or a fusion center determines
the target node position and sends the information back (network-based) [1]. In
order to resolve localization ambiguities, each target node must be able to com-
municate with at least three reference nodes in a two-dimensional (2-D) space
or four reference nodes in a three-dimensional (3-D) space. Fig. 1.2(a) shows an
example for the 2-D case.

e Cooperative localization. Cooperation is a new emerging paradigm for local-
ization in that the target nodes additionally exploit the measurements collected
between themselves. Similarly, the target nodes self-localize themselves (in a dis-
tributed manner) or a fusion center determines their positions (in a centralized
manner) and transmit the information back to each individual via multi-hops.
With the cooperations among the target nodes, the communication range of wire-
less devices as well as the number of anchors to be deployed can be tremendously
reduced, which in turn economizes the overall cost for building a localization
system. In addition, cooperations can help resolve localization ambiguities and
as reward bring more robust and accurate position estimates. Fig. 1.2(b) shows
the benefit of using cooperations among nodes.

It is noteworthy that in the special case where there is no motion model available or
the state uncertainty is sufficiently large in the system dynamics, both target tacking
and self-navigation can be done through conducting a stationary target localization
algorithm repeatedly at different time instances—a snapshot-based method.
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(a) Non-cooperative localization (2-D) us- (b) Cooperative localization (2-D) using
ing a cellular radio network. The two mo- the same cellular radio network. The two
bile stations do not cooperate and can only mobile stations now cooperate and as a re-
reach two base stations, giving rise to lo- ward the localization ambiguity can be re-
calization ambiguities (the locations with solved completely.

question-mark).

Figure 1.2. Non-cooperative localization versus cooperative localization.

These two fundamental localization problems can be cast into a general parameter
estimation problem with the measurement model in form of

r=h(6,,0,) + v (1.1)

where the parameters are defined as:

e Column vector r includes a set of position-related measurements. For non-
cooperative localization, r contains the measurements obtained between the tar-
get node and several reference nodes. For cooperative localization, r contains
additionally the measurements obtained between target nodes. The dimension of
r is assumed to be assumed to be M.

e Nonlinear function h(,, 8,) represents the ideal measurement model, which de-
pends on the unknown positions 8, and some auxiliary parameters 8,. For non-
cooperative localization, 8, contains one unknown target node position. For
cooperative localization, 6, contains a set of unknown target node positions to

be determined concurrently.

e Column vector v contains a set of measurement error terms, vy, vs, ..., vy, that
follow a certain probability density function (pdf).

The primary goal is to provide an accurate estimate of the unknown position(s), 6,,
in a short response time. The diversity of the existing localization algorithms stems

from:
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e The manner of localization, for instance, mobile-based versus network-based,
centralized versus distributed.

e The use of different measurement models, for instance time-of-arrival (TOA) and
received-signal-strength (RSS) measurement models.

e The nature of the unknown positions, deterministic or random.

e The use of different estimation criteria, for instance, maximum likelihood (ML)
criterion or minimum-mean-square-error (MMSE) criterion.

e The amount of knowledge (known or partially known or unknown) about the

measurement error statistics.

e The need for offline calibration of 8, and/or the measurement error statistics
prior to the localization process.

e The consideration of different constraints, e.g., road constraint, geometric con-
straint, and communication constraints (bandwidth and energy).

e The number of measurements collected at each node.

e The approximations used to trade-off desired properties of the designed algo-
rithm, e.g., linearization of h(8,, 8,) for lower complexity and better convergence.

In Section 1.5, a survey of the existing algorithms will be given for both non-cooperative
localization and cooperative localization.

1.3 Localization Measurements and Models

1.3.1 Measurement Categories

In this thesis, a two-step procedure for localization is adopted primarily due to the
lower complexity as compared to direct localization (see e.g., [9], [10]). In the first step,
position-related measurements are extracted from the received signals. In the second
step, the obtained measurements are processed (either centralized or distributed) to
give an estimate of the unknown positions. The most commonly used measurement
categories are classified into signal waveform, time-of-arrival, time-difference-of-arrival
(TDOA), round-trip time-of-arrival (RTOA), received signal strength, and angle-of-
arrival (AOA) [11]. In the sequel, the acquisition of TOA, TDOA, RTOA and RSS
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measurements is briefly reviewed with the aid of a toy example in which N base stations
(BSs) attempt to locate a single MS in a cellular radio network.

e TOA, TDOA, RTOA: For an MS-BS wireless link (say the ith), a complex
channel impulse response, h;(t), is first computed and then converted to power
delay profile (PDP) |h;(t)|* [12]. From the PDP, a TOA measurement for this
channel, 7;, is obtained by estimating the first arrived path, if the transmitter is
time-synchronized with the receiver. The existing methods for TOA estimation
include correlation based methods, deconvolution methods, maximum likelihood
estimation based methods, and subspace based methods [13, Chapter 7]. In
practice, TOA is usually converted into distance in light of d; = 7; - ¢, where ¢
is the propagation speed of a radio wave. Alternatively, a TDOA measurement
(say between BS ¢ and BS j) can be computed by taking time differences 7, — 7;.
The advantage of this method is that only the BSs need to be synchronized in
time. Collecting RTOA measurements requires no time synchronization among
nodes. The acquisition of a RTOA measurement can be obtained, for instance
at the ith BS, by 77°¢ — 7% — 7, \ = 2d;/c where 77°° is the time instance that
this BS received the waveform that it sent at 77°*d and bounced by the MS with
a time delay 7; o [14]. The time delay 7; o is usually predetermined and known
to both the MS and the ¢th BS.

e RSS: A received signal strength measurement can be obtained by integrating the
PDP with respect to time. More precisely, the RSS [dBm| measured at the ith
e J Ina(o) 2

PZ- =10 log (W) . (1.2)
In contrast to the timing measurements mentioned above, received signal strength
is only empirically related to the actual distance, for instance according to the
classical Okumura-Hata model [3]. Although RSS measurement provides rather
coarse distance information, the acquisition of it is easy to conduct in almost
any existing wireless infrastructure and requires no time-synchronization among

nodes.

1.3.2 Error Sources

Given precise timing measurements, localization can be easily performed in a simple
geometric approach called trilateration. However, not all the circles (for TOA or RTOA
measurements) or hyperbolas (for TDOA measurements) intersect at a single point in
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practice due to the measurement error. Fig. 1.3 depicts one example. Error sources
stem from the measurement equipment per se and propagation environments for both
narrow-band and wide-band systems [15]. The error sources are:

e Equipment deficiency: Equipment deficiency includes thermal noise in the
electronic circuits of the hardware, quantized equipment readings, and incorrect
operations of an equipment.

e Multi-path propagation: Multi-path propagation causes the phenomenon that
the transmit signal reaches the receiver via numerous paths with different atten-
uations and time delays. The overlap of multiple replicas of the transmit signal
incurs ambiguities when detecting the first arrival path of a signal, even if a
line-of-sight (LOS) path exists [15]. One way to alleviate the ambiguities is to
use ultra-wide-band (UWB) transmit signals, whose time-resolution is high [16].
The constructive and destructive interference of these replicas also incurs large
fluctuations of the received signal strength over a distance in the order of the
carrier wavelength. This phenomena is also called small-scale fading [17].

e Shadowing: Shadowing effect is due to the energy absorption at large obstacles
between the transmitter and receiver. This effect causes difficulty in determining
the TOA and introduces an approximately log-normal distributed error term in
the received signal strength [17].

e Non-line-of-sight (NLOS) propagation: NLOS propagation describes either
the scenario where the LOS path between a transmitter and a receiver is com-
pletely obstructed, which is known as LOS blockage, or the scenario where the
LOS path is only partially obstructed and the signal can still penetrate obstacles
like walls and windows, which is known as LOS excess delay [18]. In both sce-
narios, NLOS propagation tends to incur a positive bias (for TOA) and increase
uncertainties in the estimate (for both TOA and RSS).

It is noteworthy that for simplicity the influence of algorithm inefficiency (e.g., for TOA
estimation) and multiple access interference (MAI) among nodes are neglected. In the
sequel, the errors introduced by the hardware are also ignored, since they are usually
negligible in comparison with the environmental errors [15].

1.3.3 Mode-Dependent Modeling

Essentially, different error sources influence TOA and RSS estimates concurrently. To
find an adequate modeling, various measurement campaigns have been conducted in
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(a) Trilateration using precise TOA mea- (b) Trilateration using noisy TOA mea-
surements. The three circles intersect at a surements. The three circles do not inter-
single point. sect at a single point.

Figure 1.3. Trilateration using TOA measurements with and without errors.

different scenarios, see for instance [14,19-23] for the TOA modeling and [19,20,22,24]
for the RSS modeling. It is not surprising that the campaign results vary with scenarios.
To approximate these results as close as possible and meanwhile maintain mathematical
tractability, two simple mode-dependent modelings are given as follows:

e Mode-dependent TOA modeling: A time-of-arrival measurement obtained
at a receiver node can be modeled as

{d/c o, LOS condition
TTOA =

N (1.3)
d/c+vnp, NLOS condition

where vy, is the measurement error under the LOS condition and wyp, is the
measurement error under the NLOS condition. In the literature, for instance
[3,22,25-31]), vy, is favorable to be represented by a Gaussian distribution with
mean yy, (around zero) and variance oZ. While depending on the localization
scenario, vyy, may follow a shifted Gaussian distribution (e.g., in [3,22,27-32)),
an exponential distribution (e.g., in [25,26,32]), a Rayleigh distribution (e.g.,
in [27,32-34]), or a Weibull distribution [35].

e Mode-dependent RSS modeling: A received-signal-strength measurement

obtained at a receiver node can be modeled as

Pr — (A, + 10By, log(£4)) + vy, LOS condition
Prss = 0

1.4
Pr — (Axp, + 10Byy, log(%)) + ont,,  NLOS condition (14)

where Pr (dBm) is the transmit power, Any), and By, (in dB scale) denote
respectively the path loss value at a reference distance dy and path loss exponent
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value for (N)LOS scenario. The measurement error v, ~ N(0,0%) under the
LOS condition and vng, ~ N (0,0%;) under the NLOS condition. The standard
deviation oy, (dB) is usually much larger than oy, (dB), reflecting the fact that
the shadowing effect is more prominent under the NLOS condition. It is assumed
here that the multi-path (small scale) fading effect has been effectively eliminated
by time-averaging [36].

Lastly, it is noteworthy that the NLOS effect is the main, yet not the only, reason for
the above mode (LOS or NLOS)-dependent modelings.

1.4 Harsh Mixed LOS/NLOS Environments

Throughout this thesis, both the non-cooperative localization and cooperative local-
ization are considered in harsh mixed line-of-sight and non-line-of-sight (LOS/NLOS)

environments, where

e LOS measurements coexist with NLOS measurements in the given batch of ob-
served data;

e Offline calibration is either not performed or only coarsely performed;

e NLOS identification is not performed.

1.4.1 Simplified Modeling and Optimality

From the two mode-dependent modelings given in Section 1.3.3, it is easy to conclude
that

(NL) (1.5)

v, ~ pg“) (v; BL), LOS condition
v = .
unL ~ Py (v; Bri), NLOS condition

In order to be robust against the NLOS measurements (or outliers), the idea proposed
originally in [3] is followed. That is, the measurement error terms observed for different
wireless channels are independently and identically distributed (iid) and follow a two-
mode mixture distribution in the form of

pv(v) = OéLp%)(U; BL) + O‘NLPS\IL) (v; Bn) (1.6)
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where v follows an “LOS” distribution p(v|LOS) = pg“ )(v; (BL) with prior probability
Pr{LOS} = ar, while an “NLOS” distribution p(v|NLOS) = pgm) (v; Bn) with prior
probability Pr{NLOS} = ax, = 1 — ar. In the literature, ay, is also known as the
NLOS contamination ratio. This is the best model that can be chosen, given a batch
of measurement error terms but without knowing which channel state has generated
the corresponding measurement. However, it is noted that this simplified model may
shuffle any temporal or spatial correlated patterns in the observed data and lead to
information loss. In the sequel, py(v) is called the measurement error distribution
despite that it may deviate from the actual one.

For lack of offline calibration of the environmental parameters, incomplete knowledge
about the measurement error statistics is assumed throughout this thesis. Two cases
are distinguished as follows:

1. py(v) is completely unknown due to uncertainties about the distributive profiles
of both pg“)(v; (BL) and pg\m) (v; BNL)-

2. py(v) is partially known with both pg) (v; BL) and pS\TL) (v; Bni) belonging to
designated families of distributions.

In the following chapters, the main aim is to jointly estimate the unknown positions and
rebuild py(v). We adopt two distinct approaches to the modeling of py(v), namely a
nonparametric approach and a parametric approach, in our joint estimation problems.
In the nonparametric model, py (v) is approximated by a kernel density estimate [37]
as

pv(v) = py(v) = % > wi\mlc <(UJ>\Zm)) (1.7)

where M is the total number of measurements, K(v) can be any favorable classes
of kernel densities, like standard Gaussian kernels, and the meanings of the other
parameters w and A, will be explained in more detail in Chapter 3. In the parametric
model, py (v) is approximately represented as a C-mode mixture model, namely,

C
pv(v) ~ pr(v) = apl (v; B) (1.8)

where pg) (v; By) is favorable to be Gaussian, as any distribution can be approximated

as closely as desired, for instance in £, norm, by a Gaussian mixture [38]. In con-
trast to the nonparametric approach where the parameters w, A,, are set adaptively
and nonparametricly (according to rule-of-thumb or some optimality criteria) before
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performing localization, the mixture model parameters 8, = [a, ..., ac, f1, ..., Bc] are
determined jointly with the unknown positions.

As it is well known, model mismatch will degrade the ML estimation performance. Spe-
cific to the addressed localization problems, various possible model mismatch problems
that may occur are explained with the aid of Fig. 1.4 as follows:

e Problem I: The mode-dependent model in (1.5) is insufficient to represent the

underlying measurement error.

e Problem II: The iid assumption is invalid when approximating (1.5) by a two-
mode mixture distribution in (1.6). An example for this case is that a sequence of
measurements obtained from the same wireless link but at different time instances
are more likely to be generated according to a sequential pattern with a constant
state (either LOS or NLOS) or according to a specific Markov chain model [39].

e Problem III: Even if (1.6) precisely characterizes the underlying measurement
error, i.e., the above two model mismatch problems do not appear, both the non-
parametric and parametric representations of (1.6) lead to approximation error
when py (v) is unknown. However, this can be avoided when py (v) is partially
known and the parametric model is used.

As a conclusion, we note that it is extremely difficult to find an optimal model analyt-
ically. Despite the sub-optimality of (1.6) in many practical problems, imagining it as
the actual model allows for quite good robustness against outliers and meanwhile facil-
itates the design of new localization algorithms. These will be seen in the subsequent
chapters.

1.4.2 Key Assumptions

To facilitate the algorithm design and performance evaluations in the subsequent chap-
ters, the following assumptions are made throughout the thesis.

AO : The target(s) to be located remain stationary during the localization process.

Al : The measurement error terms in v are assumed to be iid although it might not
be true in reality.
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A2 : Wireless transmission of data packages is lossless.

A3 : No quantization of the measurements.

In addition, there are other assumptions made specific to the considered problem in
each chapter.

1.5 A Taxonomy of Existing Algorithms

In this section, we survey the existing localization algorithms with emphasis on those
considering NLOS mitigation (cf. Section 1.5.1 for non-cooperative localization and
cf. Section 1.5.2 for cooperative localization). For detailed descriptions of the existing
algorithms, interested readers are referred to [13,40].

1.5.1 Non-cooperative Localization

Non-cooperative localization is primarily considered in wireless cellular radio networks.
Numerous existing algorithms (e.g., [41-49]) assume pure LOS environments and use
simple Gaussian model of the measurement error. In indoor environments and dense ur-
ban areas, non-line-of-sight (NLOS) effect significantly degrades the estimation perfor-
mance of these algorithm. Therefore, advanced algorithms that are robust to the NLOS
measurements (outliers) are constantly sought after. The existing NLOS mitigation al-
gorithms can be broadly categorized into the identify and discard based algorithms,
the programming based algorithms, and the robust estimation based algorithms.

The essence of the identify and discard based algorithms (e.g., [50-52]) is to identify and
discard those NLOS-corrupted distance measurements. The remaining distance mea-
surements, classified as LOS measurements, are then used by conventional algorithms
(e.g., least-squares (LS) estimation based algorithms) to compute an accurate position
estimate. The key idea of programming based algorithms is to formulate the position
estimation problem as a constraint optimization problem, which can be solved with
the aid of some mathematical programming techniques (e.g., quadratic programming
(QP) [53], linear programming (LP) [54], and semi-definite programming (SDP) [55]).
In order to combat the NLOS effect, robust estimation based algorithms resort to
replace the least-squares residual formulation by robust statistics based on [56], [57].
In [58,59], robust least-median-squares (LMS) based algorithms were proposed. In [60],



12 Chapter 1: Introduction
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Mode-Dependent Model in (1.5)
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Figure 1.4. Constraints imposed and approximations made to arrive at a nonparametric
or a parametric model of the actual measurement error.
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a robust bootstrapping M-estimation algorithm that combines Huber’s M-estimation
and bootstrap techniques [61-63] was proposed. For further improvement, an adaptive
algorithm that tunes Huber’s score function was introduced in [32,64].

In the harsh mixed LOS/NLOS environments assumed in Section 1.4, robust position
estimation becomes extraordinarily challenging. To the best of our knowledge, those
algorithms from the first and second categories are not able to work with incomplete
knowledge about the measurement error statistics. Robust estimation based algorithms
are favorable to be employed under harsh situations, while the classical algorithms
are merely robust for up to 50% of outliers. In order to achieve higher robustness
against the NLOS effect, novel robust estimation algorithms have been proposed in
[27,64-67]. The common gist of these approaches is to approximate the maximum
likelihood estimator of the unknown parameters jointly in an iterative algorithm that
alternates between a position estimation step and a pdf estimation step.

1.5.2 Cooperative Localization

Cooperative localization is primarily considered in wireless sensor networks. In the
past decade, a plethora of cooperative localization algorithms has been proposed based
on different position-related measurement categories as those listed in Section 1.3.1.
Herein, the class of concurrent algorithms are the main focus, as they can avoid localiza-
tion error propagation as compared to the class of sequential algorithms. The existing
concurrent algorithms can be further categorized into non-Bayesian algorithms and
Bayesian algorithms. In the non-Bayesian algorithms, the unknown (true) positions
are assumed to be deterministic. Classical non-Bayesian algorithms (both central-
ized and distributed) include: (1) least-squares estimation based algorithms [19, 68],
and [14, Algorithm 1]; (2) multidimensional scaling (MDS) based algorithms [69-71];
(3) programming based algorithms [72,73]; (4) iterative parallel projection method
(IPPM) based algorithms [74-76]; (5) expectation-maximization (EM) based algo-
rithms [77-80]. Whereas in the Bayesian algorithms, unknown (true) positions are as-
sumed to be random variables with certain prior distributions. Representative Bayesian
algorithms include the nonparametric belief propagation (NBP) algorithm [81], sum-
product-algorithm over wireless networks (SPAWN) algorithm [14], and some new vari-
ations [82-85] built upon them. They all perform message passing by taking advantages
of the belief propagation algorithm [86] or the sum-product algorithm [87] in different
graphical models. Restricted by the ad-hoc nature of WSNs, distributed cooperative
localization (or self-localization) algorithms are highly demanded. This is owing to
their advantageous features of being scalable, independent of a fusion center, and less
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sensitive to sensor failure as compared to the centralized solutions [88]. In the dis-
tributed non-Bayesian algorithms, wireless sensors exchange their position estimates
mutually; while in the conventional, distributed Bayesian algorithms, they exchange
local belief messages (distributions represented by a set of particles) about their own
true positions and consume much more energy for wireless communication. At the
sacrifice of localization accuracy, however, some recent work demonstrated that the
communication overhead can be significantly reduced by using transmit- and receive
censoring [85] and parametric representation of the local belief messages [84,89).

Among the listed algorithms, the least-squares estimation based algorithms, the MDS
based algorithms, and the EM based algorithms are independent of offline calibration
and NLOS identification. However, the first two classes of algorithms are extremely
sensitive to the outliers induced by the NLOS propagation. In [77], an EM algorithm
was proposed for outlier compensation but not in the context of NLOS mitigation.
We proposed several centralized algorithms in [78] (for RSS model in (1.4))) and [79]
(for TOA model in (1.3) that extend [77] for NLOS mitigation without using offline
calibration and NLOS identification. The most recent work in [80] further developed
a series of centralized- and distributed ECM algorithms for TOA based cooperative
localization in WSNSs.

1.6 Thesis Outline and Contributions

The focus of this thesis is to investigate NLOS mitigation in harsh mixed LOS/NLOS
environments from a statistical signal processing perspective. To keep a good consis-
tency, only the TOA based localization algorithms will be introduced in this thesis.
This section introduces the organization of this thesis and highlights the main findings
of each chapter.

In Chapter 2, the background of the maximum likelihood estimation is briefly intro-
duced. Then, the expectation-maximization (EM), expectation-conditional maximiza-
tion (ECM), and joint maximum a posteriori-maximum likelihood (JMAP-ML) algo-
rithms are introduced, that can be adopted to tackle the difficulties in the incomplete-
data situations. These serve as the basics of the following chapters.

In Chapter 3, TOA based non-cooperative localization is considered in harsh mixed
LOS/NLOS environments with unknown measurement error distribution py(v). A
nonparametric approach to the modeling of py (v) is employed. This work finds appli-
cations primarily in cellular radio networks because of the relatively high computational
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complexity. The original contributions, which lead to one conference contribution [27]
and one journal contribution [65], are summarized as follows:

e A robust iterative nonparametric (RIN) algorithm has been developed, which
alternates between a nonparametric pdf estimation step and a position estimation
step. Starting with a carefully selected initial position estimate, an estimate of
the true measurement error distribution is first constructed via adaptive kernel
density estimation (AKDE) [37]. An approximated log-likelihood function is then
formulated, from which a refined position estimate is resolved via a quasi-Newton
(QN) method. These two steps are repeated as necessary.

e The best achievable localization accuracy has been presented in terms of Cramér-
Rao lower bound (CRLB), which serves as a benchmark for evaluating different
localization algorithms.

In Chapter 4, the localization problem in Chapter 3 is re-consider. To reduce the
computational complexity, a parametric approach to the modeling of the measurement
error distribution is adopted instead. This work finds applications in both cellular
radio networks and wireless sensor networks due to the relatively low computational
complexity. The original contributions, which lead to one journal publication [67], are

summarized as follows:

e Two iterative algorithms have been developed based on the well-known ECM
criterion and JMAP-ML criterion to approximate the ideal maximum likelihood
estimator of the unknown parameters, including position and mixture model
parameters.

e Convergence analysis and complexity analysis of the proposed algorithms have
been shown with concrete examples.

Although not introduced in this thesis, an EM based non-cooperative localization al-
gorithm has been developed based on the mode-dependent RSS model in (1.3), which
leads to one conference contribution [66].

In Chapter 5, TOA based cooperative localization is studied in harsh mixed LOS/NLOS
environments. The parametric approach to the modeling of the measurement error
distribution is again adopted. The original contributions, which lead to one conference
contribution [79] and one journal contribution [80], are summarized as follows:
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e A series of centralized- and distributed ECM algorithms have been developed to
approximate the ML estimator of the unknown parameters.

e The proposed algorithms have been evaluated in terms of computational com-
plexity and communication overhead.

e The best achievable localization accuracy has been presented in terms of CRLB
(with possibly any distribution), which generalizes the results in [19] (valid merely
for the Gaussian model).

Although not introduced in this thesis, an EM based cooperative localization algorithm
has been developed based on the mode-dependent RSS model in (1.3), which leads to
one conference contribution [78].

Finally, Chapter 6 concludes this thesis and shortly summarizes some ongoing work.

For a better view of the main findings of each chapter and their connections, Figure 1.5
is depicted below.
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Chapter 2

Background

This chapter serves as the cornerstone of this thesis. Section 2.1 briefly revisits sev-
eral well-known optimality criteria for developing classical estimators of unknown
deterministic parameters. Therein, the important statements and results are taken
from [8,90-92] without proof. Section 2.2 briefly revisits several alternative maximum
likelihood estimation techniques that are easier to use in incomplete-data situations.
Therein, the important statements and results are taken from [93-97] without proof.

2.1 Overview of Classical Parameter Estimation

Statistical parameter estimation plays an important role in many electronic signal
processing systems, as it can extract useful information from a batch of noise corrupted
measurements [90]. In this chapter, the class of estimators of unknown deterministic
parameters is mainly considered. In the literature, they are commonly referred to as
the “classical” estimators. The overview of different optimality criteria starts from
the most natural choice, i.e., the minimum-mean-square-error (MMSE) criterion. The
MMSE estimator, as its name suggests, minimizes the mean-square-error (MSE), which
is defined by

MSE(6) = Eyre) {116 — 6]} (2.1)

where the parameter is a real vector 8 € © on R?, and 6 is an estimator of 6. Es-
sentially, 8 is a function of observations, namely, 8 = f (r) = f(ry,7e,...,ry), but for
brevity the dependency of any estimator on the observations is ignored in the sequel.
The expectation is taken with respect to the probability density function (pdf) p(r; ).
The MSE expression in (2.1) can be rewritten as

MSE(8) = E, o) {Z(ﬁl - 92-)2}

— tr {cov(é)} + ||Bias(9)]|? (2.2)

where 6; is the ith entry of 8, Cov(8) is the covariance matrix of 6 defined by

Cov(0) = Eyre) { (6 — E{6})(6 —E{6})" ] (2.3)
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and Bias(0) is the bias of  defined by

Bias(8) = E .0 {0} — 6. (2.4)

A

Since Bias(@) is a function of the unknown (true) parameter 6, the MMSE estimator
is in general unrealizable [90].

Alternatively, the minimum variance unbiased (MVU) estimator can be adopted. The
MVU estimator must satisfy for all @ € © that (i) @ is unbiased and (ii) var(f;) <
Var(ég), 1 =1,2,....d, holds for any other unbiased estimator 0. In general, given an
unbiased estimator with computed variances, var(é,-), 1 =1,2,...,d, it is still difficult
to determine whether it is an MVU estimator or not. In the special case where the
variance of each entry of 0 equals the corresponding Cramér-Rao lower bound (CRLB),
we can immediately tell that 6 is an MVU estimator. This idea leads to a powerful
approach for finding an MVU estimator in linear measurement model. Before this
approach is given in details, the CRLB theorem for vector parameter case [90] is first

reviewed in the following.

Theorem 2.1. When the regularity conditions [8, C.2] are all fulfilled, the covariance
matrixz of any unbiased estimator 0 satisfies

Cov(8) = B {(é —0)(6 - e)T} > CRLB(0) = F~1(6) (2.5)
where F (@) denotes the Fisher’s information matriz (FIM) and is defined by

F(0) =Epro) {—A§np(r;0)}. (2.6)

The definitions of the gradient operator Vg and Laplace operator A§ = VoV1 are
given in Appendix 2.3.1.

Theorem 2.2. An MVU estimator 6 = £(r) may be found that attains the bound in
that Cov() = CRLB(8) if and only if

Jlnp(r;0)

o0~ 7 (0)f(r)-0) (2.7)

for some d-dimensional function f(r) : RY — RZ.
Unfortunately for nonlinear measurement models shown in Chapter 1, which is the sole

focus of this thesis, an MVU estimator is generally hard to derive even if it does exist.
Alternatively, the estimator based on the maximum likelihood (ML) criterion, termed
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the ML estimator, is easier to derive even for complicated estimation problems [90].
Most importantly, the ML estimator is asymptotically efficient and becomes the MVU
estimator as the number of measurements, /N, goes to infinity.

The ML estimator of @ € O is defined as

OM* = arg max p(r; 6), (2.8)
0

i.e., the value that globally maximizes the joint pdf for all observations, p(r; @), which
is also known as the likelihood function. The idea behind the ML criterion is that
given a set of observations r, some values of 8 are more probable to have generated r
than the others, which can be easily recognized from plotting p(r; @) over all 6 € O.
Usually, it is more convenient to work with the log-likelihood function, defined as
L;(6;r) = Inp(r; @) throughout this thesis, as logarithm is a monotonic operation.

Asymptotic property and invariance property of the ML estimator were given in [90].
Before these results are revisited, the following two definitions [91] are given in the first
place for better exposition.

Definition 2.1. An estimator is said to be efficient when it is unbiased and its covari-
ance matriz equals the CRLB.

Definition 2.2. An estimator 6 = f(ry,7o,...,7N) is said to be consistent if

lim Pr{||0 — 6]|> > e} =0, Ve> 0. (2.9)
N—oo

Theorem 2.3. When p(r;0) fulfills the reqularity conditions [8, C.5] and the number
of parameters, d, to be estimated is much less than the number of measurements, N,
the ML estimator of the unknown parameter 0 is in general asymptotically distributed

according to

0L N6, F(0)) (2.10)

where O is the true value of the unknown parameter and F~'(0) is evaluated at the

true value 8 in this context.

Theorem 2.4. The ML estimator of the parameter T = g(0), when g(0) : R? s RP

s an tnvertible function, is given by
7 =g(8) (2.11)

where 0 is the ML estimator of 8. Moreover,

FAN <g<e>, (83—9)Tf—l<e> (aga—(:))) - (212
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Some remarks are given as follows:

e When N > d, the ML estimator is asymptotically efficient according to the
Definition 2.1.

e When all entries of () are proportional to N, the ML estimator is asymptoti-
cally consistent according to the Definition 2.2.

Owing to the nice properties, almost all practical estimators have been developed in
light of the maximum likelihood criterion [90]. However, implementing an ML estimator
is not always an easy task, and we may confront various difficulties in the practice. We

list some in the following.

e An ML estimate can be found from (2.8) only numerically, for instance, via the
grid search, Newton-type methods, or expectation-maximization (EM) algorithm
[90], and the point found might be a local maximum or a saddle point instead of
the global maximum if p(r; @) is multi-modal.

e The maximization problem in (2.8) is cumbersome, meaning that a lot of com-
putational efforts are required to compute the ML estimator.

e The chosen pdf p(r;0) is a poor model of the actual distribution that gave rise

to the observations [92].

e More serious problems would occur when p(r; @) is completely unknown or only
known to a certain extent, cf. Chapter 1.

2.2 ML Estimation with Incomplete Data

Finding an ML estimator with conventional implementation might be complicated in
incomplete-data situations, where there are missing data, truncated distributions, or
grouped observations [96]. In the sequel, we provide several advanced algorithms that
can be applied for approximating the ML estimator with less computational hurdles.

The notations introduced in the previous section are reused here, namely, let r =
(71,79, ..., 7] be a set of observations having pdf p(r; @) where 8 = [0y, 05, ..., 0;]. Ad-
ditionally, a vector y is introduced to denote the missing data and a vector z with
z = {r,y} is introduced to denote the complete data. The complete-data log-likelihood
function is defined by Lo(0;r,y) = Inp(r,y;0). In contrast, £;(0;r) is referred to as
the incomplete-data log-likelihood function in the sequel.



2.2 ML Estimation with Incomplete Data 23

2.2.1 EM Algorithm

The expectation-maximization (EM) algorithm is a general-purpose algorithm for ML
estimation in incomplete-data situations [96]. Since the appearance of the seminal
paper [93], the EM algorithm has found a plethora of applications in the literature.
The EM algorithm is an iterative approach, and, as its name suggests, it performs an
expectation (E)-step and a maximization (M)-step on each iteration. As compared
to the conventional ML estimation that adopts for instance Newton-type numerical
methods, the EM algorithm can tackle incomplete-data problems in a computationally
profitable manner. For clarity, the key steps for computing an EM estimate on the
(n+ 1)th iteration are summarized in Algorithm 2.1.

Algorithm 2.1 EM Algorithm (General Routine) [93]
Step 1—Initialization:

Set the iteration index n = 0. Choose an initial guess 8(°). Choose a convergence
tolerance A.

Step 2—EM stage:

On the (n + 1)th iteration (n € Z,n > 0), do:

e E-step: Perform conditional expectation of the complete-data log-likelihood
function in terms of y given r and 8™ and obtain a Q-function

Q (07 9(77)) = Ep(y|r;0(")){£0(0; Yy, I‘)} (213)

e M-step: Find 81 that globally maximizes Q (9; 0(77)).

Step 3—Convergence Check:

If £;(07D;r) — £(0™;r) < A, then terminate this algorithm and obtain M =
01 otherwise set 1 < 1 + 1 and return to Step 2.

Note that the convergence condition in Algorithm 2.1 is due to the nice property proven
in [93]; that is, the incomplete-data log-likelihood is monotonically increased after each
EM iteration, more precisely,

L0 r) > £,(0":r), n=0,1,2,.. (2.14)
Therefore, when L;(0;r) is bounded above, the sequence of incomplete-data log-

likelihood values {£;(8™;r)} would converge to some value L*.

The overwhelming drawback of the EM algorithm is that the global maximizer is often
difficult to obtain in the M-step. To tackle this problem, a generalized EM (GEM)
algorithm was proposed in [93]. The GEM algorithm is revisited in Algorithm 2.2.
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Algorithm 2.2 GEM Algorithm (General Routine) [93]
Step 1—Initialization:

Set the iteration index n = 0. Choose an initial guess 8(°). Choose a convergence
tolerance A.
Step 2—GEM Stage:

On the (1 + 1)th iteration (n € Z,n > 0), do:

e E-step: Perform conditional expectation of the complete-data log-likelihood
function in terms of y given r and 8™ and obtain

Q (0;6") = E,yromiLc(0;y,1)}. (2.15)
e M-step: Find 0" such that

Q (9(n+1); 9(77)) > Q (g(n); 9(77)) _ (2.16)

Step 3—Convergence Check:

If £;(07);r) — £,(0™:r) < A, then terminate this algorithm and obtain §%EM —
01 otherwise set 1 < 1 + 1 and return to Step 2.

Simply speaking, the GEM algorithm modifies the M-step so that @+ is found
to increase the Q-function over its value evaluated at the prior estimate 6 [96].
Clearly, the EM algorithm is a special case of the GEM algorithm. The property
in (2.14) also holds for the GEM algorithm. Under some regularity conditions [94],
Wu gave the following two theorems to describe the convergence of the incomplete-
data log-likelihood values {£;(8™;r)} to some stationary point L* satisfying that
L* = L£,(0%r) and 0L;(6;1)/008|g—e- = 0.

Theorem 2.5. Let {0} be a GEM sequence generated by 1) = M(OM), and
suppose that (i) M(-) is a closed point-to-set map over the complement of S with

S = set of stationary points in the interior of ©, (2.17)
and (i1)
L0 ) > £,(0W:r), for all @ ¢ S. (2.18)

Then all the limit points of {8} are stationary points, and {L;(0™;r)} converges
monotonically to L* = L;(0*;r) for some stationary points 0* € S.

Theorem 2.6. Suppose that the Q-function Q(0; @) satisfies the continuous condition:
Q(0; @) is continuous in both 6 and ¢. (2.19)

Then all the limit points of {8 of an EM algorithm are stationary points of L;(0;r),
and {L;(0™: 1)} converges monotonically to L* = L;(0*;1) for some stationary points
0.
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Remark 2.1. For the EM algorithm, M(0™) defines the point-to-set map:

M(0M) = argmax Q (6;07) . (2.20)
0

In other words, M(0™) is the set of global maximizer of the Q-function. For the GEM
algorithm, M(0™) is defined to be the set of all ") satisfying (2.16).

Note that the condition in Theorem 2.6 is easy to verify in almost all applications,
while the two conditions in Theorem 2.5 are, in general, hard to verify [94]. But note
that it is uttermost important that the sequence of log-likelihood values {£;(8™;r)} of
both the EM algorithm and GEM algorithm monotonically increase to some point and
{6} is an EM sequence or a GEM sequence. In [96], McLachlan and Krishnan pointed
out that, almost in all applications, the sequence of log-likelihood values {£;(0™;r)}
would ultimately converge to a stationary point. Only in rare cases, a fixed point of
the algorithm will be achieved. In [94], Wu also pointed out that the convergence to
either kind of stationary point (e.g., saddle point, local optimum, or global optimum)
depends on the choice of initial guess ().

2.2.2 ECM Algorithm

Both the EM algorithm and GEM algorithm are unattractive when the complete-data
maximum likelihood estimation is still cuambersome. The expectation-conditional max-
imization (ECM) algorithm, which was proposed by Meng and Rubin in [95], can be
adopted for such difficult situation. The idea is to replace a complicated maximization
step in the EM algorithm with several computationally simpler conditional maximiza-
tion (CM) steps in the ECM algorithm. The ECM algorithm typically requires more
iterations as compared to the EM algorithm, and a single CM step might also involve
iterations if closed form solution can not be found. But the total computational time
of the ECM algorithm might be faster, because the conditional maximization prob-
lems therein handles only lower dimensional searches that can be solved faster, more
efficiently, and with higher stability [96].

Similar to the previous subsections, the key steps of the ECM algorithm are summarized
in Algorithm 2.3. Some remarks are in order.

e Both the variety and complexity of the CM steps depend on the partition of 6.
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Algorithm 2.3 ECM Algorithm (General Routine) [95]
Step 1—Initialization:

Set the iteration index n = 0. Choose an initial guess 8(°). Choose a convergence
tolerance A.
Step 2—ECM Stage:

On the (1 + 1)th iteration (n € Z,n > 0), do:

e E-step: Performing conditional expectation, exactly as in the previous algo-
rithms, yields Q(8;0™).

e CM-steps:

1. Find a proper partition of the unknown parameters, 8 = [97, ..., 9%, where
¥, s =1,2,...,5 is a sub-vector of 6.

2. Select a set of S vector functions of 6, namely,
95(0) = [97, ..., 90 9L, ... 95" (2.21)
3. For s = 1,2, ..., S, solve 815/9) sequentially via

0"1+/5) = arg max Q(0;0™), (2.22)
0

subject to the constraint g,(0) = g,(@M+(=1)/9),
4. Obtain 1) = @+5/9) after the final CM step.

Step 3—Convergence Check:

If £;(07);r) — £;(0™:r) < A, then terminate this algorithm and obtain %M —
0V otherwise reset 1 < n -+ 1 and return to Step 2.

e On the sth CM-step of the nth ECM iteration, the -function is maximized in
an attempt to update 9" with the other subvectors held fixed at their current

values.

e The ECM algorithm is a member of the GEM algorithm, because
Q (00 0M) > (6™;0™) holds for every 7.

e According to [96], almost all the convergence properties established for the EM
algorithm in [93,94] hold for the ECM algorithm as well when:
1. g5(0) is differentiable;
2. Vogs(0) is of full rank at 8™ € O, for all n;

3. The “space filling” condition ()>_, G4(8") = {0} holds for 7, where G,(8)
is the column space of the matrix Vggs(0).
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e Simply speaking, the “space filling” condition tells us that the maximization is
done over the whole parameter space © rather than a subspace of it.

2.2.3 JMAP-ML Algorithm

When a set of missing data is taken into account to facilitate the classical ML estimation
problem, the complete-data likelihood relates to the incomplete-data likelihood through

p(r:0) = / p(r,y: 0)dy. (2.23)

As another means of approximating the ML estimator, the complete-data log-likelihood
function is maximized directly with respect to both @ and y rather than performing
an integration with respect to y, that is,

argmax Lo (0;y,r) = arg max {arg max Lo (60;y, r)} . (2.24)
0y 0 y

This criterion is called the joint maximum a posteriori-maximum likelihood (JMAP-
ML) criterion [97]. This is due to the fact that it incorporates a maximum a posteriori
(MAP) estimation step in terms of the latent variables in y and an ML estimation
step in terms of the deterministic parameters in 8. In general, an algorithm developed
based on the JMAP-ML criterion starts with a carefully selected initial guess () and
alternates between the above mentioned two steps in an iterative process. The general
routine is given in Algorithm 2.4. The JMAP-ML algorithm is less popular than the
EM-type algorithm in that it only produces a biased estimator, but this bias estimator
may generate better MSE as compared to the unbiased estimators [97].

2.2.4 Connections

In the previous subsections, several salient algorithms are briefly revisited that can
be used to facilitate the conventional ML estimation in incomplete-data situations.
They all work with complete data, more precisely, with the complete-data likelihood
function. It is easy to see that the incomplete-data likelihood function p(r; @) is the
marginalization of the complete-data likelihood function p(y, r; @) in terms of the latent
variables y. Replacing this integration (with respect to y) with a conditional expec-
tation given the current parameter estimate (E-step) or a direct maximization with
respect to y given the current parameter (MAP step), an approximation of p(r; @) is
obtained from which a parameter estimate is much easier to solve as compared to the
conventional ML implementation. Figure 2.1 demonstrates the connections between
these algorithms.
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Algorithm 2.4 JMAP-ML Algorithm (General Routine) [97]
Step 1—Initialization:

Set the iteration index n = 0. Choose an initial guess 8(°). Choose a convergence
tolerance A.

Step 2—Joint MAP-ML stage:

On the (n + 1)th iteration (n € Z,n > 0), do:

e MAP-step: Find an MAP estimate of y, y™Y, where

y " = argmax Lo (0™, y). (2.25)
y

e ML-step: Find a complete-data ML estimate of 8, 801 where

0" = argmax L (0; 1,y "), (2.26)
0

Step 3—Convergence Check:

If Lo(@0);r, y ) — Lo (0 r,y™) < A, then terminate this algorithm and obtain
0’ = 0 otherwise set 1 + 1+ 1 and return to Step 2.

2.3 Appendix

2.3.1 Gradient and Laplace Operators

The gradient of a vector function g(0) : R — RP with @ = [0}, 60,, ..., 047 is defined as

0g1(6)  992(9) Ogp(6)
001 001 e 001
Vog(0) = : oo | (2.27)
0g1(8)  9g2(9) Ogp(6)
004 004 Tt 004

and the Laplace of a scalar function g(8) : R? — R is defined as

9%9(0)  9%9(9) 9%9(0)
89% 0601002 0601004

Agg(0)=| S (2.28)
9%9(0)  9%9(9) 9%9(6)

004001 004002 °°° 062
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M-step Conventional way ML step
arg max p(r; 0)
]
Q(656M) ~ p(r; 6) ~ Lo(9;r,y )
E-step Marginalization MAP step
[ p(r,y;0)dy
p(r,y;6)

Figure 2.1. Connections between the conventional ML estimation, EM estimation and
JMAP-ML estimation.
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Chapter 3

Localization in Cellular Radio Networks:
Nonparametric Modeling

In the past decade, wireless localization systems are mainly considered in cellular radio
networks [1]. Among a myriad of applications, emergency services like E-911 [98] in
the USA, are more demanding. This requires a localization system to be able to locate
emergency calls accurately and rapidly in different scenarios including, certainly, those
harsh ones. In this chapter, time-of-arrival (TOA) based robust localization is con-
sidered in harsh mixed line-of-sight (LOS)/non-line-of-sight (NLOS) environments as
sketched in Section 1.4. Herein, the probability density function (pdf) of the measure-
ment error (or measurement error distribution) is assumed to be completely unknown.
An iterative algorithm, called robust iterative nonparametric (RIN) algorithm, has been
developed for NLOS mitigation under the harsh conditions assumed in Chapter 1.

This chapter is organized as follows. Section 3.1 introduces the signal model and states
the problem at hand. Section 3.2 revisits an existing robust position estimation algo-
rithm and further introduces the proposed RIN algorithm. Section 3.3 computes the
Cramér-Rao lower bound and Section 3.4 introduces several theoretical performance
metrics for evaluating an unbiased position estimator. Section 3.5 shows some simula-
tion results. Conclusions are drawn in Section 3.6. Finally, Section 3.7 assembles some
important definitions and derivations.

3.1 Signal Model and Problem Statement

Consider the scenario where N(N > 3) base stations (BSs) surround a stationary mo-
bile station (MS) of interest in a wireless cellular radio network. Let p; = [z, y]7
denote the a priori known position of the ith BS, i = 1,2,..., N, and let 8, = [z,y]"
denote the unknown MS position. For each BS, a number of K(K > 1) distance
measurement(s) (time-of-arrival estimate(s) multiplied by ¢y) are obtained and subse-
quently relayed to a fusion center for post-processing [99]. Figure 3.1 illustrates such

a scenario and explains the notations therein.

Ass