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Kurzfassung

Diese Dissertation befasst sich mit dem Problem der Lokalisierung von Knoten in

verschiedenen drahtlosen Infrastrukturen, wie zum Beispiel Mobilfunknetzen und

drahtlosen Sensornetzen. Um so realistisch wie möglich zu sein, werden gemis-

chte Lokalisierungsumgebungen mit und ohne direkter Sichtverbindung (LOS/NLOS)

vorgestellt. Sowohl herkömmliche nicht-kooperative, als auch neuartige kooperative

Lokalisierungsmethoden wurden gründlich untersucht. Aufgrund der zufälligen Natur

der Messungen, bilden probabilistische Methoden im Vergleich zu traditionellen ge-

ometrischen Methoden die fortgeschritteneren Ansätze. Die Quintessenz der proba-

bilistischen Methoden besteht darin, die unbekannten Positionen der Zielknoten in

einem Schätzprozess zu bestimmen. Gegeben sind hierbei verrauschte positionsbezo-

gene Messwerte, ein probabilistisches Messmodell, sowie einige bekannte Referenzposi-

tionen.

Im Gegensatz zur Mehrheit des existierenden Methoden werden strenge, jedoch prak-

tisch relevante Beschränkungen behandelt: Das gewünschte Lokalisierungssystem bein-

haltet weder eine Offline-Kalibrierung, noch ist es möglich die Existenz einer direkten

Sichtverbindung zu erkennen. Dadurch ist die Messfehlerstatistik unbekannt, wodurch

die Folgerung von Rückschlüssen eine extreme Herausforderung darstellt. Zwei neue

Klassen von Lokalisierungsalgorithmen zur gemeinsamen Schätzung von Positionen

und Messfehlerstatistik werden vorgeschlagen. In dieser Dissertation werden alle un-

bekannten Parametern als deterministisch betrachtet und es wird jeweils nach dem

Maximum-Likelihood (ML) Schätzer gesucht.

Algorithmen der ersten Klasse setzen keine Kenntnis der Messfehlerstatistik voraus

und wenden ein nichtparametrisches Modell an. Die idee besteht in der alternierenden

Anwendung einer Schätzung der Wahrscheinlichkeitsdichtefunktion einerseits, wobei

eine Approximation der unbekannten Messfehlerstatistik über eine adaptive Kerndicht-

eschätzung erfolgt. Andererseits wird eine Parameterschätzung der Position aus-

geführt, welche auf eine Approximation der Log-Likelihood Funktion beruht. Der

Rechenaufwand für Algorithmen dieser Klasse wächst quadratisch mit der Anzahl der

Messwerte, wodurch sich die Anwendbarkeit im Wesentlichen auf die nicht-kooperative

Lokalisierung in Mobilfunknetzen beschränkt. Eine zweite Klasse von Algorithmen

zielt daher auf eine Reduzierung des Rechenaufwandes ab, wofür eine Approxima-

tion der Messfehlerstatistik mittels einer Kombination von Gaussischen Dichtfunktio-

nen verwendet wird. Iterative Algorithmen, welche zwischen Aktualisierungen von

Positionen und anderen Parametern alternieren, wurden mit Hilfe von Expectation-

Maximization (EM), Expectation-Conditional Maximization (ECM) und Joint Max-



VI

imum A Posteriori-ML (JMAP-ML) Prinzipen entwickelt. Wie sich herausstellte,

wächst der Rechenaufwand von Algorithmen dieser zweiten Klasse nunmehr linear mit

der Anzahl der zur Verfügung stehenden Messwerte, wodurch eine Erweiterung des An-

wendungsbereiches auf kooperative Lokalisierung für drahtlose Sensornetzen möglich

wird.

Abgesehen von dem Algorithmenentwurf selbst wurden zur umfassenden Evaluierung

derselben systematische Analysen im Hinblick auf die Cramer-Rao-Schranken, den

Rechenaufwand sowie den für die Kommunikation anfallenden Leistungsverbrauch

durchgeführt. Anhand der Simulations- und Versuchsergebnisse konnte gezeigt wer-

den, dass die vorgeschlagenen Algorithmen für hinreichend große Datensätze die fun-

damentalen Schranken der Lokalisierungsgenäuigkeit erreichen. Sofern der Einfluss

etwaiger Modellfehlanpassungen vernachlässigt werden kann, sind die vorgeschlagenen

Verfahren den konkurrienden weit überlegen.
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Abstract

This PhD thesis considers the problem of locating some target nodes in different wireless

infrastructures such as wireless cellular radio networks and wireless sensor networks.

To be as realistic as possible, mixed line-of-sight and non-line-of-sight (LOS/NLOS)

localization environment is introduced. Both the conventional non-cooperative local-

ization and the new emerging cooperative localization have been studied thoroughly.

Owing to the random nature of the measurements, probabilistic methods are more

advanced as compared to the old-fashioned geometric methods. The gist behind the

probabilistic methods is to infer the unknown positions of the target nodes in an es-

timation process, given a set of noisy position related measurements, a probabilistic

measurement model, and a few known reference positions.

In contrast to the majority of the existing methods, harsh but practical constraints are

taken into account: neither offline calibration nor non-line-of-sight state identification

is equipped in the desired localization system. This leads to incomplete knowledge

about the measurement error statistics making the inference task extremely challenging.

Two new classes of localization algorithms have been proposed to jointly estimate the

positions and measurement error statistics. All unknown parameters are assumed to

be deterministic, and maximum likelihood estimator is sought after throughout this

thesis.

The first class of algorithms assumes no knowledge about the measurement error dis-

tribution and adopts a nonparametric modeling. The idea is to alternate between a

pdf estimation step, which approximates the exact measurement error pdf via adaptive

kernel density estimation, and a parameter estimation step, which resolves a position

estimate numerically from an approximated log-likelihood function. The computational

complexity of this class of algorithms scales quadratically in the number of measure-

ments. Hence, the first class of algorithms is applicable primarily for non-cooperative

localization in wireless cellular radio networks. In order to reduce the computational

complexity, a second class of algorithms resorts to approximate the measurement error

distribution parametrically as a linear combination of Gaussian distributions. Itera-

tive algorithms that alternate between updating the position(s) and other parameters

have been developed with the aid of expectation-maximization (EM), expectation con-

ditional maximization (ECM) and joint maximum a posterior -maximum likelihood

(JMAP-ML) criteria. As a consequence, the computational complexity turns out to

scale linearly in the number of measurements. Hence, the second class of algorithms is

also applicable for cooperative localization in wireless sensor networks.
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Apart from the algorithm design, systematical analyses in terms of Cramér-Rao lower

bound, computational complexity, and communication energy consumption have also

been conducted for comprehensive algorithm evaluations. Simulation and experimental

results have demonstrated that the proposed algorithms all tend to achieve the funda-

mental limits of the localization accuracy for large data records and outperform their

competitors by far when model mismatch problems can be ignored.
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Chapter 1

Introduction

1.1 Wireless Localization and Applications

Wireless localization refers to the problem of finding the positions of some target nodes

in different wireless infrastructures such as cellular radio networks and wireless sensor

networks (WSNs) [1]. A target node can be a mobile station (MS) in cellular radio

networks or an agent in WSNs. Fig. 1.1(a) and Fig. 1.1(b) provide two illustrating

examples. Wireless localization systems serve as replacement or complement of the

conventional global positioning system (GPS) in harsh indoor environments, urban ar-

eas and underwater environments, where the GPS signals can be either largely impaired

or unavailable [2].

Over the past two decades, wireless localization has received considerable attention due

to the expanding location-based services, such as wireless emergency service Enhanced-

911 (E-911), location-sensitive billing, fraud detection, asset tracking, intelligent trans-

portation, mobile yellow pages [3], soldier and first responder locating [4,5], and animal

tracking [6], to enumerate a few. High-accuracy wireless localization will continue to

play a key role for public safety and drive many more location-based services (especially

on smart phones) in the forthcoming years [7].

(a) Localization of a mobile station in a
cellular radio network for E-911 service in
an outdoor rural environment.

(b) Localization of several sensor nodes
(marked by circles) in a wireless sensor net-
work for environment surveillance in an in-
door environment.

Figure 1.1. Two illustrating examples of wireless localization.
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1.2 Localization Problems Addressed

Throughout this thesis, the unknown target node positions are inferred in an estimation

process, given a batch of noisy position-related measurements, a few known reference

nodes and a probabilistic signal model. A reference node can be a base station (BS)

in cellular radio networks or an anchor in WSNs. In [8], estimation problems are

broadly categorized into localization of stationary targets, tracking of moving targets,

self-navigation, calibration, and simultaneous localization and mapping (SLAM).

In this thesis, localization of stationary targets is mainly studied. Two fundamental

problems are distinguished as follows:

• Non-cooperative localization. Non-cooperation is a conventional paradigm

for localization in that the target nodes communicate only with a sufficient num-

ber of reference nodes. With the position-related measurements, either each tar-

get node determines its own position (mobile-based) or a fusion center determines

the target node position and sends the information back (network-based) [1]. In

order to resolve localization ambiguities, each target node must be able to com-

municate with at least three reference nodes in a two-dimensional (2-D) space

or four reference nodes in a three-dimensional (3-D) space. Fig. 1.2(a) shows an

example for the 2-D case.

• Cooperative localization. Cooperation is a new emerging paradigm for local-

ization in that the target nodes additionally exploit the measurements collected

between themselves. Similarly, the target nodes self-localize themselves (in a dis-

tributed manner) or a fusion center determines their positions (in a centralized

manner) and transmit the information back to each individual via multi-hops.

With the cooperations among the target nodes, the communication range of wire-

less devices as well as the number of anchors to be deployed can be tremendously

reduced, which in turn economizes the overall cost for building a localization

system. In addition, cooperations can help resolve localization ambiguities and

as reward bring more robust and accurate position estimates. Fig. 1.2(b) shows

the benefit of using cooperations among nodes.

It is noteworthy that in the special case where there is no motion model available or

the state uncertainty is sufficiently large in the system dynamics, both target tacking

and self-navigation can be done through conducting a stationary target localization

algorithm repeatedly at different time instances—a snapshot-based method.
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?

?

(a) Non-cooperative localization (2-D) us-
ing a cellular radio network. The two mo-
bile stations do not cooperate and can only
reach two base stations, giving rise to lo-
calization ambiguities (the locations with
question-mark).

(b) Cooperative localization (2-D) using
the same cellular radio network. The two
mobile stations now cooperate and as a re-
ward the localization ambiguity can be re-
solved completely.

Figure 1.2. Non-cooperative localization versus cooperative localization.

These two fundamental localization problems can be cast into a general parameter

estimation problem with the measurement model in form of

r = h(θp, θa) + v (1.1)

where the parameters are defined as:

• Column vector r includes a set of position-related measurements. For non-

cooperative localization, r contains the measurements obtained between the tar-

get node and several reference nodes. For cooperative localization, r contains

additionally the measurements obtained between target nodes. The dimension of

r is assumed to be assumed to be M .

• Nonlinear function h(θp, θa) represents the ideal measurement model, which de-

pends on the unknown positions θp and some auxiliary parameters θa. For non-

cooperative localization, θp contains one unknown target node position. For

cooperative localization, θp contains a set of unknown target node positions to

be determined concurrently.

• Column vector v contains a set of measurement error terms, v1, v2, ..., vM , that

follow a certain probability density function (pdf).

The primary goal is to provide an accurate estimate of the unknown position(s), θp,

in a short response time. The diversity of the existing localization algorithms stems

from:
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• The manner of localization, for instance, mobile-based versus network-based,

centralized versus distributed.

• The use of different measurement models, for instance time-of-arrival (TOA) and

received-signal-strength (RSS) measurement models.

• The nature of the unknown positions, deterministic or random.

• The use of different estimation criteria, for instance, maximum likelihood (ML)

criterion or minimum-mean-square-error (MMSE) criterion.

• The amount of knowledge (known or partially known or unknown) about the

measurement error statistics.

• The need for offline calibration of θa and/or the measurement error statistics

prior to the localization process.

• The consideration of different constraints, e.g., road constraint, geometric con-

straint, and communication constraints (bandwidth and energy).

• The number of measurements collected at each node.

• The approximations used to trade-off desired properties of the designed algo-

rithm, e.g., linearization of h(θp, θa) for lower complexity and better convergence.

In Section 1.5, a survey of the existing algorithms will be given for both non-cooperative

localization and cooperative localization.

1.3 Localization Measurements and Models

1.3.1 Measurement Categories

In this thesis, a two-step procedure for localization is adopted primarily due to the

lower complexity as compared to direct localization (see e.g., [9], [10]). In the first step,

position-related measurements are extracted from the received signals. In the second

step, the obtained measurements are processed (either centralized or distributed) to

give an estimate of the unknown positions. The most commonly used measurement

categories are classified into signal waveform, time-of-arrival, time-difference-of-arrival

(TDOA), round-trip time-of-arrival (RTOA), received signal strength, and angle-of-

arrival (AOA) [11]. In the sequel, the acquisition of TOA, TDOA, RTOA and RSS
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measurements is briefly reviewed with the aid of a toy example in which N base stations

(BSs) attempt to locate a single MS in a cellular radio network.

• TOA, TDOA, RTOA: For an MS-BS wireless link (say the ith), a complex

channel impulse response, hi(t), is first computed and then converted to power

delay profile (PDP) |hi(t)|2 [12]. From the PDP, a TOA measurement for this

channel, τi, is obtained by estimating the first arrived path, if the transmitter is

time-synchronized with the receiver. The existing methods for TOA estimation

include correlation based methods, deconvolution methods, maximum likelihood

estimation based methods, and subspace based methods [13, Chapter 7]. In

practice, TOA is usually converted into distance in light of di = τi · c, where c0
is the propagation speed of a radio wave. Alternatively, a TDOA measurement

(say between BS i and BS j) can be computed by taking time differences τi− τj .
The advantage of this method is that only the BSs need to be synchronized in

time. Collecting RTOA measurements requires no time synchronization among

nodes. The acquisition of a RTOA measurement can be obtained, for instance

at the ith BS, by τ reci − τ sendi − τi,∆ = 2di/c where τ
rec
i is the time instance that

this BS received the waveform that it sent at τ sendi and bounced by the MS with

a time delay τi,∆ [14]. The time delay τi,∆ is usually predetermined and known

to both the MS and the ith BS.

• RSS: A received signal strength measurement can be obtained by integrating the

PDP with respect to time. More precisely, the RSS [dBm] measured at the ith

BS is

Pi = 10 log

(∫ |hi(t)|2dt
1 mW

)

. (1.2)

In contrast to the timing measurements mentioned above, received signal strength

is only empirically related to the actual distance, for instance according to the

classical Okumura-Hata model [3]. Although RSS measurement provides rather

coarse distance information, the acquisition of it is easy to conduct in almost

any existing wireless infrastructure and requires no time-synchronization among

nodes.

1.3.2 Error Sources

Given precise timing measurements, localization can be easily performed in a simple

geometric approach called trilateration. However, not all the circles (for TOA or RTOA

measurements) or hyperbolas (for TDOA measurements) intersect at a single point in
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practice due to the measurement error. Fig. 1.3 depicts one example. Error sources

stem from the measurement equipment per se and propagation environments for both

narrow-band and wide-band systems [15]. The error sources are:

• Equipment deficiency: Equipment deficiency includes thermal noise in the

electronic circuits of the hardware, quantized equipment readings, and incorrect

operations of an equipment.

• Multi-path propagation: Multi-path propagation causes the phenomenon that

the transmit signal reaches the receiver via numerous paths with different atten-

uations and time delays. The overlap of multiple replicas of the transmit signal

incurs ambiguities when detecting the first arrival path of a signal, even if a

line-of-sight (LOS) path exists [15]. One way to alleviate the ambiguities is to

use ultra-wide-band (UWB) transmit signals, whose time-resolution is high [16].

The constructive and destructive interference of these replicas also incurs large

fluctuations of the received signal strength over a distance in the order of the

carrier wavelength. This phenomena is also called small-scale fading [17].

• Shadowing: Shadowing effect is due to the energy absorption at large obstacles

between the transmitter and receiver. This effect causes difficulty in determining

the TOA and introduces an approximately log-normal distributed error term in

the received signal strength [17].

• Non-line-of-sight (NLOS) propagation: NLOS propagation describes either

the scenario where the LOS path between a transmitter and a receiver is com-

pletely obstructed, which is known as LOS blockage, or the scenario where the

LOS path is only partially obstructed and the signal can still penetrate obstacles

like walls and windows, which is known as LOS excess delay [18]. In both sce-

narios, NLOS propagation tends to incur a positive bias (for TOA) and increase

uncertainties in the estimate (for both TOA and RSS).

It is noteworthy that for simplicity the influence of algorithm inefficiency (e.g., for TOA

estimation) and multiple access interference (MAI) among nodes are neglected. In the

sequel, the errors introduced by the hardware are also ignored, since they are usually

negligible in comparison with the environmental errors [15].

1.3.3 Mode-Dependent Modeling

Essentially, different error sources influence TOA and RSS estimates concurrently. To

find an adequate modeling, various measurement campaigns have been conducted in
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d1

d2

d3

(a) Trilateration using precise TOA mea-
surements. The three circles intersect at a
single point.

d1

d3

d2

(b) Trilateration using noisy TOA mea-
surements. The three circles do not inter-
sect at a single point.

Figure 1.3. Trilateration using TOA measurements with and without errors.

different scenarios, see for instance [14,19–23] for the TOA modeling and [19,20,22,24]

for the RSS modeling. It is not surprising that the campaign results vary with scenarios.

To approximate these results as close as possible and meanwhile maintain mathematical

tractability, two simple mode-dependent modelings are given as follows:

• Mode-dependent TOA modeling: A time-of-arrival measurement obtained

at a receiver node can be modeled as

τTOA =

{

d/c+ vL, LOS condition

d/c+ vNL, NLOS condition
(1.3)

where vL is the measurement error under the LOS condition and vNL is the

measurement error under the NLOS condition. In the literature, for instance

[3, 22, 25–31]), vL is favorable to be represented by a Gaussian distribution with

mean µL (around zero) and variance σ2
L. While depending on the localization

scenario, vNL may follow a shifted Gaussian distribution (e.g., in [3, 22, 27–32]),

an exponential distribution (e.g., in [25, 26, 32]), a Rayleigh distribution (e.g.,

in [27, 32–34]), or a Weibull distribution [35].

• Mode-dependent RSS modeling: A received-signal-strength measurement

obtained at a receiver node can be modeled as

PRSS =

{

PT − (AL + 10BL log(
d
d0
)) + vL, LOS condition

PT − (ANL + 10BNL log(
d
d0
)) + vNL, NLOS condition

(1.4)

where PT (dBm) is the transmit power, A(N)L and B(N)L (in dB scale) denote

respectively the path loss value at a reference distance d0 and path loss exponent
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value for (N)LOS scenario. The measurement error vL ∼ N (0, σ2
L) under the

LOS condition and vNL ∼ N (0, σ2
NL) under the NLOS condition. The standard

deviation σNL (dB) is usually much larger than σL (dB), reflecting the fact that

the shadowing effect is more prominent under the NLOS condition. It is assumed

here that the multi-path (small scale) fading effect has been effectively eliminated

by time-averaging [36].

Lastly, it is noteworthy that the NLOS effect is the main, yet not the only, reason for

the above mode (LOS or NLOS)-dependent modelings.

1.4 Harsh Mixed LOS/NLOS Environments

Throughout this thesis, both the non-cooperative localization and cooperative local-

ization are considered in harsh mixed line-of-sight and non-line-of-sight (LOS/NLOS)

environments, where

• LOS measurements coexist with NLOS measurements in the given batch of ob-

served data;

• Offline calibration is either not performed or only coarsely performed;

• NLOS identification is not performed.

1.4.1 Simplified Modeling and Optimality

From the two mode-dependent modelings given in Section 1.3.3, it is easy to conclude

that

v =

{

vL ∼ p
(L)
V (v;βL), LOS condition

vNL ∼ p
(NL)
V (v;βNL), NLOS condition

. (1.5)

In order to be robust against the NLOS measurements (or outliers), the idea proposed

originally in [3] is followed. That is, the measurement error terms observed for different

wireless channels are independently and identically distributed (iid) and follow a two-

mode mixture distribution in the form of

pV (v) = αLp
(L)
V (v;βL) + αNLp

(NL)
V (v;βNL) (1.6)
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where v follows an “LOS” distribution p(v|LOS) = p
(L)
V (v;βL) with prior probability

Pr{LOS} = αL while an “NLOS” distribution p(v|NLOS) = p
(NL)
V (v;βNL) with prior

probability Pr{NLOS} = αNL = 1 − αL. In the literature, αNL is also known as the

NLOS contamination ratio. This is the best model that can be chosen, given a batch

of measurement error terms but without knowing which channel state has generated

the corresponding measurement. However, it is noted that this simplified model may

shuffle any temporal or spatial correlated patterns in the observed data and lead to

information loss. In the sequel, pV (v) is called the measurement error distribution

despite that it may deviate from the actual one.

For lack of offline calibration of the environmental parameters, incomplete knowledge

about the measurement error statistics is assumed throughout this thesis. Two cases

are distinguished as follows:

1. pV (v) is completely unknown due to uncertainties about the distributive profiles

of both p
(L)
V (v;βL) and p

(NL)
V (v;βNL).

2. pV (v) is partially known with both p
(L)
V (v;βL) and p

(NL)
V (v;βNL) belonging to

designated families of distributions.

In the following chapters, the main aim is to jointly estimate the unknown positions and

rebuild pV (v). We adopt two distinct approaches to the modeling of pV (v), namely a

nonparametric approach and a parametric approach, in our joint estimation problems.

In the nonparametric model, pV (v) is approximated by a kernel density estimate [37]

as

pV (v) ≈ p̂V (v) =
1

M

M∑

m=1

1

wλm
K
(
(v − vm)
wλm

)

(1.7)

where M is the total number of measurements, K(v) can be any favorable classes

of kernel densities, like standard Gaussian kernels, and the meanings of the other

parameters w and λm will be explained in more detail in Chapter 3. In the parametric

model, pV (v) is approximately represented as a C-mode mixture model, namely,

pV (v) ≈ p̂V (v) =
C∑

l=1

αlp
(l)
V (v;βl) (1.8)

where p
(l)
V (v;βl) is favorable to be Gaussian, as any distribution can be approximated

as closely as desired, for instance in L1 norm, by a Gaussian mixture [38]. In con-

trast to the nonparametric approach where the parameters w, λm are set adaptively

and nonparametricly (according to rule-of-thumb or some optimality criteria) before
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performing localization, the mixture model parameters θe = [α1, ..., αC , β1, ..., βC ] are

determined jointly with the unknown positions.

As it is well known, model mismatch will degrade the ML estimation performance. Spe-

cific to the addressed localization problems, various possible model mismatch problems

that may occur are explained with the aid of Fig. 1.4 as follows:

• Problem I: The mode-dependent model in (1.5) is insufficient to represent the

underlying measurement error.

• Problem II: The iid assumption is invalid when approximating (1.5) by a two-

mode mixture distribution in (1.6). An example for this case is that a sequence of

measurements obtained from the same wireless link but at different time instances

are more likely to be generated according to a sequential pattern with a constant

state (either LOS or NLOS) or according to a specific Markov chain model [39].

• Problem III: Even if (1.6) precisely characterizes the underlying measurement

error, i.e., the above two model mismatch problems do not appear, both the non-

parametric and parametric representations of (1.6) lead to approximation error

when pV (v) is unknown. However, this can be avoided when pV (v) is partially

known and the parametric model is used.

As a conclusion, we note that it is extremely difficult to find an optimal model analyt-

ically. Despite the sub-optimality of (1.6) in many practical problems, imagining it as

the actual model allows for quite good robustness against outliers and meanwhile facil-

itates the design of new localization algorithms. These will be seen in the subsequent

chapters.

1.4.2 Key Assumptions

To facilitate the algorithm design and performance evaluations in the subsequent chap-

ters, the following assumptions are made throughout the thesis.

A0 : The target(s) to be located remain stationary during the localization process.

A1 : The measurement error terms in v are assumed to be iid although it might not

be true in reality.
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A2 : Wireless transmission of data packages is lossless.

A3 : No quantization of the measurements.

In addition, there are other assumptions made specific to the considered problem in

each chapter.

1.5 A Taxonomy of Existing Algorithms

In this section, we survey the existing localization algorithms with emphasis on those

considering NLOS mitigation (cf. Section 1.5.1 for non-cooperative localization and

cf. Section 1.5.2 for cooperative localization). For detailed descriptions of the existing

algorithms, interested readers are referred to [13, 40].

1.5.1 Non-cooperative Localization

Non-cooperative localization is primarily considered in wireless cellular radio networks.

Numerous existing algorithms (e.g., [41–49]) assume pure LOS environments and use

simple Gaussian model of the measurement error. In indoor environments and dense ur-

ban areas, non-line-of-sight (NLOS) effect significantly degrades the estimation perfor-

mance of these algorithm. Therefore, advanced algorithms that are robust to the NLOS

measurements (outliers) are constantly sought after. The existing NLOS mitigation al-

gorithms can be broadly categorized into the identify and discard based algorithms,

the programming based algorithms, and the robust estimation based algorithms.

The essence of the identify and discard based algorithms (e.g., [50–52]) is to identify and

discard those NLOS-corrupted distance measurements. The remaining distance mea-

surements, classified as LOS measurements, are then used by conventional algorithms

(e.g., least-squares (LS) estimation based algorithms) to compute an accurate position

estimate. The key idea of programming based algorithms is to formulate the position

estimation problem as a constraint optimization problem, which can be solved with

the aid of some mathematical programming techniques (e.g., quadratic programming

(QP) [53], linear programming (LP) [54], and semi-definite programming (SDP) [55]).

In order to combat the NLOS effect, robust estimation based algorithms resort to

replace the least-squares residual formulation by robust statistics based on [56], [57].

In [58,59], robust least-median-squares (LMS) based algorithms were proposed. In [60],
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Underlying Measurement Error Model
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Mode-Dependent Model in (1.5)

Avoid NLOS
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Two-Mode Mixture Model in (1.6)

Nonparametric ParametricParametric
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pV (v) is unknown pV (v) is partially known

iid assumption

Model Mismatch-I

Model Mismatch-II

Model Mismatch-III

No/Coarse Offline

Calibration

Figure 1.4. Constraints imposed and approximations made to arrive at a nonparametric
or a parametric model of the actual measurement error.
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a robust bootstrapping M-estimation algorithm that combines Huber’s M-estimation

and bootstrap techniques [61–63] was proposed. For further improvement, an adaptive

algorithm that tunes Huber’s score function was introduced in [32, 64].

In the harsh mixed LOS/NLOS environments assumed in Section 1.4, robust position

estimation becomes extraordinarily challenging. To the best of our knowledge, those

algorithms from the first and second categories are not able to work with incomplete

knowledge about the measurement error statistics. Robust estimation based algorithms

are favorable to be employed under harsh situations, while the classical algorithms

are merely robust for up to 50% of outliers. In order to achieve higher robustness

against the NLOS effect, novel robust estimation algorithms have been proposed in

[27, 64–67]. The common gist of these approaches is to approximate the maximum

likelihood estimator of the unknown parameters jointly in an iterative algorithm that

alternates between a position estimation step and a pdf estimation step.

1.5.2 Cooperative Localization

Cooperative localization is primarily considered in wireless sensor networks. In the

past decade, a plethora of cooperative localization algorithms has been proposed based

on different position-related measurement categories as those listed in Section 1.3.1.

Herein, the class of concurrent algorithms are the main focus, as they can avoid localiza-

tion error propagation as compared to the class of sequential algorithms. The existing

concurrent algorithms can be further categorized into non-Bayesian algorithms and

Bayesian algorithms. In the non-Bayesian algorithms, the unknown (true) positions

are assumed to be deterministic. Classical non-Bayesian algorithms (both central-

ized and distributed) include: (1) least-squares estimation based algorithms [19, 68],

and [14, Algorithm 1]; (2) multidimensional scaling (MDS) based algorithms [69–71];

(3) programming based algorithms [72, 73]; (4) iterative parallel projection method

(IPPM) based algorithms [74–76]; (5) expectation-maximization (EM) based algo-

rithms [77–80]. Whereas in the Bayesian algorithms, unknown (true) positions are as-

sumed to be random variables with certain prior distributions. Representative Bayesian

algorithms include the nonparametric belief propagation (NBP) algorithm [81], sum-

product-algorithm over wireless networks (SPAWN) algorithm [14], and some new vari-

ations [82–85] built upon them. They all perform message passing by taking advantages

of the belief propagation algorithm [86] or the sum-product algorithm [87] in different

graphical models. Restricted by the ad-hoc nature of WSNs, distributed cooperative

localization (or self-localization) algorithms are highly demanded. This is owing to

their advantageous features of being scalable, independent of a fusion center, and less
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sensitive to sensor failure as compared to the centralized solutions [88]. In the dis-

tributed non-Bayesian algorithms, wireless sensors exchange their position estimates

mutually; while in the conventional, distributed Bayesian algorithms, they exchange

local belief messages (distributions represented by a set of particles) about their own

true positions and consume much more energy for wireless communication. At the

sacrifice of localization accuracy, however, some recent work demonstrated that the

communication overhead can be significantly reduced by using transmit- and receive

censoring [85] and parametric representation of the local belief messages [84, 89].

Among the listed algorithms, the least-squares estimation based algorithms, the MDS

based algorithms, and the EM based algorithms are independent of offline calibration

and NLOS identification. However, the first two classes of algorithms are extremely

sensitive to the outliers induced by the NLOS propagation. In [77], an EM algorithm

was proposed for outlier compensation but not in the context of NLOS mitigation.

We proposed several centralized algorithms in [78] (for RSS model in (1.4))) and [79]

(for TOA model in (1.3) that extend [77] for NLOS mitigation without using offline

calibration and NLOS identification. The most recent work in [80] further developed

a series of centralized- and distributed ECM algorithms for TOA based cooperative

localization in WSNs.

1.6 Thesis Outline and Contributions

The focus of this thesis is to investigate NLOS mitigation in harsh mixed LOS/NLOS

environments from a statistical signal processing perspective. To keep a good consis-

tency, only the TOA based localization algorithms will be introduced in this thesis.

This section introduces the organization of this thesis and highlights the main findings

of each chapter.

In Chapter 2, the background of the maximum likelihood estimation is briefly intro-

duced. Then, the expectation-maximization (EM), expectation-conditional maximiza-

tion (ECM), and joint maximum a posteriori -maximum likelihood (JMAP-ML) algo-

rithms are introduced, that can be adopted to tackle the difficulties in the incomplete-

data situations. These serve as the basics of the following chapters.

In Chapter 3, TOA based non-cooperative localization is considered in harsh mixed

LOS/NLOS environments with unknown measurement error distribution pV (v). A

nonparametric approach to the modeling of pV (v) is employed. This work finds appli-

cations primarily in cellular radio networks because of the relatively high computational
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complexity. The original contributions, which lead to one conference contribution [27]

and one journal contribution [65], are summarized as follows:

• A robust iterative nonparametric (RIN) algorithm has been developed, which

alternates between a nonparametric pdf estimation step and a position estimation

step. Starting with a carefully selected initial position estimate, an estimate of

the true measurement error distribution is first constructed via adaptive kernel

density estimation (AKDE) [37]. An approximated log-likelihood function is then

formulated, from which a refined position estimate is resolved via a quasi-Newton

(QN) method. These two steps are repeated as necessary.

• The best achievable localization accuracy has been presented in terms of Cramér-

Rao lower bound (CRLB), which serves as a benchmark for evaluating different

localization algorithms.

In Chapter 4, the localization problem in Chapter 3 is re-consider. To reduce the

computational complexity, a parametric approach to the modeling of the measurement

error distribution is adopted instead. This work finds applications in both cellular

radio networks and wireless sensor networks due to the relatively low computational

complexity. The original contributions, which lead to one journal publication [67], are

summarized as follows:

• Two iterative algorithms have been developed based on the well-known ECM

criterion and JMAP-ML criterion to approximate the ideal maximum likelihood

estimator of the unknown parameters, including position and mixture model

parameters.

• Convergence analysis and complexity analysis of the proposed algorithms have

been shown with concrete examples.

Although not introduced in this thesis, an EM based non-cooperative localization al-

gorithm has been developed based on the mode-dependent RSS model in (1.3), which

leads to one conference contribution [66].

In Chapter 5, TOA based cooperative localization is studied in harsh mixed LOS/NLOS

environments. The parametric approach to the modeling of the measurement error

distribution is again adopted. The original contributions, which lead to one conference

contribution [79] and one journal contribution [80], are summarized as follows:
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• A series of centralized- and distributed ECM algorithms have been developed to

approximate the ML estimator of the unknown parameters.

• The proposed algorithms have been evaluated in terms of computational com-

plexity and communication overhead.

• The best achievable localization accuracy has been presented in terms of CRLB

(with possibly any distribution), which generalizes the results in [19] (valid merely

for the Gaussian model).

Although not introduced in this thesis, an EM based cooperative localization algorithm

has been developed based on the mode-dependent RSS model in (1.3), which leads to

one conference contribution [78].

Finally, Chapter 6 concludes this thesis and shortly summarizes some ongoing work.

For a better view of the main findings of each chapter and their connections, Figure 1.5

is depicted below.
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Figure 1.5. Main findings of each chapter and their connections.
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Chapter 2

Background

This chapter serves as the cornerstone of this thesis. Section 2.1 briefly revisits sev-

eral well-known optimality criteria for developing classical estimators of unknown

deterministic parameters. Therein, the important statements and results are taken

from [8,90–92] without proof. Section 2.2 briefly revisits several alternative maximum

likelihood estimation techniques that are easier to use in incomplete-data situations.

Therein, the important statements and results are taken from [93–97] without proof.

2.1 Overview of Classical Parameter Estimation

Statistical parameter estimation plays an important role in many electronic signal

processing systems, as it can extract useful information from a batch of noise corrupted

measurements [90]. In this chapter, the class of estimators of unknown deterministic

parameters is mainly considered. In the literature, they are commonly referred to as

the “classical” estimators. The overview of different optimality criteria starts from

the most natural choice, i.e., the minimum-mean-square-error (MMSE) criterion. The

MMSE estimator, as its name suggests, minimizes the mean-square-error (MSE), which

is defined by

MSE(θ̂) = Ep(r;θ)

{

||θ̂ − θ||2
}

(2.1)

where the parameter is a real vector θ ∈ Θ on R
d, and θ̂ is an estimator of θ. Es-

sentially, θ̂ is a function of observations, namely, θ̂ = f(r) = f(r1, r2, ..., rN), but for

brevity the dependency of any estimator on the observations is ignored in the sequel.

The expectation is taken with respect to the probability density function (pdf) p(r; θ).

The MSE expression in (2.1) can be rewritten as

MSE(θ̂) = Ep(r;θ)

{
d∑

i=1

(θ̂i − θi)2
}

= tr
{

Cov(θ̂)
}

+ ||Bias(θ̂)||2 (2.2)

where θ̂i is the ith entry of θ̂, Cov(θ̂) is the covariance matrix of θ̂ defined by

Cov(θ̂) = Ep(r;θ)

{

(θ̂ − E{θ̂})(θ̂ − E{θ̂})T
}

, (2.3)
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and Bias(θ̂) is the bias of θ̂ defined by

Bias(θ̂) = Ep(r;θ){θ̂} − θ. (2.4)

Since Bias(θ̂) is a function of the unknown (true) parameter θ, the MMSE estimator

is in general unrealizable [90].

Alternatively, the minimum variance unbiased (MVU) estimator can be adopted. The

MVU estimator must satisfy for all θ ∈ Θ that (i) θ̂ is unbiased and (ii) var(θ̂i) ≤
var(θ̂

′

i), i = 1, 2, ..., d, holds for any other unbiased estimator θ̂
′
. In general, given an

unbiased estimator with computed variances, var(θ̂i), i = 1, 2, ..., d, it is still difficult

to determine whether it is an MVU estimator or not. In the special case where the

variance of each entry of θ̂ equals the corresponding Cramér-Rao lower bound (CRLB),

we can immediately tell that θ̂ is an MVU estimator. This idea leads to a powerful

approach for finding an MVU estimator in linear measurement model. Before this

approach is given in details, the CRLB theorem for vector parameter case [90] is first

reviewed in the following.

Theorem 2.1. When the regularity conditions [8, C.2] are all fulfilled, the covariance

matrix of any unbiased estimator θ̂ satisfies

Cov(θ̂) = Ep(r;θ)

{

(θ̂ − θ)(θ̂ − θ)T
}

� CRLB(θ) = F
−1(θ) (2.5)

where F(θ) denotes the Fisher’s information matrix (FIM) and is defined by

F(θ) = Ep(r;θ)

{
−∆θ

θ ln p(r; θ)
}
. (2.6)

The definitions of the gradient operator ∇θ and Laplace operator ∆θ
θ = ∇θ∇T

θ are

given in Appendix 2.3.1.

Theorem 2.2. An MVU estimator θ̂ = f(r) may be found that attains the bound in

that Cov(θ̂) = CRLB(θ) if and only if

∂ ln p(r; θ)

∂θ
= F(θ)(f(r)− θ) (2.7)

for some d-dimensional function f(r) : RN 7→ R
d.

Unfortunately for nonlinear measurement models shown in Chapter 1, which is the sole

focus of this thesis, an MVU estimator is generally hard to derive even if it does exist.

Alternatively, the estimator based on the maximum likelihood (ML) criterion, termed
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the ML estimator, is easier to derive even for complicated estimation problems [90].

Most importantly, the ML estimator is asymptotically efficient and becomes the MVU

estimator as the number of measurements, N , goes to infinity.

The ML estimator of θ ∈ Θ is defined as

θ̂ML = argmax
θ

p(r; θ), (2.8)

i.e., the value that globally maximizes the joint pdf for all observations, p(r; θ), which

is also known as the likelihood function. The idea behind the ML criterion is that

given a set of observations r, some values of θ are more probable to have generated r

than the others, which can be easily recognized from plotting p(r; θ) over all θ ∈ Θ.

Usually, it is more convenient to work with the log-likelihood function, defined as

LI(θ; r) = ln p(r; θ) throughout this thesis, as logarithm is a monotonic operation.

Asymptotic property and invariance property of the ML estimator were given in [90].

Before these results are revisited, the following two definitions [91] are given in the first

place for better exposition.

Definition 2.1. An estimator is said to be efficient when it is unbiased and its covari-

ance matrix equals the CRLB.

Definition 2.2. An estimator θ̂ = f(r1, r2, ..., rN) is said to be consistent if

lim
N→∞

Pr{||θ̂ − θ||2 ≥ ǫ} = 0, ∀ǫ > 0. (2.9)

Theorem 2.3. When p(r; θ) fulfills the regularity conditions [8, C.5] and the number

of parameters, d, to be estimated is much less than the number of measurements, N ,

the ML estimator of the unknown parameter θ is in general asymptotically distributed

according to

θ̂
a∼ N (θ,F−1(θ)) (2.10)

where θ is the true value of the unknown parameter and F
−1(θ) is evaluated at the

true value θ in this context.

Theorem 2.4. The ML estimator of the parameter τ = g(θ), when g(θ) : Rd 7→ R
p

is an invertible function, is given by

τ̂ = g(θ̂) (2.11)

where θ̂ is the ML estimator of θ. Moreover,

τ̂
a∼ N

(

g(θ),

(
∂g(θ)

∂θ

)T

F
−1(θ)

(
∂g(θ)

∂θ

))

. (2.12)



22 Chapter 2: Background

Some remarks are given as follows:

• When N ≫ d, the ML estimator is asymptotically efficient according to the

Definition 2.1.

• When all entries of F(θ) are proportional to N , the ML estimator is asymptoti-

cally consistent according to the Definition 2.2.

Owing to the nice properties, almost all practical estimators have been developed in

light of the maximum likelihood criterion [90]. However, implementing an ML estimator

is not always an easy task, and we may confront various difficulties in the practice. We

list some in the following.

• An ML estimate can be found from (2.8) only numerically, for instance, via the

grid search, Newton-type methods, or expectation-maximization (EM) algorithm

[90], and the point found might be a local maximum or a saddle point instead of

the global maximum if p(r; θ) is multi-modal.

• The maximization problem in (2.8) is cumbersome, meaning that a lot of com-

putational efforts are required to compute the ML estimator.

• The chosen pdf p(r; θ) is a poor model of the actual distribution that gave rise

to the observations [92].

• More serious problems would occur when p(r; θ) is completely unknown or only

known to a certain extent, cf. Chapter 1.

2.2 ML Estimation with Incomplete Data

Finding an ML estimator with conventional implementation might be complicated in

incomplete-data situations, where there are missing data, truncated distributions, or

grouped observations [96]. In the sequel, we provide several advanced algorithms that

can be applied for approximating the ML estimator with less computational hurdles.

The notations introduced in the previous section are reused here, namely, let r =

[r1, r2, ..., rN ] be a set of observations having pdf p(r; θ) where θ = [θ1, θ2, ..., θd]. Ad-

ditionally, a vector y is introduced to denote the missing data and a vector z with

z = {r,y} is introduced to denote the complete data. The complete-data log-likelihood

function is defined by LC(θ; r,y) = ln p(r,y; θ). In contrast, LI(θ; r) is referred to as

the incomplete-data log-likelihood function in the sequel.
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2.2.1 EM Algorithm

The expectation-maximization (EM) algorithm is a general-purpose algorithm for ML

estimation in incomplete-data situations [96]. Since the appearance of the seminal

paper [93], the EM algorithm has found a plethora of applications in the literature.

The EM algorithm is an iterative approach, and, as its name suggests, it performs an

expectation (E)-step and a maximization (M)-step on each iteration. As compared

to the conventional ML estimation that adopts for instance Newton-type numerical

methods, the EM algorithm can tackle incomplete-data problems in a computationally

profitable manner. For clarity, the key steps for computing an EM estimate on the

(η + 1)th iteration are summarized in Algorithm 2.1.

Algorithm 2.1 EM Algorithm (General Routine) [93]

Step 1—Initialization:

Set the iteration index η = 0. Choose an initial guess θ(0). Choose a convergence
tolerance ∆.
Step 2—EM stage:

On the (η + 1)th iteration (η ∈ Z, η ≥ 0), do:

• E-step: Perform conditional expectation of the complete-data log-likelihood
function in terms of y given r and θ(η) and obtain a Q-function

Q
(
θ; θ(η)

)
= Ep(y|r;θ(η)){LC(θ;y, r)}. (2.13)

• M-step: Find θ(η+1) that globally maximizes Q
(
θ; θ(η)

)
.

Step 3—Convergence Check:

If LI(θ
(η+1); r) − LI(θ

(η); r) ≤ ∆, then terminate this algorithm and obtain θ̂EM =
θ(η+1); otherwise set η ← η + 1 and return to Step 2.

Note that the convergence condition in Algorithm 2.1 is due to the nice property proven

in [93]; that is, the incomplete-data log-likelihood is monotonically increased after each

EM iteration, more precisely,

LI(θ
(η+1); r) ≥ LI(θ

(η); r), η = 0, 1, 2, .... (2.14)

Therefore, when LI(θ; r) is bounded above, the sequence of incomplete-data log-

likelihood values {LI(θ
(η); r)} would converge to some value L∗.

The overwhelming drawback of the EM algorithm is that the global maximizer is often

difficult to obtain in the M-step. To tackle this problem, a generalized EM (GEM)

algorithm was proposed in [93]. The GEM algorithm is revisited in Algorithm 2.2.
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Algorithm 2.2 GEM Algorithm (General Routine) [93]

Step 1—Initialization:

Set the iteration index η = 0. Choose an initial guess θ(0). Choose a convergence
tolerance ∆.
Step 2—GEM Stage:

On the (η + 1)th iteration (η ∈ Z, η ≥ 0), do:

• E-step: Perform conditional expectation of the complete-data log-likelihood
function in terms of y given r and θ(η) and obtain

Q
(
θ; θ(η)

)
= Ep(y|r;θ(η)){LC(θ;y, r)}. (2.15)

• M-step: Find θ(η+1) such that

Q
(
θ(η+1); θ(η)

)
≥ Q

(
θ(η); θ(η)

)
. (2.16)

Step 3—Convergence Check:

If LI(θ
(η+1); r) − LI(θ

(η); r) ≤ ∆, then terminate this algorithm and obtain θ̂GEM =
θ(η+1); otherwise set η ← η + 1 and return to Step 2.

Simply speaking, the GEM algorithm modifies the M-step so that θ(η+1) is found

to increase the Q-function over its value evaluated at the prior estimate θ(η) [96].

Clearly, the EM algorithm is a special case of the GEM algorithm. The property

in (2.14) also holds for the GEM algorithm. Under some regularity conditions [94],

Wu gave the following two theorems to describe the convergence of the incomplete-

data log-likelihood values {LI(θ
(η); r)} to some stationary point L∗ satisfying that

L∗ = LI(θ
∗; r) and ∂LI(θ; r)/∂θ|θ=θ∗ = 0.

Theorem 2.5. Let {θ(η)} be a GEM sequence generated by θ(η+1) = M(θ(η)), and

suppose that (i)M(·) is a closed point-to-set map over the complement of S with

S = set of stationary points in the interior of Θ, (2.17)

and (ii)

LI(θ
(η+1); r) ≥ LI(θ

(η); r), for all θ(η) /∈ S. (2.18)

Then all the limit points of {θ(η)} are stationary points, and {LI(θ
(η); r)} converges

monotonically to L∗ = LI(θ
∗; r) for some stationary points θ∗ ∈ S.

Theorem 2.6. Suppose that the Q-function Q(θ;φ) satisfies the continuous condition:

Q(θ;φ) is continuous in both θ and φ. (2.19)

Then all the limit points of {θ(η)} of an EM algorithm are stationary points of LI(θ; r),

and {LI(θ
(η); r)} converges monotonically to L∗ = LI(θ

∗; r) for some stationary points

θ∗.
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Remark 2.1. For the EM algorithm,M(θ(η)) defines the point-to-set map:

M(θ(η)) = argmax
θ

Q
(
θ; θ(η)

)
. (2.20)

In other words,M(θ(η)) is the set of global maximizer of the Q-function. For the GEM

algorithm,M(θ(η)) is defined to be the set of all θ(η+1) satisfying (2.16).

Note that the condition in Theorem 2.6 is easy to verify in almost all applications,

while the two conditions in Theorem 2.5 are, in general, hard to verify [94]. But note

that it is uttermost important that the sequence of log-likelihood values {LI(θ
(η); r)} of

both the EM algorithm and GEM algorithm monotonically increase to some point and

{θ(η)} is an EM sequence or a GEM sequence. In [96], McLachlan and Krishnan pointed

out that, almost in all applications, the sequence of log-likelihood values {LI(θ
(η); r)}

would ultimately converge to a stationary point. Only in rare cases, a fixed point of

the algorithm will be achieved. In [94], Wu also pointed out that the convergence to

either kind of stationary point (e.g., saddle point, local optimum, or global optimum)

depends on the choice of initial guess θ(0).

2.2.2 ECM Algorithm

Both the EM algorithm and GEM algorithm are unattractive when the complete-data

maximum likelihood estimation is still cumbersome. The expectation-conditional max-

imization (ECM) algorithm, which was proposed by Meng and Rubin in [95], can be

adopted for such difficult situation. The idea is to replace a complicated maximization

step in the EM algorithm with several computationally simpler conditional maximiza-

tion (CM) steps in the ECM algorithm. The ECM algorithm typically requires more

iterations as compared to the EM algorithm, and a single CM step might also involve

iterations if closed form solution can not be found. But the total computational time

of the ECM algorithm might be faster, because the conditional maximization prob-

lems therein handles only lower dimensional searches that can be solved faster, more

efficiently, and with higher stability [96].

Similar to the previous subsections, the key steps of the ECM algorithm are summarized

in Algorithm 2.3. Some remarks are in order.

• Both the variety and complexity of the CM steps depend on the partition of θ.
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Algorithm 2.3 ECM Algorithm (General Routine) [95]

Step 1—Initialization:

Set the iteration index η = 0. Choose an initial guess θ(0). Choose a convergence
tolerance ∆.
Step 2—ECM Stage:

On the (η + 1)th iteration (η ∈ Z, η ≥ 0), do:

• E-step: Performing conditional expectation, exactly as in the previous algo-
rithms, yields Q(θ; θ(η)).

• CM-steps:

1. Find a proper partition of the unknown parameters, θ = [ϑT
1 , ...,ϑ

T
S ]

T , where
ϑs, s = 1, 2, ..., S is a sub-vector of θ.

2. Select a set of S vector functions of θ, namely,

gs(θ) = [ϑT
1 , ...,ϑ

T
s−1,ϑ

T
s+1, ...,ϑ

T
S ]

T . (2.21)

3. For s = 1, 2, ..., S, solve θ(η+s/S) sequentially via

θ(η+s/S) = argmax
θ

Q(θ; θ(η)), (2.22)

subject to the constraint gs(θ) = gs(θ
(η+(s−1)/S)).

4. Obtain θ(η+1) = θ(η+S/S) after the final CM step.

Step 3—Convergence Check:

If LI(θ
(η+1); r) − LI(θ

(η); r) ≤ ∆, then terminate this algorithm and obtain θ̂ECM =
θ(η+1); otherwise reset η ← η + 1 and return to Step 2.

• On the sth CM-step of the ηth ECM iteration, the Q-function is maximized in

an attempt to update ϑ
(η+1)
s with the other subvectors held fixed at their current

values.

• The ECM algorithm is a member of the GEM algorithm, because

Q
(
θ(η+1); θ(η)

)
≥ Q

(
θ(η); θ(η)

)
holds for every η.

• According to [96], almost all the convergence properties established for the EM

algorithm in [93, 94] hold for the ECM algorithm as well when:

1. gs(θ) is differentiable;

2. ∇θgs(θ) is of full rank at θ(η) ∈ Θ, for all η;

3. The “space filling” condition
⋂S

s=1Gs(θ
(η)) = {0} holds for η, where Gs(θ)

is the column space of the matrix ∇θgs(θ).
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• Simply speaking, the “space filling” condition tells us that the maximization is

done over the whole parameter space Θ rather than a subspace of it.

2.2.3 JMAP-ML Algorithm

When a set of missing data is taken into account to facilitate the classical ML estimation

problem, the complete-data likelihood relates to the incomplete-data likelihood through

p(r; θ) =

∫

p(r,y; θ)dy. (2.23)

As another means of approximating the ML estimator, the complete-data log-likelihood

function is maximized directly with respect to both θ and y rather than performing

an integration with respect to y, that is,

argmax
θ,y

LC(θ;y, r) ≡ argmax
θ

{

argmax
y

LC(θ;y, r)

}

. (2.24)

This criterion is called the joint maximum a posteriori -maximum likelihood (JMAP-

ML) criterion [97]. This is due to the fact that it incorporates a maximum a posteriori

(MAP) estimation step in terms of the latent variables in y and an ML estimation

step in terms of the deterministic parameters in θ. In general, an algorithm developed

based on the JMAP-ML criterion starts with a carefully selected initial guess θ(0) and

alternates between the above mentioned two steps in an iterative process. The general

routine is given in Algorithm 2.4. The JMAP-ML algorithm is less popular than the

EM-type algorithm in that it only produces a biased estimator, but this bias estimator

may generate better MSE as compared to the unbiased estimators [97].

2.2.4 Connections

In the previous subsections, several salient algorithms are briefly revisited that can

be used to facilitate the conventional ML estimation in incomplete-data situations.

They all work with complete data, more precisely, with the complete-data likelihood

function. It is easy to see that the incomplete-data likelihood function p(r; θ) is the

marginalization of the complete-data likelihood function p(y, r; θ) in terms of the latent

variables y. Replacing this integration (with respect to y) with a conditional expec-

tation given the current parameter estimate (E-step) or a direct maximization with

respect to y given the current parameter (MAP step), an approximation of p(r; θ) is

obtained from which a parameter estimate is much easier to solve as compared to the

conventional ML implementation. Figure 2.1 demonstrates the connections between

these algorithms.



28 Chapter 2: Background

Algorithm 2.4 JMAP-ML Algorithm (General Routine) [97]

Step 1—Initialization:

Set the iteration index η = 0. Choose an initial guess θ(0). Choose a convergence
tolerance ∆.
Step 2—Joint MAP-ML stage:

On the (η + 1)th iteration (η ∈ Z, η ≥ 0), do:

• MAP-step: Find an MAP estimate of y, y(η+1), where

y(η+1) = argmax
y

LC(θ
(η); r,y). (2.25)

• ML-step: Find a complete-data ML estimate of θ, θ(η+1), where

θ(η+1) = argmax
θ

LC(θ; r,y
(η+1)). (2.26)

Step 3—Convergence Check:

If LC(θ
(η+1); r,y(η+1))−LC(θ

(η); r,y(η)) ≤ ∆, then terminate this algorithm and obtain
θ̂J = θ(η+1); otherwise set η ← η + 1 and return to Step 2.

2.3 Appendix

2.3.1 Gradient and Laplace Operators

The gradient of a vector function g(θ) : Rd 7→ R
p with θ = [θ1, θ2, ..., θd]

T is defined as

∇θg(θ) =







∂g1(θ)
∂θ1

∂g2(θ)
∂θ1

... ∂gp(θ)
∂θ1

...
...

...
...

∂g1(θ)
∂θd

∂g2(θ)
∂θd

... ∂gp(θ)
∂θd






, (2.27)

and the Laplace of a scalar function g(θ) : Rd 7→ R is defined as

∆θ
θg(θ) =







∂2g(θ)
∂θ21

∂2g(θ)
∂θ1∂θ2

... ∂2g(θ)
∂θ1∂θd

...
...

...
...

∂2g(θ)
∂θd∂θ1

∂2g(θ)
∂θd∂θ2

... ∂2g(θ)

∂θ2
d






. (2.28)
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Figure 2.1. Connections between the conventional ML estimation, EM estimation and
JMAP-ML estimation.





31

Chapter 3

Localization in Cellular Radio Networks:
Nonparametric Modeling

In the past decade, wireless localization systems are mainly considered in cellular radio

networks [1]. Among a myriad of applications, emergency services like E-911 [98] in

the USA, are more demanding. This requires a localization system to be able to locate

emergency calls accurately and rapidly in different scenarios including, certainly, those

harsh ones. In this chapter, time-of-arrival (TOA) based robust localization is con-

sidered in harsh mixed line-of-sight (LOS)/non-line-of-sight (NLOS) environments as

sketched in Section 1.4. Herein, the probability density function (pdf) of the measure-

ment error (or measurement error distribution) is assumed to be completely unknown.

An iterative algorithm, called robust iterative nonparametric (RIN) algorithm, has been

developed for NLOS mitigation under the harsh conditions assumed in Chapter 1.

This chapter is organized as follows. Section 3.1 introduces the signal model and states

the problem at hand. Section 3.2 revisits an existing robust position estimation algo-

rithm and further introduces the proposed RIN algorithm. Section 3.3 computes the

Cramér-Rao lower bound and Section 3.4 introduces several theoretical performance

metrics for evaluating an unbiased position estimator. Section 3.5 shows some simula-

tion results. Conclusions are drawn in Section 3.6. Finally, Section 3.7 assembles some

important definitions and derivations.

3.1 Signal Model and Problem Statement

Consider the scenario where N(N ≥ 3) base stations (BSs) surround a stationary mo-

bile station (MS) of interest in a wireless cellular radio network. Let pi = [xi, yi]
T

denote the a priori known position of the ith BS, i = 1, 2, ..., N , and let θp = [x, y]T

denote the unknown MS position. For each BS, a number of K(K ≥ 1) distance

measurement(s) (time-of-arrival estimate(s) multiplied by c0) are obtained and subse-

quently relayed to a fusion center for post-processing [99]. Figure 3.1 illustrates such

a scenario and explains the notations therein.

Assuming a precise time synchronization between the BSs and MS, the kth distance
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Figure 3.1. An illustrating example of wireless localization in a cellular radio network
in a 2-D space. In this example, there are N = 3 BSs and one stationary MS. Each BS
(say the ith) collects a total number of K distance measurements, ri,k, k = 1, 2, ..., K
and transmits them terrestrially to a fusion center, where a localization algorithm will
be run to give an estimate of the MS position of interest, θ̂p, based on r.

measurement ri,k measured at the ith BS can be expressed by

ri,k =
√

(x− xi)2 + (y − yi)2
︸ ︷︷ ︸

di(θp)

+ vi,k, (3.1)

k = 1, 2, ..., K, where di(θp) represents the actual Euclidean distance between the MS

and the ith BS. Herein, vi,k is assumed to follow p
(L)
V (v;βL) under the LOS condition

or p
(NL)
V (v;βNL) under the NLOS condition. In the literature, p

(L)
V (v;βL) is usually

modeled by a zero mean Gaussian distribution, whereas p
(NL)
V (v;βNL) can be modeled

by a shifted Gaussian distribution (e.g., in [3,22,27–32]) or a Rayleigh distribution (e.g.,

in [27, 32–34]) or an exponential distribution (e.g., in [25, 26, 32]), depending on the

actual scenario for localization. However, it is stressed that the localization algorithm

developed in the sequel does not assume any knowledge about the measurement error

distribution.

For better readability, the signal model is expressed in a compact vector form as

r = h(θp) + v (3.2)
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where

r = [r1,1, . . . , r1,K , . . . , rN,1, . . . , rN,K ]
T , (3.3)

h(θp) = [d1(θp), . . . , d1(θp)
︸ ︷︷ ︸

K repititions

, . . . , dN(θp), . . . , dN(θp)
︸ ︷︷ ︸

K repititions

]T , (3.4)

v = [v1,1, . . . , v1,K , . . . , vN,1, . . . , vN,K ]
T . (3.5)

The column vectors r, h(θp) and v are all of dimension NK × 1. In the sequel, rm,

hm(θp) and vm will represent the mth element of r, h(θp) and v, respectively, with

m = 1, 2, . . . , NK. As explained in Section 1.4.1, we assume that the measurement

error terms in v are iid and follow a two-mode mixture distribution pV (v) as defined

in (1.6). Throughout this chapter, pV (v) is assumed to be completely unknown, and

θa is null and thus discarded in h(θp).

3.2 Joint ML Estimation using KDE

The estimation performance that relies on maximizing the exact log-likelihood func-

tion generally degrades once the true measurement error distribution deviates from

the assumed one. Since the measurement error distribution pV (v) is assumed to be

completely unknown, finding a robust position estimator whose performance is close

to that of the “ideal” maximum likelihood (ML) estimator (assuming known pV (v)) is

extremely challenging.

The idea followed here is to combine the position estimation and pdf estimation in

an iterative process. According to the definition in [100], the resulting parameter

estimation algorithms fall in the class of semi-parametric algorithm when the pdf pV (v)

is estimated non-parametrically and the vector parameter θp to be estimated is of finite

dimension. The semi-parametric algorithm, which was initially proposed for robust

multiuser detection in impulsive noise channels in [101], has its merits in dealing with

the problem where the noise pdf is unknown. In the context of localization, however,

the design of semi-parametric position estimation algorithm is more challenging due

to the nonlinear signal model in general. Before proceeding with the new algorithm,

however, an existing semi-parametric algorithm for robust position estimation [64] is

first revisited. This type of algorithms give not only an estimate of the MS position

but also an estimate of the measurement error distribution, which might be of use, for

instance, in radio network optimization.
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3.2.1 Competing Algorithm

In [64], the nonlinear signal model is first linearized by squaring both sides of (3.1) as

follows:

r2i,k = d2i (θp) + v2i,k + 2di(θp)vi,k = Ri +R− 2xix− 2yiy + ṽi,k (3.6)

where

R = x2 + y2, (3.7)

Ri = x2i + y2i , (3.8)

ṽi,k = v2i,k + 2di(θp)vi,k. (3.9)

Reformulating (3.6) as

r2i,k −Ri = −2xix− 2yiy +R + ṽi,k, (3.10)

and stacking all the terms in a vector, a linear regression model is thus obtained as

r̃ = Sθ̃p + ṽ (3.11)

with the vector notations defined by

r̃ =















r21,1 − R1
...

r21,K −R1
...

r2N,1 − RN
...

r2N,K − RN















, S =















−2x1, −2y1, 1
...

−2x1, −2y1, 1
...

−2xN , −2yN , 1
...

−2xN , −2yN , 1















, (3.12)

ṽ = [ṽ1,1, . . . , ṽ1,K , . . . , ṽN,1, . . . , ṽN,K ]
T and θ̃p = [x, y, R]T . Note that r̃ and ṽ are both

of dimension NK×1 and S is of dimension NK×3. Assuming that the error terms in

ṽ are iid random variables with pdf pṼ (ṽ), although not always true, the log-likelihood

function can be expressed by

NK∑

m=1

ln pṼ (r̃m − Smθ̃p) (3.13)

where Sm denotes the mth row of the matrix S. Since pṼ (ṽ) is in fact unknown,

two conceptually similar iterative algorithms (cf. [64, Table I]) have been proposed to

resolve an approximate ML estimator of θ̃p from

NK∑

m=1

ST
mϕ
(

r̃m − Smθ̃
)

= 0 (3.14)
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where the score function is defined by

ϕ(ṽ) = −
p̂′
Ṽ
(ṽ)

p̂Ṽ (ṽ)
(3.15)

with p̂Ṽ (ṽ) denoting the estimated pdf using transformation kernel density estimation

(TKDE) and p̂′
Ṽ
(ṽ) denoting the first order derivative of p̂Ṽ (ṽ) with respect to ṽ.

Given an extracted residual vector ˆ̃v on one iteration, TKDE is carried out to give an

estimated pdf p̂Ṽ (ṽ) in the following four steps:

1. Transform the extracted residual vector ˆ̃v via a transformation u = t(ˆ̃v; ζ), where

the parameter ζ steers the shape of this transformation function.

2. Symmetrize the transformed residual vector by us = [−uT ,uT ]T .

3. Perform conventional kernel density estimation upon us and consequently obtain

an estimated pdf p̂U(u).

4. Transform p̂U(u) back to p̂Ṽ (ṽ).

Note that the transformation parameter ζ has to be determined in an optimization

procedure prior to applying the TKDE. Details of the TKDE and selection of a proper

transformation parameter can be found in [64, Appendix A and B], respectively.

Although this semi-parametric algorithm has shown considerable improvements in the

estimation performance as compared to several other salient competitors [64], some

issues still remain unsolved. Firstly, an auxiliary parameter R is introduced, but the

constraint condition R = x2+y2 is not incorporated in the optimization process, which

surely leads to a sub-optimal solution. The technique proposed in [102] may serve as

a powerful tool for remedying this drawback. Secondly, after the linearization, the

transformed error terms ṽi(k), for i = 1, . . . , N and k = 1, . . . , K, in ṽ are no more

identically distributed due to the factor di(θ) in the expressions of ṽi(k). Thirdly,

in [64], a transformation of the original residual vector ˆ̃v has to be conducted but

there is no well established rule underpinning the selection of a parametric transforma-

tion function t(ˆ̃v; ζ) as well as an appropriate interval [ζL, ζU ] for optimizing ζ , which

are crucial to the pdf estimation. As illustrated in [64, Fig. 7], a wrongly selected

transformation parameter ζ may severely degrade the localization accuracy.
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3.2.2 Proposed RIN Algorithm

The proposed algorithm is also a semi-parametric algorithm according to the defini-

tion given at the beginning of this section. In order to distinguish between the two

semi-parametric algorithms, our algorithm is referred to as robust iterative nonpara-

metric (RIN) algorithm with the term “nonparametric” indicating the fact that the

measurement error pdf pV (v) is estimated non-parametrically. It is noteworthy that

the RIN algorithm that we will focus on is essentially an iterative version of the robust

nonparametric algorithm proposed in [27].

The main features of the new algorithm as compared to the existing semi-parametric

algorithm in [64] are highlighted as follows. Firstly, the proposed algorithm directly uses

the nonlinear signal model. As a consequence, evaluation of the constraint condition

R = x2 + y2 is avoided and the measurement error terms in v are iid. Secondly,

TKDE is replaced by nonparametric adaptive kernel density estimation (AKDE) to

obtain an estimate of the measurement error distribution. The latter is advantageous

since the parameters required for constructing a density estimator are set adaptively

and fully automatically as compared to the TKDE. Thirdly, a numerical method is

employed to resolve a position estimate from the approximate log-likelihood function,

which is derived based on the a priori calculated pdf estimate. The key steps of the

RIN localization algorithm are summarized in Algorithm 3.1. It is noteworthy that,

• The initial estimate θ
(0)
p is set by the first two entries of the least-squares solution

of (3.11), i.e., by [x̃LS, ỹLS]
T of

θ̃LSp = [x̃LS, ỹLS, R̃LS]
T = (STS)−1ST r̃. (3.18)

• The approximated measurement error distribution p̂
(η)
V (v) is composed of a sum

of Gaussian kernels as follows

p̂
(η)
V (v) =

1

NK

NK∑

m=1

1√
2πw(η)λ

(η)
m

exp

[

− (v − v̂(η)m )2

2(w(η)λ
(η)
m )2

]

(3.19)

where v̂
(η)
m denotes the mth element of the residual vector v̂(η), w(η) denotes the

window width and λ
(η)
m , m = 1, 2, ..., NK, denote the local bandwidth factors

calculated on the ηth iteration.

• The cost function g(η)(θp) = −L(η)(θp) is given explicitly by

g(η)(θp) = −
N∑

i=1

K∑

k=1

ln

(

1

NK

NK∑

m=1

1√
2πw(η)λ

(η)
m

exp

[

−(ri,k − di(θp)− v̂
(η)
m )2

2(w(η)λ
(η)
m )2

])

.

(3.20)
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Algorithm 3.1 Robust Iterative Nonparametric (RIN) Algorithm

Step1—Initialization:

Define the convergence tolerance ∆ and the maximum number of iterations Nitr. Set
the iteration index η = 0. Choose an initial guess θ

(0)
p .

Step2—Joint Estimation:

On the ηth (η ≥ 1) iteration, sequentially do:

1. Determine the residual vector v̂(η) = r− h(θ
(η−1)
p ).

2. Construct an estimate of the actual pdf pV (v), p̂
(η)
V (v), from v̂(η) via the nonpara-

metric AKDE described in Appendix 3.7.1.

3. Approximate the exact log-likelihood function by

L(η)(θp) =

N∑

i=1

K∑

k=1

ln
(

p̂
(η)
V (ri,k − di(θp))

)

. (3.16)

4. Solve an updated position estimate numerically through

θ(η)p = argmin
θp

− L(η)(θp). (3.17)

Step3—Convergence Check:

If ‖θ(η)p − θ(η−1)
p ‖ < ∆ or the maximum number of iterations Nitr is reached, then

terminate the algorithm and obtain θ̂RIN
p = θ

(η)
p ; otherwise reset η ← η + 1 and return

to the joint estimation stage.

• Due to the use of the kernel density estimation, the evaluations of (3.20) as well

as its gradient make the computational complexity of the RIN algorithm to scale

as O((NK)2) FLOPs per iteration.

• The robust nonparametric algorithm [27] is a special case of the RIN algorithm

in that Nitr is restricted to one to save some computational resources.

Many numerical methods can be utilized to solve the minimization problem for-

mulated in (3.17), e.g., the Newton-Raphson method [103] and quasi-Newton (QN)

method [104]. Alternatively, it is safest to perform a two-dimensional (2-D) grid search

with rather fine grid resolution in the vicinity of a good initial guess [90]. But the draw-

back lies in the high computational complexity. In this work, the Broyden-Fletcher-

Goldfarb-Shanno (BFGS)-QN method is used to minimize the nonlinear cost function

g(η)(θp) on each RIN iteration, since it theoretically guarantees downhill progress to-

wards the local minimum in each Newton step [105, page 141]. The key steps of the

BFGS-QN method are listed in Algorithm 3.2 for the ηth iteration.
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The reasons for choosing the least-squares solution as the initial value in Algorithm 3.1

are due to its simplicity and rather low computational complexity [3]. A more sophis-

ticated strategy is to test several candidate initial values and choose the best one. The

initial values can be, for instance, the position estimates obtained from the robust M-

estimation algorithm [32,64] and the robust semi-parametric estimation algorithm [64]

as well as the grid points in the vicinity of them.

It is conspicuous from Algorithm 3.1 that the parametric position estimation and the

nonparametric pdf estimation are tightly combined in an iteration process. Intuitively,

the improved position estimate will lead to a refined pdf estimate and vice versa so that

at the convergence of this iterative algorithm a good estimation performance can be

achieved. However, it remains difficult, even asymptotically, to theoretically analyze

the performance difference between the new position estimator and the corresponding

ML estimator (cf. (3.33)) in terms of bias and root-mean-square-error (RMSE). While

the ML estimator is known to be asymptotically efficient from Section 2.1, this is not

easy to show for the new position estimator, due to the difficulties in quantifying how

well the true pdf pV (v) can be approximated for a given number of observations. But

it is still believed that the performance of the new position estimator can be very close

to that of the ML estimator when the number of distance measurements is sufficiently

large.

Algorithm 3.2 BFGS-QN Method (on the ηth RIN Iteration)

1) Set the sub-iteration index j = 0 and obtain a search direction sj = −Hj ·
∇θpg

(η)(θ
(η,j)
p ), where ∇θpg

(η)(θ
(η,j)
p ) is the gradient of the cost function g(η)(θp)

evaluated at θ
(η,j)
p . The initial value θ

(η,0)
p is set to θ(η−1).

2) Find the step size ςj along the direction sj via the cubic line search method
introduced in [106, Algorithm 3.5 and 3.6].

3) Update the estimate by θ
(η,j+1)
p = θ

(η,j)
p + ςjsj .

4) Set δj = ςjsj and γj = ∇θpg
(η)(θ

(η,j+1)
p )−∇θpg

(η)(θ
(η,j)
p ).

5) Update the approximate Hessian matrix by

Hj+1 = Hj +

(

1 +
γT
j Hjγj

δTj γj

)

δjδ
T
j

δTj γj
−
(

δjγ
T
j Hj +Hjγjδ

T
j

δTj γj

)

. (3.21)

The initial approximate Hessian matrix H0 is set to an identity matrix I2.

6) If ‖θ(η,j+1)
p − θ(η,j)p ‖ < ∆p, then stop; otherwise update the iteration index j ←

j + 1 and return to step 2.
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3.3 Cramér-Rao Lower Bound Computation

Let θ̂p = [x̂, ŷ]T denote an unbiased estimator of a deterministic vector position pa-

rameter θp = [x, y]T and let Cov(θ̂p) denote the covariance matrix of θ̂p. In chapter 2,

Theorem 2.1 tells us that

Cov(θ̂p) = Ep(r;θp)

{

(θ̂p − θp)(θ̂p − θp)T
}

� F
−1(θp). (3.22)

It is further shown in Appendix 3.7.2, for the nonlinear signal model in (3.2) with

non-Gaussian error terms in v that are iid according to a known pdf pV (v), that the

FIM is given by

F(θp) = Iv ·H(θp)H
T (θp) (3.23)

where

H(θp) = ∇θph(θp) =











x− x1
d1(θp)

, · · · , x− x1
d1(θp)

︸ ︷︷ ︸

K repetitions

, · · · , x− xN
dN(θp)

, · · · , x− xN
dN (θp)

︸ ︷︷ ︸

K repetitions
y − y1
d1(θp)

, · · · , y − y1
d1(θp)

︸ ︷︷ ︸

K repetitions

, · · · , y − yN
dN(θp)

, · · · , y − yN
dN(θp)

︸ ︷︷ ︸

K repetitions











, (3.24)

and the intrinsic accuracy [107]

Iv = EpV (v)

{

[∇vpV (v)]
2

p2V (v)

}

=

∫
[∇vpV (v)]

2

p2V (v)
pV (v)dv. (3.25)

Remark 3.1. For most of the measurement error distributions, it is difficult to de-

rive Iv in closed form. A notable exception, however, is the Gaussian distribution

N (v;µv, σ
2
v) whose Iv = σ−2

v . In most cases, the integral in (3.25) has to be approxi-

mated using Monte Carlo integration [108], yielding

Iv ≈
1

NM

NM∑

n=1

[
∇vpV (v

(n))
]2

p2V (v
(n))

(3.26)

where v(n), n = 1, 2, ..., NM are iid error terms generated from pV (v). In Ap-

pendix 3.7.3, two representative mixture distributions as well as their gradients in an-

alytical form are provided.

Remark 3.2. Only one Monte Carlo integration has to be performed to compute Iv if

the error terms in v are iid, and this Iv can be used to compute the CRLB for different

BSs-MS geometries.



40 Chapter 3: Localization in Cellular Radio Networks: Nonparametric Modeling

3.4 Theoretical Performance Metrics

In this section, various different performance metrics are presented that can be used

to assess the performance of an unbiased position estimator. To that end, pV (v) is

assumed to be known in the subsequent sections.

3.4.1 Bias, RMSE, and Efficiency

In localization applications, it is desirable to design an unbiased estimator with RMSE

as small as possible [49]. Herein, the bias of a position estimator is defined by

Bias(θ̂p) = Ep(r;θp){θ̂p} − θp (3.27)

and the localization RMSE, frequently interpreted as the localization accuracy of a

position estimator in the literature, is related to the obtained CRLB through

RMSE(θ̂p) =
√

Ep(r;θp){(x̂− x)2 + (ŷ − y)2}

=

√

tr
{

Cov(θ̂p)
}

≥ CRLBpos(θp) =
√

tr
{
F

−1(θp)
}

(3.28)

where CRLBpos(θp) can be interpreted as the best achievable localization RMSE of an

unbiased position estimator. Besides, the estimation efficiency of an unbiased position

estimator is re-defined as

ηeff(θ̂p) =
CRLBpos(θp)

RMSE(θp)
=

√

tr(F−1(θp))

tr(Cov(θ̂p))
. (3.29)

It follows from (3.28) that 0 ≤ ηeff(θ̂p) ≤ 1. If a position estimator is unbiased and

simultaneously attains ηeff(θ̂p) = 1, then it is referred to as an efficient position esti-

mator. As it is well known, the ML estimator obtained from (3.33) is asymptotically

efficient, i.e., unbiased and ηeff(θ̂p) = 1 as the number of measurements goes to infinity.

3.4.2 Geometric Dilution of Precision

Another important metric is called geometric dilution of precision (GDOP), which is

used to describe the influence of BSs-MS geometry on the relationship between the
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measurement error and localization accuracy [109]. Since identical variance of the

measurement errors is assumed across all BSs, the GDOP is easily calculated by

GDOP =

√
√
√
√tr

{

Cov(θ̂p)
}

σ2
v

(3.30)

where σ2
v denotes the variance of the measurement error distribution, pV (v). For an

efficient position estimator, (3.30) becomes

GDOP =
CRLBpos

σv
. (3.31)

It was reported in [40] that GDOP values smaller than three imply well-suited geometry,

whereas those larger than six imply a deficient geometry.

3.5 Simulations

In this section, the performance of the proposed RIN algorithm will be evaluated

and further compared with several competing algorithms, including the robust semi-

parametric algorithm surveyed in Section 3.2.1, in comprehensive simulations. Sec-

tion 3.5.1 introduces the overall simulation setup and Section 3.5.2 shows the simulation

results.

3.5.1 Simulation Setup

In what follows, a stationary MS is to be located using N = 8 BSs in a cellular radio

network. In order to be as realistic as possible, the BS positions are taken from an

operating cellular radio network in a German city center [22,29]. The geometry of the

BSs as well as the approximate location of the city center are shown in Fig. 3.2. The BS

antennae are generally deployed on rooftops and the city center can be characterized

as urban area with multistory buildings and narrow streets.

Field trials conducted in this city have revealed that the distance measurement error

terms collected from different BSs can be well approximated by a Gaussian mixture

distribution [29]. In the simulations considered in Section 3.5.2, iid measurement error

terms are generated from the following two-mode Gaussian mixture distribution

pV (v) = αLN (v;µL, σ
2
L) + αNLN (v;µNL, σ

2
NL) (3.32)
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Figure 3.2. 2-D illustration of the geometry of BSs and the city center area in a
real-world scenario in Germany.

where µL = 0 meter (m), σL = 55m, µNL = 380m and σNL = 120m.

The proposed RIN estimator is compared to the following position estimators:

• Least-squares estimator, cf. (3.18)

• Robust M-estimator [32, 64]

• Robust semi-parametric estimator [64]

• Robust nonparametric estimator [27]

• ML estimator with known pV (v)

The first three algorithms are all developed under the linear regression model in (3.11).

In the robust M-estimation algorithm, the clipping point cH of Huber’s score function

ψ(ṽ; cH) (cf. [64, (7)]) is adaptively calculated by cH = 0.6/(1.483 · mad(ˆ̃v)), where ˆ̃v

denotes the a priori extracted residual vector on each iteration and mad(·) denotes

the median absolute deviation. The same transformation function t(ˆ̃v; ζ) and search

interval [ζL = 0.9, ζU = 1] as suggested in [64] are chosen. The robust nonparametric

algorithm follows Algorithm 3.1, except that the number of iterations is constrained to
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one. The above competitors do not assume pV (v) to be known a priori. By assuming

pV (v) to be known and the measurement errors are iid, the ML estimator is computed

through

θ̂ML
p = argmax

θp

N∑

i=1

K∑

k=1

ln pV (ri,k − di(θp)) . (3.33)

Again, the BFGS-QN method is adopted with the initial guess set ideally by the true

MS position. The RIN algorithm terminates if the convergence tolerance ∆ = 0.1

m or the maximum number of iterations Nitr = 20 trials has been reached. All the

simulations have been performed under MATLABTMR2010a environment on a PC

equipped with Intel R©CoreTMi5-760 processor (2.80GHz) and 8GB RAM.

3.5.2 Simulation Results

3.5.2.1 GDOP

In the first experiment, GDOP values are computed according to (3.31) (i.e., assuming

an efficient position estimator) for various different positions in the city center area

as illustrated in Fig. 3.2. In this simulation, the number of distance measurements K

obtained at each BS is set to one, and the NLOS contamination ratio αNL is set to 0.5.

According to [105, Section 1.4.16], the variance of pV (v) in (3.32), σv, is given by

σv =
√

αLσ2
L + αNLσ2

NL + αLαNLµ2
NL. (3.34)

The resulting GDOP values are shown in Fig. 3.3, indicating a well-suited BS geometry

for locating an MS in the city center area. Increasing K or decreasing αNL will yield

better GDOP values.

3.5.2.2 Bias, RMSE and CRLB

In the second experiment, the different position estimators are evaluated in terms of

bias and RMSE. To that end, the bias and RMSE of different position estimators are

evaluated in a large-scale Monte Carlo simulation with 2500 independent trials. Two

examples are investigated in the sequel.

The first example assumes that the MS is located at [x = 0.25 km, y = 0.5 km]T and

the number of distance measurements at each BS is K = 20 samples. The bias and

RMSE of the aforementioned position estimators are evaluated as a function of the
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Figure 3.3. GDOP values measured for an efficient position estimator in the city center
area with K = 1 and αNL = 0.5.

NLOS contamination ratio 0 ≤ αNL ≤ 1. The results for the bias and RMSE are

shown in Fig. 3.4 and Fig. 3.5. The performance lower bound CRLBpos is calculated

according to (3.28) and shown here to serve as a benchmark for comparing different

RMSE curves. It is noteworthy that for the cases αNL = 0 and αNL = 1, the FIM has

the following analytical form:

F(θp) =

{
σ−2
L ·H(θp)H

T (θp), for αNL = 0
σ−2
NL ·H(θp)H

T (θp), for αNL = 1
. (3.35)

The results mainly reveal the following two aspects. Firstly, the selected position esti-

mators all perform similarly (close to the ML estimator) when the NLOS contamination

ratio αNL is close to zero. The reasons are as follows:

1. For the first two robust estimators developed under the linear regression model,

the measurement error vi,k is most probably generated from the LOS mixture

component N (v;µL, σ
2
L) resulting in ṽi,k ≈ 2di(θp)vi,k in (3.9) for the assumed

simulation scenario. As a result, ṽi,k, i = 1, 2, ..., N and k = 1, 2, ..., K, can be

regarded as approximately jointly Gaussian distributed. It was shown in [32, 64]

that they perform nearly optimally under the Gaussian model.

2. Due to the good quality of the initial guess (i.e., the least-squares estimate), the

measurement error distribution estimated on the first iteration of Algorithm 3.1 is
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already close to true one, so extra iterations can only ameliorate it slightly. This

explains why the robust nonparametric estimator is close to the RIN estimator.

Secondly, the RIN estimator is closest to the ML estimator and outperforms all the

other robust competitors by far when αNL is large. The reasons are as follows:

1. When αNL is large, the pdf of ṽi,k starts to deviate from a Gaussian model, leading

to deteriorated performance of the ones developed under the linear regression

model.

2. The robust M-estimator breaks down at best for a contamination ratio equal to

0.5 [14]. Therefore, it is not surprising to see the drastic performance degradation

from αNL > 0.3 in Fig. 3.5.

3. The robust semi-parametric estimator [64] performs even worse than the least-

squares estimator or the robust M-estimator for some αNL (e.g., αNL = 0.9 in

Fig. 3.5). The reason may lie in the fact that the transformation function t(ˆ̃v; ζ)

and the associated search interval [ζL = 0.9, ζU = 1] needed in the TKDE are

inappropriate for the assumed simulation scenario.

4. Having conquered the drawbacks of the semi-parametric algorithm (cf. Sec-

tion 3.2.1), improved performance has been harvested in terms of bias and RMSE

for both the robust nonparametric algorithm [27] and RIN algorithm.

5. Since the quality of the initial guess degenerates as αNL increases, larger discrep-

ancy has been observed between the exact measurement error distribution pV (v)

and its estimate calculated on the first iteration of Algorithm 3.1. Therefore, the

robust nonparametric algorithm becomes worse as αNL increases. Introducing ex-

tra iterations as is done in the RIN algorithm successfully reduces the discrepancy

and brings improved localization accuracy.

In the second example, the overall performance of the position estimators in the city

center area is examined. A total number of 2000 sets of different positions are generated

uniformly from the city center area. The localization RMSE and CRLBpos are both

calculated for each set and finally averaged. The results are shown in Fig. 3.6, from

which we observe that the performance of the RIN estimator and ML estimator stays

almost unaltered while the performance of the others becomes worse. It is notewor-

thy that the RMSE curve of the ML estimator coincides well with the corresponding

CRLBpos curve in Fig. 3.5 and Fig. 3.6.



46 Chapter 3: Localization in Cellular Radio Networks: Nonparametric Modeling

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

10

15

20

25

30

35

40

45

50

 

 
LS−Est
Robust−M−Est
Robust SemiPara−Est
Robust−NonPara−Est
RIN
MLE

NLOS contamination ratio, αNL

B
ia
s(
x
)
(m

et
er
)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

0

5

10

15

20

25

30

35

40

45

50

 

 
LS−Est
Robust−M−Est
Robust−SemiPara−Est
Robust−NonPara−Est
RIN
MLE

NLOS contamination ratio, αNL

B
ia
s(
y
)
(m

et
er
)

(b)

Figure 3.4. Bias (assuming a fixed position [x = 0.25 km, y = 0.25 km]) of different
position estimators versus the NLOS contamination ratio, αNL. (a) describes the bias
in x-position; and (b) describes the bias in y-position.
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Figure 3.5. Localization RMSE (assuming a fixed position [x = 0.25 km, y = 0.25 km])
of different position estimators versus the NLOS contamination ratio, αNL.
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3.5.2.3 Estimation Efficiency

Next, estimation efficiency of the RIN estimator is shown as a function of the number

of measurements. The MS locates at [x = 0.25 km, y = 0.25 km], K varies from 5 to

75 at an increment of 5 samples, and αNL = 0.5. For each K, 1000 independent Monte

Carlo trials are carried out to first calculate the RMSE, then the estimation efficiency is

evaluated according to (3.29). Fig. 3.7 shows the resulting estimation efficiency versus

the number of measurements at each BS. Gathering these results, the performance of

the RIN estimator are summarized as follows:

- It largely deviates from the ML estimator when NK is small (e.g., NK ≤ 50

samples), but still outperforms other robust estimators by far.

- It performs closer to the ML estimator as NK increases. When NK = 100

samples are available, it attains an efficiency of ηeff ≈ 0.8. When we further

increase NK to 300 samples, the efficiency will be ηeff ≈ 0.9. Although not

shown here, the efficiency will increase very slowly thereafter and attain ηeff ≈ 1

at NK = 1000 samples.

In addition, we also found that the existing robust semi-parametric estimator in [64]

does not fulfill the asymptotic efficiency property.

3.5.2.4 PDF Estimation via AKDE

In the previous experiments, the RIN algorithm have demonstrated improved perfor-

mance as compared to the robust nonparametric algorithm. The improvement mainly

stems from the extra enhancement in the pdf estimation achieved in the RIN algorithm.

In order to experimentally confirm this statement, Fig. 3.8 shows the pdf estimates ob-

tained on different iterations of Algorithm 3.1 versus the actual measurement error

distribution for a particular Monte Carlo trial in the first example of this section.

Moreover, Fig. 3.9 shows the histogram of both the actual measurement error terms

and the error residuals (cf. Step 2 of Algorithm 3.1) extracted on the last iteration of

this trial.
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Figure 3.6. Mean localization RMSE (over 2000 sets of positions uniformly generated
from the city center area) of different position estimators versus NLOS contamination
ratio, αNL.
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Figure 3.7. Estimation efficiency, ηeff, of different position estimators versus the number
of measurements collected at each BS, K.
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Figure 3.9. Top sub-figure: Histogram of the actual measurement error terms in one
particular Monte Carlo trial. Top sub-figure: Histogram of the residuals extracted
on the last iteration of Algorithm 3.1 in the same trial.
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Figure 3.10. Localization RMSE of different position estimators versus the NLOS
contamination ratio, αNL, according to new settings. Herein, the measurement error
distribution is modeled by a Gaussian-Rayleigh mixture with µL = 0m, σL = 150m
and γNL = 500m.

3.5.2.5 One Additional example

In the above simulations, the Gaussian mixture measurement error model is the main

focus, although the proposed algorithm is able to work for any other model. For rigor,

the localization performance of the RIN algorithm will be shown in another example

where we assume a simulated network and a two-mode Gaussian-Rayleigh measurement

error model.

Consider a cellular radio network with N = 10 BSs and one MS. The BSs are located

in a 2-D plane with fixed positions [x1 = 2.5, y1 = 5], [x2 = 1, y2 = 3.5], [x3 = 4.5, y3 =

1.75], [x4 = 1.5, y4 = 4], [x5 = 3, y5 = 4.5], [x6 = 1.75, y6 = 1], [x7 = 4, y7 = 0.75],

[x8 = 5, y8 = 1.25], [x9 = 0.5, y9 = 2], [x10 = 3, y10 = 0.25] all in km. The true

MS locates at [x = 2.5 km, y = 2 km]. At each BS, a number of K = 30 distance

measurements are obtained. The measurement error distribution is modeled by a

Gaussian-Rayleigh mixture, i.e.,

pV (v) = αLN (v;µL, σ
2
L) + αNLR(v; γNL) (3.36)
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where

R(v; γNL) =

{
v

γ2
NL

exp
[

−v2

2γ2
NL

]

, v ≥ 0

0, v < 0
, (3.37)

with the true parameters set by µL = 0m, σL = 150m and γNL = 500m. The

localization RMSE is shown as a function of the contamination ratio in Fig. 3.10.

Similar conclusions can be drawn accordingly.

3.6 Conclusions

We developed a robust iterative nonparametric (RIN) algorithm for position estimation

in harsh mixed line-of-sight/non-line-of-sight environments with completely unknown

measurement error distribution. The idea of the RIN algorithm is to jointly estimate

the position and measurement error distribution. We presented the best achievable

localization accuracy in terms of the Cramér-Rao lower bound in the assumed situa-

tion. Simulations were performed in various different scenarios. The results have shown

that the proposed position estimator can achieve significantly improved performance

as compared to some salient competitors. Especially when the number of distance

measurements is large, the proposed RIN position estimator is very close to the ac-

tual maximum likelihood estimator, and the localization RMSE approaches the best

achievable performance. However, the improvement comes at the expense of higher

computation as compared to other competitors.

3.7 Appendix

3.7.1 Adaptive Kernel Density Estimation

Kernel density estimation (KDE) is a nonparametric approach for estimating a pdf

based on a given set of observations [37]. The gist of the KDE is to approximate a

pdf (usually without ground truth) by a linear combination of kernel densities with

carefully tuned bandwidths. Amongst a large number of variations of this kind, the

class of adaptive kernel density estimation methods is adopted, which gives overall good

performance in estimating a long-tailed and/or multi-modal pdf [37]. Assuming that

we have a set of NK iid observations v = {v1, v2, ..., vNK} generated from a continuous
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Algorithm 3.3 Adaptive Kernel Density Estimator

1) Find a pilot density estimator

p̂0(v) =
1

NK

NK∑

m=1

1

w0
KG

(
v − vm
w0

)

(3.38)

where KG(·) denotes the standard Gaussian kernel, w0 = 0.79 · iqr{v}(NK)−1/5

denotes an initial global bandwidth and iqr{v} denotes the interquartile range
of v = {v1, v2, . . . , vNK}.

2) Define local bandwidths λm, m = 1, 2, . . . , NK, by

λm =



p̂0(vm)

/[
NK∏

m=1

p̂0(vm)

] 1
NK





−β

(3.39)

where the sensitivity parameter β is set to 0.5 as suggested in [110].

3) An adaptive kernel density estimator p̂V (v) is finally constructed by

p̂V (v) =
1

NK

NK∑

m=1

1

wλm
KG

(
v − vm
wλm

)

. (3.40)

univariate distribution pV (v), the steps for constructing an adaptive kernel density

estimator p̂V (v) are demonstrated in Algorithm 3.3.

As we desire a reliable window width w that can be selected adaptively and fully

automatically, the least-squares cross-validation (LSCV) technique, see for instance

[111] and [112], is utilized. The principle of the LSCV is to find a window width w in

the sense of minimizing the mean-integrated-square-error (MISE),

E

{∫ ∞

−∞
(p̂V (v)− pV (v))2 dv

}

, (3.41)

which is widely used to measure the discrepancy between p̂V (v) and pV (v).

It follows from [37] that minimizing the MISE is equivalent to minimizing the expec-

tation of a score function M0(w) defined by

M0(w) =

∫ ∞

−∞
p̂2V (v)dv −

2

NK

NK∑

m=1

p̂−m
V (vm). (3.42)

Due to the difficulty in calculating the expectation, M0(w) is minimized instead to

give a good window width. In (3.42), p̂−m
V (v) is also a density estimator, which is
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constructed from all iid observations except vm, more precisely,

p̂−m
V (v) =

1

M − 1

NK∑

m′=1,m′ 6=m

1

wλm′

KG(
v − vm′

wλm′

). (3.43)

Since KG(·) is the standard Gaussian kernel, it was shown in [37] that

∫ ∞

−∞
p̂2V (v)dv =

1

(NK)2

NK∑

m=1

NK∑

m′=1

1
√

2π(w2λ2m + w2λ2m′)
exp

[

− (vm − vm′)2

2(w2λ2m + w2λ2m′)

]

.

(3.44)

3.7.2 Derivations of (3.23)

When the regularity conditions are all satisfied, the FIM can be re-expressed by

F(θp) = Ep(r;θp)

{

∇θpp(r; θp)∇T
θp
p(r; θp)

p(r; θp)2

}

. (3.45)

Applying the chain rule on ∇θp ln p(r; θp) [91, 113] yields

∇θp ln p(r; θp) = ∇θp ln pv(r− h(θp))

=
−∇θph(θp) ·

[
∇vpv(v) |v=r−h(θp)

]

pv(r− h(θp))
. (3.46)

Inserting (3.46) into (3.45) yields

F(θp) = ∇θph(θp)Ep(r;θp)

{∇vpv(v)∇T
vpv(v) |v=r−h(θp)

p2v(r− h(θp))

}

∇T
θp
h(θp)

= ∇θph(θp)Epv(v)

{∇vpv(v)∇T
vpv(v)

p2v(v)

}

∇T
θp
h(θp)

= H(θp)IvH
T (θp) (3.47)

where H(θp) is defined in (3.24), and

Iv = Epv(v)

{∇vpv(v)∇T
vpv(v)

p2v(v)

}

. (3.48)

Due to the statistical properties of the vector elements vm, m = 1, 2, ..., NK, the

(m,m′)th entry of the matrix Iv can be expressed by

[Iv]m,m′ = Epv(v)

{∇vmpV (vm)∇vm′pV (vm′)

pV (vm)pV (vm′)

}

. (3.49)
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If m = m′, the mth main diagonal element is simplified to

[Iv]m,m = Ivm = EpV (vm)

{∇2
vmpV (vm)

p2V (vm)

}

. (3.50)

Since vm, m = 1, 2, ..., NK are identically distributed, it can be concluded that

Iv = Iv1 = Iv2 = ... = IvNK
. (3.51)

if m 6= m′, [Iv]m,m′ is equal to

EpV (vm)

{∇vmpV (vm)

pV (vm)

}

EpV (vm′ )

{∇vm′pV (vm′)

pV (vm′)

}

, (3.52)

since vm and vm′ are mutually independent. In order to prove the diagonal property of

Iv, we recall that for the computation of the CRLB, the following regularity condition

Ep(r;θp)

{
∇θp ln p(r; θp)

}
= ∇θph(θp)Epv(v)

{∇vpv(v)

pv(v)

}

= 0 (3.53)

must hold for all θp in its parameter space, which is equivalent to saying that

EpV (v)

{∇vpV (v)

pV (v)

}

= 0, (3.54)

when the elements in v are iid. As a result, [Iv]m,m′ = 0 for m 6= m′ and [Iv]m,m′ = Iv
for m = m′. Hence, Iv = Iv · INK is proven. Inserting this result into (3.47) gives

(3.23).

3.7.3 Expressions of pV (v) and ∇vpV (v)

To capture the characteristics of the measurement error in mixed LOS/NLOS en-

vironments, the two-mode Gaussian-Gaussian mixture distribution and two-mode

Gaussian-Rayleigh mixture distribution are favorable to use. Under the LOS con-

dition, p
(L)
V (v;βL) = N (v;µL, σ

2
L) is assumed. When p

(NL)
V (v;βNL) is modeled by a

shifted Gaussian distribution, i.e.,

N (v;µNL, σ
2
NL) =

1√
2πσNL

exp

[−(v − µNL)
2

2σ2
NL

]

, (3.55)

the Gaussian-Gaussian mixture distribution and its gradient are given, respectively, by

pV (v) =
αL√
2πσL

exp

[−(v − µL)
2

2σ2
L

]

+
αNL√
2πσNL

exp

[−(v − µNL)
2

2σ2
NL

]

, (3.56)

∇vpV (v) =
−αL(v − µL)√

2πσ3
L

exp

[−(v − µL)
2

2σ2
L

]

− αNL(v − µNL)√
2πσ3

NL

exp

[−(v − µNL)
2

2σ2
NL

]

.

(3.57)
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When p
(NL)
V (v;βNL) is modeled by a two-mode Rayleigh distribution as given in (3.37),

the Gaussian-Rayleigh mixture distribution and its gradient are given, respectively, by

pV (v) =







αL√
2πσL

exp
[
−(v−µL)

2

2σ2
L

]

+ αNLv
γ2
NL

exp
[

−v2

2γ2
NL

]

, v ≥ 0

αL√
2πσL

exp
[
−(v−µL)

2

2σ2
L

]

, v < 0
, (3.58)

∇vpV (v) =







−αL(v−µL)√
2πσ3

L

exp
[
−(v−µL)

2

2σ2
L

]

+ αNL

γ2
NL

exp
[

−v2

2γ2
NL

]

(1− v2

γ2
NL
), v ≥ 0

−αL(v−µL)√
2πσ3

L

exp
[
−(v−µL)

2

2σ2
L

]

, v < 0
. (3.59)
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Chapter 4

Localization in Cellular Radio Networks:
Parametric Modeling

In Chapter 3, the measurement error distribution is assumed to be completely unknown.

The proposed robust iterative nonparametric (RIN) algorithm jointly estimates the un-

known position and measurement error distribution. Optimal localization performance

was demonstrated for large data records when the measurement error terms are truly

iid. As a side product, an estimate of the measurement error distribution is also found

non-parametrically via the adaptive kernel density estimation (AKDE). However, the

use of the AKDE in the RIN algorithm leads to high computational complexity—

O((NK)2) floating-point operations (FLOPs) per iteration. In order to reduce the

complexity to a reasonable level, a parametric model is adopted in this chapter to rep-

resent the measurement error distribution. Prior knowledge about the measurement

error distribution can be either unknown or partially known. The use of such para-

metric model allows for better mathematical tractability and consequently leads to an

expectation-conditional maximization (ECM) algorithm and a joint maximum a poste-

riori -maximum likelihood (JMAP-ML) algorithm. Similar to the RIN algorithm, the

new proposed algorithms are iterative, which alternate between a position estimation

step and a measurement error distribution estimation step. But the key difference lies

in that an estimate of the measurement error distribution is found parametrically in

the new algorithms. As a consequence, the proposed ECM- and JMAP-ML algorithms

considerably reduce the computational complexity to O(CNK) FLOPs per iteration.

The organization of this chapter is as follows. Section 4.1 introduces the signal model

and states the problem at hand. Section 4.2 first provides a general routine of imple-

menting an ECM algorithm and a JMAP-ML algorithm, where a C-mode Gaussian

mixture is adopted to approximate the unknown measurement error distribution. Then,

the implementation details of the two algorithms are elaborated. Section 4.3 investi-

gates the developed algorithms in terms of the convergence properties and computa-

tional complexity. Section 4.4 generalizes the parametric model to be a C-mode mixture

of exponential family of distributions and provides an alternative way of reformulating

an expectation maximization (EM) algorithm. In Section 4.5, the Cramér-Rao lower

bound (CRLB) is computed, and the best achievable localization accuracy is further

presented. Section 4.6 evaluates the proposed algorithms in various simulations. Two

model mismatch problems are studied therein. Section 4.7 concludes this chapter and

Section 4.8 assembles some useful derivations.
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4.1 Signal Model and Problem Statement

Consider a scenario where N base stations (BSs) surround a stationary mobile station

(MS) of interest in a cellular radio network. Let pi = [xi, yi]
T , i = 1, 2, . . . , N , be the a

priori known positions of the ith BS and let θp = [x, y]T be the unknown position of the

MS. Each BS collects K(K ≥ 1) distance measurement(s) (time-of-arrival estimate(s)

multiplied by c0) ri,k, k = 1, 2, ..., K, and relays them to a fusion center for post-

processing [99]. Figure 3.1 has already illustrated such a scenario and explained the

notations therein. Assuming a precise time synchronization between the BSs and MS,

the kth distance measurement ri,k measured at the ith BS can be expressed by

ri,k =
√

(x− xi)2 + (y − yi)2
︸ ︷︷ ︸

di(θp)

+vi,k (4.1)

where di(θp) = ||pi − θp|| represents the actual Euclidean distance between the MS

and the ith BS, and vi,k is the corresponding measurement error in ri,k. As opposed

to Chapter 3, a C-mode Gaussian mixture distribution is adopted in the parametric

approach to the modeling of pV (v), i.e.,

pV (v) ≈ p̂V (v) =
C∑

l=1

αlN (v;µl, σ
2
l ), (4.2)

but the Gaussian mixture model parameters αl, µl and σ
2
l are assumed to be unknown

and determined jointly with the unknown positions. The reason for adopting a linear

superposition of Gaussians in (4.2) has been explained in Chapter 1.

For better readability, the signal model is expressed in a compact vector form as

r = h(θp) + v (4.3)

where

r = [r1,1, . . . , r1,K , . . . , rN,1, . . . , rN,K ]
T , (4.4)

h(θp) = [d1(θp), . . . , d1(θp)
︸ ︷︷ ︸

K repetitions

, . . . , dN(θp), . . . , dN(θp)
︸ ︷︷ ︸

K repetitions

]T , (4.5)

v(θe) = [v1,1, . . . , v1,K , . . . , vN,1, . . . , vN,K ]
T . (4.6)

Column vectors r, h(θp) and v are all of dimension NK × 1. Note that θa is null and

discarded in h(θp) throughout this chapter. The task is to jointly estimate the BS

position θp and the mixture model parameters θe = [α1, ..., αC , µ1, σ
2
1, ..., µC, σ

2
C ]

T . We

aim at the maximum likelihood (ML) estimator of θ = [θTe , θ
T
p ]

T .
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4.2 Joint ML Estimation

Based on the signal model in (4.3) and the parametric measurement error model in

(4.2), the log-likelihood function of θ is given by

LI(θ; r) = ln(p(r; θ)) = ln

(
N∏

i=1

K∏

k=1

p(ri,k; θ)

)

=
N∑

i=1

K∑

k=1

ln

(
C∑

l=1

αlN (ri,k − di(θp);µl, σ
2
l )

)

, (4.7)

and the ML estimator, θ̂ML, is obtained through solving

argmax
θ

LI(θ; r)

subject to αl ≥ 0, l = 1, 2, ..., C,
C∑

l=1

αl = 1.

(4.8)

The cost function in (4.8) is cumbersome due to the “logarithm of summation”. In

order to approximate the ML estimator with low computational complexity, a complete-

data set z = {y, r} is introduced with y = [y1,1, · · · , y1,K , · · · , yN,1, · · · , yN,K]
T being a

vector of NK random variables (also called latent variables) whose value tell us which

mixture component has generated the corresponding measurement error term. The

complete-data log-likelihood function is easily expressed by

LC(θ;y, r) = ln(p(y, r; θ)) = ln

(
N∏

i=1

K∏

k=1

p(yi,k, ri,k; θ)

)

=

N∑

i=1

K∑

k=1

ln(αyi,kN (ri,k − di(θp);µyi,k , σ
2
yi,k

)) (4.9)

where the second equality relies on the assumption that ri,k’s are independent and

as a consequence yi,k’s are also independent. To avoid ambiguity, the original log-

likelihood function LI(θ; r) in (4.7) is referred to as the incomplete-data log-likelihood

function. It is clear that the newly introduced complete-data log-likelihood function

LC(θ;y, r) has a more tractable form, based on which an EM algorithm and a JMAP-

ML algorithm are first developed. As will be seen, conventional way of optimizing θ

is still complicated, thus the conditional maximization [95] is introduced to meet this

challenge.
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4.2.1 EM Algorithm

As it was introduced in Section 2.2.1, the idea behind the EM criterion is to esti-

mate the unknown parameters iteratively in two steps—an expectation (E)-step and

a maximization (M)-step. In the first step, i.e., the E-step, statistical expectation of

the complete-data log-likelihood is taken with respect to the conditional probability of

the latent variables. In the second step, i.e., the M-step, the conditional expectation

obtained above is maximized with respect to the parameters of interest. The two steps

iterate until a predetermined convergence condition is met. Given the a priori param-

eter estimate θ(η), we show in the sequel the work-flow of the proposed EM algorithm

on the (η + 1)th iteration.

The first step (E-step): Let us first define the conditional expectation of the

complete-data log-likelihood as follows:

Q(θ; θ(η)) =
∑

y

ln (p(y, r; θ))Pr
{
y|r; θ(η)

}
. (4.10)

Follow the derivations shown in Appendix 4.8.1,

Q(θ; θ(η)) =
N∑

i=1

K∑

k=1

C∑

l=1

ln(αlN
(
ri,k − di(θp);µl, σ

2
l

)
)P

(η)
i,k,l (4.11)

where P
(η)
i,k,l is a short-hand notation of the conditional probability Pr

{
yi,k = l|ri,k; θ(η)

}
,

which can be computed by means of Bayes’ rule as follows:

P
(η)
i,k,l = Pr

{
yi,k = l|ri,k; θ(η)

}
=
α
(η)
l N (ri,k − di(θ(η)p );µ

(η)
l , σ

2,(η)
l )

p(ri,k; θ(η))
(4.12)

with

p(ri,k; θ
(η)) =

C∑

l=1

α
(η)
l N (ri,k − di(θ(η)p );µ

(η)
l , σ

2,(η)
l ). (4.13)

The second step (M-Step): We maximize Q(θ; θ(η)) derived in (4.11) with respect

to the vector parameter θ and obtain on the (η + 1)th iteration

θ(η+1) = argmax
θ

Q(θ; θ(η)). (4.14)
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4.2.2 JMAP-ML Algorithm

As another means of approximating the ML estimator, we next adopt the JMAP-ML

criterion, where the complete-data log-likelihood function is maximized directly with

respect to both θ and y, that is,

argmax
θ,y

LC(θ;y, r) ≡ argmax
θ

{

argmax
y

LC(θ;y, r)

}

. (4.15)

As it was introduced in Section 2.2.3, the JMAP-ML criterion incorporates a maximum

a posteriori (MAP) estimation step (in terms of the latent variables in y) and an ML

estimation step (in terms of the deterministic parameters in θ). The work-flow of the

proposed JMAP-ML algorithm on the (η + 1)th iteration is as follows.

The first step (MAP estimation of y): Let us first re-write the log-likelihood

function of the complete-data as follows:

LC(θ;y, r) = ln (p(y, r; θ)) = ln (Pr {y|r; θ}) + ln (p(r; θ)) (4.16)

where the term ln (p(r; θ)) is independent of y. Replacing θ with θ(η) in (4.16) and

solving for the MAP estimate of y yields

y(η+1) = argmax
y

ln
(
Pr
{
y|r; θ(η)

})
, (4.17)

which can be converted into NK simpler ones

y
(η+1)
i,k = argmax

yi,k

ln
(
Pr
{
yi,k|ri,k; θ(η)

})
. (4.18)

Since yi,k is discrete-valued, the global optimal solution to (4.18) must be one of

{yi,k = 1, 2, ..., C} that maximizes ln
(
Pr
{
yi,k|ri,k; θ(η)

})
. Since logarithm is a mono-

tonic operation, we need only to compare

Φ
(η)
i,k,l = α

(η)
l N (ri,k − di(θ(η)p );µ

(η)
l , σ

2,(η)
l ), l = 1, 2, ..., C. (4.19)

The second step (ML estimation of θ): Substituting the obtained MAP estimate

y(η+1) into the complete-data log-likelihood LC(θ;y, r) yields

LC(θ;y
(η+1), r) =

N∑

i=1

K∑

k=1

ln

(

α
y
(η+1)
i,k

N (ri,k − di(θp);µy
(η+1)
i,k

, σ2

y
(η+1)
i,k

)

)

=
N∑

i=1

K∑

k=1

C∑

l=1

ln
(
αlN (ri,k − di(θp);µl, σ

2
l )
)
δ(l − y(η+1)

i,k ) (4.20)
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where

δ(l − y(η+1)
i,k ) =

{

1, if l = y
(η+1)
i,k

0, otherwise
(4.21)

is a Kronecker’s delta function. On the (η+1)th iteration, we maximize LC

(
θ;y(η+1), r

)

with respect to θ and obtain

θ(η+1) = argmax
θ

LC

(
θ;y(η+1), r

)
. (4.22)

Remark 4.1. The cost functions (4.11) in the EM algorithm and (4.20) in the JMAP-

ML algorithm can be unified as

Λ(η) (θ) =
N∑

i=1

K∑

k=1

C∑

l=1

ln
(
αlN

(
ri,k − di(θp);µl, σ

2
l

))
w

(η)
i,k,l (4.23)

where merely the weighting factor w
(η)
i,k,l is distinguished by

w
(η)
i,k,l =

{

P
(η)
i,k,l, EM algorithm

δ(l − y(η+1)
i,k ), JMAP-ML algorithm

. (4.24)

It is interesting to see that w
(η)
i,k,l corresponds to a “soft fusion” of information in the

EM algorithm whereas a “hard fusion” of information in the JMAP-ML algorithm.

Remark 4.2. When the measurement error terms are truly iid and no model mismatch

is assumed in (4.2), the EM algorithm is able to reproduce the ML estimator that

globally maximizes the incomplete-data log-likelihood function in (4.7) [93]. However,

the JMAP-ML algorithm can merely produce a biased and inconsistent estimator [97].

Although w
(η)
i,k,l differs in the two algorithms, it is a priori determined and contains

no optimization variable, meaning that we could follow the same strategy to optimize

(4.11) and (4.20). Consequently, the corresponding results differ only by the weighting

factors. However, we also noticed that directly optimizing Λ(η) (θ) with respect to θ

can be complicated when the dimension of θ is large. In order to tackle this problem,

we apply the conditional maximization (CM) as introduced in Chapter 2 for solving

(4.11) and (4.20). The idea is as follows. First, we choose a proper partition of the

unknown parameters, i.e.,

θ = [ϑT
1 ,ϑ

T
2 , ...,ϑ

T
S ]

T (4.25)

where ϑs, s = 1, 2, ..., S is a sub-vector of θ. Furthermore, we let

G = {gs(θ) : s = 1, 2, ..., S} (4.26)

be a set of S preselected vector functions of θ defined by

gs(θ) = [ϑT
1 , ...,ϑ

T
s−1,ϑ

T
s+1, ...,ϑ

T
S ]

T , (4.27)
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meaning that gs(θ) is a vector that contains all the sub-vectors of θ except ϑs. With

the above partition of θ, we can convert the complicated maximization problem in

(4.23) into S easier ones. More precisely, the sth CM step of the (η + 1)th iteration

solves θ(η+s/S) from
argmax

θ

Λ(η) (θ)

subject to gs(θ) = gs(θ
(η+(s−1)/S))

. (4.28)

According to Section 2.2.2, the resulting EM-type algorithm is referred to as the ECM

algorithm.

4.2.3 Implementation Details

In the previous subsection, we gave a general routine for implementing an ECM algo-

rithm and a JMAP-ML algorithm for our joint estimation problem. As a complement,

this subsection elaborates on the implementation of the CM steps. We start with a toy

example, where C is set to two in the parametric model in (4.2), namely,

pV (v) =

2∑

l=1

αlN (v;µl, σ
2
l ). (4.29)

Here, we assume σ2
l , l = 1, 2, to be strictly larger than zero. In this example, the vector

parameter to be estimated is θ = [α1, α2, µ1, σ
2
1, µ2, σ

2
2, x, y]

T and the cost function in

(4.23) is written as

Λ(η) (θ) =

N∑

i=1

K∑

k=1

2∑

l=1

ln
(
αlN

(
ri,k − di(θp);µl, σ

2
l

))
w

(η)
i,k,l. (4.30)

In the sequel, the partition of θ is chosen to be ϑ1 = [α1, α2]
T , ϑ2 = µ1, ϑ3 = σ2

1 ,

ϑ4 = µ2, ϑ5 = σ2
2 and ϑ6 = θp. Hence, we have S = 6 in this example. We note

that different partitions of θ lead to different conditional maximization steps. Next,

we re-formulate the cost function Λ(η) (θ) in (4.30) as

Λ(η) (θ) = Λ
(η)
0 (α1, α2) +

2∑

l=1

Λ
(η)
l

(
µl, σ

2
l , θp

)
(4.31)

where

Λ
(η)
0 (α1, α2) =

N∑

i=1

K∑

k=1

2∑

l=1

ln(αl)w
(η)
i,k,l (4.32)



64 Chapter 4: Localization in Cellular Radio Networks: Parametric Modeling

and for l = 1, 2,

Λ
(η)
l

(
µl, σ

2
l , θp

)
=

N∑

i=1

K∑

k=1

ln
(
N
(
ri,k − di(θp);µl, σ

2
l

))
w

(η)
i,k,l

=

N∑

i=1

K∑

k=1

(

− ln(2πσ
2
l )

2
− (ri,k − di(θp)− µl)

2

2σ2
l

)

w
(η)
i,k,l. (4.33)

In the first CM step of the (η + 1)th iteration, we solve θ(η+1/S) from

argmax
θ

Λ(η) (θ)

subject to µ1 = µ
(η)
1 , σ2

1 = σ
2,(η)
1 , µ2 = µ

(η)
2 , σ2

2 = σ
2,(η)
2 , θp = θ

(η)
p . (4.34)

This is equivalent to updating α
(η+1)
l , l = 1, 2, from

∂

∂αl

[

Λ
(η)
0 (α1, α2) + λ (α1 + α2 − 1)

]

= 0 (4.35)

where λ is the Lagrange multiplier. After some simple manipulations, we have

α
(η+1)
l = −1

λ

N∑

i=1

K∑

k=1

w
(η)
i,k,l. (4.36)

The Lagrange multiplier λ in (4.36) is calculated to be equal to −NK because

N∑

i=1

K∑

k=1

2∑

l=1

w
(η)
i,k,l

︸ ︷︷ ︸

=NK

= −λ
2∑

l=1

α
(η+1)
l

︸ ︷︷ ︸

=1

. (4.37)

Consequently, we obtain after the first CM step

θ(η+1/S) = [α
(η+1)
1 , α

(η+1)
2 , µ

(η)
1 , σ

2,(η)
1 , µ

(η)
2 , σ

2,(η)
2 , (θ(η)p )T ]T . (4.38)

In the second CM step of the (η + 1)th iteration, we solve θ(η+2/S) from

argmax
θ

Λ(η) (θ)

subject to α1 = α
(η+1)
1 , α2 = α

(η+1)
2 , σ2

1 = σ
2,(η)
1 , µ2 = µ

(η)
2 , σ2

2 = σ
2,(η)
2 , θp = θ

(η)
p .

(4.39)

This is equivalent to updating µ
(η+1)
1 from

∂

∂µ1

N∑

i=1

K∑

k=1

(

− ln(2πσ
2,(η)
1 )

2
− (ri,k − di(θ(η)p )− µ1)

2

2σ
2,(η)
1

)

w
(η)
i,k,1 = 0, (4.40)
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which is obtained by taking the derivative of Λ
(η)
1 (µ1, σ

2,(η)
1 , θ

(η)
p ) with respect to µ1 and

setting it to zero. Equation (4.40) can be reduced to be

N∑

i=1

K∑

k=1

(ri,k − di(θ(η)p )− µ1)

σ
2,(η)
1

w
(η)
i,k,1 = 0. (4.41)

Assuming σ
2,(η)
1 is strictly larger than zero and solving for µ

(η+1)
1 yields

µ
(η+1)
1 =

N∑

i=1

K∑

k=1

(ri,k − di(θ(η)p ))w
(η)
i,k,1

N∑

i=1

K∑

k=1

w
(η)
i,k,1

. (4.42)

Hence, after the second CM step, we have

θ(η+2/S) = [α
(η+1)
1 , α

(η+1)
2 , µ

(η+1)
1 , σ

2,(η)
1 , µ

(η)
2 , σ

2,(η)
2 , (θ(η)p )T ]T . (4.43)

In the third CM step of the (η + 1)th iteration, we solve θ(η+3/S) from

argmax
θ

Λ(η)(θ) (4.44)

subject to α1 = α
(η+1)
1 , α2 = α

(η+1)
2 , µ1 = µ

(η+1)
1 , µ2 = µ

(η)
2 , σ2

2 = σ
2,(η)
2 , θp = θ

(η)
p .

(4.45)

This is equivalent to updating σ
2,(η+1)
1 from

∂

∂σ2
1

N∑

i=1

K∑

k=1

(

− ln(2πσ
2
1)

2
− (ri,k − di(θ(η)p )− µ(η+1)

1 )2

2σ2
1

)

w
(η)
i,k,1 = 0, (4.46)

which is obtained by taking the derivative of Λ
(η)
1 (µ

(η+1)
1 , σ2

1, θ
(η)
p ) with respect to σ2

1

and setting it equal to zero. Equation (4.46) can be reduced to be

N∑

i=1

K∑

k=1

w
(η)
i,k,1

σ2
1

−
N∑

i=1

K∑

k=1

(ri,k − di(θ(η)p )− µ(η+1)
1 )2w

(η)
i,k,1

σ4
1

= 0, (4.47)

from which solving for σ
2,(η+1)
1 yields

σ
2,(η+1)
1 =

N∑

i=1

K∑

k=1

(ri,k − di(θ(η)p )− µ(η+1)
1 )2w

(η)
i,k,1

N∑

i=1

K∑

k=1

w
(η)
i,k,1

. (4.48)

Hence, after the third CM step, we obtain

θ(η+3/S) = [α
(η+1)
1 , α

(η+1)
2 , µ

(η+1)
1 , σ

2,(η+1)
1 , µ

(η)
2 , σ

2,(η)
2 , (θ(η)p )T ]T . (4.49)
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Similar to the second step, an updated estimate µ
(η+1)
2 is found to be

µ
(η+1)
2 =

N∑

i=1

K∑

k=1

(ri,k − di(θ(η)p ))w
(η)
i,k,2

N∑

i=1

K∑

k=1

w
(η)
i,k,2

(4.50)

in the fourth CM step, and

θ(η+4/S) = [α
(η+1)
1 , α

(η+1)
2 , µ

(η+1)
1 , σ

2,(η+1)
1 , µ

(η+1)
2 , σ

2,(η)
2 , (θ(η)p )T ]T . (4.51)

Similar to the third step, an updated estimate σ
2,(η+1)
2 is found to be

σ
2,(η+1)
2 =

N∑

i=1

K∑

k=1

(ri,k − di(θ(η)p )− µ(η+1)
2 )2w

(η)
i,k,2

N∑

i=1

K∑

k=1

w
(η)
i,k,2

(4.52)

in the fifth CM step, and

θ(η+5/S) = [α
(η+1)
1 , α

(η+1)
2 , µ

(η+1)
1 , σ

2,(η+1)
1 , µ

(η+1)
2 , σ

2,(η+1)
2 , (θ(η)p )T ]T . (4.53)

In the sixth CM step (i.e., the last CM step) of the (η + 1)th iteration, we solve

θ(η+6/S) = θ(η+1) from

argmax
θ

Λ(η) (θ)

subject to α1=α
(η+1)
1 , α2=α

(η+1)
2 , µ1=µ

(η+1)
1 , σ2

1=σ
2,(η+1)
1 , µ2=µ

(η+1)
2 , σ2

2=σ
2,(η+1)
2 .
(4.54)

It is easy to see that the last CM step attempts to update the position estimate, θ
(η+1)
p ,

through solving

θ(η+1)
p = argmax

θp

2∑

l=1

Λ
(η)
l (µ

(η+1)
l , σ

2,(η+1)
l , θp), (4.55)

which can be reduced, after some tedious manipulations, to be

θ(η+1)
p = argmin

θp

N∑

i=1

K∑

k=1

2∑

l=1

(ri,k − di(θp)− µ(η+1)
l )2

σ
2,(η+1)
l

w
(η)
i,k,l. (4.56)

Unfortunately, a closed form solution does not exist because di(θp) is nonlinear in terms

of both x and y. Hence, we resort to numerical methods. In order to keep this position

update step computationally fast and meanwhile maintain a good numerical result, we

adopt here the BFGS quasi-Newton (QN) method as introduced in Chapter 3 as it
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guarantees downhill progress towards the local minimum in each Newton step [105].

Finally, we obtain on the (η + 1)th iteration

θ(η+1) = [α
(η+1)
1 , α

(η+1)
2 , µ

(η+1)
1 , σ

2,(η+1)
1 , µ

(η+1)
2 , σ

2,(η+1)
2 , (θ(η+1)

p )T ]T . (4.57)

The methodology demonstrated above can be easily applied to the general case where

C > 2. For simplicity, we summarize the key results in Algorithm 4.1. Therein, one of

the convergence conditions is selected according to the convergence properties given in

Section 4.3.1.

Before closing this subsection, we briefly comment on the difference between the non-

parametric approach to the modeling of pV (v) in the RIN algorithm and the parametric

approach to the modeling of pV (v) in the ECM- and JMAP-ML algorithms. In the

former approach, the pdf estimate is constructed by a linear superposition of NK

Gaussian kernel densities with identical weighting factor (prior probability) 1/NK and

each residual extracted from the corresponding distance measurement contributes to

one such kernel. However, in the latter approach, several different residuals extracted

from the corresponding distance measurements are more likely to be generated from a

same Gaussian kernel, which can be easily seen from the probabilistic assignment in

both (4.12) for the EM algorithm and (4.21) for the JMAP-ML algorithm. Hence, fix-

ing a small C (relative to NK) in the parametric approach is analogous to appending

an extra Kernel pruning/merging step after the kernel density estimation. Besides, we

have more freedom to choose C (as compared to the fixed number NK in the AKDE),

depending on the estimation accuracy we desire and the computational cost we are

able to afford. Lastly but most importantly, both the ECM algorithm and JMAP-ML

algorithm are guaranteed to converge when a C-mode Gaussian mixture is adopted to

approximate the unknown pV (v), while the RIN algorithm is not ensured to converge.

4.3 Performance Evaluation

In this section, the proposed algorithms will be studied in terms of the convergence

properties in Section 4.3.1 and computational complexity in Section 4.3.2.

4.3.1 Convergence Properties

As it was shown in Algorithm 4.1, both the ECM algorithm and JMAP-ML algorithm

are iterative in nature. The following theorems show their convergence properties.
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Algorithm 4.1 ECM- and JMAP-ML Algorithms (Assuming a C-mode Gaussian
Mixture in the Parametric Model)

Step 1—Initialization:

Choose a convergence tolerance ∆ and the maximum number of iterations Nitr. Set
the iteration index η = 0. Choose an initial guess θ(0).
Step 2—Joint Estimation:

On the (η + 1)th iteration (η ∈ Z, η ≥ 0),

- Compute w
(η)
i,k,l according to (4.24) for i = 1, 2, ..., N , k = 1, 2, ..., K, and l =

1, 2, ..., C.

- Choose a partition of θ = [ϑT
1 ,ϑ

T
2 , ...,ϑ

T
2C+2]

T with ϑ1 = [α1, α2, ..., αC]
T , ϑ2l =

µl, ϑ2l+1 = σ2
l , for l = 1, 2, ..., C, and ϑ2C+2 = θp.

- Solve θ
(η+1)
e in the first 2C + 1 CM steps and obtain closed form expressions:

α
(η+1)
l =

1

NK

N∑

i=1

K∑

k=1

w
(η)
i,k,l, (4.58)

µ
(η+1)
l =

N∑

i=1

K∑

k=1

(ri,k − di(θ(η)p ))w
(η)
i,k,l

NKα
(η+1)
l

, (4.59)

σ
2,(η+1)
l =

N∑

i=1

K∑

k=1

(ri,k − di(θ(η)p ))2w
(η)
i,k,l

NKα
(η+1)
l

− (µ
(η+1)
l )2, (4.60)

for l = 1, 2, ..., C.

- Solve θ
(η+1)
p in the (2C + 2)th CM step and obtain a numerical solution

θ(η+1)
p = argmin

θp

N∑

i=1

K∑

k=1

C∑

l=1

(ri,k − di(θp)− µ(η+1)
l )2

σ
2,(η+1)
l

w
(η)
i,k,l. (4.61)

- As a side-product of θ(η+1), we obtain on the (η + 1)th iteration an estimate of
pV (v) as:

p̂V (v) =
C∑

l=1

α
(η+1)
l N (v;µ

(η+1)
l , σ

2,(η+1)
l ). (4.62)

Step 3—Convergence Check:

If the increment of the log-likelihood value is less than ∆ or Nitr has been reached,
then terminate this algorithm; otherwise set η ← η + 1 and return to Step 2.
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Theorem 4.1. The proposed ECM algorithm in Algorithm 4.1 is a generalized EM

(GEM) algorithm and ensures that the sequence of incomplete-data log-likelihood values

{LI(θ
(η); r)}, when bounded above, converges monotonically over iterations to some

point L∗.

Proof. As is verified in Appendix 4.8.2, α
(η+1)
l , µ

(η+1)
l and σ

2,(η+1)
l , l = 1, 2, ..., C, are

global maximizers found in each conditional maximization step. Therefore,

Q(θ(η+s/S); θ(η)) ≥ Q(θ; θ(η)), s = 1, 2, ..., 2C + 1, (4.63)

for any θ ∈ Θs(θ
(η+(s−1)/S)) = {θ ∈ Θ : gs(θ) = gs(θ

(η+(s−1)/S))}. In other words,

θ(η+s/S) is the global maximizer in the given subspace of Θ. Therefore, it can be

concluded that

Q
(
θ(η+1)
e , θ(η)p ; θ(η)

)
= Q(θ(η+2C+1/S); θ(η))

≥ Q(θ(η+2C/S); θ(η))

≥ Q(θ(η+2C−1/S); θ(η))

...

≥ Q(θ(η); θ(η)). (4.64)

In the (2C+2)th conditional maximization step, the position estimate θ
(η+1)
p is updated

via the BFGS-QN method with the initial guess, θ
(η)
p . As mentioned beforehand, it

guarantees downhill progress towards the local minimum in each Newton step, thus it

can be concluded that the new position estimate θ
(η+1)
p will not decrease Q(θ; θ(η)) on

the (η + 1)th iteration. Therefore,

Q(θ(η+1); θ(η)) = Q
(
θ(η+1)
e , θ(η+1)

p ; θ(η)
)
≥ Q

(
θ(η+1)
e , θ(η)p ; θ(η)

)
≥ Q(θ(η); θ(η)). (4.65)

Hence, the proposed ECM algorithm is essentially a GEM algorithm according to

Section 2.2.1. When LI(θ; r) is bounded above, which holds under the assumption

that σ2
l > 0, l = 1, 2, ..., C, the proposed ECM algorithm converges monotonically over

iterations to some value L∗ of the incomplete-data log-likelihood function LI(θ; r).

Theorem 4.2. When the position update found by the BFGS-QN method in the (2C+

2)th CM step is a global maximizer, L∗ is ensured to be a stationary point for the

proposed ECM algorithm.

Proof. For L∗ to be a stationary point, however, we need to further prove, according

to Section 2.2.2, that (1) gs(θ) is differentiable; (2) the corresponding gradient (or
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Jacobian matrix) ∇θgs(θ) is of full rank at θ(η) ∈ Θ, for all η; and (3) the “space

filling” condition holds as

S⋂

s=1

Gs(θ
(η)) = {0}, for all η, (4.66)

where Gs(θ) is the column space of the matrix ∇θgs(θ). In Algorithm 4.1, we choose

the partition of θ = [ϑT
1 ,ϑ

T
2 , ...,ϑ

T
S ]

T , where S = 2C + 2, ϑ1 = [α1, α2, ..., αC ]
T ,

ϑ2l = µl, ϑ2l+1 = σ2
l , l = 1, 2, ..., C, and ϑ2C+2 = θp = [x, y]T . The dimension of θ is

dim(θ) = 3C + 2.

It is easy to show that

∇θgs(θ
(η)) =







[eC+1, ..., edim(θ)], s = 1

[e1, ..., eC+s−2, eC+s, ..., edim(θ)], s = 2, ..., 2C + 1

[e1, e2, ..., e3C ], s = S = 2C + 2

(4.67)

are differentiable and irrespective of θ(η) because

ej = [ 0, ..., 0
︸ ︷︷ ︸

j−1 copies

, 1, 0, ..., 0
︸ ︷︷ ︸

dim(θ)−j copies

]T , ∀j ∈ {1, 2, ..., dim(θ)}. (4.68)

It is clear that ∇θg1(θ
(η)) is of dimension dim(θ)× (dim(θ)− C); and ∇θgs(θ

(η)), for

s = 2, ..., 2C + 1, are all of dimension dim(θ) × (dim(θ) − 1); and ∇θgS(θ
(η)) is of

dimension dim(θ) × (dim(θ) − 2). Column vectors ej , j = 1, 2, ..., dim(θ), are all of

dimension dim(θ)× 1. Moreover, ej and ej′ are mutually orthogonal if j 6= j′. For any

s = 1, 2, ..., S, ∇θgs(θ
(η)) has a full column rank. So far, the first two conditions have

been proven. In the sequel, the superscript η is omitted for brevity.

The proof of the third condition starts with the definition of the column space, that

is, Gs(θ) is a linear combination of the columns of the matrix ∇θgs(θ), i.e.,

Gs(θ) =







∑

j∈{C+1,...,dim(θ)}
cjej , s = 1

∑

j∈{1,...,dim(θ)}\{C+s−1}
cjej, s = 2, ..., 2C + 1

∑

j∈{1,...,3C}
cjej , s = S = 2C + 2

(4.69)

where cj is a real scalar coefficient of ej . Since Gs(θ) is a subspace of Rdim(θ), (4.66) is

reformulated as

S⋂

s=1

Gs(θ) =

S⋂

s=0

Gs(θ) = GS(θ)
⋂

GS−1(θ)
⋂

· · ·
⋂

G1(θ)
⋂

G0(θ) (4.70)
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where G0(θ) is the whole space of Rdim(θ), spanned by
∑

j∈{1,...,dim(θ)} cjej . The right-

hand-side of the second equation in (4.70) can be performed sequentially in the order

s = 1, 2, ..., S as

G̃s(θ) = Gs(θ)
⋂

G̃s−1(θ) (4.71)

where

G̃s−1(θ) = Gs−1(θ)
⋂

Gs−2(θ)
⋂

· · ·
⋂

G1(θ)
⋂

G0(θ) (4.72)

for s > 1 and G̃s−1(θ) = G0(θ) for s = 1. Starting from s = 1, we obtain, owing to

the dimension formula [114], that

dim(G̃1(θ)) = dim
(

G1(θ)
⋂

G0(θ)
)

= dim(G1(θ))+dim(G0(θ))−dim(G1(θ)+G0(θ)).

(4.73)

Since G1(θ) and G0(θ) are both spanned by a set of orthogonal basis vectors, we

have dim(G1(θ)) = dim(θ) − C = 2C + 2 and G0(θ) = dim(θ). The dimension

of the sum of the column spaces, dim(G1(θ) + G0(θ)), is equal to the rank of the

matrix [eC+1, ..., edim(θ)|e1, e2, ..., edim(θ)], which is dim(θ). As a consequence, we have

dim(G̃1(θ)) = 2C + 2. The basis vectors that span G̃1(θ) are just the column vectors

that G1(θ) and G0(θ) have in common, namely,

G̃1(θ) = G1(θ)
⋂

G0(θ) =
∑

j∈{C+1,...,dim(θ)}
cjej . (4.74)

Similarly for s = 2, 3, ..., 2C + 1, we have

dim(G̃s(θ)) = dim(Gs(θ)
⋂

G̃s−1(θ))

= (dim(θ)− 1) + (dim(θ)− C − (s− 2))− dim(θ)

= dim(θ)− C − (s− 1) (4.75)

and

G̃s(θ) = Gs(θ)
⋂

G̃s−1(θ) =
∑

j∈{C+s,...,dim(θ)}
cjej . (4.76)

Note that (4.75) is due to the fact that the dimension of Gs(θ), s = 2, 3, ..., 2C + 1, is

always equal to dim(θ)−1 and the dimension of the sum of column spaces dim(Gs(θ)+

G̃s−1(θ)) is equal to the rank of the matrix

[e1, ..., eC+s−2, eC+s, edim(θ)|eC+s−1, eC+s, ..., edim(θ)], (4.77)

which is always equal to dim(θ). Hence, ultimately we have

G̃2C+1(θ) =
∑

j∈{3C+1,3C+2}
cjej . (4.78)
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From the definition in (4.69), we know that G2C+2(θ) and G̃2C+1(θ) are orthogonal,

hence
S⋂

s=1

Gs(θ
(η)) = GS(θ)

⋂

G̃S−1(θ) = {0}, (4.79)

which completes the proof of the “space filling” condition.

Theorem 4.3. The proposed JMAP-ML algorithm in Algorithm 4.1 ensures that the

sequence of complete-data log-likelihood values {LC(θ
(η);y, r)}, when bounded above,

converges monotonically over iterations to some point L∗.

Proof. In the first step of the JMAP-ML algorithm, we maximize L(θ;y, r) with respect

to y, given the prior parameter estimate θ(η). Since y(η+1) is the global optimal solution,

it is guaranteed that

LC(θ
(η);y(η+1), r) ≥ LC(θ

(η);y(η), r) (4.80)

holds for any y(η) in its parameter space. In the second step, we maximize L(θ;y(η+1), r)

with respect to θ. Following a similar procedure for proving Q(θ(η+1); θ(η)) ≥
Q(θ(η); θ(η)) in Theorem 4.1, we can easily arrive at

LC(θ
(η+1);y(η+1), r) ≥ LC(θ

(η);y(η+1), r), (4.81)

meaning that the value of L(θ;y, r) increases monotonically over iterations. When

L(θ;y, r) is bounded above, its convergence to some point L∗ of LC(θ;y, r) is ensured.

4.3.2 Computational Complexity

Next, we evaluate the computational complexity of the proposed algorithms in terms

of floating-point operations (FLOPs). We focus our attention on the joint estimation

step (i.e., the second step) on a single iteration of Algorithm 4.1. It is shown in

Appendix 4.8.3 that the complexity of the ECM algorithm scales as O(CNK) FLOPs

per iteration. The computation of a JMAP-ML estimate is very similar to that of

an ECM estimate. Hence, it is easy to verify that the computational complexity of

the JMAP-ML algorithm is also of order O(CNK) FLOPs per iteration. In contrast,

the computational complexity of the RIN algorithm scales as O((NK)2) FLOPs per

iteration due to the use of the nonparametric kernel density estimation to approximate

the measurement error distribution.
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4.4 An Alternative View of the EM Algorithm

In the previous sections, a Gaussian mixture distribution is adopted to represent the

unknown measurement error. As is known from [38], any distribution can be ap-

proximated as closely as desired, for instance in L1 norm, by the Gaussian mixtures.

Besides, the use of the Gaussian mixtures allows for closed form expression of θ
(η+1)
e as

was shown in Algorithm 4.1 and facilitates systematical analyses on the convergence

properties and computational complexity as was performed in Section 4.3. In this

section, we generalize the parametric model to be

pV (v) ≈ p̂V (v) =

C∑

l=1

αlK(l)
E (v;βl) (4.82)

where K(l)
E (v;βl) can be any distribution that belongs to an exponential family. Many

representative distributions are member of the exponential family such as Gaussian,

Rayleigh, exponential and Weibull distributions that are adequate to represent the

NLOS measurement error characteristics in different localization environments. Note

that the Gaussian mixture distribution is a member of (4.82). In the sequel, an alter-

native view of developing the expectation and maximization algorithm based on (4.82)

is provided.

We start with reformulating the complete-data likelihood function as

p(r,y; θ) = b(r̃(θp),y) exp
[
ψT (θe)t(r̃(θp),y)− a(θe)

]
(4.83)

where b(r̃(θp),y) is a scalar that may depend on y and/or r̃(θp) , r− h(θp), a(θe) is

a scalar that may depend on θe, ψ(θe) is a vector that depends on θe and t(r̃(θp),y)

is a vector that depends on y and r̃(θp). For the special case that θp is completely

known, t(r̃(θp),y) is the sufficient statistics for θe. In the expectation step, taking

conditional expectation of the complete-data log-likelihood LC(θ;y, r) in terms of y

given r and θ(η) yields Q
(
θ; θ(η)

)
. In the maximization step, a two-step procedure is

adopted. In the first step, the mixture model parameters are updated, given the prior

position estimate θ
(η)
p , through

θ(η+1)
e = Ξ

(
T(θ(η)p )

)
(4.84)

where

T(θ(η)p ) = Ep(y|r;θ(η))

[
t(r̃(θ(η)p ),y)

]
(4.85)

is the conditional expectation of the approximated sufficient statistic for θe given θ
(η)
p

on the (η+1)th EM iteration and Ξ(·) maps the obtained T(θ
(η)
p ) to the complete-data



74 Chapter 4: Localization in Cellular Radio Networks: Parametric Modeling

maximum likelihood estimate of θe, namely θ
(η+1)
e . We assume that the mapping Ξ(·)

can lead to closed form θ
(η+1)
e . In the second step, we insert θ

(η+1)
e into Q

(
θ; θ(η)

)
and

resolve θ
(η+1)
p using the BFGS-QN method with the initial guess set by θ

(η)
p . These

two steps are repeated as necessary. For clarity, the key steps are summarized in Algo-

rithm 4.2. Two examples are given below for better understanding of Algorithm 4.2.

Algorithm 4.2 An Alternative View of the EM Algorithm

Step 1—Initialization:

Choose a convergence tolerance ∆ and the maximum number of iterations Nitr. Set
the iteration index η = 0. Choose an initial guess θ(0).
Step 2—Joint Estimation:

On the (η + 1)th EM iteration (η ∈ Z, η ≥ 0),

- Reformulate the complete-data likelihood function as (4.83).

- Perform conditional expectation of the complete-data log-likelihood function
LC(θ;y, r) and obtain Q

(
θ; θ(η)

)
.

- Perform conditional expectation of the approximated sufficient statistic for θe
according to (4.85) and map it to the complete-data ML estimator θ

(η+1)
e .

- Replace θe with θ
(η+1)
e in Q

(
θ; θ(η)

)
and solve for θ

(η+1)
p numerically via the

BFGS-QN method.

Step 3—Convergence Check:

If LI(θ
(η+1); r)−LI(θ

(η); r) < ∆ or Nitr is reached, then terminate this algorithm and
obtain θ̂EM = θ(η+1); otherwise set η ← η + 1 and return to Step 2.

Example-I: C-mode Gaussian mixture

In the first example, the C-mode Gaussian mixture is re-considered in the parametric

model. The complete-data likelihood function can be expressed as

p(r,y; θ) = b(r̃(θp),y) exp
[
ψT (θe)t(r̃(θp),y)− a(θe)

]
(4.86)

where

r̃(θp) = r− h(θp), b(r̃(θp),y) =

(
1

2π

)NK
2

, a(θe) = 0, (4.87)

ψ(θe) =
[
ψT

1 (θe),ψ
T
2 (θe), ...,ψ

T
C(θe)

]T
, (4.88)

t(r̃(θp),y) =
[
tT1 (r̃(θp),y), t

T
2 (r̃(θp),y), ..., t

T
C(r̃(θp),y)

]T
, (4.89)

and for l = 1, 2, ..., C,

ψl(θe) =

[

ln

(
αl

σl

)

− µ2
l

2σ2
l

,
µl

σ2
l

,
−1
2σ2

l

]T

, (4.90)
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tl(r̃(θp),y) =











N∑

i=1

K∑

k=1

δ(yi,k − l)
N∑

i=1

K∑

k=1

(ri,k − di(θp))δ(yi,k − l)
N∑

i=1

K∑

k=1

(ri,k − di(θp))2δ(yi,k − l)











. (4.91)

This is due to the fact that

p(r,y; θ) =

N∏

i=1

K∏

k=1

p(ri,k, yi,k; θ)

=

N∏

i=1

K∏

k=1

(

αyi,k√
2πσyi,k

exp

[

−(ri,k − di(θp)− µyi,k)
2

2σ2
yi,k

])

=

(
1

2π

)NK
2

exp

[
N∑

i=1

K∑

k=1

ln

(
αyi,k

σyi,k

)

− (ri,k − di(θp)− µyi,k)
2

2σ2
yi,k

]

(4.92)

where the summation inside the exponential function can be expressed in a compact

form through the following steps:

N∑

i=1

K∑

k=1

ln

(
αyi,k

σyi,k

)

− (ri,k − di(θp)− µyi,k)
2

2σ2
yi,k

=

C∑

l=1

N∑

i=1

K∑

k=1

(

ln

(
αl

σl

)

− (ri,k − di(θp)− µl)
2

2σ2
l

)

δ(yi,k − l)

=
C∑

l=1

N∑

i=1

K∑

k=1

{(

ln

(
αl

σl

)

− µ2
l

2σ2
l

)

+
µl(ri,k − di(θp))

σ2
l

− (ri,k − di(θp))2
2σ2

l

}

δ(yi,k − l)

=

C∑

l=1

ψT
l (θe)tl(r̃(θp),y)

= ψT (θe)t(r̃(θp),y). (4.93)

The Q-function in this example is computed as

Q
(
θ; θ(η)

)
= −NK

2
ln(2π) +ψT (θe)Ep(y|r;θ(η)) {t(r̃(θp),y)} . (4.94)

For ease of the subsequent derivations, the elements in the vectorized signal model

(4.3) are re-labeled such that rm and ym are the mth element of r and y, respectively.

The computation of Ep(y|r;θ(η)) {t(r̃(θp),y)} is decomposed into three parts. We start
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with

Ep(y|r;θ(η))

{
N∑

i=1

K∑

k=1

δ(yi,k − l)
}

=
∑

y

[
NK∑

m=1

δ(ym − l)×
NK∏

j=1

Pr{yj|rj; θ(η)}
]

=
NK∑

m=1

[
C∑

y1=1

· · ·
C∑

yNK=1

(

δ(ym − l)×
NK∏

j=1

Pr{yj|rj; θ(η)}
)]

=

NK∑

m=1

Pr{ym = l|rm; θ(η)} ×







C∑

y1=1

· · ·
C∑

ym−1=1

C∑

ym+1=1

· · ·
C∑

yNK=1

NK∏

j=1,
j 6=m

Pr{yj|rj ; θ(η)}







=

NK∑

m=1

Pr{ym = l|rm; θ(η)} ×









NK∏

j=1,
j 6=m





C∑

yj=1

Pr{yj|rj; θ(η)}





︸ ︷︷ ︸

1









=

N∑

i=1

K∑

k=1

P
(η)
i,k,l. (4.95)

As it was introduced beforehand P
(η)
i,k,l is a short-hand notation of Pr{yi,k = l|ri,k; θ(η)},

which can be computed by means of Bayes’ rule as follows:

P
(η)
i,k,l = Pr

{
yi,k = l|ri,k; θ(η)

}
=

α
(η)
l N (ri,k − di(θ(η)p );µ

(η)
l , σ

2,(η)
l )

C∑

l=1

α
(η)
l N (ri,k − di(θ(η)p );µ

(η)
l , σ

2,(η)
l )

. (4.96)

Similarly, we obtain

Ep(y|r;θ(η))

{
N∑

i=1

K∑

k=1

(ri,k − di(θp))δ(yi,k − l)
}

=

N∑

i=1

K∑

k=1

(ri,k − di(θp))P (η)
i,k,l (4.97)

and

Ep(y|r;θ(η))

{
N∑

i=1

K∑

k=1

(ri,k − di(θp))2δ(yi,k − l)
}

=

N∑

i=1

K∑

k=1

(ri,k − di(θp))2P (η)
i,k,l. (4.98)

Having the explicit expressions of Ep(y|r;θ(η)) {t(r̃(θp),y)}, it is easy to verify that

Q
(
θ; θ(η)

)
= −NK

2
ln(2π) +ψT (θe)Ep(y|r;θ(η)) {t(r̃(θp),y)}

=
N∑

i=1

K∑

k=1

C∑

l=1

ln
(
αlN

(
ri,k − di(θp);µl, σ

2
l

))
P

(η)
i,k,l. (4.99)
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So far, another way of deriving Q
(
θ; θ(η)

)
under the Gaussian mixture distribution has

been provided, which leads to the same result as that obtained in the ECM algorithm

implemented in Section 4.2.3.

Next, T(θ
(η)
p ) is mapped to θ

(η+1)
e in the first step of the maximization stage. In this

example,

T(θ(η)p ) = [T1(θ
(η)
p ),T2(θ

(η)
p ), ...,TC(θ

(η)
p )]T (4.100)

where

Tl(θ
(η)
p ) =






Tl,1(θ
(η)
p )

Tl,2(θ
(η)
p )

Tl,3(θ
(η)
p )




 =











N∑

i=1

K∑

k=1

P
(η)
i,k,l

N∑

i=1

K∑

k=1

(ri,k − di(θ(η)p ))P
(η)
i,k,l

N∑

i=1

K∑

k=1

(ri,k − di(θ(η)p ))2P
(η)
i,k,l











, l = 1, 2, ..., C. (4.101)

It is known from [115] that the mapping Ξ(·) for this case is

α
(η+1)
l =

Tl,1(θ
(η)
p )

C∑

l=1

Tl,1(θ
(η)
p )

=
Tl,1(θ

(η)
p )

NK
, µ

(η+1)
l =

Tl,2(θ
(η)
p )

Tl,1(θ
(η)
p )

, σ
2,(η+1)
l =

Tl,3(θ
(η)
p )

Tl,1(θ
(η)
p )
− µl.

(4.102)

After replacing the unknown µl with its latest estimate µ
(η+1)
l in the expression of

σ
2,(η+1)
l , the results in (4.102) coincide with those given in (4.58), (4.59) and (4.60).

In the second step of the maximization stage, θe is replaced with θ
(η+1)
e in (4.99) before

solving for θ
(η+1)
p numerically from

argmin
θp

N∑

i=1

K∑

k=1

C∑

l=1

(

ri,k − di(θp)− µ(η+1)
l

)2

P
(η)
i,k,l

σ
2,(η+1)
l

. (4.103)

Example-II: two-mode Gaussian-exponential mixture

In the second example, a two-mode Gaussian-exponential mixture is considered.

Herein, the exponential distribution is written as

E(v;λE) =
{

1
λE

exp
(

−v
λE

)

, v ≥ 0

0, v < 0
. (4.104)

Following a similar methodology as is shown in the first example, we start with a

reformulation of the complete-data likelihood function as

p(r,y; θ) = b(r̃(θp),y) exp
[
ψT (θe)t(r̃(θp),y)− a(θe)

]
(4.105)
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where

r̃(θp) = r− h(θp), b(r̃(θp),y) = 1, a(θe) = 0, (4.106)

and

ψ(θe) =
[
ψT

1 (θe),ψ
T
2 (θe)

]T
, (4.107)

with

ψ1(θe) =

[

ln

(
α1√
2πσ1

)

− µ2
1

2σ2
1

,
µ1

σ2
1

,
−1
2σ2

1

]T

, (4.108)

ψ2(θe) =

[

ln

(
α2

λE

)

, − 1

λE

]T

, (4.109)

and

t(r̃(θp),y) =
[
tT1 (r̃(θp),y), t

T
2 (r̃(θp),y)

]T
, (4.110)

with

t1(r̃(θp),y) =











N∑

i=1

K∑

k=1

δ(yi,k − 1)

N∑

i=1

K∑

k=1

(ri,k − di(θp))δ(yi,k − 1)

N∑

i=1

K∑

k=1

(ri,k − di(θp))2δ(yi,k − 1)











, (4.111)

t2(r̃(θp),y) =







N∑

i=1

K∑

k=1

δ(yi,k − 2)

N∑

i=1

K∑

k=1

(ri,k − di(θp))δ(yi,k − 2)






. (4.112)

Performing conditional expectation of the complete-data log-likelihood function in the

next step yields

Q
(
θ; θ(η)

)

= ψT (θe)Ep(y|r;θ(η)) [t(r̃(θp),y)]

=
N∑

i=1

K∑

k=1

ln
(
α1N

(
ri,k − di(θp);µ1, σ

2
1

))
P

(η)
i,k,1 + ln (α2E (ri,k − di(θp);λE))P (η)

i,k,2

(4.113)

where

P
(η)
i,k,1 =

α
(η)
1 N (ri,k − di(θ(η)p );µ

(η)
1 , σ

2,(η)
1 )

α
(η)
1 N (ri,k − di(θ(η)p );µ

(η)
1 , σ

2,(η)
1 ) + α

(η)
2 E(ri,k − di(θ(η)p );λ

(η)
E )

(4.114)

and

P
(η)
i,k,2 =

α
(η)
2 E(ri,k − di(θ(η)p );λ

(η)
E )

α
(η)
1 N (ri,k − di(θ(η)p );µ

(η)
1 , σ

2,(η)
1 ) + α

(η)
2 E(ri,k − di(θ(η)p );λ

(η)
E )

. (4.115)
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In this example, we have

Ep(y|r;θ(η))

{
t(r̃(θ(η+1)

p ),y)
}
= T(θ(η)p ) = [T1(θ

(η)
p ),T2(θ

(η)
p )]T (4.116)

where

T1(θ
(η)
p ) =






T1,1(θ
(η)
p )

T1,2(θ
(η)
p )

T1,3(θ
(η)
p )




 =











N∑

i=1

K∑

k=1

P
(η)
i,k,1

N∑

i=1

K∑

k=1

(ri,k − di(θ(η)p ))P
(η)
i,k,1

N∑

i=1

K∑

k=1

(ri,k − di(θ(η)p ))2P
(η)
i,k,1











(4.117)

and

T2(θ
(η)
p ) =

[

T2,1(θ
(η)
p )

T2,2(θ
(η)
p )

]

=







N∑

i=1

K∑

k=1

P
(η)
i,k,2

N∑

i=1

K∑

k=1

(ri,k − di(θ(η)p ))P
(η)
i,k,2






. (4.118)

It is known from [116] that the mapping Ξ(·) used for this example is

α
(η+1)
1 =

T1,1(θ
(η)
p )

T1,1(θ
(η)
p ) + T2,1(θ

(η)
p )

, µ
(η+1)
1 =

T1,2(θ
(η)
p )

T1,1(θ
(η)
p )

, σ
2,(η+1)
1 =

T1,3(θ
(η)
p )

T1,1(θ
(η)
p )
− µ1,

α
(η+1)
2 =

T2,1(θ
(η)
p )

T1,1(θ
(η)
p ) + T2,1(θ

(η)
p )

, λ
(η+1)
E =

T2,2(θ
(η)
p )

T2,1(θ
(η)
p )

. (4.119)

Again, the unknown µ1 needs to be replaced with its latest estimate µ
(η+1)
1 in the

expression of σ
2,(η+1)
1 .

In the second step of the maximization step, θe is replaced with θ
(η+1)
e in (4.113) and

solve for θ
(η+1)
p from

argmin
θp

N∑

i=1

K∑

k=1

(

ri,k − di(θp)− µ(η+1)
1

)2

P
(η)
i,k,1

2σ
2,(η+1)
1

+

N∑

i=1

K∑

k=1
ri,k≥di(θp)

(ri,k − di(θp))P (η)
i,k,2

λ
(η+1)
E

. (4.120)

Note that the conditional summations in (4.120) stems from the definition of E(v;λE),
where the pdf is equal to zero when v < 0. It is easy to verify that the results obtained

in this example will coincide with that found by the regular ECM algorithm when the

partition of θ is chosen to be ϑ1 = [α1, α2]
T , ϑ2 = µ1, ϑ3 = σ2

1 , ϑ4 = λE , and ϑ5 = θp.

4.5 Cramér-Rao Lower Bound Computation

In this section, a numerical method is proposed to compute the Cramér-Rao lower

bound (CRLB) for our joint estimation problem. The vector parameter to be estimated
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is θ. Let θ̂ be an unbiased estimator of θ and let Cov(θ̂) denote the covariance matrix

of θ̂. According to Theorem 2.1 given in Chapter 2, we have

Cov(θ̂) = Ep(r;θ)

{

(θ̂ − θ)(θ̂ − θ)T
}

� F
−1(θ) (4.121)

whereF(θ) denotes the Fisher’s information matrix (FIM). Often, it is more convenient

to express the FIM as follows:

F(θ) = Ep(r;θ)

{
∇θ ln p(r; θ)∇T

θ ln p(r; θ)
}

=

∫
{
∇θ ln p(r; θ)∇T

θ ln p(r; θ)
}
p(r; θ)dr. (4.122)

Based on (4.2), the integration in (4.122) is hard to evaluate analytically. In order to

give a numerical solution, we perform Monte Carlo integration [108] as follows:

F(θ) ≈ 1

NM

NM∑

n=1

∇θ ln p(r
(n); θ)∇T

θ ln p(r(n); θ) (4.123)

where r(n), n = 1, 2, . . . , NM are sample vectors generated independently from p(r; θ).

The expression of ∇θ ln p(r; θ) is given in Appendix 4.8.4.

Serving as a metric of localization accuracy in practice, the localization root-mean-

square-error (RMSE)

RMSE(θ̂p) =
√

Ep(r;θ){(x̂− x)2 + (ŷ − y)2} (4.124)

is chosen to evaluate different position estimators. This metric relates to the obtained

CRLB according to

RMSE(θ̂p) ≥
√[

F
−1(θ)

]

q−1,q−1
+
[
F

−1(θ)
]

q,q
= CRLBpos(θp) (4.125)

where q = dim(θ) is the dimension of θ, and CRLBpos interprets the best achievable

localization accuracy of any unbiased position estimator.

4.6 Simulations

In this section, the performance of the proposed ECM- and JMAP-ML algorithms will

be evaluated and further compared with several competing algorithms, including the

RIN algorithm introduced in Chapter 3, in comprehensive simulations. Section 4.6.1

introduces the overall simulation setup, and Section 4.6.2 shows some simulation re-

sults.
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4.6.1 Simulation Setup

In the following simulations, a stationary MS is to be located in cellular radio networks

with different BSs-MS geometries. To be realistic as much as possible, the BS positions

are taken from an operating network in a German city [29]. The measurement error is

assumed to be mode-dependent in mixed LOS/NLOS localization environments, more

precisely,

v ∼
{

p
(L)
V (v;βL), LOS condition

p
(NL)
V (v;βNL), NLOS condition

. (4.126)

We perform localization in three different scenarios:

• Scenario I: The measurement error terms, vi,k, i = 1, 2, ..., N and k = 1, 2, ..., K,

are iid and follow a two-mode Gaussian mixture distribution. Prior knowledge

about the family of each mixture component is assumed.

• Scenario II: The measurement error terms vi,k, i = 1, 2, ..., N and k = 1, 2, ..., K

are iid and follow a two-mode Gaussian-exponential mixture distribution. How-

ever, no prior knowledge about the measurement error distribution is assumed.

• Scenario III: The iid assumption is violated due to a temporal pattern in the

observed data. Specifically, we assume that the channel state of a BS-MS pair

stays unaltered (either in LOS or in NLOS) during the measurement interrogation

(quasi-stationary for at least K samples). Using the parametric approach to the

modeling of pV (v) in (4.2) is sub-optimal.

4.6.2 Simulation Results

Simulation results will be given in Section 4.6.2.1 regarding the first localization sce-

nario, Section 4.6.2.2 regarding the second localization scenario, and Section 4.6.2.3

regarding the third localization scenario.

4.6.2.1 Results for Scenario I

For ease of comparisons, we reuse the BSs geometry illustrated in Fig. 1 of Chapter 3.

The measurement error distribution that generates the simulation data is assumed to

be

pV (v) = αLN (v;µL, σ
2
L) + αNLN (v;µNL, σ

2
NL) (4.127)
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where µL = 0m, σL = 55m, µNL = 380m and σNL = 120m. These parameters are

set according to the measurement campaign results published in [29] except that µL

is re-set from 51m to 0m so as to comply with the common assumption that the

measurement error under the LOS condition is generally unbiased. As we assume the

prior knowledge about the families of p
(L)
V (v;βL) and p

(NL)
V (v;βNL), the measurement

error distribution pV (v) can be precisely represented by

pV (v) = α1N (v;µ1, σ
2
1) + α2N (v;µ2, σ

2
2) (4.128)

in the parametric model, where {α1, α2, µ1, σ
2
1, µ2, σ

2
2} is the set of unknown determin-

istic parameters with the true values {αL, αNL, µL, σ
2
L, µNL, σ

2
NL}.

The proposed ECM- and JMAP-ML estimators are compared to:

• The Maximum likelihood estimator, cf. (4.8), which is solved numerically via the

MATLABTM function FMINCON, configured with the “interior-point” algo-

rithm.

• The robust iterative nonparametric (RIN) position estimator, cf. Chapter 3.

Note that we assume the same convergence conditions for the ECM- and JMAP-ML

algorithms, namely they will be terminated when the convergence tolerance ∆ = 10−4

or the maximum number of iterations, Nitr = 40, trials has been reached. In both

algorithms, an initial guess of the MS position is set by the first two entries of the

least-squares solution (3.11) derived in Chapter 3, and an initial guess of the Gaus-

sian mixture model parameters is computed according to Algorithm 4.3 given in Ap-

pendix 4.8.5. The RIN algorithm follows the same settings as given in Chapter 3.

In the first experiment, we numerically study the parameter estimation bias and some

convergence aspects of the proposed algorithms. We assume that the MS is located at

[x = 0.25m, y = 0.25 km] and the prior probability αNL is set to 0.5. Two different

values of K are used, namely, K = 5, modeling a small sample size, and K = 20,

modeling a large sample size.
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Figure 4.1. Mean of α1 estimates versus the number of iterations.
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Figure 4.3. Mean of µ2 estimates versus the number of iterations.
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Figure 4.4. Mean of position x estimates versus the number of iterations.
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Figure 4.5. Convergence of the mean of the log-likelihood values versus the number of
iterations for both the ECM algorithm and JMAP-ML algorithm. Top: a small sample
size, K = 5. Bottom: a large sample size, K = 20.

We perform a Monte Carlo simulation with 2500 independent trials. For each trial,

we record the ultimate parameter estimates and log-likelihoods for all iterations of

the ECM- and JMAP-ML algorithms. It is necessary to stress that we consider the

incomplete-data log-likelihood for the ECM algorithm whereas the complete-data log-

likelihood for the JMAP-ML algorithm. We compute the mean of each obtained set

of parameter estimates and log-likelihood values, respectively. We show the mean

parameter estimates of α1, σ
2
1, µ2 and x in Fig. 4.1 through Fig. 4.4. For better

comparisons, the maximum likelihood estimates as well as the true values of the desired

parameters are also depicted in the figures. The mean of each set of log-likelihood values

is shown versus the number of iterations in Fig. 4.5.

Next, we summarize some important observations and give the relevant explanations

as follows:

• Given the same initial guess, the ECM estimator performs closest to the ML

estimator when the number of measurements NK is large. This can be clearly

seen from the overlap of the ECM- and MLE curves depicted for the case K = 20

in Fig. 4.1 through Fig. 4.4. However, for the case K = 5, we can observe an

obvious gap between the two curves in Fig. 4.2, Fig. 4.3, and Fig. 4.4. The reason
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is that the ECM algorithm only achieves local maximum or saddle point in some

Monte Carlo trials.

• The JMAP-ML algorithm generates biased estimates independent of NK. Nev-

ertheless, the JMAP-ML estimator still serves as a good approximation of the

ML Estimator.

• Given the same initial guess, the JMAP-ML algorithm outperforms the ECM

algorithm in terms of convergence speed.

• Figure 4.5 confirms that the log-likelihood values increase monotonically over

iterations.
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Figure 4.6. Convergence region of the ECM algorithm in one particular Monte Carlo
trial with K = 5 samples and αL = 0.5. Herein, ‘•(black)’ denotes the true MS position
θp = [x = 0.25 km, y = 0.25 km], ‘� (blue)’ denotes the least-squares estimate of the
actual MS position, which serves as an initial guess of the proposed algorithms and ‘N
(red)’ denotes the ML estimate of the actual MS position.

As it was mentioned in Chapter 2, the performance of an EM-type algorithm highly

depends on the quality of an initial guess. Our strategy is to initialize first the MS

position by running a simple localization algorithm and then the remaining Gaussian

mixture model parameters according to Algorithm 4.3 given in Appendix 4.8.5. As

our initialization strategy is essentially a two-step procedure, a bad initial MS estimate
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will ruin the whole procedure. It is thus interesting to investigate how the initial MS

position estimate will influence the ultimate performance of the ECM algorithm in

the sense of achieving the global maximum. To this end, we define a two-dimensional

(2-D) square area with x and y both ranging from -800 meter to 800 meter at a grid

size 20 meter. For each grid point p
(0)
g = [xg, yg] in the defined area, we apply then

Algorithm 4.3 to compute an estimate of the Gaussian mixture parameters and finally

obatin θ(0) for initializing the ECM algorithm. We assign one to that grid point if

the ECM algorithm ultimately converges to the global maximum of the log-likelihood

function LI(θ; r) or zero otherwise. Figure 4.6 depicts the convergence region for one

particular Monte Carlo trial with K = 5 and αL = 0.5. In Fig. 4.6, the region painted in

yellow includes all the grid points assigned with zero (an indicator of local maximum or

saddle point), whereas the region painted in white includes those assigned with one (an

indicator of global maximum). To shed some light on the quality of the initial guess, a

contour plot of the log-likelihood value at each grid point θ(0) is also superimposed in

Fig. 4.6. Besides, we also depict the true position as well as the least-squares estimator

and the ML estimator of it obtained for this particular trial. As per our observations,

the least-squares estimate serves as an adequate initial guess of the MS position of the

ECM algorithm for the first sceario.

In the second experiment, we shall investigate the ECM- and JMAP-ML algorithms

in terms of localization accuracy and compare their performance mainly with that

of the RIN algorithm. Localization RMSE of different position estimators will be

demonstrated in two examples.

The first example of this experiment assumes that 1500 pairs of different MS positions

are uniformly generated from the city center area as shown in Fig. 1 of Chapter 3. The

number of distance measurements collected at each BS is K = 10 samples. We evaluate

the mean localization RMSE of all candidate position estimators as a function of the

NLOS contamination ratio αNL. The results are shown along with the best achievable

localization accuracy CRLBpos in Fig. 4.7. In the second example of this experiment,

we investigate how the number of measurements NK will influence the localization

accuracy of different position estimators. We fix the NLOS contamination ratio, αNL,

to 0.5 but vary K from 5 to 45 with an increment of 4 samples. The mean localization

RMSE is evaluated versus NK and the results are shown in Fig. 4.8.

From the illustrations, we summarize the performance of different position estimators

as follows:

• The ECM position estimator is closest to the ML estimator in terms of the lo-

calization RMSE. The JMAP-ML estimator shows inferior localization RMSE as
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Figure 4.7. Mean localization RMSE (over 1500 sets of uniformly generated MS posi-
tion) of different position estimators versus the NLOS contamination ratio with K = 10
at each BS.
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Figure 4.8. Mean localization RMSE (over 1500 sets of uniformly generated MS po-
sition) of different position estimators versus the number of measurements K at each
BS with αL = 0.5.
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compared to that of the ECM estimator. This confirms the statistical properties

of the ECM- and JMAP-ML algorithms; that is the ECM algorithm is able to

reproduce the ML estimator that globally maximizes the incomplete-data log-

likelihood function in (4.7) when the iid measurement error assumption holds

and pV (v) can be precisely represented by our parametric model [93]. However,

the JMAP-ML algorithm merely produces a biased and inconsistent estimator

according to Chapter 2. But still, it was shown to be a good approximation of

the ML estimator in the above examples. The overgrown bias is responsible for

the drastic increase of the localization RMSE, beyond αNL = 0.6, in Fig. 4.7.

• In most cases, both the ECM algorithm and JMAP-ML algorithm outperform

the RIN algorithm. The key reason is that the proposed algorithms have more

information about the measurement error (prior knowledge about the families of

p
(L)
V (v;βL) and p

(NL)
V (v;βNL)) than the RIN algorithm.

4.6.2.2 Results for Scenario II

In the second scenario, we follow the same BS geometry used in the previous subsection.

The MS locates at [x = 0.25 km, y = 0.25 km]. The measurement error distribution

that generates the simulation data is a two-mode Gaussian-exponential mixture

pV (v) = αLN (v;µL, σ
2
L) + αNLE(v;λNL) (4.129)

where µL = 0m, σL = 55m, λNL = 80m. The true value of λNL is set empirically

to 20m. In contrast to the assumption made for the first scenario, no prior knowl-

edge about the measurement error distribution is assumed here. As a consequence,

the parametric modeling of pV (v) as Gaussian mixtures causes approximation error,

namely,

pV (v) ≈ p̂V (v) =

C∑

l=1

αlN (v;µl, σ
2
l ). (4.130)

In the previous subsection, we have seen that the ECM algorithm outperforms the RIN

algorithm in terms of the localization RMSE, since it has some prior knowledge about

the measurement error distribution. The exclusive task of this subsection is to evaluate

the localization performance of the ECM algorithm and RIN algorithm by assuming

unknown measurement error distribution. Two Monte Carlo experiments (each with

1000 independent trials) are conducted. In the first experiment, the localization RMSE

is computed by the two algorithms as a function of the NLOS contamination ratio

αNL with fixed K = 20 samples at each BS. In the second experiment, the localization
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Figure 4.9. Localization RMSE (for a fixed MS position) of the ECM- and RIN algo-
rithms versus the NLOS contamination ratio, αNL.
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Figure 4.10. Localization RMSE (for a fixed MS position) of the ECM- and RIN
algorithms versus the number of measurements K.

RMSE is computed as a function of K with fixed NLOS contamination ratio αNL = 0.5.

In these two experiments, we test different mode numbers, i.e., C = 2 and C = 5, in

the parametric modeling. The results are shown in Fig. 4.9 and Fig. 4.10, respectively.
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(d) αNL = 0.4
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Figure 4.11. Actual measurement error distribution for different αNL versus its esti-
mates obtained both nonparametrically from the RIN algorithm and parametrically
from the ECM algorithm in some Monte Carlo trials.
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We observe that:

• The RIN algorithm outperforms the ECM algorithm but only modestly. This

is due to the fact that more accurate pdf estimate can be found by the RIN

algorithm. We give some examples in Fig. 4.11. The reason for the modest

improvement lies in that although pV (v) is unknown, one component of it is

a Gaussian distribution. For an unknown pV (v) of arbitrary shape, the non-

parametric approach using the KDE is more advantageous than the parametric

approach using only a small number of modes.

• The ECM algorithm with C = 5 performs slightly better than that with C = 2.

But we note that given a fixed number of measurements, increasing C does not

necessary lead to better performance. This is because more parameters need to

be estimated as well. As a rule of thumb, we point out that good trade-off can

be balanced when C ≈ 5 modes, since on the one hand the main characteristics

of many distributions can be well captured and on the other hand the number of

parameters need to be estimated is not too large.

4.6.2.3 Results for Scenario III

In the third scenario, we consider another cellular radio network with a smaller number

(N = 4) of BSs. Their positions are depicted in Fig. 4.12. Various experiments will

be conducted according to the third scenario in which the measurement error terms

vi,k, for any fixed i and k = 1, 2, ..., K, are generated either all from p
(L)
V (v;βL) or all

from p
(NL)
V (v;βNL). In other words, the channel state (LOS or NLOS) between the

MS and the ith BS is unchanged at least for K samples. Again, we assume that both

p
(L)
V (v;βL) and p

(NL)
V (v;βNL) belong to the Gaussian family of distributions. Although

the iid assumption does not hold any longer, we still assume that the data are generated

from

pV (v) = αLN (v;µL, σ
2
L) + αNLN (v;µNL, σ

2
NL) (4.131)

and run the proposed algorithms.

The proposed ECM- and JMAP-ML estimators are compared with the following com-

petitors:

• The robust iterative nonparametric (RIN) position estimator, cf. Chapter 3.
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Figure 4.12. 2-D illustration of the BS geometry in an operating cellular radio network
in Germany.

• The generic identify and discard (IAD)-ML estimator. The main idea of the IAD

based algorithms is to first identify and discard the NLOS measurements and then

use the LOS measurements only for localization. For comparison purposes only,

we consider two simplified cases. In the first case, we ideally assume both the LOS

channels and NLOS channels are precisely categorized in every Monte-Carlo trial.

In the second case, we assume one NLOS channel is wrongly recognized as LOS

channel for 5% of the total Monte-Carlo trials. Like in [52], the remaining LOS

measurements are used in the maximum likelihood estimation of the position.

• The “ideal” maximum likelihood estimator, given the precise knowledge about

the channel states, cf. (4.132), which is solved from

argmax
θ

ln(p̃(r; θ))

= ln

(
M∏

i=1

K∏

k=1

N (ri,k − di(θp);µ1, σ
2
1) ·

N∏

i=M+1

K∏

k=1

N (ri,k − di(θp);µ2, σ
2
2)

)

=
M∑

i=1

K∑

k=1

lnN (ri,k − di(θp);µ1, σ
2
1) +

N∑

i=M+1

K∑

k=1

lnN (ri,k − di(θp);µ2, σ
2
2).

(4.132)

The term “ideal” used here indicates that the precise knowledge about the channel
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states is rarely available in reality. This “ideal” estimator can be efficiently solved

in an iterative process. In (4.132), we assume, without loss of generality, the first

M BSs are LOS BSs, while the remaining N −M BSs are NLOS BSs. Here,

(N)LOS BS is a short notation of a BS in (N)LOS with the MS.

Moreover, we compare the localization RMSE of all candidate estimators with the best

achievable localization accuracy computed by (4.125) with the log-likelihood function

defined in (4.132).

The initial guess of the MS position for the above algorithms is equal to the true

value contaminated by ∆xy whose elements are generated from a uniform distribution

U [−50, 50) (in meter). We note that for this scenario the least-squares estimate (3.18)

performs much worse. The initial guess of the Gaussian mixture model parameters for

the JMAP-ML algorithm and ECM algorithm can be computed in a similar way as that

derived in Algorithm 4.3 for the first scenario. More details about this initialization

strategy can be found in [67].

In the first experiment, we show the parameter estimation bias of the proposed algo-

rithms. Here, we assume that the second BS is an NLOS BS while the rest are LOS

BSs. To that end, we show the mean parameter estimates of α1, µ2, σ
2
1 and x for

the case K = 25 samples in Fig. 4.13 and Fig. 4.14. The true values of the unknown

parameters are also depicted for better illustration. It is clear from the results that

both the ECM algorithm and JMAP-ML algorithm generate biased estimates in the

assumed scenario.

In the second experiment, localization accuracy of different position estimators is stud-

ied in three examples. The first example assumes three different mixed LOS/NLOS

settings: (1) {LOS BS#1, LOS BS#2, LOS BS#3, NLOS BS#4}, (2) {NLOS BS#1,

LOS BS#2, NLOS BS#3, LOS BS#4}, and (3) {LOS BS#1, NLOS BS#2, NLOS

BS#3, NLOS BS#4}. For each setting, we evaluate the localization RMSE of differ-

ent estimators. The results are shown in Fig. 4.15. In the second example, we study

the influence of σL (varies from 30 to 70 meter) on the localization RMSE. Herein,

we focus on the setting {LOS BS#1, LOS BS#2, LOS BS#3, NLOS BS#4}. The

results are shown in Fig. 4.16. In the third example, we investigate how the num-

ber of measurements K (varies from 10 to 50 samples) affects the RMSE curves. In

this example, we consider the setting {LOS BS#1, NLOS BS#2, LOS BS#3, NLOS

BS#4}. The RMSE curves are depicted in Fig. 4.17. In the above examples, the best

achievable localization accuracy, CRLBpos, is also computed and depicted along with

the localization RMSE curves.
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Figure 4.13. Top sub-figure: Mean of α1 estimates versus the number of iterations.
Bottom sub-figure: Mean of µ2 estimates versus the number of iterations.
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Figure 4.14. Top sub-figure: Mean of σ2
1 estimates versus the number of iterations.

Bottom sub-figure: Mean of position x estimates versus the number of iterations.
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Figure 4.15. Localization RMSE of different position estimators in three different
scenarios.
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Figure 4.17. Localization RMSE of different position estimators versus the number of
measurements K.

From the illustrations, we summarize the performance of the considered estimators as

follows:

• The JMAP-ML estimator is closest to the “ideal” ML estimator in terms of

the localization RMSE. This is because, after inserting the accurately estimated

y
(η+1)
i,k , α

(η+1)
l , µ

(η+1)
l , and σ

2,(η+1)
l into (4.20), the reduced cost function (in terms

of the position θp only) can well approximate the ideal one with known µl and

σ2
l , l = 1, 2 replaced by the true values in (4.132).

• The ECM estimator turns out to be biased for the considered scenario and pro-

vides inferior localization RMSE as compared to that of the JMAP-ML estimator.

But still, it serves as a good approximation of the “ideal” ML estimator in many

cases.

• In some cases, both the ECM algorithm and RIN algorithm break down. The

key reason is that the cost function for updating the position deviates too much

from the “ideal” one.

• The IAD-ML estimator (with 5% erroneous identification rate) performs the

worst due to the outliers (the survival NLOS measurements). The performance

will further deteriorate as the erroneous identification rate increases.
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• The IAD-ML estimator (with 0% erroneous identification rate) can even achieve

the ideal performance in many cases. Possible reasons are the following. Firstly,

the number of the remaining LOS BSs is still sufficient (larger or equal to three).

Secondly, after discarding the NLOS measurements the geometric dilution of

precision (GDOP) is improved. Thirdly, although we assume known distribution

of the NLOS measurement error terms, the associated parameters are unknown

and the variance is large. Hence, the information about the position hidden in the

NLOS measurements is negligible. As it was proven in [52], NLOS measurements

can be discarded without losing any information when the noise variance goes to

infinity. Fourthly, the proposed algorithms have more parameters to estimate as

compared to the IAD-ML algorithm.

4.7 Conclusions

We considered robust target localization using cellular radio networks in mixed

LOS/NLOS environments. In contrast to the previous chapter, we adopted Gaussian

mixtures to represent the measurement error distribution in a parametric manner. In

addition, we took into account some latent information, with which an EM algorithm

and a JMAP-ML algorithm were first developed in general form. The two algorithms

arrived at a unified maximization problem, from which a parameter estimate can be

revolved as an approximation of the ML estimate. To reduce the computational hur-

dles, conditional maximization was adopted to convert a complicated maximization

problem into several easier ones. The resulting computational complexity of the ECM

algorithm and JMAP-ML algorithm scales as O(CNK) FLOPs per iteration, and for

a fixed small C, it is much smaller than the O((NK)2) FLOPs of the RIN algorithm.

Therefore, it is more favorable to be used for emergence services that require very

short response time. As opposed to the RIN algorithm, using Gaussian mixtures in

the parametric model facilitates the proof of some convergence properties of the new

algorithms, which is critical to an iterative algorithm. We then generalized the para-

metric model to be a mixture of distributions that belong to exponential family. An

alternative view of the EM algorithm was provided to serve as a complement of the

regular method. Two examples were given to elaborate on this idea. Simulations were

conducted in three different scenarios, with one scenario assuming ideal conditions and

the other two assuming model mismatch problems. Under the ideal conditions, the

simulation results confirmed that the ECM algorithm is able to reproduce the ML

estimator, given a good starting point, while the JMAP-ML algorithm can merely pro-

duce a biased estimator. In the remaining two scenarios, both the ECM algorithm
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and JMAP-ML algorithm are suboptimal. Despite some performance degradation,

they still presented good localization accuracy and considerable robustness against the

NLOS measurements.

4.8 Appendix

4.8.1 Derivations of (4.11)

The following derivations are similar to those given in [117] for Gaussian mixture

learning. For notational brevity, we introduce rm, ym and hm(θp) to denote the mth

entry, m = 1, 2, ..., NK, of r, y and h(θp), respectively. In order to evaluate (4.11), it is

necessary to derive in the first place the conditional probability of the latent variables

y given r, that is,

Pr{y|r; θ} = Pr{yNK |r1, . . . , rNK ; θ}
NK−1∏

m=1

Pr{ym|ym+1, . . . , yNK , r1, . . . , rNK ; θ}

=

NK∏

m=1

Pr{ym|rm; θ} (4.133)

where the second equality follows from the fact that given rm, ym is independent of

other latent variables and measurements. Therefore,

Q(θ; θ(η))

=
∑

y

ln(p(y, r; θ))Pr
{
y|r; θ(η)

}

=
∑

y

NK∑

m=1

ln
(
αymN (rm − hm(θp);µym, σ

2
ym)
)

NK∏

m′=1

Pr{ym′|rm′ ; θ(η)}

=
C∑

y1=1

· · ·
C∑

yNK=1

[
NK∑

m=1

ln
(
αymN (rm − hm(θp);µym, σ

2
ym)
)

NK∏

m′=1

Pr{ym′ |rm′; θ(η)}
]

.

(4.134)

By introducing the Kronecker’s Delta function, which is given by

δ(l − rm) =
{

1, if l = rm
0, otherwise

, (4.135)
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for l = 1, . . . , C, the third equality in (4.134) can be rewritten as

Q(θ; θ(η))

=
C∑

y1=1

· · ·
C∑

yNK=1

[
NK∑

m=1

C∑

l=1

δ(l − ym) ln
(
αlN (rm − hm(θp);µl, σ

2
l )
)
NK∏

m′=1

Pr{ym′|rm′ ; θ(η)}
]

=

NK∑

m=1

C∑

l=1

ln
(
αlN (rm − hm(θp);µl, σ

2
l )
)

[
C∑

y1=1

· · ·
C∑

yNK=1

δ(l − ym)
NK∏

m′=1

Pr{ym′|rm′; θ(η)}
]

.

(4.136)

The term in the brackets underlined can be further reduced as follows:

C∑

y1=1

· · ·
C∑

yNK=1

δ(l − ym)
NK∏

m′=1

Pr{ym′ |rm′; θ(η)}

=

(
C∑

y1=1

· · ·
C∑

ym−1=1

C∑

ym+1=1

· · ·
C∑

yNK=1

NK∏

m′=1,m′ 6=m

Pr{ym′|rm′ ; θ(η)}
)

Pr{ym = l|rm; θ(η)}

=









NK∏

m′=1,m′ 6=m





C∑

ym′=1

Pr{ym′ |rm′; θ(η)}





︸ ︷︷ ︸

=1









· Pr{ym = l|rm; θ(η)}

= Pr{ym = l|rm; θ(η)}. (4.137)

Inserting (4.137) into (4.136) yields

Q(θ; θ(η)) =
NK∑

m=1

C∑

l=1

ln
(
αlN (rm − hm(θp);µl, σ

2
l )
)
Pr{ym = l|rm; θ(η)}. (4.138)

Reverting to the original labeling rule, i.e., i = 1, 2, ..., N and k = 1, 2, ..., K in (4.138),

finally gives (4.11).

4.8.2 Optimality of (4.58), (4.59), and (4.60)

In order to verify the optimality of (4.58), (4.59), and (4.60), we need to evaluate the

second order derivative of the corresponding cost function.

The cost function of αl, l = 1, 2, ..., C on the (η + 1)th iteration is given by

f(α1, ..., αC , λ) =
N∑

i=1

K∑

k=1

C∑

l=1

ln(αl)w
(η)
i,k,l + λ

(
C∑

l=1

αl − 1

)

, (4.139)
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and (4.58) is the solution of

∂f(α1, ..., αC , λ)

∂αl
= 0, l = 1, 2, ..., C. (4.140)

In order to prove the global optimality of (4.58), the matrix of second order derivatives

of f(α1, ..., αC , λ) is derived as

F (α1, ..., αC) =














−
N∑

i=1

K∑

k=1

w
(η)
i,k,1

α2
1

0 0 · · · 0

0 −
N∑

i=1

K∑

k=1

w
(η)
i,k,2

α2
2

0 · · · 0

...
...

...
. . .

...

0 0 0 · · · −
N∑

i=1

K∑

k=1

w
(η)
i,k,C

α2
C














. (4.141)

Since both αl, l = 1, 2, ..., C and w
(η)
i,k,l, i = 1, 2, ..., N , k = 1, 2, ..., K, and l = 1, 2, ..., C

are non-negative, the cost function f(α1, ..., αC , λ) is concave in terms of α1, ..., αC . As

a result, (4.58) is the global maximizer.

The cost function of µl on the (η + 1)th iteration is given by

f(µl) =

N∑

i=1

K∑

k=1

(

− ln(2πσ
2,(η)
l )

2
− (ri,k − di(θ(η)p )− µl)

2

2σ
2,(η)
l

)

w
(η)
i,k,l (4.142)

and (4.59) is the solution of

∂f(µl)

∂µl
=

N∑

i=1

K∑

k=1

(ri,k − di(θ(η)p )− µl)

σ
2,(η)
l

w
(η)
i,k,l = 0. (4.143)

Similarly, the second order derivative of f(µl) with respect to µl is derived as

∂2f(µl)

∂µ2
l

= − 1

σ
2,(η)
l

N∑

i=1

K∑

k=1

w
(η)
i,k,l ≤ 0, (4.144)

which proves the concavity of f(µl) in terms of µl.

The cost function of σ2
l on the (η + 1)th iteration is given by

f(σ2
l ) =

N∑

i=1

K∑

k=1

(

− ln(2πσ
2
l )

2
− (ri,k − di(θ(η)p )− µ(η+1)

l )2

2σ2
l

)

w
(η)
i,k,l (4.145)

and (4.60) is the solution of
∂f(σ2

l )

∂σ2
l

= 0. (4.146)
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To prove that (4.60) is the global maximizer of f(σ2
l ) is a bit tricky. The methodology

provided in [118, Chapter 7] is adopted here for the proof, namely, we introduce a new

optimization variable λl = 1/σ2
l , whose support is as same as σ2

l . Reformulating the

cost function in terms of λl yields

f(λl) =

N∑

i=1

K∑

k=1

(

−1
2
ln(2π

1

λl
)− 1

2
λl(ri,k − di(θ(η)p )− µ(η+1)

l )2
)

w
(η)
i,k,l. (4.147)

Taking the first order derivative of f(λl) with respect to λl gives

∂f(λl)

∂λl
=

N∑

i=1

K∑

k=1

(
1

2λl
− 1

2
(ri,k − di(θ(η)p )− µ(η+1)

l )2
)

w
(η)
i,k,l. (4.148)

Setting the above obtained first order derivative to zero and solving for λl yields

λ
(η+1)
l =

N∑

i=1

K∑

k=1

w
(η)
i,k,l

N∑

i=1

K∑

k=1

(ri,k − di(θ(η)p )− µ(η+1)
l )2w

(η)
i,k,l

. (4.149)

Interestingly, the inverse of λ
(η+1)
l coincides with (4.60) solved from (4.146). The second

order derivative of f(λl) with respect to λl is derived as

∂2f(λl)

∂λ2l
= − 1

2λ2l

N∑

i=1

K∑

k=1

w
(η)
i,k,l ≤ 0, (4.150)

which proves that the cost function f(λl) is concave in terms of λl. Hence, λ
(η+1)
l is

the global maximizer, and this indirectly proves that f(σ2
l ) is globally maximized at

(4.60).

4.8.3 Derivations of O(CNK) Complexity

We define the FLOPs required for some elementary operations as follows:

1. Eadd: FLOPs for addition.

2. Esub: FLOPs for substraction.

3. Emul: FLOPs for multiplication.

4. Ediv: FLOPs for division.
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5. Eexp: FLOPs for exponential.

6. Epow: FLOPs for raising to real power.

7. Esqrt: FLOPs for square root.

Note that the actual FLOPs required for the above operations may vary with proces-

sors. Typical values based on a Pentiumr4 processor were given in [119].

Since both the ECM algorithm and JMAP-ML algorithm are iterative in nature, the

computational complexity is evaluated in terms of total FLOPs consumed for the joint

estimation (i.e., the second stage of Algorithm 4.1) on one iteration, say the (η+1)th.

4.8.3.1 ECM Algorithm

The joint estimation step first evaluates w
(η)
i,k,l = P

(η)
i,k,l, for i = 1, 2, ..., N , k = 1, 2, ..., K

and l = 1, 2, ..., C, given the prior parameter estimate θ(η). This requires us to compute

Eval(1) : di(θ
(η)
p ) =

√

(xi − x(η))2 + (yi − y(η))2, (4.151)

for i = 1, 2, ..., N ;

Eval(2) : ri,k − di(θ(η)p ), (4.152)

for i = 1, 2, ..., N , k = 1, 2, ..., K;

Eval(3) : Φ
(η)
i,k,l = α

(η)
l (2πσ

2,(η)
l )−1/2 · exp

[

−(ri,k − di(θ(η)p )− µ(η)
l )2

2σ
2,(η)
l

]

, (4.153)

for i = 1, 2, .., N , k = 1, 2, ..., K, l = 1, 2, ..., C; and

Eval(4) : P
(η)
i,k,l =

Φ
(η)
i,k,l

∑C
l=1Φ

(η)
i,k,l

, (4.154)

for i = 1, 2, ..., N , k = 1, 2, ..., K, l = 1, 2, ..., C.

It is clear that Eval(1) requires N(2Esub+2Epow+1Esqrt+1Eadd) FLOPs, Eval(2)NKEsub
FLOPs, Eval(3) C((NK+3)Emul+(NK+1)Epow+NKEsub+NKEdiv+NKEexp) FLOPs,

and Eval(4) NK((C − 1)Eadd + CEdiv) FLOPs.

Having P
(η)
i,k,l’s, we then compute

Eval(5) : α
(η+1)
l , l = 1, 2, ..., C, (4.155)

Eval(6) : µ
(η+1)
l , l = 1, 2, ..., C, (4.156)

Eval(7) : σ
2,(η+1)
l , l = 1, 2, ..., C, (4.157)



104 Chapter 4: Localization in Cellular Radio Networks: Parametric Modeling

according to (4.58), (4.59) and (4.60), respectively. It is easy to verify that Eval(5)

requires (C − 1)[(NK − 1)Eadd + 1Ediv] + (C − 1)Esub FLOPs. The calculation of

Eval(5) is performed with the aid of
∑C

l=1 α
(η+1)
l = 1. Eval(6) requires C(NKEmul +

(NK−1)Eadd+Ediv) FLOPs and Eval(7) requires C((NK+1)Epow+NKEmul+(NK−
1)Eadd+Ediv +Esub) FLOPs. Let us define FLOP(θe) to be the total number of FLOPs

consumed for computing an estimate of θe on one ECM iteration. It is straightforward

that FLOP(θe) is equal to the total FLOPs consumed in Eval(1) through Eval(7) with

the final result

FLOP(θe)≈4CNKEadd+CNKEsub+3CNKEmul+2CNKEdiv+2CNKEpow+CNKEexp.
(4.158)

The numerical evaluation of θ
(η+1)
p is performed in an attempt to minimize f(θp), cf.

(4.159), via the BFGS-QN method which involves another iterative procedure. Anal-

ogously, the FLOPs required for one iteration of this local search is counted. This

requires repetitive evaluation of the cost function f(θp) and its gradient at a certain

point θp, namely,

Eval(8) : f(θp) =

C∑

l=1

1

σ
2,(η+1)
l

N∑

i=1

K∑

k=1

(

ri,k − di(θp)− µ(η+1)
l

)2

P
(η)
i,k,l. (4.159)

Eval(9) : ∇xf(θp) =

C∑

l=1

2

σ
2,(η+1)
l

N∑

i=1

xi − x
di(θp)

K∑

k=1

(

ri,k − di(θp)− µ(η+1)
l

)

P
(η)
i,k,l (4.160)

Eval(10) : ∇yf(θp) =
C∑

l=1

2

σ
2,(η+1)
1

N∑

i=1

yi − y
di(θp)

K∑

k=1

(

ri,k − di(θp)− µ(η+1)
l

)

P
(η)
i,k,l (4.161)

Some parts of (4.159), (4.160) and (4.161) can be calculated a priori. They are,

Eval(11) : di(θp), i = 1, 2, ..., N. (4.162)

Eval(12) :
xi − x
di(θp)

, i = 1, 2, ..., N. (4.163)

Eval(13) :
yi − y
di(θp)

, i = 1, 2, ..., N. (4.164)

Eval(14) : ri,k − di(θp)− µ(η+1)
l , i = 1, 2, ..., N, k = 1, 2, ..., K, l = 1, 2, ..., C (4.165)

Eval(15) :

K∑

k=1

(ri,k − di(θp)− µ(η+1)
l )P

(η)
i,k,l, i = 1, 2, ..., N, l = 1, 2, ..., C. (4.166)

It is easy to verify that Eval(11) requires N(2Esub+2Epow+1Esqrt+1Eadd) FLOPs; both

Eval(12) and Eval(13) requireN(1Esub+1Ediv) FLOPs; Eval(14) requires (C+1)NKEsub
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FLOPs; and Eval(15) requires CN(KEmul + (K − 1)Eadd) FLOPs. Hence, Eval(8)

requires C(NKEpow + NKEmul + (NK − 1)Eadd + 1Ediv) FLOPs; both Eval(9) and

Eval(10) require C(NEmul + (N − 1)Eadd + 1Ediv) FLOPs. Let us define FLOP(f(θp))

and FLOP(∇θpf(θp)) to denote respectively the total number of FLOPs required to

evaluate the cost function as well as its gradient at a certain point θp. FLOP(f(θp)) is

the total FLOPs consumed in Eval(11) through Eval(14) and Eval(8). The final result

is

FLOP(f(θp)) ≈ CNKEadd + CNKEsub + CNKEmul + CNKEpow. (4.167)

Similarly, FLOP(∇θpf(θp)) is the total FLOPs consumed in Eval(9) through Eval(15),

and the final result is

FLOP(∇θpf(θp)) ≈ CNKEadd + CNKEsub + CNKEmul. (4.168)

Having the above knowledge, we are then able to proceed with the complexity analysis

of the BFGS-QN method on one iteration, cf. Algorithm 3.2. First, a search direction

is computed according to Eval(16) : sj = −Hj · ∇θpf(θ
(η+1,j)
p ), which requires 4Emul +

2Eadd+FLOP(∇θpf(θp)) FLOPs. Note that j is the iteration index and θ
(η+1,0)
p = θ

(η)
p

when j = 0. The selection of a step size τj is done via cubic line search (Eval(17)) in

the second step, which requires approximately NCLS
itr (FLOP(f(θp))+FLOP(∇θpf(θp)))

FLOPs, where NCLS
itr is the number of trials used to determine a suitable step size. In

the third step, we update the estimate by θ
(η+1,j+1)
p = θ

(η+1,j)
p + τjsj , which (Eval(18))

requires 2Emul + 2Eadd FLOPs. In the fourth step, the evaluation (Eval(19)) of γj =

∇θpf(θ
(η+1,j+1)
p )−∇θpf(θ

(η+1,j)
p ) requires FLOP(∇θpf(θp)) + 2Esub FLOPs. The fifth

step approximates the Hessian matrix, which (Eval(20)) requires in total 36Emul +

19Eadd + 10Ediv FLOPs. Let us define FLOP(θp) to be the total number of FLOPs

required to compute an estimate of θp for one ECM iteration. It is equal to NQN
itr times

of the total FLOPs consumed in Eval(16) through Eval(20). The final result is

FLOP(θp) ≈ NQN
itr

[
(NCLS

itr + 2) · FLOP(∇θpf(θp)) +NCLS
itr · FLOP(f(θp))

]
(4.169)

where NQN
itr is the total number of QN iterations.

Gathering the above results, it is concluded that the computational complexity of one

single ECM iteration scales as O(CNK) FLOPs under the conditions:

1. The maximum iteration numbers of NQN
itr and NCLS

itr are constants.

2. Only the factors C, N , and K can go to infinity.
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4.8.3.2 JMAP-ML Algorithm

The difference between the ECM algorithm and JMAP-ML algorithm lies in the calcu-

lation of the weighting factor wi,k,l. The joint estimation step on the (η+1)th iteration

of the JMAP-ML algorithm starts with the MAP estimation of the latent variables

y
(η+1)
i,k , for i = 1, 2, ..., N and k = 1, 2, ..., K. Since y

(η+1)
i,k is discrete valued and belongs

to {1, 2, ..., C}, the global optimal solution can be easily found by comparing the values

of Φ
(η)
i,k,l, l = 1, 2, ..., C. This requires us to compute

Φ
(η)
i,k,l = α

(η)
l N (ri,k − di(θ(η)p );µ

(η)
l , σ

2,(η)
l )) (4.170)

for i = 1, 2, ..., N , k = 1, 2, ..., K, and l = 1, 2, ..., C. As it was shown for the ECM

algorithm, this step requires in total C((NK + 3)Emul + (NK + 1)Epow + NKEsub +
NKEdiv + NKEexp) FLOPs. For a fixed i and k, in total C − 1 comparisons of two

real numbers need to be performed to determine the global optimal y
(η+1)
i,k . Hence,

the complexity of determining all y
(η+1)
i,k , for i = 1, 2, ..., N , k = 1, 2, ..., K, scales as

O(CNK) FLOPs. Having y
(η+1)
i,k , w

(η)
i,k,l is then calculated to be δ(l − y

(η+1)
i,k ). The

remaining computations in the JMAP-ML algorithm are similar to those described

in the ECM algorithm except that w
(η)
i,k,l is non-zero only for one mixture component.

Consequently, we can conclude that the computational complexity of the JMAP-ML

algorithm scales as O(CNK) as well.

4.8.4 Expression of ∇θ ln p(r; θ)

The log-likelihood function of the incomplete data, assuming a C-mode Gaussian mix-

ture in the parametric approach to the modeling of pV (v), is given by

ln p(r; θ) =
N∑

i=1

K∑

k=1

ln p(ri,k; θ) =
N∑

i=1

K∑

k=1

ln

(
C∑

l=1

αlN (ri,k − di(θp);µl, σ
2
l )

)

. (4.171)

The gradient of ln p(r; θ) with respect to θ is defined as

∇θ ln p(r; θ) =

[
∂

∂α1
,
∂

∂α2
, ...,

∂

∂αC
,
∂

∂µ1
,
∂

∂σ2
1

, ...,
∂

∂µC
,
∂

∂σ2
C

,
∂

∂x
,
∂

∂y

]T

ln p(r; θ)

(4.172)

where for l = 1, 2, ..., C,

∂ ln p(r; θ)

∂αl
=

N∑

i=1

K∑

k=1

1

p(ri,k; θ)
· N (ri,k − di(θp);µl, σ

2
l ), (4.173)
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∂ ln p(r; θ)

∂µl

=
N∑

i=1

K∑

k=1

αl

p(ri,k; θ)
· N (ri,k − di(θp);µl, σ

2
l ) ·

(ri,k − di(θp)− µl)

σ2
l

, (4.174)

∂ ln p(r; θ)

∂σ2
l

=
N∑

i=1

K∑

k=1

αl

p(ri,k; θ)
· N (ri,k − di(θp);µl, σ

2
l ) ·

(ri,k − di(θp)− µl)
2 − σ2

l

σ4
l

,

(4.175)

and

∂ ln p(r; θ)

∂x
=

N∑

i=1

K∑

k=1

−1
p(ri,k; θ)

C∑

l=1

αlN (ri,k−di(θp);µl, σ
2
l )·

(ri,k − di(θp)− µl)

σ2
l

·x− xi
di(θp)

,

(4.176)

∂ ln p(r; θ)

∂y
=

N∑

i=1

K∑

k=1

−1
p(ri,k; θ)

C∑

l=1

αlN (ri,k−di(θp);µl, σ
2
l )·

(ri,k − di(θp)− µl)

σ2
l

· y − yi
di(θp)

.

(4.177)

4.8.5 An Initialization Example

Algorithm 4.3 is developed based on [105, Sec.1.4.16], that is, the exact mean µv and

variance σ2
v of a two-mode mixture distribution pV (v) can be found, respectively, by

µv = α1µ1 + α2µ2, σ2
v =

2∑

l=1

αlσ
2
l + αl(µl − µv)

2. (4.178)

Algorithm 4.3 Initialization of Two-Mode Gaussian Mixture Model Parameters

1. Extract residuals v̂i,k = ri,k − di(θ̂p), i = 1, 2, ..., N and k = 1, 2, ..., K, given a

position estimate θ̂p.

2. Approximate the actual mean µv and variance σ2
v of pV (v), respectively, by

µ̂v =
1

NK

N∑

i=1

K∑

k=1

v̂i,k, σ̃2
v =

1

NK

N∑

i=1

K∑

k=1

(v̂i,k − µ̂v)
2 . (4.179)

3. Let ε(0) vary from 0.1 to 0.9 at an increment 0.05. For each ε(0), compute

α
(0)
1 = 1− ε(0), α(0)

2 = ε(0), µ
(0)
1 = 0, µ

(0)
2 = |µ̂v/ε

(0)|,
σ
2,(0)
1 = σ

2,(0)
2 =

∣
∣
∣σ̂2

v − ε(0)(1− ε(0))(µ(0)
2 )2

∣
∣
∣ .

4. Amongst all the candidate initial guesses, choose the one maximizing LI(θ; r).
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Chapter 5

Cooperative Localization in WSNs:
Parametric Modeling

It was shown in Chapter 4 that the computational complexity of locating a target node

in cellular radio networks can be largely reduced by adopting a parametric approach to

the modeling of the measurement error distribution. We adopt the same idea for coop-

erative localization using wireless sensor networks in this chapter. Specifically, we study

TOA based cooperative localization algorithms that apply the expectation-conditional

maximization (ECM) criterion upon a parametric C-mode Gaussian mixture model-

ing of the measurement error. Analogous algorithms that use received-signal-strength

measurements and/or joint maximum a posteriori -maximum likelihood (JMAP-ML)

criterion can be developed in a similar fashion. Both centralized and distributed algo-

rithms will be considered, but more emphases will be put on the distributed algorithms.

This is due to the drawbacks of the centralized algorithms, namely the need for a fu-

sion center and heavy energy consumption for communicating data to a fusion center in

large-scale wireless sensor networks [6]. On the contrary, each agent determines its own

position using only local information in distributed algorithms. Distributed algorithms

are scalable in general, independent of a fusion center, less sensitive to sensor failure as

compared to the corresponding centralized solutions, making them highly demanded

for large-scale sensor networks [88].

The organization of this chapter is as follows. Section 5.1 introduces the signal model

and states the problem at hand. In Section 5.2, three representative classes of co-

operative localization algorithms are revisited and will be used as competitors of the

proposed algorithms in the subsequent sections. In Section 5.3, numerical difficulties

in solving the maximum likelihood (ML) estimator is shown in the first place. Then,

a series of ECM algorithms are developed to approximate the ML estimator with less

computational efforts. The proposed ECM algorithms are employed in a snapshot-

based solution for localization of dynamic sensor networks at the end of this section.

Section 5.4 systematically studies the computational complexity and communication

overhead of the proposed ECM algorithms. Section 5.5 computes the Cramér-Rao

lower bound (CRLB) numerically and gives a measure of the localization accuracy.

Section 5.6 performs various simulations based on both synthetic and real settings.

Section 5.7 concludes this chapter, and Section 5.8 provides some useful derivations.
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5.1 Signal Model and Problem Statement

Throughout this chapter, cooperative localization is considered in a connected network

comprising a total number of N wireless sensors in a two-dimensional (2-D) space.

Without loss of generality, let Na = {1, 2, ..., Nu} be the set of indices of the agents,

whose positions {pi = [xi, yi]
T , i ∈ Na} are unknown and let Nb = {Nu + 1, Nu +

2, ..., N} be the set of indices of the anchors with known positions.

In order to localize the agents, a two-stage procedure is adopted. In the first stage,

every sensor broadcasts its sensor ID and listen for its neighboring sensors’ broadcasts.

Then, each agent obtains a set of distance measurements relative to its neighboring

sensors, which can be done, for instance, by estimating the TOA of a received signal.

In the second stage, the unknown agent positions will be estimated concurrently in a

localization algorithm based on the obtained distance measurements.

The development of new cooperative localization algorithms relies on a statistical mea-

surement model as follows:

ri,j = d(pi,pj) + vi,j (5.1)

where ri,j is a distance measurement obtained at sensor i in cooperation with sensor

j, d(pi,pj) = ||pi − pj|| denotes the true Euclidean distance between the two sensors,

and vi,j is an additive measurement error term. In the subsequent sections, we will

occasionally use dij to denote d(pi,pj) for brevity. The measurement error terms

observed for different sensor pairs are assumed to be iid according to pV (v), which is

approximated parametrically by a C-mode Gaussian mixture as follows:

pV (v) ≈ p̂V (v) =

C∑

l=1

αlN (v;µl, σ
2
l ) (5.2)

where C is the total number of mixture components, αl is the mixing coefficient of the

lth Gaussian component N (v;µl, σ
2
l ). The mixture model parameters αl, µl and σ2

l ,

l = 1, 2, ..., C, are assumed to be unknown.

In order to reduce the communication overhead and computational complexity, we

assume, throughout this chapter, that ri,j = rj,i and only one of them (choosing ri,j

with j > i) will be routed to a fusion center. This assumption approximately holds

when the sensors are equipped with an omni-directional antenna and conduct the

interrogation in a pair of reciprocal channels. Alternatively, sensor i could transmit

ri,j (j > i) back to sensor j such that rj,i is set to be equal to ri,j without performing

an additional trial of TOA estimation on sensor j. Besides, distance measurements
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obtained between anchors are ignored when estimating the agent positions. But they

are useful for the initialization (as will be seen in Section 5.3). In this way, only c.a.

half of the measurements will be used in the inference tasks. Before proceeding further,

we introduce the following notations:

• θ = [θTe , θ
T
a , θ

T
p ]

T is a vector of all unknown parameters to be determined, where

θp = [pT1 , ...,p
T
Nu

]T , θe = [α1, ..., αC , µ1, σ
2
1, ..., µC, σ

2
C ]

T and θa is null in this case.

• H(i) = {j : j ∈ {Na

⋃Nb} and d(pi,pj) < Rc} is a set of all neighboring sensors

of agent i, i ∈ Na. Here, Rc is the maximal communication range of a sensor

and an ideal model is adopted for determining the neighborhood of each agent.

In practice, instead, a neighboring sensor can be determined by comparing the

received signal strength with a certain threshold, beyond which data packages

cannot be demodulated.

• Γ = {(i, j) : i ∈ Na, j ∈ H(i), and j > i} is a set of all sensor pairs that con-

tribute distance measurements.

• r is a column vector containing all distance measurements ri,j, ∀(i, j) ∈ Γ . The

data structure of r follows that of Γ .

An illustrating example that better explains the above notations and data transmissions

to a fusion center is depicted in Fig. 5.1.

A vectorized measurement model is then given by

r = h(θp) + v (5.3)

with ri,j’s stacked in r, d(pi,pj)’s in h(θp), and vi,j’s in v. The aim of this work

is to jointly estimate the unknown parameters, including the agent positions θp and

Gaussian mixture model parameters θe, given the probabilistic measurement model in

(5.3), a set of noisy distance measurements r, and a few known anchor positions.

5.2 Competing Algorithms Revisited

In this section, we briefly review two classes of cooperative localization algorithms that

have been frequently considered for wireless sensor network problems in the past. They

are:

1. Least-squares (LS) estimation based algorithms

2. Nonparametric belief propagation (NBP) based algorithms
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Figure 5.1. An illustrating example of a connected wireless sensor network in a 2-D
space. In this example, there are N = 7 sensors in total, among which Nu = 4 agents,
marked by ◦’s, and the rest are anchors, marked by △’s. All measurements that will
be routed to a fusion center are stacked in r which has the same data structure as the
set of all feasible sensor pairs, Γ .

5.2.1 LS Estimation Based Algorithms

To the best of our knowledge, the first centralized LS estimation based algorithm for

cooperative localization was given in [19]. The resulting LS estimator is the solution

of

θ̂LSp = argmin
θp

∑

(i,j)∈Γ
(ri,j − d(pi,pj))2, (5.4)

which is found by a conjugate gradient algorithm in [19]. To avoid the use of a fusion

center, a distributed LS algorithm was proposed in [14, Algorithm 1]. The advantages

of these two LS estimators in common lie in the independence of the prior knowledge

about the measurement error distribution and NLOS identification. An LS estimator

becomes the ML estimator when Gaussian measurement error distribution is assumed.

In mixed LOS/NLOS localization environments, the existence of the NLOS measure-

ments (or outliers) ruins the adequacy of the Gaussian measurement error model and

brings largely degraded performance as a consequence. To compensate for the NLOS

(or outlier) effects, a robust algorithm was developed in [120], where the least-squares

function was replaced by a robust Huber function in the minimization problem. As

trade-off, this algorithm needs to tune several parameters of the Huber function. En-

hanced performance can be observed when only a small fraction of outliers exist in the
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observed data.

5.2.2 NBP Based Algorithms

The second class of localization algorithms, which are Bayesian in nature, take advan-

tages of the celebrated belief propagation (BP) algorithm, also known as sum-product-

algorithm (SPA) in the literature. Simply speaking, BP is a powerful algorithm for

computing the marginal posterior pdf of each agent position (i.e., local belief message)

in graph models. To the best of our knowledge, the first work suitable for real applica-

tions is the nonparametric BP (NBP) algorithm [81], which introduced particle-based

approximation of the local belief messages and internal messages (will be defined later).

The main advantages of the NBP based self-localization algorithm [81] are:

• It allows for distributed implementation.

• It is not restricted to Gaussian measurement models.

• It produces not only an estimate of sensor positions but also localization uncer-

tainty.

In what follows, we briefly summarize the basics of the classical NBP algorithm, which

serves as the cornerstone of several new variations. In contrast to the non-Bayesian

algorithms, the unknown positions are assumed to be random with certain prior prob-

abilities. According to the signal model in Section 5.1, agent i obtains a noisy distance

measurement (e.g., TOA measurement) from a neighboring sensor j (can be either an

agent or an anchor),

ri,j = d(pi,pj) + vi,j (5.5)

where

vi,j ∼ pV (ri,j − d(pi,pj)). (5.6)

Let further p(pi) be the prior distribution of sensor i’s true position pi. The prior

distribution is assumed to be uniform in the deployment area for an agent if no extra

information about the position is available. The prior distribution is a Dirac delta

function for an anchor. The joint distribution is given by

p(p1, ...,pN , r) = p(r|p1, ...,pN)p(p1, ...,pN)

=
∏

(i,j)∈Γ
p(ri,j|pi,pj)

N∏

i=1

p(pi). (5.7)

This result is due to the following simplifying assumptions [121]:
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1. The joint prior distribution of the positions of all nodes is equal to the multipli-

cations of each local prior, namely,

p(p1, ...,pN) =

N∏

i=1

p(pi). (5.8)

2. Given the positions of all nodes, the measurements are mutually independent,

namely,

p(r|p1, ...,pN) =
∏

(i,j)∈Γ
p(ri,j|p1, ...,pN). (5.9)

3. Given the positions of nodes i and j, the measurement ri,j is independent of the

positions of any other nodes, namely,

p(ri,j|p1, ...,pN) = p(ri,j|pi,pj). (5.10)

The joint posterior pdf can be easily expressed by means of Bayes’ rule as

p(p1, ...,pN |r) ∝ p(r|p1, ...,pN)p(p1, ...,pN)
=
∏

i

ψi(pi)
∏

(i,j)∈Γ
ψij(pi,pj) (5.11)

where

ψi(pi) = p(pi), (5.12)

ψij(pi,pj) = p(ri,j|pi,pj) = pV (ri,j− ‖ pi − pj ‖). (5.13)

The task is to compute/approximate the marginal posterior pdf p(pi|r) for ∀i ∈ Na.

For the case that cycles exist in the factor graph [87], which is commonly seen in

localization problems, p(pi|r) has to be approximated recursively. More precisely, on

the ηth iteration,

p(pi|r) ≈ B
(η)
i (pi) ∝ ψi(pi)

∏

j∈H(i)

m
(η)
ji (pi) (5.14)

where the internal message sent from sensor j to sensor i is computed according to

m
(η)
ji (pi) ∝

∫

pj

ψij(pi,pj)
B

(η−1)
j (pj)

m
(η−1)
ij (pj)

dpj. (5.15)

An iterative particle-based procedure can be adopted to compute the local belief mes-

sages. However, the convergence stability is not guaranteed. On each iteration (say the

ηth), both the local belief messages and internal messages (distributions in essence)

are represented by a set of weighted particles, namely {w(η,ι)
i ,x

(η,ι)
i }, ι = 1, 2, ..., Rbel

for B
(η)
i (pi) and {w(η,ι′)

ij ,x
(η,ι′)
ij }, ι′ = 1, 2, ..., Rint for m

(η)
ij (pj). More details about the
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generation of these particles can be found in [121]. In practice Rint ≫ Rbel, since

{w(η,ι′)
ij ,x

(η,ι′)
ij } are generated locally at sensor j and no extra data packets need to be

transmitted from sensor i to sensor j. The communication overhead solely relies on

the size of Rbel, but the size of Rint has great impact on the computational complexity

of the NBP algorithm. For good localization performance, both Rint and Rbel should

be set large (e.g., 500-1000 particles). The sum-product-algorithm over wireless net-

works (SPAWN) algorithm is a generalized version of the above NBP algorithm in that

ri,j 6= rj,i and both of them are used in the reference task. In fact, we only need to

modify (5.15) to

m
(η)
ji (pi) ∝

∫

pj

ψij(pi,pj)B
(η−1)
j (pj)m

(η−1)
ij (pj) dpj. (5.16)

Many new variations have been built recently upon the NBP and SPAWN algorithms.

Most of the efforts have been made to reduce the computational complexity and com-

munication overhead. For instance [83,84,89] propose to represent both the local belief

messages and internal messages parametrically. Alternatively, [85] adopted transmit-

and receive censoring to reduce the communication overhead as well as the compu-

tational complexity. The idea is to avoid unnecessary broadcast if a sensor is not

confident about the computed belief on its own position in the transmit censoring and

to pick up a minority of the most informative internal messages sent to it in the receive

censoring. As compared to the listed parametric algorithms, both the computational

complexity and communication overhead can be only modestly reduced.

In contrast to the first class of algorithms, the class of NBP based algorithms need pre-

cise knowledge about the measurement error distribution prior to performing network

localization.

5.3 Joint ML Estimation

In Section 5.3.1, we briefly comment on the difficulties with the ML implementation. To

approximate the ML estimator with less hurdles, we develop a series of expectation-

conditional maximization (ECM) algorithms (cf. Section 5.3.2 for centralized imple-

mentations and Section 5.3.3 for distributed implementations). Finally, Section 5.3.4

integrates the proposed algorithms into a snapshot-based solution for locating dynamic

sensor networks.



116 Chapter 5: Cooperative Localization in WSNs: Parametric Modeling

5.3.1 ML Estimation

We start with the conventional implementation (centralized in nature) of the maximum

likelihood estimation. Similar to [19], the log-likelihood function of the considered joint

estimation problem is expressed as follows:

LI(θ; r) =
Nu∑

i=1

∑

j∈H(i),
j>i

ln p(ri,j; θ) =
∑

(i,j)∈Γ
ln p(ri,j; θ)

=
∑

(i,j)∈Γ
ln

(
C∑

l=1

αlN (ri,j − d(pi,pj);µl, σ
2
l )

)

. (5.17)

The centralized ML estimator is obtained through solving:

maximize
θ

LI(θ; r)

subject to 0 ≤ α1, ..., αC ≤ 1,

C∑

l=1

αl = 1,

σ2
l > 0, l = 1, 2, ..., C.

(5.18)

This optimization problem is cumbersome for two reasons. On the one hand, the cost

function contains “the logarithm of the sum”, which hinders the analytical evaluation

of the parameters. On the other hand, when the number of agents, Nu, is large, the

existing numerical methods, e.g., Newton-type methods, would become less stable [95].

5.3.2 Centralized ECM Algorithms

Instead of solving (5.18) directly, we approximate the ML estimator using the ECM

criterion. As it was introduced in Chapter 2, the idea is to replace the complicated

M-step of the conventional EM algorithm with a set of computationally simpler condi-

tional maximization (CM) steps in an attempt to split a difficult maximization problem

into many easier ones. We first focus on centralized ECM algorithms for cooperative

localization, which lays a foundation for developing different distributed algorithms. A

centralized ECM algorithm works with a complete-data set {y, r}, in which y is a col-

umn vector enclosing |Γ | latent variables yi,j indicating that which mixture component

has given rise to ri,j. The work-flow of a centralized ECM algorithm on the (η + 1)th

iteration is as follows:

Expectation: We take conditional expectation of the complete-data log-likelihood

LC(θ;y, r) = ln(p(r,y; θ)) in terms of y, given r and θ(η). Following the derivations
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in Appendix 5.8.1, we finally arrive at

Q
(
θ; θ(η)

)
=

C∑

l=1

∑

∀(i,j)∈Γ
ln(αl)P

(η)
i,j,l

︸ ︷︷ ︸

Q
(η)
0 (α1,α2,...,αC)

+
C∑

l=1

∑

∀(i,j)∈Γ
−
[
(ri,j − di,j − µl)

2

2σ2
l

+
1

2
ln(σ2

l )

]

P
(η)
i,j,l

︸ ︷︷ ︸

Q
(η)
l (µl,σ

2
l
,θp)

(5.19)

with P
(η)
i,j,l being a short-hand notation of the conditional probability

Pr
{
yi,j = l|ri,j; θ(η)

}
. In light of Bayes’ rule, we immediately have

P
(η)
i,j,l ∝ α

(η)
l N (ri,j − d(p(η)i ,p

(η)
j );µ

(η)
l , σ

2,(η)
l ). (5.20)

Note that p
(η)
j = pj if sensor j is an anchor.

Conditional Maximization: First, we need to find a proper partition of the unknown

parameters, i.e.,

θ = [ϑT
1 , ...,ϑ

T
S ]

T (5.21)

where ϑT
s is a sub-vector of θ. Furthermore, we let

G = {gs(θ) : s = 1, 2, ..., S} (5.22)

be a set of S preselected vector functions of θ defined by

gs(θ) = [ϑT
1 , ...,ϑ

T
s−1,ϑ

T
s+1, ...,ϑ

T
S ]

T , (5.23)

meaning that gs(θ) is a vector that contains all the sub-vectors of θ except ϑs. With

the above partition of θ, the sth CM step of the (η+1)th ECM iteration solves θ(η+s/S)

from the following optimization problem:

maximize
θ

Q(θ; θ(η))

subject to gs(θ) = gs(θ
(η+(s−1)/S))

. (5.24)

For clarity, a general routine is given in Algorithm 5.1.

Different partitions of θ lead to different ECM algorithms. To elaborate on this, two

examples are shown in the sequel with the same partition of the mixture model pa-

rameters ϑ1 = [α1, α2, ..., αC ]
T , ϑ2l = µl, ϑ2l+1 = σ2

l , l = 1, 2, ..., C, but with different

partitions of the position parameters as follows:

• Example 1: ϑ2C+1+i = pi, i = 1, 2, ..., Nu with S = Nu + 2C + 1.

• Example 2: ϑ2C+2i = xi and ϑ2C+2i+1 = yi, i = 1, 2, ..., Nu with S = 2Nu +

2C + 1.
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Algorithm 5.1 Centralized ECM Algorithm (General Routine)

Step1—Initialization: Set a convergence tolerance ∆c and the maximum number of

iterations to N c
itr. Choose an initial guess θ(η=0).

Step2—Expectation-Conditional Maximization:
On the (η + 1)th iteration (η ∈ Z, η ≥ 0), do:

1. Perform conditional expectation and obtain Q(θ; θ(η)), cf.(5.19).

2. Find a proper partition of the unknown parameters, θ = [ϑT
1 , ...,ϑ

T
S ]

T . See for
instance the two examples given above.

3. Find θ(η+s/S) that solves (5.24) sequentially for s = 1, 2, ..., S.

Step3—Convergence Check:

If LI(θ
(η+1); r)−LI(θ

(η); r) ≤ ∆c or the maximum number of iterations N c
itr has been

reached, then terminate the whole algorithm and obtain θ̂CECM = θ(η+1); otherwise
reset η ← η + 1 and return to the ECM stage.

With the above partition of the mixture model parameters, it can be easily shown

by following the same methodology as demonstrated in Section 4.2.3 that the global

optimal solutions of α
(η+1)
l , µ

(η+1)
l , σ

2,(η+1)
l , l = 1, 2, ..., C, are solved respectively from

∂

∂αl

[

Q
(η)
0 (α1, ..., αC) + λ

(
C∑

l=1

αl − 1

)]

= 0, (5.25)

∂

∂µl

[

Q
(η)
l

(

µl, σ
2,(η)
l , θ(η)p

)]

= 0, (5.26)

∂

∂σ2
l

[

Q
(η)
l

(

µ
(η+1)
l , σ2

l , θ
(η)
p

)]

= 0, (5.27)

and the closed form solutions are given by

α
(η+1)
l =

1

|Γ |
∑

(i,j)∈Γ
P

(η)
i,j,l, (5.28)

µ
(η+1)
l =

∑

(i,j)∈Γ
(ri,j − d(p(η)i ,p

(η)
j ))P

(η)
i,j,l

|Γ |α(η+1)
l

, (5.29)

σ
2,(η+1)
l =

∑

(i,j)∈Γ
(ri,j − d(p(η)i ,p

(η)
j ))2P

(η)
i,j,l

|Γ |α(η+1)
l

− (µ
(η+1)
l )2. (5.30)

It is easy to verify, as was done in Appendix 4.8.2, that for s = 1, 2, ..., 2C + 1,

Q(θ(η+s/S); θ(η)) ≥ Q(θ; θ(η)) (5.31)
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for any θ ∈ Θs(θ
(η+(s−1)/S)) , {θ ∈ Θ : gs(θ) = gs(θ

(η+(s−1)/S))}. In other words,

θ(η+s/S) is the global maximizer in the given subspace of Θ.

The position are updated only numerically. In the first example, it can be shown that

the positions are updated by

p
(η+1)
i = argmin

pi

∑

j∈H(i)

C∑

l=1

(ri,j − d(pi,p(η̃)j )− µ(η+1)
l )2P

(η)
i,j,l

σ
2,(η+1)
l

, (5.32)

for i = 1, 2, ..., Nu, as a consequence of the reciprocal assumption ri,j = rj,i. In (5.32),

p
(η̃)
j = p

(η+1)
j if sensor j is an agent with its position updated prior to sensor i, or

p
(η̃)
j = p

(η)
j otherwise; or p

(η̃)
j = pj if sensor j is an anchor. We adopt the two-

dimensional (2-D) BFGS-QN method to solve p
(η+1)
i , i = 1, 2, ..., Nu. It is ensured

that

Q(θ(η+(2C+1+i)/S); θ(η)) ≥ Q(θ(η+(2C+i)/S); θ(η)), (5.33)

because the BFGS-QN method guarantees downhill progress towards the local mini-

mum in each Newton step. We stress that the positions need not to be updated in the

order of the sensor indicies.

In contrast to the 2Nu-dimensional BFGS-QN search used in the EM algorithm [65],

which is in fact also an ECM algorithm with ϑ2C+2 = θp = [pT1 , ...,p
T
Nu

]T and S = 2C+2

in the partition of θ, the ECM algorithm derived for the first example requires Nu trials

2-D BFGS-QN search. We note that [65] is more suitable to use for small or moderate

Nu, because intuitively it should converge much faster. A good example has been

given in Chapter 4, where only one (Nu = 1) mobile station is to be located in a non-

cooperative framework. The first ECM algorithm is, however, favorable for a large Nu,

since it is numerically more stable [95].

In the second example, the position update for each agent can be found by applying

one-dimensional (1-D) grid search (GS) respectively to

argmin
xi

∑

j∈H(i)

C∑

l=1

(ri,j − d([xi, y(η)i ]T ,p
(η̃)
j )− µ(η+1)

l )2P
(η)
i,j,l

σ
2,(η+1)
l

(5.34)

and

argmin
yi

∑

j∈H(i)

C∑

l=1

(ri,j − d([x(η+1)
i , yi]

T ,p
(η̃)
j )− µ(η+1)

l )2P
(η)
i,j,l

σ
2,(η+1)
l

. (5.35)

By carefully choosing the search interval as well as grid points, the global maximizer

of (5.24) is reachable in every CM step. As a trade-off, in total 2Nu trials 1-D grid

searches are required by each ECM iteration, which will consume more computational

resources than the 2-D BFGS-QN based ECM algorithm.
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Theorem 5.1. The proposed centralized ECM algorithms are in fact generalized EM

(GEM) algorithms and ensure that the sequence of incomplete-data log-likelihood values

{LI(θ
(η); r)}, when bounded above, converges monotonically over iterations to some

point L∗.

Proof. Similar to the proof given in Theorem 4.1, we have here

Q(θ(η+1); θ(η)) ≥ Q(θ(η+(S−1)/S); θ(η))

≥ Q(θ(η+(S−2)/S); θ(η))

...

≥ Q(θ(η); θ(η)). (5.36)

Hence, the proposed ECM algorithms are essentially GEM algorithms. When LI(θ; r)

is bounded above, which holds under the assumption that σ2
l > 0, l = 1, 2, ..., C, the

proposed centralized ECM algorithms converge monotonically over iterations to some

value L∗ of the incomplete-data log-likelihood function LI(θ; r).

Theorem 5.2. When the position updates found by the local grid search (5.34) and

(5.35) are global maximizers, L∗ is ensured to be a stationary point.

Proof. For L∗ to be a stationary point, however, we need to prove additionally, accord-

ing to Section 2.2.2, that: (1) gs(θ) is differentiable; (2) the corresponding gradient

∇θgs(θ) is of full rank at θ(η) ∈ Θ, for all η; and (3) the “space filling” condition holds

as
S⋂

s=1

Gs(θ
(η)) = {0}, for all η, (5.37)

where Gs(θ) is the column space of the matrix ∇θgs(θ).

In the 1D GS based centralized ECM algorithm, we have dim(θ) = 3C + 2Nu and

S = 2Nu + 2C + 1. It is easy to show that

∇θgs(θ
(η)) =







[eC+1, ..., edim(θ)], s = 1

[e1, ..., eC+s−2, eC+s, ..., edim(θ)], s = 2, ..., S − 1

[e1, ..., e3C+2Nu−1], s = S

(5.38)

are all differentiable and irrespective of θ(η) as

ej = [ 0, ..., 0
︸ ︷︷ ︸

j−1 copies

, 1, 0, ..., 0
︸ ︷︷ ︸

dim(θ)−j copies

]T , ∀j ∈ {1, 2, ..., dim(θ)}. (5.39)
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It is clear that ∇θg1(θ
(η)) is of dimension dim(θ) × (dim(θ) − C); and ∇θgs(θ

(η)),

s = 2, ..., S, are all of dimension dim(θ) × (dim(θ) − 1). The vector basis ej is of

dimension dim(θ)× 1. Since ej and ej′ are mutually orthogonal for j 6= j′, ∇θgs(θ
(η))

has a full column rank. So far, the first two conditions have been proven. In the sequel,

we omit the iteration index η for brevity.

The proof of the third condition starts with the definition of the column space, that

is, Gs(θ) is a linear combination of the columns of the matrix ∇θgs(θ), i.e.,

Gs(θ) =







∑

j={C+1,...,dim(θ)}
cjej s = 1

∑

j={1,...,S}\{C+s−1}
cjej s = 2, ..., S

(5.40)

where cj is a real scalar coefficient. Since Gs(θ) is a subspace of Rdim(θ), (5.37) can be

reformulated as

S⋂

s=1

Gs(θ) =
S⋂

s=0

Gs(θ) = GS(θ)
⋂

GS−1(θ)
⋂

· · ·
⋂

G1(θ)
⋂

G0(θ) (5.41)

where G0(θ) is the whole space of Rdim(θ), spanned by
∑

j={1,...,dim(θ)} cjej . The right-

hand-side of the second equation in (5.41) can be performed sequentially in the order

s = 1, 2, ..., S, more precisely,

G̃s(θ) = Gs(θ)
⋂

G̃s−1(θ) (5.42)

where

G̃s−1(θ) = Gs−1(θ)
⋂

Gs−2(θ)
⋂

· · ·
⋂

G1(θ)
⋂

G0(θ) (5.43)

for s > 1 while G̃s−1(θ) = G0(θ) for s = 1. Starting from s = 1, we obtain, owing to

the dimension formula [114], that

dim(G̃1(θ)) = dim(G1(θ)
⋂

G0(θ)) = dim(G1(θ))+dim(G0(θ))−dim(G1(θ)+G0(θ)).

(5.44)

Since G1(θ) and G0(θ) are both spanned by orthogonal basis vectors, we have

dim(G1(θ)) = dim(θ) − C and G0(θ) = dim(θ). The dimension of the

sum of column spaces dim(G1(θ) + G0(θ)) is equal to the rank of the matrix

[eC+1, ..., edim(θ)|e1, e2, ..., edim(θ)], which turns out to be dim(θ). As a consequence,

we obtain dim(G̃1(θ)) = dim(θ) − C. It is easy to arrive at the conclusion that the

basis vectors that span G̃1(θ) are just the column vectors that G1(θ) and G0(θ) have

in common, namely,

G̃1(θ) = G1(θ)
⋂

G0(θ) =
∑

j∈{C+1,...,dim(θ)}
cjej . (5.45)
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Similarly for s > 1,

dim(G̃s(θ)) = dim(Gs(θ)
⋂

G̃s−1(θ)) (5.46)

= (dim(θ)− 1) + (dim(θ)− C − (s− 2))− dim(θ) (5.47)

= dim(θ)− C − (s− 1). (5.48)

and

G̃s(θ) = Gs(θ)
⋂

G̃s−1(θ) =
∑

j∈{C+s,...,dim(θ)}
cjej . (5.49)

Note that the result in (5.48) is due to the fact that the dimension of Gs(θ) is always

dim(θ) − 1 and the dimension of the sum of column spaces dim(Gs(θ) + G̃s−1(θ)) is

always dim(θ). Finally, after the Sth intersection, we have

G̃S(θ) = GS(θ)
⋂

G̃S−1(θ) = {0}. (5.50)

Theorem 5.3. When the position updates found by the local BFGS-QN search (5.32)

are global maximizers, L∗ is ensured to be a stationary point.

Proof. The proof is very similar to the one provided in Theorem 5.2.

Remark 5.1. The proposed centralized ECM algorithms may converge to different

stationary points if LI(θ; r) is multi-modal. This is due to the different partitions

of the position parameters, which lead to different mappings θ(η+1) = M(θ(η)) in the

conditional maximization. For the special case that LI(θ; r) is unimodal, they will reach

the same global maximum.

5.3.3 Distributed ECM Algorithms

The aim of this section is to approximate the centralized ECM algorithms in a dis-

tributed manner. Essentially, the above centralized ECM algorithm can be understood

as an iterative process consisting of the following two steps on each iteration: (1) up-

dating the mixture model parameters with the position parameters held fixed; and (2)

updating the position parameters with the mixture model parameters held fixed. In

the sequel, we aim to decentralize these two steps.

The first step of the proposed centralized ECM algorithms makes no distinction with

the conventional EM algorithm for Gaussian mixture learning if the position estimates
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were replaced with their true values. After simple manipulations, the results in (5.28)—

(5.30) can be re-expressed as:

α
(η+1)
l =

Nu

|Γ |
1

Nu

Nu∑

i=1

wi,l ∝
1

Nu

Nu∑

i=1

wi,l, (5.51)

µ
(η+1)
l =

1
Nu

Nu∑

i=1

ai,l

1
Nu

Nu∑

i=1

wi,l

, (5.52)

σ
2,(η+1)
l =

1
Nu

Nu∑

i=1

bi,l

1
Nu

Nu∑

i=1

wi,l

− (µ
(η+1)
l )2, (5.53)

where

wi,l=
∑

j∈H(i),
j>i

P
(η)
i,j,l, (5.54)

ai,l=
∑

j∈H(i),
j>i

P
(η)
i,j,l(ri,j − d(p

(η)
i ,p

(η)
j )), (5.55)

bi,l=
∑

j∈H(i),
j>i

P
(η)
i,j,l(ri,j − d(p

(η)
i ,p

(η)
j ))2. (5.56)

It is clear from (5.51)—(5.53) that averaging is the main operation in common for

updating the mixture model parameters. This allows us to use the class of aver-

age consensus algorithms [122], which does not rely on any prescribed route, like the

Hamiltonian path adopted in [123, 124] or the tree structure adopted in [82] and thus

is more robust against sensor malfunction and link failure. For simplicity we assume

in the sequel that the sensors are time synchronized, and the synchronous average

consensus algorithm [125] is modified in Algorithm 5.2 to work for the considered

problem. On the one hand, this modified algorithm is easier to implement based on

the existing protocol [126]. On the other hand, the synchronous nature of this algo-

rithm facilitates the subsequent analyses on the computational complexity and energy

consumption. However, we note that Algorithm 5.2 can be easily recast in an asyn-

chronous manner—well known as the “pair-wise gossip” algorithm in the literature, see

for instance [127]. Besides, it is also convenient to replace Algorithm 5.2 with other

consensus based methods [128, 129] or diffusion based methods [130, 131]. A compari-

son of them either in quality or in quantity is, however, beyond the scope of this thesis.

Lastly, we note that in the corresponding distributed algorithms P
(η)
i,j,l in (5.54)—(5.56)
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has to be replaced with

P̃
(η)
i,j,l ∝ α

(η)
i,l N (ri,j − d(p(η)i ,p

(η)
j );µ

(η)
i,l , σ

2,(η)
i,l ), (5.57)

which is computed locally at each agent i.

Algorithm 5.2 Synchronous Average Consensus Algorithm (for Agent i at the (η+1)th
ECM Iteration)

1. Repeat 1.a. and 1.b. for Ng
itr iterations:

1.a. Choose a neighboring agent j uniformly at random from H(i). Send

{w(c)
i,l , a

(c)
i,l , b

(c)
i,l } to and receive {w(c)

j,l , a
(c)
j,l , b

(c)
j,l } from agent j.

1.b. Agents i and j update

χ
(n)
i,l = χ

(n)
j,l =

χ
(c)
i,l + χ

(c)
j,l

2
, (5.58)

and re-set χ
(c)
i,l = χ

(n)
i,l , where χ ∈ {w, a, b}.

Note that {w(c)
j,l , a

(c)
j,l , b

(c)
j,l } is initialized by {wj,l, aj,l, bj,l} computed by (5.54)—(5.56)

with P
(η)
i,j,l replaced by P̃

(η)
i,j,l.

2. Update the mixture model parameters by

α
(η+1)
i,l ∝ w

(c)
i,l , µ

(η+1)
i,l =

a
(c)
i,l

w
(c)
i,l

, σ
2,(η+1)
i,l =

b
(c)
i,l

w
(c)
i,l

− (µ
(η+1)
i,l )2. (5.59)

Note that α
(η+1)
i,l , l = 1, 2, ..., C need to be scaled such that they sum up to one.

Remark 5.2. To alleviate the computational complexity as well as the energy con-

sumption, Ng
itr is assumed to be a small and fixed number, irrespective of Nu.

The position update procedures in the centralized ECM algorithms are readily in de-

centralized form because the evaluation of (5.32) or (5.34)—(5.35) only requires that

each agent solves for its own position, given the local measurements, the updated mix-

ture model parameters, and the positions of the neighboring sensors. We need only

to replace the global estimates µ
(η+1)
l and σ

2,(η+1)
l in (5.32) or (5.34)—(5.35) with the

local estimates µ
(η+1)
i,l and σ

2,(η+1)
i,l , respectively, for agent i. A synchronous position

update scheme, in which all agents update their positions simultaneously, can be easily

obtained by substituting p
(η̃)
j with p

(η)
j . More precisely, the positions are updated by

p
(η+1)
i = argmin

pi

∑

j∈H(i)

C∑

l=1

(ri,j − d(pi,p(η)j )− µ(η+1)
i,l )2P̃

(η)
i,j,l

σ
2,(η+1)
i,l

, (5.60)
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in the 2-D BFGS-QN based distributed ECM algorithm, and updated by

argmin
xi

∑

j∈H(i)

C∑

l=1

(ri,j − d([xi, y(η)i ]T ,p
(η)
j )− µ(η+1)

i,l )2P̃
(η)
i,j,l

σ
2,(η+1)
i,l

(5.61)

and

argmin
yi

∑

j∈H(i)

C∑

l=1

(ri,j − d([x(η+1)
i , yi]

T ,p
(η)
j )− µ(η+1)

i,l )2P̃
(η)
i,j,l

σ
2,(η+1)
i,l

. (5.62)

in the 1D GS based distributed ECM algorithm. Algorithm 5.3 summarizes the key

steps of two distributed ECM algorithms with synchronous position updates. In the

sequel, we use “2-D BFGS-QN D(C)-ECM” to denote the 2-D BFGS-QN based dis-

tributed (centralized) ECM algorithm and use “1-D GS D(C)-ECM” to denote the 1-D

GS based distributed (centralized) ECM algorithm.

The position estimate p
(η+1)
i to be solved in the 2-D BFGS-QN D-ECM algorithms can

be imagined as a weighted least-squares (WLS) solution of a conventional infrastructure

based localization problem, in which a total number of |H(i)| virtual anchors with

positions p
(η)
j , j ∈ H(i) surround agent i and each virtual anchor (say the jth) collects

a number of C distance measurements ri,j −µ(η+1)
i,l corrupted by errors with zero mean

and variances σ
2,(η+1)
i,l /P̃

(η)
i,j,l, l = 1, 2, ..., C. For this kind of problem, many existing

linearization strategies, for instance [13, Chapter 2], can be used to further reduce the

computational cost of the above proposed distributed ECM algorithms.

Before closing this subsection, we provide two practical solutions for initializing the dis-

tributed ECM algorithms. In the first solution, an initial guess of the mixture model pa-

rameters is determined by conventional Gaussian mixture learning carried out between

a few anchors. An initial guess of the unknown agent positions can be determined in

a simple method. For instance, a distributed least-squares algorithm [14, Algorithm 1]

or a parametric SPAWN algorithm [83] with a starting point randomly selected in the

deployment area. The latter has the potential to generate better initial guess with

comparable computational complexity and energy consumption if the mixture model

parameters are well initialized beforehand. In the second solution, we could employ

a single moving platform (for instance a robot in the MUSAS system [5]) equipped

with inertial sensors and ultra-wide-band (UWB) transceiver(s) and possibly also an

imaging system. While patrolling with known trajectories inside the deployed area,

this moving platform constantly communicates with all sensors within the communi-

cation range. Using the measurements received from the anchors, a coarse estimate

of the mixture model parameters can be determined and broadcast back to all sen-

sors. Meanwhile, recalibration of the inertial sensors can be conducted to reduce error

propagation. Similarly, using the measurements received from the agents at different
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Algorithm 5.3 Two Distributed ECM Algorithms for Self-Localization (for Agent i
on the (η + 1)th ECM Iteration)

Step1—Initialization: Choose initial guesses θ
(η=0)
e , p

(0)
i , and p

(0)
j , ∀j ∈ H(i). Set

the maximum number of iterations Nd
itr.

Step2—Expectation-Conditional Maximization:
On the (η + 1)th iteration (η ∈ Z, η ≥ 0), agent i does:

1. Compute P̃
(η)
i,j,l, ∀l = 1, 2, ..., C and ∀j ∈ H(i) according to (5.57), and χ

(c)
i,l ,

∀l = 1, 2, ..., C and ∀χ ∈ {w, a, b} according to (5.54)—(5.56) with P
(η)
i,j,l replaced

by P̃
(η)
i,j,l therein.

2. Run Algorithm 5.2 and obtain α
(η+1)
i,l , µ

(η+1)
i,l , and σ

2,(η+1)
i,l , l = 1, 2, ..., C.

3. Solve p
(η+1)
i = [x

(η+1)
i , y

(η+1)
i ]T using

• either 2-D BFGS-QN method according to (5.60);

• or 1-D GS method according to (5.61) and (5.62).

4. Broadcast p
(η+1)
i to its neighbors.

Step3—Convergence Check:

If Nd
itr has been reached, then terminate the whole algorithm and obtain θ̂DECM =

θ(η+1); otherwise reset η ← η + 1 and return to the ECM stage.

time instances, the moving platform can determine a coarse estimate of the unknown

positions through, for instance, the simple trilateration technique.

5.3.4 Dynamic Network Localization

Till now, the proposed ECM algorithms are considered for cooperative localization

of stationary sensor networks. They can also localize dynamic sensor networks in

a snapshot-based solution, more precisely, at every sampling time instance t, t =

1, 2, ..., T , the proposed ECM algorithms are employed to compute an estimate of the

current agent positions and measurement error statistics. Figure 5.2 illustrates the

localization process. At the sampling time instance t, the underlying set of unknown

parameters is θt = [θTt,e, θ
T
t,p]

T and a specific ECM algorithm gives an estimate after L

iterations (θ̂t = θ̂DECM
t and L = Nd

itr for a distributed algorithm or θ̂t = θ̂CECM
t and

L = N c
itr for a centralized algorithm). On each ECM iteration, we alternatively update

the mixture model parameters θ
(η)
t,e and agent positions θ

(η)
t,p . The starting point of the

whole process, θ
(0)
1 , can be selected according to the practical solutions given at the
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Figure 5.2. Localization of dynamic sensor networks using the ECM algorithm in a
snapshot-based solution.

end of Section 5.3.3. Afterwards, θ
(0)
t is initialized by θ̂t−1 for every t = 2, ..., T , namely

the ECM estimate obtained at the previous time instance.

5.4 Performance Evaluation

Computational complexity, communication overhead (also known as energy consump-

tion for communication), and localization accuracy are key aspects of designing a co-

operative localization algorithm. This section covers the first two and narrows down

the focus to distributed algorithms.



128 Chapter 5: Cooperative Localization in WSNs: Parametric Modeling

5.4.1 Computational Complexity

For simplicity we start the complexity analysis with a single agent (say the ith) on a sin-

gle iteration of the 2-D BFGS-QN D-ECM algorithm, cf. Algorithm 5.3. We focus on

the second stage, namely the stage of expectation-conditional maximization. In the first

step, the computation of P̃
(η)
i,j,l, ∀j ∈ H(i) according to (5.57) and χ

(c)
i,l ,∀χ ∈ {w, a, b}

according to (5.54)—(5.56) for all l = 1, 2, ..., C is of complexity O(C|H(i)|). In the

second step, local estimates of the mixture model parameters are computed in the av-

erage consensus algorithm, cf. Algorithm 5.2. The computational complexity scales as

O(Ng
itrC). In the last step, position update p

(η+1)
i is found numerically via a Newton-

type method (iterative in nature). Similar to [67], it can be shown that the evaluation

of a new position estimate scales as O(Nnu
itrC|H(i)|), where Nnu

itr is defined to be the

total number of Newton iterations. Therefore, the complexity for the ith agent to run

a single iteration scales as O(C|H(i)|(Nnu
itr +Ng

itr/|H(i)|)), which can be approximated

by O(C|H(i)|Nnu
itr ) when Ng

itr is small. The complexity of the centralized ECM algo-

rithm is easy to obtain as O(NuN
nu
itrC|Have|), where |Have| = 1/Nu

∑Nu

i=1 |H(i)| is the
average number of neighboring sensors over all agents. Assuming that the sensors are

uniformly distributed in a 2-D space with |H(i)| ≈ |Have|, ∀i = 1, 2, ..., Nu, the compu-

tational power required for the centralized ECM algorithm is nearly evenly distributed

to each individual agent. This also holds for the 1D GS based ECM algorithms, as

it is easy to verify that the computational complexity of the distributed algorithm

scales as O(C|H(i)|Rgrid) per iteration and the corresponding centralized algorithm

O(NuRgridC|Have|) per iteration, where Rgrid is the number of grid points used in the

1-D search of xi or yi.

We compare the complexity of the two distributed ECM algorithms with that of six

different distributed algorithms. The results are given in Table 5.1. It is notewor-

thy that Rint denotes the number of particles used to represent the internal messages

(distributions) for both the classical and parametric SPAWN algorithms. In practice,

Rint usually spans from 500 to 2000 particles. From the results, the following facts are

observed. Firstly, the distributed LS algorithm, the distributed weighted MDS algo-

rithm and the IPPM based algorithm require the lowest complexity, as they require

no iterations within an iteration as compared to the distributed ECM algorithms and

no particle representation of the messages as compared to the classical SPAWN algo-

rithm. Secondly, the complexity of the 2-D BFGS-QN D-ECM algorithm is expected

to be less than that of the SPAWN algorithms. This is because Nnu
itrC should be, in

general, smaller than Rint and negligible as compared to R2
int. The complexity of the

1-D GS D-ECM algorithm should be comparable with that of the parametric SPAWN

algorithms but still much less than that of the conventional SPAWN algorithm. This
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is because Rgrid ≈ Rint ≪ R2
int.

Table 5.1. Computational complexity for each agent (say the ith) on one iteration of
different algorithms

Name Complexity (FLOPs)
Distributed least-squares [14] O(|H(i)|)
Distributed weighted MDS [71] O(|H(i)|)
Distributed IPPM [75] O(|H(i)|)
Parametric SPAWN [83] [84] O(Rint|H(i)|)
Classical SPAWN [14] O(R2

int|H(i)|)
2-D BFGS-QN D-ECM O(Nnu

itrC|H(i)|)
2-D BFGS-QN C-ECM O(NuN

nu
itrC|Have|)

1-D GS D-ECM O(RgridC|H(i)|)
1-D GS C-ECM O(NuRgridC|Have|)

5.4.2 Energy for Communication

Generally speaking, a centralized, cooperative localization algorithm spends most of

the energy on routing the collected measurements wirelessly via multi-hop to a fusion

center; while a distributed self-localization algorithm spends most of the energy on both

the local computation and wireless transmission of refined point estimates (for non-

Bayesian algorithms) or particles (for Bayesian algorithms) among one-hop neighboring

sensor pairs. Usually, the latter aspect is solely focused. This is due to the fact that

the energy consumed for transmitting one bit far outweigh that for executing a single

instruction on board at each agent [132]. In the sequel, we follow the methodology

proposed in [124,133] to quantitatively analyze the total energy consumed for wireless

communication. Some assumptions are made as follows:

(A1) A multi-hop communication model is considered, and the threshold of one-hop

distance is Rc = O(N−1/2
u ).

(A2) A real value is represented in double-precision floating-point format (64-bit pre-

cision).

(A3) All sensors are uniformly distributed over a 2-D unit square.

The total energy consumed for communication by any cooperative localization algo-

rithm can be written as

E(Nu) = b(Nu)× h(Nu)× e(Nu) (5.63)
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where b(Nu) is the total number of transmitted bits, h(Nu) is the average number of

hops required for transmitting one bit to the destination, and e(Nu) is the average

amount of energy required for transmitting one bit over one hop.

In the centralized ECM algorithms, the number of bits to be transmitted to the fusion

center is calculated as

bcen(Nu) = 26|Γ | ≈ 26
Nu∑

i=1

|H(i)|
2

= 25Nu|Have| bits. (5.64)

The approximation in (5.64) is due to the assumptions that only one of ri,j and rj,i

is used and the number of anchors is relatively small. The average number of hops

from an agent to the fusion center is hcen(Nu) = O(N1/2
u ). Therefore, the total energy

consumption for the centralized ECM algorithms is

Ecen(Nu) = O(25|Have|N3/2
u )× e(Nu). (5.65)

In the distributed ECM algorithms, the total number of bits exchanged by all neigh-

boring sensor pairs is given by

bdis(Nu) = 26NitrNu(N
g
itr6C + 2) bits ≈ 26 · 6NitrNuN

g
itrC bits. (5.66)

Note that the energy used for the position updates is negligible as compared to that for

updating the mixture model parameters via average consensus, which leads to the above

approximation. Since all the data are communicated between one-hop neighboring

sensors, we have hdis(Nu) = O(1). Therefore, the energy consumed by the distributed

ECM algorithms is given by

Edis(Nu) = O(26 · 6NitrNuN
g
itrC)× e(Nu). (5.67)

It is obvious that the energy consumption of the distributed ECM algorithms depends

on three factors, i.e., the number of mixture components C, the number of consensus

iterations Ng
itr and the number of ECM iterations Nitr = Nd

itr. Usually, we set C < 5

to capture the main characteristics of the measurement error, Ng
itr ≈ 5 − 10, and

Nd
itr ≈ 50− 100.

For comparison purposes, we listed the energy consumption for different distributed

algorithms in Table 5.2. For clarity, we ignore the constant factors and e(Nu) in the

results. It is noteworthy that Rbel in the classical SPAWN algorithm [14] denotes

the number of particles required to represent each local belief message. In general,

Rbel spans from 500 to 1000 samples, depending on the desired localization accuracy.
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Table 5.2. Total energy consumed by a distributed algorithm on one iteration.

Name Total Energy Consumption
Distributed least-squares [14] O(Nu)
Distributed weighted MDS [71] O(Nu)
Parametric SPAWN [83] O(CbelNu)
Parametric SPAWN [84] O(CbelNu)
Classical SPAWN [14] O(RbelNu)
Distributed ECMs O(CNg

itrNu)

To reduce the energy consumption, some new fashioned SPAWN algorithms, like [83]

and [84], resort to fit each local belief message with different parametric models and

to exchange merely the corresponding model parameters between sensors. Here, Cbel

denotes the total number of parameters to be determined for the parametric model,

which is usually less than 10. Gathering the previous analysis and the results shown in

Table 5.2, it is easy to conclude that (1) the distributed LS algorithm and distributed

weighted MDS algorithm consume the least energy; (2) the energy consumption of the

distributed ECM algorithms lies in between that of the classical SPAWN algorithm

and that of the parametric SPAWN variations; (3) the centralized ECM algorithms

cost the largest amount of energy for large-scale wireless sensor networks.

5.5 Cramér-Rao Lower Bound Computation

Fisher’s information matrix (FIM) of position parameters is hard to evaluate in closed

form for the considered joint estimation problem. Hence, we resort to a numerical

approximation of it. Then, we relate a metric of localization accuracy with this ap-

proximated FIM.

We start by expressing the FIM of θ as

F(θ) = Ep(r;θ)

{
−∆θ

θ ln p(r; θ)
}

(5.68)

where the expectation is taken with respect to p(r; θ). Often, it is more convenient to

express FIM as

F(θ) =

∫
(
∇θ ln p(r; θ)∇T

θ ln p(r; θ)
)
p(r; θ)dr. (5.69)

Due to the difficulty in evaluating the integration in (5.69) analytically, we could apply

the Monte Carlo integration [108] on (5.69) directly but at the cost of high compu-

tational complexity, like what was done in [67]. As we are considering a localization
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problem, position estimation performance is of utmost interest. To reduce the compu-

tational complexity, we assume that the actual measurement error distribution pV (v)

is known and focus attention on the unknown positions θp.

Combining the procedures given in Chapter 3 and [19], the FIM of θp given θe can be

easily obtained as

F(θp) =

(
Fxx Fxy

F
T
xy Fyy

)

(5.70)

where Fxx, Fxy and Fyy are all square matrices of dimension Nu ×Nu with

[Fmn]i,i′ =







Iv ·
∑

∀j∈H(i)

(mi−mj)(ni−nj)

‖pi−pj‖2 , i = i′

−Iv · δi,i′ · (mi−mi′ )(ni−ni′ )

‖pi−pi′‖2
, i 6= i′

, (5.71)

for m,n ∈ {x,y}. Here, δi,i′ is Kronecker’s delta defined by

δi,i′ =

{
1, if i′ ∈ H(i)
0, if i′ /∈ H(i) , (5.72)

and

Iv =
∫

[∇vpV (v)]
2

p2V (v)
pV (v)dv. (5.73)

For most of the distributions, Iv is approximated using the Monte Carlo integration,

i.e.,

Iv ≈
1

NM

NM∑

n=1

[
∇vpV (v

(n))
]2

p2V (v
(n))

(5.74)

where v(n), n = 1, 2, ..., NM are iid samples generated from pV (v). For the special case

where pV (v) = N (v;µv, σ
2
v), Iv = σ−2

v can be obtained in closed form and the result in

(5.71) coincides with that in [19]. Finally, the Cramér-Rao lower bound of θp is given

by CRLB(θp) = F
−1(θp).

In the simulations, the localization accuracy is evaluated in terms of the overall local-

ization root mean square error (RMSE), which is defined by

RMSE(θ̂p) =

√
√
√
√ 1

Nu

Nu∑

i=1

E {(x̂i − xi)2 + (ŷi − yi)2}. (5.75)

Assuming that [x̂i, ŷi] is any unbiased estimator of the true position [xi, yi], RMSE(θ̂p)

is lower bound by

CRLBpos(θp) =

√
1

Nu
tr {CRLB(θp)}. (5.76)



5.6 Simulations 133

5.6 Simulations

In this section, the performance of the proposed centralized- and distributed ECM

algorithms will be evaluated and further compared with several competing coopera-

tive localization algorithms in comprehensive simulations. Section 5.6.1 introduces the

simulation setup and Section 5.6.2 shows some simulation results.

5.6.1 Simulation Setup

We consider the following three different localization scenarios:

1. Localization of stationary networks under a simulated setup. Partial knowledge

about the measurement error distribution is assumed, which leads to precise

representation of pV (v) in the parametric modeling of the measurement error

distribution.

2. Localization of dynamic networks under a simulated setup. Again, partial knowl-

edge about the measurement error distribution is assumed.

3. Localization of stationary networks under a real setup. No knowledge about

the measurement error distribution is assumed, which leads to approximated

representation of pV (v) in the parametric modeling of the measurement error

distribution.

Throughout the simulations, the proposed ECM algorithms assume N c
itr = Nd

itr = 75

trials, Ng
itr = 10 trials, Rgrid = 150 grid points, and ∆c = 0.01. For comparison

purposes, we choose several competing algorithms, including the distributed LS algo-

rithm [14, Algorithm 1], the classical SPAWN algorithm [14], as well as two parametric

variations [83, 84]. Essentially, these algorithms were developed under different signal

models. The distributed LS algorithm makes no assumption on the measurement error

statistics. The SPAWN algorithms all assume known mixture model parameters and

underlying channel state (LOS or NLOS state). Details about the implementation of

these competitors are as follows. A distributed LS estimate is found by following the

routine given in [14]. The classical SPAWN algorithm sets Rint = Rbel = 500 samples.

The first parametric SPAWN algorithm [83] uses a three-mode Gaussian mixture to

represent the belief messages and uses a ten-mode Gaussian mixture to represent the

internal messages. The second parametric SPAWN algorithm modifies [84] by adopting
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a circular distribution to represent the internal messages while a three-mode Gaussian

mixture to model the belief messages. All SPAWN algorithms terminate after Nitr = 15

iterations.

5.6.2 Simulation Results

We show the simulation results of localizing a stationary sensor network and a dy-

namic sensor network respectively in Section 5.6.2.1 and Section 5.6.2.2. Moreover,

we show the experimental results of localizing a stationary ad-hoc sensor network in

Section 5.6.2.3.

5.6.2.1 Results for Scenario I

In this section, we consider a specific stationary sensor network in a 90-meter (m) by

90-m area, where 96 agents and 4 anchors are uniformly placed into 10 rows and 10

columns, like in [6, Fig. 6]. It is assumed that the NLOS effect overwhelms any other

error sources in the given localization environment and the actual distance measure-

ment error can be well modeled by a two-mode Gaussian mixture distribution with

parameters αL = 0.3, µL = 0m, σL = 2m, αNL = 0.7, µNL = 10m, σNL = 3m. This

implies that the NLOS effect introduces both a positive bias and a larger measurement

uncertainty. Herein, no model mismatch is assumed between the actual measurement

error model and (5.2) when choosing C = 2 in the parametric modeling of pV (v). We

aim to experimentally evaluate the proposed ECM algorithms in terms of the overall

localization RMSE, cf. (5.75), and localization outage probability, cf. ( [14, eq.(47)]).

We perform a Monte Carlo experiment with 500 independent trials. The initial guess

of the ECM algorithms is set by α
(0)
1 = 0.4, α

(0)
2 = 0.6, µ

(0)
1 = 0, µ

(0)
2 = 12, σ

2,(0)
1 = 3,

σ
2,(0)
2 = 6. An initial guess of the agent positions, θ

(0)
p , is set by contaminating the

true values with an error term ∆xy whose elements are generated independently from

U [−5, 5) (in meter).

The evaluation starts with the overall localization RMSE versus the communication

range, Rc, that varies from 20 m to 40 m. The results are shown along with the

localization CRLB bound in Fig. 5.3. It is observed that almost all RMSE curves

monotonically decrease as Rc grows.
1 This can be explained from a Fisher’s information

1The fluctuation of the parametric SPAWN algorithm [83] is mainly due to the insufficient number
of Monte Carlo trials (only 10 trials) conducted.
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theoretic point of view. As Rc increases, more sensor pairs conduct measurements,

leading to more information about the relative positions. The RMSE curves of the

distributed ECM algorithms are close to those of the centralized counterparts. This

is because the local estimates of the mixture model parameters calculated through

the average consensus algorithm are close to the corresponding global estimate, which

ensures accurate position updates thereafter. It is also observed that the distributed

ECM algorithms can generate lower RMSE than that of the centralized ECM algorithm

and even the performance bound.

One reason is that the distributed ECM estimators are merely approximations of the

centralized counterparts, and they are not necessarily unbiased estimators. Besides,

the centralized ECM estimators are in fact also biased due to the convergence to

different local optimum, insufficient number of iterations. An additional reason for

the distributed ECM algorithms lies in the discretization of the solution space (for

positions) by a finite number of grids. Nevertheless, all RMSE curves of the ECM

algorithms are close to the performance bound. To further demonstrate the estimation

performance of the ECM algorithms, we show the localization outage probability as

a function of the allowable error eth = 0 : 0.5 : 5 m. The results are depicted in

Fig. 5.4. In the above two experiments, the ECM algorithms are also demonstrated to

outperform the parametric SPAWN algorithm [83] by far. However, we note that their

performance should be comparable with that of the classical SPAWN algorithm with

known knowledge about the environment.

Next, we aim to experimentally substantiate our statement that the centralized ECM

algorithms can monotonically increase the incomplete data log-likelihood over itera-

tions. To this end, we record the incomplete data log-likelihood versus the number of

iterations for each Monte Carlo trial. In Fig. 5.5, we show one particular trial as well as

the mean performance averaged over all Monte Carlo trials. The convergence speed of

the 2-D BFGS-QN C-ECM is slow. However, 1-D GS C-ECM usually converges much

faster but to a smaller incomplete data log-likelihood value due to the discretization of

the solution space and a small Rgrid. This problem can be alleviated by increasing Rgrid

for instance from 150 to 1000 points as is shown in Fig. 5.5. It is also noteworthy that

in many Monte Carlo trials, although the 1-D GS C-ECM algorithm tends to stuck

at a smaller incomplete data log-likelihood value, the overall RMSE value can be also

smaller than that of the 2-D BFGS algorithm.
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Figure 5.3. Overall localization RMSE of different cooperative localization algorithms
as a function of the communication range, Rc.
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Figure 5.4. Outage probability of different cooperative localization algorithms for the
case Rc = 30 m.
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Carlo trials as a function of the iteration index. Bottom sub-figure: Monotonic
increment of the incomplete data log-likelihood over iterations in one particular Monte
Carlo trial. Two different Rgrid values are tested.
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Figure 5.6. Overall localization RMSE of the two distributed ECM algorithms as a
function of the sampling time instance t in a dynamic network.
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5.6.2.2 Results for Scenario II

In this Section, evaluation of the distributed ECM algorithms is re-considered for

localization of a dynamic network using the snapshot based solution introduced in

Section 5.3.4. Still, no model mismatch is taken into account. The initial state

(k = 1) of the network follows the first map data published online along with [14].

This network comprises 100 agents and 13 anchors. Every agent i moves according to

mk,i = mk,i + N (∆k,m; 0, 1), m ∈ {x, y} when k = 2, ..., 10. Besides, αL and µNL are

assumed to be time varying due to the change of obstructions between sensors. The

parameters are given in Table 5.3. The rest of the actual mixture model parameters

are assumed to be constants and set as µL = 0 m, σL = 1 m, σNL = 2 m.

Table 5.3. Time varying αL and µNL for dynamic network localization.

t = 1 2 3 4 5 6 7 8 9 10
αt,L 0.7 0.65 0.6 0.8 0.7 0.72 0.6 0.65 0.7 0.5
µt,NL 7.5 6 5 6.5 8 5 7 6 9 7

Herein, the overall localization RMSE of the two distributed ECM algorithms is evalu-

ated at each time step t = 1, 2, ..., 10. The initial guess of the snapshot based solution

is set as follows. At t = 1, we let α
(0)
1,1 = 0.6, α

(0)
1,2 = 0.4, µ

(0)
1,1 = 0, µ

(0)
1,2 = 6, σ

2,(0)
1,1 = 2,

σ
2,(0)
1,2 = 5 and select an initial guess of the positions in the same way as described in the

previous section. An ECM algorithm is run independently at each time step with the

current starting point initialized by the final ECM estimate obtained at the previous

time instance. The results are averaged over 100 independent Monte Carlo trials and

shown in Fig. 5.6 together with CRLBpos(θt,p), t = 1, 2, ..., 10, for comparison. Still, we

observe that the overall RMSE values at different sampling time instances are close to

the performance bounds. Localization error propagation is not observed in the given

example because the previous ECM estimate adequately initialized a current ECM

stage. Although comparisons are not shown in the figure, we note that the proposed

distributed ECM algorithms should outperform the LS estimation based algorithms

by far, since they are suboptimal in non-Gaussian measurement errors. The proposed

algorithms should be comparable in localization performance with the SPAWN algo-

rithms. But in contrast to the SPAWN algorithms, the proposed algorithms do not

require repetitive offline calibrations and NLOS identifications, which make them more

suitable to use in harsh environments.
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Table 5.4. Overall localization RMSE of different distributed algorithms.

Algorithms RMSE for Rc =∞ m
Distributed LS [14] 1.134 m
Classical SPAWN [14] 1.146 m
Parametric SPAWN [83] 1.163 m
Parametric SPAWN [84] 1.260 m
2-D BFGS-QN D-ECM (C = 2) 1.389 m
1-D GS D-ECM (C = 2) 1.333 m
2-D BFGS-QN D-ECM (C = 3) 1.398 m
1-D GS D-ECM (C = 3) 1.340 m

5.6.2.3 Results for Scenario III

In this section, we adopt the real sensor network and TOA measurements described

in [19]. The network consists of 44 sensors in total, among which 40 agents and 4

anchors. The distance measurement error after bias remedy (µ = 10.9 ns× c ≈ 3.26m)

was justified via Kolmogorov-Smirnov (KS) test to well fit a Gaussian distribution with

zero mean and standard deviation σ = 6.1 ns× c ≈ 1.83m. Herein, the proposed ECM

algorithms will be tested under model mismatch.

To test the two distributed ECM algorithms, we use the original distance measurements

without bias remedy and assume a C-mode Gaussian mixture to approximate the

underlying measurement error pdf. But their competitors all use the manipulated

data and assume a Gaussian error model.2 The ECM algorithms assume C = 2 or

C = 3. For the case C = 2, we let α
(0)
1 = 0.5, µ

(0)
1 = 2, σ

2,(0)
1 = 1, α

(0)
2 = 0.5, µ

(0)
2 =

4, σ
2,(0)
2 = 4; while for the case C = 3, we let α

(0)
1 = 0.1, µ

(0)
1 = 0, σ

2,(0)
1 = 3, α

(0)
2 =

0.8, µ
(0)
2 = 3.5, σ

2,(0)
2 = 2, α

(0)
3 = 0.1, µ

(0)
3 = 7, σ

2,(0)
3 = 3. The overall localization RMSE

is evaluated for different distributed algorithms in a fully connected network, and the

results are shown in Table 5.4. Besides, the estimated agent positions obtained from

the two distributed ECM algorithms are depicted for the case C = 3 in Fig. 5.7.

It is obvious that the ECM algorithms, no matter C = 2 or C = 3, are modestly inferior

to their competitors. The reasons are twofold. On the one hand, the measurement

error well fits a Gaussian distribution, which is alternatively verified by comparing the

single Gaussian approximation with a kernel density estimate in Fig. 5.8.3 It is also

shown in Fig. 5.8 that a Gaussian mixture approximation with either C = 2 or C = 3

2In practice, bias remedy can hardly be done as in [19] for lack of actual agent positions and/or
offline calibration.

3Herein, we assume the error residuals are iid and perform the diffusion based kernel density
estimation [134].
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Figure 5.7. Estimated agent positions versus the true ones in 2-D plane. Herein,
black ×’s denote the anchor positions; red ◦’s denote the true agent positions; cyan
♦’s denote the agent positions estimated from the 2-D BFGS-QN D-ECM algorithm;
green �’s denote the agent positions estimated from the 1-D GS D-ECM algorithm;
black −’s represent the localization errors between the true positions and the estimated
positions; red −’s represent the distances between the position estimates obtained from
the two distributed ECM algorithms.

leads to more severe model mismatch. Note that the two approximated distributions

nearly coincide with each other in Fig. 5.8. On the other hand, the distributed ECM

algorithms need to estimate an extra set of mixture model parameters as compared to

their competitors.

5.7 Conclusions

In this chapter, a series of expectation-conditional maximization (ECM) algorithms

have been proposed for cooperative localization in non-Gaussian measurement error

approximated by a Gaussian mixture. The centralized ECM algorithms have been

proven to be able to increase the incomplete data log-likelihood monotonically towards

a stationary value. Distributed ECM algorithms have also been developed to resolve the

scalability problem in large-scale sensor networks. Systematical analyses have shown

that the proposed distributed algorithms perform similarly to the class of parametric
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Figure 5.8. Top sub-figure: Histogram of the actual measurement error residuals
vi,j, ∀(i, j) ∈ Γ for Rc = ∞ meter. Bottom sub-figure: Different distributive pro-
files (including single Gaussian obtained from [19], two-mode Gaussian mixture and
three-mode Gaussian mixture obtained respectively from the 2-D BFGS-QN D-ECM
algorithm) versus a kernel density estimate serving as the underlying distribution for
lack of ground truth.

SPAWN algorithms in terms of both the computational complexity and energy con-

sumption for data communication. Simulations with both synthetic and real data have

demonstrated that (1) the proposed ECM algorithms tend to attain the performance

limits when the number of measurements is much larger than the number of unknown

parameters and no model mismatch problem occurs; (2) the proposed ECM algorithms

can work properly, despite of the sub-optimality, under model mismatch problems.

The proposed ECM algorithms are non-Bayesian in nature. They are more robust

against outliers in the observations as compared to the conventional LS algorithms,

and they require no precise measurement error statistics and channel states in compar-

ison with the Bayesian algorithms, e.g., the SPAWN algorithms. Nevertheless, many

research challenges need to be met in the future work, including (1) reduction of compu-

tational complexity and energy consumption; (2) integration of different signal metrics,

e.g., TOA and RSS; (3) realistic assumption on lossy wireless transmission and quan-

tized messages (point estimates for non-Bayesian methods and particles representing

the posterior distribution).
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5.8 Appendix

5.8.1 Derivations of (5.19)

We start with expressing the complete data probability density function as

p(r,y; θ) = b(r̃(θp),y) exp
[
ψT (θe)s(r̃(θp),y)− a(θe)

]
(5.77)

where

r̃(θp) = r− h(θp), b(r̃(θp),y) =

(
1

2π

) |Γ |
2

, a(θe) = 0, (5.78)

ψ(θe) =
[
ψT

1 (θe),ψ
T
2 (θe), ...,ψ

T
C(θe)

]T
, (5.79)

s(r̃(θp),y) =
[
sT1 (r̃(θp),y), s

T
2 (r̃(θp),y), ..., s

T
C(r̃(θp),y)

]T
, (5.80)

and for l = 1, 2, ..., C,

ψl(θe) =

[

ln

(
αl

σl

)

− µ2
l

2σ2
l

,
µl

σ2
l

,
−1
2σ2

l

]T

, (5.81)

sl(r̃(θp),y) =









∑

∀(i,j)∈Γ
δ(yi,j − l)

∑

∀(i,j)∈Γ
(ri,j − di,j)δ(yi,j − l)

∑

∀(i,j)∈Γ
(ri,j − di,j)2δ(yi,j − l)









. (5.82)

This is due to the fact that the complete data probability density function can be

expressed as

p(r,y; θ) =
∏

∀(i,j)∈Γ
p(ri,j, yi,j; θ)

=
∏

∀(i,j)∈Γ

(

αyi,j√
2πσyi,j

exp

[

−(ri,j − di,j − µyi,j)
2

2σ2
yi,j

])

=

(
1

2π

) |Γ |
2

exp




∑

∀(i,j)∈Γ
ln

(
αyi,j

σyi,j

)

− (ri,j − di,j − µyi,j)
2

2σ2
yi,j



 . (5.83)
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The summation inside the exponential function can be expressed as

∑

∀(i,j)∈Γ
ln

(
αyi,j

σyi,j

)

− (ri,j − di,j − µyi,j)
2

2σ2
yi,j

=

C∑

l=1

∑

∀(i,j)∈Γ

(

ln

(
αl

σl

)

− (ri,j − di,j − µl)
2

2σ2
l

)

δ(yi,j − l)

=

C∑

l=1

∑

∀(i,j)∈Γ

{(

ln

(
αl

σl

)

− µ2
l

2σ2
l

)

+
µl(ri,j − di,j)

σ2
l

− (ri,j − di,j)2
2σ2

l

}

δ(yi,j − l)

=
C∑

l=1

ψT
l (θe)sl(r̃(θp),y)

= ψT (θe)s(r̃(θp),y). (5.84)

Plugging (5.84) into (5.83) yields (5.77). Taking conditional expectation of the com-

plete data log-likelihood LC(θ;y, r) in terms of y given r and θ(η) and discarding the

constant terms, we finally arrive at

Q
(
θ; θ(η)

)
= ψT (θe)Ep(y|r;θ(η)) {s(r̃(θp),y)} . (5.85)

For clarity of the subsequent derivations, the elements in the vectorized signal model

(5.3) are re-labeled such that rm is the mth element of r and ym is the latent variable

giving rise to rm. The computation of Ep(y|r;θ(η)) [s(r̃(θp),y)] can be decomposed into

three parts. We start with

Ep(y|r;θ(η))







∑

∀(i,j)∈Γ
δ(yi,j − l)







=
∑

y





|Γ |
∑

m=1

δ(ym − l)×
|Γ |
∏

j=1

Pr{yj|rj; θ(η)}





=

|Γ |
∑

m=1





C∑

y1=1

· · ·
C∑

y|Γ |=1



δ(ym − l)×
|Γ |
∏

j=1

Pr{yj|rj; θ(η)}









=

|Γ |
∑

m=1

Pr{ym = l|rm; θ(η)} ×







C∑

y1=1

· · ·
C∑

ym−1=1

C∑

ym+1=1

· · ·
C∑

y|Γ |=1

|Γ |
∏

j=1,
j 6=m

Pr{yj|rj; θ(η)}







=

|Γ |
∑

m=1

Pr{ym = l|rm; θ(η)} ×









|Γ |
∏

j=1,
j 6=m





C∑

yj=1

Pr{yj|rj; θ(η)}





︸ ︷︷ ︸

1









=
∑

∀(i,j)∈Γ
Pr{yi,j = l|ri,j; θ(η)} =

∑

∀(i,j)∈Γ
P

(η)
i,j,l. (5.86)
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Note that the first equality in (5.86) is a consequence of the following result:

Pr{y|r; θ} = Pr{y|Γ ||r1, ..., r|Γ |; θ} ×
|Γ |−1
∏

m=1

Pr{ym|ym+1, ..., y|Γ |, r1, ..., r|Γ |; θ}

=

|Γ |
∏

m=1

Pr{ym|rm; θ}. (5.87)

Similarly, we obtain

Ep(y|r;θ(η))







∑

∀(i,j)∈Γ
(ri,j − di,j)δ(yi,j − l)






=

∑

∀(i,j)∈Γ
(ri,j − di,j)P (η)

i,j,l, (5.88)

and

Ep(y|r;θ(η))







∑

∀(i,j)∈Γ
(ri,j − di,j)2δ(yi,j − l)






=

∑

∀(i,j)∈Γ
(ri,j − di,j)2P (η)

i,j,l. (5.89)

respectively in the second and third parts of the computation. It is easy to verify, after

some tedious manipulations, that

Q
(
θ; θ(η)

)
= ψT (θe)Ep(y|r;θ(η)) [s(r̃(θp),y)]

=

C∑

l=1

∑

∀(i,j)∈Γ
ln(αl)P

(η)
i,j,l

︸ ︷︷ ︸

Q
(η)
0 (α1,α2,...,αC)

+

C∑

l=1

∑

∀(i,j)∈Γ
−
[
(ri,j − di,j − µl)

2

2σ2
l

+
1

2
ln(σ2

l )

]

P
(η)
i,j,l

︸ ︷︷ ︸

Q
(η)
l (µl,σ

2
l
,θp)

.

(5.90)
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Chapter 6

Conclusions and Ongoing Work

6.1 Conclusions

This thesis dealt with wireless localization in harsh mixed line-of-sight and non-line-

of-sight (LOS/NLOS) environments. Various measurement campaigns have proven the

adequacy of a mode-dependent (LOS mode or NLOS mode) measurement error model.

To take into account the fact that non-line-of-sight (NLOS) identification is usually

infeasible, a simplified two-mode mixture distribution was adopted to represent the

actual measurement error. To be realistic as much as possible, we further assume

that offline calibration is either infeasible or can be only coarsely conducted. Based

on these, various new iterative algorithms have been developed to jointly estimate the

positions, measurement error statistics (probability density function (pdf) or mixture

model parameters in this thesis). More precisely, new algorithms were introduced for

non-cooperative localization in wireless cellular radio networks in Chapter 3 and Chap-

ter 4 and for cooperative localization in wireless sensor networks (WSNs) in Chapter 5.

In Chapter 3, we assumed that the measurement error distribution is completely un-

known. An iterative algorithm, termed the RIN algorithm, was introduced to ap-

proximate the maximum likelihood position estimator. The RIN algorithm alternates

between a pdf estimation step, which approximates the actual measurement error dis-

tribution (albeit unknown) non-parametrically via the adaptive kernel density estima-

tion, and a parameter estimation step, which attempts to resolve a position estimate

from the approximated log-likelihood function via a quasi-Newton method. Unless the

convergence condition is satisfied, the resolved position estimate is then used to refine

the pdf estimation on the next iteration. We also presented the best achievable local-

ization accuracy with the aid of Cramér-Rao lower bound (CRLB) analysis. Various

simulations were conducted, and the results revealed the following. When the number

of the distance measurements is large, the RIN position estimator tends to attain the

performance of the maximum likelihood (ML) estimator that ideally assumes known

measurement error distribution. When the number of the distance measurements is

small, it deviates from the ML estimator but still outperforms several salient robust

estimators in terms of the localization accuracy. However, the improvement in the lo-

calization accuracy comes at the cost of higher computational complexity—O((NK)2)

FLOPs per iterations.
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In Chapter 4, the measurement error distribution is represented parametrically by

finite-mode Gaussian mixtures. We jointly estimate the positions and Gaussian mix-

ture model parameters. In order to approximate the ML estimator in a computational

profitable manner, two iterative algorithms, namely an expectation-conditional maxi-

mization (ECM) algorithm and a joint maximum a posteriori (JMAP)-ML algorithm,

were developed based on a complete data set. Analogous to the RIN algorithm, both

algorithms alternate between a position estimation step and a parametric pdf estima-

tion step until some convergence condition is met. To give a parameter estimate, the

ECM algorithm adopted “soft fusion” of information, while the JMAP-ML algorithm

adopted “hard fusion” of information. Both algorithms are simple to implement as

was shown in several examples, and they guarantee to converge as per proofs. The

ECM algorithm is more favorable to use as it is capable of reproducing the ML es-

timator, given a good starting point. Although the JMAP-ML algorithm can only

generate a biased estimator, it still serves as a reasonable approximation of the ML

estimator. Moreover, we presented the best achievable localization accuracy with the

aid of CRLB analysis. Various simulations have been conducted to test the proposed

algorithms, and the results confirmed that both the ECM algorithm and JMAP-ML al-

gorithm are able to approximate the ML estimator well but with reduced computational

complexity—O(CNK) FLOPs per iteration—as compared to the RIN algorithm. Two

model mismatch problems were also studied in the simulations. Despite some perfor-

mance degradation, the proposed algorithms still presented good localization accuracy

and considerable robustness against the NLOS measurements.

In Chapter 5, the parametric modeling of the measurement error distribution using

Gaussian mixtures was again adopted, but in the context of cooperative localization

in WSNs. The ECM criterion was first used to approximate the ML estimator of the

agent positions and Gaussian mixture parameters in a centralized manner. The result-

ing centralized ECM algorithms lead to easier inference tasks and meanwhile retain

several convergence properties with a proof of the “space filling” condition. To meet

the scalability requirement of large-scale WSNs, we further developed two distributed

ECM algorithms. Both the centralized- and distributed ECM algorithms were an-

alyzed systematically in terms of the computational complexity and communication

overhead (or energy consumption equivalently). The computational complexity of the

distributed ECM algorithms turned out to be low, and the communication overhead

is linear in terms of the number of agents. In addition, localization accuracy of the

proposed ECM algorithms is evaluated with both the simulation data and real data.

The results pin down that they are superior to several salient competitors for sensor

network localization in harsh environments and thus are appropriate for a wide class

of wireless sensor network problems.
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6.2 Ongoing Work

We present some ongoing work (collaborated with Yi Zhang, Di Jin, Dr. C. Fritsche,

Prof. F. Gustafsson and Prof. A.M. Zoubir) in the following.

• Ongoing Work I: In Chapter 5, we introduced time-of-arrival (TOA) based

centralized- and distributed ECM algorithms for cooperative localization in wire-

less sensor networks. This requires precise time-synchronization between all sen-

sors. Alternatively, round-trip-time-of-arrival (RTOA) measurements can be used

instead with less trouble. But still extra timing devices need to be embedded in

every wireless sensor, which should be kept low-cost and light-weight. Instead,

received-signal-strength (RSS) measurements are easier to use. In [78], we have

proposed a centralized RSS-based EM algorithm. Restricted by the ad-hoc na-

ture of a wireless sensor network, however, RSS based distributed algorithms are

more demanding.

• Ongoing Work II: In Chapter 5, we briefly reviewed a few Bayesian cooperative

localization algorithms that take advantage of the message passing techniques in

graph models. The overwhelming advantage as compared to the non-Bayesian

algorithms lies in their low sensitivity to an initial guess. The existing algorithms

all assume perfect NLOS identification and full knowledge about the measurement

error statistics. The former assumption is overoptimistic, although a few existing

methods, for instance [21, 135], can provide rather accurate NLOS identification

performance. The misclassified NLOS measurements, even if very few, will incur

degraded localization results. The latter assumption is problematic when the

wireless channel is time varying and repetitive offline calibration is infeasible or

the sensor network is deployed in an unacquainted environment. Joint estimation

of the unknown measurement error statistics (assumed to be deterministic) and

sensor positions (assumed to be stochastic) is very challenging. Similar to the idea

used for joint particle filtering (PF) and calibration of unknown noise statistics

in [116, 136], we could alternately estimate the positions using message passing

techniques and calibrate the measurement error statistics using average consensus

techniques. Since the computational complexity and communication overhead

are also critical to the algorithm design, robust parametric representation of the

local belief messages and internal messages need to be developed under imperfect

NLOS identification and inaccurate measurement error statistics in the end.
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List of Acronyms

A-GPS Assisted global positioning system

AKDE adaptive kernel density estimation

AOA angle-of-arrival

BFGS Broyden-Fletcher-Goldfarb-Shanno

BP belief propagation

BS base station

C-ECM centralized expectation-conditional maximization

CM conditional maximization

CRLB Cramér-Rao lower bound

D-ECM distributed expectation-conditional maximization

E-911 Enhanced-911

ECM expectation-conditional maximization

EM expectation-maximization

FCC Federal Communications Commission

FLOPs floating-point operations

GDOP geometric dilution of precision

GEM generalized expectation maximization

GMM Gaussian mixture model

GPS global positioning system

GS grid search

HMM hidden Markov model

IAD identify and discard

iid independent and identically distributed

IPPM iterative parallel projection method
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JMAP-ML joint maximum a posteriori -maximum likelihood

KDE kernel density estimation

KS test Kolmogorov-Smirnov test

LMS least-median-squares

LOS line-of-sight

LP linear programming

LS least-squares

LSCV least-squares cross-validation

MAD median absolute deviation

MAP maximum a posteriori

MC Markov chain

MDS multidimensional scaling

MISE mean-integrated-square-error

ML maximum likelihood

MMSE minimum-mean-square-error

MRF Markov random fields

MS mobile station

MSE mean-square-error

NBP nonparametric belief propagation

NLOS non-line-of-sight

pdf probability density function

PDP power delay profile

PF particle filtering

QN quasi-Newton

QP quadratic programming
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RMSE root-mean-square-error

RSS received-signal-strength

RTOA round-trip-time-of-arrival

SDP semi-definite programming

SLAM simultaneous localization and mapping

SPA sum-product-algorithm

SPAWN SPA over wireless network

SVD singular value decomposition

SVM support vector machine

TDOA time-difference-of-arrival

TKDE transformation kernel density estimation

TOA time-of-arrival

UWB ultra-wide-band

WLS weighted-least-squares

WSN wireless sensor network
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List of Symbols

argmax
x

f(x) the x maximizing f(x)

argmin
x

f(x) the x minimizing f(x)

X � Y matrix X−Y is positive semidefinite

Ep(x){·} expectation taken w.r.t. the pdf p(x)

A ∪ B union of set A and set B

A \B set-theoretic difference of A and B

Z set of integers

R set of real numbers

[·]T transpose of a vector or matrix

[·]−1 inverse of a square matrix

|| · || Euclidean norm of a vector

| · | cardinality of a set or absolute value of a complex number

∼ distributed as
a∼ asymptotically distributed as

∝ proportional to

∈ element of a set

∂/∂x partial derivative taken w.r.t. x

∇θ gradient operator

∆θ
θ Laplace operator

ln(·) natural logarithm

log(·) logarithm to the base 10

exp[·] exponential function
√

[·] square root of a scalar or square matrix

tr{·} trace of a matrix

0 vector of all zeros

1 vector of all ones

IN identity matrix of size N ×N
1M×N M ×N matrix of all ones

N (v;µ, σ2) Gaussian distribution with mean µ and variance σ2

U [v; a, b) uniform distribution on the interval [a, b) with a < b

R(v; γ) Rayleigh distribution with parameter γ

E(v;λ) exponential distribution with parameter λ

θp vector of unknown positions (General expression)
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θ̂p unbiased estimator of θp (General expression)

θ̂LSp LS estimator/estimate of θp (General expression)

θ̂ML
p ML estimator/estimate of θp (General expression)

θ
(η)
p position estimate computed on the ηth iteration of the pro-

posed algorithms (General expression)

θ vector of all unknown parameters (General expression)

Θ parameter space of θ (General expression)

θ̂EM EM estimator/estimate of θ (General expression)

θ̂GEM GEM estimator/estimate of θ (General expression)

θ̂ECM ECM estimator/estimate of θ (General expression)

θ̂J JMAP-ML estimator/estimate of θ (General expression)

θ̂ML ML estimator/estimate of θ (General expression)

θ̂LS LS estimator/estimate of θ (General expression)

θ(0) an initial guess of θ (General expression)

θ(η) parameter estimate computed on the ηth iteration of the
proposed algorithms (General expression)

θa vector of auxiliary environmental parameters (General ex-
pression)

θe vector of mixture model parameters (General expression)

θ
(0)
e initial guess of θe (Chapter 5)

r measurement vector (General expression)

h(θp, θa) vector function of θp and θa (General expression)

v vector of measurement error terms that follow a certain pdf
pV (v) (General expression)

y vector of missing data that corresponds to r (General ex-
pression)

z vector of complete data, i.e., z = {y, r} (General expres-
sion)

p(r; θp) likelihood function of θp given r (General expression)

p(r; θ) incomplete-data likelihood function of θ (Gerneral expres-
sion)

p(r,y; θ) complete-data likelihood function of θ (Gerneral expres-
sion)

LI(θ; r) incomplete-data log-likelihood function of θ (General ex-
pression)

LC(θ;y, r) complete-data log-likelihood function of θ (General expres-
sion)

F(θ) Fisher’s information matrix of θ (General expression)
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F(θp) Fisher’s information matrix of θp (General expression)

Iv intrinsic accuracy (General expression)

c0 propagation speed of a radio wave (General expression)

vL measurement error term measured under LOS condition
(General expression)

vNL measurement error term measured under NLOS condition
(General expression)

p(vL) pdf of vL (General expression)

p(vNL) pdf of vNL (General expression)

µL mean of p(vL) (General expression)

σ2
L variance of p(vL) (General expression)

µNL mean of p(vNL) (General expression)

σ2
NL variance of p(vNL) (General expression)

αL prior probability of LOS occurrence (General expression)

αNL prior probability of NLOS occurrence (General expression)

p
(L)
V (v;βL) pdf of v conditioning on LOS propagation (General expres-

sion)

p
(NL)
V (v;βNL) pdf of v conditioning on NLOS propagation (General ex-

pression)

βL vector of parameters that describes p
(L)
V (v;βL) (General ex-

pression)

βNL vector of parameters that describes p
(NL)
V (v;βNL) (General

expression)

pV (v) underlying measurement error distribution (General ex-
pression)

C total number of mixture components in the parametric
model of pV (v) (General expression)

αl the lth mixing coefficient (General expression)

p
(l)
V (v;βl) the lth mixture component in the parametric model of

pV (v) (General expression)

p̂V (v) estimate of pV (v) built either parametrically or non-
parametrically (General expression)

PT (dBm) transmit power of a target node (General expression)

AL (dB) path loss at a reference distance under LOS condition (Gen-
eral expression)

BL (dB) path loss exponent under LOS condition (General expres-
sion)
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ANL (dB) path loss at a reference distance under NLOS condition
(General expression)

BNL (dB) path loss exponent under NLOS condition (General expres-
sion)

λ Lagrange multiplier (General expression)

Nitr maximum number of iterations (General expression)

∆ convergence tolerance (General expression)

NM total number of samples generate for use in the Monte
Carlo integration (General expression)

L∗ some limiting (stationary) point of LI(θ; r) (General ex-
pression)

Q(θ; θ(η)) conditional expectation of the complete-data log-likelihood
function given θ(η) (General expression)

θ(η+s/S) ECM estimate or JMAP-ML estimate of θ computed on the
sth CM step of the (η+1)th iteration (General expression)

ϑT
s sub-vector of θ such that θ = [ϑT

1 , ...,ϑ
T
S ]

T (General ex-
pression)

S total number of sub-vectors in θ (General expression)

gs(θ) vector function of θ (General expression)

Gs(θ) column space of the matrix ∇θgs(θ) (General expression)

hi(t) the ith wireless channel impulse response (Chapter 1)

τTOA TOA measurement in general (Chapter 1)

τi TOA measurement obtained from the ith wireless channel
(Chapter 1)

PRSS RSS measurement in general (Chapter 1)

N total number of reference nodes (BSs in Chapter 3 and
Chapter 4 or anchors in Chapter 5)

K total number of measurements observed at each BS (Chap-
ter 3 and Chapter 4)

x x-coordinate of an MS to be located (Chapter 3 and Chap-
ter 4)

y y-coordinate of an MS to be located (Chapter 3 and Chap-
ter 4)

xi x-coordinate of the ith BS (Chapter 3 and Chapter 4) or
the ith sensor (Chapter 5)

yi y-coordinate of the ith BS (Chapter 3 and Chapter 4) or
the ith sensor (Chapter 5)

pi 2-D position of the ith BS (Chapter 3 and Chapter 4) or
the ith sensor (Chapter 5)
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p
(0)
i initial guess of pi (Chapter 3, 4, 5)

ri,k distance measurement (TOA measurement multiplied by
c0) the ith BS obtained at the kth sampling time instance
(Chapter 3 and Chapter 4)

di(θp) actual Euclidean distance between the MS and the ith BS
(Chapter 3 and Chapter 4)

vi,k measurement error in ri,k (Chapter 3 and Chapter 4)

r̃ vector of measurements re-defined for the linearized signal
model in the robust semi-parametric algorithm (Chapter
3)

ṽ vector of measurement error terms re-defined for the lin-
earized signal model in the robust semi-parametric algo-
rithm (Chapter 3)

ˆ̃v vector of residuals extracted from the linearized signal
model in the robust semi-parametric algorithm (Chapter
3)

u vector obtained after applying a nonlinear transformation
of ˆ̃v in the TKDE (Chapter 3)

p̂Ṽ (ṽ) estimate of pV (v) obtained from the TKDE (Chapter 3)

p̂′
Ṽ
(ṽ) partial derivative of p̂Ṽ (ṽ) taken w.r.t. ṽ (Chapter 3)

θ̃LSp LS estimate obtained for the linearized signal model, whose
first two entries serve as the initial guess of the RIN algo-
rithm (Chapter 3)

p̂
(η)
V (v) estimate of pV (v) obtained via the AKDE on the ηth RIN

iteration (Chapter 3)

L(η)(θp) approximated log-likelihood function of θp obtained on the
ηth RIN iteration (Chapter 3)

θ
(η,j)
p position estimate on the jth quasi-Newton iteration of the

ηth RIN algorithm (Chapter 3)

θ̂RIN
p RIN position estimator (Chapter 3)

v̂ vector of residuals extracted from the original nonlinear
signal model (Chapter 3)

v̂m the mth element of vector v̂ (Chapter 3)

p̂0(v) pilot density estimate of pV (v) firstly constructed in the
AKDE (Chapter 3)

KG(·) standard Gaussian kernel (Chapter 3)

w window width of a kernel density estimate (Chapter 3)

w0 window width set empirically in the pilot density estimate
(Chapter 3)
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λm the mth local bandwidth of the adaptive kernel density
estimate (Chapter 3)

β sensitivity parameter selected to give a good kernel density
estimate (Chapter 3)

M0(w) score function from minimizing which a good window width
w is solved (Chapter 3)

H(θp) gradient of h(θp) taken w.r.t. θp (Chapter 3)

ηeff re-defined estimation efficiency of a position estimator
(Chapter 3)

γNL Rayleigh distribution parameter under the NLOS condition
(Chapter 3)

ej the jth orthogonal basis vector (Chapter 4 and Chapter 5)

cj scalar real coefficient of ej (Chapter 4 and Chapter 5)

t(r̃(θp),y) sufficient statistics for θe if θp is known (Chapter 4 and
Chapter 5)

t(r̃(θ
(η)
p ),y) approximated sufficient statistics for θe, given θ

(η)
p (Chap-

ter 4 and Chapter 5)

T(θ
(η)
p ) conditional expectation of the approximated sufficient

statistic for θe, given θ
(η)
p on the (η + 1)th EM iteration

(Chapter 4 and Chapter 5)

P
(η)
i,k,l short-hand notation of Pr

{
yi,k = l|ri,k; θ(η)

}
(Chapter 4)

y(η) MAP estimate of the latent variables y obtained on the
ηth JMAP-ML iteration (Chapter 4)

w
(η)
i,k,l weighting factor which takes P

(η)
i,k,l in the ECM algorithm

or δ(l − y(η+1)
i,k ) in the JMAP-ML algorithm (Chapter 4)

Λ(η) (θ) general cost function from which an updated parameter
estimate θ(η+1) is found either by the ECM algorithm or
the JMAP-ML algorithm (Chapter 4)

K(l)
E (v;βl) the lth mixture component that belongs to exponential

family (Chapter 4)

Nu total number of agents in a wireless sensor network (Chap-
ter 5)

Na set of indicies of all agents (Chapter 5)

Nb set of indicies of all anchors (Chapter 5)

ri,j distance measurement obtained at sensor i in cooperation
with sensor j (Chapter 5)

d(pi,pj) Euclidean distance between sensor i and sensor j (Chapter
5)

vi,j measurement error term in ri,j (Chapter 5)
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Rc maximal communication range of a wireless sensor (Chap-
ter 5)

H(i) set of all neighboring sensors of agent i (Chapter 5)

Γ set of all sensor pairs that contribute distance measure-
ments (Chapter 5)

p(pi) prior probability of pi assumed in the NBP algorithm
(Chapter 5)

Bi(pi) local belief message of pi in the NBP algorithm (Chapter
5)

mji(pi) internal message sent from sensor j to sensor i in the NBP
algorithm (Chapter 5)

B
(η)
i (pi) estimate of Bi(pi) on the ηth iteration of the NBP algo-

rithm (Chapter 5)

m
(η)
ji (pi) estimate of mji(pi) on the ηth iteration of the NBP algo-

rithm (Chapter 5)

{w(η,ι)
i ,x

(η,ι)
i } weighting factors and particles for representing B

(η)
i (pi)

(Chapter 5)

{w(η,ι′)
ij ,x

(η,ι′)
ij } weighting factors and particles for representing m

(η)
ji (pi)

(Chapter 5)

Rint total number of particles for representing an internal mes-
sage (Chapter 5)

Rbel total number of particles for representing a belief message
(Chapter 5)

Cbel total number of parameters used in a parametric SPAWN
algorithm and to be determined accordingly (Chapter 5)

P
(η)
i,j,l short-hand notation of Pr

{
yi,j = l|ri,j; θ(η)

}
(Chapter 5)

P̃
(η)
i,j,l local approximate of P

(η)
i,j,l computed at agent i (Chapter 5)

Ng
itr total number of gossip rounds in an average consensus al-

gorithm (Chapter 5)

Nnu
itr total number of Newton iterations (Chapter 5)

Rgrid total number of grid points used for the local search of θp
in the distributed ECM algorithms (Chapter 5)

θ̂CECM
t centralized ECM estimator of θ at the sampling time in-

stance t (Chapter 5)

θ̂DECM
t distributed ECM estimator of θ at the sampling time in-

stance t (Chapter 5)

θt,e vector of unknown mixture model parameters at the sam-
pling time instance t (Chapter 5)
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θt,p vector of unknown agent positions at the sampling time
instance t (Chapter 5)

θt vector of all unknown parameters at the sampling time
instance t (Chapter 5)

θ
(0)
t initial guess of θt (Chapter 5)

θ
(η)
t,e ECM estimate of θt,e computed on the ηth iteration (Chap-

ter 5)

θ
(η)
t,p ECM estimate of θt,p computed on the ηth iteration (Chap-

ter 5)

b(Nu) total number of transmitted bits (Chapter 5)

h(Nu) average number of hops required for transmitting one bit
to the destination (Chapter 5)

e(Nu) average amount of energy required for transmitting one bit
over one hop (Chapter 5)

E(Nu) total energy consumed for communicating data bits by a
cooperative localization algorithm (Chapter 5)
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