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Kurzfassung
Der Schwerpunkt dieser Arbeit liegt auf der Untersuchung von Billard Reso-
natoren mit ihren statistischen Eigenschaften der Eigenwertverteilung. Insbeson-
dere werden supraleitende Mikrowellenresonatoren mit chaotischen Eigenschaften
simuliert und dabei ihre Eigenfrequenzen bestimmt, die für die statistische Auswer-
tung benötigt werden. Die Eigenfrequenzanalyse erfordert viele (in der Größenord-
nung von Tausend) Eigenfrequenzen, wobei die genaue Bestimmung der Werte von
entscheidender Bedeutung ist. Im Rahmen dieser Arbeit decken die Forschungsin-
teressen folglich alle Aspekte von der numerischen Berechnung vieler Eigenwerte
und Eigenvektoren bis hin zur Anwendungsentwicklung ab, um die zur Verfü-
gung stehenden Distributed-Memory- und Shared-Memory-Multiprozessoren op-
timal auszunutzen. Außerdem gibt diese Arbeit einen Überblick zur Lösung
großer Eigenwertprobleme durch eine detaillierte Auswertung der verwendeten
numerischen Ansätze bezüglich der erzielbaren Genauigkeit, der Rechenzeiten und
des Speicherbedarfs.

Der erste Ansatz für eine präzise Eigenfrequenzextraktion berücksichtigt
den berechneten Zeitverlauf des elektrischen Feldes einer supraleitenden Reso-
nanzstruktur. Bei Anregung des Hohlraums wird die elektrische Feldstärke an
ausgewählten Beobachtungspunkten im Inneren des Hohlraums aufgenommen.
Danach wird eine Fourier-Analyse der erfassten Signale durchgeführt und mittels
Signalverarbeitungsverfahren und Anpassungstechniken die gewünschten Eigen-
frequenzen auf der Basis optimierter Modellparameter extrahiert.

Der zweite numerische Ansatz basiert auf der numerischen Berechnung elek-
tromagnetischer Felder im Frequenzbereich und verwendet die Lanczos Methode
zur Eigenwertbestimmung. Basierend auf der Methode der Finiten Integration
wird die numerische Lösung eines Standard-Eigenwertproblemes betrachtet, um
ein elektromagnetisches Problem für einen supraleitenden Resonator zu lösen.
Entsprechend führt eine Diskretisierung desselben Problems mit Hilfe der Finiten
Elemente Methode und gekrümmten Tetraedern auf ein großes verallgemeinertes
Eigenwertproblem. Zu deren Lösung kombinieren die implementierten Lanczos
Löser zwei Hauptbestandteile und verwenden einerseits den Lanczos-Algorithmus
mit Polynom-Filterung sowie andererseits eine geeignete Parallelisierung der
benötigten Algorithmen.
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Abstract
The focus of this work is on the investigation of billiards with its statistical eigen-
value properties. Specifically, superconducting microwave resonators with chaotic
characteristics are simulated and the eigenfrequencies that are needed for the sta-
tistical analysis are computed. The eigenfrequency analysis requires many (in order
of thousands) eigenfrequencies to be calculated and the accurate determination of
the eigenfrequencies has a crucial significance. Consequently, the research inter-
ests cover all aspects from accurate numerical calculation of many eigenvalues and
eigenvectors up to application development in order to get good performance out
of the programs for distributed-memory and shared-memory multiprocessors. Fur-
thermore, this thesis provides an overview and detailed evaluation of the used
numerical approaches for large-scale eigenvalue calculations with respect to the
accuracy, the computational time, and the memory consumption.

The first approach for an accurate eigenfrequency extraction takes into consider-
ation the evaluated electric field computations in Time Domain (TD) of a supercon-
ducting resonant structure. Upon excitation of the cavity, the electric field intensity
is recorded at different detection probes inside the cavity. Thereafter, Fourier anal-
ysis of the recorded signals is performed and by means of signal-processing and
fitting techniques, the requested eigenfrequencies are extracted by finding the op-
timal model parameters in the least squares sense.

The second numerical approach is based on a numerical computation of elec-
tromagnetic fields in Frequency Domain (FD) and further employs the Lanczos
method for the eigenvalue determination. Namely, when utilizing the Finite Inte-
gration Technique (FIT) to solve an electromagnetic problem for a superconducting
cavity, which enclosures excited electromagnetic fields, the numerical solution of
a standard large-scale eigenvalue problem is considered. Accordingly, if the nu-
merical solution of the same problem is treated by the Finite Element Method
(FEM) based on curvilinear tetrahedrons, it yields to the generalized large-scale
eigenvalue problem. Afterward, the desired eigenvalues are calculated with the di-
rect solution of the large (generalized) eigenvalue formulations. For this purpose,
the implemented Lanczos solvers combine two major ingredients: the Lanczos al-
gorithm with polynomial filtering on the one hand and its parallelization on the
other.
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1 Introduction
The eigenvalue calculations arise in many scientific and engineering application areas
as well as in the computational science. Over the last years, the increasing number
of applications has stimulated the development of new methods and software for the
numerical solution of large-scale algebraic eigenvalue problems. At the same time,
the realistic applications frequently challenge the limit of both computer hardware
and numerical algorithms, as one might possibly need large number of eigen pairs
located in a specified frequency range for matrices with dimension in excess of several
millions. Particularly, structures with complicated geometry require a large number
of grid points to achieve accurate simulation results. Thus, the thesis deals with the
development of numerical techniques, which will use low computational costs during
the accurate and robust calculation of thousands of eigenfrequencies for microwave
cavities. In this introductory chapter of the thesis, the motivation for this work will be
explained as well as the major challenges posed by the work will be stated.

1.1 Microwave Cavities

A device that exhibits resonant behavior is called a resonator. Inside the resonator
the vibrations travel as waves, bouncing back and forth between its sides. The op-
positely moving waves interfere with each other and create a pattern of standing
waves. A resonator oscillates naturally at some frequencies with greater ampli-
tude than at the others. These frequencies are called resonant frequencies and
a resonator can have as many frequencies as it has degrees of freedom. In dif-
ferent application areas, the knowledge of the resonant frequencies has a great
significance.

A special type of resonator, consisting of a closed metal structure that confines
electromagnetic fields in the microwave region of the spectrum, is called a mi-
crowave cavity or Radio Frequency (RF) cavity [64]. In case that the shape of the
microwave cavity is rectilinear and the medium inside is homogeneous (the waves
travel at a constant speed), the resonant frequencies, also called normal modes,
are harmonics of the lowest fundamental frequency. On the other side, if the cav-
ity has a no rectilinear shape, like the microwave cavities introduced in the next
section, the resonant frequencies may not occur at equally spaced multiples of the
fundamental frequency and they may follow a clustered distribution.
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This thesis is concerned with cavities having electromagnetic oscillations and in
particular, being characterized with a clustered eigenvalue distribution. Namely,
the interest is to calculate large amount of eigenfrequencies for superconducting
microwave resonators. Hereby, the excited electromagnetic fields inside closed res-
onators are considered under the assumption of perfectly electric conducting walls.
As a result, the main aim of this study coincides with solving the electromagnetic
problem for a superconducting cavity, which enclosures excited electromagnetic
fields. In this direction, detailed numerical approaches for calculation of thousands
of eigenfrequencies will be presented in later chapters. Prior to that, some ap-
plications will be listed and a brief overview of the numerical techniques will be
given.

1.2 Motivation and Objective

The following incomplete list indicates just a few of the applications areas, where
the eigenvalue calculations arise, and how diverse they are [68]: acceleration of
charged particles, electrical networks, clustering analysis, physics, chemistry, struc-
tural dynamics, Markov chain techniques, combustion processes, macro-economics,
control theory, to mention just a few. A recent application is the search engine
Google, which uses the eigenvector corresponding to the eigenvalue one for an ex-
tremely large sparse stochastic matrix [21]. In fact, the Google PageRank algorithm
is the largest eigenvalue problem in the world. Additionally, in many applications
of electromagnetic fields a large number of precisely calculated eigenfrequencies is
also required. The numerical methods for eigenvalue calculation for some cavity
structures might fail or result in slow convergence when stable and precise re-
sults are required, e.g., Superconducting Proton Linac (SPL) cavities [20]. Here,
there are many higher order modes, which can lead to particle beam instabilities
[61]. Therefore, in SPL cavities hundreds of highly precise eigenfrequencies are
needed for the calculation of the 3D-field distribution and the shunt impedance for
the higher order modes. Consequently, this is an important issue for using these
cavities in particle accelerators.

Next, a few applications are addressed in which thousands of eigenvalues are
used or may be used in the future. A field of application, which has motivated
this work and where the necessity for calculation of thousands of eigenfrequen-
cies is emphasized, is the field of quantum chaos. It encompasses the study of the
manifestations of classical chaos in the properties of the corresponding quantum
or more generally, wave-dynamical system (nuclei, atoms, quantum dots, and elec-
tromagnetic or acoustic resonators). Prototypes are billiards of arbitrary shape.
In its interior a point-like particle moves freely and is reflected specularly at the
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boundaries. Depending on the shape its properties could exhibit chaotic dynamics.
Within this thesis, quantum billiards are investigated together with its statistical
eigenvalue properties, which reveal the periodic orbits in the quantum spectra and
give the quantum chaotic scattering [26]. Specifically, a microwave resonator with
chaotic characteristics is simulated, see figure 1.1, and the investigations comprise
efficient and robust computation of eigenfrequencies that are needed for its level-
spacing analysis [27]. Accordingly, the eigenfrequency level-spacing analysis for
the determination of the statistical properties requires many (in order of thou-
sands) eigenfrequencies to be calculated and the accurate determination of the
eigenfrequencies has a crucial significance. Moreover, considering that the prob-
lem is to compute a large number of eigenfrequencies along with their associated
eigenvectors, they can be often located in different ranges, i.e. left-most, right-
most, or interior portions of the spectrum could be sought.

Figure 1.1.: Three-dimensional generalized stadium billiard, consisted of two quar-
ter cylinders with different radii. It is made of niobium, which becomes super-
conducting at temperatures below 9.2 K. The picture of the billiard cavity was
kindly provided by the Institute for Nuclear Physics at the Technical University (TU)
of Darmstadt [27, 29, 1].

Another field of research in which thousands of eigenfrequencies have been suc-
cessfully used is given by the modelling of the properties of graphene with the help
of a microwave photonic crystal [16, 17]. Graphene is a monoatomic layer of car-
bon atoms arranged on a honeycomb lattice and it can be described as one-atom
thick layer of the layered mineral graphite [59, 58]. High-quality graphene is very
strong, light, nearly transparent, and an excellent conductor of heat and electricity.
Its interaction with other materials and light, and its inherently two-dimensional
nature produce unique properties. Due to its peculiar electronic properties, the
carbon allotrope attracted a lot of attention over the last years, which culminated
in a Nobel prize in 2010. Andre Geim and Konstantin Novoselov at the University
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of Manchester won the Nobel prize in physics “for groundbreaking experiments re-
garding the two-dimensional material, graphene”. It is worth mentioning that the
band structure of the photonic crystal, which is displayed in figure 1.2, possesses
similar properties. The photonic crystal considered in the present work (Dirac
billiard cavity) is three-dimensional and composed of rows of metallic cylinders,
which are arranged to form the triangular lattice. The purpose of this work is to
compare the spectral properties of the superconducting Dirac billiard cavity, which
were numerically calculated, with the measurements being conducted from the In-
stitute for Nuclear Physics at the Technical University (TU) of Darmstadt. Herewith,
precise statistics for the Dirac billiard cavity can be generated only if thousands of
eigenfrequencies have been calculated. As already stated for the billiard cavity, the
problem to compute a large number of eigenfrequencies along with their associated
eigenvectors can be also interior.

Figure 1.2.: Superconducting microwave Dirac billiard cavity containing 888 metal
cylinders. It is constructed from brass and coated with lead. On the figure, the lid
is shifted with respect to the billiard body. The picture of the Dirac billiard cavity
is copyrighted and property of the Institute for Nuclear Physics at the Technical
University of Darmstadt [28].

Summing up, the goals of this work overlap with those of the described ap-
plication examples from above. Finally, computing a large number of interior
eigenvalues remains one of the most difficult problems in computational linear
algebra today. Hence, the major challenges posed by this work will be: first, the
ability of the numerical approaches to tackle the large-scale eigenvalue problem,
second, the capability to extract many, i.e. order of thousands, eigenfrequencies for
the considered cavities, and third, the ability to ensure high accuracy as well as
robustness of the underlying approaches.

1.3 Adequate Numerical Methods

Reflecting the fact that the analytical solutions of the electromagnetic problems
from section 1.2 are not available, the work resorts to the numerical solution using
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either the Finite Integration Technique (FIT) [83] or the Finite Element Method
(FEM) based on higher order curvilinear elements [7, 6]. In this context, the in-
vestigations comprise efficient, robust, and accurate computations of many desired
eigenfrequencies in a reasonable time, which also constitute the main aim of the
study.

In case that the FIT is used for the solution of the electromagnetic problem, an
approach for extraction of resonant frequencies given the output from time-domain
computations of closed resonators is covered. The proposed approach uses the ad-
vantage that one single time-domain simulation can provide the whole response of
an electromagnetic system in a wide frequency band, whereas a frequency-domain
formulation naturally concentrates on individual frequency samples and uses one
computation for each individual frequency. In addition, due to the fact that the
time-domain computations in the field of electromagnetics are already highly de-
veloped and considerably more efficient as well as the fact that the transient solver
contained in CST Microwave Studio® (CST MWS) [2] uses a high degree of paral-
lelization provided with the modern Graphics Processing Units (GPUs) feature, the
simulation can be dramatically accelerated. Therefore, the time-domain responses
for a wide frequency band can be easily and quickly obtained. In this way, a signifi-
cant reduction in computational time can be achieved and therefore, a high interest
within this thesis leads to the time-domain computations for electromagnetic prob-
lems.

Additionally, the FIT, introduced in [83], can be also used for solving the elec-
tromagnetic problem in Frequency Domain (FD), ending up with a standard large-
scale eigenvalue problem for a real symmetric matrix A, such that

A ~xk = λk ~xk. (1.1)

On another side, if the FEM is used for the electromagnetic solution, the outcome
is an algebraic generalized eigenvalue problem for given real symmetric sparse
matrix pencils A and B, derived from the Maxwell’s equations for a loss-free and
source-free bounded domain with perfectly electric conducting walls on its surface.
Hereby, the numerical solution of the generalized large-scale eigenvalue problem
for the matrix pair (A,B) is considered. It is the task of finding the real scalars λk
and the corresponding real-valued vectors ~xk 6= 0 such that

A ~xk = λk B ~xk, (1.2)

where A ∈ Rn×n and B ∈ Rn×n are symmetric matrices, B is positive definite matrix,
k = 1,2, ..., n, and n is several thousands. The scalars λk are called the generalized
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eigenvalues and the vectors ~xk are the generalized eigenvectors. Typically, the FIT
and the FEM matrices are diagonally dominant and sparse. That is, they have
very few nonzero entries, as it will be explained in chapter 2 of this thesis. In
conclusion, both cases result in solving one of the fundamental problems, the large-
scale eigenvalue problem and later in the text, the entire process for eigenvalue
determination in FD is referred to as frequency-domain approach.

Various types of numerical methods for eigenvalue determination exist, such as
Jacobi-Davidson [72], Arnoldi [8], Lanczos [42, 41], Krylov-Schur [74], and so on.
Some of the above mentioned methods are available in different software packages:
CST [2], Computational Electromagnetics 3D (CEM3D) [7], Matlab [3], Pysparse
library [32], Scalable Library for Eigenvalue Problem Computations (SLEPc) [35],
PReconditioned Iterative MultiMethod Eigensolver (PRIMME) library [73], Trili-
nos [9], along with others. Despite the fact that many algorithms for eigenvalue
determination exist, accompanied by the numerical models that are becoming in-
creasingly more sophisticated, not as many are specifically adapted for computing a
large number of eigen pairs. They can usually calculate limited number of extreme
or interior eigenfrequencies, and relatively few are designed for effectively reusing
a large number of good initial presumptions, when they are available. Thus, an
additional challenge from these applications is that the dimension of the desired
eigen subspace is large, namely, one might possibly need thousands of eigen pairs
located in a specified range, also referred to as a ’window’, of matrices with dimen-
sion in excess of several millions. Along the project requirements, the numerical
methods for eigenvalue determination might result in an extremely time consum-
ing simulation, along with slow convergence and huge storage as well as memory
requirements.

The Lanczos algorithm with its variations is very attractive for the project neces-
sities. Some variations of the Lanczos method are: the implicitly restarted Lanczos
method [23], which is implemented in Arnoldi Package (ARPACK) [44], restarted
Lanczos bidiagonalization [40], thick-restart Lanczos method [39], and so on. The
major practical advantage of the Lanczos method is the tridiagonal reduction of the
eigenvalue problem that yields minimal storage requirements, as do the associated
algorithms for its eigenvalue and eigenvector computations. Also, the required
arithmetic operations are small, allowing work with very large tridiagonal matrices
and therefore, with very large real symmetric matrices. Furthermore, the Lanc-
zos method takes a significant advantage over its competitors, which concentrate
on individual frequency samples per iteration. Concluding, based on the project
requirements the investigations comprise efficient, robust, and accurate computa-
tions of many desired eigenfrequencies by employing a proper numerical solution
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of the electromagnetic problem and an efficient implementation of the Lanczos
method to solve the large-scale eigenvalue problem.

1.4 Outline of the Thesis

The thesis is structured as follows. The fundamental concepts of classical electro-
dynamics, which are needed for the following chapters will be briefly presented in
chapter 2. The chapter focuses on the Maxwell’s equations describing the continu-
ous electrodynamics as well as their discretization by the FIT and the FEM.

In the following chapter, a fast approach for an accurate eigenfrequency extrac-
tion, taken into consideration the evaluated electric field computations in time do-
main of a superconducting resonant structure will be addressed. Consequently, in
chapter 3 all the steps that constitute the eigenvalue extraction from time-domain
computations will be described. Additionally, the theory of interest for this method
is also explained in this chapter.

In chapter 4, another promising approach for high precision eigenfrequency de-
termination will be reviewed. It is based either on a finite element or finite in-
tegration formulation of an electromagnetic problem for a superconducting cavity
and the Lanczos method for the eigenvalue determination itself. Here, the basic
Lanczos algorithm for the standard eigenvalue problem will be described, followed
by a description of the B-Lanczos algorithm and its variations, which will be used
to solve the generalized eigenvalue formulation. Further contribution of this work
includes the presentation of the Lanczos method with polynomial filtering.

Chapter 5 summarizes the implementation details for the methods presented in
chapter 3 and 4.

Chapter 6 investigates the simulation scenarios for the billiard and Dirac billiard
cavity together with the obtained numerical results. Here, it will be demonstrated
that the proposed approaches are able to extract many eigenfrequencies of a closed
resonator in a relatively short time. In addition to the need to ensure a high preci-
sion of the calculated eigenfrequencies as well as to verify and validate the results,
comparisons with reference numerical FEM simulations and measurements will be
given. Furthermore, the high accuracy of the techniques and the good agreement
with the reference data will be reviewed in this chapter. At the end, it will be
shown that the suggested techniques can be used for precise extraction of many
eigenfrequencies.

Finally, a summary in chapter 7 recapitulates the main results of this work as
well as it provides a short outlook to further studies.
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2 Electrodynamics
In this chapter, a few aspects of the classical electrodynamics are summarized in order
to introduce the underlying concepts, which are needed for the successive chapters.
Starting with the Maxwell’s equations, the constitutive equations that are required for
their solution as well as the boundary conditions are introduced and the resulting wave
equations are derived in section 2.1. Apart from limited number of special cases, the
Maxwell’s equations have no analytical solution. Nevertheless, an approximate numer-
ical solution of the discretized Maxwell’s equations can be found. Therefore they are
discretized by approximating the continuous space through discrete, finite-dimensional
spaces and by introducing discrete instants in time. Afterward, the approximate so-
lutions are found using the numerical methods. From the numerous discretization
techniques that exist to discretize integral or differential equations, the Finite In-
tegration Technique (FIT) and the Finite Element Method (FEM) are introduced in
section 2.3 and 2.4, respectively. At the beginning of each section, the principles of the
applied numerical methods are reviewed, followed by the derivation of the resulting
discrete (generalized) eigenvalue formulation.

2.1 Continuous Electrodynamics

2.1.1 The Maxwell’s Equations

The modern society relies on electromagnetic devices, e.g. computers, television,
radio, internet, microwave ovens, mobile telephones, radar and medical devices,
electrical motors, electrical power networks, and many more. Each of these ex-
amples is used in a broad range of situations and doubtless, the electromagnetic
phenomena have a profound impact on the present society.

The understanding of the electromagnetic phenomena is treated by the electro-
magnetic field theory, which describes the interactions between the electric charges
by the Maxwell’s equations. Although many famous scientists in the 18th and 19th
century partly contributed to the Maxwell’s equations, they are named after the
Scottish physicist and mathematician James Clerk Maxwell (1831-1879), who first
published the full form of the Maxwell’s equations in [51]. Analytical solutions
in closed form are known for only a very limited number of special cases, which
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hardly ever are directly applicable to real-world applications [85]. Instead, more
or less crude approximations have been employed in various attempts to bridge the
gap between the theory and the advanced applications. Nowadays, it is possible to
find an approximate numerical solution of the discretized Maxwell’s equations.

The continuous Maxwell’s equations [55, 80] are expressed in terms of the elec-
tric field strength indicated by ~E, the electric flux density ~D, the magnetic field
strength ~H, the magnetic flux density denoted by ~B, the electric current density ~J ,
and the electric charge density ρ. The spatial variable is denoted by ~r and the time
dependency by t. The integral form of the Maxwell’s equations reads

∮

∂ A

~E(~r, t) · d~s = −
∫

A

∂

∂ t
~B(~r, t) · d~A (2.1a)

∮

∂ A

~H(~r, t) · d~s =

∫

A

�
∂

∂ t
~D(~r, t) + ~J(~r, t)

�
· d~A (2.1b)

∮

∂ V

~D(~r, t) · d~A =

∫

V

ρ(~r, t)dV (2.1c)

∮

∂ V

~B(~r, t) · d~A = 0 (2.1d)

for any surface A and volume V . The equation (2.1a) is called Faraday’s law,
whereas with (2.1b) is given the Ampère’s law. These two equations connect the
time derivative of the magnetic flux density or the time derivative of the electric flux
density and the electric current density over a surface A with the closed line inte-
gral of the field vector along its boundary ∂ A. The remaining equations, (2.1c) and
(2.1d), are known as Gauss’ law and Gauss’ law of magnetism (or non-existence
of magnetic charges), respectively. They relate the total amount of charges within
an arbitrary volume V to the surface integrals of the flux quantities over the closed
surface ∂ V of the volume V .

By applying the Kelvin-Stokes’ theorem [18] to the Ampère’s and the Faraday’s
law and the Gauss-Ostrogradsky’s theorem to the Gauss’ laws, the Maxwell’s equa-
tions can be expressed equivalently in their differential form. Using the Stokes’
theorem ∮

∂ A

~E(~r, t) · d~s =

∫

A

(∇× ~E(~r, t)) · d~A (2.2)
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and the Gauss’ theorem
∮

∂ V

~B(~r, t) · d~A=

∫

V

(∇ · ~B(~r, t))dV, (2.3)

as applied to ~E and ~B, the corresponding differential form of the Maxwell’s equa-
tions (2.1a)-(2.1d) is given with

∇× ~E(~r, t) = − ∂
∂ t
~B(~r, t) (2.4a)

∇× ~H(~r, t) =
∂

∂ t
~D(~r, t) + ~J(~r, t) (2.4b)

∇ · ~D(~r, t) = ρ(~r, t) (2.4c)

∇ · ~B(~r, t) = 0. (2.4d)

The electric current density ~J in (2.1b) and (2.4b) may consist of three parts: a
conductive part ~Jc , a convective part ~Jcv , and an impressed current density ~Ji

~J(~r, t) = ~Jc(~r, t) + ~Jcv (~r, t) + ~Ji(~r, t). (2.5)

As already stated in the introductory words of the thesis, the electric current den-
sity ~J will not be considered within this work as the interest is in loss-free problems
with no additional sources of an electromagnetic field.

2.1.2 Material Equations

The Maxwell’s equations (2.4a)-(2.4d) form a coupled set of first-order linear par-
tial differential equations that relate sources (charges and currents) to the elec-
tromagnetic fields and fluxes. Subsequently, each equation cannot be solved in-
dividually and here, the constitutive equations enable their solution [80]. For a
macroscopic media the dynamical response of the aggregates of atoms is summa-
rized in the constitutive equations

~D(~r, t) = ε0 ~E(~r, t) + ~P(~E,~r, t) (2.6a)
~B(~r, t) = µ0 ~H(~r, t) + µ0 ~M( ~H,~r, t) (2.6b)
~J(~r, t) = σ(~r) ~E(~r, t), (2.6c)
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where the material constant ε0 is the free-space electric permittivity, the µ0 in-
dicates the magnetic permeability of vacuum, and the ~P(~E,~r, t) and ~M( ~H,~r, t)
denote the electric and magnetic dipole moment density, respectively. The consti-
tutive equations consider the electromagnetic properties of the medium in which
the fields exist and connect the vectors ~D and ~J with ~E, and ~H with ~B. While the
first terms in (2.6a) and (2.6b) describe the linear contributions of the field, ~P and
~M describe the macroscopic behavior of the physical effects inside the materials.
In general, they are time-variant, frequency dependent, and non-linear as well as
non-isotropic functions of ~E and ~H, respectively.

Due to the fact that this thesis is concerned with the eigenvalue calculations for
resonators, whose walls have an infinite conductivity and are filled with a lossless
material, for arbitrary time dependence the considerations are restricted to linear,
frequency-independent, isotropic, and non-dispersive materials, such that

~D(~r, t) = ε ~E(~r, t) = ε0 εr ~E(~r, t) with ε0 = 8.854 · 10−12 As
Vm

(2.7a)

~B(~r, t) = µ ~H(~r, t) =µ0µr ~H(~r, t) with µ0 = 4π · 10−7 Vs
Am

, (2.7b)

where ε, εr , µ, and µr are real-valued time-invariant quantities. Here, the εr and
µr are the relative permittivity and permeability of the material.

2.1.3 Boundary Conditions

With the aim of finding proper solutions of the Maxwell’s equations, the behavior
of the electromagnetic field should be known at the boundary interface that is
shared from medium 1 and 2. Accordingly, on one hand, it is assumed that the first
medium is characterized by ε1, µ1, and σ1, and on the other hand the medium 2
has different properties given with ε2, µ2, and σ2. At the interface, the tangential
and the normal fields must satisfy so-called boundary conditions, which are the
consequences of the Maxwell’s equations.

Applying the Faraday’s and the Ampère’s law on a surface, which intersects the
material interface, will result in the following conditions for the electric and the
magnetic field strengths

~n× (~E2 − ~E1) = 0 (2.8a)

~n× ( ~H2 − ~H1) = ~Js, (2.8b)
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where ~Js is the surface current density and ~n is the unit vector normal to the bound-
ary and pointing into medium 2. The equation (2.8a) simply states that the tan-
gential electric field components must be continuous across the boundary, whereas
the equation (2.8b) shows that the tangential components of the magnetic field
strength are continuous only if the surface current density is zero on the interface.

Analogously, the application of the Gauss’ laws on a closed volume containing
the both materials leads to the following conditions for the electric and magnetic
flux densities

~n · (~D2 − ~D1) = ρs (2.9a)

~n · (~B2 − ~B1) = 0, (2.9b)

with ρs being the surface charge density. The above equations state that the normal
component of the magnetic flux density is always continuous at the interface of two
media with different properties, while the normal component of the electric flux
density is discontinuous in case that surface charges are present at the interface.

2.1.4 Wave Equation

Combining the first two Maxwell’s equations in differential form (2.4a)-(2.4b)
and supplementing them by the linear isotropic material equations with time-
independent material parameters (2.7a)-(2.7b), the second-order forms of the
Maxwell’s equations in terms of the electric and the magnetic field strength can
be deduced

∇× �∇× ~E(~r, t)
�
+ µε

∂ 2

∂ t2
~E(~r, t) = −µ ∂

∂ t
~J(~r, t) (2.10a)

∇× �∇× ~H(~r, t)
�
+ µε

∂ 2

∂ t2
~H(~r, t) = ∇× ~J(~r, t). (2.10b)

As already mentioned above, in this thesis it is assumed that the waves propagate
far enough from sources, such that ~J = 0 and ρ = 0. Consequently, the previous
equation can be transformed into

∇× �∇× ~E(~r, t)
�
+ µε

∂ 2

∂ t2
~E(~r, t) = 0 (2.11a)

∇× �∇× ~H(~r, t)
�
+ µε

∂ 2

∂ t2
~H(~r, t) = 0. (2.11b)
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Using the property of the double-cross product and the Gauss’ laws for homoge-
neous media, the following equations can be obtained

∇× �∇× ~E(~r, t)
�
= ∇ �∇ · ~E(~r, t)

� − ∆~E(~r, t)

=
1
ε
∇ρ −∆~E(~r, t) = −∆~E(~r, t) (2.12a)

∇× �∇× ~H(~r, t)
�
= ∇ �∇ · ~H(~r, t)

� − ∆ ~H(~r, t) = −∆ ~H(~r, t). (2.12b)

Wherefore, (2.11a) and (2.11b) transform to

∆~E(~r, t) − µε ∂
2

∂ t2
~E(~r, t) = 0 (2.13a)

∆ ~H(~r, t) − µε ∂
2

∂ t2
~H(~r, t) = 0, (2.13b)

which are called homogeneous wave equations with no losses in terms of the elec-
tric or the magnetic field strength.

2.2 Discrete Electrodynamics

The first step in the process of obtaining discrete solutions to the Maxwell’s equa-
tions is to set up a computational grid in the domain of interest. Therefore, the
complete domain of interest Ω ⊂ (R1,R2,R3) in the continuous space is mapped to
a finite set of discrete elements, which depend on the dimensionality of Ω and do
not overlap. In this way, a set of spatial elements is defined, which is a topolog-
ical structure in space and is referred to as a computational grid G. For practical
reasons, typically basic geometrical shapes like triangles or rectangles in a Two
Dimensional (2D) domain and tetrahedrons or hexahedra in a Three Dimensional
(3D) domain are used, cf. figure 2.1.

The resulting discrete equations are solved with the help of numerical methods.
Namely, the powerful computers have enabled the ability to solve the Maxwell’s
equations using computational methods that allow solution for large classes of
problems without broad modifications of the computer programs. The part of the
electromagnetics that deals with the computational methods is known as Compu-
tational Electromagnetics (CEM). Although the CEM is a young discipline, it has
developed into a main design tool with the aim to find numerical approximations
to the continuous Maxwell’s equations. The most frequently used algorithms in the
CEM are the Finite Integration Technique (FIT), the Finite Differences (FD), the
Finite Element Method (FEM), and the Boundary Element Method (BEM), which is
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usually referred to as Method of Moments (MoM). From the numerous techniques
that are known for discretizing the Maxwell’s equations, the FIT and the FEM will
be introduced in the sections 2.3 and 2.4, respectively.

2.3 Finite Integration Technique

The Finite Integration Technique (FIT) is a spatial discretization scheme to numer-
ically solve electromagnetic field problems in Time Domain (TD) and in Frequency
Domain (FD). The technique was proposed by Thomas Weiland [83, 84] in 1977.
It provides a discrete reformulation of the Maxwell’s equations in their integral
form, which guarantees the physical properties of the computed fields and leads to
an unique solution. The FIT can be also viewed as a generalization of the Finite-
Difference Time-Domain Method (FDTD). At the beginning, the FIT was utilized
for the numerical calculation of the resonance frequencies in FD. Afterward, the
range of applications was continuously expanded over the years. Currently, this
technique allows a simulation of real-world electromagnetic field problems with
complex geometries and therefore, covers wide range of applications, e.g. electro-
and magnetostatics, stationary current problems as well as low- and high-frequency
problems.
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Figure 2.1.: (a) Cartesian 3D grid used for discretizing a structure with 4 × 3 × 2
hexahedral mesh elements. (b) Cartesian 2D equidistant grid. (c) Triangular 2D
grid.
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2.3.1 Spatial Discretization by Computational Grids

Within this thesis, the analyzed resonators are discretized with a hexahedral com-
putational grid. An example of a hexahedral computational grid for a brick-shaped
geometry is illustrated in figure 2.1a. However, it should be noted that the FIT is
not restricted to three-dimensional Cartesian meshes, but it also allows to consider
all types of coordinate meshes [76, 70, 82].

In the three-dimensional domains R3, the discrete elementary volumes Vn with
n= 1, ..., NV , also called mesh cells, are bounded by several mesh facets An (where
n= 1, ..., NA) each bounded with four mesh edges Ln (where n= 1, ..., NL) and four
mesh points Pn(i, j, k) (where n = 1, ..., NP). The grid points P(i, j, k) = (x i , y j , zk)
are indexed in the following way

x1 < x2 < ...< x i < ...< xNx

y1 < y2 < ...< y j < ...< yNy
(2.14)

z1 < z2 < ...< zk < ...< zNz
,

where Nx , Ny , and Nz represent the number of points in each coordinate direction,
and i, j, k are the corresponding indices. The mesh facets and the mesh edges
are oriented entities, with arbitrary user-defined orientation, while the volumes
and the nodes are not oriented [81, 82]. Moreover, all mesh entities of the same
kind are numbered sequentially. Except the favored orientation and the numbering
techniques, which make the algorithms more efficient, there is no principal restric-
tion on how the entries are oriented or numbered. The edge between the points
P(i, j, k) and P(i + 1, j, k) is denoted with Lx(i, j, k). Accordingly, the electric volt-
age along the mesh edge Lx(i, j, k) is indicated with _e x(i, j, k). Similar, the voltage
between the points P(i, j, k) and P(i, j + 1, k) is denoted with _e y(i, j, k) as well as
the voltage between P(i, j, k) and P(i, j, k + 1) as _e z(i, j, k) (see figure 2.2). The
face in y-direction with the points P(i, j, k), P(i + 1, j, k), P(i + 1, j, k + 1), and
P(i, j, k+ 1) is named as Ay(i, j, k), and the appropriate flux as

__
b y(i, j, k).

For the discretization of the integral form of the Maxwell’s equations the FIT
uses a primary grid G and a dual grid eG. Analogous to the primary grid G, the
dual grid eG contains: dual mesh cells eVn with n = 1, ..., NeV , bounded by several
mesh facets eAn (where n= 1, ..., NeA) each bounded with four mesh edges eLn (where
n= 1, ..., NeL) and four mesh points ePn(i, j, k) (where n= 1, ..., NeP). In the following
all of the marks for the dual grid will be represented with tilde.

The dual grid is constructed according to the following duality conditions: the
grid points eP of the dual grid eG are co-located with the centers of the primary grid
cells. Figures 2.3a and 2.3b show the primary grid relative to its dual. Namely,
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Figure 2.2.: Indexing of the edges and the faces. Each edge and face has the same
index in x-, y-, and z- direction as well as the same starting node (point).

each dual (primary) cell contains exactly one primary (dual) point. All of the grid
elements of the dual and the primary grid have the same index. The orientation
of a dual (primary) edge coincides with the orientation of the primary (dual) sur-
face. Furthermore, every primary surface is cut by exactly one dual edge and every
primary edge is cut exactly by one dual surface (cf. figure 2.3b). In principal, the
respective cutting angles can be arbitrary. If they are 90◦, the orthogonality condi-
tion is met. Given an arbitrary primary grid G, the construction of a dual grid eG
that fulfills all of the conditions is generally possible and the grids are then referred
to as dual orthogonal. Throughout this thesis, a homogeneous material is assumed
in every resulting elementary volume.

When using the FIT, the closed line and the surface integrals in the continu-
ous Maxwell’s equations are splitted into integrals along the grid edges and over
the grid surfaces, respectively. The Faraday’s and the Gauss’ law of magnetism
use the primary (electric) grid, while the Ampère’s and the Gauss’ law exploit the
dual (magnetic) grid [78]. As a result, the discrete equations are exact represen-
tations of the continuous Maxwell’s equations. However, the approximations will
be introduced by the discretization of the material relations (2.6a)-(2.6c), as will
be explained in section 2.3.4. At that point, the necessary coupling between the
primary and the dual grid is also accomplished.

2.3.2 The Maxwell’s Grid Equations

Discretization of the Faraday’s law
In order to transfer the Faraday’s law in integral form (2.1a) to the grid space,
the FIT uses the electric grid G [81, 82]. The loop integral on its left hand side
is carried out along the edges. Integrating the continuous electric field ~E along
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(b) Cartesian primary and dual 3D grid

Figure 2.3.: Depiction of the primary grid G relative to the dual grid eG. (a) An
example of a Cartesian primary and dual 2D grid. The grid points eP of the dual
grid eG are co-located with the centers of the primary grid cells. Namely, each dual
(primary) cell contains exactly one primary (dual) point. All of the grid elements of
the dual and the primary grid have the same index. (b) An example of a Cartesian
primary and dual 3D grid. Every primary surface is cut by exactly one dual edge and
every primary edge is cut exactly by one dual surface.

an edge Lp(i, j, k) with p ∈ {x , y, z} yields a discrete electric voltage denoted by
_e p(i, j, k), where p ∈ {x , y, z}. The electric grid voltage _e p(i, j, k) is given with

_e p(i, j, k) =
∫

Lp(i, j,k)

~E · d~s . (2.15)

Summing up the discrete electric voltages along all edges enclosing a cell face
leads to an exact discrete representation of the continuous closed loop integral. At

18 2. Electrodynamics



the same time, integrating the continuous magnetic flux density ~B over a surface
Ap(i, j, k) yields the discrete magnetic integral flux

__
bp(i, j, k)

__
bp(i, j, k) =

∫
Ap(i, j,k)

~B · d~A . (2.16)

According to figure 2.4a, it can be noticed that the discrete electric voltages of
directly neighboring cells can be mutually canceled. Therefore, it is satisfactory
that only one mesh cell is considered, e.g. the cell displayed in figure 2.4b. From
here, it holds

_e x(i, j, k) + _e y(i + 1, j, k) − _e x(i, j + 1, k) − _e y(i, j, k) = − d
dt

__
bz(i, j, k). (2.17)

As a result, if the Faraday’s law holds for one elementary facet, it holds for all faces

1

(a) Neighboring mesh cells

b
P(i, j, k)

b
P(i + 1, j, k)

b
P(i, j+ 1, k)

b
P(i + 1, j + 1, k)

Lx (i, j, k)

Lx (i, j + 1, k)

L
y
(i
+

1,
j,

k)

L
y
(i

,j
,k
)

y

x
z

1

(b) Mesh cell

Figure 2.4.: Integration path for the derivation of the first Maxwell’s grid equation.

too. Applying the derivative in time, the discrete Faraday’s law can be obtained in
the following form

C_e = − d
dt

__
b, (2.18)

where all the electric voltages are grouped in the vector _e and all the magnetic
fluxes for the faces of the computational grid G are grouped in the vector

__
b. As

already mentioned, this is an exact representation of the Faraday’s law. It should
be noted that when passing from (2.1a) to (2.18) on a given discretization mesh,
no approximations are made and therefore, no discretization error is introduced.
The matrix C is sparse and singular and as apparent from equation (2.17), each
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row has two entries 1 and two −1. It is, thus, a topological matrix that plays the
role of the curl operator in the discrete equations

C =
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. (2.19)

The matrix C is the incidence matrix of edges to faces, i.e. it describes in a topolog-
ical manner which edges belong to each face. It has a number of rows equal to the
number of faces NA, and a number of columns equal to the number of edges NL in
the primary mesh. An element of this matrix is equal to 1 if a given edge belongs
to a given face and their orientations match, it is equal to −1 if the edge belongs to
the face but their orientations are opposite, and it is equal to 0 if the edge does not
belong to the given face.

Discretization of the Gauss’ law of magnetism
For the discretization of the Gauss’ law of magnetism the FIT uses the electric
grid G. Assuming that the surface integral of the magnetic flux density over a
mesh cell in the Gauss’ law of magnetism is splitted in surface integrals over the
cell-surfaces, the discrete Gauss’ law of magnetism can be derived. At this point,
it should be pointed out that the discrete magnetic flux densities of directly neigh-
boring cells can be mutually eliminated. According to the above, only one cell is
adequate to be considered, as shown in figure 2.5a. The surface integrals over this
cell give

__
b x(i, j, k) − __

b x(i + 1, j, k) +
__
b y(i, j, k) − __

b y(i, j + 1, k)

+
__
bz(i, j, k) − __

bz(i, j, k+ 1) = 0.
(2.20)

The resulting equation for the discrete Gauss’ law of magnetism has the form

S
__
b = 0, (2.21)
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Figure 2.5.: (a) Primary mesh cell for the discretization of the Gauss’ law of mag-
netism. (b) Dual mesh cell for the discretization of the Gauss’ law.

where S is a sparse topological matrix or in other words, the discrete equivalent of
the divergence operator, as shown below

S =



b
b
b

b
b

b
-1

b
bb

b
bb

+1
b
b
b

b
b

b
-1

b
b
b
+1bb

b

b
b

b
-1

b
bb

b
bb

+1


 . (2.22)

The matrix S as an incidence matrix of faces to volumes describes in a topological
manner which faces belong to each volume and what is their relative orientation.
The matrix S has a number of rows equal to the number of volumes NV and a
number of columns equal to the the number of faces NA in the primary mesh. An
element of this matrix is equal to 1 if a given face belongs to the given volume and
their orientations match, it is equal to −1 if the face belongs to the volume but
their orientations are opposite, and it is equal to 0 if the face does not belong to
the given volume.

Discretization of the Ampère’s law and the Gauss’ law
In order to accomplish the discretization of the Ampère’s and the Gauss’ law the FIT
uses the magnetic grid eG. Hence, the magnetic voltages

_
h p(i, j, k) and the electric

flux densities
__
d p(i, j, k) with p ∈ {x , y, z} are mapped to the grid edges eLp(i, j, k)

and the grid surfaces eAp(i, j, k), respectively (see figure 2.5b).
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Summing up, the Maxwell’s grid equations for loss-free problems with no addi-
tional sources of an electromagnetic field read

∇× ~E = − ∂
∂ t
~B −→ C_e = − d

dt

__
b (2.23a)

∇× ~H = ∂

∂ t
~D −→ eC_

h=
d
dt

__
d (2.23b)

∇ · ~D = 0 −→ eS__
d= 0 (2.23c)

∇ · ~B = 0 −→ S
__
b = 0, (2.23d)

where the incidence matrices eS and eC are the discrete equivalents of the divergence
and the curl operators corresponding to the dual grid eG.

2.3.3 Properties of the Matrices

The solutions of the continuous Maxwell’s equations obey the following vector re-
lation

∇ · (∇× ~E) = 0. (2.24)

In [81, 79] it is aimed to derive that a discrete analogue of this equation exists and
it holds for both the primary and the dual grid. Namely, it can be shown that the
product of the discrete divergence operator by the discrete curl operator is identical
zero for the both grids

SC= 0 (2.25a)

eS eC= 0. (2.25b)

This is a very important property, which mimics in the discrete setup the continuous
relation (2.24). Lastly, the duality condition of G and eG can be expressed with
respect to the matrices C and eC by

eC= CT . (2.26)

2.3.4 Material Discretization

Until now, the Maxwell’s equations are discretized with no errors within the FIT.
The discretization error will occur in the discretization of the material relations
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(2.6a)-(2.6c). On the one hand, the electric voltage _e and the magnetic flux quan-
tity

__
b have to be connected with the electric flux density

__
d and the magnetic field

strength
_
h, respectively. On the other hand, a suitable averaging has to be assumed

for the generally discontinuous and location-dependent material properties at the
intersection points of the edges and the surfaces of the both grids.

The calculation is accomplished in a two-step procedure, which uses the example
of the relation between

_
h and

__
b for the case when two primary cells are intersected

by one dual edge eLx (see figure 2.3b). The line integral of ~H along the edge
eLx(i, j, k) can be divided into two parts corresponding to the primary cells

_
h x(i, j, k) =

∫

eLx (i, j,k)

~H · d~s =

∫

eLx (i, j,k)(1)

Bx/µ1 dx +

∫

eLx (i, j,k)(2)

Bx/µ2 dx

≈ Bx

�eLx(i, j, k)(1)/µ1 + eLx(i, j, k)(2)/µ2

�

= Bx µ−1(i, j, k)eLx(i, j, k).

(2.27)

More precisely, the dual edge sections eLx(i, j, k)(1) and eLx(i, j, k)(2) traverse two
primary cells, which may have different permeability values µ1 and µ2, respectively.
The averaging of the inverse permeability along the dual edge leads to the desired
relation. Namely, the averaged inverse permeability can be defined as follows

µ−1(i, j, k) =

∫
µ−1 ds∫

ds
. (2.28)

The normal component of the magnetic flux density is continuous at the intersec-
tion point. With the assumption that its variation in the vicinity of the intersection
point is small, the following equation is valid

__
b x(i, j, k) =

∫∫

Ax (i, j,k)

~B · d~A=

∫∫

Ax (i, j,k)

Bx dydz ≈ Bx Ax(i, j, k). (2.29)

With (2.29) and (2.27) the relation between
__
b and

_
h follows as

__
b x(i, j, k) =

Ax(i, j, k)
eLx(i, j, k)µ−1(i, j, k)

_
h x(i, j, k). (2.30)
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In matrix notation, the discrete analogue of (2.6b) is obtained as

_
h=Mµ−1

__
b. (2.31)

The material equation for Mε can be derived with an analogous consideration using
dual faces and primary edges. In this case, the averaged permittivity ε(i, j, k) =∫∫
ε dA/

∫∫
dA is used. Summarizing, in case of linear, frequency-independent

material, the discrete material relations read

__
d = Mε

_e (2.32a)
_
h = Mµ−1

__
b. (2.32b)

Thus, the Maxwell’s grid equations in terms of _e and
_
h together with the material

equations read

C_e = − d
dt

Mµ

_
h (2.33a)

eC_
h=

d
dt

Mε
_e (2.33b)

SMµ

_
h= 0 (2.33c)

eSMε
_e = 0. (2.33d)

2.3.5 Boundary Conditions

In principle, the boundaries are defined in order to determine the local fields and
to model the influence of the surrounding on the computational domain. They
are diverse and correspond to the surrounding they model. Because the energy
exchange with the surrounding does not take place when the superconducting res-
onators are analyzed, within this thesis the closed boundary conditions are applied.
Commonly, the Dirichlet and the Neumann boundary conditions are used in such
situations. The Dirichlet boundary condition forces the field solution to a specific
value on the boundary, while the Neumann boundary condition sets the normal
field derivative to a defined value at the boundary. For the special case of struc-
tures with perfectly electric surrounding, the ideal electric boundary conditions are
obtained, which are implemented by using the Dirichlet boundary condition.
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2.3.6 Time-Harmonic Fields (Frequency Domain)

For the solution of the time-dependent system of Maxwell’s equations (2.23a)-
(2.23d), which represent ordinary differential equations, a suitable method for
their integration must be applied. However, in many cases the interest is to consider
only the steady-state solution for the electromagnetic field (the so-called harmonic
field) as produced by currents having sinusoidal time dependence. Any harmonic
field vector oscillating at the frequency ω can be represented by a complex-phasor
space vector, which is independent of time. The time derivative in the Maxwell’s
equations may then be substituted by denoting the time dependence of all quanti-
ties as e jωt . For instance, the electric field vector ~E can be written as

~E(~r, t) = ~E(~r) cos
�
ωt + ϕ(~r)

�
= Re {~E(~r)e jϕ(~r) e jωt}= Re {~E(~r)e jωt} (2.34)

in which the ~E denotes the complex-phasor space vector. By using the phasor
representation, the time derivative d/dt may be replaced by the factor jω since
de jωt/dt = jωe jωt . Consequently, the time-derivative becomes an algebraic multi-
plication of the complex amplitude by the factor jω.

Hence, the Maxwell’s grid equations (2.33a)-(2.33d) with steady-state sinu-
soidal time dependence become complex algebraic equations in FD, given as

C_e = − jω
__
b (2.35a)

eC_
h= jω

__
d (2.35b)

S
__
b = 0 (2.35c)

eS__
d= 0, (2.35d)

where the time dependence e jωt vanishes from both sides. The unknown discrete
vectors with complex amplitude, e.g. _e and

__
b, are called discrete phasors.

Discrete Curl-Curl Eigenvalue Equation

This section considers the case of homogeneous, isotropic, linear, and lossless mat-
ter (σ = 0, ε, µ ∈ R) in source free space. Analogously to the continuous wave
equations, (2.11a) and (2.11b), by combining the first two grid Maxwell’s equa-
tions, (2.35a)-(2.35b), and the discretized material equations, (2.32a)-(2.32b), an
equation in terms of the electric _e or the magnetic grid voltage

_
h can be derived.
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When the magnetic grid voltage
_
h is eliminated, the discrete curl-curl equation has

the following form

M−1
ε
eCMµ−1 C_e =ω2 _e. (2.36)

Due to the discrete curl operators applied twice in succession this equation is called
discrete curl-curl equation and corresponds to the continuous equation (2.11a) in
frequency domain. Additionally, this is an algebraic eigenvalue problem of the form

ACC
_e =ω2 _e. (2.37)

The solutions of an equation of this type are non-trivial eigenvectors ei 6= 0 and
the associated real or complex eigenvalues ω2

i . A matrix of dimension n has
always a maximum of n such linearly independent solutions. Consequently, the
equation (2.36) is called a discrete curl-curl-eigenvalue equation with the system
matrix

ACC =M−1
ε
eCMµ−1 C (2.38)

and it corresponds to the continuous eigenvalue equation for resonators. The eigen-
values of the equation are the squared resonance frequencies ω2

i and the eigenvec-
tors correspond to the fields of the associated cavity modes. The characteristics
of the FIT discretization can be examined by analyzing the algebraic properties of
the system matrix ACC. In the form of equation (2.36), this matrix is asymmetric.
Therefore, the transformation

_e′ =M1/2
ε

_e (2.39)

is performed, where the M1/2
ε is defined as

M1/2
ε M1/2

ε =Mε M1/2
µ M1/2

µ = Mµ (2.40a)

M−1/2
ε M−1/2

ε =M−1
ε M−1/2

µ M−1/2
µ = Mµ−1 . (2.40b)

This leads to the formulation

M−1/2
ε

eCMµ−1 CM−1/2
ε

_e′ =ω2 _e′ (2.41)

with the real symmetric system matrix

A′CC =M1/2
ε ACC M−1/2

ε =M−1/2
ε

eCMµ−1 CM−1/2
ε

= (M−1/2
ε

eCM−1/2
µ ) (M−1/2

ε
eCM−1/2

µ )T .
(2.42)
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Finally, the problem to be solved is

A′CC
_e′ =ω2 _e′, (2.43)

where the eigenvalues of ACC and A′CC remain identical. One objective of the the-
sis is to solve this large-scale eigenvalue problem with the capabilities to calculate
thousands of eigenfrequencies for matrices with dimension in excess of several mil-
lions. The algorithms and the details towards the solution of the discrete standard
eigenvalue problem will be discussed in chapter 4.

2.3.7 Transient Fields (Time Domain)

The calculation of the transient processes with the FIT is carried out for the already
spatially discretized Maxwell’s grid equations by a discretization of the time axis.
Here, the time axis will be considered at discrete-time points tm, which define a
grid T

T := {tm ∈ R+|t0 ≤ tm ≤ tM , tm := tm−1 + ∆tm}. (2.44)

In the following section, a formulation for the time-domain integration of the
Maxwell’s grid equations is presented. The approach integrates the complete
Maxwell’s grid equations in time and allows the numerical simulation of fast-
changing problems. This thesis will employ the implementation of the Leapfrog
algorithm from the transient solver in CST Microwave Studio® (CST MWS).

Leapfrog Algorithm
If the Maxwell’s grid equations are applied to the transient problems with general
time dependence, then in addition to the spatial operators the time derivatives must
be still resolved. For high-frequency applications, the so-called Leapfrog scheme
has been proved to work successfully for the time integration. In the context of
simulation of electromagnetic fields, the scheme was first described by Kane S. Yee
in 1966 [85]. The FDTD, proposed by Yee, in the simplest case for Cartesian grids
coincides with the FIT in TD, as described in the following.

The starting point of the procedure, is to write the first two Maxwell’s grid equa-
tions in the form of

d
dt

_
h(t) = −Mµ−1 C_e(t) (2.45a)

d
dt

_e(t) =M−1
ε
eC_

h(t). (2.45b)
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With respect to the time derivatives this is a system of ordinary differential equa-
tions of first order. The discretization of the time derivatives for the above equations
is carried out on an equidistant grid T of the time axis [81]. For example, if the
function f (t) is sampled at the time intervals tm := t0 + m∆t, the derivative f ′(t)
can be approximated in the center of each two samples, that is at half time steps

tm+1/2 := t0 + (m + 1/2)∆t. (2.46)

That means

f ′(t0 + (m + 1/2)∆t) =
f (t0 + (m + 1)∆t) − f (t0 + m∆t)

∆t
+ O (∆t2) (2.47)

or

f ′(m+1/2) =
f (m+1) − f (m)

∆t
+ O (∆t2). (2.48)

As suggested from above, the error of this approximation is of second order of the
time step size.

The time-dependent Maxwell’s grid equations (2.45a)-(2.45b) connect the time
derivative of the discrete vector, _e or

_
h, with the other vector. For the time dis-

cretization, one of the vectors can be evaluated on the whole time steps t0 + m∆t
of the time grid, while the other vector is discretized on the half time steps
t0 + (m + 1/2)∆t. If arbitrarily will be chosen that the magnetic grid voltage
is discretized on the whole time steps

_
h
(m)

:=
_
h (tm = t0 + m∆t), (2.49)

then according to the above principle it must be also set that

_e(m+1/2) := _e (tm+1/2 = t0 + (m + 1/2)∆t). (2.50)

When the time derivatives

d
dt

_
h
(m+1/2) ≈

_
h
(m+1) − _

h
(m)

∆t
(2.51a)

d
dt

_e(m+1) ≈
_e(m+3/2) − _e(m+1/2)

∆t
(2.51b)
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Figure 2.6.: Update scheme of the Leapfrog method in which the magnetic grid
voltages are evaluated at the whole time steps tm = t0 + m∆t and the electric
grid voltages at the half time steps tm+1/2 = t0 + (m + 1/2)∆t. The recursion
includes each of the magnetic and the electrical parameters of the last time step
with length∆t.

are inserted into (2.45a) and (2.45b), the Leapfrog method follows as

_
h
(m+1)

:=
_
h
(m) − ∆t Mµ−1 C_e(m+1/2) (2.52a)

_e(m+3/2) := _e(m+1/2) + ∆t M−1
ε
eC_

h
(m+1)

. (2.52b)

The update equations (2.52a) and (2.52b) define a recursion, in which the new
vectors can be calculated by using the old values of _e and

_
h. This solution employs

an explicit formula and does not solve system of equations. The update scheme
of the Leapfrog method in which the magnetic grid voltages are evaluated at the
whole time steps tm = t0 + m∆t and the electric grid voltages at the half time
steps tm+1/2 = t0 + (m + 1/2)∆t is given with figure 2.6.

The Leapfrog scheme, as an explicit recursion method, in which only one old
vector must be used (and saved!), has a nearly optimal efficiency in the computa-
tional time of rapidly changing problems [30]. Since the algorithm only includes
matrix-vector multiplications and vector additions, the algorithm effort is compar-
atively low and the practicability on the modern computer architectures is very
good.

2.4 Finite Element Method

The Finite Element Method (FEM) is a standard tool for solving differential equa-
tions in many disciplines, e.g., electromagnetics, solid and structural mechanics,
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fluid dynamics, acoustics, and thermal conduction. The differential equations to be
solved by the FEM are given with

F u(x , t) = b(x , t), (2.53)

in the spatial domain Ω with the following boundary conditions

fs(u, t) = h(x , t) on the boundary ∂Ω. (2.54)

In the above equations, F is an operator, b denotes the source, and u is the unknown
function that has to be numerically determined. Furthermore, x is a generic point
of the domain Ω, whereas t stands for a time instant. As a matter of choice, the
functions could depend on the frequency of operation f , instead of t.

Jin [38] and Peterson [63] give good accounts of the FEM for electromagnet-
ics. Additionally, more mathematical treatments of the same topic are given in
[52, 19]. This chapter gives an introduction to the FEM for the Maxwell’s equa-
tions. A very high advantage of the FEM and certainly, the main reason why it
is a broadly used method in many branches of engineering, is its ability to deal
with complex geometries by using unstructured grids. Moreover, the unstructured
grids allow for higher resolution locally in order to resolve fine geometries and
rapid variations of the solution. Additionally, a strong point of the FEM is that it
provides a well-defined representation of the sought function everywhere in the so-
lution domain. This makes it possible to apply many mathematical tools and prove
important properties concerning the stability and the convergence.

On the other side, a disadvantage of the FEM is that the explicit formulas for
the field updates in the time-domain simulations cannot be derived in the general
case. Instead, a linear system of equations has to be solved. Consequently, the
FEM requires more computer resources, both in terms of computational time and
memory consumptions.

When using the FEM, the solution of a specific problem attains three steps: space
discretization, solution approximation, and equation approximation [54]. In the
following sections an overview of each step will be shortly presented as well as
the solution of the electromagnetic problem for a superconducting cavity will be
systematically derived by employing the FEM.

2.4.1 Space Discretization

At this step, the solution domain Ω is subdivided into cells, or elements. For
the space discretization, the FEM can use in principle any type of geometric ele-
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ments. Usually, the unstructured grids could be consisted of triangles, rectangles,
or quadrilaterals in two dimensions whereas tetrahedrons, hexahedra, and prisms
can be exploited in the 3D case. The employment of the unstructured meshes,
for instance with tetrahedrons, allows good representations of curved structures,
which can be very hardly (or impossibly) approximated on Cartesian grids. Due to
the fact that this thesis deals with cavities having curved boundaries, the tetrahe-
dral meshes have been used for their approximation.

2.4.2 Solution Approximation

After the space discretization is done, the solution should be approximated by an
expansion in a finite number of basis functions. Namely, the spatial variation of
the sought solution is described as a linear combination of space-dependent basis
functions

u(x) =
n∑

j=1

a j w j(x), (2.55)

where x is a point in the solution domain Ω, w j represents a basis function, and a j
expresses an unknown coefficient of the linear combination.

Generally, the basis functions have a number of common characteristics. In most
cases they are nonzero only on a small sub-domain of Ω, i.e. they are functions with
compact support. This choice makes the integration of the functions on the solu-
tion domain easier to be calculated. Additionally, they are typically polynomials
and a common choice is that of linear basis functions, i.e. polynomials of first de-
gree. However, in this thesis higher order polynomials will be used to increase the
accuracy of the solution while maintaining a relatively coarse spatial discretization
mesh [7].

The type of the basis functions should be appropriate to the type of the main
unknown of the problem. Thus, the choice is between scalar and vectorial ba-
sis functions. On the one hand, the scalar basis functions are allocated either on
nodes (scalar potential) or volumes (electric charge), and on the other hand, the
vectorial basis functions could be allocated on edges (field intensities) or surfaces
(flux densities). That is, if a mesh with N nodes, E edges, F facets, and T tetra-
hedra is considered, then the geometric elements of the mesh on which the basis
functions can be aligned are:

• nodes (not oriented entities)

• edges with an orientation given by the order of the nodes,
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• faces with an orientation also defined by the order of the nodes (whereby, a
cyclic permutation of the nodes expresses the same face), or

• volumes (not oriented entities).

To deal with vector quantities, such as the electric field strength ~E, a first attempt
might be to expand each vector component separately in nodal basis functions.
However, it turned out that such an approach leads to nonphysical solutions, re-
ferred to as spurious modes. This can be avoided by using edge elements [57],
which are very well suited for approximating electromagnetic fields. Once the type
of the geometric entity is chosen, the basis functions for the edge elements are con-
structed such that their tangential components are continuous across the element
borders, whereas their normal components are allowed to be discontinuous. Each
geometric element (e.g. edge) allocates one basis function. That is, each edge has
an “own” basis function and each basis function “lives” on an “own” edge. The
magnitude of each edge basis function is normalized such that the integral of the
function on the own edge is 1 and it is zero on all other edges.

For the incomplete first order elements, there are few choices of basis functions.
Each basis function has a constant tangential component along one edge and zero
tangential component along all the other edges. However, for higher order el-
ements there are more alternatives and many bases have been presented in the
literature. These can be divided into two groups: interpolatory bases [33] and
hierarchical bases [77]. The most popular bases today are the hierarchical, and
previous sets of the hierarchical basis functions include those by Webb [77], which
will be used within this thesis [36]. Webb uses results for an equilateral tetrahedron
to make the basis functions as orthogonal as possible in an L2-sense.

2.4.3 Equation Approximation

Weighted Residuals
In case that the problem to be solved (2.53)-(2.54) would be approached with an
analytical approach, the unknown solution u would be available in each point of the
spatial domain Ω. Otherwise, if a numerical technique is exploited, the unknown
u can only be calculated in a finite number of points and therefore, the relation
(2.53) will not be satisfied exactly in each point of Ω.

The residual of the equation f (u) = b is formed as

R(x) = f
�
u(x)

� − b(x), (2.56)

32 2. Electrodynamics



where x is a generic point of Ω. In case that u is the exact solution, then the residual
will be zero in every point of the domain as desirable

R(x) = 0, ∀x ∈ Ω. (2.57)

However, in general, it is not required that the residual is zero pointwise, but to be
zero in the so-called weak sense by forcing the average of the weighted residual on
the whole domain Ω to be zero

∫

Ω

g(x)R(x)dV = 0, ∀g ∈ U , (2.58)

where g is a weighting function belonging to a function space U . This relation is
usually denoted as a projection of the residual R on the function g. It should be
fulfilled for all the functions g that belong to the space U . On the occasion that
there are n geometric entities in the mesh, then the dimension of U must be also
n. Assuming that there is a basis for the space U , then all the functions of U can
be written as linear combinations of the functions in this basis. In this case, if the
equation (2.58) is fulfilled for the n basis functions of the space U , the relation will
be also fulfilled for any other function of U . Consequently, it is sufficient to perform
the projection from (2.58) only for each basis function of the space U

∫

Ω

gk(x)R(x)dV = 0, ∀gk ∈ the basis of U , (2.59)

with

R(x) = f
�
u(x)

� − b(x). (2.60)

After insertion of the expression (2.55) into (2.59), a linear system of n equations
with the n unknowns a j , j = 1...n is obtained

∫

Ω

gk · f
� n∑

j=1

a j w j

�
dV =

∫

Ω

gk · b dV, k = 1...n. (2.61)

The functions w j in the representation of the unknown u are called trial functions,
whereas the functions gk on which the projection is made are called test functions.
A well-known variant of the FEM is the Galerkin’s method, in which the weighting
(test) functions are the same as the trial functions.
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The Curl-Curl Equation
In this section, the wave equation in harmonic state will be considered as well
as a domain of space with linear, time-invariant material parameters. As already
mentioned, this thesis deals with the problem of determining the eigenfrequencies
of a closed cavity with perfect metallic walls and therefore, in the following loss-
free and source-free problem will be analyzed. When the complex transformation
is applied to the first two time-dependent Maxwell’s equations, it results in the
following system of equations

jω ~B + ∇× ~E = 0 (2.62a)

∇× ~H = jω ~D = 0 (2.62b)

together with the material relations

~B = µ ~H (2.63a)
~D = ε ~E. (2.63b)

The second-order equation in terms of the electric field strength can be derived
by combining the above equations. For a cavity with perfect metallic walls, the
tangential component of the electric field strength on the boundary will be zero

n× ~E = 0 on ∂Ω, (2.64)

whereas the electromagnetic field within the domain Ω will be defined by the fol-
lowing second-order equation

∇× �∇× ~E� − ω2µε ~E = 0. (2.65)

Edge Elements
Under the assumption that the edge basis functions are denoted by ~we, then they
will belong to the basis of the space of edge functions ~W e. According to the equa-
tion (2.55), the solution ~E can be expanded as a linear combination of the basis
functions ~we

~E(~x) =
E∑

j=1

e j ~w
e
j(~x), (2.66)

where E is the total number of mesh edges and e j denotes the unknown electric
voltage along an edge of the mesh. The essential boundary conditions for the elec-
tric field strength require that ~E has zero tangential component on the boundaries.
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Thereupon, they have to be imposed directly on the solution. In other words, the
solutions in a space of functions, which satisfy the essential boundary conditions,
are sought. The space is given with W 0

~E ∈W 0 = {~w : ~w ∈W e, ~n× ~w= 0 on ∂Ω}. (2.67)

The natural boundary conditions do not need to be imposed a-priori in the FEM
formulation, since they are built-in directly in a natural manner.

Transformation of the Equation

In the next step, a projection of the equation (2.65) is performed on a test field ~E
′
,

followed by a transformation using the generalized integration by parts and the
Gauss theorem [54]. Firstly, the equation (2.65) is multiplied by the test field ~E

′

and then integrated on the domain Ω

∫

Ω

∇× �∇× ~E� · ~E
′
=

∫

Ω

ω2µε ~E · ~E
′
, (2.68)

where the elementary volume dV is omitted and self-understood. In the Galerkin’s
method, the test functions belong to the same space as the trial functions, i.e. the
space of edge functions

~E
′ ∈W e. (2.69)

In order to reduce the order of the space-derivatives by one, the following analysis
formula will be used to transform the left-hand side of the equation (2.68)

∇ · (~F × ~G) = (∇× ~F) · ~G − (∇× ~G) · ~F . (2.70)

Consequently, the integrand in the left-hand side of (2.68) can be re-written as

∇× �∇× ~E� · ~E
′
= (∇× ~E) · (∇× ~E′) + ∇ ·

�
(∇× ~E)× ~E� (2.71)

and the equation (2.68) becomes

∫

Ω

(∇× ~E) · (∇× ~E′) +
∫

Ω

∇ ·
�
(∇× ~E)× E′

�
=

∫

Ω

ω2µε ~E · ~E
′
. (2.72)
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By applying the Gauss’ theorem, the second term in the left-hand side of the above
equation can be converted into a surface integral

∫

Ω

∇ · ~F dV =

∫

∂Ω

~F · ~n dA, (2.73)

resulting in the following form of the equation (2.72)

∫

Ω

(∇× ~E) · (∇× ~E′) +
∫

∂Ω

~n ·
�
(∇× ~E)× ~E′�=

∫

Ω

ω2µε ~E · ~E
′
. (2.74)

The boundary conditions do not provide any information about the behaviour of
∇ × ~E on the boundaries. Therefore, the second integral in the left-hand side
of equation (2.74) cannot be evaluated. However, using the cyclic permutation
property

~n ·
�
(∇× ~E)× ~E′�= (∇× ~E) · �~E′ × ~n�, (2.75)

the second term can be eliminated if the tangential component of the test field
~E
′

vanishes on the boundaries. For this purpose, the test functions ~E
′

are chosen
to fulfill this condition too. Finally, the weak FEM formulation of the eigenmode
problem is as follows: for all ~E

′ ∈W 0, find ~E ∈W 0 and ω ∈ R such that

∫

Ω

(∇× ~E) · (∇× ~E′) =ω2

∫

Ω

µε ~E · ~E
′
. (2.76)

2.4.4 Matrix Assembly

At this point, the discretized form of the unknown vector field ~E is included into the
weak formulation (2.76) and the test function ~E

′
is chosen to be a basis function of

the edge-element function space
~E
′
= ~we

i . (2.77)

Subsequently, this leads to

∫

Ω

�
∇× �

E∑
j=1

e j ~w
e
j

��
·
�
∇× ~we

i

�
=ω2

∫

Ω

µε
� E∑

j=1

e j ~w
e
j

�
· ~we

i , i = 1...E. (2.78)
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The coefficients e j are independent of the point of space and therefore, they can be
taken out of the integral on Ω

E∑
j=1

e j

∫

Ω

(∇× ~we
i ) · (∇× ~we

j) =ω
2

E∑
j=1

e j

∫

Ω

µε ~we
i · ~we

j , i = 1...E. (2.79)

Finally, when this equation is written for all the values of i = 1...E, it represents a
system of equations of the form

Ae=ω2 Be (2.80)

with the matrix coefficients

Ai j =

∫

Ω

(∇× ~we
i ) · (∇× ~we

j) (2.81)

and

Bi j =

∫

Ω

µε ~we
i · ~we

j . (2.82)

The resulting problem (2.80) is referred to as the generalized eigenvalue problem,
which has motivated this work and its solution will be explained in section 4.3 on
page 69. The actual computation of the integrals in the expressions of the matrix
coefficients is performed by writing the integral on the domain as a sum of integrals
on each individual element t

Ai j =
T∑

t=1

∫

t

(∇× ~we
i ) · (∇× ~we

j). (2.83)

As the expressions of the edge functions on a particular tetrahedron are analyti-
cally known, the above integrals can be easily calculated, either analytically or by
numerical integration. It should be pointed out that although the sum extends over
all the tetrahedra in the mesh, only a few elements will make a nonzero contribu-
tion to Ai j . More precisely, only those tetrahedra, which contain the both nodes i
and j, will cause a nonzero contribution. On the other tetrahedra, ~we

i or ~we
j will be

zero due to the contact support of the edge functions. Therefore, the integrals on
the tetrahedra will be also zero.
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It can be shown that the obtained linear system of equations has the same form
as in the FIT. Particularly,

A= CT Mµ−1 C (2.84)

and

B=Mε, (2.85)

in which the discrete curl matrix C is exactly the same as in the case of FIT for a
given mesh. The difference between the two methods lies in the material matrices
Mε and Mµ−1 , which can be diagonal in the case of FIT on Cartesian meshes. In the
FEM they are always non-diagonal and their elements are given with

(Mε)i j =

∫

Ω

µε ~we
i · (∇× ~we

j) (2.86)

and

(Mµ−1)i j =

∫

Ω

~w f
i · (∇× ~w f

j ), (2.87)

where ~w f
i is the face basis function allocated on the face i.
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3 Eigenvalue Extraction from
Time-Domain Computations

In this chapter, a fast approach for an accurate eigenfrequency extraction is addressed,
taken into consideration the evaluated electric field computations in Time Domain
(TD) of a superconducting resonant structure. Upon broadband excitation of the cav-
ity, the electric field intensity is recorded at different detection probes inside the cavity.
Thereafter, Fourier analysis of the recorded signals is performed and by means of fit-
ting techniques with the theoretical cavity response model (in support of the applied
excitation) the requested eigenfrequencies are extracted by finding the optimal model
parameters in the least squares sense.

The chapter proceeds as follows. Due to the fact that the desired eigenfrequencies
are calculated with the help of the Fourier analysis, the first section of this chap-
ter reviews the fundamental basis of the Fourier transform. Additionally, digital
signal processing techniques are also applied to the data obtained by the fast time-
domain calculations and therefore, a detailed overview of the used techniques is given
in sections 3.4 and 3.3. Section 3.5 presents the proposed time-domain approach
for high-precision eigenfrequency extraction given the available electric field computa-
tions. Here, the fundamental modeling of the analyzed structure is described and the
used signal-processing techniques are discussed, followed by a description of the func-
tionality extension. Namely, the last section of this chapter addresses an extension of
the approach for an accurate eigenfrequency extraction, taken into consideration the
evaluated electric field computations in time domain of a superconducting resonant
structure.

3.1 Fourier Analysis

The real-world signals are usually continuous. However, when these signals are to
be generated, simulated, or analyzed by computers, they are approximated by sam-
ples, where the sampling process results in discrete-time signals. Additionally, the
signals can be represented either in time or frequency domain. The frequency-
domain representation is developed using the Fourier series and the Fourier trans-
form [75]. The Fourier theory originated from the approximation theory, where
a time function is represented by series of weighted basis functions with known
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forms. The Fourier representation provides an insight into the frequency contents
of the signal and hence, the signals are usually characterized by the shape and the
width of their frequency spectrum.

3.1.1 Fourier Series of Functions with Periodicity 2p

One of the most essential and useful tools for mathematical analysis of all kinds
of wave forms is the Fourier series, named after the French mathematical physicist
Jean Baptiste Joseph Fourier (1768-1830). Besides for the solution of the partial
differential equations with boundary conditions, the Fourier analysis is ubiquitous
in almost all fields of physical sciences [75, 43]. In 1822, Fourier in his work on
heat flow made a remarkable assertion that every function f (t) with a period 2p
( f (t + 2p) = f (t)) can be represented by a trigonometric infinite series of the form

f (t) =
∞∑
n=0

(an cosωn t + bn sinωn t), (3.1)

where

a0 =
1

2p

∫ p

−p

f (t)dt, (3.2)

an =
1
p

∫ p

−p

f (t) cosωn t dt, n= 1, 2, . . . , (3.3)

bn =
1
p

∫ p

−p

f (t) sinωn t dt, n= 1,2, . . . . (3.4)

An infinite series of this form is called a Fourier series and with very little restric-
tions on the function, this is indeed the case. The coefficients an and bn are known
as the Euler formulas for the Fourier coefficients, or simply as the Fourier coeffi-
cients. In essence, the Fourier series decomposes the periodic function into cosine
and sine waves. From the procedure, it can be observed that:

• The first term 1
2 a0 describes the average value of f (t) over a period 2p.

• The term an cosωn t characterizes the cosine wave with amplitude an, and n
is the number of complete cosine waves in one period 2p.

• The term bn sinωn t characterizes the sine wave with amplitude bn. One
period of 2p contains n complete sine waves.
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• Practically, an and bn are expected to decrease as n increases.

3.1.2 The Fourier Transform

The Fourier transform is a generalization of the Fourier series [75], which pro-
vides representations, in terms of a superposition of sinusoidal waves, for functions
defined over an infinite interval. Similar as the Laplace transform, the Fourier
transform is a member of a class of representations known as integral transforms.
Except of being useful in solving differential equations, the Fourier transform has
become a stepping stone in diverse applications. For example, it allows a look at
the wave functions either in the coordinate space or in the momentum space. In
the information theory, the Fourier transform enables to examine a wave form from
the perspective of both the time and the frequency domain.

The Fourier series is very useful to represent periodic functions. However, some
functions of interest, such as a single unrepeated pulse of force or voltage, are
non-periodic over an infinite range. In such a case, it could be still imagined that
the functions are periodic with the period approaching the infinity and the Fourier
series becomes the Fourier integral. To extend the concept of Fourier series to non-
periodic functions, first a function f (t) (3.1), which repeats itself after an interval
of 2p, is considered. The angular frequency is defined as

ωn = 2π fn = 2π
n

2p
=

nπ
p

and ∆ω=ωn+1 − ωn =
π

p
. (3.5)

From equation (3.5) it could be seen that as p increases, the discrete spectrum
becomes more and more dense. It will approach a continuous spectrumωn (∆ω→
0) as p →∞ and the Fourier series appears to be an integral. This is indeed the
case, if f (t) is absolutely integrable over the infinite range.

The Fourier series of a function repeating itself in the interval of 2p, can also be
written in the complex form

f (t) =
∞∑

n=−∞
cn eiωn t , cn =

1
2p

∫ p

−p

f (t)e−iωn t dt. (3.6)

Allowing a period p→∞, the Fourier integral can be derived. Given that the time-
domain function f (t) is piecewise continuous and differentiable function as well
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as absolutely integrable (that is
∫∞
−∞ | f (t)|dt is finite), the process of transforming

it into the same function in frequency domain bf (ω) is expressed as,

F{ f (t)}=
∫ ∞

−∞
f (t)e−iωt dt = bf (ω). (3.7)

The coefficient function bf (ω) with an angular frequency ω= 2π f is known as the
Fourier transform of f (t) [60]. The complex function bf (ω) can be expressed by a
real and an imaginary part, or in the form of an amplitude and a phase

bf (ω) = cfre(ω) + iÓfim(ω) = A(ω)eiP(ω), (3.8)

where cfre(ω) is the absorption part and Ófim(ω) is the dispersion part. The ampli-
tude spectrum is given by

|A(ω)|=
Ç
(cfre(ω))2 + (Ófim(ω))2, (3.9)

and the phase spectrum by

P(ω) = arctan(cfre(ω)/Ófim(ω)). (3.10)

The process of getting back from bf (ω) to f (t) is known as an inverse Fourier
transform

F−1{bf (ω)}= 1
2π

∫ ∞

−∞
bf (ω)eiωt dω= f (t). (3.11)

The multiplicative factor 1
2π can vary, dependently on the conventions.

3.1.3 Transform Pairs

A short table of Fourier transforms is given in table A.1 on page 121 [75].

Rectangular Pulse Function
The rectangular function (also called box or top-hat function) is defined as

Πa(t) =
§

1 −a ≤ t ≤ a,
0 otherwise. (3.12)
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(a) Rectangular function

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

ω

bf (ω) =F{Πa(t)}
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(b) Fourier transform of a rectangular function

Figure 3.1.: Fourier transform pair of a rectangular pulse function. (a) Rectangular
pulse function. (b) Fourier transform of a rectangular pulse function. It should be
noted that bf (0) = 2a and the zeros of bf (ω) are at ω = π/a, 2π/a, 3π/a, and so
on.

The rectangular pulse function can be expressed as a summation of Heaviside step
functions

Πa(t) = u(t + a) − u(t − a). (3.13)

Here, u(t) is a Heaviside step function defined as

u(t) =
§

1 t > 0,
0 t < 0. (3.14)

The Fourier transform of the rectangular pulse function is given by

F{Πa(t)}=
∫ ∞

−∞
Πa(t)e

−iωt dt =

∫ a

−a

e−iωt dt =

e−iωt

−iω

����
a

−a

=
e−iωa − eiωa

−iω
=

2 sinωa
ω

= bf (ω).
(3.15)

In terms of a cardinal sine function defined as sinc(x) = sin x
x , it can be obtained

that

F{ f (t)}= 2 a sinc(aω). (3.16)

This Fourier transform pair is shown in figure 3.1.
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Gaussian Function

If a Gaussian function is defined as

f (t) = e−αt2
, (3.17)

its Fourier transform is given by

F{e−αt2}=
∫ ∞

−∞
e−αt2

e−iωt dt =

∫ ∞

−∞
e−αt2−iωt dt = bf (ω). (3.18)

Completing the square of the exponential

α t2 + iωt = (
p
α t +

iω
2
p
α
)2 +

ω2

4α
, (3.19)

it follows

∫ ∞

−∞
exp

�
−
��p

αt +
iω

2
p
α

�2

+
ω2

4α

��
dt

= exp
�
−ω

2

4α

�∫ ∞

−∞
exp

�
−
�p
αt +

iω
2
p
α

�2
�

dt.

(3.20)

Applying the following substitution

u=
p
αt +

iω
2
p
α

, du=
p
αdt (3.21)

the Fourier transform can be written as

bf (ω) = exp
�
−ω

2

4α

�
1p
α

∫ ∞

−∞
e−u2

du. (3.22)

In view of the fact that ∫ ∞

−∞
e−u2

du=
p
π, (3.23)

it follows

bf (ω) =
s
π

α
exp

�
−ω

2

4α

�
. (3.24)
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(a) Gaussian function
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(b) Fourier transform of a Gaussian function

Figure 3.2.: Fourier transform pair of a Gaussian function. (a) Gaussian function
(α= 1). (b) Fourier transform of a Gaussian function. The result is another Gaussian
function.

It is interesting to note that bf (ω) is also a Gaussian function with a peak at the
origin. In case of f (t) being sharply peaked (large α), then bf (ω) is flattened, and
vice versa. This is a general feature in the theory of Fourier transforms. The Fourier
transform pair of a Gaussian function is shown in figure 3.2.

3.1.4 Properties of the Fourier Transform

There are several important properties for the Fourier transform [75, 22], which
will be used throughout this work and therefore, discussed in the following.

Symmetry Property

The symmetry property of the Fourier transform can help to avoid many compli-
cated mathematical manipulations and it is defined as

if F{ f (t)}= bf (ω), then F{bf (t)}= 2π f (−ω). (3.25)
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Linearity Property

If F{ f (t)}= bf (ω) and F{g(t)}= bg(ω), then

F{a f (t) + b g(t)}=
∫ ∞

−∞

�
a f (t) + b g(t)

�
e−iωt dt

= a

∫ ∞

−∞
f (t)e−iωt dt + b

∫ ∞

−∞
g(t)e−iωt dt

= aF{ f (t)} + bF{g(t)}= a bf (ω) + b bg(ω).

(3.26)

Similarly,

F−1{a bf (ω) + b bg(ω)}= aF−1{bf (ω)} + bF−1{bg(ω)}
= a f (t) + b g(t).

(3.27)

Time Shifting

In case that the time is shifted by a, in the Fourier transform

F{ f (t − a)}=
∫ ∞

−∞
f (t − a)e−iωt dt, (3.28)

after substituting t − a = x , dt = dx , t = x + a, it can be obtained

F{ f (t − a)}=
∫ ∞

−∞
f (x)e−iω(x + a) dx

= e−iωa

∫ ∞

−∞
f (x)e−iωx dx = e−iωa bf (ω).

(3.29)

It should be pointed out that a time delay will only change the phase of the Fourier
transform and not its magnitude. For example,

sinω0 t = cos (ω0 t − π
2
) = cosω0(t −

π

2
1
ω0
). (3.30)
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Thus, if f (t) = cosω0 t, then sinω0 t = f (t − a) with a = π
2

1
ω0

. Therefore,

F{A sinω0 t}= e−iωπ2
1
ω0F{A cosω0 t}

= e−iωπ2
1
ω0
�
Aπδ(ω − ω0) + Aπδ(ω + ω0)

�

= e−i π2 Aπδ(ω − ω0) + ei π2 Aπδ(ω + ω0)

= −i Aπδ(ω − ω0) + i Aπδ(ω + ω0).

(3.31)

Frequency Shifting

Assuming that the frequency in bf (ω) is shifted by a constant a, its inverse is multi-
plied by a factor of eiat . Given that

F−1{bf (ω − a)}= 1
2π

∫ ∞

−∞
bf (ω − a)eiωt dω (3.32)

and by substituting$=ω − a, it follows

F−1{bf (ω − a)}= 1
2π

∫ ∞

−∞
bf ($)ei ($+ a) t d$= eiat f (t) (3.33)

or
bf (ω − a) =F{eiat f (t)}. (3.34)

To illustrate the effect of frequency shifting, the case when f (t) is multiplied by
cosω0 t is considered. Since cosω0 t = 1

2 (e
iω0 t + e−iω0 t), one can write

f (t) cosω0 t =
1
2

eiω0 t f (t) +
1
2

e−iω0 t f (t) (3.35)

and accordingly,

F{ f (t) cosω0 t}= 1
2
F{eiω0 t f (t)} + 1

2
F{e−iω0 t f (t)}

=
1
2
bf (ω − ω0) +

1
2
bf (ω + ω0).

(3.36)

This process is known as modulation. In other words, when f (t) is modulated by
cosω0 t, its frequency is symmetrically shifted up and down by ω0.
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3.1.5 Convolution

Mathematical Operation of Convolution
The convolution c(t) of two functions f (t) and g(t) is usually written as f (t)∗ g(t)
and is defined as

c(t) =

∫ ∞

−∞
f (τ) g(t − τ)dτ= f (t) ∗ g(t). (3.37)

The mathematical operation of the convolution consists of the following steps [75,
22]:

• Take the mirror image of g(τ) to create g(−τ).

• Shift g(−τ) by an amount t to get g(t − τ). In case that t is positive, the
shift is to the right, otherwise, it is to the left.

• Multiply the shifted function g(t − τ) by f (τ).

• The area under the product of f (τ) and g(t − τ) is the value of the convo-
lution at t.

Time Convolution Theorem
The time convolution theorem is defined as

F{ f (t) ∗ g(t)}= bf (ω) bg(ω). (3.38)

By definition,

F{ f (t) ∗ g(t)}=
∫ ∞

−∞

�∫ ∞

−∞
f (τ) g(t − τ)dτ

�
e−iωt dt. (3.39)

Interchanging the τ and t, the integration results in

F{ f (t) ∗ g(t)}=
∫ ∞

−∞
f (τ)

�∫ ∞

−∞
g(t − τ)e−iωt dt

�
dτ. (3.40)
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With the following substitution t − τ= x , t = x + τ, dt = dx , it can be obtained

∫ ∞

−∞
g(t − τ)e−iωt dt =

∫ ∞

−∞
g(x)e−iω(x+τ) dx

= e−iωτ

∫ ∞

−∞
g(x)e−iωx dx = e−iωτ bg(ω).

(3.41)

Therefore,

F{ f (t) ∗ g(t)}=
∫ ∞

−∞
f (τ)e−iωτ bg(ω)dτ= bg(ω)

∫ ∞

−∞
f (τ)e−iωτ dτ

= bg(ω) bf (ω).
(3.42)

Frequency Convolution Theorem

The frequency convolution theorem is given with

F−1{bf (ω) ∗ bg(ω)}= 2π f (t) g(t). (3.43)

The proof of this theorem is also straightforward. By definition,

F−1{bf (ω) ∗ bg(ω)}= 1
2π

∫ ∞

−∞

�∫ ∞

−∞
bf ($) bg(ω − $)d$

�
eiωt dω

=
1

2π

∫ ∞

−∞
bf ($)

�∫ ∞

−∞
bg(ω − $)eiωt dω

�
d$.

(3.44)

If ω − $= Ω, ω= Ω + $, and dω= dΩ, then

F−1{bf (ω) ∗ bg(ω)}= 1
2π

∫ ∞

−∞
bf ($)ei$t d$

∫ ∞

−∞
bg(Ω)eiΩt dΩ

= 2π f (t) g(t).

(3.45)

Clearly, this theorem can also be written as

F{ f (t) g(t)}= 1
2π
(bf (ω) ∗ bg(ω)). (3.46)
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3.1.6 The Discrete Fourier Transform

A continuous signal x(t) is defined as a real or complex function of the time t,
which is an independent continuous variable. However, the measured signals in the
practice are limited in time. More precisely, discrete-time signals arise from either a
discrete-signal source or from the sampling of the continuous signals at the discrete
times nTs, where Ts is the sampling frequency and n is a positive integer. The
discrete-time signals x(nTs) are therefore, real or complex functions of a discrete-
time variable. The discrete-time signals can also be analyzed or decomposed into a
series of sines and cosines.

On the other hand, the signals can also be described by their frequency spectrum,
which defines the frequency content of the signal. Here, the Fourier transform
is useful in many applications in the engineering. The Fourier transform of the
discrete signals is called the Discrete Fourier Transform (DFT) [22, 43, 60] and is
defined as

X (n∆ f ) =
1
N

N−1∑
k=0

x(kTs)e
− j 2πn∆ f k Ts =

1
N

N−1∑
k=0

x(kTs)e
− j 2πn k/N , (3.47)

where x(n) is a discrete signal with length equal to N . This representation is re-
versible and no information can be lost. The DFT dominates most signal processing
strategies, expedites the interpretation of the signals, enlarges the characterization
of the systems, and improves the efficiency of the algorithms [69].

Another form of the DFT is the Fast Fourier Transform (FFT) that plays an im-
portant role in the simulation of the systems. The FFT is defined in a similar way to
the DFT. However, it involves signals of length N that is a power of 2, which means
that the FFT can be implemented by employing time-efficient algorithms. When
using the FFT to study the frequency-domain characteristics of a signal, there are
two limits: 1) the detectability of a small signal in the presence of a larger one; 2)
the frequency resolution, which distinguishes two different frequencies.

3.2 Spectral Leakage

In reality, the signals are limited in time and nothing can be known about the sig-
nal apart from the measurement interval. For example, if the measurement of an
infinite continuous train of sinusoidal wave is of interest, at some point of time
the measurement is completed in order to do further analyses. The limit on the
time is also posed by the limitations of the measurement system, e.g. buffer size
besides other factors. Some expectations have to be made about the signal outside
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of the measured interval. The Fourier transform implicitly accounts that the signal
substantially repeats itself after the measurement interval. Most of the signals will
have discontinuities at the end points of the measurement time. Namely, the FFT
assumes that the signal repeats itself and therefore, it will assume discontinuities
that are not really there. Figure 3.3 illustrates the scenario in which a continuous
train of sinusoidal signal is observed over a finite interval of time (“measured sig-
nal”). Here, a sinusoid of 10 Hz frequency (10 cycles in 1 second) is sampled with
a sampling frequency of 120 Hz, see figure 3.3a. In figure 3.3b, the signal for less
than 0.45 seconds is observed. As discussed, the FFT assumes the signal to be con-
tinuous and it does this by placement of the measured signal repetitively near each
other, see figure 3.3c. Observing the discontinuities in the assumed signal, they are
manifestations of the measurement time relative to the frequency of the actual sig-
nal. If the measurement time is an integral multiple of the rate of the actual signal
(i.e. the inverse of the frequency of the signal), then no discontinuities will be ob-
served in the assumed signal. In figure 3.3b, the measurement time is purposefully
made to be a non-integral multiple of the actual signal rate. Since sharp disconti-
nuities have broad frequency spectra, these will cause that the frequency spectrum
of the signal is spread out. This is called a spectral leakage. As an example, the
Fourier transform pair of a finite cosine wave f (t) is to be calculated [75, 22]

f (t) =
§

cosω0 t |t|< a,
0 |t|> a. (3.48)

Since

Πa(t) =
§

1 |t|< a,
0 |t|> a, (3.49)

the f (t) can be written as

f (t) = cosω0 t · Πa(t). (3.50)

The following Fourier pairs will help in the calculation of the Fourier transform of
the finite wave train (3.48)

F{cosω0 t}= πδ(ω + ω0) + πδ(ω − ω0) (3.51)

and

F{Πa(t)}=
2 sin aω
ω

. (3.52)
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(a) Actual signal input
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(b) Measured interval
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(c) Signal assumed by FFT

Figure 3.3.: (a) Actual sinusoid of 10 Hz frequency is sampled with a sampling fre-
quency of 120 Hz. (b) Measured signal for less than 0.45 seconds. (c) The FFT as-
sumes the signal to be continuous by placement of the measured signal repetitively
near each other.
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According to the convolution theorem, it follows

F{ f (t)}= 1
2π
F{cosω0 t} ∗ F{Πa(t)}

=
1

2π

�
πδ(ω + ω0) + πδ(ω − ω0)

� ∗ 2sin aω
ω

=

∫ ∞

−∞

�
δ(ω′ + ω0) + δ(ω

′ − ω0)
� sin a (ω − ω′)
(ω − ω′) dω′

=
sin a (ω + ω0)
ω + ω0

+
sin a (ω − ω0)
ω − ω0

.

(3.53)

At the end, it can be noticed that the spectrum is convolved with a cardinal sine
function, which leads to a spectral leakage.
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(a) Sine wave signal
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(b) Amplitude spectrum of sine wave

Figure 3.4.: (a) Sinusoidal signal of 10 Hz frequency, which has been measured for
0.7 seconds and sampled with a sampling frequency of 120 Hz. (b) Amplitude spec-
trum of the sine wave from (a).

In order to visualize the concept of the spectral leakage, the sinusoidal signal in
figure 3.4a is observed for 0.7 seconds (7 cycles in total) and afterward, the FFT of
the observed signal is performed. Figure 3.4b illustrates the frequency spectrum of
the measured signal. Essentially, the frequency spectrum contains a distinct peak at
10 Hz and some spectral leakage because of the limited observation interval. Here,
the observation time interval contained an integral number of sinewave cycles,
i.e. exactly 7 cycles of the sinusoid in the Time Domain (TD). For the next illustra-
tion the measurement time interval is adjusted in such a way that the number of
cycles in the observation window is no longer an integer. In figure 3.5a, the signal
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is shrunk and observed for 0.649 seconds, which implies that there are 6.49 cycles
and the resulting signal does not end at zero amplitude for t = 0.649 seconds. This
scenario gives rise to glitches in the signal assumed by the FFT, which constructs a
periodic signal from the observed signal. Obviously, more spectral leakage can be
observed here when compared to the frequency spectrum in figure 3.4b. The spec-
tral leakage is not due to the FFT, but due to the finite observation time. It gives
rise to two problems : 1) the spectral component of the desired signal no longer
contains the complete energy. It also contains the energy of the adjacent compo-
nents and the noise and thereby, it reduces the signal to noise ratio; 2) the spectral
leakage from a larger signal component may significantly overshadow other smaller
signals, making them difficult to identify or detect.

The effects of spectral leakage may be reduced if the observed signal does not
enclose any discontinuity at the end of the measurement time. This scenario rarely
occurs in any real application. Another scenario in which the spectral leakage can
be reduced is by having a signal that gradually reduces to zero at the ends of the
measurement time. All the windows, like Hamming, Hanning, Bartlett, and so
on, essentially attempt to do this. Such signal would have no discontinuity when is
periodically repeated and will not deteriorate from spectral leakages. Consequently,
the windowing techniques are used to lessen the effects of spectral leakage and
therefore, the restriction of having a finite measurement interval.

3.3 Windowing

In effect, the process of measuring a signal for a finite time is equivalent to mul-
tiplying the signal by a rectangular function of unit amplitude, which lasts for the
duration of the measurement time. This way, the signal is measured during a
finite measurement time or window, and the rectangular function is called a rect-
angular window. The effects of spectral leakage can be reduced by decreasing the
discontinuities at the end points of the measurement interval. This leads to the
idea of multiplying the signal within the measurement time by some function that
smoothly reduces the signal to zero at the end points. The process of multiplying
the signal data by a function that smoothly approaches to zero at the both ends
is referred to as a windowing and the multiplying function is termed as a win-
dow function [22, 4, 5]. The effects of a window function can be easily evaluated,
i.e. the frequency spectrum of the signal is convolved with the frequency spectrum
of the window function.

In the special case of the rectangular window, the window function is 1 in the
interval and 0 outside the interval. Its Fourier transform is known as the sinc
function, or more formally the Dirichlet kernel. Figure 3.5 illustrates the effect of
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(a) Non-periodic sine wave signal
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(b) Amplitude spectrum of a sine wave with
leakage
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(c) Windowed sine wave signal

0

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60
Frequency / Hz

bc bc bc bc bc

bc

bc bc

bc

bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc bc

1

(d) Amplitude spectrum of a sine wave show-
ing no leakage

Figure 3.5.: Comparison of a non-periodic sine wave and its amplitude spectrum
with leakage to the windowed sine wave and its amplitude spectrum showing no
leakage.

applying a Gaussian window to a non-periodic sine tone. Observing the figure 3.5c,
it is evident that when a Gaussian window is applied, the leakage present in the
amplitude spectrum is reduced (see figure 3.5d). The resulting spectrum is a sharp
narrow peak and it should be noticed that it does not have exactly the same shape
as the FFT of the original periodic sine wave in figure 3.4b. However, the frequency
errors resulting from the spectral leakage are corrected. Finally, the windowing
procedure diminishes the effects of spectral leakage in order to better represent the
frequency spectrum of the data.
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3.4 Parametric Fitting

The Curve Fitting Toolbox from MATLAB [50] provides functions in order to fit
curves and surfaces to data. The toolbox performs exploratory data analyses, pre-
processes and post-processes data, compares candidate models, and removes out-
liers. In addition, regression analysis can be conducted, using the provided library
of linear and nonlinear models or specifying own custom equations. The library
provides optimized solver parameters and starting conditions to improve the qual-
ity of the fits. After creating a fit, variety of post-processing methods for plotting,
interpolation, and extrapolation can be applied as well as the confidence intervals
can be estimated. The process of fitting requires a model that relates the response
data to the predictor data using one or more parameters, where as a result the
“true” unknown parameters of the model that fit to the data are estimated [25].

3.4.1 Parametric Fit with Library Models

The parametric fit involves finding coefficients (parameters) for one or more mod-
els that fit to the data. The data is assumed to be statistical and is divided into
deterministic and random component [50]. The deterministic component is given
by a parametric model and the random component is often described as error asso-
ciated with the data (random variations in the data that follow a specific probability
distribution, mostly Gaussian). More detailed, the parametric model is a function of
the independent (predictor) variable and one or more coefficients having a physical
significance.

As explained in section 3.3, the theory dictates the model for determining the
eigenfrequencies. Thus, according to figure 3.5d, where the Gaussian peaks de-
scribe the eigenmode spectrum, it is obvious that the model should be Gaussian.
Therefore, the model to use in the fit is given by

Y = a e−
(x − b)2

c2 , (3.54)

where the coefficients a, b, and c are estimated by the fit. The toolbox library
contains the desired parametric equation (3.54) and at the same time it calculates
the optimal default coefficient starting points for the Gaussian model, based on the
current data set corresponding to a widened Dirac pulse. Moreover, the library
model uses an analytic Jacobian and offers quick convergence [50].
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3.4.2 Custom Parametric Fitting

Although the Curve Fitting Toolbox from MATLAB has a wide diversity of curve
functions coupled with optimal start points for their coefficients, not all of the
desired parametric equations are contained in it. In consequence, the fit of a sinu-
soidal Gaussian modulated signal needs a custom model, given with the following
custom equation that is nonlinear in the parameters

Y = a sin(2π b x − ϕ) e−
(x − d)2

2 c2 . (3.55)

The Curve Fitting Toolbox uses the nonlinear least-squares formulation to fit a
nonlinear model to data. Further, Gaussians, ratios of polynomials, and power
functions are all nonlinear, defined as equations that might be nonlinear in the
coefficients, or a combination of linear and nonlinear in the coefficients. For the
custom models, the toolbox chooses unconstrained and random default starting
points on the interval [0,1] and hence, suitable start points for the custom mod-
els have to be found. Considering that the custom equation fit uses the nonlinear
least-squares fitting procedure, as a result the fit could be less efficient and usually
slower than the linear least-squares fitting.

3.4.3 Nonlinear Least Squares

The nonlinear models are given in matrix form by the formula

y = f (X ,β) + ε, (3.56)

where y denotes a vector of responses, f stands for a function of β and X , β
is a vector of parameters, X represents a design matrix for the model, and ε is a
vector of errors. The fitting process itself uses the method of nonlinear least squares
[56, 46], which minimizes the summed squares of the residuals given by

S =
n∑

i=1

r2
i =

n∑
i=1

(yi − ŷi)
2. (3.57)

The residual ri for the i-th data point is defined as the difference between the ob-
served response value yi and the fitted response value ŷi . The number of data
points included in the fit is given with n. In case of nonlinear models, the pa-
rameters cannot be estimated using simple matrix techniques and these models
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are particularly sensitive to the starting points. This leads to a difficult fit and the
start points are adjusted because heuristic approaches or random values give the
start points for the nonlinear models. Therefore, at the beginning initial reasonable
starting value for each parameter is provided. Then, the iterative approach follows
some steps until the fit reaches the specified convergence criteria. After a fitted
curve for the current set of parameters is produced, an adjustment of the parame-
ters and a determination whether the fit improves or not are done in the next step.
The fitted response value ŷ is given by ŷ = f (X ,β) and involves the calculation of
the Jacobian of f (X ,β), which is defined as a matrix of partial derivatives taken
with respect to the parameters. At the end, the direction and the magnitude of
the adjustment of the parameters depends on the long-established and widely-used
Levenberg-Marquardt fitting algorithm proposed in [45, 49, 53].

3.5 Time-Domain Approach for Eigenfrequency Extraction

This section provides a brief overview of a precise time-domain approach for eigen-
frequency extraction, which is applicable for diverse cavity structures under the
assumption of accessible time-domain field responses. In a two-step process, the
modeling and the simulation of a specific cavity structure is initially done and af-
terward, a post-processing of the acquired time-domain responses is conducted. A
descriptive sketch of the proposed time-domain approach is given in algorithm 1.

3.5.1 Field Simulation in Time Domain

The cavity of interest is modeled in CST Microwave Studio® (CST MWS) [2] and
a tiny exciting antenna (as used in a physical model) is put properly such that
the modes within a specific frequency range would be excited. Intentionally, the
excitation signal applied at the antenna input has a broad bandwidth. A Gaussian-
modulated sinusoidal signal is chosen, which certainly covers the range of eigenfre-
quencies being sought. The time-domain simulation with hexahedral discretization
mesh is carried out with the transient solver from CST MWS and it records the
electric field intensity at specific field-detection probes placed at various positions
inside the cavity. Later, the acquired time-domain signals are used for further post-
processing in MATLAB [3], based on fitting techniques with a proposed model of
the cavity response, as follows below.
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3.5.2 Post-processing of the Time-Domain Computations

In view of the fact that this thesis deals with cavities having superconducting walls,
the response of a cavity could stay for a long time as the power losses in the walls
are negligible. Theoretically, the response of an ideal-conducting cavity is a Dirac
impulse sequence in frequency domain. Nevertheless, due to the limited time in-
terval as well as the finite conductivity and the inserted antenna, the amplitude
spectrum of the signal does not contain Dirac delta pulses, but it consists of pulses
with finite width. This leads to the idea of artificial windowing by multiplying the
original signal within the measurement time interval by a Gaussian function that
smoothly reduces the signal to zero at the end points of the measurement time.

As soon as the limitations that come from the finite simulation time or the re-
duced frequency resolution are overcame, the step from the recorded time-domain
to the frequency-domain response is computed using the FFT. The very classical
approach in finding eigenfrequencies is to look for local maxima of the frequency
spectrum. Consequently, local Gaussian pulses within the spectrum should be lo-
cated properly. Because the spectrum is only available on discrete sample points
with a certain resolution, the characteristic peak value may not be entirely located
on such a point, implying that the local maximum is not always the frequency that
is sought.

In this direction, the parametric fitting is involved as essential technique for
precise determination of the eigenfrequencies and reducing the amount of data re-
quired for a given resolution. Relying on the above discussion, a custom Gaussian
model is used within the MATLAB Curve Fitting Toolbox, which suits to the specific
curve fitting needs. However, following this way there is a restriction to a limited
number of samples that can be used, same as the number of samples, which consti-
tute the local Gaussian pulse. Therefore, besides the low values for the Goodness
of the Fitting (GoF), the accuracy of the eventual eigenfrequency cannot be high.
Additionally, with this approach only the amplitude information of the signal is
used, while the phase is completely neglected.

These disadvantages lead to extending the approach in a sense where the phase
information of the signal can be also included in a form that is suitable for imple-
mentation. Namely, after an initial fit of a local Gaussian pulse in frequency do-
main, this pulse is selected with a windowing function and an Inverse Fast Fourier
Transform (IFFT) is performed. From signal-processing theory it is known that
shifting in frequency domain means modulation in TD. So, a Gaussian-modulated
sinusoidal signal is expected in time domain and the frequency of the modulation
is exactly the frequency that is sought. Consequently, the resulting signal in time
domain is fitted with a custom Gaussian-modulated model of the cavity response
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and again by finding the optimal model parameters in the least squares sense the
true eigenfrequency is determined.

Require: a given time-domain signal for the electric field intensity in P(x, y, z)
{post-processing and frequency extraction in MATLAB}

1: window the signal for the electric field intensity with a Gaussian function
2: perform an Fast Fourier Transform (FFT) of the windowed signal for the

electric field intensity
3: calculate the amplitude spectrum from the Fourier data
4: for all Gaussian pulses in the amplitude spectrum do
5: locate a Gaussian pulse
6: fit the located Gaussian pulse with a Gaussian model and store the GoF1

{Goodness of the Fitting (GoF)}
7: if GoF1� 0 then
8: window the Gaussian pulse with a Gaussian function
9: for all samples not in the Gaussian pulse do

10: set the Fourier data to 0
11: end for
12: perform an Inverse Fast Fourier Transform (IFFT) to the shifted Gaussian

pulse
13: fit the Gaussian-modulated pulse with a custom Gaussian-modulated

model and store the GoF2
14: if GoF2' 100 then
15: extract the eigenfrequency from the fitting parameters
16: end if
17: end if
18: end for

Algorithm 1: Sketch of the time-domain approach for an accurate extraction of
eigenfrequencies by post-processing the signals of the electric field intensity. The
proposed approach uses the advantage that one single time-domain simulation
can provide the whole response of an electromagnetic system in a wide frequency
band.

The main advantage comparing the proposed approach with the classical ap-
proach for finding the peaks is that within this approach the phase information of
the signal is additionally used and a parametric fit with all of the data available in
the time-domain representation is applied. A more detailed explanation of the ap-
proach can be found in [12]. Additionally, the critical implementation points and
details are covered, as well as discussed within this thesis in section 5.1.
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3.6 Extension of the Time-Domain Approach for Eigenfrequency Extraction

This section addresses an extension of the approach for an accurate eigenfrequency
extraction, taken into consideration the evaluated electric field computations in
time domain of a superconducting resonant structure. Upon broadband excitation
of the cavity, the electric field intensity is recorded at different detection probes
inside the cavity. Thereafter, Fourier analysis of multiple recorded signals is per-
formed and by means of fitting techniques with the theoretical response model (in
support of the applied excitation) the requested eigenfrequencies are extracted by
finding the optimal model parameters in the least squares sense.

In more details, a possible extension to the proposed approach is to take into
account post-processing of more than one acquired time-domain response for the
analyzed superconducting cavity. Namely, all (or user selected) acquired field com-
putations could be imported in the MATLAB program for further post-processing.
After employing an FFT of each signal, a local Gaussian pulse is located within
the summed amplitude spectrum using the described technique in [12]. The in-
formation for the determined indices of a local Gaussian pulse is then used for the
separate fits, where the procedure described above is done for each original re-
sponse. Finally, the values for the coefficients representing the goodness of the fit
are compared and the eigenfrequency determined from the best fit is chosen. In
this way, the probability is increased, first, that all of the modes are properly ex-
tracted and second, that the resonant frequencies calculated with highest accuracy
are selected. At the end, with the additional computational burden the under-
lying approach is improved in terms of robustness and accuracy. A part of this
contribution was published in [13, 14].
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4 Eigenvalue Determination in
Frequency Domain

In this chapter, a fast approach for an accurate eigenfrequency determination, based
on a numerical computation of electromagnetic fields for a superconducting cavity
and further employing the Lanczos method for the eigenvalue determination, will be
addressed. The major challenges posed by this work will be: first, the ability of the
approach to tackle the large-scale eigenvalue problem and second, the capability to ex-
tract many, i.e. order of thousands, eigenfrequencies for the considered problem. The
first section of this chapter will examine one of the most important classes of meth-
ods available for computing eigenvalues and eigenvectors of large matrices. These
techniques are based on orthogonal projection methods onto Krylov subpaces, i.e. sub-
spaces spanned by the iterates of the simple power method. What may present to be a
trivial expansion of a very slow algorithm, finally shows to be one of the most success-
ful methods for extracting eigen pairs of large matrices, especially in the Hermitian
case. Here, the Lanczos algorithm with its variations will be reviewed. In this sec-
tion, some of the results derived for the generalized eigenvalue problem will be also
summarized. Lastly, the Lanczos method with polynomial filtering will be addressed.
The filtering methods can be beneficial tools for speeding up the convergence of the
standard algorithms for computing eigen pairs. They have had a great success in the
past as an aid to accelerate the subspace iteration.

4.1 Basic Lanczos Algorithm

As already stated in the introductory words of the thesis, the main aim of the thesis
coincides with solving the electromagnetic problem for a superconducting cavity,
which enclosures excited electromagnetic fields. Supposing that the Finite Integra-
tion Technique (FIT) will be utilized for the numerical electromagnetic solution,
a standard large-scale eigenvalue problem will arise at the end. A detailed steps
for the numerical solution using the FIT can be found in section 2.3 on page 15.
Afterwards, the following step is to compute the eigenvalues located in a specified
interval of a large real symmetric matrix, along with their associated eigenvectors.
The interval, which is also referred to as a window, can consist of a subset of the
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largest or smallest eigenvalues, in which case the requested eigenvalues are in one
of the two ends of the spectrum.

In this direction, an important class of techniques known as Krylov subspace
methods extracts approximations from a subspace of the form

Km(A, ~v )≡ span{ ~v , A ~v , A2 ~v , . . . , Am−1 ~v }, (4.1)

referred to as a Krylov subspace. The dimension of the subspace increases by one
at each step of the approximation process. A few well-known Krylov subspace
methods are: the Hermitian Lanczos and the Arnoldi method as well as their varia-
tions. The basic Lanczos algorithm was introduced in [42] and since then is known
as Lanczos recursion or tridiagonalization, which is used to obtain real scalars λ
and the corresponding real-valued vectors ~x 6= 0 for a given real n× n symmetric
matrix A, such that

A ~x = λ ~x . (4.2)

The main idea of the Lanczos procedure is to replace the eigenvalue problem of the
given matrix A by an eigenvalue problem of a tridiagonal Lanczos matrix T. This
can be achieved by using a three-term recurrence formula. The Lanczos procedure
is an orthogonal projection technique onto a Krylov subspace Km(A, ~v ) and can
be viewed as a simplification of the Arnoldi method for the particular case when
the matrix is Hermitian. A descriptive sketch of the Lanczos algorithm is given in
algorithm 2, where A is an n × n symmetric matrix. It reduces the matrix A to a
tridiagonal form by means of a three-term recurrence formula. Given an unit-norm
initial vector ~v1, typically generated randomly, and taking β1 = 0, the following
recurrence

β j+1 ~v j+1 = A ~v j −α j ~v j − β j ~v j−1, (4.3)

where α j = ~v ∗j (A ~v j −β j ~v j−1) and β j+1 =
����A ~v j −α j ~v j − β j ~v j−1

����, generates an or-

thonormal set of Lanczos vectors, V≡ � ~v1, ..., ~v j

	
, and a real symmetric tridiagonal

matrix T with diagonal entries {αi}i=1,..., j and subdiagonal (superdiagonal) entries
{βi+1}i=1,..., j−1 defined as

T=




α1 β2
β2 α2 β3

β3 α3
. . .

. . .
. . . β j
β j α j




. (4.4)
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1: ~v0← 0
2: β1← 0
3: for all j = 1,2, ... do
4: ~v j+1← A ~v j − β j ~v j−1
5: α j ← 〈~v j , ~v j+1〉
6: {calculate the Ritz pairs}
7: {check convergence every tenth iteration}
8: ~v j+1← ~v j+1 − α j ~v j
9: {apply reorthogonalization}

10: β j+1←
���� ~v j+1

����
11: if β j+1 == 0 then
12: break
13: end if
14: ~v j+1← ~v j+1/β j+1
15: end for
16: {compute the Ritz values θ j of T and the corresponding Ritz vectors ~y j}
17: {compute the approximate eigenvectors V ~y j}

Algorithm 2: Basic Lanczos algorithm for the solution of the standard eigenvalue
problem 4.2.

If (θ j , ~y j) is an eigen-pair of T, then the Ritz pair (θ j ,V ~y j) will approximate a
sought pair of (eigenvalue, eigenvector) for the original problem. Specifically, the
extreme eigenvalues are often approximated first. The Lanczos algorithm quickly
yields good approximations to extreme eigenvalues of A while the convergence is
often much slower for the interior part of the spectrum. The vectors α j ~v j and
β j ~v j−1 are the orthogonal projections of the vector A ~v j onto the last two generated
Lanczos vectors ~v j and ~v j−1, respectively. Thus, the Lanczos process can be seen as
an implementation of the modified Gram-Schmidt process, where in every Lanczos
iteration the newest Lanczos vector ~v j+1 is determined by orthogonalizing the vec-
tor A ~v j with respect to ~v j and ~v j−1. Additionally, it can be shown that the vector
~v j+1 is zero, and that the following relation holds

AV−VT= 0. (4.5)

To conclude, the Lanczos recursion computes a highly-structured (in fact tridiago-
nal) real symmetric matrix, which can be viewed as computationally optimal matrix
and is orthogonally similar to A. Therefore, the matrices A and T must have the
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same eigenvalues and moreover, any Ritz vector V ~y j obtained from an eigenvector
~y j of T is an approximation to a corresponding eigenvector of A.

There are however numerical problems if only a simple straightforward imple-
mentation of this recursion is realized. In general such an implementation yields
Lanczos matrices, which have extra eigenvalues in addition to the good eigenval-
ues being approximations to the eigenvalues of A. These spurious eigenvalues are
result of the losses in the orthogonality of the Lanczos vectors, which in turn are
caused by the combination of the roundoff errors resulting from the finite com-
puter arithmetic and the convergence of the eigenvalues of the Lanczos matrix
to the eigenvalues of the original matrix A. A remedy to this problem is to re-
orthogonalize the vectors when needed. Various reorthogonalization schemes have
been proposed in the literature to correct the loss of orthogonality of the Lanc-
zos vectors. Within this thesis, the Lanczos method and its variations, which have
been implemented, use the simplest for of reorthogonalization. That is the full re-
orthogonalization [68], whereby the orthogonality of the current Lanczos vector
~v j against all previous vectors ~v1, . . . , ~v j−1 is reinstated at each step j. Only for
matrices having more than ten million degrees of freedom, the implementation ex-
ploits a partial reorthogonalization [71, 66], implying that the reorthogonalization
is done only at specific iteration steps.

The convergence of the algorithm is checked in line 7 of algorithm 2. With a
given tolerance ε, the desired eigenvalues are deemed to have converged at the
j iteration if the number of sought eigenvalues of T j is the same as the number
of eigenvalues of T j−1 and the error of the sought eigenvalues, measured in the
relative and average sense, is below the tolerance ε.

4.1.1 Lanczos Algorithm with Shift-and-Invert

Along the line of the requirements, the eigenvalue solvers must deal with a variety
of issues that are arising in the eigenvalue analysis, i.e. ever-increasing size of
matrices and very wide requested frequency range of interest. When the window
is well inside the interval containing the spectrum, this is often referred to as an
interior eigenvalue problem and the eigenvalues are called interior eigenvalues. To
overcome these issues, it is naturally desirable to access the spectrum of the matrix
in consecutive parts by utilizing a proper spectral transformation. The motivation
of the spectral transformation is to modify the spectral distribution in order to find
the eigenvalues more efficiently. Specifically, if the interest is in the eigenvalues
around a certain shift σ, shift-and-invert consists of using a Lanczos projection-
type method to compute the eigenvalues of the matrix (A − σ I)−1. The obtained
eigenvalues of this matrix, θ j = (λ j − σ)−1, become the dominant eigenvalues for
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those λ j close to σ and as a result they are easy to compute with the projection
method. Finally, the sought eigenvalues are calculated in the form of a transformed
eigenvalue

λ j = σ + 1/θ j , (4.6)

where σ is the appropriately chosen shift. This transformation enables one to
find closely spaced eigenvalues in the neighborhood of σ in a well-separated form.
The computational code based on this approach selects a shift dynamically and
performs a factorization of the matrix A − σ I.

However, there are a number of situations when the shift-and-invert transfor-
mation will be either inappropriate, or too slow to be of feasible significance. For
example, it is known that the electromagnetic problems, which are solved based on
a hexahedral mesh, will tend to give matrices that are very expensive to factor due
to both the computational and the memory requirements. Also, in the situation
when a very large number of eigenvalues is to be computed, the number of factor-
izations to be performed, i.e. the number of shifts necessary to obtain all wanted
eigenvalues, can be quite high. Since the cost of each factorization is expensive, the
approach will loose its application. Therefore, the focus of this thesis highly leads
to combining two significant parts: the Lanczos algorithm on the one hand and the
polynomial filtering on the other. Hereby, the emphasis is on the eigen-space rather
than the individual eigenvectors. A detailed description of this procedure is given
in the next section.

4.2 Lanczos Algorithm with Polynomial Filtering

In this section, a technique that is commonly referred to as polynomial accelera-
tion or filtering technique will be presented. This technique exploits polynomial
iterations of the form ρ(A) ~v j , where ρ is a polynomial being determined from the
knowledge on the distribution of the sought eigenvalues of A. The main goal of the
polynomial filtering is to enhance the Lanczos projection scheme by processing the
vectors ~v j , such that their components in the unwanted parts of the spectrum are
relatively reduced to those in the wanted parts.

4.2.1 Filtering Technique

For the computation of interior eigen pairs, the Lanczos algorithm with polynomial
filtering replaces the matrix-vector product A ~v j in the standard Lanczos algorithm
by ρ(A) ~v j , where A is real symmetric matrix and ρ is a polynomial. The algo-
rithm is sketched in algorithm 3. It should be noted that A and ρ(A) share the
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same eigenvectors, and the matrix ρ(A) has eigenvalues ρ(λ1), . . . , ρ(λn), where
λ1, . . . , λn are the eigenvalues of A.

1: {determine a polynomial filter ρ(λ) with γ such that ρ(λ)≥ γ, λ ∈ [ξ,η]}
2: ~v0← 0
3: β1← 0
4: for all j = 1, 2, ... do
5: ~v j+1← ρ(A) ~v j − β j ~v j−1
6: α j ← 〈~v j , ~v j+1〉
7: {calculate the Ritz pairs}
8: {check convergence every tenth iteration}
9: ~v j+1← ~v j+1 − α j ~v j

10: {apply reorthogonalization}
11: β j+1←

���� ~v j+1

����
12: if β j+1 == 0 then
13: break
14: end if
15: ~v j+1← ~v j+1/β j+1
16: end for
17: {compute the Ritz values θ j of T and the corresponding Ritz vectors ~y j}
18: {compute the approximate eigenvalues λ j = 〈~y j ,A ~y j〉}
19: {reject all λ j , ~y j pairs such that λ j 6∈ [ξ,η]}

Algorithm 3: Lanczos algorithm with polynomial filtering for the solution of the
standard eigenvalue problem 4.2. The polynomial filter ρ(λ) is expanded in the
proper scaled and shifted basis of the Chebyshev polynomials.

A fundamental problem lies in computing an appropriate polynomial ρ in order
to approximate a step function that covers the interval of the desired eigenval-
ues [ξ,η]. If the polynomial ρ(λ) is chosen such that ρ([ξ,η]) is in an edge
region of the spectrum, the eigenvalues of the matrix ρ(A) in ρ([ξ,η]) will be ap-
proximated first. Afterward, the corresponding eigenvectors can be used to extract
the eigenvalues of the matrix A in [ξ,η]. More precisely, a polynomial, which ap-
proximates a step function to cover the interval of the desired eigenvalues [ξ,η]
can be used. However, a high-degree polynomial approximation to a discontinu-
ous step function will exhibit parasitic oscillations. Therefore, a two-stage process
[66, 67] will be adapted. First, a smooth function ϕ(λ) similar to the step function
in shape is selected and then, a polynomial approximation ρ(λ) to this function is
applied in the least squares sense. In this work, a middle-pass filter ϕ(λ) for the
calculation of the interior eigenvalues is considered.
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In order to obtain the polynomial approximation ρ(λ) to the base filter ϕ(λ),
a filtered conjugate residual polynomial algorithm [67] will be applied. Here, the
functions are expanded in the proper scaled and shifted basis of the Chebyshev
polynomials. Thus, all inner product operations as well as the adding and the
scaling operations of two expanded polynomials can be easily performed with the
expansion coefficients [67]. As a consequence of the 3-term recurrence of the
Chebyshev polynomials, the polynomial multiplication by λ can be also easily im-
plemented. The details are omitted and can be found in [66, 67]. Due to the fact
that the procedure is performed in a polynomial space, for the standard eigenvalue
problem the matrix will never be invoked and therefore, the resulting comput-
ing costs will be negligible. For the generalized eigenvalue problem, a solution of
subsequent linear system of equations is necessary.

4.3 B-Lanczos Algorithm

Another numerical method that is employed within this work for the solution of the
electromagnetic problem for a superconducting cavity is the Finite Element Method
(FEM). Supposing that the FEM will be utilized for the numerical electromagnetic
solution, a generalized large-scale eigenvalue problem will arise at the end. A
detailed steps for the numerical solution using the finite element method can be
found in section 2.4 on page 29. Afterward, the following step is to compute ex-
treme and interior eigenvalues of the generalized eigenvalue problem, along with
their associated eigenvectors. When addressing a generalized eigenvalue problem,

A ~x = λB ~x , (4.7)

where A ∈ Rn×n and B ∈ Rn×n are symmetric matrices, and B is positive definite,
the symmetry is lost because the algorithm has to work with the matrix B−1 A or
similar expressions such as (A−σB)−1 B in the case of the shift-and-invert spectral
transformation (see section 4.3.1). However, in the case of symmetric positive-
definite matrix pairs, the symmetry can be recovered by replacing the standard
Hermitian inner product, 〈~x , ~y〉 = ~y∗ ~x , by the B-inner product, 〈~x , ~y〉B = ~y∗ B ~x
[68, 15]. It can be shown that the operator matrix (B−1 A or (A − σB)−1 B) is self-
adjoint with respect to this inner product. When the Lanczos method is applied
to the operator B−1 A for the generalized eigenvalue problem (similarly for (A −
σB)−1 B), the Lanczos recursion in (4.3) can be rewritten for a randomly-generated
starting vector ~v1 with || ~v1||B = 1 as

β j+1 B ~v j+1 = A ~v j −α j B ~v j − β j B ~v j−1, (4.8)
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where

α j ≡ ~v ∗j (A ~v j − β j B ~v j−1) (4.9)

and

β j+1 ≡
����B−1 A ~v j −α j ~v j − β j ~v j−1

����
B . (4.10)

In this case, the recursion also leads to a tridiagonal reduction of the problem,
but the Lanczos vectors are B-orthonormal instead of orthonormal, i.e. V∗ BV = I
and for all j,

���� ~v j

����
B =

Æ〈 ~v j , ~v j〉B = 1. In the context of algorithm 2, this can be
accomplished by doing B-orthogonalization and replacing the 2-norm with a B-
norm. A descriptive sketch of the B-Lanczos algorithm without deflation is given in
algorithm 4.

1: ~v0← 0
2: β1← 0
3: for all j = 1, 2, ... do
4: ~v j+1← B−1 A ~v j − β j ~v j−1
5: α j ← 〈~v j , ~v j+1〉B
6: {calculate the Ritz pairs and check convergence every tenth iteration}
7: ~v j+1← ~v j+1 − α j ~v j
8: {apply reorthogonalization}
9: β j+1 =

���� ~v j+1

����
B

10: if β j+1 == 0 then
11: break
12: end if
13: ~v j+1← ~v j+1/β j+1
14: end for
15: {compute the Ritz values θ j of T and the corresponding Ritz vectors ~y j}
16: {compute the approximate eigenvectors V ~y j}

Algorithm 4: B-Lanczos algorithm without deflation for the solution of the gen-
eralized eigenvalue problem 4.7.

4.3.1 B-Lanczos Algorithm with Shift-and-Invert

Although the Finite Integration Technique (FIT) matrices are very big and very
expensive to factor due to the computational and the memory requirements, the
matrices from the Finite Element Method (FEM) based on curvilinear tetrahedrons
are not big. More precisely, by using the FEM implementation introduced in [7],
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the matrices with million Degrees of Freedom (DoF) already give very precise re-
sults. Therefore, in the situation when a very large number of eigenvalues is to be
computed, the number of factorizations to be performed, i.e. the number of shifts
necessary to obtain all wanted eigenvalues, is acceptable, since the factorization of
the FEM matrices is not computationally demanding. Consequently, an additional
interest of this thesis is to employ the B-Lanczos algorithm with shift-and-invert for
the eigenvalue determination.

Along the line of the project requirements, the eigenvalue solvers must deal
with a variety of issues arising in the eigenvalue analysis, i.e. ever-increasing size
of matrices and wide interior frequency range of interest. To overcome these issues,
it is naturally desirable to access the spectrum of the matrix in consecutive parts
by utilizing a proper spectral transformation. Applying a spectral transformation
to the original problem (4.7), such that the eigenvalues near a specified shift σ are
calculated first, one gets

(A − σB)−1B ~x = θ ~x , (4.11)

where the matrix (A−σB)−1 is never explicitly formed. Each block calculation con-
tains 100 eigenvalues and provides information for the successive target value σ.
The first time when the B-Lanczos method with shift-and-invert requires an opera-
tor multiplication, the solution of linear systems is obtained with the Lower Upper
(LU) decomposition followed by the forward-backward substitution. Once the LU
decomposition itself is computed, this procedure is repeatedly applied to solve the
multiple system of equations with different right-hand side vectors [15].
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5 Implementation Details
In this chapter, the implementation details for the approaches, which are proposed
in section 3 and 4, will be explained. The critical implementation points and details
will be covered as well as discussed within this chapter. Next, in order to verify the
applicability of the used approaches, the numerical results, obtained with the time-
and the frequency-domain methods, will be compared with the analytical solutions.
Specifically, the numerical results will be examined for the analytically resolvable cav-
ities, i.e. the rectangular, the cylindrical, and the spherical cavity. Additionally, the
robustness of the both approaches will be investigated here. The chapter is orga-
nized as follows: First, the section 5.1 summarizes the above mentioned goals for
the case when the time-domain approach is exploited for the eigenvalue calculation.
Followed by that, the section 5.2 re-summarizes the same points, but now for the
frequency-domain approach.

5.1 Time-Domain Approach

As already stated in the introductory words of the chapter, this section provides
a detailed overview of the implementation details for the precise time-domain
approach for eigenfrequency extraction, which is applicable for diverse cavity
structures under the assumption of accessible time-domain field responses. In a
two-step process, the modeling and the transient simulation of a specific cavity
structure is initially done and afterward, a post-processing of the acquired time-
domain responses is conducted in MATLAB [3]. For that reason, the sections 5.1.1-
5.1.4 of this chapter will be concerned with the implementation details for the
post-processing of the time-domain responses. Additionally, the accuracy of the
time-domain approach for eigenfrequency extraction will be tested for analytically
resolvable problems and the results will be stated in the section 5.1.5 of this chap-
ter. Due to verification purposes, rectangular, cylindrical, and spherical resonant
structures will be analyzed, whose exact solutions can be analytically evaluated. At
the end of this section, the robustness of the proposed time-domain approach will
be also examined.

In the simulation studies, it was experienced that for the time-domain field com-
putations, a single personal computer is suited for problems with a moderate num-
ber of mesh cells (say, up to several 106 mesh cells). To be precise, a computer

73



-6×103

-4×103

-2×103

0×103

2×103

4×103

6×103

0×10−8 4×10−8 8×10−8 12×10−8 16×10−8

Time / s

El
ec

tr
ic

fie
ld

/
V

m
−1

rS rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS rS

rS rS rS rS

rS

rS

rS

rS rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS rS

rS

rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS rS

rS

rS

rS

rS

rS

rS

rS

Time-domain signal Time-domain signal · Gausswin

1

Figure 5.1.: Time-domain response that is acquired from the transient solver in CST
Microwave Studio® (CST MWS) and its Gaussian windowing. The responses repre-
sent the electric field intensity of a superconducting cavity [12].

with a single core Pentium 3 GHz processor and 6 GB Read Access Memory (RAM)
memory was used. The same computer configuration was also exploited for the
time-domain method for eigenvalue extraction.

5.1.1 Limitations from the Finite Simulation Time

In view of the fact that this thesis deals with cavities having superconducting walls,
the time-domain response of a cavity could stay for a long time as the power losses
in the walls are negligible. Theoretically, the response of an ideal-conducting cavity
is a Dirac impulse sequence in Frequency Domain (FD), i.e. a summation of sinu-
soidal signals with the associated eigenfrequencies in Time Domain (TD). Never-
theless, due to the limited simulated time interval as well as the finite conductivity
and the inserted antenna, the amplitude spectrum of the signal does not contain
Dirac delta pulses, but it consists of pulses with finite width (see figure 5.2). That
is, the finite simulation time is equivalent to multiplication of the cavity response
with a rectangular windowing function of duration T = N∆t, where ∆t denotes
the time step, and N is the total number of time samples. Accordingly, the rectan-
gular windowing causes a convolution of the true spectrum with a sin f / f function
in frequency domain [48].

Important issues coming from the limitation in time are the discontinuities at the
edges of the measurement time [48]. Given that sharp discontinuities have broad
frequency spectra, these will lead to a higher side lobes level and each spectral line

74 5. Implementation Details
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Figure 5.2.: Amplitude spectrum of a time-domain response and a Gaussian win-
dowed time-domain response of a superconducting cavity. Only a part of the am-
plitude spectrum is illustrated on this figure. As expected, the amplitude spectrum
of the Gaussian windowed time-domain response consists of Gaussian pulses that
are located on the positions where the eigenfrequencies are [12].

of the frequency spectrum will be spread out in the same way. In other words,
the spreading means that the signal energy, which should be concentrated only
at one eigenfrequency, leaks instead into other frequencies, the so-called spectral
leakage. Consequently, the whole spectrum is distorted and some weak impulses,
i.e. eigenfrequencies, can be masked by the resulting convolution with neighboring
strong pulses. This leads to the idea of multiplying the original signal within the
measurement time by a Gaussian function (cf. figure 5.1) that smoothly reduces
the signal to zero at the end points of the measurement time: therefore, avoiding
discontinuities overall. The Gaussian windowing function contains the same num-
ber of samples N as the original signal. The coefficients of the N-point Gaussian
window are computed from the following equation

w(n) = e−
1
2 (

n
σN/2 )

2
, (5.1)

where − N
2 ≤ n ≤ N

2 and σ = 0.4. Since the Fourier transformation of a Gaussian
function in TD is also a Gaussian function in frequency domain, then the multipli-
cation with this window leads to a convolution of the spectrum with a Gaussian
function. As a result, in case of an ideal cavity, whose spectrum theoretically is con-
stituted of Dirac impulses located at the eigenfrequencies, Gaussian pulses would
be expected instead (see figure 5.2).
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5.1.2 Fast Fourier Transformation

As soon as the limitations that come from a finite simulation time or reduced fre-
quency resolution are overcame, the step from the recorded time-domain response
to the frequency-domain response is computed using the Fast Fourier Transform
(FFT), which yields the eigenmode spectrum as a result (cf. figure 5.2).

The very classical approach in finding eigenfrequencies is to look for local max-
ima of the frequency spectrum. However, this way is not efficient when the interest
is in precise determination of the resonant frequencies and has few drawbacks.
Firstly, the spectrum is discrete with a certain resolution and the characteristic
peak value may not be entirely located on a sample point. The eigenfrequency
could be a value that is somewhere in the range between two samples given with
the frequency resolution for certain discrete-frequency values (bins), implying that
the local maximum is not always the frequency that is sought. Secondly, a more
serious focus should be placed that the neighboring modes contribute a certain
amount to the total response at the resonance of the mode being analyzed and
affect slightly the resonant frequency. To deal with these problems, refined modal
extraction methods based on signal processing techniques have been developed.
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Figure 5.3: Operating signal during
the process of eigenfrequency ex-
traction, an isolated Gaussian pulse
within the eigenmode spectrum.
The Gaussian pulse is constituted
of several frequency samples and it
is located using the described tech-
nique from section 5.1.3. In an ideal
case, the Gaussian pulse should be
replaced with a Dirac pulse [12].

5.1.3 Technique for Locating a Gaussian Pulse

For further analysis, local Gaussian pulses (see figure 5.3) within the spectrum
should be located properly. The location process is divided into several steps. Pri-
marily, a local Gaussian pulse is found as a set of samples with a local maximum.
Thereafter, supplementary check is conducted if some other samples might be
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added to the right-most/left-most side of the current Gaussian pulse. Namely, if the
average amplitude of the succeeding right/left outer triple of samples is less than
the average amplitude of the right-most/left-most triple of samples, the outer triple
of samples is added appropriately to the right/left part of the Gaussian pulse. After
that, the empirical rule for the current located Gaussian pulse, which is constituted
from n pairs of frequency and amplitude samples ( f1, a f1), ( f2, a f2), . . . , ( fn, a fn), is
applied. For this purpose, the standard deviation σ f for the pulse is estimated and
four standard deviations are accounted for the resulting pulse with an appropriate
start from the mean value µ f for the Gaussian pulse. The standard deviation is
estimated using the following equation

σ f =

√√√
∑n

i=1 a fi ( fi − µ f )2∑n
i=1 a fi

, (5.2)

where a fi and fi denote the amplitude and the frequency value for the i-th observed
sample, respectively. In the above equation, µ f is obtained with

µ f =

∑n
i=1 a fi fi∑n

i=1 a fi

. (5.3)

At the end, the distance from the both ends of the Gaussian pulse to its maximum
is equally adjusted. Concluding with this last step, a final Gaussian pulse is lo-
cated. Once a local Gaussian pulse is determined, the standard deviation σ f and
the average µ f for this pulse are calculated for further post-processing analysis.

5.1.4 Fitting Models

By invoking the acquired knowledge of the eigenmode spectrum of the cavity,
the fitting model should be nonlinear in the parameters, i.e. a Gaussian nonlinear
model should be used to obtain the parameters. In this direction, the parametric
fitting is involved as an essential technique for precise determination of eigenfre-
quencies and reducing the amount of data required for a given resolution. Relying
on the above discussion, a Gaussian model is created within the MATLAB Curve
Fitting Toolbox, which suits to the specific curve fitting needs, as shown below

gauss= a′f e

−( f − f ′)2
2σ′f

2

. (5.4)
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Here, the parameter a′f represents the maximum value of the curve, f ′ is the fre-
quency where the peak occurs, and σ′f controls the width of the Gaussian pulse.
The model uses the method of nonlinear least squares together with the trust-
region fitting algorithm.

Next, all of the local Gaussian pulses are fitted by employing the Gaussian model
and in each fit the values for the found parameters f ′ and σ′f are saved. The pa-
rameter f ′ will be used as an initial reasonable start value of the parameters in the
further fit, whereas the parameter σ′f will be included to increase the numerical
robustness. Additionally, it should be pointed out that the values of the parame-
ter f ′ are good candidates for the eigenfrequencies, since they give the position of
the maximum value of each Gaussian pulse.

However, following this way there is a restriction to a limited number of samples
that can be used, i.e. same as the number of samples, which constitute the local
Gaussian pulse. The limitation in the samples causes that the coefficient, which
represents the goodness of the fitting, is very low. That means that the accuracy
of the eventual eigenfrequency cannot be high. Additionally, with this approach
the phase information available from the FFT is completely neglected and only the
amplitude information of the signal is used, which is not sufficient for a precise
extraction.
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Figure 5.4.: Operating signal during the process of eigenfrequency extraction, Gaus-
sian modulated signal. The signal is obtained when the Inverse Fast Fourier Trans-
form (IFFT) is performed on a shifted Gaussian pulse in frequency domain [12].

These disadvantages lead to extending the approach, in a sense where the phase
information of the signal can be also included in a form that is suitable for imple-
mentation. Namely, after fitting a local Gaussian pulse in frequency domain the
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values of the parameters and the coefficients for the goodness of the fit are ob-
tained. If the goodness of the fit for some Gaussian pulse is not positive, then this
pulse is not taken into consideration, which is most probably noise. Otherwise,
the local Gaussian pulse is selected. In other words, the samples from the Fourier
data that do not belong to the chosen Gaussian pulse are set to zero and the Gaus-
sian pulse is windowed with Gaussian windowing function. Afterward, a step from
the frequency-domain data into Time Domain (TD) is performed using the Inverse
Fast Fourier Transform (IFFT). From signal processing is known that shifting in fre-
quency domain means modulation in time domain. So, the Gaussian-modulated
sinusoidal signal is expected in time domain with the total number of time-domain
samples n, same as the number of input samples N (cf. figure 5.4). The frequency
of the modulation is exactly the frequency that is sought. Consequently, the result-
ing signal in TD is fitted with a custom Gaussian modulated model of the cavity
response, given with the following equation

gaussmodul= a′t sin(2π f ′ t −ϕ′) e
−(t− t′)2

2σ′t
2

, (5.5)

where the value for the coefficient a′t is set to be the maximum value from the
Gaussian-modulated sinusoidal signal. Again by finding the optimal model param-
eters in the least squares sense, the “true” eigenfrequency could be determined with
the help of the modulation frequency f ′. Therefore, in order to fit with a sinusoidal
Gaussian modulated signal, a custom model has been created, which implements
the method of nonlinear least squares and uses the Levenberg-Marquardt fitting
algorithm.

Parameter Start point Lower bound Upper bound

t ′ µt 0.9 ∗µt 1.1 ∗µt

f ′ µ f µ f − σ f µ f + σ f

σ′t σt 0.8 ∗σt T = tN

Table 5.1.: In order the convergence of the fit with the custom Gaussian modulated
model (5.5) to be ensured, initial values, lower, and upper bounds for the parame-
ters t ′, f ′, and σ′t should be precalculated. This table summarizes the initial values
and the bounds that have been used for the above mentioned parameters.

For the most library models, the Curve Fitting Toolbox from MATLAB calculates
optimal coefficient starting points. However, when custom models are used, the
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toolbox chooses only random starting points between zero and one. Therefore,
suitable values as well as bounds for the f ′, t ′, and σ′t parameters from the Gaus-
sian modulated model should be precalculated in order the convergence of the fit
to be ensured. This work carried out the fitting process with the parameter settings
according to table 5.1. The start value for the parameter t ′ is calculated using a
similar estimator like in (5.3). Now, the difference lies in that the response from
the IFFT is in time domain and instead of f ′, the t ′ parameter will be present in
the estimator

µt =

∑n
i=1 ati

t i∑n
i=1 ati

. (5.6)

In addition, the parameter t ′ is bounded as µt ± 10%. The initial value for the
parameter f ′ is the estimated value from (5.3) and additionally, the lower and
upper bounds for this parameter are adjusted with the help of the calculated value
in (5.2). That is, the lower and the upper bounds are set as µ f − σ f and µ f + σ f ,
respectively. In order to select an adequate value of the start point for the parameter
σ′t , an appropriate transformation has been done. Namely, the located Gaussian
pulse in FD is shifted to zero and then the IFFT is performed. The purpose of this
transformation is to obtain a Gaussian pulse in time domain with its amplitude
values âi , but not being modulated. Afterward, the mean value of this pulse µ̂t is
estimated by using (5.6) and at the same time the obtained value is used in the
following equation to approximate the start value for σ′t

σ′t =

√√√
∑n

i=1 âi (t i − µ̂t)2∑n
i=1 âi

. (5.7)

The main advantage comparing the proposed approach with the classical one for
finding the peaks, is that here the phase information obtained from the FFT is used
and a parametric fitting with all of the data available in the time-domain represen-
tation is applied. Although, the fitting based only on the amplitude information of
the signal results in poor fit, now using the phase information of the signal, very
good value for the goodness of the fit can be reached. In this way, as shown in sec-
tion 5.1.5, a very high accuracy in the eigenfrequency extraction from time-domain
computations is gained.
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5.1.5 Accuracy of the Time-Domain Approach

The accuracy of the time-domain approach for eigenfrequency extraction is tested
for both analytically and non-analytically resolvable problems. Additionally, the
proper functionality of the method has been checked during the implementa-
tion process. In the numerical tests, several resonators are considered. Namely,
due to verification purposes, rectangular, cylindrical, and spherical resonant struc-
tures are analyzed, whose exact solution can be analytically evaluated. Firstly, the
eigenvalues of the above mentioned resonators are computed from their analytical
expressions and following this way, a logarithmic relative error is calculated as

relative error= log10

�� fanalytical − fnumerical

��
fanalytical

, (5.8)

by considering the first computed mode eigenfrequency.
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Figure 5.5: Convergence of
the resonance frequency
for the TE011 mode of
the rectangular microwave
cavity with dimensions
a = 20 cm, b = 10 e cm, and
c = 10π cm. The rectangular
cavity has been discretized
with several hexahedral
meshes and the numerical
solution is compared to the
analytical one.

Rectangular, Cylindrical, and Spherical cavity
As a first experiment, a rectangular cavity with perfectly conducting walls, con-
taining a perfect vacuum, is considered. The degeneracy is broken by making
the side lengths different, i.e. rectangular resonator with dimensions a = 20 cm,
b = 10 e cm, and c = 10π cm. The resonance frequency of the rectangular mi-
crowave cavity for the TE011 mode (the mode with the lowest cutoff frequency for
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Figure 5.6.: Relative deviation of the numerically obtained values f̂ for the lowest
eigenfrequency to the analytical result f as a function of the hexahedral mesh cells
for a rectangular, cylindrical, and spherical resonator [12].

a rectangular waveguide where c > b > a) is found by imposing the boundary con-
ditions on the electromagnetic field expressions in which all of the field components
vary sinusoidally at a single frequency [64]. Figure 5.5 illustrates the convergence
of the resonance frequency for the TE011 mode of the rectangular microwave cavity.
Here, the rectangular cavity has been discretized with several hexahedral meshes
and the numerical solution is compared to the analytical one.

In addition, the fundamental mode in a cylindrical cavity [65] with radius R =
20 cm and length L = 10π cm is calculated, too. The cylindrical cavity also has
perfectly conducting walls and it is filled with a perfect vacuum. For the analyzed
cylindrical cavity, since the L does not fulfill L > 2.03 R, the TM010 mode constitutes
the fundamental oscillation. The mode of interest has azimuthal symmetry and the
electric field has no longitudinal variation (δE/δz = 0).

Lastly, the first TM101 mode of a superconducting spherical resonator with a
radius R = 1 m is computed from the analytical expressions given in [31] and by
employing the root finding algorithm of transcendental equations, which is simply
explained in [64].

Specifically, for the time-domain field simulations several different discretization
meshes have been used and the convergence study based on the calculation of the
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Figure 5.7.: Comparison of the different approaches for calculating the resonance
frequency for the TE011 mode of the rectangular microwave cavity with dimensions
a = 20 cm, b = 10 e cm, and c = 10π cm. The rectangular cavity has been dis-
cretized with 1, 109,862 hexahedral mesh cells. Here, the analytically calculated
eigenfrequency has been compared with the time-domain approach for eigenfre-
quency extraction, when fitting in time or in frequency domain is used.

relative error, given with (5.8), is shown in figure 5.6. As the number of discretiza-
tion mesh cells increases, the difference between the analytical and the numerical
solutions becomes smaller and absolute error in order of 10−4 is present. So, fast
convergence is observable and it should be emphasized. Moreover, as suggested
by the convergence study, a good accordance of the numerical with the analytical
results is evident.

In the next part, the precision of the eigenfrequencies found with a parametric
fit in frequency domain and in time domain is compared to the analytical solution
for the rectangular cavity. Namely, the resonance frequency for the TE011 mode of
the rectangular microwave cavity has been analytically calculated and compared
in figure 5.7 with the time-domain approach for eigenfrequency extraction, when
fitting in time or in frequency domain has been used. On the abscissa is given the
frequency in MHz together with the results that are obtained from the different
approaches. The first approach for an eigenfrequency calculation, at the left, is the
time-domain approach using fitting in frequency domain. Next, the time-domain
approach is also demonstrated, but instead fitting in frequency domain now the
first mode is calculated using a parametric fit in time domain. At the right of the
figure, the analytically calculated frequency for the first mode is shown. As already
mentioned above, the eigenfrequencies, which are calculated using the parametric
fitting in frequency domain are less accurate than the eigenfrequencies determined
with the help of a parametric fit in time domain (cf. figure 5.7). Considering these
results for the TE011 mode, as well as for all other calculated eigenfrequencies,
it can be concluded that using the proposed approach with fitting in frequency
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domain can lead to inaccuracy and slightly shifting of the value for the preferable
eigenfrequency. Subsequently, the error can be critical for some applications and it
should be avoided. At the same time, better agreement between the values for the
eigenfrequency found with the proposed time-domain approach using a parametric
fit in time domain and the analytical solution is evidently illustrated with the same
figure.

5.1.6 Robustness of the Time-Domain Approach

As suggested by the convergence study, shown in figure 5.6, a good agreement of
the numerical with the analytical results is evident. The same can be observed in
figure 5.8, where the numerically calculated results for a spherical cavity within the
specified frequency range are presented and compared to the analytical solution.
The radius of the analyzed sphere is R = 1 m. On the abscissa the frequencies
in an a priori selected frequency band are given, i.e. from 150 up to 450 MHz.
The ordinate shows the eigenfrequencies obtained with the time-domain approach
using different hexahedral meshes together with the analytical solution. The total
time for the transient simulation was set to 3.5e-05 s, which results in frequency
resolution of 30 kHz. Additionally, two post-processing scenarios with one and two
probes have been taken into consideration.

150 200 250 300 350 400 450
Frequency / MHz

Cells: 30,690

Cells: 242,048

Cells: 2,046,744

Analytical solution

Cells: 2,046,744 1 probe

2 probes

2 probes

2 probes
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Figure 5.8.: Convergence study showing a comparison between the eigenfrequen-
cies calculated with the proposed time-domain approach (red and green color)
and the analytically obtained eigenfrequencies (blue color). The analyzed structure
within this study is the spherical cavity with a radius R = 1 m. For the time-domain
approach three different hexahedral discretization meshes have been used and two
post-processing scenarios with one and two probes have been taken into consider-
ation. One frequency around 400 MHz is missing when using only one probe.
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The results indicate surely that the number of eigenfrequencies found with the
proposed time-domain approach, in the case of two probes being post-processed,
coincides with the analytical solutions, i.e. no additional frequency is added or no
frequency is missed. In addition, such check was conducted for all of the calculated
eigenfrequencies, implying that the serial program implementation has proven to
work in a robust and stable fashion under a wide range of circumstances. Never-
theless, observing the same figure, it is obvious that one probe in this case is not
enough for robust extraction of all desired eigenfrequencies. Therefore, with the
proposed extension of the time-domain approach, as explained in section 3.6, the
robustness of the underlying approach is significantly improved. Concerning the ac-
curacy of the obtained data, figure 5.8 suggests slightly shifting of the frequencies
in case of coarse meshes. According to figure 5.6, this behavior is expected.

5.2 Frequency-Domain Approach

In this section, a complete overview of the implementation details for the
frequency-domain approach is provided. The proposed approach is based on a
Finite Integration Technique (FIT) or a higher order Finite Element Method (FEM)
computation of the electromagnetic fields for a superconducting cavity. Further,
it employs the Lanczos method for the eigenvalue determination. As a result,
the method consists of several steps. First, the related geometries are modeled
and meshed in CST Microwave Studio® (CST MWS) [2]. Afterwards, the corre-
sponding mesh information is passed to the Computational Electromagnetics 3D
(CEM3D) solver [7] in order to generate the sparse matrices, which are used as in-
put for the Lanczos eigenvalue solvers. The details for these two steps are presented
in section 5.2.1 of this chapter. At the end, the algebraic eigenvalue problems are
solved with the help of the Lanczos eigenvalue solvers and their details towards a
numerical solution are explained in 5.2.2. It should be noted that the accuracy of
the frequency-domain method for eigenfrequency determination is also tested for
analytically resolvable problems and the results are discussed in section 5.2.3. In
order to verify the approach and to test the implemented code, a spherical cavity
is analyzed, whose exact solutions can be analytically evaluated. Moreover, the ro-
bustness of the proposed frequency-domain approach is examined in section 5.2.4
of this chapter.

The simulation studies were performed on a computer with a 64 bit architecture,
64 GB of RAM memory, and two quad-core Intel Xeon X5472 processors, clocked at
3 GHz.
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5.2.1 Numerical Setup

Within this thesis, the excited electromagnetic fields inside closed resonators are
considered, under the assumption of perfectly electric conducting walls. For this
purpose, in all simulations the related geometries are first modeled and meshed
in CST Microwave Studio® (CST MWS) and the corresponding mesh related in-
formation is passed to the CEM3D eigenmode solver [7] in order to generate the
sparse matrices used as input for the Lanczos eigenvalue solvers. Here, the CEM3D
eigenmode solver, developed by W. Ackermann, is used for the matrix pencil gener-
ation as well as for the accurate determination of the eigenfrequencies for a given
structure. The program is built on the top of the Portable, Extensible Toolkit for
Scientific Computation (PETSc) library [10] and it has the capability to run on a
distributed memory machine with multiprocessors in parallel.

It is also worth mentioning that the CEM3D program solves the electromagnetic
problem either with the Finite Integration Technique (FIT) or with a higher order
Finite Element Method (FEM). Respectively, the outcome is either a standard or a
generalized eigenvalue problem, derived from the Maxwell’s equations for a loss-
free and source-free bounded domain with perfectly electric conducting walls on
its surface. In case that the FEM has been exploited, then the result is a generalized
eigenvalue problem for given real symmetric sparse matrix pencils A and B. The
user is referred to section 2.4 for more details. On the other side, the FIT leads to
a standard eigenvalue problem for a given real symmetric sparse matrix A. The ap-
propriate derivations when using the FIT can be found in section 2.3. The CEM3D
solver implements the Jacobi-Davidson method and determines the eigenvalues of
the generalized eigenvalue formulation.

5.2.2 Lanczos Eigenvalue Solvers

Prior to comparing the numerically obtained results by the frequency-domain
method with the analytical ones, an additional useful information about the Lanc-
zos solvers settings will be presented. The dedicated Lanczos solvers are imple-
mented in C/C++ and based on the commonly used libraries: Intel Math Kernel
Library (MKL) 10.2 / Basic Linear Algebra Subprograms (BLAS) and Linear Algebra
Package (LAPACK) for the linear algebra operations and the solution of tridiagonal
eigenvalue problem [37], SuperLU [47], and PETSc [10]. The main challenges for
the implementation can be itemized as high computational and memory consump-
tions for the solution of the linear system of equations, supplementary algebraic op-
erations as well as compute- and communication-intensive portions of the codes for
the calculation of thousands of (interior) eigenfrequencies. Thus, the implementa-
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tion is parallel and exploits all parallelism from a multithreaded and multiprocess
implementation of the used libraries [15].

Since the FIT and the FEM matrices are ever-increasing large and sparse ma-
trices, it was essential that the nonzero entries are stored in the most economical
manner that minimizes the amount of storage, i.e. the default matrix representa-
tion within the PETSc library (Compressed Sparse Row (CSR)) is used. At this
point, it should be pointed out that the parallel vectors and the sparse matri-
ces can be easily and efficiently assembled through the mechanisms provided by
PETSc. The library enables parallel computing by employing the Message Passing
Interface (MPI) standard for all message-passing communication. Analogously, this
facilitates computational engineering analyses of unprecedented complexity to be
performed. Furthermore, PETSc enables a great deal of runtime control for the user
without any additional coding cost. The runtime options include control over the
choice of solvers and problem parameters as well as the generation of performance
logs.

The Lanczos solvers can be used for the solution of the problems formulated
in either the standard or the generalized form. In case of the standard eigen-
value problem A ~x = λ ~x , see sections 4.1 and 4.2, the repeated computations
of matrix-vector products A ~x are the only large-scale linear operations. Addi-
tionally, three vectors for the three-term recurrence formula are saved, at least
if no form of reorthogonalization is used. However, for bigger matrices the im-
plementation exploits partial reorthogonalization [71], which is favored over the
full reorthogonalization [68], implying that the reorthogonalization is done only at
specific iteration steps.

Similarly to the B-Lanczos eigenvalue solver, the B-Lanczos Shift-and-Invert (SI)
solver implements a Lanczos method for the solution of the generalized eigenvalue
problem by means of a spectral transformation. In case of the generalized eigen-
value problem (see section 4.3), the repeated computations of matrix-vector prod-
ucts are not the only large-scale operations. More importantly, the B-Lanczos solver
requires a solution of a linear system of equations for the positive-definite matrix B.
When extreme eigenvalues are sought, at each B-Lanczos iteration step, an itera-
tive Conjugate Gradient (CG) method (implemented in PETSc) along with Jacobi
preconditioner are used for the solution of the resulting linear system of equa-
tions. However, for the interior eigenvalue determination, the B-Lanczos solver
with spectral transformation requires a solution of an indefinite system of linear
equations at every step. Typically, a straight-forward factorization yields factors,
which are denser. Therefore, an Lower Upper (LU) factorization followed by the
forward-backward substitution was performed using the SuperLU direct solver with
reordering the rows and columns of the given matrix, such that sparse factors can
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be obtained. Once the LU decomposition itself is computed, this procedure is re-
peatedly applied to solve the multiple system of equations with different right-hand
side vectors.

5.2.3 Accuracy of the Frequency-Domain Approach

The accuracy of the frequency-domain approach for eigenfrequency determination
is tested for both analytically and non-analytically resolvable electromagnetic prob-
lems. In the following, it is aimed to verification of the frequency-domain approach.
Hence, spherical resonant structure is analyzed, whose exact solution can be ana-
lytically evaluated. Firstly, the eigenvalues of the above mentioned spherical res-
onator are computed from their analytical expressions and following this way, a
logarithmic relative error is calculated as in (5.8). The first two worst computed
degenerated mode eigenfrequencies are considered.

Spherical cavity
According to the above, as a first experiment a spherical cavity with perfectly con-
ducting walls, containing a perfect vacuum, is considered. The radius of the sphere
is R = 1m and the maximum error for the modes TM101 and TM102 is computed
from the analytical expressions given in [31] and by employing the root finding
algorithm of transcendental equations, which is simply explained in [64].
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Figure 5.9: Relative deviation
(©2014 IEEE) of the analyt-
ically obtained values f to
the numerical results f̂ as a
function of the number of
tetrahedral mesh cells for a
spherical resonator with ra-
dius R = 1m. The first
two worst computed degen-
erated mode eigenfrequen-
cies are considered for the
spherical cavity [15].

Specifically, for the frequency-domain calculations several different discretiza-
tion meshes have been used and the convergence study based on the calculation
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of a relative error, given with (5.8), is shown in figure 5.9. The desired eigenfre-
quencies have been calculated by employing the B-Lanczos Shift-and-Invert (SI)
solver. As expected, with the increase of the mesh cells, the difference between the
analytical and the numerical solutions becomes smaller and relative error in order
of 10−6 is present. Figure 5.9 clearly demonstrates a fast convergence of 4th order,
which can only be obtained with non-planar elements.

5.2.4 Robustness of the Frequency-Domain Approach

In this section the robustness of the frequency-domain approach is examined. Fig-
ure 5.10 compares the analytical solution to the numerically calculated results for
a spherical cavity within an a priori selected frequency band, i.e. from 120 up
to 280 MHz. The cavity has the same characteristics as the one from the pre-
vious section. Here, the ordinate shows the eigenfrequencies obtained with the
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Tets: 22,814

Tets: 32,749

Tets: 52,935

Tets: 111,024
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Figure 5.10.: Convergence study (©2014 IEEE) showing a comparison between
the eigenfrequencies calculated with the proposed frequency-domain approach
(red color) and the analytically obtained eigenfrequencies (blue color). The an-
alyzed structure within this study is the spherical cavity from section 5.2.3. For
the frequency-domain approach six different tetrahedral discretization meshes have
been used [15].

frequency-domain approach using different tetrahedral meshes together with the
analytical solution. The results indicate that the number of eigenfrequencies found
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with the proposed frequency-domain approach coincides with the reference data.
In addition, a good accordance of the numerical with the analytical results is clearly
demonstrated with figure 5.9 and figure 5.10, implying that the parallel program
implementation has proven to work in a robust and stable fashion. Concerning the
accuracy of the obtained data, slightly shifting of the frequencies in case of coarse
meshes is probable.
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6 Simulation Results
In this chapter, the billiard and the Dirac billiard application example will be exam-
ined. The numerical simulations will be performed with the developed codes for the
time- and the frequency-domain approaches, which are optimized for the calculation
of thousands of eigenfrequencies according to the descriptions in chapter 3 and 4.
In addition to the need to ensure a high precision of the calculated eigenfrequencies,
the numerical results will be compared side by side with the reference data available
from other eigenmode solvers. Here, the simulations have demonstrated high accu-
racy of the techniques and good agreement with the reference data. Furthermore,
the obtained results show that the proposed approaches are competitive in terms
of computational time and memory consumptions with other solvers for eigenvalue
determination. Finally, all of the results reveal that the suggested techniques based ei-
ther on fast time-domain field calculations or on direct solutions of large (generalized)
eigenvalue formulations can be used for precise extraction of many eigenfrequencies.

Section 6.1 investigates the simulation scenarios together with the obtained com-
parison results for the billiard cavity. Here, the time- and the frequency-domain ap-
proaches have been employed for the calculation of thousand of eigenfrequencies and
their results are demonstrated in terms of an accuracy, robustness as well as compu-
tational time and memory consumptions. Similar analyses have been carried out for
the Dirac billiard cavity and the results are stated in section 6.2. Finally, in order to
verify and validate the applicability of the used approaches, the numerical results will
be compared with the measurements.

6.1 Application Example: Billiard Cavity

The field of quantum chaos encompasses the study of the manifestations of classi-
cal chaos in the properties of the corresponding quantum or more generally, wave-
dynamical system (nuclei, atoms, quantum dots, and electromagnetic or acoustic
resonators). Prototypes are billiards of arbitrary shape. In its interior a point-like
particle moves freely and is reflected specularly at the boundaries. Depending on
the shape its properties could exhibit chaotic dynamics. Within this work, quantum
billiards are investigated with its statistical eigenvalue properties, which reveal the
periodic orbits in the quantum spectra and give the quantum chaotic scattering
[26]. Specifically, a microwave resonator with chaotic characteristics is simulated,
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see figure 6.1, and the investigations comprise efficient and robust computation of
eigenfrequencies that are needed for its level-spacing analysis [27]. Accordingly,
the eigenfrequency level-spacing analysis for the determination of the statistical
properties requires many (in order of thousands) eigenfrequencies to be calculated
and the accurate determination of the eigenfrequencies has a crucial significance.
Moreover, considering that the problem is to compute a large number of eigenfre-
quencies along with their associated eigenvectors, they can be often located in dif-
ferent ranges, i.e. left-most, right-most, or interior portions of the spectrum could
be sought.

The requirements for chaotic characteristics are met, for example, by using a
superconducting resonator with the shape of a desymmetrized three-dimensional
stadium billiard (cf. figure 6.1). The billiard consists of two quarter cylinders with
radii r1 = 200.0 mm and r2 = 141.4 mm, which are rotated with respect to each
other by 90◦. The billiard is made of niobium that becomes superconducting at
temperatures below 9.2 K and its classical dynamics are chaotic. In this work, the
focus is on the case r1 =

p
2 r2 since this geometry was studied in the microwave

experiments [27, 62], where the ratio is chosen to be irrational in order to avoid
non-generic quantum effects due to the classical orbits of measure zero. Specifi-
cally, the Institute for Nuclear Physics at Technical University (TU) of Darmstadt
studied the classical and the quantum mechanics of a three-dimensional stadium
billiard and the spectral properties of a microwave resonator with this shape were
investigated experimentally.

x

y

z

r1

r2

1

Figure 6.1: Desymmetrized version of
the three-dimensional generalized sta-
dium billiard, consisted of two quar-
ter cylinders with radii r1 = 200.0 mm
and r2 = 141.4 mm. The cylinders are
rotated with respect to each other by
90◦. The billiard is made of niobium
that becomes superconducting at tem-
peratures below 9.2 K and its classical
dynamics are chaotic.

The numerical results for the billiard cavity will be obtained with the time-
domain approach as well as the Lanczos solvers for eigenfrequency computation.
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For the time-domain field computations, a single personal computer was suited for
problems with a moderate number of mesh cells (say, up to several 106 cells). More
precisely, a computer with 2 quad-core Intel Xeon 3 GHz processors and 64 GB
Read Access Memory (RAM) memory was used, unless otherwise stated. The same
computer configuration was also exploited for the time- and frequency-domain ap-
proaches for eigenvalue computations. On the other hand, a more powerful com-
puter was necessarily used to enable the handling of meshes with more than ten
millions of mesh cells. Hence, the larger-scale CST simulations were performed
on a modern Graphics Processing Unit (GPU) computer, e.g. 2.00 GHz (quadcore)
processor, 32 GB of RAM memory, and 4 nVIDIA Quadro GPUs.

6.1.1 Field Simulation in Time Domain

In this section the fundamental modeling of the analyzed structure will be briefly
presented. The cavity of interest is modeled in CST Microwave Studio® (CST MWS)
as a free space. A small brick is also modeled as a free space and placed at the top
of the cavity. The dimensions of the brick are 50 mm × 50 mm × 50 mm and they
are significantly smaller than the dimensions of the cavity. Inside of the brick a
small tiny exciting antenna (made of perfect electric conductor) with length of
40 mm, as used in a physical model, is put properly in a way that the modes within
a specific frequency range would be excited. The excitation port is modeled as a
discrete s-parameter port, which is connected via the antenna to the cavity. Inten-
tionally, the excitation signal applied at the antenna input has a broad bandwidth,
i.e. a Gaussian-modulated sinusoidal signal is chosen, which certainly covers the
range of eigenfrequencies being sought. The chosen port separation of 10 mm is
small compared to the other dimensions of the cavity in order to reduce the port
influence on the solution. The background material is modeled as perfect electric
conductor whereas the computational domain is terminated by an electric bound-
ary condition. Due to the non-symmetric domain, symmetry planes could not be
applied in the calculation, thus there is no reduction of the overall volume to a half
or quarter and analogously, no reduction of the computational effort. However,
the field simulation with a hexahedral discretization mesh in Time Domain (TD) is
carried out with the transient solver from CST MWS, which uses a high degree of
parallelization provided with the modern GPUs. Consequently, this feature dramat-
ically accelerates the simulations. During the field simulation, the transient solver
detects and records the electric field intensity at specific field detection probes,
placed at various positions inside the cavity. Later, the acquired time-domain sig-
nals are used for further post-processing in MATLAB, based on fitting techniques
with a proposed model of the cavity response, as explained in section 3.5.2. For
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stopping the simulation, no check for the accuracy is specified. The simulation is
stopped when the specified maximum solver duration is reached. In the following,
the procedure for defining the total simulation time is explained.

Manifestation of a spectral distortion occurs as a result of a reduced spectral
resolution, which is given with

∆ f = 1/T. (6.1)

Namely, this is an important issue and the minimum separation needed between
two frequency components must be determined, so that they can be resolved. Rely-
ing on the theory for superconducting cavities, the connection between the number
of eigenfrequencies n f req and the frequency f GHz is given with the equation

n f req = (
f
α
)3, (6.2)

where α = 0.7560 GHz. So, if the interest is in the calculation of given number of
eigenfrequencies, the frequency f can be easily determined and vice versa, if the
frequency is known then the number of eigenfrequencies up to that frequency can
be computed. The difference between two frequency components is given as recip-
rocal of the first derivative of n f req for the highest frequency f . In the time-domain
approach, the frequency resolution∆ f is chosen good enough such that the sought
frequency data can be recovered. To be precise, the frequency resolution is selected
to be hundred times less than the distance between the two closest eigenfrequen-
cies. This way, about hundred samples between two closest frequency components
are available and once the sought frequency resolution ∆ f is determined, the sim-
ulation time is calculated from (6.1). As a result, a large number of simulation time
samples might be needed for a reliable characterization of the resonance frequen-
cies of the structure, given that better frequency resolution unescapably requires a
longer simulation time. In spite of this, the modern GPUs feature a large number of
processing cores and the simulation is speeded up significantly in comparison with
a simulation running on a single Central Processing Unit (CPU).

Example. Let’s assume that the eigenfrequencies up to 6 GHz are sought. Ac-
cording to (6.2), here are 500 eigenfrequencies to be calculated. The difference
between the two closest frequency components is given as reciprocal of the first
derivative for f = 6 GHz. That is

1

n′f req

=
α3

3 f 2
=

1
250

GHz= 4 MHz. (6.3)
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This means that the simulation time of T = 3.5 × 10−5 s (or frequency resolution
of ∆ f = 28.57 kHz) yields about 140 samples between the two closest frequency
components. Consequently, this frequency resolution is good enough to recover the
sought frequency data.

6.1.2 Accuracy of the Time- and the Frequency-Domain Approach

Besides the analytically resolvable resonators, the relative error is also measured for
the chaotic billiard resonator, which has a clustered eigenvalue distribution [27].
A clustered distribution containing too close eigenfrequencies might cause difficul-
ties in the eigenfrequency extraction. An analytical solution for the billiard cavity
is not available and in order to verify the obtained results extremely accurate ref-
erence data from Computational Electromagnetics 3D (CEM3D) eigenmode solver
are used. Here, CEM3D eigenmode solver is a parallel program [7] for the accu-
rate calculations of eigenfrequencies for a given structure. The billiard structure is
modeled and discretized with almost 6 million of curvilinear tetrahedrons in CST
MWS and the corresponding mesh is imported to the solver in order to compute the
requested eigenfrequency for the analyzed structure. The CEM3D solver employs
a Finite Element Method (FEM) formulation by means of higher order curvilinear
elements followed by the Jacobi-Davidson method to solve the generalized eigen-
value problem. For this scenario, a target frequency of 2.37 GHz was specified and
afterwards, the solver was run in parallel to calculate the sought mode. Within
several comparative studies (see section 6.1.4), the CEM3D solver is also used for
the generation of the mass and the stiffness matrices of the generalized eigenvalue
problem. Then, the Lanczos, Arnoldi, and Krylov-Schur numerical methods are
used for the solution of the eigenvalue problem itself.

Relying on an extremely accurate reference solution obtained from CEM3D with
almost six million of tetrahedral mesh cells, a logarithmic relative error is calculated
for the time- and the frequency-domain approaches as

relative error= log10
| fnumerical − freference|

freference
, (6.4)

by considering one computed eigenfrequency, cf. figure 6.2. In particular, for the
time-domain field simulations several different hexahedral discretization meshes
have been used, while the frequency-domain approach based on the FEM has used
a tetrahedral spatial discretization. As the number of discretization mesh cells in-
creases, the convergence study suggests a good accordance of the numerical solu-
tions to the reference data and relative error in order of 10−4 for the time-domain
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and 10−6 for the frequency-domain method is present. Additionally, the figure
demonstrates different convergence properties of the methods, i.e. the frequency-
domain method, employing a tetrahedral mesh with curvilinear elements for the
discretization of the computational domain, indicates higher order convergence
and consequently, requires less number of computational grids to obtain the same
accuracy [14].
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Figure 6.2: Relative deviation
(©2013 IEEE) of the numer-
ically obtained values f̂ to
the reference results f as a
function of the mesh cells
for a billiard resonator. The
mode oscillating at 2.37 GHz
is determined. The time-
domain approach is based
on the FIT with hexahedral
mesh, whereas the frequency-
domain approach takes ad-
vantage of the FEM with
higher order curvilinear ele-
ments [14].

6.1.3 Robustness of the Time- and the Frequency-Domain Approach

In figure 6.3a, a part of the results for the billiard cavity that are found with the
time- and the frequency-domain approach using the B-Lanczos solver with shift-
and-invert are compared. On the abscissa are given the frequencies in an a pri-
ori selected frequency band, i.e. from 1.8 up to 2.4 GHz. The ordinate shows the
eigenfrequencies obtained with the time-domain approach using four different dis-
cretization meshes, and the data calculated using a field simulation in Frequency
Domain (FD) with two different tetrahedral meshes. The total time for the tran-
sient simulations has been adjusted to 3.5 × 10−5 s, which results in a frequency
resolution of 28.57 kHz that is good enough to recover the sought frequency data.

Concerning the accuracy of the obtained data, slightly shifting of the frequencies
can be observed in case of coarse meshes. As the number of mesh cells increases,
a good agreement with the reference data is clearly observed. For this purpose,
a part of figure 6.3a is enlarged and shown in figure 6.3b. Furthermore, in fig-
ure 6.3b an additional row is added representing extremely accurate reference
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(a) Frequencies in an a priori selected frequency band, i.e. from 1.8 up to 2.4 GHz
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(b) Frequencies in an a priori selected frequency band, i.e. from 2.30 up to 2.37 GHz

Figure 6.3.: Convergence study showing a comparison between the eigenfrequen-
cies calculated with the proposed time-domain approach (green color) and the
eigenfrequencies obtained with the B-Lanczos shift-and-invert eigenmode solver
(red color). For the time-domain approach four different hexahedral discretiza-
tion meshes are used. At the same time, the frequency-domain solver exploited
three different tetrahedral discretization meshes.

data for the eigenvalues in the range [2.30,2.37]GHz. Unfortunately, for this
shape of resonator an analytical solution for the electromagnetic problem is not
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available and in order to verify the obtained results, the reference data from the
CEM3D eigenmode solver are used. Therefore, the structures are modeled and
meshed with almost 6 million of curvilinear tetrahedrons and the corresponding
meshes are imported to the CEM3D eigenvalue solver in order to compute the re-
quested eigenfrequencies for the analyzed structure. These results were also used
in the previous section for the calculation of the logarithmic relative error for the
mode oscillating at 2.37 GHz. According to figure 6.3b, in case of fine meshes a
good agreement of the time-domain results with the frequency-domain data can be
obtained.

The results in figure 6.3a and 6.3b indicate that when fine mesh is used the num-
ber of eigenfrequencies found with the both approaches is exactly the same, i.e. no
additional frequency is added or no frequency is missed. In addition, such check
was also conducted for around 900 calculated eigenfrequencies, where the theoret-
ical connection for the number of eigenfrequencies up to a specific frequency given
with (6.2) is used. The results are presented in figure 6.4 showing the frequency
over the mode index for the theoretical (blue dots) and the calculated connection
(red dots). The curves agree well, which means that the proposed approaches lead
to a robust eigenfrequency extraction.
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Figure 6.4: Theoretical and mea-
sured connection between the
number of modes and the fre-
quency. The theoretical connec-
tion has been calculated using the
equation (6.2). For the measured
connection, about 900 eigenfre-
quencies up to 7 GHz have been ex-
tracted for the billiard cavity struc-
ture by employing the time-domain
approach.

Post-processing of Several Field Probes
In figure 6.5, a part of the results found with the time-domain approach is com-
pared to the reference data calculated with the CEM3D eigenvalue solver. On
the abscissa are given the frequencies in an a priori selected frequency band,
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i.e. from 1.5 up to 2.0 GHz. The ordinate shows the eigenfrequencies obtained
from the time-domain approach with 57, 096 hexahedra next to the reference data
calculated using a field simulation in FD with tetrahedral mesh containing 122,690
tetrahedrons. The total time for the transient simulation was set to 3.5e-05 s, which
results in a frequency resolution of 30 kHz. Two post-processing scenarios with one
and two probes have been taken into consideration [14].

1.50 1.55 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00
Frequency / GHz

Cells: 57,096

Tets: 122,690

Cells: 57,096

2 probes

1 probe

1

Figure 6.5.: Convergence study (©2013 IEEE) showing a comparison between the
eigenfrequencies calculated with the proposed time-domain approach (green color)
and the reference eigenfrequencies obtained with the CEM3D eigenmode solver
based on higher order curvilinear elements (red color). For the time-domain ap-
proach a hexahedral discretization mesh is used. At the same time, the reference
data are obtained using a tetrahedral discretization mesh [14].

Figure 6.5 clearly indicates that in the case of two probes being post-processed
the number of eigenfrequencies found with the proposed time-domain approach
coincides with the reference data, i.e. no additional frequency is added or no
frequency is missed. Evidently, one probe in this case is not enough for robust
extraction of all the desired eigenfrequencies. Concerning the accuracy of the ob-
tained data, slightly shifting of the frequencies can be observed because of the
different convergence properties for the applied methods (cf. figure 6.2).

6.1.4 Performance Analysis

The frequency-domain approach, described in section 4.3, is applied in agreement
with the requirements of thousands of precisely calculated eigenfrequencies for
the billiard cavity structure. An example mesh for this cavity configuration has
187, 984 tetrahedral elements, resulting in matrices A and B with n = 1, 163,238
Degrees of Freedom (DoF) and nnz = 49,495, 452 nonzero elements. The sparsity

6.1. Application Example: Billiard Cavity 99



a
...

b
#1

70 EVs

#2

70 EVs

#6

70 EVs

#5

70 EVs

#4

70 EVs

#3

70 EVs

Frequency spectrum

100 EVs
200 EVs B-Lanczos solver

B-Lanczos SI solver

1

Figure 6.6.: Graphical representation of the different requested eigen ranges with
its dimension. [a, b] presents the full eigen range. Six distinct scenarios are illus-
trated.

Simulation #3 #4 #5 #6

Time (hours) 9.26 6.82 7.19 7.21

Table 6.1.: Time consumption for the determination of 70 eigenfrequencies for the
billiard cavity. The simulations #3 - #6 are demonstrated, where the B-Lanczos solver
with shift-and-invert was exploited for the eigenvalue calculation.

information of the matrices is nnz
n = 42.55 and the full eigen range is [0,3.64 e+4].

Subsequently, model runs were performed for six simulation scenarios, denoted
with #1, #2, to #6 and in each of the scenarios different eigen ranges with dimen-
sion of 70 eigenfrequencies were requested (see figure 6.6).

The performance analysis of the B-Lanczos and the B-Lanczos Shift-and-Invert
(SI) eigenvalue solvers were conducted in terms of memory, CPU time, and number
of iterations. The specified accuracy of the solvers was set to 10−12 and the same
was reached. In the simulations #1 and #2, both of the B-Lanczos implementations
were used to calculate the sought eigenfrequencies. For the other simulations only
the B-Lanczos SI was used, since the eigen ranges were quite inside in the eigen-
spectrum.

Figure 6.7 compares the B-Lanczos iterations and the memory consumptions
of the B-Lanczos solver to the iterations and the consumptions of the B-Lanczos
SI solver, whereas figure 6.8 and table 6.1 show the time consumptions for the
different simulations and methods. Here, the total CPU time is given as a sum of
the Central Processing Unit (CPU) time that was used for solving linear system of
equations, matrix-vector products, reorthogonalization, and other time (e.g. time
needed to calculate the eigenvectors, to read the input matrices, etc.). Evidently,
the largest part of the computational time is required for the solution of system of
linear equations.
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Figure 6.7.: Number of iterations and memory consumptions for the determination
of 70 eigenfrequencies for the billiard cavity. The results are shown for six different
simulations, where for the first two, the B-Lanczos solver is compared to the B-
Lanczos solver with shift-and-invert.

As suggested by the charts, the commonly used performance parameters for the
B-Lanczos SI solver indicate a similar behavior in all the simulations. On a contrary,
the CPU time and the memory resources, utilized by the B-Lanczos solver, grow
linearly as the eigen range is shifted more inside. Therefore, the B-Lanczos solver
has limited application when interior eigenvalues are sought. Besides the regions
with closely spaced eigenvalues, the convergence of the B-Lanczos solver with shift-
and-invert is very fast, because of its good separation properties. Consequently, the
number of necessary iterations, as well as, the CPU time resources until eigenvalue
convergence is rather smaller when compared to the B-Lanczos solver. Additionally,
figure 6.9 plots the convergence error of the B-Lanczos and the B-Lanczos SI solver
during the simulation #1, i.e. the error is plotted at the every 10-th iteration step. It
should be mentioned that the B-Lanczos solver has to calculate additional 30 large-
most eigenfrequencies in order the requested 70 eigenfrequencies to be reached.
This causes almost 800 B-Lanczos iterations. On another side, the B-Lanczos shift-
and-invert solver leads to convergence in less than 300 iterations and hence, it can
be fully recommended in case of enough available computational resources.

Moreover, the performance of the B-Lanczos shift-and-invert solver was tested
for FEM matrices having different degrees of freedom when 100 eigenfrequencies
are sought. The numerical results performed so far tend to show that the resulting
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(a) Time consumption for the simulation #1
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(b) Time consumption for the simulation #2

Figure 6.8.: Time consumption for the determination of 70 eigenfrequencies for the
billiard cavity. Simulations #1 and #2 are demonstrated and the B-Lanczos solver is
compared to the B-Lanczos solver with shift-and-invert. The total CPU time is given
as sum of the CPU time that was used for solving the linear system of equations, the
matrix-vector products, the reorthogonalization, and the other time.

algorithm scales nonlinearly with the system size. These results are presented in
the next section and at the same time they are compared with the time-domain
approach as well as other eigenvalue solvers.

6.1.5 Comparison with Other Eigenvalue Solvers

In the present work, the effort is focused on the time-domain computations for elec-
tromagnetic problems as well as the frequency-domain approaches. When the FEM
is formulated in FD, employing a tetrahedral mesh with curvilinear elements [6]
to discretize the problem, one ends up with the numerical solution of the gen-
eralized large-scale eigenvalue problem. Hereby, numerical methods, as Arnoldi,
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Figure 6.9: Convergence rate
of the B-Lanczos and the B-
Lanczos with shift-and-invert
solver for the eigencomputa-
tions in simulation #1. The
matrix pencils have 1, 163, 238
DoF and the error is plotted
at the every 10-th iteration
step. The convergence of the
B-Lanczos solver with shift-and-
invert is very fast. The B-
Lanczos solver calculates ad-
ditional 30 large-most eigen-
frequencies in order the re-
quested 70 eigenfrequencies
to be reached.

Lanczos, and Krylov-Schur method, are applied to the computation of the desired
eigenfrequencies.

In order to compare the computational speed as well the memory consumption
issues of the time-domain approach and the Lanczos solvers, the recent versions
of Matlab, Scalable Library for Eigenvalue Problem Computations (SLEPc), and
CEM3D are chosen. The results are plotted in figure 6.10. Each simulation com-
putes the largest 100 eigenvalues of a billiard cavity with an accuracy of 10−12. The
computer resources limit the availability of the results, which are extractable with
the different eigenvalue solvers. The eigenvalues in MATLAB are obtained employ-
ing the Arnoldi’s method implementation, while in SLEPc the Krylov-Schur method
was used in combination with Jacobi preconditioner of the Conjugate Gradient
(CG) method and the Generalized Minimal RESidual method (GMRES). Also, two
different setups for the SLEPc simulations with CG method are analyzed, where the
difference is in the dimension of the subspace, 200 or 500 B-Lanczos vectors were
selected. Dependent on the user’s input, the SLEPc library gives largely different
outcomes.

As depicted in figure 6.10, the iterative solvers, which are part of the frequency-
domain methods, need long simulation time, but less memory, as to be expected.
Here, the B-Lanczos solver next to SLEPc can be considered as one group. On
another side, the B-Lanczos solver with shift-and-invert and Matlab are clearly
separated from the other solvers in time consuming sense. Therefore, the B-
Lanczos solver with shift-and-invert or Matlab can be recommended in a case

6.1. Application Example: Billiard Cavity 103
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Figure 6.10.: Computational time (left) and memory consumptions (right) of se-
lected eigenvalue solvers for the determination of 100 large-most eigenvalues
(©2013 IEEE). Different number of curvilinear tetrahedral and hexahedral dis-
cretization meshes for the billiard cavity are used within the frequency- and the
time-domain methods, respectively [14].

that enough computational resources are provided. However, it should be noted
that these solvers require more memory than the other solvers. Especially, CEM3D,
SLEPc with Conjugate Gradient (CG), and the B-Lanczos solver have a very good
characteristic from memory usage point of view, where a linear behavior is ob-
served [14, 15].

When compared to all other methods, the memory usage of the time-domain
method remains low even with a dramatical rise of the problem size, making this
method as a proper choice when the computational resources are limited. Accord-
ing to figure 6.2, if a higher accuracy is desired, i.e. relative error less than 10−3, the
time-domain approach would require a higher mesh resolution, which can finally
result in a longer simulation time compared to the frequency-domain approach. In
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such situations, the advantages of a high degree of parallelization provided with
the GPUs can be used to accelerate the simulations considerably [14].

6.1.6 Scalability

As explained in section 5.2.2, the Lanczos solvers are built on the top of the
Portable, Extensible Toolkit for Scientific Computation (PETSc) library and they
have the capability to run on a distributed memory machine with multiprocessors
in parallel. With the intention of obtaining insights in the developed code (scal-
ability and performance), the scalability characteristics of the Lanczos solver with
polynomial filtering are briefly examined within this section. For this purpose, the
eigenvalue calculations of the billiard cavity are used.

Strong Scaling
The performance measurements have been conducted for the calculation of 615
smallest eigenvalues of the billiard cavity, which has been discretized with hexahe-
dral meshes having 3,407, 398 and 6, 632,645 elements. The employed Lanczos
solver with polynomial filtering covers at least 615 iteration steps in order to cal-
culate the sought eigenfrequencies. The work definition for the numerical tests
includes the parallel portion of the code, the communication as well as the serial
part of the program. Precisely, the serial part is limited to the startup, the initializa-
tion, and finally, the process of writing the results. In order to quantify how much
of the computational time for the different problems is reduced with the increase of
the resources, strong scaling tests are performed. Typically, a program shows good
scalability if, partitioned over more and more processors, it demonstrates perfect
or near perfect speedup.

The computations are performed on the TEMFCL1000 and the TEMFCL2000
computer cluster, owned by the Computational Electromagnetics Laboratory (TEMF)
at TU Darmstadt. According to the characteristics summarized in table. 6.2, the
cluster TEMFCL1000 has 60 nodes, each node has 2 Intel(R) Xeon(R) processors
clocked at 2 GHz, and each processor possesses 4 cores. The nodes are connected
with a gigabit ethernet network and each node has 16 GB of available working
memory. During the simulations, the numerical tests have been performed on up
to 200 cores and the hyper-threading option on the computer cluster has been
switched off. Taking the simulation on 48 cores as a reference data from which the
strong scalability is judged, figures 6.11a and 6.11b present the speedup and the
efficiency curves obtained on the TEMFCL1000 cluster for the two tested problems.

On the other side, the cluster TEMFCL2000 is more powerful (see table. 6.2)
and has 172 nodes, where each node has 2 Intel Xeon X5650 processors with 12
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TEMFCL1000 TEMFCL2000

System Windows Server 2008 R2 HPC Windows Server 2008 R2 HPC

Size 60 nodes 172 nodes

Node 8 cores 12 cores

16 GB of RAM memory 24 GB of RAM memory

Core Intel(R) Xeon(R) E5335 2.0 GHz Intel Xeon X5650 3.0 GHz

Network DDR-Infiniband-Lanes QDR-Infiniband-Lanes

Table 6.2.: Characteristics for the computer clusters TEMFCL1000 and TEMFCL2000,
which are owned by the Computational Electromagnetics Laboratory (TEMF) at the
Technical University (TU) of Darmstadt.

cores. The available working memory for each node is 24 GB and the nodes are
connected with an infiniband (QDR), gigabit ethernet, and IPMI-network. During
the simulations, the hyper-threading was also switched off on this cluster. Here,
the test for the fine grid is repeated and 96 cores are used as the baseline from
which the strong scalability is judged. These results are demonstrated in figures
6.11c and 6.11d.

As expected, the problems have a good scalability because of the low
communication-to-computation ratio. For the TEMFCL1000 cluster, the coarse and
the fine grid does not saturate up to the accounted number of 200 cores and the
parallel efficiency, defined in [34], stays at 90%. Additionally, this is observed for
the TEMFCL2000 cluster as well, where the overall increased node communication
produces only lower deviations from the ideal speedup, as the communication-to-
computation ratio remains low. Due to the sufficient memory on a single core, the
usage of more processors explains the superlinear speedup and efficiency that can
be noticed here (see figures 6.11c and 6.11d).

A general conclusion for the strong code scalability can be drawn based on the
results for the above analyzed tests, where the comparison with the ideal speedup
shows only minor differences. Finally, the code attains a good scalability on the
typical high-performance clusters and it can be reached up to the six hundred
accounted cores. As depicted in figure 6.11c, the speedup does not noticeably
decrease from the optimal, meaning that this problem scales up to minimum
600 cores.
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Figure 6.11.: Strong scaling tests: Parallel speedup and efficiency conducted for the
calculation of the smallest 615 eigen pairs of a billiard cavity being discretized with
3, 407,398 and 6,632, 645 hexahedral elements. Within the analyses, the eigen
pairs are determined with the filtered Lanczos solver and the tests are performed
on the computer cluster TEMFCL1000 as well as on the TEMFCL2000, owned by the
Computational Electromagnetics Laboratory (TEMF) at TU Darmstadt. During the
simulations, the hyper-threading technology was not employed.
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Weak Scaling
Splitting the given problems over more and more processors yields to a certain
point when there is not enough work for each processor to operate efficiently.
Therefore, a series of increasingly larger problems are solved on correspondingly
growing numbers of processors and the so-called weak scaling [34] is examined in
this section. For this reason, the problem size and the number of processors grow
in such a way that the amount of data per processor is kept constant. Analogously,
the speed in operations per second of each processor also stays constant. Again the
performance measurements are conducted for the Lanczos solver with polynomial
filtering, where 100 iteration steps are executed for each problem size. Namely, the
billiard cavity was discretized with 832,486, 2, 273,965, 3,407, 398, 6, 632,645,
and 11, 554,666 hexahedral elements. The results are shown in figure 6.12. Here,
the used cluster is the TEMFCL1000 and as expected, the code scales good, mean-
ing that the parallel execution time is nearly constant as the problem size and the
number of processors grow.
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Figure 6.12: Weak scaling tests: Par-
allel efficiency conducted for 100 iter-
ation steps of the Lanczos solver with
polynomial filtering. The problem
size and the number of processors are
kept in such a way that the amount
of data per processor stays constant.
The tests are performed on the com-
puter cluster TEMFCL1000, without
employing the hyper-threading tech-
nology.

6.1.7 Level-Spacing Analysis

In this section the statistical properties of the three-dimensional stadium billiard are
investigated. For this purpose, thousands of eigenfrequencies needed for its level-
spacing analysis are numerically computed. A more close description of the level
spacings is demonstrated in figure 6.13. In particular, a level spacing is defined
as a difference between each two consecutive eigenfrequencies and afterward,
with the obtained values the statistical distribution of the level spacings is cal-
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culated. Accordingly, the eigenfrequency level-spacing analysis requires thousands
of eigenfrequencies to be calculated for the stadium billiard and the accuracy of
the eigenfrequencies has a crucial significance.

f0 f1 f2 f3

...
fn−1 fn

Frequency

∆ f0 ∆ f1 ∆ f2

...
∆ fn−1

Level spacing

1

Figure 6.13.: Illustrative description of the level spacings. A level spacing ∆ fn is
defined as difference between each consecutive eigenfrequencies fn.

As already mentioned in the introduction of the thesis, the goal of this work is
also to compare the numerically calculated spectral properties with the measured
ones. Therefore, the measurement data of the three-dimensional stadium billiard
are kindly provided for comparison reasons by the Institute for Nuclear Physics at
TU Darmstadt. In addition, the experimental investigations have been published
in [27, 29].

For the numerical simulations, the time-domain approach and the frequency-
domain approach using the Lanczos solver with polynomial filtering are exploited.
In the simulation studies, it is experienced that for the time-domain field compu-
tations as well as for the Lanczos eigenvalue solver with polynomial filtering, a
powerful personal computer is suited for problems with up to several millions of
mesh cells. To be precise, the computer possesses 256 GB of RAM memory and two
quad-core Intel Xeon E5-2643 processors, clocked at 3.3 GHz.

Using the time-domain approach, about 974 eigenfrequencies are calculated for
the billiard cavity structure up to 7.5 GHz. At this point, the billiard is discretized
with a hexahedral mesh having 3, 634,917 elements and the advantage that one
single time-domain simulation can provide the whole response of an electromag-
netic system in a wide frequency band is used. On the other side, 2,292 eigen pairs
are calculated with the filtered Lanczos solver, where the structure is discretized
with a hexahedral mesh having 3, 379,770 elements. Analogously, the resulting
matrix from the algebraic standard eigenvalue problem has 6, 632,645 DoF. Here,
the Lanczos solver with polynomial filtering is set to calculate the above mentioned
eigenfrequencies along with their associated eigenvectors in three different simu-
lations.

6.1. Application Example: Billiard Cavity 109



The level-spacing analyses based on the calculated eigenfrequencies are given
in figure 6.14, where the computational time as well as the memory consump-
tions for the eigenvalue determination are also summarized. Prior to comparing
the level-spacing analyses based on the eigenvalues calculated with the different
numerical methods, an additional information about the computational costs is
worth to be presented. That is, when compared to the frequency-domain ap-
proach, the memory usage of the time-domain method remains low even with a
dramatical rise of the problem size. Consequently, the eigenvalue extraction from
time-domain computations is a proper choice when the computational resources
are limited. However, the frequency-domain approach shows significant reduction
in the computational time, which in some applications is preferred over the burden
of additional memory consumption.

In both figures, 6.14a and 6.14b, the level spacings in MHz are given on the
abscissa, whereas the ordinate shows the number of occurrences that belong to a
specific frequency bin. According to these plots for the level-spacing analyses, it
is obvious that smoother and better statistical properties are attained in case of
more eigenvalues being determined. Additionally, the blue line in figures 6.14a
and 6.14b shows the processed data, which are obtained from the measurements
with antennas placed at different positions inside of the billiard cavity. In the ex-
perimental setup, the billiard has been constructed from niobium with the aim to
reach superconductivity by a continuous cooling with liquid helium at low temper-
atures (4.2 K). As a result, the cooling is naturally accompanied with a geometrical
shrinkage of the cavity. Thus, the measurement data are scaled with a factor that
compensates for the difference in the dimensions of the measured and the sim-
ulated structure. To compare the measurement data with the simulation results
identical number of eigenvalues is used.

According to figure 6.14, it is worth mentioning that the numerically calculated
histograms agree well with the corresponding curve obtained with the measure-
ments. In addition, the robustness of the different approaches is investigated and
the results indicate that the number of eigenfrequencies found with the proposed
approaches coincides with the reference data. Finally, it can be concluded that the
measured spectrum closely resembles those obtained by the numerical simulations.

In order to examine the convergence of the distributions for the level-spacing
analysis, several hexahedral mesh cells are used to calculate around 2,300 eigen-
frequencies. The results are obtained with the Lanczos solver with polynomial
filtering and they are depicted in figure 6.15. From this figure, it is clearly observ-
able that the different simulation scenarios yield the expected Wigner distribution
for the level-spacing analysis [27, 29].
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(a) Eigenfrequencies from the time-domain approach
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(b) Eigenfrequencies from the frequency-domain approach

Figure 6.14.: Comparison of the numerically obtained level-spacing analysis with the
one calculated from the measurements. (a) Eigenfrequency level-spacing analysis
based on the eigenvalues, which are extracted with the time-domain approach.
The billiard cavity is discretized with a hexahedral mesh having 3,634, 917 mesh
elements.(b) Eigenfrequency level-spacing analysis based on the eigenvalues, which
are determined with the Lanczos solver with polynomial filtering. The billiard cavity
is discretized with a hexahedral mesh having 3, 379,770 mesh elements.

The eigenvectors corresponding to the desired eigenvalues are also determined
with the frequency-domain approach. In order to examine the accuracy of their
calculation, the electric field patterns for several modes of the billiard cavity are
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Figure 6.15.: Level-spacing analyses conducted for different hexahedral meshes. For
each distribution, around 2, 300 eigenfrequencies are calculated using the Lanczos
solver with polynomial filtering.

compared with the patterns obtained with the CST MWS. Finally, the numerically
calculated eigenvectors are in good accordance with those obtained by the numer-
ical simulations with CST MWS, second, the parallel program implementation has
proven to work in a robust, accurate, and stable fashion, and third, the proposed
procedures for determining thousands of eigen pairs are applicable and complete.

6.2 Application Example: Dirac Billiard Cavity

6.2.1 Level-Density Analysis

The Institute for Nuclear Physics at TU Darmstadt has recently started with new
series of experiments concerning the modelling of the properties of graphene with
the help of microwave photonic crystal. Graphene is a monoatomic layer of carbon
atoms arranged on a honeycomb lattice [59, 58]. In other words, the graphene is
one of the crystalline forms of carbon, where the carbon atoms are arranged in a
regular hexagonal pattern. Additionally, it can be described as one-atom thick layer
of the layered mineral graphite. High-quality graphene is very strong, light, nearly
transparent, and an excellent conductor of heat and electricity. Its interaction with
other materials and with light, and its inherently two-dimensional nature, produce
unique properties. Due to its peculiar electronic properties, the carbon allotrope
attracted a lot of attention over the last years, which culminated in a Nobel prize
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in 2010. Andre Geim and Konstantin Novoselov at the University of Manchester
won the Nobel prize in physics “for groundbreaking experiments regarding the
two-dimensional material, graphene”.

The conductance and the valence band of the electronic energy in graphene form
conically shaped valleys that touch each other at the six corners of the hexagonal
Brillouin zone [16, 17]. Close to these, the electron energy depends linearly on the
quasi momentum. The linear dispersion relation implies an energy independent
velocity, that is, near these points the electrons and holes behave like massless
relativistic particles, described by the Dirac equation for spin-one-half particles.
This results in a number of peculiar electronic properties, which have an analogue
in the relativistic quantum mechanics. In the literature the touching points are
referred to as Dirac points and their frequencies as Dirac frequencies.

249.42
m

m

420 mm

a

1

Figure 6.16: Superconducting microwave
Dirac billiard cavity containing 888 metal
cylinders with radius r = 4 mm and
height h= 3 mm, squeezed between two
metallic plates. The cavity is constructed
from brass and coated with lead. The
lattice constant is a = 12 mm and the
resulting photonic crystal has a size of
249.42 mm× 420 mm× 3 mm.

It is worth mentioning that the band structure of the photonic crystal possesses
similar properties. The photonic crystal considered in the present work is three-
dimensional and composed of rows of metallic cylinders, which are arranged to
form the triangular lattice, schematically shown in figure 6.16. The similarity of the
band structure of a macroscopic photonic crystal with the electronic band structure
of graphene, which is experimentally much more difficult to access, allows the
experimental study of various relativistic phenomena. Therefore, at the Institute for
Nuclear Physics, a photonic crystal composed of a total of 888 metallic cylinders,
which are arranged on a triangular lattice and squeezed between two metal plates,
has been constructed. The metallic cylinders have radius r = 4 mm and height
h= 3 mm. The lattice constant is a = 12 mm and the resulting photonic crystal has
a size of 249.42 mm×420 mm×3 mm. Each cylinder is screwed to the top and the
bottom brass plate to ensure a proper mechanical stability and thus, reproducibility
of the measurements. Both the lid and the body are leaded, in order to reach
superconductivity by cooling with liquid helium at low temperatures (4.2 K).
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In the experiments, the transmission and the reflection spectra are measured and
the results on the detection of a Dirac point in a microwave photonic crystal are
published in [16, 24]. At the frequency of the Dirac point, the spectra reveal a clear
cusp structure, which is directly related to the local density of states, which tends
to zero linearly with the excitation frequency in the vicinity of the Dirac point.

The purpose of this work is to compare the spectral properties of the super-
conducting Dirac billard cavity, which were numerically calculated, with the mea-
surements. For this application example, the frequency-domain approach using
the filtered Lanczos solver and the B-Lanczos solver with shift-and-invert will be
exploited. Specifically for this work, the spectrum of the Dirac billard cavity is
calculated from 19.0 GHz to 30.5 GHz and is compared with the measurements.
Using the Lanczos solver with polynomial filtering, 1,656 eigenfrequencies up to
30.5 GHz have been calculated for the Dirac billiard cavity. At this point, the billiard
has been discretized with a hexahedral mesh having 4, 515,840 elements. This re-
sults in a matrix having 7, 015,426 DoF. On the other side, the same number of
eigenfrequencies has been calculated with the B-Lanczos solver with shift-and-
invert for the Dirac billiard cavity, which has been discretized with a tetrahedral
mesh having 630, 348 elements. Analogously, the resulting matrices for the al-
gebraic generalized eigenvalue problem have 2, 875,770 DoF. The Lanczos solver
with polynomial filtering was set to calculate the above mentioned eigenfrequen-
cies in two simulations, while the B-Lanczos solver with shift-and-invert calculated
the sought eigenfrequencies in eight simulations.

CEM3D Filtered Lanczos B-Lanczos shift-and-invert

Eigenfrequencies 1, 656 1,656 1,656

Time (days) 7.4 0.4 1.6

Memory (GB) 23.87 162.87 57.71

Memory/eig (MB) 698.48 201.31 295.20

Table 6.3.: Computational time and memory consumptions for the determination of
1,656 eigenfrequencies with the CEM3D solver, the Lanczos solver with polynomial
filtering, and the B-Lanczos solver with shift-and-invert.

The matrices for the generalized eigenvalue formulation were also used for the
CEM3D eigenmode solver. Here, the CEM3D eigenmode solver was run in parallel
to calculate the sought modes. As already mentioned, the CEM3D solver employs
the FEM formulation by means of higher order curvilinear elements followed by
the Jacobi-Davidson method to solve the generalized eigenvalue problem. For this
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scenario, several target frequencies were specified within the CEM3D solver and
the required eigenfrequencies were calculated by groups of 35 eigenfrequencies in
each simulation.

Prior to comparing the level-density analyses based on the eigenvalues calcu-
lated with the different approaches, an additional information about the used
computational resources is presented. In the simulation studies, it was expe-
rienced that for the Lanczos solver with polynomial filtering, powerful cluster
machines are suited for problems with more than 106 mesh cells. To be precise,
15 nodes from the computer cluster TEMFCL2000, each with two twelve-core Intel
Xeon X5650 processors, clocked at 3.0 GHz, and 24 GB RAM memory, were used.
For the CEM3D solver, since the problem to be solved is two times smaller, only
8 cluster nodes were exploited. On the other side, for the B-Lanczos solver with
shift-and-invert, a powerful personal computer with two quad-core Intel Xeon E5-
2643 processors, clocked at 3.3 GHz, and 256 GB of RAM memory has been used.
The computational time as well as the memory consumptions for the eigenvalue
determination are summarized in table 6.3.
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Figure 6.17.: Comparison of the spectral properties for a superconducting Dirac
billard cavity, which were measured and numerically calculated. The frequency-
domain approach using the Lanczos solver with polynomial filtering has been used.
As reference data, the level-density distribution computed with the CEM3D eigen-
mode solver has been considered.

The level-density analyses based on the calculated eigenvalues are given in
figure 6.17. On the abscissa are given the frequencies in GHz and the ordinate
presents the occurrences that belong to a specific frequency, or the so-called level-
density analysis, obtained with the help of a Lorentz function [24]. In the con-
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sidered frequency spectrum only one band with a Dirac point is shown. Below
19.0 GHz there are no resonances (band gap). Also, after 30.5 GHz a band gap can
be noticed. As displayed in this figure, it is clear that the number of resonances
in the range of 23.5 GHz decreases greatly. This behavior reflects the vanishing
density of states at the Dirac point.

During the measurements, the analyzed structure is cooled down at temper-
ature of 4.2 K and therefore, its dimensions are shrunk. In what follows, the
measurement data are scaled with a factor that compensates for the difference
in the dimensions of the measured and the simulated structure. The red line shows
the reflection spectrum measured with antennas placed at different positions inside
of the photonic crystal. The locations of the antennas are chosen in the center of
three cylinders, forming a triangle, to minimize the disturbance of the propagating
mode at the Dirac frequency. The experimental reflection spectrum has a clearly
pronounced minimum around 23.5 GHz, i.e. within the frequency range where the
Dirac point is expected, and shows the characteristic cusp structure. The sharp
resonances at the edges of the bands are related to the so-called van Hove singular-
ities. Evidently, the measured reflection spectrum closely resembles those obtained
by the numerical simulations.
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7 Summary and Outlook
In this thesis, superconducting cavities have been analyzed via an employment of dif-
ferent numerical approaches to calculate plenty of eigen pairs. Specifically, thousands
of eigenfrequencies for the billiard and the Dirac billiard cavity have been numerically
computed. Based on the acquired eigenfrequencies, the statistical analyses for the bil-
liard and the Dirac billiard cavity have been investigated. Using the level-spacing and
the level-density analysis, the relevant properties of the atoms and the graphene have
been modeled, respectively.

The numerical simulations have been performed, on the one hand, via the time-
domain solver that was developed and implemented especially for this thesis and on
the other hand, via the frequency-domain solvers. The time-domain solver for eigen-
frequency extraction uses the time-domain responses for a superconducting closed res-
onator and by means of signal processing techniques extracts the eigenfrequencies. The
frequency-domain solvers are based on the Finite Integration Technique (FIT), the Fi-
nite Element Method (FEM) with higher order curvilinear elements, and the Lanczos
method with its variations for the solution of the eigenvalue problem itself. It should
be emphasized that the numerical results have been compared with the analytical so-
lutions, the FEM simulations as well as the measurements and a reasonable agreement
has been shown. The measurements of the billiard cavities have been carried out by
the Institute for Nuclear Physics at the Technical University of Darmstadt and were
kindly provided for comparison reasons. Beside the accuracy, the robustness of the
underlying approaches was also investigated throughout this work. At the end, with
the intention of obtaining insights in the performance of the codes, scalability, time,
and memory consumption analyses have been conducted.

7.1 Contributions

As mentioned earlier, the major challenges posed by this work are: first, the ability
of the approaches to tackle the large-scale eigenvalue problem, second, the capa-
bility to extract many, i.e. order of thousands, (interior) eigenfrequencies for the
considered cavities, third, the ability to ensure high accuracy as well as robust-
ness of the underlying approaches, and fourth, an efficient implementation. In the
following, the particular achievements of this thesis will be summarized.
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First, an approach for eigenfrequency extraction has been presented under the
assumption that the time-domain responses for a superconducting closed resonator
are available. The reader is referred to [12, 14] where parts of the time-domain
approach were published. This approach uses the advantage that one single time-
domain simulation can provide the whole response of an electromagnetic system in
a wide frequency band, which is a strong point of this work in order to yield a ful-
fillment of the aforementioned project requirements. The proposed approach can
be regarded as an extension of the classical approach in finding eigenfrequencies,
where the idea is to look for local maxima of the frequency spectrum. However,
the essential novelty of this approach lies in the capability of the approach to accu-
rately extract plenty of eigenfrequencies with the help of digital signal processing
techniques applied to the data obtained by the fast time-domain responses. For
this purpose, two variations of the time-domain approach have been developed,
i.e. using parametric fit in Frequency Domain (FD) and in Time Domain (TD).

A further contribution of this work includes an approach for eigenfrequency de-
termination in FD. A part of this contribution was published in [15, 11]. With
the aim to compute the electromagnetic fields for a superconducting cavity, this
approach is based on the Finite Integration Technique (FIT) or the Finite Element
Method (FEM) with higher order curvilinear elements. Afterward, the Lanczos
method with its variations is employed for the solution of the standard or the
generalized eigenvalue problem. The main novelty of this work is to apply the
filtering methods, which are valuable tools for enabling the computation of inte-
rior eigenvalues and their eigenvectors as well as speeding up the convergence of
the standard and the generalized Lanczos algorithm. For the calculation of the
extreme eigenvalues together with the appropriate eigenvectors, the basic Lanczos
implementations have been exploited.

The efficient implementation with the main focus on low computational costs
provides another contribution of this work. Here, an extension to the proposed
frequency-domain solvers was enabled to deal with higher mesh resolution for the
considered resonators, facilitating distributed-memory architecture with Message
Passing Interface (MPI) parallelization strategy such that the simulation time is
kept on a lower level. Namely, the Lanczos solvers were built on the top of the
Portable, Extensible Toolkit for Scientific Computation (PETSc) library, which en-
ables distributed-memory computations.

In addition to the need to ensure high precision of the proposed approaches,
the calculated eigenfrequencies are compared side by side with the reference data,
which were determined either by the analytical expressions or by the measure-
ments as well as the CEM3D eigenmode solver. Hereby, the findings show that the
proposed approaches result in solutions which agree well with the reference data,
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gaining high accuracy and efficiency in eigenvalue determination. Furthermore,
analyses were made for the further essential features of the presented time-domain
solver. That is, the difference between the time-domain approach using a paramet-
ric fit in FD and in TD was studied and it was shown that the time-domain approach
with fitting in TD leads to more accurate results.

A further main aspect of this work is the robustness of the underlying techniques.
Here, the robustness and the convergence of the proposed approaches have been
inspected with the reference data. Moreover, the robustness of the time-domain ap-
proach has been ensured by the applied extension from [14], where more than one
acquired time-domain responses for the analyzed cavity can be taken into account
and post-processed.

Summing up, the time- and the frequency-domain approaches are able to accu-
rately determine many eigenfrequencies of closed resonators and they are fast as
well as memory-efficient compared to others presented in the literature. Finally, all
of the results indicate that the suggested techniques can be applicable in different
areas of applications, where a precise determination of plenty of eigenfrequencies
takes a crucial role.

7.2 Outlook

Although the thesis provides finalized approaches for an accurate determination of
plenty of eigenfrequencies, some further research aspects and improvements have
not been addressed.

A further research aspect that remains unaddressed includes the more thorough
analysis of the case when two or more frequencies are very close to each other.
In addition, enhanced investigations on the modes excitation for the time-domain
approach could be accomplished. This would allow for quantifying the possibility
that all of the modes will be excited.

Additionally, there remain possible enhancements of the Lanczos solver with
polynomial filtering for the case when the requested frequency range is narrow,
which results in a polynomial with a high degree.

Also, as future work, possible applications of the proposed approaches could be
treated and used.
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A Fourier Transforms

f (t) = 1
2π

∫∞
−∞ eiωt bf (ω)dω bf = ∫∞−∞ e−iωt f (t)dt

a sin bt iπaδ(ω + b) − iπaδ(ω − b)

a cos bt πaδ(ω + b) + πaδ(ω − b)
1

t2+ a2 (a > 0) π
a e−a |ω|

u(t)e−at 1
a+ iω

u(−t)eat 1
a− iω

e−a |t| (a > 0) 2a
a2+ω2

e−t2 p
πe−ω

2/4

1
2a
p
π

e−t2/(2a)2 (a > 0) e−a2ω2

1p
|t|

Ç
2π
|ω|

u(t + a) − u(t − a) 2 sinωa
ω

δ(t − a) e−iωa

f (at + b) (a > 0) 1
a ei bω/a bf (ωa )

Linearity of transform and inverse:
α f (t) + β g(t) α bf (ω) + β bg(ω)
Transform of derivative:
f (n)(t) (iω)n bf (ω)
Transform of integral:
f (t) =

∫ t

−∞ g(x)dx bf (ω) = 1
iω bg(ω)

Convolution theorems:
f (t)∗ g(t) =

∫∞
−∞ f (t − x) g(x)dx

f (t) g(t)

bf (ω) bg(ω)
1

2π
bf (ω)∗ bg(ω)

Table A.1.: Short table of Fourier transforms. u is the Heaviside step function.

121





List of Figures

1.1. Three-dimensional generalized stadium billiard, consisted of two
quarter cylinders with different radii. It is made of niobium, which
becomes superconducting at temperatures below 9.2 K. The picture
of the billiard cavity was kindly provided by the Institute for Nuclear
Physics at the Technical University (TU) of Darmstadt [27, 29, 1]. . 3

1.2. Superconducting microwave Dirac billiard cavity containing 888
metal cylinders. It is constructed from brass and coated with lead.
On the figure, the lid is shifted with respect to the billiard body.
The picture of the Dirac billiard cavity is copyrighted and property
of the Institute for Nuclear Physics at the Technical University of
Darmstadt [28]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2. Indexing of the edges and the faces. Each edge and face has the
same index in x-, y-, and z- direction as well as the same starting
node (point). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6. Update scheme of the Leapfrog method in which the magnetic grid
voltages are evaluated at the whole time steps tm = t0 + m∆t and
the electric grid voltages at the half time steps tm+1/2 = t0 + (m +
1/2)∆t. The recursion includes each of the magnetic and the elec-
trical parameters of the last time step with length ∆t. . . . . . . . . . 29

3.5. Comparison of a non-periodic sine wave and its amplitude spectrum
with leakage to the windowed sine wave and its amplitude spectrum
showing no leakage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1. Time-domain response that is acquired from the transient solver in
CST Microwave Studio® (CST MWS) and its Gaussian windowing.
The responses represent the electric field intensity of a supercon-
ducting cavity [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

123



5.2. Amplitude spectrum of a time-domain response and a Gaussian win-
dowed time-domain response of a superconducting cavity. Only
a part of the amplitude spectrum is illustrated on this figure. As
expected, the amplitude spectrum of the Gaussian windowed time-
domain response consists of Gaussian pulses that are located on the
positions where the eigenfrequencies are [12]. . . . . . . . . . . . . . . 75

5.3. Operating signal during the process of eigenfrequency extraction, an
isolated Gaussian pulse within the eigenmode spectrum. The Gaus-
sian pulse is constituted of several frequency samples and it is lo-
cated using the described technique from section 5.1.3. In an ideal
case, the Gaussian pulse should be replaced with a Dirac pulse [12]. 76

5.4. Operating signal during the process of eigenfrequency extraction,
Gaussian modulated signal. The signal is obtained when the Inverse
Fast Fourier Transform (IFFT) is performed on a shifted Gaussian
pulse in frequency domain [12]. . . . . . . . . . . . . . . . . . . . . . . . 78

5.5. Convergence of the resonance frequency for the TE011 mode of the
rectangular microwave cavity with dimensions a = 20 cm, b =
10 e cm, and c = 10π cm. The rectangular cavity has been dis-
cretized with several hexahedral meshes and the numerical solution
is compared to the analytical one. . . . . . . . . . . . . . . . . . . . . . . 81

5.6. Relative deviation of the numerically obtained values f̂ for the low-
est eigenfrequency to the analytical result f as a function of the
hexahedral mesh cells for a rectangular, cylindrical, and spherical
resonator [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.7. Comparison of the different approaches for calculating the reso-
nance frequency for the TE011 mode of the rectangular microwave
cavity with dimensions a = 20 cm, b = 10 e cm, and c = 10π cm.
The rectangular cavity has been discretized with 1,109, 862 hexahe-
dral mesh cells. Here, the analytically calculated eigenfrequency has
been compared with the time-domain approach for eigenfrequency
extraction, when fitting in time or in frequency domain is used. . . . 83

124 List of Figures



5.8. Convergence study showing a comparison between the eigenfre-
quencies calculated with the proposed time-domain approach (red
and green color) and the analytically obtained eigenfrequencies
(blue color). The analyzed structure within this study is the spheri-
cal cavity with a radius R= 1 m. For the time-domain approach three
different hexahedral discretization meshes have been used and two
post-processing scenarios with one and two probes have been taken
into consideration. One frequency around 400 MHz is missing when
using only one probe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.9. Relative deviation (©2014 IEEE) of the analytically obtained values
f to the numerical results f̂ as a function of the number of tetrahe-
dral mesh cells for a spherical resonator with radius R = 1m. The
first two worst computed degenerated mode eigenfrequencies are
considered for the spherical cavity [15]. . . . . . . . . . . . . . . . . . . 88

5.10.Convergence study (©2014 IEEE) showing a comparison be-
tween the eigenfrequencies calculated with the proposed frequency-
domain approach (red color) and the analytically obtained eigenfre-
quencies (blue color). The analyzed structure within this study is
the spherical cavity from section 5.2.3. For the frequency-domain
approach six different tetrahedral discretization meshes have been
used [15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1. Desymmetrized version of the three-dimensional generalized sta-
dium billiard, consisted of two quarter cylinders with radii r1 =
200.0 mm and r2 = 141.4 mm. The cylinders are rotated with re-
spect to each other by 90◦. The billiard is made of niobium that
becomes superconducting at temperatures below 9.2 K and its clas-
sical dynamics are chaotic. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2. Relative deviation (©2013 IEEE) of the numerically obtained values
f̂ to the reference results f as a function of the mesh cells for a bil-
liard resonator. The mode oscillating at 2.37 GHz is determined.
The time-domain approach is based on the FIT with hexahedral
mesh, whereas the frequency-domain approach takes advantage of
the FEM with higher order curvilinear elements [14]. . . . . . . . . . . 96

6.4. Theoretical and measured connection between the number of modes
and the frequency. The theoretical connection has been calculated
using the equation (6.2). For the measured connection, about 900
eigenfrequencies up to 7 GHz have been extracted for the billiard
cavity structure by employing the time-domain approach. . . . . . . . 98

List of Figures 125



6.5. Convergence study (©2013 IEEE) showing a comparison between
the eigenfrequencies calculated with the proposed time-domain ap-
proach (green color) and the reference eigenfrequencies obtained
with the CEM3D eigenmode solver based on higher order curvilin-
ear elements (red color). For the time-domain approach a hexahe-
dral discretization mesh is used. At the same time, the reference
data are obtained using a tetrahedral discretization mesh [14]. . . . . 99

6.6. Graphical representation of the different requested eigen ranges
with its dimension. [a, b] presents the full eigen range. Six dis-
tinct scenarios are illustrated. . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.9. Convergence rate of the B-Lanczos and the B-Lanczos with shift-
and-invert solver for the eigencomputations in simulation #1. The
matrix pencils have 1,163, 238 DoF and the error is plotted at the
every 10-th iteration step. The convergence of the B-Lanczos solver
with shift-and-invert is very fast. The B-Lanczos solver calculates
additional 30 large-most eigenfrequencies in order the requested 70
eigenfrequencies to be reached. . . . . . . . . . . . . . . . . . . . . . . . 103

6.10.Computational time (left) and memory consumptions (right) of se-
lected eigenvalue solvers for the determination of 100 large-most
eigenvalues (©2013 IEEE). Different number of curvilinear tetrahe-
dral and hexahedral discretization meshes for the billiard cavity are
used within the frequency- and the time-domain methods, respec-
tively [14]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.12.Weak scaling tests: Parallel efficiency conducted for 100 iteration
steps of the Lanczos solver with polynomial filtering. The problem
size and the number of processors are kept in such a way that the
amount of data per processor stays constant. The tests are per-
formed on the computer cluster TEMFCL1000, without employing
the hyper-threading technology. . . . . . . . . . . . . . . . . . . . . . . . 108

6.13.Illustrative description of the level spacings. A level spacing ∆ fn is
defined as difference between each consecutive eigenfrequencies fn. 109

6.15.Level-spacing analyses conducted for different hexahedral meshes.
For each distribution, around 2, 300 eigenfrequencies are calculated
using the Lanczos solver with polynomial filtering. . . . . . . . . . . . 112

126 List of Figures



6.16.Superconducting microwave Dirac billiard cavity containing 888
metal cylinders with radius r = 4 mm and height h = 3 mm,
squeezed between two metallic plates. The cavity is constructed
from brass and coated with lead. The lattice constant is a =
12 mm and the resulting photonic crystal has a size of 249.42 mm×
420 mm× 3 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.17.Comparison of the spectral properties for a superconducting Dirac
billard cavity, which were measured and numerically calculated.
The frequency-domain approach using the Lanczos solver with poly-
nomial filtering has been used. As reference data, the level-density
distribution computed with the CEM3D eigenmode solver has been
considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

List of Figures 127





Acronyms and Symbols

Acronyms

2D Two Dimensional

3D Three Dimensional

ARPACK Arnoldi Package

BEM Boundary Element Method

BLAS Basic Linear Algebra Subprograms

CEM Computational Electromagnetics

CEM3D Computational Electromagnetics 3D

CG Conjugate Gradient

CPU Central Processing Unit

CSR Compressed Sparse Row

CST MWS CST Microwave Studio®

DFT Discrete Fourier Transform

DoF Degrees of Freedom

FD Finite Differences

FD Frequency Domain

FDTD Finite-Difference Time-Domain Method

FEM Finite Element Method

FFT Fast Fourier Transform

FIT Finite Integration Technique

129



GMRES Generalized Minimal RESidual method

GoF Goodness of the Fitting

GPU Graphics Processing Unit

IFFT Inverse Fast Fourier Transform

LAPACK Linear Algebra Package

LU Lower Upper

MKL Math Kernel Library

MoM Method of Moments

MPI Message Passing Interface

PETSc Portable, Extensible Toolkit for Scientific Computation

PRIMME PReconditioned Iterative MultiMethod Eigensolver

RAM Read Access Memory

RF Radio Frequency

SI Shift-and-Invert

SLEPc Scalable Library for Eigenvalue Problem Computations

SPL Superconducting Proton Linac

TD Time Domain

Roman Letters

A Area in R3

A Matrix from an eigenvalue problem

ACC Curl-curl matrix

A(i, j, k) Primary elementary surfaces
eA(i, j, k) Dual elementary surfaces

130 Acronyms



A(ω) Amplitude

a Scalar

a Parameter coefficient

a, b Bounds for the spectrum of A

a j Unknown coefficients

an Fourier coefficients

B Matrix from an eigenvalue problem
~B, ~B Magnetic flux density and complex amplitude [V s m−2]

b Scalar

b Source function

b Parameter coefficient
__
b,

__
b Discrete magnetic flux density and complex amplitude

bn Fourier coefficients
__
b(i, j, k) Discrete magnetic flux density [V s m−2]

C, eC Discrete curl operator for primary and dual grid

CT Transpose of the discrete curl operator for primary
grid

c Function

c Scalar

c Parameter coefficient

cn Complex Fourier coefficients
~D, ~D Electric flux density and complex amplitude [C m−2]

d Parameter coefficient
__
d,

__
d Discrete electric flux density and complex amplitude

__
d(i, j, k) Discrete electric flux density [C m−2]

dA, d~A Infinitesimal area element, scalar and oriented

ds, d~s Infinitesimal path element, scalar and oriented

dV Infinitesimal volume element

dx Infinitesimal path element, oriented in x direction

dy Infinitesimal path element, oriented in y direction

dz Infinitesimal path element, oriented in z direction

E Total number of edges
~E
′

Test field

Acronyms 131



~E, ~E Electric field strength and complex amplitude [V m−1]
_e, _e Discrete electric voltage and complex amplitude
_e (i, j, k) Discrete electric voltage [V m−1]

e j Unknown coefficients

F Operator

F Total number of facets

Fs Sampling frequency [s−1]
~F Vector

f Function

f Frequency [s−1]
bf (ω) Fourier transform of the function f (t)
Ófim(ω) Dispersion part
cfre(ω) Absorption part

G Primary grid
eG Dual grid
~G Vector

g Function

g Weighting function

bg(ω) Fourier transform of the function g(t)
~H, ~H Magnetic field strength and complex amplitude [A m−1]

h Function
_
h,

_
h Discrete magnetic voltage and complex amplitude

_
h(i, j, k) Discrete magnetic voltage [A m−1]

I Identity matrix

i, j, k Indices
~J , ~J Current density and complex amplitude [A m−2]
~Jc Conduction current density [A m−2]
~Jcv Convection current density [A m−2]
~Ji Impressed current density [A m−2]

j Imaginary unit, j =
p−1

Km(A, ~v ) Krylov subspace

L Length of a cylindrical cavity

L(i, j, k) Primary elementary edges

132 Acronyms



eL(i, j, k) Dual elementary edges

M Total number of time steps
~M Magnetization [A m−1]

Mε, Mµ Material matrices

m Time step

m Dimension of a Krylov subspace

N Total number of nodes

N Total number of time samples

N Length of a discrete signal

NA Total number of primary elementary facets

NeA Total number of dual elementary facets

NL Total number of primary elementary edges

NeL Total number of dual elementary edges

NP Total number of primary elementary points

NeP Total number of dual elementary points

NV Total number of primary elementary volumes

NeV Total number of primary elementary volumes

Nx , Ny , Nz Number of points in each coordinate direction of the
primary grid

n Dimension of a matrix

n Index

n Positive integer

~n Normal vector

n f req Number of eigenfrequencies

nnz Non-zero elements
~P Electric polarization [C m−2]

P(i, j, k) Primary elementary points
eP(i, j, k) Dual elementary points

P(ω) Phase

p Half period of a function

p ∈ {x , y, z} Cartesian coordinate

R Residual

R Radius of a cylindrical cavity

Acronyms 133



r Radius of a billiard cavity

~r Position vector in R3 [m]

~r Residual vector

ri Residual for the i-th data point

S Summed squares of residuals

S, eS Discrete divergence operator for primary and dual
grid

s(λ) Polynomial

T Time grid

T Duration of a time signal

T Total number of tetrahedra

T Tridiagonal matrix

Ts Sampling time [s]

t Time [s]
U Function space

u Unknown function

u Function

u(t) Heaviside step function

V Volume in R3

V Matrix that contains Lanczos vectors

V (i, j, k) Primary elementary volumes
eV (i, j, k) Dual elementary volumes
~W e Space of edge functions

w Basis function

w Gaussian window

~we Edge basis function

~w f Face basis function

X Design matrix for a fit model

x Generic point of the domain Ω

x Cartesian coordinate

x Eigenvector

~x Vector

~x Lanczos vector

134 Acronyms



x(n) Discrete signal

Y Fit model

y Vector of fit responses

y Cartesian coordinate

~y Ritz eigenvector of T

~y Vector

yi Observed response value for the i-th data point
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