
Quadrupole Collectivity in
128Cd
Quadrupolkollektivität in 128Cd
Vom Fachbereich Physik der Technischen Universität Darmstadt zur Erlangung
des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Dissertation von Esther Sabine Bönig M.Sc. aus Bünde
2014 — Darmstadt — D 17

Fachbereich Physik
Institut für Kernphysik
AG Kröll



Quadrupole Collectivity in 128Cd
Quadrupolkollektivität in 128Cd

Vom Fachbereich Physik der Technischen Universität Darmstadt zur Erlangung des
Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Disserta-
tion von Esther Sabine Bönig M.Sc. aus Bünde

1. Gutachten: Prof. Dr. Thorsten Kröll
2. Gutachten: Prof. Dr. Joachim Enders

Tag der Einreichung: 05.06.2014
Tag der Prüfung: 07.07.2014

Darmstadt — D 17



Erklärung zur Dissertation

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter
nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu
haben. Alle Stellen, die aus Quellen entnommen wurden, sind als
solche kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher
Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 05.06.2014

(S. Bönig)

i





Face this world. Learn its ways, watch it,
be careful of too hasty guesses at its meaning.

In the end you will find clues to it all.
temp

H.G. Wells, The Time Machine
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Abstract
The regions around shell closures, especially around doubly magic nuclei, are of
major interest in nuclear structure physics, as they provide a perfect test for nu-
clear structure theory. The neutron-rich Cd isotopes in the region of 132Sn are only
two protons away from the shell closure at Z = 50 and in close proximity to the
N = 82 magic number. Nevertheless they show an irregular behaviour regarding
the excitation energy of the first excited 2+ state. This is not reproduced by shell
model calculations, which is astonishing due to the proximity of the shell closures.
In order to shed light on the much discussed region around doubly magic 132Sn,
a Coulomb excitation experiment of 128Cd has been performed at REX-ISOLDE,

CERN. The reduced transition strength B
�

E2; 0+gs → 2+1
�

, which is a measure of

collectivity, and the spectroscopic quadrupole moment Qs(2
+
1 ) as a measure of de-

formation could be determined for the first time. The results are shown as the
continuation of already measured neutron-rich Cd isotopes and are compared to
both beyond mean field and shell model calculations, which give different predic-
tions for these observables.

Zusammenfassung
Die Gebiete um die Schalenabschlüsse, insbesondere nahe den doppelt-magischen
Kernen, sind von grösstem Interesse für die Kernstrukturphysik, da sie einen per-
fekten Test für Kernstrukturthoerien darstellen. Die neutronenreichen Cd Isotope
nahe 132Sn sind lediglich zwei Protonen von dem Schalenabschluss bei Z = 50
entfernt und unweit der magischen Zahl N = 82. Trotzdem zeigen sie ein irregu-
läres Verhalten in der Anregungsenergie des ersten 2+ Zustandes. Dieses wird
von den Schalenmodellrechnungen nicht reproduziert, was erstaunlich ist, da die
Schalenabschlüsse in unmittelbarer Nähe liegen. Um Licht in das Gebiet um 132Sn
zu bringen, wurde ein Coulombanregungsexperiment von 128Cd bei REX-ISOLDE,

CERN durchgeführt. Die reduzierte Anregungsstärke B
�

E2;0+gs → 2+1
�

, die eine
Messgröße der Kollektivität darstellt, und das spektroskopische Quadrupolmoment
Qs(2

+
1 ) als Messgröße der Deformation konnten zum ersten Mal bestimmt werden.
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Die Ergebnisse werden als Weiterführung der schon gemessenen neutronenreichen
Cd Isotope gezeigt und mit “beyond mean field” und Schalenmodellrechnungen
verglichen, die unterschiedliche Vorhersagen für diese Observablen liefern.

vi Zusammenfassung
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1 Introduction

1.1 Historical overview

In 1909 H. Geiger and E. Marsden performed under the direction of E. Rutherford
an experiment [Gei09], whose outcome should open up a new field of physics.
They investigated the scattering of an α-particle beam on a gold foil. It was, how-
ever, in 1911 that E. Rutherford interpreted the results of this experiment and
drew the conclusion, that “the atom consists of a central charge supposed concen-
trated at a point” [Rut11] - today known as the atomic nucleus. It was then some
experiments later in 1918, that the proton was discovered by Rutherford as the
particle carrying this central positive charge. Around the atomic nucleus, negative
charges - the electrons - were thought to move along orbits. The introduction of
discrete energy levels for the electrons was done by N. Bohr in 1913, when he
postulated a modified atomic model. This was able to explain the spectral lines
specific for atoms first discovered in the sun by W.H. Wollaston in 1802 [Wol02]
and J.v. Fraunhofer in 1814 [Fra14] and further investigated by G. Kirchhoff and
R. Bunsen [Kir60]. The limitations of Bohr’s atomic model lie amongst others in the
prediction of the ground state angular momentum and the description of the spec-
tral lines of heavy atoms. These shortcomings lead to a new theory developed by
W. Heisenberg, M. Born and P. Jordan and was introduced in 1925 as a whole new
mathematical description of the atom - quantum mechanics [Hei25, Bor25, Bor26].
It was, however, years later in 1932, that the constituents of the already discovered
atomic nucleus could be pinned down by the discovery of the neutron by J. Chad-
wick [Cha32]. The crucial experiment was that by Bothe and Becker in 1930,
which revealed a penetrating but not ionising radiation out of the nucleus after
bombardment with α-particles [Bot30]. With this discovery it was possible for the
first time to extract the binding energy of a nucleus by comparing its total mass
with the masses of the constituting particles. The theoretical description of the
neutron was formulated by W. Heisenberg also in 1932, explaining the symmetry
between protons and neutrons [Hei32]. It was then only later in 1937 that the
name of the quantum number - the isospin - was introduced by E. Wigner [Wig37].
With the introduction of an attractive force between the protons and neutrons, the
nuclear force, it eventually was possible to explain the binding of those into an
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atomic nucleus. The potential introduced by and later named after Yukawa was in
1935 the first theoretical description of this force [Yuk35]. It included a new parti-
cle mediating the interaction between the nucleons. This particle was first guessed
to be the µ lepton, but later discovered as the π meson. Nowadays it is known,
that the nuclear force is only a residual part of the more fundamental interaction
between more elementary particles, the strong force acting between the quarks.
The quarks were first proposed by M. Gell-Mann [Gel64] and G. Zweig [Zwe64] in
1964. The first experimental evidence was then found in a deep inelastic scattering
experiment at the Stanford Linear Accelerator Center in 1968 [Blo69, Bre69].

Today more than 3000 different nuclei are known with less than 300 of them be-
ing stable. They are characterised by their proton and neutron number Z and N and
mass number A: A

Z XN , with X being the element symbol. All these nuclei are sorted
in the nuclear chart according to their nucleon numbers (fig. 1.1). As more and
more nuclei became known and experimentally accessible, their nuclear properties
like half lifes, masses, radii, electric and magnetic moments were studied in various
different experiments. New nuclear models were developed and further extended
in order to reproduce the experimental values and to gain new information about
the properties of the strong force between the nucleons and their effect on the
nuclear structure. It is only since the past few years that exotic nuclei, that is nu-
clei with extreme N/Z ratios, became experimentally accessible. But exactly these
highly unstable nuclei show interesting and extraordinary phenomena, providing a
perfect test for different nuclear structure theories.

1.2 Motivation

One example of those highly exotic nuclei that became experimentally accessible is
the heavy and neutron-rich 128Cd near the N = 82 and Z = 50 shell closures, where
only scarce information exist. A quenching of the shell gap at N = 82 has already
been proposed 20 years ago by Dobaczewski et al. [Dob94]. This would express
itself in an increase in quadrupole collectivity compared to an unquenched shell
gap. However, so far no definite experimental evidence was found. By the inves-
tigation of 128Cd, which is only two proton and two neutron holes away from the
shell closures (fig. 1.2), in a Coulomb excitation experiment the transition strength
from the 0+ ground state to the first excited 2+ state can be determined and gives
insight to the question of shell gap quenching. A unique anomaly in the Cd isotopic
chain has been discovered by the measurement of the energy of the first excited 2+

state. The increase towards the N = 82 shell closure is not at all as steep as in the
neighbouring isotopes like 52Te and 46Pd, for example, and even decreases from
126Cd to 128Cd, as is depicted in figure 1.3. The 2+1 energy for 128Cd is with 646 keV
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even lower than for both N = 80 isotones 132
52 Te (E

�

2+1
�

= 974 keV [Ker74]) with

four protons more and the recently measured 126
46 Pd (E

�

2+1
�

= 693 keV [Wat13])
with two protons less than 128Cd. Another peculiarity was found in 136Te, which
has two protons and two neutrons more than the doubly magic 132Sn (instead of
heaving two proton and neutron holes like 128Cd) [Rad02, Dan11]. The transition
strength from the ground to the first excited state is less than expected by shell
model calculations. Neither the findings of the anomaly in the excitation energies
of the Cd isotopes nor the low transition strength in 136Te are reproduced with shell
model calculations, which is astonishing as the proton and neutron shell closures
are both in close proximity.

An understanding of the Cd isotopic chain, and especially 128Cd, will as well in-
fluence nuclear astrophysics. The path of the astrophysical r-process, which is the
rapid neutron capture, passes near 128Cd and is responsible for the nucleosynthesis
of heavy (heavier than 56Fe) neutron-rich nuclei in e.g. supernova explosions. The
description of the solar abundance peak at around A' 130 is improved assuming a
N = 82 shell gap quenching [Che95]. However, the lack of experimental informa-
tion on most of the r-process nuclei requires theoretical extrapolations in order to
investigate the nucleosynthesis. With this very first measurement of the transition
strength from the 0+ ground state to the first excited 2+ state, which acts as a mea-
sure of quadrupole collectivity, in 128Cd, the understanding of the nuclear structure
in this region is improved.

This work will at first (chapter 2) discuss basic considerations of nuclear struc-
ture physics, including the ideas of shell model (SM) and beyond mean field (BMF)
theory, in order to be able to interprete the results of the performed experiment.
In chapter 3 the method used for the investigation of 128Cd - low energy Coulomb
excitation - is explained and the connection between theoretical description and
experimental observables is drawn. This is followed by a description of the beam
production and acceleration at REX-ISOLDE, CERN, and the experimental setup
MINIBALL in chapter 4. Chapter 5 deals with the corrections and calibrations
performed in order to analyse the obtained experimental data. This analysis is
explained in great detail in chapter 6, where as well the handling with the beam
contamination is adressed. The outcome of the experiment is summarised and
discussed in the vicinity of shell model and beyond mean field calculations in chap-
ter 7, where as well an outlook for further investigations is given.

1.2. Motivation 3
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Z=50

N=82

Figure 1.2.: Region around 128Cd with indicated shell closure at N = 82 and Z = 50.
Color coded is the lifetime of the ground state of the nuclei. Figure is
generated with inch [inc14].
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2 Nuclear structure physics
One of the first attempts to describe the atomic nucleus was done analogous to the
atomic shell model. In 1932 D. Ivanenko and E. Gapon proposed to describe the
nucleus in terms of energy levels and orbitals [Gap32]. The nuclear shell model
(SM) was then formulated and further developed independently by M. Goeppert-
Mayer [Goe49] and J.H.D. Jensen [Hax49], who were awarded the nobel prize in
1963 “for their discoveries concerning nuclear shell structure” [nob14]. The basic
idea of the nuclear shell model is, that the nucleons are distributed on shells with a
certain energy and satisfy the Pauli exclusion principle like the electrons in an atom.
In contrast to atomic physics, where the electromagnetic interaction plays the major
role, the nucleons underly also the strong interaction. It was found experimentally,
that nuclei with certain proton and neutron numbers, today known as the “magic
numbers” (2, 8, 20, 28, 50, 82, 126), do not follow the semiempirical mass formula
by C.F. von Weizsäcker [vW35]. These nuclei are much more bound compared to
their neighbours. The first formulation of the shell model was able to reproduce
this finding up to N , Z = 20, but needed to be revised in order to also account for
the higher numbers. Therefore Goeppert-Mayer and Jensen improved their first
formulation of the shell model by including the spin-orbit coupling, which turns
out to be much larger than in atoms. However, also these improvements could
not explain further observations like enhanced quadrupole moments, i.e. large
quadrupole deformation, and large transition probabilities for nuclei with many
valence nucleons away from magic numbers and closed shells. These limitations
of the shell model lead to the description of the nucleus within another approach -
the collective model introduced by A. Bohr and B.R. Mottelson [Boh58]. It was dis-
covered that the origin of such enhanced values lies in a collective behaviour of the
nucleons and that the nucleus in these regions can not be described by simple one-
nucleon excitations. Nevertheless, the properties of the nuclei can not be explained
by SM or collective models exclusively, but rather need features from both theories.
The single particle orbits described by the shell model depend on the form of the
nuclear potential, described by the wave functions calculated within the framework
of a collective model. In this chapter the ideas of the collective model as well as the
basic and state-of-the-art shell model will be described. Furthermore the coupling
of both theories to the deformed shell model will shortly be outlined. At last, a
modern numerical mean field approach is sketched.
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2.1 Collective model

Experimental evidences lead to the development of a collective model, in which
the nucleons exhibit a collective motion, that means they move coherently with
well-defined phases. Different types of collective motions like vibration and rota-
tion exist. These show for even-even nuclei typical structures in their excitation
spectrum and will be discussed further, before a brief mathematical description of
the collective model follows.

Vibration: The excitation quanta for a vibration are called phonons. Each
phonon carries λħh angular momentum and parity π = (−1)λ, with λ being the
multipole order. In even-even nuclei the 0-phonon state represents the ground
state, whereas the first excited state is formed by a one-phonon excitation. For
quadrupole phonons with λ = 2 the first excited one-phonon state is a 2+-state.
A coupling of two quadrupole phonons results in three states (0+, 2+, 4+) at twice
the energy of the one-phonon excitation (fig. 2.1, left). For a Hamiltonian includ-
ing only vibrational terms, that is a harmonic oscillator, those three states would
be degenerate in energy. However, the non-vanishing residual interaction between
the phonons splits the states to different energies. A good test to decide whether
a nucleus is a typical vibrator or not, is the ratio R42 of the energies of the first
excited 4+- and 2+-state:

R42 =
E(4+1 )

E(2+1 )
= 2. (2.1)

In case this ratio has the value 2 the nucleus can be considered a typical vibra-
tor. Another characteristic of a vibrational nucleus is the probability for an E2-
transition. This should be twice as large for the decay of two-phonon states than
for a one-phonon state into the ground state. For a long time it was thought that
a good example for vibrational nuclei is found in the Cadmium isotopic chain. The
stable Cd isotopes show the typical energy spectrum of a vibrator. However, when
these nuclei became available in recent experiments addressing the transition prob-
abilities [Gar08], the values did not follow the predictions. Garrett et al. [Gar08]
then drew the conclusion, that the stable Cd isotopes may not represent a perfect
vibrational system.

Rotation: Rotational modes can only be found in nuclei, which have a deformed
shape, i.e. away from shell closures. With the assumption of a rigid nucleus it is

8 2. Nuclear structure physics
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Figure 2.1.: Schematic view of the excitation energies in a spherical quadrupole vi-
brational nucleus without residual interactions (left) and in a deformed
rotational nucleus according to equ. 2.4 (right).

described as an axially symmetric system rotating along an axis perpendicular to
the symmetry axis. The Hamiltonian

H =
ħh2

2Θ
·~I2 (2.2)

consists of the moment of inertia Θ with respect to the rotation axis and the sum
~I of angular momentum generated by the core rotation and the intrinsic angular
moment of the unpaired valence nucleons. The projection of ~I onto the symmetry
axis is given by a new quantum number K. Solving the Schrödinger equation leads
to the energy eigenvalues

Erot =
ħh2

2Θ

�

J(J + 1)− K2
�

(2.3)

with the total angular momentum J. This leads to the energies of the first excited
states

E(2+1 ) = 6
ħh2

2Θ
,

E(4+1 ) = 20
ħh2

2Θ
,

E(6+1 ) = 42
ħh2

2Θ
, (2.4)

which is sketched in fig. 2.1, right. The typical rotor has a value of R42 = 3.33. Most
examples of such typical rotors are found in the rare-earth region and the actinides.
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To describe the collective motion of nucleons mathematically, it is convenient
to introduce collective coordinates aλµ, which describe the vibration of a nucleus
relatively to its ground state. In nature most nuclei do not exhibit vibrational or
rotational modes alone, but rather a mixture of both, which is described by the
general collective model. We will in the following discuss only the basic structure
of a collective model as found in [Eis75]. Details on the general collective model
can be found in [Hes80]. The nuclear surface can be expanded into spherical
harmonics Yλµ and written in terms of the collective coordinates

R(θ ,φ, t) = R0



1+
∑

λ,µ

(−1)µaλ,−µ(t)Yλ,µ(θ ,φ)



 , (2.5)

with R0 being the radius of a spherical nucleus, for which the aλµ vanish. The
vibrational modes can be classified in terms of multipole order λ. The monopole
term (λ = 0) corresponds to the breathing mode, which is the change of volume
of the nucleus. Due to the relatively high incompressibility of nuclear matter, these
excitations lie at very high energies (a couple of tens of MeV). The static dipole term
(λ= 1) describes a center of mass motion, that is a translation of the nucleus. The
dynamical dipole term gives the giant dipole resonance. In the context of this work
the most interesting term is the quadrupole term with λ = 2, which corresponds
to the quadrupole deformation (static) and its change (dynamic) of the nucleus.
Considering only the static quadrupole term, equ. 2.5 can be written as

R(θ ,φ) = R0

 

1+
∑

µ

a∗2,µY2,µ(θ ,φ)

!

, (2.6)

with the condition a∗λ,µ = (−1)µ aλ,−µ. Expressing the sum in cartesian coordinates,
it is immediately clear that the a2,µ describe the shape of the nucleus (see for further
information [Eis75]). A transformation to an instantaneous principal axis system,
which is rotated by the Euler angles with respect to the laboratory-fixed system,
gives a2,±1 = 0. The components a2,0 and a2,2 = a2,−2 lead to the intrinsic nuclear
shape, whereas the Euler angles indicate the rotation of the nucleus. Bohr and
Mottelson [Boh53] introduced the nowadays better known parameters β and γ

a2,0 = β cos
�

γ
�

,

a2,2 =
β
p

2
sin
�

γ
�

, (2.7)

with
∑

µ

�

�a2,µ

�

�

2
= β2. (2.8)

10 2. Nuclear structure physics



U(r)

r

U
0

Figure 2.2.: A sketch of the square well potential (red), the harmonic oscillator po-
tential (blue) and the Woods-Saxon potential (green) with depth U0.

The parameter β refers to the deviation from spherical symmetry. The triaxiality
parameter γ represents the deviation from rotational symmetry, that is axial defor-
mation, and can be visualised as a stretching of the nucleus perpendicular to the
symmetry axis. However, two different conventions for the parameters exist. A
common convention is, that γ can take values from 0◦ to 30◦, where γ = 0◦ and
γ = 30◦ correspond to axially symmetric nuclei. Then the sign of βgives the type
of deformation - β > 0 for a prolate and β < 0 for an oblate shape. In another
convention γcan take values between 0◦ and 60◦, where γ = 0◦ corresponds to
an axially symmetric oblate nucleus and γ = 60◦ describes an axially symmetric
prolate nucleus. Here β only takes positive values.

2.2 Shell model

2.2.1 Spherical shell model

To describe the nucleus within the shell model approach, a spherically symmetric
nucleon-nucleon potential Vi j(r) with r = |~r| is used. Higher order interactions like
three-body forces are neglected at this point. The Hamiltonian can be written as
the sum of the kinetic energies of the particles and the interaction potential Vi j(r)

H =
A
∑

i=1

Ti +
A
∑

i< j=1

Vi j(r) =
A
∑

i=1

�

~p2
i

2mi
+ U

�

ri
�

�

︸ ︷︷ ︸

H0

+
A
∑

i< j=1

Vi j(r)−
A
∑

i=1

U
�

ri
�

︸ ︷︷ ︸

Hres

. (2.9)
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By introducing a central mean field potential U(r) created by the nucleons (U(ri)
is the mean potential acting on a nucleon i created by the surrounding nucleons
up to a certain distance), the Hamiltonian can be divided into two parts: 1) A part
H0 describing the independent single particle motion of the nucleons in the mean
field potential, which will built the shell structure (i.e. single particle energies) and
2) the residual interaction Hres, which will be responsible for the details of the
nuclear structure. The mean potential U(r) needs to have sharp boundaries, as the
strong force is only very short ranged. An appropriate choice would either be a
square well or an harmonic oscillator potential

U(r) =−U0 +
m

2
ω2r2, (2.10)

with a depth U0, nucleon mass m, oscillator frequency ω and radius r. In order to
reproduce the experimentally found magic numbers, Goeppert-Mayer [Goe49] and
Jensen [Hax49] processed - independently from each other - the idea to include
one more term in the potential: ~l ·~s for the interaction of spin and angular momen-
tum. Because the calculated energy of the orbitals with large angular momentum ~j
were found to be too high, another term, C~l2, has been introduced. Therefore the
modified potential reads

U(r) =−U0 +
m

2
ω2r2 + C~l2 − D~l ·~s. (2.11)

The parameter C characterises the deviation from an harmonic oscillator potential
and is negative. The constant D represents the strength of the spin-orbit coupling
and is negative for the coupling j = l − 1/2 and positive for j = l + 1/2. Both
parameters have to be determined empirically. However, a more realistic potential
is a potential between the square well and the harmonic oscillator, already referred
to by Goeppert-Mayer and Jensen [Goe55]. Therefore Woods and Saxon created
such a potential, called the Woods-Saxon potential [Woo54] (see fig. 2.2)

U(r) =−
U0

1+ exp [(r − R)/a]
(2.12)

with a depth U0, the radius R and the skin thickness a. The quantum numbers
n (radial, n = 1,2, 3, ...), l (orbital, l = 0,1, ..., n − 1), s (spin, s = ±1/2) and j
(total angular momentum, j = l + s) are introduced to classify the different shells.
By solving the Schrödinger equation HΨ = EΨ for the shell model Hamiltonian
(equ. 2.9) the different shells can be calculated. Note, that in a non-relativistic
treatment this is only possible analytically for the square well and harmonic oscil-
lator potential, but not for the Woods-Saxon potential. Figure 2.3 shows the effect
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Figure 2.3.: Shell model levels for the harmonic oscillator (VOS), Woods-Saxon (VWS)
and Woods-Saxon potential with spin-orbit coupling for protons Z and
neutrons N separately (VWS,SBK). Figure taken from [Bet08].
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of the choice of the different potentials and the inclusion of the additional terms
on the orbitals.

Modern descriptions of nuclei in the vicinity of the shell model use a basis of
harmonic oscillator states to solve the A-body Schrödinger equation including the
shell model Hamiltonian (equ. 2.9) and preserves all underlying symmetries. This
Schrödinger equation can, in general, not be solved exactly. Therefore the realistic
interaction amongst the nucleons is described by effective interactions. These are
either determined purely empirically by fitting to experimental data, or obtained
microscopically from models like coupled cluster theory. In first order, only NN po-
tentials are taken into account. The inclusion of 3-body interactions was first done
in 2002 by D.C.J. Marsden et al. [Mar02] and is nowadays common practice. With
these effective interactions the many-body Hamiltonian can be diagonalised, and
observables like excitation spectra, transition strengths and quadrupole moments
can be calculated. This method, where all the nucleons are treated as being ac-
tive, is only applicable for light nuclei with A® 18 and is called the No Core Shell
Model (NCSM) [Nav00]. More detailed information can be found in [Bar13]. For
heavier nuclei the model space becomes too large and the diagonalisation of the
Hamiltonian is no longer possible due to a significant growth in computing time.
Being able to perform calculations for nuclei throughout the nuclear chart needs a
reduction of the model space. Up to now three different approaches are capable
to do so: The importance truncation approach [Rot07], the NCSM in the frame-
work of an effective field theory [Ste07] and the standard SM with a core [Lis08].
In the following only the latter method will shortly be discussed. In the standard
SM with a core the model space is reduced by dividing the nucleus into an inert
core and interacting valence nucleons. The inert core is chosen to be the nucleus
with proton and neutron magic numbers nearest to the nucleus of interest. The
core consists of only fully-occupied shells from where no excitations are allowed in
leading order. Therefore the effective interaction is obtained only for the valence
nucleons and the Hamiltonian for those can be diagonalised. The fully closed shells
have a spherical shape, whereas the unfilled valence shells can deform the nucleus.
For the special case that there is only one nucleon in the valence shell, there are
no interactions between valence nucleons. Then the occupied orbit completely
describes the ground state energy and spin of the whole system. For more than
one valence nucleon the interaction between those has to be taken into account.
It is described by the residual interaction Hres, which in even-even nuclei mostly
consists of pairing forces acting between the single nucleons.

The spherical shell model is very successful in describing ground state spins, par-
ities and magic numbers. But when it comes to mid-shell nuclei and its phenomena

14 2. Nuclear structure physics



like quadrupole deformation, shell model predictions do not fit the experimental
results very well. Most of the measured quadrupole moments and transition prob-
abilities are much larger than expected from single-nucleon transitions. It seems
that the spherical mean field approach is no longer appropriate when it comes to
off-shell phenomena.

2.2.2 Deformed shell model - The Nilsson model

In order to account for a deformation of a nucleus, a special model was developed
to describe single particle energies with respect to a deformed mean potential. The
model is called the Nilsson Model or the deformed shell model. In 1955 S.G. Nils-
son introduced a modified Hamiltonian, which describes a single particle moving in
an axially deformed harmonic oscillator potential with spin-orbit coupling [Nil55]

H =
~p2

2m
+

m

2

�

ω2
x

�

x2 + y2
�

+ω2
z z2
�

+ C~l2 − D~l ·~s (2.13)

The oscillating frequencies

ωx ,y = ω0(ε) (1+ 1/3ε) ,

ωz = ω0(ε) (1− 2/3ε) , (2.14)

are written as a function of the deformation parameter ε. The quantity ω0(ε) is
given as

ω0(ε) = �ω0

�

1+ 1/9ε2 +O
�

ε3
��

(2.15)

where �ω0 is the value of ω0 at ε = 0. Note that the deformation parameter ε
is connected to the deformation parameter β used by Bohr and Mottelson for the
collective model (equ. 2.7) to first order via the approximation

ε ' 3/2

r

5

4π
β + 3/8

5

4π
β2 +O

�

β3
�

. (2.16)

Figure 2.4 shows the single-particle energy levels for protons and neu-
trons with respect to the deformation parameter δ. Note, that the relation
ε = δ + 1

6
δ2 + O

�

δ3
�

holds [Nil55].
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Figure 2.4.: Deformed shell model levels for proton and neutrons following the
formulation by Nilsson. Note, that ε = δ+ 1

6
δ2 + O

�

δ3
�

[Nil55]. The
asymptotic (only good for large deformation) quantum number nz is
the number of nodes in the wave function in z-direction. For levels
in a shell N and angular momentum J = 1/2 the quantum number
nz = N for the lowest level and nz = N−1 for the next etc. For angular
momentum J = 3/2 the quantum number nz = N − 1 for the lowest
level and nz = N − 2 for the next and so on. The quantum number Ω is
the projection of the angular momentum onto the symmetry axis. The
value Ωπ is indicated for each level. Figure taken from [Bet08].
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2.3 Mean field theory and beyond

The Nilsson model describes nuclei in the vicinity of the single particle model very
well, but in order to describe the nuclear properties even better, a treatment of
more realistic potentials is needed. An approach besides SM to describe nuclear
properties is the mean field method [Ben03] , also known as self-consistent field
theory, which uses the framework of quantum field theory. The mean field is
derived from effective interactions using a Hartree-Fock (HF) approach in a self-
consistent way. In this approach the total N -body wave function |Φ〉= a†

k1
...a†

kN
|0〉,

with a†
ki

being the creation operators for nucleons in the orbit k, is constructed
from the shell model Hamiltonian (equ. 2.9). After the minimisation of the ob-
tained Hartree-Fock energy with the constraint of a fixed number of multipole
moments a mean field is obtained. Iterating this procedure leads to a stable so-
lution for the mean field [Ber07]. However, the Hartree-Fock method can only be
applied if the long range components of the nucleon-nucleon interaction, which
cause particle-hole correlations and contribute to the nuclear deformation, domi-
nate the short range ones, which cause particle-particle correlations and serve as
origin for pairing correlations. In order to account for the short range interaction,
the Hartree-Fock + Bardeen-Cooper-Schrieffer (HF + BCS) approach [Bar57] can
be used, where the pairing interaction is included in the Hamiltonian. The ap-
proximate solution leads to the BCS-states, whose probability of occupation can be
determined. Note that for these states an occupation above the Fermi level is pos-
sible. A drawback of this method is that the particle number is not conserved. To
overcome this problem, Bogolyubov and Valatin developed a method by transform-
ing the creation and annihilation operators to new quasi-particle operators. This
leads to the so-called HFB equations [Bog58, Val58]. Solving these equations leads
to the construction of the corresponding wave functions |Φ〉. The intrinsic state can
break different symmetries of the system, which have to be restored in order to
produce physical states. This is done by the projection of these intrinsic states onto
the quantum number corresponding to the broken symmetry (i.e. fixed particle
number, isospin, angular momentum). The success of the calculation of the mean
field is highly dependent on the choice of the interaction. The first attempts for the
calculation of this interaction was made directly from the bare nucleon-nucleon
potential by Muthukrishnan and Baranger in 1965 [Mut65]. But to describe the
nuclei on a quantitative level an effective interaction had to be introduced. The
two main non relativistic effective interactions are the Skyrme [Sto06] and the
Gogny interaction [Dec80]. The Skyrme functional describes the nucleon-nucleon
potential by a contact force, whereas Gogny is a finite range interaction. The finite
range interaction has the advantage, that pairing correlations do not need to be put
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in as an adjustable parameter but are included self-consistently. This reduces the
number of available parametrisations for the Gogny functional significantly. Both
interactions are considered phenomenological, as they are adjusted to experimen-
tal data like masses and radii on a global level. A third very important effective
interaction within the mean-field theory is the relativistic mean field [Rei89]. In
this approach the nucleons are described by Dirac spinors from which the many-
body state is built and the motion of nucleons is given by the Dirac equation. The
nucleons interact through a finite-range meson field, the simplest exchange meson
being the pion. The effective interaction of the meson fields is described with the
Klein-Gordon equation. The advantage of the relativistic mean field model com-
pared to the Gogny and Skyrme effective interaction is the natural outcome of
relativistic effects like the spin-orbit coupling.

In order to describe the nuclear properties with a higher precision, additional
methods can be applied to the mean field theory. These additional methods
then include correlations as, for example, collective motion. These can be con-
sidered by applying different methods, one being the generator coordinate method
(GCM) [Tab72, Rei87]. It is based on the variational principle and combines col-
lective motion and single particle effects. In the GCM the basis is formed by the
BCS or HFB states and the wave functions

�

�Φ(q)
�

are constructed depending on the
collective coordinate q. The energy can be calculated with the variational principle,
where the variation is either performed before or after the projection of the states
onto quantum number of the broken symmetry. The collective coordinate can be
chosen such that it restores the broken symmetries or includes shape degrees of
freedom. Through this parameter, information about the quadrupole deformation
is gained.
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3 Low-energy Coulomb excitation
With the development of radioactive beams, the investigation of nuclear proper-
ties for nuclei away from stability became possible. This important step and the
interplay between theoretical and experimental physics lead to an extended under-
standing of nuclear matter even though open questions still arise. However, the
production and delivery of a radioactive beam to the actual experiment is not at all
trivial, as each single nucleus needs to be produced in a nuclear reaction and many
of the unstable nuclei decay within fractions of a second [Gla09]. Therefore the
yields of such beams are much less compared to stable beam experiments, which
makes the choice of the experimental method for the investigation of an unstable
nucleus even more crucial. One of these methods of choice is Coulomb excita-
tion. In such experiments a radioactive ion beam (RIB) is shot on a target material
and is scattered inelastically. Both scattering partners can get excited by exchang-
ing a virtual photon. The trajectory of the incoming particle in the Coulomb field
of the scattering target nucleus can be described classically if the beam energy is
sufficiently low, whereas the excitation process can only be described quantum me-
chanically. In this chapter this so-called semi-classical description will be explained
and the connection between theory and experimental observables will be drawn.

3.1 The semi-classical description

The inelastic scattering of a beam at a target nucleus is a purely electromagnetic
process and therefore well described by theory, if the beam energy is sufficiently
low, i.e. well below the Coulomb barrier VC

VC =
e2

4πε0

Zp Zt

Rp + Rt
, (3.1)

with Ri ∝ 1.25 · A1/3
i being the radius of the projectile and target nucleus, respec-

tively. The maximum “safe” collision energy Emax is given as

Emax
�

Θcm
�

= 0.72 ·
Ap + At

At
·

Zp Zt

Dmin

�

1+
1

sin
�

Θcm/2
�

�

[MeV], (3.2)
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Figure 3.1.: Schematic view of low-energy Coulomb scattering.

with Dmin being the distance of closest approach. To ensure the nuclear interaction
being smaller than 0.1% a separation of the nuclear surfaces of 5 fm is needed .
This leads to Dmin being

Dmin ≥ Rp + Rt + 5, (3.3)

and is called Cline’s criterion [Cli69].
For a classical description of the trajectory of the scattering nucleus the wave

length λ of the projectile must be much smaller than the impact parameter b(Θ).
This condition is described via the Sommerfeld parameter η

η=
b(Θ)
2λ

=
Zp Zt e

2

ħhv
� 1, (3.4)

with v being the relative velocity of the two scattering partners. If this is ful-
filled the trajectory of the incoming particle can be described by the well defined
Rutherford scattering trajectory. In figure 3.1 this classical trajectory of a projectile
nucleus Ap scattered at the Coulomb field of a target nucleus At is depicted. The
differential cross section is given by the Rutherford formula

�

dσ

dΩ

�

Rutherford
=

a2

sin4(θcm/2)
, (3.5)
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with

a =
e2Z1Z2

8πε0E
, (3.6)

and Zi being the proton numbers of the projectile and target, e is the electric charge,
ε0 is the dielectricity constant, E is the energy of the incoming particle and θcm is
the scattering angle in the center of mass frame [Ald56, Ber07]. If the energy loss
of the projectile in the target material is small compared to the beam energy, the
assumption that the trajectory of the beam particle has not changed after excita-
tion holds. Then the differential excitation cross section is directly related to the
Rutherford cross section

�

dσ

dΩ

�

exc
= Pi f

�

dσ

dΩ

�

Rutherford
, (3.7)

where Pi f is the probability of an excitation from an initial state |i〉 to a final state
�

� f
�

. This probability can be written as the square of the absolute value of the
transition amplitude ai f between these states

Pi j = |ai f |2� 1. (3.8)

To calculate these amplitudes a quantum-mechanical approach is necessary by solv-
ing the time-dependent Schrödinger equation

iħh
∂

∂ t
|Ψ(t)〉= H |Ψ(t)〉=

�

H0 + V (~r(t))
�

|Ψ(t)〉 , (3.9)

with H0 being the Hamiltonian of the non-interacting nucleus and V (~r(t)) the time-
dependent electromagnetic interaction for one-particle excitation. The probability
to mutually excite both particles is very small and is therefore neglected in the
following considerations. Equation 3.9 can be solved using the eigenfunctions

|Ψ(t)〉=
∑

n

an(t) |n〉exp
�

−
i

ħh
En t
�

, (3.10)

for eigenstates |n〉. The solution of equation 3.9 leads to a set of coupled differential
equations

iħhȧn(t) =
∑

m

〈n|V (~r(t))|m〉exp
�

i

ħh
�

En − Em
�

t
�

am(t), (3.11)

which can be solved using perturbation theory.
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3.2 First order perturbation theory

3.2.1 First order effects

First order effects describe one-step excitations, which is the excitation of one state
to another without any further excitations. In most of the experiments with light
ions or low beam energy these are the only transitions that have to be considered.

For non-relativistic beam energies the main interaction V (~r(t)) in a collision
is the Coulomb interaction. It is treated as a time-dependent perturbation of the
system and can be expanded into a multipole series for electric excitation

V (~r(t)) = 4πZ1e
∞
∑

λ=1

λ
∑

µ=−λ

1

(2λ+ 1) r(t)λ+1
Yλµ
�

θ(t),φ(t)
�

M
�

Eλ,µ
�

, (3.12)

with Yλµ
�

θ(t),φ(t)
�

being the normalised spherical harmonics and M
�

Eλ,µ
�

the electric multipole moment of the nucleus defined as

M
�

Eλ,µ
�

=

∫

ρE (~r(t)) r
λYλµ

�

θ(t),φ(t)
�

d3r, (3.13)

with the spatial charge distribution ρE (~r(t)). Because of the multipole moments
being tensor operators, the Wigner-Eckart-Theorem can be used. With this the full
matrix elements can be rewritten as reduced matrix elements

¬

Ii Mi

�

�M
�

Eλ,µ
�

�

�I f M f

¶

= (−1)Ii−Mi

�

Ii λ I f
−Mi µ M f

�

¬

Ii ‖M (Eλ) ‖ I f

¶

.

(3.14)
The advantage in using the reduced matrix element lies in the fact, that it is in-
dependent of the substate m and is therefore the same for any transition from
a particular initial state i to a final state f. The reduced matrix element itself is
connected to the reduced transition strength

B
�

Eλ, Ii → I f

�

=
∑

M f µ

�

�

�




Ii Mi

�

�M (Eλ)
�

�I f M f

¶

�

�

�

2
(3.15)

=
1

2Ii + 1

�

�

�

¬

Ii ‖M (Eλ) ‖ I f

¶

�

�

�

2
.

The transition amplitude can be written with equation 3.11 as

ai f =
1

iħh

∫ ∞

−∞




f
�

�V (~r(t))
�

�i
�

exp
�

i
E f − Ei

ħh
t
�

d t, (3.16)
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where the square of the absolute value
�

�ai f

�

�

2
is known as Fermi’s golden rule.

Inserting equations 3.5, 3.8 and 3.16 into equation 3.7 leads to the differential
Coulomb excitation cross section for a one-step excitation

dσEλ

dΩ
=

�

8π2ε0Z1ea

ħh

�2
B(Eλ)

sin4 (θ/2)

∑

µ

|SEλ,µ|2, (3.17)

with SEλ,µ representing the orbital integral

SEλ,µ =

∫ ∞

−∞
ei

Ef −E1
ħh t 1

r(t)λ+1
Yλµ
�

θ(t),φ(t)
�

d t. (3.18)

The total differential Coulomb excitation cross section is given by the sum over all
multipoles λ. As is seen above, the matrix elements involved in the excitation of a
nucleon are the same as for the radiative transition of the same multipolarity. For
an excitation the same selection rules as for a deexcitation apply

�

�Ii − I f

�

�≤ λ≤ Ii + I f ,

πi ·π f = (−1)λ ,

)

for electric transitions (3.19)

with π representing the parity of a given state. But note that the transition strength
for decay and excitation differs by a value depending on the spin of the involved
states

B
�

λ, I f → Ii

�

=
2Ii + 1

2I f + 1
B
�

λ, Ii → I f

�

. (3.20)

For the classification of a transition upon its strength it is convenient to express the
transition strength in units of single particle excitations. Therefore V.F. Weisskopf
introduced a “single particle unit” based on the shell model [Bla52], the Weisskopf
unit, defined through

BW.u.(Eλ) =
e2

4π

�

3

3+λ

�2
�

1.2 · A1/3
�2λ

e2 f m2λ. (3.21)

The calculations to obtain the cross section for magnetic excitations are similar to
the ones outlined above. However, these transitions have very small cross sections
for low energy Coulomb excitation and will therefore not be treated in this work.
For a detailed description follow [Ald56].
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Figure 3.2.: Illustration of the excitation mechanisms of first (a) and second order
effects (b). As a special case of P(2)iz f , P(2)i f f represents the reorientation
effect.

3.2.2 Second order effects

Second order effects describe two-step excitations and are therefore indispensable
to consider when multi-step Coulomb excitations take place in the experiment.
These multistep excitations occur for nuclei with more than one low-lying ex-
cited state and if the Coulomb interaction (V (~r ( t)) (equ. 3.9) is large, that is
for medium and relativistic beam energies. Furthermore they are necessary to in-
clude in the calculations for the extraction of the static nuclear quadrupole moment
of the included states with J 6= 0.

For the formulation of second order effects an intermediate state |z〉 is intro-
duced. The transition amplitude is the sum of the amplitudes of first and second
order effects

ai f = a(1)i f +
∑

z

a(2)iz f , (3.22)

with

a(2)iz f =
1
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(3.23)
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and the first order term a(1)i f given via equation 3.16. The excitation probability
includes first and second order effects as well as their interference

Pi f =

�

�

�

�

�

a(1)i f +
∑
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a(2)iz f

�

�

�

�

�

2
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2
+
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∑
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2
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∑
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!

. (3.24)

A visualisation can be found in figure 3.2. For this work the most interesting sec-
ond order term is P(2)i f f describing the reorientation effect. This is the reorientation
of the nuclear axis of the beam particle after an excitation and is caused by the
electric field of the scattering partner [Bre56]. The intermediate state |z〉 for this
process is identical to one of the magnetic substates of the final level. It can there-
fore be understood as a change of distribution of the population of the magnetic
substates. The reduced matrix element for this transition assuming an E2 character
is connected to the spectroscopic quadrupole moment (Qs) via the formula

eQs(I) =

r

16π

5 (2I + 1)
< I I20|I I > 〈I ‖M (E2) ‖ I〉 . (3.25)

with I being the spin of the final state
�

� f
�

and < I I20|I I >=< j1m1 j2m2|J M >
being the Clebsch-Gordon coefficient [Boh53]. Note that the reorientation effect is
linear in Q. Therefore the sign of the quadrupole moment can be gained from a
Coulomb excitation experiment through the matrix element. This sign tells about
the type of deformation - whether the nucleus is prolate or oblate deformed.

3.3 Computation of Coulomb excitation cross sections - the CLX/DCY code

CLX and DCY are two computer programs written by H. Ower, adapted and mod-
ified by J. Gerl, Th. Kröll and K. Vetter, which together are able to calculate ex-
citation probabilities and cross sections. For CLX input information on the mass
and proton numbers of the projectile and target nucleus are needed as well as the
projectile energy at the interaction point. As the exact place of scattering can not
be determined from the experiment, the beam energy at half the thickness of the
target is taken as an average. Further input are the information on the levels of the
excited nucleus (energy, spin, parity) as well as the possible transitions between all
included levels and their strength. CLX then creates an output containing all the
statistical tensors, i.e. the occupation probabilities for the m substates, which are
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needed in DCY. Together with this output information further input on the angles
of the γ-detectors and the limiting angles of the particle detector in the center of
mass frame is provided for DCY. Then the cross sections for the scattering exper-
iment are calculated. The cross section of an excitation in a Coulomb excitation
experiment strongly depends on the scattering angle of the involved nuclei. For a
comparison of the theoretical output and the experimental cross section it is there-
fore crucial to cover the same angular ranges for the particle and γ-ray detection in
the calculation and the performed experiment. By the variation of the input matrix
elements the experimental cross section can be reproduced. The procedure of this
variational process is discussed in detail in section 6.2.
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4 The REX-ISOLDE facility and
MINIBALL

The ISOLDE (Isotope Separation On Line DEvice) facility at the European Organisa-
tion for Nuclear Research, CERN, is one of the best choices for the investigation of
exotic radioactive ion beams. In August 2011, when the experiment IS477 [Krö07]
discussed here took place, this facility was the only one being able to produce a
beam of 128Cd in sufficient amount to perform a Coulomb excitation experiment

in order to extract the transition strength B
�

E2; 0+gs → 2+1
�

and the spectroscopic

quadrupole moment Qs

�

2+1
�

.

4.1 Beam production and extraction

At the ISOLDE facility the Isotope Separation On-Line (ISOL) technique is used
to produce a radioactive ion beam [Lin04]. A thick primary target is bombarded
with a 1.4 GeV proton beam and undergoes fission, spallation and fragmentation
leading to a various amount of different products. The protons have an average
intensity of 2 µA and are received from the Proton Synchrotron Booster (PSB) in
bunches of 2.4 µs length. The time interval between two consecutive bunches is
a multiple of 1.2 seconds. This time structure and the high intensity of the pro-
tons enhances the production of very short-lived radioactive isotopes like 128Cd
(T1/2

�

128Cd
�

= 280 ms (weighted mean from [Gok86] and [Mac86])) but has
the disadvantage of highly stressing the target and its container, which can for
example lead to leaks in the target container [Kug00]. There are more than 25
different target materials available, chosen to match the required production yield
and beam purity. In the experiment discussed here a target made of UCx - pel-
lets was chosen, which was heated to temperatures above 2000 ◦C. By heating the
target the products diffuse through the porous material due to their chemical prop-
erties and are extracted via a transfer line into an ion source, which purifies the
beam. At ISOLDE there are mainly three different types of ion sources available:
a hot plasma, a hot surface and a laser ion source. For the production of a 128Cd
beam the combination of the UCx - target and the Resonant Ionisation Laser Ion
Source (RILIS) [Fed00] was found to provide the best chemical selectivity in order
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Figure 4.1.: Schematic view of the extraction process of the nuclei of interest at
ISOLDE using a resonant laser ion source.

to extract a beam with sufficient yield. Figure 4.1 shows the extraction schemat-
ically. RILIS is a multistep laser system using the unique excitation scheme of an
isotope for ionisation, which improves the selectivity tremendously compared to
a single-step laser. In figure 4.2 the excitation scheme for the 3-step laser ionisa-
tion of 128Cd is sketched. After ionisation the nuclei are extracted with 30-60 kV
(30 kV for 128Cd) into an electromagnet for a first mass separation. At ISOLDE
two different mass separators are available: The General Purpose Separator (GPS)
consisting of one bending magnet and a resolving power of ∼ 1000 and the High
Resolution Separator (HRS) with two bending magnets and a resolving power of
≥ 5000 [Kug00]. For the 128Cd ions the HRS was used. A transmission rate of
80 % was gained.

4.2 Post acceleration

The isotopes produced with ISOLDE are accelerated further in order to investigate
them. This is done via the Radioactive beam EXperiment (REX) [Kes03, Hab00],
which consists of mainly three different parts: The REXTRAP for bunching and
cooling of the ions, the REXEBIS for increasing the charge state and the REXLINAC
for post-acceleration of the ions. The different components are depicted in fig-
ure 4.3 and will be explained in the following.
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Figure 4.3.: Schematic view of the different components of REX.
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REXTRAP

The REXTRAP is a 1 m long Penning Trap with a magnetic field of 3 T. At the
entrance of the trap the ions need to pass a potential barrier in order to slow
down. Collisions with an Argon or Neon buffer gas further decelerate the ions.
A capture is possible if the energy loss of the ions in the trap in one oscillation
is sufficiently large, such that they can not pass the potential barrier at the en-
trance again. This cooling down to a couple of eV increases the emittance of the
beam. The accumulation and bunching increases the signal to background ratio for
the measurements [Hab00] and is indispensable for the efficient injection into the
REXEBIS. This process creates bunches of 100 ms length and usually takes a couple
of ms.

REXEBIS

The bunched and cooled ions are extracted into the Electron Beam Ion Source
(EBIS). The ions are trapped by an electron beam in the radial direction and
cylindrical electrodes with an applied potential in the longitudinal direction. By
collisions with the electrons the ions undergo stepwise ionisation. An ultra-high
vacuum is applied inside the EBIS in order to reduce the contamination from buffer
gas from the REXTRAP. For the 128Cd isotopes a charge state of 30+ was achieved in
a breeding time of 118 ms. The transmission of REXTRAP and REXEBIS was 3.3 %.

Mass separator

Although the amount of buffer gas ions is already reduced in the REXEBIS, its in-
tensity is still larger or at least comparable to the intensity of the isotope of interest.
Therefore further separation is of great importance and is realised with a second
mass separation right after the charge breeding. However, as the ions are well
spread in energy after the breeding, a simple magnet is insufficient. Therefore a
more advanced spectrometer is used, which follows the idea of a Nier-spectrometer.
Details of such spectrometers can be found in [Nie51]. The mass separation is pos-
sible for ratios of A/q = 3− 4.5. For the 128Cd isotopes a ratio of A/q = 4.27 was
used.

REXLINAC

The purified beam is extracted into the LINear ACcelerator (LINAC), where the
ions enter a 4-rod Radio Frequency Quadrupole (RFQ). It consists of four elec-
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trodes focusing and accelerating the beam from 5 to 300 keV/u at a frequency
of 101.28 MHz synchronised with the extraction from the REXEBIS. In the fol-
lowing Interdigital-H-type Structure (IHS) the beam is further accelerated up to
1.2 MeV/u. The three spiral 7-gap resonators, also operated at a frequency of
101.28 MHz, accelerate the ions to an energy of 2.2 MeV/u. Since 2004 this is
followed by a 9-gap resonator used at 202.56 MeV where a final acceleration up to
3.0 MeV/u is possible. Eventually the beam is delivered to the experimental station.
In the experiment discussed here the beam was accelerated up to 2.82 MeV/u. The
transmission for the LINAC was 75 % which leads to an overall transmission of 2 %
for the accelerated 128Cd beam.

In figure 4.4 the special time structure of REX-ISOLDE is depicted [Gaf12].

4.3 Experimental area - MINIBALL

The purified and accelerated beam is delivered to the experimental area containing
the MINIBALL detector array. Different kinds of experiments like transfer reactions
and Coulomb excitation can be performed. In this work the latter has been used
for the investigation of 128Cd. For a Coulomb excitation experiment a special target
chamber is mounted. It contains the secondary target placed on a target wheel
with six positions, where the Coulomb excitation of the projectile and target nuclei
takes place, and a Double-Sided Silicon Strip Detector (DSSSD) for the detection of
the scattered particles. Surrounding the target chamber is the MINIBALL detector
array to detect the γ-rays from the deexcitation of the Coulomb excited nuclei. As
most of these states decay very fast, the γ-rays are emitted in flight, which leads to
a Doppler shift of their energy. In order to correct for this, information about the
angle between the emitting nucleus and the associated γ-ray plus the energy of the
emitting nucleus need to be gained. This is achieved with the design of the DSSSD
and the MINIBALL array and is discussed in the following.

4.3.1 Particle detection

The scattered particles are detected with a DSSSD (fig. 4.5) [Ost02], placed at a
variable distance behind the target inside the target chamber. It consists of four
individual silicon detectors, the quadrants, each segmented 16-fold in Θ (16 an-
nular strips on the front side) and 12-fold in Φ (24 sector strips on the back side,
each two paired together). The annular strips have a width of 1.9 mm and a 2 mm
pitch, whereas the paired sector strips have a pitch of 6.8 ◦. The gap between two
quadrants is 8.4 ◦. In the middle of the detector a hole with a radius of 9 mm
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Figure 4.4.: Sketch of the timing structure at REX-ISOLDE. A) Proton bunches from
the PSB with a width of 100 µs and a maximum frequency of 1.2 s.
B) Possible release profile of an isotope from the primary target. Note,
that this looks differently for every isotope and target material depend-
ing on the chemical properties, amount of surface ionisation and life-
time of the nucleus of interest. C) Bunches of the REXTRAP. D) Bunches
of the REXEBIS. E) Window of the radio frequency of the REXLINAC
synchronised with REXTRAP and REXEBIS. This is dependent on the
breeding time [Gaf12].
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Figure 4.5.: Left: Picture of the front side of the DSSSD. Only the uppermost quad-
rant is mounted. Taken from [War13]. Right: Dimensions on the front
and back side of the DSSSD. Taken from [War14].

can be found. The entire DSSSD has a radius of 42.5 mm. In this experiment the
detector was placed at a distance of 32.2 mm from the target covering a laboratory
scattering angle of ΘLab ' 15.6◦ − 51.8◦. The particles scattered at a small labo-
ratory angle (ΘLab < 15.6◦) and the non-scattered particles fly through the hole in
the middle of the DSSSD and are collected either in a beam dump, where the beam
is stopped, or in a ∆E− E telescope (fig. 4.6). In the ∆ E− E telescope the energy
loss ∆ E is measured in a ∼2.2 cm thick CF4-gas volume. The rest energy Erest of
the nuclei is detected with a silicon detector. As the energy loss is proportional to
the proton number Z, this device can be used for particle identification. Note, that
the telescope can only be used without a secondary target.

4.3.2 γ-ray detection

The deexcitation γ−rays are detected with the High-Purity Germanium (HPGe)
detector array MINIBALL (fig. 4.7) [War13], which is especially designed for ex-
periments with low-intensity RIBs and low multiplicity. It consists of eight triple
cluster detectors each six-fold electronically segmented. Besides the signals from
each segment also the signals from the core are written out (fig. 4.8). The high
granularity is needed to account together with the information on the emitting nu-
clei for the Doppler shift correction of the energy of the γ-rays (see section 5.2.4).
MINIBALL covers ∼ 60% of the full solid angle. The detectors are placed on arms
movable in directions θ and φ around the target chamber for optimal placement
according to the experimental requirements. The efficiency at 1.3 MeV is 7 %. The
signals are read out with digital electronics in a triggerless mode.
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Figure 4.6.: Sketch of the∆ E − E telescope used for particle identification.

Figure 4.7.: Picture of a part of the Miniball detector surrounding the target cham-
ber. Taken from [War13].
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Figure 4.8.: Sketch of one 6-fold segmented HPGe cluster detector of MINIBALL.
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5 Experimental details
The success of the analysis of a Coulomb excitation experiment highly depends
on the precise knowledge of the experimental setup and conditions. In the fol-
lowing chapter, details on the delivered beam and chosen target as well as the
experimental setup are discussed.

5.1 Beam and target details

The radioactive ion beam was delivered to the target chamber with an energy of
2.82 MeV/u and an average intensity of ∼3·103 pps. The choice of the secondary
target is based on different considerations. First of all the target element needs
to be stable and the aggregation state at room temperature needs to be solid in
order to form a thin foil. In our analysis the Coulomb excitation cross section of the
projectile is normalised to the target excitation in order to reduce systematic errors
from target thickness, efficiency correction etc. . Therefore a sufficiently large cross
section for the target (and projectile) excitation is indispensable. Additionally, the
excitation energies of projectile and target need to be sufficiently different in order
to distinguish the peaks in the γ-ray spectrum. The kinematics of the scattered
target and projectile particles need to be such that they can be detected on the
DSSSD and are furthermore as well distinguishable. To fulfil all of these conditions
usually leaves the experimentator with only very few choices. For the Coulomb
excitation experiment of low-energetic 128Cd a target of 64Zn was found to be the
most convenient fulfilling the constraints mentioned above. The beam energy of
361 MeV is considered “safe” due to the fulfillment of the requirements considered
in chapter 3.1. Figure 5.1 shows clearly, that the distance of closest approach
Dmin for a “safe” scattering experiment is below the actual distance of the nuclei
for every possible center of mass scattering angle. The first excited 2+-state of
128Cd was expected at an energy of 646 keV [Kau00, Lea09] whereas for 64Zn
it is located at 992 keV, which is sufficiently different. In figure 5.2 the cross
section for the transition 0+gs → 2+1 in 64Zn and 128Cd is shown calculated with
CLX/DCY for the experimental conditions in steps of 5 ◦ in Θcm. For 128Cd the
matrix elements M02 = 0.4 eb and M22 = 0 eb are assumed. The summed cross
section for the range of the particle detection is 0.59 b for 64Zn and 0.53 b for 128Cd.
Note the non-symmetric dependence of the Coulomb excitation cross section on
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Figure 5.1.: Distance of closest approach Dmin for 128Cd nuclei scattered at 64 Zn
with respect to the center of mass scattering angle Θcm. The dashed
green line shows the limit for a “safe” scattering experiment according
to equ. 3.3. The solid red line depicts the actual distance between the
nuclei for the used beam energy of 2.82 MeV/u according to equ. 3.2.
The requirements for “safe” Coulomb excitation are fulfilled in the per-
formed experiment.
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Figure 5.2.: Coulomb excitation cross section for 0+gs → 2+1 transition in 64Zn (blue)
and 128Cd (red) for the scattering process 64Zn(128Cd, 128Cd∗)64Zn∗ cal-
culated with CLX/DCY inΘcm steps of 5 ◦. The matrixelements for 128Cd
were set to M02 = 0.4 eb and M22 = 0 eb. Other parameters taken as
in the discussed experiment.

the scattering angle. The kinematics of the scattering process is shown in figure 5.3
with the range of the particle detector indicated with red lines. Note, that for the
comparison to the experiment, the effect of the pulse height deficit has to be taken
into account. This is the energy loss of the nuclei due to elastic scattering with
the detector material. It is larger for heavier nuclei and will therefore shift the
green line to lower energies. Therefore the projectile and target nuclei will be well
distinguishable in the particle detector also for small laboratory scattering angles.
The thickness of the target was 1.48 mg/cm2.

5.2 Calibrations and corrections

Energy and efficiency calibration of the γ-detectors are indispensable for the anal-
ysis of the collected data. Furthermore, corrections for broken detectors etc. need
to be performed as it affects the amount of detected γ-rays and particles. In this
section the energy and efficiency calibration as well as the performed corrections
including the correction for Doppler broadening of the γ-rays, are discussed.
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Figure 5.3.: Scattering kinematics of the experiment 64Zn(128Cd, 128Cd∗)64Zn∗ with
a beam energy of 2.82 MeV/u. The scattered projectiles are indicated
by the green line, the scattered target particles by the blue line. The
red lines show the limits for the particle detection.

5.2.1 Energy and efficiency calibration

The energy and efficiency calibration of the HPGe detectors of the MINIBALL array
were done with a measurement of a 152Eu source placed at target position. The
source 152Eu was chosen since the emitted γ-rays have energies between 121.8 keV
and 1408 keV, which is exactly the range needed for the experimental purpose. At
the time of the measurement the activity was 6.2 kBq and the measurement took
place for one hour. The function for the energy calibration is linear in energy E,
whereas the function for the efficiency ε of a germanium detector is highly non-
linear. A fit to the data points ε≡ Nγ

Iγ
with Nγ being the γ-ray yield in the photopeak

and Iγ its relative intensity, requires a polynomial function on a logarithmic scale.
Here, a function with four parameters is chosen to fit the data points:

f (E) = exp
�

a+ b ln(E) + c ln2(E) + d ln3(E)
�

. (5.1)

A characteristic of the MINIBALL detectors in this experiment is that no anti-
Compton shields were used in order to increase the efficiency. Therefore it is
possible that a Compton scattered γ-ray is detected in two neighbouring cores
each with a fraction of its total energy. This is corrected with the so-called add-
back routine. If two γ-events are detected within 100 ns in neighbouring cores on
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Figure 5.4.: Relative efficiency of the MINIBALL detector array determined with a
152Eu source and the fit function in equ. 5.1.

the same cluster it is assumed as being the same γ-ray, just Compton scattered, and
the implanted energies are summed up. This procedure increases the efficiency for
high-energy γ-rays because a Compton scattering is much more likely than for low-
energetic ones. In figure 5.4 the efficiency curves with and without addback are
shown. Note that at energies below 100 keV the efficiency of a germanium detector
decreases dramatically. This can not be extrapolated from the data taken with the
152Eu source. Since for this experiment only the energies above 120 keV are of
interest, this effect does not have to be considered.

5.2.2 HPGe-detectors

It often happens during an experiment that not all of the detectors work properly,
which might be possible to correct in the offline analysis. In particular for the
germanium detectors at MINIBALL it is possible to correct for broken segments in
a detector. If a segment is broken, no signal is read out when a γ-ray hits the
detector material. Since not only the segment signals but also the signals of the
core are read out, an event in a broken segment still gives a core signal (fig. 4.8).
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In the case of one broken segment in a core, events detected without a segment id
can be assigned by hand to a particular angle - the angle of the broken segment.
If two or more segments are broken in the same detector, the angle of the core is
assigned. The identification of the correct angle for a γ-ray event is crucial for the
Doppler correction. In this experiment six out of 144 segments were broken, twice
two of them in the same detector. In addition two complete detectors out of 24
were broken, so that 22 detectors operated during the experiment.

5.2.3 DSSSD

For the calculation of the cross section with CLX/DCY it is very important to know
the angular coverage of the particle detector in the center of mass frame. Addi-
tionally to the four open areas between the quadrants and the 9 mm hole in the
middle (fig. 4.5), two rings were broken where no particles could be detected. One
of the broken rings was settled in quadrant number one, being the innermost one
at ΘLab = 15.6◦ − 18.9◦, the other one was in quadrant number three, leaving a
gap at ΘLab = 20.7◦ − 23.9◦ (see fig. 5.5). In order to account for the broken rings
and the position of the gaps between two quadrants correctly, the rotation of the
DSSSD in Φ has to be determined. This is most easily done by plotting the rotation
against the Doppler corrected energy. The correct rotation is then determined by
the value where the energy spread after Doppler correction is the smallest. In this
experiment the rotation of the DSSSD was determined to be 215.5 ◦.

Beam shift
In most of the experiments the beam is not perfectly centered as seen in fig-

ure 5.5 and therefore does not impinge in the middle of the secondary target.
This has to be corrected as it affects the assigned scattering angle, which has fur-
ther impact on the Doppler correction and the calculation of the cross section with
CLX/DCY. The scattering process is symmetric in Φ and therefore all four quadrants
have to detect the same amount of particles. For the angle Θ the scattering follows
the Rutherford formula

N ∝
1

sin4(Θcm)
, (5.2)

where N is the number of scattered particles and Θcm is the scattering angle in the
center of mass frame. By comparing several distinct ranges of the center of mass
scattering angle in the different quadrants, the beam position can be shifted such
that the amount of scattered particles in each quadrant is comparable. Additionally
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Figure 5.5.: Hits on the DSSSD from the discussed experiment. Two rings are miss-
ing and the beam is slightly off-center.

the turning point of the scattered projectile particles (see fig. 5.3) needs to be at
the same angle for all of the quadrants. For 128Cd on 64Zn this turning point lies
at ∼30 ◦. The beam shift was determined to be 1 mm in x-direction and 1 mm in
y-direction.

In Table 5.1 the angular coverage of the DSSSD is given.

Table 5.1.: Angular coverage of the particle detector.

Quadrant ΘLab [◦] Φ [◦]

0 ∼ 16.0− 51.8 216.8− 297.5
1 ∼ 17.0− 51.8 306.5− 34.8
2 ∼ 16.0− 51.8 44.2− 124.8
3 ∼ 17.8− 20.7 133.0− 208.0
3 ∼ 23.9− 52.4 133.0− 208.0
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5.2.4 Doppler correction

In order to account for the angle dependent Doppler shift of the energy E0 of the
emitted γ-rays, the angle ϑ between the emitting nucleus and the corresponding γ-
ray as well as the detected γ-energy ELab in the laboratory frame need to be known.
The correction factor is given by the Doppler shift according to the formula

E0

ELab
=

1− β cos (ϑ)
γ

. (5.3)

Here β = v/c with v the velocity of the emitting particle and the relativistic factor
γ = 1/

p

1− β2. The angle ϑ is calculated from the angles of the detected particle
�

Θpart,Φpart

�

and γ-ray
�

Θγ,Φγ
�

cos (ϑ) = sin
�

Θpart

�

sin
�

Θγ
�

cos
�

Φpart −Φγ
�

+ cos
�

Θpart

�

cos
�

Θγ
�

. (5.4)

Rewriting β in terms of the energy of the emitting particle Epart as

β =

r

2Epart

A · u
, (5.5)

the dependence of the Doppler shift on the mass A of the emitting particle and
therefore the necessary kinematically separability is apparent. The energy of the
emitting particle is calculated via the detected scattering angle on the DSSSD. The
formulae and kinematical reconstruction of the scattering process can be found in
more detail in Appendix A. With this information on the angles and the energy of
the γ-ray from the Doppler corrected spectrum an event-by-event Doppler correc-
tion can be performed. Note that in the case of two coincident γ-rays in the same
core, the one with the highest energy is assumed as being the first hit.
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6 Data analysis
In a low-energy Coulomb excitation experiment of exotic beams, where the transi-
tions of interest only have a small cross section and the particle yield is modest, it
is indispensable to obtain the γ-ray spectrum as clean as possible. One technique to
do so is to reduce the background by selecting only prompt particle-γ coincidences
and subtracting the random ones. For this purpose a gate is set on the “prompt
peak”, which means on short time differences (maximum 200 ns) between a hit on
the DSSSD and a MINIBALL detector (see fig. 6.1). Note, that the prompt peak lies
at -800 ns due to a delay of the signal from the DSSSD. Additionally, a downscaling
has been applied, which reduces the number of random coincidences between a
γ-ray from Bremsstrahlung, background radiation etc. and a particle. A hardware
time window of 800 ns was set triggered by the detection of a γ-ray. From the
coincidences outside of this window only 25 % are written to the data stream. This
downscaling produces a plateau below the prompt peak. Therefore the random
coincidence window is chosen four times larger than the prompt window for the
subtraction.

To calculate the Coulomb excitation cross section for a projectile, different infor-
mation is needed. With the beam purity P , the γ-ray yield Nproj

γ for the transition
of interest in the projectile and the normalising transition in the target nucleus,
N targ
γ , the corresponding efficiencies of the γ-ray detectors εγ at the energies for

projectile and target excitation and the Coulomb excitation cross section for the
target σtarg, the Coulomb excitation cross section for the projectile σproj can be
determined as

σproj =
1

P

Nproj
γ

ε
proj
γ

 

N targ
γ

ε
targ
γ

!−1

·σtarg. (6.1)

The quantity σtarg is calculated via the matrix elements and the program CLX/DCY
(see chapter 3.3). The energy loss of the beam in the target material is needed
as an input parameter and calculated with the program SRIM [Zie04]. For
64Zn only the 0+ ground state and the first excited 2+ state are involved in
the excitation. Therefore only two reduced matrix elements are important:
M02 = 〈 0+gs ‖ M (E2) ‖ 2+1 〉 and M22 = 〈 2+1 ‖ M (E2) ‖ 2+1 〉 with
M (E2) being the electric quadrupole operator. Contributions from higher lying
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Figure 6.1.: Particle-γ coincidence spectrum. Prompt (yellow) and random coinci-
dence window (green) are indicated. Due to downscaling a plataeu
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states and electron conversion are negligible. For the calculation of σtarg the val-
ues M02 = 0.406(4) eb [Ram01] and M22 = −0.0132+0.1188

−0.0660 eb [Ili14, Koi03] are
used. Note that for the diagonal matrix elements two different values are found
in literature [Koi03, Sal88]. Here, the value measured by Koizumi et al. [Koi03] is
used due to elastic scattering comparison for a Coulomb excitation experiment of
122−126Cd by Ilieva et al. [Ili14], which turned out to describe the data much better.

6.1 Beam purity

In equation 6.1 the influence of the beam composition is already apparent. The
amount of contamination is important to know as the projectile cross section is
normalised to the target cross section and all beam components interact with the
target nuclei resulting in excitation. As a consequence, a different amount of de-
tected γ-rays for the target excitation peak follows than expected for a pure beam.
Most of the RIBs produced and delivered to a target are not 100 percent pure. In
the case the ISOL technique is used this may be due to the extraction of surface
ionised elements and/or to a short lifetime of the nucleus of interest, which results
in decay products of this isotope to arrive at the experimental area. In the Coulomb
excitation experiment discussed here different types of contamination were present
in the beam. The identification and treatment will be discussed in the following.

6.1.1 Identification of contaminants

In figure 6.2 the energy loss ∆E versus the rest energy Erest detected with the ∆E-
E telescope (see chapter 4.3.1) is shown. Two areas at different energy loss are
seen. The lower one at higher Erest is identified as 128Cd. As the resolution is not
sufficient to resolve isotopes with only one proton difference, this area could also
contain for example In and Sn isotopes, which are the decay products of Cd. These
could indeed be identified as beam components via γ-spectroscopy after β-decay
(see section 6.1.3) stemming from the decay of 128Cd as well as directly from the
beam production. As the energy loss is larger for isotopes containing more protons,
the upper area at less Erest stems from an isotope with more protons than 128

48 Cd.
It is identified as 128

55 Cs. Having this contaminant in the beam is of no surprise as
its ionisation potential is very low. Hence in the experiment discussed here we
are dealing with two different types of contamination - one being a long living
128Cs contamination (T1/2

�

128Cs
�

= 3.6 min [Alk93]) from surface ionisation,
the other one being the daughter and granddaughter nuclei of the short living
128Cd (T1/2

�

128Cd
�

= 280 ms [Gok86, Mac86]). In the following paragraphs the
different treatments of these contaminants are discussed.
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Figure 6.2.: Plot of the energy loss ∆E versus the rest energy Erest detected with
the ∆E-E telescope. Two areas with different energy loss can clearly be
distinguished.

6.1.2 128Cs contamination

The ∆E-E telescope at the very end of the beamline reveals a high amount of 128Cs
(fig. 6.2) stemming from surface ionisation. Due to a little hole in the container of
the primary target and the much higher volatility of 128Cs compared to 128Cd, the
ratio 128Cs/128Cd got smaller with time as the hole got bigger (fig. 6.3). Due to low
statistics in the Coulomb excitation peak of 128Cd the relative amount of 128Cs in the
beam can not be known in detail throughout every minute of the experiment. How-
ever, the different half lifes of this contaminant (T1/2

�

128Cs
�

= 3.6 min [Alk93])

and the nucleus of interest (T1/2

�

128Cd
�

= 280 ms [Gok86, Mac86]) plus the
exclusive production of 128Cs by surface ionisation and the special time structure
at ISOLDE allow for an elimination of 128Cs. As the protons hit the primary target
in bunches with a frequency of n×1.2 s (with n ≥ 1), gates can be set on early
(200 ms ≤ T ≤ 1200 ms) and on late (1300 ms ≤ T ≤ 2300 ms) times T after
proton pulse impact (fig. 6.4). Within the late time window the beam delivered to
the secondary target does not contain any 128Cd nuclei anymore as they are only
produced right after the bombardment of the primary target. Note, that also in
the first 230 ms after proton pulse impact no 128Cd nuclei are delivered to the tar-
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Figure 6.3.: Doppler corrected γ-spectra for the first 5:45h (top) and the last 9:42h
(bottom) of the experiment. The ratio of the amount of 128Cs/128Cd
changed by a factor of ∼ 20 during the experiment.
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Figure 6.4.: Energy loss ∆E versus time T after proton pulse impact. Particles with
higher energy loss correspond to 128Cs, less energy loss to 128Cd, 128In,
128Sn. The time gates (1: early, 2: late) are indicated.

get because of the extraction and acceleration process, whereas the surface ionised
128Cs nuclei are transported continuously. By normalising those two gated γ-ray
spectra to the strongest transition in 128Cs (188 keV) and subtracting them from
each other, any evidence of 128Cs is removed.

6.1.3 128In and 128Sn contamination

The time the 128Cd nuclei need to propagate from the production to the secondary
target (118 ms in the REXTRAP + 118 ms in the REXEBIS), is relatively large com-
pared to its short half life (T1/2

�

128Cd
�

= 280 ms [Gok86, Mac86]). This causes
an immense amount of decay products impinging on the secondary target. The
decay product of 128Cd is 128In with T1/2

�

128In
�

= 0.84 s [Gok86], which further

decays into 128Sn with T1/2

�

128Sn
�

= 59.97 min [Kan01]. As the ∆E-E telescope
is not capable to resolve nuclei with only one or two protons difference, the beam
is stopped in a thick (14.89 mg/cm2) 64Zn target throughout the experiment for
a couple of minutes. The contaminants can then be identified by γ-spectroscopy
after β-decay. Figure 6.5 shows the detected γ-ray spectrum. The beam com-
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Figure 6.5.: γ-ray spectrum after β -decay of the beam implanted in a thick 64Zn tar-
get with labeled transitions. Note that this spectrum is a sum spectrum
over all available measurements with a thick target.

ponents identified by this method are 128Cs, 128In from 128Cd decay and ISOLDE
directly, 128mIn and 128Sn from β-decay of 128In and 128mIn. Due to the long half
life of 128Sn its daughter nucleus 128Sb is present in the beam only in a negligi-
ble amount. With the intensities of the transitions the relative amount of each
component can be determined.

Determination of the γ-ray transition intensities

128In
Information on the γ-ray intensities in 128In only scarcely exist. Only in the

proceedings by Fogelberg [Fog88] the level scheme including γ-ray intensities is
discussed. Nevertheless, the relative γ-ray intensities can be determined from the
decay of the 128Cd nuclei implanted in the thick 64Zn target. The relative intensities
of the β-decay can not be determined as no appropriate transition for a comparison
is present in the spectrum. Therefore these values have to be taken from [Fog88].
In figure 6.6 the level scheme of 128In is depicted. Note that two transitions with an
energy of 462.7 keV exist in this nucleus. Assuming the β-decay into the uppermost
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Table 6.1.: Relative γ-ray intensities Imeasured
γ for 128In with respect to a 100 % decay

from the uppermost level at 1172.9 keV compared to the literature values
[Fog88]. Numbering of the transitions as in figure 6.6.

Transition Energy [keV] Imeasured
γ [%] ILiterature

γ [%]

1 462.7 6.61(12) 6.9
2 857.1 73.17(31) 74.9
3 925.0 8.31(21) 9.8
4 1172.4 11.97(26) 10.8
5 462.7 6.61(12) 6.9

level at 1172.9 keV to be 100 % the amount of γ-rays corresponding to transition

“1”
�

N (1)γ
�

and transition “5”
�

N (5)γ
�

are calculated via the formula

N (1)γ =
N (462.7 keV )
γ

2
= N (5)γ . (6.2)

The determined γ-ray intensities relative to the sum of decays from the uppermost
level at 1172.9 keV are listed in table 6.1. The values from [Fog88] are given
relative to the 247.9 keV transition and are converted for comparison. The error
includes the statistical error and the error of the efficiency correction.

For two out of the seven lines it is not possible to determine the relative γ-ray
intensity because of the following reasons: 1) The 68 keV line is too low in energy
and no reliable value for the efficiency of the MINIBALL detectors exists. 2) The
248.9 keV transition is a transition from an isomeric state. The data are created
with a 6 µs event window, which is the time between the beginning of an EBIS-
pulse and a detected γ-ray. Only γ-rays within this time window are sorted in the
spectrum. Therefore only transitions from levels with the same life time can be
compared in order to obtain relative intensities.

128Sn
By applying the same method as for 128In, the relative intensities for the γ-

ray transitions in 128Sn are obtained. The level scheme of 128Sn as well as the
transitions in this nucleus and the corresponding probabilities have already been
studied via the β-decay of 128In by Fogelberg et al. [Fog79]. A speciality is, that
there exitsts not only 128In in the ground state but also an isomeric 8−-state with
T1/2

�

128mIn
�

= 0.72 s [Gok86] decaying to 128Sn. The ground and isomeric state
populate identical as well as different levels and were both present in the beam.
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Figure 6.7.: Partial level scheme of 128Sn after β -decay of ground state 128In.
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Table 6.2.: Obtained γ-ray intensities Imeasured
γ for 128Sn after ground state 128In

decay relative to the total amount of decays compared to the literature
values [Fog79].

Energy [keV] Imeasured
γ [%] Literature [%]

538.2 1.33(12) 1.20(8)
935.2 - 8.0(5)
1089.5 7.73(52) 7.4(5)
1105.2 1.37(12) 1.5(1)
1587.7 2.32(18) 2.4(2)
1816.7 1.96(16) 2.4(2)
2104.1 5.72(40) 6.5(4)
2258.5 2.73(20) 3.1(2)
3519.8 13.86(93) 16.6(15)

Figure 6.7 shows the partial level scheme of 128Sn after the decay of ground state
(gs) 128In. For the determination of the relative amount of the different isotopes in
the beam it is necessary to know the γ-ray intensities relative to 100 % of decays
�

N100 %
γ

�

for each isotope. For the ground state decay of 128In this is only possible
by including a γ-ray intensity from [Fog79]. For this the 935 keV line was chosen as
the transition clearly stems from the decay of the ground state 128In and the error
for the intensity is relatively small

�

Iγ = 8.0(5) %
�

. In table 6.2 the determined
intensities for transitions in the 128Sn nucleus after β-decay of the ground state
128In relative to 100 % of decays are listed.

Figure 6.8 shows the partial level scheme of 128Sn after the isomeric decay of
128mIn. The determination of the γ-ray intensities is more complicated than after
the ground state decay. Low energetic transitions exhibit a non-negligible amount
of electron conversion. The γ-ray yield N transition

γ of those has to be corrected for
the amount of conversion and is given as

N transition
total = N transition

γ

�

1+ C transition
�

, (6.3)

with the conversion coefficient C transition. This situation applies especially to the
transitions at 120.5 keV and 257.2 keV. Assuming the transitions having E1 and
E2 character, respectively, the conversion coefficients are C120.5 keV = 0.1070(15)
and C257.2 keV = 0.0590(9) [Kib08]. Another difficulty lies in the determination

6.1. Beam purity 55



128mIn
T

1/2
= 720 ms

8-

(7-)

2+

704 keV

91.2 keV

321.2 keV
257.2 keV

120.5 keV

831.5 keV

2824 keV

2378.1 keV

2120.9 keV

2000.4 keV

0.0 keV0.0 keV

4.74.7

< 4.1< 4.1

< 15< 15

II
ββ
 (%) (%)

128Sn

(5-)
2091.5 keV

T
1/2

= 6.5 s

(7-)

2412.7 keV

1168.8 keV1168.8 keV

(4+)

0+

1168.8 keV

< 5< 5

II
ββ
 (%) (%)
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of the number of decays, which corresponds to 100 %. The determination of the
total amount of decays via the 1168.8 keV transition is not possible, as it is also
present after the β-decay of the ground state 128In. Because all levels as well as the
β-decay decay through the level at 2000.4 keV into the ground state (see fig. 6.8),
the amount of 128mIn decays can be calculated via the amount of transitions with an
energy of 831.5 keV. The γ-ray yield of the 831.5 keV transition is given as the sum

of all feeding transitions
�

N100 %
γ = N831.5 keV

γ = N120.5 keV
γ + N91.2 keV

γ

�

. A decay

via a γ-ray with 119 keV from a high spin state in 128mIn is reported [Pie11]. In
order to undoubtedly assign the detected γ-rays in the peak around 120 keV to the
transition from the 2120.9 keV level, γγ-coincidence spectra are used. Two spectra
with a gate on the 831.5 keV transition and on the 1168.8 keV line are generated.
The amount of counts in the 120.5 keV line is determined and corrected for electron
conversion and detector efficiency. Note that for a γγ-coincidence spectrum the
efficiencies of two lines, the gated transition and the transition of interest, have to
be taken into account. The mean value out of these two calculations is taken to be
the amount of deexcitation via the 120.5 keV line. The 91.2 keV transition is not
usable from the γ-ray spectrum, as the efficiency of the MINIBALL detectors at this
low energy is not known. Additionally the 2091.5 keV level has a half life of 6.5 s,
which causes not all transitions via the 91.2 keV line resulting in a detected γ-ray
with 831.5 keV or 1168.8 keV due to the 6 µs window already discussed for the
128Cd decay. This fact has to be taken into account for further correction. Therefore
the amount of actually detected relative to the expected γ-ray yield is simulated and
a correction factor is determined. For the simulation it has to be taken into account,
that the proton bunch hits the primary target only every couple of seconds and that
therefore the EBIS transfers a beam only every couple of seconds. This has the
consequence of a non-continuous feeding of the isomeric state. Additionally the
electronics take data every new pulse of the EBIS, which is every 100 ms for the
time of 1 ms (see fig. 4.4). In the case of the 6.5 s isomer in 128Sn only 97.34 % of
the expected γ-ray yield was detected in the time of the measurement due to the
long level life time. The lifetime uncorrected amount of transitions via the 91.2 keV
line can be calculated with the efficiency corrected γ-ray yields

N91.2 keV
γ = N831.5 keV

γ − N120.5 keV
γ . (6.4)

The 100 % mark is then set including the lifetime correction

100%= N120keV
γ +

N91.2 keV
γ

0.9734
. (6.5)

In the γ-ray spectrum (fig. 6.5) a transition at 704 keV can be noted. This tran-
sition is not sorted in the level scheme found by Fogelberg et al. [Fog79] due to an
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Figure 6.9.: Background subtracted γγ-coincidence spectra with a gate set on
120.5 keV (top) and 257.2 keV (bottom). A peak at 704 keV is clearly
visible in the upper spectrum, but absent in the lower one. The peaks
with a negative one on its side belong to Compton scattered γ-rays. If
for example a γ-ray with 511 keV is Compton scattered in the detector
material and implants an energy equal to the one where the gate is set,
a coincident γ-ray is detected at the energy 511 keV − Egate. The same
applies for random coincidences, which produces the negative peaks
when subtracted. Because the background was chosen to be on the
left and the right hand side of the 257.2 keV gate, the negative peaks
appear in two places for one energy.
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Table 6.3.: Relative γ-ray intensities Imeasured
γ for 128Sn from isomeric state 128In de-

cay compared to literature values [Fog79].

Energy [keV] Imeasured
γ [%] Literature [%]

120.5 48.49(270) 11.1(10)
257.2 29.36(167) 4.4(3)
321.2 12.15(161) 10.5(7)
704.0 6.35(134) 1.0(1)
831.5 100.0(293) 100.0(50)
1168.8 100.0(293) 100.0(50)

“unknown isomeric origin”. In our data clear coincidences could be evidenced. The
γγ-coincidence spectrum in figure 6.9 (top) reveals coincidences of the 120.5 keV
line with transitions of 257.2 keV, 704 keV, 831.5 keV and 1168.8 keV. The ab-
sence of a peak at 704 keV in the γγ-spectrum with a gate set on the 257.2 keV
transition (fig. 6.9, bottom) leads to the placement of a previously unknown level
at an energy of 2824 keV in the 128Sn level scheme after the isomeric 128mIn decay
(fig. 6.8).

In Table 6.3 the determined relative intensities are shown. In the Paper by Fol-
gelberg et al. [Fog79] difficulties to obtain the amount of transitions following the
decay of the 6.5 s isomeric state are reported. The large discrepancies between the
here determined and the literature values are expected to stem from this difficulty.

Determination of the relative amount of isotopes in the beam

Due to different half lifes of the isotopes in the β-decay chain of 128Cd, a different
relative amount of detected decays to total decays is observed for each isotope. This
is corrected in exactly the same way as the decay of the isomeric state discussed
above. To determine the beam purity, a fit of the efficiency and the amount of
each isotope to the intensity and lifetime corrected yields of 128Cd and ground
state 128In was performed. Note that only transitions in the daughter nuclei with
a higher intensity than 2.5 % and a smaller relative error of 2 % for transitions in
128Sn (following the decay of 128In) and 7 % for transitions in 128In, respectively,
are taken into account. The amount of 128mIn is included relatively to the ground
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state 128In determined via the total amount of decays. The relative amount P i of
each isotope i is determined with the fit parameter f and the relations

f · P Cd = P Cd +P In,

P In = x · P
mIn,

1 = P Cd +P In +P
mIn, (6.6)

and is given as

P Cd = 46.6+4.5
−4.3%,

P In = 50.5+4.0
−4.2%,

P Inm = 3.0+0.5
−0.4%. (6.7)

Recall, that the Cs contaminant is already subtracted.

6.2 Coulomb excitation analysis

In fig. 6.10 the prompt Doppler corrected, time and background subtracted γ-ray
spectrum is shown. In contrast to figure 6.3 the low energetic part of the spectrum
(below 300 keV) does not show any peaks from the excitation and decay of 128Cs,
yet only fluctuations are visible. The observation of a transition at 646 keV confirms
unambiguously the previous assignment by Kautzsch et al. from β-decay studies
of heavy Ag-isotopes [Kau00] and Cáceres et al. from data on isomeric 128mCd
decay [Lea09] to be the 0+gs → 2+1 transition in 128Cd. The deexcitation of the first
excited 2+-state of 64Zn can be seen at 992 keV. Besides these two peaks a prompt
transition at 324 keV is observed, which can only stem out of Coulomb excitation of
the contaminant 128In as the amount of 128mIn is not sufficient in order to produce
the observed amount of γ-rays and no further contamination is present. Moreover,
this transition has already been considered by Hellström et al. as being a transition
in 128In to the 3+ ground state [Hel03]. However, as the deexciting level they
propose an isomeric state with either Jπ = 1− or 5+. The fact that this transition
is seen prompt in the Coulomb excitation spectrum proofs the assignment as an
isomeric state to be wrong. However, there could be an isomeric state present
decaying with a low energy to the level at 324 keV. The low energy would not
have been measured by Hellström et al., but the 324 keV transition would still be
delayed in the fission experiment [Hel03].

To achieve the main goal of a Coulomb excitation experiment, which is the ex-
traction of the involved matrix elements, the experimental setup was designed in a
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way such that it is sensitive to the observables. In order to put a constraint on the
diagonal matrix element, the particles need to be detected under different scatter-
ing angles as the influence of the diagonal matrix element on the differential cross
section is not constant for different center of mass angles. Figure 6.11 shows the
procentual change of the differential cross section of 128Cd for the scattering pro-

cess 64Zn
�

128Cd,128 Cd∗
�64

Zn∗ with respect to M22 = 0 eb over the center of mass
scattering angle. The calculation is performed with CLX/DCY with the parame-
ters from the experiment assuming M02 = 0.4 eb for 128Cd and scattering angle
windows of 5◦. The procentual change increases with the scattering angle. Since
the particle detector covered a continuous angular range, the scattered particles
are divided during the offline analysis into distinct center of mass angular ranges.
The Coulomb excitation cross section for the target and the projectile, respectively,
are calculated with CLX/DCY and according to equation 6.1 for each experimental
set, i.e. each angular range. To reproduce this experimentally found value for the
projectile, a set of different combinations of transition (Mi j) and diagonal (M j j)
matrix elements is possible. Because the influence of the diagonal matrix element
increases with increasing Θcm, bands with different slopes are obtained in the Mi j-
M j j-plane for the different angular ranges. To find the most likely combination
of matrix elements, a maximum likelihood analysis is performed, see e.g. [Ber12].
Here the likelihood function L is the product of the probability functions P for
each set xk of matrix elements, that is each angular range

L =
N
∏

k=1

P
�

xk; Mi j , M j j

�

. (6.8)

The probability functions are represented by a Gaussian shaped distribution func-
tion

P =
1

p
2πσ

exp



−
�

x −µ
�2

2σ2



 , (6.9)

with the mean µ = Mi j and standard deviation σ = ∆Mi j , where Mi j is a function
of M j j . The maximum value of L is found by solving the equation

∂ lnL
∂Mi j, j j

= 0. (6.10)

Because of the Gaussian shape of L , the standard deviation σ of the estimators is
given by

ln (L + sσ) = lnLmax −
s2

2
, (6.11)

with s being the order of the standard deviation.
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6.2.1 Details on 128Cd

The states involved in the Coulomb excitation of 128Cd are the 0+ ground state and
the first excited 2+ state. Therefore the matrix elements of interest are the M02 and
M22. To obtain decent values for those, a lot of different angular ranges and com-
binations of probability functions have been tested. It is of great importance to find
the best likelihood function with respect to sufficient statistics and large enough
difference in the slope of the M02-M22 bands. Figure 6.12 shows the scattered par-
ticles on the DSSSD with three cuts as used for the analysis of 128Cd. Note, that the
region of the turning point in the projectile-like particle branch is excluded because
of the rapid change of the center of mass scattering angle. For the three distinct
angular ranges the efficiency corrected and background subtracted γ-ray yield for
projectile and target excitation is given in Table 6.4. With this information the
experimental Coulomb excitation cross section is calculated and reproduced with
CLX/DCY for the different combinations of the involved matrix elements. The di-
agonal matrix element has been varied between −3 and 4.5 eb. In the calculation,
statistical errors as well as errors from the beam purity, efficiency correction and
of the target matrix elements are included. Figure 6.13 shows the bands obtained
in the M02-M22-plane, where a large overlap can be noticed. The maximum likeli-
hood analysis leads to the 1σ contour (fig. 6.14). The contour does not close for
large positive M22, which can be explained by looking at the bands in figure 6.13.
The three bands together have a large overlap over almost the whole plotted range
for M22 because of large errors and the limited sensitivity in these angular ranges
(compare fig. 6.11). The most likely value for the transition matrix element is in-
dicated in figure 6.14 with red lines showing the projections onto the axes. The
error is marked by the red dashed lines. This analysis leads to M02 = 0.42+0.09

−0.11 eb,
where the lower limit is the value for a diagonal matrix element of 3 eb, which is
already considered as an unphysical value. By excluding the intermediate angular
range, i.e. cut 2, the intersection region of the bands is significantly reduced and
the 1σ contour has a clear limit also at large positive diagonal matrix elements
(fig. 6.15). The most likely value for the transition matrix element is then given as
M02 = 0.44+0.10

−0.12 eb. This is in perfect agreement with the analysis including three
different angular ranges. However, the error is slightly larger due to the reduction
of the statistics. Note the emergence of a second maximum at large positive M22
for both choices of cut combinations. This peculiarity has already been observed
in Coulomb excitation experiments of Kr isotopes [Alb13], for example, and is an
effect of the method. However, no problems arise from this second maximum as
it lies at clearly unphysical values and does not have to be considered further. It
is already seen from the 1σ contours, that the error for the extraction of the di-
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Figure 6.12.: Hits on the DSSSD according to the scattered particles (lower left
branch: projectile-like particles, upper right branch: 64Zn). The dif-
ferent cuts are indicated (numeration as in Table 6.4).

agonal matrix element is large. Still the most likely values are determined to be
M22 =−0.27open

−1.76 eb for three cuts and M22 =−0.69+3.61
−1.60 eb for two cuts.

6.2.2 Details on 128In

For the analysis of the 324 keV transition, knowledge of the spin and parity of the
involved levels is needed. In [Hel03] a transition with such an energy is observed
and suggested from comparison to shell model to be a deexcitation of either a 1−

or a 5+ state to the 3+ ground state of 128In. Because the transition 1−→ 3+ would
have M2 character and magnetic excitations are highly suppressed in Coulomb ex-
citation, the assumption of the excited state being a 5+-state is made, which has
E2 character. Hence, the involved levels in the Coulomb excitation process are
the 3+ ground state and a 5+ excited state. Thus the cross section depends on
three matrix elements - the two diagonal ones (M33 and M55) and the transitional
matrix element M35. For the maximum likelihood analysis two distinct cuts were
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Table 6.4.: γ-ray yields for the transition 2+1 → 0+gs in 128Cd (Nproj
γ ) and 64Zn (N targ

γ )
in the different angular ranges (Θcm) after time gate subtraction, effi-
ciency correction and background subtraction.

cut Θcm[◦] Detected particle Nproj
γ N targ

γ

1 49.5− 74.4 projectile 333.3 (274) 698.4 (722)
2 76− 98 target 281.5 (252) 679.2 (702)
3 106− 132 target 126.1 (169) 321.4 (477)
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Figure 6.13.: Bands for the different angular ranges in the M02-M22-plane for 128Cd.
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Figure 6.14.: 1σ-contour of the maximum likelihood analysis for the 0+gs → 2+1 -
transition in 128Cd using three different particle angular ranges. The
red lines indicate the maximum likely value (solid) and its errors
(dashed).
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Figure 6.15.: 1σ-contour of the maximum likelihood analysis for the 0+gs → 2+1 -
transition in 128Cd using only cut 1 and cut 3 (see Tab. 6.4). The red
lines indicate the maximum likely value (solid) and its errors (dashed).
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Table 6.5.: γ-ray yields for the transition 5+1 → 3+gs in 128In (Nproj
γ ) and 64Zn (N targ

γ )
in the different angular ranges (Θcm) after time gate subtraction, effi-
ciency correction, background subtraction and correction for electron
conversion.

cut Θcm[◦] Detected particle Nproj
γ N targ

γ

I 76− 98 target 183.2(177) 681.9(440)
II 100− 132 target 112.5(149) 448.9(370)

used, as shown in fig. 6.16. Similar to the analysis of 128Cd a placement of a
third cut causes the ellipse not to close for large positive M55. The correspond-
ing information on the γ-ray yield is given in Table 6.5. With Equation 6.1 the
Coulomb excitation cross section for 128In is calculated. From a previous measure-
ment on the quadrupole moment of ground and isomeric states in neutron-rich
In isotopes up to 126In [Ebe86], a diagonal matrix element of M33 = 0.3621 eb
(Qs(3+) = 0.280 eb) is estimated for the performed calculations. Nevertheless
the impact of this diagonal matrix element on the B(E2)-value is rather small and
calculations with a vanishing M33 give similar results. The matrix element M55
is varied between values of -8 eb and 4 eb. In figure 6.17 the obtained bands
in the M35-M55-plane are shown.The 1σ contour (fig. 6.18) includes the errors
from statistics, efficiency correction and beam purity. The maximum value for
the transition matrix element is M35 = 0.69+0.13

−0.12 eb for M33 = 0.3621 eb and
M35 = 0.68+0.13

−0.12 eb for vanishing M33, which leads to the reduced transition

strength B
�

E2; 3+gs → 5+
�

= 0.07+0.03
−0.02 e2 b2 for Qs(3+) = 0.280 eb and vanishing

Qs(3+). The error for the diagonal matrix element M55 is large, but nevertheless
the maximum likely value reads M55 = −3.5+5.0

−3.2 eb for both cases of M33, which
gives Qs(5+) =−2.5+3.6

−2.3 eb.
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Figure 6.16.: Hits on the DSSSD according to the scattered particles (left branch:
128Cd + decay products, right branch: 64Zn). The different cuts are
indicated (numeration as in Table 6.5).
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Figure 6.17.: Bands for the different angular ranges in the M35-M55-plane for 128In
with M33 = 0.3621 eb.
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Figure 6.18.: 1σ-contour of the maximum likelihood analysis for the 3+gs → 5+1 -
transition in 128In using M33 = 0.3621 eb. The red lines indicate the
maximum likely value (solid) and its errors (dashed).
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7 Results, discussion and outlook

7.1 Results and discussion

In Table 7.1 the experimental results for the reduced transition strength

B
�

E2;0+gs → 2+1
�

and the spectroscopic quadrupole moment Qs(2
+
1 ) for 128Cd to-

gether with the theoretical predictions from SM and BMF are summarised.
For the shell model calculations two different interactions were used: jj45a [Hjo]

and Napoli [Cor02, Cov, Gen03, Sch04]. Both interactions are derived from
nucleon-nucleon potentials, jj45a using the charge-dependent CD-Bonn [Mac01]
and Napoli using the Vlow-k potential [Bog02]. The jj45a effective interaction
is renormalised with Brückners G-matrix theory, which accounts for the short-
range correlations [Hjo95, Mau13]. To obtain the Vlow-k potential, the high mo-
mentum components of a general nucleon-nucleon potential are integrated out
by introducing a momentum cutoff Λ = 2.0 fm−1 [Bog02]. The calculation of
the electric matrix elements is performed with the effective charges eπ = 1.35
and eν = 0.78. The configuration space used for both interactions is based on
a 78Ni core. Therefore the orbits ν

�

1g7/2, 1h11/2, 2d3/2, 2d5/2, 3s1/2

�

for neutrons

and π
�

1 f5/2, 1g9/2, 2p1/2, 2p3/2

�

for protons are included.
For the beyond mean field calculations the finite range Gogny interaction in

the D1S parametrisation is used [Ber84]. The crucial point for this interaction
is the inclusion of a density dependence, which overcomes the problem of di-
vergencies for the pairing interactions [Ben03, Ber84]. In order to restore the
symmetries, particle number and angular momentum projection before the varia-
tion is applied. Furthermore a configuration mixing within the framework of the
generator coordinate method, which is based on the collective model, has been per-
formed [Rod08, Tab72]. The Gogny interaction is derived from global properties
of nuclear matter and is therefore not restricted to a particular range of neutron
or proton numbers. Calculations have been performed with and without the tri-
axial degree of freedom. Figure 7.1 shows the calculated 2+1 excitation energies
in comparison with the experimental data. The absolute value for axially symmet-
ric nuclei is by a factor of 1.7 too large, whereas it is reduced for the calculations
including triaxiality. The trend of an increasing excitation energy of the 2+1 state
for 122Cd to 126Cd and the following drop from 126Cd to 128Cd is better reproduced
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Figure 7.1.: Excitation energies of the 2+1 state in 122,124,126,128Cd from experiment
and BMF calculations with and without the triaxial degree of free-
dom [Rod].

for the latter case. A preference of a prolate shape is clearly evidenced in the cal-
culated square amplitudes of the wave functions. Figure 7.2 shows a pronounced
maximum for positive deformation parameter β for the 2+1 state. Additionally the
calculated single particle energies (fig. 7.3) indicate a prolate deformation as the
πg9/2 and the νh11/2 shell are closed for β < −0.15 and β < −0.1, respectively.
Furthermore the formation of a 2+ state would require a coupling to orbitals above
the proton and neutron shell closures, which are very far away in energy from the
closed shells. The deformation of a nucleus with closed proton and neutron shells
needs a lot of energy. Therefore, from the BMF calculations, a prolate deformation
is predicted. The triaxial degree of freedom γ does not affect the B(E2) and Qs(2

+
1 )

value much. Figure 7.4 shows the collective wave functions in the triaxial plane for
the ground and the first excited 2+ state of 128Cd. A clear maximum at γ = 0◦ and
β ∼ 0.15 and ∼ 0.20, respectively, is noted.

Figure 7.5 shows the evolution of the reduced transition strength from 122Cd to
128Cd for the experimental data and theoretical calculations. The general trend
of an underestimation of the transition strength by SM calculations continues for
128Cd, although the N = 82 shell closure gets closer. However, because of the
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Figure 7.2.: Squared amplitudes of the wave functions from BMF calculations with
respect to the deformation parameter β for the J = 0 ground state
(solid) and J = 2 excited state (dashed). Taken from [Rod08].

large experimental uncertainty neither the BMF nor the SM calculations can be
undoubtedly ruled out as an adequate theoretical description. In the vicinity of
the BMF calculations, which is nevertheless favoured by experimental data, the
enhanced transition strength can be explained with the large overlap of the ground
state and excited state wave functions, as seen in figure 7.4.

The most likely value for the spectroscopic quadrupole moment is negative,
which corresponds to prolate deformation and is in agreement with the theoretical
predictions of both approaches. Recent results on the investigation of neutron-rich
odd Cd isotopes with laser spectroscopy reveal small quadrupole moments for the
ground states [Yor13]. Therefore, only a slight deformation is reasonable for the
excited state of the even neutron-rich Cd isotopes. Nevertheless, the errorbars for
this observable are too large to make an incontrovertible statement about the char-
acter of deformation.

In conclusion, the low energy Coulomb excitation experiment performed at
REX-ISOLDE allowed for the extraction of the reduced transition strength of the
0+gs → 2+1 transition. The enhanced value seems to follow the predictions of BMF
calculations, although the SM can not be ruled out. Therefore no clear evidence
could be found for shell gap quenching and theoretical extrapolations to nuclei
involved in the r-process in this region still need to be taken with caution.
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Figure 7.3.: Neutron single particle energies (shifted by 9 MeV) with respect to
the deformation parameter β . The Fermi level is indicated (thick black
dashed-dotted). Taken from [Rod08].
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Figure 7.4.: Wave function of the ground state (left) and excited state (right) in the
triaxiality plane. [Rod]

7.2 Outlook

Previous analyses of Coulomb excitation data revealed a large influence of addi-
tional information on the error of the extracted transition strength and quadrupole
moment [Ili14]. In particular lifetime measurements of the excited state together
with the information from Coulomb excitation reduce the error in the observables
significantly. A lifetime measurement of the first excited 2+ state of 128Cd could
therefore be helpful in order to affirm one of the discussed theories for this re-
gion undoubtedly. The lifetime calculated from the B(E2)-values in chapter 7.1 lies
roughly around 19-23 ps and is therefore accessible via the recoil-distance-doppler-
shift method. There the beam hits a thin target foil and gets excited before hitting
a stopper target. The deexcitation of the nuclei takes place in-flight and in the
stopper target depending on the distance of the stopper from the excitation target
and the lifetime of the excited state. By comparing the intensities of the in-flight
decay and decay of the stopped nuclei at different stopper target distances with
respect to the excitation target, the lifetime of the excited state can be deduced.
Nevertheless, the largest source of uncertainty in Coulomb excitation experiments
of exotic nuclei is the low statistics mainly due to low beam intensity. In order to
extract the transition strength and quadrupole moments with a reasonable error
higher intensities are indispensable. These can be reached by an upgrade of the
target station, which is part of the HIE-ISOLDE project. Within this project also a
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new linear accelerator will be installed, which will deliver beams with higher en-
ergies and will operate from 2015 on. More statistics in the γ-ray spectrum will
be available and, hence, the uncertainty for the extracted results will be reduced.
However, the upgrade will also embark new challenges as higher order effects like
multistep Coulomb excitation complicate the analysis.

So far, it is not understood, where the enhanced collectivity (fig. 7.5) results
from. The odd neutron-rich Cd isotopes represent an ideal probe to clarify the
contributions from the different orbitals. With Coulomb excitation two different
neutron states are accessible, as in the odd Cd isotopes (A > 119) besides the 3

2

+

ground state there is an 11
2

−
isomeric state present. The ground state wave func-

tion is dominated by the d3/2 orbit, whereas the wave function of the isomeric state
is dominated by the h11/2 orbit. As ISOLDE provides a beam composed of ground
state and isomeric state isotopes, the odd Cd’s can be excited to low-spin states
with positive parity from the ground state and to high-spin states with negative
parity from the isomeric state. In May 2012 the campaign started with a Coulomb
excitation experiment of 123Cd performed at REX-ISOLDE, using the same setup as
described in chapter 4. The relative amount of ground state and isomeric state of
123Cd in the beam was varied with RILIS in order to assign the different transitions
to ground state or isomeric state excitation. In this first attempt of the experiment
only a broad-band laser was applicable, which limits the selectivity. Nevertheless,
even with this broad-band laser the relative amount of isomeric state in the beam
could be altered. The γ-spectrum revealed contradictions to the one measured
via γ-spectroscopy after β-decay of 123Ag by Huck et al. [Huc89]. In 2009 mass
measurements at JYFLTRAP [Kan13] already found the isomeric state of 123Cd at
a different energy than Huck et al. [Huc89]. Therefore, with γ-γcoincidence spec-
tra from the Coulomb excitation experiment and the different laser settings, the
levelscheme of 123Cd could be revised (fig. 7.6, [Har14]). For the strongest transi-
tions in the ground state band (117 keV, 3/2+gs → 1/2+1 ) and in the isomeric state
band (376 keV, 11/2− → 9/2−) the reduced transition matrix elements could be
extracted as M3/2→1/2 = 0.92(4) eb and M11/2→9/2 = 0.50(4) eb [Har14]. These
values are comparable and the conclusion can be drawn, that both the d3/2 and
the h11/2 orbit contribute equally to the collectivity in the neutron-rich Cd isotopes.
Further investigations with a narrowband laser for higher selectivity of the ground
state and isomeric state isotope of 123Cd and other neutron-rich odd Cd isotopes
will shed more light onto the extraordinary region of doubly-magic 132Sn.
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A Kinematical reconstruction
To perform an even-by-event Doppler correction, the energy of the emitting parti-
cle needs to be known (equ. 5.5). If the detected particle is also the γ-ray emitting
particle, the angle detected with the DSSSD can directly be inserted in the formu-
lae:

Projectile p detected
�

Ap,Θp

�

Ep = c1

�

At

Ap + At

�2�

1+ c2 ·
�Ap

At

�2

+ 2
p

c2 ·
Ap

At
·

· cos
�

Θp + arcsin
�

p
c1

Ap

At
sin
�

Θp

�

���

(A.1)

Target t detected
�

At ,Θt
�

Et = c1

ApAt
�

Ap + At

�2

�

1+ c2 + 2
p

c2·

· cos






Θt + arcsin







s

ApAt Ebeam

ApAt Ebeam −∆E
�

Ap + At

� · sin
�

Θt
�



















(A.2)

with

c1 = Ap Ebeam −∆E
�

1+
Ap

At

�

c2 =
Ap Ebeam

c1
(A.3)

where Ebeam is the incoming beam energy and ∆E is the loss of kinetic energy in
the inelastic scattering process, which equals the excitation energy.
If the γ-ray emitting nucleus is not detected but only its scattering partner, the scat-
tering angle of the emitting nucleus needs to be reconstructed:
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Projectile p detected
�

Ap,Θp

�

Θt = arccos

 

p2
0 + pp − 2A2

p Ebeam − A2
p E2

beam + 2Ap Erec + 2EbeamAp Erec − E2
rec

2p0pp

!

(A.4)
Target t detected

�

At ,Θt
�

Θp = arccos

 

p2
0 − p2

t + p2
p

2p0pp

!

(A.5)

with

p0 =
Æ

E2
beamA2

p + 2EbeamA2
p

pt =
q

�

EbeamAp − Epar t −∆E
�2
+ 2Ap

�

EbeamAp − Epar t −∆E
�

pp =
p

E2
rec + 2At Erec

Erec = EbeamAp − Epar t −∆E (A.6)

where “part” is referring to the detected particle.

Note, that in the above considerations the energies and angles are meant as
being in the laboratory system.
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