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Abstract
In this work, modern control approaches for drive and suspension of a high speed double conical

bearingless motor are designed. Firstly, the air gap flux density and the forces acting on the rotor are an-
alytically calculated. Subsequently, an elaborate model of the magnetically levitated rotor is developed,
which considers the non-collocation of position sensors and levitation windings as well as the presence
of angular motion. Three different control approaches are designed and simulated. The first approach
comprises a state controller augmented with integral action, with which the closed loop dynamics are
freely defined after pole placement. The other two approaches concern Linear Quadratic Gaussian and
Model Predictive control. The pole placement control approach is tested successfully on the test bench
with the real motor. Sinusoidal disturbance forces, with the rotational frequency, can cause large rotor
orbits and may drive the inverters to their limits. For this reason, two synchronous filtering control
strategies are developed. Using Imbalance Force Compensation, the rotor can be driven with low orbits
at relatively low speed and using Imbalance Force Rejection, the rotor can be driven with low levita-
tion currents at high speed. The control performance is evaluated by measurements and the measured
frequency response of the closed loop system is presented.

Kurzfassung
In dieser Arbeit wird der Entwurf von modernen Regelungen für Antrieb und Lagerung von einem

hochtourigen doppelkonischen lagerlosen Motor besprochen. Zunächst werden die Luftspaltflussdichte
und die auf den Rotor wirkenden Kräfte analytisch berechnet und anschließend wird ein ausführliches
Modell des magnetisch schwebenden Läufers entwickelt, das die Positionsunterschiede von Lagesen-
soren und Schwebewicklungen, sowie die Existenz von Winkelbewegungen enthält. Anhand dieses Mod-
ells werden drei unterschiedliche Regelungen ausgelegt und simuliert. Der erste Ansatz umfasst einen
mit Integralanteil erweiterten Zustandsregler, mit dem die Dynamik des geschlossenen Regelkreises frei
nach Polvorgabe bestimmt wird. Die anderen Ansätze sind lineare-quadratische Gaußsche und mod-
ellbasierte prädiktive Regelungen. Die Regelung durch Polvorgabe wird erfolgreich auf dem Prüfstand
am echten Motor getestet. Sinusförmige Störkräfte mit der Drehfrequenz können große Rotorumlauf-
bahnen verursachen und die Wechselrichter an ihre Grenzen treiben. Aus diesem Grund werden zwei
Regelstrategien mit synchroner Filterung entwickelt. Bei niedriger Geschwindigkeit wird der Rotor durch
Unwuchtkraftkompensation mit kleinen Exzentrizitäten angetrieben, und bei hohen Drehzahlen wird er
durch Unwuchtkraftunterdrückung mit niedrigen Schwebeströmen angetrieben. Die Leistungsfähigkeit
des Reglers wird durch Messungen ausgewertet, und die gemessene Frequenzantwort des geschlossenen
Regelkreises wird dargestellt.
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Glossary
The following list contains the most important symbols and subscripts as well as the abbreviations

used in this work. The notation are in accordance with DIN EN ISO 80000-2 and DIN EN 60027-4.
Additionally, the symbols will be explained the first time used in text.

Notation

s scalar
b vector
M matrix, tensor
Mᵀ transpose
û peak value, estimation
ỹ prediction
x̄ arithmetic mean
x , y, z cartesian coordinates
ρ,ϕ, z cylindrical coordinates
a, b, c three-phase system labels
diag() diagonal matrix

Symbols

B Magnetic flux density T
d Diameter m
E Electric field strength V m−1

f Frequency Hz
F Force N
g Gravitational acceleration m s−2

h Height m
hM PM Height m
H Magnetic field strength A m−1

I Current A
J Moment of inertia kg m2

k Coefficient
kw Winding factor -
l Length m
m Number of phases -
m Mass kg
M Torque N m
n Speed rpm
N Number of turns per phase -
p Number of pole pairs -
q Number of slots per pole and phase -
r Radius m

xiii



rsi Stator inner radius m
S Surface m2

t Time s
T Period; Time constant s
U Voltage V
v Velocity m s−1

α Rotor mechanical angle rad
γ Cone angle rad
δ Air gap m
δ0 Mechanical air gap m
δe Effective air gap m
ε0 Permittivity of free space A s V−1 m−1

µ0 Permeability of free space V s A−1 m−1

µr Relative permeability -
σ Standard deviation
ϕ Phase angle rad
ω Angular speed rad s−1

Subscripts

0 related to rotor
1 related to driving winding
2 related to levitation winding
a augmented
B bandage
C common mode
CB coercivity for zero magnetic flux density
d direct component; discrete
D differential mode
DE drive end
e effective; estimator
f force
Fe iron
i current; inner; integral
max maximum
min minimum
M magnet; torque
n normal component
NDE non drive end
o outer
q quadrature component
r rotor; radial component
R remanence
s stator; stiffness; sensor; sampling
t tangential component
z axial component
w winding
δ air gap

xiv Glossary



Acronyms

AMB Active Magnetic Bearing

CARE Continuous-time Algebraic Riccati Equation

CBM Conical Bearingless Motor

DE Drive End

DARE Discrete-time Algebraic Riccati Equation

FFT Fast Fourier Transform

FMS Full Modal Synthesis

FOC Field Oriented Control

FPGA Field Programmable Gate Array

IFC Imbalance Force Compensation

IFR Imbalance Force Rejection

IIR Infinite Impulse Response

LAN Local Area Network

LTI Linear Time Invariant

LQE Linear Quadratic Estimator

LQG Linear Quadratic Gaussian

LQR Linear Quadratic Regulator

MIMO Multiple Input Multiple Output

MPC Model Predictive Control

NDE Non Drive End

OP Operating Point

PCI Peripheral Component Interconnect

PI Proportional Integral

PID Proportional Integral Derivative

PM Permanent Magnet

PMSM Permanent Magnet Synchronous Motor

QP Quadratic Programming

RTAI Real Time Application Interface

SISO Single Input Single Output

ZOH Zero Order Hold
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1 Introduction
The double conical bearingless high-speed permanent magnet motor, from now on Conical Bearingless

Motor (CBM), is a prototype designed and manufactured in the Institute of Electrical Energy Conversion
of Darmstadt University of Technology. The term bearingless denotes that the machine is not suspended
by mechanical or magnetic bearings. Although the machine has additional windings for the rotor suspen-
sion, these lie on the same stator region as the driving windings. This design is advantageous because
it reduces the needed machine length in comparison with Active Magnetic Bearings (AMBs). Although
the CBM is not a typical AMB system, the basic principles of AMB are also applied here. An introduction
to the AMB technology with recommendations for basic and advanced control structures is given in [1].
Another work more relevant to the bearingless motors is available in [2].

The machine design, manufacture, and commissioning is explained in [3]. Additionally, an introduc-
tion to the principles of the bearingless drives is also given in [3]. However, the control implemented
in this first work was based in a system that was not flexible to modifications. A system based on the
Linux Real Time Application Interface (RTAI), which gives more opportunities for rapid control prototyp-
ing was implemented in [4]. The current control loop for the CBM is implemented using Proportional
Integral (PI) controllers within a Field Programmable Gate Array (FPGA) [4]. The underlying current
control loop is designed to be much faster than the mechanical dynamics, so that the CBM including
the inverters can be considered as a current-controlled system. This simplifies the design of the motion
controller.

An improved motion control structure is however still needed. For Multiple Input Multiple Output
(MIMO) systems, as the CBM, a control based on a state space representation is a more appropriate
approach. In this work, three different control methods using a state space model of the CBM are
designed and simulated in Matlab-Simulink. The first approach is based on pole placement, the second
on Linear Quadratic Gaussian (LQG) and the third on Model Predictive Control (MPC). The pole placement
control approach will be finally implemented and tested on the real motor.

1.1 Motivation for Modern Control

The term modern control refers to control design methods that appeared later in time than the so
called classical control. An example of classical control approach is the use of the root locus to select the
gains of a Proportional Integral Derivative (PID) controller. Optimal control and predictive control are
examples of modern control approaches. However, the term modern does not imply that these methods
are emerging or better than the classical control methods. Generally, certain control methods are better
suited for certain applications.

All the control approaches handled in this work are based on a state space representation of the CBM.
An introduction to the state space control design is given in [5]. The main advantage of the state space
control is that, not only the system input-output, but also the inner system states are taken into account.
A state feedback controller provides more design freedom than an output feedback controller, since the
inner state information is missing from the latter. Furthermore, controllers for MIMO systems can be
designed more conveniently in state space. The CBM is a MIMO system with cross couplings between its
inputs-outputs. Systematic approaches to decouple MIMO systems in state space are given in [6, 7].
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1.2 Double Conical Bearingless Motor Prototype

The CBM equipped with the second rotor prototype is displayed in Figure 1.1. Both rotor prototypes
can be seen in Figure 1.2. The rotor-1 has a conical back iron and thus a lower Permanent Magnet
(PM) height, whereas rotor-2 has a cylindrical back iron and consequently, a higher PM height. The
components of rotor-2 can be seen in Figure 1.3. The rotor is composed by a rigid steel shaft, conical
PMs and measurement surfaces for the position sensors. The carbon fiber bandages ensure that the PMs,
which are glued on the rotor steel shaft, can sustain the centrifugal forces applied at high angular speeds.
The measurement surfaces are used as targets for the eddy current position sensors, which are mounted
on the stator. The manufactured rotor can be observed in Figure 1.4.

The mounting of the PMs to the rotor back iron is an important construction issue. An eccentric
mounting leads to an unsymmetrical PM field and therefore to a rotating single sided magnetic pull,
trying to displace the rotor from the stator bore center. This phenomenon was explained in [3] and it
was assessed that the rotor-2 PMs were eccentric mounted due to difficulties on the gluing process. The
latter was also verified by measurements and comparison with the performance of rotor-1.

In this work, only rotor-2 is tested; the idea is that rotor-2 is more challenging for testing because of its
aforementioned deficiency . A control strategy that works satisfactorily for rotor-2 will be applied easier
to rotor-1. The CBM design parameters for both rotors are presented in Appendix A. Furthermore, the
design parameters are registered for each rotor in the Matlab scripts motor1 and motor2 (Appendix B).
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Figure 1.1.: Axial cross-section of the CBM with rotor-2 [3]
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2 Motor Mathematical Model
In this chapter, the mathematical model of the motor is derived. Mathematical models of the CBM are

already presented in [3, 4]. In [3] a detailed analytical calculation of the magnetic fields is presented,
whereas in [4] the influence of the axial displacement to the other axes of the CBM is considered. In
the present work, a primitive motor model with simplified magnetic field equations is presented. The
present modeling aims to give a better understanding of the parameters influencing the force generation
and provide a satisfactory model for the control design. An accurate calculation of the force coefficients
is out of the scope of this work, this can be later done using parameter identification techniques. Due
to the inherent instability of the bearingless motor levitation, a closed-loop controller should be firstly
designed and implemented before parameter identification is applied.

The aim of the modeling is to find out the motion equations that govern the rotor levitation and
rotation. To derive the motion equations, the air gap magnetic fields are firstly derived and then the
forces acting on the rotor are calculated.

2.1 Air Gap Field Calculation

Three different sources generate magnetic fields in the air gap; the driving winding, the levitation
winding and the rotor PMs. The rotor PMs have conical shape and are parallel magnetized [3], so that a
sinusoidal magnetic field along the rotor mechanical angle α is produced. For a low saturated Permanent
Magnet Synchronous Motor (PMSM), the flux lines in the air gap are almost perpendicular to the stator
bore [3]. Therefore, to simplify the motor model, only the PM field which is normal to the stator conical
surface is further considered. Considering a perfect sinusoidal PM field distribution with flux density
amplitude B̂0n, electrical frequency ω0 and p0 pole pairs, the flux density of the rotating PM field can be
expressed by (2.1).

B0n(α, t) = B̂0n cos(p0α−ω0 t −ϕ0) (2.1)

The amplitude of the PM flux density can be approximated by (2.2), similar to the PMSM case presented
in [8], where BR is the remanence magnetic flux density, µrM the relative permeability and hM the height
of the PMs. Furthermore, hB denotes the height of the bandage attached on the PMs and δ0 the nominal
mechanical air gap.

B̂0n =
BR

1+ µrM
hM
(hB +δ0)

(2.2)

Two rotor prototypes are manufactured for the CBM, (see Section 1.2). The first rotor has a conical back
iron, while the second rotor has a cylindrical one. The height of the PMs of rotor-1 is constant, while
that of rotor-2 is variable depending on the axial position. For this reason, the mean value of the PM
height along the z-axis (2.3) will be used in equation (2.2).

h̄M =
1
lFe

∫ lFe

0

hM(z)dz (2.3)

The mean PM height can be calculated for both rotors using (2.4), where hMmin is the minimum magnet
height, γrM

the rotor PM cone angle and γrFe
the rotor back iron cone angle.
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h̄M =
1
lFe

∫ lFe

0

�

hMmin + z tan
�

γrM
− γrFe

��

dz = hMmin +
1
2

lFe tan
�

γrM
− γrFe

�

(2.4)

The currents flowing in the stator windings will also generate magnetic fields. A two dimensional ap-
proach is used for the calculation of the stator fields, i.e. the stator fields are composed by a tangential
and a normal to the stator surface component. The tangential field is defined so that it has 90° phase
lead from the normal field. The number of pole pairs is p1 for the driving and p2 for the levitation wind-
ing. Considering a perfect sinusoidal spatial distribution of the stator windings and balanced sinusoidal
current injection over time with equal amplitude for each phase, the flux densities of the stator rotating
fields can be expressed by (2.5).

B1n(α, t) = B̂1n cos(p1α−ω1 t −ϕ1)

B1 t(α, t) = B̂1 t cos(p1α−ω1 t +
π

2
−ϕ1)

B2n(α, t) = B̂2n cos(p2α−ω2 t −ϕ2)

B2 t(α, t) = B̂2 t cos(p2α−ω2 t +
π

2
−ϕ2)

(2.5)

The flux density amplitudes are given in (2.6), where m is the number of phases, Ns the number of
turns per phase, kw the winding factor, p the number of pole pairs, δe the effective air gap, r̄si the mean
stator inner radius and Î the current amplitude [8]. The flux density amplitudes can be expressed by a
coefficient kB in T/A times the current amplitude (2.6).

B̂1n =
µ0m1Ns1kw1 Î1

δeπp1
= kB1n Î1

B̂1 t =
µ0m1Ns1kw1 Î1

πr̄si
= kB1t Î1

B̂2n =
µ0m2Ns2kw2 Î2

δeπp2
= kB2n Î2

B̂2 t =
µ0m2Ns2kw2 Î2

πr̄si
= kB2t Î2

(2.6)

The mean stator inner radius is given in (2.7), where lFe is the iron length of the stator cone, rsimin the
minimum radius of the stator bore and γs the stator cone angle.

r̄si =
1
lFe

∫ lFe

0

rsi(z)dz =
1
lFe

∫ lFe

0

(rsimin + z tanγs)dz = rsimin +
1
2

lFe tanγs (2.7)

Since the permeability of the PM and the bandage are close to the vacuum permeability, the effective
air gap is defined as the sum of the mechanical air gap, the rotor bandage height and the mean PM
height (2.8).

δe = δ0 + hB + h̄M (2.8)

The winding factor of the fundamental is given in (2.9), where q is the number of slots per pole and
phase [8].

kw =
sin( π2m)

q sin( π2mq )
(2.9)
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Following the law of superposition, the air gap flux density can be expressed as the sum of flux densities
on each coordinate (2.10).

Bδn(α, t) = B0n(α, t) + B1n(α, t) + B2n(α, t)
Bδ t(α, t) = B1 t(α, t) + B2 t(α, t)

(2.10)

Considering a common cone angle for the rotor and stator, i.e. γ = γs = γrM
, the air gap field can be

transformed in cylindrical coordinates (2.11).

Bδ(α, t) = Bδn(α, t) cosγeρ + Bδ t(α, t)eϕ + Bδn(α, t) sinγez (2.11)

Estimating the flux density magnitudes is helpful in order to simplify the motor model in the next steps.
Taking the levitation and driving currents close to their maximum values, i.e. Î1 = Î2 = 10 A, and using
the motor parameters given in Appendix B, the flux density amplitudes are calculated and presented
in Table 2.1. The PM flux density is calculated with the values of BR and HCB obtained after linear
interpolation for a temperature of 70 ◦C using the data of Table A.3.

Table 2.1.: Flux density amplitudes at Î1 = Î2 = 10 A

Flux Density
Amplitude / T

Rotor-1 Rotor-2
B0n 0.549 0.758
B1n 0.058 0.037
B1 t 0.018 0.018
B2n 0.020 0.013
B2 t 0.012 0.012

It can be observed in Table 2.1 that rotor-1 has a lower PM flux density due to the shorter PM height,
but higher winding flux densities due to the shorter effective air gap. The tangential flux densities are the
same for both rotors as they are independent of the PM height. Furthermore, the PM flux density even
in the worst case of rotor-1 is about 10 times higher than the normal component of the driving winding
flux density and 30 times higher than the tangential. Consequently, it can be assumed that the PM field
dominates in the air gap, creating an air gap field that is almost perpendicular to the stator surface.

According to [2], if the PM height equals the length of the mechanical air gap, the radial force gener-
ation on the rotor is optimized. Looking at the rotor-1 design parameters in Table A.3, considering an
extended air gap that includes the fiber bandage height, it becomes obvious that the optimization crite-
rion is fulfilled. However, according to equation (2.2), it turns that a relative big air gap with respect to
the PM height, leads to a reduced air gap magnetic flux density. If the optimization criterion is fulfilled,
i.e. hM = hB + δ0, it follows that B̂0n ≈ 0.5BR. That is, only half of the PMs remanence magnetization is
exploited in the air gap field.

2.2 Forces Acting on the Rotor

Starting with the Lorentz force law (2.12) for a point charge moving with velocity v inside an Elec-
tromagnetic field, the convenient form of (2.13) can be derived, where f is the force per volume, S the
Poynting vector and T the so called Maxwell stress tensor [9]. That is, the divergence of the Maxwell
stress tensor gives the force per unit volume plus a term containing the Poynting vector S.

F = q(E + v × B) (2.12)
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f =∇ · T − ε0µ0
∂ S
∂ t

(2.13)

Using the divergence theorem and considering that in the static case the Poynting vector is independent
of time, equation (2.14) is derived, where F denotes the force applied on the charges surrounded by the
closed surface S.

F =

∮

S

T · dS (2.14)

The components of the Maxwell stress tensor are given in (2.15) without proof. The analytical derivation
can be found in [9].

Ti j = ε0(Ei E j −
1
2
δi j E

2) +
1
µ0
(BiB j −

1
2
δi jB

2) (2.15)

The indices i, j correspond to the chosen coordinates, e.g. x , y, z for Cartesian or ρ,ϕ, z for cylindrical
coordinates. The Kronecker delta δi j equals unity if the indices are same and zero if the indices are
different. Therefore, for the three dimensional space the stress tensor has all together nine components.
Physically, the components of the Maxwell stress tensor represent force per unit area, the so called
stress. That is, Ti j is the stress in the ith dimension applied on a surface element oriented in the jth
dimension. The diagonal elements (e.g. Tx x , Ty y , Tzz for Cartesian coordinates) are normal stresses, and
the off-diagonal elements (e.g Tx y , Txz) are shears.

In case of electric machinery the electrostatic forces are negligible compared to the magnetostatic
forces, so that only the second summand of (2.15) is further considered. Moreover, the cylindrical
coordinates are advantageous for the study of electric machinery, therefore, the Maxwell stress tensor is
conveniently expressed in cylindrical coordinates by (2.16).

T =
1

2µ0





B2
ρ − B2

ϕ − B2
z 2BρBϕ 2BρBz

2BρBϕ B2
ϕ − B2

ρ − B2
z 2BϕBz

2BρBz 2BϕBz B2
z − B2

ρ − B2
ϕ



 (2.16)

The vector normal to the conical surface n is expressed in cylindrical coordinates by (2.17). According
to Cauchy’s stress theorem [10], the stress vector t on a surface element dS with normal n is related with
the stress tensor by (2.18).

n = cosγeρ + 0eϕ + sinγez (2.17)

t = T · n (2.18)

Placing the air gap field components calculated in (2.11) in the stress tensor and then applying (2.18)
on the conical surface with normal n, the stress vector t (2.19) is calculated.

t =
1

2µ0

��

B2
δn − B2

δ t

�

cosγeρ + 2BδnBδ teϕ +
�

B2
δn − B2

δ t

�

sinγez

�

(2.19)

The tangential component of the air gap field is much lower than the normal one (see Table 2.1), hence
Bδ

2
n� Bδ

2
t holds. Consequently, the stress vector is simplified to equation (2.20).
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t =
1

2µ0

�

B2
δn cosγeρ + 2BδnBδ teϕ + B2

δn sinγez

�

(2.20)

In order to calculate the forces applied to the rotor, the closed surface where the integration of (2.14)
takes place should be first selected. Any surface that encloses the rotor cone inside the air gap can be
selected for this purpose. However, the stator surface is selected because the calculated magnetic fields
are more accurate near that place. For example, the PM flux lines penetrate perpendicular to the stator
surface, which is in accordance with the simplification done that the PM field contains only a normal
component. The top and bottom sides of the rotor cone are not penetrated by flux lines and therefore
neglected from the integration.

The metric coefficient for the differential cone length along the z-axis is hz = 1/ cosγ. Since the stator
cone radius is not constant along the z-axis, the differential conical surface is expressed by (2.21).

dS =
rsi(z)
cosγ

dϕ dzn (2.21)

Integrating along the stator iron stack and using the mean stator radius defined in (2.7), the stator
conical surface is calculated in (2.22).

Ss =

∫ 2π

0

∫ lFe

0

rsi(z)
cosγ

dϕ dz = 2πr̄si
lFe

cosγ
(2.22)

Integrating the tangential component of the stress vector over the stator surface, the tangential force Fϕ
acting on the rotor cone is calculated in (2.23).

Fϕ =
1
µ0

∮

S

BδnBδ t dS (2.23)

From now on, a common electrical frequency is considered for all the air gap fields, i.e. the synchronous
frequency ωs = ω0 = ω1 = ω2. The latter simplifies the force calculations. Moreover, it is noticed that
the driving winding and the rotor have the same number of pole pairs, i.e. p0 = p1 = 1, whereas the
levitation winding has p2 = 2. Considering that only the tangential component of the driving winding
with the PM field generates tangential forces, the relationship (2.24) is derived. The other field pairs
coming from the product BδnBδ t do not generate any tangential force because they have different number
of pole pairs.

Fϕ =
1

2µ0
SsB̂0nB̂1 t sin(ϕ1 −ϕ0) (2.24)

The electromagnetic torque can be then approximated by (2.25), assuming that the tangential force acts
on the mean radius of the stator bore.

M = Fϕ r̄si (2.25)

Driving the motor with the principle of Field Oriented Control (FOC), it becomes possible to control the
current amplitude Î1 and the phase angle (ϕ1 − ϕ0). Having as goal to yield maximum torque with
minimum losses, the normal of the driving field should be oriented so that it has 90° phase shift from
the PM field. The current giving a stator field perpendicular to the rotor field and so parallel to the rotor
q-axis is named q-current, while the current giving a field parallel to the rotor d-axis is named d-current.
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The relationships of the dq-currents are presented in (2.26), where Î is the current amplitude and ϕ the
phase angle between the stator and rotor flux densities.

Id = Î cosϕ

Iq = Î sinϕ
(2.26)

Defining the torque-current coefficient kM in Nm/A (2.27), the torque is expressed as a linear function
of the q-current (2.28). It has to be noted that the torque calculated in (2.28) is the result of only one
conical motor; the net torque equals the sum of the torques generated by each conical motor.

kM =
1

2µ0
Ss r̄sikB1tB̂0n (2.27)

M = kM I1q (2.28)

Integrating along the z-axis, the axial force per cone is derived in (2.29). Expanding the square B2
δn, it

is noticed that the field product pairs having different number of pole pairs do not generate any force.
After calculations the axial force can be expressed by (2.30).

Fz =
1

2µ0

∮

S

B2
δn sinγdS (2.29)

Fz =
1

2µ0
Ss sinγ

�

B̂2
0 n + B̂2

1 n + B̂2
2 n + 2B̂0nB̂1n cos(ϕ1 −ϕ0)

�

(2.30)

This force is applied only to one of the conical motors. The net axial force applied on the rotor equals
the difference of the axial forces applied on each conical motor.

In case the rotor center lies exactly on the stator middle and the currents I1, I2 flowing in each conical
motor are the same, the two axial forces are equal and cancel each other. However, the rotor has a
play of about 400µm in axial direction, which means that for small axial displacements, forces will be
generated due to the different flux densities in the Drive End (DE) and Non Drive End (NDE). It is evident
that the axial displacement should be controllable, otherwise the rotor will stack to the DE or NDE. The
last summand of (2.30) contains the current I1d = Î1 cos(ϕ1 − ϕ0), which is controllable by FOC. The
terms B̂2

1 n, B̂2
2 n are not linear functions of the dq-currents, since they depend on the square of the current

amplitudes Î1, Î2. However, they take much lower values than the term B̂2
0 n, as it is shown in Table 2.1.

Consequently, they can be considered as disturbances and neglected for the motor modeling. Defining
the force-current coefficient kiz in (2.31), the net axial force can be expressed by (2.32)

kiz =
1

2µ0
Ss sinγkB1nB̂0n (2.31)

Fznet = kiz

�

I1dDE
− I1dDE

�

+
1

2µ0
Ss sinγ

�

B̂2
0 n,DE − B̂2

0 n,NDE

�

(2.32)

The forces acting on the x and y axes of the Cartesian coordinate system, which is placed on the same
origin as the cylindrical system used to define the Maxwell stress tensor, are of interest, because they
can be controlled by FOC. The transformation to the Cartesian coordinate system is possible using the
transformation matrix given in (2.33).
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�

e x
e y

�

=
�

cosα − sinα
sinα cosα

��

eρ
eϕ

�

(2.33)

Then, the stress vector calculated in (2.20) can be expressed in Cartesian coordinates (2.34).

t =
1

2µ0
[(B2

δn cosγ cosα− 2BδnBδ t sinα)e x + (B
2
δn cosγ sinα+ 2BδnBδ t cosα)e y + B2

δn sinγez] (2.34)

Integrating again over the stator surface, the forces Fx and Fy are derived in (2.35) and (2.36) respec-
tively. It should be noted that the presence of sinα and cosα in the integrals makes only the field pairs
having a pole pair difference of ±1 to generate forces. In other words, only the pairs of the levitation
field with the PM field or driving field generate forces. The pole pair requirement of p2 = p1 ± 1 is a
basic design principle followed in most of the bearingless motors. More information about the influence
of pole pair combinations can be found in [11].

Fx =
Ss

4µ0
[B̂0n(B̂2n cosγ+ B̂2 t) cos(ϕ2 −ϕ0) + (B̂1nB̂2n cosγ+ B̂1nB̂2 t − B̂2nB̂1 t) cos(ϕ2 −ϕ1)] (2.35)

Fy =
Ss

4µ0
[B̂0n(B̂2n sinγ+ B̂2 t) cos(ϕ2 −ϕ0) + (B̂1nB̂2n cosγ+ B̂1nB̂2 t − B̂2nB̂1 t) sin(ϕ2 −ϕ1)] (2.36)

The superposition of Fx and Fy creates a radial force. For this reason, Fx and Fy will be referred as radial
forces. It can be observed in (2.35) and (2.36) that the forces contain a first part that is controllable
by the currents I2d, I2q and a second part that is not controllable by FOC. To simplify the radial force
equations, the force-current coefficient kir and the force-coupling coefficient kr12 are defined in (2.37)
and (2.38) respectively.

kir =
Ss

4µ0
(kB2n cosγ+ kB2t) B̂0n (2.37)

kr12 =
Ss

4µ0
(kB1nkB2n cosγ+ kB1nkB2t − kB2nkB1t) (2.38)

The radial forces can be now expressed in dependence of the driving and levitation currents by (2.39).

Fx = kir I2d + kr12 I1 I2 cos(ϕ2 −ϕ1)
Fy = kir I2q + kr12 I1 I2 sin(ϕ2 −ϕ1)

(2.39)

Expanding cos(ϕ2 − ϕ1) and sin(ϕ2 − ϕ1), the radial forces can be equivalently expressed using only
dq-currents (2.40).

Fx = kir I2d + kr12

�

I1d I2d + I1q I2q

�

Fy = kir I2q + kr12

�

I1q I2d − I1d I2q

� (2.40)

Significant changes in the magnetic field distribution are caused due to the change of the mechanical air
gap. If the rotor moves slightly towards one stator side, the air gap becomes smaller on that side and con-
sequently the magnetic flux density is intensified pulling the rotor further towards it. This phenomenon
is often called negative stiffness because it is directly opposite to the positive stiffness of a conventional
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suspension system, where the force opposes the displacement. The negative stiffness is the cause of the
inherent instability in bearingless motors and AMBs [1]. For small rotor radial displacements r with re-
spect to the effective air gap δe, i.e. δe� r, the radial pulling force Fr can be approximated proportional
to the radial rotor displacement. According to [12], for machines with more than two poles, the radial
pulling force can be approximated by (2.41), where B̂δ is the amplitude of the sinusoidal air gap field, Ss
the active stator surface, δe the effective air gap and r the rotor radial displacement with respect to the
center of the stator bore.

Fr =
SsB̂

2
δ

4µ0δe
r (2.41)

In the special case of a two-pole machine, the radial pulling force is only 50 % of (2.41). Considering
that the two-pole PM field dominates in the air gap of the CBM, the force-displacement coefficient or
negative stiffness in N/m for the CBM is defined by (2.42).

ksr = −
SsB̂

2
0 n

8µ0δe
(2.42)

2.3 Linearization at the Operating Point

The motor will be considered as a Linear Time Invariant (LTI) system for the control design. The CBM
can be linearized around its Operating Point (OP) to approximate a LTI system. The OP for the CBM is
selected on the idle state (rest position), where the rotor center of mass levitates on the origin of the
coordinate system. At the OP the radial and axial forces applied on the rotor ideally cancel each other.
In order to levitate the rotor on the OP a bias-current should flow in the suspension winding. In the
following, the axial force acting on the rotor is linearized and the bias-current needed for the motor
levitation at OP is calculated.

Axial forces caused by the PM field are acting on the rotor cones. If the rotor stays exactly at z = 0
these forces have opposing directions and cancel each other. However, even small discrepancies form
this position would create an axial force because the air gap changes and so does the magnetic field. For
the DE cone, the PM flux density amplitude in dependence of the axial displacement z is given in (2.43).
The flux density amplitude of the NDE has a plus sign before z because a positive displacement increases
its air gap (2.44).

B̂0n,DE(z) =
BR

1+ µrM
hM
(hB +δ0 − z sinγ)

(2.43)

B̂0n,NDE(z) =
BR

1+ µrM
hM
(hB +δ0 + z sinγ)

(2.44)

For notation purposes, let yDE = B̂0n,DE(z) and yNDE = B̂0n,NDE(z). The derivative of the PM field for the
DE is calculated in (2.45).

dyDE

dz
= sinγ

µrM

hM

BR
�

1+ µrM
hM
(hB +δ0 − z sinγ)

�2 (2.45)

Similarly, the derivative of of the square of the PM field for the DE is calculated in (2.47).
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dy2
DE

dz
= 2yDE

dyDE

dz
(2.46)

dy2
DE

dz
= 2sinγ

µrM

hM

B2
R

�

1+ µrM
hM
(hB +δ0 − z sinγ)

�3 (2.47)

Following the same methodology for the NDE, the derivatives at z = 0 are calculated in (2.48).

dy2
DE

dz

�

�

�

z=0
= −

dy2
NDE

dz

�

�

�

z=0
= 2 sinγ

µrM

hM

B2
R

�

1+ µrM
hM
(hB +δ0)

�3 (2.48)

The axial force-displacement coefficient or axial stiffness can be expressed by (2.49) so that equa-
tion (2.32) is linearized at z = 0 (2.50).

ksz = −
Ss sinγ

2µ0

�

dy2
DE

dz

�

�

�

z=0
−

dy2
NDE

dz

�

�

�

z=0

�

= −2
Ss sin2 γ

µ0

µrM

hM

B2
R

�

1+ µrM
hM
(hB +δ0)

�3 (2.49)

Fznet = kiz

�

I1dDE
− I1dDE

�

− kszz (2.50)

According to the PM field calculated in Table 2.1 for rotor-2, an axial stiffness of about −15 N/mm is
calculated. That is, for an axial displacement of 0.2 mm an axial force of about 3 N is obtained. Due to
the generation of non-negligible forces the axial stiffness is considered to the further modeling.

Considering that each conical motor should hold half the rotor weight, the q-current per cone required
to hold the rotor at the OP, the so called bias current, is given in (2.51), where mr is the rotor mass and
g the gravitational acceleration.

I2q,bias ≈
mr g
2kir

(2.51)

According to the PM fields calculated in Table 2.1, the bias current is about 3.2 A for rotor-1 and 2.9 A
for rotor-2.

The initial q-current per cone required to raise the rotor from a remote position yrem to the OP is given
in (2.52).

I2q,init ≈ I2q,bias −
ksr

kir
yrem (2.52)

The most remote rotor position is about 150µm, therefore a current of about 5.6 A is required to bring
rotor-2 to the OP.

This short evaluation shows that the required levitation currents lie well inside the current range of
the inverter, i.e. ±10 A. In this work, the most important motor coefficients are calculated by the Matlab
function calcmot (see Appendix B).
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2.4 Model of the Magnetically Levitated Rotor

The levitating double conical rotor is displayed in Figure 2.1. The model of the CBM described in
this chapter was inspired by the rigid rotor model with magnetic bearings presented in [1]. The so
called center of mass coordinates are used, i.e. the rotor position is described by the displacement of the
rotor center of mass with respect to an inertially fixed coordinate system. The selection of the center
of mass coordinates simplifies the resulting differential equations [1]. A more thorough presentation of
rotor dynamics and mechanical modeling, including magnetically levitated rotors, can be found in [13].
Before describing the model, some definitions and the basic conditions under which the model is valid
are presented:

• The rotor is rigid.

• The rotor nominal position is defined so that the clearances between the the stator and the rotor
are maxima.

• Deviations from the nominal position are small in relation to the rotor dimensions.

• The rotor system of principal axes is defined as S-x0 y0z0, where S denotes the rotor center of mass.

• The origin O of the inertially fixed coordinate system O-x yz is defined so that it coincides with the
rotor center of mass S, when the rotor is at its nominal position.

• The rotor position is defined as the displacement of its center of mass S with respect to the inertially
fixed coordinate system O.

S
O

x

z
β

ω

wDEwNDE

sDEsNDE

Fx DE

Fx NDE

xsDE

xsNDE

xwDExwNDE

Figure 2.1.: The levitating double conical bearingless rotor

Since the forces are applied to the cones and the displacements are measured at the sensor planes
(see Figure 2.1), coordinate transformations are required. Considering four planes parallel to the x-y-
plane passing from the middle of each sensor and winding, the distances sDE, sNDE, wDE, wNDE are defined
as the axial displacements of these planes from the x-y-plane. If the motor is symmetrically designed,
which corresponds to the depiction of Figure 2.1, it holds wDE = −wNDE and sDE = −sNDE.
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Let q be a vector, where x , y denote the displacements of the center of mass from the origin and α,β
denote the Euler angles representing the orientation of the rotor system of principal axes with respect
to the fixed reference frame O-x yz (2.53). The y-axis is not depicted in Figure 2.1, but due to the
rotor symmetry about the z-axis, the x-z-plane can be considered equivalent to the y-z-plane. Although
in Figure 2.1 the center of mass coincides with the geometric center of the rotor in order to simplify the
depiction, generally it can be arbitrarily placed inside or outside the rotor dimensions. Effort is given
during the rotor design and manufacturing that the center of mass coincides with the rotor geometric
center. However, due to imperfections in the rotor construction, a small displacement of the center of
mass from the rotational axis is always present, even if rotor balancing is applied. Besides, if one rotor
end is permanently loaded (usually different accessories can be screwed to the rotor drive end) the center
of mass will be shifted towards this side. The displacement of the center of mass causes the so called
mass imbalance, which will be discussed in Section 3.5.

The radial displacements xwDE
, xwNDE

, ywDE
, ywNDE

at the winding planes with respect to the origin can
be expressed by the vector qw. Similarly the displacements at the sensor planes are expressed by the
vector q s (2.53).

q =







β
x
−α

y






qw =







xwDE
xwNDE
ywDE
ywNDE






q s =







xsDE
xsNDE
ysDE
ysNDE






(2.53)

Using the transformation matrices Bw and C s (2.54), the displacements at the winding and sensor planes
can be transformed to displacements of the center of mass or vice versa (2.55).

Bw =







wDE 1 0 0
wNDE 1 0 0

0 0 wDE 1
0 0 wNDE 1






C s =







sDE 1 0 0
sNDE 1 0 0

0 0 sDE 1
0 0 sNDE 1






(2.54)

qw = Bwq

q s = C sq
(2.55)

A combination of forces coming from the levitation currents and the inherited negative stiffness of the
magnetic levitation are applied to the rotor. Assuming that the radial forces act at the winding planes,
the force vector f is defined in (2.56). The corresponding currents are defined by the vector i in (2.57).
Assuming a common negative stiffness ksr and force-current coefficient kir for both conical motors, the
radial forces applied to the rotor can be expressed by (2.58).

f =
�

Fx DE Fx NDE Fy DE Fy NDE

�ᵀ
(2.56)

i =
�

I2dDE I2dNDE I2qDE I2qNDE

�ᵀ
(2.57)

f = −ksrqw + kiri (2.58)

To obtain the motion equations for the levitating rotor, three more matrices are defined in (2.59). The
inertia matrix M is a diagonal matrix containing the rotor inertia mr and the transverse moments of
inertia Jx , Jy with respect to the rotor system of principal axes. The gyroscopic matrix G is skew sym-
metric, where Jz denotes the polar moment of inertia with respect to the rotor system of principal axes
and ω the rotor angular velocity. The input matrix Bf transforms the forces acting on the winding planes
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to forces and moment of forces with respect to the center of mass. Using these matrices the system of
motion equations for the levitating rotor is expressed in (2.60).

M =







Jx 0 0 0
0 mr 0 0
0 0 Jy 0
0 0 0 mr






G =







0 Jzω 0 0
0 0 0 0
−Jzω 0 0 0

0 0 0 0






Bf =







wDE wNDE 0 0
1 1 0 0
0 0 wDE wNDE
0 0 1 1






(2.59)

Mq̈ +Gq̇ = Bf f (2.60)

Decomposing the force vector using (2.58) and (2.55), the relationship (2.61) is obtained. It is evident
that Bf is the transpose of Bw. Defining the product of the aforementioned matrices as Bs, equation (2.62)
is obtained.

Mq̈ +Gq̇ = −ksrBfBwq + kirBfi (2.61)

Bs = BfBw = BfB
ᵀ
f =







w2
DE +w2

NDE wDE +wNDE 0 0
wDE +wNDE 2 0 0

0 0 w2
DE +w2

NDE wDE +wNDE
0 0 wDE +wNDE 2






(2.62)

The system of motion equations can be now brought to the form (2.63). It can be observed that the
gyroscopic effect is responsible for the coupling between the x-z and y-z planes. The gyroscopic effect is
not negligible and does influence the system response; more details can be found in [1]. If the gyroscopic
matrix is kept in the representation, the system becomes time variant, because the angular speed changes
with time. Even if the speed is added as a state to the system, as it will be later done, the product ωq̇
would make the system non-linear. In order to obtain a LTI system, so that linear control can be applied,
a special treatment of the gyroscopic coupling should be applied. A straightforward solution is to assume
a time invariant gyroscopic matrix selecting a constant angular speed ω. The selection can be done for
any speed between 0 rpm and the motor maximum speed. If ω= 0 rpm is selected, the resulting system
is simplified as the gyroscopic matrix vanishes. The latter selection would be sufficient to approximate a
system with low gyroscopic coupling at low angular speed.

Mq̈ +Gq̇ + ksrBsq = kirBfi (2.63)

Having an LTI system of motion equations, it is straightforward to convert it to the state space repre-
sentation of (2.64), where u denotes the input vector, x the state vector, y the output vector, A the state
matrix, B the input matrix and C the output matrix.

ẋ = Ax + Bu

y = C x
(2.64)

Defining the current vector i as the input vector and the vector q as the state vector, the state space
matrices for the CBM are obtained (2.65).

A=
�

0 I
−ksrM

−1Bs M−1G

�

B =
�

0
kirM

−1Bf

�

C =
�

C s 0
�

(2.65)

The eigenvalues of matrix A determine the system stability. As long as ksr < 0, the system is unstable so
that only a positive stiffness can stabilize the system. In case of positive stiffness ks > 0, the eigenvalues
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of matrix A characterize the rotor natural vibrations [1]. If the motor is symmetrically designed, i.e. it
holds wDE = −wNDE, the angular and translational vibrations are decoupled. In this particular case, the
translational natural frequency for both the x-z and y-z planes is given by (2.66).

ωT =

√

√2ks

mr
(2.66)

For a non-rotating rotor, the gyroscopic effect is not present and the angular vibrations on the x-z and
y-z planes are decoupled. In this particular case, the angular natural frequency on the y-z-plane is given
by (2.67). The angular natural frequency for the x-z-plane can be equivalently calculated considering
the corresponding transverse moment of inertia Jy .

ωA =

√

√

√2ksw
2
DE

Jx
(2.67)

Due to the gyroscopic coupling, the angular natural frequencies do not remain constant with increasing
speed. In contrast, the translational natural frequency is not affected by the speed change. The latter
has significant consequences for the control design. The different natural frequencies of the angular
and translational motions impose different dynamics. For this reason, it would be advantageous to
control the angular and translational motion independently. An approach for independent control of the
angular and translation motion, which is based on four PID controllers, is presented in [1]. The pole
placement control approach presented in Section 3.1 also succeeds to decouple the control of the angular
and translation motion. From now on, the pure translational motion will be referred also as common
motion or common mode, whereas the pure angular motion will be referred also as differential motion
or differential mode. In this context, the term mode is not related with the resonance, but only with the
motion pattern.

Apart from the radial motion, the rotor can move axially and rotate around the z-axis. The next step
is to augment the state space system with the axial and rotational equations of motion. It should be
noted that in order to add the new states to the existing state space system of radial motion, all possible
couplings between the radial, axial and rotational motion are neglected. Considering that the driving
windings for each cone are supplied by the same I1q and opposite I1d (2.68), the axial and the rotational
equations can be expressed by (2.69) and (2.70) respectively.

I1d = I1dDE = −I1dNDE

I1q = I1qDE = I1qNDE

(2.68)

mrz̈ = 2kiz I1q + kszz (2.69)

Jzω̇= 2kM I1d (2.70)

Doing the augmentation, a state space representation with six inputs, eleven states and six outputs is
obtained. The state vector x , input vector u and output vector y are given in (2.71). In this work, the
Matlab function ssmot was used to generate the state space representation from the given CBM design
parameters.
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ż



































y =















xsDE
xsNDE
ysDE
ysNDE

z
ω















(2.71)

Deriving the differential equations of the CBM and representing them in state space concludes the system
modeling task and opens the way for the control design. Different control approaches for the CBM will
be investigated in the following chapters.
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3 Control Design
In this chapter, three different control approaches for the CBM are presented. Firstly, the pole placement

approach is described and ways to obtain a full state feedback are given. Secondly, an optimal control
approach, the so called Linear Quadratic Gaussian (LQG) control is investigated. Finally, the feasibility
to drive and suspend the motor using Model Predictive Control (MPC) is examined.

3.1 Pole Placement

The main advantage of the pole placement approach is that the poles of the closed loop can be freely
placed on the open left half of the complex plane. That has a considerable advantage over the root locus
method, where the poles can be placed only on specific paths in order to select the proportional gain of
the PI or PID controller. The further the left the poles are placed, the faster the system dynamics become.
However, placing the poles far to the left, turns to be very demanding for the actuators. Since every
actuator has physical limits, e.g. an inverter has a current limit, placing the closed loop poles far to the
left drives the actuator to its limits. Hence, the poles should be placed so that the desired dynamics for
the application are fulfilled. Necessary condition for the pole placement is the existence of a full state
feedback. A full state feedback means that all the system states must be available and fed back to the
controller, which is often either not possible by measurements or very costly. However, the later issue
can be solved by an observer which estimates the system states using the system inputs and measured
outputs. A necessary condition to estimate all the system states is that the system is fully observable.

A closed loop control with an observer providing full state feedback does not guarantee steady state
tracking. This is always the case because of the disturbances applied to the real system and the inaccu-
racies of the system parameters used for the control design. A sufficient way to heal both issues is to
augment the controller with integral action. The option to use a disturbance observer would make the
system dynamics less predictable in case of an inaccurate system model. As mentioned in [5], a state
controller with integral action leads to a structural modification of the control law that increases control
robustness against plant uncertainties.

In order to place the system poles, the so called Full Modal Synthesis (FMS) method is used [6]. Using
the FMS, not only the eigenvalues of the closed loop system can be freely selected but also the effect of
the eigenvalues to each state can be influenced using the so called parameter vectors. This extra freedom
gives a significant advantage, e.g. the possibility to completely decouple the system. The option to use
the built-in Matlab function place, was assessed insufficient. Although place uses the extra freedom to
increase the control robustness, it is unclear how the eigenvalues affect the states and consequently the
outputs.

In the following, a short description of the FMS method is given. A more detailed presentation of the
method can be found in [5, 6]. Let a differential equation or state equation of the form (3.1), where u
denotes the input vector, x the state vector, A the state matrix and B the input matrix. The number of
states is n and the number of inputs m. Consequently, A is square matrix of order n and B a n×m matrix.
Let K be a m× n control matrix or state feedback matrix such that the full state feedback of (3.2) is the
input to the state equation (3.1). The closed loop state equation can be then transformed to (3.3).

ẋ = Ax + Bu (3.1)

u = −K x (3.2)
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ẋ = (A− BK)x (3.3)

It is claimed that the closed-loop system of (3.3) has n distinct eigenvalues denoted as λ1, . . .λi . . . ,λn
and their corresponding eigenvectors v i. Trying to calculate the control matrix only by the desired
eigenvalues, it becomes clear that the system of (3.4) is underdetermined. This freedom can be exploited
defining the parameter vectors in (3.5).

(A− BK −λi I)v i = 0, i = 1 . . . n (3.4)

p i = K v i, i = 1 . . . n (3.5)

Using the recently defined parameter vectors, equation (3.4) can be transformed to (3.6). Given that
the matrix A − λi I is invertible, equation (3.6) is transformed to (3.7). As (3.5) and (3.7) must hold
for every i, the relationship (3.8) is made up. Given that the eigenvectors v i are linearly independent,
equation (3.9) is obtained. That is, selecting n parameter vectors p1, . . . , pn and eigenvalues λ1, . . .λn,
the control matrix K is strictly defined by (3.9) together with (3.7).

(A−λi I)v i = Bp i, i = 1 . . . n (3.6)

v i = (A−λi I)
−1Bp i, i = 1 . . . n (3.7)

[p1, . . . , pn] = K[v 1, . . . v n] (3.8)

K = [p1, . . . , pn][v 1, . . . v n]
−1 (3.9)

Selecting properly the parameter vectors, the design freedom can be exploited to influence the effect of
the closed loop eigenvalues to each state. For example in case it is required that the eigenvalue λ1 affects
only the state x2 then the parameter vector p2 must be selected so that the eigenvector given by (3.7)
has only one non zero component, i.e. v 2 = [0,1 . . . 0]ᵀ.

The only requirement for the selection of the parameter vectors is that the resulting closed loop eigen-
vectors are linearly independent so that the eigenvector matrix of (3.8) is invertible. Furthermore, the
selected closed loop eigenvalues should not coincide with the plant eigenvalues so that the inversion
of (3.7) is valid. However, the latter condition is not necessary as it is proven in [5]. That is, it is possible
to select closed loop eigenvalues being the same as the plant eigenvalues. The method doing that is not
presented here but it can be found in [5].

Although the parameter vectors introduce an extra freedom to the control design their selection is
rather time consuming and non-intuitive. An automatic selection of the parameter vectors so that the
closed loop fulfills additional requirements seems more appropriate. A method that uses the extra design
freedom to decouple the input-output of the system, the so called Decoupling with Full Modal Synthesis,
is presented in [6, 7]. Before describing the method, it should be noted that a state space system can be
represented in Laplace domain. Further details for the Laplace transformation of state space systems can
be found in [14, 5]. Applying the Laplace transformation to (3.1) (taking as initial condition x 0 = 0)
and then inverting the matrix (sI−A), the equation (3.10) is derived. Multiplying with the output matrix
C , the output is expressed in dependence of the input (3.11), i.e. the so called transfer matrix is derived
in (3.12).
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x (s) = (sI − A)−1Bu(s) (3.10)

y(s) = C(sI − A)−1Bu(s) (3.11)

G(s) = C(sI − A)−1B (3.12)

Let a closed loop system be in accordance with the block diagram of Figure 3.1. The reference is denoted
by the vector r , the output by y and the plant input by u. The matrices A, B,C denote the plant input,
state and output matrices respectively and the matrix K denotes the state feedback matrix. The matrix
F is a static prefilter aiming to provide steady state tracking. The transfer matrix of the closed loop
depicted in Figure 3.1 is given in (3.13). As long as the prefilter provides steady state tracking, the
relationship (3.14) must hold. Therefore, the prefilter should be selected so that it equals the inverse of
the transfer matrix at s = 0 (3.15). More details about the prefilter design can be found in [5].

Gw(s) = C(sI − A+ BK)−1BF (3.13)

Gw(0) = I (3.14)

F = (C(BK − A)−1B)−1 (3.15)

It has to be noted that the prefilter provides steady state tracking only if the plant model is identical
with the real plant and no external disturbances are applied to the system. It is obvious that this is
never true for real systems, so that the usefulness of the prefilter for steady state tracking is limited
and is usually replaced by an integrator. However, keeping the prefilter to the system after adding an
integrator can improve the closed loop response to a step reference. This type of control is usually called
Two-Degree-of-Freedom control [5].

F B
∫

A

K

C
r u ẋ x

−
y

Figure 3.1.: Control design with static prefilter

Let the transfer matrix of a closed loop state space system be as that defined in (3.13). As long as the
dynamic matrix of the closed loop (A − BK) is not defective (i.e. the matrix is diagonalizable), it can
be transformed to the modal form (3.16), where V is the eigenvector matrix, W the inverse eigenvector
matrix and Λ the diagonal eigenvalue matrix. The transfer function matrix can be then written as
in (3.18), which enables the transfer function matrix to be expressed in the summation form of (3.19),
where n denotes the system order, vi the columns of the eigenvector matrix V and w ᵀi the rows of the
inverse eigenvector matrix W .

(A− BK) = VΛW (3.16)
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W = V−1 (3.17)

Gw(s) = CV(sI −Λ)−1WBF (3.18)

Gw(s) =
n
∑

i=1

C v i w
ᵀ
i BF

s−λi
(3.19)

It can be observed in (3.19) that the term C v i represents a m×1 column vector, while the term w ᵀi BF a
1×m row vector (because C is a m× n matrix and F a m×m matrix). This type of vector multiplication
is called outer product. In case of an equal number of elements for the row and column vectors, the outer
product is an m×m square matrix. If the column vector C v i contains only one non-zero component at
the index j, the eigenvalue λi will affect only the output y j. That is, if e j is defined as a m×1 unit vector
with the unity at the jth component, then (3.20) should hold. In the same way, the relationship (3.21)
must hold so that the eigenvalue λi is influenced only by the input u j. Hence, an input-output decoupling
is possible, if the relationship (3.22) holds for every eigenvalue λi assigned to the jth input-output. The
decoupling will produce an input-output transfer matrix as that given in (3.23).

C v i = e j, i = 1 . . . n, j = 1 . . . m (3.20)

w ᵀi BF = e j
ᵀ, i = 1 . . . n, j = 1 . . . m (3.21)

C v i w
ᵀ
i BF = e je

ᵀ
j , i = 1 . . . n, j = 1 . . . m (3.22)





g11(s) 0
. . .

0 gmm(s)



 (3.23)

Combining the condition (3.20) with equation (3.7), the relationship (3.24) is obtained. Equation (3.26)
defines how the parameter vectors should be calculated to decouple the output dynamics. Regarding the
input decoupling, it is proven in [6] that a prefilter as given in (3.15) is sufficient. It should be noted
that the described steps give only an overview of the method. For further details, such as how many
eigenvalues should be assigned to each input-output and what is the influence of system zeros, it is
advised to follow the complete method presentation in [7].

C(A−λi I)
−1Bp i = C v i = e j, i = 1 . . . n, j = 1 . . . m (3.24)

p i = (C(A−λi I)
−1B)−1e j, i = 1 . . . n, j = 1 . . . m (3.25)

p i = G(λi)
−1e j, i = 1 . . . n, j = 1 . . . m (3.26)

As already mentioned, a control design without integral action will provide steady state tracking, only
in case the real plant is identical with the plant model and no disturbances are applied. The augmented
with integral action control structure can be seen in Figure 3.2. The vector ẋ i denotes the integrator
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Figure 3.2.: Control design with integral action

input and the matrix K i the integral action matrix. The difference between this block diagram and that
of (3.1) is the addition of an input-output comparison succeeding by an integrator and the removal of
the prefilter.

A question arises for the augmented with m integral states control structure; how should the pole
placement be done? The answer to this problem can be found in [5, 15, 14, 16]. In the last two
references the control structure with integral action is called servomechanism. The idea is to augment
the open loop system, which initially contains only the plant, with the integral states x i. Doing so, the
state space representation of the new open loop system can be described by (3.27).

�

ẋ
ẋ i

�

=
�

A 0
−C 0

��

x
x i

�

+
�

B
0

�

u

y =
�

C 0
�

�

x
x i

� (3.27)

Defining the new state vector as in (3.28) and the augmented system matrices as in (3.29), the new
system can be described by the state space representation of (3.30).

x a =
�

x
x i

�

(3.28)

Aa =
�

A 0
−C 0

�

Ba =
�

B
0

�

C a =
�

C 0
�

(3.29)

ẋ a = Aax a + Bau

y = C ax a
(3.30)

Then, the feedback law of the augmented system can be written as in (3.31), where K c denotes the
combined control matrix given in (3.32).

u = −K x + K ix i = −K cx a (3.31)

K c =
�

K −K i

�

(3.32)

It can be seen in Figure 3.2 that the error defined by the reference-output comparison is expressed
by (3.33). It follows that the closed loop state space system can be brought to the form (3.34).
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ẋ i = r − y = r −C x (3.33)

ẋ a = (Aa − BaK c)x a +
�

0
I

�

r

y = C ax a

(3.34)

Another way to express the closed loop system using directly the plant matrices is given in (3.35).

�

ẋ
ẋ i

�

=
�

A− BK BK i
−C 0

��

x
x i

�

+
�

0
I

�

r

y =
�

C 0
�

�

x
x i

� (3.35)

It is now evident that the dynamics of the augmented system are defined by the matrix (Aa−BaK c). The
already described method of full modal synthesis can be then used to place the poles, so that the state
feedback matrix Kc is calculated. However, due to the m additional states x i of the augmented open
loop system, m extra eigenvalues must be placed.

As already mentioned doing the pole placement with FMS, not only the eigenvalues of the closed loop
should be selected, but also the corresponding eigenvectors. The goal in the present control design is
that each eigenvalue affects a single type of motion. For the CBM, it means that the dynamics of the
rotational, axial, common and differential motions are decoupled. The decoupling method presented
before decouples the system regarding to its inputs-outputs. To decouple the motions, an extra step
should be done. The output matrix C should be transformed so that each motion can be independently
observed. This requires that the output matrix has full rank. Then a transformation matrix Tm can be
found so that the new output matrix can be expressed by (3.36) and the states corresponding to each
motion are expressed by (3.37). Consequently, the decoupling method described before can be applied.
It has to be noted that the input of the augmented system does not affect the decoupling, since it passes
through the same path as the integrator states.

Cm = TmC (3.36)

x m = TmC x = Cmy (3.37)

Finally the eigenvalues for each motion should be defined. A selection of eigenvalues is presented
in Table 3.1. The selection of Table 3.1 is based on the natural stiffness pole placement as presented
in [1]. That is, for the common and differential motion (see Section 2.4), the amplitude of the closed
loop eigenvalues is selected so that is close to the dominant stable eigenvalue of the open loop. This type
of pole placement exhibits an increased robustness in presence of plant uncertainties [1]. The third pole
for the axial common and differential motion, which in fact is the result of the integral action, is placed
further to the left so that the complex conjugate pair defining the natural stiffness can be still considered
as the dominant pole pair. Altogether eleven poles are placed because the common and differential
motion takes place on both the x-z and y-z planes which are considered symmetrical. However, in case
of specific motor operational requirements, a different placement can be done. Generally, high force and
precision applications such as machine tooling will require a pole placement that goes further left from
the j-axis, whereas for applications supporting low loads, such as high speed pumps, the poles can be
placed closer to the j-axis. It should be noted that in order to place the poles further to the left, an
adequate actuator is required. Otherwise, such a pole placement will drive the actuator to its limits.
However, as it will be shown later, to drive the motor at high speed, the pole placement is less important
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Table 3.1.: Closed loop pole placement and the initial plant poles

Motion
Poles in rad/s

Closed loop Open loop
Common −217± j125,−500 ±235
Differential −156± j90,−360 ±164
Axial −87± j50,−200 ±117
Rotation −9± j2 0

than the synchronous filtering. It can be said that if the main requirement is to operate the motor with
low load at high speed, a pole placement stabilizing the closed loop system is usually sufficient.

Although the motor dynamics are described by differential equations, which means equation that
are continuous in time, the controller sees the motor as a discrete plant. That is, the controller works
under a predefined sampling period, inside which it must read the sensor feedback, calculate the next
reference and send it to the output. Inside one sampling period, nothing changes in the controller
input-output, though the plant states do not remain the same. The latter imposes limitations to the
control design, e.g. the designed closed loop dynamics must be slower than the sampling frequency. It is
evident that the controller cannot control faster dynamics than that it can observe, i.e. measure with the
sensors. Therefore, the sampling frequency of the controller is usually the first thing defined in a closed
loop controller. The sampling frequency for the position and speed control was set to fs = 15625 Hz.
Considering that the designed closed loop dynamics are around 50 Hz, with no obvious aim to go higher,
the sampling frequency is more than adequate. In the literature a ratio between the sampling frequency
and the closed loop cutoff frequency not lower than 6 is recommended [17]. As long as the controller
sees a discrete plant, the plant should be discretized for the control design. A continuous state space
plant model can be brought to the discrete form (3.38), assuming Zero Order Hold (ZOH) with sampling
period Ts for the input u [17].

x [k+ 1] = Adx [k] + Bdu[k]
y[k] = Cdx [k]

(3.38)

The matrices Ad and Bd are defined by (3.39), whereas the output matrix remains the same, i.e. Cd = C .

Ad = eATs

Bd =

Ts
∫

0

eAτB dτ
(3.39)

Having the plant model in discrete form, the desired closed loop eigenvalues should be mapped from the
s-plane to the z-plane. The mapping is done by equation (3.40), where λi denote the desired eigenvalues
at the s-plane and zi the corresponding poles at the z-plane. Although the desired closed loop poles can
be given directly at the z-plane, this would be less intuitive for the control design. Selecting the closed
loop eigenvalues using the continuous plant, as done in Table 3.1, gives a better insight to the closed
loop dynamics.

zi = eλiTs , i = 1 . . . k (3.40)

The FMS pole placement method already described remains unchanged for the discrete case. After the
selection of the desired closed loop dynamics, the Matlab functions fms and decfms (Appendix B) can be
used to calculate the state feedback matrix K . However, in order to use the state feedback matrix, a full
state feedback is required. Feasible ways to obtain a full state feedback will be later described.
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3.2 State Observer

As already mentioned, the unconstrained selection of the closed loop system poles requires a full state
feedback. The sensors installed in the CBM provide the information needed to calculate directly five
states, i.e. the radial and axial displacements and the absolute rotor angular position. However, five
states are not measured, i.e. the radial and axial velocities. In a fully observable system, an observer
can be designed to estimate the non-measured states. In the literature the terms Luenberger Observer
or State Estimator are used to described a state observer of the simplest form. The so-called separation
theorem is proven in [14], which declares that as long as the plant model is identical with the real plant,
the observer does not have any effect on the closed loop dynamics. That is, the closed loop dynamics are
defined solely by the controller design and the observer dynamics solely by the observer pole placement.
In practice the dynamics of the observer should always be faster than that of the closed loop. The latter
means that the states should be estimated faster than the controller reacts. In reality the plant model
has always imperfections, hence the separation theorem is valid only for simulations. This means that
the observer will affect the closed loop pole placement. The influence it has depends on the accuracy of
the plant model.

The principle of a state observer will be presented following the description given in [15]. The block
diagram of a plant combined with a full state observer can be seen in Figure 3.2, where x̂ denotes the
state estimate and ŷ the estimated output.

B
∫

C

A

L

B
∫

C

A

u ẋ x y

˙̂x x̂ ŷ

−

plant model

state observer

Figure 3.3.: Full order state observer

The differential equation that governs the state estimation is given in (3.41), where L denotes the
observer gain matrix.

˙̂x = (A− LC) x̂ + Bu + Ly (3.41)

As long as the eigenvalues of the matrix A − LC lie on the open left half of the complex plane, the
observer is asymptotically stable. The asymptotic stability ensures that the state estimate vector will
converge to the plant state vector for any initial state estimate. The eigenvalues of the matrix A − LC
can be freely placed, using any pole placement method, e.g. fms or place. The discrete implementation
of the state observer is quite similar to the continuous one already presented, more details can be found
in [18, 19, 15].

A full state observer will try to estimate all the plant states, even the states that are directly measured.
Often, only the non-measured states need to be estimated. For this reason, the so called reduced order
observer is a common practice in real control applications. The complete derivation of a reduced order
observer is not presented here, instead the reader is advised to see [15, 14]. Though, it is noticed that if
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the vector x 2 denotes the non-measured states and vector z is an auxiliary state vector, the state space
system given in (3.42) would describe the differential equations of the reduced order observer. Again L
is the observer gain matrix, but this time the order of the dynamic matrix M is reduced, i.e. it equals the
number of the non-measured states. The Matlab function redobs is developed to calculate the reduced
order state observer for a given plant, (Appendix B).

x̂ 2 = z + Ly

ż = Mx̂ + Nu + P y
(3.42)

Either a full state or a reduced order observer is used, the observer block diagram has two inputs, i.e.
the plant input u and output y , and one output, i.e. the state estimate x̂ . Thus the closed loop block
diagram of Figure 3.2 can be transformed to that of Figure 3.4, considering the plant as a block and
adding a state observer.

∫

K i Plant

K
State

Observer

r
−

y

ẋ i x i u

x̂

−
y

Figure 3.4.: Control design with integral action and state observer

In the present work, the observer poles are placed such that the observer dynamics are about ten
times faster than that of the closed loop controller. The reduced order observer pole placement for each
motion can be found in Table 3.2. Altogether, five observer poles are placed, because the common and
differential motion takes place in both the x-z and y-z planes. That is, the order of the reduced order
observer is five, whereas a full order state observer for the CBM would have order eleven.

Table 3.2.: Reduced order observer pole placement
Motion Poles in rad/s
Common -5000
Differential -3600
Axial -2000

Placing the controller and state observer poles, a closed loop state controller is fully defined and ready
to be simulated or directly tested to the real system. The simulation and implementation of the state
controller will be discussed in the next chapters.

3.3 Linear Quadratic Gaussian Control

The LQG control belongs to the family of optimal control problems. Similarly to the pole placement,
LQG is implemented using a full state feedback and an observer. The difference in LQG is that in order
to calculate the state feedback matrix, an optimization method which evaluates a cost criterion is used.
Furthermore, the state observer is also designed according to an optimization method that considers the
process and measurement noise to obtain an optimal estimation, the so called Kalman-Bucy Filter. In
the literature the terms Linear Quadratic Regulator (LQR) and Linear Quadratic Estimator (LQE) are also
used to describe the optimal state feedback controller and the Kalman filter respectively. The literature
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dealing with optimal control is quite significant; most of the control theory textbooks include a chapter
in optimal control. In this context, [15] gives an intuitive introduction to optimal control, stochastic
processes and Kalman filtering. A more theoretical approach to linear quadratic control methods in
conjunction with robustness is given in [20]. Additionally, a thorough presentation of optimal control
including an insight to the quadratic weight selection is given in [21].

The linear quadratic problem for a continuous time state space system in its infinite horizon form can
be described as the minimization of the the cost functional or performance index J (3.43) for the selected
state and input weight matrices Q and R respectively. The state and input weight matrices must be
positive semi-definite and positive definite respectively.

J =

∫ ∞

0

(x ᵀQx + uᵀRu) dτ (3.43)

The unique solution P of the Continuous-time Algebraic Riccati Equation (CARE) (3.44), leads to the
calculation of the optimal state feedback matrix (3.45), which minimizes the cost functional J .

AᵀP + PA+Q− PBR−1BᵀP = 0 (3.44)

K = R−1BᵀP (3.45)

Since a digital controller sees a discrete plant, a corresponding performance index and Riccati equation
should be defined for a discrete state space system. An infinite horizon LQR for a discrete state space
system is defined so that it minimizes the performance index (3.46), using the optimal feedback ma-
trix (3.47), where P is the unique solution of the Discrete-time Algebraic Riccati Equation (DARE) (3.48).

J =
∞
∑

k=0

(x k
ᵀQx k + uk

ᵀRuk) (3.46)

K = (R+ BᵀPB)−1 BᵀPA (3.47)

P = Q+ Aᵀ
�

P − PB (R+ BᵀPB)−1 BᵀP
�

A (3.48)

The continuous or discrete-time Riccati equation can be solved numerically in Matlab using the functions
care and dare. Additionally Matlab offers the function lqr, which returns directly the optimal state feed-
back matrix. As already mentioned in the pole placement control design, a controller without integral
action cannot provide steady state tracking to the real system. In order to provide steady state track-
ing, the system will be augmented with an integrator to each output. In this context, Matlab provides
the function lqi which stands for Linear Quadratic Integral control. The lqi function does the system
augmentation and calculates the optimal feedback matrix. If m denotes the number of outputs, m more
quadratic weights should be provided due to the integral states.

Selecting the quadratic weights, the LQR design is completed. However, a full state feedback is still re-
quired. In fact the Luenberger observer already designed in the previous chapter could be used. Though,
in order to achieve LQG control, an optimal observer should be designed. As the name implies, an opti-
mal observer should provide an optimal observation minimizing a cost functional. The cost functional of
the Kalman filter is related to the stochastic nature of the process and measurement noise. That is, for
given process and measurement noise covariance matrices Qe and Re respectively, an optimal observer
gain exists, so that the state estimation becomes optimum.
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In order to describe the Kalman filter, a discrete time state space system including noise inputs is con-
sidered (3.49). The matrix Bw aims mainly to scale the process noise vector w , so that it is comparable
with the system input vector u. The sequences w [k] and v [k] are uncorrelated, zero mean, white noise
with covariances Qe and Re respectively.

x [k+ 1] = Ax [k] + Bu[k] + Bww [k]
y[k] = C x [k] + v [k]

(3.49)

The state estimation time update of the closed form discrete time Kalman filter is described by equa-
tion (3.50). Following the proof given in [15], the optimal gain L is defined by (3.51), where P is the
solution of the Riccatti equation (3.52). This time P is the solution of the system of coupled quadratic
equations (3.51) and (3.52). In the literature the solution P (of the Kalman filter Riccati equation) is
usually called error covariance.

x̂ [k+ 1] = Ax̂ [k] + Bu[k] + L (y[k]−C x̂ [k]) (3.50)

L= APCᵀ (CPCᵀ +Re)
−1 (3.51)

P = APAᵀ + BwQeB
ᵀ
w − LCPAᵀ (3.52)

Observing the state estimation update equation (3.50), it becomes clear that a discrete Kalman filter and
a discrete state observer are of the same form. However, the calculated Kalman gain L is proven to be
optimal, in case of process and measurement noise with covariance matrices Qe and Re respectively. It
should be noticed that the presented Kalman filter is of the simplest static form. Time varying optimal
observers can be also designed [21, 15].

Kalman filters with static gain L can be conveniently designed by the Matlab function kalman. Selecting
the quadratic weights and the covariance matrices, the state feedback matrix and the Kalman filter are
defined. The block diagram for the LQG control (Figure 3.5) is identical with that for pole placement
(Figure 3.4), with the only difference that the Luenberger observer is replaced by a Kalman filter.

∫

K i Plant

K
Kalman
Filter

r
−

y

ẋ i x i u

x̂

−
y

Figure 3.5.: Linear Quadratic Gaussian Control

The selection of the quadratic weights is unfortunately not as intuitive as the selection of the eigen-
values in pole placement. Trial and error is a common practice to select the weight matrices. Advices for
an efficient weight selection process are given in [15, 21]. Hereafter the most important points for the
weight selection are presented. As a general rule, if the dynamics of a state are too slow after simulation,
the diagonal element of the weight matrix corresponding to this state should be increased. Furthermore,
the weights corresponding to integrator states are selected high enough so that the input-output error
converges faster to zero. Additionally, it is advised that the input weight matrix equals the identity ma-
trix, so that the tuning can be done solely by the state weight matrix. Non-diagonal elements could be
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introduced to the state weight matrix in case of significant couplings between the states, otherwise they
are generally undesirable because the generate artificial couplings between the states. Having as guide
the aforementioned advices and performing some design iterations, it is concluded that a satisfactory
response is obtained by the weight matrices:

Q = diag ( 1 1 1 1 1 0.0001 0 0 0 0 0 100 100 100 100 100 0.01 )

R = diag ( 1 1 1 1 1 1 )

It should be noted that the weight matrices correspond to the state and input vector as given in (2.71).
The last m weights of the Q matrix correspond to the integral states.

For the Kalman filter design the process and measurement noise covariance matrices should be se-
lected. Capturing the converted in µm position sensor signals, an approximate maximum noise ampli-
tude of A≈ 0.3µm was observed for each sensor. Assuming Gaussian white noise, the standard deviation
σ is about one third of the observed maximum noise amplitude and the variance equals the square of
the standard deviation (3.53).

σ2 ≈
A2

9
(3.53)

The same procedure was applied to estimate the noise variance of the angular speed. Assuming no
cross-correlation between the signals, the noise covariance matrix becomes diagonal. That is, each
diagonal element equals the variance of each signal. Although the measurement noise covariance matrix
was estimated observing the sensor signals, there is no such a straightforward method to estimate the
process noise. The matrix Bw was selected equal to the plant input matrix B so that the process noise w
and the plant input u share a common scaling. A first selection of the process noise covariance matrix
can be now done, having in mind that the process noise corresponds to the input current. Finally, an
adequate selection of the covariance matrices for the Kalman filter is done:

Qe = diag ( 0.1 0.1 0.1 0.1 0.1 0.1 )

Re = diag ( 0.01 0.01 0.01 0.01 0.01 0.3 )

3.4 Model Predictive Control

Model Predictive Control was initially introduced in the process industry, since the predictive algo-
rithm needs extra computation effort, which fits better to processes with slow dynamics. That is, a slow
process does not require a high sampling frequency so that the calculations have enough time to be exe-
cuted inside one sampling period. The increasing power of modern electronics made MPC an attractive
approach for processes with faster dynamics. The main difference between conventional control (PID
Control) and predictive control is that the first one observes the current and remembers the past process
variables, while the second one takes into account also the future process variables. The prediction of
the future process variables becomes possible, using a process model. The length that the prediction lies
in future is called prediction horizon. On one hand, the longer the prediction horizon lies in the future,
the more optimal the controller response becomes since the cost functional is minimized. On the other
hand, the longer the prediction horizon is, the more demanding the calculations become. However, there
is a threshold after which the prediction is not useful for control action anymore.

An introduction to MPC is given in [22], a general treatment of Predictive Control is done in [23],
whereas a detailed presentation of several MPC algorithms can be found in [24]. The optimization
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criterion for MPC is usually the minimization of a quadratic function. In case of an unconstrained
quadratic optimization problem, the control design is reduced to the calculation of a state feedback.
However, the most common control problems have input-output constraints. For control problems with
constraints, a Quadratic Programming (QP) algorithm should be used. Finally, it has to be noted that the
stability and robustness analysis of MPC structures with constraints is not a task that can be performed
systematically, as done with conventional controllers.

A lot of different MPC algorithms are listed and some of them analyzed in [24]. The MPC algorithms
differ in several points, e.g. optimization function, QP algorithm, state estimation, prediction model
and disturbance model. In this work, the Matlab built-in algorithm based on a state space approach is
used [25]. In the block diagram of Figure 3.6, which was inspired form the elemental MPC algorithm
presented in [24], a basic structure of a MPC is displayed.

Optimizer Plant

Model Observer

r [k+i] e[k+i] u[k] y[k]

u[k+i]ỹ[k+i]

-

x̂ [k]

Figure 3.6.: Basic structure of Model Predictive Control

The discrete time MPC process of Figure 3.6 is described below in four main steps. The index i denotes
the future time steps and lies in the range i = 0 . . . P−1, where P is the prediction horizon, i.e the integer
number of sampling periods for which the controller predicts the future plant outputs.

1. The model uses the estimated state x̂ [k] and the provided future input u[k + i] to generate the
predicted output ỹ[k+ i].

2. The future error e[k + i] = r [k + i]− y[k + i], i.e. the difference between the reference trajectory
and the predicted output, is calculated.

3. The optimizer uses the future error e[k+ i], a cost function and eventually constraints to generate
the future input u[k+ i].

4. The future input sequence u[k + i] is fed to the model, whereas only the first input u[k] is fed to
the plant.

Unfortunately there is a major problematic in the implementation of MPC for the CBM. Predictive
control requires a sufficient long prediction horizon, such that the plant dynamics can be observed. As a
rule of thumb a sampling period of about one fifth of the dominant time constant of the plant is selected.
Then, a prediction horizon of 20-30 sampling periods is considered adequate, since it is approximately
equal with the plant settling time [25]. However, for the control of the CBM the sampling period was
set too low (the sampling frequency is about 300 times larger than the plant dominant frequency).
Consequently, a prediction horizon of an unusual large number of sampling periods is required. It
should be noted that simulating MPC for the CBM with a low sampling period of 64µs and a prediction
horizon of 30 sampling periods, the plant was sufficiently controlled. On one hand, a prediction horizon
of 30 sampling periods with a time step of 64µs is already ambitious for a real implementation (a large
amount of calculations are required in a short time). On the other hand, the simulation would always
give optimistic results for MPC as long as the plant model is identical with the real plant. In reality
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having a prediction horizon much shorter than the dominant plant time constant and a plant model
with uncertainties, there is no guarantee that MPC can be successfully applied. Increasing the sampling
period to a reasonable value for MPC opens the way for an implementation.

3.5 Imbalance Forces and Synchronous Filtering

As it was already mentioned in Section 2.4, a small displacement of the center of mass from the rotor
geometric center is common in real rotors. This displacement is called eccentricity and is denoted by
the vector e. The displacement of the center of mass with respect to the geometric axis of symmetry is
denoted by er, whereas the inclination of the rotor principal axis with respect to the geometric axis of
symmetry is denoted by εr. The distance er and the inclination εr characterize the static and dynamic
imbalance respectively [1]. If the rotor is forced to rotate with respect to its geometric axis of symmetry,
the presence of static and dynamic imbalance will cause imbalance forces.

To visualize the effect of eccentricity, the simplified example of a rotor disk is presented in Figure 3.7.
Initially the rotor mass is evenly distributed and the center of mass coincides with the rotor geometric
center at C , but due to the attachment of the extra mass me on the rotor periphery the center of mass is
displaced by the eccentricity er to S.

x

y

C

me

r

S
er

Fc

ω

Figure 3.7.: Additional mass me causes the displacement of the rotor’s center of mass by the eccentricity
er and the generation of the centrifugal force Fc

If the rotor is forced to rotate with respect to its geometric center C a centrifugal force Fc will be
applied on it. If mr is the rotor mass and ω the rotational speed, the centrifugal force can be expressed
by (3.54), where er is defined by (3.55) [13]. It has to be noted that if the rotor rotates with respect to
its new center of mass S, no centrifugal force will be applied on it.

Fc = mrerω
2 (3.54)

er =
me

mr
r (3.55)
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The direction of the centrifugal force depends on the eccentricity direction and rotates with the same
angular speed as the rotor, i.e. the synchronous frequency. To avoid misunderstandings, it is noted
that the defined synchronous frequency is the rotor mechanical frequency and not the electrical one.
Consequently, the forces that can be observed on the x-y-plane adjusted vertically to the rotational axis
are given by (3.56).

Fx = Fc cos(ωt)
Fy = Fc sin(ωt)

(3.56)

In contrast to the rotor disk example, torques with respect to the x and y axes will be also present in a
long rotor due to the presence of dynamic imbalance. These torques are also oscillating with synchronous
frequency. In the literature, the imbalance forces acting on the rotor are often separated into a common
mode component, due to the static imbalance and a differential mode component, due to the dynamic
imbalance.

For a motor with conventional bearings, the imbalance forces would generate vibrations on the stator
frame, mainly due to the mechanical coupling between the rotor and stator at the bearing planes. For
a motor equipped with magnetic bearings or a bearingless motor, the synchronous forces would still
generate vibrations on the stator frame due to the electromagnetic coupling between the rotor and
stator. For bearingless motors, the radial forces applied to the rotor can be controlled by the levitation
currents. Synchronous radial forces could be injected in order to compensate the imbalance forces, so
that no vibrations are transferred to the stator. A different strategy could be to leave the imbalance forces
completely uncompensated, so that the rotor is forced to rotate around its principal axis, given that the
mechanical air gap is sufficiently large. In this work, the first strategy will be referred as Imbalance Force
Compensation (IFC), whereas the second one as Imbalance Force Rejection (IFR).

The meaning of the terms IFC and IFR becomes clear, thinking what a conventional feedback controller
does. A feedback controller with integral action cannot totally compensate for sinusoidal and in general
periodic disturbances. The output oscillates with the disturbance frequency and a frequency dependent
amplitude and phase. A way to follow the set point, with the already designed controller, would be to
compensate the periodic disturbances, injecting the required control signals. The latter explains the term
IFC; the control strategy is such that the levitation currents (control signals) generate such forces that
exactly compensate the imbalance forces (periodic disturbances). In reality the controller reacts to the
periodic disturbances, although it cannot reject them. If it is desirable that the control does not react at all
to a periodic disturbance, the control signals should be forced to zero at the disturbance frequency. This
explains the term IFR; the control strategy is such that the synchronous frequency corresponding to the
imbalance forces (periodic disturbances) is rejected from the levitation currents (control signals). The
rejection of the synchronous component of the levitation currents leaves the imbalance forces completely
uncompensated and forces the rotor, provided that the air gap is sufficiently large, to rotate around its
principal axis. As long as the rotor rotates around its principal axis, the cause of imbalance forces is
eliminated. In other words, the imbalance forces are rejected. Both methods are extensively examined
in the literature. A list of publications in the field of imbalance control is presented in [1].

The mass imbalance is not the only reason creating synchronous radial forces on a bearingless mo-
tor. Asymmetries of the air-gap field, e.g. due to a non-sinusoidal PM field distribution, will explicitly
create synchronous radial forces. Additionally, asymmetries on the measuring surface of the radial posi-
tion sensors will implicitly create synchronous radial forces due to the feedback control structure. The
control strategies described above can handle not only the mass imbalance forces, but also any kind
of synchronous disturbance forces. It is shown later that the IFC and IFR control strategies can be
implemented designing filters that isolate the synchronous component of the process signals. The afore-
mentioned reasons lead to select the more general term synchronous filtering to cover the described IFR
and IFC control strategies applied to bearingless motors.

The filter design to achieve IFR and IFC was mainly inspired from [26], where the IFR problem is han-
dled designing a generalized narrow-band Notch Filter. The proposed filter is based on the modulation
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block presented in Figure 3.8, where ω corresponds to the motor synchronous speed and TR, T J are the
so called parameter matrices which enable the filter tuning.

∫

∫

�

TR −T J
T J TR

�

w z

sin(ωt) sin(ωt)

cos(ωt) cos(ωt)

Figure 3.8.: Modulation block for synchronous filtering [26]

It is proven in [26] that this kind of modulation scheme has the input-output transfer matrix given
in (3.57), so that z(s) = M(s)w (s) holds.

M(s) =
sTR−ωT J

s2 +ω2
(3.57)

Using the modulation block of Figure 3.8 the Synchronous Notch Filter of Figure 3.9, aiming to provide
IFR, is designed. The transfer matrix of the synchronous notch filter is given in (3.59).

Modulator ke

y y f

w

z

-

ωt

Figure 3.9.: Synchronous notch filter

Ns(s) = (I + keM(s))−1 (3.58)

Ns(s) =
�

s2 +ω2
� �

s2I + skeTR+ω
2I − keωT J

�−1
(3.59)

The transfer matrix zeros at s = ± jω, clarify the blocking characteristic of the notch filter at the syn-
chronous frequency. The importance of the described notch filter, though, lies on the denominator.
Selecting the parameter matrices TR and T J, the poles of the notch filter can be freely placed. In [26]
a method that evaluates the closed loop stability in conjunction with the selection of the parameter ma-
trices is given. In order to implement the filter, some of the hints for the selection of the parameter
matrices given in [26] are presented below. The parameter matrices can be used to phase shift the filter
output, i.e. in the Single Input Single Output (SISO) case the angle ∠ (TR+ jTJ) is related to the phase
shift. Additionally, in the SISO case, the magnitude |TR+ jTJ| as well as the coefficient ke affect the
convergence speed.

Reversing the feed-in and summation points, a Synchronous Resonator aiming to provide IFC can be
designed, as shown in Figure 3.10.
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Figure 3.10.: Synchronous resonator

The synchronous resonator will amplify the synchronous component of the input y until it vanishes.
That is, the controller will impose high current amplitudes at the synchronous frequency until the im-
balance forces are completely compensated and therefore the output y is free from any synchronous
component. As the imbalance forces increase with the square of angular speed, this method is very de-
manding for the actuator and may drive it to its limits, before the motor reaches its nominal speed. The
resonator transfer function is given in (3.61).

Rs(s) = I + keM(s) = N−1
s (s) (3.60)

Rs(s) =
s2I + skeTR+ω2I − keωT J

s2 +ω2
(3.61)

The IFR and IFC blocks could be placed either before or after the controller. Usually the placement before
the controller is preferred for the notch filter and the placement after the controller for the resonator [1].
The latter has in both cases the advantage that the controller input is free from the synchronous com-
ponent, as long as IFR and IFC converge. That is, the controller does not try to control the synchronous
component since this is handled either by IFC or IFR. The observer should not have as inputs the plant
input and output anymore, the plant is considered as being augmented by IFR or IFC. This has again
the advantage that the observer does not observe the synchronous component, as long as IFR and IFC
converge. The placement of IFR and IFC in the closed loop controller is shown in Figure 3.11.

Controller IFC Plant

Observer

IFR

r u u f y

y f

-

x̂

Figure 3.11.: Synchronous filtering in the closed loop

As the synchronous filtering strategy is adequately formulated, the control design for the CBM is
complete, a simulation should be next tried to evaluate the designed controllers.
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4 Simulation
The simulation of the control structures designed for the CBM has several objectives. First of all, an

initial tuning of the controllers can be done, especially for LQG, where trial and error is the common
approach to select the quadratic weights. Secondly, the control performance against disturbances and
noise can be evaluated. Furthermore, since the control complexity increases with the additional IFR and
IFC control strategies, several parameter combinations for the controller and synchronous filtering can
be evaluated. Generally, having a simulation structure considering most of the phenomena occurring in
the real plant, a lot of control ideas can be easily tried out obtaining reliable results. Trying every new
idea to the real plant is a laborious work, even if systems that enable rapid control prototyping, like RTAI,
are used.

4.1 Closed Loop Control Structure

A simplified block diagram representing the simulated closed loop structure is displayed in Figure 4.1.
The inputs w and v denote uncorrelated, zero mean, white noise for the process and measurement
respectively. The input d denotes the process disturbances and is fed by constant loads, step disturbances
and synchronous disturbances (imbalance forces). The IFR and IFC blocks are dashed to denote that they
can be turned on or off. When IFR and IFC are turned off, the process signals pass unaffected though
them. It is evident that IFR and IFC must not be simultaneously turned on, only one imbalance control
strategy can be applied at each time. The observer is connected before IFC and IFR, for the reasons
explained in Section 3.5. The reference-output comparison implies that the controller provides integral
action. The ZOH block discretizes the continuous plant output, so that discrete observers and controllers
can be tested.

Controller IFC Plant

Observer

IFR ZOH

w d v

r u y

ydy f

-

x̂

Figure 4.1.: Simulation block diagram

The control structure displayed in Figure 4.1 was the guide to generate the Simulink model
cbm_control. Every block presented in Figure 4.1 can be independently designed as a subsystem in
Simulink. This provides the flexibility to test several controller and observer combinations with the same
plant. For example a controller based on pole placement can be tried with a Luenberger observer and
subsequently with a Kalman filter, without changing any other block.

In this work, pole placement, LQG and MPC structures were simulated. The CBM with rotor-2 was
used as a plant, the plant data were drawn from file motor2. A continuous solver was used for the
simulation but the plant output was discretized with the sampling period Ts = 64µs. Consequently, only
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discrete time controllers were simulated. A separate block, having as input the angular speed and the
assumed static and dynamic imbalance, was designed to simulate the imbalance forces. The simulation
results will be presented in the next section.

4.2 Closed Loop Control Evaluation

In this section, the simulation results for the pole placement controller with the closed loop poles given
in Table 3.1 and the state observer poles given in Table 3.2 are presented. Equivalent results, which are
not presented here, were obtained for LQG control. Although the CBM was successfully controlled
by MPC in simulation, the results are not presented here due to their limited practical relevance (see
Section 3.4).

The axial or radial position response to a step reference is of minor importance because the reference
remains constant. Instead the system response to step disturbances is of greater importance. An ini-
tial condition response succeeded by a disturbance rejection for the y-axis of the DE at zero speed is
presented in Figure 4.2.

It can be observed that about 15 ms are required for the ysDE to move from the initial position of
−150µm to its nominal position, while about 25 ms are required for the rejection of a −2 N step distur-
bance. The current is bounded initially at the limitation of 10 A and finally converges to the bias-current
of 2.9 A, i.e. the current required to hold the rotor weight. At the time the step disturbance is applied,
the current starts to increase until it successfully rejects the disturbance and ysDE returns to its nominal
position.
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Figure 4.2.: Initial condition and disturbance response for yDE and I2dDE
at zero speed

Simulation results for IFC and IFR application at certain angular speeds are presented in Figure 4.3
and Figure 4.4 respectively. Both IFC and IFR are triggered at 30 ms. It can be seen in Figure 4.3 that the
displacement xsDE converges to zero after certain time and the corresponding current I2dDE is decreased.
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In Figure 4.4, it can be observed that I2dDE converges to zero after certain time and the corresponding
displacement xsDE is reduced. Although the synchronous displacement elimination after IFC application
was expected, the corresponding current reduction was not. Similarly, the reduction of the synchronous
displacement after IFR application was not expected. In Section 5.3, IFC and IFR will be applied to
the real CBM and the simulation results presented in Figure 4.3 and Figure 4.4 will be verified. An
explanation of the unexpected side effect of current reduction for IFC and orbit reduction for IFR will be
also given.
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Figure 4.3.: Simulated IFC application at 5000 rpm
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Figure 4.4.: Simulated IFR application at 9000 rpm
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5 Implementation
In order to test the designed control structures in the real CBM, additional hardware and software

are needed. For this reason a test bench, which will be subsequently described, was built. First of
all, a computer having Linux as operating system is used to run the control applications, from now on
application computer. A FPGA, which is attached to one of the PCI bus slots of the application computer,
is responsible for the signal processing, current control and voltage modulation [4]. The position and
speed control run in the processor of the application computer. Since the control of the CBM is a time
constrained application, the Real Time Application Interface (RTAI) is used. The control algorithm, by
means of C-code, is uploaded to the application computer, compiled and executed in the Linux user
space. The RTAI ensures that the application runs in real time. In order to handle the control parameters
and acquire data during control execution, a second computer is used, from now on user computer.
The communication between the user and application computer is done via Local Area Network (LAN).
Control applications can be conveniently designed by means of Simulink block diagrams, then translated
into C-code by the Matlab Coder and finally uploaded to the application computer. The Simulink model
from which the C-code was generated can be used as a user interface during application execution. That
is, parameter handling and data acquisition can be done relatively easy using Simulink. An overview of
the control process is given in Figure 5.1. The signals y ref and y real stand for the desired and real rotor
mechanical position and speed. The signal iref denote the reference currents on dq reference frame,
whereas iabc the measured phase currents. The control signals for the inverter switches are indicated
by v sw, whereas the phase voltages by uabc. The position and speed control sampling frequency equals
fs = 15.625 kHz, the FPGA runs at fFPGA = 8 fs = 125 kHz, while the inverter switching frequency equals
fsw = 4 fs = 62.5 kHz.
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Application
Computer

15.625 kHz
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125 kHz

Inverters
62.5 kHz

CBM
y ref

info

iref

y real

v sw

iabc
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Figure 5.1.: Overview of the control process

5.1 Feedback Signal Conditioning

The CBM supports five eddy current position sensors for the radial and axial displacements. The
absolute rotor angular position is provided by a two-axis Hall sensor. More information about the com-
missioning of the sensors in the CBM can be found in [3]. A detailed presentation of the working
principle of eddy current and Hall sensors can be found in [27]. In order to make the controller less
susceptible to noise, all the radial and axial position signals are filtered after the discretization using an
Infinite Impulse Response (IIR) filter with a cutoff frequency close to 2 kHz. As the designed dynamics of
the closed loop are around 50 Hz the extra poles coming from the filter are not further considered.

The rotor angle is not directly the feedback needed for the speed control. A first idea would be to place
a discrete time differentiator preceding by a low pass IIR filter to derive the speed. However, as the rotor
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angle signal is the output of the atan2 function it lies in the range (−π,π]. This obviously introduces a
discontinuity of the angle signal exactly at the time the angle equals π. Although the angle feedback is
discretized, the aforementioned discontinuity would create an unwanted behavior of the differentiator
in case the angle passes the value π between two subsequent time steps. For this reason an algorithm
that observes and compensates the passing through π is designed in [4]. However, using this algorithm
only speeds up to one fourth of the sampling frequency can be observed (5.1).

nmax = 15 fs (5.1)

For the used sampling frequency ( fs = 15 625 Hz), the limit is nmax = 234 375 rpm. This corresponds to
a speed that is about 13 times higher than the designed nominal speed of the rotor. For noise suppression
an IIR filter is added after the differentiator with a cutoff frequency close to 200 Hz. The dynamics of
the closed loop speed controller are designed close to 10 Hz. As done for the position signals the extra
pole introduced by the speed filtering is not further considered.

5.2 Position Sensor Calibration

Although an elaborate calibration method for the position sensors was developed in [28], a simplified
approach that produces reliable results in short time is described here. The position sensors should be
calibrated after the calibration of the offset angles for the levitation currents [4]. That is, the d and
q levitation currents of both conical motors should be able to produce a pure horizontal and vertical
force respectively. Then, producing pure horizontal or vertical forces, the rotor is positioned to the
most remote position on the x and y axes. Subsequently, the signal values being proportional to the
differential voltage of the eddy current sensors are captured. Furthermore, a value corresponding to
the excitation voltage of the eddy current sensors is captured. Obtaining the ratio of the differential
voltage over the excitation, the measurement becomes independent of the excitation voltage fluctuations.
Capturing the maximum smax and minimum smin value for each sensor, the displacement range (5.2) and
the mid-range (5.3) for each axis can be calculated.

Rs = smax − smin (5.2)

Ms =
smin + smax

2
(5.3)

Subsequently, using the measured mechanical play, i.e. the difference da between the diameters of the
auxiliary bearings and the rotor, a gain converting the position sensor signal to µm (5.4) and a zero
offset (5.5) are calculated.

Gc =
da

Rs
(5.4)

Soff = MsGc (5.5)

The z-axis position signal was calibrated first and the zero was placed exactly at the mechanical middle.
Afterward, the signals on the x and y axes were calibrated, keeping the z position signal zero. The Matlab
script calibration (Appendix B) was developed for the position sensor calibration. The development of
an auto-calibration method, so that the mechanical play is the only input needed, would be a useful tool
to be developed in a future work.
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5.3 Control Performance

The designed and simulated pole placement controller was tested successfully on the real motor. The
resulting closed loop was stable without performing any tuning action. In case specific requirements for
the dynamic response are given, additional tuning can be applied. The Simulink model cbm_development
was used as an interface to test the designed controllers. An additional Simulink model cbm_exhibition
with fixed control parameters providing an adequate performance was stored, in order to have a ref-
erence control loop for future investigations. In order to evaluate the control performance and verify
whether the control characteristics are close to that designed, the system frequency response is cap-
tured. The Simulink model cbm_measurements was used for the measurements.

The measurement of the system frequency response has several benefits [1]. Firstly, the measurement
of the plant transfer function aims to verify the plant model used for the control design. Secondly, the
measurement of the closed loop transfer function can justify whether the desired closed loop characteris-
tics are met. Furthermore, having the sensitivity transfer function measured, provides a straightforward
way to evaluate the system response to harmonic disturbances. Additionally, the measurement of the
sensitivity function opens the way to assess the control robustness against system uncertainties. The
frequency response should be measured while the rotor is levitating, by means of a stable closed loop
controller as displayed in Figure 5.2. Then the excitation signal r is given as reference and the system
response is measured. The corresponding plant Gp(s), closed loop Gw(s) and sensitivity Gs(s) transfer
matrices are described by (5.6).

Controller Plant
r e u y

-

Figure 5.2.: Closed loop system for frequency response measurement

y(s) = Gp(s)u(s) u(s) = Gw(s)e(s) e(s) = Gs(s)r (s) (5.6)

The frequency response measurements follow the ISO 14893-3 [29] methodology, as described in [1].
The measurements are performed in a MIMO system, such that of Figure 5.2, but only the diagonal
components of the transfer matrices are considered. In order to capture the frequency response of
common mode on the x-z-plane unaffected form the others modes, the excitation rCx(t) is given as
reference to the closed loop. Similarly, the excitation rDx(t) is used to excite the differential mode (5.7).
The signal r(t) can be freely chosen, e.g. a sine or a square waveform.

rCx(t) =
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r(t) rDx(t) =















1
−1

0
0
0
0















r(t) (5.7)

If the response signals xsDE(t), eDE(t) and uDE(t) are measured, the desired transfer functions can be
calculated applying Fast Fourier Transform (FFT). If only the common mode on the x-z-plane is excited
and the response is measured, the corresponding plant, closed loop and sensitivity transfer functions are
given by (5.8).
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GpCx(s) =
xsDE(s)
uDE(s)

GwCx(s) =
r(s)

xsDE(s)
GsCx(s) =

eDE(s)
r(s)

(5.8)

Equivalently, if only the differential mode on the x-z-plane is excited and the response is measured, the
corresponding plant, closed loop and sensitivity transfer functions are given by (5.9).

GpDx(s) =
xsDE(s)
uDE(s)

GwDx(s) =
r(s)

xsDE(s)
GsDx(s) =

eDE(s)
r(s)

(5.9)

A chirp signal is a sinusoidal signal with linearly increasing frequency. The chirp signal function with the
linearly increasing frequency of (5.10) is given in (5.11), where f0 is the initial frequency, k the rate of
frequency increase, A the signal amplitude, and ϕ0 the initial phase. If the signal is applied for a certain
time t1, the final frequency would be f (t1) = f0 + kt1.

f (t) = f0 + kt (5.10)

x(t) = Asin
�

ϕ0 + 2π
�

f0 t +
k
2

t2
��

(5.11)

Chirp signals are injected to obtain the system frequency response. Since the built-in chirp signal source
of Matlab was not resettable and thus not appropriate for the measurements, an additional more flexible
chirp signal generator is developed (Appendix B). The model cbm_measurements is used as an interface to
accomplish the measurements and the data are stored in mat files (Appendix B). The excitation r(t) and
the measured signals uDE(t) and yDE(t) are object of FFT. Consequently, the transfer functions of (5.8)
can be calculated by an element-wise division of the FFT results. Smoothing algorithms were used to
obtain smooth transfer functions plots. The measured frequency responses and the calculated transfer
functions for the pole placement with the closed loop eigenvalues given in Table 3.1 are presented in the
following graphs.

The measured and calculated common mode plant transfer functions on the xz-plane are shown in Fig-
ure 5.3. There is an obvious difference of about 6 dB between the measured and calculated dc-gain. The
main reason for this discrepancy is presumably the large deviation of the calculated negative stiffness ksr
from the real value. Theoretically the phase shift introduced by the plant should be always −180° due to
the unstable pole. However, additional phase delay is introduced due to the underlying current control
loop which was neglected in the CBM modeling. Moreover, the time delay introduced by the inverters
leads to an exponential decreasing phase with frequency. That is, the plant phase rolls off at higher fre-
quencies. The same behavior will be observed later for the closed loop transfer function. The low value
of the plant dc-gain, almost −90 dB, comes from the fact that the rotor displacements are in µm range
but the plant output is scaled in m. At higher frequencies the measured transfer function converges to
the calculated one, i.e. they both expose a decrease rate of 40 dB per decade.

The measured and calculated common mode closed loop transfer functions on the x-z-plane are pre-
sented in Figure 5.4. The closed loop phase should theoretically converge to −270°, due to the three
stable closed loop poles. However, as already described for the plant transfer function, the closed loop
phase rolls off at high frequencies, because of the time delay introduced by the inverters.

The measured and calculated common mode sensitivity function on the x-z-plane is presented in Fig-
ure 5.4. The peak of the sensitivity function is about 3.75 dB, which is considered adequate with respect
to the control robustness. Another peak of the sensitivity function is expected at the first rotor bending
mode but the motor is not designed to reach this speed (about 60000 rpm). The same procedure was
followed for the differential mode on the x-z-plane, the corresponding plots are attached in Appendix C.

In order to visualize the results of IFC and IFR application on the real system, the transients after IFC
at 4000 rpm and IFR at 6000 rpm are presented in Figure 5.6 and Figure 5.7 respectively. The signals
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Figure 5.3.: Common mode plant frequency response on the x -z-plane GpCx( jω)
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Figure 5.4.: Common mode closed loop frequency response on the x -z-plane GwCx( jω)
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Figure 5.5.: Common mode sensitivity frequency response on the x -z-plane GsCx( jω)

presented in Figure 5.6 are the displacement xsDE as measured at the sensor plane and the corresponding
levitation current I2dDE as measured at the IFC output (see Figure 4.1). The IFC is triggered at 64 ms; it
can be observed that the rotor orbits vanish about 300 ms or 20 periods after the triggering. The con-
vergence time is controllable by the gain ke, which was introduced in Section 3.5. As soon as the system
converges, the rotor orbits are at the range of 1µm and they contain mainly higher order harmonics. That
is, the synchronous component caused by the imbalance forces is compensated. An interesting result,
which is not so intuitive at first glance, is the reduction of the current amplitude. Someone would expect
that more current is required to compensate the imbalance forces so that the rotor is forced to rotate
around a fixed axis. This is true, but the effect of the negative stiffness should be also taken into account.
In normal operation without IFC, the controller itself cannot fully compensate the imbalance forces and
the rotor is displaced from its nominal axis. Then, additional forces due to the negative stiffness having
the same direction as the rotor displacement act on the rotor. The controller tries to compensate for both
forces, but the generated control current lags in phase. After IFC application the rotor orbits vanish and
so do the forces due to the negative stiffness. The latter leads to the current amplitude reduction. The
current amplitude which was initially 5 A is reduced to 3 A after IFC application.

The IFR application at 6000 rpm is presented in Figure 5.7. The IFR is triggered at 32 ms; it can be
observed that the levitation current converges to an average of about −0.6 A about 300 ms or 30 periods
after the triggering. It is also observed that the synchronous current component vanish completely and
only higher harmonics remain. An interesting result is the reduction of the rotor orbits. Someone would
expect that the orbits increase because the control makes no effort to compensate the imbalance forces.
However, whether the orbits become smaller or larger after IFR application depends on the closed loop
sensitivity function Gs( jω). The disturbance attenuation due to a feedback controller with respect to
the open loop response is analyzed in [30]; disturbances with frequencies ω such that |Gs( jω)| > 1
are amplified by a feedback controller, whereas disturbances with frequencies such that |Gs( jω)| < 1
are attenuated. The lowest frequency at which the sensitivity function equals unity is called sensitivity
crossover frequency ωsc. In case of IFR application, a synchronous notch filter is active on the feedback
loop (see Figure 4.1), which eliminates the synchronous feedback component. Therefore, the influence
of the synchronous disturbances on the feedback loop is also eliminated and the controller does not
react at all to synchronous disturbances. In other words, the closed loop system response to synchronous
disturbances will be identical with the plant (open loop) response. Considering the connection between
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the sensitivity crossover frequency and disturbance attenuation, it follows that the rotor orbits will be
increased after IFR application if the motor is driven below ωsc and decreased at higher speeds.

This phenomenon is also described in [1] but it is connected with the rigid body resonance band;
applying IFR at speeds inside the resonance band eliminates the control effort at the synchronous speed
and consequently suppresses the resonance. However, if the damping is high enough, no resonance
band will exist, which is actually the case for the designed controller (see Figure 5.4). For this reason
the phenomenon can be better explained by the sensitivity function, which is directly connected with
disturbance attenuation. It is evident that the magnitude of the sensitivity function is higher than unity
near resonances, though, the sensitivity function can be higher than unity even if the closed loop has no
resonance band. The sensitivity crossover frequency read in Figure 5.5 is about 138 rad/s, which corre-
sponds to 1320 rpm. Hence, orbit reduction is expected applying IFR at speeds higher than 1320 rpm.
The measurements of Figure 5.7 confirm the theoretical investigation; after IFR application at 6000 rpm
the rotor orbits are decreased form 50µm to 30µm.

The rotor orbits and the corresponding levitation currents at 18 000 rpm are presented in Figure 5.8
and Figure 5.9. The measurements are done under IFR; otherwise, there is no chance to drive the motor
to 18000 rpm without leading the actuator to its limits. Orbits of about 25µm are observed on the
DE, while orbits of about 12µm are registered on the NDE. The orbits are close to circular, i.e. the
phase difference between the displacements on x and y axes is about 90° and their amplitudes are about
equal. Furthermore, there is a phase shift between the DE and NDE orbits, which exposes the presence
of dynamic imbalance.

The levitation currents of the DE (Figure 5.9) are near to the expected ones; the average I2dDE current is
about zero, wheres the average I2qDE current is close to 2.5 A, as it should be to compensate for the rotor
load (2.9 A was calculated in Section 2.3). The levitation currents for the NDE are less anticipated; the
average I2dNDE is close to 1 A and the the average I2qNDE is about 3 A but unexpectedly noisy. Considering
that the position sensor calibration is reliable, the reason for the non-zero average of I2dNDE is probably
a misalignment of the stator and auxiliary bearing centers causing a non-rotating single sided magnetic
pull. The reason for the higher I2qNDE average is that the rotor center of mass is shifted towards the NDE
due to the attachment of the axial position sensor measurement surface. The noisy I2qNDE current can be
explained in conjunction with the noisy ysNDE signal, which can be observed in Figure 5.8. The reason
for the noisy ysNDE signal is presumably a bad placement of the NDE position sensor mounting plate.
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Figure 5.6.: Application of IFC at 4000 rpm: Top: position synchronous component vanishes; Bottom:
levitation current synchronous component decreases
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Figure 5.7.: Application of IFR at 6000 rpm: Top: position synchronous component decreases; Bottom:
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6 Conclusion
The accomplishments of this work are summarized in this chapter. A short comparison with control

approaches used in previous works is also done. At last, advices for future work in the control design
and testing of the CBM are given.

6.1 Accomplishments

The scope of this work is the design of modern control approaches for drive and suspension of the
double conical bearingless motor. The first step before the control design is the derivation of an ade-
quate motor mathematical model. For this reason, after reasonable assumptions for the magnetic field
distribution, the air gap flux density is analytically calculated. Using the derived air gap flux density and
the Maxwell stress tensor, the forces acting on the rotor are analytically calculated. For the forces that
are controllable by Field Oriented Control, the corresponding force-current coefficients are calculated.
In this context, a force-displacement coefficient, the so-called axial negative stiffness, which constitutes
a specific property of the double conical bearingless motor, is calculated. An elaborate model of the
magnetically levitated rotor is presented in this work. In contrast to the simplified models used in pre-
vious works [3, 4, 28], the new model considers the non-collocation of position sensors and levitation
windings and takes into account the presence of angular motion. The differential equations of motion
are transformed into a state space representation, which enables the use of modern control approaches.

Three different control approaches are designed and simulated. The first approach comprises a state
controller augmented with integral action, with which the closed loop dynamics are freely defined after
pole placement. The Full Modal Synthesis method is used to place the poles and decouple the dynamics
of the angular and translational motion. In order to obtain a full state feedback, a reduced order state
observer is designed. The Linear Quadratic Gaussian control is the object of the second approach; a Lin-
ear Quadratic Regulator augmented with integral action and a Kalman-filter are designed to implement
LQG control. Finally, a Model Predictive Control approach is designed, which however lacks of practical
relevance, due to the relatively low sampling period used for the control of the CBM.

The control algorithm based on pole placement was uploaded to the application computer, by means of
C-code, and tested on the real CBM motor successfully. However, the motor could not overcome the limit
of 10000 rpm because of the inverter current limitation. Sinusoidal disturbance forces with the rotational
frequency were identified as the cause of the increased control effort. The reason for the synchronous
disturbance forces is mainly the rotor mass imbalance. The Imbalance Force Rejection strategy was
designed to reject the control action against the synchronous disturbance forces, providing levitation
currents free from synchronous components. Consequently, the motor could be driven at higher speeds,
since the current limitation problem is solved. Speeds up to 18 000 rpm have been reached with rotor-2.
Higher speeds were not tried because at 18000 rpm the motor back-EMFs were already close to the
maximum phase voltage the inverters could supply.

A second problematic for the CBM operation was that the rotor orbits were relatively high already
at low speeds. This would not be acceptable in precision applications. For this reason the Imbalance
Force Compensation strategy was designed. The IFC control strategy compensates for the synchronous
disturbance forces, eliminating the synchronous component from the rotor orbits. Using IFC, the rotor
displacement from the nominal position was diminished to less than 1µm. Additionally, the synchronous
vibrations of the stator frame vanish, providing an almost silent motor operation. However, the limit of
10000 rpm could not be exceeded with IFC due to the inverter current limitation.
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An interesting side effect of Imbalance Force Rejection application at relative high speeds is that not
only the current synchronous component is eliminated, but also the rotor orbits are decreased. Similarly,
after IFC application not only the rotor orbits are reduced, but also the levitation currents are decreased.
These side effects are in accordance with theory and were explained in Section 5.3.

Although similar filters were used to drive the rotor at high speed or reduce the rotor orbits in [3], the
filter design was hidden and the implementation was proprietary. In other words, those filters could be
used only in conjunction with the corresponding commercial inverter.

An interesting result coming from the control implementation is that the synchronous filtering is crit-
ical to levitate the rotor at high speed, since the controller can not do much at such high frequencies.
Even a rotor with major construction deficiencies, as rotor-2, can be driven under high precision at low
speed (using IFC) and with low power losses at high speed (using IFR). These control strategies can save
commissioning cost, since less effort could be given in rotor balancing. Furthermore, both filters and
especially IFR reduce the current peaks and therefore decrease the inverter ratings.

The frequency response measurement of a bearingless motor is a powerful tool to evaluate the closed
loop system behavior. The measurement of the sensitivity function provides a straightforward way to
evaluate the system response to harmonic disturbances. The importance of the frequency response
is clarified, considering that a synchronous disturbance force is always present in rotating machinery.
Separate equipment is not required to apply forced vibrations to the bearingless rotor, since the levitation
windings can accomplish this task. The system response is measured by the already available position
sensors. In this work, the measurement handling and data acquisition is done by use of Matlab Simulink
and FFT is applied later to obtain the frequency response plots.

In order to calculate the CBM model parameters and design the different controllers, several Matlab
functions were developed. The functions related to the control design have a wider application area
and can be used in future works. Furthermore, Simulink models were designed to simulate the CBM
operation as well as to operate the real motor in conjunction with Real Time Application Interface. All
files related to Matlab-Simulink are listed in Appendix B.

6.2 Future Work

Several additional investigations can be made on the CBMs control design. In this work, no mention of
control robustness was made, except for the measurement of the sensitivity peak. However, the control
robustness against uncertainties is a very important issue for industrial applications. Control approaches
with a direct connection to robustness like H∞ and µ-synthesis can be also tried to the CBM.

The pole placement control approach and the IFR and IFC filters were successfully implemented with
rotor-2, whose significant construction deficiencies cause increased synchronous disturbance forces that
require advanced and accurate control. It would be interesting to try the same control strategies on
rotor-1 and compare the results.

In this work, the motor operation under different loading conditions was not investigated. In contrast
to AMBs, the coupling of driving and levitation fields in bearingless motors generates additional radial
disturbance forces. The latter is shown by analytical calculations in Section 2.2. However, at low torques
the coupling effect is less severe, since the torque generating current I1q is low. Consequently, the motor
should be loaded with higher torques to investigate the coupling effect.

The effect of radial loading at the rotor DE would be interesting for future investigations. The latter
has practical relevance because in real applications accessories are mounted on the rotor DE and radial
forces may be applied there. In order to obtain quantitative results from this investigation, a controllable
load is needed. Ideally a magnetic bearing could be mounted on the rotor DE to apply specific radial
load profiles.
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A Motor Parameters

Table A.1.: Stator parameters
Parameter Symbol Value Unit
Stator cone angle γs 10 deg
Stator slot count Qs 12
Stator iron length lFe 40 mm
Minimum stator bore diameter dsimin 32 mm
Stator outer diameter dso 95 mm
Mechanical air gap length δ0 1 mm

Table A.2.: Levitation and driving winding parameters

Parameter Symbol
Value

Driving winding Levitation winding
Number of phases m 3 3
Pole pair count p 1 2
Number of slots per pole and phase q 2 1
Number of winding turns per phase ns 30 20
Number of winding parallel branches αα 1 1
Parallel strands per turn αi 4 3

Table A.3.: Rotor parameters

Parameter Symbol
Value Unit

Rotor-1 Rotor-2
Permanent magnet cone angle γrPM

10 10 deg
Back iron cone angle γrFe

10 0 deg
Minimum rotor back iron diameter dromin 20 mm
Minimum magnet height hMmin 3 mm
Carbon fiber bandage height hB 2 mm
Rotor total length lr 310 mm
Rotor mass (measured) mr 1.12 1.079 kg
Polar moment of inertia (Ansys) Jz 141.22 139.2 kgmm2

Transverse moment of inertia (Ansys) Jx , Jy 4657.12 4279.5 kgmm2

PM Remanence flux density at 20 ◦C BR20 1.117 T
PM Remanence flux density at 150 ◦C BR150 1.024 T
Coercive field strength at 20 ◦C HCB20 919 kA/m
Coercive field strength at 150 ◦C HCB150 764 kA/m

53





B Matlab files

B.1 Developed Matlab Functions

CALCMOT conical bearingless motor coefficients.

k = calcmot(filename) computes a struct k containing important coefficients of the conical bear-
ingless motor using the motor design parameters specified in filename.

SSMOT state space conical bearingless motor model.

sys = ssmot(filename) returns a state space model sys for the conical bearingless motor using the
motor design parameters specified in filename and the function calcmot.

PREFILTER feedforward matrices.

[F, Fx, Fu] = prefilter(sys, K) returns a prefilter matrix F, a state feedforward matrix Fx and an
input feedforward matrix Fu, for a LTI system sys with a state feedback matrix K. The system sys
can be continuous or discrete, but it must not contain any feedthrough. The system sys must have
the same number of inputs-outputs.

FMS pole placement with full modal synthesis.

[K, V] = fms(A, B, e, P) calculates a state-feedback matrix K such that the eigenvalues of A-BK are
those specified in the vector e. The columns of the matrix P are parameter vectors and the columns
of matrix V are the eigenvectors of A-BK. The parameter vectors of matrix P influence the directions
of the eigenvectors of matrix V. If A and B describe a discrete system the eigenvalue vector e should
be mapped to the z-plane.

DECFMS decoupling with full modal synthesis.

[K, P, V]= decfms(sys, e) calculates a state feedback matrix K for the plant sys such that the inputs-
outputs of the closed loop system are decoupled. The desired closed loop eigenvalues are given in
the cell array e. Each cell of e contains the desired eigenvalues for each input-output in increasing
order. The pole placement is done by the function fms. The resulting parameter vector matrix P
and the eigenvector matrix V are also provided as output.

REDOBSV reduced order state observer.

[estim, L] = redobsv(sys, e, P) calculates a discrete or continuous reduced order state observer
estim for the discrete or continuous plant sys using the eigenvalue vector e and the parameter
vector matrix P. The fms function is used for the pole placement. The output estim and the input
sys are LTI systems. The observer gain matrix L is also provided as output.

B.2 Matlab Scripts

motor1

The design parameters of the double conical motor equipped with rotor-1 are defined and saved to
the file mot1.mat.

55



motor2

The design parameters of the double conical motor equipped with rotor-2 are defined and saved to
the file mot2.mat.

current_loop

The inverter and current loop parameters are defined and saved to the file curlp.mat.

calibration

The measured minimum and maximum of the eddy current position sensor signals, the sensor
excitation signal as well as the diameters of the auxiliary bearings in um are given as inputs.
Subsequently, a coefficient Gconv, which converts the eddy current position sensor signals in um,
and a zero offset Soff are computed and saved in the file calib.mat.

B.3 Simulink Models

cbm_control

Control structure of the conical bearingless motor used for the Linear Quadratic Gaussian and pole
placement control design. Different controllers, observers as well as imbalance force compensation
and rejection strategies can be simulated. Sinusoidal and step disturbances as well as noise can be
applied to the motor model.

cbm_mpc

Control structure of the conical bearingless motor used for the Model Predictive Control.

cbm_development

Control structure of the conical bearingless motor used to test the controllers on the real plant.

cbm_measurements

Control structure of the conical bearingless motor used for data acquisition including frequency
response measurements.

cbm_exhibition

Reference control structure of the conical bearingless motor providing adequate control perfor-
mance.

synchronous_filtering

Simulation of the modulation block used for the synchronous filtering.

chirp_gen

Resettable chirp signal generator block.

B.4 Measurement Data Files

ParX System response under common mode chirp signal excitation on the x-z-plane.

ConX System response under differential mode chirp signal excitation on the x-z-plane.

IFC_4000 System response under imbalance force compensation application at 4000 rpm.

IFR_6000 System response under imbalance force rejection application at 4000 rpm.

orbits_18000 Rotor orbits and levitation currents at 18000 rpm.
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Figure C.1.: Differential mode plant frequency response on the x -z-plane GpDx( jω)
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Figure C.2.: Differential mode closed loop frequency response on the x -z-plane GwDx( jω)
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