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Abstract
In this work, dispersive surface impedance boundary conditions are applied to
Discontinuous Galerkin Method (DG-FEM) in the time and frequency domains,
on a wide frequency band. Three different kinds of surface impedance bound-
ary conditions are considered, namely Standard Impedance Boundary Condition
(SIBC) for modeling smooth conductor surfaces with high conductivity, Corru-
gated Surface Boundary Condition (CSBC) for modeling corrugated conducting
surfaces, and Impedance Transmission Boundary Condition (ITBC) for modeling
electrically thin conductive sheets.

Two different schemes for modeling dispersive surface impedance boundary con-
ditions on a wide frequency band are presented, one in the frequency domain, and
another in the time domain. In the frequency domain, a procedure for solving a
complex nonlinear eigenvalue problem (EVP) arising from applying the dispersive
impedance boundary conditions to the discrete Maxwell’s equations, is presented.
The procedure is based on fixed point iteration, and it enables to solve for the
nonlinear EVP as a linear EVP, and therefore to simplify the computational task
significantly. In the time domain scheme, the dispersive boundary conditions are
first approximated in the frequency domain as series of rational functions, and
then transformed into the time domain by means of Laplace transform. The time
stepping schemes for time domain simulations are obtained by means of Recursive
Convolution (RC) and Auxiliary Differential Equation (ADE) methods.

The frequency domain scheme, as well as the time domain scheme, are verified
and validated by investigating the Q factors and the fundamental frequencies of
different resonant structures. Numerical examples are given, and convergence
studies are performed. The results are compared with the analytical results, as
well as results obtained by commercial softwares. The developed schemes appear
to be computationally efficient, and the accuracy very high, already with coarse
meshes and low basis function orders.
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Zusammenfassung
Die vorliegende Arbeit zentralisiert die Anwendung dispersiver Oberflächenimpedanz-
Randbedingung in einem breiten Frequenzbereich auf die diskontinuierliche
Galerkin Methode (DG-FEM) im Zeit- und Frequenzbereich. Dabei werden mit
der Standard Impedance Boundary Condition (SIBC) zur Modellierung glatter
Leiteroberflächen hoher Leitfähigkeit, der Corrugated Surface Boundary Con-
dition (CSBC) zur Modellierung rauer Leiteroberflächen sowie der Impedance
Transmission Boundary Condition (ITBC) zur Modellierung elektrisch dünner
Leiterscheiben drei verschiedene Oberflächen-Impedanz-Randbedingungen unter-
sucht.
Zur Modellierung dispersiver Oberflächenimpedanz-Randbedingungen in einem
breiten Frequenzbereich werden Methoden sowohl im Zeit- als auch im Fre-
quenzbereich betrachtet. Im Frequenzbereich wird eine Lösungsmethode kom-
plexer, nichtlinearer Eigenwert Probleme (EVP) beschrieben, welche auf der
Anwendung dispersiver Oberflächenimpedanz-Randbedingungen auf die diskrete
Maxwell-Gleichung basiert. Hierbei wird das nichtlineare Eigenwertproblem mit-
tels Fixpunktiteration in ein lineares Eigenwertproblem überführt, was den nu-
merischen Lösungsprozess erheblich vereinfacht. Bei der Methode im Zeitbereich
werden die dispersiven Randbedingungen zunächst als Folge rationaler Funk-
tionen in den Frequenzbereich approximiert, bevor sie mit Hilfe der Laplace-
Transformation in den Frequenzbereich zurücktransformiert werden. Die ver-
wendeten Zeitschrittverfahren der Zeitbereichssimulation ergeben sich aus der
Recursive Convolution (RC) und der Auxiliary Differential Equation (ADE)
Methode.
Die dargestellten Frequenz- und Zeitbereichsmethoden werden in einer Unter-
suchung des Q-Faktors sowie der Grundfrequenzen verschiedener Resonatoren
verifiziert und validiert. Neben numerischen Beispielen werden Konvergenzs-
tudien durchgeführt, deren Ergebnisse sowohl mit dem analytisch gewonnen
Ergebnis als auch mit dem Ergebnis kommerzieller Softwareprogrammen ver-
glichen werden. Die entwickelten Methoden erweisen sich numerisch effizient
und zeigen bereits bei groben Gittern und Basisfunktionen niedriger Ordnung
eine hohe Genauigkeit.
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1 Introduction
In this chapter, the introduction for the thesis is given. First, the motivation for
the topic of the thesis is explained, and the research question is placed. Secondly,
as a state of the art, a literature review of the topics directly related to the thesis
is given. Thirdly, after the state of the art, the outline of the thesis is given.

1.1 Motivation

The Maxwell’s equations form the basis of electrodynamics. Solving for the
Maxwell’s equations analytically is possible only in a few special cases. There-
fore, in general, one needs to resort to numerical methods to find the solution for
the Maxwell’s equations. Solving the Maxwell’s equations numerically is known
as electromagnetic modeling. In a nutshell, electromagnetic modeling can be
considered as approximating and solving the Maxwell’s equations in a compu-
tational domain, which imitates the reality. Electromagnetic modeling can be
divided into three phases: Pre-processing, solving, and post-processing.

Preprocessing phase includes the choice of the numerical modeling method, based
on the problem type, as well as discretization of the computational domain and
time. In pre-processing phase, several simplifications can be done to save mem-
ory and computing time. The computational domain can be truncated due to
symmetry, and often also the dimensionality can reduced from 3D to 2D, or 1D.
The domain can be truncated also by boundary conditions. Widely used bound-
ary conditions are e.g. Perfect Electric Conductor (PEC) for excluding perfect
(or almost perfect) conductors from the computational domain, and Absorbing
Boundary Condition (ABC) or Perfectly Matched Layer (PML) to avoid modeling
of free space surrounding the structure to be modeled. A third type of commonly
used boundary conditions surface impedance boundary conditions, which enable
excluding imperfectly conducting bodies from the computational domain. Fur-
ther problem simplifications, include reduction of the Maxwell’s equations. Terms
of the Maxwell’s equations can be dropped out e.g. depending on the frequency
scale of the problem in hand, or conductivity of the structures to be modeled.
E.g. if the frequencies are low, the time dependencies of the Maxwell’s equations
can be dropped out, and the problem reduces into quasistatic or static problem.
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Solving includes, as the name suggests, solving for the Maxwell’s equations with
possible simplifications done in the pre-processing phase. Solving methods can
be roughly divided into time domain and frequency domain methods. Solving is
typically the most time consuming part of electromagnetic modeling, and there-
fore a suitable choice of solving method is important. Also the aforementioned
choices made in pre-processing phase are important to diminish the solving time.
Post-processing phase consists of processing of data given by the solving pro-
cess. The outputs of the solving process are typically electromagnetic fields or
potentials. Often in post-processing phase some other data is calculated from the
primary data. These secondary data include e.g. scattering parameters, radar
cross section, Lorentz forces, or quality factors, just to mention a few.

This thesis focuses on SIBC boundary conditions in the time domain, i.e. espe-
cially in the preprocessing and solving phases of the electromagnetic modeling
flow. Modeling of conductors in a computational domain is expensive, since the
mesh needed for resolving the conductors is very dense compared to the mesh
without conductors. A dense mesh leads to a high memory consumption, and,
in the time domain, additionally to a small time step, and therefore to long sim-
ulation times. For these reasons, it is highly desirable to exclude the conductors
from the computational domain. This can be done by removing the conducting
medium from the computational domain, and replacing the surface of the conduc-
tor with a sufficient boundary condition. In general, surface impedance boundary
conditions include impedance functions, which are functions of frequency, i.e. the
impedance functions are dispersive. This makes the impedance boundary condi-
tions straightforwardly suitable for frequency domain simulations. However, in
the time domain, applying surface impedance boundary conditions is somewhat
more complicated.

Many electromagnetic problems, e.g. problems including transient signals, con-
sist of a wide band of frequencies. Solving for the wideband electromagnetic prob-
lems is typically done in the time domain, since time domain simulations allow for
solving for the whole frequency band at a single simulation run. When impedance
boundary conditions are applied to a wideband electromagnetic problem, taking
the dispersivity of the impedance functions into account is especially impor-
tant to obtain correct results. Applying dispersive surface impedance boundary
conditions to time domain simulations requires an approximation of the func-
tions associated with impedance boundary conditions. This approximation is a
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trade-off between the accuracy of the approximations, the required computational
resources, and the width of the frequency band.

In this thesis, the focus is on pre-processing and solving phases of the electromag-
netic modeling flow. The aim of the thesis is the truncation of the computational
domain, by excluding imperfectly conductive bodies from the computational do-
main by utilizing dispersive surface impedance boundary conditions. Different
kinds of surface impedance boundary conditions are applied, and the dispersivity
of the boundary conditions is considered. Furthermore, schemes for solving the
Maxwell’s equations with dispersive surface impedance boundary conditions on a
wide frequency band, in frequency and time domains are introduced. The target
of the thesis can be summarized in the following research question: How to model
dispersive surface impedance boundary conditions accurately and efficiently on a
wide frequency band? Before moving to answering the question, in the following
sections, a state of the art, and an outline of the thesis are given.

1.2 Related Works

Finite Element Method (FEM) [103] is a widely known and used numerical
method in electrodynamics. It is very accurate in modeling complex geome-
tries and an efficient tool for solving electromagnetic problems in the frequency
domain in scientific applications, as well as in commercial softwares. However,
applying FEM to the time domain leads to implicit and therefore unefficient
time-stepping scheme.

In contrast, Finite-Difference Time-Domain Method (FDTD) [99] and Finite In-
tegration Technique (FIT) [96] are very efficient in time domain simulations,
since the obtained time-stepping scheme is explicit. Additionally, FDTD/FIT
methods are very intuitive, and therefore the implementation is straightforward.
FDTD/FIT methods are extremely widely used, also in commercial softwares.
However, both of the methods are at most second order accurate, and modeling
arbitrary structures is not accurate. Also modeling of boundaries can be inaccu-
rate, since the electric and magnetic fields are not colocated in the computational
mesh.

Discontinuous Galerkin Finite Element Method (DG-FEM) [97], [18], [17], [47],
[48] had increased it’s popularity recently in electromagnetic simulations. It
combines the advantages of FEM and FDTD/FIT methods, i.e. the modeling
of arbitrary structures is accurate, and the time domain scheme is explicit and
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therefore efficient. A major disadvantage of DG-FEM method is, that it can
cause so called spurious modes to the solution [92]. However, several schemes
exists to overcome this problem, given in e.g. [46], [23], [33], [13], [14], [2].

Standard Impedance Boundary Condition (SIBC) connects the tangential electric
field with the tangential magnetic field on the surface of a conductor. Applying
SIBC allows for excluding the conductor from the computational domain, and
makes the simulations significantly cheaper. In its simplest, first order form [59],
[88], SIBC takes into account the material parameters of the conductor, and it is
sufficiently accurate, especially with high-frequency simulations [51]. Also higher
order SIBCs exists [85], [69]. They consider also the curvature of the conductor
surface, as well as the variation of electromagnetic field in the tangential direction,
unlike first order SIBC.

SIBCs are capable to model thick conductors [90], i.e. conductors, whose thick-
ness is significantly larger than the skin depth at the frequency in question. If
the thickness of the conductor is of similar magnitude as the skin depth, the
conductor becomes partially transparent for the electromagnetic field and the
SIBC model fails [90]. To model thin conductive sheets, the transmission line
theory can be exploited, as done in e.g. [50], [1], and [87]. The theory has been
applied in electromagnetic modeling in e.g. [95], [26], [25], [86], and [63] with
FDTD method. Within this thesis, the transmission line theory based boundary
condition, used for modeling thin conductive sheets, is referred to as Impedance
Transmission Boundary Condition (ITBC).

When the surface of the conductor is not smooth, standard SIBC and ITBC
underestimate the losses on the surface, and are therefore not accurate. These
rough surfaces are referred to as Corrugated Surfaces (CS) within this thesis,
and the boundary condition used to model the rough surfaces to as Corrugated
Surface Boundary Condition (CSBC). Modeling of CSs is based on the theory
presented in [70], [27], and [16]. Hammerstad [44] empirically fitted a function to
model corrugated surfaces based on the theory. His approach have been applied
in electromagnetic modeling in e.g. [61]. Also other empirical models have been
developed and applied in electromagnetic simulations, see e.g. [65], [79], [89],
[43], [36], [15]. Furthermore, models for 2D surface roughnesses are presented in
[94] and [49].

SIBC, ITBC, and CSBC connect the tangntial electric field with the tangential
magnetic field on the surface of a conductor via a frequency dependent, or dis-
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persive, impedance functions [88], [50], [44]. Therefore, they are straightforward
to apply in frequency domain simulations as done in e.g. [53], [100], [57], and
[60].

In the time domain, modeling of dispersive boundary conditions becomes more
complicated. The dispersivity of the impedance function can be considered by
e.g. Auxiliary Differential Equation (ADE) methods. Although in this thesis
the idea is to exclude the dispersive media from the computational domain, the
methods for modeling dispersive media can be applied as well. A few research
works, in which ADE method is used for modeling dispersive media are e.g. [93],
[31], [81]. ADE method is also used for modeling open boundary conditions, such
as PML, in e.g. [76] and [32]. Another popular method to take the dispersivity
into account, is Recursive Convolution (RC) method [71]. RC method have been
widely applied for FDTD/FIT methods to model SIBC and ITBC in the time
domain: [86], [95], [20], [102], [66], [55], [3], as well as modeling open boundary
conditions as ABC in e.g. [9]. Different approaches to model dispersive boundary
conditions are given in e.g. [6], [5], [67]. Higher order SIBC is considered for
FDTD method in e.g. [28]. Another methods for modeling dispersive media are
proposed in e.g. [64], [29], [42] and [62].

Regardless of the popularity of utilizing FDTD/FIT in electromagnetic modeling
and applying impedance boundary conditions, the disadvantages of the methods
remain: The poor performance in modeling complex geometries and boundaries.
Therefore it would be desirable to utilize the impedance boundary conditions in
FEMmethod, and in the time domain especially in DG-FEMmethod. Impedance
boundary conditions with FEM/DG-FEM are presented in e.g. [12], [4], [56], [77],
[41] and [82]. However, these papers consider magnetoquasistatic problems, i.e.
they exclude high-frequency applications and full-wave equations. Additionally,
in [83], time domain FEM formulations for different thin conductive sheets are
presented, but the dispersivity of the functions is not considered. In [30], [35]
open boundary conditions are modeled in the time domain with DG-FEM.

1.3 Outline

After this introduction, the rest of the thesis is organized as follows: Chapter
2 explains the basis of electromagnetic theory, namely the Maxwell’s equations.
Additionally, analytic boundary conditions and conservation laws are introduced,
focusing on the essential aspects for this thesis. Chapter 3 gives the overview of
the topics of discrete electrodynamics which are important in this thesis, includ-
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ing spatial discretization of the computational domain by means of FEM/DG-
FEM, as well as temporal discretization of an electromagnetic problem by means
of Leapfrog and Verlet integration.

In Chapter 4, a detailed description of selected frequency dependent impedance
boundary conditions is given, namely SIBC, ITBC and CSBC. The theory behind
these boundary conditions, as well as applying these dispersive boundary condi-
tions in frequency domain electromagnetic modeling, is explained. Additionally,
and the most importantly, a novel scheme to solve for the wideband electromag-
netic problems iteratively in the frequency domain with DG-FEM and dispersive
impedance boundary conditions is proposed. Finally, the proposed scheme is
verified by numerical examples and convergence studies.

First, Chapter 5 describes methods to approximate the frequency dependent
impedance functions in the frequency domain. Second, the transformation from
frequency domain to time domain is explained, and two different methods, namely
ADE and RC are introduced. Thirdly, and most importantly, a novel semi-implict
scheme for solving for the electromagnetic problems in the time domain with
dispersive boundary conditions with DG-FEM in the time domain is proposed,
and the scheme is verified by numerical examples and convergence studies.

In Chapter 6, the summary of the thesis, as well as the outlook, are given. Also
the contribution of the author is clarified.
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2 Continuous Electrodynamics
In this chapter, some basic concepts of the electromagnetic theory are recalled.
The chapter is kept relatively short, and it gives only an overview on the impor-
tant aspects of the electromagnetic theory concerning this thesis. To get more
detailed understanding about the topics in this chapter, the author recommends
the book "Foundations of Electromagnetic Theory" by John R. Reitz et. al. [80].

In addition to the Maxwell’s equations, the most important topic for the rest of
the thesis is can be found in Section 2.5.2. The section describes the behaviour
of the electromagnetic wave on the interface of dielectric and conductor. This
topic is relatively rarely found in the literature, while refreshing exception being
the book "Electromagnetic Theory" by Julius A. Stratton [91].

2.1 Maxwell’s Equations

The Maxwell’s equations form the foundation of classical electrodynamics. The
Maxwell’s equations are a mathematical expression for certain experimental re-
sults, and cannot be derived from other laws of nature. The differential form of
Maxwell’s equations in a macroscopic1 form read:

∇× ~E =−
∂ ~B

∂ t
(2.1)

∇× ~H = ~J f +
∂ ~D

∂ t
(2.2)

∇ · ~B = 0 (2.3)

∇ · ~D = ρ f . (2.4)

Equation (2.1) is known as Faraday’s law, (2.2) as Ampère’s law, (2.3) as Gauss’
law for magnetic fields, and (2.4) as Gauss’ law for electric fields. The vector
fields in Equations (2.1)-(2.4) and their units are the following:

1 Maxwell’s equations in macroscopic scale factor out the bounded charges and cur-
rents i.e. those induced by magnetization and polarization of the medium

13



~E Electric field (strength) [V/m] (2.5)
~D (Electric) displacement field [C/m2] (2.6)
~H Magnetic field (strength) [A/m] (2.7)
~B Magnetic flux density [T]. (2.8)

Additionally, ~J f is the free electric current density and ρ f the free electric charge
density. Free densities mean that the bounded current or charge densities caused
by the polarization or magnetization of the medium are excluded. Let V be a
volume in R3, S a surface with a boundary, and ∂ a boundary operator. Now,
The Maxwell’s equations can be written in an integral form:

∮

∂ S

~E ·
−→
dl =−

∫

S

∂ ~B

∂ t
·
−→
dA (2.9)

∮

∂ S

~H ·
−→
dl =

∫

S

�

~J f +
∂ ~D

∂ t

�

·
−→
dA (2.10)

∫

V

~B ·
−→
dA= 0 (2.11)

∫

V

~D ·
−→
dA=

∫

V

ρ f dV. (2.12)

The integral form is more general, because it allows also discontinuities of the elec-
tromagnetic field, which exist e.g. on a boundary of two media. In a microscopic3

form the Maxwell’s equations read as:

∇× ~E =−
∂ ~B

∂ t
(2.13)

3 The Maxwell’s equations in microscopic scale include charges and currents at the
atomic level and are considered as Maxwell’s equations in a vacuum.
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∇× ~B = µ0~J +µ0ε0
∂ ~E

∂ t
(2.14)

∇ · ~B = 0 (2.15)

∇ · ~E =
ρ

ε0
, (2.16)

where ~J is the total electric current density and ρ the total electric charge density,
including both, free and bounded current and charge densities. Additionally, ε0
is the electric permittivity of a vacuum, and µ0 the magnetic permability of a
vacuum. The same equations in an integral form read as:

∮

∂ S

~E ·
−→
dl =−

∫

S

∂ ~B

∂ t
·dA (2.17)

∮

∂ S

~B ·
−→
dl =

∫

S

�

µ0~J +µ0ε0
∂ ~E

∂ t

�

·dA (2.18)

∫

V

~B ·
−→
dA= 0 (2.19)

∫

V

~E ·
−→
dA=

∫

V

ρ

ε0
dV. (2.20)

The total current and charge densities are defined as

ρ = ρ f −∇ · ~P (2.21)

~J = ~J f +∇× ~M +
∂ ~P

∂ t
, (2.22)

where the vector fields ~M and ~P are the magnetization field and the polarization
field of the medium, respectively. The magnetization field ~M is the density of
magnetic dipole moments in the medium, and the polarization field ~P the density
of electric dipole moments in the medium.
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2.2 Constitutive Relations

In order to join the electromagnetic field quantities with each other, constitu-
tive relations are needed. The constitutive relations for electrodynamics in the
frequency domain, in the absence of permanent polarization, read as

~D(ω) = ε0~E + ~P = ε(~r,ω, ~E)~E(ω) (2.23)
~B(ω) = µ0(~H + ~M) = µ(~r,ω, ~H)~H(ω) (2.24)
~J(ω) = σ(~r,ω, ~E)~E(ω), (2.25)

where ε(~r,ω, ~E), µ(~r,ω, ~H) and σ(~r,ω, ~E) are the electrical permittivity, perme-
ability and conductivity of the medium, respectively. These quantities are later
referred to as material parameters. In general, the material parameters are ten-
sors of second rank, but for isotropic medium, they are nonlinear scalars. Yet,
permeability and permittivity are defined as

ε(~r,ω, ~E) = [1+χe(~r,ω, ~E)]ε0 = εr(~r,ω, ~E)ε0 (2.26)

µ(~r,ω, ~H) = [1+χm(~r,ω, ~H)]µ0 = µr(~r,ω, ~H)µ0, (2.27)

where χe(~r,ω, ~E), χm(~r,ω, ~H), εr(~r,ω, ~E) and µr(~r,ω, ~H) are electric suscep-
tibility, magnetic susceptibility, relative permeability and relative permittivity,
respectively. The quantities ε0 and µ0 are the permittivity and the permeability
of a vacuum. Additionally, the magnetization field ~M and the polarization field
~P are defined as

~M(ω) = χm(~r,ω, ~H)~H(ω) (2.28)
~P(ω) = ε0χe(~r,ω, ~E)~E(ω). (2.29)

If the magnetic susceptibility χm(~r,ω, ~H) of the medium is zero, the medium is
considered as non-magnetic. Consequently the relation between the magnetic
flux density ~B and magnetic field ~H is linear. Respectively, if the electric sus-
ceptibility χe(~r,ω, ~E) is zero, the medium is considered as dielectric, and the
relation between the displacement field ~D and the electric field ~E is linear. If the
conductivity σ(~r,ω, ~E) is nonzero, the medium is considered as conductor.

16



The abovementioned constitutive relations are defined in the frequency domain.
The time domain formulations for the constitutive relations (2.23), (2.24), and
(2.25) read as

~D(t) = ε(~r, t, ~E) ∗ ~E(t) =

∞
∫

−∞

ε(~r, t −τ, ~E)~E(t)dτ (2.30)

~B(t) = µ(~r, t, ~E) ∗ ~H(t) =

∞
∫

−∞

µ(~r, t −τ, ~H)~H(t)dτ (2.31)

~J(t) = σ(~r, t, ~E) ∗ ~E(t) =

∞
∫

−∞

σ(~r, t −τ, ~E)~E(t)dτ, (2.32)

where ∗ is the convolution operator. Similarly, the time domain formulations for
the magnetization field ~M (2.28) and the polarization field ~P (2.29) read in the
time domain as

~M(t) = χm(~r, t, ~H) ∗ ~H(t) =

∞
∫

−∞

χm(~r, t −τ, ~H)~H(t)dτ (2.33)

~P(t) = ε0χe(~r, t, ~E) ∗ ~E(t) = ε0

∞
∫

−∞

χe(~r, t −τ, ~E)~E(t)dτ. (2.34)

In this thesis, the material parameters are assumed to be linear and homoge-
neous, and therefore the dependencies on electric and magnetic fields, ~E and ~H,
respectively, as well as on location ~r, can be dropped out. However, the material
parameters depend on angular frequency ω and time t within this thesis. For
the sake of clarity, also these dependencies are dropped out.

2.3 Boundary Conditions

The behaviour of the electromagnetic wave at the interface of two media can be
deduced from the Maxwell’s equations. In this section, the boundary conditions
for the magnetic flux density and the electric field are derived in a detailed way,

17



the derivation of the boundary conditions for the displacement field and the
magnetic field follow these derivations.

2.3.1 Magnetic Flux Density

Let us assume a flat, pillbox-shaped cylinder, placed on the interface such that
the bottom and the top of it are parallel to the interface, see Figure 2.1.

Figure 2.1: A pillbox-shaped cylin-
der illustrating the derivation
of the boundary condition for
the magnetic flux density and
the displacement field [80].

The integrand of Gauss’ law (2.19) can be divided into three parts, corresponding
to the top, the bottom and the core of the cylinder:

∮

S

~B ·
−→
dA=

∫

Stop

~B ·
−→
dAtop +

∫

Sbottom

~B ·
−→
dAbottom +

∫

Score

~B ·
−→
dAcore. (2.35)

If both media are nonmagnetic (χm = 0, see Section 2.2), letting the height h of
the cylinder approach zero, the integral over the core of the cylinder approaches
zero. As the height of the cylinder is infinitesimal, the normal vectors of the
bottom and the top are of equal magnitude, but have different signs. Let us
denote and

−→
dA =

−→
dAtop = −

−→
dAbottom, and eventually Equation (2.35) can be

rewritten as:

∫

Stop

~B ·
−→
dA=

∫

Sbottom

~B ·
−→
dA, (2.36)

or equivalently:

~n · (~Btop − ~Bbottom) = 0, (2.37)

where ~n is the outward pointing normal vector of the top of the cylinder. In
words, the normal component of the magnetic field density is continuous over
the interface of two media, when the media are nonmagnetic.
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2.3.2 Displacement Field

Let us apply the same pillbox-approach as with magnetic flux density in Equation
(2.35) to the displacement field (2.20):

∮

S

~D ·
−→
dA=

∫

Stop

~D ·
−→
dAtop +

∫

Sbottom

~D ·
−→
dAbottom

+

∫

Score

~D ·
−→
dAcore =

∫

V

ρ f dV.

(2.38)

After shrinking the cylinder on the same manner as with the magnetic flux den-
sity, we get a boundary condition for the displacement field:

∫

Stop

~D ·
−→
dA−

∫

Sbottom

~D ·
−→
dA= σs, (2.39)

or equivalently:

~n · (~Dtop − ~Dbottom) = σs, (2.40)

where the integral of the free charge density ρ f over the infinitesimal volume has
reduced into the surface charge density σs. Therefore, the normal component of
the displacement field is discontinuous over the interface.

2.3.3 Electric Field

Figure 2.2: The path illustrating
the derivation of the bound-
ary condition for electric and
magnetic fields [80].

To derive the boundary condition for the electric field, we place a rectangular
path around the interface as shown in Figure 2.2. The integrand of the Faraday’s
law (2.17) can be divided into four parts, corresponding to the four edges of the
path:
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∮

∂ S

~E ·
−→
dl =

∫

left

~E ·
−→
dl left +

∫

top

~E ·
−→
dl top

+

∫

right

~E ·
−→
dl right +

∫

bottom

~E ·
−→
dl bottom =−

∫

S

∂ ~B

∂ t
·
−→
dA.

(2.41)

Again, we shrink the path such that the lengths of the left and right edges
approach zero, and we get:

∫

top

~E ·
−→
dl top +

∫

bottom

~E ·
−→
dl bottom =−

∫

S

∂ ~B

∂ t
·
−→
dA. (2.42)

As the lengths of the left and right edges are infinitesimal, we can write
−→
dl =

−→
dl top = −

−→
dl bottom. Furthermore, the area of the surface S surrounded by the

path, approaches zero, and consequently also the integral of the magnetic field
density over the surface S vanishes. Eventually, we can write the boundary
condition for the electric field:

∫

bottom

~E ·
−→
dl =

∫

top

~E ·
−→
dl , (2.43)

or equivalently

~n× (~Etop − ~Ebottom) = 0. (2.44)

In words, the tangential component of the electric field is continuous over the
interface.

2.3.4 Magnetic Field

Let us use the same approach as for the electric field in Equation (2.41). The
Ampère’s law (2.18) with the integrand divided into four parts, reads as:

20



∮

∂ S

~H ·
−→
dl =

∫

left

~H ·
−→
dl left +

∫

top

~H ·
−→
dl top +

∫

right

~H ·
−→
dl right

+

∫

bottom

~H ·
−→
dl bottom =−

∫

S

∂

∂ t

�

~J f +
∂ ~D

∂ t

�

·
−→
dA.

(2.45)

Shrinking the loop makes the integral of the displacement field to vanish, and
reduces the integral of the current density into the surface current density js:

∫

top

~H ·
−→
dl top +

∫

bottom

~H ·
−→
dl bottom =− js, (2.46)

or equivalently:

~n× (~Htop − ~Hbottom) = js. (2.47)

In words, the tangential magnetic field is discontinuous over the interface.

2.4 Electromagnetic Wave Equation

The electromagnetic wave equation is a second order partial differential equation,
which describes the propagation of the electrmagnetic wave in a vacuum or in a
medium. The equation can be derived from the Maxwell’s equations by taking
the curl of the both sides of the Faraday’s law (2.13), applying the Ampère’s law
(2.14) and the constitutive relation (2.25):

∇×∇× ~E +σµ
∂ ~E

∂ t
+ εµ

∂ 2~E

∂ t2 = 0. (2.48)

The wave equation for the magnetic field ~H can be derived correspondingly:

∇×∇× ~H +σµ
∂ ~H

∂ t
+ εµ

∂ 2 ~H

∂ t2 = 0. (2.49)

Useful form of the electromagnetic wave equation is so called time harmonic
wave equation. When electromagnetic field variation with respect to time is
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sinusoidal, the time derivative ∂ /∂ t can be replaced with the factor jω, where
ω is the angular frequency of the wave, and Equation (2.48) takes the form

∇×∇× ~E + jωσµ~E − εµω2~E = 0, (2.50)

or - by applying vector identity ∇×
�

∇× ~A
�

= ∇(∇ · ~A)−∇2~A and Gauss’ law
for electric fields (2.4) - equivalently as

∇2~E − k2~E = 0, (2.51)

where

k =
p

jωσµ− εµω2 (2.52)

is the wave number. The wave number is the magnitude of the wave vector
~k. The real part of the wave number describes the propagation of the wave
in the medium. This propagation constant is denoted with β . The imaginary
part describes the attenuation of the wave. It is called attenuation constant and
denoted with α. Additionally, the direction of the wave vector describes the
direction of the propagation of the wave. The simplest, and very useful, though
strictly speaking unphysical, solution for the time-harmonic wave equation (2.5.2)
is monochromatic plane wave 1:

~E(~r, t) = Re {~E0(~r)e
j(ωt−~k ·~r)}, (2.53)

where ~E0 is the complex amplitude of the wave, and ~r the position vector.

2.5 Electromagnetic Wave at Interface

The behaviour of the electromagnetic wave on the interface of two media is of
high importance in this thesis. Later, in Chapter 4, the approximative bound-
ary conditions for the electromagnetic wave are derived, and in this section the
theoretical background for the approximations is given.

First, in Section 2.5.1, the behaviour of the electromagnetic wave on the interface
of two dielectrics is explained. This case is commonly known as Snell’s law, and it

1 Only a wave at infinite distance of the source would be a true plane wave. However,
almost any physical wave can be locally approximated as a plane wave.
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is significantly simpler than the following case: Behaviour of the electromagnetic
wave on the interface of a dielectric and a conductor. The latter case is elaborated
in Section 2.5.2.

2.5.1 Dielectric - Dielectric

Let us assume an electromagnetic monochromatic plane wave (2.53) incident to
the interface, see Figure 2.3. The incident, reflected, and transmitted waves are
given respectively by 1:

~E1 = ~E10(~r)e
j(~k1 ·~r−ωt) (2.54)

~E1′ = ~E10′(~r)e
j(~k1′ ·~r−ωt) (2.55)

~E2 = ~E20(~r)e
j(~k2 ·~r−ωt), (2.56)

where

~k1 = k1~n1 (2.57)
~k1′ = k1′~n1′ (2.58)
~k2 = k2~n2, (2.59)

are the corrresponding wave vectors.
On the interface the incident wave must match to the reflected and transmitted
wave. Consequently, the exponent of Equation (2.54) needs to be equal to the
exponents of Equations (2.55) and (2.56):

~k1 ·~r0 −ωt =~k1′ ·~r0 −ωt =~k2 ·~r0 −ωt. (2.60)

Obviously the frequencies of the waves are equal. Additionally, the phases of the
waves need to match on the boundary:

~k1 ·~r0 =~k1′ ·~r0 =~k2 ·~r0. (2.61)

1 The physical wave is the real part of the wave presented here, but Re {} is dropped
out for convenience. This is also conventional notation of the electromagnetic wave.

23



Figure 2.3.: Reflection and refraction of an electromagnetic wave on an interface
of two media.

Applying vector calculus identities, and noting that ~r0 and ~n are perpendicular
at the interface, (2.61) can be written as

~n×~k1 = ~n×~k2 = ~n×~k1′ . (2.62)

As |~n×~k1| = k1 sinθ1, and respectively for reflected and transmitted waves, we
can deduce that

k1 sinθ1 = k1′ sinθ1′ , (2.63)

k1 sinθ1 = k2 sinθ2. (2.64)

Since incident and reflected waves are propagating in the same medium, the
wave numbers k1 and k1′ have to be equal, as well as the angles of incidence and
reflection. The equation for incident and refracted waves (2.64) is know as Snell’s
law.

2.5.2 Dielectric - Conductor

On the interface of conductive medium, Snell’s law leads into a complex refraction
angle θ2. As an interface of a conductor is of great importance in this thesis, the
physical meaning of the complex angle is analyzed in details. This analysis is
taken from [91]. Let us assume again a plane wave incident to an interface as in
Figure 2.3. In this particular case, the medium (1) is assumed to be a dielectric,
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and medium (2) a conductor. Therefore the squares of the wave numbers k1 and
k2 (2.52) for the media are given as:

k2
1 =ω

2ε1µ1 (2.65)

k2
2 =ω

2ε2µ2 + jωσµ2. (2.66)

Let us divide the wave numers into real and imaginary parts:

k1 = α1 (2.67)

k2 = α2 + jβ2. (2.68)

The angle of refraction is defined by Snell’s law (2.64) and can be written as

sinθ2 =
k1

k2
sinθ1 =

α1

α2 + jβ2
sinθ1 = (a− j b) sinθ1, (2.69)

and furthermore

α1 sinθ1 = (a− j b)(α2 + jβ2) sinθ1

= (aα2 + bβ2) sinθ1 + j(aβ2 − bα2) sinθ1.
(2.70)

As α1, as well as sinθ1, are both real by the definitions (2.67) and (2.68), we can
deduce that

aα2 + bβ2 = α1 (2.71)

aβ2 − bα2 = 0. (2.72)

The complex cosine can be written as

cosθ2 =
p

1− sin2 θ2

=
p

1− (a2 − b2 − 2 jab) sin2 θ1

= re jγ = r cosγ+ jr sinγ.

(2.73)
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Let us analyze the phase ~k2 ·~r of the wave in medium (2):

~k2 ·~r = k2~n2 ·~r = (α2 + jβ2)(−x cosθ2 + z sinθ2). (2.74)

Recalling the relations for sinθ2 (2.69) and cosθ2 (2.73), the phase can be written
as

k2~n2 ·~r =x r(α2 cosγ− β sinγ)− j x r(β2 cosγ−α2 sinγ)

+ z(aα2 + bβ2) sinθ1 + jz(aβ2 − bα2) sinθ1.
(2.75)

Applying the relations (2.71) and (2.72), the phase can be written as:

~k2 ·~r = x r(α2 cosγ− β sinγ)− j x r(β2 cosγ−α2 sinγ) + zα1 sinθ1. (2.76)

Denoting

r(β2 cosγ−α2 sinγ) = p (2.77)

r(α2 cosγ− β sinγ) = q, (2.78)

we get

k2~n ·~r =−xq− j x p+ zα1 sinθ1. (2.79)

The refracted wave within the medium (2) (2.56) can now be written as

~E2 = ~E20epx e j(−qx+α1z sinθ1−ωt). (2.80)

Clearly the surfaces of constant amplitude are the planes

px = constant, (2.81)

which means that the planes of the constant amplitude are parallel to the inter-
face. The planes of constant phase are the planes

− qx +α1z sinθ1 = constant. (2.82)
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Therefore, the wave in medium (2) is an inhomogeneous plane wave, and the
direction of propagation is determined by the normal to the planes of constant
phase. The angle of propagation Ψ of this wave is defined as

− x cosψ+ z sinψ= constant. (2.83)

After normalizing Equation (2.83) we obtain

cosψ=
q

p

q2 +α2
1 sin2 θ1

(2.84)

sinψ=
α1 sinθ1

p

q2 +α2
1 sin2 θ1

. (2.85)

Next, we assume that the medium (2) is a good conductor. This assumption can
be formulated as follows: Let us first rewrite the wave equation as

∇2~E − jωµ(σ+ εω)~E = 0. (2.86)

If we assume that the conduction current ~J = σ~E is much greater than the
displacement current ∂ ~D/∂ t, or in other words, σ in Equation (2.86) is much
greater than ωε, we can neglect the latter and the equation reads as

∇2~E − jωµσ~E = 0. (2.87)

Now the square of the wave number k can be written as

k2 ≈ jωµσ, (2.88)

and consequently the real and imaginary parts of the wave number k2 are equal:

α2 = β2 =
Ç

ωµ2σ

2
. (2.89)

Using this assumption, we can deduce (see details in e.g. [91], [80]) following
equation for q (2.78):

q ≈
Ç

ωµ1σ

2
, (2.90)

27



and furthermore for the sine of the refracted wave (2.85)

sinΨ=

r

2ωµ1ε1

µ2σ
sinθ1. (2.91)

Equation (2.91) shows, that as the conductivity increases or the frequency de-
creases, the planes of the constant phases align themselves with the plane of the
constant amplitude, and the wave propagates normal to the surface within the
conductor. This effect can be also seen in Figure 2.4, where the ratio sinΨ/ sinθ1
is plotted with respect to conductivity at a few frequencies.

Figure 2.4.: The ratio sinΨ/ sinθ1 with respect to conductivity σ. The curves are
plotted at four frequencies between 1MHz and 1GHz. The curves show that
when the conductivity increases, the ratio is really small and consequently
the wave in the conductor propagates normal to the interface. Already with
conductivity σ = 100S/m and frequency 1GHz, the ratio is 1%, and the
wave can be considered propagating normal to the interface.
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Figure 2.5.: Refraction in a conductive medium. According to [91], page 502.

2.6 Conservation Laws

Electromagnetic conservation laws state that certain properties of an isolated
physical system are conserved when the system developes. In this section, two
important conservation laws in electrodynamics are introduced: In Poynting’s
theorem the conserved property of a system is energy, and in Current Continuity
law, the conserved property is electric charge.

2.6.1 Poynting’s Theorem

In this chapter, the law for conservation of energy for electromagnetic field is
derived. Let us start by taking the scalar product of ~E with the Faraday’s law
(2.1), and of ~H with Equation (2.2). Subtracting these equations from each other,
we get

~H ·∇× ~E − ~E ·∇× ~H =−~H ·
∂ ~B

∂ t
− ~E ·

∂ ~D

∂ t
− ~E · ~J f . (2.92)

Applying vector identity ∇ · (~A× ~~B) = ~B ·∇× ~A− ~A ·∇× ~B, we obtain

∇ · (~E × ~H) =−~H ·
∂ ~B

∂ t
− ~E ·

∂ ~D

∂ t
− ~E · ~J f . (2.93)

Let us denote the vector product ~E × ~H as ~S, which is known as the Poynting
vector, and integrate Equation (2.93) over a volume V :
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∫

V

∇ ·~SdV =−
∫

V

�

~H ·
∂ ~B

∂ t
+ ~E ·

∂ ~D

∂ t

�

dV −
∫

V

~E · ~J f dV. (2.94)

Applying the divergence theorem and reorganizing the terms, we obtain so called
Poynting’s theorem:

−
∫

V

~E · ~J f dV =−
∫

V

�

~H ·
∂ ~B

∂ t
+ ~E ·

∂ ~D

∂ t

�

dV +

∮

S

~S ·
−→
dA. (2.95)

If we assume that ~H and ~B, as well as ~E and ~D, depend on each other linearly,
we can rewrite Equation (2.95) as

−
∫

V

~E · ~J f dV =
1

2

∂

∂ t

∫

V

�

~H · ~B+ ~E · ~D
�

dV +

∮

S

~S ·
−→
dA. (2.96)

or

−
∫

V

~E · ~J f dV

︸ ︷︷ ︸

(1)

=

∫

V

∂W

∂ t
dV

︸ ︷︷ ︸

(2)

+

∮

S

~S ·
−→
dA

︸ ︷︷ ︸

(3)

, (2.97)

where W is the energy stored in the electromagnetic field in V . The terms in
Poynting’s theorem can be interpreted as follows:

(1) The energy transformed from the electromagnetic form into another form,
e.g. heat or mechanical energy

(2) The rate of change of electromagnetic energy stored in the volume V

(3) The power flow into or out from the volume V .

2.6.2 Current Continuity

The electric current I entering an arbitrary volume V is given by the integral
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I =−
∫

V

~J ·
−→
dA=−

∫

V

∇ · ~JdV. (2.98)

At the same time, the electric current into the fixed volume V is defined as a rate
of change of electric charge density in the volume:

I =−
∫

V

∂ ρ

∂ t
dV. (2.99)

Combining Equation (2.98) with Equation (2.99) gives:

∫

V

�

∂ ρ

∂ t
+∇ · ~J

�

dV = 0. (2.100)

As the volume V is arbitrary, Equation (2.99) holds at each point and can be
written as

∂ ρ

∂ t
+∇ · ~J = 0. (2.101)

This is known as the current continuity law. The current continuity law states
that the electric charge cannot be created or destroyed, i.e. the total electric
charge is always conserved.

31



3 Discrete Electrodynamics
In the previous chapter, the essential theory of continuous electrodynamics was
shortly introduced. In the chapters following this chapter, the methods for solving
the electromagnetic problems with dispersive impedance boundary conditions
numerically are proposed and verified. The aim of this chapter is to span the gap
between the theory of elctrodynamics, and the following chapters. Namely, this
chapter introduces the methods to discretize the computational domain spatially
and temporally.

3.1 Introduction

The analytical solution for the Maxwell’s equations exist only for a few particular
cases. In general, one has to resort to numerical methods to find the solution.
Numerical methods for solving the Maxwell’s equations are often referred to as
discrete electrodynamics, due to the discretization of the variables, which is in-
volved to numerical methods. Discretization means replacing the continuous
variables, like space and time, with their discrete counterparts. Numerical meth-
ods that are widely used for solving the Maxwell’s equations include e.g. FDTD,
FIT, FEM, DG-FEM, Finite Volume Method (FVM) and Method of Moments
(MoM).
Aforementioned methods can be, in general, used for solving the Maxwell’s equa-
tions in the frequency or in the time domain. In the frequency domain, one solves
the problem at a single frequency, and the implementation is rather straigthfor-
ward. However, time domain methods are able to catch transient signals and
solve for several frequencies at a single simulation run.
In this thesis the focus is on FEM, and especially DG-FEM, which can be un-
derstood as a special case of FEM. The rationale for this choice is that DG-FEM
combines many of the advantages of the aforementioned numerical methods: DG-
FEM is spatially accurate, and the time stepping scheme is explicit. In this
chapter an overview DG-FEM is given, and applying the method for solving the
Maxwell’s equations is explained. Finally, an overview of discretizing the time us-
ing Leapfrog and Verlet integrations is given. As further reading on the topics of
this chapter, the author recommends the books "The Finite Element Method in
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Electromagnetics" by J.M Jin [54] and "Nodal Discontinuous Galerkin Methods"
by J.S. Hesthaven and T. Warburton [48].

3.2 Finite Element Method

The Finite Element Method (FEM) is a numerical method for solving a Partial
Differential Equation (PDE). FEM has its basis in solving structural and elastic-
ity problems, which have herited some terminology to FEM. To give an overview
of solving a PDE with FEM, let us assume a PDE with an operator L and a
solution u(x):

Lu(x) = 0, x = x1...x2, (3.1)

where the interval x = x1...x2 is an one-dimensional domain Ω.
As FEM is an approximative numerical method, the next step is to approximate
the PDE. The approximative PDE with an approximative solution ũ(x) reads as

Lũ(x)≈ 0, x = x1...x2. (3.2)

The approximative solution ũ(x)≈ u(x) is defined as

ũ(x) =
N
∑

j=1

u jϕ j(x), x = x1...x2, (3.3)

where u j are the Degree of Freedom (DoF)s, N the number of degrees of freedom,
and ϕ j a set of the shape, or basis, functions.
To find the best approximation ũ(x) of the exact solution u(x), we define a
residual R as a difference of the exact (3.1) and the approximated (3.2) PDEs:

R= L[ũ(x)− u(x)] = Lũ(x). (3.4)

Furthermore, we utilize the weighted residual method to find the approximative
solution:

x2
∫

x1

R · wi(x) = 0 ∀i = 1, 2, ..., N , (3.5)

33



where wi(x) are linearly independent weight, or test, functions. In this thesis,
we use the Galerkin method, where the weight functions wi(x) are equal to the
basis functions ϕ j(x).
Further important steps in finding the approximative solution by means of FEM
include discretization the domain Ω into a finite element mesh, and choosing
the basis functions. An overview of these steps is given in the following two
subsections.

3.2.1 Mesh

In order to find a numerical solution for a PDE by means of FEM, the domain Ω
is divided into finite elements e. Ne elements together build a finite element mesh.
For practical reasons, the element domains are usually of a simple geometrical
form: Lines in one dimension, triangles or quadrilaterals in two dimensions, and
tetrahedra or hexahedra in three dimensions. The mesh can be also called a
computational domain.
Depending on the dimension of the mesh, an element inludes nodes, edges, faces
and volumes. The degrees of freedom can be associated with any of these. See
an example of a three-dimensional hexahedral mesh element in Figure 3.1.

Figure 3.1: A hexahedral
element of a three-
dimensional finite
element mesh. The
node is the boundary
of the edge, which is a
boundary of the face,
which is the boundary of
the element.

The mesh is regular, when the elements are non-overlapping, the mesh covers the
domain Ω, and the intersection of two elements is either empty, a node, an edge,
or a face.

3.2.2 Basis Functions

The choice of the basis functions ϕ j in Equation (3.3) is arbitrary to a cer-
tain extent. However, some types of basis functions are more suitable to ap-
proximate certain physical quantities than the others. In this thesis we focus
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solely on the Maxwell’s equations in three dimensions, and therefore we use two
kinds of basis functions: H(curl)-conformal higher order edge basis functions, and
H(div)-conformal higher order face basis functions. The definitions of these basis
functions are given in [101].

(a) (b)

Figure 3.2.: H(curl)-conformal edge basis function (a), and H(div)-conformal face
basis function. The polynomial order of both of the basis functions is zero,
i.e. the basis function has a constant value over the edge (a) or the face (b).

To give an impression of these basis functions, the lowest order edge and face basis
functions are schematically illustrated in Figures 3.2(a) and (b), respectively. The
order refers to the polynomial order of the basis functions, while the lowest order
is zero. This means that the basis functions have a constant value over the edge
(edge basis function) or over the face (face basis function), as can be seen in
Figures 3.2(a) and (b), respectively.
An important feature of these basis functions is, that they provide continuity over
the interface: Edge basis functions tangential continuity, and face basis functions
normal continuity. Let us recall the continuity conditions for the electromag-
netic field in Sections 2.3.1-2.3.4. As stated, the magnetic flux density ~B and
the displacement field ~D are normally continuous over the interface, while the
electric field ~E and the magnetic field ~H are tangentially continuous over the in-
terface. Therefore the natural selection is, to associate the magnetic flux density
and the displacement field with the H(div)-conformal edge basis functions, and
the electric field and the magnetic field with the H(curl)-conformal face basis
functions.
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Another important property of FEM basis functions is the global continuity. In
FEM, the the basis functions are continuous and have a compact support within
the domain Ω. These properties lead to a continuity of the approximate solution,
and to a sparse FEM system matrix. However, the inverse of the FEM matrix
is dense and that leads into inefficient time stepping scheme, since the matrix
needs to be inverted at every time step. An approach to overcome this problem
is not to require a global continuity of the basis functions, but to define the
basis functions only within one element. This approach is called Discontinuous
Galerkin Finite Element Method (DG-FEM). The differences between the basis
functions for FEM and DG-FEM are schematically illustrated in Figures 3.3 (a)
and (b), respectively.

(a) (b)

Figure 3.3.: A schematic illustration of an one-dimensional nodal basis function
for FEM (a) and for DG-FEM (b). The FEM basis function has a compact
support, i.e. it is defined in the element ei and ei+1. Conversely, the DG-FEM
basis function is defined only in the element ei , and there is no continuity on
the element interfaces.

3.3 DG-FEM for Maxwell’s Equations

Let us assume a three dimensional domain Ω and recall the Maxwell’s equations
(2.1)-(2.4), as well as the constitutive equations (2.23)-(2.25). Additionally, let
us assume a medium without current or charge densities for simplicity. The
equations can be written as:







∇× ~E(t,~r) +
∂

∂ t
µ~H(t,~r) = 0 in Ω

∇× ~H(t,~r)−
∂

∂ t
ε~E(t,~r) = 0 in Ω.

(3.6)
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These equations are now the exact PDEs (3.1). Let us approximate the electric
field ~E as an approximation Ẽ, and the magnetic field ~H as H̃, as given in Equation
(3.3):

~E(t,~r)≈ Ẽ(t,~r) =
NE
∑

i=1

P
∑

p=1

eip(t)ϕip
E (~r) (3.7)

~H(t,~r)≈ Ẽ(t,~r) =
NH
∑

i=1

P
∑

p=1

hip(t)ϕip
H (~r), (3.8)

where ϕip
E (~r) are H(curl)-conforming edge basis functions, ϕip

H (~r) are H(div)-
conforming face basis functions, eip and hip the time-dependent degrees of free-
dom, NE and NH the corresponding numbers of degrees of freedom, and P the
polynomial order of the basis functions. The basis functions are defined such,
that they are continuous within a element Vj , and vanish everywhere else. Let
us drop out the temporal (t) and spatial (~r) dependencies for simplicity.
Following the Galerkin weighted residual method (3.5), the weak DG-FEM for-
mulation reads as:

∫

Vj

�

∇×ϕ jq
H

�

· ẼdVj +

∫

∂ Vj

�

~n× Ẽ∗
�

·ϕ jq
H
−→
dAj +

∫

Vj

d
dt
µ j H̃ ·ϕ jq

H dVj = 0 (3.9)

∫

Vj

�

∇×ϕ jq
E

�

· H̃dVj +

∫

∂ Vj

�

~n× H̃∗
�

·ϕ jq
E
−→
dAj −

∫

Vj

d
dt
ε j Ẽ ·ϕ jq

E dVj = 0, (3.10)

∀ j = 1...N ,∀q = 1...P . Vj is the volume of the element domain, ~n is the normal
vector of the element interface, and the quantities ~n× Ẽ∗ and ~n× H̃∗ are known
as numerical fluxes (see Equations (3.11) and (3.12) and the explanation later).
Furthermore, the degrees of freedom depend only on the temporal variable, as
well as basis functions only on the spatial variable. Therefore the time derivative
and the degrees of freedom can be taken out from the integral. Additionally, we
assume that material parameters do not depend on time.
Due to the discontinuity of the basis functions, the tangential electric and mag-
netic field approximations, Ẽ∗ and H̃∗, are not uniquely defined at the element
interfaces. Therefore, numerical fluxes [47] need to be introduced on the inter-
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face. In this thesis, the central flux approach [10], [34] is utilized. The numerical
flux for the electric field at the interface is defined as:

~n× Ẽ∗ =
1

2
~n× (Ẽ− + Ẽ+), (3.11)

where Ẽ− is the approximative electric field (3.7) in the element j, and Ẽ+ in the
neighboring element. The numerical flux is defined equivalently for the magnetic
field:

~n× H̃∗ =
1

2
~n× (H̃− + H̃+). (3.12)

Finally we obtain the FEM Maxwell’s equations in matrix form:







CBe+Mµ

d
dt

h= 0

CDh−Mε

d
dt

e= 0,
(3.13)

where e and h are vectors including the electric and magnetic degrees of freedom,
matrices CB and CD given elementwise as

C jq ip
B = δi j

∫

Vj

�

∇×ϕ jq
H

�

·ϕip
E dVj +

1

2

∫

∂ Vj

�

~n×ϕip
E

�

·ϕ jq
H
−→
dAj (3.14)

C jq ip
D = δi j

∫

Vj

�

∇×ϕ jq
E

�

·ϕip
H dVj +

1

2

∫

∂ Vj

�

~n×ϕip
H

�

·ϕ jq
E
−→
dAj , (3.15)

and matrices Mµ and Mε elementwise as:

M jq ip
µ = δi j

∫

Ω j

µ jϕ
jq
H ·ϕip

H dVj , (3.16)

M jq ip
ε = δi j

∫

Ω j

ε jϕ
jq
E ·ϕip

E dVj . (3.17)
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Regardless of many advantanges of the DG-FEM method, there is one important
drawback in the method. Namely, due to the discontinuity of the basis functions,
DG-FEM suffers from so called spurious modes [92]. This problem can be avoided
by using penalization methods, proposed in e.g. [46] and [33]. In this thesis, the
penalization method proposed by Gjonaj and Weiland in [33] is used to avoid the
spurious modes at the frequencies of interest. Additionally, due to the compact
support of the basis functions, the number of degrees of freedom is higher in
DG-FEM, than in FEM.

3.4 Discretization of Time

Discretization of time means replacing the continuous temporal variable t with
it’s discrete counterpart in an interval t = 0..T . The discrete time variable is
defined only at certain time instances, and the difference between the instances
is called time step, denoted as ∆t. The interval t = 0...T in the discrete time
domain is defined as t = 0,∆t, 2∆t, ...., N∆t, where N is the number of time
steps. In the discrete time domain, the integration of time is replaced with
numerical integration schemes. The Maxwell’s equations (2.1)-(2.4), as well as
the DG-FEM discretized Maxwell’s equations (3.13) are a Hamiltonian system
[68], [58], [74]. Therefore, symplectic numerical integration schemes [84] can be
utilized. In the following, a short overview of two symplectic integrators, the
Leaprog and the Verlet integrators are given.

3.4.1 Leapfrog Integration

Let us recall the DG-FEM discretized Maxwell’s equations (3.13):







CBe+Mµ

d
dt

h= 0

CDh−Mε

d
dt

e= 0.
(3.18)

As a Hamiltonian system [58], the equations above and can be solved by the
Leapfrog method:







CBen +Mµ

1

∆t
(hn+ 1

2 − hn− 1
2 ) = 0

CDhn+ 1
2 −Mε

1

∆t
(en+1 − en) = 0,

(3.19)
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where en is the electric field at time instant n∆t, and respectively for the other
time intances, as well as the magnetic field. Consequently, we obtain the following
time stepping scheme for solving electric and magnetic fields:







hn+ 1
2 = hn− 1

2 −∆tM−1
µ CBen

en+1 = en +∆tM−1
ε CDhn+ 1

2 .
(3.20)

The leapfrog method is the simplest symplectic integrator, and it is very cheap.

3.4.2 Verlet Integration

The Verlet integration is also a symplectic numerical integrating scheme [74], and
unlike the Leapfrog method, it allows to solve for the field quantities at the same
time instants [74]. The Verlet scheme reads for Maxwell’s equations as:























CBen +Mµ

1

∆t/2
(hn+ 1

2 − hn− 1
2 ) = 0

CDhn+ 1
2 −Mε

1

∆t
(en+1 − en) = 0

CBen+1 +Mµ

1

∆t/2
(hn+ 3

2 − hn+ 1
2 ) = 0.

(3.21)

Consequently, we obtain the following time stepping scheme for solving electric
and magnetic fields:











hn+ 1
2 = hn− 1

2 − 2∆tM−1
µ CBen

en+1 = en +∆tM−1
ε CDhn+ 1

2

hn+ 3
2 = hn+ 1

2 − 2∆tM−1
µ CBen+1.

(3.22)

In time domain simulations within this thesis (see Section 5), the Verlet-scheme
is utilized due to it’s accuracy.
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4 Dispersive Boundary Conditions in
Frequency Domain

In the previous chapter, the inevitable step from continuous electrodynamics to-
wards electromagnetic modeling was taken. This means, methods for discretizing
the computational domain in space and time were introduced, in terms of well-
known tools of computational electrodynamics, as DG-FEM, and Leapfrog and
Verlet integration.
This chapter considers electromagnetic modeling itself, in the Frequency Do-
main (FD). It is divided into two main parts, while first introduces disper-
sive impedance boundary conditions SIBC, CSBC, and ITBC. The second part
presents the implementations of the impedance boundary conditions to frequency
domain DG-FEM, as well as a scheme for solving the nonlinear, complex Eigen-
value Problem (EVP), raising from the electromagnetic problem with dispersive
impedance boundary conditions, iteratively as a linear EVP. The scheme has
been published by the author in [98]. This iterative scheme allows for taking into
account the dispersivity of the impedance boundary conditions into account, and
solving for wideband electromagnetic problems in the frequency domain.

4.1 Introduction

Boundary conditions in electromagnetic modeling save significantly computa-
tional resources, and are therefore very important. Boundary conditions allow
for excluding certain structures of the computational domain: Instead of model-
ing the structure itself, only the surface of the excluded structure is modeled.
Although the computational resources are saved, the accuracy is preserved.
Impedance boundary conditions are aimed to exclude conductive, lossy media
from the computational domain. In this chapter selected impedance boundary
conditions are introduced.
Conductivity of a medium is in general a function of frequency, i.e. the conduc-
tivity is a dispersive function. The dispersive nature of the conductivity needs to
be taken into account when considering impedace boundary conditions, because
they are utilized to replace conductive media. This requires a special treat-
ment in the time domain (see Chapter 5), but is rather straightforward in the
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frequency domain. Therefore an introduction to selected impedance boundary
conditions, namely SIBC, CSBC and ITBC, is given in the frequency domain.
The introduction covers the first part of this chapter, i.e. sections 4.2.1, 4.3, and
4.4.
The plot of the second part of this chapter (Sections 4.6 and 4.7) is to find
a numerical solution for the source-free Maxwell’s equations in the frequency
domain in a computational domain Ω:







∇× ~E =− jω~B in Ω

∇× ~H = jω~D in Ω

~n× ~n× ~E = f (ω)(~n× ~H) on ∂Ω.

(4.1)

The boundary condition ~n× ~n× ~E = f (ω)(~n× ~H) connects the tangential elec-
tric field with the tangential magnetic field on the boundary surrounding the
conductor excluded from the computational domain. Depending on the type of
the conductor, in terms of SIBC, CSBC, or ITBC. Eventually the aim is to write
Equations (4.1) in terms of DG-FEM (Section 3.3) in the following time-harmonic
form:

¨

CBe(ω) + jωMµh(ω) = CZet(ω)

CDh(ω)− jωMεe(ω) = 0,
(4.2)

where et is the DG-FEM discretized counterpart for the tangential electric field
~n×~n×~E, and the contents of the matrix CZ is explained later in this chapter. The
matrices CB, CD, Mµ, and Mε are introduced earlier in Equations (3.14)-(3.17).

4.2 Standard Impedance Boundary Condition (SIBC)

Standard Impedance Boundary Condition (SIBC) provides a connection between
the tangential electric field and the tangential magnetic field on the surface of a
conductive medium. Consequently, by applying SIBC, the conductive medium
can be removed from the computational domain, and only the surface of the
conductor needs to be modeled. The derivation of SIBC begins with the skin
effect approximation. The approach presented here, is adapted from [90].

4.2.1 Skin Effect

To derive the relation between the tangential magnetic and electric fields in a
conductor, we begin with an assumption, that the electromagnetic field in the
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conducting medium is confined to a layer of thickness ∆ on the surface of the
medium, see Figure 4.1(b). The minimum thickness tmin of the conductor is
assumed to be much larger than ∆. First, let us seek for the solution for the
electromagnetic field on the surface of the conducting medium. In other words,
we are looking for a solution for the time harmonic wave equation (2.51) on the
surface of the interface:

∇2~E − jωµ(σ+ jωε)~E = 0. (4.3)

The second assumption is that the medium is a good conductor, i.e. the con-
duction current is much greater than the displacement current 1. Therefore the
wave equation can be reduced as in (2.87):

∇2~E − jωµσ~E = 0. (4.4)

Third, we assume the lossy surface to be locally planar, i.e. the minimum radius
of curvature Rmin of the structure is large compared to ∆, see Figure 4.1(a). Now
we can write the wave equation (2.87) locally in cartesian coordinates as

∂ 2~E

∂ 2 x
+
∂ 2~E

∂ 2 y
+
∂ 2~E

∂ 2z
− jωµσ~E = 0. (4.5)

(a) (b)

Figure 4.1.: Scheme for the skin effect approximation. The grey color denotes
the conductive body. On the left side (a) are shown the prerequisities for
the skin depth assumption - minimum thickness and radius of curvature of
the conductive body are denoted as tmin and Rmin, respectively. On the
right side (b) is shown the layer with thickness ∆, to which we assume the
electromagnetic field to be confined. According to [90].

1 Displacement current refers to the time derivative of the displacement field, i.e. ∂ ~D
∂ t
,

or respectively in a time-harmonic form: jω~D = jωε~E.
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As the conductor is assumed to be a good conductor, the electromagnetic wave
travels normal to the interface, as stated in Section 2.5. This means, that the
tangential derivatives of the electric field are negligible compared to derivative in
the normal direction and can be dropped out from Equation (4.5):

∂ 2~E

∂ 2z
− jωµσ~E = 0. (4.6)

The solution of Equation (4.6) is a combination of exponentially growing and
exponentially decaying plane wave traveling to the z−direction. Since we have
assumed that the wave is confined to a layer of finite thickness, we choose the
decaying solution:

~E = ~E0e− jkzz = ~E0e−(1+ j)
Æ

ωµσ
2 z = ~E0e−(1+ j) z

δ , (4.7)

where

δ =
p

2/ωµσ (4.8)

is so called skin depth, and k as defined in Equation (2.89). As the wave equation
can be written equivalently for the magnetic field, the solution for the magnetic
field is also equivalent with the electric field:

~H = ~H0e−(1+ j) z
δ . (4.9)

The thickness ∆ can be considered as 3δ, because at z = 3δ the amplitude of
the wave have decayed into approximately 5% of the amplitude at the surface
[90]. This phenomenon - electromagnetic field is confined to a thin layer of a
conductor - is known as the skin effect.

4.2.2 Surface Impedance

Next we seek for the relation between the tangential magnetic and electric field
on the surface. Taking into account the assumption of a good conductor, i.e.
σ >>ωε, the time harmonic Ampere’s law (2.2) can be written as

∇× ~H = (σ+ jω)~E ≈ σ~E. (4.10)

The electric field and the magnetic field can be written elementwise as ~E =
(Ex , Ey , Ez) = Ex î+ Ey ĵ+ Ez k̂ and ~H = (Hx , H y , Hz) = Hx î+H y ĵ+Hz k̂. The tan-
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gential components of the electric field at the surface can be written elementwise
as

σ
�

Ex î+ Ey ĵ
�

=

�

∂ Hz

∂ y
−
∂ H y

∂ z

�

î+
�

∂ Hx

∂ z
−
∂ Hz

∂ x

�

ĵ. (4.11)

After differentiating Equation (4.11) with respective to z, we obtain

σ

�

∂ Ex

∂ z
î+
∂ Ey

∂ z
ĵ

�

=

�

∂ 2Hz

∂ z∂ y
−
∂ 2H y

∂ z2

�

î+

�

∂ 2Hx

∂ 2z
−
∂ 2Hz

∂ z∂ x

�

ĵ. (4.12)

From Gauss’ law for magnetic fields (2.3) and constitutive equation (2.24), we
can conclude that

∂ Hz

∂ z
=−

∂ Hx

∂ x
−
∂ H y

∂ y
. (4.13)

Combining Equation (4.12) and Equation (4.13) we obtain

σ

�

∂ Ex

∂ z
î+
∂ Ey

∂ z
ĵ

�

=

�

−
∂ 2Hx

∂ x∂ y
−
∂ 2H y

∂ y2 −
∂ 2H y

∂ z2

�

î+

�

∂ 2Hx

∂ 2z
−
∂ 2Hx

∂ 2 x
−
∂ 2H y

∂ x∂ y

�

ĵ.

(4.14)

As the conductor is good, the wave travels normal to the interface (2.91), and
the tangential derivatives ∂ /∂ x and ∂ /∂ y can be ignored:

σ

�

∂ Ex

∂ z
î+
∂ Ey

∂ z
ĵ

�

=−
∂ 2H y

∂ z2 î+
∂ 2Hx

∂ 2z
ĵ. (4.15)

Substituting the tangential electric and magnetic fields with solutions given in
(4.7) and (4.9), we get

−
1+ j

δσ

�

−H y î+Hx ĵ
�

=
�

Ex î+ Ey ĵ
�

. (4.16)

As the normal vector ~n of the surface is equal to k̂, we can write Equation (4.16)
as a cross product with elctric and magnetic fields and the normal vector ~n:
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−
1+ j

δσ
~n× ~H = ~n× ~n× ~E. (4.17)

Let us denote

Z(ω) = (1+ j)
Ç

ωµ

2σ
, (4.18)

where Z(ω) is surface impedance function. The more general form for the surface
impedance function Z(ω) is

Z(ω) =

r

jωε

σ+ jωµ
. (4.19)

Eventually we get as a relation between the tangential electric and magnetic
fields:

~n× ~n× ~E = Z(ω)~n× ~H, (4.20)

which is known as the Standard Impedance Boundary Condition (SIBC). The er-
ror made in surface impedance approximation is of order O(δ2) [51], i.e. the error
is of order of square of the skin depth. The skin depth is inversely proportional to
the frequency, and consequently the error decreases when the frequency increases.
Therefore SIBC is very useful especially for high frequency applications.

4.3 Corrugated Surface Boundary Condition (CSBC)

The surface can be considered as smooth, if the surface roughness has much
smaller dimensions than the skin depth δ (Equation (4.8)). As the skin depth
is inversely proportional to the frequency, with higher frequencies smaller rough-
nesses become significant. The roughness of a surface increases the losses com-
pared to the losses of a smooth conducting surface. This increase in losses can
be expressed as an increase in surface impedance function (4.19) by a correction
coefficient K [36]:

Zrough(ω) = KZ(ω), (4.21)

or as an increase in attenuation constant α (2.52) and decrease in the Q factor
(see details in Section 4.7.1):
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αrough = Kα (4.22)

Qrough =Q/K . (4.23)

The correction coefficient K has been defined by e.g. Hammerstad and Bekkadal
[44]. They fitted empirically a formula in the data obtained by Morgan [70]. The
resulting formula for the correction factor is:

KHCC = 1+
2

π
arctan

�

1.4
�

hRMS

δ

�2�

, (4.24)

where hRMS is the Root Mean Square (RMS) height of the roughness as presented
in Figure 4.2. The formula is known as Hammerstad’s Correction Coefficient
(HCC). HCC model takes only the RMS-height of the roughness into account,
not the shape nor the distance of the corrugations. However, as long as the
roughnesses are approximately of equal width and height the model is applicable
[70]. The impedance function associated with HCC model can be written as

ZHCC(ω) = KHCCZ(ω). (4.25)

Figure 4.2: The surface approxi-
mation of the HCC model.
The model takes into account
only the RMS height of the
surface roughness.

In Figure 4.3 is shown the effect of the surface roughness on the standard
impedance function (4.19), according to the HCC model. The RMS height of
the surface roughness is calculated with respect to the skin depth at the fun-
damental frequency of a cubical cavity resonator with edge length of 1m and
the wall conductivity 5.8 ·107S/m. This resonator is used later as a test struc-
ture in the convergence study in Section 4.7.2.3. The impedances are calculated
with roughnesses of 0.1, 1, and 10 times the skin depth δ at the fundamental
frequency of the resonator.

47



Figure 4.3.: The effect of surface roughness on the surface impedance function.
Roughnesses 0.1, 1 and 10 times skin depth δ0 are calculated with respect
to the fundamental frequency ( f0 = 0.212GHz) of cubical cavity resonator
with the edge length of 1m and the wall conductivity of 5.8 ·107S/m.

4.4 Impedance Transmission Boundary Condition (ITBC)

One of the limitations of the surface impedance model (Section 4.2.1) is the
minimum thickness of the conductor to be modeled, see Figure 4.1(a). In [90], as
the minimum thickness of a conductor to be modeled, is given three skin depths.
However, let us have a closer look to the attenuation of the tangential component
of the electric field of the wave traveling to z−direction (4.7), i.e. normal to the
interface:

|~Ex(z)|= e−z/δ|~Ex0|, (4.26)

where ~Ex(z) is the tangential electric field at distance z from the interface, and
~Ex0 the tangential electric field at the surface. In Figure 4.4 is given an example
of an attenuating wave in the conductive medium. As can be seen, at the distance
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Figure 4.4.: A schematic figure of the attenuation of the electromagnetic wave in
the conductive medium. The interface of the dielectric and the conductor is
placed at z = 0, dielectric on the left side (negative z) and conductor on the
right side (positive z). The wave Ex(z) is sinusoidal, therefore the envelope
function e−z/δ is drawn to emphasize the attenuation. As can be seen, at
z = δ, the wave amplitude has decreased into 37% of the amplitude at the
interface, and at z = 3δ into 5%.

of one skin depth from the interface, the amplitude of the wave has decreased into
37% of the amplitude at the interface, and at the distance of three skin depths
into 5%. Therefore, to model conductors with thicknesses of a few skin depths,
one needs to take into account also the electromagnetic field transmitted to the
other side of the conductor. In this case, the conductor is said to be partially
transparent for the electromagnetic field. A conductor with thickness of the
order of skin depth, is called within this thesis a thin sheet, and the impedance
boundary condition applicable on surfaces of a thin sheet is called Impedance
Transmission Boundary Condition (ITBC). According to [50], a thin sheet can
be considered as a two-port transmission line. Therefore, before moving to the
approximative boundary condition, let us have a look at the transmission line
theory, and a two-port transmission line.

4.4.1 Two-Port Transmission Line

The voltage V (z) and the current I(z) over a lossy transmission line can be
expressed as Telegrapher’s Equations:
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Figure 4.5.: A two-port transmission line with input voltage V1 and current I1
and output voltage V2 and current I2. The distance between the ports is d.











∂ 2V (z)
∂ z2 = k2V (z)

∂ 2 I(z)
∂ z2 = k2 I(z),

(4.27)

where k is the wave number within the transmission line. The general solution
for the Telegrapher’s Equations is

(

V (z) = V2e−kz + V1ekz

I(z) = Z−1(V2e−kz + V1ekz),
(4.28)

where Z is the characteristic impedace of the transmission line, k the wave number
within the transmission line, V1 the input voltage, I1 the input current, V2 the
output voltage, and I2 the output current (see Figure 4.5). As a specific solution
for a two-port transmission line in Figure 4.5, the currents I1 and I2 into the ports
1 and 2, and the voltages V1 and V2 across the ports 1 and 2, can be written as:







V1 = V2 cosh(kd) + I2Z sinh(kd)

I1 = V2
sinh(kd)

Z
+ I2 cosh(kd),

(4.29)

where d is the distance of the ports. The solution (4.29) can also be written
using impedance parameter matrix:

�

V1
V2

�

=
�

z11 z12
z21 z22

��

I1
I2

�

. (4.30)
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The impedance parameters z11, z12, z21, and z22 are defined as follows:

z11 =
V1

I1
|I2=0 =

Z

tanh(kd)
(4.31)

z12 =
V1

I2
|I1=0 =

Z

sinh(kd)
(4.32)

z21 =
V2

I1
|I2=0 =

Z

sinh(kd)
= z12 (4.33)

z22 =
V2

I2
|I1=0 =

Z

tanh(kd)
= z11. (4.34)

Although the transmission line theory follows from the circuit analysis, which
can be considered as a simplification of the Maxwell’s equations, these impedance
parameters are useful also for modeling thin conductive sheets in terms of the
Maxwell’s equations. This aspect is clarified in the next section.

4.4.2 Thin Conductive Sheet

Let us next assume a thin conductive sheet shown in Figure 4.6. The sheet
is a good conductor, i.e. the conduction current is much greater than the dis-
placement current 2. Therefore the material parameters of the sheet fulfill the
condition σ >> εω (2.87). The sheet has a nonzero thickness d, while the other
two spatial dimensions are large compared to the thickness of the sheet. The
minimum radius of the curvature is also much greater than the thickness d. The
conditions are in agreement with Section 4.2.1.
According to [50] the voltages and currents of the ports Section 4.4.1 can be
considered as tangential electric and magnetic fields on the different sides of the
sheet, and the impedance parameter expression (4.30) for the thin sheet reads
as:

�

~n0 × ~n0 × ~E0

~nd × ~nd × ~Ed

�

=
�

z11 −z12
z12 −z11

�

�

~n0 × ~H0

~nd × ~Hd

�

, (4.35)

with the impedance parameters equal to (4.31) and (4.32). According to [95],
the impedance parameter can be written as

2 Displacement current is time derivative of the displacement field.
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Figure 4.6: A schematic fig-
ure of a thin sheet and
the tangential electro-
magnetic field on the sur-
faces of it. The thickness
of the sheet is d and ~Et0
is a shorthand notation
for ~n0 × ~n0 × ~E0 and ~Ht0
for ~n0× ~H0. Respectively
for the tangential fields
at the interface z = d.

z11 =−
jωµ

k

1

tan(kd)
(4.36)

z12 =−
jωµ

k

1

sin(kd)
, (4.37)

where d is the thickness of the sheet, and k and µ the wave number and perme-
ability within the sheet, respectively.

4.5 Dispersive Boundary Conditions for DG-FEM

Modeling conductive medium in a computational domain requires significantly
denser mesh than modeling of dielectrics. According to [11], to obtain a good
accuracy when modeling dielectrics, the mesh element size le should be

le = λ/10, (4.38)

where λ is the wavelength in the dielectric. At the same time, to model accurately
the damping of the wave in a conductor, the suitable mesh element size in a
conductor is

le = δ/10, (4.39)

where δ is the skin depth (4.8) of the conductor. As an example, if we have a
copper body in a vacuum, and the given frequency is 10MHz, a suitable mesh
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element size in the vacuum is 3.3mm, whereas in copper, the suitable size is only
2µm. In words, the mesh within the conductor should be more than thousand
times denser than in the vacuum. This leads clearly into two problems: The
system matrix becomes ill-conditioned, and the Central Processing Unit (CPU)-
time required for solving the problem increases significantly.
Therefore, it is highly desirable to exclude the conductive bodies from the compu-
tational domain. This can be done by means of impedance boundary conditions.
The conductor itself is removed from the computational domain, and only the
surface of it is modeled. In the previous sections, three different kind of sur-
face impedance boundary conditions were introduced, which can be used for this
purpose:

(1) Standard Impedance Boundary Condition (SIBC) in Section 4.2.1 to model
conductors with smooth surfaces and thicknesses much greater than the
skin depth

(2) Corrugated Surface Boundary Condition (CSBC) in Section 4.3 to model
conductors with rough surfaces and thicknesses much greater than the skin
depth

(3) Impedance Transmission Boundary Condition (ITBC) in Section 4.4 to
model conductors with thicknesses of order of the skin depth

In case of SIBC and CSBC the conductor is removed from the domain, and only
the surface of the conductor is modeled by means of boundary condition. In case
of ITBC, the conductor is removed from the domain as well, and the surfaces
are modeled by means of ITBC. However, in case of ITBC, the fields on different
sides of the excluded conductor are mutually dependent.
In this section, implementations of these three boundary conditions to frequency
domain DG-FEM are presented. The implementation has been published by the
author in [98]. Applying these frequency dependent, or dispersive, boundary
conditions to frequency domain DG-FEM leads to a complex, nonlinear EVP.
However, in Section 4.6, a scheme to solve the complex nonlinear EVP as a
linear EVP is presented. The presented scheme takes into account the dispersive
nature of the impedance boundary conditions in a wide frequency band.

4.5.1 SIBC

Let us begin with the simplest of previously introduced boundary conditions,
Standard Impedance Boundary Condition (SIBC), see Section 4.2.1. Let us as-
sume a three dimensional computational domain Ω, which includes a conducting
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body, see Figure 4.7 (a). The conductor fulfills the requirements for SIBC ap-
proximation, see section 4.2.1. To apply SIBC, we remove the conductor, and
replace it with a domain boundary ΓC, see Figure 4.7 (b).

(a) (b)

Figure 4.7.: On the left (a) is shown the computational domain Ω (denoted with
light grey color) with a conducting body (dark grey). On the right (b) the
conductor is removed from the domain, and replaced with a surface ΓC.

Let us recall the DG-FEM applied to the Maxwell’s equations in Section 3.3.
Let us rewrite Equation (3.13) in a time-harmonic form, i.e. replacing the time
derivatives with the variable jω:

¨

CBe+ jωMµh= 0

CDh− jωMεe= 0,
(4.40)

where the curl-matrices CD and CB are defined elementwise as

C jq ip
B = δi j

∫

Vj

�

∇×ϕ jq
H

�

·ϕip
E dVj +

1

2

∫

∂ Vj

�

~n×ϕip
E

�

·ϕ jq
H
−→
dAj (4.41)

C jq ip
D = δi j

∫

Vj

�

∇×ϕ jq
E

�

·ϕip
H dVj +

1

2

∫

∂ Vj

�

~n×ϕip
H

�

·ϕ jq
E
−→
dAj , (4.42)

and matrices Mµ and Mε elementwise as:
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M jq ip
µ = δi j

∫

Ω j

µ jϕ
jq
H ·ϕip

H dVj , (4.43)

M jq ip
ε = δi j

∫

Ω j

ε jϕ
jq
E ·ϕip

E dVj . (4.44)

As explained in Section 3.3, the second terms in curl-matrices (4.41) and (4.42)
originate from the numerical fluxes, defined in Equations (3.11) and (3.12):

~n× Ẽ∗ =
1

2
~n× (Ẽ− + Ẽ+) (4.45)

~n× H̃∗ =
1

2
~n× (H̃− + H̃+). (4.46)

The numerical fluxes enforce the continuity of tangential electric and magnetic
fields on the element interfaces, which is otherwise not ensured in DG-FEM.
However, we can also utilize the numerical fluxes on the boundary of the domain
to apply boundary conditions. In the case of SIBC, the numerical fluxes read as:

~n× Ẽ∗ = Z(ω)~n× ~n× H̃− (4.47)

~n× H̃∗ = 0. (4.48)

This leads to a modification to the curl-matrices on the element interfaces which
lay on the domain boundary ΓC :
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(a) (b)

Figure 4.8.: A schematic illustration of an interface of a conductor in DG-FEM.
On the left (a) are presented DoFs on on the interface of elements e and
e+1 The element e+1 is inside the conductor, and no boundary conditions
are applied on the interface. The numerical flux enforces the continuity of
the tangential fields on the interface: ~n× ~E∗ = 1

2
~n× (Ẽ− + Ẽ+), ~n× ~H∗ =

1
2
~n× (H̃− + H̃+). On the right (b) the element interface is aligned with a

domain boundary ΓC , and the element e + 1 does not exist, as well as the
DoFs, as they are outside the domain. The numerical flux (4.47) couples
the electric field to the magnetic field on the interface in the element e:
~n× ~E∗ = Z(ω)~n× ~n× H̃−.

C jq ip
B = δi j

∫

Vj

�

∇×ϕ jq
H

�

·ϕip
E dVj +























∫

∂ Vj∈ΓC

Z(ω)
�

~n× ~n×ϕip
H

�

·ϕ jq
H
−→
dAj

∫

∂ Vj /∈ΓC

1

2

�

~n×ϕip
E

�

·ϕ jq
H
−→
dAj

(4.49)

C jq ip
D = δi j

∫

Vj

�

∇×ϕ jq
E

�

·ϕip
H dVj +

∫

∂ Vj

1

2

�

~n×ϕip
H

�

·ϕ jq
E
−→
dAj (4.50)

Next we split curl matrix CB into two matrices, CB and CZ, defined elementwise
as:
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C jq ip
B = δi j

∫

Vj

�

∇×ϕ jq
H

�

·ϕip
E dVj +

∫

∂ Vj /∈ΓC

1

2

�

~n×ϕip
E

�

·ϕ jq
H
−→
dAj (4.51)

C jq ip
Z =

∫

∂ Vj∈ΓC

Z(ω)
�

~n× ~n×ϕip
H

�

·ϕ jq
H
−→
dAj (4.52)

In words, the matrix CB is defined as (4.51) everywhere else except on the bound-
ary ΓC where the flux term is zero. The missing flux is included in the matrix
CZ, which is zero everywhere else except on the boundary ΓC, where it is defined
as in (4.52). The matrix CD (4.50) remains the same everywhere in the domain.
Eventually we can write the Maxwell’s equations in a matrix form with the new
matrix CZ:

¨

CBe+ jωMµh= CZZ(ω)h

CDh− jωMεe= 0.
(4.53)

Equations 4.53 are now the form of the discrete Maxwell’s equations, which was
set as a goal of this section, see Equation (4.2). In the following section, similar
scheme for modeling corrugated surface by means of CSBC is presented.

4.5.2 CSBC

The scheme for corrugated surfaces is similar to the scheme for SIBC. The dif-
ference is in the impedance function, Z(ω) is replaced with ZHCC(ω). Therefore
the numerical fluxes (4.47) read as:

~n× Ẽ∗ = ZHCC(ω)~n× ~n× H̃− (4.54)

~n× H̃∗ = 0, (4.55)

and the Maxwell’s equations with CSBC read as:

¨

CBe+ jωMµh= ZHCC(ω)CZh

CDh− jωMεe= 0.
(4.56)
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In the following section, a scheme for modeling thin conductive sheets by means
of ITBC is presented. This approach deviates from the SIBC and CSBC ap-
proaches.

4.5.3 ITBC

The scheme for ITBC is somewhat different compared to the SIBC. In case of
ITBC, the thin conductive body, see Figure 4.9 (a), is replaced with colocated
domain boundaries, ΓS and ΓT, and consequently with a single element interface,
see Figure 4.9 (b). Consequently the impedance matrix (4.35) (see Section 4.4.2)
changes. Now the thin sheet thickness d has been shrunk into a element interface,
and consequently the normal vectors of the different sides of the thin sheet can
be written as ~n0 =−~nd = ~n, see Figure 4.10.

(a) (b)

Figure 4.9.: On the left (a) is shown the computational domain Ω with a conduct-
ing body (denoted with dark grey color). On the right (b) the conductor is
shrunk into two colocated boundaries ΓS and ΓT.

The impedace matrix (4.35) matrix can be written as

�

~n× ~n× ~E0

~n× ~n× ~Ed

�

=
�

z11 −z12
z12 −z11

�

�

~n× ~H0

~n× ~Hd

�

. (4.57)

Due to attenuation within a thin conductive sheet, the tangential electromagnetic
field is not equal on the different sides of the sheet. In other words, a thin sheet
causes a discontinuity of the tangential electromagnetic field on the different sides
of the sheet. Therefore, instead of enforcing the continuity within an element
interface, as is the case on a normal element interface in DG-FEM method, we
want to enforce a discontinuity on the interface. Therefore the numerical fluxes,
Equations (3.11) and (3.12), read as (see also Figure 4.10):

58



~n× Ẽ∗ = ~n× ~n× (Z11(ω)H̃
− +×Z12(ω)H̃

+) (4.58)

~n× H̃∗ = 0. (4.59)

(a) (b)

Figure 4.10.: A schematic illustration of an interface of a conductor in DG-FEM.
On the left (a) are presented DoFs on on the interfaces of elements e and e+1,
with a conductor in between of them. On the right (b) the conductor has been
removed and been replaced with two colocated domain interfaces ΓS and ΓT,
which are aligned with the intrfaces of the elements e and e+ 1. The DoFs
on the different sides of the interface are discontinuous, and they are coupled
by the numerical flux (4.58): ~n× Ẽ∗ = ~n× ~n× (Z11(ω)H̃− +×Z12(ω)H̃+).

Furthermore, as with the SIBC (4.49), the curl matrix CD is divided into three
parts:

C jq ip
B = δi j

∫

Vj

�

∇×ϕ jq
H

�

·ϕip
E dVj +

∫

∂ Vj /∈(ΓS∪ΓT )

1

2

�

~n×ϕip
E

�

·ϕ jq
H
−→
dAj (4.60)

C jq ip
Z1 = δi j

∫

∂ Vj∈ΓS

Z11(ω)
�

~n× ~n×ϕip
H

�

·ϕ jq
H
−→
dAj (4.61)

C jq ip
Z2 = (1−δi j)

∫

∂ Vj∈ΓT

Z12(ω)
�

~n× ~n×ϕip
H

�

·ϕ jq
H
−→
dAj (4.62)
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where Z11(ω) and Z12(ω) are the impedance parameters z11 (4.31) and z12 (4.32),
respectively. Impedances Z11(ω) and Z12(ω) can also be considered as surface
impedance and transmission impedance of ITBC approximation. Finally, the
Maxwell’s equations for ITBC case can be written as:

¨

CBe+ jωMµh= (Z11(ω)CZ1 + Z12(ω)CZ2)h

CDh− jωMεe= 0.
(4.63)

The procedure for solving the discretized Maxwell’s equations, as well as equa-
tions (4.53) and (4.56), is presented in the following.

4.6 FD Solver Implementation

All of the previously presented boundary conditions, SIBC (4.19), CSBC (4.25)
and ITBC (4.35), include a complex, frequency-dependent, impedance function.
This leads to a nonlinear, complex Eigenvalue Problem (EVP). In this section, a
scheme to solve for the nonlinear complex EVP iteratively, is presented. Addi-
tionally, although the frequency-dependency of the impedance functions is taken
into account, the EVP is solved as a linear EVP. This approach has been pub-
lished by the author in [98]. Let us first summarize the impedance boundary
conditions and the resulting equations to be solved.

SIBC equations:

¨

CBe+ jωMµh= Z(ω)CZh

CDh− jωMεe= 0.

Impedance function: Z(ω) =

r

jωε

σ+ jωµ

(4.64)

CSBC equations:

¨

CBe+ jωMµh= ZHCC(ω)CZh

CDh− jωMεe= 0.

Impedance function:

ZHCC(ω) =

�

1+
2

π
arctan

�

1.4
�

hRMS

δ

�2��

Z(ω)

(4.65)

60



ITBC equations:

¨

CBe+ jωMµh=
�

Z11(ω)CZ1 + Z12(ω)CZ2
�

h

CDh− jωMεe= 0.

Impedance functions: Z11(ω) =
jωµ

k

1

tan(kd)

Z12(ω) =
jωµ

k

1

sin(kd)

(4.66)

Let us derive the iterative scheme for solving the nonlinear complex EVP for
SIBC. For CSBC and ITBC the procedure is almost equal. Let us solve for the
e of the second equation of Maxwell’s equations in (4.64):

e=
1

jω
M−1
ε CDh, (4.67)

and substitute it into the first equation:

CB
1

jω
M−1
ε CDh+ jωMµh= Z(ω)CZh. (4.68)

After reorganizing the terms in Equation (4.68), the following nonlinear, complex
EVP is obtained:

h

M−1
µ CBM−1

ε CD − jωZ(ω)M−1
µ CZ

i

h=ω2h. (4.69)

Let us introduce the following shorthand notations:

A=M−1
µ CBM−1

ε CD (4.70)

B=M−1
µ CZ (4.71)

Z ′(ω) = jωZ(ω), (4.72)

to be able to wirete the EVP (4.69) in a compact form:

�

A− Z ′B
�

h=ω2h. (4.73)

Since solving a complex nonlinear EVP as (4.73) is challenging, a scheme to solve
(4.73) as a linear EVP using fixed-point iteration is presented.
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The scheme for solving for the EVP (4.73) is the following: The first step is to
give an initial guess for impedance function Z ′ (4.72). In our numerical examples,
the initial guess for impedance is PEC, i.e. the conductivity is infinite and conse-
quently the impedance Z ′ is zero. However, the initial guess is ambiguous. The
EVP obtained, after the initial guess of the impedance, is linear. In the second
step the linear EVP is solved, to obtain a initial set of eigenfrequencies. In the
third step, the impedance Z ′ is calculated at these eigenfrequencies, to obtain a
set of new, linear EVP:s. Fourth, these EVPs are solved, to obtain more accurate
eigenfrequencies and consequently more accurate impedance values. The steps
three and four are repeated, until a requested tolerance for the eigenfrequency is
obtained.
To be more structured and compact, the same scheme is presented as bullet
points. For the ith eigenfrequency ωi , the procedure is the following:

1. Initial guess for the impedance: Z ′(0)i = Z0

2. Solve the linear EVP
h

A− Z ′(0)i B
i

h=
�

ω
(1)
i

�2
h, to obtain ω(1)i

3. Correction for the impedance: Z ′(1)i = Z ′i (ω
(1)
i )

4. Solve the linear EVP
h

A− Z ′(1)i B
i

h =
�

ω
(2)
i

�2
h, to obtain more

accurate ω(2)i

...

Repeat the step 3. and 4. until the eigenfrequency ωi reaches the
requested tolerance.

This procedure can be repeated for as many eigenvalues as required, therefore the
scheme can be considered as a wideband scheme. The scheme is also presented
as a flowchart, see Figure 4.11.
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Figure 4.11.: Flow chart of solving the nonlinear Eigenvalue Problem (EVP) as
fixed point iteration.

4.7 Numerical Examples

In this section, the schemes for solving the complex nonlinear EVP, arising from
applying dispersive impedance boundary conditions, proposed in Sections 4.5.1,
4.5.2 and 4.5.3, are verified and validated by numerical examples and convergence
studies.
To verify and validate the proposed schemes, cavity resonators including con-
ductive media are studied. The presence of imperfectly conducting media in a
resonator causes losses in energy, therefore a suitable parameter to verify the
impedance boundary conditions is the Q factor, which is introduced in the next
section. Another parameter to be studied, is the fundamental resonance fre-
quency f0 of a cavity resonator.
Section 4.7.2 focuses on cavity resonators with conductive, lossy walls. As a
numerical example in Section 4.7.2.1, Q factors of various cavity resonators wth
different geometries and wall conductivities are studied, and the results are com-
pared with the results obtained by a commercial software, as well as the Power
Loss method (Section 4.7.1 provides further details). After the numerical exam-
ple, convergence studies for SIBC and CSBC schemes are perfomed in Sections
4.7.2.2 and 4.7.2.3, respectively.
The focus of Section 4.7.3 is on resonators including thin, conductive, sheets. In
Section 4.7.3.1, the effect of the sheet thickness on the accuracy of the ITBC
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model is studied, by investigating conductive sheets with different thicknesses
and conductivities. The ITBC model is also compared with the SIBC model. In
Section 4.7.3.2 the convergence study of ITBC model is performed for different
sheet geometries and material parameters.

4.7.1 Resonator Losses

The time dependency of the electromagnetic energy U in the resonator can be
written as a differential equation

dU

dt
=−

ω0

Q
U . (4.74)

One solution for Equation (4.74) is

U = U0e−ω0 t/Q, (4.75)

where U0 is the initial energy of the resonator, ω0 the resonance frequency, and
Q quality factor, defined as

Q =











2π
stored energy

energy loss per oscillation

ω0
stored energy

average power loss
.

(4.76)

In words, the energy stored initially in the resonator, U0, attenuates exponen-
tially inversely proportinal to the quality factor Q. According to [52], the time
dependency of energy in Equation (4.75) means that the fields in the resonator
need to attenuate as well. The attenuating electric field does not include only
one frequency, but a superposition of several frequencies, i.e. ω=ω0+∆ω. The
attenuating electric field can be written as:

~E(t) = ~E0e−ω0 t/(2Q)e− j(ω0+∆ω)t , (4.77)

where ~E0 is the initial electric field in the resonator. Equation (4.77) can also be
written equivalently as an integral:

~E(t) =
1
p

2π

∫ ∞

−∞

~E(ω)e− jωtdω, (4.78)
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with

~E(ω) =
1
p

2π

∫ ∞

0

~E0e−ω0 t/(2Q)e− j(ω0+∆ω)tdt. (4.79)

From Equation (4.79) we can deduce the following energy distribution of the
resonator:

|~E(ω)|2 ∼
1

(ω−ω0 −∆ω)2 +
�

ω0
2Q

�2 . (4.80)

The energy distribution is shown schematically in Figure 4.12.

Figure 4.12: A schematic figure of
the energy distribution with
respect to the angular fre-
quency in a lossy resonator.
Γ is the half-width of the res-
onance peak. According to
[52], page 430.

The quality factor Q can be defined using the half-power-width Γ of the resonance
curve in Figure 4.12:

Q =
ω0

Γ
. (4.81)

According to [52], the Q factor can also be written as

Q =
ω0

2Im {ω}
. (4.82)

Equation (4.82) is used to calculate the Q factors in the numerical examples in
the following sections, since the output of the eigenmode solver is the complex
eigenfrequency. As the reference value for the Q factor, a result calculated by a
Power Loss method [40] is used. According to [78], the Q factor for a vacuum-filled
rectangular cavity resonator is given as

Q =
πη0

4RS

2l y(l2
x + l2

z )
2/3

lx lz(l2
x + l2

z ) + 2l y(l3
x + l3

z )
, (4.83)
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where lx , l y , and lz are the dimensions of the rectangular resonator, η0 free-space
wave impedance, and RS surface resistance. As the Q factor is sensitive for the
losses in a resonator, it is an useful parameter to validate and verify the developed
SIBC schemes. Numerical examples and convergence studies are carried out in
the following sections.

4.7.2 Resonator with Lossy Walls

In this section, the SIBC and CSBC schemes are validated and verified. Valida-
tion and verification are done by investigating a cavity resonator with conductive,
lossy walls. First, as a numerical example, Q factors of various cubical cavity res-
onators are investigated. After the numerical example, the convergence studies
of SIBC and CSBC schemes are presented, respectively.

In Section 4.7.2.1, the Q factor of a cubical cavity resonator is investigated, and
the comparison with a commercial software, as well as Power Loss method (see
Section 4.7.1), is carried out. In Sections 4.7.2.2 and 4.7.2.3, the convergence
studies for SIBC and CSBC are presented, by investigating Q factors of cavity
resonators with different sizes, conductivities, and wall roughnesses.

4.7.2.1 Q Factor of Cavity Resonator

In this numerical example, the fundamental resonance frequencies f0, and the Q
factors of rectangular cavity resonators are studied. In addition to the iterative
eigenmode solver introduced in Section 4.6 (later referred to as EMDG), the
results are obtained by the Power Loss method, and CST Microwave Studio ®
(CST) Eigenmode solver.

The fundamental frequencies and the Q factors are calculated for resonators with
edge lengths of 1m and 10, and wall conductivities of 5.8 ·105S/m, 5.8 ·107S/m,
and 5.8 ·109S/m. EMDG and CST Eigenmode solver results are calculated with a
mesh resolution of 10 mesh lines/resonator edge, which corresponds to 14.1 mesh
lines/wavelength, independent of the size of the resonator. The basis function
order for EMDG simulations are zero.

The Q factors of the different resonators, calculated by Power Loss method, CST
Eigenmode solver, and iterative EMDG method are given in Tables 4.1-4.5.
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Table 4.1.: Fundamental resonance frequencies f0 and Q factors of a cavity res-
onator with edge length 10m and wall conductivity of 5.8 ·105S/m obtained
by Power Loss method, EMDG method, and CST Eigenmode solver.

f0 Q factor
Power Loss method 2.1199 ·107Hz 2.32 ·104

EMDG 2.1285 ·107Hz 2.31 ·104

CST EM solver 2.1111 ·107Hz 2.37 ·104

Table 4.2.: Fundamental resonance frequencies f0 and Q factors of a cavity res-
onator with edge length 1m and wall conductivity of 5.8 ·107S/m obtained
by Power Loss method, EMDG method, and CST Eigenmode solver.

f0 Q factor
Power Loss method 2.1199 ·108Hz 7.34 ·104

EMDG 2.1283 ·108Hz 7.32 ·104

CST EM solver 2.1111 ·108Hz 7.50 ·104

Table 4.3.: Fundamental resonance frequencies f0 and Q factors of a cavity res-
onator with edge length 1m and wall conductivity of 5.8 ·109S/m obtained
by Power Loss method, EMDG method, and CST Eigenmode solver.

f0 Q factor
Power Loss method 2.1199 ·108Hz 7.34 ·105

EMDG 2.1284 ·108Hz 7.32 ·105

CST EM solver 2.1111 ·108Hz 7.50 ·105

Table 4.4.: Fundamental resonance frequencies f0 and Q factors of a cavity res-
onator with edge length 10m and wall conductivity of 5.8 ·109S/m obtained
by Power Loss method, EMDG method, and CST Eigenmode solver.

f0 Q factor
Power Loss method 2.1199 ·107Hz 2.32 ·106

EMDG 2.1286 ·107Hz 2.31 ·106

CST EM solver 2.1111 ·107Hz 2.37 ·106
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Table 4.5.: Fundamental resonance frequencies f0 and Q factors of a cavity res-
onator with edge length 1m and wall conductivity of 5.8 ·105S/m obtained
by Power Loss method, EMDG method, and CST Eigenmode solver.

f0 Q factor
Power Loss method 2.1199 ·108Hz 7.34 ·103

EMDG 2.1282 ·108Hz 7.32 ·103

CST EM solver 2.1111 ·108Hz 7.50 ·103

As can be seen in Tables 4.1-4.5, the agreement of EMDG results with the results
obtained by the Power Loss method is very good, on a wide range of conduc-
tivities and resonator sizes. In the following section, the resonators are further
investigated to obtain a convergence study.

4.7.2.2 SIBC Convergence Study

In order to verify SIBC (see implementation in Section 4.5.1), a convergence
study is performed, by investigating cubical cavity resonators with different wall
conductivities and cavity edge lengths. The details of the resonators to be studied
are equivalent with the resonators investigated in the previous section, and the
summary is given in Table 4.6. The Q factors given in the table are calculated by
the Power Loss method, and are used as reference results within the convergence
study. The mesh for SIBC simulations is a simple hexahedral mesh with a mesh
resolution h of 4.2-14.1 mesh element edges/wavelength, see Figure 4.13. The
basis function polynomial orders (P in Equations (3.7) and (3.8) in Section 3.3)
for the simulations are 0, 1, 2, and 3.

Table 4.6.: Specifications and the reference values for the Q factor of the cavity
resonators used as a numerical examples to verify SIBC in frequency domain
DG-FEM.

resonator no. conductivity σ edge length l Q factor
1. 5.8 ·105S/m 10m 2.32 ·104

2. 5.8 ·107S/m 1m 7.34 ·104

3. 5.8 ·109S/m 1m 7.34 ·105

4. 5.8 ·109S/m 10m 2.32 ·106

5. 5.8 ·105S/m 1m 7.34 ·103
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Figure 4.13: A simple hexahedral
mesh used for the simula-
tions. This mesh includes
four elements/resonator edge.
For the cubical cavity res-
onator this equals to 5.7 el-
ements/wavelength regardless
of the size of the edge length of
the cubical cavity resonator.

The results obtained using the procedure described in Section 4.6 are presented
in Figures 4.14 - 4.18. The figures are obtained by calculating the relative error of
the Q factor with respect to the Q factor obtained by Power Loss method (4.83),
see Table 4.6. The relative error ∆rel. of the Q factor is defined as

∆rel. =
|Q−Qref.|

Qref.
, (4.84)

with the reference values given in Table 4.6. The abbreviation Eigenmode DG-
FEM (EMDG) in the figure titles refers to DG-FEM discretized EVP, introduced
previously in Equation (4.69) in Section 4.5. Additionally, the results are com-
pared with the results obtained by CST Eigenmode solver. The CST simulations
are run with a resonator with PEC walls, and the Q factor is calculated in the
post-processing phase.
The accuracy obtained is very high, with the basis function polynomial order 0
is reached relative errors of order 1%, and the smallest reached relative error for
all the examples is of order 10−3%. The convergence rates shown in Table 4.7
follow the hp-convergence rate [7]. Additionally, the tolerance of 10−3 is reached
after only one iteration round in all the simulations.

4.7.2.3 CSBC Convergence Study

In this section, the convergence study for CSBC (Section 4.5.2) is perfomed.
CSBC is very similar to SIBC, only the impedance function (4.25) is different
to SIBC impedance function (4.19). As a test structure, a resonator with wall
conductivity σ = 5.8 ·107S/m and edge length l = 1m is used. Furthermore,
the surface roughnesses hRMS = 0.5δ, hRMS = 1δ, hRMS = 2δ are used. The
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Table 4.7.: Convergence rates for the Q factor of frequency domain DG-FEM
with SIBC with respect to basis function polynomial order p.

resonator no. p = 0 p = 1 p = 2 p = 3
1. h−2 h−2 h−4 h−4

2. h−2 h−2 h−4 h−4

3. h−2 h−2 h−4 h−4

4. h−2 h−2 h−4 h−4

5. h−2 h−2 h−4 h−4

Figure 4.14.: Relative error of the Q factor of the resonator no. 1 (see Table 4.6).
Orders 0-3 refer to basis function polynomial order, and the triangles indicate
the convergence rate. The mesh resolution h is 4.2-14.1 elements/wavelength.
The smallest reached relative error is 8.2775 ·10−5.

skin depth δ is calculated at the corresponding conductivity and the fundamental
resonance frequency. The meshes used for the simulations are equal to the meshes
used in SIBC numerical example and convergence study, see Section 4.7.2.2. The
relative error ∆rel. of the Q factor is defined as

∆rel. =
|Q−Qref.|

Qref.
, (4.85)

while the reference values for the Q-factors are given in Table 4.8.
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Figure 4.15.: Relative error of the Q factor of the resonator no. 2 (see Table 4.6).
Orders 0-3 refer to basis function polynomial order, and the triangles indicate
the convergence rate. The mesh resolution h is 4.2-14.1 elements/wavelength.
The smallest reached relative error is 6.8681 ·10−5.

Figure 4.16.: Relative error of the Q factor of the resonator no. 3 (see Table 4.6).
Orders 0-3 refer to basis function polynomial order, and the triangles indicate
the convergence rate. The mesh resolution h is 4.2-14.1 elements/wavelength.
The smallest reached relative error is 6.9341 ·10−5.
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Figure 4.17.: Relative error of the Q factor of the resonator no. 4 (see Table 4.6).
Orders 0-3 refer to basis function polynomial order, and the triangles indicate
the convergence rate. The mesh resolution h is 4.2-14.1 elements/wavelength.
The smallest reached relative error is 5.1693 ·10−5.

Figure 4.18.: Relative error of the Q factor of the resonator no. 5 (see Table 4.6).
Orders 0-3 refer to basis function polynomial order, and the triangles indicate
the convergence rate. The mesh resolution h is 4.2-14.1 elements/wavelength.
The smallest reached relative error is 4.8170 ·10−5.
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Table 4.8.: CSBC cavity resonator wall roughnesses hRMS with respect to the
skin depth δ, and the reference values for the Q factors.

resonator no. hRMS/δ Q factor
1. 0.5 6.05 ·104

2. 1 4.58 ·104

3. 2 3.89 ·104

The Q factors are obtained by Power Loss method (4.83) with correction in
Equation (4.23) for corrugated surfaces. The results obtained using the proce-
dure described in Section 4.6 are presented in Figures 4.19-4.21. The abbreviation
EMDG in the figure titles refers to DG-FEM discretized EVP, introduced previ-
ously in Section 4.5.
The accuracy obtained is very high, with the basis function polynomial order 0
is reached accuracy of order 1%, and the smallest reached relative error for all
the examples is of order 10−3%. The convergence rates shown in Table 4.9 follow
the hp-convergence rate [7]. Additionally, the tolerance of 10−3 is reached after
only one iteration round in all the simulations.

Table 4.9.: Convergence rates of the Q factors of frequency domain DG-FEM
with CSBC, with respect to basis function polynomial order p.

resonator no. p = 0 p = 1 p = 2 p = 3
1. h−2 h−2 h−4 h−4

2. h−2 h−2 h−4 h−4

3. h−2 h−2 h−4 h−4

4.7.3 Resonator Partitioned by Thin Conductive Sheet

In this section, a cavity resonator partitioned by a thin conductive sheet is in-
vestigated. First, the effect of the sheet thickness on the applicability of ITBC is
investigated, and a comparison with SIBC is carried out. Secondly, a convergence
study of the ITBC scheme is carried out.
In Section 4.7.3.1, the validity of ITBC is investigated by increasing the thick-
ness of the sheet, and comparing the results with SIBC. According to the theory
(section 4.4), the ITBC should approach SIBC, when the thickness of the sheet
increases. This is proved in the following section. In Section 4.7.3.2, the conver-
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Figure 4.19.: Relative error of the Q factor of the resonator no.1 (see Table 4.8).
Orders 0-3 refer to basis function polynomial order, and the triangles indicate
the convergence rate. The mesh resolution h is 4.2-14.1 edges/wavelength.
The smallest reached relative error is 6.8295 ·10−5.

Figure 4.20.: Relative error of the Q factor of the resonator no.2 (see Table 4.8).
Orders 0-3 refer to basis function polynomial order, and the triangles indicate
the convergence rate. The mesh resolution h is 4.2-14.1 edges/wavelength.
The smallest reached relative error is 6.7338 ·10−5.
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Figure 4.21.: Relative error of the Q factor of the resonator no.3 (see Table 4.8).
Orders 0-3 refer to basis function polynomial order, and the triangles indicate
the convergence rate. The mesh resolution h is 4.2 to 14.1 edges/wavelength.
The smallest reached relative error is 6.6674 ·10−5.

gence study of the ITBC is carried out by investigating the Q factor of resonator
equipped with conductive sheets with different geometries and conductivities.

4.7.3.1 Effect of Sheet Thickness

As shown in Figure 4.4 in Section 4.4, the electromagnetic field attenuates rapidly
inside the conductor. The attenuation provides the limit when SIBC becomes
insufficient tool to model a conductor, and one need to apply ITBC instead of
SIBC. If the conductor is thinner than three skin depths, the conductor is consid-
ered transparent, and the electromagnetic field on different sides of the conductor
are dependent on each other. In this case, ITBC is a suitable boundary condi-
tion. When the conductor is thicker that three skin depths, the electromagnetic
field can be considered completely attenuated before it reaches the other side of
the conductor. In this case, SIBC is a suitable choice as a boundary condition.
The aim of this section is to verify, that when the thickness of the conductor
modeled by ITBC increases, the ITBC can be replaced with SIBC. Therefore a
resonator partitioned with a thin sheet with conductivity of 1 ·107S/m and with
different thicknesses has been chosen as a numerical example. The thicknesses of
the chosen sheets can be found in Table 4.13. The thicknesses are also calculated
with respect to the skin depths of the sheets at the fundamental frequencies
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of the resonators. Additionally, the attenuation of the tangential electric field
component of the electromagentic wave traveled across the corresponding sheet,
according to Equation (4.26), is given in the table.

Table 4.10.: Sheet specifications, including thickness d, thickness with respect to
the skin depth δ, and the field attenuation with respect to the skin depth
|~E(z)t|/|~Et(δ)|, for demonstrating the effect of the sheet thickness on the
suitable choice of the impedance boundary condition.

sheet no. thickness d d/δ |~E(z)t|/|~Et(δ)|
1. 10µm 0.9 40%
2. 30µm 2.7 6.4%
3. 60µm 5.5 0.41%
4. 90µm 8.2 0.027%
5. 120µm 11.0 0.0017%

Let us recall the impedance matrix of the ITBC model (4.57):

�

~n× ~n× ~E0

~n× ~n× ~Ed

�

=
�

z11 −z12
z12 −z11

�

�

~n× ~H0

~n× ~Hd

�

, (4.86)

where z11 and z12 are the impedance parameters (Equations (4.31) and (4.32)),
and the subscript 0 and d indicate the different sides of the sheet. To compare
the ITBC and SIBC, when the thickness of the sheet increases, the simulations
are run also with a modified matrix:

�

~n× ~n× ~E0

~n× ~n× ~Ed

�

=
�

Z 0
0 −Z

�

�

~n× ~H0

~n× ~Hd

�

, (4.87)

where Z is the standard SIBC function (4.19). According to the theory [90], the
SIBC approximation is valid, when the thickness of the sheet is three times the
skin depth. In Table 4.11 and Figures 4.22 and 4.23 are presented the relative
deviations of the Q factor obtained with the ITBC model, with respect to the Q
factor obtained with the modified ITBC matrix given in Equation (4.87). This
reference Q facor is denoted as QSIBC.The relative deviation is defined as

∆rel. =
|Q−QSIBC|

QSIBC
. (4.88)
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The reference value QSIBC is calculated with mesh density 11.3 elements/wavelength
and the basis function order 3.

Table 4.11.: The deviation between the ITBC and the SIBC approximations when
the thickness of the sheet increases for the basis function order 0 and for the
mesh resolution h 17 elements/wavelength. In the table is shown the relative
error of Q factor (∆rel.) with respect to the sheet thickness. As the theory
predicts, the deviation between ITBC and SIBC gets insignificant when the
sheet thickness d is greater than three skin depths.

sheet no. d/δ ∆rel.
1. 0.9 700%
2. 2.7 6.3%
3. 5.5 0.14%
4. 8.2 0.16%
5. 11.0 0.13%

As can be seen, the relative deviation is significant, when the sheet thickness is
greater than skin depth. However, the deviation decreases rapidly, and remains
at approximately 0.1% at the thicknesses higher than 5.5 skin depths.

4.7.3.2 ITBC Convergence Study

In order to verify ITBC scheme (see Section 4.4), a convergence study is per-
formed. The test structure is a cavity resonator with edge length l = 1m, and
with perfectly conducting (PEC) walls. Additionally, the resonator is parti-
tioned into two with a thin, conductive sheet, on which the ITBC is applied.
Three different thin sheets are chosen, with the specifications given in Table
4.12.

Table 4.12.: Conductivities and thicknesses of the thin sheets used in ITBC sim-
ulations. Thicknesses are given in terms of absolute thickness δ, as well as
with respect to the skin depth d.

sheet no. conductivity σ thickness d d/δ
1. 107S/m 10µm 0.9
2. 107S/m 30µm 2.7
3. 107S/m 60µm 5.5
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Figure 4.22.: The deviation between the ITBC and the SIBC approximations
when the thickness of the sheet increases. The basis function order for the
ITBC simulations is 0. The relative error of Q factor (∆rel., z-axis) is plotted
with respect to the mesh resolution h (in elements/wavelength, x-axis) and
the sheet thickness d (in skin depths δ, y-axis). As the theory predicts,
the deviation between ITBC and SIBC gets insignificant when the sheet
thickness d is greater than three skin depths. The quantitative analysis of
the deviation is given in Table 4.11.

The conductivity of all the sheets is the same σ = 1 ·107S/m, while the thick-
nesses vary from 10µm to 60µm, which correspond to 0.9 to 5.5 skin depths
at the fundamental frequency f0 of the resonator (see Table 4.13). The mesh
for the ITBC simulations is a simple hexahedral mesh, but unlike with SIBC
and CSBC meshes (Figure 4.13), the mesh elements are not cubical. Due to the
presence of the sheet, the field variation in the direction of normal to the sheet
is much greater than in other two directions, and therefore the mesh density is
twice as fine in normal direction. See an exemplary mesh in Figure 4.24. The
basis function polynomial orders are chosen to be 0, 1, and 2.
The results obtained using the procedure described earlier are presented in Fig-
ures 4.25-4.30. The abbreviation EMDG in the figure titles refers to DG-FEM
discretized EVP, introduced previously in Section 4.5. In this numerical exam-
ple also the fundamental resonance frequency f0 is investigated. The figures
are obtained by calculating the relative errors of the fundamental frequency f0
and the corresponding Q factor with respect to the results obtained by simu-
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Figure 4.23.: The deviation between the ITBC and the SIBC approximations
when the thickness of the sheet increases. The basis function order for the
ITBC simulations is 1. The relative error of Q factor (z-axis) is plotted
with respect to the mesh resolution h (in elements/wavelength, x-axis) and
the sheet thickness d (in skin depths δ, y-axis). As the theory predicts,
the deviation between ITBC and SIBC gets insignificant when the sheet
thickness d is greater than three skin depths.

Figure 4.24: A simple hexahedral
mesh used for the ITBC simula-
tions. This mesh includes eight
elements/resonator edge in two
directions, and 16 elements in
the direction normal to the sheet.
To emphasize the location of the
sheet, it is denoted with a thick
solid line. Nevertheless, the sheet
is replaced only with a normal el-
ement interface, as described in
section 4.4.

lations with basis function polynomial order 3 and the mesh resolution h 11.3
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elements/wavelength. The reference values are given in Table 4.13. The relative
errors ∆Q, rel. and ∆f, rel. are defined as

∆Q, rel. =
|Q−Qref.|

Qref.
, and ∆f, rel. =

| f0 − fref.|
fref.

. (4.89)

Table 4.13.: Reference values of resonance frequencies f0 and Q factors used in
ITBC convergence study.

resonator no. f0 Q factor
1. 0.21198GHz 3.68 ·104

2. 0.21198GHz 4.28 ·104

3. 0.21198GHz 4.57 ·104

The accuracy obtained is very high, with the basis function polynomial order
0 is reached accuracy of order 1 ·10−2% for the Q factor and 1 ·10−5% for the
resonance frequency. The convergence rates shown in Table 4.14 follow the hp-
convergence rate [7]. Additionally, the tolerance of 10−3 is reached after only one
iteration round in all the simulations.

Table 4.14.: Convergence rates of the Q factors and the resonance frequencies f0
of frequency domain DG-FEM with ITBC with respect to the basis function
polynomial order p.

resonator no.
p = 0 p = 1 p = 2

f0 Q f0 Q f0 Q
1. h−2 h−2 h−3 h−2 h−7 h−3

2. h−2 h−5 h−3 h−2 h−7 h−3

3. h−2 h−3 h−3 h−2 h−7 h−3
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Figure 4.25.: Relative error of the fundamental frequency of a resonator parti-
tioned by a sheet no. 1 (Table 4.12). Orders 0-2 refer to basis function
polynomial order, and the triangles indicate the convergence rate. The mesh
resolution h is 5.6-45.2 edges/wavelength in direction of normal to the sheet
(see Figure 4.24). The smallest reached relative error is 2.3 ·10−5.

Figure 4.26.: Relative error of the Q factor of a resonator partitioned by a sheet
no. 1 (Table 4.12). Orders 0-2 refer to basis function polynomial order, and
the triangles indicate the convergence rate. The mesh resolution h is 5.6-45.2
edges/wavelength in direction of normal to the sheet (see Figure 4.24). The
smallest reached relative error is 8.3 ·10−4.
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Figure 4.27.: Relative error of the fundamental frequency of a resonator parti-
tioned by a sheet no. 2 (Table 4.12). Orders 0-2 refer to basis function
polynomial order, and the triangles indicate the convergence rate. The mesh
resolution h is 5.6-45.2 edges/wavelength in direction of normal to the sheet
(see Figure 4.24). The smallest reached relative error is 2.4 ·10−5.

Figure 4.28.: Relative error of the Q factor of a resonator partitioned by a sheet
no. 2 (Table 4.12). Orders 0-2 refer to basis function polynomial order, and
the triangles indicate the convergence rate. The mesh resolution h is 5.6-45.2
edges/wavelength in direction of normal to the sheet (see Figure 4.24). The
smallest reached relative error is 7.9 ·10−5.
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Figure 4.29.: Relative error of the fundamental frequency of a resonator parti-
tioned by a sheet no. 3 (Table 4.12). Orders 0-2 refer to basis function
polynomial order, and the triangles indicate the convergence rate. The mesh
resolution h is 5.6-45.2 edges/wavelength in direction of normal to the sheet
(see Figure 4.24). The smallest reached relative error is 2.4 ·10−7.

Figure 4.30.: Relative error of the Q factor of a resonator partitioned by a sheet
no. 3 (see Table 4.12). Orders 0-2 refer to basis function polynomial order,
and the triangles indicate the convergence rate. The mesh resolution h is
5.6-45.2 edges/wavelength in direction of normal to the sheet (see Figure
4.24). The smallest reached relative error is 5.3 ·10−4.
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5 Dispersive Boundary Conditions in
Time Domain

In the previous chapter, the dispersive impedance boundary conditions were in-
troduced, and the implementation for frequency domain DG-FEM was proposed.
Additionally, a scheme to take the dispersivity of the impedance boundary con-
ditions on a wide frequency band into account in frequency domain simulations,
was proposed.

In this chapter, the dispersive impedance boundary conditions are considered in
time domain simulations. The dispersive impedance functions are approximated
in the frequency domain, and then transformed into the time domain. The trans-
formation is discretized in time, exploiting two known methods, RC and ADE
methods. Finally, an implementation for time domain DG-FEM is proposed,
and the proposed schemes are verified by numerical examples and convergence
studies. Additionally, the RC and ADE approaches are compared in terms of
accuracy and simulation times.

5.1 Introduction

Modeling dispersive phenomena, like surface impedance boundary conditions, in
the frequency domain is often straightforward, and the simulation times are typ-
ically short. However, the major disadvantage of frequency domain simulations
is that they are, in general, only capable to solve for a single frequency at one
simulation.
In contrast, in the Time Domain (TD), it is possible to solve for several fre-
quencies at a single simulation run. Additionally, modeling of transient signals
is only possible in the time domain, as the transient signal consists of several fre-
quencies. However, modeling of dispersive phenomena requires special treatment
in the time domain, while being trivial in the frequency domain. Time domain
modeling can also be time-consuming compared to frequency domain modeling.
The boundary conditions presented previously in Chapter 4, are all frequency
dependent, i.e. dispersive. In this chapter, two different approaches to model
these dispersive boundary conditions in the time domain are described, namely
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RC and ADE methods. Additionally, an implementation of these methods to DG-
FEM is presented. The ADE scheme for modeling surface impedance boundary
conditions is partly published by the author in [98].
As in Chapter 4, the plot of this chapter is to find a numerical solution for the
source-free Maxwell’s equations in a computational domain Ω, now in the time
domain:



















∇× ~E =−
∂ ~B

∂ t
in Ω

∇× ~H =
∂ ~D

∂ t
in Ω

~n× ~n× ~E = f (ω)(~n× ~H) on ∂Ω.

(5.1)

The boundary condition ~n× ~n× ~E = f (ω)(~n× ~H) connects the tangential elec-
tric field with the tangential magnetic field, on the boundary surrounding the
conductor excluded from the computational domain.
The procedure for modeling dispersive boundary conditions, and consequently
also the coarse outline of this chapter, is the following:

• Approximate the dispersive boundary condition function in the frequency
domain (Section 5.2)

• Transform the approximation into the time domain (Section 5.3)

• Discretize the transformed approximation in time (Sections 5.3.3, 5.3.4)

• Integrate the transformation to the Maxwell’s equations (Section 5.4)

After these steps, numerical examples and convergence studies are presented in
Section 5.5, in order to verify and validate the obtained schemes.

5.1.1 Significance of Dispersivity in TD Simulations

As an introduction to modeling dispersive impedance boundary conditions, the
importance of considering the dispersivity of the impedance functions in time
domain modeling, is pointed out in this section. Figure 5.1(a) shows a time
signal of a lossless cubical cavity resonator. The signal is a sum of the five lowest
resonance frequencies of a resonator, as can be seen in Figure 5.1(b), which shows
the spectrum of the signal.
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(a) (b)

Figure 5.1.: The time signal (a) of a lossless cubical cavity resonator, and the
spectrum of the signal (b).

The impedance function (4.19) gets significantly different values at the different
resonance frequencies. The resonance frequencies, the real parts of the impedance
function values at the resonance frequencies, as well as the relative deviations of
the impedances with respect to the impedance at the fundamental frequency are
summarized in Table 5.1.

Table 5.1.: Resonance frequencies, respective real parts of the impedance function
values and their relative differences with respect to the impedance value at
the fundamental frequency f0.

i resonance frequency fi impedance Z( fi) |Z( fi)− Z( f0)|/Z( f0)
0 0.21199GHz 100mΩ −
1 0.25963GHz 112mΩ 10.7%
2 0.29979GHz 119mΩ 18.9%
3 0.33518GHz 127mΩ 25.7%
4 0.36717GHz 133mΩ 31.6%

The difference of the impedance values at the fundamental and the fifth resonance
frequncies is as high as 31.6%. A constant approximation of the impedance
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function would lead to inaccurate results, and it is therefore highly important to
take the frequency dependency into account in the time domain simulations.

5.2 Rational Approximation of Impedance Functions in FD

The first step to model the dispersive impedance functions in the time domain,
is to approximate the functions in the frequency domain. In this thesis, this is
done by the vector fitting procedure [39], [38], [22]. The vector fitting package
is available for downloading at the VECTFIT website [37]. The idea is to fit a
complex function as a sum of rational functions, and the details of the fitting
procedure can be found in the aforementioned references. In this section, the
fitting procedure is applied to the impedance boundary condition function. Let
the impedance function to be fitted be Z(ω) and the approximation obtained by
vector fitting ZVF(ω). The approximation can be written as:

Z(ω)≈ ZVF(ω) =
P
∑

i=1

ci

jω− ai
, (5.2)

where P is the number of interpolants, and ai , ci real fitting parameters. The first
order rational functions in (5.2) correspond to the Drude model [24] of dispersive
medium.
The approximation ZVF(ω) is a compromise between accuracy, computational
cost of the time domain simulation, and the width of the frequency band. In this
section a rationale for the choices made to obtain the optimal approximation is
given. A high number P of interpolants leads to a high accuracy over a wide
frequency band. However, the cost of the accuracy is a higher computational
cost in time domain simulations. To give an idea of the compromise, the SIBC
impedance function (4.19) is fitted:

Z(ω) =

r

jωε

σ+ jωµ
(5.3)

with the following material parameters: Conductivity σ = 5.8 ·105S/m, permit-
tivity ε = ε0 and permeability µ= µ0. The fitting with two different numbers of
interpolants is performed: P = 5 and P = 10, as well as with two different fre-
quency bands, ∆ω = 107...10101/s and ∆ω = 106...10111/s. This means, a low
and high number of interpolants, and wide and narrow frequrency band, as well
as combinations of these. Consequently, four different impedance approximations
are obtained for the impedance function (4.19):
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ZVF1(ω) =
5
∑

i=1

ci1

jω− ai1
, 1071/s<ω< 10101/s, (5.4)

ZVF2(ω) =
10
∑

i=1

ci2

jω− ai2
, 1071/s<ω< 10101/s (5.5)

ZVF3(ω) =
5
∑

i=1

ci3

jω− ai3
, 1061/s<ω< 10111/s, (5.6)

ZVF4(ω) =
10
∑

i=1

ci4

jω− ai4
, 1061/s<ω< 10111/s, (5.7)

with the fitting parameters a1i , a2i , a3i , a4i and c1i , c2i , c3i , c4i given in Tables A.1,
A.2, A.3, and A.4 in Appendix A. These fittings are used in convergence studies
in Section 5.5. The relative deviation ∆rel., the maximum value of the deviation
∆max, and Coefficient of Variation (CV) for the real parts of the approximations
are defined as follows:

∆rel.,i =
|Re {Zi(ω)} −Re {ZVF,i(ω)}|

Re {Zi(ω)}
(5.8)

∆max =max
�

∆rel.
�

(5.9)

∆CV =
∆RMS

Re {Z(ω)}
, (5.10)

with RMS deviation

∆RMS =

È

∑N
i=1[Re {Zi(ω)} −Re {ZVF,i(ω)}]2

N
, (5.11)

where Zi and ZVF,i are the impedance function values evaluated at frequency
point i, and N is the number of frequency points of the approximation (in this
case N = 1000). The mean value of the impedance function Z(ω) is denoted as
Z(ω). The deviations of imaginary parts are defined respectively.
The real parts of the impedance approximations ZVF1(ω) − ZVF4(ω), as well
as their relative deviations with respect to analytic impedance function (4.19)
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are shown in Figure 5.2. The imaginary parts and the deviations are presented
respectively in Figure 5.3.
The maximum relative deviations (5.9) and the CV deviations (5.10) of the
impedance approximation ZVF1(ω)− ZVF4(ω) are presented in Tables 5.2 and
5.3.

Table 5.2.: Maximum relative deviations ∆max and CV deviations ∆CV of the
real parts of the impedance approximations ZVF1(ω) -ZVF4(ω).

∆max ω(∆max) ∆CV
ZVF1 2600% 1 ·10101/s 16%
ZVF2 140% 1 ·10101/s 0.7%
ZVF3 30000% 1 ·10111/s 240%
ZVF4 25000% 1 ·10111/s 220%

Table 5.3.: Maximum relative deviations ∆max and CV deviations ∆CV of the
imaginary parts of the impedance approximations ZVF1(ω) -ZVF4(ω).

∆max ω(∆max) ∆CV
ZVF1 3500% 1 ·1071/s 9.8%
ZVF2 240% 1 ·1071/s 1.2%
ZVF3 16000% 6 ·10101/s 170%
ZVF4 18000% 1 ·10111/s 180%

As can be seen in Figures 5.2, 5.3, and Tables 5.2, 5.3, the approximation gets
more accurate when the number of interpolants P increases, and when the fre-
quency band ∆ω gets narrower. However, the maximum values of the relative
deviation ∆rel. are at maximum in the extremities of the frequency band, as
can be seen in Tables 5.2 and 5.3. In contrast, in the middle of the frequency
band, the relative deviation is very small, see Figures 5.2 and 5.3. When the
lack of accuracy of the approximations in the extremities of the frequency band
is considered, the obtained accuracy of the approximation is very high.
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Figure 5.2.: The real parts of the analytic impedance function Z(ω) and vector
fitting approximations ZVF1(ω)-ZVF4(ω) are shown in the upper figure. The
lower figure shows the relative deviations of the approximations with respect
to the analytic impedance function Re {Z(ω)}.
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Figure 5.3.: The imaginary parts of the analytic impedance function Z(ω) and
vector fitting approximations ZVF1(ω)-ZVF4(ω) are shown in the upper fig-
ure. The lower figure shows the relative deviations of the approximations
with respect to the analytic impedance function Im {Z(ω)}.

91



5.3 Transform from FD into TD

In this section is explained how the dispersive impedance boundary conditions
are approximated and transformed into the frequency domain. At first, some
prerequisities and properties of the transform are introduced.

5.3.1 Linearity and Causality of a Physical System

Let us assume a deterministic system described by an input function I , output
function O, and the response function R, which are connected via the following
equation [80]:

O = R{I}. (5.12)

Let us define some prerequisities for a physical system, which we require to be
fulfilled within this thesis.

(1) A system described by equation (5.12) is linear, if for two inputs, I1 and
I2 and two outputs, O1 and O2, the following equation applies [80]:

R{αI1 + β I2}= αO1 + βO2. (5.13)

(2) A system is required to be causal, i.e. an input at time instance t should
not produce an output earlier than t, and that two equal inputs can only
produce equal outputs [80], [72], i.e.:

R(t) = 0 for t < 0. (5.14)

and

I1 = I2⇒ O1 = O2. (5.15)

(3) A physical system requires that a real input have to produce a real output.
Consequently the response function must be real for all real values of t.
However, input and output do not have to be real themselves [80].

(4) A finite output for a physical system has to cause a finite output which
decreases monotonically over time [80].
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5.3.2 Laplace Transform

Laplace transform is an integral transform of a function f (t) with a real argument
t, that tranforms f (t) into a function F(s) with a complex argument s = jω. The
Laplace transform is defined as [19]:

F(s) =L{ f (t)}=

∞
∫

−∞

f (t)e−stdt, Re{s}> α, (5.16)

and it’s inverse as [19]:

f (t) =L −1{F(s)}=
1

2π j

c+∞
∫

c−∞

F(s)estds, c > α, (5.17)

where α is the abscissa of the convergence1. There are two important properties
of Laplace transform [19], which are very useful in this work. First, the Laplace
transform is a linear operator (5.13), i.e. for two functions, f (t) and g(t), with
their Laplace transforms F(s) and G(s) holds

L{a f (t) + bg(t)}= aF(s) + bG(s), (5.18)

where a and b are arbitrary constants. Second important property of the Laplace
transform is, that the Laplace transform of the convolution of two functions f (t)
and g(t) with real arguments, is a multiplication:

L{ f (t) ∗ g(t)}= F(s)G(s), (5.19)

where ∗ is the convolution operation, defined as

f (t) ∗ g(t) =

∫ ∞

0

f (t)g(t −τ)dτ. (5.20)

1 The function F(s) is analytic in the half-plane Re{s}> α.
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5.3.3 Recursive Convolution (RC)

In this section, Oh’s [71] approach to model the dispersive boundary conditions
in the time domain, using recursive convolution, is introduced. Let us begin with
the standard SIBC approach, intoduced in Section 4.2.1. Denoting the tangential
magnetic field on the surface ~n× ~H as ~Ht , and the tangential electric field ~n×~n×~E
as ~Et , the relation between them (4.20) can be written in the frequency domain
as

~Et(ω) = Z(ω)~Ht(ω). (5.21)

According to Equation (5.19), Equation (5.21) can be written as a convolution
integral in the time domain:

~Et(t) = Z(t) ∗ ~Ht(t) =

∞
∫

−∞

Z(t −τ)~Ht(τ)dτ. (5.22)

Let us recall the impedance function rational approximation in the frequency
domain obtained by vector fitting procedure (5.2):

Z(ω)≈
P
∑

i=1

ci

jω− ai
, (5.23)

where P is the number of rational interpolants, and ai , ci are real fitting pa-
rameters. Taking the inverse Laplace transform (5.17) of ith rational interpolant
(5.23) leads into:

L −1
�

ci

jω− ai

�

= cie
ai tu(t), (5.24)

with the Heaviside step function u(t):

u(t) =

(

0, t < 0

1, t ≥ 0.
(5.25)

The Heaviside step function can be dropped out, as we are only interested in the
region t ≥ 0. Taking into account all the interpolants, the impedance function
in the time domain can be written as:
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Z(t) =
P
∑

i=1

cie
ai t , t ≥ 0. (5.26)

Inserting the impedance function in the time domain (5.26) into the convolution
integral (5.19) leads to

~Et(t) = Z(t) ∗ ~Ht(t) =
P
∑

i=1

∞
∫

0

cie
ai(t−τ) ~Ht(τ) dτ. (5.27)

In the discrete time domain, assuming piecewise linear magnetic field ~Ht , the
electric field at the time step ∆t, i.e. ~Et(n∆t) = ~En

t , is given as

~En
t =

P
∑

i=1

n
∑

m=0

m∆t
∫

(m−1)∆t

e−ωi(n∆t−τ)

�

~Hm−1
t + (τ− (m− 1)∆t)

~Hm
t − ~H

m−1
t

∆t

�

dτ.

(5.28)

Next, the integration is carried out over τ. Then, the nth term is taken out of the
sum, and the remainings are written in terms of ~En−1

t and ~Hn−1
t . Eventually the

following equation can be written for the electric field ~En in terms of an auxiliary
variable ~R i :

~En
t =

P
∑

i=1

�

ζRi1
~Hn

t + ζ
R
2i
~Hn−1

t + ζR3i
~Rn−1

i

�

, (5.29)

with coefficients

ζR1i =
ci

ai

�

1+
1

∆tai
(e−ai∆t − 1)

�

(5.30)

ζR2i =
ci

ai

�

1

∆tai
− e−ai∆t

�

1+
1

∆tai

��

(5.31)

ζR3i =
ci

ai
e−ai∆t . (5.32)
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The details of the derivation can be found in [71]. The impedance boundary con-
dition in Equation (5.21) can now be approximated in the discrete time domain
as:







~En
t =

P
∑

i=1

~Rn
i

~Rn
i = ζ

R
1i
~Hn

t + ζ
R
2i
~Hn−1

t + ζR3i
~Rn−1

i .

(5.33)

Equations (5.33) are defined using spatially continuous variables, i.e. continu-
ous tangential electric and magnetic fields. The spatially discrete counterpart
of Equation (5.33) for the time domain simulations in introduced later in Sec-
tion 5.4.1. However, first the ADE method is introduced, also first for spatially
continuous variables.

5.3.4 Auxiliary Differential Equation (ADE)

In this chapter an overwiev of ADE method to model the dispersive surface
impedance function in the time domain is given. ADE method has been utilized
in e.g. [31] for modeling dispersive media. As with RC in the previous section
5.3.3, let us begin with the standard SIBC approach presented in Section 4.2.1.
Denoting the tangential magnetic field on the surface ~n × ~H as ~Ht , and the
tangential electric field ~n× ~n× ~E as ~Et , the relation between them (4.20) can be
written in the frequency domain as

~Et(ω) = Z(ω)~Ht(ω). (5.34)

Again, let us recall the vector fitting approximation (5.2) for the impedance
function:

Z(ω)≈
P
∑

i=1

ci

jω− ai
, (5.35)

where P is the number of rational interpolants, and ai , ci are real fitting pa-
rameters. Let us insert the impedance approximation (5.35) into the frequency
domain expression for SIBC (5.34), to obtain an approximative relation between
tangential electric and magnetic fields on the surface:
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~Et(ω)≈
P
∑

i=1

ci ~Ht(ω)
jω− ai

. (5.36)

Let us call the ith term of the sum in Equation (5.36) as an auxiliary variable,
denoted as ~Ai and defined as:

~Ai =
ci ~Ht(ω)
jω− ai

, (5.37)

and furthermore:

~Et(ω)≈
P
∑

i=1

~Ai . (5.38)

Multiplying both sides of Equation (5.37) by the denominator of the right-hand
side ( jω− ai) leads to:

( jω− ai) ~Ai(ω) = ci ~Ht(ω), (5.39)

and furthermore to

jω ~Ai(ω)− ai ~Ai(ω) = ci ~Ht(ω). (5.40)

Taking the inverse Laplace transform (5.17) of both sides of Equation (5.40)

L −1
¦

jω ~Ai(ω)− ai ~Ai(ω)
©

=L −1
¦

ci ~Ht(ω)
©

(5.41)

leads to:

d
dt

~Ai(t)− ai ~Ai(t) = ci ~Ht(t). (5.42)

Let us next apply the implicit backward Euler method [8] to Equation (5.42) in
order to obtain a discrete time domain scheme. The tangential magnetic field ~Ht
and the auxiliary varible ~Ai at the time step n∆t are denoted as ~Hn

t , and ~A n
i ,

respectively. The discrete time domain scheme can therefore be written as:

1

∆t

�

~A n+1
i − ~A n

i

�

− ai ~A n+1
i = ci ~H

n+1
t . (5.43)
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The auxiliary variable ~Ai at the time step (n+1)∆t can consequently be written
as

~A n+1
i = ζAi1 ~A

n
i + ζ

A
i2
~Hn+1

t , (5.44)

or accordingly at time step n∆t as

~A n
i = ζ

A
i1
~A n−1
i + ζAi2 ~H

n
t , (5.45)

with coefficients

ζAi1 =
1

1− ai∆t
(5.46)

ζAi2 =
ci∆t

1− ai∆t
. (5.47)

The impedance boundary condition in Equation (5.34) can now be written in the
discrete time domain as







~En
t =

P
∑

i=1

~A n
i

~A n
i = ζ

A
1i
~A n−1
i + ζA2i

~Hn
t .

(5.48)

The Equations (5.48) are defined using spatially continuous variables, i.e. contin-
uous tangential electric and magnetic fields. The spatially discrete counterpart
of Equation (5.48) for the time domain simulations in introduced later in Section
5.4.2.

5.4 TD Solver Implementation

In the previous sections, two methods to approximate the surface impedance
boundary conditions in discrete time domain, namely RC and ADE methods,
were introduced. In this section the implementation of these methods to DG-
FEM is presented. This means, in addition to temporally discrete scheme pre-
sented in the previous sections, spatially discrete schemes are obtained. Let us
recall the boundary value problem (5.1) given in the introduction of this chapter
(Section 5.1):
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

















∇× ~E =−
∂ ~B

∂ t
in Ω

∇× ~H =
∂ ~D

∂ t
in Ω

~n× ~n× ~E = f (ω)(~n× ~H) on ∂Ω.

(5.49)

Accordingly to the DG-FEM frequency domain formulation (4.2) in Section 4,
we can write the equations in the following, spatially discrete, form:







CBe(t) +
d
dt

Mµh(t) = CZet(t)

CDh(t)−
d
dt

Mεe(t) = 0,
(5.50)

where et(t) is the DG-FEM discretized counterpart for the tangential electric
field ~Et(t) = ~n× ~n× ~E(t), matrices CB, CD, Mµ, and Mε as defined in Equations
(3.14)-(3.17), and the matrix CZ is equal to the frequency domain definition in
Equation (4.52) in Section 4.5. Let us next apply RC and ADE methods, and
Verlet intergration presented in Section 3.4.2, to obtain a DG-FEM time-stepping
scheme.

5.4.1 DG-FEM in Time Domain with RC

The approximation of the tangential electric field ~Et in the discrete time domain
in terms of RC method reads as in Equation (5.33):







~En
t =

P
∑

i=1

~Rn
i

~R i
n = ζ

R
1i
~Hn

t + ζ
R
2i
~Hn−1

t + ζR3i
~Rn−1

i .

(5.51)

The DG-FEM discretized counterpart for the aforementioned equations are:







en
t =

P
∑

i=1

Rn
i

Rn
i = ζ

R
1ih

n
t + ζ

R
2ih

n−1
t + ζR3iR

n−1
i .

(5.52)
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The definition of the auxiliary variable Ri differs from the definition of ~Ri in
Equation (5.33) slightly. The auxiliary variable Ri is now a column vector with
the same dimension as h, i.e. NH , see Equation (3.8) in Section 3.3. Substituting
en

t in Equation (5.50) with Equations (5.52) and applying Verlet integrator (3.21)
leads to:



























































CBen +Mµ

1

∆t/2
(hn+ 1

2 − hn− 1
2 ) = CZ

P
∑

i=1

R
n− 1

2
i

R
n+ 1

2
i = ζR1ih

n+ 1
2

t + ζR2ih
n− 1

2
t + ζR3iR

n− 1
2

i

CDhn+ 1
2 −Mε

1

∆t
(en+1 − en) = 0

CBen+1 +Mµ

1

∆t/2
(hn+ 3

2 − hn+ 1
2 ) = CZ

P
∑

i=1

R
n+ 1

2
i .

R
n+ 3

2
i = ζR1ih

n+ 3
2

t + ζR2ih
n+ 1

2
t + ζR3iR

n+ 1
2

i .

(5.53)

Solving for the electric and magnetic degrees of freedom at time steps (n+ 1
2
)∆t,

(n+ 1)∆t, and (n+ 3
2
)∆t according to Verlet method (3.22) leads to:























































hn+ 1
2 = hn− 1

2 −C′Ben +C′Z

P
∑

i=1

R
n− 1

2
i

R
n+ 1

2
i = ζR1ih

n+ 1
2

t + ζR2ih
n− 1

2
t + ζR3iR

n− 1
2

i

en+1 = en +C′Dhn+ 1
2

hn+ 3
2 = hn+ 1

2 −C′Ben+1 +C′Z

P
∑

i=1

R
n+ 1

2
i

R
n+ 3

2
i = ζR1ih

n+ 3
2

t + ζR2ih
n+ 1

2
t + ζR3iR

n+ 1
2

i

(5.54)

with matrices:

C′B = 2∆tM−1
µ CB, C′Z = 2∆tM−1

µ CZ and C′D =∆tM−1
ε CD. (5.55)

Equations (5.54) are the time-stepping scheme for time-domain DG-FEM with
RC method. The equations are used to obtain the results for convegence studies
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later in Section 5.5. In the next section, the corresponding time-stepping scheme
for ADE method is introduced.

5.4.2 DG-FEM in Time Domain with ADE

The approximation of the tangential electric field ~Et in the discrete time domain
in terms of ADE method reads as in Equation (5.48):







~En
t =

P
∑

i=1

~A n
i

~A n
i = ζ

A
1i
~A n−1
i + ζA2i

~Hn
t .

(5.56)

The DG-FEM discretized counterpart for the aforementioned equations are:







en
t =

P
∑

i=1

A n
i

A n
i = ζ

A
1ih

n
t + ζ

A
2iA

n−1
i .

(5.57)

The definition of the auxiliary variable Ri differs from the definition of ~Ai in
Equation (5.48) slightly. The auxiliary variable Ai is now a column vector with
the same dimension as h, i.e. NH , see Equation (3.8) in Section 3.3. Substituting
en

t in Equation (5.50) with Equations (5.57) and applying Verlet integrator (3.21)
leads to:



























































CBen +Mµ

1

∆t/2
(hn+ 1

2 − hn− 1
2 ) = CZ

P
∑

i=1

A
n− 1

2
i

A
n+ 1

2
i = ζA1ih

n+ 1
2

t + ζA2iA
n− 1

2
i

CDhn+ 1
2 −Mε

1

∆t
(en+1 − en) = 0

CBen+1 +Mµ

1

∆t/2
(hn+ 3

2 − hn+ 1
2 ) = CZ

P
∑

i=1

A
n+ 1

2
i .

A
n+ 3

2
i = ζA1ih

n+ 3
2

t + ζA2iA
n+ 1

2
i .

(5.58)

Solving for the electric and magnetic degrees of freedom at the time steps (n+
1
2
)∆t, (n+ 1)∆t, and (n+ 3

2
)∆t according to Verlet method (3.22):
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(5.59)

with matrices

C′B = 2∆tM−1
µ CB, C′Z = 2∆tM−1

µ CZ and C′D =∆tM−1
ε CD. (5.60)

Equations (5.59) are the time-stepping scheme for time-domain DG-FEM with
ADE method. The equations are used to obtain the results for numerical exam-
ples and convergence studies later in Section 5.5. In the next section, ADE and
RC methods are compared in terms of accuracy and computational cost.

5.4.3 Comparison of ADE and RC Methods

The SIBC with DG-FEM discretized electric and magnetic fields reads as

et(ω) = Z(ω)ht(ω), (5.61)

and the DG-FEM discretized Maxwell’s equations (4.53) in the time domain as:







CBe(t) +
d
dt

Mµh(t) = CZet(t)

CDh(t)−
d
dt

Mεe(t) = 0,
(5.62)

The SIBC in terms of RC method reads in discrete time domain as:
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(5.63)

with matrices C′B, C′Z, and C′D defined in Equation (5.55), and with coefficients

ζR1i =
ci

ai

�

1+
1

∆ai
(e−ai∆t − 1)

�

(5.64)

ζR2i =
ci

ai

�

1

∆ai
− e−ai∆t

�

1+
1

∆ai

��

(5.65)

ζR3i =
ci

ai
e−ai∆t . (5.66)

Respectively, the ADE method reads as
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(5.67)

with matrices C′B, C′Z, and C′D defined in Equation (5.55), and with coefficients
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ζAi1 =
1

1− ai∆t
(5.68)

ζAi2 =
ci∆t

1− ai∆t
. (5.69)

As can be seen in Equation (5.63), computing the auxiliary RC variable R
n+ 1

2
i

requires a sum of three vectors: hn+ 1
2 , hn− 1

2 , and R
n− 1

2
i , i.e. the current magnetic

field, the magnetic field at the previous time step, and the auxiliary variable at
the previous time step, respectively. The sum needs to be computed P times, for
each of the in total P auxiliary variables. Additionally, the sum of the auxiliary
variables need to be multiplied with the matrix C′Z and summed up when com-

puting the magnetic field hn+ 1
2 . Therefore the number of additional operations

at every half time step is five. Not only the number of additional operations per
time step affects on computational cost, but also the additional memory needed
to store the additional vectors. The additional vectors to be stored in RC method
at every half time step, are R

n− 1
2

i (∀i = 1..P),
∑P

i=1R
n+ 1

2
i , and hn− 1

2 , i.e. in total

P + 2 vectors. The current magnetic field hn+ 1
2 is needed also for computing the

current electric field en+1, and therefore does not count in additional vectors due
to RC method.

Computing the ADE auxiliary variable Ai (5.67) requires a sum of two vectors:

hn+ 1
2 , and A

n− 1
2

i , i.e. the current magnetic field, and the auxiliary variable at
the previous half time step. The sum needs to be computed P times, for each of
the in total P auxiliary variables. Additionally, the sum of the auxiliary variables
need to be multiplied with the matrix C′Z and summed up when computing the

magnetic field hn+ 1
2 . Therefore the number of additional operations at every half

time step is four. The additional vectors to be stored in ADE method at every

time step, are A
n− 1

2
i (∀i = 1..P), and

∑P
i=1A

n+ 1
2 1

i , i.e. in total P + 1 vectors.

The current magnetic field hn+ 1
2 is needed also for computing the current electric

field en+1, and therefore does not count in additional vectors due to ADE method.

Although RC method requires more operations, as well as storing one additional
vector at each time step, the approximation in the discrete time domain is more
accurate in RC method: The approximation of the magnetic field in RC method
is linear with respect to time, see Equation (5.28). In contrast, in ADE method,
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the approximation of the magnetic field is constant with respect to time, see
Equation (5.43).
Additionally, RC method requires 3P coefficients (ζR1i , ζ

R
2i ,and ζ

R
3i ,∀i = 1...P) to

be computed, while ADE method only 2P (ζA1i , and ζ
A
2i ,∀i = 1...P). However,

the coefficients are computed in the pre-processing phase (see Section 1), and
therefore this does not have a significant effect on total CPU time. The differences
between RC and ADE methods are summarized in Table 5.4 and the desired
features of the methods are qualified with "+" sign.

Table 5.4.: Comparison of ADE and RC methods in terms of accuracy and effi-
ciency.

ADE RC
type of magnetic field approximation constant linear (+)
additional operations per half time step 4 (+) 5
additional vectors to be stored P + 1 (+) P + 2
coefficients to be computed 2P (+) 3P

As a conclusion, the RC method is more accurate due to the linear field approxi-
mations, but the computational cost of ADE method is lower, in terms of number
of additional operations per time step and the number of vectors to be stored
per time step.

5.5 Numerical Examples

In this section, previously introduced schemes for modeling of SIBC with DG-
FEM in the discrete time domain, are validated and verified by numerical ex-
amples and convergence studies. The SIBC functions are approximated in the
frequency domain using the vector fitting procedure, as introduced in Section
5.2. The time domain results are obtained by approximating SIBC by RC and
ADE methods, as proposed in Sections 5.3.3 and 5.3.4, respectively. RC and
ADE schemes are also compared in terms of accuracy and solver times.
Test structures for the numerical examples and convergence studies are cavity
resonators with lossy walls, with different geometries and material parameters.
The verification of the numerical schemes is performed by comparing the fun-
damental resonance frequencies f0 and the Q factors of the resonators with the
results obtained by the Power Loss method [40]. The resonance frequencies f0
as well as the Q factors are obtained by running the simulations with the time
stepping schemes (5.54) and (5.54), and extracting then from the time domain
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signal by applying Prony’s method [75]. In the following section, Prony’s method
is introduced.

5.5.1 Prony’s Method

The Q factor is an useful parameter to verify the losses of a resonator, as already
seen in Section 4.7.1. Therefore, in addition to verifying the frequency domain
scheme, it is exploited in the time domain as well. In the time domain simulations,
the time signal of a resonator is recorded at every time step, and the Q factor
is extracted by means of Prony’s method. The method was first proposed by
Gaspard de Prony as early as in in year 1795 [75], and it was first applied in
electromagnetic simulations 200 years later by Hauer [45]. The method is capable
to estimate the frequency components of a signal, and the corresponding damping
coefficients [45]. According to Hauer [45], Prony’s method estimates the time
domain signal x(t) as a sum of complex damped sinusoidal signals:

x(t)≈
L
∑

i=1

Aie
σi t cos(ωi t +ϕi), (5.70)

where L is the number of frequency components of the approximation, Ai is the
amplitude, σi the damping coefficient, ωi the angular frequency, and ϕi the
phase of the frequency component i. The Q factor of the frequency component i
can be calculated as

Q i =
ωi

σi
. (5.71)

Prony’s method performs poorly in the presence of noise [45]. To overcome this
problem in our simulations, we filter the obtained time domain signal with a low-
pass filter in case of the fundamental frequency of a resonator. Figures 5.4(a) and
5.4(c) show the original and the filtered damped signals of a resonator, whereas
Figures 5.4(b) and 5.4(d) show the filtered signal and the signal fitted by Prony’s
method. Figures 5.4(a) and (b) present a signal of a high-loss resonator, and the
attenuation of the signal is clearly visible. The signals in Figures 5.4(c) and (d)
represent low-loss resonator.
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5.5.2 Cavity Resonator with Lossy Walls

In this section, fundamental frequencies f0 and Q factors of cavity resonators
are investigated in the discrete time domain, in order to verify and validate the
developed schemes for modeling surface impedance boundary conditions. In Sec-
tion 5.5.2.1, a numerical example is given, where the Q factors of lossy resonators
are investigated on a wide frequency band. The results obtained by the ADE
method, are compared with the Power Loss method, as well as CST Transient
solver results.

In Section 5.5.2.2, the convergence studies of ADE and RC methods are per-
formed. The convergence is studied by investigating the fundamental frequencies
and Q factors of different cavity resonators. The performance and accuracy of
ADE and RC methods are compared, and the accuracy is also compared with
CST Transient solver.

5.5.2.1 Q factor of Cavity Resonator

As a numerical example, Q factors of cavity resonators are investigated. The
Q factors are obtained by two time domain methods, namely the ADE method
proposed in this thesis (in Section 5.4.2), and CST Transient solver, as well the
Power Loss method (Equation (4.83) in Section 4.7.1).

Cavity resonators with three different edge lengths l, namely l = 10cm, l =
1m, and l = 10m, are investigated. The corresponding fundamental frequencies
are 2.12GHz, 0.212GHz, and 0.0212GHz, respectively. The conductivity of the
resonator walls is 5.8 ·109S/m. A wide range of resonator sizes, and consequently
a wide range of frequencies, is chosen as numerical examples to demonstrate the
applicability of the wideband impedance approximation (see Section 5.2).

The number of interpolants of the impedance approximation is 10, and the fre-
quency range is from 1MHz to 100GHz. The impedance approximation coeffi-
cients ai and ci are given in Table A.5 in Appendix A. The analytical impedances
Z (4.19), the impedance approximations Zappr., and the relative deviations of
the absolute values of the imedances at the resonance frequencies of different
resonators are given in Table 5.5. As can be seen, the agreement between the
analytical impedances and impedance approximations is very good on a wide
frequency range.
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Table 5.5.: Analytical impedances Z , and impedance approximations Zappr. at
the fundamental resonance frequencies f0 of resonators with different edge
lengths.

l f0 Z( f0) Zappr.( f0) ∆
10cm 2.12GHz (1.201+ j1.201)mΩ (1.183+ j1.173)mΩ 1.9 %
1m 0.212GHz (379.9+ j379.9)µΩ (377.7+ j377.7)µΩ 0.58 %
10m 0.0212GHz (120.1+ j120.1)µΩ (119.5+ j120.1)µΩ 0.26 %

CST Transient solver is run with PEC boundary condition, and field monitors
are set to monitor the electric and magnetic field at the fundamental frequency
of the resonator. The Q factors are calculated in the post-processing phase.
In ADE method, the simulations are run until 10ms (50ms for the resonator
with edge length 10m), and the time signal is recorded at every time step. The
Prony’s method (Section 5.5.1) is applied to the time signals, in order to obtain
the Q factors. In CST Transient solver and ADE simulations, the mesh reso-
lution h is 6 mesh lines/resonator edge length, which corresponds to 7.1 mesh
lines/wavelength, independent on the resonator size. In ADE method, the basis
function order is set to zero.

The results are given in Tables 5.6, 5.7, and 5.8. The conductivity is 5.8 ·109S/m,
which is very high (see condition for a good conductor in Section 4.2.1), and
therefore the Q factors calculated by the Power Loss method are very accurate,
as the accuracy of the method is proportional to conductivity. As can be seen,
the Q factors obtained by the ADE method, are in a very good agreement with
the Q factors calculated by the Power Loss method. The results of ADE method
are given also graphically in Figures 5.5, 5.6, and 5.7, where the time series (a),
as well as the signal spectrum (b) are shown.

Table 5.6.: Q factors of a cavity resonator with edge length 10cm obtained by
Power Loss method, ADE method, and CST Transient solver.

Q factor
Power Loss method 2.32 ·105

ADE 2.34 ·105

CST Transient solver 2.56 ·105
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Table 5.7.: Q factors of a cavity resonator with edge length 1m obtained by Power
Loss method, ADE method, and CST Transient solver.

Q factor
Power Loss method 7.34 ·105

ADE 7.61 ·105

CST Transient solver 8.13 ·105

Table 5.8.: Q factors of a cavity resonator with edge length 10m obtained by
Power Loss method, ADE method, and CST Transient solver.

Q factor
Power Loss method 2.32 ·106

ADE 2.47 ·106

CST Transient solver 2.56 ·106

As can be seen in Figures 5.5-5.7, the losses of the resonator with edge length
of 10cm are significantly higher than the losses of the bigger resonators. The
explanation can be found in Table 5.5. The impedance at the resonance frequency
of the smallest resonator is 1000 times higher than for the bigger resonators,
and therefore also the losses are significantly higher. In the next section, the
convergence study of the ADE and RC methods for modeling SIBC is performed.

5.5.2.2 SIBC Convergence Study

The test structure for the convergence study is a cubical cavity resonator with
lossy walls. The edge length of the cavity is 1m, and the material parameters of
the lossy walls are the following: Conductivity σ = 5.8 ·105S/m, permittivity ε =
ε0, and permeability µ= µ0. The cavity is filled with a air, i.e. the permittivity
and permeability are ε0 an µ0, respectively, and the conductivity is zero.
The test structure is spatially discretized by a hexahedral mesh with the mesh
resolutions 4.2, 5.7, 7.1, 8.5, 9.9, 11.3, 12.7, and 14.1 mesh lines/wavelength.
These resolutions correspond to 3, 4, 5, 6, 7, 8, 9, and 10 mesh lines/resonator
edge. An exemplary mesh with a resolution of 5.7 mesh lines/wavelength is given
in Figure 4.13 in Section 4.7.2.2. The basis function polynomial orders for the
simulations are 0 and 1.
The resolution of the spectrum calculated from the time series is proportional to
the total time of the simulation [19]. Therefore, all the simulations are run until
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10ms in order to get accurate results for the resonance frequency and the Q factor.
The time step depends on the mesh resolution and the basis function polynomial
order, and therefore the number of time steps is different for different simulation
setups as well: The smallest amount of time steps is 3.5 ·105 with the mesh
resolution 5.7 mesh lines/wavelength and polynomial order 0, and the highest
number of time steps is 3.9 ·106 with mesh resolution 7.1 mesh lines/wavelength
and polynomial order 1.
To overcome the problem with spurious modes in DG-FEM method, the penaliza-
tion method proposed by Gjonaj and Weiland [33] is utilized. The penalization
method shifts the spurious modes to higher frequencies, but the drawback is,
that it consequently reduces the stable time step [33]. The penalization factor
γ is chosen to be 5, as it seems to be a good compromise between shifting the
spurious modes and time step reduction.
The results are obtained with ADE and RC methods, and the methods are also
compared in terms of accuracy and solver times. With both of the methods, the
impedance approximations ZVF1(ω) (5.4) and ZVF2(ω) (5.5) are used. Addition-
ally, CST Transient solver is used to obtain the Q factors of the cavity resonator.
These results are presented in Section 5.5.2.3.

5.5.2.2.1 ADE Convergence Study
This section shows the results obtained by the ADE method as introduced in
Section 5.3.4. As a reference results to verify the scheme the following values
are used: The fundamental frequency f0,ref. = 0.211985GHz, and quality factor
Qref. = 7343.878. The fundamental frequency is trivially known for a cubical
cavity resonator, and the Q factor is calculated by the Power Loss method as
introduced in Equation (4.83) in Section 4.7.1.
The simulations are run as described above in Section 5.5.2.2, and the rela-
tive deviations with respect to the reference results are calculated. The relative
deviations are defined as

∆rel. =
|Q−Qref.|

Qref.
. (5.72)

for the Q factor, and

∆rel. =
| f0 − f0,ref.|

f0,ref.
(5.73)

for the fundamental resonance frequency. The relative deviations with respect
to mesh resolution h and basis function polynomial order are shown in Figures
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5.8 and 5.9 for the impedance approximation ZVF1(ω) (5.4), and in Figures 5.10
and 5.11 for the impedance approximation ZVF2(ω) (5.5). The abbreviation for
Time Domain DG-FEM (TDDG) in the figure titles refers to DG-FEM in the
discrete time domain, introduced previously in Section 5.4.2. The convergence
rates for the relative deviations are given in Table 5.9
The accuracy obtained is very high, especially when taking into account very
coarse meshes used for the simulations. The smallest relative deviation of the
resonance frequency is 3.2 ·10−3% and 5.2 ·10−1 for the Q factor. The conver-
gence rates shown in Table 5.9 follow the hp-convergence rate [7].

Table 5.9.: Convergence rates for the resonance frequency f0 and the Q factor
of time domain DG-FEM with SIBC ADE method with respect to basis
function polynomial order p and number of impedance interpolants P.

p P f0 Q factor
0 5 h−2 h−2.5

1 5 h−3.6 h−3.1

0 10 h−2 h−2.5

1 10 h−3.5 h−3.1

5.5.2.2.2 RC Convergence Study
This section shows the results obtained by the RC method as introduced in
Section 5.3.3. As a reference results to verify the scheme the following values
are used: The fundamental frequency f0,ref. = 0.211985GHz, and quality factor
Qref. = 7343.878. The fundamental frequency is trivially known for the cubical
cavity resonator, and the Q factor is calculated by the Power Loss method as
introduced in Equation (4.83) in Section 4.7.1.
The simulations are run as described above in Section 5.5.2.2, and the rela-
tive deviations with respect to the reference results are calculated. The relative
deviations are defined as

∆rel. =
|Q−Qref.|

Qref.
. (5.74)

for the Q factor, and

∆rel. =
| f0 − f0,ref.|

f0,ref.
(5.75)
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for the fundamental resonance frequency. The relative deviations with respect to
mesh resolution h and basis function polynomial order are shown in Figures 5.12
and 5.13 for the impedance approximation ZVF1(ω) (5.4), and in Figures 5.14 and
5.15 for the impedance approximation ZVF2(ω) (5.5). The abbreviation TDDG
in the figure titles refers to DG-FEM in the discrete time domain, introduced
previously in Section 5.4.1. The convergence rates for the relative deviations are
given in Table 5.10.
The accuracy obtained is very high, especially when taking into account very
coarse meshes used for the simulations. The smallest relative deviation of the
resonance frequency is 3.2 ·10−3% and 7.4 ·10−1 for the Q factor. The conver-
gence rates shown in Table 5.10 follow the hp-convergence rate [7].

Table 5.10.: Convergence rates for the resonance frequency f0 and the Q factor of
time domain DG-FEM with SIBC RC method with respect to basis function
polynomial order p and number of impedance interpolants P.

p P f0 Q factor
0 5 h−2 h−2.5

1 5 h−3.6 h−3.1

0 10 h−2 h−2.5

1 10 h−3.5 h−3.1

5.5.2.3 Accuracy and Performance of ADE and RC

In Section 5.4.3, the theoretical differences of ADE and RC methods were pointed
out. In this section is shown, how the theoretical differences reflect to simulations.
To obtain the results, we have chosen a resonator with edge length of l = 1m
and wall conductivity σ = 5.8 ·105S/m. We have run the simulations with ADE
and RC methods with number of interpolants P = 5 and P = 10 (impedance
approximations ZVF1(ω) (5.4) and ZVF2(ω) (5.5) in Section 5.2) and with mesh
resolutions h 5.6, 8.5, and 11.3 lines/wavelength. Table 5.11 shows the solver
times for the simulations with ADE method with P = 5 and P = 10, and Table
5.12 for RC method, respectively. Table 5.13 shows the difference in solver times
between the ADE and RC methods with P = 10.
In addition to solver times, the accuracy of the corresponding simulations is
investigated. The accuracy is defined by calculating the relative error of the Q
factor, as given in Equation (5.72). The accuracies of the simulations are given
for ADE method in Table 5.14 and for RC method in Table 5.15, respectively.
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Table 5.11.: Comparison of solver times of ADE method with respect to P and
mesh resolution h in terms of elements/wavelength at the fundamental res-
onance frequency f0.

h= 5.6 h= 8.5 h= 11.3
P = 5 6min 35min 2h
P = 10 7min 39min 4h
∆rel. 9.9% 11.6% 46.8%

Table 5.12.: Comparison of solver times of RC method with respect to P and mesh
resolution h in terms of elements/wavelength at the fundamental resonance
frequency f0.

h= 5.6 h= 8.5 h= 11.3
P = 5 7min 37min 2h
P = 10 8min 44min 3h
∆rel. 14.7% 26.0 % 29.3%

Table 5.13.: Comparison of solver times between ADE and RC methods with
respect to mesh resolution h in terms of elements/wavelength at the funda-
mental resonance frequency f0.

h= 5.6 h= 8.5 h= 11.3
ADE P = 5 6min 35min 2h
RC P = 5 7min 37min 2h
∆rel. 9.9% 6.9% 5.9%

Table 5.14.: Comparison of accuracy of ADE method with respect to P and mesh
resolution h in terms of elements/wavelength at the fundamental resonance
frequency f0.

h= 5.6 h= 8.5 h= 11.3
P = 5 10% 3.7% 1.5%
P = 10 10% 4.0% 1.8%

The accuracies of all the simulations, with ADE and RC, with P = 5 and P = 10
are also shown in Figure 5.16. As a conclusion, the differences in accuracies
of the both methods, with both number of interpolants, are almost insignifi-
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Table 5.15.: Comparison of accuracy of RC method with respect to P and mesh
resolution h in terms of elements/wavelength at the fundamental resonance
frequency f0.

h= 5.6 h= 8.5 h= 11.3
P = 5 11% 4.0% 1.7%
P = 10 11% 4.3% 2.1%

cant. However, the relatively small difference (see Tables 5.2 and 5.3) in the
impedance approximations ZVF1(ω) and ZVF2(ω) can be partly hidden by the
method used extracting the time domain results (Prony’s method, see Section
5.5.1). In contrast, the solver times are significantly smaller with smaller number
of interpolants, and in general with ADE method. This result is in agreement
with the remarks in Section 5.4.3.
Additionally, the results are obtained by CST Transient solver. The mesh res-
olution for the CST simulations is from 7 to 34 mesh lines/wavelength. The
cavity is excited by a Gaussian modulated sine pulse via a discrete port. The
simulations are run, until the steady state energy criterion −80dB is reached.
The simulations are run with the PEC boundary condition, while the electric
and magnetic fields are monitored at the fundamental resonance frequency of the
resonator (0.211985GHz), and the Q factor is calculated in the post-processing
phase. The accuracy of CST results is lower, but the time step used is also
smaller, as well as the number of time steps. As an example, with mesh resolu-
tion 14 mesh lines/wavelength (10 mesh lines/cavity edge), the time step for CST
simulation is 1.87 ·10−10s, whereas for ADE/RC simulations it is 1.58 ·10−11s.
The numbers of simulated time steps are 154760, and 632008, respectively. How-
ever, the number of time steps in ADE/RC methods is intentionally very high,
because the accuracy of Prony’s method (see Section 5.5.1), is proportional to
the number of time steps. The results obtained with CST Transient solver are
also shown in Figure 5.16.
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(a) (b)

(c) (d)

Figure 5.4.: Prony’s method for two resonator signals. Figure (a) shows the
original and low-pass filtered time signal of the resonator, and figure (b)
shows the filtered signal and the signal fitted by the Prony’s method. The
attenuation of the signal is clearly visible due to a relatively low conductivity,
σ = 5.8 ·105S/m. The Q factor of the signal, computed by the Prony’s
method, is 8116. Figures (c) and (d) show the corresponding signals for a
low-loss resonator. The attenuation of the signal is not clearly visible due to
a high conductivity, σ = 5.8 ·109S/m. The Q factor of the signal is 813042.
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(a) (b)

Figure 5.5.: The time signal (a) and the corresponding spectrum (b) of a cavity
resonator with edge length 10cm.

(a) (b)

Figure 5.6.: The time signal (a) and the corresponding spectrum (b) of a cavity
resonator with edge length 1m.
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(a) (b)

Figure 5.7.: The time signal (a) and the corresponding spectrum (b) of a cavity
resonator with edge length 10m.

Figure 5.8.: Relative error of the Q factor of a resonator with σ = 5.8 ·105S/m and
l = 1m. Orders 0-1 refer to basis function polynomial order, and the triangles
indicate the convergence rates (see also Table 5.9). The mesh resolution h is
4.2-14.1 edges/wavelength, and smallest reached relative error is 5.2 ·10−3.
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Figure 5.9.: Relative error of the f0 of a resonator with σ = 5.8 ·105S/m and
l = 1m. Orders 0-1 refer to basis function polynomial order, and the triangles
indicate the convergence rates (see also Table 5.9). The mesh resolution
h is 4.2-14.1 edges/wavelength, and the smallest reached relative error is
3.2 ·10−5.

Figure 5.10.: Relative error of the Q factor of a resonator with σ = 5.8 ·105S/m
and l = 1m. Orders 0-1 refer to basis function polynomial order, and the
triangles indicate the convergence rates (see also Table 5.9). The mesh reso-
lution h is 4.2-14.1 edges/wavelength, and the smallest reached relative error
is 9.1 ·10−3.
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Figure 5.11.: Relative error of the f0 of a resonator with σ = 5.8 ·105S/m and
l = 1m. Orders 0-1 refer to basis function polynomial order, and the triangles
indicate the convergence rates (see also Table 5.9). The mesh resolution
h is 4.2-14.1 edges/wavelength, and the smallest reached relative error is
4.0 ·10−5.

Figure 5.12.: Relative error of the Q factor of a resonator σ = 5.8 ·105S/m and
l = 1m. Orders 0-1 refer to basis function polynomial order, and the triangles
indicate the convergence rates (see also Table 5.10). The mesh resolution
h is 4.2-14.1 edges/wavelength, and the smallest reached relative error is
7.4 ·10−3.
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Figure 5.13.: Relative error of the f0 of a resonator with σ = 5.8 ·105S/m and
l = 1m. Orders 0-1 refer to basis function polynomial order, and the triangles
indicate the convergence rates (see also Table 5.10). The mesh resolution
h is 4.2-14.1 edges/wavelength, and the smallest reached relative error is
3.2 ·10−5.

Figure 5.14.: Relative error of the Q factor of a resonator with σ = 5.8 ·105S/m
and l = 1m. Orders 0-1 refer to basis function polynomial order, and the
triangles indicate the convergence rates (see also Table 5.10). The mesh
resolution h is 4.2-14.1 edges/wavelength, and the smallest reached relative
error is 1.1 ·10−2.
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Figure 5.15.: Relative error of the f0 of a resonator with σ = 5.8 ·105S/m and
l = 1m. Orders 0-1 refer to basis function polynomial order, and the triangles
indicate the convergence rates (see also Table 5.10). The mesh resolution
h is 4.2-14.1 edges/wavelength, and the smallest reached relative error is
4.0 ·10−5.
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Figure 5.16.: Comparison of the relative errors of the Q factor between ADE and
RC methods, as well as the Q factors calculated by CST Transient solver.
The results are obtained by ADE and RC methods with P = 5, and P = 10,
as well as basis function polynomial order 0 and 1. There is no significant
difference in accuracy visible between the ADE and RC methods.
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6 Summary
I would like to recall the research question placed in the introduction in Section
1: How to model dispersive surface impedance boundary conditions accurately
and efficiently on a wide frequency band? The aim of the thesis is naturally to
answer the question. To be more precise, the aim is to develop effective methods
to model dispersive impedance boundary conditions on a wide frequency band at
a single simulation run. Conventionally this is done in the time domain, which is
also the case in this thesis. However, also a method to do this in the frequency
domain is proposed in this thesis.
Additionally, the aim of this thesis is to model complex geometries accurately.
Accurate modeling of problem geometry is considered by applying the developed
schemes in DG-FEM method, which is by nature very efficient on modeling com-
plex geometries. Another advantage of DG-FEM, especially from the point of
view of this thesis, is that DG-FEM is very efficient tool for time domain simula-
tions. The dispersive boundary conditions considered within this thesis include
Standard Impedance Boundary Condition (SIBC) for modeling smooth conduc-
tor surfaces with high conductivity, Corrugated Surface Boundary Condition
(CSBC) for modeling corrugated conducting surfaces, and Impedance Trans-
mission Boundary Condition (ITBC) for modeling electrically thin conductive
sheets.

6.1 Conclusion

As an answer to the research question, two schemes for modeling electromag-
netic problems on a wide frequency band are proposed in this thesis, one in the
frequency domain, another in the time domain. In the following, the proposed
schemes are shortly summarized. The detailed descriptions of the methods, as
well as validation and verification, are given in Chapter 4 for the frequency do-
main scheme, and in Chapter 5 for the time domain scheme. Additionally the
frequency domain scheme is published by the author in [98], and both of the
schemes are novel in computational electrical engineering, as far as the author is
concerned.

1. Wideband Iterative Eigenvalue Problem Solver
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In Chapter 4, a novel method for solving electromagnetic EVP with dis-
persive boundary conditions on a wide frequency band in the frequency
domain is proposed. The core of the proposed method is the following:
At the initial iteration step, the linear and real EVP without dispersive
boundary conditions is solved, to find out the frequency spectrum of the
problem. After that, at every requested frequency, the value for the disper-
sive, complex impedance function is calculated, and a set of new, this time
complex, EVPs are solved. However, as the impedance function is calcu-
lated separately at every requested frequency, and has a constant value at
every eigenfrequency, the EVP is independent of frequency. Therefore, the
EVP remains linear, i.e. although the dispersivity of the surface impedance
function is considered, there is no need to solve for a nonlinear EVP.

The procedure is repeated iteratively for each requested resonance fre-
quency, until a a certain convergence tolerance is reached. This procedure
enables solving for electromagnetic problems with taking into account the
dispersivity of the impedance functions in the frequency domain. The
proposed method is verified by several numerical examples and conver-
gence studies for different impedance boundary conditions. The proposed
scheme appears to be very accurate, as well as efficient, method for model-
ing impedance boundary conditions on a wide frequency band. Very small
relative errors are achieved already with low mesh densities, and low-order
basis functions. Additionally, only one iteration round is needed to reach
the convergence.

2. Time Domain Scheme with Dispersive Impedance Boundary Conditions

The main contribution for this thesis is, as also the research question sug-
gests, a scheme for solving electromagnetic problems on a wide frequency
band in the time domain, with DG-FEM, and in the presence of dispersive
impedance boundary conditions. The scheme is presented in Chapter 5 and
the core of the method is the following: First, the dispersive impedance
functions are approximated in the frequency domain as series of rational
functions. The impedance boundary conditions are then transformed into
the time domain by means of ADE and RC methods. Finally, a discrete
time domain scheme is obtained by Verlet integration. The obtained time
domain scheme is semi-implicit, i.e. the Maxwell’s equations are solved
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explicitly, and only the so called recursion terms, arising from dispersive
boundary conditions, are solved semi-implicitly. Therefore, there is no
need to invert matrices at every time step, and the obtained time step-
ping scheme is fast and efficient. The proposed schemes are verified by
numerical examples convergence studies, and it appears to be efficient and
accurate, already at very low mesh densities and basis function orders.
Additionally, the RC and ADE methods are compared, and no significant
difference in accuracy is found.

6.2 Outlook

In this section, further potential research topics related to this thesis are given.
In this thesis, solely the surface impedance models, which exclude the tangential
variation of the electromagnetic field within the conductor, are utilized. These
first order models are suitable and accurate in most of the cases. However, when
the lossy surfaces to be modeled have small radii of curvature, or the skin depths
are large, first order surface impedance models may fail. Therefore, higher order
surface impedance models, as e.g. [85] or [69], could be considered to model these
cases. Also the time-stepping schemes utilized in this thesis, are of first order.
The accuracy of surface impedance schemes in the time domain would increase
by using higher order time stepping scheme.
In addition to modeling of surface impedance boundary conditions, the methods
proposed in this thesis could be utilized also in other kind of boundary condi-
tions. For example, modeling of open boundaries by means of ABC or PML.
This would increase significantly also the applicalibilty of the surface impedance
boundary conditions presented in this thesis, as the open boundary conditions
would consider the wide frequency band as well. This would also enable apply-
ing the modeling schemes proposed in this thesis to large-scale applications. In
this thesis, the surface impedances are modeled by using RC and ADE methods,
however, also e.g. Z-transform approach [5] could be utilized as well.
The approximations used for the impedance functions in the frequency domain in
this thesis, are first order rational function, which correspond to the Drude model
for dispersive medium. Also higher order rational functions could be considered,
for example Debye [21] or Lorentz models [73], which would extend the frequency
range. To improve the efficiency of the frequency domain scheme, the iterative
EVP solver could be implemented in FEM, in addition to DG-FEM.
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A Appendix

Table A.1.: Fitting parameters for impedance approximation ZVF1(ω).
ai ci

−7.0687 ·1010 6.0650 ·107

−1.4025 ·1010 −1.0313 ·107

−2.2052 ·109 −9.0595 ·104

−3.6552 ·108 −2.1469 ·104

−4.1419 ·107 −636.3228

Table A.2.: Fitting parameters for impedance approximation ZVF2(ω).
ai ci

−2.3103 ·1011 3.2857 ·109

−3.8421 ·1010 −4.5674 ·107

−8.7509 ·109 −2.4640 ·105

−3.3219 ·109 −3.4949 ·105

−1.3361 ·109 −2.9664 ·104

−5.2621 ·108 −1.9433 ·104

−1.9898 ·108 −2.4560 ·103

−7.1435 ·107 −979.8506
−2.3608 ·107 −132.3637
−5.6763 ·106 −39.2745
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Table A.3.: Fitting parameters for impedance approximation ZVF3(ω).
ai ci

−9.2882 ·1011 1.8990 ·109

−1.0914 ·1011 −1.8060 ·108

−1.6093 ·1010 −3.0600 ·106

−2.0773 ·109 −3.0930 ·105

−1.3749 ·108 −5.8229 ·103

Table A.4.: Fitting parameters for impedance approximation ZVF4(ω).
ai ci

−3.7963 ·1012 9.3930 ·109

−2.0747 ·1011 −3.6732 ·108

−5.2602 ·1010 −1.3078 ·107

−1.7093 ·1010 −3.8621 ·106

−5.4116 ·109 −4.9225 ·105

−1.5807 ·109 −1.1154 ·105

−4.1469 ·108 −1.3410 ·104

−9.4565 ·107 −1.8841 ·103

−1.7790 ·107 −159.6650
−2.4306 ·106 −11.0919

Table A.5.: Fitting parameters for impedance approximation in numerical exam-
ple in Section 5.5.2.1.

ai ci

−6.1469 ·1012 1.9762 ·1011
−1.2654 ·1012 −3.4602 ·1010
−2.4365 ·1011 −2.7490 ·108

−6.5410 ·1010 −1.3911 ·108

−1.7243 ·1010 −1.1318 ·107

−4.3163 ·109 −2.0913 ·106

−1.0185 ·109 −2.0910 ·105

−2.2532 ·108 −2.5310 ·104

−4.6291 ·107 −2.3488 ·103

−7.9307 ·106 −220.0986
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